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Executive Summary 

The accumulation of space debris in the geosynchronous region (GEO) has raised attention among 

spacefaring nations. The current mitigation measure supported and voluntarily practiced is to 

boost satellites into supersynchronous orbits in the time before stationkeeping fuel is expected 

to be exhausted and to passivate satellites of all stored and generated energy sources to prevent 

explosions, which are by far the largest source of fragmentation debris. Because this solution does 

not remove mass from space, debris generation by other fragmentation events remains a possibility. 

The collision hazard between inactive satellites in the supersynchronous region raises questions 

about the consequences of collisions in this regime and possible interaction with GEO. 

In considering the use of supersynchronous orbits for satellite disposal, the first concern is 

to determine the minimum safe distance above GEO such that objects in the disposal orbits will 

not interfere with the GEO population in the future. This involves defining the useful GEO area 

and studying the perturbation effects on objects in supersynchronous orbits. Thus far, research 

has focused on propagating the orbits of intact objects. However, in the aftermath of a collision, 

pieces of varying sizes and shapes can be found in orbits quite different from the parent objects' 

orbits. 

This document summarizes background information on debris in the GEO region, sources 

and management strategies, and then addresses the following questions: Will orbits of fragments 

from a collision in a storage orbit occupy GEO altitudes at some time after the collision? If so, at 

what altitude should the storage orbit occupy such that collision fragments will not interfere with the 

GEO population? The methods and tools by which the effects of collisions in the supersynchronous 

region can be analyzed are discussed. A low-velocity collision model is employed to provide delta- 

velocities imparted to the fragments. An analytical study of perturbation effects, including solar and 

lunar third body gravitation, Earth oblateness through degree and order four, and solar radiation 

pressure, follows in order to evaluate the magnitude of these disturbing forces on the fragmentation 

debris. Validation of these results by numerical analysis using proven numerical and semianalytical 

x 



orbit propagators is discussed. The results show that currently practiced reorbiting distances above 

GEO do not isolate debris from GEO after the occurrence of collisions in the storage orbit. 

This report is based on the dissertation work of the primary author which was funded by 

the Air Force Palace Knight Program. The opinions expressed in this document are those of the 

author and do not reflect those of the Air Force, the Department of Defense, nor the United States 

government. 
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Chapter 1 

Introduction 

Space debris can be defined as "any man-made Earth-orbiting object which is non-functional 

with no reasonable expectation of assuming or resuming its intended function or any other function 

for which it is or can be expected to be authorized, including fragments and parts thereof." [29] 

Specifically, orbital debris include [46] 

• Nonfunctional spacecraft 

• Rocket bodies 

• Mission-related debris 

1. Exhaust products 

2. Objects released in spacecraft deployment and operations 

3. Refuse from manned missions 

• Fragmentation debris 

1. Explosion fragments 

2. Collision fragments 

3. Products of deterioration 

The term orbital debris is often used interchangeably with space debris, as is the case in 

this writing. It is a subject that is gaining public recognition in recent years, with short articles 



now appearing even in local newspapers. Despite its novelty status in the public conscience, orbital 

debris has been a topic of research for decades now. Space agencies regard it as a space hazard which 

previously included such things as meteoroids and radiation, problems to be studied and to find 

protection against. Unlike the other space hazards mentioned, however, debris is man-generated, 

and therefore, to a certain extent, the debris situation is ours to assess, control, and counteract. 

The background information on orbital debris is extensive, as it concerns all regions of near-Earth 

space currently in use. The rest of this introduction briefly summarizes the debris situation in the 

geosynchronous Earth orbits (GEO) region. This is followed by discussions of debris sources and 

proposed management schemes. 

1.1    Space Debris in GEO 

The focus of this research is on the GEO debris environment, which differs on significant 

points from the situation in low Earth orbits (LEO) as described in this section. The great majority 

of the cataloged debris is in LEO. Undoubtedly, most debris, cataloged as well as uncataloged, is in 

LEO due to its extensive use and the wider range of altitudes that comprises LEO. However, at GEO 

altitudes, only objects larger than 1 m in diameter are regularly tracked and cataloged, whereas 

10-50 cm is the limit in LEO [29]; therefore, a whole population of smaller pieces potentially exists 

in GEO undetected. It is also possible that fragmentation events, especially if the parent objects' 

orbits do not markedly change and resulting debris are small, occur unnoticed [39]. 

Another difference is that relative velocity between objects in GEO averages about 

500 m/s [26], compared to about 10 km/s for LEO [49]. Since probability of collision is a function of 

the average relative velocity between objects as well as spatial density, greater attention is directed 

at LEO, particularly at the crowded 900-1000 km and 1400-1500 km altitude bands [46]. With 

manned missions currently limited to LEO, a good deal of debris research aims at evaluating the 

risk to and protecting the Space Shuttle and the planned International Space Station [47]. Finally, 

the proximity of LEO allows for active retrieval of satellites so that their space-exposed surfaces, 

which are records of impacts from debris, may be studied. The result of these distinctions is that 

there are more measurement data and environment models for LEO than for the debris in GEO. 



Then, too, atmospheric drag acts as a natural cleanser for parts of LEO. Satellites below 

500 km altitude will deorbit within several years [32]. LEO satellites operating above 500 km can 

reduce their orbital lifetime by reorbiting at end of life (EOL) to lower altitudes or simply by 

lowering their perigee as appropriate to utilize atmospheric drag. In GEO, orbital lifetimes exceeds 

thousands of years, and deorbiting is not economically feasible with current technology. Barring 

great advances in propulsive technology, the population, intact or otherwise, in GEO is more or less 

permanent. With this difference in mind, debris management strategies for GEO must be tailored 

to the situation there. The rest of this document discusses only issues pertaining to GEO. 

1.2    Physical Characteristics of GEO 

The primary distinguishing feature of GEO is that satellites placed there have an orbital 

period of about 1436.2 min, one sidereal day. A distinction can be made between the geosynchronous 

region and the particular circular orbits at about 35,786 km altitude and zero inclination, which are 

referred to as geostationary orbits (GSO). GSO satellites appear to be fixed in the sky over locations 

on Earth's equator. Consequently, antennas at ground relay stations can be small, nonmoving, 

high-gain, and low-cost, thus extending satellite coverage to millions of direct users for whom the 

expense of tracking antennas is out of reach [61]. Satellites in other GEO orbits have "figure 

eight" groundtracks, which grow larger with higher inclinations. The many uses of GEO include 

communications, meteorology, and governmental and military support. 

Due to tesseral harmonics effects, satellites must perform longitudinal, i.e., east-west, sta- 

tionkeeping maneuvers to avoid drifting out of GSO. The ellipticity of the Earth's equator produces 

four equilibrium points in GSO, two stable points at 75.3°E and 255.3°E and two unstable points 

at 165.3°E and 345.3°E. Uncontrolled satellites migrate toward the stable points. Lunar and so- 

lar gravity torque the satellite orbit plane toward the ecliptic [26]; thus, GSO satellites must also 

perform north-south stationkeeping maneuvers to control inclination. The orbital inclinations of 

uncontrolled satellites increase from 0° to almost 15° in 27 years and then back to 0° in another 

27 years [62]. Long term propagations show radial stability throughout the region, defined as 

2000 km above and below GSO altitude [26].   Uncontrolled, intact GEO and GSO objects will 



remain in the GEO region for at least several centuries. Due to this, the accumulation of debris is 

of concern for many GEO operators. 

1.3    Debris Sources 

The first GEO satellite, Syncom 3, was launched in 1964. It relayed signals to broadcast the 

Tokyo Olympics to half of the Earth [52]. Within three decades, hundreds of satellites have been 

placed into GEO with an average of about 25 new payloads per year at present [42]. Along with 

this population of active and inactive payloads is an assortment of rocket bodies, mission-related 

debris, and fragmentation debris. GEO objects can be divided into two classes: those that are large 

enough to be cataloged and those that are not. 

1.3.1    Cataloged Objects 

Objects that can be identified and regularly tracked are listed in the US Space Command 

satellite catalog along with their two-line element (TLE) sets. This catalog is not generally available 

to the public, but portions of it can be obtained through other sources. From the NASA-issued 

TLE, there were 632 cataloged objects in GEO in March 1997, if GEO is defined by [30] 

• eccentricity smaller than 0.1, 

• mean motion between 0.9 and 1.1 revolutions per sidereal day, corresponding to a radius of 

approximately 42,164 ± 2800 km, and 

• inclination smaller than 20°. 

These objects include active and inactive payloads, apogee kick motors, and other propulsive 

stages. Additionally, there are 40 objects which are listed as geostationary or near-stationary in 

the RAE Table of Earth Satellites but are not in the NASA TLE list [30]. Objects are occasionally 

mislabeled or lost from tracking. 



1.3.2    Uncataloged Objects 

Of the smaller debris types, mission-related and fragmentation debris, these are known to 

exist but cannot be tracked. Solid rocket motors eject large quantities, as many as 1020 in a single 

firing, of aluminum oxide (AI2O3) particles. These particles are usually no larger than 10 yum in 

diameter with large area-to-mass ratios. Thus, they are strongly affected by solar radiation pressure, 

which causes eventual deorbiting [32]. Other mission-related debris too small to be detected are 

objects released during spacecraft deployment and operations, such as lens covers, shrouds, springs, 

and explosive bolt pieces. Fragmentation debris also exist. Three explosions have been reported 

in GEO thus far [67]. One was a USSR Ekran satellite photographed in June 1978 as it exploded 

from a suspected nickel-hydrogen battery failure [39]. The other events are the explosions of two 

Titan 2 transtage, including one on 21 Feb 1992 that had been in orbit since 1968 [50]. In general, 

explosions may be categorized by their causes: 

• Propulsion-related 

• Deliberate actions 

• Accidental detonations 

• Electrical failures 

It is suspected that more explosions may have occurred unrecorded or unconfirmed [39, 50]. 

In LEO, explosions have been the most prolific source of cataloged debris. Additionally, long term 

exposure to radiation and thermal cycling causes loss of flexibility in plastics and polymers which 

can lead to structural failures and gradual fragmentation [32]. The large number of objects in 

GEO and their long orbital lifetime form a steady source pool for fragmentation debris. As the 

number of satellites and fragments increase, accordingly the probability of collisions of every type, 

i.e., satellite-satellite, satellite-fragment, and fragment-fragment, will increase. Some theorize that 

beyond a certain average debris flux for a region, the debris environment could reach a state of 

being self-regenerative [40], although this hypothesis is still the subject of much debate. 
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1.4    Debris Management 

There are no international treaties or laws regulating the growth of orbital debris. However, 

various spacefaring groups are individually drawing up and enforcing their own debris mitigation 

guidelines. A survey of industry and civil government agencies and organizations, conducted by 

the AIAA Orbital Debris Study Group and published in 1992, shows that several groups have vol- 

untarily adopted various methods designed to mitigate the growth of orbital debris. This suggests 

that there are some debris minimizing techniques with acceptable cost-to-benefit ratios, an impor- 

tant criterion. Unfortunately, the Study Group concluded that current measures are insufficient to 

control the debris environment [63]. 

In the following sections, active and passive methods for orbital debris management are 

described. In particular, it is important to consider the methods' technological maturity and 

economic feasibility. Debris management aims to minimize risk to satellites directly and indirectly 

through control of the growth of debris. 

1.4.1    Passive Methods 

Passive methods are grouped together by one common feature: these methods do not seek 

to control debris generation. Some passive methods are 

• shielding of satellites, 

• ground-initiated collision avoidance, and 

• on-board collision avoidance systems. 

Shielding requirements in the early space-launching days were based on the natural mi- 

crometeoroid flux through near-Earth space. The planned International Space Station's shielding 

now accounts for the debris environment as well as for meteoroids [47]. Likewise, some satellite 

designers now include debris hazard analysis [4]. However, there is obviously a limit, imposed by 

economics as well as technology, beyond which additional shielding is not feasible. 

The second method uses ground facilities to propagate the orbit of a satellite of interest 

as well as those of nearby cataloged objects to predict possible collisions.   This is practiced by 



some satellite operators [58]. Complications arise from uncertainties in the orbit determination 

and propagation processes as well as the satellite operators' desire to conserve fuel and thus to 

avoid unnecessary maneuvers. There is also some concern that ground control-initiated avoidance 

maneuvers cannot be relied upon since only about 10% of the hazardous LEO debris population is 

cataloged [65]. The situation is likely worse in GEO where typically only objects larger than 1 m 

in diameter are cataloged. 

On-board collision avoidance systems are not technically feasible at present. There are two 

main problems. First, tracking objects and determining their orbits from a spacecraft present many 

difficulties. Secondly, it is doubtful whether the spacecraft would have enough time after detection 

of a possible collision hazard to maneuver out of harm's way [47]. 

1.4.2    Active Methods 

Active methods attempt to directly influence the debris environment. They include 

• minimization of space operations debris, 

• minimization of risk of explosions, 

• reorbiting spacecraft at EOL, and 

• active collection or removal. 

There are various proposals to decrease space operation debris on future launches. Simple 

solutions include securing parts, such as shrouds and lens covers, to the spacecraft or rocket body. 

Other techniques considered are "bagging" fragments from pyrotechnic devices and developing 

particle-free propellants and explosive bolts. Prelaunch planning of future space operations could 

include the use of programs such as Collision Avoidance on Launch to reduce the risk of collisions 

during the mission [63]. The variability of launch times and dates are limited by economic feasibility 

and mission requirements. Development of new propellants requires time and resources. However, 

securing parts to the spacecraft is easier to implement and thus has been applied in some cases [49]. 

To minimize chances for explosions of discarded rocket bodies, an easy, inexpensive, and 

effective technique is to vent residual fuel and pressurants. This is already widely practiced, but 



it is not an established policy by all space agencies or companies. Furthermore, there is already a 

considerable number of propulsive stages left in orbit by previous missions with residual fuel, and 

these continue to present an explosion hazard as illustrated by some explosions that have occurred 

over a decade after the mission was launched [31]. Also, any object left in orbit has the potential 

to be fragmented by collision. 

Inactive payloads form a reservoir of possible sources for fragmentation debris. Disposal 

or removal of satellites at EOL is more important for GEO where orbit lifetimes extend beyond 

thousands of years. There are several options for reorbiting from GEO: 

• Deorbit 

• Escape trajectory 

• Stable longitudes 

• Stable plane 

• Lower altitude 

• Raise altitude 

Deorbiting GEO spacecraft by current propulsion technology poses unfavorable economic 

penalties. In fact, for circular orbits above 25,000 km, Earth-escape maneuvers are less expensive 

than deorbiting maneuvers [51]. Passive devices may be deployed or inflated to increase the area- 

to-mass ratio which increases the rate of orbital decay, but this raises technical difficulties and also 

increases probabilities of collision from the enlarged satellite cross-sectional area. 

One permanent solution is for active satellites to make a propulsive maneuver at EOL to an 

Earth-escape trajectory. However, this is a very costly option. An alternative to propulsive burns 

to escape Earth orbit is the use of solar sails to raise the satellite's altitude. There are technical 

difficulties in the deployment and control of these solar sails, however, and the technology has not 

been tested in space. Electric propulsion also has been studied as a feasible means to boost GEO 

satellites into a heliocentric orbit [57]. 



In the GSO, there are two stable points, one at 75.3°E, which is over the Indian Ocean and 

south of Bombay, India, and the other at 255.3°E, which is over the Pacific Ocean and south of 

Denver, Colorado. Because uncontrolled GEO satellites will migrate toward the closest stable point 

and continue to oscillate about it with periods of several years, there is some longitudinal bunching 

about these points. A relatively inexpensive disposal option is to move satellites at EOL to either 

one of these points. However, objects must be placed with negligible position and velocity errors; 

small errors in the rendezvous maneuver can result in large oscillations around the stable points [13]. 

The situation is further complicated by the presence of active satellites in the near vicinity of these 

points. A collision between dead payloads at the stable points could scatter fragments throughout 

GEO. Most researchers do not favor this option due to the drawbacks. 

For GEO, a "stable" plane exists, inclined 7.4° to the equator [28]. The inclination of 

satellites launched into this inclined orbit remains within about 1.2° without any stationkeeping. 

Therefore, relative velocity between satellites in the stable plane is small compared to the average 

relative velocity between random GEO satellites with inclinations as low as 0° and as high as 15°. 

The wobbling of the stable plane can be further decreased by placing satellites at specific ascending 

nodes [33]. Since plane change maneuvers are generally costly, one suggestion is to place satellites 

into the stable plane at the beginning of their operational lifetime. In doing so, however, the 

advantages of geostationary, as opposed to geosynchronous, orbits would be lost. 

Subsynchronous disposal orbits are another option. The probability of collision decreases 

as a function of range away from GEO; it is two orders of magnitude less at 100 km below GEO 

altitude [13]. The major objection to this solution is that disposal orbits below GEO might com- 

plicate future launches as new payloads pass through these subsynchronous orbits on their way to 

GEO. 

A cost-effective alternative that has been practiced by several GEO users is to remove the 

satellites at EOL to supersynchronous storage orbits, also called disposal or graveyard orbits. To 

place an average-sized GEO spacecraft about 300 km above GEO altitude requires only 5-10 kg of 

propellant which translates to a 1-2 months reduction in the satellite's mission lifetime [13]. The 

probability of collision is then reduced by two- or three-orders of magnitude [42].  This solution 



too has difficulties. As the population increases in the disposal orbits, the probability of collisions 

between inactive payloads increases. Fragments from collisions in storage orbits may be thrown into 

orbits that intersect GEO. However, this is the only economically feasible option with acceptable 

drawbacks currently available. Despite this, some feel that disposal orbits are only an intermediate 

solution [46, 56]. 

These are self-disposal options, and they are not without risks. There is some danger of 

malfunction in all propulsive systems and more so for systems that already have been subjected 

to the harsh, natural environment of space for several years. Further, propellant gauging is often 

inaccurate, leaving some satellites at EOL with insufficient fuel for the disposal maneuvers. It has 

been noted that a partially successful disposal maneuver may create a worse situation than none at 

all [63]. However, to remove inactive GEO satellites that were not reorbited, active retrieval with 

an orbital maneuvering vehicle or by attaching a propulsion system or a passive device to increase 

area-to-mass ratio is necessary. The technology required for active retrieval in GEO is available, 

but it is not cost-effective at the present time. 

1.5    Summary 

The orbital debris situation in GEO is of particular concern to some. Many feel that keeping 

collision probabilities low by not augmenting the drifting GEO population is of great importance. 

Besides the sheer number of GEO objects, their distribution is also a factor. Due to orbital 

perturbations, the effect of orbital concentration, or bunching, at certain longitudes is already 

significant [14]. Satellite retrieval or disposal after their active lifetime is presently not practicable 

in GEO. Therefore, active EOL disposal schemes are the only economically feasible option at the 

present, but none are consistently practiced by all launching groups. 
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Chapter 2 

Research Overview 

Since there are no natural sinks for debris in GEO, the accumulation of inactive satellites 

and other operational debris in this valuable regime has raised particular concern among the many 

and diverse GEO satellite operators. The practice of raising the altitude of satellites, placing them 

out of GEO before stationkeeping fuel is expected to be depleted, is mainly for the purpose of main- 

taining continuous operation, but it is also a cost-effective mitigation measure that many operators 

are voluntarily implementing. One immediate drawback is that the usage of supersynchronous 

orbits (SSO) as a storage area for debris may preclude future plans to utilize it in a more produc- 

tive manner. However, future technology may allow for different and more permanent mitigation 

measures for GEO and perhaps even for active removal of debris from GEO and SSO, if the need 

arises. 

2.1    Identification of Problem 

In considering the extensive use of SSO for satellite disposal, the first concern is to determine 

the minimum safe distance above GEO such that objects in the disposal orbits will not interfere with 

the GEO population in the future. This involves both defining the useful GEO area and studying 

the perturbation effects on objects in SSO. Since there are numerous uncontrolled objects in GEO 

as well, perturbation analysis for these objects is also relevant. Various reorbiting guidelines have 

been proposed by different spacefaring nations and agencies. 
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Previous studies have focused on propagating the orbits of intact objects in GEO and SSO. 

However, in the aftermath of a collision in SSO, pieces of varying sizes and shapes can be found 

in orbits quite different from the parent objects' orbits. Depending on the altitude of the parent 

objects in the storage orbits before the breakup, these pieces may intersect GEO by the impact of 

the collision, or subsequent perturbing forces over time may cause the pieces to mingle with the 

GEO population. 

This research examines the aftermath of collisions in SSO, and in particular, the orbits of 

the fragmentation debris. A typical reorbiting altitude is selected to determine the semimajor axis 

of the parent objects' orbits, assumed circular. Since collisions produce a wide variety of debris 

sizes and shapes, an average piece is chosen such that studies of the orbit of this one representative 

piece will provide insight into the relative spatial distributions of smaller and larger fragmentation 

debris. Searching for a worst case scenario, the orbit of this fragment is analyzed to determine if at 

some point after the collision it will drift into some part of the GEO region. Reiterating this process 

with varying reorbiting altitudes will determine a minimum altitude for the storage orbits such that 

an unacceptable fraction of the collision fragments will not interfere with the GEO population. 

2.2    Earlier Studies 

The effects of orbit perturbations in the GEO region have been well-studied for many pur- 

poses. A main concern of satellite operators is determining the necessary stationkeeping maneuvers 

and the amount of fuel required. For orbital debris analysis, the motion of uncontrolled satellites is 

important in estimating collision hazards and predicting trends based on the rates of orbital decay, 

key components of environmental models. 

By the early 1980s, various GEO operators had established policies for reorbiting at 

EOL [61]. These reorbiting guidelines, however, differ among the satellite operators, and in some 

cases, they differ significantly [13, 60]. Other policies do not specify the reorbiting altitude but in- 

stead prescribe conditions upon which the reorbiting altitude may be calculated as appropriate for 

individual satellites. The Russian Space Agency, for instance, requires only that reorbited space- 

craft be placed such that it will not approach GEO any closer than 200 km [1]. As more studies 
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are conducted and published, movement toward consensus on reorbiting altitudes, given either as 

a fixed number for all cases or as an expression with variables that are influenced by individual 

spacecraft characteristics, may be possible. Many now support 300 km as the minimum reorbiting 

distance [46, 13]. Three agencies have published detailed studies leading to their guidelines which 

are summarized in this section. These studies mostly have focused on defining the useful GEO 

area and then finding the minimum altitude above it such that debris in the disposal orbit will not 

likely interact with the GEO population. 

2.2.1 NASA Study 

The NASA Safety Standard [45] defines the GEO region as 300 km above and below 

35,788 km altitude. The region above 36,088 km altitude is designated as the disposal region 

for GEO satellites. The Safety Standard and a study by Loftus [41] conclude that the perigee 

altitude in the storage orbit should be at least 

GEO + 300 km + 2,000 km kg/m2 x A/m (2.1) 

with the area-to-mass ratio in m2/kg. The first term accounts for perturbations at GEO (50 km) 

and at the disposal orbit (50 km), operational excursions (50 km), imperfect insertion at the 

disposal orbit (50 km), and a safety margin (100 km). The second term is the varying effects of 

solar radiation pressure (SRP) which depends on the objects' area-to-mass ratio. 

2.2.2 NASDA Study 

Currently, NASDA requires reorbiting by 150 km beyond GEO but targets a desired reorbit- 

ing distance of 500 km [35, 36]. However, perturbation studies [34] have led to working expressions 

for reorbiting distances based on individual satellite characteristics: 

Aa = 186 km + 0.011 kg/m2 xaxCrx A/m (2.2) 

where 

Aa   =   reorbiting distance (km) 
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Table 2.1: GEO Perturbation Effects From NASDA Study. 

Perturbation Source Radial Variation 

Earth oblateness 35 km 

Solar third body 53 km 

SRP 45 km 

Total 133 km 

a = semimajor axis of the disposal orbit (km) 

Cr = radiation pressure coefficient of the satellite 

A = effective cross-sectional area (m2) 

m = satellite mass (kg) 

This equation is explained as follows. The 186 km in Equation 2.2 is the sum of the radial variation 

that a GEO satellite experiences due to all perturbations, as detailed in Table 2.1, and the radial 

variation for a reorbited satellite in SSO due to solar gravitation (53 km). Also in SSO, Earth 

oblateness is a much smaller effect because the resonance between the rotation of the Earth and 

the mean motion of the satellite is shallow; thus, the NASDA study allots 0 km in radial variation 

for Earth oblateness in SSO. The entire second term accounts for the effects of SRP on a reorbited 

satellite. The values in Table 2.1 were computed using the following conditions: 

e (eccentricity)    =   0.001 

A/m   =   0.005 m2/kg 

Cr   =   1.5 

This equation has since been revised [35, 36]. The new expression is 

Aa = 200 km + 0.022 kg/m2 xaxCrx A/m (2.3) 

While reasons for the 14 km increase in the first term were not explicitly stated, variations in 

assumed satellite orbital elements, namely semimajor axis and eccentricity, will explain it.  The 
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additional factor of 2 in the second term is to account for the long term variation in the eccentricity 

vector. The original expression only accounted for the yearly variation in eccentricity vector. 

2.2.3    ESA Study 

An ESA study [5] suggests radial limits of 50 km above and below geosynchronous altitude 

to define the boundaries of GEO. This definition is based on the actual radial variations of controlled 

satellites in GEO. The initial formula given for calculating reorbiting distance to null the collision 

rate over 20 years, as explained further in Reference [5], is 

da = 1271 kg/m2Ae + 56 km (2.4) 

in which da is the minimum reorbiting distance above GEO in km and Ae is the effective area-to- 

mass ratio in m2/kg. The formula is explained, as follows. 1271 Ae accounts for radial variations 

due to SRP (±928 Ae km) and the coupling effects of SRP and the gravitational forces of Earth 

and the Moon on the motion of the eccentricity vector (±343 Ae km). The 56 km is the sum of the 

width of a 0.1° GSO ring (37 km) and 19 km to account for the perturbing effects of Earth and the 

Moon. Recognizing that the eccentricity variation might exceed the aforementioned bounds after 

20 years, a final formula with additional buffers is given: 

da = 1600 kg/m2Ae + 65 km (2.5) 

No additional explanation is given to account for this revision. 

More recently, Flury [22] states that ESA recommends a minimum reorbiting distance 

above GEO of 300 km. This number is primarily based on perturbation effects in SSO. The 

small perturbations, Earth's gravity (J2> etc.) and third body effects (solar and lunar) cause a 

±30 km variation while SRP effects vary with area-to-mass ratio. For A/m = 0.1 m2/kg, a very 

conservative value, the total radial variation due to all perturbations is ±200 km. Smaller area- 

to-mass ratios result in smaller variations. Therefore, 300 km is deemed to be enough to account 

for all perturbations acting on most, if not all, GEO-type spacecraft and includes a 100 km buffer 

zone. The buffer covers GEO perturbations for uncontrolled objects and the operational zone for 

active satellites. 

15 



Table 2.2: Comparison of the Reorbiting Equations. 

Study NASA NASDA ESA 

Year 1992 1996 1996 

GEO Perturbations 

Geopotential 35 

Third Body 53 (solar) 

SRP 45 

GEO Total 50 133 100 

SSO Perturbations 

Geopotential 50 0 30 

Third Body 53 (solar) 

SRP 20 11 7 

SSO Total 70 64 37 

Other 200 14 0 

Reorbiting Distance 320 km 211 km 137 km 

2.2.4    Remarks and Comparison 

To compare the reorbiting equations with ESA's flat 300 km recommended distance, values 

for some quantities are assumed. For an average area-to-mass ratio of 0.01 m2/kg, Loftus's formula, 

Equation 2.1, gives 320 km as the appropriate distance to reorbit. The latest NASDA formula, 

Equation 2.3, gives about 211 km for the same area-to-mass ratio, Cr = 1.2, and a — 42,377 km. 

Loftus's guideline is noticeably more conservative but also closer to the 300 km recommendation. 

Next, compare the individual components of the reorbiting equations as far as possible. 

In particular, each perturbation effect is separated out to gain further insight on the differences 

between independent studies. Table 2.2 summarizes the studies discussed above with A/m = 

0.01 m2/kg, a — 42,377 km, and Cr = 1.2. Distances are radial and in km. 
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Table 2.2 is missing some numbers that could not be deduced from the published studies so 

it is difficult to focus on specifics. The studies differ on GEO perturbations by 83 km, while SSO 

totals are within 33 km. It is possible that another independent study will help in understanding 

these discrepancies. Note that the reorbiting distances, as reflected in this table, are based on 

specific area-to-mass ratios. Some studies prefer to use an extremely conservative value and then 

recommend one reorbiting distance for all satellites. Others leave the final distance up to the satellite 

operators to choose based on information for individual satellites. Finally, note that objects are 

assumed to remain intact in these studies. 

2.3    Approaches and Tools 

This section outlines possible methods and tools to study the effects of collisions in SSO. 

Although this research employed one particular method, alternatives are described to provide ideas 

for refinement of this work in the future. One part of this problem involves using a low-velocity 

collision model to obtain the typical fragment characteristics and delta-velocities imparted to the 

fragments. Currently, low-velocity models are few, and those in existence have incorporated little, 

if any, empirical data, which is even more scarce. The collision model provides an idea of the initial 

orbits of the fragments; the other major piece of the puzzle is determining the evolution of these 

orbits over time. One approach is to conduct an analytic study on the effects of perturbations on 

the breakup pieces to gauge the extent, if any, to which the breakup debris will inhabit the GEO 

region. The varying parameter is the altitude at which the breakup that produced these fragments 

occurred. From the results, a minimum reorbiting distance above GEO can be approximated. The 

perturbation studies can also be carried out numerically, but searching for the worst-case scenario 

involves methodical guessing of the initial orbit orientation since the breakup model would at most 

provide only information on semimajor axis and eccentricity. 

2.3.1    Low-Velocity Collision Models 

An important tool in studying this problem is a collision model for the SSO regime. In par- 

ticular, information on the typical characteristics of and delta-velocities imparted to the fragments 
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produced from nonhypervelocity collisions is desired. The direction of the delta-velocities is often 

assigned randomly; consequently, the delta-velocity can be applied in the direction that produces a 

new orbit with minimal radial distance, since the worst possible case is desired. Unfortunately, the 

vast majority of research in impact breakup modeling centers on hypervelocity collisions associated 

with objects in LEO. Most ground test and on-orbit breakup data are also geared for the hyper- 

velocity regime. The first decision then is whether to develop a new collision model for use in this 

study or to try to utilize one of the few largely unvalidated models available. The few documented 

GEO models are discussed next. 

Long term evolution programs for GEO generally'include nonhypervelocity collision models 

as a source of debris generation from the on-orbit population. Logically then, searching for appro- 

priate collision models begins with GEO environmental models. One such program, developed at 

the University of Colorado, is ODESI, which includes two nonhypervelocity collision models [43]. 

The first is a simplistic spherical model that is statistically-based. Assuming that users have good 

data for the number of fragments produced and the delta-velocities imparted, the model breaks the 

parent object up in equal-sized pieces and randomly generates directions for the delta-velocities. 

For the velocity imparted to breakup fragments, this is usually determined using on-orbit breakup 

data. That is, with knowledge of the orbits of the breakup pieces and also of the parent object's 

orbit before impact, delta-velocities can be estimated. However, it is unlikely that a large number 

of fragments from GEO or SSO collisions could be detected or tracked. With no better num- 

bers readily available, the study assumed delta-velocities that were equal to the relative velocities 

between the colliding objects. The second model is a finite element approach, using the general 

purpose MSC/NASTRAN program in conjunction with MSC/DYTRAN to simulate the dynamic, 

nonlinear behavior of spacecraft material. The results from this model depend heavily on the grid 

size employed; fragments produced cannot be smaller than the element grid size. The published 

study includes results from a 0.5 cm grid and using one specific GEO satellite. It has not been 

determined whether a smaller grid size would be more appropriate. Moreover, this model does not 

provide the velocities imparted to the fragments. 
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Another model was developed at the NTT Radio Communication Systems Laboratory in 

Yokosuka, Japan. Fragment mass distribution may be chosen to be either uniform or following a 

power law, similar to hypervelocity cases. Some low velocity impact tests performed suggests that 

mass distribution is well modeled by the power law distribution [68]. The velocity distribution can 

then be generated numerically using a model based on the principle of conservation of momentum 

and energy [69]. Experimental results on the velocity distribution are pending. 

2.3.2    Analytic Approach 

To determine a suitable storage altitude in SSO, two questions are considered: 

• What is the maximum altitude traversed by typical GEO objects, operational as well as 

uncontrolled? 

• What is the minimum altitude reached by an object ejected from a collision in the storage 

orbit? 

The first concerns the definition of a GEO region, the protection of which is the primary 

motivation. The answer partly depends on the activities of operational satellites and is found in 

some the earlier studies of GEO reorbiting requirements. 

For the uncontrolled objects, study begins by examining the equation of motion for a two- 

body system with perturbations: 

f=-4r + /; (2.6) 

for which 

r — second derivative of position vector with respect to time 

r = position vector of the satellite with origin at center of Earth 

fj, = gravitational parameter of central body 

fp = perturbing acceleration per mass unit 
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Perturbations may also be studied from a n-body approach, but anticipated difficulties are many. 

Variation of parameters (VOP) is the usual tool selected to manage Equation 2.6, and for this, 

there is the choice of classical Lagrangian VOP, Gaussian VOP, and Hamiltonian VOP. The last 

requires some familiarity with Hamiltonian mechanics. Variation of coordinates, also known as 

Encke's method, is another option [15]. 

The perturbing acceleration is the sum of individual accelerations from several sources. 

Objects in GEO and SSO are heavily influenced by the following perturbations: 

• Earth gravity harmonics 

• Third body gravitation, solar and lunar 

• Solar radiation pressure 

Earth gravity harmonics are the terms of a mathematical expansion representing the Earth's 

deviations from a perfect sphere. The largest terms of the zonal and tesseral harmonics are J2 and 

J22, respectively. J2 arises from Earth equatorial oblateness and causes secular variations in the 

right ascension of the ascending node and the argument of perigee. J22 is associated with the 

ellipticity of the Earth equatorial plane. This generates the long term (860-day) oscillation of 

geosynchronous satellites which can be counteracted by periodic stationkeeping maneuvers. While 

Ji effects are much more pronounced than lunar and solar gravitational perturbation at low alti- 

tudes, the effects of each are about even in GEO. 

Earth satellites are affected by the gravitational attractions of other celestial bodies in the 

solar system. The perturbation, or acceleration, is proportional to the mass of the perturbing body 

and inversely proportional to the distance between the body and the satellite. Lunar gravitational 

perturbations are significant because the Moon, though small in mass relative to nearby planets, 

is the closest body to the Earth-satellite system. Conversely, the Sun's perturbing effects are 

important due to its great mass. The net result is a precession of the satellite's orbit about an axis 

normal to the perturbing body's orbital plane. Lunar and solar effects are significant for orbits at 

high altitudes and those with periods greater than 12 hours [15]. 
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Solar radiation pressure (SRP) induces the yearly variations in eccentricity and argument 

of perigee for GEO satellites due to the apparent annual motion of the Sun [64]. Eccentricity may 

vary from 0.001 to 0.004 in six months [15]. The effect is proportional to the satellite's effective area 

and surface reflectivity and is inversely proportional to satellite mass. Very small particles, such as 

micrometeoroids and solid rocket effluents, with larger area-to-mass ratios are strongly influenced 

by this perturbation force. 

Equations of motion have been developed for the gravitational effects of Earth's asphericity 

and nonuniformity in terms of the classic Keplerian elements in the works of Kaula and oth- 

ers [37, 38]. However, in working with near-circular and low inclination orbits, such as those of 

most objects in GEO and the storage orbits, a nonsingular set of orbital elements may be more 

appropriate. There are many nonsingular sets available [64], but the equations of motion and 

perturbing accelerations will need to be derived in the new coordinates. Several published papers 

feature development of the desired expressions in nonsingular equinoctial elements [8, 10, 11] and 

other nonsingular sets [44]. 

Two approaches to determine the maximum periodic effects predicted by the equations 

of motion are described. The first is a frequency-independent method in which the amplitudes 

of the periodic effects from each perturbation are simply summed without regard to the various 

effects' periodic phasing. Special care must be taken to understand the frequency of the periodics 

when combining the effects to properly calculate the maximum change in satellite altitude. This 

approach is the more conservative of the two proposed. The second method accounts for the phasing 

differences in the periodic effects. This approach attempts to maximize the radial rate of change 

by searching over the orbit orientation elements. A symbolic manipulator software package can 

be employed to help with the mathematics. Then, based upon the frequencies and phasing of the 

periodics, the maximum change in radial amplitude can be deduced. These are idealistic ways to 

deal with very complicated expressions. In practice, methodologies need not completely disregard 

phasing, but at the opposite end, accounting for all phasing effects may be impractical. For an 

initial study, something between most desirable and sufficient is appropriate. 
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Once the maximum altitude of the GEO region and the minimum altitude of objects ejected 

from SSO collisions are determined, the storage altitude can be evaluated. This altitude is the key 

parameter to vary in an iterative manner to determine the minimum safe reorbiting distance above 

GEO. 

2.3.3    Numeric Approach 

For this problem, a numeric approach can be undertaken as an independent study or in 

conjunction with an analytic part. Discussion of the latter follows first. Validation of analytic 

results can be achieved by conducting a numeric analysis using a proven orbit propagator. While 

special perturbation methods are often the preferred choice for high accuracy numerical studies, 

they may not be the best choice in this case since individual periodic effects cannot be easily isolated 

nor broken down into short- and long-periodic components. This is an important capability so that 

each part of the analytic work can be thoroughly checked. While selecting a propagator, this should 

be kept in mind. 

The other numerical approach can be performed without the analytic portion. This is an 

important option should analytic approaches fail to give satisfactory results. In this strictly numeric 

scenario, a genetic search algorithm can be employed with an orbit propagator to determine the 

minimum radial distance of fragments resulting from collisions in the storage orbit. The search 

algorithm propagates a set of elements from an element set family prescribed by the breakup 

model and storage altitude to find the orbit orientation that produces the lowest possible altitude, 

i.e., to find the worst case scenario. A concern here is the length of time to propagate these orbits. 

Physics ensure that debris with moderate area-to-mass ratios will reside in the GEO region and SSO 

for a great many years. However, technology advances in the next 50 years or so may enable the 

practice of different mitigation measures. It therefore seems unnecessary to look beyond this time 

frame. So again, special perturbation methods may not be the ideal choice here due to concerns 

over computation time and efficiency. Semianalytic propagators should be considered for their 

advantage in this area. It is anticipated that this strictly numeric approach requires significant 

computing power. Genetic search algorithm may need to be implemented with propagators using 
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high performance parallel virtual machine architecture [66]. This could be a desirable option if a 

strictly numerical approach is pursued. 

2.4    Chosen Methodology 

This research employs an analytic approach complemented with numerical results for vali- 

dation. The analysis uses a variation of parameters formulation in nonsingular equinoctial elements, 

the specifics of which are summarized in Chapter 3. SRP is treated like a conservative force with 

the assumption that objects are continuously sunlit. Some frequency-independent assumptions are 

made. The analytical study will provide greater physical insight on the perturbation sources and 

effects than a completely numeric approach. It will also be more general so that it can be applied to 

a variety of scenarios. For the complementary numerical part, the Cowell numerical integrator and 

the semianalytic propagator, Draper Semianalytic Satellite Theory (DSST), both contained in the 

Draper R&D version of the Goddard Trajectory Determination System, were chosen. The Cowell 

propagator is useful for checking short periodic variations. For longer integration runs, the DSST 

averaged orbit generator is employed because it allows for specific model tailoring with accuracy 

comparable to special perturbation methods [7]. The equations of motion in DSST are decomposed 

into short- and long-periodic contributions with the amount of force modeling configurable at run 

time [18, 23]. Thus, isolation of the periodic effects is possible. 

It is hoped that a clearer understanding of the effects of perturbations on objects in GEO 

and SSO will be obtained. The end objective is to provide more information for the selection of 

storage orbits. The uniqueness of this study lies in the inclusion of SSO breakup modeling as a 

deciding factor. Preliminary studies, using hypervelocity breakup models, suggest that breakups 

in currently proposed SSO might well be a hazard to GEO [39]. 
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Chapter 3 

Perturbation Models 

The perturbation models utilized in this research are presented in this chapter. In con- 

sideration of space, relevance, and usefulness, only the final, working expressions for Lagrange's 

Planetary Equations and the various disturbing functions are included here; for detailed deriva- 

tions, the reader is referred to the listed references. For this background material, the primary 

reference is Danielson [19], which summarizes the mathematical groundwork for the Draper Semi- 

analytic Satellite Theory (DSST). A large deviation from DSST is that this study does not use the 

single- and double-averaging techniques employed by DSST. Since averaging can be a tricky and 

arduous task and it was deemed unnecessary, this study did not employed averaging techniques. 

The choice of orbital elements was made based on the class of orbits to be examined: nearly 

circular with low inclinations in the GEO region. Hence, a nonsingular set is preferred, and of the 

various sets of nonsingular elements, equinoctial elements were selected. A very tangible advantage 

of this particular orbital element set is the fact that the perturbation theory based on equinoctial 

elements has been well-developed, tested, widely published, and implemented in the semianalytic 

propagator based on DSST. 

3.1    Equinoctial Elements 

This section provides a brief introduction to the equinoctial elements, with definitions and 

their relationship to the familiar Keplerian elements. The equinoctial elements are a, h, k, p, q, and 
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Figure 3.1: Direct Equinoctial Reference Frame 

A. Associated with this orbital set is an equinoctial reference frame (f, g, w), which is reproduced in 

Figure 3.1 from Reference [19] for the direct equinoctial elements. Element a represents semimajor 

axis, same as in the Keplerian set. Elements k and h are the f and g components, respectively, of 

the eccentricity vector, while q and p are the f and g components, respectively, of the ascending 

node vector in the equinoctial reference frame. The eccentricity vector points to periapse from 

the center of mass of the central body and has magnitude equal to the eccentricity of the satellite 

orbit. Likewise, the ascending node vector points to the ascending node from the central body, 

with magnitude depending on inclination. The final orbital element is the mean longitude A. 

The conversion from Keplerian to equinoctial elements is given by 

a   =   a 

h 

k 

P 

esin(u; +Jfi) 

e cos(w + IQ) 

tan (0 infi sm 

(3.1) 

(3.2) 

(3.3) 

(3.4) 
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q = 
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1= < 

where I is the retrograde factor, defined by 

+1   for direct equinoctial elements 

— 1   for retrograde equinoctial elements 

It is useful to have also the reverse conversion. Begin by computing an auxiliary angle, £: 

•   <■ h sin<,   = 
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(3.14) 
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3.2    Equinoctial Reference Frame 

From Figure 3.1 on page 25, it is easy to see the main defining points of the equinoctial 

reference frame: 

• f and g are in the satellite orbital plane. 

• w is perpendicular to the orbital plane and parallel to the angular momentum vector. 

• The right ascension of the ascending node is equal to the angle between f and the ascending 

node. 
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Quantitatively, the components of the equinoctial frame basis vectors (f, g, w) in the Earth- 

centered, nonrotating coordinate system (x, y, z) are given by 

1 

l + p2 + q ,2 _]_„2 

g l+p2 + q ,2 _|_ «2 

W     = 
l + p2 + q2 

l-p2 + q2 

2pq 

-lip 

2Ipq 

(1 + p2 - q2)I 

2q 

2p 

-2q 

(1-p2- q2)I 

(3.17) 

(3.18) 

(3.19) 

3.3    Direction Cosines 

The expressions for the disturbing forces contain direction cosines as a matter of convenience 

and tidiness. These are defined by 

a   =   ZB • f 

ß    =    ZB-g 

7   =   ZB • w 

(3.20) 

(3.21) 

(3.22) 

where ZB is the unit vector from the center of mass of the central body to its geographic north pole 

in the geopotential disturbing function. For third body perturbations, ZB points from the central 

body to the third body. In the case of solar radiation pressure, for which a disturbing function 

does exist given the assumption of the satellite being always sunlit, ZB points to the Sun from the 

central body. Additionally, the direction cosines are related by 

a2+ß2 + j2 = l (3.23) 
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3.4    Lagrange's Planetary Equations 

Variation of parameters is a method to study the disturbed motion of two bodies.   As 

developed by Lagrange, perturbations modify two-body motion by 

dv 
dt 

dr 
dt 

A* 

=   v 

+ ^r   = 
an 
Or 

(3.24) 

(3.25) 

where 1Z is the disturbing potential function. Lagrange's Planetary Equations are derived from the 

above equations. Battin [3, pages 476-484] presents a rigorous derivation of the Planetary Equations 

using Keplerian elements. This process, when repeated for equinoctial elements, remains essentially 

unchanged, aside from the use of Poisson brackets instead of Lagrangian brackets [19]. 

Expressed in equinoctial elements, Lagrange's Planetary Equations are 

a   = 

k = 

P = 

9   = 

2a dU 
A dX 
BdU 

h   =   -A-dkJrAB{pn^-Iqn^) 

BdU       h 
"Adh     AB(P'a" 
C 

2AB 
C 

V I TZ,hk ~ T^,aß - 
dK 
OX 

hB     dll 
A{l + B) dX 

kB    an 
A{1 + B) ÖX 

-TZ,ßi 

2AB 
■ 2adTZ 

q \1ZM - Tl,aß - j^J - IKc 

A da  ' A(i+B) [h-dh +k-dk) + AB <**« - W*) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

where 

A   —   y/jlä 

B    =    y/l - h? - P 

C    =    l + p2 + q2 

(3.32) 

(3.33) 

(3.34) 

and the cross-derivative operator is defined by 

(3.35) 
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3.5    Geopotential Disturbing Function 

The familiar expression for the geopotential is 

N  min(n,M)   .^   . n 

Tl(r,<l>,il>) = -]T    ^     I—-]   Pnm(sin<j)){Cnmcosm^ + 5nmsinrrnp) (3.36) 

where 

n=2     77i=0 

yu = gravitational constant of central body 

r = radial distance from central body to satellite 

N = maximum degree 

M = maximum order (M < iV) 

#® = mean equatorial radius of central body 

Pnm = associated Legendre function of order m and degree n 

4> — geocentric latitude 

Cnm,Snm = gravitational coefficients 

i/} — geographic longitude 

The conversion of this expression into equinoctial elements involves writing the equation in complex 

form and two Fourier series expansions, one in true longitude and the other in mean longitude. 

Danielson [19] goes through the basic derivations steps. Further details that may be helpful are 

contained in various conferences papers [8, 54]. The final product is 

' <x>       M       N N / T>    \n 
■ttffi \ 

^ = Re U £ £ E     £    (IT) imv^ZKjn-Uspr 
y     j=-oo 77i=0 s=-N 7i=max(2,m,|s|) 

(GL + iWms) {Cnm - iSnm) exp[i(j\ - m9)}} (3.37) 

where 

Re{z}   =   real part of z 

I   =   retrograde factor, defined by Eq.3.7 

ym 
" ns 

2"       (»-,»>,(»$*),(*=*),     Ün (3>38) 

0 if n — s is odd 
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rm        

(-l)"»-»2a(l + Ij)-Im if s < -m 

(-ir2-"W|H'(l + /T)/s   if |<| < m 

K —n—1,. 

P,™ 

/     =      < 

V     = 

W     = 

(n+s)!(n-s)! 

2"s(l + /7) Jm 

kernels of Hansen coefficients 

Jacobi polynomials 

n — m   if \s\ < m 

n — \s\   if \s\ > m 

\m — s\ 

(3.39) 

if s > m 

^* ms   *   ms 

I     = 

sgn(z) 

A 

e 

\m + s\ 

[k + ih sgn(s - j)]|s_il (a + ilß)m-ls if \s\ < m 

[k + ihsgn{s - j)f-j] [a - i/3sgn(s - m)]|s_Im|   if \s\ > m 

V=l 
+1   if x > 0 

-1   ifx<0 

mean longitude, the sixth equinoctial element 

Greenwich sidereal time 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

For the interested reader, Reference [19] contains alternative methods, including recurrence rela- 

tions, to calculate V™, G^, and Wms. 

Two parts of the disturbing function merit further discussion here. The first pertains to 

the calculation of the kernels K~n~1,s of the Hansen coefficients XJn~x,s. The kernels, functions 

of eccentricity or h and k, are defined by 

Kjn-l's(e) = e-^-^XJn~x,'{e) (3.45) 

They may be obtained in three ways that do not necessarily involve the direct computation of 

the Hansen coefficients. The first method is for kernels with j = 0 and with the first superscript 
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negative, i.e., n > —1: 

0 

Kr 

where 

-n—l,s ^l+2s 

if n = s > 0 

ifn = s + l>l (3.46) 

(Jl^lt-i) [(2n - 3)V*'S - (n - «) V*1'']    if n > * + 2 > 2 

X = Vl-h2- k2 

Appropriate initializations are 

<°   =   1 

K°S   = 

(3.47) 

(3.48) 

(3.49) 

The second method of calculating the kernels is by infinite series representation. Note 

that more than one series have been investigated for use in generating the kernels via the Hansen 

coefficients [53]. The series of choice is 

oo 

K-n-^ = {i-h"-er^Y,Y---iuh2+k2r (3-50) 

where 

K=0 

^K+r)T«+i   =   modified Newcomb operators 

77   =   max(j — s, 0) 

i   =   max(s — j, 0) 

The modified Newcomb operators recommended for use are calculated by 

4(p + er)Y«   =   2& - QY^g + (t - QY™£ - 2(% + QY<£ll 

- (* + 0 n"-J + 2(2p + 2a + 2 + 3C) y«li<r_i 

which are initialized by 

Jo,o — -1 

The third method is for use in calculating general kernels: 

^2 

(3.51) 

(3.52) 

(3.53) 

(3.54) 

K. -n—l,s 

(3 - n)(l - « + .)(1T^) {(3 " W)(1" »><8 " ^V" 
(2 - n) [(3 - n)(l - n) + ^] K"n+1's + j2(l - n)K"n+3's} (3.55) 
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This recurrence relation requires values of four kernels, KJn's, KJn 's,KJn ,s and, K~n ,s, for 

initialization. These starter kernels can be obtained by the second method described previously 

in this section. All kernels for this study were generated with the first two methods since the 

maximum degree examined is N = 4. The third method is useful for higher degree models. 

The second portion of the disturbing function that is examined more closely here is the 

calculation of the Jacobi polynomials. Special Jacobi polynomials with m — 0 are calculated by 

^sis(T) = 2s (^j(l " 72)-^ns(T) (3.56) 

where Pns{j) are associated Legendre functions. In general, the Jacobi polynomials are calculated 

by 

21(1+ v + w){2l + v + w - 2)Pr(j) = 

{21+v + w- l)[(2l+v + w)(2l + v + w-2)7+v2- w^P^il) (3.57) 

- 2{l + v - 1)(/ + w - 1)(2/+ v + to)P^2{y) 

and are initialized by 

P£w   =   1 (3.58) 

P™   =   0 (3.59) 

3.6    Third Body Disturbing Function 

Perturbations caused by a third body, point-mass gravitational field are modeled by the 

following disturbing function [3, 19]: 

^) = fy--^) (a-) 
where 

Us   =   gravitational constant of third body 

R3(i)    =   vector from central body to third body 

i?3   =   magnitude of R3 
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Third Body 

Central Body 

Figure 3.2: Geometry of Third Body Perturbations. 

r   =   vector from central body to satellite 

r   =   magnitude of r 

ip   =   angle between r and R3 

Figure 3.2 illustrates the geometry of this situation. 

The expansion of the third body disturbing functions closely follows that of the geopo- 

tential [16, 19]. One exception is the introduction of direction cosines (a,/?,7) which reflect the 

position of the third body with respect to the satellite. The third body disturbing function in 

equinoctial elements is 

{oo     JV JV / n \n 

^EE      £     (2-M    p"     VnsY?sQns[Cs(a,ß)-iSs(a,ß)]exp(ij\) 
-"3 j=-oos=0n=max(2,s) KU3/ 

(3.61) 

where 

M   =   maximum power of parallax factor j^ 

8os   =   Kronecker delta 

(-l)^~ ("~s)!     if 71 - s is even 

0 if n — s is odd 

Yf   =   [k + ihsgn{s-j)f-i\KY (3.63) 
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sgn(x)   =   sign function, defined by Eq.3.44 

K"jS   =   kernels of Hansen coefficients 

Qnsil)     =     ^^ (3.64) 

Cs(a, ß),Ss(o!, ß)   =   functions of the direction cosines a and ß 

Danielson [19] gives recurrence relations for the Vns and Qns functions for computational 

efficiency. The YJ13 functions deserve a few extra comments. Once again, kernels of Hansen coef- 

ficients must be calculated, and this is accomplished as described in the geopotential section with 

one exception. Kernels with j — 0, s ^ 0, and the first superscript nonnegative are calculated as 

follows: 

K 's = i 

2^_i Ks-2,s-i if n = s - 1 > 1 
s 

L0 

^K*-1'3 ifn = s>l (3-65) 

2n+l iyn-1,5       (n+s)(n-s) jy-n-2,3     !f „ > s _L 1  > O 

in which x ls defined again by Equation 3.47. Proper initializations are 

äJ'°   =    1 (3.66) 

K°A   =   -1 (3.67) 

The kernels with j = 0 and s = 0 are calculated along with general kernels, by using the 

infinite series representation: 

oo 

K? = (i - h2 - k*r+32 Y, y«4*+^
2+*2r (3-68) 

where  Y^vit+l are modified Newcomb operators which are calculated, as before, using Equa- 

tion 3.53. 

The Cs(a,ß) and Ss(a,ß) functions are defined by [19, page 32] 

Cs(a,ß) + iSs(a,ß) = (a + iß)s (3.69) 

and are calculated by the following recursion formulae 

CH-I (<*,/?)   =   aC.(a,ß)-ßS,(a,ß) (3.70) 

S,+1(a,ß)   =   ßC,(a,ß) + aS.(a,ß) (3.71) 
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with initializations 

Co   =   1 (3.72) 

So   =   0 (3.73) 

3.7    Solar Radiation Pressure Disturbing Function 

If the satellite is assumed to be always sunlit, the perturbation from solar radiation pressure 

(SRP) is a conservative force. Hence, it may be represented by a disturbing potential. For the class 

of satellites under consideration, this shadowless model seems reasonable, given the situation that 

GEO satellites enter Earth's shadow only around equinox and then for only a little over an hour 

during each pass. The disturbing function for SRP effects is given in References [6, 19]: 

ft = -IT, 
T    i (3-74) 

|R© - r| K      > 

for which 

r = CK^LRI (3-75) 

CR = radiation pressure coefficient of satellite 

A = cross-sectional area of satellite 

m = mass of satellite 

C = mean solar flux at 1 AU 

c = speed of light 

R® = 1AU 

R.0 — r = vector from satellite to Sun 

This disturbing function, when expanded in equinoctial elements, is identical to the third 

body disturbing function, with two exceptions: 

• ß3 is replaced by -T and 

• n in the summation starts at 1 instead of 2. 
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Thus, the SRP disturbing function in equinoctial elements is 

-f  EE      E     (2-M(ir)   VM17MQn.[C,(aJj8)-t5,(a,/3)]exp(yA)^ 
Ä©i=-ooS=On=maX(l,S) VÄ©' J 

(3.76) 

All functions are defined as in the previous section. 
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Chapter 4 

Perturbation Analysis and Results 

The perturbation models detailed in Chapter 3 were implemented to study the perturbed 

motion of uncontrolled objects in geosynchronous (GEO) and supersynchronous (SSO) regions. 

This chapter describes the methodology employed in the analytical part of the study, validation 

of the models by numerical integration, and analysis of each perturbation source to determine its 

effects. Application to the reorbiting problem follows in Chapter 5. 

4.1    General Methodology 

The methodology is described in two parts. The first concerns the process of transforming 

the expressions, Lagrange's Planetary Equations, into a form suitable for analysis. This involves 

obtaining the disturbing potential for each perturbation source in workable form, taking the partial 

derivatives of the potential with respect to the orbital elements, and substituting these expressions 

into the Planetary Equations. Some assumptions are introduced to reduce the expressions to 

manageable sizes. In the second part, the variation equations are examined term by term to 

determine individual effects which are then summed to calculate the cumulative variations. 

4.1.1    Formulation of Lagrange's Planetary Equations 

Evaluation of Lagrange's Planetary Equations 3.26-3.31 can be a cumbersome job if con- 

ducted manually. In this study, a well-tested and widely available symbolic manipulator, Mathe- 
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matica, is utilized to handle the expressions and perform somewhat tedious tasks, such as expanding 

summations and taking partial derivatives of long and complicated expressions. The great advan- 

tage of this route is that common errors, such as dropped terms and wrong signs, are confidently 

avoided. The drawback is that one does not always know all of the ramifications associated with 

built-in functions and commands; a seemingly straightforward function may produce quite unex- 

pected results in some cases but not others. Blind application will likely produce surprising and 

erroneous results; therefore, intermediate expressions should be examined carefully. 

For each perturbing force, with solar third body and lunar third body treated separately, 

the associated disturbing potential is modeled in Mathematica. Of particular concern at this junc- 

ture is the truncations of the infinite series represented by summations. In general, these limits 

are set as appropriate for the orbit class under consideration: orbits with GEO-type altitudes and 

low eccentricities. Further discussion of the truncation decisions for each perturbing force follows 

in later sections. The orbits of GEO and SSO objects generally have inclinations lower than 15° 

which dictates that direct equinoctial elements are proper; thus, the retrograde factor I is equal 

to 1. The disturbing potentials are composed of many custom functions as well as well-known 

ones, such as Legendre and Jacobi polynomials, which are available from the Mathematica inter- 

nal library. The custom functions, defined and verified for this study, are fairly straightforward, 

requiring only familiarity with Mathematica and general programming techniques. After the sum- 

mations are expanded, the real part of these complex expressions form the disturbing potential. 

Mathematica performed well, except for one small matter. The factor y/l-h2 - k2 appears often 

in the disturbing functions. Not knowing that h2 + k2 < 1 for elliptical orbits so that the factor is 

always real, Mathematica treats it as possibly complex, thus generating some extra terms. These 

terms are easily identified, and discarding them properly from the disturbing potential expressions 

is a simple matter. 

Once the disturbing potentials are available, the Planetary Equations can be formed. This 

involves taking partial derivatives of the disturbing functions with respect to orbital elements and 

direction cosines, which Mathematica handles smoothly. Since the study is primarily concerned 

with orbits in terms of their radial distance, only the Planetary Equations addressing changes in 
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semimajor axis, Equation 3.26, and eccentricity, i.e., equinoctial elements h and k, Equations 3.27 

and 3.28, are of interest. Some of these equations for d, h, and k are quite large, about 40,000- 

73,000 lines in length with a typical visual editor. Therefore, assumptions are made to reduce the 

equations to a workable size. The first is a zero inclination assumption which translates to p — q = 0 

in equinoctial elements. This decision is based on the fact that GEO satellites and those in storage 

orbits are at relatively low inclinations, with about 15° being the upper limit. Discussion of the 

effects of this assumption is contained in later sections. Mathematica was employed to implement 

this assumption. Next, the h, h, and k equations are reduced to first order in eccentricity. This 

works out to be roughly equivalent to first order in h and k, also, since h < e, k < e, and hk < e2. 

First order eccentricity analysis seems appropriate since e remains relatively small for uncontrolled 

objects in GEO regime. For example, a GEO satellite with initial eccentricity of zero and subjected 

to perturbations (4x4 geopotential field, solar and lunar gravitation, and solar radiation pressure) 

will see its eccentricity increase to about 0.0008 over 100 years, according to one study [27]. Among 

the reorbited objects, again eccentricity remains small [12]. The orbits of collision pieces is another 

matter. However, if the fragments' orbits have eccentricities larger than, say, 0.0035, for a typical 

reorbiting altitude, the fragments are likely to be immediately crossing the GEO region. Thus, 

perturbation analysis is unnecessary in cases of large eccentricity. Removing the higher order terms 

from the ä, h, and k equations was performed manually with the resulting equations fed back into 

Mathematica to be expanded. 

4.1.2    Analysis of Lagrange's Planetary Equations 

The models were then transferred to Microsoft Excel worksheets for term by term analysis. 

At this point, for each perturbation source, there are three expressions, one each for ä, h, and k. 

In order to estimate the amplitudes of the variations in a, h, and k, for individual terms in each 

expression, analytical integration of a sort is performed. This is generally described as follows. A 

typical term in the variation equations is of the form 

ä = acosO (4.1) 
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in which d represents one term in either the equations for the variations in semimajor axis or in 

eccentricity. Variables with no secular changes are integrated as constants. Semimajor axis, eccen- 

tricity, and inclination experience no secular changes in the GEO regime [12]; thus, the elements a, 

h, and k are treated as constants. In the example given by Equation 4.1, a is a quantity subject 

only to periodic variations. Fast variables, 6 in the example, are identified and approximated by 

the product of the variables' secular rates and time: 

ä = a cos 9sect (4.2) 

The variables describing the positions of the satellite and the perturbing sources within their orbits 

are the fast variables. Next, integrate over time. Equation 4.2 becomes 

A a      •     n Aa   =   -— smasect 
"sec 

=    -^-sin0 (4.3) 
"sec 

Initial conditions, 0O in this example, are ignored because they do not affect the amplitude of Aa 

and because this particular aspect of the phasing of effects is disregarded. 

Two points concerning this analytical integration merits further discussion. The first per- 

tains to the amplitude of the variations. In Equation 4.3, the amplitude of Aa is clearly a/6sec. 

However, although the integration process assumes a constant "mean" value for semimajor axis 

and eccentricity, the values actually employed are osculating values. Figure 4.1 illustrates this 

difference. Point A represents the worst case, in which the osculating value is Aa larger than the 

mean value. From this point, it is seen that the actual variation is twice the amplitude, or 2Aa. 

Although at other points, the variation will be overestimated, a worst case bound on the varia- 

tions is sought here. Therefore, amplitudes are doubled to represent the largest possible variation. 

A second concern with this analytical integration method is that it ignores variations caused by 

changes in a, h, and k. For semimajor axis, the variations in a are very small in proportion to the 

value of a at GEO altitudes. The result is that only minor errors are introduced by ignoring the 

variations in a. This argument does not work for eccentricity or h and k. In this case, both eccen- 

tricity and the variations in eccentricity due to perturbations are small and roughly of the same 

order of magnitude. Fortunately, the most significant terms in the ä, h, and k equations, i.e., the 
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Point A 
Osculating Value 

Figure 4.1: Variations from Osculating Values. 

terms causing the biggest variations, are independent of h and k. Thus, these terms are not subject 

to errors caused by assuming a fixed eccentricity. The eccentricity-dependent terms are relatively 

small and do not seem to adversely affect the calculated maximum variations in semimajor axis 

and eccentricity. 

Details pertaining to each perturbation source are further discussed in following sections. 

Calculation of the amplitudes of perturbation effects is accomplished using Microsoft Excel, a 

spreadsheet software. Amplitudes are summed by unique frequencies and by all frequencies. The 

first allows for the identification of individual effects and the latter, for an upperbound on cumulative 

effects, since the phasing of the individual frequencies are disregarded. As explained previously, 

the amplitudes are doubled to approximate actual variations. The equinoctial elements, h and 

k, are related back to Keplerian eccentricity for physical insight. Examination of associated h 

and k equations shows terms with similar amplitudes and frequencies. Furthermore, variations 

in eccentricity are contained separately and fully in either the h or k equations; evaluation of 

both equations is been redundant, except for its use in double-checking details. Thus, for each 

perturbation model, maximum variations in semimajor axis and eccentricity are generated given 

initial orbital elements and the object's physical characteristics. 

The results are validated by comparison with numerical integration. The Draper R & 

D version of the Goddard Trajectory Determination System (GTDS) contains strictly numerical 
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integrators as well as the Draper Semianalytic Satellite Theory (DSST) [24, 25, 48]. The Cowell 

numerical integrator is simple to set up, and it easily handles shorter propagations. Thus, element 

history plots from Cowell integrations provide the needed information on short-periodic variations. 

Long-periodic variations are better represented by the DSST average orbit generator (DSST AOG), 

in which short-periodic terms have been averaged out. The DSST integrations in this study are 

limited to 20 years because of the limited availability of accurate third body ephemerides. This 

is deemed sufficient for validation of the analytical models, at least for an initial study. For each 

perturbation source, the significant short- and long-periodic variation terms in semimajor axis and 

eccentricity are singled out and compared by both amplitude and frequency using the same test 

case. Specifics for the propagation runs are given in Table 4.1 in which settings are the same for 

both Cowell and DSST AOG unless otherwise noted. Section 4.2.2 elaborates on the choice of 

semimajor axis and eccentricity for the test orbit. Inclination-dependent effects are captured by 

starting the integrations at 15° for inclination; for other variations, inclination is initially set at 

zero. Initial values for node, argument of perigee, and mean anomaly are arbitrarily chosen to be 

zero. Note that the 400-second step size for the Cowell integrator is small enough to allow for over 

200 steps/revolution. Finally, cumulative perturbation effects from the analytical and numerical 

models are compared in three cases with varying semimajor axes. 

4.2    Geopotential 

Particulars of the methodology concerning only the geopotential are presented first in this 

section. This includes discussion of the truncation decisions on the infinite series in the disturbing 

potential, the effects of the assumptions employed in reducing the variation equations, and the term 

by term analysis by integration. Validation of the geopotential model by numerical integration 

follows, and this section ends by summarizing the effects on semimajor axis, eccentricity, and 

minimum radial distance from Earth's nonspherical gravitational forces. 
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Table 4.1: Setting Descriptions for Propagators in Test Case. 

Integrator 12th order summed Cowell/Adams predict-partial correct 

Step Size 400 s for Cowell 

43200 s for DSST AOG 

Geopotential Model 4x4 JGM-2 

Third Body Model Solar/Lunar based on JPL DE 118/200 ephemerides 

SRP Model spherical, conical shadow, single CR 

Semimajor Axis 42194 km 

Eccentricity 0.007 

Inclination 0, 15 degrees 

Ascending Node 0 

Arg of Perigee 0 

Mean Anomaly 0 

Initial Time midnight on 180ct98 for Cowell 

midnight on 180ct88 for DSST AOG 

Final Time Varies with period of perturbation 

CR 1.2 

A/M 1 m2 / 100 kg 

Coordinate System B1950.0 
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Figure 4.2: Semimajor Axis History for 4x4 and 8x8 Geopotential at GEO. 

4.2.1    Geopotential Analysis 

A 4x4 Joint Gravity Model-2 is employed, and for the GEO regime, this is deemed suffi- 

cient [28]. Figures 4.2 and 4.3 are history plots of semimajor axis and eccentricity, respectively, for 

both 4x4 and 8x8 gravity fields, as integrated by DSST AOG over 19 years. Clearly, the variations 

in semimajor axis and eccentricity are very similar for both cases, though the 4x4 model departs 

a little from the better model at the latter part of the integration, as seen in Figure 4.3. This 

disparity is due to higher order terms and roughly translates to altitude differences on the order of 

hundreds of meters. Since perturbations cause overall variations on the order of tens of kilometers, 

the error introduced by this truncation of the gravity model is acceptable. Further comparison of 

the two cases indicates that the difference in mean anomaly does drift off. However the position of 

the objects at any specific time, as given by mean anomaly, is unimportant for the purposes of this 

study. Thus, the 4x4 gravity field is judged to be appropriate. 

44 



1.02E-03 

1.01E-03 

l.OlE-03 

1.00E-03 

■£  9.95E-04 

9.90E-04 

9.85E-04 

9.80E-04 

9.75E-04 

 4x4 Case 

o 8x8 Case 

1000 2000 3000      4000 

Time (days) 

5000      6000 7000 

Figure 4.3: Eccentricity History for 4x4 and 8x8 Geopotential at GEO. 
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Truncation of the j series in the disturbing potential function, Equation 3.37, is not easily 

related to physical attributes of the orbits on first examination. It is clearly related to eccentricity, 

but the summation bounds do not allow one to pick out all first order eccentricity terms. It is also 

related to frequency by generating multiples of A. Without a better guess, \j\max is initially set to 

2, with the hope that all significant terms would be captured. However, from numerical integration 

plots, the existence of a sizable resonance term for j = —3,3 is concluded. Accordingly, the bound 

of the j series is extended to \j\max = 3. This, together with N = M = 4, forms the limits of the 

basic geopotential model studied. 

The Planetary Equations were formed and reduced as described in Section 4.1.1. Incorpo- 

rated into the variation equations are the direction cosines associated with geopotential perturba- 

tions which are 

2p 
a   = 

l + p2 + q2 

ß   =    H?  (4.4) 
p        l + P

2 + q2 l    ' 
,2       „1 

7   = 
l-p'-q 

l+p2 + q2 

Reducing the expressions to first order in eccentricity did not eliminate any important terms. 

However, implementation of the zero inclination assumption did. Comparison with numerical 

integration shows two missing inclination-dependent terms that are significant for low, but not 

zero, inclinations. They are the Ji short-periodic term in a and the J3 long-periodic effect in e 

which were removed by setting p = q = 0. Since GEO and SSO objects do range up to 15° in 

inclination, inclusion of these terms is deemed important. Identifying a missing term is in itself a 

complicated process. First, information about the term's period and dependence on certain orbital 

parameters such as eccentricity and inclination and associated gravitational coefficient is gathered. 

Next, the rc, m, s, and j indices in the analytic perturbation model are examined, one by one, to 

find the ones that will generate the observed characteristics of the missing term. Once identified, 

it is simple enough to retrieve them with Mathematica and add them to the basic geopotential 

model. 
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After the <z, h, and k expressions are transferred from Mathematica to Excel spreadsheets, 

analytical integration, as described in Section 4.1.2, of each term in the equations is carried out. 

The variations in semimajor axis and eccentricity are then given by expressions for each term which 

can be evaluated for a given orbit. 

The values employed for a, h, and k are partially prescribed by the semimajor axis and 

eccentricity of the orbit to be studied. However, h and k also depend on the orbit's argument of 

perigee u> and right ascension of ascending node Q. Both are left as variables to adjust as necessary 

to find the largest cumulative variation amplitudes. However, the values for w and Q have little 

effect on the overall perturbing effect because terms containing h or k are small. 

The fast variables are the satellite's mean longitude and Greenwich sidereal time which are 

approximated by the product of a constant value for Asec and 0, respectively, and time. The secular 

rates of each are calculated as follows. 

The secular variation of A is approximated by 

A = n + Üj2,sec + £lj2,sec + A0]Sec + A0jSec + \sRP,sec (4-5) 

in which 

n = mean motion of the satellite 

üj2,sec = secular variation of u; due solely to J2 

&j2,sec = secular variation of Q due solely to J2 

A©,sec = secular variation of A due solely to solar third body 

A0,sec = secular variation of A due solely to lunar third body 

XsRP,sec = secular variation of A due solely to SRP 

The secular rates of u and Q, are based on only the effects of J2 because it is by far the dominant 

term in the geopotential, larger by several orders of magnitude than the next largest term. The 

terms A0)SeC) A0jSeC) and XsRP,sec do not include the mean motion. 

Finally, 0 is given by 

•     361° x (TT/180°)      ,. ,. „, 
0 = „„   '  rad/s (4.6) 

86400 ' K     ' 
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The dominant term in Equation 4.5 is of course the mean motion, n. However, n « 0 for objects in 

GEO and SSO. Therefore, when j = m, the smaller terms in Xsec become important in determining 

the amplitudes of these long-periodic, resonant effects. 

4.2.2    Geopotential Model Validation 

The geopotential model is validated through comparison with numerical and semianalytical 

integration results. Semimajor axis and eccentricity are examined separately, and for each, the 

significant effects can be classified as either short-periodic (SP) or long-periodic (LP) terms. 

One case is employed to validate each of the analytical perturbation models individually. For 

this study, the semimajor axis, eccentricity, and inclination of the test orbit should reflect those of 

objects in GEO or SSO regions or of fragments generated by collisions in SSO. In fact, semimajor 

axis can be chosen to coincide with GEO, but near GEO altitudes, the analytical geopotential 

model notably exaggerates the variations due to the resonant terms. This is because the analytical 

integration holds a and therefore, \sec, constant, forcing a deeper resonance in the equations than 

is actually experienced by uncontrolled objects in osculating orbits. At around 30 km away from 

GEO, the geopotential model recovers accuracy. Proposed reorbiting distances are no less than 

100 km above GEO; thus, this limitation should not affect the primary objective of this research, 

studying the effects of collisions in SSO. The problem of defining the GEO region will be handled 

in Chapter 5. 

At GEO+30 km, the resonances are shallow enough for the analytical geopotential model 

to recover accuracy. Validation is performed for a = 42194 km and e = 0.007, as listed in Table 4.1, 

which provides details of the numerical and semianalytical integration settings. The eccentricity is 

larger than those of most GEO and SSO objects; this value was selected in anticipation that the 

orbits of collision fragments which will have slightly larger eccentricities. 

Table 4.2 summarizes the significant periodic effects for this test orbit as given by the 

numerical and analytical models. The amplitudes listed have not been doubled and so reflect half 

variations, as explained in Section 4.1.2. Most terms in the analytical expressions have slightly 

larger amplitudes than observed amplitudes from plots generated by numerical and semianalytical 

48 



Table 4.2: Significant Periodic Effects from Geopotential Perturbations. 

Numerical Amplitude Analytical Amplitude                  Period 

Semimajor Axis 

SP 115 m 126 m                                   12 hr and 24 hr 

LP 10 km 11.9 km                         0.8 yr, 1.2 yr, and 2.3 yr 

Eccentricity 

SP 3.6 e-05 3.7 e-05                                         24 hr 

LP    4.6 e-05 3.8 e-05 28 yr 

integration. This is anticipated from employing a mostly frequency-independent method. For 

this study, however, establishing a bound on the variations in semimajor axis and eccentricity is 

the primary objective in modeling perturbation effects. While comparison of individual effects is 

significant to ascertain the reliability of the model, irregularities in individual terms do not matter 

as much as the performance of the entire model. It is also important to note that though the 

numerical models are essentially used as truth models, the numerical amplitudes in Table 4.2 are 

only estimated values, which contain uncertainties from the process of interpretation from plots. 

Discussion of individual effects follow. 

Figure 4.4 is the semimajor axis history plot showing the SP variations. The test case 

is propagated over two days with the Cowell integrator and initial inclination of 15°. There two 

periodic effects, one with a 12-hour period and the other, a 24-hour period, captured in the plot. 

From the analytical model, the 12-hour variation, which is inclination-dependent, is calculated to 

be almost five times larger than the 24-hour effect. The combined amplitude of these variations is 

estimated from the plot to be 115 km, as listed in Table 4.2, but the individual amplitudes are more 

difficult to assess. Long-periodic effects in semimajor axis, resulting from the resonance terms, are 

seen over 4 years in Figure 4.5. The analytical geopotential model indicates that there are three 

resonance terms contributing the largest variations in semimajor axis. In the plot, only two can be 

readily identified: the effects with 2.3- and 1.2-year periods. The third, which has a shorter period 

of 0.8 years, seems to be masked. According to the analytical model, the 1.2-year effect is by far 
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Figure 4.4: Geopotential Short-Periodic Variations in Semimajor Axis. 
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Figure 4.5: Geopotential Long-Periodic Variations in Semimajor Axis. 
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Figure 4.6: Geopotential Short-Periodic Variations in Eccentricity. 

the dominant term with amplitude about 10 times greater than those of the other two resonance 

terms. 

J2 is the force behind the SP variations in eccentricity, shown in Figure 4.6. The plot 

clearly shows one periodic term which matches the analytical term in amplitude as well as period. 

The one item in Table 4.2 that may be of concern is the LP variations in eccentricity since the 

analytical model appears to underestimating. The term in question is a J3 effect and is known to be 

dependent on inclination, as illustrated by the following plots. The one in Figure 4.7 corresponds 

to a zero inclination case, in which the J3 term does not appear. Multiple effects appear, but none 

are significant since the variations are on the order of 10"7. At i = 15°, however, which is the 

case shown in Figure 4.8, J3 has a substantial effect. The variation shown in this plot appears to 

have a period of about 38 years, though only roughly half of the period is captured by DSST over 

20 years. The J3 term in the analytical model has a period of 28 years which corresponds to the 
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Figure 4.7: Geopotential Long-Periodic Variations in Eccentricity at Zero Inclination. 
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Figure 4.8: Geopotential Long-Periodic Variations in Eccentricity at 15° Inclination. 

argument of perigee rate of the satellite. This difference in periods may be due to the fact that 

the propagator included only geopotential perturbations. The addition of third body and/or SRP 

effects may influence this effect. For example, inclination history plots for integration with only 

gravity harmonics in addition to two-body dynamics show that inclination will exceed 16° if the 

initial inclination is set near 15°. This does not reflect the situation in reality because third body 

perturbations were not modeled. Another explanation for the discrepancies in amplitude as well as 

period is that the analytical term is a different term which has not been identified and isolated in 

numerical plots. This implies that the effect shown in Figure 4.8 is missing in the analytical model. 

Future work should include further investigation into the LP variations in eccentricity. 

4.2.3    Summary of Geopotential Perturbation Effects 

Figure 4.9 summarizes the variations due to geopotential perturbations in the radial direc- 

tion. Data for this plot is generated by the analytical model, except near GEO altitude due to 

the limitations of the analytical model in that vicinity. The near-GEO data is supplied by DSST. 
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Figure 4.9: Geopotential Induced Variations in Radial Direction. 

Recall that total variations in semimajor axis and eccentricity are calculated by summing the indi- 

vidual terms of different frequencies and that amplitudes, such as those in Table 4.2, are doubled 

to account for the use of osculating instead of mean elements. Let Aapeo and Aegeo represent the 

total variations. Then, maximum radial excursion is defined and calculated by 

Ar   =   r\ — r-i 

—   a(l-e)-(a-Aageo)(l-(e +Aegeo)) 

=   Aageo(l - e) + aAegeo - AageoAegeo (4.7) 

The altitude above GEO is given by a — 42,164 km for varying semimajor axes while eccentricity 

is fixed at 0.007, the value used in the validation process. In Figure 4.9, geopotential perturbations 

are shown for three different inclinations. At GEO, the 70 km in radial excursion is mostly due to 

the resonant effects, which decrease sharply as altitude increases above GEO. At GEO+200 km, 

effects are below 10 km for all three cases. The differences in radial excursion due to inclination 

are overwhelmed by the resonance terms until around GEO+60 km. They then steadily increase 
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Table 4.3: Analytical Expressions for Significant Geopotential Terms. 

Term Period 

Semimajor Axis 

SP -12^/2i2|C2oa-5/2(l + C)-2 [2pqcos2X + (p2 - q2) sin 2A] 12 hr 

3Ax1/2
JR|C20a"5/2 (* sin A - h cos A) 24 hr 

LP m^Rla-7'2 {533 cos[3(A - 0)] - C33 sin[3(A - 0)]} 0.8 yr 

12^/2A|a-5/2 ^22 cos[2(A _ 0)j _ C22 sin[2(A _ ö)]} 1.2 yr 

-3(y/2l4a-9/2 {542cos[2(A - 0)] - C42sin[2(A - 0)]} 1.2 yr 

-^/^a-7/2 {53i cos(A - 0) - C31 sin (A - 0)} 2.3 yr 

Eccentricity 

SP -3/i1/2ß|C20a-7/2cosA 24 hr 

LP 1.5/iÄ0C3oa 6 sin i sin(2.5 sin2 i - 1) sin w 28 yr 

until approximately GEO+200 km, at which point the difference between the 0° and 15° cases is 

about 2.5 km, and the differences appear to cease growing. 

Table 4.3 lists the analytical expressions for the largest terms in the geopotential model. 

The periods are approximate, and they correspond to the validation case orbit with a = 42,194 km 

and e = 0.007. All terms are in equinoctial elements, except the LP eccentricity term. This 

is presented in Keplerian elements because searches for it in equinoctial form were unsuccessful. 

Explanations for the variables in the analytical expressions are given in Section 3.5 and Equa- 

tions 3.1-3.6 and 3.34. The variations are mostly independent of eccentricity with the exception of 

the small J2 SP semimajor axis term. In general, larger terms have no dependence on eccentricity. 

The dependence on inclination of the J2 SP and J3 LP effects appears in Figure 4.9 and produces 

about 3 km difference in the radial direction. Resonance terms, the long periodics in semimajor 

axis, are by far the most significant factor, and they are not functions of eccentricity nor inclination. 
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4.3    Solar Third Body 

Implementation of the solar third body perturbation model follows a similar route to the 

geopotential model. The potential function and variation equations are much smaller and therefore, 

easier to manage. A major difference between the third body potential equations and the geopo- 

tential analysis is the introduction of new direction cosines which reflect the position of the third 

body with respect to the satellite. Subtleties in those direction cosines proved to be nontrivial. 

4.3.1    Solar Third Body Analysis 

The third body disturbing function, Equation 3.61, includes two infinite series which require 

truncation decisions. For solar perturbations, an appropriate truncation of the parallax factor 

f jj-J is N = 3. This conclusion is based on the truncation algorithm programmed into DSST 

which is summarized in References [19] and [20]. The j series is truncated by \j\max = 2 based on 

preliminary examination of significant frequencies from numerical integration element history plots 

and also on the order of eccentricity. From the results, it appears that no major terms were left 

out by the above truncations. 

The third body is assumed to be in a circular orbit. Therefore, R3 is constant and equal to 

the mean distance between Earth and the Sun [59]: 

R3 = 1.0000010178 AU x 149597870 km/AU (4.8) 

This is a reasonable assumption since the actual eccentricity of Earth's orbit about the Sun is 

small, about 0.0167 [64], and no considerable perturbing effect is left unmodeled as a result. The 

methodology then traces the same pattern as before. The resulting variation equations are first 

order in eccentricity with zero satellite inclination assumed. 

The direction cosines employed for third body analysis are 

a   =   cos f^3 cos 63 — sin Q3 cos 13 sin 63 

ß   =   sin Ü3 cos 63 + cos ^3 cos £3 sin O3 (4.9) 

7   =   sin 13 sin 63 
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where 

&3   = right ascension of ascending node of the third body 

03   = argument of latitude of the third body 

= argument of perigee + true anomaly 

iz   — inclination of the third body 

These expressions already reflect the assumption of zero inclination for the satellite; this explains 

why the satellite's inclination and ascending node do not appear in Equations 4.9. For the Sun [59], 

Q3   =   0, by definition (4.10) 

t3   =   23°26'21.448" (4.11) 

and 03 is left as the fast variable along with satellite mean longitude, A. During the model validation 

process, it became apparent that a significant effect was missing, and the reason for its absence 

can be attributed to the above direction cosines, Equations 4.9. The period of the missing term 

is roughly 28 years, about half of the period of the satellite's node rate. As perturbation effects 

increase the inclination of the satellite, the node is no longer undefined. The satellite node is a 

secularly but slowly varying quantity. Thus, it is generally masked in the equations by the faster 

variables, except in a few terms. The missing effect is recovered by isolating the suspected term, 

in this case n = s = 2 and j — 0, and substituting direction cosines with the node of the satellite 

restored: 

a   =   cos(£23 - Q) cos03 - sin(fi3 - Q) cosi3 sin 03 

ß   =   ffln(ft3-ß)cos03+.cos(ß3-fi)cos*3sin03 (4-12) 

7   =   sin i3 sin 03 

The analysis of the solar third body model again involves term by term integration. Unlike 

the geopotential expressions, the secularly varying variables do not conveniently appear together 

in the argument of one trigonometric function per term. Trigonometric identities are employed 

to expand the variation expressions, and luckily, Mathematica has the capability to perform this 
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tedious process.   Values are needed for Asec, 6z,seci and &sec.   Calculation of Xsec is covered in 

Section 4.2.1. For solar third body, 6z,sec is given by 

"3,sec    =    w3,sec + J3,sec 

~     J3,sec 

rad/s (4.13) 
31557600 

where W3,sec is ignored because it is extremely small [59]. The secular rate of /3 is an average 

rate based on one revolution per 365.25 days. The satellite secular node rate is the sum of three 

components: 

Qsec = £lj2!Sec + &®,sec + &0,sec (4-14) 

in which 

&J2 ,sec   =   secular variation of Q due solely to J2 

&®,sec   =   secular variation of Q due solely to solar third body 

&<2,sec   =   secular variation of fi due solely to lunar third body 

Again, since J2 dominates the geopotential, inclusion of the effects of higher zonals is unnecessary. 

The secular variation due to SRP is also ignored in Equation 4.14 because it is negligible. 

4.3.2    Solar Third Body Model Validation 

Though the solar model is sound near GEO altitudes, validation is carried out at 

GEO+30 km to preserve uniformity. Orbital elements and numerical integration specifics for the 

test case are summarized in Table 4.1. The significant effects of the solar third body perturba- 

tions are listed in Table 4.4, from which it can be seen that the agreement between analytical and 

numerical models is good. Individual effects are discussed next. 

The SP variations in semimajor axis are shown in Figure 4.10. Short-periodic effects from 

solar third body perturbations are generated numerically as the difference between a solar with J2 

model and a J2-only model. Hence, the values for the semimajor axis are sometimes negative and 

are on the order of hundreds of meters. The 12-hour periodic effect is clearly seen over two days. Its 
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Table 4.4: Significant Periodic Effects from Solar Third Body Perturbations. 

Numerical Amplitude Analytical Amplitude Period 

Semimajor Axis 

SP 470 m 473 m 12 hr 

LP none 

Eccentricity 

SP 1.45 e-05 2 e-05 24 hr 

LP    3.3 e-05 

1.5 e-04 

3.3 e-05 

1.5 e-04 

6 mo 

28 yr 

3000 

Figure 4.10: Solar Third Body Short-Periodic Variations in Semimajor Axis. 
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Figure 4.11: Solar Third Body Short-Periodic Variations in Eccentricity. 

amplitude is somewhat larger than the SP effects due to geopotential. There are no long-periodic 

terms for semimajor axis. 

For eccentricity, the SP effects are captured in Figure 4.11. Again, some values for eccen- 

tricity are negative because the plot shows the difference between two models, as explained in the 

previous paragraph. The primary effect shown in the figure has a period of about 24 hours. The 

difference between analytical and numerical amplitudes in Table 4.4 may be due to the location 

of the third body during numerical integration and the phasing that this introduces between the 

different components of the terms forming the total amplitude. Finally, Figure 4.12 features the 

LP variations in eccentricity. This is a DSST AOG plot of a solar plus Ji model. The plot shows 

rapid oscillations on top of a larger periodic term. The periods are difficult to estimate, but es- 

timations from the history plot do correlate fairly well with the information from the analytical 

model. The oscillations are about 6 months in period while the larger variation is estimated to have 
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Figure 4.12: Solar Third Body Long-Periodic Variations in Eccentricity. 
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Figure 4.13: Solar Third Body Induced Variations in Radial Direction. 

a 28-year period. Future work should examine the possibility of significant inclination-dependent 

terms. Some eccentricity plots from long propagations suggest that these effects are likely to exist. 

4.3.3    Summary of Solar Third Body Perturbation Effects 

The solar third body effects as given by the analytical model are shown in Figure 4.13. It is 

evident that for different values of eccentricity, solar effects vary greatly. The effects increase linearly 

with altitude in all cases, and the increase is greater with larger eccentricities. Radial excursions 

are under 20 km in the range of eccentricity and semimajor axis that this study anticipates. 

The analytical expressions for the significant terms in the solar third body model are listed 

in Table 4.5. Periods of the terms are based on the validation case and are shown primarily to 

relate these expressions to the amplitudes given in Table 4.4. In general, for large eccentricities, 

beyond the range of Figure 4.13, the eccentricity-dependent long-periodic eccentricity variations are 

dominant. The short-periodic effects on both semimajor axis and eccentricity are not dependent 

on eccentricity, and none of these terms are affected by inclination. 
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Table 4.5: Analytical Expressions for Significant Solar Third Body Terms. 

Term Period 

Semimajor Axis 

SP -1.4902-10-17a5/2 sin 2A 12 hr 

-1.7314 • 10~16a5/2sin[2(A - 03)] 12 hr 

LP none 

Eccentricity 

SP -3.5119-10-17o3/2 cos A 24 hr 

-1.3358 • 10"16a3/2cos(A - 203) 24 hr 

-3.9659 • l(T18a3/2cos(A + 203) 24 hr 

LP 1.9074 -10-16a3/2Ä; cos 203 6 mo 

2.1602 • 10-16a3/2/isin 203 6 mo 

2.9504 • 10-20a3/2(/i sin 2ti-k cos 2Ü) 28 yr 
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4.4    Lunar Third Body 

Analysis of the lunar third body disturbing function closely parallels that of the solar third 

body model. However, because the lunar orbit is complicated and somewhat eccentric, greater case 

must be taken in making simplifying assumptions which may exclude important effects. Addition- 

ally, the parallax factor is larger in the lunar case, thus forcing the infinite series to be truncated at 

a larger M. This results in very large expressions for the potential function and variation equations. 

4.4.1    Lunar Third Body Analysis 

Like the solar model, there are two infinite series in the lunar disturbing potential for which 

truncation decisions are needed. The first is the parallax factor. For the lunar model, Af = 8. 

This conclusion is based on DSST built-in truncation algorithms [19, 20]. The j series is again 

truncated by \j\max = 2. Following the method employed in the solar case, this decision rests upon 

the frequencies appearing in the element history plots from numerical integration and the order of 

eccentricity desired. From the results, it seems that these truncations are appropriate. 

The Moon is assumed to be in a circular orbit. Hence, R3 is constant. From Reference [55], 

the mean distance between Earth and the Moon is 

R3 = 384400 km (4.15) 

Unlike in the solar case, this assumption is generous, given that the actual eccentricity of the lunar 

orbit is about 0.0549 [64]. However, handling varying values of A3 analytically, as dictated by 

an eccentric orbit, is a difficult matter. Keeping in mind that significant terms can be retrieved 

later, if missing from the model, this assumption was made. It unfortunately led to the omission of 

the most significant effect in eccentricity variations. This particular term frustratingly evaded all 

searches for it in the equinoctial formulation with current treatments of the direction cosines. It 

was instead found in Kaula's third body model [64] which is in Keplerian orbital elements and was 

added to this lunar model. The term is a 9.1-year effect due to the lunar argument of perigee rate. 

The zero satellite inclination and first order eccentricity assumptions do not add further difficulties. 
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The direction cosines initially employed in the lunar model are given in Equations 4.9. The 

lunar node has a period of about 6798 days [59], much smaller than the periods of Ö3 and A, and 

therefore, is hidden in most terms. The inclination of the Moon with respect to Earth's equatorial 

plane varies from 18.28° to 28.28° with the same period as that of the node [2]. However, the 

inclination does not vary secularly and thus was held constant through the analytical integration. 

The values assigned to lunar node and inclination, 45° and 18.28°, respectively, maximizes the 

perturbation effects. Once more, Ö3 and the satellite mean longitude A are the fast variables. 

Analytical integration of the lunar third body model follows the procedure described for 

the solar model. The value for lunar 03)Sec is calculated by the following expression [59] which is 

similar to Equation 4.13: 

03,sec     =    Ü3,sec + h,sec 

«     h,s 

-rad/s (4.16) 

\,sec 

2TT 

2360591.51 

Again, w3)Sec is ignored because its period, about 3232 days, is much longer than the true anomaly, 

about 27.321661 days [59]. 

4.4.2    Lunar Third Body Model Validation 

The orbit for validation purposes is set once more at semimajor axis equal to 42194 km 

and eccentricity of 0.007. Table 4.6 itemizes the largest effects. Numerical integration employed 

the option settings detailed in Table 4.1. Generally, the semimajor axis variations correlate much 

better than those of eccentricity. Long periodics appear only in eccentricity. 

Figures 4.14 and 4.15 show the short-periodic variations in semimajor axis and eccentricity, 

respectively. These plots, like those featuring SP effects in the solar case, depict differences between 

a lunar with J2 model and a J2-only model. Two periodics are evident in the semimajor axis 

variations, a large 12-hour effect in combination with a smaller 24-hour periodic. The eccentricity 

plot shows only 24-hour terms. The discrepancy in the amplitudes of the SP eccentricity variations 

may be due to position of the Moon, as it represented differently by numerical and analytical models. 
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Table 4.6: Significant Periodic Effects from Lunar Third Body Perturbations. 

Numerical Amplitude Analytical Amplitude Period 

Semimajor Axis 

SP 1 km 1.019 km 12 hr and 24 hr 

LP none 

Eccentricity 

SP 3.1 e-05 4.5 e-05 24 hr 

LP    3 e-04 2.5 e-04 9.1 yr 

1800 

3000 

Figure 4.14: Lunar Third Body Short-Periodic Variations in Semimajor Axis. 
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Figure 4.15: Lunar Third Body Short-Periodic Variations in Eccentricity. 
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Figure 4.16: Lunar Third Body Long-Periodic Variations in Eccentricity. 

Numerical integration employs accurate third body ephermerides, which are directly dependent on 

the epochs of integrations, while the analytical model fixes the third body in the orientation that 

results in the largest radial variations. Hence, the analytical model is expected to overestimate and 

bound the maximum possible variations. 

The lunar analytical model is somewhat uncertain in the LP effects on eccentricity. Fig- 

ure 4.16 is a DSST AOG plot from a lunar plus J2 model. The 9.1-year variation may be mismodeled 

in the analytical expressions. The frequency of the analytical term does not quite match that seen 

in the plot, and there is also a considerable difference in the amplitudes of the numerical and an- 

alytical terms. Additionally, a 36-year, long-periodic effect is suggested by the plot; this term is 

not in the current analytical model. Importantly, however, the bound on eccentricity variations, as 

determined by the analytical model, is still larger than observed variations. Consequently, the lunar 

model, while functioning well enough for present purposes, can certainly bear further investigation. 
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Figure 4.17: Lunar Third Body Induced Variations in Radial Direction. 

4.4.3    Summary of Lunar Third Body Perturbation Effects 

The lunar third body effects on radial excursion from the analytical model are plotted in 

Figure 4.17. Radial excursion appears to increase linearly with altitude. In the altitude region of 

interest in this study, the net result is about 40-42 km. There are no eccentricity nor inclination 

dependence in the major effects, seen in Table 4.7. Short-periodic terms are numerous. There are 

dozens of terms with the same order of magnitude, and no one term clearly dominates. The ones 

listed in Table 4.7 have larger amplitudes for the particular case chosen for validation. There are 

also instances in which multiple terms of the same frequency with have large amplitudes individually 

but with opposite signs such that they cancel out one another. Again, the periods listed in the 

table corresponds to the test case. Lunar effects are, in fact, the largest perturbations aside from 

deep resonance near GEO and from cases involving large eccentricity or area-to-mass ratios. 
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Table 4.7: Analytical Expressions for Significant Lunar Third Body Terms. 

Term Period 

Semimajor Axis 

SP 4.1015 • l(T16a5/2 cos i3 cos ü3 sin Ü3 cos[2(03 - A)] 

2.0508 • 10~16a5/2 cos2i3 cos tt3 sin ü3 cos[2(03 - A)] 

1.3337 • 10"22a7/2 [sinft3cos(03 - A) + cosft3sin(03 - -A)] 

12 hr 

12 hr 

24 hr 

LP none 

Eccentricity 

SP 3.0762 • 10-16a3/2 cos i3 cos Q,3 sin Q3 sin(203 - A) 24 hr 

LP 45/i3ae3/(96ni?3) [5(1 - cosi3) - (1 + cosi3)]sinu3 9.1 yr 

4.5    Solar Radiation Pressure 

The SRP disturbing potential, as noted in Section 3.7, is nearly identical to that of third 

body perturbations. It is no surprise then that the methodology for SRP analysis is very similar 

that for solar third body. Unlike the other perturbation models, this one required no patchwork; 

all significant terms were captured in the basic model. 

4.5.1    SRP Analysis 

First, in order to obtain a disturbing potential function for SRP, the assumption that the 

satellite is always sunlit was necessary. For GEO altitudes, this is not unreasonable and will 

be justified in the next section. The truncation decisions for the infinite series as described in 

Section 4.3.1 apply here without changes, though the decision for the maximum parallax factor 

employed is no longer based on truncation algorithms embedded in DSST. The reason for this is 

that DSST uses a shadow model similar to the Cowell integrator and does not assume that objects 

are always sunlit. Instead, the maximum parallax factor, N = 2, is implemented simply from 

experience with the solar model. 
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The perturbing source is again assumed to be in a circular orbit, and so R% is constant and 

equal to the mean distance between Earth and the Sun. The factors comprising the parameter T, 

as given in Equation 3.75, are fully adjustable in the SRP model. Default values for validation and 

application purposes are 

CR = 1.2 

A/m = 1 • 10-8 km2/kg 

C/c = 4.51 • 1(T3 kg/(s2km) 

R3 = 1AU 

The first order eccentricity and zero satellite inclination assumptions in the variation equations 

met with no adverse consequences. Similarly, the direction cosines, Equation 4.9, with the values 

assigned in Equations 4.10 and 4.11, worked well for this model. Finally, analytical integration 

followed the same lines as the solar third body, and the validation process shows that all significant 

effects are reflected in this SRP model. 

4.5.2    SRP Model Validation 

The validation case is the same one used for the other three perturbation models. The 

significant effects due to SRP are clear-cut, and they are listed in Table 4.8. Correlation between 

analytical and numerical results are very good. Short-periodic effects are small in semimajor 

axis and negligible in eccentricity, but agreement between the analytical and numerical model is 

excellent. Plots for SP variations are unnecessary because of their minimal contribution to overall 

SRP effects. 

Figure 4.18 shows that long-periodic variations in semimajor axis are on the submeter level. 

The twice-yearly blips in the plot are due to eclipsing effects. This small variation in semimajor axis 

validates the always-sunlit assumption that enables the formulation of a SRP disturbing potential 

function. The plot was generated by DSST AOG using a SRP with J2 model, as was the plot in 

Figure 4.19 for the LP variations in eccentricity. A simple 1-year effect in eccentricity is captured 

in this plot. This term represents the only large SRP effect. 

72 



Table 4.8: Significant Periodic Effects from SRP Perturbations. 

Numerical Amplitude Analytical Amplitude Period 

Semimajor Axis 

SP 20 m 20 m 24 hr 

LP none 

Eccentricity 

SP le-08 le-08 12 hr 

LP    1.165 e-04 1.3 e-04 l yr 
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42194.00010 ■ - 

42194.00005 

42194.00000 
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Figure 4.18: SRP Long-Periodic Variations in Semimajor Axis. 
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Figure 4.19: SRP Long Periodic Variations in Eccentricity. 
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Figure 4.20: SRP Induced Variations in Radial Direction. 

4.5.3    Summary of SRP Perturbation Effects 

SRP perturbation effects in the radial direction are plotted in Figure 4.20. As noted before, 

the short-periodic variations are small, in fact accounting for only about 40 m out of total radial 

excursions on the order of 11 km. The rather interesting curves in the plot are due to manual 

truncation of the total variations in semimajor axis and eccentricity, as given by the analytical 

model. 

Analytical expressions for the significant terms in the SRP model are included in Table 4.9. 

The argument of latitude 0© of the perturbing body is the same as 03 in Section 4.3.1. Likewise, 

its secular rate is calculated by Equation 4.13. The only large effect, the yearly long periodic 

in eccentricity, dominates the SRP model. The magnitude of this term is linear with the factor 

CRA/TTI. In Figure 4.20, CRA/TU = 1.2 • 10-8 km2/kg for which the radial excursion is roughly 

11 km. For cases in which this factor is large, SRP could be the most important perturbation effect. 

None of the significant terms display dependence on eccentricity nor inclination. 
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Table 4.9: Analytical Expressions for Significant SRP Terms. 

Term Period 

Semimajor Axis 

SP 1.3571 -10-19a3/2Tsin (A - 9@) 

5.8402 • 10-21a3/2Tsin(A + 00) 

24 hr 

24 hr 

LP none 

Eccentricity 

SP -3.3924 • 10-20a1/2r cos(2A - 00) 

-1.4601 • 10-21a1/2Tcos(2A + 00) 

12 hr 

12 hr 

LP 1.0616 -lO^V^Tcos 00 l yr 

4.6    Cumulative Effects 

After studying the individual perturbation models, the combined effects of all perturbation 

models were investigated. The cumulative effects are based on total variations from each component 

which are then summed. Figure 4.21 summarizes the cumulative effects on radial excursion over 

a range of altitudes above GEO. This plot uses the parameters of the test case with zero satellite 

inclination. It is seen that geopotential perturbations dominate until about GEO+20 km, at which 

point the lunar effects become the principal player. By GEO+100 km, geopotential effects are the 

smallest, falling below the SRP curve. The cumulative curve seems to follow the general pattern of 

the geopotential curve until about GEO+400 km. While geopotential effects continue to decrease, 

the other perturbation effects are increasing enough to allow the total curve to begin an upward 

slope. 

Numerical integration results for the validation case with all perturbation models turned 

on are plotted in Figures 4.22 and 4.23 for zero inclination and in Figures 4.24 and 4.25 for 15° 

inclination over 20 years. The total semimajor axis variation for both inclination cases is about 

23 km. The dominant effects, at a = GEO+ 30 km, are the resonance terms.   For eccentricity, the 
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Figure 4.21: Cumulative Effect: Variations in Radial Direction. 
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Figure 4.22: Total Perturbation LP Effects in Semimajor Axis at Zero Inclination. 
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Figure 4.23: Total Perturbation LP Effects in Eccentricity at Zero Inclination. 
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Figure 4.24: Total Perturbation LP Effects in Semimajor Axis at 15 Degrees Inclination. 
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Figure 4.25: Total Perturbation LP Effects in Eccentricity at 15 Degrees Inclination. 
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Table 4.10: Comparison of Models at Different Altitudes. 

Altitude Numerical Analytical 

GEO 104 km 136 km 

GEO+30 km 78 km 95 km 

GEO+300 km 67 km 75 km 

zero inclination case shows total variations on the order of 1.4 • 10-3, and 1.55 • 10-3 for the 15° 

case, both primarily due to lunar perturbations. These variations result in total radial excursions 

of no more than 78 km for the zero inclination case and 88 km for the other one. The numbers 

for radial excursion are estimated from these DSST AOG plots in conjunction with Cowell plots 

showing SP variations. Total variations are differences between the largest and smallest values on 

the plots. The analytical model as plotted in Figure 4.21 estimates the total value at 90 km for 

zero satellite inclination. 

Finally, Table 4.10 summarizes the comparison of the analytical against the numerical 

models at three different altitudes with all four perturbation sources modeled. The quantities are 

maximum radial excursion for cases with inclinations as large as 15°. As anticipated, the analytical 

model consistently estimates more conservatively than numerical results. A positive trend is that 

agreement between the models improves as the altitude increases. The reason for this is unclear. It 

has been seen that lunar effects dominate at higher altitudes, but this study notes that the analytical 

model for lunar third body perturbations contains the greatest uncertainty. This seeming paradox 

is left to future investigations. 
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Chapter 5 

Application to the Reorbiting 

Problem 

The study of collisions in SSO and its attending implications in the determination of the 

reorbiting distance from GEO requires two tools. One is a breakup model which is described in the 

next section. The other, a perturbation analysis model, is summarized in Chapters 3 and 4. The 

application of these tools toward the reorbiting problem is final objective of the research. 

5.1    Breakup Model 

At the time of this research, a validated breakup model suitable for the GEO regime is not 

available. However, the purpose of the research is not to build a low-velocity collision model but 

to study short- and long-term orbital parameters in conjunction with the SSO collisions scenario. 

Hence, the only alternative is to find a reasonable and available breakup model. Such a model need 

not be specifically tailored for nonhypervelocity collisions, but the model needs to provide values for 

the delta-velocity (Av) imparted to the fragmentation pieces. A value, associated with an average 

piece, is consequently used to determine the new orbit of that piece. Then the perturbation model 

is applied, and the region, in terms of radial distance that the representative piece may occupy, is 

established. The reorbiting problem seeks to control the placement ofthat region. 
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The first candidate examined was the statistical breakup model in ODESI, which is de- 

scribed in Section 2.3.1. The environmental model ODESI employed the assumption that the 

imparted Av to the collision fragments is equal to the collision velocity, i.e., the relative velocity 

between the parent objects [43], and this assumption seemed to be a reasonable starting point. It 

was understood at the outset that this procedure would produce inflated values for Av. However, 

after the numbers were calculated, it was clear that this assumption is unacceptable. For instance, 

a creditable worst case scenario is the collision between one object at near zero inclination and the 

other at 15°. (Cases of collisions between objects with ascending node 180° apart are not treated in 

this study because they represent implausible events.) If both objects are assumed to be in circular 

orbits, the relative velocity is 

vrd = 0.26105 J£ (5.1) 

where fj, is the gravitational parameter, and a, the semimajor axis, is allowed to vary. Assuming 

then that the Av is also given by Equation 5.1 and also that it is applied in plane and at a full 180° 

from the velocity direction of one of the parent objects, the new semimajor axis and eccentricity 

of the fragment can be determined. These orbital elements in turn allow for the calculation of 

the minimal radial distance of the fragment before perturbations affects its orbit. Under these 

assumptions, a collision occurring at 70,000 km above GEO, produces breakup pieces that cross 

GEO altitudes. These results are unrealistic due to the large value for imparted Av. 

Another possibility involves somehow scaling the results from a hypervelocity collision 

model. This may be an abuse of the model as it was not intended for low-speed encounters, 

but on the flip side, research has not conclusively shown that such models are indeed inappropriate 

out of the hypervelocity realm. This alternative approach begins with the data generated from the 

simulation of a collision between a satellite in GEO and a debris piece in geosynchronous transfer 

orbit [21]. The relative velocity is on the order of 1.4 km/s. This simulation is based on a hyper- 

velocity model, and conservation of mass and energy is confirmed [17]. Subjective approximations 

from graphed data of the spatial distribution of collision debris provides orbital information for a 

selected average piece, which is discussed in further detail later. The semimajor axis is estimated, 

and with the assumption of a full retrograde, in-plane impulse, the orbit is taken as being elliptical 
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with the apogee height at the GEO parent object's initial altitude. The difference between the 

velocity of the parent object's circular orbit and the velocity of the fragment at apogee is the Av 

imparted by the collision. This is calculated to be 20 m/s. A linear scaling function is employed 

to adjust the Av for different impact velocities: 

At;   =   At*.^ (5.2) 

=   0.014286ure; (5.3) 

All quantities are in units of km/s. 

The average piece chosen for this approach is the median data point in the set of debris 

pieces whose semimajor axis is smaller than that of the GEO parent object. Since the direction 

component of imparted Av is completely random, roughly half of the fragmentation debris are flung 

in a prograde direction while the rest experience retrograde impulses. The debris size distribution 

of these two sets should be nearly identical. The relation between debris size and imparted Av is 

more complicated. Naturally, the smaller pieces are more likely to experience larger Av. Therefore, 

a reasonable claim may be made that, as the chosen piece is a median point, roughly one quarter of 

the collision fragments will be orbits lower than the representative piece, regardless of the breakup 

mass distribution, and that these fragments will be the smaller fragments. 

With the relation in Equation 5.3, the assumption on the direction of the impulse, and 

two-body orbital equations, the orbit geometry of the fragment can be calculated for given collision 

altitudes. For collisions between objects in circular orbits of the same semimajor axis and separated 

by 15° in inclination, data for varying collision altitudes are presented in Table 5.1. Eccentricity of 

the fragment in its initial orbit after the breakup is 0.00744 for all reorbiting altitudes, and rm,-n 

is the minimal radial distance, based on two-body perigee distance. For this study, the collision 

altitude is taken to be equal to reorbiting altitudes. A more moderate case is summarized in 

Table 5.2 for collisions between circular orbits separated by 7.5°. The eccentricity of the fragment 

is smaller, 0.00373, due to the smaller imparted Av. In both cases, semimajor axis for GEO is 

42,164 km. 

It is important to note that the minimal radial distances in Tables 5.1 and 5.2 are based only 

on two-body equations without perturbations effects taken into account. The numbers themselves, 
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Table 5.1: Data From Collisions Between Objects 15 Degrees Apart. 

Reorbiting Altitude Av 

[km/s] 

New Orbit of Fragment 

[km] a [km] Tmin [km] 

300 0.0114 42150 41836 

400 0.0114 42249 41935 

500 0.0114 42349 42033 

600 0.0114 42448 42132 

633 0.0114 42481 42164 

700 0.0114 42547 42230 

800 0.0114 42647 42329 

900 0.0113 42746 42428 

Table 5.2: Data From Collisions Between Objects 7.5 Degrees Apart. 

Reorbiting Alt Av 

[km/s] 

New Orbit of Fragment 

[km] a [km] Tmin  [km] 

300 0.00573 42306 42148 

317 0.00572 42323 42165 

400 0.00572 42406 42247 

500 0.00571 42505 42347 

600 0.00571 42605 42446 

700 0.00570 42705 42545 
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however, are consistent with expectations. It is no surprise that collisions occurring at 300 km 

above GEO will produce debris that crosses GEO. This breakup model cannot be validated by any 

available means at this time due to the lack of empirical data. However, a methodology is established 

such that a different model may be substituted for this one, should it prove to be better. This tool 

can now be applied in conjunction with the perturbation models to study reorbiting altitudes. 

5.2    Reorbiting Altitudes 

Six cases were studied in which the definition of the GEO region and the inclination between 

the colliding objects varied. The GEO region is defined in three ways: 

• Case 1: Restricted to GEO altitude, 42,164 km 

• Case 2: Covers the region traversed by uncontrolled GEO objects, GEO+104 km 

• Case 3: Includes drifting and operational regions and a modest buffer, GEO+200 km 

The first case represents the absolutely minimal reorbiting requirement: keeping most debris clear 

of operational satellites. In reality, functional GEO satellites occupy various altitudes around the 

GEO altitude, but this case is meant to illustrate an extreme definition of the GEO region. The 

next case involves a moderate definition. The region occupied by drifting GEO satellites was 

determined by long-term semianalytical integration, modeling a 4x4 JGM-2 gravity field, lunisolar 

perturbations, and SRP effects for Ajm = 0.01 m2/kg. The last definition for the GEO region is 

conservative by some standards because it includes a buffer, the value for which is generally not 

based upon physics or facts but is set by individual estimations. 

For each of the three GEO region cases, two collision scenarios are examined. Since uncon- 

trolled objects in the GEO regime generally have inclinations between 0° and 15°, a worst case and 

a more typical case are studied. The worst case is defined by collisions between objects separated 

by the full 15°. Recognizing that this is an extreme case and that preventive measures might be 

geared more toward typical situations, collisions between objects separated by 7.5° in inclination 

are also surveyed. There are then six distinct cases discussed in the following sections. 
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Table 5.3: GEO Region Case 1 with Collisions Between Objects 15 Degrees Apart. 

GEO region 42164 km 

Before collision 

Semimajor axis 42884 km 

Reorbiting distance 720 km 

After collision 

Semimajor axis 42567 km 

Eccentricity 0.0074447 

Perturbations Aa [km] Ae 

Geopotential 1.9715 0.0001286 

Solar 3rd body 1.0043 0.0004434 

Lunar 3rd body 2.4114 0.0009382 

SRP 0.0506 0.0003199 

Total 5.4378 0.0018601 

Min radial distance 42K 37 km 

5.2.1    15 Degrees Inclination Case 

Each definition of the GEO region specifies an altitude that the representative fragment 

should not dip below. Using the breakup model described in Section 5.1 and the analytical pertur- 

bation models developed in this research, the collision altitude, which is also the reorbiting altitude, 

is adjusted manually until the models show that the fragment will not enter the specified region. 

A 5 km tolerance is allowed. Tables 5.3, 5.4, and 5.5 summarize the results for the three differently 

defined GEO regions. 

The semimajor axis before the collision is the parameter sought. The reorbiting distance 

is the difference of this value and 42,164 km. Recall that the breakup model assumes that the 

parent objects are initially in circular orbits before the collision. The perturbation models uses the 

semimajor axis and eccentricity calculated by the breakup model and in turn, gives the maximum 
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Table 5.4: GEO Region Case 2 with Collisions Between Objects 15 Degrees Apart. 

GEO region 42268 km 

Before collision 

Semimajor axis 42989 km 

Reorbiting distance 825 km 

After collision 

Semimajor axis 42671 km 

Eccentricity 0.0074447 

Perturbations Aa [km] Ae 

Geopotential 1.6133 0.0001278 

Solar 3rd body 1.0141 0.0004468 

Lunar 3rd body 2.4358 0.0009429 

SRP 0.0510 0.0003203 

Total 5.1143 0.0018379 

Min radial distance 422' rOkm 
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Table 5.5: GEO Region Case 3 with Collisions Between Objects 15 Degrees Apart. 

GEO region 42364 km 

Before collision 

Semimajor axis 43089 km 

Reorbiting distance 925 km 

After collision 

Semimajor axis 42771 km 

Eccentricity 0.0074447 

Perturbations Aa [km] Ae 

Geopotential 1.3866 0.0001272 

Solar 3rd body 1.0236 0.0004501 

Lunar 3rd body 2.4593 0.0009473 

SRP 0.0513 0.0003207 

Total 4.9208 0.0018453 

Min radial distance 423( 38 km 
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variations in semimajor axis, Aa, and in eccentricity, Ae. The minimal radial distance is calculated 

by 

Train = (dnew ~ Aa) (1 - (enew + Ae)) (5.4) 

where 

anew   =   the fragment's semimajor axis after the collision 

enew   =   the fragment's eccentricity after the collision 

This expression is based upon the two-body equation for periapse. 

Tables 5.3, 5.4, and 5.5 indicate that the reorbiting distance is largely driven by the At? 

from the breakup model. Unfortunately, there is much uncertainty in this model, and therefore, the 

estimates for reorbiting distance should be treated carefully. Of the perturbation effects, several 

trends are noted. For all disturbing forces except geopotential, the associated Aa and Ae increase 

with altitude. The geopotential effects decrease with increasing altitude, as expected from the 

results in Chapter 4. Increases in reorbiting altitude seem to hold a linear relationship with the 

varying definitions for the GEO protected region. If some faith is placed in the breakup model, 

then to protect the barest GEO region, Case 1, current reorbiting guidelines need to be doubled at 

the least. The economic penalties may not be reasonable. 

5.2.2    7.5 Degrees Inclination Case 

The same procedure is repeated for the more moderate collision case of 7.5° inclination 

difference between the objects. Results are given in Tables 5.6, 5.7, and 5.8. As expected, the 

reorbiting distances are smaller in these cases. However, the least expensive option, Case 1, still 

requires a reorbiting distance that is 30% larger the current guidelines of 300 km. Previously 

noted trends in the models are applicable here as well. Unlike in the extreme cases summarized 

in Section 5.2.1, the reorbiting requirements shown here may not be considered unreasonable. The 

most conservative case, for a GEO+200 km protected region, indicates that 590 km may be a 

sufficient reorbiting distance. AUSSÄT at one time suggested reorbiting up to 1110 km above 

GEO [13]. 
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Table 5.6: GEO Region Case 1 with Collisions Between Objects 7.5 Degrees Apart. 

GEO region 42164 km 

Before collision 

Semimajor axis 42554 km 

Reorbiting distance 390 km 

After collision 

Semimajor axis 42396 km 

Eccentricity 0.0037338 

Perturbations Aa [km] Ae 

Geopotential 3.2381 0.0001293 

Solar 3rd body 0.9773 0.0002411 

Lunar 3rd body 2.3394 0.0008070 

SRP 0.0499 0.0003193 

Total 6.6046 0.0014966 

Min radial distance 42K 37 km 
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Table 5.7: GEO Region Case 2 with Collisions Between Objects 7.5 Degrees Apart. 

GEO region 42268 km 

Before collision 

Semimajor axis 42659 km 

Reorbiting distance 495 km 

After collision 

Semimajor axis 42500 km 

Eccentricity 0.0037338 

Perturbations Ac [km] Ae 

Geopotential 2.2938 0.0001285 

Solar 3rd body 0.9870 0.0002430 

Lunar 3rd body 2.3632 0.0008115 

SRP 0.0503 0.0003197 

Total 5.6943 0.0015027 

Min radial distance 422' r2km 
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Table 5.8: GEO Region Case 3 with Collisions Between Objects 7.5 Degrees Apart. 

GEO region 42364 km 

Before collision 

Semimajor axis 42754 km 

Reorbiting distance 590 km 

After collision 

Semimajor axis 42595 km 

Eccentricity 0.0037338 

Perturbations Aa [km] Ae 

Geopotential 1.8349 0.0001278 

Solar 3rd body 0.9958 0.0002447 

Lunar 3rd body 2.3850 0.0008157 

SRP 0.0506 0.0003200 

Total 5.2663 0.001508 

Min radial distance 423( 36 km 
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Chapter 6 

Conclusions and Future Work 

The goal of this research appeared clear-cut at the outset and likewise, the path to achieve 

it seemed simple at first glance. At the beginning, the target of these studies looked to be a 

single number, the minimum safe reorbiting distance. Such was the naivete that optimistically 

colored early decisions and projections. The low-velocity breakup models available at the time that 

research began seemed unsuitable, but there was confidence that better models would be ready 

in the near future. Two years later, an unvalidated model is incorporated into this study. The 

reorbiting problem, as addressed in Chapter 5, did not have a single number as its answer. Instead, 

summaries filling six tables attempt to describe different aspects of a situation fraught with many 

alternatives and uncertainties. This study provides an initial, and perhaps too simplistic, look at 

the effects of collisions in SSO. Refinement possibilities are numerous. 

6.1     Conclusions 

This research may be divided into three components, and each are now addressed sepa- 

rately. The first part concerns the perturbation models. Though analytical methods sometime 

produce unwieldy expressions, the gains include physical insight, and specific information on the 

relationship between individual effects and orbital parameters, such as semimajor axis, eccentricity, 

and inclination, and that between effects and physical characteristics of the satellite. Furthermore, 

the variation expressions are applicable to a whole class of orbits. All of this is unavailable from 
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numerical methods, except through inference. An additional advantage comes from the ease with 

which the analytical perturbation model interfaces with the breakup model. Results for the re- 

orbiting problem equaling years of propagation are produced in mere seconds. Amplitudes and 

frequencies of individual effects are more accurately estimated analytically than through orbital 

element history plots showing multiple effects enmeshed together. 

The results of the model validation demonstrate that the majority of the perturbation 

effects are accurately captured by the variation equations. Short-periodic terms are generally 

modeled better in the analytical models since they are better suited to the analytical integration 

method of holding certain slower-varying quantities constant. On the other hand, some long-term 

propagations indicate that further investigation into the long-periodic effects is warranted. In spite 

of this, the results of the analytical models presented in this study do bound all variations over 

20-year propagations. In fact, Table 4.10 shows that the analytical models do their best in the 

currently recommended SSO region in the vicinity of GEO+300 km. 

The second component is the breakup model. From the earlier descriptions of the model 

employed, it is easy to conclude that much of the uncertainty in the reorbiting analysis stems 

from use of this unvalidated model. While it produced seemingly reasonable numbers, estimating 

the error bounds is impossible because there is no truth model for comparison. Nonhypervelocity 

breakup dynamics is a largely unexplored area; the first steps sometimes must be taken on faith. 

A better model, when it becomes available, can easily be substituted in for the current one. 

With the methodology established and given reliable tools, the reorbiting analysis can be 

accomplished swiftly. Table 6.1 summarizes the reorbiting distance for the six cases examined in 

Chapter 5. The accuracy of this analysis hinges greatly on the breakup model's accuracy. The 

reorbiting distance is driven mostly by the collision, with perturbations adding less than 100 km. 

Since definitions for the desired protected GEO region may vary, the relationship between the 

GEO region and the reorbiting distance is explored. It appears to be no worse than a linear 

relation. The importance of the breakup model indicates that future work on the reorbiting problem 

should focus there. If the results of the current analysis are taken at face value, current reorbiting 

practices are probably not sufficient to protect the GEO region, any definition of it, in the event 
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Table 6.1: Summary of Reorbiting Analysis. 

Collision Case GEO Region Reorbiting Distance 

15 Degrees GEO only 720 km 

15 Degrees GEO+104 km 825 km 

15 Degrees GEO+200 km 925 km 

7.5 Degrees GEO only 390 km 

7.5 Degrees GEO+104 km 495 km 

7.5 Degrees GEO+200 km 590 km 

of collisions. Furthermore, the safe reorbiting distances, as calculated in this study, are probably 

beyond reasonable cost penalties in the 15° cases. The 7.5° cases may also be considered extreme. 

Current technology may not permit consideration of collisions in SSO. 

6.2    Future Work 

If the analytical approach is continued, improvements can be made in three particular areas. 

The first concerns the geopotential and lunar third body models. As stated previously, long-periodic 

effects on eccentricity are suspected to be missing or mismodeled in the current analytical model. 

Based on eccentricity histories from semianalytical orbit propagations for the lunar case, effects 

with very long periods, about 36 years, are present but not included in the current model. The 

long-periodic term in the,geopotential model has notably poor correlation between analytical and 

semianalytical estimates of the amplitude and frequency. Additionally, nonzero inclination terms 

are generally ignored, except for a few of the largest terms. Recovery of these terms, perhaps 

especially in the solar model, would help to refine the perturbation models. Finally, the singularity 

of the geopotential model near GEO altitudes should be addressed, if only for completeness. The 

handling of resonance terms which are responsible for this difficulty require a fresh approach. 

However, the primary issue of this research concerns the SSO region so future investigations need 

not focus too heavily on perturbations of GEO which has also been studied by many. 
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A completely numerical approach to perturbation analysis would require longer propagation 

capabilities in order to view longer periodic effects. To shorten integration times, double averaging 

theories could provide a great advantage [9]. A numerical study of the reorbiting problem also 

requires a search algorithm to confirm maximum variation bounds. 

There is much room for improvement in the low-speed collision model. A better model 

would provide typical fragment characteristics, such as average area-to-mass ratios, as well as more 

accurate mass and velocity distributions. For validation of the model, empirical data from ground 

tests is essential. On-orbit breakup data would require more sensitive detection capabilities than 

the current 1-meter diameter limit. Due to the great importance of the breakup model in the 

reorbiting analysis, emphasis in future work is placed in this area. 

Finally, the reorbiting analysis could be improved by incorporating the breakup and pertur- 

bation models to form one easy-to-use analysis tool. This in turn can be a part of a comprehensive 

GEO environmental model. The user would be able to set his own definition of the GEO region, 

select any combination of perturbation models, and even determine the collision scenario, if infor- 

mation on the orbits of objects predicted for a near-approach is available. Though the analytical 

perturbation models address general classes of orbits, the breakup model should be able to evaluate 

specific cases and therefore, be of use in risk assessments as well as debris mitigation studies. 
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