
A VALIDATION STUDY OF CLOUD SCENE 
SIMULATION MODEL TEMPORAL 

PERFORMANCE 

THESIS 

D. Glenn Kerr, Captain, USAF 
AFIT/GM/ENP/99M-08 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 
v^n 

Wright-Patterson Air Force Base, Ohio 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 



AFIT/GM/ENP/99M-08 

A VALIDATION STUDY OF CLOUD SCENE 

SIMULATION MODEL TEMPORAL PERFORMANCE 

THESIS 

D. Glenn Kerr, Captain, USAF 

AFIT/GM/ENP/99M-08 

Approved for public release; distribution unlimited. 



The views expressed in this thesis are those of the author, and do not reflect the 

official policy or position of the Department of Defense, or the U.S. Government. 



AFIT/GM/ENP/99M-08 

A VALIDATION STUDY OF CLOUD SCENE 

SIMULATION MODEL TEMPORAL PERFORMANCE 

THESIS 

Presented to the Faculty of the Graduate School of Engineering 

of the Air Force Institute of Technology Air University 

Air Education and Training Command In Partial Fulfillment of the Requirements 

for the 

Degree of Master of Science in Meteorology 

D. Glenn Kerr, B A. 

Captain, USAF 

January 1999 

Approved for public release; distribution unlimited. 



AFIT/GM/ENP/99M-08 

A VALIDATION STUDY OF CLOUD SCENE 

SIMULATION MODEL TEMPORAL PERFORMANCE 

D. Glenn Kerr, B.A. 

Captain, USAF 

Approved: 

Michael K. Walters, Lt Col, USAF Date 
Chairman, Advisory Committee 

%Ju% + War W 
Derrill T. GoldizeVMaj, USAF Date 
Member, Advisory Committee 

<T H*/  <tf 
Craig C/Largent, Capt, WSAF Date 
Member, Advisory Committee 

u 



Acknowledgements 

Let me begin by thanking Lieutenant Colonel John R. Lanicci for pushing me in 

the direction that led to this project. I would like to thank my thesis advisor, Lieutenant 

Colonel Michael K. Walters, for his interest in the project. His assistance helped me to 

narrow my focus and work through the difficulties that arose. I would also like to thank 

the other members of my committee, Major Derrill Goldizen, and Captain Craig Largent 

for their valuable input during research, and their help with completing this document. I 

must also thank Master Sergeant Pete Rahe for his work to ensure I always had sufficient 

disk space for the enormous amounts of data produced during the course of this research, 

and Dave Doak, for providing a Silicon Graphics computer to the Weather Lab to run the 

cloud models. 

Further afield, I would like to thank the folks at Phillips Laboratory, Hanscom 

AFB, Massachusetts, for their exceptional assistance and patience during the course of 

this project. Specifically, I thank Joel B. Mozer, who provided the idea for this project. 

His advice and comments during many conversations proved invaluable. Also, my 

thanks go Steve Ayer and Guy Seeley, whose computer expertise was greatly 

appreciated. Finally, thanks go to Tim Hiett for providing the data set used for the 

project, and for his help with accessing and processing the data. 

I would like to thank my wife, Nichole, for her support and encouragement during 

this time. Her prodigious knowledge about word processing software and her editing 

skills were greatly needed and appreciated. I would also like to thank my wonderful 

children: Stephanie, Jon, Seth, Ben, Ian, and Evan. Their support has been critical as I 

have been attending college most of their lives. Let me also thank my Mom and Dad for 

their encouragement and unconditional support for all my efforts. Finally, I must thank 

God for providing me the insight and strength I've needed . 

m 



Table Of Contents 

Acknowledgements Ill 

LIST OF FIGURES VII 

LIST OF TABLES XI 

ABSTRACT XII 

1. INTRODUCTION 1 

1.1 BACKGROUND 1 

1.2 STATEMENT OF THE PROBLEM 3 

1.2.1 Objectives 4 

1.2.2 Scope 4 

1.2.3 Benefit of Solving the Problem 4 

1.3 PROCEDURE 5 

1.3.1 Model Initialization 6 

1.3.2 Simulation Data Production and Processing 6 

1.3.3 Data Analysis and Comparison 7 

1.4 THESIS ORGANIZATION 8 

2. LITERATURE REVIEW 10 

2.1  FRACTALS 10 

2.1.1 Clouds as Fractals in Space 14 

2.1.2 Clouds as Fractals in Time 17 

iv 



2.2 RE-SCALE AND ADD ALGORITHM 19 

2.3 CLOUD SCENE SIMULATION MODEL 26 

2.3.1 Background 26 

2.3.2 Description 27 

2.3.3 Method of Operation 29 

2.3.3.1 Initial Processes 29 

2.3.3.2 Stratiform Cloud Generation 31 

2.4 FAST MAP POSTPROCESSOR 33 

2.5 CLOUD FORCING OF RADIOMETRIC TRACES 37 

3. METHODOLOGY 40 

3.1 PROCESSING OF REAL DATA 40 

3.1.1 Data Description 40 

3.1.2 Processing of Real Data 41 

3.2 MODEL INITIALIZATION 43 

3.3 SIMULATED TIME SERIES PRODUCTION 48 

3.3.1   Ray Tracing Through the Cloud Volume 49 

4. DATA SUMMARY AND ANALYSIS 52 

4.1 TIME-SERIES ANALYSIS 52 

4.2 THE AUTOCORRELATION FUNCTION 54 

4.3 THEVARIOGRAM 55 

4.4 POWER LAW ANALYSIS 56 

4.5 PRESENTATION AND ANALYSIS OF DATA 58 

4.5.1   Study 1 59 

v 



4.5.2 Study 2 63 

4.5.3 Study 3 67 

4.5.4 Study 4 71 

4.5.5 Study 5 75 

4.5.6 Study 6 80 

5.    CONCLUSIONS AND RECOMMENDATIONS 84 

5.1 CONCLUSIONS 84 

5.2 RECOMMENDATIONS FOR IMPROVING FUTURE VALIDATION STUDIES 86 

5.3 SUGGESTIONS FOR FURTHER RESEARCH 87 

APPENDIX A: CONVERSION OF METEOROLOGICAL DATA TO CSSM 

FORMAT A-l 

APPENDIX B: METHOD OF SCALING SIMULATED HELIOMETER 

DATA B-l 

BIBLIOGRAPHY BIB-1 

VITA V-l 

VI 



LIST OF FIGURES 

Figure 2-1. A triangular fractal with dimension, d=\.586 12 

Figure 2-2. A random fractal with dimension, d=1.586 14 

Figure 2-3. Scatter plot showing the variation of fractal dimension versus cloud cover 

(Eis et al. 1997) 18 

Figure 2-4. Effect of varying hurst parameter (H) on fractal field. Increasing values of H 

give increasingly smoother cloud fields (Triantifiolo 1998) 21 

Figure 2-5. Effect of varying lacunarity parameter (r) on fractal field. Smaller values of 

r give smoother cloud fields with less small-scale structure (Triantifiolo 1998) 22 

Figure 2-6. Summation frequencies (k) and their combined effect (Cianciolo and 

Rasmussen 1992) 24 

Figure 2-7. Effect of varying lattice resolution (Lr) on fractal field. The cloud field 

becomes smoother as lattice resolution increases (Triantifiolo 1998) 25 

Figure 3-1. Tpq-11 radar cloud reflectivity time series showing vertical reflectivity over 

the ACT/EOS test site versus time 42 

Figure 4-1. Study 1 observed data: (A) radiance time series (B) histogram (C) 

correlogram (D) power spectrum 60 

Figure 4-2. Study 1 simulation 3 data: (A) radiance time series (B) histogram (C) 

correlogram (D) power spectrum 61 

Figure 4-3. Variogram comparing study 1 variability for a stratus/nimbostratus case. 

The light colored bars are for observed data and the dark bars are for simulation 3 

data. The observed data exhibits a higher degree of small-scale variability than the 

simulation data 61 

Figure 4-4. Study 1 simulation 4 data: (A) radiance time series (B) histogram (C) 

correlogram (D) power spectrum 62 

vn 



Figure 4-5. Variogram comparing study 1 variability for a stratus/nimbostratus case. The 

light colored bars are for observed data and the dark bars are for simulation 4 data. 

The observed data exhibits a higher degree of small-scale variability than the 

simulation data 62 

Figure 4-6. Study 2 observed data: (A) radiance time series (B) histogram (C) 

correlogram (D) power spectrum 64 

Figure 4-7. Study 2 simulation 5 data: (A) radiance time series (B) histogram (C) 

correlogram (D) power spectrum 65 

Figure 4-8. Variogram comparing study 2 variability for a stratus/nimbostratus case. The 

light colored bars are for observed data and the dark bars are for simulation 5 data. 

The observed data exhibits a higher degree of small-scale variability than the 

simulation data 65 

Figure 4-9. Study 2 simulation 7 data: (A) radiance time series (B) histogram (C) 

correlogram (D) power spectrum 66 

Figure 4-10. Variogram comparing study 2 variability for a stratus/nimbostratus case. 

The light colored bars are for observed data and the dark bars are for simulation 7 

data. The observed data exhibits a higher degree of small-scale variability than the 

simulation data 66 

Figure 4-11. Study 3 observed data: (A) radiance time series (B) histogram (C) 

correlogram (D) power spectrum 68 

Figure 4-12. Study 3 simulation 2 data: (A) radiance time series (B) histogram (C) 

correlogram (D) power spectrum 69 

Figure 4-13. Variogram comparing study 3 variability for a stratus case. The light 

colored bars are for observed data and the dark bars are for simulation 2 data. The 

observed data exhibits a higher degree of small-scale variability than the simulation 

data 69 

Figure 4-14. Study 3 simulation 9 data: (A) radiance time series (B) histogram (C) 

correlogram (D) power spectrum 70 

vin 



Figure 4-15. Variogram comparing study 3 variability for a stratus case. The light 

colored bars are for observed data and the dark bars are for simulation 3 data. The 

observed data exhibits a higher degree of small-scale variability than the simulation 

data 70 

Figure 4-16. Study 4 observed data: (A) radiance time series (B) histogram (C) 

correlogram (D) power spectrum 72 

Figure 4-17. Study 4 simulation 8 data: (A) radiance time series (B) histogram (C) 

correlogram (D) power spectrum 73 

Figure 4-18. Variogram comparing study 4 variability for a stratocumulus case. The light 

colored bars are for observed data and the dark bars are for simulation 8 data. The 

observed data exhibits a higher degree of large-scale variability than the simulation 

data 73 

Figure 4-19. Study 4 simulation 9 data: (A) radiance time series (B) histogram (C) 

correlogram (D) power spectrum 74 

Figure 4-20. Variogram comparing study 4 variability for a stratocumulus case. The light 

colored bars are for observed data and the dark bars are for simulation 9 data. The 

observed data exhibits a higher degree of large-scale variability than the simulation 

data 74 

Figure 4-21. Study 5 observed data: (A) radiance time series (B) histogram (C) 

correlogram (D) power spectrum 77 

Figure 4-22. Study 5 simulation 1 data: (A) radiance time series (B) histogram (C) 

correlogram (D) power spectrum 78 

Figure 4-23. Variogram comparing study 5 variability for a stratocumulus case. The light 

colored bars are for observed data and the dark bars are for simulation 1 data. The 

observed data exhibits a higher degree of large-scale variability than the simulation 

data 78 

IX 



Figure 4-24. Study 5 simulation 9 data: (A) radiance time series (B) histogram (C) 

correlogram (D) power spectrum 79 

Figure 4-25. Variogram comparing study 5 variability for a stratocumulus case. The light 

colored bars are for observed data and the dark bars are for simulation 9 data. The 

observed data exhibits a higher degree of large-scale variability than the simulation 

data 79 

Figure 4-26. Study 6 observed data: (A) radiance time series (B) histogram (C) 

correlogram (D) power spectrum 81 

Figure 4-27. Study 6 simulation 1 data: (A) radiance time series (B) histogram (C) 

correlogram (D) power spectrum 82 

Figure 4-28. Variogram comparing study 6 variability for a stratocumulus case. The light 

colored bars are for observed data and the dark bars are for simulation 1 data. The 

observed data exhibits a higher degree of large-scale variability than the simulation 

data 82 

Figure 4-29. Study 6 simulation 5 data: (A) radiance time series (B) histogram (C) 

correlogram (D) power spectrum 83 

Figure 4-30. Variogram comparing study 6 variability for a stratocumulus case. The light 

colored bars are for observed data and the dark bars are for simulation 5 data. The 

observed data exhibits a higher degree of large-scale variability than the simulation 

data 83 



LIST OF TABLES 

Table 2-1. Increase in the number of squares needed to cover a fractal with the 

Hausdorff-Besicovitch dimension ^=1.586 13 

Table 2-2. Cloud types simulated by the CSSM 28 

Table 2-3. Parameters used for droplet size distributions by cloud type (Cianciolo and 

Raffensberger 1996a) 35 

Table 3-1. Example input parameter file 45 

Table 3-2. Example input meteorological parameter file 46 

Table 3-3. Example input cloud condition file 47 

Table 3-4. Seed numbers used to initialize the CSSM 48 

Table 4-1. Cloud layer information for Study 1 59 

Table 4-2. Cloud layer information for Study 2 63 

Table 4-3. Cloud layer information for Study 3 67 

Table 4-4. Cloud layer information for Study 4 71 

Table 4-5. Cloud layer information for Study 5 75 

Table 4-6. Cloud layer information for Study 6 80 

XI 



AFIT/GM/ENP/99M-08 

ABSTRACT 

Cloud Scene Simulation Model (CSSM) temporal performance was validated by 

comparing the cloud forcing signatures on observed radiometric time series with those 

derived from CSSM output for initial conditions similar to that for the observed data. 

Observed radiometric data was collected by a normal incidence pyraheliometer sensitive 

to wavelengths in the range .3um to 3um. Simulation radiometric time series data was 

derived by applying the following process to each case study. CSSM cloud liquid water 

content (CLWC) grids were converted to grids of slant path optical depth values by the 

Fast Map post processor to the CSSM. A ray tracing routine then integrated the slant 

path optical depth values along a path from the position of the sun through each cloud 

volume to a point at its base. The position of the sun was fixed by ephemeris calculations 

for the time and location of the case study. The integrated optical depth values were then 

used with a modified form of Beer's Law to derive radiometric time series values. 

Subjective and statistical comparison of the observed and corresponding 

simulation time series data were then made. The statistical comparison used 

correlograms, variograms and power law analyses to determine whether CSSM cloud 

field evolution with time proceeded in a realistic manner. 

Results indicate that CSSM cloud fields do not evolve in a realistic manner. 

Radiometric traces derived from simulation data lack small scale variations present in the 

observed data, while large scale variations in the simulation data are exaggerated. 

xii 



A VALIDATION STUDY OF CLOUD SCENE SIMULATION MODEL 

TEMPORAL PERFORMANCE 

1.        Introduction 

The role of modeling and simulation has been steadily increasing as budgetary 

constraints have forced the military to seek more efficient and cost effective means to 

accomplish training and development of technology and defense applications. Advances 

in computers and networking technology now make complex models and realistic 

simulations possible. Accurate, high fidelity atmospheric descriptions are required to 

achieve the realism necessary for effective operation of sophisticated applications, such 

as immersive flight simulators, or large-scale distributive interactive environments. The 

Cloud Scene Simulation Model (CSSM) has proven to be a valuable tool in this pursuit 

(Cianciolo and Rasmussen 1992). 

1.1      Background 

Originally developed by the U. S. Air Force Phillips Laboratory and The 

Analytical Sciences Corporation (TASC), Inc. for the Smart Weapons Operability 

Enhancement (SWOE) program, the CSSM was designed to simulate realistic cloud 

fields for use in radiometric sensor evaluation studies. The model supports multi-layer 

cloud generation for all major cloud types consistent with large-scale input weather 

conditions. This user-specified input includes cloud type, fractional sky coverage, mean 

cloud base and maximum cloud top for each layer modeled, as well as atmospheric 
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information such as temperature, moisture and mean wind speed and direction (Cianciolo 

and Rasmussen 1992). 

The current version of the CSSM is based on the older version, but has been 

greatly modified and enhanced to characterize the weather environment for Department 

of Defense (DoD) simulation and training applications (Hembree 1997). The model now 

supports larger scale simulations in both space and time. A precipitation model is 

included, and a wider variety of cloud types can now be modeled, including structured 

clouds such as cloud streets and wave clouds. In addition to input of general 

meteorological conditions, the model can accept gridded observational data, or a 

combination of the two types of input (Cianciolo and Rasmussen 1992). Interface 

utilities have been developed to allow output from the Fifth Generation Mesoscale Model 

(MM5) to be used as gridded input to the CSSM, effectively enabling simulations to 

reflect model forecast weather conditions (Setayesh 1996). 

It is important to realize that the CSSM was not designed to precisely model the 

physical processes within clouds. Such models are extremely expensive, in a 

computational sense, and are unable to generate cloud fields over a large domain at the 

minimum rate necessary to support real time simulation and training applications. 

Instead, the CSSM is an empirical model that uses stochastic methods to generate multi- 

layer cloud water and precipitable water fields. To produce these fields, the model makes 

use of a core fractal algorithm known as the rescale and add (RS A) algorithm (Saupe 

1989). Parameters governing the character of the cloud fields generated by the RSA 

algorithm have been tuned to ensure that the cloud fields generated by the CSSM are 



statistically representative of the weather-state for the input conditions (Cianciolo and 

Rasmussen 1992; Cianciolo and Raffensberger 1996a; Turkington et al. 1998). 

1.2      Statement of the Problem 

The RSA algorithm operates in four dimensions, three spatial and one temporal, 

as will be discussed in more detail in chapter 2. Parameter values used in the RSA 

algorithm were selected by analyzing measurements of cloud liquid water content 

(CLWC) taken by aircraft as they flew transects through different types of clouds. 

Simulated cloud fields were then produced with the CSSM for similar meteorological 

conditions and compared to the real data. The RSA parameters were then adjusted using 

an iterative process, so that the statistical characteristics of CLWC paths through 

simulated clouds matched those of the actual clouds (Cianciolo and Raffensberger 1996a; 

Turkingtion et al. 1998). This approach was effective for tuning the RSA algorithm to 

simulate the three-dimensional, spatial characteristics of various clouds, however it was 

unable to capture the variation of these clouds over time. 

During model development, temporal RSA parameters were selected subjectively 

to yield realistic-looking cloud evolution, that is, growth and dissipation of individual 

elements over short time periods (Cianciolo and Rasmussen 1992). How well does the 

CSSM handle the evolution of cloud elements through time using these subjective 

parameters? Is there an effective method to infer the spatial variation of cloud features 

over time-periods on the order of an hour? If so, then it is reasonable to expect that the 

temporal behavior of the CSSM can be objectively judged. 



1.2.1 Objectives 

The goal of this thesis was to evaluate the temporal performance of the CSSM. 

This involved producing time series data of cloud forcing signatures on radiometric 

signals based on cloud fields generated by the CSSM for given initial meteorological and 

cloud conditions. These were then compared with actual cloud forcing signatures on 

radiometric time series data for those conditions used to initialize the CSSM. The real 

and simulated time series were then objectively compared using time series analysis 

techniques in both the time and frequency domains to estimate the accuracy of model 

performance over time. 

1.2.2 Scope 

This study addresses temporal evolution of stratiform cloud types over time- 

periods on the order of one hour. Sky conditions for the cases comprising the study were 

nearly completely overcast to ensure continuous cloud forcing of the radiometric signal at 

the surface. The CSSM output domain was a cubical grid ten kilometers on a side, with a 

resolution of 100 meters. Its size was determined by the height of the real clouds being 

simulated. 

1.2.3 Benefit of Solving the Problem 

Until now, only the spatial structure of cloud fields generated by the CSSM has 

been verified to be consistent with actual cloud fields under the same general 

meteorological conditions (Cianciolo and Raffensberger 1996a). The internal distribution 

of liquid water content within the simulated cloud fields has been validated, as mentioned 
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previously. In addition, the external macro-structure of these synthetic clouds has been 

optimized to closely match radiometric imagery of real clouds (Turkingtion et al. 1998). 

However, the behavior of the CSSM over time has never been objectively addressed and 

is strongly suspected to be inaccurate (J. B. Mozer 1998, personal communication). 

Validation of the CSSM's temporal performance will objectively determine whether it 

produces cloud fields which vary with time in a realistic manner. This validation will 

also serve as a benchmark for future temporal parameter tuning efforts, which could then 

improve the overall realism of the many simulations of which the CSSM is already a part. 

1.3      Procedure 

The model validation was accomplished by comparing time series radiance 

measurements collected under stratus cloud layers on overcast days with simulated time 

series radiance measurements produced with synthetic cloud layers. Radiance 

measurements were collected by a solar-tracking normal incidence pyraheliometer 

sensitive to radiation from .3|Jm to 3|Jm. Radiometric time series data exhibit variations 

in solar insolation due to clouds evolving as they advect over a heliometer. Since these 

clouds are being advected as they evolve, an analysis of these data includes effects of 

both spatial and temporal evolution. These measurements reflect the structure of the 

cloud field as a reduction in measured radiance at the heliometer for optically thick 

clouds passing between the instrument and the sun. It has been demonstrated that such 

radiometric measurements provide an effective means of investigating the spatial 

structure of a cloud field for broken clouds moving at relatively constant speed (Seeley et 

al. 1997). This thesis uses this method to analyze the evolution of the structure of cloud 



fields as they evolve through time, and then compares this evolution with that for 

simulated cloud fields. A complete description of the processes used in this study is 

given in Chapter 3. The following subsections briefly outline steps taken to conduct the 

study. 

1.3.1 Model Initialization 

Six case studies were selected from data collected on 11 and 12 July 1995, at 

Hanscom AFB, Massachusetts during the Air Combat Targeting/Electro-Optical 

Simulation (ACT/EOS) validation experiments. Each case study featured broken to 

overcast sky conditions containing stratiform cloud types, and was between 35 and 60 

minutes in length. Radiometrie time series observed at the test site for each case study 

were extracted from the ACT/EOS data set for comparison with simulation time series 

derived from CSSM output. Meteorological conditions observed at the test site during 

the times of each study were used to initialize the CSSM, and ten simulations were run 

for each case study using different random seed numbers as input to initialize the fractal 

field generation algorithm 

1.3.2 Simulation Data Production and Processing 

Once the CSSM has produced simulated cloud field time series for each study, the 

Fast Map postprocessor, described in section 2.4, then generates gridded volumes of slant 

path optical depth values corresponding to each CSSM cloud volume. Each volume 

represented the simulation domain at a particular minute of the time series. 

A ray tracing routine was then used for each of these volumes to integrate slant 



path optical depth values at each grid point along a path through simulation domain 

connecting a virtual pyraheliometer and the sun. Ephemeris calculations fixed the 

position of the sun for the time of each study and the location of the test site. This 

position was updated every minute to correspond to each output file in the time series, 

allowing the sun's trek through the sky with time to be faithfully simulated. Output from 

the ray tracing routine consisted of a time series of slant path optical depth values 

representing the changing optical depth of a simulated cloud field as it evolved with time. 

Finally, the time series of optical depth values were used to create a simulated 

radiometric time series. A modified form of Beer's Law used the slant path optical depth 

values to derive radiance quantities for comparison with the observed data. Development 

of the modified Beer's Law equation is detailed in Appendix B. Use of this formula 

facilitated proper scaling of the simulated radiance values to the dynamic range of the 

observed data while preserving the temporal structure of the simulated time series, which 

was the focus of the study. 

1.3.3   Data Analysis and Comparison 

Once produced, the simulation radiometric data sets were analyzed and compared 

to the corresponding observed data. The first step in this process was to compare the 

radiometric traces in a qualitative manner to ensure that both simulation and observed 

time series exhibited the same characteristic features. These features include the 

amplitude and frequency of variations in the signal. Histograms of radiance values were 

also produced and compared qualitatively to determine whether the simulation data 

distributions were similar to that for the observed data in each case. 



More objective statistical methods were also employed. Autocorrelation 

coefficients were calculated for each time series step and correlograms were produced. 

The first zero-crossing of the autocorrelation coefficients was determined to infer a 

characteristic correlation time scale for each data set, which could then be compared to 

the observed data. Variograms were also produced for each case. These allowed the 

differing degrees of small scale variability to be graphically compared. 

Finally, power law analyses were accomplished for each series. These analyses 

sought to characterize the variability in each time series according to the slope of a least 

squares linear fit to a logarithmic plot of frequency versus power for each radiometric 

trace. A comparison of the slopes of these fit lines suggested whether small and large 

scale variations in the radiometric signal were similar or not. 

1.4      Thesis Organization 

Chapter 2 presents a synopsis of information found in the literature which 

contributes to the understanding of the problem. The term fractal is defined, and its 

application to the description of cloud fields in both space and time are discussed. The 

RSA model, CSSM, and Fast Map post-processor will be briefly described. 

Chapter 3 describes the methodology used to evaluate CSSM performance. 

Processing of both real and simulation data will be outlined. A brief discussion of the 

radiative transfer theory used to produce the time series data will be given. 

Chapter 4 discusses the statistical methods used to analyze and compare the time 

series data. Here, the results of the study will be summarized. 
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Finally, chapter 5 presents conclusions drawn from the data analysis. 

Recommendations for future research will also be given. 



2.        Literature Review 

This chapter provides a survey of information found in the literature, which 

provides a background for understanding this work. It is useful to begin by defining the 

term fractal, since the cloud fields generated by this model are, essentially, fractals. 

Next, works are presented which justify the description of cloud characteristics as fractals 

in space and time. Following this, the re-scale and add (RSA) fractal-generating 

algorithm, which is central to the Cloud Scene Simulation Models (CSSM's) operation, is 

described. Then the CSSM is described in detail, as well as the Fast Map post processor. 

Finally, a previous study of cloud forcing on radiometric signatures is discussed. 

2.1      Fractals 

Fractals are shapes, which have structure at all scales, with no characteristic 

length (Mandelbrot 1983). In order to provide a clearer understanding of exactly what a 

fractal is, a discussion of how the concept of the fractal arose, and an illustration of how 

one may construct a fractal is offered. 

Objects can be described by Euclidean geometry as having an integral number of 

dimensions. A line has one dimension, length; a square has two dimensions, length and 

height; and a cube adds the third dimension, depth. With these three dimensions, many 

shapes, which are essentially sets of related points in space, can be classified and studied. 

There are many sets of related points, shapes, which cannot be effectively described by 

Euclidean geometry. Examples include the shape of coastlines, trees, and clouds. In 

order to characterize and study these various shapes, dimensionality was redefined in 
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such a way that objects which could be described by Euclidean geometry retained their 

traditional dimension values. A line still had only one dimension, a square had two 

dimensions, and a cube had three. However, the other shapes could also be assigned 

dimensional values. The shapes in this latter class turned out to have fractional values of 

dimension. Benoit Mandelbrot coined the term fractals for such shapes (Mandelbrot 

1983). 

The fractal dimension of a set of points can be defined in various ways. These 

definitions sometimes result in different fractal dimensional values, so it is important to 

know how the dimension has been defined. One method, based on the widely used 

Hausdorff-Besicovitch dimension, is that of capacity (Lorenz 1996). This definition can 

be illustrated by considering a set of points in a plane which are bounded by a square. 

The square can be divided into four smaller squares, each one quarter of the original in 

size. Each of these squares can be divided into four pieces and each piece into four 

pieces. For a set of points covering the entire square, the number of squares used to 

cover the set of points increase by a factor of four for each division of the original square. 

For a line, the number of squares would eventually double at each step; and for a point, 

9        1 
the number of squares would not grow. Thus, the number of squares increases as 2 , 2 

and 2° for each case, respectively. By successively noting the number of squares required 

to cover the set of points at each step, a dimension d can be defined according to 2n  =n. 

Here n is the factor by which the number of squares needed to cover the set of points 

increases at each step. 

In order to construct a fractal, define a set of points for which the number of 

squares needed to cover the set of points increases by 2n*d for each step n, where d is not 
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an integer value. This can be accomplished, for example, by considering a set of points 

covering the entire square. Now divide this set into four equal squares and eliminate the 

points in the upper right quadrant. Doing this repeatedly an arbitrary number of times 

gives a shape as seen in Figure 2-1. 
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Figure 2-1. A triangular fractal with dimension, d=\.586. 

Using a numerical bisection technique, it can be determined that the number of 

squares required to cover this set of points at each step increases by a factor of three 

(Burden and Faires, 1997). This gives 2n*d=3, or J=1.586, as shown in Table 2-1. Thus, 

a shape with fractional dimension, a. fractal, has been created. 
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Table 2-1. Increase in the number of squares needed to cover a fractal with the 
Hausdorff-Besicovitch dimension J=1.586. 

Step                              Function                  Number of Squares 
n f(n)=2n*d  
1 f(l)=21*1.586 3 
2 f(2)=22* 1.586 9 
3 f(3)=23*1.586 27 
4 f(4)=24* 1.586 81 
5 f(5)=25* 1.586 243  

Notice the self-similarity of the features in Figure 2-1, as we observe increasingly 

smaller detail. This trait is commonly observed with fractals. Here, it is obvious because 

of the way the shape was defined. If we were to define the shape differently, by 

eliminating a random square at each step for instance, we would obtain a fractal with the 

same dimension. However, its appearance would be dramatically different as seen in 

Figure 2-2. Here the self-similarity is not as visually evident, but it does still exist in a 

statistical sense. It is this type of statistical self-similarity that is exhibit by clouds 

(Lorenz 1996). 
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Figure 2-2. A random fractal with dimension, d=l.5S6. 

2.1.1   Clouds as Fractals in Space 

Often, to reduce the complexity of meteorological problems, clouds are modeled 

as lattices of disks, or collections of small cubes. In reality, clouds and cloud fields are 

observed to be irregular in shape and distribution at all scales. Consider a large cloud. It 

consists of bulges and lumps, which have smaller bulges and lumps on them. In fact, 

given an image containing only a cloud, it is difficult to determine the size of the image, 

without a point of reference for comparison. An essential feature of fractals is that they 

look the same at all scales. This characteristic leads to the effective description of clouds 

as fractal sets of points in space. The concept of the scaling fractal is a useful tool in this 

pursuit (Cahalen and Joseph 1989; Feder 1988). 

14 



The area - perimeter relationship is a common way to study fractals. It has been 

used to analyze the geometric structure of clouds in the horizontal plane (Lovejoy 1982). 

Infrared satellite images of optically thick clouds in the Indian Ocean, as well as digitized 

radar images of tropical rain areas were observed by Lovejoy to be related by: 

P = C-C4. (2-1) 

Here, C is a proportionality constant used to account for the resolution difference 

between satellite and radar data, and D is the fractal dimension. This relation was 

observed to hold for horizontal length scales between 1 and 1000 kilometers, with a 

fractal dimension, D      1.35, indicating that clouds are statistically self similar in the 

horizontal plane. This implies that processes involving clouds have no horizontal length 

scale over this range (Lovejoy 1982). 

It is clear that this horizontal self-similarity must break down as one investigates 

smaller scales, since the microscopic structure of clouds begins to be dominated by 

viscous and molecular effects instead of the thermodynamic forcing noted at the 

macroscopic level. A study of the perimeter- area relation of severe convective clouds in 

midlatitudes revealed that such a break does exist. Radar returns of intense storm clouds 

containing hail were observed as they developed and consequently grew in size. At a 

diametric length scale below three kilometers, a linear fit to the observations, given by 

Equation (2-1 P = C-!fÄm     (2-1), called forD      1.0. This indicates smooth, or 

nonfractal behavior. For scales above this point, the study found D      1.36, in close 

agreement with Lovejoy's result (Rys and Waldvogel, 1986). Do all cloud types, then, 

have a common horizontal fractal dimension above a certain scale length? 
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A study of more than 400,000 cloud base areas indicated that this is not the case. 

This study was conducted for fair weather cumulus, statocumulus and convective clouds 

in the intertropical convergence zone, a region where easterly and westerly trade winds 

converge, which is often marked by large thunderstorms. High resolution cloud scenes 

(57 to 120 meters) were analyzed from Landsat-3, 4, and 5 data over the Atlantic and 

Pacific Oceans, as well as the Gulf of Mexico and Mediterranean Sea (Cahalen and 

Joseph 1989). Cloud reflectivity thresholds for base and top were determined for each 

scene and applied to each pixel, producing binary, cloud - no cloud images. The 

perimeter - area relation was determined using a box counting technique for contiguous 

areas of pixels containing clouds. This technique was applied by cloud type for cloud 

bases and tops separately. Findings show that the fractal dimension does, in fact, vary by 

cloud type, with fair weather cumulus clouds exhibiting a clear scale break in fractal 

dimension at 0.5 kilometers in diameter. In addition, the perimeter fractal dimension was 

observed to rise with increasing threshold, or height of the cloud. This was attributed to 

increased turbulence with height, and culminated with a break in scale as the area 

decreased approaching the cloud top. 

This change in fractal dimension with height is to be expected since the 

atmosphere is horizontally stratified, to a great extent, with pressure and density 

decreasing by a factor of e1 over a scale height of approximately seven kilometers 

(Wallace and Hobbs, 1977). For this reason, clouds can be considered self-affine fractals 

in three-dimensional space. A self-affine fractal scales differently by dimension, that is, 

horizontal and vertical fractal dimensions differ. (Lovejoy and Schertzer, 1985). 
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While a complete characterization for all clouds calls for a spectrum of fractal 

dimensions, one should conclude that clouds can be described as fractals in space. Thus, 

clouds can be considered multifractal entities described by a range of fractal measures 

(Feder 1988). 

2.1.2   Clouds as Fractals in Time 

The concept of fractal dimension has been effectively used to describe the 

variations of quantities as records in time. It is important to realize that, since spatial and 

temporal measures differ fundamentally, the extension to four-dimensional space must be 

described by self-affine fractals (Feder 1988). 

Different cloud types exhibit different temporal and spatial characteristics by 

type. Evolution of cumuliform clouds and their spatial distributions through time is quite 

different than that of stratiform clouds. This would lead one to expect the 

characterization of cloud evolution to be multifractal in nature. 

An analysis was performed for 1,600 hourly data domains from the climatological 

and historical analysis of clouds for environmental simulations (CHANCES) database 

covering a large portion of the Northern Hemisphere, from the Equator to 30 degrees 

North latitude (Eis et al. 1997). This study showed variations in spatial fractal dimension 

over the domain consistent with the multifractal nature of clouds already established. It 

also indicated variation of fractal dimension with percentage of mean cloud cover for 

varying cloud field distributions. A scatter plot of the data, shown in Figure 2-3, bounds 

the relationship between cloud cover and fractal dimension. A plot of the fractal 
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dimension versus time shows significant variation, 0.75 <D< 1.9, over a 500-hour 

period. 
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Figure 2-3.  Scatter Plot Showing the Variation of Fractal Dimension 
versus Cloud Cover (Eis et al. 1997). 

The development of a cloud, or a field of clouds, in time is obviously dependent 

on initial conditions. For it to change shape in time, yet still display a fractal structure in 

four-dimensional space, there must be some interplay between the time and space scales 

(Hentschel and Procaccia 1984). This would call for a spectrum of fractal dimensions, 

again emphasizing that clouds must be modeled as multifractals in space and time. 

While average fractal dimensions cannot be used over large temporal or spatial 

regions, there is evidence that a functional relationship exists between mean cloud cover 

and fractal dimension for limited times and areas (Eis et al. 1997). 
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2.2      Re-scale and Add Algorithm 

The RSA algorithm is a computationally efficient method for producing random 

fractals in multiple dimensions (Saupe 1989). It is the core algorithm in the CSSM used 

to model spatial and temporal characteristics of simulated cloud fields. This algorithm 

also helps to determine the variability of simulation cloud liquid water content (CLWC) 

distributions and random convective heating, which drives cumulus cell development in 

the model. The next section describes use of the RSA algorithm in the CSSM in more 

detail. Here, we will discuss the algorithm, its features, and its implementation in the 

CSSM. 

The re-scale and add method produces fractal sets by approximating fractional 

Brownian motion in one or more dimensions (Feder 1988). This involves constructing a 

multidimensional lattice of Gaussian random numbers having zero mean and the same 

variance for all points. These random numbers represent individual frequencies, which 

will be used to construct the fractal field. The lattice is then sampled according to the 

RSA formula, and the terms are summed to produce a value at each point on the output 

grid, V(x), which represents the working domain of the cloud field simulation. The RSA 

formula, as implemented in the CSSM, is given by: 

K(x) = £-pSSll[f(r
kJÖ] (2-2) 

K — KQ 

where, n gives the number of topological, or Euclidean, dimensions being modeled; kO 

and kl denote the summation limits for the sampled random terms; H is the Hurst 

parameter; r is the lacunarity parameter: and Sn[f(rkx')] provides a smooth interpolation 
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from the random lattice to the output grid position. The RS A formula represents a 

random function, which has output with a fractal dimension given by: 

D = n+\-H (2-3) 

The characteristics of the resultant fractal can be determined by adjusting any of 

five parameters: the Hurst parameter, the lacunarity parameter, the upper and lower 

summation limits, and the lattice resolution. The first four parameters are explicitly 

represented in the RSA equation, while the final parameter, lattice resolution, is a relation 

between the random lattice and the output grid. A brief description of each parameter's 

effect on the output field follows. 

The Hurst parameter, H, controls the amplitude of each term being sampled from 

the random lattice, where each term can be thought of as a frequency. Lower frequencies 

control the large-scale structure of the fractal surface, while higher frequencies provide 

textural information. Larger values of H cause the amplitude of these frequency terms to 

decrease more quickly as the summation index increases, causing lower frequency terms 

to have more influence on the output, while smaller values increase the influence of 

higher frequency terms. The result, as illustrated in Figure 2-4, is a smoother image with 

increasing values of H. 
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H=1.5 H=3 

H=6 H=7.5 

Figure 2-4. Effect of Varying Hurst Parameter (H) on Fractal Field.  Increasing 
values of//give increasingly smoother cloud fields (Triantifiolo 
1998). 

The lacunarity parameter, r, appears in two places in the RSA formula. First, it is 

used to control amplitude, along with the Hurst parameter, in the term l/rm. Its effect is 

similar to, but more subtle, than that of the exponential Hurst parameter. Second, it is 

used to determine the location to interpolate from the random lattice, with larger values 

of r giving a larger distance between lattice points, and greater textural variability, and 

smaller values of r giving less variability. The effects of the lacunarity parameter are 

bound with those of the lattice resolution, summation limits, and Hurst parameter in such 
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a way that it is difficult to isolate. In general, small values of r give smoother fractal 

fields with less small-scale structure, while larger values of r give rougher fields with 

more detailed small-scale structure, as illustrated in Figure 2-5. It is important to note 

that although changes in r may make changes in the overall character of the output fractal 

field they do not change its fractal dimension. 

r=l r=3 

r=6 

Figure 2-5. Effect of Varying Lacunarity Parameter (r) on Fractal Field. Smaller 
values of r give smoother cloud fields with less small-scale structure 
(Triantifiolo 1998). 
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The summation limits in the RSA formula are used to specify the range of spatial 

dimensions to be represented in the fractal field, with the lower limit giving the largest 

scale, and the upper limit giving the smallest. A lower summation limit of zero 

represents frequency terms on the order of the resolution parameter in size that is, having 

the same resolution as the terms which make up the random lattice, while the upper limit 

can be chosen to represent frequency terms of the smallest resolution desired. Figure 2-6 

shows images for each of five frequency terms, and an image produced by summing 

those frequencies (Cianciolo and Rasmussen 1992). 
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Figure 2-6. Summation Frequencies (K) and Their Combined Effect (Cianciolo 
and Rasmussen 1992). 
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The final parameter, lattice resolution, provides the relationship between the 

random lattice and the output grid for the fractal field. It controls the spatial distribution 

of fractal field values by determining the number of output grid points for each point in 

the random lattice. As resolution increases, the number of output grid points per lattice 

point increases. Consequently, the field becomes smoother for increasing lattice 

resolution values, as illustrated in Figure 2-7 (Cianciolo and Rasmussen 1992). 

Lr=4 

Lr=9 

Lr=6 

Lr=12 

Figure 2-7. Effect of Varying Lattice Resolution (Lr) on Fractal Field.  The 
cloud field becomes smoother as lattice resolution increases 
(Triantifiolo 1998).. 
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Unlike many random fractal generation techniques, RS A is a pointwise 

calculation that can be applied to variable-resolution grids. Since no explicit reference to 

other points is required, the order of computation of fractal points is unimportant. This 

allows implementation on computer systems with parallel processors, and a significant 

increase in speed for fractal field generation (Saupe 1989). 

2.3      Cloud Scene Simulation Model 

This section provides background information about the development of the 

CSSM. A detailed description of the CSSM will be given, and its method of operation 

will be discussed. 

2.3.1   Background 

The CSSM was originally produced to provide multiple high resolution spatial 

and temporal distributions of CLWC consistent with coarse user input conditions. These 

cloud fields were then used in radiometric sensor simulations and sensitivity studies in 

support of the Smart Weapons Operabiliry Enhancement (SWOE) program. Variable- 

size domains were supported with the capability to incorporate terrain data. Applications 

using the CSSM were largely limited to stand alone simulations involving scene 

visualization and sensor evaluation over a small spatial domain for relatively short time 

periods, 5 to 15 minutes in length (Cianciolo and Rasmussen 1992). 

Advanced simulations being developed by the Department of Defense (DoD) 

modeling community call for high-resolution characterization of the atmosphere in order 

to increase the realism and accuracy of the simulation environment. These simulations 
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operate over large-scale domains, often in distributed interactive environments involving 

numerous simulation models interacting to create a simulated environment for training 

and testing purposes. The CSSM was enhanced to support such applications requiring 

interoperability and real time operation. Additionally, the model was modified to accept 

gridded input meteorological conditions to facilitate coupling with numerical weather 

models. Adjustment and validation of the spatial parameters was performed by statistical 

comparison of model output with observational data. Originally, these parameters were 

estimated based on literature reviews and visual comparison of simulated cloud fields 

with observed cloud fields (Cianciolo and Raffensberger 1996a). 

2.3.2   Description 

The CSSM is comprised of 26 programs that work together to produce high- 

resolution cloud scenes in four dimensions, which are consistent with coarse input 

meteorological conditions. This is accomplished by using the RSA fractal algorithm, 

discussed previously, to generate stochastic cloud fields consistent with the input weather 

conditions. A seed number is specified to initialize the fractal lattice used by the RSA 

algorithm. By varying the input seed number it is possible to produce a variety of cloud 

fields consistent with input conditions for use in Monte Carlo studies. 

The CSSM contains both a cloud water model and precipitation model. Output 

from the cloud model consists of three-dimensional grids of cloud liquid water density 

values, in gm m"3, for each time step of the simulation. The precipitation model produces 

simulated rain rate values, in mm hr"1, for nimbostratus, cirrus uncinus, and precipitating 

cumulus cloud types only. 
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The CSSM can simulate 13 specific cloud types including cirriform, stratiform, 

and cumuliform varieties. Two structured cloud types are also supported, stratocumulus 

cloud streets, and stratiform orographically driven wave clouds. The model can simulate 

multiple cloud types concurrently for as many as 12 layers. Table 2-2 lists all cloud types 

that can be simulated by the CSSM 

Table 2-2.  Cloud Types Simulated by the CSSM. 

Cloud Type Abbreviation Remarks 
Cirrus ci 

Cirrocumulus cc 
Cirrostratus cs 

Cirrus Uncinus en Uses precipitation model 
Stratus St 

Altostratus as 
Nimbostratus ns Uses precipitation model 
Stratocumulus sc 
Altocumulus ac 

Cumulus cu Uses convective model 
Precipitating Cumulus cp Uses precipitation and convective models 

Stratocumulus Cloud Streets scs 
Stratus Wave Clouds stw 

The model typically operates at resolutions from 10 to 100 meters within a user- 

defined domain. For evolution of the three-dimensional cloud fields in time, the model 

uses input weather conditions bounding the simulation start and end times. Often, high 

temporal resolution on the order of one minute is required, and input weather data from 

forecast model output, or an archived database is available at intervals on the order of one 

hour. In these cases, the model interpolates coarse weather conditions for intermediate 

time periods, accomplishing temporal evolution, that is, growth and dissipation of cloud 

elements, using the RSA fractal algorithm operating in the time dimension (Cianciolo and 

Raffensberger 1996a, b). 
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2.3.3   Method of Operation 

This section will detail the processes used by the CSSM to generate synthetic 

cloud fields from user-input general conditions. Discussion will proceed in approximate 

chronological order, as performed by the CSSM, and will cover initial processes common 

to all cloud types. Following this, processes which are unique to creation of the 

stratiform cloud types used for the study will be discussed. 

2.3.3.1 Initial Processes 

The model begins by processing input supplied by the user. This data consists of 

four types: input parameters, meteorological data, cloud data, and terrain data. The latter 

three types can be specified as horizontally homogeneous across the simulation domain, 

or as gridded inputs varying across the domain. Section 3.2 discusses input data format 

in greater detail and provides examples used in this study. 

Once input data has been ingested, the model then interpolates the meteorological 

and cloud data in time according to the bounding conditions. This interpolation is 

governed by the TUPDATE parameter, which is set to 5 minutes in the current version of 

the model. This parameter specifies the time interval between interpolation points. If 

only initial conditions are provided then they are considered uniform over the course of 

the simulation and interpolation is not performed. 

Wind data, in u and v component form, is first interpolated to determine advection 

distances for large-scale cloud structures, which are assumed to move with the average 

wind field. The advection distance is the distance over which these structures move 
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between interpolation points. This interpolation ensures that meteorological conditions 

vary smoothly through time for lengthy simulations employing input conditions which 

vary in time. 

The CSSM next generates an advection value history for actors joining large-scale 

simulations after the initial start time. This step is not necessary, however, for stand- 

alone simulation applications. Using the advection information determined previously, 

the internal working domain for the model is defined. This domain is larger than the 

user-specified output domain to account for advection into the output domain during the 

course of the simulation. The working domain is also increased to ensure continuity 

across output domains for multiple actors interacting in large-scale simulations using 

gridded input conditions. In these cases, the working domain is increased in size by at 

least one half grid box, as determined by the coarse input data, so values interpolated at 

the output domain boundary can be computed similarly. 

If gridded input conditions are specified, they are interpolated to the finer output 

grid resolution. This is accomplished by means of a bilinear interpolation scheme, and 

the resultant high-resolution data fields are used to generate the cloud fields. 

Next, a horizontal fractal field is generated using the RSA algorithm discussed in 

section 2.2. A four-dimensional lattice of random numbers is generated using an input 

seed number. This lattice contains 40x40x10x10 values for dimensions x ,y, z, and t in 

the current version of the model. The RSA formula is evaluated for each grid location to 

generate a two-dimensional fractal field. This field is constructed at each user-specified 

cloud base level, with new distributions being generated at a rate determined by 

30 



TUPDATE, which is 300 seconds in the current version of the model. Variability of the 

fractal field is determined according to the RSA parameters discussed previously, which 

have been tuned according to cloud type. These field values are then used to form a 

horizontal distribution of cloud elements for each user-specified cloud base layer in the 

working domain. This is accomplished by creating a histogram of field values, which are 

then used to determine a threshold value for each grid location to produce the amount of 

cloud coverage consistent with user input. The general cloud form desired determines the 

processes used by the CSSM after this point (Cianciolo and Raffensberger 1996a). 

2.3.3.2 Stratiform Cloud Generation 

The stratiform cloud model is used to generate cloud fields for all cloud types 

according to their RSA parameters, except cumulus and precipitating cumulus clouds. 

While the cirriform cloud types do make use of a cirriform cloud model, it is identical to 

the stratiform model initially, but does contain additional features to produce cirriform 

clouds. The steps followed by the stratiform model are to build cloud bases and tops for 

the horizontal fractal distribution of cloud elements already computed. The model then 

generates internal water content values for each cloud-filled grid point in the working 

domain. 

The user-specified cloud base heights are adjusted to exhibit the irregular 

bumpiness observed in real clouds. The RSA algorithm is used to generate a stochastic 

perturbation field for each cloud-filled grid location according to parameters that have 

been tuned for each cloud type. The perturbation used to vary the cloud base height for 

each grid point is given by: 
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base 
rsa • base _ percent ■ (top - base) 

perturbation 
(2-4) 

Where rsa is the value computed using the RSA algorithm; base_percent is a 

parameter which determines the overall amount of cloud base variation; top and base 

heights are those specified by the user in the cloud data file. These perturbation values 

are added to the nominal base height at each grid point to obtain the simulated cloud 

base. 

The cloud top is now constructed using the fractal field values calculated to 

determine the horizontal cloud distribution with the height of the cloud top being a 

function of horizontal field value. This is determined by: 

top' = base + (top - base) 
rsa - threshold 

1 - threshold 

1.5 

(2-5) 

Where top and base are those specified by the user in the cloud data file; rsa is the 

fractal field value computed for the horizontal cloud distribution by the RSA algorithm; 

threshold is the cloud-no cloud threshold level computed for the grid location. The 

exponent, 1.5, was determined by analysis of real clouds. 

Once cloud base and top have been computed, the water content for each cloud- 

filled grid point must be calculated. This is given by the sum of the average water 

content computed for a particular grid location plus a perturbation value based on RSA 

formula values tuned according to cloud type. 

The average water content at a grid point is a function of cloud type, cloud 

temperature and vertical position within the cloud. A lookup table based on the Feddes 
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synoptic scale model for condensed atmospheric moisture provides values for maximum 

condensed moisture according to cloud type and temperature (Feddes 1974). The 

average water content is then calculated as a fraction of this maximum value based on the 

height of the grid point above the cloud base. 

Perturbations are then added to the average water content derived from maximum 

values given by the Feddes model to produce the small-scale variations in CLWC 

observed in real clouds. The RSA algorithm is employed once more to produce a field of 

perturbation values corresponding to each cloud-filled grid point. Parameters are selected 

to produce simulated clouds consistent with observed ones. Perturbation quantities are 

produced by scaling these RSA field values by the ratio of the standard deviations of the 

RSA field values to the standard deviation of the water content for the particular cloud 

type. Standard deviation values for internal liquid water content were determined 

empirically by analysis of observed cloud water data, where available. These values 

were estimated for cloud types where no data were available for analysis. 

Once perturbed water content values have been calculated for all cloud-filled grid 

points, all grid points with values of CLWC less than two standard deviations below the 

average for the cloud are set to zero. This introduces small cloud-free spaces inside the 

simulated cloud field, similar to that observed for real clouds (Cianciolo and 

Raffensberger 1996a). 

2.4      Fast Map Postprocessor 

The Fast Map postprocessor to the CSSM was developed to generate optical, 

radiative and graphical quantities needed to render realistic three-dimensional cloud 
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images from CSSM output files (Cianciolo and Raffensberger 1996a; Raffensberger et al. 

1996). Note that the Fast Map processor itself does not generate or render graphical 

images. Instead, if uses a series of analytic process to provide physically based values to 

a graphical scene-rendering engine. This enables scenes to be generated quickly enough 

to support high-speed real-time interactive simulations, which must produce 

approximately 13 images per second to maintain a convincing real-time environment. 

The Fast Map processor was used to produce volumetric grids of optical quantities 

corresponding to CSSM CLWC files, which were then used to derive the radiometric 

time series used for the CSSM validation study. This section provides operational details 

about how the Fast Map processor generates these grids, and briefly describes the 

approach used to obtain graphical quantities. 

The mapping of CLWC to optical properties begins by first developing spatially 

varying particle size distributions for each grid location inside the cloud. Using this 

particle size distribution information, optical properties are calculated. This includes 

extinction optical depth and single scattering albedo for both visible (.55|jm) and near 

infrared (11 |Jm) wavelengths. Next, tables mapping the optical values to radiative 

properties are constructed. These are based on radiative transfer model calculations and 

parameterizations derived from observational research. Finally, a wavelength-dependent 

mapping is made between radiative properties and graphical quantities used to render 

visual images of the CSSM clouds. The construction of a database of two-dimensional 

tables relating cloud water content to cloud type, particle size, optical properties, 

radiative properties and graphical quantities is key to the Fast Map postprocessor's speed. 

While the Fast Map processing approach is similar for all cloud types supported, 
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implementation varies by cloud type due the various parameterizations required. Steps in 

the Fast Map process leading to the production of the optical properties used in the study 

will now be described in more detail. 

In order to readily develop the spatially varying droplet size distribution for each 

CSSM grid location, the distribution is discretized into narrow radius bins. A modified 

gamma distribution is assumed to describe the number density for all cloud types 

according to particle size. Thus, the number density at grid point i, j, k over a radius size 

range n to n+i is given by: 

^(/.M^'jWr (2"6) 
n 

Where the modified gamma distribution is: 

n(r) = arae'br (2-7) 

The parameters a, a, and b vary by cloud type according to those developed for 

use in the LOWTRAN and FASCODE two-stream radiative transfer models, as given in 

Table 2-3. 

Table 2-3. Parameters used for droplet size distributions by cloud type 
(Cianciolo and Raffensberger 1996a). 

Cloud Type a b a 

Cumulus 3.000 0.500 2.604 
Stratus 2.000 0.600 27.000 

Stratocumulus 2.000 0.750 52.734 
Altostratus 5.000 1.111 6.268 

Nimbostratus 2.000 0.425 7.676 
Cirrus 6.000 1.500 0.011865 
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Spatial variation of the particle size distribution must be introduced to accurately 

model a cloud's physical, optical and radiative properties. The Fast Map processor 

assumes a linear variation of number density from cloud base to cloud top, and adjusts 

the modified gamma distribution accordingly. Variation with horizontal location is not 

addressed, and so, number density is considered horizontally uniform. While these 

simplifications are not completely physically accurate, they are considered a reasonable 

first-order approach for this first-generation version of the Fast Map processor. 

Particle size information for each cloud type is given by statistical averages 

derived from real cloud observations. The number density in each particle size bin is 

then derived from the local liquid water content at each grid location and the average 

liquid water content for the particular cloud type. Once the local number density has 

been calculated for each grid point, this information is summarized in two-dimensional 

tabular format. Since the distribution is known, only the maximum and minimum values 

are stored for each size bin. This greatly reduces the amount of memory required for 

each cloud field and increases speed. 

At this point, the cloud microphysical properties have been specified. Now the 

optical properties, particularly extinction optical depth and single scattering albedo, are 

determined. This is accomplished using a data set of lookup tables containing values for 

the extinction and scattering coefficients. These values were precomputed for 

wavelengths between 0.25 pm and 14|Jm over a fixed set of size bins falling within the 

modified gamma distribution. Output quantities from the Fast Map postprocessor are 

given for visible wavelengths, centered on .55|jm, and for infrared wavelengths, centered 
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on 11 (Jm. Recall that the observational data used for this study was collected by a 

normal incidence pyraheliometer sensitive to radiation in the interval 0.3 |Jm and 3|jm. 

The extinction optical depth gives the attenuation of radiance along a path due to 

absorption and scattering. This value is obtained by multiplying the extinction 

coefficient by the path length through the particular grid location for each size bin, i, 

according to: 

Öi=&Li-&extinctioni (2"8) 

Since this value scales linearly with droplet number density, only the minimum 

and maximum values of optical depth are retained for each size bin. Extinction optical 

depth can then be calculated by linear interpolation between these values for each grid 

location (Cianciolo and Raffensberger 1996a). 

Grids of extinction optical depth values provided by the Fast Map postprocessor 

were used to facilitate radiative transfer calculations needed to derive radiometric time 

series data from the cloud scene model output. Chapter 3 will describe this process in 

detail. 

2.5      Cloud Forcing of Radiometric Traces 

The signature of cloud forcing on radiometric time series traces can be used to 

infer information about cloud field spatial structure and its evolution through time. This 

thesis applies this method to time series produced by the CSSM as a means of evaluating 

its temporal performance 
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A proof of concept study established the validity of this approach to analyze the 

spatial structure of cloud fields passing between a ground-based pyranometer and the sun 

(Seeley et al. 1997). Optically thick clouds in a field of broken sky coverage, and 

advecting in the direction of the mean wind at cloud level caused variable attenuation of 

the signal observed at the pyranometer. For relatively constant wind speed, variation of 

the solar cosine signal observed for clear-sky situations reflects spatial structure of the 

cloud field over the pyranometer as the field advects and evolves with time. 

Spectral analysis of the pyranometer data was used to characterize the spatial 

structure of the cloud field. Analyses of a wide variety of cloud data, from satellite 

imagery to in-situ measurements, has revealed a decay of the spatial fluctuations in 

Fourier space according to the power law: 

E{k) oc kp (2-9) 

over a spectrum of length scales from 0.5 to 20km. These studies have determined ßio 

be in the range -\A<ß<-2.Q, and provides a benchmark for the study. Examination of 

several pyranometer time series extracted from the experimental data set revealed a 

similar power law decay, with the spectral exponent in the range -\A<ß<-2A. 

Also included in the data set was radar data for the sky over the pyranometer. 

The radar data consisted of reflectivity values capable of revealing vertical cloud 

structure up to 60,000 feet. Integration of these reflectivity values provided another 

measure of the spatial and temporal variation of the cloud fields. Spectral analysis of this 

data also reveals a power law dependency having spectral exponent values consistent 

with the pyranometer data (Seeley et al. 1997). 
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Results of Seeley's work indicated that analysis of radiometric time-series 

signatures is a valid approach for studying cloud field spatial structure for broken cloud 

cover and steady wind. 
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3.        Methodology 

In this chapter, the techniques employed to accomplish this temporal study of the 

Cloud Scene Simulation Model (CSSM) will be described. This includes processing of 

real data, model initiation and production of simulated time series. 

3.1      Processing of Real Data 

Data for this study were provided by the Air Force Phillips Laboratory. These 

data was part of a larger data set resulting from the ACT/EOS validation experiments 

conducted at Hanscom AFB, Massachusetts (Hiett 1995). 

3.1.1   Data Description 

The data were collected from 10 to 13 July 1995. The data set consisted, in part, 

of standard meteorological information collected by a Vaisala Milos 500 weather station 

located on the test site. This information included radiance values measured by a normal 

incidence pyraheliometer mounted on a solar-tracking device. This instrument is 

sensitive to radiation in the visible and near infrared wavelengths from .3 to 3|Jm. Also 

included in the data set were time lapse images of the sky above the test site. These 

images were taken by a closed circuit television camera during the entire period and 

digitized at one-minute resolution. The cloud movies provided a detailed record of cloud 

types and sky conditions over the test site, which were time indexed to other data in the 

set. Information about cloud base and top heights was provided by the TPQ11 cloud 

profiling radar. This vertically pointed radar is located approximately 1,000 feet from the 
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test site, and is capable of measuring clouds as high as 62,000 feet at a resolution of 75 

meters. Ancillary meteorological information was also included, which consisted of 

atmospheric sounding information collected each morning at 1200 UTC, as well as 

surface observations from numerous weather stations in Massachusetts. All data, with 

the exception of the ancillary data and cloud movies, were collected at one-minute 

resolution, synchronized to a common time index, and stored in netCDF database format. 

3.1.2   Processing of Real Data 

Initially, 18 case studies were selected by viewing cloud movies over the test site 

for 11 and 12 July 1995. These cases exhibited broken to overcast sky coverage for 

stratiform cloud types, and ranged from 35 to 60 minutes in length. Subjective analyses 

established predominate cloud types and percent sky coverage representative of each 

study. This information was later used to initialize the CSSM. 

Radiometrie time series, corresponding to the time of each study was then 

extracted from the data set. These data were used to provide information about the 

evolution of the cloud field over the test site with time, and were compared with 

simulated time series data produced from cloud fields generated by the CSSM. 

Additional information needed to accurately initialize the cloud scene model was also 

extracted from the data set. 

Information provided by the TPQ-11 was of primary importance in establishing 

the height of cloud bases and tops for each cloud layer over the test site. These data were 

stored as time-indexed, binary reflectivity information. Figure 3-1 shows an example 

vertical reflectivity time series for 11 July 1995. Each time series frame is 170 minutes 
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in duration with the first beginning at approximately 1330 UTC. The horizontal lines are 

height markers placed in increments of 3,000 feet. Notice the development of a two-layer 

cloud system in the second frame. The TPQ-11 data enabled accurate modeling of these 

features, both spatially and with time. When cloud bases were very low ground clutter 

returns obscured the cloud-base height information. During these times, observations 

from nearby weather stations were consulted to establish cloud base heights. This height 

information, along with cloud type and sky coverage information obtained from analysis 

of the cloud movies, was used to initialize the CSSM cloud condition input files for each 

case study, as discussed in section 3.3. 
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Figure 3-1.  TPQ-11 Radar cloud reflectivity time series showing vertical 
reflectivity over the ACT/EOS test site versus time. 
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Upper air conditions were furnished by daily atmospheric soundings. These 

soundings included pressure, height, temperature, relative humidity and wind information 

at high vertical resolution (three to five feet) throughout the troposphere. Data for only 

the lowest 10 kilometers of the atmosphere was retained, as stratiform clouds for all study 

cases were below this level. 

Since the CSSM can be initialized with meteorological information for as many as 

100 levels, this data was further reduce to 99 layers, approximately one every 100 feet. It 

was then converted to the proper format for use by the CSSM; see Appendix A for details 

about this conversion. Surface conditions corresponding to the time of each case study 

were then combined with the upper air data to produce the meteorological initialization 

files. The CSSM could then be initialized with this information,. 

3.2      Model Initialization 

The CSSM requires four types of initialization data to operate: input parameters, 

meteorological conditions, cloud data and terrain data (Cianciolo and Raffensberger 

1996b). The input parameter data specifies all simulation setup parameters. 

Meteorological data is used to describe the atmosphere so that realistic clouds will be 

formed and advected through the simulation domain. Cloud data gives the CSSM 

information to create appropriate cloud coverage at levels defined by the user. Finally, 

terrain data is used to drive cloud formation. Each data type will now be described more 

fully. 

The input parameter file contains all simulation setup information. Here, 

simulation start time and duration are specified. The simulation domain and resolution 
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are defined in space and time. Information about the other three input data types is also 

contained in this file. Flags may be set to determine what products are output by the 

model and its mode of operation. The seed number used to initialize the random number 

lattice used by the re-scale and add (RSA) algorithm is also contained here. Table 3-1 

shows an input file for cloud study ten, and provides a summary of the input parameters. 

All simulations for this temporal study were conducted at one-minute resolution, 

to match that of the observed data. A cubical simulation domain was defined to include 

all stratiform cloud layers for each case study. This required domains which were ten 

kilometers per side for all cases used in the study. Each domain was defined to have a 

uniform grid resolution of 100 meters, a nominal value for CSSM applications. The 

length of each time series study was determined by the cloud conditions observed over 

the test site. Rapid transition to scattered or clear sky conditions often marked the end of 

a time series. Studies on the order of one hour were selected, where possible. These 

studies did not overlap in time in order to reduce correlation among separate studies. 

Input meteorological conditions are used by the CSSM in four key areas. Wind 

speed and direction for each layer are used to specify advection of cloud fields through 

the simulation domain. Temperature and dewpoint profiles are used to determine the 

lifting condensation level used in the cumulus model. Together, the input meteorological 

conditions define the atmospheric stability, which affects cloud street and wave cloud 

types. However, this study does not use the cumulus, cloud street, or wave cloud types. 

Input conditions are also used in conjunction with the water content look-up tables to 

determine cloud liquid water content (CLWC) for all cloud types. 
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Table 3-1. Example Input Parameter File 

Parameter Description 

1995 
7 
11 
17 
15 
0 
1995 
7 
11 
17 
15 
0 
. ./data_cld/study 10_cld_ 
1995 
7 
11 
17 
15 
0 
1 
1 
../data_met/studylO_met_ 
Single 
1995 
7 
11 
17 
15 
0 
1 
1 
. ./data_ter/hanscom_elev 
Single 
../output/testlO.O 
454848 
1 
0 
0 
0.1 
0.1 
0.1 
1.0 
10.0 
10.0 
10.0 
45.0 
0 
0.0 0.0 0.0 0.0 0.0 

simulation domain start time: year 
simulation domain start time: month 
simulation domain start time: day 
simulation domain start time: hour 
simulation domain start time: minute 
simulation domain start time: second 
joining domain start time: year 
joining domain start time: month 
joining domain start time: day 
joining domain start time: hour 
joining domain start time: minute 
joining domain start time: second 
root filename of input cloud data 
cloud data start time: year 
cloud data start time: month 
cloud data start time: day 
cloud data start time: hour 
cloud data start time: minute 
cloud data start time: second 
frequency of input cloud data files (minutes) 
number of cloud data files 
root filename of input met. data 
type of input met. data (single or gridded) 
met. data start time: year 
met. data start time: month 
met. data start time: day 
met. data start time: hour 
met. data start time: minute 
met. data start time: second 
frequency of input met data files (minutes) 
number of input met data files 
root filename of input terrain data 
type of input terrain data (single or gridded) 
root name of output files 
number seed used to initialize fractal lattice 
output gridded water content (l=yes, 0=no) 
output precipitation rate (l=yes, 0=no) 
interoperability (l=yes, 0=no) 
x resolution of output domain (km) 
y resolution of output domain (km) 
z resolution of output domain (km) 
t resolution of output domain (min) 
x extent of output domain (km) 
y extent of output domain (km) 
z extent of output domain (km) 
t extent of output domain (min) 
real-time domain origin (l=yes, 0=no) 
domain origin (x, y, z,(km), t (min since start) 
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Input meteorological data can vary at each grid point in the simulation domain, 

and during the course of the simulation. The scope of this study did not require gridded 

input files. Instead, meteorological conditions were assumed to be uniform at each level 

for the entire simulation domain, which covered ten cubic kilometers. A single input file 

provided initial conditions, and the RSA algorithm was used to determine cloud element 

evolution throughout the remainder of the simulation run. 

The input file consists of one plain text entry for each level, with each entry 

giving values for pressure in millibars, geometric height above the surface in meters, 

temperature and dewpoint in degrees Celsius, and u and v wind components in meters per 

second (where u is positive to the East, and v is positive to the North). Table 3-2 shows 

an extract of the input meteorological conditions file used for study ten. 

Table 3-2.  Example Input Meteorological Parameter File. 

Pressure(mb) Height(m) Temp(°C) Dewpoint(°C) U-Wind(m/s) V-Wind(m/s) 

1007.7 0 19.8 16.8 -2.5 0.9 
996.6 110 18.1 15.6 0.0 0.0 
973.0 310 16.4 15.3 0.0 0.0 
959.5 430 15.7 14.3 0.0 0.0 
951.8 500 15.6 13.3 -0.4 0.3 
938.8 620 15 12.4 -1.0 ^^JL^^ 

^^^289^^^ 
s^^^^^ 

^^413^^ ̂ ^^2^^ 13.2 17.4 
284.9 9700 -42.1 -66.8 13.9 18.8 
280.0 9810 -42.4 -65.7 15.4 22 
275.7 9920 -43.2 -66.4 16.5 24.3 
272.2 10000 -44.1 -67.7 17.3 25.4 

Cloud input data files define the large-scale cloud features to be modeled by the 

CSSM. These include cloud type, fractional sky coverage, mean base and maximum 

height information for each cloud layer. The CSSM accepts cloud input data in either 

single format, where cloud conditions are considered homogenous throughout the 
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simulation domain, or gridded format, where cloud conditions can vary through the 

simulation domain. Here again, the scope of the study called for single input format, 

though some cases required multiple levels or cloud types. However, no more than three 

cloud layers and two cloud types were used for any one study. 

Cloud layer information was ascertained by assimilating data from a variety of 

sources. The cloud movies, described in section 3.1.1, provided primary information 

about cloud types and sky coverage for each study. TPQ-11 radar data, atmospheric 

soundings and meteorological observations from surrounding areas were used to 

determine cloud layer base and height information. Subjective analysis and synthesis of 

this data provided a basis for the cloud input data file, which represented the large-scale 

cloud features characteristic for each given study. Table 3-3 shows an example cloud 

input data file for study ten. This plain text file first specifies all cloud types by layer, 

then provides percent sky coverage, mean base height and maximum top height in meters 

for each corresponding cloud layer. 

Table 3-3. Example Input Cloud Condition File. 

Layer Cloud Type % Coverage Base(m) Height(m) 
1 Stratocumulus 40 400 600 
2 Stratocumulus 80 1500 3500 
3 Stratus 90 7500 9000 

The terrain data input file provides surface elevation data to the CSSM, which is 

used for cloud forcing and stability calculations, as well as lifting condensation level 

calculations. Terrain data files can be specified as either gridded or single format. The 

small domains used for this study, between five and ten square kilometers over relatively 

flat terrain, allowed a single format input file to be used. For all cloud studies, a simple 
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file containing a single value, 90.0, was used to give the elevation of the test site above 

sea level in meters (Cianciolo and Raffensberger 1996b; T. Hiett 1998, personal 

communication). 

3.3      Simulated Time Series Production 

Once the CSSM had been initialized for a particular cloud time series study, it 

was run for ten different random seed number values, generating ten series CLWC files 

for the simulation output domain. Each output file contained 1,000,000 gridded data 

points, representing the simulated atmosphere for each time step. Table 3-4 lists the seed 

numbers used for each study. 

Table 3-4.  Seed numbers used to initialize the CSSM. 

Seed Number 
0 454848 
1 88464 
2 554645 
3 453602 
4 430492 
5 1668 
6 932704 
7 364906 
8 254836 
9 719726 

CSSM files for each time series study were then used by the Fast Map post 

processor to generate gridded volumes of slant path optical depth values at the same 

spatial resolution as the CSSM files. Output files for both visible (.55|jm) and infrared 

(1 [Jm) wavelengths were produced by default. The .55pm files were used to derive the 

simulated time series data, however, since the observed radiometric data being used for 
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comparison was collected by a pyraheliometer sensitive to wavelengths from .3 to 3|Jm. 

The 1 l(Jm files were simply discarded to conserve computer disk space. 

A ray tracing routine then integrated the slant path optical depth values for each 

time step in each time series study to obtain a total extinction value for a ray passing 

through the cloud volume. The following subsection describes the ray tracing routine in 

more detail. A brief discussion of the radiative transfer theory employed to derive the 

radiometric time-series will then be provided. 

3.3.1   Ray Tracing Through the Cloud Volume 

The ray tracing routine iteratively read each Fast Map output file in a time-series, 

and integrated the extinction optical depth values, which were obtained through bilinear 

interpolation of the gridded values at each level along the ray path. This ray path was 

traced from a point at the base of the simulated cloud field volume representing the 

location of a virtual pyraheliometer, through the volume, toward the position of the sun. 

Output consisted of extinction optical depth time series information indexed to solar 

position and Fast Map output file number for each time step. This information was then 

used to obtain radiance values. 

An ephemeris program calculated the position of the sun for the coordinates of the 

test site and time of each particular study. This information, reported as azimuth and 

elevation above the local horizon, was updated each minute to simulate the sun's path 

through the sky. This approach was consistent with the collection of the observed data, 

where the pyraheliometer recorded normal radiance values each minute as it tracked the 

apparent motion of the sun. The accuracy of these directional values, for each study, was 
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verified by comparison with those provided by the United States Naval Observatory 

Astronomical Applications Department (USNO 1999). In all cases the values were found 

to be in close agreement. 

Use of the ray tracing routine for the simulated case studies exposed a 

consideration not accounted for initially. Weather conditions for both of the two days 

from which data was selected consisted of broken to overcast sky cover throughout the 

morning, lasting until mid-afternoon. After this time, skies became scattered and the 

stratiform cloud types, which were the object of the study, were no longer present over 

the test site. Consequently, case studies for each day were selected sequentially, 

beginning shortly after sunrise until mid-afternoon. The early morning radiometric 

measurements were very small in magnitude, as might be expected under overcast skies. 

Simulated cloud fields initialized for these conditions produced no extinction values, 

however, when processed by the ray tracing routine. 

Inspection of the CSSM output files verified that cloud fields consistent with the 

input data had been produced. The time of the case study caused the problem. For early 

morning studies, the appropriate solar vector traced a path beneath the cloud base, which 

exited through a side of the output volume before reaching the height of the cloud base. 

Calculations confirmed that for studies on 11 July 1995 during times when the elevation 

angle was less than 61°, the solar vector did not exit through the top of the cloud volume. 

By moving the position of the simulated radiometer this minimum angle could be 

reduced to 42°, corresponding to 1230Z for the date and location of the test site. Since 

valid comparison of real and simulated time series could not be accomplished for times 
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earlier than this, four case studies were omitted from the temporal study. Similar analysis 

for cases on 12 July 1995 led to four more case studies being dropped. 
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4.        Data Summary and Analysis 

This chapter presents the simulated time series data derived from the Cloud Scene 

Simulation Model (CSSM) cloud liquid water content (CLWC) fields. This data will be 

compared, both qualitatively and statistically in order to determine whether CSSM cloud 

field time series faithfully reproduce temporal variations in observed data. Qualitative 

analysis of the data was accomplished through description and comparison of time series 

radiance plots as well as histograms showing the distributions of radiance values for each 

time series. The statistical methods used to analyze the data were applied in both the 

temporal and frequency domains. Specifically, the autocorrelation function was 

calculated from the data to obtain autocorrelation coefficients for each time lag in the 

series, and small scale variability was analyzed using the variogram. A power law 

analysis was performed for each log-log plot of frequency versus power. A description 

of these methods will be given following a discussion of time series analysis and 

stationarity. Then, the data for each case study will be presented and analyzed. 

4.1       Time-Series Analysis 

There are two general approaches to time series analysis: time domain methods, 

and frequency domain methods. Analyses conducted in the time domain characterize the 

data in the same space in which they are collected. Frequency domain analyses seek to 

represent the data in terms of contributions to the variation of the data values for a 

spectrum of time scales, or frequencies. For this reason, these analyses are called spectral 

analyses (Chatfield 1984; Wilks 1995). 

52 



The primary objectives of this time series analysis were description of each time 

series, and comparison of the observed data with the ensemble of simulation time series. 

Each series was discrete in that radiance values were sampled or simulated at equal time 

intervals (Chatfield 1984). 

The time series analysis methods used required stationarity of the data. This 

implies that the statistical properties of the time series are independent of the absolute 

time. Different intervals within the overall series have the same mean and variance, or 

equiValently, there is no appreciable trend in the mean, or systematic change in the 

variance over the course of the time series (Jenkins and Watts 1968). 

Radiometrie time series are not generally considered stationary series, since they 

exhibit diurnal and seasonal variation. The diurnal non-stationarity arises due to the trek 

of the sun across the sky and is a function of time and local latitude. This effect on the 

observed radiance, L, can be approximately described by: 

L = A-cos 0 (4-1) 

where A specifies the amplitude, and (J) is the local latitude. Seasonal variations occur 

due to Earth's tilted axis of rotation, as it orbits around the Sun. 

Two approaches may be taken to convert a time series to stationarity. The first is 

to transform the data in such a manner that approximate stationarity is achieved. For 

example, this can be accomplished by subtracting the characteristic cosine of the sun, as 

given in Equation (4-1), from the radiometric time series. Another method involves 

subtracting a value computed as the running mean for each time step. The second 
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approach is to stratify the data being analyzed. That is, separate analyses are conducted 

on subsets of the data for intervals short enough that near-stationarity can be reasonably 

assumed (Wilks 1995). 

Data stratification was the primary approach taken in this validation study to 

approximate stationarity of the time series data. Studies ranged in length from 45 to 60 

minutes. Since the focus of this study was stratiform clouds under overcast conditions, 

the sun's characteristic cosine signature did not readily appear in the radiometric time 

series. 

4.2      The Autocorrelation Function 

The autocorrelation function is an important tool used to characterize the 

properties of time series data in the time domain. This funnction measures the correlation 

between successive data values in the time series as a collection of autocorrelation 

coefficients. The correlation coefficient between xt and xt+i can be computed according 

to: 

N-\ 

-1   JV-l _ 

E(*,-*(i>)2-Z(*«-i~*<2>)2 

r
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t=\ t=\ 

where N-l is the number of data point pairs in the discrete time series. Here x(1) is the 

mean of the first N-l data points, and JC(2) is the mean of the last N-l observations. This 

formula, which is commonly simplified by taking these means to be approximately equal, 
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can be extended to find the correlation between observations a discrete distance k apart in 

time. This gives the computational form of the autocorrelation function (Chatfield 1984, 

Wilks 1995): 

N-k 

h = -^—R "  (4-3) 

t=i 

Once the set of autocorrelation coefficients has been calculated, they can be 

plotted as a function of time lag. This graph, called a correlogram, can then be used to 

analyze and compare time series. The first coefficient in this series will always be r0=l, 

since the data will be perfectly correlated with itself initially. Other coefficients fall 

within the range -1 < rk < 1. Significantly correlated data can be determined with 

approximately 95% level of confidence according to limits defined by the equation: 

I = 4i (4-4) 

The time of first zero crossing of the autocorrelation functions is used to infer a 

correlation length scale with time (Turkington et al. 1998). 

4.3       The Variogram 

The variogram is a time domain method used to analyzed variability in the 

radiometric signal over short time scales. This is accomplished by determining the 

magnitude of the difference between the value at a particular time step and an average 

value for the three time steps centered on the one under consideration. Variability values 
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are computed in this fashion for each time step of the time series according to the 

formula: 

N-\ 

varft.) = £ 
1=1 

(^+rt+rt+l)    r (4-5) 

r is the radiance at time t. A plot of the observed and simulated radiance values with time 

enables small-scale variability to be readily compared. 

4.4      Power Law Analysis 

Power law analysis is a frequency domain method used to succinctly describe 

structure in terms of power law decay or growth of fluctuations in Fourier space, that is, 

contributions to the variations in a time series, which occur over a spectrum of different 

frequencies or time scales. These contributions have been widely observed to have a 

power law dependency according to (Seeley et al. 1997; Davis et al. 1996): 

Packß (4-6) 

In order to perform the power law analysis, it is necessary to first express the 

variations in the time series data as a sum of sine and cosine components. This is done 

by means of the Fourier transform, given by: 

1   -i      ,■(*£/)* 

4n k=i 
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where n is the total number of elements, k, in the time series. The result is a sum of terms 

representing the complex amplitudes of the various frequencies in the original time series 

data. From these, the power spectrum can be determined according to: 

P = 
2 

(4-8) 

The power spectrum represents the contribution to the variability, in this case of the 

radiometric time series, with frequencies in the range (fk,fk+df). 

The frequency corresponding to each element, k, in the sum can be determined 

using: 

J h=Lfs (4-9) 
n 

where fs is the data sampling frequency with dimensions of minute"1 for this study, and n 

is the number of samples in the time series. Note that the lowest frequency corresponds 

to variations for only a single cycle over the entire length of the time series, /}=«" , while 

the highest frequency, referred to as the Nyquist frequency is the highest frequency with 

meaningful information. This is the frequency of variation over only two time intervals 

in the data series, 2 minutes for this study. Due to limitations imposed by the Nyquist 

frequency, power spectrum data corresponding to frequencies above this limit, which 

arose as part of the fast fourier transformation, were eliminated from the data set prior to 

calculating the power law exponent (Wilks 1995). 

Taking the logarithm of both the frequency and power spectrum terms, we may 

plot the power spectrum as a function of frequency to determine the exponent, ß, in the 
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power law equation, (4-6). This exponent is given by the slope of a linear least squares 

fit to the data plotted according to: 

\ogP(f) = A-j8-log f (4-10) 

where A is simply a constant corresponding to the zero-crossing of the frequency axis for 

the fit line (Davis et al. 1996). Comparison of the observed and simulated data sets can 

then proceed as a comparison of the best-fit slopes to the log frequency versus log power 

plots. 

4.5      Presentation and Analysis of Data 

This section will present the observed data for each temporal study along with a 

representative selection of corresponding simulation data, generated according to the 

methods described in Chapter 3. Analysis of this data will be accomplished according to 

the methods outlined at the beginning of this chapter. 

Of the 18 case studies originally selected from the data, 8 early-morning cases 

were eliminated during the ray tracing portion of the project as mentioned in Section 

3.3.1. Four more cases were eliminated because the clouds being modeled were too 

optically thin, and the cloud coverage too sparse for the ray tracing process to be 

effective. Optical depth time series produced for these cases were largely zero values. 

Several attempts to shift the location of the virtual pyranometer in the simulated cloud 

volume were made in order to sample a more optically thick region. While these efforts 

weren't successful, they did highlight limitations of this validation method. 
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4.5.1   Study 1 

Study 1 was conducted over a 60 minute period for initial cloud conditions listed 

in Table 4-1. The time of this study was from 0946 to 1046 EDT. There were 2 stratus 

cloud layers with no appreciable separation between them. The lower layer was 

precipitating and was easily distinguished from the upper layer with TPQ-11 radar 

imagery, since the precipitating layer had a much higher reflectivity. Mean wind for the 

lower layer was 4 m/s, and the mean wind for the upper layer was 9.4 m/s. Advection of 

the cloud layers is governed by the mean wind for each layer. 

Table 4-1.  Cloud Layer Information for Study 1 

Layer Cloud Type Sky Coverage (%) Base (m) Top (m) 
1 ns 100 300 3000 
2 st 100 3000 8500 

Examination of the observed radiometric trace in Figure 4-1 (A) shows small- 

scale variability associated with the varying optical thickness of the cloud passing 

between the sun and the pyranometer as it advects and evolves with time. Radiance 

magnitudes are small, corresponding to both the overcast situation and the low elevation 

angle of the sun. The histogram of radiance values in Figure 4-1 (B) shows a wider 

distribution of values than those for the simulation data. Figure 4-1 (C) shows the 

correlogram which, indicates first zero-crossing at 10 minutes for the observed data, and 

in (D) the power law analysis gives ß= - 4/3. 

Comparing the observed data to the simulation data, given in Figure 4-2 and 

Figure 4-4, it is apparent that more small scale variation exists in the observed data than 

in the simulation data. The variograms for study 1, shown in Figure 4-3 and Figure 4-5, 
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also support this conclusion. There is a wider range of radiance values for the observed 

data, the zero-crossing time is longer, and the power law slope is steeper. These results 

held for all simulation runs for study 1. 
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Figure 4-1.  Study 1 Observed Data: (A) Radiance Time Series (B) Histogram 
(C) Correlogram (D) Power Spectrum. 
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Figure 4-2.  Study 1 Simulation 3 Data: (A) Radiance Time Series (B) Histogram 
(C) Correlogram (D) Power Spectrum. 
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Figure 4-3. Variogram comparing Study 1 variability for a stratus/nimbostratus 
case. The light colored bars are for observed data and the dark bars 
are for Simulation 3 data. The observed data exhibits a higher 
degree of small-scale variability than the simulation data. 
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Figure 4-4.  Study 1 Simulation 4 Data: (A) Radiance Time Series (B) Histogram 
(C) Correlogram (D) Power Spectrum. 
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Figure 4-5. Variogram comparing Study 1 variability for a stratus/nimbostratus 
case.  The light colored bars are for observed data and the dark bars 
are for Simulation 4 data. The observed data exhibits a higher 
degree of small-scale variability than the simulation data. 
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4.5.2   Study 2 

Study 2 was conducted for the 60 minute period following study 1. The two 

cloud layers persisted, with the lower one still precipitating and no separation between 

the layers. Cloud information used for this study is given in Table 4-2. Mean wind in the 

cloud layers was the same as that for study 1. 

Table 4-2.  Cloud Layer Information for Study 2 

Layer Cloud Type Sky Coverage(%) Base(m) Top(m) 
1 ns 100 300 3250 
2 st 100 3250 8250 

This case study is similar to study 1 in that the simulation radiometric traces did 

not exhibit the degree of small scale variability observed in the real data. Radiance value 

distributions represented the range of the real data better for this case study than for 

study 1. The simulation distributions were generally skewed toward smaller radiance 

values for the simulations than for the observed data. The time scale correlation results 

as given by the correlogram were ambiguous in that the observed zero-crossing occurred 

at 10 minutes, while simulation zero-crossings occurred above and below this value. 

Power law analyses showed simulation slope values to be greater than real values for this 

case study. Compare Figure 4-6 (D), 4-8 (D), and 4-9 (D). This confirmed the notion 

that more contribution to radiometric signal variability occurred for low frequencies, or 

long time scales for the simulation time series than for the observed data. More small- 

scale variability in the simulation data would have given a greater contribution to the 

power spectrum at shorter scales, and a correspondingly shallower slope. Inspection of 
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the variograms for all simulation runs also indicated a greater degree of small scale 

variability for the observed data as illustrated in Figures 4-8 and 4-10. 
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Figure 4-6.  Study 2 Observed Data: (A) Radiance Time Series (B) Histogram 
(C) Correlogram (D) Power Spectrum. 
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Figure 4-7.  Study 2 Simulation 5 Data: (A) Radiance Time Series (B) Histogram 
(C) Correlogram (D) Power Spectrum. 

Figure 4-8. Variogram comparing Study 2 variability for a stratus/nimbostratus 
case. The light colored bars are for observed data and the dark bars 
are for Simulation 5 data. The observed data exhibits a higher 
degree of small-scale variability than the simulation data. 
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Figure 4-9.  Study 2 Simulation 7 Data: (A) Radiance Time Series (B) Histogram 
(C) Correlogram (D) Power Spectrum. 

Figure 4-10. Variogram comparing Study 2 variability for a stratus/nimbostratus 
case.  The light colored bars are for observed data and the dark bars 
are for Simulation 7 data. The observed data exhibits a higher 
degree of small-scale variability than the simulation data. 
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4.5.3   Study 3 

Study 3 simulated a 60 minute period following the precipitation in case studies 1 

and 2. The two cloud layers present earlier continued. However a vertical separation 

developed between the cloud layers. The mean wind in lower layer was 5.8 m/s, while 

the mean wind in the upper layer was 11.1 m/s. Table 4-3 gives the bases and heights of 

these layers as well as the percentage of cloud sky coverage. 

Table 4-3.  Cloud Layer Information for Study 3 

Layer Cloud Type Sky Coverage(%) Base(m) Top(m) 
1 st 90 400 5000 
2 st 90 7250 8000 

A subjective analysis of the radiance time series in Figure 4-11 (A) and 

comparison with corresponding simulations in Figure 4-12 (A) and Figure 4-14 (A) 

shows significant differences in the character of the signatures. The observed data again 

exhibits a highly variable signature, indicating a cloud field that was highly variable with 

time. The simulation data shows a less variability with time, corresponding to less 

variability in the cloud field elements with time. Histograms show the observed data to 

have a wider distribution of radiance values over the course of the time series than the 

simulation data. Correlation time scales for the simulation data were shorter than that for 

the observed data, which had a zero-crossing time of 19 minutes. Zero-crossing times 

were approximately half that of the observed data for all simulation runs in this case 

study. Results of the power law analyses were not conclusive since the observed data 

gave a power law relationship that sometimes had a steeper slope than the simulation 

data. Other times, the simulation data gave a steeper slope than the observed data. Cases 
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where the observed slope was steeper than that for the simulation data provided a 

counterintuitive result, given that the observed data shows more small-scale variability. 

Variograms for all simulations showed that small scale variability was not as evident in 

the simulation data. Figures 4-13 and 4-15 provide comparisons with observed data for 

simulations two and three, respectively. 
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Figure 4-11.  Study 3 Observed Data: (A) Radiance Time Series (B) Histogram 
(C) Correlogram (D) Power Spectrum. 
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Figure 4-12.  Study 3 Simulation 2 Data: (A) Radiance Time Series 
(B) Histogram (C) Correlogram (D) Power Spectrum. 

Figure 4-13. Variogram comparing Study 3 variability for a stratus case. The 
light colored bars are for observed data and the dark bars are for 
Simulation 2 data. The observed data exhibits a higher degree of 
small-scale variability than the simulation data. 
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Figure 4-14.  Study 3 Simulation 9 Data: (A) Radiance Time Series 
(B) Histogram (C) Correlogram (D) Power Spectrum. 

Figure 4-15. Variogram comparing Study 3 variability for a stratus case.  The 
light colored bars are for observed data and the dark bars are for 
Simulation 3 data. The observed data exhibits a higher degree of 
small-scale variability than the simulation data. 
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4.5.4   Study 4 ' 

The radiometric time series observed and simulated for study 4 were a departure 

from the previous studies. This study covered a 45 minute period following study 3, 

however, meteorological conditions had changed somewhat. The stratus cloud layers 

present in earlier time series gave way to stratocumulus cloud formations, with the lowest 

cloud layer becoming scattered and the overall vertical cloud profile consisting of three 

layers according to Table 4-4. Mean winds for the cloud layers were 1 m s" , 5.7 m s" 

and 12 m s"1 from the lowest to highest layers, respectively. This case study represents a 

midday case, so the sun's elevation angle was relatively high, peaking at 69°. 

Table 4-4.  Cloud Layer Information for Study 4 

Layer Cloud Type Sky Coverage(%) Base(m) Top(m) 
1 sc 40 400 600 
2 sc 80 1500 3500 
3 sc 90 7500 9000 

The observed radiance time-series for this study shows that the optical depth of 

the cloud layers between the sun and the pyranometer decreased during the last half of 

the time series. This accounts for the upward trend in the data despite the fact that the 

sun reaches its highest point during this study and, as a result, the data should exhibit no 

positive trend. Complete sky coverage still exists, or radiance peaks in the time series 

would be an order of magnitude larger. This case study, the first of the three 

stratocumulus cases, shows differences in large scale variability for observed and 

simulation data. Here, large scale variations are taken to be peaks larger than roughly 5 

W m"2 sr"1 , while the small scale variations mentioned previously referred to peaks 1 W 

m"2 sr"1 in amplitude or less. Correlation time scales for the simulation data are shorter 
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than that of the observed data, with simulation zero-crossings generally occurring before 

10 time lags, while the observed data crossed after 15 time lags as shown in Figures 4-16 

(C), 4-17 (C), and 4-19 (C). The power law relationship for the simulation data was 

characterized by a steeper negative slope than the observed data in all cases, consistent 

with the lack of radiometric signal variation for short time scales. Likewise, variograms 

showed the observed data to be more variable. Example comparisons are given in 

Figures 4-18 and 4-20. 
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Figure 4-16.  Study 4 Observed Data: (A) Radiance Time Series (B) Histogram 
(C) Correlogram (D) Power Spectrum. 
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Figure 4-17.  Study 4 Simulation 8 Data: (A) Radiance Time Series 
(B) Histogram (C) Correlogram (D) Power Spectrum. 
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Figure 4-18. Variogram comparing Study 4 variability for a stratocumulus case. 
The light colored bars are for observed data and the dark bars are 
for Simulation 8 data. The observed data exhibits a higher degree 
of large-scale variability than the simulation data. 
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Figure 4-19.  Study 4 Simulation 9 Data: (A) Radiance Time Series 
(B) Histogram (C) Correlogram (D) Power Spectrum. 

Figure 4-20. Variogram comparing Study 4 variability for a stratocumulus case. 
The light colored bars are for observed data and the dark bars are 
for Simulation 9 data. The observed data exhibits a higher degree 
of large-scale variability than the simulation data. 
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4.5.5   Study 5 

Study 5 was approximately one hour long and immediately followed study 4 in 

time. Stratocumulus clouds were the dominate cloud type forming in two layers 

vertically. Overall sky coverage decreased compared to earlier case studies for the day. 

This decreased coverage, together with the high elevation angle of the sun, created breaks 

in one or both of the cloud layers, which accounts for the large peaks in the observed and 

simulation time series. Table 4-5 summarizes cloud conditions present during this case 

study. Mean winds in the lowest layer were 4.8 m s"1, and in the upper layer they were 

11.8 ms"1. 

Table 4-5.  Cloud Layer Information for Study 5 

Layer Cloud Type Sky Coverage(%) Base(m) Top(m) 
1 sc 70 300 4000 
2 sc 75 7500 8500 

The large magnitudes of the peak radiance values present in these time series 

made subjective analysis of small scale variations in the signal more difficult. 

Differences in the large scale variations were evident here. Large scale peaks were more 

abundant in the simulation data than the observed data. Analysis of the histogram for the 

observed data show 80 percent of the values collected during the time series to be less 

than 60 W m"2 sr"1 , and 60 percent to be less than 25 W m"2 sr"1 . The simulation data 

displayed more large scale variability in the signal, however, histograms in all cases were 

skewed to smaller values which is not surprising given the sky coverage in Table 4-5. 

The correlograms for this case study provided little useful information, since times to the 

first large-scale variation occurred near the five minute mark for all observed and 
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Simulation data. The time of first zero-crossing for all cases also occurred near the five 

minute mark. It was interesting to note the greater number of peaks in the simulation 

data, which were reflected in the greater degree of periodicity in the correlogram. Power 

law analyses showed steeper slopes for the simulation data than for the observed data. 

This finding is similar to that generally found in the previous case studies, but for a 

different reason. In this case, the steeper slope is due to large scale variability which is 

greater for the simulation data. Variogram analyses for this study marked a departure 

from previous studies since the observed signal was dominated by large amplitude peaks. 

The dominate feature of the variograms in for study 5 was the large scale variability, 

which was greater for the simulation data. Variograms reflected this by showing that the 

simulation data had greater variability for most time lags in each series. Examples are 

provided in Figures 4-23 and 4-25. 
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Figure 4-21.  Study 5 Observed Data: (A) Radiance Time Series (B) Histogram 
(C) Correlogram (D) Power Spectrum. 
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Figure 4-22.  Study 5 Simulation 1 Data: (A) Radiance Time Series 
(B) Histogram (C) Correlogram (D) Power Spectrum. 

Figure 4-23. Variogram comparing Study 5 variability for a stratocumulus case. 
The light colored bars are for observed data and the dark bars are 
for Simulation 1 data. The observed data exhibits a higher degree 
of large-scale variability than the simulation data. 
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Figure 4-24.  Study 5 Simulation 9 Data: (A) Radiance Time Series 
(B) Histogram(C) Correlogram (D) Power Spectrum. 

Figure 4-25. Variogram comparing Study 5 variability for a stratocumulus case. 
The light colored bars are for observed data and the dark bars are 
for Simulation 9 data. The observed data exhibits a higher degree 
of large-scale variability than the simulation data. 
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4.5.6   Study 6 

Study 6 spanned approximately 45 minutes immediately following study 5. The 

stratocumulus, two-layer system persisted, however, the percentage of sky covered by 

cloud decreased. Table 4-6 gives cloud layer information for Study 6. Mean winds in the 

lower layer were 3.9 m/s, and in the upper layer they were 11 m/s. 

While the decreased cloud cover in this study created opportunities for complete 

breaks in the clouds, these weren't as evident as in the previous study. The lower 

elevation angle of the sun, from approximately 53° to 48°, increased the path length 

through the cloud volume and reduced the overall magnitude of the peaks. 

Table 4-6.  Cloud Layer Information for Study 6 

Layer Cloud Type Sky Coverage(%) Base(m) Top(m) 
1 sc 70 200 3000 
2 sc 60      7500 8000 

Subjective analysis of the observed and simulation radiometric time series again 

show more large-scale variation in the simulation data series. Histograms are skewed 

toward small radiance values. However the observed data were dominated by small 

values to a greater extent than the simulation data. Time scale correlation lengths for the 

simulation time series were roughly half that of the observed data. The power law 

analyses were inconclusive for this study since simulation and observed slopes were 

nearly identical. Variograms for this case study were similar to those in study 5 in that 

they reflected the greater degree of large-scale variability in the simulation data. 
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Figure 4-26.  Study 6 Observed Data: (A) Radiance Time Series (B) Histogram 
(C) Correlogram (D) Power Spectrum. 
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Figure 4-27.  Study 6 Simulation 1 Data: (A) Radiance Time Series 
(B) Histogram (C) Correlogram (D) Power Spectrum. 
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Figure 4-28. Variogram comparing Study 6 variability for a stratocumulus case. 
The light colored bars are for observed data and the dark bars are 
for Simulation 1 data. The observed data exhibits a higher degree 
of large-scale variability than the simulation data. 
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Figure 4-29. Study 6 Simulation 5 Data: (A) Radiance Time Series (B) 
Histogram (C) Correlogram (D) Power Spectrum. 

Figure 4-30. Variogram comparing Study 6 variability for a stratocumulus case. 
The light colored bars are for observed data and the dark bars are 
for Simulation 5 data. The observed data exhibits a higher degree 
of large-scale variability than the simulation data. 
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5.        Conclusions and Recommendations 

This chapter presents conclusions drawn from the temporal validation study of the 

Cloud Scene Simulation Model (CSSM) based on the case studies presented in Chapter 4. 

Following these conclusions, recommendations for improving the methods employed in 

this validation study are made. Finally, suggestions for future research are given. 

5.1       Conclusions 

These conclusions were based on analysis of data from the 6 case studies 

presented in Chapter 4. Each study consisted of comparisons between an observed 

radiometric time series and ten simulation time series derived from CSSM model input. 

The simulation radiometric time series data for stratus cloud cases did not exhibit 

small scale signal fluctuations present in the observed data. Small scale fluctuations are 

taken to be changes in signal magnitude of approximately 1 W m" sr"   over a time 

intervals of less than 5 minutes. Histograms of radiance values indicated a wider 

distribution of values for stratus cases for which small scale variation was the dominate 

feature. Additionally, variograms showed that small scale variability of the signal was 

greater for the observed data in cases without large scale feature domination. Large scale 

feature domination manifests itself in the radiometric signal when reduced fractional sky 

coverage allows breaks between clouds. When large scale features did dominate, 

variograms showed large scale variation to be greater for most time lags in each 

simulation series. 
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Power law analyses did not provide conclusive support for this observation. This 

can be attributed to the small number of data points present in the time series. This type 

of analysis is limited by the overall time scale of the data and the Nyquist frequency, 

which represents the smallest time scale that can be resolved. Since all data for this 

validation was at 1 minute resolution, the Nyquist frequency was 2 minute" . Below this 

limit frequency aliasing can occur. For this reason, power amplitudes corresponding to 

frequencies below this limit were neglected. This reduced the number of data points used 

for the power law analyses to 30 points for a 60 minute time series. Many more data 

points are needed to accurately classify the power law relation. 

The simulation time series data also exhibited more large scale variation in the 

radiometric signal than that of the observed data for stratocumulus cases. Large scale 

variations are taken to be changes in signal magnitude greater than 5 W m" sr" over time 

intervals greater than 5 minutes. Histograms of radiance values showed a wider spectrum 

of values in stratocumulus case studies for which large scale variations were the dominate 

feature. Correlograms indicated that correlation time scales were generally shorter for 

the simulation data, corresponding to a greater degree of large scale variation. 

These results suggest that the CSSM does not model clouds in a realistic manner 

with time. Small scale variations of the radiometric signal correspond to small scale 

variations in the optical thickness of the intervening cloud. Given that both the real and 

simulated clouds are advecting with the mean wind, a difference in these variations could 

be attributed to a difference in the evolution of small scale cloud elements with time. The 

same reasoning can be used to infer a difference in the evolution of large scale features 

between real and simulated cloud fields. 
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5.2      Recommendations for Improving Future Validation Studies 

While future CSSM temporal validation studies may make use of the methods 

employed in this thesis, several recommendations can be given which will improve these 

efforts. Primary recommendations include performing more case studies with additional 

data, improving the radiative transfer approach used to derive the radiometric time series 

and augmenting the analytical techniques used. These will now be discussed in more 

detail. 

Many more case studies must be ran to provide a sufficient amount of data from 

which to draw conclusions. Observed data used for these case studies should be drawn 

from many different days and locations as availability permits. Care must be taken while 

selecting this data. The validation method used in this study requires optically thick 

clouds with sky coverage greater than 80 percent. If these requirements are not met, it is 

difficult to adequately sample the cloud volume with the ray tracing routine. Also, case 

studies should be selected from approximately 1000 to 1400 local time. During these 

times the sun elevation angle is high enough to ensure that a ray traced from the position 

passes through the top of the simulation cloud volume. 

These case studies should only be accomplished for sun elevation angles greater 

than 45°, especially if the ray tracing method is retained. This reduces the chance that a 

ray path vector from the sun enters through the side of the cloud volume during the ray 

tracing portion of simulation time series production, an occurrence that must be checked 

for each case study. Evidence suggests that the accuracy of radiometric measurements 

increases with increasing elevation angle (Alberta and Cox 1990). Additionally, trends in 
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the observed data due to diurnal fluctuations in the sun's radiometric signal are smaller. 

This allows application of autocorrelation and power law analyses to the data without 

having to remove trends from the data. 

Application of a full 3-dimensional radiative transfer model to calculate radiance 

values based on input CSSM water content grids and other parameters would be a great 

enhancement. Such a model would be able to account for contributions to the 

radiometric signal due to scattering and emission much more accurately than 

approximations used in this validation. It should be cautioned that such models are very 

expensive computationally so that the time involved in producing even a single time 

series may be prohibitive. 

Alternatively, a Monte Carlo based radiative transfer model may be applied with 

more easily. While such a model would be much faster than a full 3-dimensional 

approach, it would still be considerably slower than the ray tracing method currently 

being used. A comparison of these methods would be in order to determine if the 

increased accuracy justified the computational expense. 

5.3      Suggestions for Further Research 

Ample opportunity exists for further research in this area. Incorporation of the 

recommendations for improving future temporal validation studies of the CSSM is the 

first step. The next logical step is to accomplish a sensitivity study of the temporal fractal 

parameters to determine their effect on temporal evolution of the cloud fields. Previous 
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studies have determined the effects of these parameters in the spatial dimensions 

(Cianciolo and Rasmussen 1992,1996; Turkington et al. 1998), as discussed in Chapter 

2. Application of these concepts to the temporal dimension is not straightforward, 

however. An iterative approach could be taken in which various combinations of 

temporal RSA parameters are adjusted, new simulation time series are produced, and 

comparison is made with the appropriate observed and previous simulation data sets. 

Such an effort would be likely to improve the temporal performance of the CSSM in the 

process, which is the major goal of this research effort. 
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APPENDIX A: CONVERSION OF METEOROLOGICAL DATA TO 

CSSM FORMAT 

The format of atmospheric soundings that were provided as part of the ancillary 

meteorological data set was incompatible with that needed for Cloud Scene Simulation 

Model (CSSM) meteorological condition input files. Specifically, the soundings reported 

moisture in terms of relative humidity, while the CSSM required dewpoint temperature. 

Since saturation vapor pressure is a function of temperature, it was possible to 

compute this value for the temperature at each level. This was done using a modified 

version of Teton's formula: 

es (T) = 6.112- expf17-67'rl (A-l) 

where es is given in millibars, and Tis the temperature in degrees Celsius. This formula 

is accurate to within 0.1% over -35°C<r<35°C. 

The saturation vapor pressure was then multiplied by the relative humidity to 

obtain the vapor pressure for each level. Since dewpoint temperature is the temperature 

at the actual vapor pressure, this value could be used to determine the dewpoint 

temperature according to: 

„    243.5 • Ines -440.8 ..  _ 
T =  (A-2) 

19.48-In« 

which is the inverse form of the modified Teton's formula. (Bolton 1980) 
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APPENDIX B: METHOD OF SCALING SIMULATED 

HELIOMETER DATA 

It was necessary to scale the simulated heliometer data to reproduce the dynamic 

range of the real heliometer data. This was done in order to make comparisons between 

the simulated and observed data, and, in effect, approximates solar radiation reaching the 

heliometer, both directly and for the case of multiple scattering. 

We assume radiative transfer for a plane-parallel atmosphere, which is given by 

the equation: 

T 

I(T-ju,<p) = I(0,-{t,<p)e-T + JAt-ZJ^e-^dt (B-l) 
0 

where: I is the radiant energy; ris the slant path optical depth (a unitless 

quantity); -//is the solar zenith angle, with negative implying downward; (pis the 

azimuth angle; and Jis the radiative source function. 

If we assume isotropic scattering, then for an atmosphere in which scattering is 

conservative, that is, one in which there is no absorption, the source function can be 

written as: 

J(r,&) = -±- |>(s/s)/(r,s)^s 
4;T4, (B-2) 

where: r is the incident radiation vector, and s is the scattered radiation vector. P 

is the scattering phase function that gives the probability of radiation being scattered into 
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the direction s from direction s\ This accounts for emission and scattering of radiation 

into the path, and is given by: 
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Ar)„ —70P0e-' 
4^r (B-3) 

where w is the single scattering albedo, or the ratio of scattering coefficient to total 

extinction coefficient. P0 is the probability of forward scattering. (Goody and Yung 

1989) 

For forward scattering along the solar ray, in the direction -\i, (j), we can use 

equation B-3 to express the radiative transfer equationB-1 as: 

/(r) = /„ (OK' + ){^P0e-') -e-^dt 
0        ^ (B-4) 

Integrating equatiohB-4 gives: 

I(r) = I0(l + cr)-e-T (B.5) 

tff-P 
where the constant, c = . This allows for the approximate accounting of radiation, 

4;r 

which has been scattered into the solar path and observed by the heliometer. It turns out 

to be proportional to the slant length optical depth, T. For the case where there is no 

scattering, Po=0, c=0, and equation B-5 reduces to the form commonly known as Beer's 

Law, which only accounts for attenuation of radiation along a path. 

It now remains to find a particular value for c, which will scale the simulated 

radiance values to be consistent with the range of the observed data. For each time series 
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study, representative minimum and maximum values of radiance are selected from the 

observed data. These correspond to times maximum and minimum cloudiness, 

respectively. Finally, the largest representative optical depth value is selected from the 

integrated path extinction coefficients derived from each simulated cloud volume. These 

quantities can then be used with equation B-5 to solve for c. This constant is then used in 

equation B-5 along with the integrated optical depth values for each time step of each 

simulated time series, causing the simulated radiance values to fall within the range of the 

observed data. While there is some degree of approximation for the contribution of 

scattering to the observed normal radiance with this method, it was applied consistently 

to each time series, thus temporal variations were preserved (J. B. Mozer, personal 

communication). 
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