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AFIT/GM/ENP/99M-01 

Abstract 

The Air Force Weather Agency (AFWA) currently uses an algorithm to calculate 

surface temperatures from microwave observations taken by the Special Sensor 

Microwave Imager (SSM/I) aboard the orbiting platforms of the Defense Meteorological 

Satellite Program (DMSP). This algorithm, called the Calibration-Validation (CV) 

algorithm, uses multiple linear regression to calculate coefficients relating microwave 

brightness temperatures and land surface temperatures. Because the coefficients in this 

algorithm do not take into account the identity of the individual satellite, the question 

arose whether this assumption was valid. 

This thesis used multiple linear regression, stepwise linear regression, and 

qualitative regression on 3700 data sets from October of 1996 and September of 1997, 

including microwave brightness temperatures from three satellites. This data was 

analyzed to determine if satellite identity had a significant impact on CV regression 

coefficients. Analysis indicated that satellite identity does not have a significant impact 

on regression coefficients for five of the eight CV land types investigated. Analysis of 

two CV land types indicated data set identity had a significant impact, while there was 

insufficient data to determine the impact for one CV land type. 

In addition to the qualitative regression, stepwise linear regression was performed 

on five land type categories using combined data for all satellites. Regressed RMSEs 

ranged from 2.825 K to 3.743 K, while R squared values ranged from .7295 to .8613. 

Preliminary analysis indicated refinement of CV brightness temperature coefficients 

might yield better accuracy for the algorithm. 

XI 



A REFINEMENT AND CROSS-VALIDATION OF 

THE SPECIAL SENSOR MICROWAVE IMAGER (SSM/I) 

CALIBRATION/VALIDATION (CV) BRIGHTNESS 

TEMPERATURE ALGORITHM 

I. Introduction 

Chapter Overview 

This chapter introduces satellite passive microwave remote sensing, its use in 

determination of land surface temperatures, and an explanation why improved accuracy 

would be beneficial in scientific and military applications. A background section will 

identify the two space platforms used to obtain microwave brightness temperature 

measurements and the conversion algorithm refined and cross-validated in this study. 

The research problem, assumptions, and general research approach will be outlined. 

Finally, the chapter briefly summarizes the results of the research. 

Introduction 

Until recently, the only method of determining surface temperature at a given 

location was to place a thermometer there and have a human read it. Obviously, this is 

not always possible, especially in sparsely populated or data denied areas. With the 

increased emphasis on numerical weather prediction, it has become important to 

determine temperatures in the very regions where such in situ temperature measurements 

are few and far between. If we can measure terrestrial emissions via satellite and develop 



an accurate algorithm for calculating surface temperature, it will greatly aid in initializing 

computer atmospheric models. In addition, military commanders will have better access 

to information for their Intelligence Preparation of the Battlefield (IPB) assessments, for 

example allowing for more accurate weapons lock-on range estimates by such 

temperature-dependent computer programs as the Electro-optical Tactical Decision Aid 

(EOTDA). One attempt to measure temperatures via remote sensing is the 

Calibration/Validation (CV) Algorithm, adapted to the Special Sensor Microwave Imager 

(SSM/I) aboard the F13 Defense Meteorological Satellite Program (DMSP) Satellite. If 

research can be performed to improve the accuracy of the algorithm, as well as to cross- 

validate the algorithm on other DMSP satellites, the benefits to atmospheric modelers and 

military commanders will be that much more. 

Background 

Before we delve into the specifics of the algorithm and the passive microwave 

imager, we must understand why the microwave spectrum would be the best choice for 

determining surface temperature. An important criterion is that terrestrial emission 

measurements not be significantly contaminated by extraterrestrial sources, such as the 

sun. Thus, our measurements must be obtained within the long (wavelength) end of the 

electromagnetic spectrum (Rees, 1990). A prima facie choice in this range might be the 

infrared (TR) spectrum; however, clouds have a high albedo in this range (Rees, 1990), 

thus making daytime surface measurements difficult where there is cloud cover. The 

microwave spectrum is the best choice for four reasons: readings are not affected by the 

sun's illumination; microwave radiation penetrates clouds; microwave radiation 



penetrates vegetation; and the nature of microwave radiation allows it to be measured 

more easily from a spaceborne platform (Ulaby, 1981). 

On each of the DMSP platforms, there is an SSM/I. This thesis will concentrate 

on three satellites carrying this imager - the F13 satellite, the F10 satellite, and the newer 

F14 satellite; the latter was launched in April 1997 from Vandenberg AFB, California 

(Cooper, 1997). Research has already been done on land temperature analysis with the 

F13 satellite (Harris, 1998; and Comoglio, 1997), including a comparison of two different 

brightness temperature algorithms: The Calibration-Validation (CV) algorithm and the 

TMPSMI (TS) algorithm. This study will concentrate on improving regression 

coefficients of the CV algorithm because the CV algorithm has a higher production rate 

and met Air Force Weather Agency (AFWA) accuracy criteria more often than the TS 

algorithm (Harris, 1998). 

Problem and Assumptions 

The focus questions of this research are twofold: first, if regression techniques can 

fine-tune the CV algorithm's coefficients to yield greater accuracy; and second, if the 

"true" brightness temperature - surface air temperature regression coefficients derived for 

one set of passive microwave sensors (F10/F13) are identical to those of other identical 

sensors (e.g. F14), or is there a statistically significant difference in "true" regression 

coefficients between the sensors. 

This research does not attempt to refine the land type determination part of the 

CV algorithm; it is assumed the techniques and code used are accurate. Another 

assumption is that the synoptic observations of surface temperature used in this research 



are accurate. Finally, we will assume that all sources of error (explained more in detail in 

Chapter II) can be reduced to an acceptable level using statistical methods alone. 

Research Scope and General Approach 

This research will only seek to refine coefficients of the existing CV algorithm 

and check to see if regressed coefficients can be used interchangeably on brightness 

temperature measurements from all SSM/I platforms. Thanks to previous research in this 

field (Harris, 1998; and Comoglio, 1997), there already exists on hand a number of 

brightness temperature data sets from the F10 and F13 satellites, as well as a large 

number of surface observations from around the world. The first step was to match 

F10/F13 brightness temperature measurements obtained at frequencies of 19.3 GHz 

(horizontal and vertical polarizations), 22.2 GHz (vertical polarization), 37 GHz 

(horizontal and vertical polarizations), and 85.5 GHz (vertical and horizontal 

polarizations), with surface observation data by location and time to form data sets. 

These sets were sorted by season, land type, and region. The matching and sorting was 

accomplished by adapting FORTRAN code written by Harris and Comoglio and by 

adapting the land type-sorting algorithm from the CV code. The data was then 

transferred to a PC and statistical analysis was performed using the commercial software 

package S Plus 4.5. by MathSoft, Inc, Cambridge, Massachusetts. 

After the F10/F13 data was analyzed, Similar F14 SSM/I data was matched with 

synoptic observation data acquired from the Air Force Combat Climatology Center 

(AFCCC) and sorted the data sets by CV-determined land type. A Bernoulli indicator 

variable (Neter et al., 1983) was then assigned to each data point by satellite 



identification: a value of 0 was assigned to Harris's F10/F13 data and a value of 1 was 

assigned to the new F14 data. 

Results 

Some 4,000 usable F10/F13 matches (what constitutes a "match" is explained in 

Chapter III) were found and divided into eighteen groups: by seasons (Fall 96 and Winter 

97) and by one of eight different land types, plus an "undetermined land type" category. 

Fourteen of eighteen groups had more than 30 data points, thus allowing us to invoke the 

Central Limit Theorem (Devore, 1991), and therefore justifying the use of linear 

regression. Multiple Linear Regression on these groups yielded root mean square errors 

(RMSE) between 2.55 K and 4.58 K, with explanatory power (R squared) between 0.616 

and 0.803. This data compares quite favorably to RMSE values ranging from 5.3 K 

tol9.4 K in Harris's analysis using the original CV coefficients. The error in the current 

research was lowest for the Desert land type in Winter 97. The lowest RMSE in the Fall 

96 data set was for "Light Vegetation" (RMSE 3.13 K). Highest errors were found in the 

"Undetermined Land Type" category and "Wet Soil" categories in both seasons. Upon 

closer analysis, it was determined that the "Wet Soil" land type in Fall 96 had a 

significantly lower RMSE and higher explanatory power when non-CONUS data points 

were excluded (4.28 K / 0.625 to 3.41 K / 0.688). The other categories only showed 

slight changes in RMSE when non-CONUS data points were excluded, though the 

"Undetermined Land Type" category for Fall 96 showed a considerable increase in 

explanatory power (0.616 to 0.724). 



From the F14 data, 2,581 usable matches were found from September 1997. 

Since only 474 of these matches came from outside CONUS, the data was not separated 

by region. These matches were then combined with 1,119 data points from Harris's 

F10/F13 data from October 1996 and performed a qualitative regression using the 

Bernoulli indicator variable described earlier.   This analysis indicated satellite identity 

did not have a statistically significant impact upon the regression coefficients for the 

"Moist Soil," "Dense Vegetation," "Light Vegetation," "Desert," and "Dry, Arable Soil" 

land types.   Satellite identity did have a statistically significant impact upon the 

regression coefficients for the "Semidesert" and "Wet Soil" land types, as well as for 

those data sets which the CV algorithm could not confirm a land type.   A determination 

could not be made for the "Mixed Water and Vegetation" land type, as there were no data 

points in this category. 

For the five land types for which satellite identity did not have an impact, new 

regressions (sans indicator variable) of the combined F10/F13/F14 data sets were 

performed. RMSEs from the new regression ranged from 2.825 K for the "Light 

Vegetation" land type to 3.743 K for the "Desert" land type. R squared values ranged 

from .7295 for "Desert" to .8613 for "Dense Vegetation." 

To confirm the qualitative results of the regressions, the F10/F13 and F14 data 

were regressed separately and each data set was cross-validated using the regressed 

coefficient from the other data set. Results largely confirmed the qualitative regression, 

with root MSPR values ranging from 2.687 K for the F14 "Light Vegetation" data 

validated with the F10/F13 coefficients, to 4.773 K for the F14 "Desert" data validated 

with the F10/F13 coefficients. Similar validation of the rejected land types confirmed the 



rej ection, with root MSPR values ranging from 5.22 K for F14 "semidesert" data 

validated with F10/F13 data, to 7.072 K for F10/F13 "semidesert" data validated with 

F14 coefficients. 

Summary 

The purpose of this research is to refine the CV coefficients for improved 

accuracy in retrieved surface temperature measurements and to determine the 

compatibility of data from different SSM/I platforms for the purpose of deriving Multiple 

Linear Regression Coefficients. Multiple Linear Regression analysis was used on 

Harris's data to re-derive CV coefficients, reducing the RMSE values by significant 

amounts over the original CV coefficients. F14 data was then matched, sorted, and 

combined with Harris's data. A qualitative regression was then performed to determine if 

satellite identity was an important factor in the regressions. The research indicated that 

the platform was not a significant contributor for 5 of the 8 land types. Satellite identity 

was significant for 2 land types, as well as data points for which the CV algorithm could 

not determine a land type. There was insufficient data for regression of one of the land 

types. Cross-validation of the data largely confirmed these results. 



II. Background 

Chapter Overview 

In this chapter, the physics of electromagnetic radiation will be introduced, 

including Planck's Law and the applicability of the Rayleigh-Jeans Approximation in the 

microwave region of the spectrum. After the introduction, the history of microwave 

remote sensing will be discussed briefly. Then, the Defense Meteorological Satellite 

Program (DMSP) satellites and the SSM/I sensors particular to the study will be 

discussed. At this point, an equation relating surface temperature to the amount of 

microwave radiation emitted will be described. It will then be shown that the equation 

cannot be solved analytically due to the inverse nature of the problem. However, due to 

large amounts of data available, statistical methods such as multiple linear regression can 

be used to estimate the actual relationship between the brightness temperatures measured 

by the satellite and the observed surface temperatures.   The Calibration/Validation (CV) 

algorithm is one such attempt to estimate surface temperatures in such a way.   After 

outlining the advantages of refining CV coefficients and cross-validating algorithms on 

data from different DMSP satellites, potential sources of error in determining surface 

temperatures with passive microwave radiometry will be outlined. Finally, a short review 

of research correlating surface temperatures with microwave emissions will be presented. 

Introduction 

All objects emit energy in varying intensities throughout the electromagnetic 

spectrum. The intensity of this emission at a given wavelength is a function of the 

object's temperature (Rees, 1990). Since we are interested in the temperature of the 



earth, we will look at the wavelength distribution of radiation for a body of 

approximately 300K. If we apply Planck's Law (Fleagle and Businger, 1980) and for the 

purposes of illustration equate the earth to a black body of 300K and examine the 

spectrum of its emissions (see Figure 1), we see that the peak of the earth's radiation 

would fall between 3 and 15 micrometers, the infrared (IR) portion of the spectrum. 

While viewing the infrared portion allows relatively easy temperature determination, the 

existence of clouds makes measurement of surface temperatures difficult (although the 

determination of the temperature of cloud tops can be extremely useful for other 

meteorological purposes).   Because of this, and for the other reasons we discussed 

earlier, scientists have turned to the microwave portion of the spectrum for surface 

temperature measurement. 
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Figure 1: Planck Radiance by Temperature and Wavelength 
(Adapted from Kidder and Vonder Haar, 1995) 



When comparing in situ synoptic surface temperature measurements with 

temperatures calculated from remotely sensed measurements of terrestrial emission in the 

microwave portion of the spectrum, there are several potential sources of variance 

between the two values.   One fundamental source of variance arises from the difference 

in measurement method. In a standard thermometer, the sensor is in direct contact with 

the air and determines the temperature via conduction, i.e. allowing kinetic energy from 

the surrounding air molecules to be transferred to the sensor. In contrast, because it is by 

definition not in direct contact with the earth or its atmosphere, a sensor on board an 

orbiting platform must be a remote sensor. Also, a satellite-based instrument designed to 

sense microwave emissions is measuring the magnitude of radiation coming from a 

particular solid angle of view. As such, a satellite must take into account the shape of the 

earth and the incident angle of the earth's surface and atmosphere relative to the sensor 

(Ulaby, 1981). 

Radiative Transfer 

Radiative transfer is the flow of energy from an object to a receiver at or near the 

speed of light. While there are equations that quantify this radiation flow, detailed 

exploration of these equations does not contribute much to the understanding of radiative 

transfer we need for this research. Therefore, we will keep this discussion as qualitative 

as possible. Paraphrasing Ulaby (1981), the intensity of radiation measured at a sensor is 

given by two terms. The first term is the radiation from the object propagating toward 

the sensor. A negative exponential extinction factor due to absorption by material (or the 

10 



"medium") reduces the magnitude of this first term between the sensor and the object. 

The second term represents the emission and scattering by the intervening medium along 

the propagation path. 

Before we proceed, a brief word on polarization. Polarization is the orientation of 

a wave, in this case electromagnetic waves, relative to a coordinate system (Rees, 1990). 

In the propagation of an electromagnetic wave, the electric field vector and magnetic 

intensity vectors are orthogonal (Fleagle and Businger, 1980).   As a result, it is important 

for a sensor to take into account two polarizations of radiation and use vector addition to 

be able to interpret a full picture of an electromagnetic wave. Finally, due to sign 

conventions, it is possible that a reading in a given polarization may have a negative 

contribution to the intensity of the electromagnetic wave. Therefore, we should not be 

surprised if regression yields oppositely signed coefficients for two polarizations in the 

same frequency range. 

Now that a simplified explanation the physics of radiative transfer has been given, 

let us simplify the scenario even further: suppose there is no intervening material between 

object and sensor. This removes the extinction factor from the first term, and the second 

term altogether, which leaves us with a highly desirable result: brightness temperature 

measured at the sensor is equal to the brightness temperature (and ultimately, the physical 

temperature) of the object. 

As a final simplification, let us now assume the object is a blackbody, i.e. an 

idealized, perfectly opaque material that absorbs all radiation at all frequencies, reflecting 

none, and emits radiation such that its temperature neither increases nor decreases as a 

result (Ulaby, 1981).   At this point, we can now invoke Planck's radiation law: 

11 



By(T) = (2hv3/c2)(l/(vq)(hv/kT)-l)) (1) 

0 1 1 
Where Bv = Surface brightness (or radiance) (W m" sr" Hz") 

v = Frequency (Hz) 
T = Physical temperature (K) 
h = Planck's Constant (6.6256 x 10"34 J s) 
k = Boltzmann's Constant (1.3805 x 10"23 J K"1) 
c = Speed of light (2.9979 x 108m s"1) 

Bv does not have a physical meaning unless the equation is integrated over a range of 

frequencies. Normally, monochromatic radiance is measured in units of Watts per meter 

squared per steradian per Hertz, implying integration over the frequency bandwidth of the 

sensor channel. 

After all of our simplifications, we are still left with a rather troublesome equation 

to evaluate. It would be very nice if we could somehow reduce equation (1) to a 

polynomial. One way to change an exponential into a polynomial is to convert the 

exponential into a Taylor polynomial expansion. 

The Rayleigh-Jeans Approximation 

Even for those of us who are not adept at mathematics, there is a sense of 

satisfaction when a mathematical technique can be used to simplify a problem. In the 

case of equation (1), we can expand the exponential using the Taylor expansion: 

eJC=l + x + (x2/2!) + (x3/3!) + ... (2) 

12 



In this case, x = hv/kT.   If we now perform a dimensional analysis of the value of hv/kT 

in the case of T ~ 100K and frequency in the microwave region (i.e. approximately 100 

GHz) we get: 

h^Ts(10"34 -10n)/(10-23 -102)~10-2 «1 (3) 

Thus, for the magnitudes in question for this research, we can neglect the higher order 

terms of hv/kT, leaving us with the approximation e* = 1 - x. This gives us when we 

plug back into equation (1): 

Bv{T) = (2hv' lc2){\l({\-hvlkT)-\)) = 2hvikTlhvc2 =2v2kT/c2 (4) 

(for integration over frequency) 

Similarly, the approximation can be applied to the wavelength form of Planck's Law: 

Bz(T) = 2kT/Ä2 (5a) 

for integration over frequency, or 

Bz(T) = 2ckT/A4 (5b) 

for integration over wavelength. 

A very significant use of this approximation is that microwave monochromatic 

radiance is directly proportional to temperature in equations (4) and (5). Our dimensional 

analysis indicated that the higher order terms could be safely neglected. Indeed, Ulaby 

mentions that the Rayleigh-Jeans approximation yields values within 1% of the Planck 

13 



equation for frequencies of less than 117 GHz. Since the highest frequency observed by 

the sensor in this research is 87 GHz, it should be acceptable to use this approximation. 

Non-Blackbody and Atmospheric Effects 

Given equation (4) above, it should now be a simple matter of choosing a 

frequency in the microwave range, correlating the observed brightness temperature with 

surface temperature, calculating the coefficient 2v2k/c2, and disseminating flawless 

surface temperature readings based on microwave radiation. However, equation (4) is an 

approximation. We must now step back and examine the flaws in our assumptions. 

The first problem is, the earth is not a blackbody. That is, it does not absorb all 

radiation perfectly and emit the radiation perfectly in accordance with Kirchhoff s Law 

(Fleagle and Businger, 1980). To describe the emission properties of a non-black body, a 

coefficient of emissivity s is normally used to relate the actual radiance of a body at a 

given temperature to the amount the body would radiate if it were a black body (Fleagle 

and Businger, 1980).   This itself would not be so bad if emissivity were a single 

constant, but it is not.   Emissivities vary as a function of wavelength and temperature 

(Fleagle and Businger, 1980). Worse still, emissivities can change considerably based on 

the molecular structure of the surface (Ulaby, 1986).   While the latter can be overcome 

when the surface sensed is homogeneous, it can become quite troublesome for composite 

surfaces, such as those which are on land (McFarland, 1991). 

Further complicating the matter is that a non-blackbody surface reflects radiation 

it does not absorb. Assuming no radiation is transmitted through the body, the emissivity 

plus the reflectivity equal one. In other words, if a body has an emissivity of .65, it 
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would have a reflectivity of .35. The result of this is to introduce another factor that we 

must take into account in a radiative transfer equation. 

Thus, emissivities can vary considerably on land in both space and time. The 

composition of the earth's surface can vary considerably in a few kilometers, while 

precipitation can alter emissivities and resultant detected radiation considerably over a 

short time. Indeed, research has been done to correlate rainfall rates with reductions in 

detected radiation (Conner and Petty, 1998). This brings us to another factor that affects 

the amount of radiation reaching a sensor: the intervening atmosphere. 

While we made the original assumption that all radiation emitted in the direction 

of the sensor would reach that sensor, clearly this is not the case. There is still the matter 

of absorption, emission and scattering of microwave radiation by the atmosphere. 

Fortunately, since the composition of the atmosphere is relatively constant up to 90km 

above sea level with the exception of water vapor content (Ulaby, 1981), most 

attenuation due to absorption can be taken into account relatively easily.   The remaining 

variances we must take into account come from the water vapor absorption and emission 

in the 22.2 GHz and 183.3 GHz bands (Ulaby, 1981) and scattering due to suspended 

water droplets and other hydrometeors (Ulaby, 1981). 

Finally, we implicitly made the assumption that the surface of the earth was 

smooth and that radiation would be transmitted toward the sensor isotropically. Because 

the earth's surface is rough, the angle at which the surface will radiate will not always be 

directly away from the center of the earth; parts of the surface will radiate at varying 

intensities relative to the vector from the earth's surface to the sensor. The result is 
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diffusion of the radiation, resulting in a reduction in the radiance sensed by a radiometer 

(Ulaby, 1981). 

Now that the nature of the problem has been explained, we will now take some 

time to discuss the history of remote sensing which leads us to the present state of Passive 

Microwave Radiometry.   The information in the next section is paraphrased from 

Section 1-2 of Ulaby (1981). 

Historical Context 

Microwave radiometry can be traced back as far as Heinrich Hertz's first radio 

experiments in 1886. In a test of Maxwell's electromagnetic theory, Hertz constructed 

resonators at a frequency of 200 MHz, which is quite close to the microwave portion of 

the spectrum. There followed in the early 20th Century many experiments in the radio 

portion of the spectrum, involving continuous and pulse wave radio detection and ranging 

(RADAR) devices. In the 1920s, the U.S. Naval Research Laboratory conducted 

experiments to detect ships and aircraft, while other researchers used radio pulses to 

measure the height of the ionosphere. 

The development of radar continued in the 1930s and 1940s. The advent of 

World War II hastened radar development, including a long-wave system that was 

deployed in aircraft. By 1946, radars operating at frequencies of 3, 10 and 24 GHz were 

in service and producing images of the ground. It was noted that the 24 GHz band was 

not always effective because of the tendency of water vapor to absorb radiation ofthat 

frequency (24 GHz is close to the 22 GHz water vapor absorption feature; pressure 

broadening leads to significant absorption at 24 GHz as well). 
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By the 1950s, the side-looking airborne radar (SLAR) was developed. With this 

radar and its long antenna, images produced were of finer resolution. Most SLAR 

systems operated at frequencies of 10 GHz, 16 GHz, and 35 GHz, though some operated 

at even higher frequencies. One of these systems, the AN/APQ-97, was declassified in 

1964. This images created from this system over the CONUS in 1965 and 1966 were still 

being studied decades later. 

Another major improvement was the development of synthetic aperture radar, 

which improved image resolution even further. With the dawn of the Space Age, 

proposals were drawn up to place synthetic aperture radars into space. The lag from 

proposal to action was considerable, however, as the first such radar launched was on 

Seasat in June of 1978. 

In contrast to radar, or active microwave (mw) remote sensing, is passive mw 

remote sensing. In other words, rather than emitting a pulse of radiation at its target and 

recording the amount of radiation reflected, a passive sensor measures the amount of 

radiation naturally emitted from its target. The first spaceborne passive microwave 

radiometer (PMR) to acquire data did not acquire data from Earth, but from Venus. In 

1962, the Mariner 2 space probe orbited Venus with a two-channel microwave 

radiometer aboard. The first orbiting platform to acquire such data for Earth was the 

Cosmos 243 satellite, launched by the Soviet Union in 1968. The first American satellite 

with such capabilities was Nimbus 5, launched by the National Oceanographic and 

Atmospheric Administration (NOAA) in 1972. 

The first spaceborne PMR systems launched by the US military were incorporated 

in its series of Defense Meteorological Satellite Program (DMSP) polar orbiting 
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satellites, the first of which was launched in 1978 and was used to recover atmospheric 

temperature profiles (Ulaby, 1981). The First Special Sensor Microwave Imager 

(SSM/I), the radiometer studied in this research, was aboard the DMSP satellite F8, 

launched in 1987 (Hesser, 1995). Until recently, most PMR research concentrated on 

atmospheric temperature profiles and wind speed over smooth surfaces. The first attempt 

to correlate PMR data with surface temperatures was by McFarland, et al. (1991) in their 

development of the Calibration/Validation (CV) algorithm, which sorted data by land 

type and then calculated a surface temperature. 

Remote sensing of land surface temperature is of special interest to the military 

for two reasons. First, accurate surface temperatures would lead to improved input for 

computer forecast models. Second, the ability to know the surface temperature gives the 

ground commander a tactical advantage in preparation for action in a data-sparse or 

enemy held area. For example, knowledge of the land surface temperature can assist in 

determining the times at which infrared sensors will effectively detect various targets. 

Since this research concentrates on the use of the SSM/I to this end, the next section 

provides information on the DMSP program and the SSM/I. 

DMSP and the SSM/I 

DMSP satellites are in a near polar orbiting, sun synchronous orbit at an altitude 

of approximately 830 km above the earth. Each satellite provides twice-daily global 

coverage and has an orbital period of about 101 minutes. Visible and infrared sensors 

collect images of global cloud distribution across a 3,000 km swath during both daytime 

and nighttime conditions. The coverage of the microwave imager is one-half that of the 
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visible and infrared sensors, thus the polar regions above 60° latitude are imaged on a 

twice daily basis, but the equatorial region are viewed on a daily basis (NGDC, 1998a). 

The SSM/I instrument consists of an offset parabolic reflector that is 24 x 26 

inches fed by a seven-port horn antenna. The reflector and feedhorn are mounted on a 

rotating drum that contains the radiometers, digital data subsystem, mechanical scanning 

subsystem, and power subsystem. A small mirror and a hot reference absorber are 

mounted on the assembly for calibration purposes. 

Figure 2: Schematic of aDMSP Satellite 

The instrument sweeps a 45° cone around the satellite velocity vector so that the 

Earth incidence angle is always 54°. Data are recorded when the antenna beam intercepts 

the Earth's surface. The channel footprint varies with channel number (or frequency), 

position in the scan, along-scan or along-track direction, and altitude of the satellite. The 

85 GHz footprint is the smallest at 13 x 15 km and the 19 GHz footprint is the largest at 

43 x 69 km. Because the 85 GHz footprint is so small, it is sampled twice as often, i.e. 

128 times a scan. One data cycle consists of 4 85 GHz scans and 2 scans of the 19, 22 
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and 37 GHz channels. The complete cycle takes 28 seconds and it must be complete to 

process the data (NGDC, 1998b). 
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Figure 3: SSM/I Scan Geometry (Adapted from Hollinger, 1983) 

As we can see in figure 4, the SSM/I scan frequencies were chosen for a reason. 

The 19.3, 37 and 85.5 GHz channels are in electromagnetic "window" regions, while the 

22.2 GHz channel is in the middle of a water vapor absorption band and is thus highly 

sensitive to changes in water vapor content. In addition, the 85.5 GHz channel is highly 

20 



sensitive to scattering and can be used to detect scattering patterns associated with 

rainfall (Conner and Petty, 1998). 
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Figure 4: Percentage Transmission through Clear Atmosphere to Space 
(Adapted from Ulaby, 1981) 

Now that we have reviewed the DMSP satellites and the SSM/I instrument, we 

will next look at the realistic problem of retrieving land surface temperatures from 

satellite-derived microwave brightness temperatures. 

The Inverse Problem 

If we take into account all of the factors we mentioned in our "Radiative 

Transfer" primer earlier, using Hollinger (1983), Rees (1990) and Ulaby (1981) as 

guides, we can incorporate the apparent brightness temperature into a radiative transfer 

equation (RTE), which relates the measured brightness temperature at a certain frequency 

to the desired surface temperature. The equation is rather involved (Harris, 1998): 
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n n 

Tap (H) = sT0e- + rTskye-2* + jicj^e^dz + ( \K-.7\_do^'dz)e^ (6) 

where 
Ta  = Apparent brightness temperature at satellite height H 

e   = Emissivity of ground 
T0 = Physical temperature of ground 

e'T = Atmospheric reduction factor 
x  = Optical depth above level z 
r = Reflectivity of the ground 
Tsky = Brightness temperature of the "sky" (i.e. extraterrestrial radiation sources) 

Ke = Atmospheric extinction coefficient at level z 

Ta_down and Ta_u   = Physical temperature of an atmospheric layer of thickness dz at level z 

In other words, the RTE shows that the apparent brightness temperature at the sensor, is a 

function of (a) the brightness temperature contribution by the surface, i.e. the emissivity 

times the blackbody brightness temperature, further reduced by atmospheric attenuation; 

(b) extraterrestrial background radiation, reflected by the earth and twice attenuated by 

the earth's atmosphere (once in and once out); (c) upward atmospheric emission, 

attenuated by the portion of the atmosphere between the emission point and the sensor; 

and (d) downward atmospheric emission, reflected by the earth and attenuated by the 

appropriate amount of atmosphere. 

Clearly, if we knew a, b, c, and d, we could easily calculate the apparent 

brightness temperature. The problem lies in that we know the apparent brightness 

temperature and want to find the surface temperature. Such an "inverse" problem does 

not yield itself to straightforward analytical solution (Ulaby, 1986). Therefore, other 

methods such as statistical methods must be employed. 
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The General Linear Model 

Though we could theoretically solve our problem numerically, there are too many 

variable parameters to do so experimentally. However, we do not need to solve the RTE. 

Instead, we can gather a lot of brightness temperatures and corresponding surface 

temperatures. This abundance of data lends itself quite well to statistical methods such as 

Multiple Linear Regression (Neter et al., 1983). 

The general linear regression model assumes (a) there exists a linear relationship 

between the random variable Y (surface temperature) and a linear combination of other 

variables (channel brightness temperature), and (b) the value of Y minus the expected 

value of Y (or residual) can be represented by a normal distribution of mean 0 and some 

set standard deviation (Neter et al., 1983). In the case of this research, a linear brightness 

temperature-surface temperature relationship and Gaussian distribution of temperature 

deviation is reasonable (Ulaby, 1986). Further, the large number of data sets analyzed in 

this research means we can invoke the Central Limit Theorem, which allows us to 

assume a Gaussian distribution of parameters not taken into account in the regression 

model (Wilks, 1993), thus allowing us to satisfy assumption (b). 

Given these assumptions, we can view the relationship between a single surface 

temperature observation and the seven corresponding channel brightness temperatures as 

given by the following equation: 

Y = A + fixXx + ß2X2 +... + ß7X7 + £i (7) 
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An easier way to look at the above equation is in matrix format. Thus if we define 

vectors Y, ß, and s; and a matrix X as follows: 

Y = X = 

1    Xx 

1    X 21 

..   X 

..   X 

1   x, n\ 

17 

27 

Xni 

ß- 

ßo 

ß 

A 

£ = 

we could rewrite equation (7) as (Neter et al., 1983) 

Y =Xß + e 

where 

(8) 

Y is a vector of surface temperature observations 
ß is a vector of coefficients 
X is a matrix of brightness temperature values 
s is a vector of independent normal random variables with expected value of 0 and 
variance a2I (where I is the Identity Matrix) 

Knowing ß, we can retrieve Y (the vector of surface temperatures) from X (the 

vector of brightness temperatures). Unfortunately, we cannot use equation (7) to 

calculate the "true" coefficients because we do not know what the error values are. 

Fortunately, we can use the method of least squares (Devore, 1995) to estimate the 

regression coefficients ß. In matrix form, Neter describes the calculation of the vector of 

estimated coefficients b (an estimate of ß) as: 

b = (XTX) -1 XTY (9) 
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In our experiment, we are dealing with thousands of data sets and seven 

brightness temperature channels to regress. Inverting and transposing such matrices by 

hand would be highly cumbersome. Fortunately, there exist many software packages to 

make these calculations for us. The software package I used was S-Plus 4.5 by Mathsoft, 

Inc. (1997). 

Stepwise Linear Regression 

Whenever possible, it is desirable to remove variables from a regression in order 

to simplify the math involved. When the contribution of a certain variable X only gives a 

marginal contribution to the multiple R-squared value (for further explanation, see 

section 13.4 of Devore, 1995) of the regression estimate, that variable can be removed 

without significantly reducing the accuracy of the regression. One of the most common 

methods of removing variables in this manner is stepwise linear regression. The method 

of stepwise regression develops a series of regression models, at each step adding or 

deleting a variable (Neter et al., 1983). Fortunately, the S-Plus software has the 

capability to perform stepwise regression. 

It is important to note, however, that stepwise linear regression has its limitations. 

Among the most significant to our research is that stepwise regression will occasionally 

arrive at an unreasonable subset of variables when the overall variable set is highly 

correlated (Neter et al., 1983). Since the full set of brightness temperatures can have 

correlation as high as .9 at times (McFarland, 1991), it will be important to keep an eye 

on the "aptness" of the model. Among the methods used to test regression aptness is to 

check that the residuals do not deviate significantly from normality (Neter and 
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Wasserman, 1974). This can be done with a number of plots, which are available inSz 

Plus. Such plots of the regressions performed in this research will be shown in Chapter 

IV and Appendix B. 

Antenna Temperature vs. Brightness Temperature 

The SSM/I sensors do not detect brightness temperature directly. Rather, the 

sensors measure what is known as antenna temperature. In order to explain this, we must 

delve briefly into antenna theory. 

The best way to think of a passive antenna is as a wire. It functions to guide 

electromagnetic waves along itself (Ulaby, 1981). The radiometer works in that it 

measures the voltage change in various frequencies along the antenna. Given a 

bandwidth and the physical characteristics of the antenna, the voltage counts transmitted 

by the satellite can be translated into brightness temperatures. For the SSM/I instrument, 

Air Force Weather Agency (AFWA), Offutt AFB, translates the raw counts into 

brightness temperatures and places them into a Sensor Data Record (SDR). It is 

important to keep in mind that the brightness temperatures studied did not come directly 

from the satellite but were first converted from voltage counts; this introduces another 

possible source of error into the research, calibration error. 

The Calibration/Validation (CV) Algorithm 

The algorithm studied in this research is the CV algorithm. For a given "scene," 

this routine first looks at relationships between the seven channel brightness temperatures 

in order to determine a land type. The brightness temperature ranges relevant to the 
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respective land types were determined experimentally by observing channel brightness 

temperature relationships over known land types (Hollinger, 1983).   The CV program 

first separates data into 8 different land types: dry, arable soil; moist soil; semidesert; 

desert; dense vegetation; mixed water and vegetation; light vegetation, and wet soil. 

Following is an example of a land type-sorting algorithm for the "dry, arable soil" land 

type: 

If(V22-Vl9)<4.0    and 

4.0<(F19 + F37)/2<9.8   and 

(F37-F19)>-6.5   and 

-5.0<(F85-F37)<0.5   and 

(#85 - #37) < 4.2   then 

land type = dry arable soil 

Where variables are by polarization and frequency, e.g. "V22" is the brightness 
temperature measured for vertical polarization at 22 GHz 

In the original CV algorithm, these land types were then recombined into four more 

general land types: dense vegetation, agricultural / range, moist soils, and dry soils. 

Multiple linear regression was performed and coefficients were calculated for each land 

type (McFarland, 1991). In this research, we will concentrate on the eight original land 

types, plus the data points for which the CV algorithm could not determine a land type. 

Indicator Variables and Qualitative Regression 

This research investigates two different sets of data: one set consisting of data 

from the F10 and F13 DMSP satellites, and another set from the F14 DMSP satellite. 

Part of the research involves determining if there is a statistically significant difference 
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between the regression coefficients obtained for the two data sets. The simplest method 

to perform such a qualitative regression is the use of an indicator variable (Neter et al., 

1983). 

An indicator variable is a variable that identifies a category of data. In this case, 

our categories are F10/F13 data and F14 data. For our research, we may create a variable 

with the values 0 and 1: 0 for the F10/F13 data and 1 for the F14 data. Regression can 

then be performed on the combined (F10/F13/F14) data set, including the indicator 

variable with the other relevant variables in the regression. The Null hypothesis will be 

that the coefficient of the indicator variable in the regression will be zero, i.e. the 

regression functions of the two data sets are identical. The Alternative hypothesis will be 

that the coefficient of the indicator variable will not be zero. A standard t-test or partial-F 

test can be performed to determine whether or not to reject the Null hypothesis. For 

further information on the use of indicator variables, see Chapter 10 of Neter et al. 

(1983). 

Earlier in this chapter, most of the sources of error were introduced. However, it 

is always beneficial to have listed potential sources of error in the same place. In the next 

section, these sources will be summarized. 

Sources of Error 

Given the sizes of the SSM/I channel "footprints," the most glaring source of 

error is the potential mixture of land types in a single SSM/I measurement. The land type 

determination of the CV algorithm is far from exact, but even if it were exact, brightness 

temperatures are taken over areas greater than 100 square kilometers. A number of 
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varying land types viewed within a given pixel will lead to several surface emissivities 

contributing to a single measurement. 

Another source of error is that we are using surface temperature observations to 

correlate with satellite-measured brightness temperatures. These two measurement 

methods do not always give consistent results. For example, the ground-measured air 

temperature trends since 1979 differ significantly from those observed by satellite-borne 

PMR (Hurrell and Trenberth, 1996). This difference of instrumentation may introduce a 

systematic error to our results. 

Another source of error is the assumption of a linear relationship between 

brightness temperature and surface temperature. While the Rayleigh-Jeans 

approximation lends validity to the assumption of a linear relationship between terrestrial 

microwave radiation and land surface temperature, it only applies to one part of the RTE. 

There are contributions from three other parts of the RTE - two components due to 

atmospheric microwave radiation (one upward radiation to the sensor, and one downward 

radiation reflected by the earth), and one component due to reflected extraterrestrial 

microwave radiation. These contributions are not necessarily linear, which adds a 

nonlinear aspect to the problem. 

A fourth source of error is the regression itself. Even if the brightness 

temperature-surface temperature relationship were exactly linear, because of 

measurement error, the regression can only calculate an approximation of the actual, ideal 

coefficients (Neter et al., 1983). However, the larger the regressed data set is, the more 

accurate the approximation to the true coefficients will be. 
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A fifth potential source of error is calibration error. If the calibration was not 

performed correctly, the conversion from radiation counts to brightness temperatures 

could introduce a systematic error to the calculations. It has been noted that different 

calibration averaging techniques and other processing can result in different antenna 

temperatures being calculated from the same radiation counts (Ritchie et al., 1998). The 

accuracy of the algorithm used to translate SSM/I radiation counts to brightness 

temperatures is beyond the scope of this research and will not be examined. 

Still another source of error is the accuracy of the land type algorithm itself. 

While diagnosis of the land type sorting will not be performed in this research, it is 

important to note that an erroneous land type diagnosis will introduce error. Such 

miscategorization could be caused by a number of factors, not the least of which the 

presence of hydrometeors. 

The effects of precipitation on microwave emissions are twofold: first, a higher 

liquid water amount translates to a higher brightness temperature, especially in the 19 

GHz range. Second, scattering by large ice particles at high frequencies (e.g. in the 85 

GHz range) reduces the amount of radiation reaching the satellite (Liu and Curry, 1998). 

The final source of error is the error universal to any experiment - noise. From 

noise in the radiometer measurements, to noise in the measurements of surface 

temperature, instrumentation error will add some variability to in the results. If this noise 

is of a random nature, it will conform to a Gaussian distribution and be averaged out of 

the results through linear regression. 
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Related Research 

An initial search for research on PMR-derived land surface temperatures only 

yielded the previous work done at AFIT (Harris, 1998; and Comoglio, 1997).   While no 

additional research concerning SSM/I-derived land surface temperatures was found, there 

were several articles that provided background on PMR, possible sources of error, and 

other uses for PMR. One richly researched example was use of PMR to determine 

rainfall rates. 

Hurrell and Trenberth (1996) examined the differences in observed trends 

between near-global monthly mean surface temperature anomalies and those of global 

Microwave Sounding Unit 2R (MSU 2R) temperatures for 1979-1995. The variability of 

surface-observed temperatures was found to be small over the oceans but large over the 

land, while MSU 2R measured variations that were much more zonally symmetric. Also, 

the two measurement systems gave greatly dissimilar responses to volcanic eruptions, the 

El Nino Southern Oscillation (ENSO), and changes in stratospheric ozone. Hurrell and 

Trenberth conclude that most of the differences can be attributed to physical differences 

between the two measurement techniques. They emphasize that neither technique is 

more correct, rather that both techniques give a different perspective on the same events. 

Ritchie et al. (1998) investigated differences in PMR-derived rainfall-rate 

products from NGDC and Fleet Numerical Meteorology and Oceanography Center 

(FNMOC), which used identical SSM/I data. The differences were traced to different 

calibration averaging techniques and other processing methods, which yielded different 

antenna temperatures from the same data sets. The effects of these temperature 

differences were then examined by generating rain rates using the Goddard Scattering 
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Algorithm. The conclusion was that it was possible to infer greater rain rates from a cold 

bias introduced in antenna temperature processing. Conversely, rain rates would be 

lower if the antenna temperature processing yielded a warm bias. 

Liu and Curry (1998) examined the effects of hydrometeors on microwave 

emissions. In their research, they attempted to determine if a relationship existed 

between polarization differences (D) at 19 GHz and polarization corrected temperature 

(PCT) at 85 GHz.   5° latitude X 5° longitude regional means of these parameters over 

global oceans were calculated for areas of no precipitation, light precipitation, and heavy 

precipitation. In the case of no precipitation, a small variation of PCT could be achieved 

by changing the weights given to the polarization brightness temperatures in the 85 GHz 

channel. For light precipitation, the relationship between D and PCT was latitude 

dependent. No clear latitudinal dependence was found for heavy precipitation. Liu and 

Curry conclude that the value of the D-PCT slope can be used to help categorize 

precipitation types, which may be useful in determining a specific algorithm best used for 

precipitation type. 

Conner and Petty (1998) compared SSM/I rain rate retrieval methods over the 

Continental United States. The researchers compared three experimental rain-rate 

algorithms (sorting by land type) with two existing SSM/I rain rate algorithms, using 

hourly rain gauge reports and 10-cm radar data for ground truth. Results of the research 

were inconclusive: the five algorithms yielded similar results, with no algorithm showing 

itself to be superior. 

Kidd et al. (1998) reviewed the performance of rainfall rate retrieval algorithms 

established by statistical relationships and empirical calibration. The advantages of 
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statistical-empirical algorithms were found to outweigh the disadvantages, though 

developers are aware of the limitations of such algorithms. Physically-based algorithms, 

they conclude, are not likely to improve until the intricacies of the physical relationships 

are better understood. 

Ferraro et al. (1998) set forth a methodology to screen land-related effects from 

SSM/I precipitation retrieval algorithms. They found the complicated interaction of 

earth-emitted microwave radiation with various land types and atmospheric variations 

made the development of a single global screening methodology very difficult. For this 

reason, they recommend development of screening methodologies on a regional basis. 

Wentz and Spencer (1998) developed a physically-based algorithm for retrieving 

rain rates from SSM/I measurements over oceans. The algorithm uses a beamfilling 

correction based upon liquid water absorption coefficients at 37 GHz and 19 GHz to 

correct the underestimation of rainfall rates by other physically-based techniques. The 

algorithm simultaneously calculates wind speed, columnar water vapor and liquid water 

content, rain rate, and effective radiating temperatures for upwelling radiation.   The root 

mean square difference between retrieved water vapor value and radiosonde-measured 

value was 5 mm. The algorithm was still found to underestimate rainfall rates in the 

tropics. 

Documentation on the SSM/I sensor by Hollinger (1983) contained a summary 

description of the SSM/I instrument, as well as descriptions of the geophysical models, 

the interaction model, the retrieval technique, and the climatology used for the SSM/I 

environmental retrieval algorithm. McFarland (1991), who investigated the brightness 

temperature behavior and polarization differences among various land types, conducted 
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the research that led to the CV algorithm. McFarland used SSM/I brightness 

temperatures obtained for specific locations on earth of a known land type. From these 

data, he derived a set of logical if-and-then statements (including the sample statements 

shown earlier in this chapter) for determination of 14 distinct land types (9 of which are 

still used by AFWA in the CV algorithm) from the 7 channel brightness temperature 

measurements. McFarland next used multiple linear regression to calculate algorithms to 

correlate SSM/I measurements and land surface temperatures for each of four general 

land type categories. For this portion of the research, which spanned four days in August 

1987, SSM/I readings from the F8 satellite over the US Western Desert and Central 

plains were matched with high/low temperature observations from the federal 

climatological network. 

Other research found of relevance to this thesis was a paper investigating land 

surface temperature determination from satellites (Prata, 1994), in which the Advanced 

Very High Resolution Radiometer (AVHRR) and the Along Track Scanning Radiometer 

(ATSR) were used to compare IR emissions with surface temperatures over Continental 

Australia. The work concluded that an algorithm that took into account climatological 

temperature and water vapor profiles could yield accurate temperature measurements. 

Schmugge and Schmidt (1998) also used an AVHRR sensor aboard the NOAA-9 

satellite to measure the surface temperature during the First ISLSCP (International 

Satellite Land Surface Climatology Project) Field Experiment (FIFE), conducted over 

grassland terrain in central Kansas in 1987. The AVHRR-derived values were corrected 

for atmospheric effects and compared to broadband temperature readings at 10 sites and 

to the thermal channel of an NS001 sensor aboard a C-130 aircraft. The AVHRR values 
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were found to be 5° to 6°C warmer than the average of the ground measurements. The 

researchers attributed the difference to the location of ground measurements being 

skewed toward well-vegetated surfaces. 

Betts and Ball (1998) performed a study confirming earlier research regarding the 

diurnal and seasonal variation of surface albedo. One of the findings was that soil heat 

flux is reduced at night when soil is drier. 

Summary 

Measurement of microwave emissions to determine land surface temperature is 

feasible but fraught with complications. Use of the Rayleigh-Jeans approximation can 

simplify the problem, but one must remain mindful of the extent to which the earth does 

not conform to required assumptions. The radiative transfer equation relates surface 

temperature to various brightness temperatures, but the equation cannot be solved easily 

due to its inverse nature.   Given the large amount of data present, statistical methods 

such as multiple linear regression can be used to estimate coefficients for a solution. 

The CV algorithm sorts data by land type, which can make regression more 

accurate. To compare data from two different satellites, an indicator variable can be 

generated and regressed to determine if the regression functions are identical. Sources of 

error are many, but with luck can be quantified via regression. Finally, very little recent 

research has been done on using SSM/I to calculate land surface temperatures, other than 

that performed at AFIT by Harris and Comoglio. 
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TIL Methodology 

Chapter Overview 

This chapter explains the processing of the data into meaningful results. Satellite 

brightness temperature channels were consolidated into sets by time and location and 

then compared to surface temperature observations taken nearby at comparable times. 

These matched sets were then exported into files, consolidated by season, and sorted by 

CV to determine land types.   Finally, data was exported to a PC and processed using 

statistical software. 

The following sections will first touch upon the work done by others at AFIT 

(Harris, 1998; and Comoglio, 1997) and explain how the data they acquired was modified 

to fit the purposes of this research. There will follow a detailed discussion of the 

matching and sorting process performed. At the end of the chapter, there will be a 

discussion of the regression techniques, both quantitative and qualitative, used to 

determine the results of the research. 

Past Work at AFIT 

While the research performed in this thesis is not directly related to the work of 

Harris (1998) and Comoglio (1997), both the data they gathered and the FORTRAN code 

they wrote were quite useful in its successful completion. Comoglio started with 

preliminary research comparing the effectiveness of the CV algorithm with the TMPSMI 

(TS) algorithm. Due to problems decoding the data, he was unable to make a complete 

comparison of the two algorithms.   Taking up where Comoglio left off, Harris gathered 
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additional data and completed the study, in which he concluded the CV algorithm was 

more accurate. Among the data gathered by Harris and Comoglio were sets of SSM/I 

readings decoded into brightness temperatures by AFWA (known as Sensor Data 

Records or SDR) and surface observations (acquired from the Air Force Combat 

Climatology Center [AFCCC]) for Bosnia, the continental United States, Saudi Arabia, 

and the Korean Peninsula. SDR readings from the F13 DMSP satellite were recorded 

over the four areas during August 1996, October 1996, and January-February 1997. 

Harris also acquired SDR from both the Fl 3 and F14 satellites for the period of late 

August -September 1997, but he did not have the time to decode this data for his study. 

The data used in this study is summarized in Table 1 below. 

Harris and Comoglio also wrote a number of useful programs and algorithms to 

analyze the data. While I was only able to use one of their programs directly, I was able 

to adapt a number of their algorithms to accomplish important tasks in my efforts. Thus, 

it can be said that my work was very much a team effort in concert with the efforts of 

Harris and Comoglio. 
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Table 1: Data Matches Used in Research 

Satellite(s) Date # of Matches 
F10/F13 16-Oct-96 90 
F10/F13 17-Oct-96 68 
F10/F13 18-Oct-96 229 
F10/F13 21-Oct-96 223 
F10/F13 22-Oct-96 88 
F10/F13 25-Oct-96 137 
F10/F13 29-Oct-96 233 
F10/F13 31-Oct-96 230 
F10/F13 04-NOV-99 270 
F10/F13 05-Nov-96 208 

F14 22-Aug-97 136 
F14 27-Aug-97 211 
F14 28-Aug-97 227 
F14 02-Sep-97 195 
F14 04-Sep-97 243 
F14 16-Sep-97 239 
F14 17-Sep-97 192 
F14 18-Sep-97 74 
F14 19-Sep-97 134 
F14 22-Sep-97 107 
F14 23-Sep-97 137 
F14 25-Sep-97 165 
F14 26-Sep-97 203 
F14 30-Sep-97 318 

Data Description 

The SSM/I SDR data was recorded on 8mm tapes by AFWA. The files were 

organized such that every day of observation was in a separate directory. Inside each 

directory were nine binary files: one for each of the seven channels, one for the date time 

group of the satellite pass, and one for the identity of the satellite (See Table 2). Each file 

contained readings for each 64 x 64 grid cell within each of the 64 polar stereographic 

grid boxes (or 4096 grid cells) which cover the entire Northern Hemisphere (See Figure 

5). 
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Table 2: Satellite Data File Names 

File Type 
Grid Date Time Stamp 

19 GHz, Vertical Polarization 
19 GHz, Horizontal Polarization 
22 GHz, Vertical Polarization 

37 GHz, Horizontal Polarization 
37 GHz, Vertical Polarization 

85 GHz, Horizontal Polarization 
85 GHz, Vertical Polarization 

Satellite Identifier 

File Name 
RNXMI1_00MITT 
RNXMI1_00MIH1 
RNXMI1_00MIV1 
RNXMI1_00MIV2 
RNXMI1_00MIH3 
RNXMI1_00MIV3 
RNXMI1_00MIH8 
RNXMI1_00MIV8 
RNXMI1  OOMIID 

Figure 5: Polar Stereographic Northern Hemisphere Grid 
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The surface temperature data from AFCCC was sent in compressed format on 3 xh 

inch disks. Each line consisted of a series of numbers, representing the World 

Meteorological Organization's (WMO) station number; the year, month, and day of the 

observation; the hour and minute of the observation in Universal time; the surface 

temperature in Kelvin; and the longitude and latitude of the station (See Table 3). 

Table 3: Example of Data Format 

STATION YEAR MO DAY HR LAT LON TEMPK 
470050 1996 10 010300 41.817 128.317 289.66 
470050 1996 10 010600 41.817 128.317 291.66 
470050 1996 10 010900 41.817 128.317 286.36 
470050 1996 10 011200 41.817 128.317 280.46 
470050       1996   10      011500 41.817 128.317 279.36 

Decoding, Combining, Matching, and Sorting the Data 

The four phases of transforming disparate data files into a group of usable 

matched data sets are: decoding, combining, matching, and sorting (See Figure 6 for a 

flow chart which outlines the four step process). For F10/F13 data already analyzed by 

Harris (1998), the first phase was already accomplished; the August 1996, October 1996, 

and January/February 1997 SSM/I SDR files were already decoded into ASCII files from 

binary files. The following few paragraphs outline the data analyzing process, first for 

the three seasons outlined above, and then for the late August/September 1997 data not 

previously analyzed. 
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Figure 6: Methodology Flow Chart 

In the data already analyzed by Harris (1998), some of the groundwork had 

already been done. However, Harris compared data pairs of CV or TS algorithm 

temperature with surface temperature, whereas this research matched data sets of the 

seven channel brightness temperatures with corresponding surface temperatures. Further, 

while Harris implicitly sorted by land type when he used the CV and TS source code to 

calculate the algorithm temperatures, he had no need to sort the output by land type to 

accomplish his goals. Thus, while this research used the same raw data, it needed to be 

manipulated in a substantially different manner than previous research had done 

Nevertheless, the F10/F13 SSM/I SDR data having already been decoded gave the 

research a considerable boost. For the August 1996, October 1996, and January/February 

1997 data, the binary data had already been decoded into ASCII. Thus, for this data, 
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phase one was already complete. For phase two, a short FORTRAN program was written 

to combine the seven separate channel temperature files for each day into one file per 

day. The record format of the new daily file was: seven channel brightness temperatures, 

followed by the three grid coordinates, referred to hereafter as "i", "j", and "k" 

coordinates. 

The third phase was to match the sets of channel temperatures to a surface 

observation nearby in both space and time. For determination of spatial proximity, the 

earlier criterion of Harris (1998) and Comoglio (1997) were used: the surface station and 

SSM/I measurement coordinates must be no more than 1 grid point apart (see figure 7). 

For ease of calculation, so-called "superneph" coordinates were used - that is, the "i," "j" 

and "k" coordinates converted into 512 x 512 "SI" and SJ" coordinates. For the surface 

temperature observations, a FORTRAN program written by Harris and Comoglio was 

used to translate the latitudes and longitudes into "superneph" coordinates.   After the 

surface observations were properly formatted, a new FORTRAN program performed the 

matching with corresponding brightness temperatures by space and time. While much of 

the code was original, many algorithms were adapted from a previously existing program 

(Harris, 1998). The matching program first looked at the Julian day and time of the 

observation at each grid point. If the Julian day matched the day being examined (i.e. the 

program automatically threw out any data from passes on previous days), it then opened 

the observation file for the appropriate hour's observations. The program then converted 

the brightness temperature i, j, and k coordinates to SI and SJ grid coordinates, and 

compared them to the SI and SJ coordinates of each observation. If the coordinate sets 
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were within one grid point of one another, the program saved the matched data set to a 

match file. This process continued until all grid points had been examined in this way. 

(206, 340) (207,340) 

GFA (206.6, 340.5) 

(206, 34i) (207,341) 

Figure 7: "Superneph" grid over Malmstrom AFB, MT, ICAO "GFAV 

(From Harris, 1998) 

Once all data had been matched, phase four sorted the matched data by CV land 

type. This was done by a FORTRAN program. While much of the code was original, the 

CV land sorting algorithms were taken from the existing calval FORTRAN program (see 

Harris, 1998). This program created nine files: one for each of the eight CV land types, 

and a ninth for those observations not fitting any of the land types. The specific land type 

algorithms are listed in Appendix C. After the program was run for each day, a UNIX 

text editor was used to combine the daily data into "seasonal" files: Summer 1996, Fall 
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1996, and Winter 1997. (Note: Harris's original data was further sorted by "CONUS" 

and "overseas" region. While some analysis was done on the regions separately, this 

researcher eventually decided not to sort the data by region.) After the data was 

manipulated as described above, the data sets were transferred to a PC, where the files 

were imported into the statistical program "S Plus" for analysis. 

After the original data was analyzed, the research turned to the Fall 1997 data not 

analyzed before. Unlike the data described earlier, this data was still in binary form. 

Therefore, the transformation process had to start with phase one. 

Having learned some lessons from the original run through, the process for 

analyzing the E14 data was streamlined. First, phases one and two were accomplished 

with a single FORTRAN program.   This program opened all appropriate files for a given 

day, then wrote the i, j, and k coordinates; day and time of observation; the satellite ID 

number, and the seven channel temperatures for each grid point. For the purposes of 

saving storage space, only the grid boxes over CONUS, Saudi Arabia, Bosnia, and Korea 

were decoded and saved in ASCII format. 

There were only slight differences in the process for phases three and four for the 

F14 data. Synoptic temperature observations were again decoded using an existing 

FORTRAN program written by Comoglio (1997) and Harris (1998), which this 

researcher modified slightly. 

The matching process was again performed by a FORTRAN program, which was 

only slightly modified for the F14 data. Specifically, the match program was rewritten to 

identify the satellite ID of each reading. If the satellite ID number did not equal 48, the 

ID number assigned to the F14 satellite (Coxwell, private communication, 1998), the 
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matched data set was not saved to the appropriate file. This was done to ensure the new 

data would indeed consist entirely of brightness temperature data from the F14 satellite. 

In another lesson learned from the first analysis, the daily files were merged into a single 

data file before the data was sorted into many different land type files. 

As was done with the earlier data sets, a FORTRAN program was used to sort the 

matched data sets into land type categories. An additional parameter was added to the 

end of each data set: an integer "1" to identify the new data as F14 data. As was done 

with the earlier data, the files were then transferred to a PC for analysis. Separate files 

were created, combining the F10/F13 data from Fall 1996 and the F14 data for each land 

type, and adding a "0" to the F10/F13 data in a new column to match the "1" for the F14 

data. The data was then ready for both quantitative and qualitative regression. 

Statistics Used 

This research will use the statistical methods of multiple linear regression (MLR) 

and stepwise linear regression. These methods are outlined in the "General Linear 

Model" and "Stepwise Linear Regression" sections of Chapter II. The assumed "true" 

regression equation will be in the form of equation (7), specifically as follows: 

Tt = A + &H19, +ß2V\9t + ... + /?7VS5i(+ßindicatorIndicatori) + si (9) 

Where Ti is the synoptic temperature observation 
H19j, V19j, etc represent the brightness temperature values 
Bindicator and Indicator; represent the qualitative regression coefficient and the 
indicator variable respectively. 
Sj is the residual assumed to be taken from a normal distribution of mean 0 and 
variance s2. 
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In equation (9) above, the parenthetical term is included in the qualitative regression to 

determine if there is a statistically significant difference between the F10/F13 data and 

the Fl4 data. 

To analyze the quality of results of the data regression, five statistics were used: 

the root mean square error (RMSE, also known as the residual standard error), the root 

mean square predictor error (RMSPR), the multiple R squared statistic, the F statistic, and 

the t statistic. The RMSE was used to evaluate the variance of the fitted temperature 

values with respect to the synoptic temperature measurements. The RMSPR was used to 

cross-validate regression on another data set. The multiple R squared was used to 

evaluate the amount of variance explained by the multiple regression, i.e. the "goodness 

of fit" of the regression. The F statistic was used to test the validity of the Null 

Hypothesis that all regression coefficients were equal to zero. Finally, the t statistic was 

used to decide upon the validity of the Null Hypothesis that the true regression equations 

of the F10/F13 data set and the F14 data set were identical. The latter determination is 

important because the primary goal of this research is to determine if CV brightness 

temperature coefficients need to be calculated separately for each new DMSP satellite 

launched. 

A common accuracy measure in the environmental sciences is the MSE, or mean 

squared error, which averages the individual squared differences between a forecasted 

value and an observed value (Wilks, 1995). In the case of this research, we can think of 

the fitted temperature value of the regression as the "forecast." Thus, if we consider y the 

fitted value and o the value of the synoptic observation, the MSE for M such data pairs is 
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M 

MSE = (\IM)Jj{ym-om)
2 (10) 

m=\ 

The statistic RMSE, the statistic used in this research is simply the square root of MSE 

(Wilks, 1995). 

The mean squared predictor error is a means of measuring the actual predictive 

capability of the selected regression model by testing its effectiveness on another data set 

(Neter et al., 1989). The MSPR for n* data sets in the new (or validation) data set is 

MSPR = (l/n*)fj(yi-oi)
2 

i=i 

If the MSPR is fairly close to the MSE based on the regression fit to the original (or 

training) data set, then the error mean square MSE for the selected regression model is 

not seriously biased and gives an approximate indication of the predictive ability of the 

model. If the MSPR is much larger than the MSE, one should rely on MSPR to 

determine how well the selected regression model will predict in the future. (Neter et al., 

1989) 

The R squared statistic, also called the coefficient of multiple determination, is a 

number between 0 and 1 which describes the proportion of total variation "explained" by 

the multiple regression model (Devore, 1995), or the "goodness of fit" of the regression. 

In other words, it is the degree to which the variance of the data is explained by the 

regression equation. If every data point fell exactly on the regression line, the R-squared 
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value would be 1. If, on the other hand, the sum of the squares of the distances from the 

regression line were not significantly smaller than the sum of the squares of the distances 

from the overall mean, the R-squared value would be very low. Typically, if an It- 

squared is small, an analyst will usually want to search for an alternative model that can 

more effectively explain data variation (Devore, 1995). While there is no agreed-upon 

"cutoff value for R-squared, I consider an R-squared = .6 as the minimum value to 

consider the regression a "good fit." 

R-squared is calculated numerically as 

R2 =l-SSE/SST (11) 

where 

SSE = Z(ym-omy (12) 

and 

SST = ^(ym-y)2 (13) 

In equation (13), the overall data mean value y is subtracted from each predicted value 

(ym), whereas in equation (12) involves subtracting each different predicted value (ym) 

from the corresponding observed value (om)(Devore, 1995). In other words, SSE is the 

sum of squared deviations about the regression line, while SST is the sum of squared 
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deviations about the mean value of the entire data set. MLR will minimize SSE, thereby 

maximizing R-squared. 

The F statistic is used in a model utility test which determines if there is a useful 

relationship between y and the regressed predictors (Devore, 1995). For this research, F 

will be used to validate or reject the Null Hypothesis 

H0:   Ä=Ä=Ä=- = Ä=0 (14) 

in favor of the Alternative Hypothesis 

Ha: Not all true regression coefficients = 0 (15) 

F* is calculated for a multiple regression with n data points and k predictors as 

F* = (R2/k)/{(\-R2)/[n-k + l]} (16) 

with the rejection level for the Null hypothesis (in the case of this research, a .01 

probability of Type I Error, or the probability of rejecting the Null when the Null is true) 

being 

F* > F = F (17) 

The critical value F.oi,k,n-(k+i) can be determined either with a mathematical program such 

as MATHCAD, or through use of a statistical table. Figure 8 shows the critical value of 
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F for 7 and 92 degrees of freedom, corresponding to MLR on 100 data points and seven 

predictor variables. 

dF(x,7,92)   0.5 

Figure 8: F distribution with 7 and 92 degrees of freedom. 
Critical value Fcrit is shown. 

Since the numbers k and n will vary among the various data sets, I will not 

explicitly calculate the critical F value for each data set. Rather, I will measure the 

probability of the Null being rejected but actually being true. This value, or "P-value", is 

the area under the curve of the Null's F distribution greater than the statistic F*. This can 

be expressed numerically as 

(18) 
F* 

and can be expressed graphically as shown in Figure 9. 
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dF(x,7,92)   0.5 

x 

Figure 9: F distribution with 7 and 92 degrees of freedom. 
P-value is the area under the curve to the right of F*. 

A P-value smaller than the desired probability of committing a Type II error means one 

can reject the Null. Rejecting the F-statistic Null hypothesis in this research means there 

is some relationship between at least one of the brightness temperatures and the synoptic 

temperature observation. Failing to reject the Null means that there is no relationship 

whatsoever between brightness temperature and synoptic temperature observation. 

Finally, the t statistic examines the null hypothesis that the true regression 

equation of one data set is identical to that of another data set (Wilks, 1995). In the case 

of this research, it will test the Null Hypothesis 

H0:   A 0 •       "indicator = 0 (19) 
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against the Alternative Hypothesis 

Ha:   ßindicator*S (2°) 

In other words, rejecting the t-statistic Null Hypothesis means there is a statistically 

significant difference between the true regression equations of the F10/F13 data and the 

F14 data. Failing to reject the Null indicates there is no such difference between the true 

regression equations of the F10/F13 data and the F14 data. 

The software program S plus tests these hypotheses using the t statistic, t*. The 

criterion for rejecting the null for a rejection level of .01 is 

I *    I— ^.005,n-(*+l) (21) 

The critical value of t.005,n-(k+i) could be found in a statistical table if it was necessary, but 

a computer makes this calculation much more quickly. For example, Figure 10 shows the 

critical values for a t statistic where n = 100 and k = 7, (i.e. there are 92 degrees of 

freedom). 

dt(x,92)  0.2 

Figure 10: critical values |t*| > t.005,92 
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As was the case with the F statistic, the number of degrees of freedom will change with 

each data set. Thus, instead of carrying different critical values through the results, I will 

instead show the "P-value." The only difference between the P-value for the F statistic 

and the P-value for the t statistic is that, because we are performing a 2-sided test of the 

Null, our critical P-value is .005 instead of .01. 

Summary 

A four phase process was used to gather matched data sets, sort them by season 

and land type, and combine the data used by Harris (1998) and Comoglio (1997) from 

Fall 1996 with new data from the F14 satellite from Fall 1997. Four statistics were used 

to analyze the data: RMSE, R squared, the F statistic, and the t statistic. With all of the 

groundwork now laid, analysis of the results can begin. 
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IV. Results Analysis 

Chapter Overview 

The results of the research were mixed. After outlining the statistics calculated to 

cross-validate data from different satellites, a possible explanation for the results will be 

offered. The data was then split and cross-validated. A comparison was done between 

the cross-validated root mean squared predictor error values and Harris's root mean 

squared error values using the old CV coefficients. 

Data Sets 

The data was sorted by season and land type. The bulk of data analysis was done 

using F10/F13 data from October 1996 and F14 data from September 1997. Since there 

was no F14 data to coincide seasonally with Jan/Feb 1997 data, and since some of the 

CONUS data from August 1996 was unreadable, these data sets were not used in the 

main research.   However, some non-validated multiple linear regression was performed 

on these data sets; the results of these are in Appendix A. 

Qualitative Regression Results 

After the indicator variable was added to the data as described in Chapter III, 

stepwise linear regressions were performed upon the data (not including the indicator 

variable) to determine which of the brightness temperature channels were statistically 

significant in calculating surface temperature. After stepwise linear regression was used 

to eliminate the channel temperatures that did not significantly contribute to the 

regression, a second multiple linear regression was performed, including the indicator 
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variable, to determine if satellite identity was a significant factor in the regression. 

Following are the results of this qualitative regression: 

Table 4. Results of Qualitative Regression 
Null Hypothesis: Satellite Identity is not significant in regression 

Critical P-Value for Rejection of Null: 0.01 

Land Type # of Data Sets T Statistic P Value    h lull Reje 

Dry, Arable Soil 681 -2.34 0.0196 No 

Moist Soil 346 0.3688 0.7125 No 

Semidesert 48 3.514 0.0007 Yes 

Desert 305 2.05 0.0408 No 

Dense Vegetation 83 0.8341 0.4068 No 

Mixed Water/Vegetation 0 N/A N/A N/A 

Light Vegetation 740 1.2467 0.2129 No 

Wet Soil 205 5.261 0 Yes 

Indeterminate Land Type 1292 14.0974 0 Yes 

To summarize the results above, the satellite from which the data was gathered 

does not appear to impact the regression significantly in the cases of dry soil, desert, 

dense vegetation, light vegetation, and moist soil land types. The satellite identity does 

appear to have a significant impact upon the regression coefficients of the wet soil, 

semidesert and indeterminate land types. 

Discussion 

Note the extreme disparity between the t statistics for the calculated land types 

compared to indeterminate land types. The t statistics for the calculated land types did 

not exceed 5.261, while the t statistic for the miscellaneous category was a rather large 

14.0974. From this, it would appear the correlation between satellite identity and 

regression coefficients is far less pronounced when the CV algorithm can determine a 

land type. The most plausible explanation is that the earth locations that registered as 
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"indeterminate" land types changed between the F10/F13 and F14 data sets. Because the 

data is from different years, it is possible the weather was significantly different at some 

locations. The land type algorithms are especially sensitive to heavy rainfall (McFarland, 

1991); a heavy rain event one year but not the other could send a large number of data 

points into the "indeterminate" category. 

Significant differences between the F10/F13 and F14 data sets might also explain 

the rejection of the Null Hypothesis for the Wet Soil and Semidesert land types. 

Unfortunately, due to data constraints, the two data sets come from subsequent years - 

and not even exactly the same time of year. Differences in precipitation, soil moisture, 

and even evaporation rates can cause changes in surface radiation fluxes (Betts and Ball, 

1998). Therefore, it is entirely possible that the statistical differences found in the data 

sets for the two recalcitrant land types were due to factors other than satellite identity. 

The significant finding of this research is that, despite other possible significant 

differences between data sets, the Null Hypothesis was NOT rejected.   In other words, 

rejection of the Null Hypothesis for the Semidesert and Wet Soil land types merely 

indicates there was a statistically significant difference between the two data sets; it was 

not determined if this difference is due to satellite identity or other intrinsic differences in 

the data set. 

Regression Coefficient Refinement 

For the five land types whose regression coefficients do not appear to be affected 

by satellite identity, multiple linear regression on all of the data from the F10, F13 and 

F14 satellites was performed. Following are the results of the regression. The regression 

results, scatter plots and coefficients are in the tables and diagrams below.   The scatter 
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plots in figures 11-15 are "45 degree" plots of the actual temperature versus the 

temperature value calculated by the regression. 
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Figure 11: Scatter Plot for Dry Soil Land Type 
Regression Equation: Tfit = 25.8771 + 0.2307 H19 - 0.4528 V19 + 0.4578 V22 + 
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Figure 12: Scatter Plot for Moist Soil Land Type 
Regression Equation: Tflt = 18.9090 - 0.3197 V19 + 0.6129 V22 + 0.4926 V37 
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Figure 13: Scatter Plot for Desert Land Type 
Regression Equation: Tfit = 32.5467 + 0.5766 V22 - 1.0011 V37 - 0.2832 H85 + 
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Figure 14: Scatter Plot for Dense Vegetation Land Type 
Regression Equation: Tfl, = (-14.5311) + 0.7351 V22 + 0.6965 H37 - 1.601 H85 + 

0.8194 V85 
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Figure 15: Scatter Plot for Light Vegetation Land Type 
Regression Equation: Tflt = 24.0912 - 0.2110 H19 + 0.2663 V19 + 0.5340 V22 + 

0.4725 V37 - 0.3786 H85 + 0.2688 V85 

Table 5. Combined Regression Results (All Satellites, F10/F13/F14) 
Null Hypothesis: All regression coefficients = 0 

Land Type 
Dry, Arable Soil 
Moist Soil 
Desert 
Dense Vegetation 
Light Vegetation 

# of Data Sets      F Statistic      P Value    Null Rejected   RMSE(K)  R squared 
681 
346 
305 
83 
740 

590.4 
293.1 
161.3 
121.1 
557.4 

0 
0 
0 
0 
0 

Yes 
Yes 
Yes 
Yes 
Yes 

3.301 0.8402 
3.089 0.8117 
3.743 0.7295 
3.053 0.8613 
2.825 0.8202 

It is certainly noteworthy that the R squared values are quite high. Somewhat surprising 

is that the highest R squared value comes from the dense vegetation land type, the 

category with the smallest sample size.   Following is a table that compares the calculated 

RMSE values of this research to the RMSE values in McFarland's original research. 
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Table 6: RMSE (K) Comparison to Original CV Regression 

Land Type McFarland RMSE Adair RMSE 
Dry Soil 3.60* 3.301 

Moist Soil 2.78** 3.089 
Desert 3.60* 3.743 

Dense Vegetation 3.45*** 3.053 
Light Vegetation 2.69 2.825 

* Combined regression for Dry Soil, Semidesert and Desert Land Types 
** Combined regression for Moist Soil and Wet Soil Land Types 
*** Combined regression for Dense Vegetation and Mixed Water/Vegetation Land Types 

Cross-validation of the data sets 

It is important to note the above regressions are for qualitative judgement only. 

The overall data sets were not split into training and validation sets - rather, the rejection 

of the Null Hypothesis in the indicator variable regression (see Table 4) was used as 

evidence the F10/F13 data and the F14 data for the five land types had identical true 

regression equations. However, to justify further the value CV coefficient refinement, 

the data was split and cross-validated. First, F10/F13 data from each land type was 

regressed; then, the coefficients were applied to the respective F14 data and MSPR values 

were calculated. Next, the reverse was done - F14 data was regressed and then the 

coefficients were used on the F10/F13 data for calculation of MSPR. Finally, the MSPR 

values were compared with the RMSE values found in Harris's research. Following are 

the scatter plots of the cross-validations, followed by two tables summarizing the results. 
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Figure 16: Cross validation of Fl 0/F 13 Coefficients on F14 data - Dry Soil 
Tfit = 5.9964 + .3984 H19 - .7341 V19 + .5234 V22 + .6422 V37 - .5116 H85 + 
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Figure 17: Cross-Validation of Fl 0/F 13 Coefficients on F14 Data - Moist Soil 
Tf,t = 13.1295 - .463 V19 + .7297 V22 + .776 V37 - .9434 H85 + .8936 V85 
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Figure 18: Cross-Validation of F10/F13 Coefficients on F14 Data- Desert 
Tfit = 42.0952 - .398 V19 + .8684 V22 + .8167 H37 - 1.2924 V37 - .5523 H85 
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Figure 19: Cross -Validation of F10/F13 Coefficients on F14 Data - Light Vegetation 
Tfit = 10.6856 - .584 H19 + .7251 V19 + .5375 V22 + .869 V37 - .5523 H85 
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Figure 20: Cross-Validation of F10/F13 Coefficients on F14 Data—Semidesert 
(FAILED) 
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Figure 21: Cross-validation of F10/F13 Coefficients on F14 Data - Wet Soil (FAILED) 
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Figure 22: Cross-validation of F14 Coefficients Using F10/F13 Data- Dry Soil 
Tfit = 33.4526 + .5575 V22 - .1941 H85 + .559 V85 
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23: Cross-validation of F14 Coefficients Using F10/F13 Data - Moist soil 
Tfit = 33.8725 + .5246 H37 - .9232 H85 + 1.3298 V85 
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Figure 24: Cross-validation of F14 Coefficients Using F10/F13 Data - Desert 
Tfit = 57.0802 + .6646 V22 + .1859 V85 
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Figure 25: Cross-validation of F14 Coefficients using F10/F13 Data ~ Dense Vegetation 
Tfit = 8.2529 + .4995 H19 - 1.1686 H85 + 1.6808 V85 
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Figure 26: Cross-validation of F14 Coefficients Using F10/F13 Data - Light Vegetation 
Tfit = 36.2198 + .5321 V22 + .3803 V85 
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Figure 27: Cross-validation of F14 Coefficients Using F10/F13 Data - Semidesert 
(FAILED) 
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Figure 28: Cross-validation of F14 Coefficients Using F10/F13 Data - Wet Soil 
(FAILED) 

Table 7: RMSE and MSPR Values of F10/F13 Coefficients Cross-validated on F14 Data 

Land Type RMSE RMSPR R-Squared Indicator Variable Test 
Dry Soil 3.686 3.297 0.7499 Pass 

Moist Soil 3.193 2.877 0.8033 Pass 
Wet Soil 4.284 4.409 0.6254 Fail 

Semidesert 3.326 5.221 0.7945 Fail 
Desert 3.619 4.773 0.6791 Pass 

Light Vegetation 3.128 2.687 0.6861 Pass 

Table 8: RMSE and MSPR Values of F14 Coefficients Cross-validated on F10/F13 Data 

Land Type RMSE (K) RMSPR (K) R-Squared Indicator Variable Test 
Dry Soil 2.957 3.853 0.785 Pass 

Moist Soil 2.534 3.708 0.8188 Pass 
Wet Soil 3.547 5.174 0.665 Fail 

Semidesert 2.993 7.072 0.516 Fail 
Desert 2.891 4.746 0.6979 Pass 

Light Vegetation 2.456 3.337 0.8227 Pass 
Dense Vegetation 2.945 3.896 0.8062 Pass 
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The results of the cross-validation were quite encouraging. Even the RMSPR values of 

the land types that failed the indicator variable test were comparable with the RMSE 

values from Harris. The RMSPR values for the land types that passed the indicator 

variable test were lower than those RMSE values found by Harris. 

Table 9: RMSE (K) of CV Algorithm from Harris (1998) 
(For comparison: Highest Validated RMSPR From Research: 4.8 K) 

Summer Fall Winter 
CONUS 7.8 5.6 6.2 
Bosnia 19.4 5.3 5.2 
Korea 8 6.2 6.2 
Saudi Arabia 7.4 7.4 7.4 

From the above results, it is reasonable to conclude that a comprehensive linear 

regression to refine brightness temperature coefficients would yield more accurate 

results. 

Perhaps most perplexing were the differing results by land type between the two 

data sets. If the F10/F13 and F14 data sets were insufficiently similar, it would follow 

that data for all land types would have shown statistically significant differences. 

Conversely, if the data sets were sufficiently similar, then all of the land types should 

have indicated so.   This researcher speculates that the Wet Soil and Semidesert land 

types either (1) are more sensitive to changing weather between years than other land 

types, (2) are situated in locations prone to more radical weather changes than locations 

of other land types, or (3) have emissivity characteristics which are more location 

dependent than those for other land types. 
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Summary 

Qualitative regression indicated satellite identity might not be a significant factor 

in determining the regression coefficients for five of eight CV land types. The same 

regression indicated satellite identity might be a significant factor for two land types, as 

well as for data of an indeterminate land type. The "Mixed Water and Vegetation" land 

type had no data ascribed to it, and so the regression for that land type could not be 

performed. Multiple linear regression was performed upon the five satellite-independent 

land types. Results indicated reasonable RMSEs and high R squared values. Cross- 

validation yielded MSPRs that compared favorably with RMSEs found from Harris's use 

of the original coefficients. Therefore, it appears CV could be made more accurate with 

revised coefficients. 
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V. Summary. Conclusions and Recommendations 

Summary 

Using the statistical methods of multiple linear regression, stepwise linear 

regression, and qualitative regression, 3,700 data sets from Fall of 1996 and Fall of 1997, 

including microwave brightness temperatures from three satellites, were analyzed to 

determine if satellite identity had a significant impact on CV regression coefficients. 

Analysis indicated that satellite identity does not appear to have a significant impact on 

the regression coefficients for five of the eight CV land types investigated. Analysis of 

two CV land types indicated satellite identity might have a significant impact, while there 

was insufficient data to determine the impact for one CV land type. 

In addition to the qualitative regression, stepwise linear regression was performed 

on five land type categories using combined data from all satellites. Regressed RMSEs 

ranged from 2.825 K to 3.743 K, while R squared values ranged from .7295 to .8613. 

Preliminary analysis indicated refinement of CV brightness temperature coefficients may 

yield better accuracy for the algorithm. 

Finally, the data was cross-validated by splitting the data, regressing each set, and 

calculating the MSPRs when the regressed coefficients were used on the other data set. 

The results of the cross-validation confirmed the results of the indicator variable 

regression. 
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Conclusion and Recommendation for AFWA 

The assumption that CV coefficients need not be recalculated for each satellite 

appears sound for most of the data. However, satellite identity might have a significant 

impact upon the regression for at least two of the land types. Therefore, AFWA should 

consider further testing the algorithms for the semidesert and wet soil land types to see if 

there is indeed satellite dependence for these two land types. Because of unique 

properties of "indeterminate" land type data as discussed in Chapter 4, AFWA should 

investigate regressing location and rainfall dependent coefficients for data which the CV 

algorithm cannot determine a land type. 

Recommendations for Further Research 

The first research project I recommend would be to investigate the characteristics 

of the Semidesert and Wet Soil land types. While it is possible these two land types are 

satellite dependent for some reason, it is more likely that the data needs to be split into 

other categories. For example, it is possible the data needs to be split depending on the 

seasonal amount of rainfall received. Perhaps the differences would be ameliorated if a 

larger data set were used to include more varied cases. Finally, the land types could be 

split by the amount of rainfall received in a given period of time - for example, the 

previous 12 hours. 

The first part of the above project, determination of satellite dependence, would 

be relatively straightforward. A large number of data sets from identical areas of known 

semidesert and wet soil land types (that is, land types known beforehand rather than 

determined by the CV algorithm) and near-identical times could be calculated using 
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different DMSP satellites. Qualitative regression could then be performed as was done in 

this research. If the statistics still show a significant difference between the data sets, 

then sensor dependence can be shown. 

Assuming no sensor dependence, the second part of the project would be 

considerably more involved. SSM/I brightness temperatures would need to be correlated 

not just with observed temperature, but also with current precipitation intensity, 

precipitation amounts for a given time in the past, and climatological precipitation data 

by location and season. The current precipitation intensity could be calculated using 

SSM/I rain rate algorithms (e.g. Ferraro et al., 1998), but determining and correlating the 

latter two parameters would be a time-intensive and data sparse process. 

Another avenue of follow-on research would be to modify the CV algorithm's 

coefficients and improve its accuracy. All available DMSP data should be combined 

with synoptic observations to create an enormous database. FORTRAN programs could 

then be written to match data, separate data into land types, and separate data by satellite 

identity. Data could be combined and regressed for five of the land types, while separate 

regressions by either satellite, precipitation intensity or location could be accomplished 

for the semidesert and wet soil land types. Finally, a single FORTRAN program could be 

constructed to accomplish all of the above tasks and incorporate the calculated 

coefficients. 

Another possible use of indicator variables is to determine if the location of 

observations (e.g., CONUS versus Middle East) has an impact on the regression 

coefficients (see Ferraro et al., 1998). This research did not divide the data by location 

because there was insufficient data in some locations and/or land types to perform a 
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comprehensive study. A study could be done performing qualitative regression on an 

indicator variable for two different regions. 

Another avenue for further research would be to examine the effects of 

precipitation upon the regression coefficients. An indicator variable could be constructed 

to represent precipitation intensity and then regressed, using a multiple value indicator 

variable instead of a Bernoulli indicator variable (see Chapter 10 of Neter et al., 1983). 

Depending upon the results, an SSM/I rain-rate retrieval algorithm (see Conner and Petty, 

1998) could be incorporated into CV to refine temperature calculation further. 

This research did not address the possibility of errors introduced by the surface 

type algorithms themselves. A possible topic of future research would be to examine the 

locations of the data matches sorted into various land types. A map outlining locations 

and categories of various land type matches could be generated to see if such land types 

exist. For example, if there were a number of "moist soil" land type hits in the middle of 

the Sahara Desert, or a number of "desert" hits in the Amazon, it would indicate the land 

type sorting algorithms are in error. 

Finally, research could be performed to determine if a polynomial regression 

would fit the data better. However, while the regression indicated slight deviation from 

normality at extremely high and low temperatures (see Appendix B), the high R squared 

values suggest research time might be spent first on the research topics outlined above. 

74 



Appendix A: Other Regression Performed but Not Directly Used in the Research 
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Figure Al: Scatter Plot for Dry Soil Land Type, Jan-Feb 1997, F10/F13 
Regression Equation: Tflt = 8.0986 - 0.1447 H19 - 0.2169 V19 + 1.0707 V22 + 
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Figure A4: Scatter Plot for Desert Land Type, Jan-Feb 1997, F10/F13 
Regression Equation: Tfit = 94.7734 + 0.4267 V19 + 0.3087 V22 + 0.2945 H37 

0.7946 V37 + 0.4776 V85 
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Figure A5: Scatter Plot for Light Vegetation Land Type, Jan-Feb 1997, F10/F13 
Regression Equation: Tfl, = (-44.3633) + 0.5181 HI9 + 0.7982 V22 + 0.8012 H37 ■ 

0.8961 H85 
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Figure A6: Scatter Plot for Wet Soil Land Type, Jan-Feb 1997, F10/F13 
Regression Equation: Tflt = 137.6667 - 0.2642 H19 + 0.3931 V19 + 0.3170 V22 

0.3191 V37 - 0.1080 H85 + 0.5019 V85 
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Figure A7: Scatter Plot for Indeterminate Land Type, Jan-Feb 1997, F10/F13 
Regression Equation: Tfit = 161.3059 - 0.2227 V19 + 0.4300 V22 - 0.1430 H37 + 

0.0614 V37 - 0.1225 H85 + 0.4366 V85 

Table Al: Regression Results (F10/F13) for Jan-Feb 1997 
Null Hypothesis: All regression coefficients = 0 

Land Type # of Data Sets F Statistic P Value Null Rejected RMSE(K) R square 

Dry, Arable Soil 579 247.8 0 Yes 3.413 0.7222 

Moist Soil 283 141.8 0 Yes 2.981 0.719 

Semidesert 184 88.3 0 Yes 4.214 0.7496 

Desert 259 88.8 0 Yes 2.553 0.6369 

Dense Vegetation 0 N/A N/A N/A N/A N/A 

Mixed Water/Veg 0 N/A N/A N/A N/A N/A 

Light Vegetation 112 89.1 0 Yes 2.773 0.7691 

Wet Soil 758 208.8 0 Yes 3.831 0.6252 

Indeterminate 1881 725.3 0 Yes 4.581 0.699 
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Appendix B: Residual and Normality Plots of the F10/F13/F14 Regression 
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Figure B2: Normality Plot for Dry Soil Land Type 
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Figure B4: Normality Plot for Moist Soil Land Type 
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Figure B8: Normality Plot for Dense Vegetation Land Type 
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Appendix C: CV Land Type Algorithms 

If(V22-V\9)<4.0    and 

4.0<(H9 + F37)/2<9.8   and 

(F37-n9)>-6.5   and 

-5.0 < (F85 - F37) < 0.5   and 

(#85 - #37) < 4.2   then 
land type = dry, arable soil 

If(V22-V\9)<4.0    and 

4.0 <(H9 + F37)/2< 19.7   and 

(F37-H9)>-6.5   anJ 

0.5<(F85-F37)<4.0   and 

(F85-#37)<4.2   tfze« 
land type = moist soil 

If(V22-V\9)<4.0    and 

9.8 <(F19 + F37)/2< 19.7   a«J 

(F37-n9)>6.5   and 

(F85 - F37) < 0.5   anJ 

(7/37 -#19) < -1.8   and 

(#85 - #37) < 6.0   r/jen 
land type = semidesert 

#"(F22-F19)<2.0    and 

(F19 + F37)/2>19.7   and 

F19>268   and 

(#85 - #37) > -1.0   tf*e« 
land type = desert 
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If(V22-Vl9)<4.0    and 

(F19 + F37)/2>6.4   and 

(F37-F19)>-6.5   and 

(F85-F37)<0.5   and 

(#85 - #37) > 4.2   then 
land type = wet soil 

If(V22-Vl9)<4.0    and 

(F19 + F37)/2<1.9   and 

(F85-F37)>-1.0   and 

(#85 - #37) < 4.5   and 

V\9> 262.0   tfze« 
land type = dense vegetation 

If(V22-V\9)<4.0    and 

(H9 + F37)/2<6.4   awJ 

(F85-F37)>-1.0   and 

(#85 - #37) > 4.5   anrf 

(F37-#37) > 257.0   f/zen 
land type = mixed water and vegetation 

If(V22-Vl9)<4.0    and 

1.9<(n9 + F37)/2<4.0   and 

(F85-F37)>-1.0   and 

(#85 - #37) < 4.5   and 

V\9> 262.0   to 
land type = less dense vegetation 
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