
Presented at the Fourth International Workshop on Agent Theories, 
Architectures, and Languages (ATAL'97). 

Toward the Specification and Design of Industrial 
Synthetic Ecosystems 

Van Parunak, John Sauter, and Steve Clark 

Industrial Technology Institute 
PO Box 1485 

Ann Arbor, MI 48106 
{van, John, sjc}@iti.org 

Abstract. Many agent-based systems rely for their effectiveness on the 
intelligence of individual agents, and interaction among agents is required 
simply to coordinate these individually complex decisions. Specification 
and design methods for such systems focus on the internal architecture of 
individual agents. An alternative approach, "Synthetic Ecosystems," uses 
relatively simple agents and draws heavily on the dynamics of the 
interaction among these agents as well as their internal processing to solve 
domain problems. The specification and design of such systems must 
include not only the individual agents, but also the structure and dynamics 
of their interaction. This paper briefly defines and motivates the Synthetic 
Ecosystems approach and outlines some techniques that have proven 
useful in specifying and designing them. 

1     Introduction 
[7] summarizes the history of agent-based systems design in two phases: a 
reductionist period that focused on top-down analysis of system issues at the 
expense of agent autonomy, and a constructionist period in which the focus of 
design attention moves to the individual agent. They argue cogently that this 
second approach does not adequately provide for socially coherent behavior. To 
remedy this shortcoming, they propose a social level in the architecture of 
individual agents that supports socially rational actions, just as Newell's 
knowledge level immediately beneath it supports individual rationality. 

This approach builds social coherence on individual rationality. In recent years, 
there has been growing interest in systems of agents that do not possess even the 
usual mechanisms of individual rationality (such as models of self, the 
environment, and other agents), and yet exhibit social coherence [4; 3; 15]. 
These "synthetic ecosystems" are inspired by social behavior in non-humans, 
often insects. [12] formalizes such systems, identifies a number of their 
characteristics, and argues that they follow naturally from the notion of an agent 
as a bounded process immersed in an active environment. 

The relative simplicity and directness of such agents and their match to 
emerging technologies for distributed shop-floor control make them attractive 

DISTRIBUTION STATEMENT A 
Approved for Public Release 

Distribution Unlimited 

Page 1 

«Bowunmm, ^ ^ ^ ^ 



Parunak, Sauter, and Clark 

candidates for early industrial deployment. However, such deployment depends 
critically on the availability of a design methodology that can be taught, so that 
development of agent systems can move out of the laboratory and into 
widespread industrial practice [10]. Like the approach of [7], it must provide for 
social coherence. Unlike their approach, it cannot rely primarily on explicit 
coordinating decisions by the agents, but must take a broader view of the 
structure of the overall community and its dynamics. 

We have synthesized an approach to designing industrial-strength ecosystems 
based on techniques that we have used successfully in a number of development 
projects. Although detailed case studies are beyond the scope of this paper, 
examples and illustrations are drawn from these experiences. Table 1 outlines 
the four kinds of activity in our overall approach: initial conceptual analysis, 
human role-playing to test the basic kinds of agents and their relation to one 
another, computerized simulations to explore the emergent properties of the 
system under realistic numbers of agents and interchanges; and selection of 
deployment technologies on the basis of the dynamic information gathered from 
the simulations. This discussion of how we design agents is orthogonal to the 
questions of what needs to be designed (individual agents, their organization, 
and mechanisms for coordination, as in [1]) and why one would choose the 
synthetic ecosystem approach [12], 

Between any two of these activities, there is a good deal of iteration. Role- 
playing may send us back to the drawing board to rethink what agents are 

Table 1: Stages in Designing Multi-Agent Systems 

Technique Focus Supporting 
Analysis 

Answers 

Conceptual 
Analysis 

Components • What system-level behavior do 
we want? 

• What kinds of agents do we think 
we might need to get it? 

• How should they behave? 
Role- 
Playing 

Architecture 
(Kinematics) 

Speech-Acts 
& Dooley 
Graphs 

• How do our proposed agents 
interact with one another in an 
organization? 

• What low-level behaviors are 
needed? 

Computer 
Simulation 

Behavior 
(Dynamics) 

Nonlinear 
mathematics 

• What kind of behavior emerges 
from realistic numbers of agents 
and interchanges? 

Implemen- 
tation 
Design 

Platforms and 
Tools 

• How can I instantiate this design 
in a deployable system? 

Page 2 



Parunak, Sauter, and Clark 

needed and what they should do individually. Computer simulation may uncover 
a need for a revised organizational structure that requires more role-playing, 
while implementation design may raise further questions that require additional 
simulation. Still, there is a rough time ordering of these activities, in that 
conceptual analysis is the first to begin and implementation design is the last to 
complete. 

This paper focuses on the first and second of these activities. Section 2 discusses 
Conceptual Analysis, Section 3 outlines how to role-play a multi-agent system, 
and Section 4 briefly summarizes the place of Dooley Graphs and computer 
simulation in analyzing the results of the first two activities. 

2     Conceptual Analysis 
Conceptual analysis gives us our initial vision of what the system as a whole will 
do (expressed both in abstract terms and as role-playing cases), what agents will 
be involved, and how they will behave. At this point, the overall system behavior 
can be specified with a fair amount of detail, since it comes from the overall 
system requirements, but the identity and behavior of the agents themselves are 
only initial guesses, guided by general principles of good agent design (drawn 
from [12] and discussed more fully there). 

2.1    Define Desired System Behavior1 

We begin by identifying the requirements for which the system is being 
constructed. In conventional systems, we would then proceed to design these 
behaviors top-down, and the required system behaviors thus specify the outer 
envelope of the accessible system behaviors. In agent-based systems, these 
requirements are used to evaluate the adequacy of the emergent behavior of the 
collection of agents, and thus guide the refinement of individual behaviors. 

At a high level, desired system behavior may be of several kinds. We may want 
the system to maintain some set of state variables in a specified relationship with 
one another, thus exhibiting homeostasis. The system may be a transducer that 

1 System behavior is only one of a broad set of requirements that need to be 
taken into account in designing a system. Other requirements include interface 
constraints, performance constraints, operating constraints, life-cycle constraints 
(e.g., maintainability), economic constraints, and political constraints. [13] 
offers a helpful summary. A complete design method for agent-based systems 
needs to take account of all these issues. For starters, we are concentrating on 
the functional requirements, those that concern the behavior of the system. 

Page 3 



Parunak, Sauter, and Clark 

needs to convert specified stimuli into corresponding responses. Or we may want 
the system to learn over time in response to its experience. 

At least two criteria are involved in a good behavioral specification. 

• It should be specific enough to know if we succeed in achieving it. A 
qualitative specification is usually adequate for role-playing, but we need a 
quantitative one to support simulation. For example, in a process control 
environment, "homeostasis" by itself is too vague. "Balance temperature 
and pressure" is OK for role-playing. For simulation, we need to specify the 
quantitative link desired between pressure and temperature. 

• It should be relevant to system architecture as opposed to other system 
variables. For example, the system behavior "Have tooling available when 
needed" might be better addressed by buying more tools rather than 
expecting magic from agents. Better specifications for this example include: 
"Get high-value parts through the system first"; "Identify relative scarcity of 
tool types"; "Reduce overall tool idleness." 

The design team needs a concise statement of the problem to be solved and the 
constraints that must be observed. For example: 

• What is the desired overall system behavior? 
• What can be varied in the effort to achieve this behavior? 
• What must not be touched? 
• What approach is currently taken to solving the problem? 
• Why is a new solution being contemplated? (Are there obvious 

shortcomings of the current solution? Is a change needed that is beyond the 
scope of the current solution?) 

These questions are not intended to be exhaustive, but simply to indicate the 
kind of information that should be summarized in the preparatory documents. 

2.2    Identify Agents 
The next step is to decompose the system into pieces that will become our 
agents. In this initial phase, the engineer is guided by a body of "good practice" 
that will grow as the result of experiences such as ours. This activity focuses 
roughly on the "agent model" of [1]. We have found linguistic case analysis a 
useful tool in developing the initial partition of the system. The candidate agents 
identified in this way are then reviewed against design principles that appear to 
be followed in naturally occurring agent systems. 

Page 4 



Parunak, Sauter, and Clark 

2.2.1    Case Analysis for Agent Identification 
One widely-used technique for identifying objects in an object-oriented systems 
analysis [14] is to extract the nouns from a narrative description of the desired 
system behavior. We use a refinement of this approach, based on linguistic case 
theory [5; 2]. The basic idea is that each verb has a set of named slots that can 
be filled by other items, typically nouns. Each slot describes the semantic role of 
its filler with respect to the verb. Thus the case role of a noun captures basic 
behavioral differences among entities in the domain. 

Instead of the case names used by linguists (which are too general for our 
purposes, and in the case of "Agent" might lead to unfortunate confusion), we 
define a set that is appropriate for the domain we are treating. For example, in 
discrete manufacturing, we can describe what happens in a factory in a series of 
sentences of the form, "Joe oversaw Unit Process 12 on Part 25 from Acme 
Supplies, using Mill 32, Cutter 86, and Part Program 19, producing Part 26 for 
US Army Order 22." The essential components of such a sentence, and the case 
labels by which we might refer to them, are: 

Unit Process ("Unit Process 12").—The unit process is the level below which 
manufacturing ceases to be a discrete activity. The Manufacturing Studies Board 
of the National Academy of Sciences distinguishes five basic types of unit 
processes: Mass-Change, Phase- Change, Structure-Change, Deformation, and 
Consolidation [9]. An instantiation of a Unit Process in space and time (e.g., the 
specific instance of heat treating performed in Oven 18 at 14:32 3 May 1993) is 
an Operation. 

Resource ("Mill 32," "Cutter 86," "Part Program 19").—The linguist's 
Instruments; the "tools" that are needed to perform an Operation (an instance of 
the Unit Process), including machines, material handling devices, energy, 
tooling, fixtures, gauges, part programs, and documentation. Those aspects of 
the machine operator that are required to complete a unit process are best 
modeled as a Resource as well. Other aspects of humans are covered in the 
Manager category. 

Manager ("Joe").—This is the human responsible for the Operation. In an 
automated factory, it becomes the plant manager. Automated representatives 
watch for things like chaos, performance metrics, energy consumption, and cash 
flow. 

Part ("Part 25," "Part 26").—The inputs (Materials) and outputs (Products) for 
a Unit Process. There may be more than one input (in assembly) or output (in 
disassembly, or sawing up bar stock, or injection molding of a tree of parts). 
Between Unit Processes, Parts are in the custody of material handling operations 
such as transport and storage mechanisms. Like other Unit Processes, material 

Page 5 



Parunak, Sauter, and Clark 

handling changes characteristics of a part (its age and location). However, these 
changes do not alter the part functionally, and the part number (identifying its 
type) does not change across a material handling operation (as it does across 
other Unit Processes). Thus we make Parts responsible for their own material 
handling, and permit them to acquire necessary Resources just as Unit Processes 
do in order to move from one Unit Process to another. 

Customer ("US Army Order 22").—The linguistic Beneficiary; the one who 
benefits from the execution of the work. The Customer represents a single 
purchase decision, or order. This cohesion is necessary in order to let the system 
handle each unit in a purchase separately (for processing simplicity) and yet be 
able to identify different parts that will all be made or not made based on the 
same purchase decision (so that we can take advantage of economies of scale). 

Supplier ("Acme Supplies").—Another variety of Beneficiary, this time the one 
from whom the input material is purchased. 

The case analysis does not provide a finished system design, but does give an 
initial set of agents and agent types (from the linguistic roles) that lends itself to 
discussion among the developers and has proven to be very robust in terms of 
covering the issues that need to be addressed. In the example, some questions 
were raised by linguistic case analysis alone but were answered in role playing, 
such as: 

1. Is there a separate agent for each of several identical Resources? 

2. Is there one Manager agent for each human with a manager role, or for 
each management function, or for each Operation? 

3. Does a Part agent represent an individual part, a lot containing many parts, 
or a type of part? Should there be both Part Instance and Part Type agents? 

Space does not permit discussing the resolution of these particular questions in 
this paper. 

2.2.2   Principles for Validating Candidate Agents 
To complete the preliminary decomposition, these categories are reviewed and 
possibly revised against overall system requirements and general principles (for 
example, those in [12], used here). 

Thing vs. Function.—Classical software engineering techniques condition 
many systems designers toward "functional decomposition." This approach is 
unprecedented in naturally occurring systems, which divide agents on the basis 
of distinct entities in the physical world rather than functional abstractions. Our 
experience  supports  this  principle.   Each  functional   agent  needs   detailed 

Page 6 



Parunak, Sauter, and Clark 

knowledge of many of the physical entities being managed, and so when the 
physical system changes, the functional agent needs to change as well. However, 
it is often possible to endow physically defined agents with generic behaviors 
from which the required functionality will emerge, for widely varying overall 
populations of agents. In most cases, deriving agents from the nouns in a 
narrative description of the problem to be solved yields things rather than 
functions. 

Legacy systems and watchdogs are two exceptions to this principle. 

Most agent applications in the near future will be incremental additions to 
existing systems, and will need to interface with legacy programs, some of 
which will be functionally oriented. For example, a shop-floor control system 
will need to interface with a factory-wide MRP system that is doing classical 
scheduling. As in the CIDIM application of ARCHON [16], we encapsulate the 
legacy program as an agent. Though the MRP system is functionally defined, as 
a legacy program it is a well-defined "thing" and so deserves agenthood. By 
using it as a link to other system information rather than as a main source of 
functionality, we can ensure that it does not dominate the system, and pave the 
way for its eventual replacement. 

Functional agents are sometimes needed as watchdogs. Some system states may 
not be perceivable at the level of an individual agent, and yet may be necessary 
to ensure overall system safety or performance. A functional agent that simply 
monitors the behavior of a population of physical agents is not nearly as 
restrictive on future reconfiguration as one that does centralized planning and 
action. The most elegant designs do not rely on watchdogs at all, but if they are 
used, they should sense and raise signals but not plan or take action. 

Small in Size.—Natural systems like insect colonies and market economies are 
characterized by many agents, each small in comparison with the whole system. 
Such agents are easier to construct and understand, and the impact of the failure 
of any single agent will be minimal. In addition, a large population of agents 
gives the system a richer overall space of possible behaviors, thus providing for 
a wider scope of emergent behavior. (Very roughly, system state space is 
exponential in the number of agents.) Ecological studies frequently find that the 
functioning of a biological system depends on minimum population levels much 
higher than one would suspect based on a naive analysis of rates of 
reproduction, predation, and food consumption, because emergent properties 
essential to the community's survival are driven by the interaction of many 
entities. We expect that the same principle will hold true of artificial systems. 

Keeping agents small often means favoring specialized agents over more general 
ones, using appropriate aggregation techniques. For example, rather than 
writing a single agent to represent a complete manufacturing cell, consider an 

Page 7 



Parunak, Sauter, and Clark 

agent for each mechanism in the cell (e.g., one for the fixture, one for the tool, 
one for the load-unload mechanism, one for the gaging station). 

Decentralized.—Natural systems do not reflect the kind of centralization that 
often appears in artificial systems. For example, a market economy achieves 
superior distribution of goods compared with attempts at central economic 
control. We can hypothesize several reasons for this tendency. A central agent is 
a single point of failure that makes the system vulnerable to accident. It can 
easily become a performance bottleneck. More subtly, it tends to attract 
functionality and code as the system develops, pulling the design away from the 
benefits of agents and regressing to a large software artifact that is difficult to 
understand and maintain. 

Centralization can sometimes creep in when designers confuse a class of agents 
with individual agents. For example, one might be tempted to represent a bank 
of paint booths as "the paint agent," because "they all do the same thing." 
Certainly, one would develop a single class (in the object-oriented sense of the 
word) for paint-booth agents, but each paint booth should be a separate 
instantiation of that class. 

Diversity and Generalization.—Natural communities of agents balance 
diversity (which enables them to monitor an environment much larger than any 
single agent) with generalized mechanisms (enhancing their interaction with 
one another and reducing the need for task-specific processing). For example, 
pheromones enable insects not only to map out paths to food sources, but also to 
coordinate nest construction. The class inheritance mechanisms of the object- 
oriented platforms on which we construct agents are an excellent support for 
comparable generalization across the agents we build, but experience shows that 
the hard part is identifying appropriate generalizations in the first place. Early 
designs typically multiply differences among agents unnecessarily, while later 
refinements can make more effective use of the power of inheritance. 

2.3    Hypothesize Agent Behaviors and Message Types 
With a candidate set of agents in hand, we define their individual behaviors and 
the classes of messages they can exchange. At this point in the design, these 
behaviors must be considered hypothetical. There exists no algorithm to 
compute from desired system behaviors to the individual agent behaviors that 
will yield the system behaviors. Some behaviors (even most) may be 
straightforward and obvious, but there will always be subsystems where only 
simulation of example agent behaviors (first in role-playing, later on a 
computer) can tell us when we have the right behaviors. This activity is most 
closely related to the "cooperation model" of [1], and includes aspects of the 
"organizational model." 

Page 8 



Parunak, Sauter, and Clark 

2.3.1    Method 
At this point in our design, our main concern is with identifying the decisions 
each agent needs to make and the other agents with which it needs to make 
them, rather than on the details of each agent's internal reasoning. Table 2 is an 
example of the information we gather at this point, in the case of a simple 
automotive supply chain. All agents in this example are of the same type. Since 
the focus of the role-playing is on the interaction dynamics of the system rather 
than the individual decision-making of the agents, it is often sufficient to flip 
one or more coins to select among possible alternative actions. By treating a 
penny, a dime, a nickel, and a quarter as successively higher bit positions, up to 
24 alternatives can be represented. The entries in the "Stimulus" and "Response" 
columns identify some of the classes of messages or interactions that will be 
needed. 

Table 2 High-Level Behavioral Design for a Simple Supply 
Chain 

Agent 
Type 

Stimulus Behavioral 
Question 

Mechanism in 
Role-Play 

Response 

Supplier- 
Consumer 

What parts 
can I 
manufacture? 

Predefined 
Constant: PartA; 
PartB 

Supplier- 
Consumer 

Incoming 
RFQ 

1. Do I have 
capacity to 
honor this 
RFQ? 

Flip a coin; if 
Tails, ask your 
competitors to 
help 

RFQ to 
Competitors 

2. Assuming I 
CAN do the 
work, do I 
WANT to 
bid? 

Flip a coin 

3. Are the 
inputs I need 
available? 

Ask your suppliers RFQ to Suppliers 

4. What 
should I 
charge per 
piece? 

Roll a die Send bid to 
customer 

Supplier- 
Consumer 

Incoming 
Bid 

Which bid 
shall I accept? 

Flip a coin for 
each incoming bid 
until one comes 
up Heads. 

Purchase Order 
to successful 
supplier; 
rejection to 
others 

Page 9 



Parunak, Sauter, and Clark 

2.3.2   Principles 
The following principles from [12] pertain to agent dynamics and interactions. 

Concurrent Planning and Execution.—Traditional systems alternate planning 
and execution. For example, a firm develops a schedule each night for its 
manufacturing operations the next day. The real world tends to change in ways 
that invalidate advance plans. Natural systems do not plan in advance, but adjust 
their operations on a time scale comparable to that in which their environment 
changes. Watch out for suggested behaviors that involve extensive up-front 
planning. 

Currency.—Naturally occurring multi-agent systems often use some form of 
currency to achieve global self-organization. The two classical examples are the 
flow of money in a market economy, and the evaporation of pheromones in 
insect communities. These mechanisms accomplish two purposes. They provide 
an "entropy leak" that permits self-organization (reduction of entropy) at the 
macro level without violating the second law of thermodynamics overall, and 
they generate a gradient field that agents can perceive and to which they can 
orient their actions, thus becoming more organized. Wherever possible, artificial 
agent communities should include such a currency. It should have three 
characteristics [8]: 

1. It should establish a gradient across the space in which the agents act, either 
as a potential field or as an actual flow. 

2. The agents should be able to perceive it and orient themselves to this 
gradient. 

3. The agents' actions should reinforce the gradient (positive feedback). 

Local Communication.--Agents need to limit the recipients of their messages as 
much as possible. Wherever possible, instead of "broadcast X," seek to define 
more precisely the audience that needs to receive the message. 

Information Sharing.—Agents often need to share information across both 
time and space. ("Learning" thus becomes a special case of information 
sharing.) Three approaches are available [6]. Classical AI learning is 
ontogenetic, taking place within a single agent during the course of its existence. 
Phylogenetic mechanisms such as genetic programming can improve the 
behavior of a species of agents over successive generations. Sociogenetic 
mechanisms that construct markers in the environment can enable an agent 
community as a whole to learn even if individual agents are not modified. Each 
mechanism places different requirements on the behavior of the agents in the 
system. Phylogenetic learning is not nearly as demanding as the ontogenetic 

Page 10 



Parunak, Sauter, and Clark 

mechanisms developed in classical AI, and sociogenetic mechanisms can be 
even simpler. 

3     Role-Play the System 
With agents identified and tentative behaviors described, we can experiment 
with the emergent behavior of selected subsystems by having people play the 
roles of the various agents. Such a rehearsal does not show the full dynamic 
behavior that would be expected from a complete population of agents operating 
at computer speed, but does validate the basic behaviors needed and provides a 
basis for defining some internal details of computerized agents. Where computer 
agents supplement the activity of human operators, the role-playing exercise also 
helps capture the techniques, knowledge, and rules that the humans have been 
using to ensure that the computer agent augments this behavior appropriately. 

3.1 Select Subsystems and Scripts for Role Playing 
In our experience, a large proportion of the individual behaviors for most of the 
agents will be fairly obvious. This empirical result is fortunate, since role- 
playing a complete system as small as 50 or 100 agents can be slow, tedious, and 
inconclusive. To explore the emergent behaviors of the system in regions that 
are not obvious, we focus on subsystems of a dozen or so agents where we are 
least comfortable about the match between individual and system behaviors. 

In addition to selecting these subsystems for role-playing, we need several 
scripts of the desired system behavior. For example, if we seek a system with 
homeostasis, we need to identify the state variables that can independently 
change, the range of variation that they can expect, and the corresponding 
corrections needed in other variables. These scripts guide the role-playing 
activities. Because of the time and effort constraints of role-playing, they will 
sample the overall space of desired system behaviors only sparsely, and should 
be chosen to explore widely separated regions of this space. 

3.2 Assign Agents to People 
A separate person should represent each agent in the subsystem identified in the 
conceptual analysis phase. When there are many more agents than people 
available, it may be necessary for a single person to handle a complete class of 
agents. In this case we need to distinguish carefully between the behavior of the 
agent class and what a single agent of that class can know. Agents, even those of 
the same class, do not have automatic access to one another's variables, and 
people representing them in a role-play need to be careful not to "leak" 
information among them. 

Page 11 



Parunak, Sauter, and Clark 

An important characteristic of synthetic ecosystems is that the environment is 
not necessarily passive, but may have state and processes associated with it [12]. 
It differs from an agent in that it is unbounded. In addition to the agents 
proposed for the system being engineered (the "system agents"), a person should 
be assigned to play the role of the environment manipulated by the system. The 
environment raises external conditions as called for in the script, receives 
actuator outputs from the system agents, and integrates these outputs into their 
overall effect on the environment, thus monitoring the system's ability to 
achieve the required changes. The facilitator can represent a simple 
environment. When the environment is more complicated, its representative 
may need to do more extensive reasoning, and should be separate from the 
facilitator. 

The primary responsibility of participants in the role-playing is to figure out the 
rules that should guide the behavior of the agent for which they are responsible. 
The structure of the conversation among agents will emerge naturally from the 
interaction, and can be retrieved by post-hoc analysis, but the internal rules need 
to be developed by the participants themselves. 

3.3    Record Actions 
To support later analysis, we capture all actions that agents (both system and 
environment) take external to themselves. These actions may be either speech 
acts (messages to other agents) or non-speech acts (influences on the 
environment). The agents record these actions on cards that are then given to 
the participant representing the receiving agent (for a message) or the 
environment (for a physical action). Each card records five pieces of 
information, in addition to the actual content of the message: 

• The identity of the sending agent 
• The identity of the receiving agent 
• The time the card is sent 
• The identity of the agent whose card stimulated this one 
• The time that the card stimulating this one was sent 

This information enables reconstruction of the thread of conversation among the 
agents. The time entries are a useful way to determine the order in which 
messages are generated. Ideally, one could assign a unique sequence number to 
all cards, but the task of maintaining such a number across all participants is 
burdensome and prone to error. By placing a digital desk clock in view of all 
participants, it is easy to maintain an unambiguous ordering of the cards that 
permits reconstruction of the conversation. 

Page 12 



Parunak, Sauter, and Clark 

3.4    Facilitate the Interactions among Agents 
A facilitator who is not one of the agents should oversee the execution of each 
script. There are three phases in this responsibility. 

Initiate.—The facilitator announces that a new script is starting. If the 
facilitator and environment are not the same person, the facilitator makes sure 
the correct script drives the environment. 

Run.—While the participants are running the script, the facilitator has the 
following responsibilities: 

• If the facilitator is doing double duty as the environment agent, simulate 
exogenous inputs to the system and account for the effect of outputs. 

• Act as "postman" to carry message cards between agents. 

• Watch for possible cross-talk between agents ("Isn't your action based 
partly on what B said a few moments ago to C? Should you have been 
included on the distribution for that message?") 

Debrief.—After completion of a script, the facilitator helps participants 
synthesize important conclusions from the session. Here are several examples 
that we can identify at the outset. There may be others. 

• What operational decisions could not be resolved locally? These point to the 
need for a partial redesign to make them local, or if none can be found, 
functional "watchdog" agents. 

• What state information does each agent need to maintain? 

• How complex do agents need to be? One way to get a first cut at this is to 
see how succinctly participants can write down a description of the decision 
processes for their agents. 

• Are participants conscious of internal state shifts? 

3.5    Graph the Conversations 
Enhanced Dooley Graphs [11] are a useful tool to analyze conversations in 
agent-based systems. Each node in the graph represents an agent in a role. A 
given agent may appear at different nodes if it takes on different roles in the 
course of the conversation. These roles are good candidates for units of behavior 
that can often be reused across an agent community. Thus they provide a first- 
level decomposition of individual agents into behaviors, and guide the initial 
coding of the system. 

Page 13 



Parunak, Sauter, and Clark 

4 Further Analysis 
Brainstorming and role-playing are flexible, creative ways to explore possible 
agent designs, but their results need to be checked before implementation 
begins, especially in architectures (such as synthetic ecosystems) that rely so 
heavily on emergent behavior. We have found simulation an indispensable tool. 
It enables the designer to observe and evaluate the emergent behavior of the 
entire community, and to test how the behavior seen in a limited role-play scales 
up to a full population of agents. The growing acceptance of genetic methods in 
industry opens the door for using simulation to grow agents, avoiding the need 
to program them manually. The code of the simulated agents can serve as a 
detailed design for the final implementation. 

The transition from design to implementation is the selection of the deployment 
platforms and tools that will be used in the fielded system. Sometimes these 
choices are known at the outset. In other cases, the results of the earlier steps of 
design may guide implementation design, as when simulation studies show that 
the required level of performance requires agents to execute on separate 
processors. 

In the discrete manufacturing example of section 2.2.1, Operation originally was 
defined as a particular instance of a Unit Process in space and time. Operation 
was an agent type through the first design iteration, but detailed 
implementation-level design showed that the Operation was composed of 
behaviors that shared high-volume data with Unit Processes and behaviors that 
shared high-volume data with Resources. Unexpectedly, these two sets of 
behaviors were separable with relatively low-bandwidth communication. In the 
actual implementation, there was no Operation agent per se. The Operation 
became a "virtual agent," occupying a conceptual place in the architecture but 
with all of its behaviors migrated to Unit Processes and Resources. 

5 Summary 
Agents in synthetic ecosystems tend to be simpler than those in architectures 
that support explicit agent cognition, and much of the desired system behavior 
emerges from the interactions of the agents rather than being computed 
explicitly within individual agents. Our approach to designing synthetic 
ecosystems thus pays special attention to exploring these interaction dynamics, 
relying heavily on role playing and computer simulation to explore and refine 
the system-level behavior of the agent community. 

Page 14 



Parunak, Sauter, and Clark 

6    References 
1. B. Burmeister. Models and Methodology for Agent-Oriented Analysis and 
Design. In Proc.of the Workshop on Agent-Oriented Programming and 
Distributed Systems (KF96), September 1996. 

2. W.A. Cook. Case Grammar: Development of the Matrix Model. 
Washington: Georgetown University, 1979. 

3. A. Drogoul. When Ants Play Chess (Or Can Strategies Emerge from 
Tactical Behaviors?) In C.Castelfranchi and J.-P.Müller, editors, From Reaction 
to Cognition: Selected Papers, Fifth European Workshop on Modelling 
Autonomous Agents in a Multi-Agent World (MAAMAW '93), pages 13-27, 
1995. 

4. J. Ferber. Les systemes multi-agents: vers une intelligence collective. 
Paris: InterEditions, 1995. 

5. C.J. Fillmore. The Case for Case Reopened. Studies in Syntax and 
Semantics 8:59-81, 1977. 

6. D. Fogel. Evolutionary Intelligence. IEEE Press, 1995. 

7. N.R. Jennings and J.R. Campos, "Towards a Social Level Characterization 
of Socially Responsible Agents." IEE Proceedings, Software Engineering 
144(l):ll-25, 1997. 

8. P.N. Kugler and M.T. Turvey. Information, Natural Law, and the Self- 
Assembly of Rhythmic Movement.  Lawrence Erlbaum, 1987. 

9. NASMSB. Unit Manufacturing Processes: Issues and Opportunities in 
Research. Washington, DC: National Academy Press, 1995. 

10. H.V.D.Parunak, "Workshop Report: Implementing Manufacturing Agents. 
Sponsored by the Shop Floor Agents Project of the National Center for 
Manufacturing Sciences in conjunction with PAAM'96, Westminster Central 
Hall, London, UK, 25 April 1996." 1996. Available at 
http://www.iti.org/~van/paamncms.ps . 

11. H.V.D. Parunak. Visualizing Agent Conversations: Using Enhanced Dooley 
Graphs for Agent Design and Analysis. In Proc. of ICMAS'96, pages 275-282, 
1996. 

12. H.V.D.Parunak, "Go to the Ant: Engineering Principles from Natural 
Multi-Agent Systems." Forthcoming in Annals of Operations Research. 1997. 
Available at http://www.iti.org/~van/gotoant.ps. 

13. GC. Roman. A Taxonomy of Current Issues in Requirements Engineering. 
IEEE Computer, April, 14-22, 1985. 

Page 15 



Parunak, Sauter, and Clark 

14. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen Object- 
Oriented Modeling and Design.  Englewood Cliffs: Prentice Hall, 1991. 

15. L. Steels and R. Brooks, editors. The Artificial Life Route to Artificial 
Intelligence: Building Embodied, Situated Agents. Hillsdale: Lawrence 
Erlbaum, 1995. 

16. T.Wittig, editor. ARCHON: An Architecture for Multi-Agent Systems. New 
York: Ellis Horwood, 1992. 

Page 16 



INTERNET DOCUMENT INFORMATION FORM 

A . Report Title:   Toward the Specification and Design of Industrial 
Synthetic Ecosystems 

B. DATE Report Downloaded From the Internet   4/05/99 

C. Report's Point of Contact: (Name, Organization, Address, 
Office Symbol, & Ph #):    Industrial Technology Institute 

P.O. Box 1485 
Ann Arbor, Ml 48106 

D. Currently Applicable Classification Level: Unclassified 

E. Distribution Statement A: Approved for Public Release 

F. The foregoing information was compiled and provided by: 
DTIC-OCA, Initials:   VM_ Preparation Date: 4/05/99  

The foregoing information should exactly correspond to the Title, Report Number, and the Date on 
the accompanying report document. If there are mismatches, or other questions, contact the 
above OCA Representative for resolution. 


