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Abstract  

Ferroelectric barium strontium titanate (Ba,.xSrxTi03 [BSTO]) films of l-[im nominal 
thickness were deposited on single crystals of sapphire and electroded substrates at substrate 
temperatures varying from 30° C to 700° C. The microstructure of the thin films was columnar 
at all substrate deposition temperatures. The film microhardness showed a trend toward 
increased hardness with substrate temperature. Furthermore, with the elevation in substrate 
temperature, there was a parallel increase in film-substrate adhesion measurements, while the 
cohesion measurements were not influenced by substrate temperature. 
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1. Introduction 

The Army has an active interest in phased-array antennas. In terms of performance, 

phased-array antennas offer significant advantages over their mechanical counterparts, namely, 

higher speed, increased accuracy, and higher reliability. Traditionally, phased-array antennas 

have been constructed using ferrite phase-shifting elements. Due to circuit design requirements, 

these antennas are large and costly (Sengupta 1996). Future Army requirements will demand 

antennas that are smaller and lighter with higher performance and greater long-term reliability. 

Thus, new materials are key elements in realizing this goal and must be developed, evaluated, 

and optimized for the application. To this end, a barium strontium titanate (Bai_xSrxTi03 

[BSTO]), phase-shifter device employing a planar microstrip construction has been demonstrated 

as a possible candidate (L. C. Sengupta et al. 1995). Results of this work have clearly shown 

BSTO to be a reasonable candidate for phase-shifter applications. In an effort to optimize the 

performance of the material (i.e., to increase the operating frequency [>30 MHz] and lower 

voltage requirements), thin-film fabrication of BSTO is critical. Thin films of BSTO deposited 

via pulsed-laser deposition (PLD) have been demonstrated in previous work (S. Sengupta et al. 

1995). These films have exhibited excellent electronic properties, including tunable dielectric 

constants and low electronic loss (Sengupta et al. 1994). However, there has been little 

investigation into the microstructural and mechanical aspects of these films. Previous work has 

demonstrated that the microstructure of thin films has a significant influence on device electrical 

performance and reliability (Dcawa 1993; Cole et al. 1998). Furthermore, it is postulated that 

thin-film microstructure has a strong influence on its mechanical properties (Garsgin, Lavernova, 

and Mokhov 1997). The mechanical properties, including internal stresses and adhesion, are 

important factors affecting the mechanical integrity and reliability of a device constructed of 

these thin films. Though a film may show superior electronic properties, it is the mechanical 

properties, along with electrical properties, which permit the film to be useful in a device such as 

a phased-array antenna. This paper presents the results of an investigation into the effects of 

substrate temperature during deposition on the mechanical properties as well as microstructure of 

BSTO thin films. 



2. Experimental 

Films of 1-p. nominal thickness were deposited via PLD onto single-crystal sapphire and 

electroded substrates. Prior to deposition, the substrates were ultrasonically cleaned in an 

isopropyl bath. A 248-nm KrF laser was employed for the deposition of BSTO thin films from 

source targets. The energy of the laser during deposition was 400 mJ per pulse, with a pulse 

frequency of 10 Hz and pulse width of 20 ns. The chamber pressure was held at 50 mtorr of 

oxygen. The laser spot was mechanically scanned across a rotating target to ensure film 

uniformity and avoid cratering in the target. Target-to-substrate distance was 75 mm. The films 

were deposited at a constant rate. The temperature of the substrate was varied from 30° C to 

700° C via a resistance heater on the substrate mount. Temperature was monitored by a 

thermocouple imbedded in the heater. 

The Knoop microhardness on the free surface of these coatings, uncorrected for substrate 

hardness effects, was measured using a 0.25-N applied load and a dwell time of 15 s. Even at 

this low load, the maximum indenter penetration far exceeded the critical value of 1/10 of the 

coating thickness that is considered to be sufficient for the substrate not to have a significant 

effect on hardness values. However, since all substrates were identical, all measurements were 

internally consistent. Thus, while the hardness numbers cannot be taken as absolute, if taken as a 

set, they do illustrate a trend of increased hardness as substrate temperature increases. 

The cohesion and adhesion values of the various coatings were evaluated primarily with a 

Centre Suisse d'Electronique et de Microtechnique (CSEM)-Revetest (CSEM CH-20007, 

Neuchatel, Switzerland) automatic scratch apparatus. The apparatus employed a diamond stylus 

with a radius of 200 Jim. The testing procedures for this experiment are described in Kattamis 

etal. (1993); Bhansali and Kattamis (1990); Kattamis (1993); and Steimann, Tardy, and 

Hintermann (1987). The sample translation speed was held constant at 5 mm/min, and the 

loading rate at 5 N/rnin; hence, the load gradient was dlVdx = 1 N/mm. The cohesion failure 

load, Lc, is the minimum crack initiation load within the coating, and the adhesion failure load, 



LA, is the minimum load at which the crack causes massive delamination at the coating/substrate 

interface. 

The fracture cross sections of the films were observed by scanning electron microscopy 

(SEM) to obtain a rough idea of the microstructure. Cross-sectional transmission electron 

microscopy (TEM) was performed on the BSTO films to confirm the film's columnar 

microstructure. Selected-area electron diffraction (SAED) was used to confirm the film's 

crystallinity. An Amray 1820 SEM with an accelerating voltage of 20 kV was used for surface 

analysis. The JEOL 3010 transmission electron microscope with scanning attachment and 

operating voltage of 300 kV was used to perform the cross-sectional TEM and SAED. 

3. Results and Discussion 

The microstructure of the BSTO thin film, at various substrate temperatures, was evaluated 

by SEM and TEM. Figure 1 shows a fracture cross section of the BSTO film substrate. From 

Figure 1, the columnar structure of the films can be classified as being in the Thornton (1977) 

structural zone 2. 

Figure 2 is a cross-sectional TEM micrograph of BSTO. The figure illustrates the dense 

polycrystalline nature of the film and the columnar grain structure. There was no evidence of 

microporosity at the boundaries or in the grain interiors. Also, note the different orientations of 

the columnar grains. This can be attributed to the uneven surface of the substrate. Figure 2 

further supports the point that these films are of the Thornton structural zone 2 type. Zone 2 

consists of dense columnar grains with growth as the result of surface recrystallization and 

surface diffusion. It is well known that the substrate temperature, Ts; the ambient gas pressure; 

and the energy of any mcoming ions influence the growth conditions and, therefore, the film 

structure produced under low-pressure conditions (Movchan and Demchishin 1969; Thornton 

1977; Fountzoulas and Nowak 1991). A structural classification system that has gained the 

broad acceptance for thin films produced by physical vapor deposition (PVD) process has been 



Figure 1. Scanning Electron Photomicrograph of a Fracture Cross Section of a BSTO Film 
(Ts/Tm=0.15). 

Figure 2. Transmission Electron Micrograph of BSTO Film Illustrating Columnar Grain 
Structure. Note That the Dark Lines Are Added to Aid in Delineating the 
Columnar Grain Boundaries (Ts/Tm= 0.49). 

presented by Movchan and Demchishin (1969). They proposed three zones to describe the 

microstructures that can develop in films produced by vacuum evaporation as a function of 

Ts/Tm, where Ts is the absolute substrate temperature and Tm is the absolute melting temperature 



of the deposited material. Thornton (1977) elaborated on the approach of Movchan and 

Demchishin (1969) extending it to typical sputtering. Thornton (1977) also concluded that the 

structure and physical properties of films produced by sputtering could be represented as a 

function of Ts/Tm, in terms of four zones as shown in Figure 3, each with its own characteristic 

structure and physical properties. The general features of Thornton's model (1977) were based 

on the examination of 25- to 250-jjm-thick coatings deposited at argon pressures of 1.33 x 10~4 

(1 mtorr) to 3.9 x 10"4 Pa (30 mtorr), using cylindrical-post and hollow-cathode magnetron 

sputtering sources. Fountzoulas and Nowak (1991) further elaborated on the approach of 

Movchan et al. (1969) and Thornton (1977), extending them to ion plating. SAED was 

performed to confirm the crystalline structure of the films. The SAED image showed rings that 

are indicative of a polycrytstalline film. 
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Figure 3. Structure Zone Model for Coatings Produced by Sputtering (Thornton 1977). 

The column size measurements as a function of the ratio of the absolute substrate 

temperature, Ts, and absolute film melting temperature, Tm, (2,004 K) are shown in Table 1 and 

Figure 4. For Ts/Tm between 0.15 and 0.19, the average column diameter increased from 190 nm 

to 230 nm. For Ts/Tm between 0.19 and 0.39, the average column size remained practically 

constant. At Ts/Tm = 0.49, where the film is fully crystalline, the column size increased 

dramatically to 2,007 nm. The increased column diameter can be attributed to the increase of 

intercolumnar diffusion at higher temperatures. 



Table 1.     Column   Diameter,   Cohesion,   and   Adhesion   Failure   Load   and   Knoop 
Microhardness of BSTO Films vs. Ts/T,,, 

0.15 
0.19 
0.29 
0.39 
0.49 

LA(N) Lc(N) 
Ts/Tm   Thickness   Column Size   (Adhesion Load)    (Cohesion Load) 
 (nm) (nm)  

1,000 
2,200 
1,000 
1,000 
3,000 

190 
230 
250 
220 

2,007 

16.06 
18.75 
38.22 
22.68 
24.08 

11.63 
13.75 
13.65 
12.96 
12.32 

Knoop 
Microhardness 

(GPa) 

1.3 
1.5 
5.7 
6.6 
7.0 

2500 

2000- 
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Ts/Tm 

Figure 4. Column Size of BSTO Films vs. Ts/rm. 

The Knoop microhardness of the BSTO films, uncorrected for the substrate hardness effect, 

ranged between 1.3 GPa and 7 GPa. Table 1 and Figure 5 show Knoop microhardness values as 

a function of Ts/Tm. The film microhardness increased with an increasing Ts/Tm ratio and 

increasing film crystallinity. The highest Knoop microhardness was obtained at the highest 

temperature (i.e., Ts/Tm = 0.49). 

Measured average values of cohesion failure load, Lc, and adhesion failure load, LA, are 

listed in Table 1. The cohesion failure load of the films remained fairly constant, independent of 
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Figure 5. Knoop Microhardness of BSTO fflms vs. Ts/Tm. 

the substrate temperature (Figure 6). The average cohesion failure load of the film was about 

13 N. The adhesion failure load of the films increased with increasing Ts/Tm ratio (Figure 7). 

However, for reasons currently not understood, for Ts/Tm = 0.25, the adhesion failure load 

exhibited a peak at a ratio of 38.22 N. 
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Figure 6. Cohesion Failure Load of BSTO Films vs. Ts/Tn 
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Figure 7. Adhesion Failure Load of BSTO films vs. Ts/Tn 

4. Summary 

The structure, crystallinity, cohesion and adhesion failure loads and microhardness of BSTO 

thin films produced by PLD were correlated with the substrate temperature. For the entire 

temperature range, 278-973 K, the films were columnar. The column size increased with 

increasing substrate temperature. For Ts/Tm < 0.29, the films could be categorized as being in 

the transition region, T, of the Thornton structural zone model. When Ts/Tm > 0.29, the 

microstructure corresponds to the Thornton structural zone 2 category. SAED confirmed the 

crystalline nature of the films deposited on the electroded substrates at a temperature of 973 K. 

The cohesion failure load was constant for the entire substrate temperature range. The adhesion 

and microhardness increased with increasing substrate temperature. 
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