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AFIT/GAP/ENP/99M-07 

Abstract 

The focus of this research is an investigation of energy band anisotropy in 

simple quantum well structures. This anisotropy results from the asymmetry of 

the periodic potential within the crystal lattice. For sufficiently high doping levels, 

band structure anisotropy is expected to play an important role in the evaluation of 

the electronic and optical properties of the quantum well structures. The analysis 

uses a model based on a 6x6 Luttinger-Kohn kp approach for bulk material valence 

band structure together with the Envelope Function approximation. The model is 

used to analyze Si/Sii-^Gex, GaAs/AlxGai_x As, and GaAs/InxGai-zAs quantum 

wells for the [110] and the [001] growth directions. The resulting bandst ructures 

show significant anisotropy for materials grown in both the [110] and [001] growth 

directions. In all cases the materials grown in the [110] direction show a more 

pronounced anisotropy than the materials grown in the [001] directions. For the 

[001] growth directions, the bandstructures were effectively isotropic for values of ky 

less than 0.4 Angstrom'1 for Si/Si7oGe30, 0.6 Angstrom"1 for GaAs/Al3oGa7oAs. 

and 0.5 Angstrom'1 for GaAs/In30Ga7oAs. 

vm 



Band Structure Anisotropy in Semiconductor Quantum Wells 

/.   Introduction 

Since the inception of the semiconductor quantum well in 1970 by Esaki and 

Tsu (12) and the later advances in Molecular Beam Epitaxy (MBE) and Metal- 

Organic Chemical Vapor Deposition (MOCVD), quantum well devices have proven 

to be very useful in the field of optoelectronics. Two significant devices in which 

these structures are used are the laser diode and the infrared photodetector (15). 

Of particular interest to the Air Force is the use of these bandgap-engineered 

materials in infrared photodetectors in the wavelength range corresponding to the 

atmospheric windows of 3-5jim and 8-14/xm for use in applications such as thermal 

imaging, guidance, and reconnaissance (2),(16). Quantum well photodetectors are 

also well suited for use in the 1.3/xm and 1.5pm range which makes them useful for 

fiber-optic communications (15). 

Quantum devices offer many advantages over normal photodetectors. First 

they have a great flexibility in design which allows tailoring to a specific operating 

wavelength. As explained in the next section, parameters such as well width and 

alloy composition can be modified to change the quantum well energy levels which 

in turn change the optical response. Second, for inter-subband transitions quantum 

well devices have a narrow pass-band spectral response. This is a result of the well 

possessing a limited number of energy levels between which transitions can occur 

(15). Finally, by using materials such as Si/SiGe, operating temperatures can be 

raised to approximately 75K from that required by bulk material detectors, which 

is in the region of 30K (2). 
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Figure 1     Growth layers in an AlGaAs/GaAs quantum well (19). 

1.1    Quantum Well Structures 

Analysis of the optical properties for a material typically requires knowledge 

of the material's bandstructure. The bandstructure can be modified by creating 

heterostructures which are discontinuities in the crystal created by placing two 

different materials in contact (10). The particular heterostructure studied in this 

research is the quantum well. The bandstructure of the quantum well in most cases 

is very different from that found in the bulk material. 

Semiconductor quantum wells are created by alternating semiconductor ma- 

terials with differing bandgaps. Through approaches like MBE, very thin layers 

are created which approach the deBroglie wavelength of the electron. This allows 

for quantum confinement effects to become important. The growth layers for a 

GaAs/AlGaAs multiple quantum well are shown in figure 1. 

In crystal structures the periodicity created by the particular atomic arrange- 

ment creates energy bands that determine the electronic properties of the material. 

This bandstructure identifies the allowed energy eigenstates for a particular value 

of the wave vector k. The bandstructure is commonly displayed as a function 

of direction in fc-space from one symmetry point to another within the Brillouin 

zone. The Brillouin zone is defined as a single unit cell of the reciprocal lattice. 

Examples of some symmetry points and the first Brillouin zone for the zincblende 

crystal structure are shown in figure 2. 



Figure 2     First Brillouin zone and symmetry points for zincblende and diamond 
structure (22). 

In a quantum well, the bandstructure can be modified to optimize the optical 

properties of the device. Well width, growth direction, and alloy composition can 

be varied to maximize absorption for a particular wavelength. Also, by creating 

multiple wells of different widths and/or compositions a detector can respond to 

multiple wavelengths (2). 

Quantum well devices are usually comprised of many quantum wells and, 

depending on the spacing between the individual wells, are divided into two cate- 

gories: superlattices or multiple quantum well structures. If the spacing between 

the individual wells is small enough such that the wavefunctions of the confined 

carriers interact with the wavefunctions of those carriers in the neighboring wells, 

then a superlattice is formed. If the spacing between wells is great enough such that 

there is essentially no interaction between wavefunctions of neighboring wells, then 

the structure is considered a multiple quantum well. The two types of structures 

are shown in figure 3. 

In the case of superlattices, the overlap of wavefunctions causes a splitting of 

the degenerate energy levels in the neighboring quantum wells. This splitting of 

discrete energy levels results in the creation of minibands. The minibands consist of 
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Figure 3 Energy levels and minibands in a multiple quantum well structure and 
a superlattice (19). 

a number of individual bands equal to the number of wells in the superlattice (15). 

The presence of minibands allows a variety of transitions to occur corresponding 

to different wavelengths. 

In the case of multiple quantum well structures, the lack of wavefunction 

overlap leaves the energy levels discrete. This also allows an increase in the optical 

absorption of the device by a factor equal to the number of wells in the structure. 

However, 'effective minibands'will also form in a multiple quantum well structure 

due to slight variations in well widths or alloy composition (15).  This results in 



slightly different energy levels in each of the quantum wells making up the multiple 

quantum well structure. 

1.2    Optical Absorption Properties 

The foundation of optoelectronic devices lies in the interaction between in- 

cident electromagnetic radiation and electrons or holes in the detector material. 

This interaction can be described by the absorption coefficient a (a < 0 for gain 

material and a > 0 for attenuating material). Absorption occurs when a photon 

assisted transition occurs; an electron gaining energy from a photon and moving 

from one energy level to another. 

The form of the linear absorption coefficient used by Green (1) can be ex- 

pressed as 

a oc / okii T-^-T \-uii—_ (1) 

where Pmn is the momentum matrix elements for transitions between states n 

and m and En and Em correspond to the energy levels of the initial and final 

states. Both the energy and the momentum vector are functions of ky and must 

be evaluated at each value of ky for which the integral must be performed. The 

integral in equation 1 is performed through the region of k -space dictated by the 

Fermi level. 

A common way to calculate absorption coefficients is to perform a calcula- 

tion of the quantum well band structure and momentum matrix elements for one 

direction in A;-space. In many cases, the assumption that the band structure is 

isotropic throughout the plane is made and the simple factor of 2TT is utilized. 

However, the band structure is not isotropic throughout the plane of the quantum 

well. Therefore, to accurately model absorption coefficients the magnitude of the 

anisotropy must be determined and considered in any calculation. 



1.3 Anisotropy Analysis 

There are several models used for calculating the bandstructures for semi- 

conductor materials. The most common are the nearly free electron model, the 

tight-binding method and the one used in this analysis, the k • p method (17). 

The nearly-free-electron model assumes free electrons interacting weakly with the 

positive ions in the lattice. Due to Bragg reflection forbidden energy zones occur, 

i.e. bandgaps develop. In the tight-binding model, electronic wave functions are 

assumed to be comprised of hydrogenic wavefunctions which are localized at the 

lattice sites. The potential is described by Coulombic potentials of the nearest 

neighbors only. Though the tight-binding model is considered the most accurate, 

it is computationally intensive. The final method uses the k • p model which will 

be described in detail in chapter 2. This is a semi-empirical method based on 

experimentally measured quantities. 

1.4 Previous Work 

Over the past five years modeling of the absorption spectra of quantum well 

structures has been the subject of two graduate research projects at the Air Force 

Institute of Technology (AFIT) (2). Mathematical models have been developed 

and experimental data has been taken for Si/SiGe quantum well structures. These 

models allow calculation of energy levels in the quantum well and the absorption 

coefficients corresponding to bound-to-bound valence band transitions. The cal- 

culations were based on the band structure corresponding to a single azimuthal 

direction in the plane of the quantum well and the assumption of band structure 

isotropy. 

As discussed earlier, the calculation of the absorption coefficients requires 

an integration of the energy bands throughout the plane of the quantum well. 

This requires a calculation of the band structure for each incremental step in the 

azimuthal angle theta. This research reproduces the mathematical models of the 



quantum well structure developed by Gregg (2) in FORTRAN code and allows 

enhanced analysis of the band structure and the associated anisotropy. 

The remainder of this document presents the theory and the computational 

approach used to determine the band structure in a semiconductor quantum well. 

First, bulk material band structures are calculated using the Luttinger-Kohn k • p 

theory including spin-orbit interaction effects. The strain Hamiltonian developed 

by Kleiner and Roth, presented later by Hasegawa (4) and then by People and 

Jackson (8) is also incorporated. Second, the analysis for the quantum well is pre- 

sented. Quantum well valence band offsets are based on model solid theory of Van 

De Walle as presented by People and Jackson (8). The Envelope Function approxi- 

mation as presented by Szmulowicz (6) is used to determine the quantum well band 

structure. The FORTRAN programs necessary to perform the required calcula- 

tions are also summarized and discussed. Finally the resulting dispersion curves 

for the quantum well are presented for various azimuthal angles through the plane 

of the quantum well. Materials considered are Si/Sii_a:Gex , GaAs/AlrGai_aAs , 

and GaAs/InrGai-zAs. 



II.   Theoretical Approach 

This chapter discusses in general the approach taken in determining the band struc- 

ture for a semiconductor quantum well. Section 2.1 describes the development of 

the total Hamiltonian for the bulk material and how bulk material bandstructures 

are determined form the eigenvalues of the Hamiltonian matrix. Section 2.2 dis- 

cusses the use of the Envelope Function Approximation (EFA) in the modeling of 

the semiconductor quantum well and compares its development and solution to 

that of the one-dimensional square well problem solved in basic quantum mechan- 

ics. 

2.1    Bulk Material 

The determination of energy levels in a bulk material semiconductor is ac- 

complished by solving the time-independent Schrodinger equation. 

Htjj = E^ (2) 

The general form for the bulk material Hamiltonian is comprised of several 

terms. These are the k • p Hamiltonian Hk-P, the spin-orbit Hamiltonian HSO: and 

the strain Hamiltonian Hstrain- 

2.1.1 k ■ p Theory. Electrons and holes in a periodic potential such as a 

crystal lattice obey Bloch's Theorem. Bloch's theorem states that wavefunctions 

in a periodic potential can be expressed as the product of a function having the 

periodicity of the lattice and a plane wave. 

The general form for such a function can be expressed as 

^nk (r) = e^unk (r) (3) 



where u is a function with the periodicity of the lattice. Substituting this into the 

one-electron Schrodinger equation 

2m 
+ V(v) <Pnk = En (k) V>nk (4) 

and assuming a periodic potential will give the general k • p equation(7) 

p2      Kk • p     trk 2t.2 

+ + 
2m        m 2m 

-V(r) wnk (r) = En (k) Mnk (r) (5) 

Bloch functions of the form in equation 3 create a complete set of basis 

functions for any value of k. One possibility used by Luttinger and Kohn is based 

on Bloch functions at zone center, k = 0 (3). Following an approach outlined by 

Kane (18), unk (r) in equation 5 can be expressed in the k • p representation by 

Unk (*) = ]T^ Cn'n M„'k0 (r) (6) 

Multiplying both sides of equation 5 by «„k0 (r) , replacing unu (r) with the form 

given in equation 6, and integrating gives 

En (ko) + 
h2k2 

2m 
Onn' T       -K ■ Pn'n f Cn'n    — ■C'n V^j Cn 

m 
(7) 

The term pn>n is given by 

Vn =    / <k0 (r) P^n'ko (r) dr (8) 

where the integral is over the unit cell and p is the momentum operator given by 

p = —iKV (9) 



Using an application of perturbation theory for small k to solve equation 7, 

Luttinger and Kohn derived the general form for the Hamiltonian describing elec- 

tron or hole behavior in a periodic potential (3). However, the momentum matrix 

elements given in equation 8 are difficult to calculate because they require specific 

knowledge of the Bloch functions. A more manageable expression of the Hamil- 

tonian uses angular momentum operators and inverse mass parameters known as 

Luttinger coefficients (2). By using these experimentally measured values, the cal- 

culation of the momentum matrix elements, pn/n, of equation 10 are avoided. Using 

these values, the Hamiltonian can be expressed as 

Hk.p = -^^(k^   +   kyy   +   k^t) (10) 

-1272 ( [Ll - T^L) 
k™ + C-P-) - 24^3 ((£*x) key + c.p.) 

where 7's are the empirically determined Luttinger coefficients and c.p. is a cyclic 

permutation in x, y, and z. Equation 10 gives three doubly degenerate energy 

bands in the dispersion relationship which are degenerate at zone center. The three 

bands are labeled heavy hole, light hole, and split off based on their corresponding 

effective masses. 

2.1.2 Coordinate System Transformation. Since the previous equations 

have been developed using symmetry based coordinates, a transformation must be 

done to align the coordinate system with the direction of interest. This is done 

through the use of a rotation matrix based on euler angles applied to both the 

angular momentum operators and the wave vectors (1). 

10 



The transformation is given as 

( Lx, \ (LA 

Ly< = R- Ly 

\LZ, ) \U) 
(11) 

where R is given by 

kxi ( k   \ 

Kyi = R- Ky 

\kz,     ) [kz ) 

R = 

cos 9 cos <p   — sin <\>   sin 9 cos 0 

cos 9 sin 4>     cos 4>    sin 9 sin <j> 

— sin 9 0 cos 0 

(12) 

(13) 

The values for 9 and 0 are based upon the direction of crystal growth.  For the 

[110] direction 9 = f and <f> = \. For the [001] direction 9 = 0 and </> = f. 

2.i.3 Spin-Orbit Hamiltonian. Diagonalizing the form of the Hamiltonian 

given in equation 10 results in a six fold degeneracy at zone center. If the interaction 

between the electron's spin and orbital angular momentum is incorporated, the 

degeneracy will be partially removed.   Terms describing the spin-orbit induced 

11 



perturbations are diagonal elements in the |j,m.,-,k) basis and are given by 

Hso = 

f° 0 0 0 0 G   \ 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 -A 0 

\ o 0 0 0 0 -A  I 

(14) 

where A is the experimentally measured spin-orbit interaction term, j 

m   - 3  i  _I _3      J „• _ i   ™. _ I _l 
mj       -2' 2'      2'      2  dI1U J  ~ 2'       3      -2'      2- 

2.1.4 k ■ p Hamiltonian. Performing the transformation described in 

section 2.1.2 results in the following form for the bulk material k • p Hamiltonian 

in the \j, raj,k) basis: 

Hk p — 
H* 

2m„ 

/     hh 

a' 

ß* 

0 

\iß*V2 

a 

Ih 

0 

ß* 
—1 V2 

-lot 

ß 0 

0 ß 

lh —a 

-a* hh 

ia^l ißs/2 

lV2 lV2 

'V2 
6 

'V2 

K 

z- 

-ia" 

-iß*V2 

so 

0 

■ißy/2 \ 

la 

'A 

0 

so 

(15) 
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For the [001] growth direction: 

hh   =   (ftj + A$ + A£hi + (*2 + *J - 2*072 (16a) 

Ih   =   (k2
x + k2

y + k2)7l - (kl + k2
y - 2k2

z)l2 (16b) 

so   =   (kl + kl + klh, (16c) 

a   =   -2i\/3(kx - iky)kz-y3 (16d) 

ß   =   V3((k2
x-k2

yh2-2ikxkyl3 (16e) 

<5   =   ifc-Wi (16f) 

For the [110] growth direction: 

hh = (kl + k2
y + klh1-(k2-2kl + kt)^ + (kl-k2)ll3 (16g) 

I* = (kl + k2
y + k2

z)^ + (k^-2k2
y + k2

z)^-(k2
x-kl)ll3 (16h) 

50 = (^ + ^ + fc,2)7l (16i) 

a = -2i\/Z{kx'y2 - iky^3)kz (16j) 

ß = %(kl-2k2
y + k2

z)l2 + (k2
x-iikxky-k2

z)l3) (16k) 

6 = Ih-hh (161) 

2.1.5 Strain Hamiltonian. When two materials having different lattice 

constants are used to create a heterostructure , strain will be induced into the 

material as a result of the necessary compensation for the lattice mismatch. This 

perturbation to the symmetry of the periodic potential changes the energy levels 

in such a way as to cause a splitting in the degeneracy of the light hole and heavy 

hole bands. The Hamiltonian describing the effect of strain is given in terms of 

orbital angular momentum operators; deformation potentials, D\,D2, and D3; and 

13 



strain tensor components eaß (2), 

Hstrain   —   D\ (exx + eyy + ezz) I 

. ...     1 
+2D2 

(17) 

+ c.p. + 2D3 [LxyJ &xy   i   ^'P' 

where c.p. denotes cyclic permutation. The first term of equation 17 represents a 

shift in average energy of the valence band. Therefore, this term is excluded from 

bulk calculations since absolute values of energy are not an issue. However, in the 

quantum well band structure calculations, where absolute or relative energy values 

are important, this term is incorporated. 

Performing a rotation operation on the angular momentum operators of equa- 

tion 17 together with a similarity transformation of the strain tensor similar to that 

done earlier for #k.p, yields the strain Hamiltonian where the Di term in equation 

17 has been omitted 

/ 

H. strain 

e2 0 e3 0 0 -ie3V2 ^ 

0 -e2 0 e3 -ie2\/2 0 

e3 0 -e2 0 0 -ie2\/2 

0 e3 0 e2 -ie3y/2 0 

0 ie2V2 0 ze3\/2 0 0 

ie3y/2 0 ie2V2 0 0 o  / 

(18) 

For the [001] growth direction: 

e2   =   -D2(ezz -exx) 

e3   =   0 

(19a) 

(19b) 

14 
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Figure 4     Compensation for lattice mismatch in a strained material (2) . 

For the [110] growth direction: 

e2   =   _-D2(ezz - exx) + -Dzexy 

1 1 
e3   =   —-f=D2(exx - ezz) +—j=Dzexy 

Vs 2y/Z 

(20a) 

(20b) 

The values for Di are based on linear interpolation of the deformation po- 

tentials for the alloy's constituents. D\ is the interpolated value of the hydrostatic 

deformation potentials av, Di is the interpolated value of Du, the valence-band 

deformation potential for uniaxial stress in the [001] direction, and D3 is the inter- 

polated value of D'u, the valence band deformation potential for uniaxial stress in 

the [111] direction. 

The values eaß are conventional strain components and can be expressed in 

terms of the unique elements of the stiffness matrix C for cubic structures and the 

value for in-plane strain [(8),(7)]. The in-plane strain is a function of the lattice 

15 



constants in the well and the barrier material and can be expressed as 

(21) 

where b is the unstrained lattice constant and as is the lattice constant of the 

substrate or barrier material. This represents the percentage change in the lattices 

constant (7). 

The expressions for the strain components are (8) 

for the [001] growth direction: 

&xy 

6zz 

e\\ 

0 

"lO 12 

c 11 

(22) 

for the [110] growth direction: 

=   en 

=   —en 

=   en 

2C44 — G- 12 

2C44 + C11 + C12 

2[Cn-2Ci2]' 
2C44 + C11 + c. '\1 

(23) 

S.i.6 Energy Level Band Structure for Bulk Material. The Hamiltonian 

for unstrained bulk material can now be written as Htotai = Hk-P + Hso and the 

Hamiltonian for strained bulk material can be written as Htotai = Hk-P + Hso + 

Hstrain- Both expressions are functions of k = (kx, ky, kz) = (kz, ky) and empirically 

derived or tabulated data specific to the constituent elements. These constants 

are listed in appendix B. Using the approach by Gregg (2) , the values used in 

the calculation for an alloy material are linearly interpolated values based on the 

percentage composition of one material in the other. For example, the Luttinger 
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coefficients in an alloy of Silicon and Germanium are given as 

7 = 7Si + x(jGe - 7si) (24) 

where x is the percentage of Germanium in the alloy. 

Diagonalizing the appropriate Hamiltonian gives the energy values for the 

bulk material as a function of k. In an unstrained material, there will be two bands 

at zone center, one being doubly degenerate, the other being quadruply degenerate. 

The doubly degenerate band is the split off band and the quadruply degenerate 

bands at zone center are the light hole and heavy hole bands. The bands are 

named for their effective masses and their relative location as a function of energy. 

In strained material there will be three doubly degenerate bands. This is a result 

of the light hole and heavy hole bands splitting due to the strain perturbation. 

Examples of the bandstructure are shown in figure 5 for Si/Si7oGe30 alloy. 

2.2    Quantum Well 

The approach used in determining the energy eigenstates within a semicon- 

ductor quantum well structure is similar to that used in determining the eigenstates 

for a one dimensional square well potential. This section first revisits the one di- 

mensional square well potential and then explains, in an analogous manner, the 

solution to the semiconductor quantum well problem. 

2.2.1 One Dimensional Square Well Problem (20). Recalling the sim- 

ple one dimensional square well problem, one starts with the time independent 

Schrodinger equation 

£ + "M IP = E^J (25) 
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Figure 5     Bulk material dispersion relations for Si/Si7oGe30 resulting from diag- 
onalization of: (a) Hfc.p +Hso and (b) Hkp + Hso + Hsirain 
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where p is the momentum operator given as 

P = -^£ (26) 

Next the wave functions are assumed to be linear combinations of plane waves of 

the form 

tWuft   =   Aek»z + Be-kbZ (27a) 

1>(z)v,di   =   CeikwZ + De~ikwZ (27b) 

*&***   =   Ee^' + Fe-^ (27c) 

Using this form for the wave functions in the Schrodinger equation given in equation 

25, values for the wave vector k can be expressed as a function of energy E. The 

expressions for k in the well and barrier of a simple square well potential are 

i.   -   ^       - (28a) 

= ÄE5 (28b) 

Since the wave functions are utilized to describe the behavior of observables such 

as position, momentum, etc., boundary conditions must be placed on the wave 

functions at the well/barrier interface to ensure both the wave functions and their 

derivatives are well behaved. These boundary conditions are 

*(±SX=*(±f). . (29a) 

VwUi = ^WUt (29b) 

An addition boundary condition placed on the wave functions is that they must 

decay to zero as z approaches +oo. This requires the coefficients B and E to be 

equal to zero.   Using these boundary conditions at the barrier/well interface, a 
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system of equations can be developed and expressed as 

Ceikw(%) + De-ikw(%) 

ikwCe-ikw(>) - ikwDeikw& 

ikwCeik^)-ikwDe~ik^) 

ArMf) (30a) 

Fe~kb(^ (30b) 

Me-^i) (30c) 

-kbFe~kb^) (30d) 

This system of equations can be represented by a matrix equation of the following 

form 

/ e~ikw^) e~ikw^) -e~fcfc(f)      0 

e-*Mf) e-^(f) o -eMl) 

ikwe-ik^)   -ikwe-Mi)   -hfiMi)   0 

V VlxryyC' -**»(!)   -ikv,e-ikwi?)   0 kbe -*»(!) 

\ (c) (°) 
D 0 

A 0 

) \F) w 
or more simply 

(31) 

[M)-x = 0 (32) 

This can only be true, assuming non-trivial elements of Xi if 

det [M] = 0 (33) 

The matrix M is a function of k which is a function of energy E. Thus 

an expression for det [M] as a function of energy can be derived and the roots 

found with a numerical root finding tool. These roots correspond to the energy 

eigenvalues of the system. 

2.2.2 Semiconductor Quantum Well. The reason for the simplicity of 

the calculation in the simple square well problem is that k can be found easily 
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Figure 6     One dimensional simple square well potential of width a. 

as a function of energy. For the case of semiconductor quantum well structures 

this relationship cannot be expressed analytically. Therefore a method must be 

developed to invert the expressions found in the previous chapter from E (k) to 

k (E) or more precisely kz(E, ky). This is accomplished through a method presented 

by Szmulowicz which expands the Hamiltonian in powers of kz and develops an 

eigenvalue problem from which kz can be found for a particular set of values for 

energy E and a particular value for ky (6). This process is explained in section 

2.2.2.2. 

Once the values for kz are known, they can be incorporated into a matrix 

equation of the form shown in equation 33 to see if the determinant is equal to zero. 

Recall that the matrix was developed from the application of boundary conditions 

to the well and barrier wave functions. If the determinant is equal to zero, then the 

values of E are in fact eigenvalues for the system. Using this approach, dispersion 

relationships can be developed for the quantum well structure. This process is 

explained in sections 2.2.2.3 through 2.2.2.4. 

2.2.2.1 Valence Band Energy Offset. For the bulk material calcu- 

lations in the previous section of this chapter, absolute values for energy were not 

considered. The only objective was to present the bands relative to one another. 
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However, for the calculation of the quantum well it is necessary to predict not only 

an absolute value for the bands but also the difference or offset between bands in 

the barrier and the well material. This is analogous to the depth of the potential 

well in the one dimensional problem. 

The approach taken for this model uses an average valance band energy Ev
av 

based on model solid theory of Van De Walle and presented by People and Jackson 

(8). Model-solid theory was developed to estimate the electrostatic potential differ- 

ence across a heterojunction. The value of Ev
av corresponds to the average energy 

at the top of the valence band, ignoring spin-orbit interaction effects. Using this 

basis to establish an absolute scale, the average energy for the valence band in a 

material is a function of three values: the average valence band energy E°av found 

through model solid theory; the magnitude of the spin-orbit term A; and the shift 

in the average energy due to crystal strain. 

The first two values can be found tabulated (8). The shift due to the strain 

is calculated from tabulated data and is a function of an alloy's stoichiometry. The 

shift in the average valence band energy due to strain is 

el = Dl{2exx + ezz) (34) 

where D\ is a constant based on linear interpolation of the hydrostatic deformation 

potentials av for the two elements in the alloy. The expressions for exx and ezz were 

given earlier in equations 22 and 23. 

Mathematically, the offset is incorporated by adding a constant to both the 

well Hamiltonian and the barrier Hamiltonian. Therefore the total Hamiltonians 

are expressed as 

Htotai   =   Hkp + Hso + Vb - Eshift (35a) 

Hfotal     =     Hk-p + Hso + Hgtrain + Vw — Eshift (35b) 
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Figure 7     Definition of absolute valence band energy. 

The values for Vj, and Vw are determined based on the average valence band 

energies of the well and barrier material. In order to stay consistent with conven- 

tion, a constant value is included that will shift the zone center (k = 0) heavy hole 

band in the well bulk material to zero. The values for V& and Vw can be expressed 

as 

Vw 

vb 

Eghift 

■piwell   i 
v.av   ' 

pbarr 
Jv,av 

rpbu.,,    , 

A well 

3 
A barr 

,     well -r ex 

vwell 

KS + eTu + =*- + EHH 

(36a) 

(36b) 

(36c) 

The term EHH comes from the diagonalization of the matrix Hso + Hstrain 

and represents the shift in the heavy hole band from the unstrained position in the 

bulk dispersion relations. Again, the objective of subtracting EShift is to bring the 

zone center energy of the heavy hole band in the bulk dispersion relations of the 

well material to zero and is done for convention only. 
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2.2.2.2 kz as a Function of Energy and k-parallel. Now that the 

Hamiltonians for both the well and the barrier are well defined for any value of k, 

the next step is to invert the expression to a from of kz as a function of energy E 

and ley . This is done through a method presented by Szmulowicz (6). 

The total Hamiltonian, given by Hk.p + Hs0 + Hstrain can be factored in terms 

of kz where 

H = H2k
2

z + Hlkz + H0 (37) 

and H2, Hu and H0 are 6x6 matrices that are functions of ky = kx + ky. Incorpo- 

rating this expression of the Hamiltonian into the time-independent Schrodinger 

equation 

Hi) = Eif) (38) 

gives the following expression relating kz, E, H2, Hi, and HQ 

Jfe^ + H^HihiP + Hz1 (H0-E)iP = 0 (39) 

Defining a vector (f> as 

<t> = kz7jj (40) 

and substitution into equation 39 yields 

kzcf> + H^HKJ) + tff1 (H0-E)ip = 0 (41a) 

M> - </> = 0 (41b) 
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Through algebraic manipulation, the system of equations can be expressed in a 

matrix equation of the following form 

-kj I 
= 0 (42) 

where 7 is a 6x6 unit matrix. If kz is considered an eigenvalue, the problem can be 

considered an eigenvalue problem of the form (M - XI) x — 0 expressed as 

0 I 

—H^ (H0 — E)   —H2  Hi 
(43) 

where 

M = 
'6x6 

-H2-l(HQ-E)   -H?Hi 
(44) 

and 

X = (45) 

By finding the eigenvalues of this complex non-Hermitian matrix, kz can be ex- 

tracted for any value of energy E. By finding the eigenvectors of the matrix M, the 

eigenvectors associated with each value of kz can also be determined. The method 

used to determine the eigenvectors and eigenvalues are presented in section 3.2. 

2.2.2.3 Envelope Functions. Envelope functions are linear com- 

binations of bulk material wavefunctions where the periodic piece of the Bloch 

function, «nk=o (r), is not included. The flat-band approximation states that the 

periodic part of the Bloch functions in the well and the barrier are approximately 

equal, i.e. w„k=o (r) is continuous (13). Using this approximation, w„k=o (r) can be 
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excluded when imposing boundary conditions. Through symmetry analysis, the 

envelope functions in the well region and the barrier region can be expressed in 

matrix notation as 

Fh{khz)   =   (YCb)Eb{-z)B 

Fw(khz)   =   [CwEw(z)±TCwEw(-z)]W 

(46) 

(47) 

where V is a reflection operator defined as 

/ 

r = 

10   0   0     o   o ^ 

o-ioo    oo 

ooio    oo 

0 0 0-100 

0 0 0 0-10 

0    0    0    0      0    1 j 

(48) 

and represents a reflection about the origin. This operator is used with the parity 

of the wave functions to reduce the number of boundary conditions (2). 

C is a matrix consisting of the eigenvectors specifying the linear combination 

of plane waves making up the bulk material wave functions. The matrix C consists 

of the eigenvectors in column form and is determined by the process described in 

the previous section. C can be expressed as 

C  =    (   1>hh       *l>lh       ll>lh       ^hh       ^SO       ^SO   ) 
(49) 

where ipx represent the eigenvectors associated with the eigenvalues of kz in column 

form. 

The E matrices contain the plane wave portions of the wave functions and 

utilize the eigenvalues of kz. They are defined in both directions. For the positive 
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z direction 

Eb'w (z) 

( eik*hz 0 0 0 0 0 

0 eik'z
hz 0 0 0 0 

0 0 eikl
z
hz 0 0 0 

0 0 0 eik^hz 0 0 

0 0 0 0 eik?z 0 

\    o 0 0 0 0 iks 

e * 

\ 

(50) 

and for the negative z direction 

Eb>w (-z) = 

( e-ik^hz 0 0 0 0 0 

0 e-ik
l

z
hz 0 0 0 0 

0 0 e-ik[hz 0 0 0 

0 0 0 e-ik^hz 0 0 

0 0 0 0 e-iK°z 0 

I    o 0 0 0 0 e-ik 

\ 

J 

(51) 

W and B are eigenvectors that specify the linear combination of bulk ma- 

terial wavefunctions that make up the envelope functions in the well and barrier 

respectively. 

2.2.24 Boundary Conditions. The boundary conditions are similar 

to those required in the one-dimensional square well problem. For the simple 

square well problem the boundary conditions require: (1) the wave functions are 

continuous at the well/barrier boundaries, (2) the derivatives of the wave functions 

are continuous at the well/barrier boundaries, and (3) the wave functions approach 

zero at +oo. These wave functions and their derivatives must be continuous in 

order to correspond to an observable probability density. If the derivatives were 

not continuous the presence of a singular potential would be implied. Finally, the 
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wave functions must be finite everywhere and square integrable which requires the 

wave functions to approach zero at +00 (14). 

The requirements for the semiconductor quantum well are essentially the 

same as those stated above. For bound carriers, the wavefunctions must decay 

exponentially in the barrier to ensure the wave functions remain finite everywhere. 

The wave functions must also be continuous at the heterostructures as before. 

However, due to the differences in bandstructure in the barrier and the well ma- 

terials, the effective masses will change at the barrier/well interface. For a simple 

ID quantum well this results in the boundary condition for the derivative to be 

——Fb=——Fw (52) 
mbdz mwdz 

Through the use of the definition of the effective mass and the expression of the 

total Hamiltonian factored with respect to kz, the boundary conditions using the 

6x6 k ■ p bulk eigenfunctions can be expressed as (2) 

Fb   =   Fw (53) 

Tb ®   776   1     Hi   ipb     _      Tjw &   ™   ,    "I    rpw mi-Fb + ^Fb   =   H™^-FW + -^FW (54) 
oz —2i oz —2i 

where Fb and Fw are the envelope functions in the barrier and the well and Ho 

and H\ are from equation 37. 

Using the boundary conditions stated in equations 53 and 54 and the form of 

the envelope functions in equations 46 and 47, a matrix equation can be expressed 

as 

Mw -Mb \  ( W   .       ... 

H?Nw + ?fMw   -{HlNb + ^-Mb I I   B   '      '        ' 
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where the values of Mw, M\ Nw, Nb are defined as 

Mw 

Mb 

Nw 

Nb 

CWEW (z) + TCWEW (-*) 

CbEb {z) 

CwKwEw (_zj _ YCWKWEW {z) 

CbKbEb (z) 

(56a) 

(56b) 

(56c) 

(56d) 

The matrices C, T, E (-z), and E(+z) were defined in section 2.2.2.2 

The K matrices consist of the eigenvalues for kz = kz(E) found earlier from 

the eigenvalues of equation 44 and are arranged as follows for both the well and 

barrier 

/ 

ftb,w _ 

Uhh 0 0 0 0 0 

0 A* 0 0 0 0 

0 0 *? 0 0 0 

0 0 0 h.hh 0 0 

0 0 0 0 K° 0 

0 0 0 0 0 uso 

\ 

(57) 

where hh, Ih, and so correspond to the heavy hole, light hole, and split off bands. 

2.2.3 Quantum Well Dispersion Relationships. As was done for the sim- 

ple quantum well problem, the matrix equation describing the boundary conditions 

given in equation 55 can be assumed to be an eigenvalue problem, with an eigen- 

value equal to zero. Therefore, the boundary conditions can only be satisfied if the 

determinant of the matrix in equation 55 is equal to zero. The methods used to 

compute the matrices described in this section and ultimately find the determinant 

of the boundary conditions matrix as a function of energy E are described in the 

following chapter. 
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III.   Computational Approach 

This chapter explains the approach taken in calculating dispersion curves for both 

bulk material and quantum wells. Also discussed is the development of the com- 

putational tools necessary to perform the specific calculations. 

3.1 Bulk Material Calculations 

The bulk material band structure requires determining the eigenvalues of a 

6x6 complex Hermitian matrix. The total Hamiltonian matrix consists of the k • p 

Hamiltonian, the spin-orbit Hamiltonian, and the strain Hamiltonian. The system 

must be solved for every value of the inverse wave vector k. This is accomplished 

through the use of standard eigenvalue subroutines discussed in section 3.3. 

3.2 Quantum Well Calculations 

Developing the quantum well dispersion curves first requires determination 

of the zone center energies for each band. This is accomplished through thorough 

analysis of the function relating the determinant of the boundary condition matrix 

to energy. Each root of this complex function identifies a quantum well energy 

band at a particular value of ky. These values are then utilized as initial guesses in 

a root-finding algorithm that determines roots of the function for each incremental 

step in k||. 

The two significant steps involved in the quantum well problem are the expres- 

sion of kz as function of energy E and then finding the determinant of the matrix 

describing the quantum well boundary conditions. Both steps are explained in the 

following sections. 

3.2.1 Eigenvalues and Eigenvectors of kz(E). The total Hamiltonian is 

first presented in the factored form.  Recall from section 2.2.2.2 that the Hamil- 
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Figure 8 Schematic of a bulk dispersion curve showing energy as a function of 
kz and kz as a function of energy (2). 

tonian is factored in powers of kz to yield Htotai = H2kl+Hikz+H0. The coefficients 

of the factored Hamiltonian are then utilized to develop the matrix equation de- 

scribing the inverse wave vector component kz = kz [E, ky) as a function of energy 

and ky. The complete set of 12 eigenvalues and eigenvectors for this system con- 

sist of only 6 linearly independent vectors and 6 doubly degenerate eigenvalues. 

Therefore, selection of the correct eigenvalues and the corresponding eigenvectors 

is necessary. 

If X is the transformation matrix used to diagonalize the matrix in equation 

43, it consists of the system's eigenvectors in column form and can be expressed as 

X = 
Xw   X 12 

-X21    X; 
(58) 

22 

The column vectors in X2\ and X22 will be equal to the Xn and X12 multiplied 

by the associated eigenvalue. This is apparent through the expression given in 

equation 42.   As shown in figure 8, for every positive value of kz there exists 
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a corresponding negative value. The eigenvectors associated with the negative 

eigenvalues can be shown to be equal to the vectors associated with the positive 

eigenvalues with the exception of a phase factor. Thus, all positive eigenvalues 

and associated eigenvectors are selected and the rest excluded from further cal- 

culations. It must also be noted that kz will become pure imaginary when the 

value of energy is greater than the maximum energy of the associated band. In 

this case, there is still a negative pure imaginary eigenvalue associated with every 

positive imaginary value. The linear dependence on the eigenvectors hold, so only 

the positive imaginary values and associated eigenvectors are utilized. 

A subroutine must select all positive, pure real and pure imaginary, eigen- 

values and associated eigenvectors. It is also important that for each iteration the 

list of eigenvalues and eigenvectors must be ordered the same way before being- 

passed to the following subroutine for construction of the quantum well boundary 

condition matrix. The form of the matrices is given below. 

'hh\ 

Ih 

Ih 

hh 

so 

so 

eigenvalues — (59) 

\so ) 

and for the matrix of eigenvectors C 

C=\Tphh   i>ih   tl>ih   ^hh   <Pso   i>so ) (60) 

where ij)x represent the eigenvectors in column form. 

In the simplest case, ky = 0, the bulk dispersion curves behave as described 

above and as shown in figure 8. In this case, the identification of hh, Ih, and so 
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eigenvalues is easily accomplished. However, as ky increases, choosing the correct 

eigenvalues becomes more complicated because the imaginary values of kz are much 

less predictable. Also, as ky increases the bands become double valued as a function 

of energy. In this case, an algorithm is forced to choose only one of the two 

valid solutions and assign the second value erroneously to another band. This 

situation occurs whenever any one of the bands has a maximum not at ky = 0. 

The difficulties in assigning eigenvalues to a specific band can be seen in figures 9 

thru 11 which show the bandstructure determined form the kz(E) inversion process. 
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kx=ky=0.0 

Figure 9     Positive real and positive imaginary values of kz for the Ih, hh, and so 

bands. 
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kx=ky=0.05 

Figure 10 Positive real and positive imaginary values of kz for the Ih, hh, and 

so bands. Note the joing of the Ih and so bands at the point corresponding to the 

maximum energy in the Ih band. 
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Figure 11     All eiegnevalues of the matrix describing kz as a function of energy. 
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Figure 12     Plot of the determinant of the 30Ä Si/SiGe quantum well boundary 
condition matrix vs. energy. kx=ky=0. 

3.2.2 Determinant of Boundary Condition Matrix. Once the appropriate 

eigenvalues and associated eigenvectors for kz are determined the matrix equation 

describing the boundary conditions for the quantum well is generated. As shown 

in section 2.2.3, an acceptable value of energy is found for a particular value of ky 

when the determinant of the matrix in equation 55 is equal to zero. 

An analysis of a plot of the real and imaginary values of the determinant of 

the aforementioned matrix will allow identification of the roots of the function for 

a particular value of ky. Examples of these plots are shown in figures 12 and 13. 

Figures 12 shows a wide range of values for energy but closer analysis shows that 

roots only exist in the small region corresponding to the well. An enhanced plot 

of the data for the region of the well is shown in figure 12. 
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Using these roots as seed values, the process is repeated at increasing values 

of ky with a root finder. k|| is incrementally increased in a particular direction 

in the plane of the quantum well to determine the zeros at that new value of ky. 

These values are then used as the new seed values for the next iteration. 

Since the initial roots at ky = 0 were determined with good accuracy in 

the first step of the problem analysis, a modified secant method is acceptable 

when finding roots at higher values of ky. The secant method is a modification of 

Newton's method and is shown graphically in figure 14. 

The basic equation governing the secant method is 

*-I,-/(I,)/(»!)-/(*.) (61) 

Enhancements were made to the basic algorithm to handle difficult roots such as 

those shown in figures 15 and 16. In many cases such as that shown in figure 15 

the real part of the complex function or the imaginary part of the function can be 

approximately zero. The root finder must determine the best choice, either the real 

part or the imaginary part of the function, to utilize in the calculation given in the 

equation above. This is accomplished by comparing the values of the determinant 

in the vicinity of the seed values. The absolute values of the real and imaginary 

part are compared. If one is approximately zero within a tolerance, the other is 

used for the calculation. 

In other cases, such as that shown in figure 16, the function approaches zero 

but never crosses the axis. This sort of false root will cause the root-finder to fail to 

converge in the specified number of maximum iterations. This problem is avoided 

through the use of accurate initial values. However, the false root may approach 

the legitimate root over the course of the calculations. In some cases, the false root 

may even cross over the legitimate root. This is remedied by ensuring that the 

root finder will fail to converge in the maximum number of iterations only for the 
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Figure 14     Graphical depiction of the secant method (21). 

case of false roots. If the maximum number of iterations is reached, a false root 

is assumed and a new starting value will be chosen based on the trend of the last 

two roots found for that particular band. This jump bypasses the false root and 

facilitate convergence on the legitimate root. 
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Figure 15     Plot of the determinant of the 30Ä Si/SiGe quantum well boundary 

condition matrix vs. energy. 
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3.3    Code Generation 

The computational tools used in this research were developed in FORTRAN 

77. Several linear algebra tools were required to perform tasks such as determin- 

ing the eigenvalues and eigenvectors of complex non-Hermitian matrices. Several 

options available were Eigenvalue Subroutine Package (EISPACK), Linear alge- 

bra Package (LINPACK), and Linear Algebra Package (LAPACK). LAPACK was 

chosen as it was the most modern and the most recently updated of the available 

subroutines. 

A software package was developed to compute bandstructures for bulk ma- 

terial and semiconductor quantum wells. The package consists of six programs 

titled EFAUQ, EFAQQl, DISP110, DISP001, BANDS001, and BANDS110. 
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BANDSOOl, and BANDSUO compute strained bulk material band structures for 

the [110] and [001] growth directions respectively. EFA110 and EFA001 compute 

the determinant of the quantum well boundary condition matrix as a function of 

energy for any single value of k||. DISPUO and DISP001 utilize seed values from 

EFA110 and EFA001 to determine the bandstructure for any azimuthal direction 

in the plane of the quantum well. All programs and subroutines developed are 

listed in Appendix A with a brief description of each. 
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IV.   Results and Conclusions 

This chapter presents the bulk material band structure and the quantum well 

bandstructure for several materials. For the quantum wells, both the [110] and the 

[001] growth directions are evaluated. 

4.1    Bulk Material Band Structures 

The band structure for alloys consisting of strained Si/Si7oGe3o , GaAs, and 

In3oGa7oAs are plotted from data files generated using the code described in the 

previous chapter. Bands for several directions in A;-space are evaluated. The zone 

boundary for these materials is approximately 0.5 Angstrom'1 as given by f where 

a is the material's lattice constant. 
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Figure 17     Bulk material dispersion curves for [001] strained GaAs. 
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Figure 18     Bulk material dispersion curves for [001] strained In30Ga7oAs. 
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Figure 19     Bulk material dispersion curves for [001] strained Si7oGe30. 

4-2    Quantum Well Band Structures 

The band structure for several types of quantum wells are shown for Si/Si7oGe30 

, Al3oGa7oAs/GaAs, and GaAs/In3oGa7oAs. The following plots show the evolu- 

tion of the bandstructure under an azimuthal rotation in k — space. By noticing the 

evolution of the band structure as the azimuthal angle progresses, the magnitude 

of the anisotropy can be observed. The directions are defined with respect to the 

z axis which corresponds to the growth direction, ky has the components 

kx   =   |k|||cos# 

ky   =   Ik|||sin0 
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The band structures in the following plots are shown as a function of the azimuthal 

angle 9. The final plots show surfaces representing the bandstructure in the positive 

kx and ky quadrant. 
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Figure 20 Dispersion curves for [001] Al3oGa70As/GaAs quantum well with L=50 

angstrom. Theta ranges from 0 (dark line) to 45 degrees in 10 degree increments 

(dashed lines). 
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Figure 21 Dispersion curves for [110] Al3oGa7oAs/GaAs quantum well with L=50 

angstrom. Theta ranges from 0 (dark lines) to 90 degrees in 10 degree increments 

(dashed lines). 
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Figure 22 Dispersion curves for [001] In30Ga7oAs/GaAs quantum well with L=50 

angstrom. Theta ranges from 0 (dark line) to 45 degrees in 10 degree increments 

(dashed lines). 
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Figure 23 Dispersion curves for [110] In3oGa7oAs/GaAs quantum well with L=50 

angstrom. Theta ranges from 0 (dark line) to 90 degrees in 10 degree increments 

(dashed lines). 
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Figure 24 Dispersion curves for [001] Si/Si7oGe30 quantum well with L=30 

angstrom. Theta ranges from 0 (dark line) to 45 degrees in 10 degree increments 

(dashed lines). 
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Figure 25 Dispersion curves for [110] Si/Si7oGe3o quantum well with L=30 

angstrom. Theta ranges from 0 (dark line) to 90 degrees in 10 degree increments 

(dashed lines). 
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Figure 26     Surface plot of the bandstructure for [001] Al3oGa7oAs/GaAs quantum 

well with L=50 angstrom. 
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Figure 27     Surface plot of the bandstructure for [001] GaAs/In30Ga7oAs quantum 

well with L=50 angstrom. 
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Figure 28     Surface plot of the bandstructure for [001] Si/Si7oGe3o quantum well 

with L=30 angstrom. 
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4-3   Anisotropy 

Non-parabolic bandstructure is a result of the periodic potential created by 

the atomic arrangement in the crystal lattice. The atomic arrangement is not 

isotropic and therefore the periodicity of the potential is not isotropic. In turn, the 

bandstructure is not isotropic. 

From the plots show in the previous section, a 90 degree azimuthal rotation 

in the plane of the quantum well has different results for the [110] and the [001] 

materials. The [001] crystals have identical bandstructures for 9 = 0 and 9 = 90. 

The maximum variance in the bandstructure from that at either of these values 

of 9 occurs at 45 degrees. For the [110] materials, the anisotropy is even more 

significant as the bandstructure continuously changes through the entire 90 degree 

rotation. 

The band structure in each growth direction in each type of quantum well for 

each type of material clearly shows an anisotropy. It can also be reasonable inferred 

that the anisotropy in the bandstructure is indicative of the behavior of the wave 

functions. Therefore calculations that require knowledge of the band structure 

and/or the wavefunctions, such as that of absorption coefficients, must consider 

this anisotropy. However, also observed from the plot is that the anisotropy is 

not significant for small values of ky. This implies that transitions dictated by the 

Fermi energy to be near ky « 0, can safely neglect the effects of bandstructure 

anisotropy. 

4-4    Summary and Recommendations 

A software package has been developed to evaluate bandstructures in semi- 

conductor quantum wells for materials grown in both the [110] and the [001] di- 

rections. These tools have allowed analysis of the anisotropy of the quantum well 

bandstructure in the plane of the well. 
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To fully understand the magnitude of the anisotropic effects, absorption co- 

efficients themselves should be calculated. The code generated during this research 

provides everything necessary to perform the calculation of the wave functions in 

the well. Prom this, the momentum matrix elements and finally the absorption 

coefficients can be calculated. The tools developed in this research can also be 

used for the generation of plots depicting Fermi surfaces. One final opportunity 

for further research is to include the effect of valence band and conduction band 

coupling by expanding the total Hamiltonian. 
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Appendix A.   Subroutine Description 

The following describes the programs and subroutines generated to perform the 

necessary calculations in this research. 

• EFAxxx : This program generates a data list for plotting the determinant 

of the quantum well boundary condition matrix verses energy. The data list 

provides three records per field: energy, real part of the determinant, and the 

imaginary part of the determinant. 

• OFFSETxxx : This subroutine determines the value of the constants Vb 

and Vw. 

• FACTxxx : This subroutine utilizes the material constants to develop the 

matrix elements for the matrices making up the factored Hamiltonian, HO, 

HI, and H2. 

• KZEMATRIXrKEr : This subroutine utilizes the factored Hamiltonian matri- 

ces to develop the matrix equation describing kz as a function of energy. 

• ORDER : This subroutine takes the eigenvalues and eigenvectors of the 

kz(E) matrix and selects the linearly independent solutions. These eigenval- 

ues are then ordered as HH, LH, LH, HH, SO, and SO. The corresponding 

eigenvectors are ordered in columns to create a matrix for use in the boundary 

condition matrix equation. 

• BCMATRIX : This subroutine utilizes elements form the factored Hamil- 

tonian and eigenvalue and eigenvectors of the kz(E) matrix to develop the 

matrix equation describing the boundary conditions for the quantum well. 

• DISPxxx : This program calculates quantum well band structures. It incor- 

porates a modified secant method root finder to look for roots at each step in 

k parallel. The output from this program is a data file containing the value 

of k parallel and the associated roots. 
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• 

• 

optionsxxxx : This is the input data file that is read by both EFA and DISP. 

The options include material type, well width, number of bands, and seed 

values for the root finder. Only material type and well width are used in 

EFA. 

material : This is a data file specified in the options file. It contains stoi- 

chiometry values, Luttinger coefficients, deformation potentials, average va- 

lence band energy, etc. 
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Appendix B.   Values for Physical Constants 

The constants used in the calculations were obtained from tabulated data in People 

and Jackson (8) and Loehr (7). 

constant units Si Ge GaAs AlAs InAs 

Luttinger coefficients 

7i 4.22 13.4 7.65 3.45 19.67 

72 0.39 4.25 2.41 0.68 8.37 

73 
1.44 5.69 3.28 1.29 9.29 

lattice constant 

a A 5.431 5.658 5.654 5.6 6.0584 

spin-orbit interaction term 

A eV 0.044 0.29 0.34 0.28 0.38 

valence band hydrostatic potential 

&v eV 2.1 2.00 1.16 2.47 1.00 

valence band uniaxial deformation potentials 

Du eV 3.41 3.32 2.55 2.25 2.70 

D„/ eV 4.32 3.81 3.94 2.95 3.12 

elastic constants 

Cll 1012 Dyne/cm2 1.675 1.315 1.1879 1.25 0.8329 

C12 1012 Dyne/cm2 0.65 0.494 0.5376 0.534 0.4526 

C44 1012 Dyne/cm2 0.801 0.684 0.594 0.542 0.396 

average valence band energy 

Ev eV -7.03 -6.35 -6.92 -7.49 -6.67 
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Values for standard physical constants are given below. 

Planck's constant h Js 1.05457 x 10"34 

ev s 6.58212 x l(r16 

Electron Mass m0 kg 9.10939 x 10"31 

eV (s/Ä)2 5.68564 x IQ-32 
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