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Le but dece workshop est d'offnr un panorama relativement exhausif et prospectif de l'utilisation des 
methodes d estimation de parametres de lois-melanges dans le cadre de l'extraction multipistes Ces 
methodes ont ete developpees pour Vestimation conjointe des parametres (etats) des sources et des variables 
d affectation des mesures aux pistes. 

En effet, pour eviter les problemes combinatoires, une idee fundamentale (initialement developpee par 
Streit et Luginbuhl) consiste ä considerer les variables d'affectation comme des variables aleatoires Ce type 
dapproche presente un interet certain d'une part du fait de sa grande souplesse (extensions aisees au cos 
multirecepteurs, au MAP, ä diverses moderations de sources et d'observation), et d'autre part du fait de la 
moderation du volume de calcul requis. 

Ainsi est-il possible de considerer dans son ensemble une sequence complete d'observations afin d'en 
extraire les pistes les plus vraisemblables. V inter et devient evident en presence de "trous" de detection de 
croisements difficiles, etc. 

Streitet Luginbuhl (NUWC) ont developpe laformalisation originale du probleme (la methode PMHT) 
dont des travaux precurseurs avaient ete ceux dAvitzour et de Salmond et Gordon. Depuis, ces travaux ont 
ete analyses, developpes par plusieurs equipes (e.g.-NUWC (USA), NPS (USA), CSSIP (Australie), 
DERA (UK), IRIS A (France), U. Conn. (USA, etc.), dans des contextes varies (poursuite de cibles 
manoeuvrantes, pistage multicibles en radar, sonar, IR, vision). Ce workshop sera done Voccasion de 
confronter les points de vues, d'echanger des idees. Le recueil des textes indue 13 contributions qui 
apportent des eclairages differents et complementaires pour la mise en oeuvre de ce type de methodes. La 
diversite des approches, des applications illustre parfaitement la souplesse et la generalite du PMHT. 

The aim of this workshop is to present a reasonably wide perspective of the use of mixture densities in the 
general context of multitarget tracking. These methods have been developed for jointly estimating the source 
(kinematic) parameters in the first hand and the assignment variables in the second one. 

Indeed, to avoid combinatorial problems, a fundamental idea (at first, developed by Streit and Luginbuhl) is 
to model the assignment variables as random. Even if it corresponds to an approximation, this type of 
approach has definite advantages, essentially due to its versatility (e.g. see the very wide range of 
applications) and to reasonable requirements in terms of computation load. 

Thus, it allow us to consider directly the whole spatio-temporal sequence of measurements (a batch). This 
is especially important for reallistic applications of multitarget tracking where numerous specific problems 
occur (crossings, non-detection,masking, spurious detections, etc.). 

The original formulation of the problem (the PMHT method) has been developed by Streit and Luginbuhl 
(NUWC). Precursory contributions have been that of Avitzour in a first hand and Salmond and Gordon in 
the second. Since, the basic method has gained popularity and has been widely extended by numerous 
research teams (e.g. NUWC, Univ. of Connectict, NPS, DERA, IRISA, CSSIP), in varied contexts 
(radar, sonar, IR, vision, maneuvering sources, etc.). Thus rendering evident the vividity of this approach. 
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Theoretical development of an Integrated JPDAF 

for multitarget tracking in clutter 
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Ning Li, X.Rong Li 
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Abstract 

An improved version of Integrated Probabilistic Data Association Fil- 
ter (IPDAF) based on a new concept of probability of target perceivability 
was introduced recently in [13] for tracking a single target in clutter. In 
this paper, we extend the previous theoretical results to the multitarget 
tracking case to come up with a new integrated version of the Joint Prob- 
abilistic Data Association Filter called IJPDAF. Such algorithm provides 
a new basis of an integrated approach to multiple track initiation, confir- 
mation, termination and maintenance. 

1    Introduction 

The purpose of multitaxget tracking is to estimate the state of several tar- 
gets based on a set of measurements provided by a sensor. For tracking in a 
clutter-free environment with perfect data association, targets are always as- 
sumed perceivable and measurements are assumed to be available, unique and 
to arise from a known target at every scan. In such ideal case, multitarget 
tracking will follow conventional recursive filtering. In practice however the 
perfect data association assumption is never fulfilled and conventional filtering 
techniques cannot be used because several measurements are available at every 
scan and the origin of measurements is uncertain. Moreover tracking targets in 
clutter involves tracks initiation, confirmation, maintenance and termination. 
Tracks initiation, confirmation and termination are basically decision problems 
whereas tracks maintenance is an estimation problem compounded with mea- 
surement uncertainty. This paper is only focused on tracks maintenance. Tracks 
confirmation and termination processes were discussed in [23, 13]. As already 
pointed out in previous works [8, 27, 19, 20, 13], a fundamental limitation of 
the Probabilistic Data Association Filter (PDAF) [4, 6] and Joint PDAF [3] is 

_W_ 



the implicit strong assumption that targets are always perceivable. Of course 
in many real situations, this is not the case. To remove the implicit target 
perceivability assumption made by Bar-Shalom,Tse and Fortmann, a new for- 
mulation of IPDAF based on a new concept of target perceivability has been 
recently proposed for tracking a single target in clutter. We propose now to 
extend this formulation for the multitarget tracking applications. This new al- 
gorithm will be called Integrated JPDAF (IJPDAF) hereafter. A recent Viterbi 
Data Association (VDA) algorithm [17] has been developed with including tar- 
get perceivability state within a multitarget tracker. However this method does 
not take fully into account crossing targets. 

2    Brief Integrated PDAF review 

At each time step, the sensor provides a set of candidate measurements to be as- 
sociated with a target t (which may be potentially perceivable or unperceivable) 
by using a validation gate [4] around the predicted measurement y'(fc|fc - 1) of 
the target. There are many different approaches to associate candidate measure- 
ments with predicted one. Here we succintly present the Integrated Probabilistic 
Data Association (IPDA) method [7, 8, 27, 20, 13] for tracking a single target 
in clutter. IPDAF takes into account the target perceivability presented in [24]. 

The set of m£ candidate measurements y'(fc), i = 1,... , mjj. at time k is 
denoted Y'(fc). The set of all validated measurements for target t up to time k 
is denoted 

Y'^Y'^UY''1"1 (1) 

The corresponding innovations are for i = 1,... ,Tn\ 

y\{k)±y\{k)-y\k\k-l) (2) 

If we consider only one target t (we don't care about some other existing targets 
in the environment) we can introduce the following integrated data association 
events 

£.,■(*)  =  öineKk)     i = i,...,mt
k 

4(k)  4 ölnetik) 
4(k)  4 olne^k) 
£t(k)    ±    Olnem       i = l,...,ml 

where 0\, Ö\, B\{k) (i = 0,... ,m\) correspond to the following exclusive and 
exhaustive events 

0\    =   {target t is perceivable} 

Ö\    =   {target t is unperceivable} 

and 
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0iM    —   {yt(k) comes from target t} 

#o W    —    {none of y\ (k) comes from target t} 

The IPDA approach [13] is built with the assumptions that the estimation 
errors have Gaussian densities at each step and the perceivability state can be 
modeled as a first-order homogeneous Markov-chain. It is also assumed that 
the target measurement is detected with probability Pj and the number of false 
measurements follows a given distribution pp. Moreover false measurements 
are assumed to be uniformly distributed in measurement space. In the IPDA 
filtering approach, when ml > 0, the conditional mean estimate xf (A;|fc) is 
obtained by 

x*(fc|fc) = x*(*|* - 1) + K^JfeJy*^) (3) 

where the combined innovation y*(/r) is given by 

y*(*) = £#*!(*) (4) 
i=l 

where ß\(k) (i = Ö, 0,1.. .m|) are the posterior integrated association proba- 
bilities defined as 

#(*)4P{£?(*)|Y*'*} (5) 

Expressions for these probabilities can be found in [13]. Probabilities ßti(k) = 
P{£Li(k)\Yt'k} are all zeroes since £Li(k) are all empty. 

The update of the covariance equation is given by 

P*(*|*)    =   #(*)P'(*|fc -1) (6) 

+ßt
0(W + «$K«(*)H*(*)]P«(*|fc - 1) 

+(1 - ßl{k) - 0*(*))P*.e(*|*) + P'(fc) 

with P*-C(fc|fc) = [I - K*(*)H*(*)]P*(*|fc - 1) and the semi-definite positive 
stochastic matrix P*(A;) has the same expression as in standard PDAF [4] 

Pt(k) = Kt(k)[Y>ßiymyUk)-yt(k)yt'(k)]Kt'(k) (7) 
i=l 

ql is a weighting factor given by [16, 21, 20] 

90"    l-F}Pt 
(8) 
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where the gate probability Pg and probability Pgg are given by 

P9      =     P{X2ny<l) (9) 

P99   =   P{xly+2<i} (10) 

When m\ = 0, updating equations of the IPDAF are 

x'(Jfc|fe) = x*(Jfc|ifc-l) (11) 

V\k\k) = [I + tiP&^oK1 (/c)H<(fc)]P4(A:|fc - 1) (12) 

where Pk°>k_1 0 is the predicted probability of target perceivability. Its expression 
can be found in [13]. Prediction of the target state and measurement to time 
k + 1 are computed as in the standard Kaiman filter [4]. 

3    Multiple interfering targets 

The equations above define the IPDA filter for a single target. Several targets 
could be handled with multiple copies of the IPDAF. However, with respect 
to any given target, measurements from interfering targets do not behave at 
all like the random clutter assumed above. Rather, the probability density of 
each candidate measurement must be computed based upon the densities of all 
targets that are close enough to interfere and upon the perceivability of each 
interfering target. 

In order to account for this interdependence, consider now a cluster of targets 
(established tracks) numbered t = 1,... ,T at a given time k. The set of m* 
candidate measurements associated with this cluster is denoted 

Y(k) = {Y1(k)\J...YT(k)} (13) 

Each measurement yi(k) of such cluster belongs either to one perceivable target 
of the set t = 1,... , T or belongs to the set of false measurements, which will 
be indexed by t = 0 in the sequel. 

Denoting y'(A|A; - 1) the predicted measurement for target t, the innovation 
corresponding to measurement i becomes 

yK^yiW-y'Wfc-l)       i = \,...,mk (14) 

and the combined innovation becomes 

y*(*) = E#(*)y'(*) (15) 
i=l 

where $(k) is the integrated posterior probability that measurement i origi- 
nated from perceivable target t. ßo(k) is the probability that none of measure- 
ments originated from perceivable target t and ß§(k) is the probability that 
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target t is unperceivable at time k by the sensor. This is used in target i's state 
estimation equation to update the estimate x((fc|fc). 

In other words, the integrated Joint Probabilistic Data Association (IJPDA) 
and IPDA approaches utilize the same estimation equations; the difference is in 
the way the integrated association probabilities ß\ (k) will be computed. Wheras 
the IPDA algorithm computes ß\(k), i = Ö, 0,... , m* separately for each target 
t, under the assumption that all measurements not associated with target t 
are false with taking into account the perceibability of the target, the IJPDA 
algorithm computes ß\{k) jointly across the set of T targets and clutter. From 
the point of view of any target, this accounts for false measurements arising 
from both discrete interfering targets and random clutter. Derivation of thes 
probabilities are given in the next section. 

4    Joint association probabilities 

The key to the standard JPDA algorithm [3, 4] is based on the evaluation 
of the conditional probabilities of all the following feasible joint events : 

Q(k) = f]Qf(k) (16) 
i=l 

where ©*'(&) is the event that the measurement i originated from origin U, 
0 < ti < T. ti > 0 is the index of the target to which measurement i is associ- 
ated at time k. U = 0 means that measurement i is a false measurement. The 
feasible events are those joint events in which no more than one measurement 
originates from each target. 

Actually, another better equivalent expression for a (classical) feasible joint 
association event Q(k) is 

mfc T 

© (*)=[n owl n [n p< w=°*] w 

where öi(k) represents the origin (clutter, target 1, ... or target T) of mea- 
surement i and Vt{k) is the perceivability state for target t. In the standard 
JPDAF development, all target are implicitly assumed to be perceivable (i.e. 
P{Vt(k) = 01} = 1). This notation will make more sense for the definition of 
integrated feasible joint association events in the sequel. Thus, in the standard 
JPDAF, the previous expression reduces to 

r l e(k)=[f]oi(k)] (is) 
i=l 

The probabilities ß\{k) that measurement i belongs to target t (implicitly as- 
sumed to be perceivable by the sensor) is obtained by summing over all feasible 
events @(k) for which this condition is true, that is 
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e(k) 

i = 1,... ,mfc 

#(*) E#(*) 

(19) 

(20) 
t=i 

where time index k has been dropped for notation convenience and üu(Q) is 
the corresponding component of the feasible association matrix 

Ci(Q) = [uit(e)} (21) 

This event matrix represents a feasible joint association event 0 whenever 
the following conditions are fulfilled 

any event matrix fi(0) must be compatible with validation matrix fi 

_/l    if0<€0 
w«(0) 

0   otherwise 

• a measurement has only one origin 

T 

£>*(©) = 1 Vi 
t=o 

• at most one measurement arises from a target 

J>«(e)<i     t = i,...,r 
i=l 

Example 

Consider the following validation matrix for two targets 

t   0    1    2 

Q: 

Then the set of feasible joint association matrices is 

3 
1 1    1    0 
2 1    1    1 
3 1    0    1 

(22) 

(23) 

(24) 

(25) 

fii = 

ft3 = 

1 0 0 l 0 0 
1 0 0 n2 = l 0 0 
1 0 0 0 0 1 

1 0 0 1 r i 0 0 
0 1 0 n4 = 0 1 0 
1 0 0 0 0 1 

- 6- 



nB 

"10   0] r o i o 1 
0   0   1 fi6 = 10   0 
1    0   0 1    0   0 

ft7 = 
0   10] 
1    0   0 fi8 = 
0   0    1 

0 1    0 1 
0 0   1 
1 0   0 

Generation of such feasible event matrices fi can be done from the initial vali- 
dation matrix [6] fi by using different kind of fast algorithms [14, 11, 29, 10]. 

Assuming the states of the targets conditioned on the past observations 
mutually independent, the posterior probability of a feasible joint association 
event is given by [6] 

P{0|Y*} = - l*(0)!MF($(0))mt 

c mk\     V*(Q) n^(y^))]r,'(e)n^r (e)[i-^i jt^Stiß) 

t=l t=l 

(26) 

where c is a normalization constant and HF{^) is the probability mass function 
(pmf) of the number of false measurements and V the volume of the surveillance 
region. 

eti{yi{k)) = Af[yi(fc);y''(fc|fc - l),S4i(fc)] is the likelihood function of the 
measurement yi{k) associated with target U. yu (k\k - 1) is the predicted mea- 
surement for target U with associated innovation covariance Su(k). 

5t(Q), Ti(@) and $(0) are respectively the target detection, measurement 
association and false measurement indicators of the event 0* under considera- 
tion. These indicators are defined as 

z=l 

<*t(0) ^ £>t(0) < 1       t = l,...,T 
=i 

T 

n(©) ^£>4(0) 

(27) 

(28) 
t=i 

mjb 

$(0)4£[i_Ti(e)] 
i=l 

(29) 

According to the model used for the pmf //F($) of the number of false 
measurements, two versions of JPDA have been proposed in [3, 4] 

• Parametric JPDA : If we assume a Poisson pmf for /JF($) which re- 
quires the spatial density A of the false measurements, 

t^     (XVf -xv (30) 
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Thus the joint association probabilities are given by 

i rnk ^ 

P{0IY*}=inI*-1«,(-*(*))f<(e) n[^]',(e)[i - ^]i_',(e) (3i) 

where c is a new normalization constant. 

• Non parametric JPDA : If we assume a diffuse prior pmf for /zp($), 

M$) = c (32) 

the joint association probabilities are now given by 

mk T 

p{e\Yk} = ^ n WetMQT™ II töl*^1 - *tf ~',(e)   (33) 
j=l (=1 

where c is a new normalization constant. 

5    Integrated joint association probabilities 

The derivation of the integrated joint posterior probabilities is based on the 
evaluation of the conditional probabilities of all the feasible integrated joint 
events which take into account the perceivability of targets involved in the data 
association process. To clarify this, we give first a simple example of the IJPDA 
process. 

5.1    Example 

Consider as previously the following validation matrix for a two targets case 

*   0    1    2 
j 

Ü=   1 110 (34) 
2 111 
3 10    1 

The previous feasible event matrices 0(0) must now been modified to take 
into account the perceivability or unperceivability of each target involved in a 
feasible joint data association event. This can be done by adding a row corre- 
sponding to a dummy measurement with indice j = 0. This row will describe 
the perceivability state of each target t. Every binary component w0t (t > 0) 
will characterize the perceivability of target t when u>ot — 1 and unperceivability 
of t when üot = 0. The dummy component <I>oo can take any arbitrary value. 
By convention we will always set &oo = 0 in the following. Now, the set of inte- 
grated feasible event matrices Ü1 can be obtained from the set of (unintegrated) 
feasible event matrices Cl as follows : 



fij = 

fi,= 

n3 = 

10   0" " 0 0 0 " "010" 

1   0   0 -+ fif = 1 0 0 
ül = 1    0   0 

10   0 
1 1 0 0 

M"2 1   0   0 
1 0 0 _ _ 1    0   0 _ 

" 0 1 1" "001" 

Ül = 
1 0 0 

n{ = 
1   0   0 

ö 1 0 0 4 1    0   0 
1 0 0 _ _ 1    0   0 _ 

10   0" ■ 0 0 1" "011" 

1   0   0 -¥ ni = 
1 0 0 

Cil = 1    0   0 

0   0   1 
D 1 0 0 *UQ 1    0   0 

0 0 1 0   0    1 

1   0   0 
0 1   0 
1 0   0 

->   fi£ = 
1 1 
0 0 
1 0 
0 0 

n{ = 

0 10 
i o o 
0 10 
1 0   0 

fi4 = 

fis = 

fifi = 

ü7 = 

fi8 = 

1 0 0 " 
0 1 0 -> Cii = 
0 0 1 _ 

1 0 0 " 
0 0 1 -> n1 — "10 — 
1 0 0 _ 

0 1 0 " 
1 0 0 -*■ n1 - "12 — 
1 0 0 

0 1 0 " 
1 0 0 -¥ ü{4 = 
0 0 1 

0 1 0 " 
0 0 1 -» n{5 = 
1 0 0 

0 11 
10   0 
0 10 
0 0   1 

0 1    1 
1 0   0 
0 0   1 
1 0   0 

1 1 
1 0 
0 0 
0 0 

0 1 1 
0 1 0 
1 0 0 
0 0 1 

0 1 1 
0 10 
0 0 1 
10 0 

n[1 = 

5'13 

0 0 1 
1 0 0 
0 0 1 
1 0 0 

where the additional following feasibility constraint 

(Cl) : Any detected target is necessarily perceivable 

0 1 0 
0 10 
10 0 
10   0 
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has been used for generating ClT from Q. 

Every feasible integrated joint association matrix üj,j — 1... ,15 charaterizes 
an integrated joint association event Ej. Let P(£j\Yk) be the integrated 
joint posterior probability of £j. Since events £j are exhaustive and mutually 
exclusive, we always have 

,£P(£j\Y
k) = l (35) 

i 

When P(£j\Yk) are known (see next section for details), the marginal integrated 
association probabilities ßj(k),i = 0,0,... ,m^ will be obtained from the inte- 
grated joint probabilities by summing over all the integrated joint events £j 
in which the marginal event of interest occurs. In our example, the marginal 
probabilities for target t = 1 and t = 2 will be obtained as follows 

Marginal integrated association probabilities for target t\ 

ßl(k) = P{Ö\n6l(k)\Yk} = P(^|Yfc) + P(£4|Y*) + P(£5\Y
k) + P(£u\Yk) 

ßl(k) = P{0\ n 6l(k)\Yk} = P(£2\Y
k) + P(£3\Y

k) + P(£6\Y
k) + P(£10\Yk) 

ß\(k) = P{0\r\e\(k)\Yk} = P(£12\Y
k) + P(£13\Yk) + P(£14|Y

fc) + P(£15|Y
fc) 

ß\{k) = P{0\ n e\{k)\Yk} = P(£7\Y
k) + P(£8\Y

k) + P(£9\Y
k) 

ßUk) = P{Olnel(k)\Yk} = o 

Marginal integrated association probabilities for target t2 

ßl{k) = P{Ö2
kne2

0(k)\Yk} = P(^|Yfc) + P(£2|Y*) + P(£8|Y*) + P(€13\Y
k) 

ß2
0{k) = P{02

k n e2
0(k)\Yk} = P(£3\Y

k) + P(£4)Y
k) + P(£7\Y

k) + P{£12\Y
k) 

ß2(k) = P{O2ne2(k)\Yk} = 0 

ßl{k) = P{02 ne2(k)\Yk} = P(£10\Yk) + P(£u\Yk) + P(£15\Y
k) 

ßl(k) = P{02
knel(k)\Yk} = P(£5\Y

k) + P(£6\Y
k) + P(£9\Y

k) + P(£14\Y
k) 

One can easily check that 

£       ß\{k) = l       Vt = l,2 (36) 
i=Ö,0,l,...,mit 

The state estimation equations will be exactly the same as in the IPDAF 
presented in the first section. 

5.2    Derivation of integrated joint probabilities 

We define an integrated joint association event £ pertaining to the current 
time k as 

^(*)=[n°*(fc)]n[n^(fc)] w 
t=i      t=i 

- 10- 



where Oj(fc) represents the source (clutter, target 1, ... or target T) of mea- 
surement i and Vt{k) represents the perceivability state for target t {Vt{k) = 0\ 
when target t is perceivable or Vt{k) = Ö\ otherwise). Such event characterizes 
both the origin of all measurements and the perceivability state of all targets. 

Every integrated joint association event £{k) can be represented by an inte- 
grated event matrix of size (ntk + 1) x (T + 1) 

A'(£) = [£«(£)] (38) 

consisting of the units in the validation matrix fi corresponding to the integrated 
association in £, i.e. for t = 0,1,... , T and i = 1,... , m* 

0   otherwise 

and for *=.!,... ,T 

I 0   otherwise 

A feasible integrated association event is one satisfying the following con- 
straints 

(1) a measurement has only one origin, i.e., 

T 

5>a(5) = l       Vi (41) 

(2) at most one measurement originates from a (perceivable) target 

"it 

*«(£)^ $>«(£) <1       t = l,...,T (42) 
i=l 

(3) any detected target is necessarily perceivable 

ww(£) - 5t(£) > 0       t = 1,... ,T (43) 

The binary variable St(£) is called the target detection indicator since it 
indicates wether target t has been detected under £. The measurement asso- 
ciation indicator n{£) and false measurement indicator $(£) are defined 
in the same way as in the JPDA approach, i.e. 

T 
7i(£) £ £**(£) (44) 

t=i 

- (U 



*(f)4£[i-Ti(f)] (45) 
t=i 

The binary component irt(£) = wot(£) is called the target perceivability in- 
dicator since it indicates whether the target is perceivable in the integrated 
joint event £. 

The generation of the integrated event matrices Ü1'(£) can be obtained from 
every (non integrated) feasible event matrice fi(0) by adding any row i = 0 
which characterizes the feasible perceivability state for all targets. Hence from 
every given event matrix 0(0), we will have to generate Ne integrated event 
matrices Jr(<?) where 

T 

We = n2l_Me) (46) 

As in the classical JPDA approach, the evaluation of the integrated joint asso- 
ciation event probabilities are obtained with Bayes' formula as follows 

P{£\Yk} = P{£\Y(k),mk,Y
k-1} 

= ±p[Y(k)\£,mk,Y
k-1]P{£\mk} 

where c is a normalization constant. 

If we assume the states of targets given the past observations mutually indepen- 
dent, the likelihood function of the measurements p[Y(k)\£,mk,Y

k~1] is 
exactly the same as the one derived in the stantard JPDA, i.e. 

p[Y(k)\£,mk, Y*-1] = V-*<*> Y[[eti(yi(k))ri£) (47) 
t=i 

where eu (y,(A;)) = M[yi{k); yu (k\k -1), St; (A;)] is the likelihood function of the 
measurement yi{k) associated with target t* = Oi(£). yt;(A;|A: — 1) is the pre- 
dicted measurement for target ti with associated innovation covariance S'^A;). 
V is the volume of the surveillance region. 

The prior probability of an integrated joint association event is given now by 

p{£\mk}=^W(*(£)) n fia^ii - p$~5t{£) 

t=l 

xn«-I.j*
,("[i-cj1"I,") («) 

mk\ K t=i 
T 

- (L- 



where /UF($) is the probability mass function (pmf) of the number of false mea- 
surements. P°\k-i,mk 

IS ^e conditional predicted target perceivability which 
can be easily computed on line (see in [13] for details). 

The posterior probability P{£\Yk} of an integrated joint association event is 
thus given by 

xn^f^i-p']1-^ 
t=i 

T 

*m<-i.nj  ri-^-wi w (49) 

Depending on the model used for the pmf HF($), two versions of IJPDA can 
be used 

• Parametric IJPDA : If we assume a Poisson pmf for /*/■($) (which 
requires the spatial density A of the false measurements), the integrated 
joint association probabilities become 

P{£\Yk} = ±l[[\-ieti(zi(m
Tii£) 

t=i 

xn[<-1.j
,,(£)n-<-1,j

I"Ii,£J (so) 

i=l 

t=i 
T 

l/'fcjfc-l-mjt 
t=l 

where c is a new normalization constant 

• Non parametric IJPDA : If we assume a diffuse prior pmf for /XF($), 
the integrated joint association probabilities become 

P{£lY*} = ^-f[[VetM(k))}M£) 
c
    t=i 

t=i 

-fi^i-^f^-p^u^r^ (SD \.rk\k-l<mh 
t=l 

where c is a new normalization constant. 
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If we assume the states of the targets given the past mutually independent, 
one needs the integrated marginal association probabilities which are ob- 
tained from the integrated joint probabilities by summing over all the integrated 
joint event S in which the integrated marginal event of interest occurs. Hence 
we will have for t = 1,... , T 

ß\(k) A P{Oi n9\(k)} = YJP{£\Yk}üit{£) (52) 
£ 

ßl{k) 4 P{Oi n eUk)} = £ ^|Y*}[1 - 6t(£)]M£) (53) 
£ 

4(k) ± P{Öi n 0«(*)} = £/>{£|Y*}[1 - St(£)][l - irt(£)] (54) 
£ 

Once the integrated marginal probabilities ß\{k) (i = 0,0,... ,mk) are com- 
puted, the state estimation equations similar to those in the IPDAF can be 
used for track maintenance, termination and confirmation. 

5.3 Simplification for IJPDAF 

For integrated joint probabilities P{£\Yk} evaluations, a huge number of in- 
tegrated event matrices has to be generated by IJPDAF comparatively to the 
standard JPDA approach. This could become a severe drawback for IJPDAF 
specially for heavy clutter/multitarget tracking applications. But even if this 
remark is perfectly true, we must however point out the fact that only inte- 
grated marginal probabilities ß\{k) are required for track maintenance. The 
good news is that evaluation of ß\ (k) does not require the generation of all inte- 
grated event matrices fi7(£) at all but only unintegrated event matrices (l(Q). 
Actually, it can be shown from (52)-(54) with elementary algebra that ß\{k) 
(i = Ö, 0,1,... ,m,k) can be finally expressed as 

ß\{k) = £p{0|Y*}pg_w n^-i.™J''(e)a«(e) (55) 

#(*)=Ep{0iYfc}<-w ntösUmj'^i1 - ^0)i     (5ß) 

/38(*) = Ep{elY*}[1-^-i.«JlI[^S-i.mJ'i(e)[l-4(e)]       (57) 

Hence the cost of computation involved in the IJPDAF is almost the same 
than the cost required within the standard JPDAF. Only the cost of computa- 
tion of predicted target perceivability probability (which is not computationally 
greedy) must be add to the computation cost of the standard JPDAF. Moreover 
expressions (55)-(57) become fully consistent with those of standard JPDAF as 
soon as target perceivability probabilities tend towards unity. 

5.4 Remark 

In the preceding, targets' states given the past were assumed mutually inde- 
pendent. Actually, we could also consider the targets' state, given the past, as 

-/*- 



correlated and perform a coupled estimation for the targets under consideration. 
This will yield the IJPDA coupled filter (IJPDACF). Details on this approach 
for JPDACF can be found in [6]. Furthermore amplitude information can also 
be included in the IJPDAF without any difficulty by the way already described 
in [18, 12, 20]. Indeed, if we set P^k_lttnk = 1 in (55)-(57), we get fi(k) = 0 
and (19)-(20). 

6    Conclusion 

A new theoretical development of an integrated version of JPDAF has been 
given here. After a rigorous derivation of integrated joint association proba- 
bilities based on an enumeration of all feasible integrated event matrices, we 
have been able to express the integrated marginal association probabilities in 
a very simple form which requires only the generation of (unintegrated) event 
matrices as for the standard JPDAF. This important result shows that the cost 
of IJPDAF is comparable to JPDAF. Target state estimation is done by the 
IPDAF equations and track confirmation/termination can be performed using 
quite new procedures based on sequential probability ratio test (SPRT) or opti- 
mal design thresholdings. The IJPDAF formulation is fully consistent with the 
standard JPDAF when the perceivability probability of each target becomes 
one. Simulations results and tracking performance analysis of IJPDAF will be 
reported in forthcoming papers. 

-\5 - 
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Abstract 

This paper is focussed on the initialization of the 
probabilistic approaches (the PMHT for the sequel) 
for multitarget multisensor tracking. Since data asso- 
ciation represents the corner stone of any multitarget 
multisensor tracker, a method is proposed to provide 
an initialization which guarantees the probabilistic 
approaches to converge to the global solution. It is 
based on a solution to the data association problem. 
Such a solution is obtained by solving a combinatorial 
optimization problem. Since the dimension of the 
problem increases linearly with the number of scans 
and the number of measurements, even a sub-optimal 
solution can not be obtained for realistic problems. To 
avoid this drawback, the proposed algorithm solves a 
vectorial data association problem instead of a mea- 
surement to measurement association problem. With 
some hypotheses, this approach is shown to be quite 
promising. 

Keywords: multitarget multisensor tracking, PMHT, 
EM algorithm, combinatorial optimization 

1    Introduction 

Numerous methods have been proposed to solve multi- 
target multisensor tracking problem. All of them need to 
face two different problems: data association and estima- 
tion of the kinematic parameters of the targets. These 
methods divide into probabilistic approaches where data 
association is included in the estimation problem and 
into combinatorial ones which aim to find a global solu- 
tion to data association. 

On the one hand, for the probabilistic approaches, the 
main difficulty relies upon the initialization of the algo- 
rithm. For example, only two sets of measurements are 
commonly used to initialize the JPDAF [1]. Moreover, 
since the JPDAF updates tracks based on the last set of 

"This work has been supported by Direct.   Constr.   Navales 
(DCN/Ing), Rrance 

measurements received and based on the predictive esti- 
mates of the targets, it may loose some tracks and may 
not accurately estimate the target in the crossing areas. 
On the other hand, in the PMHT [9, 10], the exhaus- 
tive enumeration of all the hypotheses of association is 
avoided, first, by introducing discrete variables to model 
data association and, finally, by making an hypothesis of 
independency about them. This means that a constraint 
on the association has been relaxed which leads to more 
numerous local optima and stationary points for the op- 
timization problem. Thus, since few a priori information 
is available about the solution, the performance of the 
algorithm depends mainly on the initialization. 

On the other hand, the combinatorial methods try 
to find a global solution to data association by solving 
a combinatorial optimization problem. These methods 
were more recently studied by Pattipati et al. [7] by in- 
troducing efficient methods for solving integer optimiza- 
tion problems. It has been shown that multitarget mul- 
tisensor tracking can be formulated as a combinatorial 
optimization problem [2], and more precisely, as a N- 
dimensional assignment problem. Since such a problem 
is known to be NP-hard as soon as N > 3, only sub- 
optimal solutions may be obtained. Unfortunately, even 
sub-optimal solutions can not be obtained for high values 
of AT (typically, N < 10). 

As a consequence, since data association represents 
the corner stone of any multisensor multitarget track- 
ing algorihtm, a sub-optimal solution to the combinato- 
rial optimization may be a good initial point for glob- 
ally optimizing a probabilistic criteria. In this paper, 
data association is focussed on the crossing areas when a 
track vanishes due to another track more powerful (pas- 
sive sonar). Instead of measurement to measurement 
association, association of measurement vector will be 
considered in the sequel. It will be called vectorial data 
association. This new problem must answer the ques- 
tion to know whether the tracks after the crossing are the 
same than those before. We postulate that as soon as the 
tracks are well separated, data association consists only 
in the problem of tracking one target with false-alarms. 
All the vectorial measurements contain a possible track 



embedded in false-alarms, before or after the crossing 
area. They correspond to a reduced information. The 
advantage of the method is to reduce the size, N, of the 
combinatorial problem by focussing on the crossing area 
(before/after). This is a rough approximation but real- 
istic in order to obtain a sub-optimal solution which will 
lead to the global solution of the probabilistic approach. 
For the sequel, the PMHT is retained as the probabilistic 
approach. 

The paper is divided as follow: probabilistic ap- 
proaches are presented with their limitations in a first 
part, while a brief review of the combinatorial approaches 
is proposed in a second part. This approach is then ex- 
tended to the vectorial case in a third part. The algo- 
rithm and the cost function are also described. Some 
experiments and a discussion will follow. 

ization [4]. For example, the algorithm may converge to 
a local solution. Moreover the algorithm may converge to 
stationary points of the likelihood. This problem is even 
more sensitive when solving spatio-temporal data asso- 
ciation, that is a multisensor multitarget tracking prob- 
lem. Different solutions have been proposed to overcome 
this drawback. One of them consists in maximizing a 
sequence of functions where the covariance of the mea- 
surements is artificially increased at the beginning, then, 
it is decreased such that the function is equalled to the 
likelihood function [5]. Nevertheless, no results regarding 
the convergence of the sequence are available even if the 
algorithm is more robust numerically. As a consequence, 
the problem of the initialization still remains. Basically, 
this problem comes from the lack of a priori information 
about data association. 

2    Probabilistic approaches 

In the probabilistic approaches, different strategies are 
commonly applied whether data association is solved 
based on the last set of measurements received (e.g.: last 
scan) and the predictive estimates (JPDAF [1]) or based 
on all the measurements received (MHT [8], PMHT [9]). 
For the latter, data association results in an exhaustive 
enumeration of all the hypotheses of association since one 
measurement originates from one target at most. That 
is why such a constraint has been removed in PMHT. 
Multitarget multisensor tracking is then immersed in a 
mixture density problem where the mixture parameters 
are the probability that a measurement originates from 
a target. They are estimated jointly with the target pa- 
rameters. This formulation of the problem proposed by 
Streit et al. [9] is very attractive since multitarget track- 
ing as well as multisensor tracking are solved in the same 
way. For example, the general expression of the likeli- 
hood function for T scans and S sensors reduces to [3] : 

s   T   ml M 

p(m=nn n £PW>«) ^w (i) 
s=lt=li„=l   V.m=0 

where Z denotes the whole set of measurements, $ is 
the parameter vector composed of the target parameters, 
X, and of the mixture parameters n. The number of 
components of the mixture density is supposed known 
and equalled to M. 

For the sequel, the discussion is restricted to the maxi- 
mization of the likelihood function since in passive sonar, 
targets are generally supposed to move according to a 
MRU. Then, the problem reduces to a non-linear opti- 
mization problem. However, the problem is too difficult 
to maximize directly the log-likelihood. For this purpose, 
EM algorithm is applied [10]. The algorithm proceeds in 
two steps: the Expectation step (E-step) and the Maxi- 
mization one (M-step). Numerical studies have demon- 
strated that the algorithm is very sensitive to the initial- 

3    The combinatorial optimization 
problem 

The previous part has suggested the limits of the proba- 
bilistic approaches. Since the main difficulty of tracking 
multiple targets from multiple sensors relies upton data 
association, a global solution to this problem is investi- 
gated through the combinatorial nature of the problem. 
Since the aim of this paper is not to present the com- 
binatorial methods, the issues of the formulation of the 
problem and the issues of the false-alarms will not be 
discussed here. For this purpose, see [7, 2] for example. 

Recent works [2] have shown that the spatio-temporal 
data association problem arising from multisensor mul- 
titarget tracking may be formulated as a combinatorial 
optimization problem : 

7711 771// 

(PN)       *N=    min    ]£.■. ^ chi2...iN phi2...iN   (2) 
Pilil ii=0        tjv=0 

subject to 

(       7712 TTlN 

z2 "' z2 P*i»a-«JV       = 1, ii = l,...,mi 
f2=0        iN=0 

mi (3) 

«1=0        iw_1=0 

Phi2-is 6 {0,1} 

= 1, tjv = l,...,rojv 

where Ci1ii...iN £ R is the cost of the N-tuple Zili7...iN, 
whereas the binary variable Piita-i* indicates whether 
the corresponding N-tuple belongs or not to the opti- 
mal partition of the measurements. mn is the number 
of measurements in the nth set. Moreover, the N sets 
of constraints are the mathematical expression of the 
association hypotheses. This problem is called in the 
litterature a N-dimensional assignment problem where 
N = SxT for T scans and S sensors. Thus, the number 



of constraints increases linearly with TV and the number 
of measurements inside each scan whereas the number 
of variables increases exponentially. Thus the problem 
becomes very rapidly intractable. 

However, for small sizes (e.g. N < 10), sub-optimal 
solutions may be obtained by Lagrangean relaxation [7]. 
More precisely, (N — 2) sets of constraints are included 
in the objective function by introducing the Lagrangean 
vector, u: 

(R2)       *2(u) = 
mi 771JV 

min £■■• X)(c*i- 

(4) 

«3,i 
n--->N »1=0        IN—0 

77»3 771JV 

~UN,iN) Ph-iN + ]P U3,is H 1- 22 UN
^ 

»V=0 »3=0 

subject to 

»2=0 »JV=0 
77»1      7713 T71JV 

w   i!=0»3=0       »V=0 

1, *1 = 1 • 

1,12 = 1- 

•mi 

•m2 

(5) 

The relaxed problem is then solved by an efficient al- 
gorithm (for example, the auction algorithm) whereas 
the dual function is optimized by a sub-gradient method. 
Moreover, theoritical results assert that the dual-optimal 
solution verifies the following property : 

#2(u) < *2* = *2(u*) =  max  $2(u) < VN. 
U3---UJV 

More precisely, this method provides the tightest bound 
on the solution for the given problem. This property rep- 
resents the main interest of the method. It is necessary 
also to notice that the optimal solution of data associ- 
ation is not necessary required since the final aim is to 
provide an estimate of the target state vectors. In fact, 
two different solutions of data association, such that each 
one is near the optimal one, lead approximately to the 
same target estimates. 

4    A vectorial combinatorial opti- 
mization problem 

4.1    Motivations 

In the previous part, the interest of the combinatorial 
method has been clearly exhibited. However, the di- 
mension of the assignment problem represents the main 
limitation of this method. On the other hand, if data 
association is not thought as a measurement to measure- 
ment association but instead as a vectorial measurement 
association, it could be possible to solve biggest prob- 
lems than those discussed in the previous part. More- 
over, the attention would then be focussed on the real 
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Figure 1: Example of cuts in the measurement space 

data association problems that is when the tracks cross. 
This reasoning is based upon the fact that when tracks 
are well isolated, data association is not really a difficult 
problem since it reduces to a track embedded in false- 
alarms. On the other hand, when tracks cross, due to 
the different power of the targets, the less powerful track 
is absorbed by the other one. The problem is then to 
know whether tracks appearing after the crossing area 
are the continuation of existing tracks. 

To illustrate this idea, consider for example the sce- 
nario presented on fig 1. Four areas clearly appear, it is 
possible to distinguish measurement vectors correspond- 
ing to isolated tracks (zn,zi2,Zi3,Z2i,Z3i,Z32,Z33,Z4i) 
from measurement vectors corresponding to crossing ar- 
eas (z2o,Z4o). Suppose these measurement vectors have 
been obtained based on some criteria1, the data associ- 
ation problem consists then in the assignment of these 
measurement vectors. In this example, the dimension 
of the assignment problem is reduced to four. The true 
association is then the following set of 4-tuples : 

{•^1020, ^2011, Z3130} 

where     ZW2o = {zu, z2o,z32 >Z4o} 

Z2OII = {zl2,Z20)Z31>Z4l} 
Z313O = {zi3)Z21,Z33,Z4o} 

4.2    The cost function 
In the combinatorial methods, dummy measurements are 
introduced to take into account false-alarms and missed 
detections [7]. In the context described above, dummy 
measurements represent now, measurement vectors of 
the crossing areas since the probability density function 
in these areas, is a mixture of various targets in addi- 
tion to the false-alarms. This difficult mixture problem 
will be solved later by the probabilistic approach based 

1 track purity criteria for example [6] 



on the initialization obtained by the combinatorial al- 
gorithm. Thus, the dummy measurement will not con- 
tribute to the cost function of a N-tuple Z{1i2...iN in the 
combinatorial problem. The cost c^...^ of the N-tuple 
Z%T.ii-iN includes only the contribution of the measure- 
ment vector of the isolated tracks. Since a measurement 
from such a vector originates whether from a target or a 

Visualization of the scenario 

false-alarm, the likelihood function of Z{xi2. 
by: 

is defined 

N 

p(Zili2...iN\x)     =      Y[p(zn,ijx) 
n=l 

N     T„ 

= nnnE {*mP(*i(t)i*)} 
n=l t=tn   j=l   m=0 
»»#0 

where tn, Tn are respectively the beginning and the end- 
ing of the n*" area and m^iin is the number of measure- 
ments at t in the vector. This expression of the likelihood 
is thus identical to the one defined in the probabilistic 
approach except that the number of components of the 
mixture is known for this calculation. A direct calcula- 
tion based on the classical hypotheses of association [1] 
could be undertaken like in [5]. Since each N-tuple may 
contain a different number of measurements, a general- 
ized likelihood ratio is defined as the cost function of the 
N-tuple Zili2...iN : 

Ci 

/maxp(Zili2 

u-iN    =    -log   -75:  
\P\Zhi2-i. 

(6) 

where the alternative represents the hypothesis that all 
the measurements of the N-tuple (in ^ 0) are false- 
alarms. 

4.3    Results 

The vectorial assignment problem has been studied in 
the passive sonar context. For this purpose, an hypothe- 
sis is added to guarantee the observability of the system: 
for each target, its track is supposed to contain isolated 
parts on at least two pieces of the target trajectories 
corresponding to a maneuver of the observer. In this 
simulation, isolated parts of the tracks are supposed to 
contain only the measurements coming from the target. 
This allows to simplify the probabilistic model used in 
the calculation of the costs. For the scenario of the ex- 
ample, the same cuts have been done in the measurement 
space, thus a 4-dimensional assignment problem has to 
be solved. On figure 2, the result of the solution ob- 
tained by the combinatorial agorithm is presented. This 
solution has been used to initialize the probabilistic al- 
gorithm (PMHT). There is no need now to increase the 
covariance of the measurement to make the algorithm 
less sensitive to the initialization. There is no need also 
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Figure 2:  Solution of the vectorial combinatorial opti- 
mization problem 

to know the number of components in the mixture since 
it corresponds to the number of N-tuples of the opti- 
mal solution plus one. Moreover, only ten iterations are 
necessary to estimate the parameters in the crossing ar- 
eas. Figure 3 presents the results which exhibit that the 
probabilistic approach has no difficulty to converge to 
the global solution of the problem. The new solution 
corresponds to the maximum likelihood estimate of the 
problem. 

5    Conclusion 

A novel approach has been proposed to initialize the 
probabilistic approaches. Since data association is the 
basic problem in multitarget multisensor tracking, the 
method is based on a combinatorial optimization prob- 
lem. However, combinatorial methods can not solve high 
dimensional assignment problem. To avoid this draw- 
back, the proposed method focusses on the real data 
association problems by assigning measurement vectors 



Visualization of the scenario 
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Figure 3: Estimation obtained with a PMHT initialized 
with the combinatorial solution 
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instead of associating a measurement to a measurement. 
To this purpose, the measurement vectors have been 
supposed to be obtained based on some criteria. The 
optimal solution is then used as an initialization of a 
PMHT algorithm. The results exhibit clearly that this 
solution leads the probabilistic algorithm to converge to 
the global solution. Furthermore, the PMHT algorithm 
does not need to require hypotheses about the number of 
components of the mixture since it is obtained as a by- 
product of the combinatorial algorithm. Finally, some 
more work needs to be pursued in order to define crite- 
ria for obtaining the measurement vectors and in order 
to evaluate the performance of the algorithm. 
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Abstract 

In this paper, we address the issue of estimating the 
spatio-temporal trajectories of regions from a batch of 
detection maps. In the context of video content analy- 
sis, for instance for surveillance purposes, where moving 
objects are generally of interest, obtaining their trajec- 
tories is of much importance. Besides, if their tracking 
is disrupted by temporary misdetections, a partial tra- 
jectory association issue is combined to the trajectory 
estimation problem. We address this topic with a Prob- 
abilistic Multiple Hypothesis Tracking-based approach, 
with carries out data association and trajectories esti- 
mation as a mixture density parameter estimation using 
the EM algorithm. This technique is applied to state 
and measurement vectors including both geometric and 
kinematic information. 024 

1    Problem statement 

In this paper, we address the issue of estimating the 
spatio-temporal trajectories of regions from a batch of W 
detection maps. In the context of video content analy- 
sis, for instance for surveillance purposes, detecting and 
tracking mobile objects in terms of 2D masks is an impor- 
tant task for a variety of applications (e.g. object recogni-, 
tion, trajectory analysis). Assuming detection maps are 2 

provided, the problem is two-fold : first, associate cor- 
rectly the detected regions over time; second, estimated 
the trajectory (location and geometry) of each region. 

We obtain a batch of detection maps using an approach 
based on [7], of which fig. la,b shows a example. This 
technique enables detection of mobile zones even in the 
case of a mobile camera. Spatially disconnected mobile 
zones are considered as distinct measurements. For each 
measurement, the following information is available : (1) 
a region mask, from which we extract a polygonal ap- 
proximation; (2) a parametric (affine) model of the dis- 
placement (motion) between a pair of successive frames; 
(3) a symbolic region label. The detection algorithm is 
such that if a region is detected in two successive frames, 
the region label is maintained, thereby providing a reli- 
able short-term temporal link (e.g. as shown in fig. la,b). 
Because an object may temporarily be static or totally 
occluded, there may be misdetections that break that 
temporal link (the region reappears bearing a new label). 

A difficulty in estimating the silhouette in the image 
of the objects in each frame arises from the fact that the 
measured mask of a detected region may be affected e.g. 
by moving shadows, or partial occlusion. For instance, in 
the sequence shown in fig. la, the total occlusion (images 
14 to 23) is preceded and followed by partial occlusions 
of the two moving elements. 

rt'fi 

1 a^ I^^^^^^^^^B a?« 
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Figure 1: Original images (a) and resulting detection maps 
(b) at time t=0, t=6, t=ll, t=24, t=26 and t=31 

2    Problem formulation 

A measurement in our problem is a detected region, with 
the information it carries. We shall call partial track a 
set of successive measurements linked over time by their 
label. One of our goals is to recover actual tracks, where 
a track is a set of measurements corresponding to a single 
physical moving element. These tracks are composed of 
one or several partial tracks. From each track has to 
be derived the trajectory model of the mobile element, 
assuming noisy measurements. The estimation of these 
trajectories is our second goal. 



Let us denote Z the set of observed measurements in 
the batch [0,..., T] corresponding to the image sequence. 
This set and the set Z{t) of the mt measurements de- 
tected at time t decompose as follows : 

Z=[Z(1),...,Z(T)] 

Z(t) = {z1(t),...,zm,(t)} 

(1) 

(2) 

Assume measurements originate from M' mobile ele- 
ments in the scene. In practise, this number is a priori 
unknown, and is to be determined. We shall see how set- 
ting a number of trajectory models M greater than M' 
is initially sufficient. Once the M trajectory models are 
estimated, we shall infer redundant models, if any, and 
hence M'. 

Each of the M trajectory models is described by a state 
vector at each time, and an evolution model related to 
this state vector. Let us denote xm (t) the state vector of 
model m at time t. We also define the set X(t) of state 
vectors at a given time t and their set X over the batch, 
respectively as : 

X=[X(1),...,X(T)] 

X(t) = {x1(t),...,xrn(t)} 

(3) 

(4) 

Each region is represented by a geometric (polygonal) 
model of its contour, and by its kinematics, measured 
as an affine inter-frame motion model. The state vector 
xm(t) and the measurement vector Zj(t) are hence made 
up of two components : 

Xm(t) =  [   Gm{t)    ,    &m(t)   }7 

zj(t)=[ Gj(t) , e^t) ]T 

(5) 

(6) 

where 

• Gj(t) = {P/(*),... ,P*(f)(t)} is an ordered set of 

n(t) vertices resulting from a polygonal approxima- 
tion of the detected region. This approximation is 
carried out independently for each of the measure- 
ments. 

• Qj(t) = [a](f) , ... , ä6j(t)}T is the measured pa- 
rameter vector of the affine motion model. 

•Gm{t) = {P4(t),...,P£(t)(*)} and em(t) = 
[a^t) , ... , Om(*)]T axe respectively the geomet- 
ric (n(i)-vertices polygonal model) and kinematic 
model of the state vector. 

We assume the evolution of these states can be mod- 
eled as linear and Markovian, with additive Gaussian 
white noise. Besides, we consider the measurement of 
this state is corrupted by Gaussian white noise, which 
covariance matrix is denoted Am .We now define the evo- 
lution and measurement processes as equations for both 
the geometric and kinematic components. 

• Kinematic component 

The parameters of the motion model 0m are consid- 
ered decorrelated and are estimated independently. 
A "constant velocity" evolution model is selected for 
these parameters (eqn. 7). 

(*+!) = 
1    1 
0    1 (*) + (*)     (7) 

where [ej, €2]^   is a Gaussian random vector, which 

(8) 

covariance matrix Q( is expressed as : 

1 1 

*   1 2 x 

The measurement equation is defined by considering 
a Gaussian measurement noise Tfm{t) of variance CT^, 

on each of the motion parameters : 

l(t) = ar
n(t) + tirm(t) (9) 

Considering we have no prior knowledge on the kine- 
matics of the moving object, no training set, and 
that no reliable estimation of the measurement un- 
certainty is available, of and a% are empirically user- 
set parameters. For real applications, dedicated es- 
timation schemes could be added. 

• Geometric component 

As in [6], we track the geometric model through 
the set of its vertices. A temporal evolution model 
of each of these vertices exploits the affine motion 
model 0£+1 estimated on the region at hand and fil- 
tered over time. This evolution is defined by equa- 
tion 10 : 

(* + !) = 
1 + Ü2 03 

04 1 + 05 

ao 

(t) 

(*) + 

(*) 

(*) 

(10) 

where [Ci>C2Jm  {t) is a Gaussian random vector, 
which covariance matrix Q$ is expressed as : 

<?< = -c2 
1   0' 
0   1 (11) 

The measurement PJ{t) = [ü,v]j  (t) of a vertex is 
modeled by relation 12 : 

(t) = 
v 

L  J m 
(*) + KI: (*) (12) 

where measurement noises ß[{t) and ß^it) are as- 
sumed to be Gaussian random vectors, of variance 



Again, we set o| and <r| by trial-and-error. 

Let us recall that our goal is to estimate the trajec- 
tories of the detected regions, and to associate partial 
tracks, if required. Trajectory and data association prob- 
lem are known to be two tightly interwoven problems. In- 
deed, the association between partial tracks depends on 
the trajectories, which in turn must be computed from 
the whole set of measurements corresponding to a sin- 
gle physical element. The measurement-to-model assign- 
ment could be hard, as in MHT algorithms [1]. MHT 
techniques consist in enumerating possible assignments, 
evaluate the pertinence of the trajectories formed, and in- 
troduce criteria to prune the assignment hypothesis tree. 
Another classical tool for estimation/data association is 
JPDAF [1]. However, is it rather a track updating tech- 
nique. PMHT (Probabilistic Multiple Hypothesis Track- 
ing), which we employ here, offers a new alternative to 
these classical techniques. This statistical method con- 
sists in performing a MAP (Maximum A Posteriori) esti- 
mation of the models using Kaiman filtering in the case 
of linear measurements and the EM algorithm for as- 
signing, in a soft probabilitistic manner, measurements 
to models. Doing so, it avoids the NP-hard combinato- 
rial issue. We refer the reader to [10, 3, 9] for in-depth 
coverage. 

PMHT requires denning the following notations. We 
call K the set of measurement-to-model associations, 
which can be decomposed over time and measurements 
as follows : 

K=[K(1),...,K(T)] (13) 

K(t) = {k1(t),...,kmt(t)} (14) 

An association kj(t) takes values in [1,..., M], thereby 
indicating to which model measurement j is assigned. 

Let us also introduce II, the prior probability of mod- 
els, which can also be decomposed over time and mea- 
surements as follows : 

n=[n(i),...,n(T)] (15) 

n(t) = {7ri(t),...,ffM(*)} (16) 

Given a measurement at time t, 7rm(£) represents the 
priori probability of a measurement being assigned to 
model m, whatsoever this measurement may be. 

In the statistical formulation defined in this paper, the 
sets X, K and Ü respectively contain continuous, random 
and continuous random variables. Let us consider the 
two following statistical assumptions on these variables. 

• We assume a measurement is associated to one and 
one model only.  The following consequence on as- 

signment variables is inferred : 

M M 

5>(M*)=ro)  =   X>m(*) = l        (17) 
m=l »71=1 

• We assume that at most one measurement can orig- 
inate from a mobile element at a time. This implies 
a dependence of assignment variables. 

Classical multi-track extraction methods (JPDAF, 
MHT) are based on these two assumptions, whereas the 
approach we employ, namely PMHT, relies only on the 
first one. Consequently, we assume independence of the 
assignment variables, which enables the decomposition of 
the joint probability of K(t) as described by equation 18. 
It is this very decomposition which avoids enumeration 
of measurement-to-track association hypothesis. 

p{K(t))  =   Hpikjit)) (18) 
3=1 

3    Essential results of PMHT 

The recall in this section the main theoretical aspects of 
PMHT that are used in our application. 

The search for optimal assignments and states being 
two interlocking issues, Streit [10] proposed to include 
the data association problem in the estimation problem. 
Let us define vector $ = (X,U). The {Km}m=i,...,M 
represent the laws of the discrete variables kj(t), and es- 
timating $ according to the maximum a posteriori crite- 
rion comes down to a joint estimation of assignments and 
states. The a posteriori distribution can be expressed by 
relation 19. Our goal is to find the parameter vector $ 
which maximizes this probability. 

p(z\x,n)=p(x(oj) 
T 

J[p(z(t) I X(t),U(t))       p(x(t) I X(t - 1)) 
t=l^- 

(19) 

measurement likelihood       prior state evolution 

Gauvrit and Le Cadre [3] have shown that in the above 
expression, the measurement likelihood term can be ex- 
pressed as a mixture density law, in which the parameters 
weighing the respective contributions of the elementary 
laws to the mixture as the prior probabilities of the mod- 
els. The main result is the following : 

T 

J[p(z(t)\X{t),U{tj)  = (20) 

T   mt    M 

=n n E K*iW' *»»(«))*•»(*)  (2i) 

t=i 

An essential point is that, thanks to the indepen- 
dence assumption between assignment variables, writing 



eqn. 20 as a mixture law (eqn. 21) is made possible. We 
refer the reader to [3] for further detail. Direct maxi- 
mization of this law is however not feasible, since it is 
parameterized by the unknown weights Ttm(t). 

Following the work of Redner and Walker [8], the EM 
algorithm [2] can be employed to estimate the parame- 
ters of such a mixture density, through an iterative proce- 
dure. Let us assume some initial parameters §° are avail- 
able. At the i + 1th iteration of the algorithm, in a first 
step ("E-Expectation" step), an approximation of the a 
posteriori distribution is computed, via its expectation, 
from measurements and current parameter values $*. In 
a second step("M-Maximization" step), new parameter 
values $,+1 are estimated from the approximation that 
has just been determined. "E" and "M" steps are alter- 
natively iterated until convergence. We shall specify an 
appropriate initial parameter configuration for our region 
trajectography problem. 

Some radar and sonar systems are confronted to a 
problem similar to ours : spatial proximity or other cri- 
teria supply a short-term temporal link between mea- 
surement. Due to misdetections, the link is sometimes 
broken, leading to a "segment association problem". We 
adopt the method proposed by Giannopoulos et al. [4], 
and summarize below the main results. In this version of 
the PMHT technique, random association variables are 
defined between partial tracks and models, rather than 
between individual measurements and models. Let us 
denote V the set of q partial tracks and Kf the assign- 
ment of partial track V1. This assignment takes values 
in [1,..., M]. V and the set Kv of assignments can be 
decomposed as follows : 

r = {vi, ■■-,?„} 

KV = {K?,...,Ki} 
(22) 

(23) 

The expectation of the a posteriori distribution can be 
expressed as follows : 

M 

<?(* | **) =   £ £ O) MM*)] (24) 
m=l Vi €P 

M 

+     EE     E   lnW&) \*m{t)) ] W%m 
m=0~P,eP Zj£Vt 

M MT 

+ £ Zn[p(zm(0))] + £ 2>[p(zm(f) | xm(t - 1))] 
m=l m=l t=l 

where w^m is a weighing factor corresponding to the 
probability of assigning partial track Vi to model m, and 
is defined as in eqn. 25. 

<s. = n G ) (25) 

The maximization of Q($ | §') can be decomposed 
into two independent maximizations, first with regard to 

the parameters of the mixture (the 7rm(i)'s), and second 
with regard to the states (i.e. the models) (the im(i)'s). 
Through these maximizations, one updates the estimated 
parameters $' = (II1, X') at iteration i + 1. 

The first maximization problem has a simple analytic 
solution. For every t and m : 

i   m' 

mtt=i 
(26) 

The second problem consists in the state estimation 

(xm(0),...,xm(T))G 

argmax j    ]£   ^ ln( P(ziC) I x™(t)) ) «>v£( 

+ ln(p(xm(0))) 

+ '£ln{p(zm(t)\xm(t-l)))\ 
t=\ 

(27) 

In the case of Markovian processes, it is more relevant to 
maximize the exponential of this expression : 

T mt 

P(Zm(0)) J] {P(xm(t) \xm(t- 1)) HpiZjit) | XnMr'&W) 
t=l j=l 

(28) 

Taking advantage of the Gaussian character of the mea- 
surement noise, this expression can be simplified by in- 
troducing a fictitious synthetic measurement zm(t) and 
its covariance matrix Rm, defined below (relations 32 
and 33). J\f[zm(t),xm(t),Rm] denotes a Gaussian proba- 
bility distribution of variable zm(t), parameterized by its 
mean xm(t) and covariance matrix Rm. At each instant 
t, we have : 

mt 

n^wi%(t)r;>("      (29) 
m, 

«n^feW'^W'K^w)-1^]    (30) 

oc Af[zm(t),xm(t),Rm) (31) 

i m< 

~Zm{t)    =    ^^«TrtE^mW'iW (32) 

R = Rm 
(33) 

mtiri+^t) 

This transform leads to the classical expression (eqn. 34) 
of the a posteriori distribution of the state for a single 
track. Its well-known optimal solution is analytic and 
obtained by Kaiman filtering with smoothing. 

T 

P(Xm(0)) JJ {P(xm(t) I Xm(t - l))P(zm(t) | *«(*))} 
t=l 

(34) 

The practical resulting algorithm is particularly simple, 
since the estimation of X comes down to M independent 
estimations using Kaiman filtering. 



4    Algorithm initialization 

We set the number of models M as the number of par- 
tial tracks found on the batch. The PMHT algorithm 
requires initializing states and prior probabilities of mod- 
els. For the latter, we initially set for every instant t and 
for every model, n%,(t) = 1/M. 

We exploit the partial tracks to build the M initial tra- 
jectories (initial states). Each model is initially assigned 
the measurements forming a partial track. Then, we es- 
timate, independently, the M models related to these 
partial tracks. Figure 2 suggests this operation for three 
partial tracks. A prediction-only estimation mode is used 
whenever measurements are not available. 

Figure 2: Building initial states, in the case of three partial 
trajectories (only the geometric component is shown here). 
Dotted lines represent temporal extents, when a prediction- 
only mode is employed. 

For each trajectory model, a first estimation is car- 
ried out for the kinematics and geometric components. 
In practise, tracking the geometric model is confronted 
to the following problem. The vertices of the measured 
geometric model do not correspond to the same physical 
points over time, and the number of vertices may vary 
over time. Hence, before they can be used in a predic- 
tion/updating procedure with Kaiman filters, it is neces- 
sary to transform the measured geometric model so that, 
for each frame of the sequence, a physical correspondence 
between the predicted and the measured geometric mod- 
els. To do so, the two polygons are first spatially regis- 
tered by minimizing a distance between them. 

The geometric model Gm(t = 0) is initially defined as 
the measurement Qj(t = 0) assigned at iteration i = 0. 
Kaiman filtering with smoothing is then performed over 
the extent of the batch. A procedure is included to adjust 
appropriately over time the number of vertices in the 
filtered geometric model. 

We noticed that the reliability in "prediction-only" 
mode of the state is strongly dependent on the reliability 
of the last few measurements before the filter switches 
to this mode. Typically, these last few measurements 
can correspond to a progressive occlusion phase. This 
issue occurs both for progressive appearance and disap- 

pearance of a region. The geometric component is par- 
ticularly affected, since the measured silhouette reveals 
only the visible part of the object. The purpose of this 
step is to discard such affected measurements. We carry 
out detection of occlusion and disoccusion phases as in 
[5], since this method as shown to be effective. In sum- 
mary, it consists in detecting unexpected strong temporal 
variation of the area of the region. By unexpected, we 
mean that the predicted area at some time t accounts for 
the apparent divergent motion field (i.e. translation of 
the camera or of the object along the optical axis). In 
the innovation signal corresponding to these unexpected 
variations, we detect upward and downward jumps using 
Hinkley's test. Besides its simplicity, the interest of this 
test is two-fold. Because it is cumulative over time, it can 
detect (dis)occlusion phases with various speeds with the 
same test parameters. It also provides conveniently the 
time at which the (dis)occulsion phase starts (which may 
be a little earlier than the time at which it is detected). 

Once the (dis)occulsion phases have been identified, if 
any, the corresponding measurements are discarded, and 
the states of all models are re-estimated over the batch. 

From these initial states and priori model probabil- 
ities, the two steps of the EM algorithm are iterated 
(computation of the measurement-to-model assignment 
probabilities given the current states, derivation of priori 
probabilities of models and of the "synthetic" measure- 
ments zm(t), estimation of the states over the batch). 
The point is now how well a model initially associated 
to a particular partial track possibly fits one or several 
other partial tracks. If this is the case, measurement-to- 
model assignments evolve over iterations in such a way 
that these measurements are eventually evenly assigned 
to several models. If a model does not fit a partial track, 
then the states end up essentially unchanged. The con- 
vergence of the algorithm is established by examining 
the variations of the measurement-to-model assignment 
probabilities, and these latter also determine the decision 
of associating several partial tracks. The trajectories are 
simply the states at convergence. 

5    Experimental results 

Results for the "Breakfast" sequence are shown on fig- 
ures 3 and 4. These results are obtained by setting 
aß = 30. Initial and final trajectories are respectively 
indicated on fig. 3a and 3b, with measurements. In this 
example, partial trajectories are associated by physically 
correct pairs. One can notice that a good initialization 
was provided by the algorithm. Below, fig. 4a and 4b re- 
spectively show the detected geometric models, and the 
geometric models at convergence, superimposed over the 
initial image for the first image of the sequence. The al- 
gorithm outputs geometric models, including the whole 
silhouette of the regions at instants when partial or total 
occlusion take place. 

The practical use of the proposed technique is several 
fold. The understanding of the sequence content is im- 



proved and a rich description of the content is provided 
: trajectories with the whole silhouette of objects and 
the motion are estimated at each time, including when 
measurements are either not available, or not reliable. 

— traiectofr« mod** i 
-.-.  VaJacMra modMt 2 
— tmfctokv mod** 3 

...   *«)•<**• mod*)« i 

(a) bar/centre des mesures et modelos initiaux (repere : image) 

(b) barycentres des mesures et des modelas ä convergence (repere : image) 

Figure 3: "Breakfast" sequence : measurements and initial 
trajectories (a) and trajectories at convergence (b). Only 
the gravity center of the geometric models is shown here. 
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Abstract 

In this paper we apply PMHT to to the association of track seg- 
ments from multiple sensors in the presence of clutter. Track associ- 
ation arises in several situations where track level data is available. In 
a single sensor passive sonar system, tracks from multiple paths and 
multiple own ship legs need to be associated. In a distributed multi- 
sensor system, data from each sensor is processed independently and 
track segments are formed. The track segments are then sent to a cen- 
tralized fusion system for association. Missed detections as well as false 
tracks are possible and are handled by the proposed approach. The state 
vector of the track segments from each sensor can be different. For ex- 
ample, one sensor can be tracking active sonar returns and the other 
can be tracking passive bearings-only data. The proposed algorithm is 
applied to the problem of multi-sensor multi-target target motion anal- 
ysis and is demonstrated with simulated results. The basic algorithm 
is extended to include additional features in the tracks, when available. 

1    Introduction 

Track association arises in several situations where track level data is avail- 
able. In a single sensor passive sonar system, tracks from multiple paths 
and multiple own ship legs need to be associated. In a distributed multi- 
sensor system, data from each sensor is processed independently and track 
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segments are formed. The track segments are then sent to a centralized 
fusion system for association. Missed detections as well as false tracks are 
possible and are handled by the proposed approach. The state vector of the 
track segments from each sensor can be different. For example, one sensor 
can be tracking active sonar returns and the other can be tracking passive 
bearings-only data. 

One special case of track association is that of target localization from 
bearings-only observations in a multi-target and multipath environment. 
Although extensive work has been done for bearings-only localization al- 
gorithms for a single target, there are limited solutions in a multi-target 
environment. In a single-target environment the associations between seg- 
ments are known by default, and segmented track bearing data is used by a 
standard estimation algorithm to localize the target. In a multi-target envi- 
ronment the thorny problem is that of segment association. Segments from 
multiple targets and from various own ship legs must be associated before 
each target can be localized. In a dense target and cluttered environment, 
the number of possible association combinations is large and enumeration 
is computationally expensive. The problem is exacerbated in a multipath 
environment. 

This algorithm is based on the Probabilistic Multi-Hypothesis Tracking 
(PMHT) concept, a recently developed data fusion algorithm by Streit and 
Luginbuhl [1, 2]. Further studies and applications of this concept have been 
pursued by several authors in [3, 5, 6, 7, 8]. The original PMHT addresses 
the problem of origin uncertainty in multi-target tracking when multiple 
measurements are received without target labels, that is, the target of ori- 
gin of a measurement is unknown. Unlike traditional methods that assign 
a single measurement to a single target model, it introduces the new and 
somewhat unconventional concept that every measurement is assigned to 
every target model with some probability. PMHT is derived by formulating 
a joint measurement-target assignment density, where the measurement-to- 
track assignments are modeled by a discrete but unobserved random vari- 
able. For details see [2]. 

The basic concept is extended in this paper to handle track segments, 
that is, groups of measurements that are believed to originate from a com- 
mon source and have been previously associated by a standard single target 
tracking process such as a Kaiman filter. A joint density of the measure- 
ments and target tracks is still formulated, but instead of using a unique 
assignment random variable for each measurement, one random variable 
is used for each target segment. The measurements are then condition- 
ally independent, given the discrete track-segment-to-target-model random 



variable. The joint density of the measurements is marginalized over the 
assignments, and the method of Expectation-Maximization (EM) is used 
to estimate a set of segment-to-target-model probabilities for each track 
segment and each target model. These track-segment-to-target-model prob- 
abilities are then distributed over each measurement in the segment and 
become the PMHT measurement-to-target-model probabilities. These are 
then used to create a 'synthetic' measurement for each target model, where 
a synthetic measurement is a probabilistically weighted combination of all 
the observed measurements. 

The TSPMHT algorithm (as in the original PMHT) decouples the es- 
timation problem into N (number of target models) independent target 
estimation problems because the synthetic measurements are conditioned 
within the iteration on known assignments. The procedure iterates be- 
tween track-segment-to-target-model assignment estimation, synthetic mea- 
surement computation and target localization via a maximum likelihood 
estimator to converge to a solution. The solution for each target model 
within the iteration is the standard maximum likelihood (or least squares) 
solution for a single target using the synthetic measurements. 

Under conditions of multipath the track-segment-to-target-model associ- 
ations become the track-segment-to-path-to-target-model associations. The 
localization process is thus modified to include the multipath geometry. The 
TSPMHT algorithm is computationally practical because it avoids enumera- 
tion of segment-to-target assignments. The concepts are demonstrated with 
simulated data. 

2    TSPMHT Derivation 

The TSPMHT algorithm for track segments without clutter was first derived 
in [9] It is extended to include clutter in section 3. The derivation is done 
under the assumption that there is no process noise in the target model. 
This assumption is not limiting and with minor modifications all results are 
applicable to the case where process noise is included. 

Let there be M targets each of which moves according to the standard 
discrete time linear model: 

Xm(t + 1) = Fm(t)Xm(t) + Gm{t)um{t) (1) 

for t = 1,... , T. In (1) the subscript m is used to represent the trajectory of 
the mth target. The matrices Fm(t) and Gm(t) are assumed to be known. We 
observe nt measurements at time t and sensor s, normally one measurement 



at each sensor for each target, and we use the variable r to indicate the 
rth measurement at each time step. The measurements are based on the 
following standard observation model: 

zs,r(t) = Hs{Xm,t) + vsAt) (2) 

The observation function Hs for each sensor s is assumed to be known and 
is different for each sensor. The added observation random sequence vs,r(t), 
is assumed to be zero mean, white and Gaussian. Let the Z = {zs,r(t)} 
be the set of all observed measurements, and let {Zg}^Jzl be a given par- 
titioning of the measurements into Gs track-segments or groups of group 
length ng. It is important to note that the track segments can be of differ- 
ent lengths. Let K = {ksg}^x be a set of discrete random variables which 
are used to indicate an assignment for the gth track-segment from the sth 

sensor with s = 1,... , S, to the mth target model. All the measurements in 
the track-segment are assigned to that target model. The discrete random 
variable ksg can take values in the range of 1,... , M. The assignments for 
each target-group to target-model are assumed to be independent and the 
measurements are assumed to be conditionally independent given ksg. 

Let X = {Xm}, m = 1,... , M be the parameter set for all the targets 
where Xm = [xom, yom,vxm, vym]T represents the target initial position and 
velocity for the mth target. Under the independence assumptions the joint 
density of the measurements and track-segment assignments parameterized 
by X is given by 

s    Gs rig 

P(Z,K) = nilKy i[p(zs,r,g\ksg;X). (3) 
s=lp=l r=l 

The marginal density P(Z) can now be computed by summing equation (3) 
over the discrete random variables K: 

S       G, M Tig 

p{z)=n n E p(ks9)i[p(zs,r,9\ksg).       (4) 
s=lg=lk,g=l r=l 

The conditional density is now easily obtained: 

P(K\Z) = flf[ws,k,g (5) 
s=lg=l 



The weights represent the track-segment to target-model probabilities and 
are given by 

=        P(ksg)UrLM^r,9\ksg) 

Segmenting the data results in having as many weights as track-segments, 
thus reducing the number of parameters to be estimated. By using (3), (4) 
and (5) and straightforward manipulation we now obtain the Q function in 
the E step of the E-M algorithm for the target segments 

s   G3   M 

s=l g=l m=l 

S    Gs   Kg    M 
+ S £ £ Yl l°SP(^g,r\kSg = m)wksg=m.    (7) 

s=l g=l r=l m=l 

By rearranging the terms of (7) and including the assumptions that the 
measurements have Gaussian additive noise we can now relate the track 
segment Q function to that of the multisensor PMHT Q function: 

S     G 

(?(i»+1
;r) = ^iogP(g<tis 

s=l fe9=l 

S     T    nt    M 
+ EEEE(1°gJV(v,t;^(C1.t)).^,mK9,r,m. (8) 

s=l t=l r=l m=l 

where N(-; •) denotes the obvious Gaussian pdf obtained via (2). Equation 
(8) at this point is of the same functional form as that of the multi sensor 
PMHT with the main difference being that the measurements are condi- 
tioned on the track-segments and are weighted by the track-segment proba- 
bilities. For the M-step of the EM process we proceed to take the gradient of 
the Q function with respect to Xn+1. This is easily shown to decouple into 
the estimation of M targets with synthetic-measurements formed for each 
target by combining all the measurements based on the computed weights on 
each individual sensor. See [1, 8] for details. The synthetic-measurements 
for each target model and the associated covariances are formed by 

- _ ^r=l {ws,g,r,m) zs,t,r ,  . 
Za,t,m - ™t       n+1 • W 

Z^r=l ws,9,r,m 



and 

Rs,m = Vnt    *"«+! (10) 
2-JT=\ 

ws,g,r,m 

It is important to note that synthetic-measurements are formed by combin- 
ing measurements obtained with each sensor. TSPMHT can now be stated 
in algorithmic form: 

1. Determine the initial values of the parameter set X. This is the ini- 
tialization step and is critical to successful algorithm performance. 

2. Calculate the weights for each sensor for all track-segment to target- 
model (and path in case of multipath) combinations at each time step. 

3. Assign the track segment weights to each measurement that belongs 
to the track segment. 

4. Calculate the synthetic measurement. zs_t,m and the synthetic mea- 
surement covariance matrix for each target- model and each sensor. 

5. For each target-model apply the appropriate estimation algorithm (in 
our example the Levenberg-Marquardt nonlinear regression procedure 
is used). 

6. Repeat steps 1-5 until convergence is reached. 

3    False Tracks and Homothetic Targets 

The basic TSPMHT, as is the case with PMHT, does not include a clutter 
model. It makes the basic assumption that every track segment comes 
from a target. Since the track-segment to target-model weights must sum 
to one all track segments, including those that are false, are assigned to 
a target with some (most likely) small probability. Clutter in this case 
refers to false track segments that are detected and generated by existing 
tracking algorithms. These track segments do not normally originate from 
the true targets but are mainly due to background noise in the observation 
space. For example, in the case of bearing only tracking distant shipping 
could cause real and false tracks to be generated that interfere with the 
targets of interest. The initiation of these segment is assumed to be Poisson 
distributed in the bearing time block that TSPMHT operates. Their length 
tends to be shorter than true target tracks and their bearing rate tends 
to be uniformly distributed within a lower and an upper bound region. 



False track segment characteristics can be determined from the track filter 
characteristics, the maximum target dynamics and the processing system. 

To handle false track segments we propose as in [4, 6] that a dummy 
target be used as the M + 1 target model. The density of this "dummy" 
target-model is assumed to be uniform over the measurement space. Of 
course, as is the case with the pdf of each track segment g of length ng, the 
probability density that a given track segment belongs to clutter depends on 
rig, and based on the independence assumption previously stated is given 
by: 

p{Zsg\ksg = M + l)=(^ry (11) 

For the case of bearing observations , Uc = 2TT. Although this model 
helps to account for false segments, it introduces a problem with the TSPMHT 
initialization. If the initial TSPMHT estimate is not close to the truth, the 
track-segments far away will be attracted to clutter and the TSPMHT so- 
lution will be drawn to a local maximum. To counter this effect, and to 
allow PMHT to look further than its current local estimate, Rago et al. [4] 
proposed that a homothetic target model be used. For each target model, 
additional modes are added that have the same trajectory (mean) as the 
main target model by a larger covariance matrix. The covariance matrix of 
each homothetic mode c is given by 9CR, where 9C is a design parameter. 
This model is adapted here, is combined with uniform clutter model to allow 
TSPMHT to handle clutter and, at the same time, look for a more global 
solution. 

The track-segment weights for target models m = 1, ...M, are now com- 
puted for each target model and homothetic mode. The index c is used to 
denote the homothetic mode associated with each target model. 

_  P\ksmc) llr=lP\zs,r,g\ksmc)  
Ws,g,m,c — / i  \n9 M C n 

P{ks(M+l)) [lrc)      + £m'=l Ec=lP(*Wc) IIr=lP(*«.r,sl*Wc) 
(12) 

while the weights that a given segment belongs to clutter, that is, m = M+l 
are computed by 



P{ks(M+l)) (üc) 
Ws,g,M+l =  /      xn3 — ~ • 

P(K(M+1)) [iTj      + £m' = l EC'=1 P(hm'c>) EUl V{Zs,r.g\kSm'c') 

(13) 

The synthetic measurements  and covariances are only formed for the true 
target models m = 1,..., M : 

E£l££1KS1r.m,c)Wfl. 

and 

^s,t,m - ^r    ^n( +1 ,„ • U^J 

Rs,m -       c 
$'™ • (15) 

2^c=l 2^r=l ws.g,r,m,c/vc 

The following a priori probabilities are recommended for use: 

GJC m = l,...,M,c = l,...,C 
Km,c = { (16) 

i-cfe m = M + l 

4    Extension to Multipath Propagation 

TSPMHT is easily extended to handle track segment association and rang- 
ing in a multipath environment. The target model equations do not change; 
however, with each target model we now associate P paths. For this deriva- 
tion we assume that the paths are discrete. The inclusion of paths affects 
both the weight computation and the synthetic measurement and synthetic 
variance formulation as shown below: 

ws,ksg,r,m,q = 

P(ksg) n"=l P(zs,r,g|kSg) \k,g=(m,q) 

£m'=l Ef=1 P(ksg) rT=l P(Zs,r,g\ksg) |fc   =(TO',^) 

_ z2rLl \ws,g,r,m,g) zs,t,r 
zs,t,m,q — ^nt       n+1 

2-<r=l ws,g,r,m,q 
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5 _ Rs,m,q 
■s,m,q - „„,        n+1 

2^r=l ws,g. r,m,<j 

The synthetic measurements are computed per path as well as per sensor 
and target model. ■■o'- 

5 Feature Incorporation 

When standard Kaiman filters (or alpha-beta filters) track energy in the 
bearing-time space, they normally estimate bearing rate as well as bearing 
position. This information is useful and can be used to alleviate initializa- 
tion problems as well as distinguish target tracks from clutter. In fact, if 
other features, such as frequency and frequency rate are available, they can 
also be included in TSPMHT as well as in the original PMHT. Features 
are incorporated as an extension of the measurement state vector and are 
used to estimate the track-segment to target-model weights. The required 
assumption is that the extended measurement vector be independent over 
time. The features can be correlated with the measurement observations 
as long the joint density is known. 

Features are especially useful in the multi-sensor bearings-only problem, 
where bearing (and bearing rate) cannot be predicted without the correct 
target range. In this case it is possible to estimate parameters that are sensor 
independent, such as target course, and use these parameters to compute 
the TSPMHT weights. Of course, selecting the relative importance of the 
features and finding a joint density when they are jointly distributed requires 
further research. An alternative approach to using the actual measurements 
and features is to reduce track segments to a set of sufficient statistics, such 
as bearing, bearing rate, and target course in the TMA problem and use 
this feature set to compute the weights. It is then possible to modify the 
clutter model to include track segment length as a discriminator. Further 
investigation is recommended for the incorporation features. In this paper 
we use bearing rate in our simulation and we find it to be helpful in avoiding 
local maxima in the TSPMHT solution. 

6 Simulation Results 

The TSPMHT algorithm is demonstrated with a four target scenario in track 
clutter. The work is continuing and statistical results will be published at 
a later date in [10]. The scenario geometry and the Maximum Likelihood 
Estimation (MLE) solution for the case where the assignments are assumed 



to be known are shown in Figure 1. Two sensors are originally positioned 
at (0,0) and (0,-1000) yards respectively in the X,Y plane and observe 
bearing measurements from the four targets as well as clutter. The 
sensors move due north in unison with ownship. There is one own ship 
turn at the middle of the scenario. It is assumed that the targets are not 
tracked during the ownship turn. The length of the scenario is 30 minutes. 

It is assumed that a set of conventional filters (such as a Kaiman or 
an alpha-beta filter) track the targets and report bearing and bearing rate 
information to a fusion center to be associated. For this simulation the 
targets are tracked for the entire length of each leg; however this is not 
required for TSPMHT to operate. In addition to the target tracks, the 
filters are also producing false tracks. False track initiation is assumed 
to be Poisson distributed in time with density Xs, s = 1,...,S. For this 
particular scenario 50 false tracks per sensor were generated. In general, 
As, will be scenario dependent. False tracks are assumed to have both 
a bearing rate, ß, and a bearing acceleration, ß. For this simulation ß 
was uniformly distributed in the range of [-3,..., 3] (deg/min) and ß was 
uniformly distributed in the range of [-0.4, ...,0.4] (deg/min2). Track 
length was modelled to have a Rayleigh density with parameter a equal to 
10% of the maximum track segment length. The additive bearing noise is 
assumed to be white Gaussian with a = 0.5°. The track segment outputs 
(measurements) as well as the initial target model bearings from sensor 1 
and 2 are shown in Figure 2. The longer track segments belong to the 
target tracks. 

The scenario described above was executed for the same random initial- 
ization near the true track, and different TSPMHT parameters settings. 
The results are summarized in Table 1. The parameters that were con- 
trolled were the maximum track segment length ng, the homothetic model 
order and the inclusion of bearing rate in the weight computation. The 
final TSPMHT results were compared to the maximum likelihood solution 
root-mean-squared error (RMS) with perfect assignments. The ratio of 
R _ RMSt^-RMSuLE was used as a way t0 determine performance. The 
results are given in Table 1. In several cases one or two of the tracks were 
lost. This is stated in the table and the numbers indicate which tracks were 
lost. 

In general the TSPMHT algorithm converged to a reasonable solution 
when we used a first order homothetic model c = 2,9C = 4. It performed 
even better when the track segment length was limited and the bearing rate 
was included to compute the weights.     For all cases, when a homothetic 
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Z C=lfii = 1 c = 2,02 = 4 c=l,04 = = 16 
max  ng = 100 ß Lost track (2) 2.5 6.0 

ß-.ß Lost track (2,3) 5.1 6.7 

max  rig = 15 ß Lost Track (2) 3.1 0.2 

ß,ß 0 -0.02 6.9 

Table 1: Summary Results for Scenario 

target model was used, the algorithm estimated three out of four solutions 
correctly. Work is continuing to understand the relationship between the 
parameters and how to best set them in the general case. 

Sample results from a correct global solution are shown in Figures 3,4 for 
the target trajectories and final TSPMHT synthetic measurements respec- 
tively. Sample results from an example where TSPMHT did not achieve a 
global solution are shown in Figures 5,6. The key to this example is that 
the synthetic measurements for target 2 relied on clutter and were never 
drawn near the target track segments. 

7    Summary 

In this paper we presented TSPMHT. The PMHT ideas were extended to 
operate on track-segments instead of individual measurements. This al- 
lows the algorithm to exploit a priori knowledge of assignments over time. 
The concepts were demonstrated via simulations in the problem of multi- 
target multi-sensor TMA. TSPMHT does not rely on enumeration or prun- 
ing methods to associate track segments to target models. This is especially 
critical for dense target and cluttered environments. Instead, the associa- 
tion and estimation steps are performed jointly in an iterative process. The 
algorithm was extended to incorporate observed (or estimated) features in 
the track segments. 
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ABSTRACT 

Recursive techniques for estimating and tracking the parameters of mixed linear systems are considered. 
For this class of problems, the measurement to model assignments must also be estimated at each instant 
in time. A recursive technique, termed recursive probabilistic least squares, for doing this is derived. 
This is then shown to lead in a natural way to a recursive Kaiman fdter. 

1. Introduction 

In many estimation and tracking problems the observed data is best represented by a 
mixtures model. For example, in tracking, the sensor measurement at a particular point 
in time may originate from any one of a number of possible targets but which particular 
one is unknown and may need to be estimated. 

The EM algorithm may be used to estimate both the assignments and the model 
parameters, and a recent application of this to tracking multiple targets has been the 
PMHT algorithm of Streit and Luginbuhl [1]. An alternative to the use of the EM 
algorithm is to use a least squares approach; for example, a probabilistic least squares 
(PLS) has recently been proposed by Krieg and Gray [2],[3] for tracking problems. A 
similar batch probabilistic least squares approach when the states are time invariant has 
also been applied to deinterleaving radar pulses [4]. 

In this contribution a recursive form of the PLS technique is derived for a general time 
varying linear mixtures problem. The solution is a generalisation ofthat derived in [4], in 
which both the unknown states and the measurement associations are estimated. For 
each model, the solution for the state estimates is a generalisation of the usual recursive 
least squares solution - with the unknown associations being included in an intuitive 
manner. The unknown associations can be simply calculated at each time instant; their 
dependency on previous estimates being through the current state estimates. 

This approach is then used to infer the general form of a Kaiman filter for this class of 
problems and its relationship to the Kaiman smoothers in [1] and [2] is discussed in 
Section 5. 



2. Mixed Linear Models 

Consider a mixture model, where, at time tu the measurements z{i) are generated 
by one of Mlinear models, i.e., 

zd) = 

Hm(i)xw + wm(i) 
H(2)(i)x(2) + w(2)(i) 

Hm(i)xm + w(M\i) 

depending on which model generates the i-th data point. For each linear model, the time 
varying Hip)(i) are assumed known and the unknown but time invariant parameters 
(states), x(p), are to be estimated. We can define a set of assignments, a(p\i), that are 
zero unless the measurement z{i) at time tj is generated by the p-th model, in which 
case a(p)(i) = 1. This implies 

M 

2(0 = Hw(i)xw + wl%) = ^aiv\i){H(v)(i)x(v) + w(v)(i)} 
v=l 

where a(v)(i) = Spv and the vv(p)(0 represent independent noise processes, each with a 

noise covariance R^p\i). 
In general, the assignments are not known and must, along with the states, be 

estimated from the data. The problem of estimating both the unknown parameters x}p) 

and the weights a(p)(z) has been termed probabilistic least squares (PLS), and a batch 
algorithm for this was presented in [4]. 

3. Notation 

To develop a recursive algorithm, we first consider a batch of measurements up to time 
t/c, and then, following [5], show how the optimum batch solution can be updated to 
provide the optimum batch solution at time tk+j. 

Define 

S* = 

Zd)' 
2(2) 

H^ = 

#(p)(l)' 

H(p\2) 

H{p\k) 

and   ek = 

?    _f7(1)v(1) 

Ik      ™k   * k 

(2) £(2) 
Z.k      "Jt    X.k 

-    _ ZJ{M) C.W) 
&.k      nk     £k 

where x(
k
p) denotes an estimate of £(p)using all the data to time fy, i.e., the zk. 



The batch solution using all the data up to time tk+1 can be found by minimising 

fc+l  M 

j=i p=i 

where 

subject to the constraint 
§}p\i) = z(i)-H(p)(i)x(p). 

M 

£a(v)(z) = l     V   i. 
v=l 

The solution [4] is given by the pair of equations 

/(p)/ 
(eip)TW(p)-\i)£(p)(i))~l 

^(e(ß)T(i)Rw-\i)£w(i))' 
ß=i 

and 

where 

and where 

and 

C(P)  _ r zi(p)T p(p) rrip) I-1 TT<IP)T p(p) _ 

(1) 

(2) 

E^^A^^^A^ 

A<p) = blockdiagonal{cc(p\l)I,a(p)(2)I,-,aip\k)I} 

Rip) = blockdiagonal{R(p)(l),R(p)(2),~;Rip\k)}. 

{Aside : The above formulation assumes that each component of the vector of 
measurements comes from the same model; this can trivially be relaxed to allow the 
more general case which is of some practical interest.} 

4. Derivation of Recursive Probabilistic Least Squares Estimator. 

Since the derivation is essentially a generalisation ofthat given in [5] we only sketch the 
approach. 

Noting that £t+1 = Ik 

z(k + l) 
etc it follows that 

Hl%E&z.k« = HfTEf^k + {a<p\k + l)}2H^T(k + l)R^\k + l)z(k +1) 

Defining 

and 

pW1 _ Zf(.p)T p(p) Trip) 
rk+l     * "fc+1 ^k+l^-k+l 

-S&I = H(p)(k + \)PfH{p)T{k +1) + {a(p)(k + l)y2R(p\k +1) 



and 
(p)- W^=P^H(p)T(k + l)S{
k 

it follows that 

ä(P)   _ p(P) LI(P)T F(p) 
±k+l * l k+l11k+l  ^i+li/t+l 

= Pi^H^Efz, + {a(p)(k + l)}2Hip)T(k + l)R{p)-\k + l)z(k +1)} 

= xf + {a(p\k + l)}2P£\Hip)T(k + l)R(p)-\k + l)z(k +1) - W(
k
p\H(p\k + l)xip) 

by virtue of the identity 

P£\={I-Wl»H'p\k + l))PiP). 

After a further use of the matrix inversion lemma the above recursion for the state 
estimates can be shown to reduce to 

& = äP) + W£jk(* +1) - &p\k + l)xf} (3) 

Note that the a{p\k +1) 's can be calculated directly as 

&>\k +1) = J^^ + ^^^ + D^^ + D)"1 

f,(eWT(k + l)Rw-\k + l)sw(k +1))"1 
(4) 

As is their wont, the equations are nonlinear but coupled in such a manner that allows, 
at each time instant, an iterative, but computationally demanding, solution. 

The iteration at time instant t^+j may be summarised as 

(1) Initialise the parameter estimates, i.e., x*+,(0) = x(p) 

(2) For n= 1,2,... till convergence 

(2.1) Form £<'>(* + l,n) = z(k +1) -Hw(k + l)xj&(/i -1) . 

f/(e">T(k + ln)Rm-'(k + l)e""(k + U))', 

(2.3) Update the covariances according to 

P&\n) = Piprl + {oc(P)(k + U)}2H(p)T(k + l)R{p)-\k + l)Hw(k +1) 



and 
$% (n) = H{p\k + \)PiP)H{p)T{k +1) + {a(p\k + l,n)}"2 Rip)(k +1) 

(2.4) Update the gain matrix according to 

W£i (") = PiP)Hip)T(k + D^f1 („) 

(2.5) Update the state estimates according to 

^(n)=xiP) + WiP^Mk + l)-Hip\k + l)x[p)} 

(3) If "hard assignments" are required, 

find v = argmax{a(p)(£ +1)} and set &(p\k +1) = Spv. 
p 

Note the time recursion can easily be modified to include a forgetting factor. 

5. Kaiman Predictor and Filtered Estimates 

We present, without proof, a Kaiman filter generalisation of the above recursion for the 
situation where the states are permitted to be time varying. Suppose, in addition to the 
measurement equation, we also have known dynamics for each of the states of the form 

x(p) (* +1) = F(p) (k)x(p) (k) + v(p) (k) 
where 

E{v(p\k)v(p)T(l)} = Qw(k)8kl 

The recursive solutions for the Kaiman predictor, xf+Uk, and the Kaiman filtered 
output, Xul, are then given by 

£(P)      _ Z<P)(],\Z(P) 

and 

*£i,*+1 = *&„+w£{fe(*+1) - &p\k+i)*s« „j 

where the Kaiman gain, W^, is given by 

W&l = {«(p)(* + D)2^U»Cp)r(* + l)lPr\k +1) 



The recursion being finally completed by the the following update equations for the 
error covariances of the predicted and filtered states. 

P^m = F'p\k)P[PlF(p)T{k) + Q}p){k) 
and 

PtfuM1 = Pl+m'1 + {Ü(p\k + l)}2H<p)T(k + l)R(p)-\k + \)Hip\k +1) 

6. Summary 

The problem of recursively estimating the parameters and assignments of a mixed 
process can be solved using probabilistic least squares techniques. Recursive least 
squares techniques or Kaiman filters can be used depending on whether the states are 
assumed to be time varying or not. Combinatorial problems are avoided by using soft 
assignments. 
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ABSTRACT 
This paper presents simulated annealing and genetic algorithms for solving a combinatorial optimization problem, 
applied to radar pulse management. 
We have to manage a radar, working on a given area, during [0,7]. In this area, there are K detected targets. The 
goal is to find a radar pulse allocation strategy during the time [0;7=/v".At], in order to minimize a criterion taking 
into account the target state unaccuracy at the final time 7=W.At, enhanced by the covariance matrices. 
This is a complex optimization problem since it has an exponential complexity. Actually, nobody can exhib any 
algorithm able to find the optimal strategy,  in a short computing time. Nevertheless,  in a particular case with 
special added conditions, we have found the optimal solution by solving the well-known Assignment Problem. 
Dealing with the general case,  we have implemented  metaheuristics   as simulated  annealing and genetic 
algorithms, that search a strategy close to the optimal one in a short computing  time. 
An algorithm based on simulated annealing gives good solutions,   for a small  number of calculations;   its 
performances are mainly due to a good choice of neighbourhood, described in this paper. Two genetic algorithms 
were also implemented but they did not give better solutions. 

KEYWORDS 

optimization, radar tracking, assignment problem, heuristic methods, genetic algorithm, simulated 
annealing 

I. INTRODUCTION 

In this paper, we consider the problem of optimal radar pulse allocation when the number of 
detected targets and the allocation time duration are fixed. The objective is to decide when a 
target has to be observed, in order to minimize a criterion taking into account the target state 
unaccuracy at the final time T of the allocation. We show that this problem is closed to a 0-1 
integer programming problem, but the coefficients of the linear function to minimize, called cost 
function, are not explicit. Nevertheless, in the special case when each target is observed no 
more than once, we can exhib the cost function coefficients. We obtain a well-known integer 
programming formulation: the Assignment Problem. Dealing with the general case, we have 
implemented metaheuristics, as genetic algorithms and simulated annealing, that search a 
strategy close to the optimal one in a short computing time. The result comparison shows that our 
simulated-annealing based algorithm gives the best results. 
The paper is organized as follows. In section II, the general allocation problem is formulated. In 
section III, an optimal solution is found in the special case when each target is observed no more 
than once, by resolving an Assignment Problem. Section IV and V deal with the general case. 
We search a solution close to the optimum with genetic algorithms, presented in section IV, and 
with a simulated annealing, presented in section V. In section VI, the comparison of our 
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experimental results shows the good behaviour of our simulated-annealing based algorithm. 
Finally, section VII summarises our results and discusses several ongoing research issues. 

II. OPTIMAL RADAR PULSE ALLOCATION STRATEGY 

A.       problem formulation 

We consider a radar, whose aim is to track K detected targets on a given area, during the time 
[0,7]. We assume that the target motion is uniform and that each track is initialized. The 
observations consist of the range r, the azimuth 6 and the elevation <|>. Moreover, the time 
between two measurements is fixed and equal to At. We also assume that during the time 
allocation [0,7], the radar can perform N measurements and we do not take into account the 
delay due to the distance of the wave. The goal is to minimizea criterion taking into account the 
target state unaccuracy at the final time T=N At, i.e. after N measurements. The target state 
unaccuracy is underscored by the target covariance matrix. The allocation strategy is 
represented by a succession of N decisions. Each decision at time t=iAi (/=1,2,...,/v) is an 
integer value n in [0,K] meaning that target n is observed at this time; n=0 means no 
measurement. Without loss of generality, we assume that At=1: a strategy is a sequence of N=T 
decisions. 
Because of the track initialization, we get two informations about targets: the first one, X0i, is 

the state vector of the target /', at time t=0. The second one, P0l, is the covariance matrix of the 

target /', at time t=0. More generally, the covariance matrix Pu represents the variances and 
covariances of the target / state estimation error, at time t: position error and velocity error on the 
three axes x,y,z. Ptj is a (6,6) matrix. 
The criterion to minimize, J, is the sum of the trace functional of the weighted target covariances: 

J = Itr(aiPTii) (1) 

In (1), <Xi is a known positive or positive-semidefinite matrix of dimension (m,m) which weighs 
the relative importance of the various covariance matrix elements: for instance, it can emphasize 
a particular covariance matrix of a target that seems to be more threatening than the others. 
Let us see now how we can calculate J, for a given strategy. 

B.        allocation strategy decoding 

We assume that the target motion is uniform and that the acceleration is noised around zero. The 
state dynamic and measurement equations are assumed to be of the form: 

Xw = FXk} + V\ (2) 

<*>u=H(k,Xki) + w (3) 

where Xki is the state vector of the target / at time t, v, is a zero-mean white process noise with 

covariance matrix Qt, w is a zero-mean white measurement noise with covariance matrix R, cak) 

is the measurement vector and F is the system matrix. 
We have: 

*k,i = [xkj *ki Yk) 9k> zkj 4;] (4) 
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F = 

1   At 
1 

0 

0 

0 
0 

0 0 0 o" 
0 0 0 0 
1 

0 
At 
1 

0 

0 

0 

0 ,Q = 

0 0 1 At 
0 0 0 1 

O   0 
r, 02 02 U2 = 

0   0 
o2 r2i 02 where • 

At3/     At2/ 
02 02 r3iJ r,= /3 

At2/ 
.   /2 

/2 

At 

and a? is the variance of the component y of the acceleration noise vector on the target /'. 

0Jk,i=[/k,i ekj 9kj] 

H(/c,XkJ) = 

^i(l)2 + Xki(3) +Xki(5) 

arctan(xki(3)/xki(l)) 

arctan Xki(5)/Jxki(l) + (xki(s)) 

R = diag([cr
2 o^ a*]) 

Remark: We assume that the measurement noises do not depend on the radar-target distance 
i.e. R does not depend on /'. T and 'E' denote transposition and expectation respectively. 

It is well known that the Extended Kaiman Filter (EKF) [1] provides a linear minimum mean-square 
error estimate of the state for the above dynamic system. 
Defining Xklk.., jt estimation of XkJ at time k given the set of measurements up to the included time 
/c-1,by: 

*k,k-i,i = E(*k,iK-i,i) where Q,^ = {co^; j = 1,2,...,/c -1} (5) 

and the covariance matrix Pklk.u, representing errors on the estimate Xk[Mi by: 

^kik-1 ,i = R (-^kj ~ *kik-1 j )(^kj - -^kik-1 j)  pk-1 j I -(6) 

The covariance matrix Pklkj (noted Pki in the following) of the update state estimate at time k, 
given the set of measurements up to the included time k is given by: 

where: 
Mg - °kikj _ Muk-1 j - °kik-ljHkjSkjHk,Tkik-1 j 

^kik-1,i = ^k-1ik-1,i^   + Q = ™k-l.P     + Q 

Hkj - 

(7) 

(8) 

(9) 
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^=HA-IJHJ+K (10) 

From(7)-(10), PkJ is a function of PMJ. If PQi and X0i are known for each target /', and if an 
allocation strategy s is given, we can calculate, thanks to equations (7)-(10),   covariance 

matrices P7i for each target. We can then evaluate Jis) = Xtr(ajPTii). 

C.       solution methodology 

We want to find a strategy s* such as s* = argmin(»y(s)) where  S is the set of all feasible 
seS 

strategies - \s\ = (K +1)  -. 

Let uki be a bivalent integer variable such as : 

_ Jl if target / is observed at time k 

[ 0 otherwise 

The radar cannot observe two targets at the same time. So, one constraint appears: 

IX<1W (12) 

From (7)-(11) we can exhib Pki function of PMi and uki: 

Hcj = Pkik-1 ,i ~ °kik-1 ,iHk,i^,iHk,i'kik-1 jUkj ( ' 3) 

From (13) we can develop J as: 

J = itrfa^pjpn7! + ihr(aiF
T-'Q{FT-t)r) - Ü AAi     (14) 

;'=1    V '   )     /'=1f=1     V V '   J      ;=1f=1 

where Au = trjaf^'P^rf-faf^^ + p)~1HuPtlt.1i(F
r-')T J    (15) 

We can see that £trla^P^J   + XI> aiPr"'Q(pr"f)    is constant so it can be dropped 

from the minimization of J. Hence, to minimize J, the linear problem we have to solve is: 

_    K T 

maxJ=XXAAi (16) 
U,j 1=1 <=1 

Z«ü*1Vf (17) 
/=i 

In order to find the optimal allocation strategy s*, we have to search the sequence 
|t/tiforf = 1,...,7and/' = \...,K} that maximizes J. If we focus on the second index of the 

variables ^=1, the allocation strategy, sequence of T decisions, appears. Unfortunately, we 
cannot exhib /\,,i for all t and / since \x is a function of PMJ> which is itself function of the 
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sequence [uti = 1 f = 1,.. J -1}. Nevertheless, for the special case when each target is observed 

no more than once, PMJ is a function of P0J and we can explicit A^ for all f and /. 

III.        OPTIMAL STRATEGY FOR A SPECIAL CASE 

A. problem formulation 

In this part, we assume that each target is observed no more than once, during [o,7"]. This 

assumption is verified when the number of targets to track is bigger than the number of 
measurements the radar can perform and when the target noise processes are quite close; we 
choose here examples of scenarios where K=2T. 
This assumption leads to a second constraint: 

iX<1V/ (18) 

Under this hypothesis, one measurement done for one target /' at time x implies that no 
measurement has been done during [0,x-l] on this target. So we can explicit Pt,t_ti and Azi is 

therfore known, for all x value. 

*Vti = FXpo,{Fi + il=™Q{Fx-m)T (19) 
m=1 

We can besides remark that A,i>u- ,n orcler t0 maximize (16), the constraint (17) becomes an 
equality constraint. The problem to solve is: 

_    K T 

maxJ=SSA,iut,i 

2>t,i = 1W     i>t|i<1V/ (20) 

uti = 0 or 1 for/ = 1 Kand t = 1 ,...,T 

where ^ can be calculated from (15) and (19). 

B. solution procedure 

The problem in (20) is the well-known Assignment Problem extended to rectangular matrices 
(we remind that T<K). In 1973, Bourgeois and Lassalle extended Munkres'algorithm for the 
Assignment Problem to rectangular matrices {m,n) [2]; the complexity of this algorithm is 0(n2m) 
when m<n.y\le have applied this algorithm to our problem in (20) and obtained the optimal 
solution of J and J. In the special case when T is small, we have noticed that the optimal 
strategy given by Bourgeois'algorithmwas the same as the optimal one obtained by the all 
feasible strategy enumeration. 
Dealing with the general case, when_the number of measurements for a target is not fixed 
anymore, we are not able to solve J. We have decided to develop heuristics , as genetic 
algorithms [3] and simulated annealing [4,5] to search a strategy close to the optimal one for a 
given calculation number. 
The interest of this special case is that we are able to compare the heuristic method results with 
the optimal strategy. 
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IV.       NEAR OPTIMAL STRATEGY BY GENETIC ALGORITHMS 

A. generalities on genetic algorithms 

Genetic Algorithms (GA) are intended to find a solution as close as possible to the global optimum 
of a given function, called objective function. One interest is that they often provide a solution 
close the optimum in a short computation time. Another interest is that they have given good 
results when applied to combinatorial optimization problems. We assume, without loss of 
generality, that we want to get a maximum of the objective function. 
Let us introduce vocabulary proper to GA. A member of a population is a feasible solution of the 
objective function. Each member has several attributes, namely: 

- genotype: solution encoding (solution x=> numeric string) 
- phenotype: solution decoding (numeric string => solution x) 
- fitness: it is a positive value given by an evaluation function, representing the member 

performance measure on the problem to solve. In many examples, the evaluation function chosen 
is the objective function. 
A standard genetic algorithm, that normally yields good results in many practical problems, is 
composed of three operators, performed in the following order: Selection (or Reproduction), 
Crossover and Mutation. 
Beginning with the population A of solutions and when these three operators are performed, the 
population B of new solutions is created. The operators can be applied to the population B, 
leading to the new population C and so on. The three-operator sequence is called a generation: a 
genetic algorithm is a sequence of a finite generation number. 
How does a GA halt? Usually, the algorithm will stop when a fixed number of objective function 
calculations is reached. This number is equal to the number of generations multiplied by the 
number of members in a population. 
We describe in the next section the different ways  of choosing selection, crossover  and 
mutationimplementationinouralgorithms. 

B. description of the implemented genetic algorithms 

First, our goal is to find the optimal strategy S that minimizes J. The objective function is J, a 
member of a population is an allocation strategy S. We want to minimize J; so, we cannot use the 
objective function as the evaluation function because strategies leading to the smallest values of 
J must have the biggest fitnesses. We consider the evaluation function F given by : 

F(S) = J- J(S) where J = max(j(s)) (21) 

We can easily see that as J(S} is positive for any strategy S, F(s) is also positive for any S. J 

is maximum when no measurement is performed during [0,7] so J is given by J = j{Soy where 

S0 is a sequence of T zeros. We can also verify that for a given strategy, the bigger the fitness 
will be, the smaller the J value will be. We also implement another evaluation function.the linear 
normalization: when the fitness is calculated as above for all the population members, we sort 
members by decreasing fitnesses. We create new fitnesses (by updating) that begin with a 
constant value and decreases linearly. 
Two reproduction methods have been tested: selection by competition and roulette wheel 
selection. The first one consists in randomly choosing two members of the population A. The 
member with the greatest fitness value is copied in the population B with a given probability close 
to 1, otherwise, the other member is copied. The effect of the second selection, roulette wheel 
selection, is to return randomly a member of the population A. Although this selection procedure 
is non deterministic, each member's chance of being copied in B is directly proportional to its 
fitness. 
Cross-over operator can be applied with a given probability i.e. in some case, children and 
parents will be the same. We have tested the two-point cross-over: when two members and 
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two crossing points in their genotype are chosen at random, it exchanges the integer string 
contained between the crossing points. New members are created in this way and called 
children. 
Our mutation operator, applied with a slight probability, selects at random one decision in a given 
strategy and changes the decision value. 
The population size is set to 30 members and 20 generations can occur. GA halts when 600 
objective function values are computed. 
In order to improve standard GA results, we implement the elitism module in the selection 
operator. This module simply carries forward the best memberfrom the previous generation into 
the next. 
Several GA are built from the combination of these operators. We present in section VI, two GA 
that give the best experimental results. More details about GA can be found in [3]. 

V.        NEAR OPTIMAL STRATEGY BY SIMULATED ANNEALING 

A. simulated annealing principles 

Simulated Annealing (SA) is an algorithm developed over the past 20 years to tackle hard 
combinatorial optimization problems. It is one of the most popular because of its ease of use and 
of its asymptotic convergence to optimal solutions. It is extensively described in [5] but we 
remind some foundations about it. 
SA is based on an analogy with statistical mechanics: a slow physical system cooling is 
simulated in order to attain minimumenergy states. We apply small disturbances on a current 
solution, and whereas the decreases of the objective function F are always accepted, we allow 
it to increase according to a probability. This probability, controlled by the « Temperature » 
parameter, allows the system to climb out of local minima. Applyingthis process successively, 
called « Metropolis procedure » or« stochastic relaxation », for every temperature in a sequence 
beginning with a great positive value and decreasing to zero, we simulate a slow cooling called 
« annealing ». The transition from one temperature to another is done when the system is 
«frozen » i.e. when the system has reached an « equilibrium at temperature 9 ». 
In order to implement the algorithm, we have to clarify some points: what is a « frozen system » 
and how to build the temperature sequence? Answers depend on the problem we have to solve 
and are given in the next paragraph where we describe our SA based algorithm. 

B. description of the implemented simulated annealing algorithm 

As seen before, a feasible solution of our problem i.e. a strategy, is an integer string of T 
decisions; one decision represents one element of the integer string. We can calculate for a 
given solution S, the criterion J(S) and we have to find S' such as J(S') is as small as possible. 
We present now how we have adapted SA to our problem. 
Our system is « frozen at the temperature 6 » if after disturbing A/n successive current solutions 
Sj, the resulting optimum strategy Smin has not changed. We will then diminish the temperature 9. 
A current solution Sc is disturbed by choosing a solution Sd in the current solution 
neighbourhood. It is on your own to define effective neighbourhoods. A well-known one usually 
applied to combinatorial problems is the « k-change » neighbourhood procedure: given a solution 
S (sequence of integers for example), a solution neighbouring of S is obtained by replacing k 
elements of S. In our case, for a given strategy, applying a « k-change » procedure amounts to 
replacing k decisions in this strategy. We have tested a lot of k-change procedures for different 
k values and different ways of replacing such k decisions (random choices, permutations...). 
The procedure that give the best results is based on a 3-change and called neighbourood N3. It is 
built from the two-process succession: the first one is a permutation between two decisions 
chosen by drawing lots, the other is a substitution of a decision chosen at random by any integer 
value randomly chosen in the set of the feasible decisions. 
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The temperature sequence is such as: 8n = r"80, where the cooling ratio r is contained in ]o,l[. 

This sequence is defined by an initial temperature 80>0, a cooling ratio r and a final temperature 

©fin- 

The objective function calculation number depends on the parameters, A/n, r, 60, 8^. In order to 
be fair to GA, we have chosen parameters such as the criterion calculation number is lower or 
equal to 600. Let us precise that for each run of a GA, the number of calculations is equal to 600 
because the algorithm halts when this number is reached. In the case of SA, the criterion 
calculation number is not deterministic because it depends on the system equilibrium which 
depends on the neighbouring solutions. For SA, we consider the average number of criterion 
calculations on several runs. 
One effective parameter set for our problem is Nn = 5 ; r = 0,9 ; 60 = 900 and 8^ = 0.1 and leads 
to an average number of criterion calculations equal to 500 (average calculated on 20 runs of 
ouralgorithm). 
All the elements are available to implement algorithmsbased on genetic algorithm and simulated 
annealing. In the next section, we present results we have obtained for two different scenarios. 

VI.       EXPERIMENTAL RESULTS 

A. algorithms and results 

We have tested four heuristic algorithms: 
• standard GA: built as presented in section IV with the selection-by-competition module. 

Parameters are fixed by: 
crossover probability=0.8 and mutation probability=0.01 

• GA with elitism: built as the standard GA but with the roulette-wheel-selection module and the 
elitism module where the two best solutions are kept without change from one population to 
another. 

• Random Search: 600 allocation strategies are chosen at random. The algorithm gives in output 
the best one. 

• Simulated Annealing: built as explained in section V, with neighbourhood N3. 
The results of these algorithms are compared to the optimal strategy given by the 
Bourgeois'algorithm, based on Munkres'algorithm.when it is possible. Random events occur in 
our heuristic algorithms. In order to test their robustness, we present results from 10 runs, as 
histograms. One histogram displays results given by 10 runs of one algorithm. One stick appears 
on the criterion value; its height shows how many times this value is reached. The more narrow 
the histogram will be, the more robust the corresponding algorithm will be. 
Target state initialization follows the same model for all the presented scenarios. The target 
motion is uniform. Initial target positions x and y are chosen at random between -425 km and 425 
km while z is chosen at random between 1 km and 10 km. The target velocities on x, y, z are 
initialized by choosing a random value between -800 m/s and 800 m/s. The standard deviations 
are chosen between 500 m and 6500 m for the target position and between 10 m/s and 100 m/s 
for the target velocity. 
The measurement standard deviations are fixed to 1 km for the range r and 2° for the azimuth 8 
and the elevation <(>. 

B. assumption « no more than one measurement on each target»is verified 

We have to allocate 10 mesurements on 20 targets. It is a case where each target is observed 
either once or never. We cannote a very good behaviour of our SA based algorithm. The 10 runs 
give results very close to the optimal strategy. We can also remark that the random search gives 
the worst results and that those obtained by our genetic algorithms are quite disappointing. 
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C.       assumption « no more than one measurement on each target»is no longer verified 

We have to allocate 10 measurements on 8 targets. It is a case where a target can be observed 
more than once. We cannot have the optimal strategy and once again the best strategies are 
given by our simulated annealing algorithm. Genetic algorithms do not improve results and are 
less robust than simulated annealing. The worst strategy is obtained by a random search. 

random search 
simulated annealinc 
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VII.       CONCLUSION 

Optimization of radar pulse allocation raises many difficulties: solving combinatorial optimization 
problems, searching an acceptable solution in a short computing time, and taking into account 
constraints due to the radar features. Nowadays, it is still impossible to find, in a short computing 
time, the optimum solution of such problems satisfying all these constraints. However, this 
allocation problem is very important to provide an accurate information on the targets, particularly 
in the military context. We have hence decided to search a solution close to the optimum via 
metaheuristic methods. 
Heuristic method implementation is quite simple but difficulties appear when you have to choose 
parameter values. Bad GA results - slightly better than random search results - prove the 
difficulty to adapt our problem to GA. Moreover, how can we validate heuristics since we do not 
know the optimum? Fortunately, we have found in a special case the optimal allocation strategy 
and we have been able to compare it with the heuristic results and to compute gaps between 
the heuristic results and the optimum.These results show that for a given computing time, our 
SA based algorithm gives the best strategies and is very robust in comparison with genetic 
algorithms and random search.This is mainly due to the neighbourhood N3, specially well adapted 
for our problem. 
There are numerous extensions of this research. For instance, an optimal strategy search, taking 
into account radar features should reveal a real interest for business companies working on 
radar applications. Other metaheuristics, as tabu search, can be implementedand compared to 
SA. 
Finally, we emphasize that heuristic methods can be applied to many other problems and that 
results depend on the quality of the method adaptation. 
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Abstract 
This paper deals with the problem of Frequency Line Tracking (FLT) and more generally the 

problem of estimating narrow-band signal parameters in time-varying observation, encountered for 
example in passive sonar systems or speech recognition problems. We propose a new measurement 
model usable in frequency line tracker algorithms, based upon Maximum Likelihood estimator (ML) 
of sinusoids in noisy environment. The main purpose of this paper is to establish performance of 
frequency line tracker algorithms by Monte-Carlo simulation according to Hidden Markov Models 
(HMM) and our new approach. 

We study the case of discontinuous frequency lines, by introducting a state detector and evaluate 
its performances. 

1    Introduction 

Detection tracking (frequency, bearing, ...) in passive sonar system gives the input of the so-called 
Target Motion Analysis [5]. For example, a lofargram is a time-frequency representation obtained by 
splitting the time signal into a subset of intervals and computing a so-called periodogram on each of 
them (a zero-padding technique can be used to improve the spectral analysis). Several problems are 
encountered in frequency line tracking : the first one is to determine the number of tracks (or lines) 
present in the lofargram, the second is the birth and death of track, encountered when the sonar goes 
in and out a convergence zone for a given target [3], and the third problem is the crossing track case. 
HMM frequency line tracker presented in [1, 12, 14] assumes to keep only the more energetic FFT cell 
corresponding to either a true detection or a false alarm. This approach needs the definition of two 
malices (A,B) intervening in HMM F = (n,A,B) [9]. All the terms of matrix B can be a priori 
computed, which is possible when, only one detection is retained. In case of several detections, such 
a a priori calculation cannot be planned because of the computation and the memory burden : only 
coefficients needed are evaluated on-line. A direct algorithm from HMM is the Forward-Backward 
procedure introduced first in FLT case in [12]. 

FLT problem has also been solved in terms of Dynamic Programming technique in [6, 10, 13]. 
In [6], several detections are retained after thresholding the periodogram of a single sinusoid in the 
presence of additive noise; hence, there are at most one true detection and some false alarms. The 
Probabilistic Data Association (PDA) modeling coupled with a Viterbi algorithm has been employed. 
A third exploitation of the lofargram have been used by [10, 11, 13]. The Maximum a posteriori 
(MAP) estimator of a frequency state sequence is showed to be the argument of the periodogram under 
Gaussian hypotheses. Once again the Viterbi algorithm is used. 

This paper is outlined as follows : Section 2 presents our frame work and the notation we will use. 
The next section describes the three algorithms for frequency line tracking and relation between HMM 



and dynamic programming point of view for continuous frequency line. Discontinuous track case is 
presented in section 5. 

2    Assumptions and Notations 

We suppose first, we are facing the problem of tracking a frequency story {f(t),t G r} when the input 
signal is usually modeled by : 

s(t)=a sin [27r$(*)] + r)(t) (1) 

where r)(t) is a zero-mean Gaussian noise. The instantaneous frequency f(t) = —Jp- is assumed to vary 
slowly with respect of the sampled frequency fe. The total duration rof the observed signal is split 
into K intervals of n samples, r = pb,Ti[ U [Ti,T2[ U ... U \TK-\,TK[, each of them being of an equal 
length o£T = Tk — Tk-i, Vfc. On each interval, n samples of s(t) is sampled at fe = -^ (n is supposed 
even, n = 2M) with n = fe(Tk — Tk-i). In the literature, f(t) is assumed constant on each interval 
[rfe_i,rfc[,i.e. : 

3 rk e {0,..., M - 1} such that : f(t) = fk = ^. So, we define : 

sk(iAt) = s(iAt + Tk-i) = asm(2n—i + <pk) + rj(iAt), (2) 

where 4>k is uniformly distributed in [—7r,7r[, and rj(iAt) is a zero-mean Gaussian noise with standard 
deviation av. 

We compute the periodogram by : 

p(fc,o = i £ 8k(iAt)e-**$ 
2 

(3) 
i=0 

for k = 1,..., K and I = 0,..., M — 1. We recall the statistic of the periodogram, if / ^ rk 

P(Ki)~xl (4) 

and : 

P(k,rk)~Xl(K = ^n) (5) 

where K represents the SNR level after the "gain of FFT" (the factor n). 
There are three ways for exploiting a lofargram. 

1. thresholded and binarised lofargram : Let's denote mk < M the number of detection retained 
after thesholding at time k, Zk = (z\, ...,zk) the measurement matrix from time 1 to time k with 
*k — (zk,i, ■—,zk,mk), the measurement vector at time k, zkti € {0,...,M — 1}. 

2. thresholded lofargram : The number of detections at time k is equal to mk < M, Zk — (z\, ...,zk) 
the measurement matrix from time 1 to time k with zk = (zfc,i,....,zjfc,mfc), the measurement 
vector at time k and zk>i = (qkj,ek,i),l = l,...,mk a detection centered in the frequency cell 
Qk,i S {0,...,M- 1} with a "energy" equal to P(k,qk<i). 

3. non-thresholded lofargram : M is the total number of cells for each instant k. Zk — (zi,...,zk) 
the measurement matrix since instant k with zk = (zk>i,....,zkiM), the measurement vector at 
time k and zk>i = (l,P(k,l)),l = 0, ...,M - 1. 



3    Theoretical approach 

3.1    Frequency line tracker algorithms 

Three algorithms axe generally used in frequency line tracking. Each of them assumes that the state 
sequence is modelised by a first order Markov chain also called a random-walk and defined by : xk = 
Xfc_i + €fc, with efc a zero-mean white noise with standard deviation d. The three algorithms compute 
a posteriori probability with the knowledging of Pr(x^ = £k\xk-i = £k-i) and Pr(-Zfc|xfc = £&), two 
probabilities which are the common entries for the three procedures. For each approaches, frequency 
line tracking consists to give an estimation of the state sequence, Xk — (x~i,...,xk) with rk — xk. 
Algorithms are written as follows : 

1. Viterbi (VIT) algorithm : by computing the Maximum A Posteriori (MAP) likelihood track (see 
[6, 8, 10, 11, 13]) : 

TWV      =17^     Pr(zfc]xfc = gfc) Pr(a;fc = Cfckfc-i = &-i) Pr(Xfc-i = Ek-i\Zk-i)        ,. 
?<Xk = zk\Zk) = P^kWT) '      (6) 

where Ek — (£i,...,£k) represents a possible realization of Xk from time 1 to time k, £k £ 
{0,...., M — 1}. The estimated track is defined by : 

XK\K = @I\K, -,*K\K) = arg max {Pv{XK\ZK)} (MAP). 
■X-K 

2. Forward-Backward (F-B) algorithm by computing (see [1, 12, 14]) : 

Pr, c \7  A       Pr(xfc = £fc,Zk)Prfab+i,...,zK\xk = gfc) Pr(xfc = E,k\ZK) = j^i  (7) 
£ Px(xk = i,Zk)Pv(zk+1,...,zK\xk = i) 
i=0 

with the recursive expression : 

M-l 

Pr(xfc = Zk,Zk) = Px{zk\xk = 4)   J2   Pv(xk-i = Zk-i,Zk-i)Px(xk = £fc|xfc-i = &-i) 

and 
M-l 

Pr(zfc+1,...,zK\xk = 4) = X)   Pr^fc+ilxjfc+i = £fc+1)Pr(xfc+i = £fc+1|sfc = Zk)Pr(^+2,...,zK\xk = ffc). 
^+1=0 

This is a local state estimator at time k with knowledge of all the available measurements. The 
estimated track is defined by : 

Xk\K - (x1\K,...,xk\K),k = l,...,K and xm 4 E[xk\ZK] (MMSE). 

3. Bayes-Markov (B-M) algorithm by computing (see [2, 4]) : 

Pr(xfc = ik\Zk) = Pr(z*|xfc = &) Px{xk = £k\Zk-.{) (8) 

with the recursive expression: 

M-l 

Pr(a* = &|2fc-i) = J^   Pr(xfc_i = ffc_1? Zfc_i) Pr(xjfc = &|xfc_i = &._!). 

This approach is the forward step of the forward-backward procedure.  The estimated track is 
defined by : 

Xk\k = (xi|fc,...,£fc|fc) ,k = 1,...,K and xfc|fc = £?[xfc|Zfc] (MMSE). It is compatible with a real 
time implementation. We precise in the next section our choice about probabilities used. 



Remark 1 All the probabilities will be approximated by their density, i.e. Pr(£) ^ (^)A/. In 
the sequel, term A/ is dropped. 

Remark 2 The Viterbi and Forward-Backward algorithms are batch procedure meanwhile the 
Bayes-Markov is a real-time approach. 

3.2    Modelization of frequency line tracker entries 

Every frequency line tracker needs the computation of two probabilities. The first one Pr(rcfc = 
£fc|xfc_i = £k_i), defines the probability of state transition between time k — 1 and k. We define 
matrix A as follows A = (aij)ij=i...M with : 

Oij = Pr(xk = i - l|xfc_i =j-l) = -=-e   2#". (9) 

Note that this matrix can be computed a priori. 
The second entry defines the likelihood of a line of the lofargram, i.e. Pr (zk \xk = £k). As mentionned 

in section 1, this probability depends on the choice of the lofargram exploitation : 
a) thresholded and binarised lofargram : 
The number (mk) of retained measurements (after tresholding) is a random variable. Unlike the 

case treated in [1, 12, 14] where mk = 1 and for which all the probabilities Pr(2fc = i\xk = j) can be a 
priori computed and put in matrix B = Vi{zk = i - l\xk =j- 1);=I,...,M , we have to evaluate similar 

j=l\..!,M 
probabilities for a potentially tremendous number of cases. It is no way to compute a priori such a set 
of probabilities, unless they are the same. This is the way used by Bethel : in [2]; he proposes 

^ ,    . .,      |   -§4- if P(k, i) > t, the detection thresholds  ] , 
PrW*-,)«!'*       '•>^i!aot }(BET) 

Jauffret adopts the Probabilistic Data Association Model [6] and gets : 

Pr(zk\xk = i)ccl-Pd + — Y^ -7=^e     &~(PDA) (10) 

where A denotes the mean number of detections by volume unit, Pd the probability of detection and a 
the standard deviation for detection. This last two models can be interpreted as a Track After Detect 
(TAD) approaches. 

b) non-thresholded lofargram : 
We present a new model based upon the ML estimator of a pure sinusoid in white Gaussian noise. 

Three assumptions are required for this new model : 

1. Measurements are supposed conditionally independent in time. ■ 

2. The ML frequency estimator for s(t) at each interval [Tk-i Tk] is given by arg max {P(k,l)\ and 

its probability is proportionnal to e   ar>    . 

3. The correct detections are Gaussian with a standard deviation equal to a. Karan showed that, in 
case of linear FM signal, the distribution of /ML is symmetrical. Here, we choose the Gaussian 
approximation for convenience (see [7]). 

We define at time k Hi,I = 1,..., Mas" the frequency lines is in cell / at time fc", i.e. rk — I. Then 
Pr(zk\xk = £fc) can be written as follows : 

M 

Vx{zk\xk = £k)=cJ2 Pr(2*|xfc = Cfc,Hi) Pr(J3i|xfc = £k) 
i=i 



Pr(«fc|xfc = &) 4 c 53 e   «^    c~fer- (TBD) (11) 
i=i 

where c denotes the ad-hoc normalization factor. As no thresholding stage is performed, this approach 
can be viewed as a Track Before Detect (TBD) one. 

Remark 3 In the sequel, we will denote for example by : VIT/TBD/MAP the combinaison between 
frequency line tracker algorithms (Viterbi : VIT, Forward-Backward F-B or Bayes-Markov : B-M), 
model (Track Before Detect: TBD, Probabilistic Data Association : PDA and Bethel model :BET) and 
the estimator used (MAP or MMSE). 

4    Continuous track problem 

According to HMM convention, models needed for each algorithms, can be written in terms of matrix A 
and B and vector 7r (the initialization probability is chosen uniform on the state space) : F — (ft, A,B). 
In fact matrix B, where m^ > 1, is computed after receiving each measurement vector, but we still use 
HMM to describe input of frequency line trackers. Our SNR definition is written as follows : 

SNRdB d 10 log10(% + 10 log10(M) (12) 

The chosen criterium to establish performance of frequency line tacker is the computation of RMSE : 

N   

(13) O-RMSE = Jj 53 
\ 

■j? 53 @k>j - XkY 
k=l 

where Xkj denotes the estimated state at time k of the jth runs and a:*; denotes the true state at time 
k, N being the number of Monte-Carlo runs. 

In conclusion, HMM frequency line tracker algorithms can be used even with multiples detections 
per scan with a new formulation of the HMM in term of B matrix. In this case, we got the same entries 
formulation with dynamic programming point of view. The Viterbi algorithm perform the complete 
state sequence optimization and the Forward-Backward compute each individual state of the track. 

4.1    Monte-Carlo simulations on continuous extracted tracks 

We perform over different SNR's, N — 1500 frequency line tracking runs on a synthetic signal, with 
the three algorithms (6,7,8). Figure (1) shows an realization example of a lofargram where M = 256 
and K = 100. 

Figures (2) and (3) show entries of frequency line tracker with TBD (a) or TAD (b) approaches and 
the results of two frequency line tracking associated, i.e. VIT/TBD/MAP (a) and VIT/PDA/MAP (b). 
The SNR of input signal was 5 dB (a 512-point FFT) with a sampling frequency fe equal to 2000.ff.z. 
Matrix A is computed according to (9) with d = -4=. For TBD approach, a was chosen equal to -4=. 
The TAD approach with the PDA modeling was initialized with following parameters : The threshold 
level is chosen to maximize the ratio -p*- of x2 ROC curves and keeping Pd and A oc Pfa associated 

with this threshold and a = -4-. The two extracted tracks in figure (3) with the same frequency line 
tracking algorithms are both of them pretty good, even if with the TBD modelization seems to be more 
efficient. Figure (4) show the computation of the RMSE for different SNR (see 13) and reveals two 
important points : 

1. With model given (PDA, BET or TBD) Viterbi algorithms or F-B algorithms give one similar 
performances. 



Figure 1: Example of synthetic lofargram with a 8 dB track 
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Figure 2: a) Input with TBD approach        b) Input with TAD approach 

2. With algorithm given (Viterbi, Bayes-Markov or Forward-Backward) TBD performs better than 
other. 

5    Track validation 

One of frequency line tracker assumption presented in section 3, is the existence of the track during 
the whole measurement recording. In fact, for different reasons, this is cannot be physically verified [3]. 
This problem, called in the sequel "discontinuous track problem", needs a state detector. We present 
here two tests based upon the Forward-Backward frequency line estimator. 

5.1    A Neyman-Pearson state detector 

First approach is to perform the likelihood ratio between signal-plus-noise hypothesis and noise-only 
hypothesis following Neyman-Pearson's lemma. Let's introduce a new state sequence Hk — (hi,...,hk) 
where each individual state hk can take only two values, i.e. 0 or 1. We denote also T& a complete 
realization of this new state sequence Hk- 

We define the noise-only likelihood by : Pi(xk\hk = 0) = ■£?. In that case, every frequency cell is 
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Figure 3: a) True & Extracted track with TBD approach 
approach 

b)True & Extracted track with TAD 

Figure 4: RMSE (number of cells) versus SNR for 9 FLT 

a possible recipient of the estimated state in a bandwidth of M' cells. Parameter M' is proportional 
to the standard deviation d of the Xk state transition probability. In other hand, we also define the 
signal-plus-noise likelihood by : Pi(xk\hk = 1) — Pr(a;jfc = X^ZK), with the Forward-Backward a 
posteriori probability for the estimated state Xk- The Neyman-Pearson test (denote NPT) is equivalent 
to M' Pr(£fc|/ifc = 1) ^ t, with t a a priori given threshold. Figure (5) shows two mean realizations and 
the ± two time the standard deviation intervals of confidence (over 1500 runs) of Pr(xk\hk = 1), for 
two discontinuous track (a 4dB and 15 dB frequency line) being present during time [30 — 70]. 

The main problem of such detector is the "hole effect" for poor SNR, because the state detection is 
computed individually step by step. A second problem is the choice of the threshold t. 

5.2    A Dynamic state detector 

According with the dynamic programming approach for frequency line estimator, we propose a new 
state detector based upon a Forward-Backward algorithm. This state detector (denote FBT) is modeled 
by Fd = (7Td, Ad, Bd) which are the common entries of the new state detector. 



Figure 5: 2 means realizations of the signal-plus-noise likelihood and their intervals of confidence 

For this goal, we must define the entries of this new state detector in terms of matrices Ad and Bd. 
Matrix Ad represents the state transition matrix (2 x 2) from time k — 1 to time k and defined by : 

l-q      q 
q      l-q _ 

deviation of a noise process. The more q factor is important, the more sensible to the noise measurement 
the detector is. Matrix Bd (K x 2) must also be defined in terms of bfj == Pr(Sfc = i\hk = Uj) where 
Pr(xfc|/ifc = Vj) is the likelihood of the new measurement entry. Matrix Bd entries is modeled as follows 

Ad - (<)y=o,i = Pr(^t = "i\hk-i = Vj) where q can be assimilated to a standard 

Pv(xk\hk = 1) 4 Pv(xk = xk\ZK) 
Pr(£fc|/ifc = 0)^ } (14) 

Then, we propose to compute recursively ~Pi{hk = V^XK) by using the Forward-Backward procedure : 

Vr{hk = Vi,Xk)VT{xk+i,...,xK\hk = Vi) 
Vv{hk = Ui\XK) = (15) 

J2 Pr(/ifc = i,Xk)Pr(xjfe+i,...,xK\hk = i) 
t=0 

Remark 4 It is possible to use also a Viterbi Algorithm or a Bayes-Markov algorithms for the con- 
struction of such a test. 

Remark 5 The use of Forward-Backward procedure is a little bit abusive : the "measurement" xk are 
not conditionnely independant. 

5.3    Monte-Carlo simulations on discontinuous extracted tracks 

We are facing problem of extraction of discontinuous track as showed in figure (6), where for example, 
a 10 dB frequency line is present during instant [30 — 70]. 

For the state detector performance analysis, we performs Monte-Carlo simulation with a discon- 
tinuous track. We compute N = 1500 runs for each SNR with a frequency line being present during 
time [30 — 70]. The performance analysis is done by computing RMSE of beginning of the track. The 
beginning of the track is the first state estimate in the Hk sequence higher than the given threshold. 

For the FBT detector, the constant q is equal to lOe — 5, the threshold t = 0.999, M' = 10 and 
7rd = [1 — 10e-5,10e-5]. These values has been chosen empirically. We denote the couple frequency 
fine estimator - state detector by : F-B/TBD/MMSE-FBT where F-B/TBD/MMSE represents the 
Forward-Backward algorithm with TBD model for frequency line estimator and FBT, the new state 
detector based upon a Forward-Backward procedure. 
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Figure 6: Discountinuous 10 dB frequency line 

Figure (7) shows the RMSE statistic for the beginning of the track, i.e. 

J>eg      A aRMSE — 
\        3=1 

(16) 

where xbeg = 30 for simulations. 

F-B/TBD/MMSE-FBT 

0"'.-2        4     -6'      B        10       12    Vi«.   '16     ,18'   J'20- 

Figure 7: RMSE of the beginning of the track 

Performances shows Forward-Backward state detector FBT offers correct results for SNR> 8 dB. 
The main goal of such dynamic state detector is to avoid the "hole effect" of NPT detector for lower 
SNR during the state detection sequence, by smoothing the Neyman Pearson test sequence. 

6    Summary and Conclusions 

In this paper, trackers for continuous and discontinuous frequency line and associated performances has 
been presented. The best continuous frequency line estimator is showed to be the combination between 
Viterbi algorithm and TBD likelihood definition. In this case, performances show good results for an 
SNR superior to 4 dB (after the FFT gain). 



Discontinuous frequency line tracker is presented to be the association between a frequency sequence 
estimator and a state detector. To avoid the "hole effect" of the NPT detector, we use a dynamic state 
detector based on a Forward-Backward algorithm. In this case, the minimum acceptable SNR is about 
8 dB (after FFT gain) for discontinuous frequency lines. 

A further work will be to construct a multiple frequency discontinuous line tracker using these new 
results. 

References 

[1] R. Barrett and D. Holdsworth. Frequency tracking using hidden markov models with amplitude 
and phase information. IEEE Transactions on signal processing, vol 4-1, no. 10, pages 2965-2976, 
October 1993. 

[2] R. Bethel and G. Paras. A pdf multitarget tracker. IEEE Transactions on aerospace and electronic 
systems, vol. 30, no. 2, pages 386-403, April 1994. 

[3] W. S. Burdic. Under acoustic systel analysis, volume 1. Prentice Hall, 1984, pp 151. 

[4] A. Jaffer and al. Improved detection and tracking of dynamic signals by bayes-markov techniques. 
Proc. ICASSP'83, vol. 2, pages 575-578. 

[5] C. Jauffret and Y. Bar-Shalom. Track formation with bearing and frequency measurement in 
clutter. IEEE Transactions on aerospace ans electronic systems, vol. 26, pages 999-1010, November 
1990. 

[6]. C. Jauffret and D. Bouchet. Frequency line tracking on a lofargram. Asilomar, 1996. 

[7] M. Karan. Frequency tracking and hidden markov models. Phd Thesis, March 1995. 

[8] R. Larson and J. Peschon. A dynamic programming approach to trajectory estimation. IEEE 
Transactions on automatic control, vol. AC-11., pages 537-540, July 1966. 

[9] L. Rabiner and B. Juang. An introduction to hidden markov models. IEEE ASSP Magazine, vol. 
3, pages 4-16, January 1986. 

[10] L. Scharf and H. Elliott. Aspects of dynamic programming in signal and image processing. IEEE 
Transactions on automatic control, vol. AC-26, pages 1018-1029, October 1981. 

[11] R. Short and J. Toomey. Detection and estimation of frequency-random signals. IEEE Transactions 
on information theory, pages 940-946, 1982. 

[12] R. Streit and R. Barrett. Frequency line tracking using hidden markov models. IEEE Transactions 
on acoustics, speech, and signal processing, vol.38, no. 4, pages 586-598, April 1990. 

[13] J. Wolcin. Maximum a posteriori estimation of narrow-band signal parameters.  J. Acoust. Soc. 
Am, vol 68. no. 1, pages 174-178, July 1980. 

[14] X. Xie and R. Evans. Multiple target tracking and mutiple frequency line tracking using hidden 
markov models. IEEE Transactions on signal processing, vol. 39, pages 2659-2676, 1991. 

10 



Approximations of the Cramer-Rao Bound for Multiple Target Motion 
Analysis * 

J.-P. Le Cadre , IRISA/CNRS , Campus de Beaulieu, 35 042, Rennes, France t, 
H. Gauvrit , LTSI/Universite de Rennes 1, Campus de Beaulieu, 35 042, Rennes, 

and F. Trarieux, IRISA. 

October 24, 1998 

Abstract 

This study takes place in the analysis of multiple target motion analysis (MTMA for the sequel), 
when the system state is not directly observed. The Cramer-Rao Lower Bound (CRLB) is a widely 
reference for assessing estimation performance. The lack of explicit bounds on the performance of 
MTMA remains an important issue in the tracking community. The problem is immersed in the general 
framework of the estimation of normal mixture parameters. Then, a general formulation of the CRLB 
is given. Our contribution is in the calculation of convenient approximations of the bounds relative to 
source kinematic parameters. 

1    Introduction 

This study takes place in the analysis of multiple target motion analysis (MTMA for the sequel), when the 
system state is not directly observed. A classical example is that of passive MTMA where measurements 
are only made of estimated bearings [1]. Such systems are basically used in passive sonar [1], infrared 
tracking or electronic warfare. The Cramer-Rao Lower Bound (CRLB) is a widely reference for assess- 
ing estimation performance. The CRLB is typically derived in terms of the likelihood function; i.e. for 
measurements distributions defined by non-random parameters, even if extensions to random parameters 
exist [2], [3]. 

The lack of explicit bounds on the performance of MTMA remains an important issue in the tracking 
community [4], [5],[6] and [7]. As a result, a great deal of attention has been devoted to measures of 
performance such track purity, correct assignment ratio [8], [9] etc. These methods are based on the 
discrete assignments of measurements to tracks and are thus not universally applicable. Their interest 
is, for a large part, due to the fact that numerous MTMA algorithms rely on "hard" association. In this 
meaning, this type of analysis is quite pertinent and sophisticated tools have thus been developed. How- 
ever, there is a need for simple and (relatively) explicit formulations of the CRLB in the MTMA context. 
These bounds will be here developed in a general context which employs a probabilistic structure on the 
measurement to target association. 

The difficulty of obtaining CRLB for MTMA is due to a need for performing association between mea- 
surements and tracks, and to incorporate this basic step in the CRLB calculation. In fact, when properly 
cast, a CRLB for the MTMA does exist, even if its evaluation may be difficult [lOj.This problem will be 
overcomed by means of a mixture modelling of the likelihood [11], [12]. It is then possible to immerse 

"This work has been supported by DCN/Ingenierie/Sud, (Dir. Const. Navales), Prance 
*e-mail: lecadre@irisa.fr 



the problem in the general framework of the estimation of normal mixture parameters, for which an im- 
portant statistical literature exists. Furthermore, this modelling has been widely used in the derivation 
of the Probabilistic Multiple Hypothesis Tracking (PMHT) developed by Streit and Luginbuhl [13]. 

This study clearly takes place in the general framework developed by Graham and Streit [4], which 
will be constantly used along this paper. It is also motivated by the development of MTMA methods that 
do not explicitely estimate measurements to target associations. Our contribution is in the calculation of 
convenient approximations of the bounds relative to source kinematic parameters. The paper is organized 
as follows. The mixture modelling of the observations is introduced in Section 2. General calculations 
of the CRLB (for this observation modelling) is presented in Section 3. Approximations of mixture terms 
are the object of Section 4. Calculations of explicit approximations of the CRLB for MTMA are detailed 
in Section 5. Numerical results illustrate their accuracy. 

2    Measurements probability density functions and mixture density 
models : 

Based on standard target independence assumptions, the measurement probability density function p 
conditioned on the vector states S and the vector of measurement associations A is [14] : 

p(zkJ\Ek,Ak) =p(zkj\X-k,m)/m=aktj , 

where : 
zkj is the j~™ measurement in the scan k , 
Ek = (Xjt,i, • • • ,XfciCJ vector of target states at time k , (2.1) 
Afc = {ak>i, • ■ •, ak>nk) , aktj target of origin for zkj . 

Using assumptions of conditional independence for measurements within a scan results in (Zk : vector of 
measurements at time k) : 

p(Zk\Ek,Ak) = JJ p(zkj\*-k,m)/m=akJ • (2.2) 
Zk,j 

The combinatorial nature of the problem thus clearly appears. To maintain the computation load at a 
reasonable level, various methods have been considered like: pruning, gathering, gating, etc. However, 
for these approaches, the CRLB is an ill-defined bound on the estimation errors for the resulting point 
estimate. 

A conceptually different approach has been developed by Graham and Streit [4]; in which the measure- 
ment procedure comprises two parts, an observation of the target of origin, followed by the traditional 
physical measurement. The likelihood function is then the joint likelihood of measurements and asso- 
ciations , i.e. p(Z,A|5,II) = p(Z|E,A) p(A|II), where II consists of the additional describing the 
frequency function of the associations A. Practically however, the data A are termed the missing data 
since it is not available. 

The dependence in A can now be removed through marginalization :   : 

p(z[s,n)= 5>(z,A|s,n) 5 
AeA 

yielding : 

p(zis,n)=nn 
fc=l  j     Lm=l 

n* 

SfmP(**j|Xjfe>m) ;0<7Tm<l      £Vm = l, (2.3) 

A domain of possible association vectors 



which is typically referred to as (normal) mixture density. This approximation of the likelihood will be 
of constant use subsequently. 

3    General calculations 

For this section and the rest of the paper, we consider the following scenario : two sources move with a 
constant velocity vector. They are (partially) observed through a (passive) receiver (sonar, IR, radar). 
Measurements are generally bearings (sonar,IR), possibly frequency (sonar) or even range (radar). For 
the sake of simplicity, we shall restrict our attention to planar problems. 
For deterministic motions, the source trajectories are defined by initial conditions i.e. a 4-dimensional 
vector whose components are x, y-position and x, y-velocity. 

Associated with these deterministic models are their a priori probabilities 7Ti and 7T2 (7i"i + 7T2 = 1). 
Let Xi and X2 the source state vectors and denote q = IT\ , then the scenario parameters are represented 
by the following ^-vector, $ = (Xi,X2,g). The batch data are denoted by Z. At each scan, 2 (or less) 
measurement-models are observed, each one with a probability q and 1 — q, i.e. : 

/u\ _ / A(Xi, k) + wi(k)   ifZj(k) originates from source 1, ,     , 
1  /%(X2, k) +W2{k)   if Zj(k) originates from source 2, 

In (3.1), w\ and W2 are the measurement noises. We assume them independent (from scan to scan), 
gaussian, with known and constant 2 variances (erranderf). The likelihood function then takes the 
following form : 

p(Z|*)  =  ni[p(*;(*)l*)> 
fc=l  j 

T 

= nn{w(^(fc)ixi)+(i-9)P2(^(Ä;)ix2)}. (3.2) 
*=i 3 

We are now dealing with the calculation of the Fisher Information matrix (FIM for the rest). For the 
sake of simplicity, the following assumption is made (unity probability of detection for each source and 
no false alarm) : 

cfc = nfc = 2,V*€{l,-"r} 

First, let us recall the classical expression of the FIM for the unique source case 3 : 

FIM   =   E{VXl(logp(Z|X1)Vi1(logp(Z|X1)}, 

=   E3Gi(*)Gi(*). 
Jk=l 

where:Gi(fc)   =   VXl A(Xi,fc) , 

(cosßijk)      sinft(fc)     cos/3i(fc)      ^smfa(k)\* 
"    V    r(k)    '        r(k)    ,K    r(k)    '    *    r(Jfc)    J    ' {     ' 

This calculation [15], [16] may be easily extended to the mixture model (3.1 , 3.2), thus yielding : 
2 Along the measurement batch 
3No assignation problem then exists 



Proposition 1 Let FIM the Fisher information matrix associated with the mixture model (3.1, 3.2), 
then : 

T f In(k)   I12(k)   In(k) 
I*12(k)   I22(k)   hz{k) 

\l*13(k)   /&(*)   733(A:) 
FIM   =   2 Y, Hk)    , where : I{k) = 

k=l 

and : 

Iii(*)    =    q M>*<*>K>Q Gl{k)Gl(k)    ,IMk) = q{1-q)Ml'l{P^k)Gl{k)GUk), 

l22{k)   =    (l-9)2M02(p2,p2,fc)G2 |/l8(fc) = Z^o^^)Gi(fc) 

°~2 0\ 

hm   =   M0tlfap2,k) G2(k)    JMk) = _^{1_Moo{pip2kh 

y_oo     P(Z\$)      \     ox     )   \     oj     j 

Proof: 
Consider, for instance, the calculation of /n : 

hi   =   E{VXl(logp(Z|$)V5tl(logp(Z|$)}, 
where : 

T     2 

vXl iogp(zi$) = EE^iog^Pi^wixo + a-^p^z,^)^)}, 
fc=lJ=l 

=   EE^gjjl1/  (*;(*) - Ä(Xi,ife)) VXlA(Xi,*) . (3.4) 

Zu is then obtained by calculating the expectation of the dyadic product of the term (3.4). The 
calculation is greatly simplified by the following remark : all the cross products yield null contributions. 
We then obtain : 

T    2     0 
J"    =    EEzo-Vx^itXi^Vx^Xi,*) 

fc=ii=iffi 

F j pKzjjk)^) (zj{k) - A(Xi,fcr2 

\ pHzjik)^) V        oi 

=   ytmk^VXlß1(X1,k)V*Xlß1(X1,k) 

Denoting Gi{k) the gradient vector Vx1/?(Xi,fc), expression (3.4) of In then follows. Calculation of/i2 

and /22 is quite similar. 

It remains to calculate and approximate the scalar mixture terms Mm>n. Using an elementary trans- 

formation [17] ( y = e{z - ß)/ä , fi) = (m + /x2)/2, ä = (oio2)
1/2, e = ±1 ), the mixture terms 

Mm!n{pi,pj,k) are considerably simplified. For the sequel, we shall adopt the very concise notations of 



Behboodian [17] (i.e. : d = \ß2 — ßi\ßä, r — <7I/CT2 , di = —d, di = dandri = r, r2 = 1/r), yielding 4 

[17]: 

Lemma 1 Let Mmjn(pi,pj,k) the scalar mixture terms of Prop. 1, the following simplifications hold : 

Mn<n(Pi,Pj,k)   =   em+nr-m/2r-n/2Gm,n(9i:9J,k), 
/oo 

(y - di,k)m (y - djyk)
n (gi(y)9j(y)) /g(y) dy , 

-OO 

. |ft(Xi,fc)-ft(X2,fc)l and ; dk =  , 
2y/aia2 

ffi(y) = ^eXP("^(y"di'fc)2) ;i = 1'2' 
d2,k = -rfi,fc = 4 , e = I form < P2 ,e = -lforpi > H2 , 

5(y) = 9Pi(y) + (i-9)fl2(y). (3.6) 

Now, our analysis will be divided into two parts. At first, we shall examine approximations of the scalar 
mixture terms Mm>n. The second part consists in using these results for approximating the CRLB bounds 
relative to the kinematic parameters of the sources. Since this analysis is multidimensional, this part is 
essentially based on (linear) algebra. 

4    Approximation of the mixture terms 

We now restrict to close sources (i.e. dk < 1). First, for reasons we will present later, the case r = 1 
is a special case, for which approximations of mixture terms Mmtn(pi,pj,k) are particularly simple and 
easy to obtain. More precisely, considering a fourth-order expansion of the functions (3.6) Gmjn(gi, gj, k), 
around 0 and relatively to dk, the following approximations are obtained [16], for r = 1 : 

Result 1 

M0jo(pi,p2,k) fal-4q(l-q)<%, Afi,i(pi,p2,*) ~ 1 - 12q(l - q)d\ , 

M2,o(pi,Pi,k) « 1 - 4(3? - 2)(1 -q)dl, M0,2(p2,P2,k) « 1 - 4q(l - Zq) d\ , 

Mlfi(pi,P2,k) » -2qdk + 8(3<7 - l)g(l - q) d3
k , 

M0,i(pi,P2, *:) « 2(1 -q)dk + 8q(3q - 2)(1 - q) d\ . 

(4.1) 

These approximations are quite accurate as far as dk < 1; which is, here, a convenient hypothesis. Rather 
surprisingly, the results obtained for the general case (i.e. r ^ 1) are fundamentally different. Considering 
rasa free parameter, the previous approach does not provide explicit results since there is no explicit 
expression of the integrals of the expansion of the terms (gi(y)gj(y) )/g(y)- Then, analogously to [18], 
[17] a natural and rigorous approach consists in using series expansion of the functions {gi{y) gj (y) )/g{y)- 
More precisely, we observe that : 

(9i(y)9j(y))/9(y) = (vJir,/r) (hi(y)hj(y))/h(y) , 
where: ^    ' 
%) = qh\(y) + (1 - ?) r My) and: hi{y) = exp [-(y - rfi,A:)

2/2ri], i = 1,2 . 

Now, it is easy to show that qhi(y)/(l — q)rh,2{y) < 1 if y is in the interval (—oo,ai) or (02,00), with 
«1 < G!2, and the converse (i.e. (1 — q)h,2(y)/qhi(y) < 1) if y is in the interval (01,02), where ai and 02 

Vl=/?l(Xllfc)1/t2^/?2(X2,fc) 



axe the real roots of the following second order equation : 

(1 - r2) y2 + 24(1 + r2)y+(4)2(l-r2) + 2r log 
(^) 

0 , (4.3) 

if real roots exist.  Using the method presented in [18], [17], the following expression of Gm^(gi,gj) is 
obtained : 

Gr 

(1 \   -22,   f   /•<*! fCX2    _ [CO 

I E   /     Hn(y) dy + /    Hn{y) dy + /    Hn{y) dy 
J2irrirj/rJ n=o \-J-oo Jai Ja2 

(4.4) 

where the functions Hn(y) and Hn{y) are straightforwardly deduced from above calculations and detailed 
in [17]. The computation of the integrals leads to deal with truncated moments of a normal distribution, 
which is already known. The advantage of this method lies in the fact that we approximate Gm,n (&, Sj) 
by an alternate serie. 

The above calculation is somewhat simplified if we assume that (4.3) has no real root, we then obtain 
5 . 

Result 2 

Go,o(9u92,k) = (l/(l-q)) E~o(-l)nan1/2exp[2d2^n(n + l)-nlog(^)J , 

G2,o(gu9uk) = (l/(l-q)) E~0(-(rAJ-)
na^/2[4d2(1 + n)2_^_ + 1] eXp [2d2 (n + l)(n + 2) r/a„+1] , 

Gi,iisi,92, k) = (r/(l - q)) E~ o (-(I^JT)" a.3/2 [4d2 n(n + 1) £ + l] exp [2d2 n(n + 1) r/an] , 

G0,2(92,92,k) = (r/(l - q)) En=o {-Ji^T<-i   [r + *4 HTT] 
exP M (")(« " 1) r/on-i] , 

(4.5) 
where : an = n(l — r2) + 1. 

An illustration of the accuracy of the above approximation is provided with fig. 1. The value of q 
is 0.1 (ah = 0.398), and we compare (r varying from 0.1 to 1), the exact value of Mm>n (see 3.6) with 
its approximation given by (4.5), for n = 2. The result is quite satisfactory, even for a value6 of n as 
low as 2. However, when q approaches 1/2, greater values of n are needed for obtaining an accurate 
approximation. 

A less rigorous but simpler approch consits in using a second order expansion of gi and gj, both 
with respect to d (around 0) and r (e.g. around 1). Calculations are performed by means of symbolic 
computation and yield : 

G0,2(92,92) w Po,2(g,r) + d2 Qo,2(q,r) , 
Gi,ifoi,02) « Pi,i(q,r) + <P Qi,2(9,r) , (4.6) 
#2,0(51,0i) ~ p2,a{q,r) + d2 Q2,o{q,r) . 

The polynomials Pij and Qij are detailed in Appendix B. 

5    Approximations of the CRLB 

5.1    Performance analysis for MTMA (reduced state vector) 

We shall show now that it is possible to obtain explicit approximations of the bounds for the variance of 
estimated kinematic parameters. The two following ingredients are fundamental: 

5 Corresponding calculations are outlined in Appendix A 
6n: expansion order 



Elements of the mixture matrix M 

0.5 0.6 
Parameter r 

Figure 1: Order 2 approximation of Mm>n; q=0.1, n=2. Continuous line: order 2 approximation; dashed 
line: exact (integral) values 

• kinematic parameters are modified polar coordinates (MPC) , 

• approximations of mixture terms (i.e. :MTO;n), given in section 4. 

The fundamental role of MPC ( ß0, ß, r/r, 1/r) in TMA has been put in evidence by Aidala and Hammel 
[19] and is now well recognized. Further, immersing the TMA problem in its natural non-linear framework 
leads to consider the Lie derivatives of the observation (i.e. the bearing), themselves spanned by the MPC 
[20]. We stress that the coordinate (1/r) plays a particular role, since it is a "control" coordinate; so 
estimation of related component will be treated apart. 

In order to facilitate the calculations, the following (partial) source state vectors will be considered 
throughout this section : 

Xx = (#,&,&)* , X2 = (#,&,&)* • (5.1) 

In (5.1) ßf, ßi, ßi respectively denote the initial (i.e. at time 0) bearing, the bearing-rate and the time 
derivative of the bearing-rate of the ith source. Also, we assume that the probability q is known. Further, 
note that the "usual" MPC have been slightly modified since we use ß in place of r/r. This is quite justified 
since, in the absence of observer maneuver, we have ß = -2/5 r/r (see [20] for the general case). Thus, 
the following (quadratic) bearing model will be considered along this section : 

Ä(*)=Ä(0)+*ft + yft. 

Then, from (3.4), the FIM (relative to Xi and X2) takes the following form : 

where : 

Gk = {l,k,k2/2)* . 

(5.2) 



Note that now the gradient vector Gk is identical for the two sources. This is due to the   coordinate 
choice (i.e MPC). 

It is quite reasonable to assume that the parameter dk is sufficiently small (i.e. dk < 1). A 3rc*-order 
expansion (w.r.t. dk) of the components of the matrix Mk yields : 

Mk = M0(k) + $ M^k) 
where : 

/ JL roo    2 sM. dv IP-*)  f°° v2 9^S2(y) dv \ (5.3) 
Mo(k) = t r 9(v\?,,   ,rv_o°   2f) 

dy) 

Prom the above expression and the Cauchy-Schwarz inequality, we deduce that Mo is necessarily positive 
semi-definite. Calculation of CRLB will require convenient approximations of the mixture matrices Mo 
and Mi. These approximations have been derived in section 4. In this section, it has been shown that 
the cases r = 1 and r ^ 1 must be considered separately since approximations are quite different. Indeed, 
algebraically, a major difference exists: the approximated matrix Mo is rank-one when r — 1, while Mo 
is full rank otherwise. The corresponding CRLB calculations will thus be considerably different. 

5.1.1      The case r = 1 : 

For the case r = 1, the matrices M0 and Mi are straightforwardly deduced from (4.1), yielding : 

Mn_/V q(l-q)\    M  _( q2(l-g)(Sq-2)    Zq2{l-a)2 \ M° - U(i - q) {i-q?)^-{ 3^(i - qy        q{i - q)
2(i - 3,) <5-4) 

CT2FIM 

so, that : 

Mo ® (£ Gk GJM - Mi ® (£ 4 d\ G* GjM . (5.5) 

It is now convenient to define the following matrices which will play a major role for the analysis : 

Co = Efc Gfc G*k, Ci= J2k (4 dl G* Gfc) . (5 6) 
A = Mo ® Co , ß = Mi ® Ci . 

Here, we note that since rank(Mo) = 1 (M0 = Vo VQ) and Co is invertible, the rank of A is 3. On another 
hand, the Mi matrix is invertible, as well as Ci, hence B is invertible. However, inversion of FIM must 
be considered with a certain care, since as d\ < 1, the norm of B is (generally) quite smaller than the A 
one. 
In fact, since A is rank deficient, we cannot use general formula for inverting the sum of invertible 
matrices. This difficulty requires to consider the eigensystem of A. Let us denote {Vi,V2, V3} the 
eigenvectors of Co, as well as A = diag(Ai, A2, A3) the (diagonal) matrix of the eigenvalues. Then, it is 
easily shown that the vectors {Wj = V0 ® Vi, W2 = V0 <g> V2 , W3 = V0 ® V3} are eigenvectors of A, 
{Aj}|_i being the associated eigenvalues. 
We then have : 

A   =   UAU*    , W = {W1,W2,W3}=Vo®V, 

where: V = {Vx,V2,V3} . 

The following inversion formula, valid for B invertible, is then instrumental [21] : 

{B + U AU*)-1 = B-1 - B^uf^A-1 +W,ß-1w)"Vß'1 . (5.7) 
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So, we have now to deal with the calculation of the various terms of the right member of (5.7). 

Step l)-Calculation of B~lU : 

Since Mi and C\ are invertible, and invoking the classical results [23], i.e. : 

(A®B)-l = A-i®B-\ 
{A ®B){C®D) = AC ® BD, [0-ö> 

we obtain  : (v = {Vi, V2, V3}) 

B~lU = -{M^ ® O (Vo ® V) = -(Mf^o) ® (C^V) . 

Of course a similar result holds for the conjugate term (i.e. U*B~l = — (Vo-Mf1) <g> (VTf1) ). 

Step 2)-Calculation oiU*B~xU : 

Using the previous result, we obtain : 

WB~XU   =   -(V5®V) (M^VoSC^v) , 

=   -(VSMf1V0)®V*Cr1V 

=   aV*CfxV. (5.9) 

In (5.9), a is simply a scalar ( a = -VoM1
_1Vo) factor of the 3 x 3-matrix V*Cf *V. Value of a will be 

explicited later. 

Step 3)-Calculation of (A"1 +U*B~lU)~l : 

Prom previous calculations, we deduce  (A'-1 = VA-1V*) : 

A-i+WB^U   =   A"1 + a V*C^V , 

=   V* (A'"1 + a Cf1) V . (5.10) 

Now, the following implication holds true (V unitary matrix) : 

C0 = VAV* =>> A'"1 = V A_1V* = CQ
1
 . 

so that : 
(A"1 + U*B~lU) ~l = V* (c^1 + a Cf1) _1 V . (5.11) 

Considering the preceding formula as well as the basic inversion formula (5.7), a last step is required, 
namely the calculation of the term B~XUV* and of associated simplifications. 

Step 4)-Calculation of B~lU{A-1 +WB-lU)~lU*B-1 : 

Collecting previous results, we obtain : 

B-^A"1 +U*B-lu)~lWB-1 = [M^Vo ®C^V] V^+aCf1)^ \v*0M^ ®V*C^] . 
(5.12) 



A last simplification step is then : 

V [viMi1 ® V'Cf1]    =   (1 ® V) (v'oMr1 ® VCf1) , 

=   (VSMf1)®^'^-1), 

=   (V^Mf1)®^"1. (5.13) 

The following result summarizes all the preceding calculations : 

Proposition 2  Under the section hypotheses, the FIM inverse takes the following form : 

a"2 (FIM)"1 = -M^1®^1 - (Mi Wo BCf1) (CQ-
1
 + aCf1)"1 (v*^1 aCf1) . 

It simply remains to calculate explicit expressions of elementary terms (i.e.  a, Mf1 Vo ® Cf*).  For 
r = 1, the following results are obtained : 

a   =        ~       , (5.14) 

M^Vo^Cf1   =   -a I £lj  J . (5.15) 

Let us denote V, the matrix (CQ
1
 +aC^    ; and FIM_1[1] , FIM-1 [2] the 3 x 3 diagonal block-matrices 

of FIM-1 corresponding to variance bounds for source 1 parameters, resp. source 2, we have : 

Proposition 3 For r = 1, the following approximation of the variance bounds holds 7 : 

,-Wp] - z£^MCl-.__L_cr.w:rI, 

<-"2™"Ii2' = =w^rc'1-7ir^c'lvc"- (5'16) 

A further step of approximation may be considered for very close sequence of bearings. More precisely, 
if we assume that 4 «1 then we can reasonably assume that (element-wise) C^1 < C^1, so that 
{V^a-ld) : 

FIM-^l]    «    ^Cf1 

2 
FIM_1[2]   * *  1.2C1~1- (5.17) 

2 [g -1) 

The simplicity of (5.17) is rather striking, and the result appears quite natural. In particular, the 
sequence of "normalized distance" (i.e. {dk}k) plays the fundamental role. It also interesting to consider 
the diagonal terms of Cf1 which approximate the CRLB for kinematic parameters and are themselves 
(roughly) approximated by considering a linear model of dk (i.e. dk = kd). Denoting c the value of the 

difference of initial bearings (i.e. c = 0% - ß$ ), elementary calculations yield (d = a(^)) : 

c_lf     .    _    15 (105 + 280a + 276a2 + 120a3 + 20a4)  
1   * '  '   ~    (175 + 525a + 615a2 + 355a3 + 105a4 + 15a5 + a6) (c2T) * 

,_!,„ 0^   _ 60 (560 + 1260a + 1005a2 + 340a3 + 48a4) 
Cf1(2,2) 

(175 + 525a + 615a2 + 355a3 + 105a4 + 15a5 + a6) (c2^) 

,_!,„ 0^   _ 6300 (20 + 40a + 28a2 + 8a3 + a4) 
Ci (3,3) « (175 + 525a + 615a2 + 355a3 + 105a4 + 15a5 + a6) (^T5) '     ^5'18^ 

7Note that if q is changed in 1 - q, then FIM  1[1] is changed in FIM_1[2] 
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5.1.2    The case r^l: 

Then, the matrices Mo and Mi are both invertible. Thus, it is possible to apply the general inversion 
formula [21], valid for A and B invertible : 

(5.19) 
(A + B)-1 = A~l - A~l {A'1 + B-1)-1 A-1 . 

A~l = M0
-1 ® CQ

1
    , B~l = M±l ® Cf1 

As previously, it may be reasonably assumed that (element-wise) CQ
1
 <§; Cf*, so : 

{A-1 + B-1)"1 ~ B , 

therefore, using (5.8) : 

a2 FIM-1   «   MQ"
1
 ® CQ

1
 - {MQ

1
 ® ^^(Mi <g> CiX-Mo-1 <g> C0

_1) , (5.20) 

= MQ"
1
 ® CQ-

1
 - (MQ-^XMO"

1
) ® (c^CiC^1) . 

In general (see sect. 4), the matrices Mo and Mi are relatively complicated. However, since the diagonal 
elements of CQ

-1
 play a major role it is interesting to approximate them. We obtain : 

t ,3(102^ + 5ir«)      1 
C°   U'lj~ T(86T3 + 65T4) K T ' (5-21j 

c-if22^. 12(30 T+ 16 T2)       1 
0   ^'^~ (216T4 + 65r5)      T3 ' 

r-i/o ON 3645 T 1 
C0   ^^-(isiTS + ßöre)«^- 

Even if these results have their own interest, it must be noted that very different values of u\ and 02 
generally result in track coalescence [7]. The problem is then relevant of hypothesis testing. 

5.2    Performance analysis for MTMA (complete state vector) 

The previous analysis may be, rather easily, extended to the estimation of the complete source state 
vector. Again, the analysis becomes possible by considering MPC as the general framework. To avoid 
consideration of particular scenario we shall deal with a system constituted of two separated receivers 
[24]. The TMA problem then becomes completely observable. At first, kinematic relations will be consid- 
ered, then allowing us to utilize the framework of the previous section. 

The problem is defined as follows. Two (fixed) receivers are placed on the x-line, the first one at 
(0,0) and the second at (d, 0). For both receivers, measurements are bearings-only (ft and ft). Direct 
calculations yield : 

A det(v,rj)      1 
Pi   =    2 = ~ V°* C0SÄ - vv smßv » 

■     _   det(v,T2) _ r (vx cosft — vy sinft) — dvy 
Ä   ~ r|        " r2 + 2drsmß1+d? ' 

=   (ft - d vy/r2) (l + 2 d/r sin ft + d2/r2) _1 . (5.22) 

We then consider an expansion of ft, ft, ft, with respect to e = f, around 0, yielding : 

ßi   *.#-;!, r 
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(l-2^ sin A) , ß2   «   ßi   1-2- sin ßx 

Ä   «   Ä - - (2^ cos A + 3Ä sin A) . (5.23) 

For the two sources (j = 1,2), the following modelling of ß{{k) , j = 1,2 is considered : 

ßi(k) = ßi(o)+kßi+^ßi k=i,...,T, 

4(k) = m+kßi+^-ßi 
k2d 

d + 2kdß{smß{{0) + —  (2{ß{)   cos#(0) + 3#sin#(0)) (5.24) 

Source trajectory itself is determined by the 4-dimensional state vector X ,X = (ßi,ß\,ßi, \X and, for 

a source, the gradient vectors G\ and G| associated with the measurements of receiver 1, respectively 
receiver 2 stand as follows : 

Gl = 
/I   \ 

k 
hi 
2 

Vo J 
;Gi = 

' l-2fftcosA - & (3Ä cos ft -2ft shift) N 

fc(l-2^sinj91-^ÄcosjSi) 

^(l-3^ sin ft) 

^ - (d + 2kdß1 sin A + ^ (2ßl cos A + 3Ä sin A )) y 

(5.25) 

Since we are interested with close source trajectories, it is quite reasonable to assume that these gradients 
are independent of the source index. Now, let us denote FlMi and FIM2 the Fisher information matrices 
associated with receiver 1 and 2, and FIM the global one. The measurements on receiver 1 and 2 being 
independent, we have : 

FIM    =    FIMj + FIM2 , 

where : 

FIM!   =   Afo ® fe Gl G\A - Mx ® (^ 44 G£ GJ'*) , 

FIM2   =   Mo ® (j2 Gl G2A - M ® fe 4d| Gl G*kA , 

Gl   =   Gl+Vk, (5.26) 

so, that 

FIM = M0 9   E Gl Gl'* + E G* Gl'* )-Mi ® ( E 44 Gl Gf + E 44 Gf G**) .        (5.27) 

Co 

We shall restrict our attention to the case r = 1. Then, similarly to sect. 5.1.1 the matrix M0 is also 
rank-one, so the calculation of FIM-1 is identical in its principle, yielding : 

a~2 FIM"1 = -Mi1 ® Cf1 - (M^Vo 0 Cf1) (c0-a + aCf1)"1 (v^Mf1 ® Cf1) . (5.28) 

In this case, further simplifications occur. For instance, eqs. (5.14) still hold true, yielding finally : 
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FIM-^l]«^-1 (5.29) 

We axe now concerned with the estimation of both the kinematic parameters and the probability q. 
The FIM is then a Hermitian 7x7 matrix, of the following form : 

FIMC    |    ^EfcmioMG* \ 
FIM=| |    ££fcmoi(fc)Gfe 

("")*    I ß ) 
(5.30) 

We consider again the case r = 1. Then, using the partitioned matrix inversion and the Woodbury 
lemmas [21],[22], we obtain : 

FIM"1 . (5.31) FIM, c,q 

This result means that the CRLB is not significantly affected by the estimation of the parameter q. 
Calculations are detailed in the Appendix C. 

6    Numerical results 

First, we present the multiple source scenario, common for all the results of this section. Two (close) 
sources move with a constant velocity vector (rectilinear and uniform motion). Their trajectories are 
represented in the a;,j/-plane in fig. 2. The kinematic parameters (rs(0) = 15km,rj,(0) = lökm,^ = 
12m/s,Vy = 6m/s) of target 1 are fixed (solid line), while that of target 2 take 15 different values 
corresponding (rx(0) = 22km -> 20,6km,^(0) = 18km,ux = 11.5m/s,vy = 5m/s) to various initial 
positions (dashed lines). The receiver is fixed, at the origin. The (exact) observations (i.e. the bearings) 
associated with these scenarios are represented in fig. 2. The measurement noise is identical for the two 
sources and constant throughout the whole scenario (c(/3) = 1/8 rd). We note that the two targets have 
close bearings, so that the assumption dk < 1 be satisfied. 

bearings scenario 

Figure 2: The multiple source scenario. Right: source trajectories; left: bearings versus time. 

Accuracy of the approximations of the variance bounds is illustrated in fig. 3. The values of A/3(0) 
(ranging from 5.7 to 3.7 deg.) correspond to the various initial positions of target 2. The solid lines 
represent the exact values of the lower bound relative to the estimation of /^(O) (left) resp.  g?, (g = 
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c(P) "(8) 

4.5 5 5.5 6 
Ä«0)   (des) 

4.5 5 5.5 6 
AKO)   (deg) 

Figure 3: Accuracy of the CRLB approximations (a(ß) and a{g)). 

f/r), as given by Prop. 1. The continuous-dotted lines illustrate approximation given by Prop. 2 or 
3; while the dashed line represents the simpler (and the more explicit approximation) given by (5.17). 
The approximation given by Prop. 2 or 3 performs satisfactorily; while the simpler one (5.17) is still 
quite acceptable. We note that, relatively to the initial measurement variance, the variance of /32(0) is 
considerably reduced. 

»(») °(9) 

4.5 5 5.5 
A HO)   (dog.) 

Figure 4: Accuracy of the CRLB approximations ( o(ß) and a(g), two receivers) . 

We are now dealing with the estimation of the complete state vector. The source trajectories are 
unchanged; but, this time, two (fixed) receivers are considered (both on the x axis, separated by a 
distance of 2 km). In fig. 4, exact bounds (Prop. 1) are compared with approximations given by (5.28) 
resp. (5.29) (continuous-dotted for (5.28) and dashed for (5.29) ). Then, this analysis is extended to 
the lower bound (see fig. 5) relative to the estimation of the "missing" coordinate (i.e. 1/r). Again, the 
quality of the approximations is quite satisfactory. We note that, in comparison with the unique source 
case, the value of a(f) is very important. 
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 1  
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Figure 5: Accuracy of the CRLB approximations ( <r(r), two receivers) 

7    Conclusion 

Based on the use of modified polar coordinates and of convenient approximations of the mixture matrices, 
explicit approximations of the CRLB for MTMA have been developed. The pertinence of the approximated 
bounds has been illustrated by numerical comparisons. 
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A    Appendix A : 

This appendix deals with the calculation of G0,o(gi,92,k). We consider the serie expansion presented in (4.4), but 
this time we assume that the second order equation (4.3) has no real root. We then have (cn = 1/ ((1 - q)r) [(-q/(l - q)r)n]) 

Go,ofoi,fl2)    =    y/^^2 Hn{y)dy, 
n=0 J-°° 
°° /-OS 

„_n J — oo 
(A.l) 

Thus, the basic point is the calculation of the integral /^ h^+1(y) h^n{y) dy (where: tn(y) = exp [-(y - d;)2/ 2rt] 
,i' = l, 2), i.e. J^ exp [-(n + l)(y + d)2/2r + n(y - d)2 r/2]. Considering the following quadratic form factor- 
ization (a = nr - i=±Ü    , /? = nr + (n±D) : 

-(n + l)(y + d)2/2r + n(y-d)2r/2    =    J [a y2 - 2dßy + ad2] 

a[y-d-\   +d2 ' 

we obtain : 

£^™*--p[?(^)] £>[!(.-<*) dy, 

(A.2) 

(A.3) 

Under the hypothesis r < 1, we have a < 1. Thus, the above integral exists. Making necessary variable changes, 
we have (integration of a normal density) : 

/I^fK'-'Dl * = ^(n(l-rr») + l) 
1/2 

so that, finally (with  :   an = n{\ — r2) + 1) : 

Go,o(9u92,k) = -—r ^(-lra-1 

(1-9) 
/2 exp 

n=0 

2d2jLn(n + 1)_nlog/(iz^: 

yielding (4.5). 

(A.4) 

(A.5) 

B    Appendix B 

The polynomials Pitj and Qtj (see (4.6) ) are detailed below 

Po,2 = 3(1 - r) + 3q(l - r) + qr(r - 1) + r2 + I0q2(r - l)2 , 
Pi,i = -7q + r + 16qr - 9qr2 + 10q2(r - l)2 , 
P2,2 = 7 - 15r + 9r2 + q(-17 + 36r - 19r2) + 10q2(r - if . 

and : 

Qo,2 = 468g4(r - l)2 - 12g3(37 - 77r + 40r2) + g2(70 - 156r + 89r2) - q , 
Qi,i = 468g4(r - l)2 - 18g3(49 - lOOr + 51r2) + 3g2(158 - 332r + 175r2) - 39(20 - 44r + 25r2) , 
<32)o = (q - 1) [468g3(r - l)2 - 129

2(71 - 145r + 74r2) + 9(436 - 916T- + 483r2) - 51 + 112r - 63r2] 

(B.l) 

(B.2) 
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C    Appendix C 

Let us denote H the bordering vector : 

H* = ( — Emio(fc)G*'-Emoi(fc)G*j = (m®G)*> 
VCTi * °2 k J 
where : 

G   =   £2d*Gfc    ,(r = l)   m=(±Q—£)\ (C.l) 

and FIM~*, the 6x6 block of FIM-1 relative to kinematic parameters. We consider again the case r = 1. Using 
the partitioned matrix inversion and the Woodbury lemmas [21], we obtain : 

FIM-J    =    (FlMc-^HH')-1, 
ß-i 

=    FIM71 + —£- j— FIM71HH*FIM71 . (C.2) 

We have now to deal with the calculation of the corrective terms H*FIM7XH and FIM~1HH*FIMJ1. 

•  Calculation of H'FIMJ1!! and FIM7
1
HH*FIM~

1
 : 

Using Prop. 2, we obtain ( m = (^m10, ^m0i)*  V = (CQ
1
 + aC~1)~    ) : 

FIM^H = - (Mi1 ® C-1) (m ® G) - (Mf1 V0 ® C"1) 7> (V^Mf1 ® C"1) (m ® G) , 

so, that : 
H'FIM^H = -(mTM^m) (G*C_1G) - (VJM^m)2 (C^G^fC^G) . (C.3) 

In the case r — 1, we have m = V0, yielding (a = -V5M1
-1V0) : 

ITFIMT
1
!!   =   a G* (C~l - a CT^C"1) G , 

«   0. (C.4) 

FIM^HKTFIM"
1
 « 0 

FIM^ « FIM71 . (C.5) 

Similarly, we have : 

so that, finally : 
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Abstract 

A general, frequency modulated (GFM) signal characterizes the 
vibrations produced by compressors, turbines, propellers, gears and 
other rotating machines in a dynamic environment. A GFM signal is 
defined as the composition of a real or complex, periodic or almost 
periodic function (the carrier) with a real, differentiate function (the 
modulation). This paper develops a frequency domain tracking algo- 
rithm for a GFM signal in noise using the expectation-maximization 
(EM) algorithm. The primary advantage of this approach is that the 
ratios (harmonic numbers) of the carrier function do not need to be 
known a priori. The tracking algorithm exploits knowledge of the noise 
spectrum so that a separate normalization procedure is not required. 
The noise spectrum is incorporated into the tracking algorithm in es- 
sentially the same way that a clutter or noise model is incorporated 
into the probabilistic multi-hypothesis tracking algorithm (PMHT). 
Consequently, the GFM signal tracking algorithm presented in this 
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paper is a PMHT-style algorithm. A simulated example is presented 
to illustrate the algorithm's performance. 

1    Introduction 

A GFM signal is a frequency modulated (FM) periodic or almost periodic 
signal. If the carrier signal is only a single sinusoid, then the GFM signal 
is also a FM signal. Periodic or harmonic signals and almost period signals 
are important in many areas. In the remainder of this paper, the term pe- 
riodic or harmonic signal is for both periodic and almost periodic signals. 
Measurement and analysis of periodic vibrations is a critical part of machine 
monitoring. This is particularly true of large, high speed compressors and 
turbines where bearing or coupling failure can result in catastrophic dam- 
age to equipment[8]. These signals are very useful for monitoring marine 
mammals and shipping traffic. Minimizing and suppressing harmonic signals 
(harmonic noise) is an important part of alternating current electrical power 
transmission and distribution. Harmonic signals also play a critical role in 
music reproduction and synthesis and in speech recognition and synthesis. 

To analyze harmonic signals, it is necessary to measure the amplitude, 
phase and frequency of the signal's (approximate) Fourier series components. 
If the signal is truly periodic, then it is only necessary to estimate its funda- 
mental frequency (one over the period), since all other component frequen- 
cies are integer multiples (harmonic numbers) of the fundamental frequency. 
Unfortunately, sensor bandwidth may make it impossible to observe the fun- 
damental frequency of a harmonic signal. This is usually not an issue when 
using accelerometers to monitor machines because accelerometers can mea- 
sure vibrations down to zero frequency [8]. However, sensor bandwidth is a 
necessary reality in some applications. When the fundamental frequency of 
a periodic signal can not be observed, it is necessary to measure the frequen- 
cies of the observed Fourier components because one can no longer find a 
unique set of integer multiples and an unobserved fundamental frequency to 
fit the data. The discussion in this paper assumes that that the relationships 
between the frequencies (harmonic numbers) comprising the signal are not 
known. 

In many applications, the periodic signal of interest is also time varying. 
Hence, the parameters of signal of interest must be tracked through time 
as well.   In this paper only the frequencies of the Fourier components are 



assumed to vary with time, and the frequencies are assumed to vary in a FM 
manner. For machine analysis problems, a phase referencing sensor can be 
used to monitor the actual speed of rotation. While such information could 
be exploited by the methods developed in this paper, it is assumed that this 
kind of reference signal is not available. The approach taken is to estimate the 
center or average frequency of each Fourier series component and estimate the 
modulation separately. It will be shown in a later section that the modulation 
is common to all of the Fourier series components; hence information from 
each Fourier series component is used to estimate the modulation. 

2    Previous Work 

The problem of estimating the parameters of a periodic signal is not new 
to the literature. The methods developed by other authors fall into three 
categories: time domain methods, frequency domain methods and high order 
spectral techniques. Time domain methods are the most popular. The time 
domain methods break down into two groups. References [7], [18] and [4] 
assume that the signal is not time varying, while references [9] and [11] 
assume that the signal is time varying. The frequency domain approaches 
described in references [10] and [5] assume that the frequencies comprising 
the signal are time varying. The high order spectral techniques discussed in 
references [14], [1] and [20] are really designed to detect phase or frequency 
dependence between pairs of frequencies, but these methods can be used to 
estimate parameters as well. The high order spectral techniques assume the 
fequencies are not time varying. 

With the exception of the high order spectral techniques, a major draw 
back to all the algorithms discussed in the previous paragraph is the al- 
gorithms need to know the relationships between the frequencies (i.e. the 
harmonic numbers). The high order spectral techniques are extremely sensi- 
tive to time variation which severly limits there utility. The objective of this 
paper is to develop an estimator that does not need to know the relation- 
ships between the frequency components of a periodic signal and that can 
track time variations in the frequencies. In the next section, a model of time 
varying periodic signals is presented that is a natural extension of FM. This 
model allows one estimate the parameters of a time varying periodic signal 
with out needing to know the relationship between the frequencies. 



3    General, FM Processes 

A natural way to generalize FM is to allow the carrier signal to be any peri- 
odic or almost periodic function. A further generalization of FM comes from 
thinking of the GFM signal as the composition of the carrier function and the 
modulation function. Hence, if s(t) is the GFM signal produced by modulat- 
ing the periodic function h(t) with the message m(t), then s{t) = h(m(t)). As 
a practical matter, the modulating signal can not be arbitrary. Since this is 
a generalization of FM, the modulating signal must be differentiable. In ad- 
dition, the derivative of the modulation function with respect to time should 
be bounded above and bounded away from zero to insure the modulation 
function has finite bandwidth. 

An example of a GFM is a harmonic series produced by some mechanical 
system: 

L 

h(t)=Y, A, exp \i2irf,m(t) + 6t] (1) 

where {//} are the frequencies of the harmonic signal, {6,} represents the 
initial phases and m(t) is a modulation induced by loading changes on the 
mechanical system. If no integer relationship exists between the fequencies, 
then h(t) is an almost periodic function. This expression suggests that it 
may be possible to estimate {//} and m(t) jointly. If this can be done, then 
it would not be necessary to know the relationship between the frequencies 
a priori. The frequency domain is a logical place to attempt this joint esti- 
mation problem provided tractable expressions can be obtained. 

In many cases of practical interest, the modulation signal varies at a much 
slower rate than one over the (approximate) period of the carrier function. 
Hence, the modulation function will be approximately linear during one or 
more periods of the carrier. When this is true, approximating the modula- 
tion function with a continuous, piecewise linear function greatly simplifies 
analysis of a general, FM signal. In order to develop a piecewise linear ap- 
proximation to the modulation function m(t), let J = [0,T] be an interval on 
the real line contained in the domain of m and divide J into T consecutive 
intervals Jn = [tn,tn+i] for n = 0,..., T - 1. A continuous, piecewise linear 
approximation to m(t) on J is given by 

rhr(t) = £) [a(tn)t + ß(tn)] r (*~\ ) (2) 
n=0 Vn+1 —tn/ 



where the slope and intercept over Jn are given by 

«(«.) - m(tr''~rfa). (3) 
and 

ß(tn) = m(tn) - a(tn)tn (4) 

respectively. The function r(t) is the "rectangular window" and is defined as 

r(t)_l 1,   0<t<l 
W ~ \ 0,   otherwise. ^ 

The modulation signal can be approximated by fhy(t) to any degree of accu- 
racy by making T sufficiently large. This approximation to the modulation 
function will be used to find an approximate expression for the discrete-time 
Fourier transform (DTFT) of a general, FM signal. 

To develop an expression for the discrete-time Fourier transform (DTFT) 
of a GFM signal, assume that the modulation function is approximately 
linear over the intervals {[nKTs, (n + 1)KTS]} (i.e. the distance between the 
end points of each interval Jn is tn+x — tn = KTS) where the integer A' > 1. 
The sampling period T$ is choosen so that s(t) can be perfectly reconstructed 
from the sequence of samples {s(tn +jT,)}. The DTFT of s over Jn is defined 
as 

K-l   L 

Sn(f) = £ £Ale
i+'*ex.p\i2nf,a(tn)(tn+jT,)]exp[-i2njf].      (6) 

j=0 1=1 

Using the identity for the finite sum over a geometric series and simplifying 
the expression yields 

smlKnifiTMtn) - f)] ,^,.m 
fr{      sin [ir(fiT,a(tn 

(7) 
/)] 

where 

Mf) = *J + 2nf,m{tn) + TT(A' - l){fiT,a(tn) ~ /)• (8) 

The amplitude of S„(/) as a function of frequency depends on a set of con- 
stants {//} and the slope of the modulation function at time tn. If the fre- 
quencies fi,... ,fL are well separated (i.e. more than 2/KTs Hertz apart), 
then 

.c mi2 ~ v A2s™2{i<*(fMtn)-k/K)} 



provided the cross terms are negligible. Therefore, the magnitude squared 
of Sn(f) consists of L trajectories where each trajectory is centered on a fre- 
quency //, and the path of the all of the trajectories is given by the sequence 
of slopes of the modulation function. This is a multitarget tracking prob- 
lem where all the tracks have a common prior or model. An expectation- 
maximization (EM) estimation algorithm [2] inspired by the probabilistic 
multi-hypothesis tracking algorithm described in [16] will be developed in 
the remainder of this paper. Defining a statistical model for this estimation 
problem is the first step in this development. 

4    The Statistical Model 

Suppose a GFM signal s(t) is contaminated with an independent, complex 
finite bandwidth, additive, zero mean noise r)(t) to form the observed signal 
r(t). r(t) is then sampled at a sufficiently high rate l/Ts to be perfectly recon- 
structed. The observed sequence {r(tn+jTs)} is transformed to the frequency 
domain by one or more K length discrete Fourier transforms (DFTs). The 
sequence of T DFTs partitions the sequence of samples into intervals {Jn}. 
The modulation m(t) of the GFM from interval Jn to interval Jn+i is mod- 
elled as the output of a discrete time linear system driven by a deterministic 
control signal and a white Gaussian process noise vector. 

The linear system producing m(tn) is defined as 

a{tn+i) = Aa(tn) + b(tn) + q(tn) (10) 

and 
m{tn) = Ca{tn) (11) 

where a(tn) is the real, M dimensional state variable, A is the state feedback 
matrix, b(tn) is the deterministic control vector, and q(tn) is the process 
noise. q(tn) is assumed to be a zero mean Gaussian vector with covariance Q 
such that q(tn) is statistically independent of q(tm ) forn ^ ?n. For notational 
purposes, let A represent the sequence of state variables for the modulation 
process: A = {a(tn)}n=o- *n the previous section it was shown that the slope 
of m(t) appears in the expression for the DFT of a GFM when its modulation 
is approximately linear during the DFT interval. Let a(tn) denote the slope 
of the modulation m(t) over the DFT interval Jn; then, 

a(t„) = m(t"+^m(0=^r(afa+,)-afa)). (12) 



Since the linear state space model for the modulation is a Gauss-Markov 
process, the PDF of a(tn+i) is 

p(a(tn+1)\a(tn)) = (27r)M/2|Q|i/2 exP 

because 
q(tn) = a(tn+1) - Aa{tn) 

The prior PDF of ao is given by 

-\<t(tn)Q~lq{tn) 

b(tn). 

p(a{t0)) = 
1 

(27T)^2|Q0|l/2 

Hence, the PDF of A is equal to 

exp ^(«(««O-äJ'Qö'MioJ-ä) 

T-l 

P(A)=P(a(t0))Hp(a(tn+1)\a(tn)). 

(13) 

(14) 

(15) 

(16) 
n=0 

To develop an approximation to the spectrum corresponding to the time 
interval Jn, some notation for the DFT bins needs to be developed. Let 
/ = [0,2TT], and let {Ik} partition / into K subintervals (these are the DFT 
bins) where Ik = [4,4+1] and 4 = 2ir(k - 1/2)/K for k = 0,..., K - 1. 
The sequence of DFT bin endpoints are represented by V = {dk}, and the 
centers of the DFT bins are represented the sequence V = {4}. 

Let 
S™ = I   Srn(u) du: (17) 

denote the total power in the power spectrum, <Srn(a;), of {r(tn+jTs)} during 
J„, and let Srn(u) = Srn(uj)/Srn represent the normalized power spectrum. 
Then, 

Srn(oj) = Srn^   = S*n(U) + SVn{u) 
$sn + <5i 

(18) 
r;n 

which is equivalent to Srn(u) = nsSsn{uj) + ^^(w) where 7rs = Ssn/Srn 

and Wr, = Sqn/Sm (assuming the noise and signal power are the same for all 
J„). -KS and -Kr, are between zero and one and sum to one. Furthermore, the 
signal to noise ratio (SNR) is equal to TTs/nv. 

Since a normalized power spectrum is positive or zero on / and the total 
power of a normalized power spectrum equals 1, a normalized power spectrum 
is a PDF on /. Hence, Sm(u) is a mixture PDF and may be approximated 



by another mixture PDF on / [17]. The normalized power spectrum of the 
observe sequence over Jn may be approximated as Srn(u) « irsp(u>\a(tn); X) + 
TtrjSr, where 

L 
p(u\a{tn); X) = '£/Trlpl{u\a{tn);\i) « Ssn{u) (19) 

/=i 

is a mixture PDF approximating the unknown normalized GFM signal power 
spectrum. Observe that number of PDFs in the mixture PDF p(u\a(tn); A) 
need not equal the number of frequency lines in Ss(u>). The number of PDFs 
in p(u\a(tn);\) only equals the number of frequency lines when the fre- 
quencies are widely separated, and when this is true, 7T/ « Af/Ss. The un- 
known parameters in this equation are the parameters contained in the set 
A = {717, A/}. If the SNR is known then the total number of mixing propor- 
tions (component probabilities) is reduce by one. If the SNR is not known, 
then the signal to noise ratio can be estimated along with the normalized 
power spectrum of the signal. It is also possible to estimate the normal- 
ize noise power spectrum as well, but this is not pursued here. With these 
concepts in mind, a measurement sequence and a measurement PDF can be 
developed. 

Let 71 = {7Zn}nZo represent the sequence of magnitude squared DFTs 
of length K obtained r(t). Given the modulation sequence, the magnitude 
squared DFT 7Zn = {i?/tn} at time tn is conditionally independent of lZni 
for all n 7^ n'. Conceptually, each Rkn is equivalent to the sum of a set of 
independent random samples drawn from the part of Srn{ui) contained in 
interval /*.. If Rkn is quantized to Nkn (mapped to the positive integers), 
then this is approximately the same as observing a total of Nkn samples in 
Ik from Srn(uj). Related but different interpretations of the DFT of a signal 
appear in references [15] and [12]. 

To formalize the quantization of Rkn into iVfcn, let Nkn — [NmaxRkn/Rmax\ 
where Nmax is some large integer and Rmax = max,, maxt Rkn- For notational 
convienence, define Nn = Y.k^kn and ./V = ^2nNn. The quantization of 71 
into M is performed over the entire block of DFT data to retain relative 
scaling information, and iVmai is choosen so that Nkn/Nn « Rkn/Rn. Given 
the sequence A, the sequences Mn and Nn> are conditionally independent for 
n # n'. The PDF of Nn given A is the multinomial PDF 

P(MMU)); A) = ( N  _ \     1 n /WA)»- (20) 
B 

n 
fc=i 

8 



where 
PknW =   /   SrnW du. (21) 

and Y,k Pkn = 1. The PDF of Af conditioned on A, is then 

P(M\A;X) = f[P(Afn\a(tn);X). (22) 
n=l 

The joint PDF of TV and A is P{Af, A; A) = P{M\A; X)P(A). This joint PDF 
represents the PDF of the observed, quantized DFT data. 

Since, 

'fcn(A) « £>, f p/(w|o(t„); A,) du + TTr, [ S„(u) du, (23) 

the parameter set A = {n^, {717, A/}} . In order to define the parameters A/, it 
is necessary to choose component PDFs for the mixture PDF p(u\a(tn); A). 
Let 

pi{u\a(tn)', Xi) = —j= exp[-^2 (a; - a{tn)m)2]. (24) 

Then the parameter set A/ = {///, of}, for / = 1,..., L. 

5    The EM Method 

To develop an EM algorithm, the complete and missing information must 
be identified and characterized. The complete data for the EM algorithm 
consists of continuous frequency samples and the indices of the mixture com- 
ponent PDF in p(u\a(tn); X) (in this discussion, it is convenient to think of 
Sn(u) as component PDF L + l). Let ft denote the set of continuous fre- 
quency samples. Ü consists of T sets of elements corresponding to each DFT: 
H = {ftn}- Given A, f2„ is conditionally independent of ün> for all n 7^ n'. 
The set of frequency measurements at each time tn consists of the sets of 
samples in each of the K frequency bins: Qn — {{ujkn}} where Ujkn repre- 
sents sample j from DFT bin k at time tn. For each tn, ujkn is independent 
oiujikfn for j / j' and k ^ £', and the PDF of ujkn is p{u\a(tn); A). For each 
sample ujkn G ft, the corresponding index ijkn of the component PDF in 
p(u\a(tn); A) is unknown. Let I denote this set of component indices, then 



Z = {£n} where J„ = ijkn. Since each ijkn is additional information about 
each uijkn, X has the same statistical properties as Q. 

The complete data Z is equal to the union of tt and J. Therefore, Z has 
the same statistical properties as Ü and 2. The PDF of Z conditioned on A 
is given by 

P(Z\A-\) = 
T-l 

n 
71 = 0 

N, 'oi- 

Nn 

■N K-ln 

A'-l W*n 

fc=0 j=0 

(25) 

where TTL+1 = 7^, and pL+1(o;iJfcB|a(«B); AL+i) = Sr,{ujkn). li Sn(u) is known, 
then AL+1 is empty. The joint PDF of Z and A is given by P(Z,A;X) = 
P(Z\A;\)P{A). To find the search function Q (usually called the auxiliary 
function in the literature) of the EM algorithm, the PDF of the missing 
information conditioned on the observed data must be derived. 

The missing information in this problem is contained in the two sets Q 
and J. Q is partially observed because M is known. The PDF of the missing 
data conditioned on the observed data is 

p(fW;*> - ^^ 

n=0 fc=0 j=0 n„(A) 

(26) 

(27) 
=«itn 

The search function can now be obtained from the PDFs P(Z,A;\) and 
P{n\Jl\M;\). 

The search function of the EM algorithm is defined as 

Q(A; A') = E{log[P(Z,A;\)]P(Sl\JI\Af;\')} (28) 

where the expectation is taken over the missing information Q and X. Eval- 
uating the expectation and simplifying the result yields 

Q(A;A') = Qo + Q(a(to))+Er 

71=0 

L+l 
Qn(A) + £ (Q/n(7r,) + Qln(\t)) (29) 

where 

Q0   =   -I(T + l)Mlog[27r] + Slogf ^    ^        ],   (30) 
Non ■ ■ • iVA'-ln 
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Q(a(*o)) = -^oglQol-^a^-äYQö'ia^-ä), (31) 

Qn(A) = -l\0g\Q\-\<f(tn)Q-lq(tn), (32) 

9(*n) = a(tn+1)-Aa{tn)-b(tn), (33) 

Q»«(*i) = Elog(^)#7FT/p/M«'(*n);A;)da; (34) 

and 

A'-l 

&«(A<) = £ -^- / log[p,Ma(<B);A/)]p/(u;|a'(fB); A{) da;. (35) 

The complete details of this derivation of the search function appear in [6]. 
The maximization step (M-step) of the EM algorithm maximizes the 

search function with respect to the parameters A and the modulation state 
vector sequence A. The derivation of the M-step is not given in this paper due 
to space limitations. The derivation is available in [6]. Instead, the resulting 
iterative estimation algorithm is summarized in the next section. 

6    Estimation Algorithm Summary 

Let Aw denote the parameter estimates after i iterations have been com- 
pleted. The parameter estimates for iteration i + 1 are obtained from A(i). 
The mixing proportions (or component probabilities) are updated first be- 
cause they are independent of the other parameters. The mixing proportions 
are updated by 

*f+" = IE E PJ£L I, »Mtfft.); A,'0) du,. (36) 

Updating the remaining parameters is more complicated, because the update 
equations for {A/} and A are coupled. 

Since {A/} and A can not be solved for independently, there are two 
ways to proceed. One could simply implement a generalized EM algorithm 
[2] [19] by updating {AJ°} using A®, and then update A(i) using {AJ,+1)}, 
or one could maximize the search function using a numerical optimization 
procedure. The generalized EM method is presented first. 

11 



Specifically, new estimates of the component means are computed using 

ßl Ejro1(a(0(tO)2E&^^//1pMaW(tB);AJ,'))dw" 

Then, the component variances are reestimated using 

af+l) = 
EH £&' A J/t(^ - Q(0(<.)rf'+1))2P/HQ(i)(<n); Af') du 

The estimate of the modulation state vector sequence is obtained by solving 
a block tridiagonal system of linear equations akin to the Kaiman smooth- 
ing filter. This system of equations is converted to a block upper triangular 
system of equations using Gaussian elimination (forward recursion). The es- 
timates for the state vectors in A are then calculated using back substitution 
(backward recursion). 

The foward recursion begins by using the new estimates of {fi\,} and 
{&{  } to compute the "measurment normalization coefficients" 

I"+1,((") = £ (Ä)2I'^Ä^'Ha",('",;A!")^ (39) 

and the "measurements" 

*(m)(fj=£ rfk 1 Sä /. M*] Wi A!''»^<4o) 

for n = 0,..., T — 1. From these variables, the off diagonal matrices X['+1\ 
the diagonal matrices S£+1), the control matrices C/£'+1) and the "measure- 
ment" matrices Yj,+1) are calculated for all valid n. The matrices Xn are 
obtained using the formula 

X£'+1) = Q~XA + x(i+1)(*„)C"C (41) 

for n = 0,..., T — 1. The matrices S£+1) are calculated from 

Qöl + ÄQ-lA + xV+VitJC'C        n = 0, 
Sii+1) = \  Q^ + ^Q-'A + xxC^-xSx^   0<n<T, (42) 

Q-1 + xl'+Vitn-JC'C - xSx(*l]      n = T. 

12 



where xxC^ = (x(i+1)(*„_i) + x(,'+1)(t„))C'C and 

xSx^ = Xj«"+1)(5i,'+1))-1(Xi«'+1))t. 

The matrices Uil+l) are calculated from 

(43) 

Uii+1) = 
Qö'ä-A'Q-'bitn) 

Q-lb(tn-X) - A%Q~lb{tn) + xSu^?   0 < n < T, 
n = 0, 

Q-^tn-O+xSiCf 
(f+i) 

(44) 
n = T 

where xSu£+1> = X^OS^)"1^'^. The matrices Yji+V are calculated 
using 

K(,'+1) = I 
CVi+1)W n = 0, 

C"(y<i+1,(*n) - t/^1^-!)) - xSyii11   0 < n < T,        (45) 
-Cty(^hn_1)-xSyi:tl)n = T 

where rrSy£+1> = Xt*1)^1))-1^'^). This completes the forward recur- 
sion. 

The backward recursion begins by solving for 

a«+1\tr) = -(S?+1,)-1(y?+1) - tf?+1)) (46) 

The backward recursion 

0
(l+1)(*n) = 

_(5j?+1))-1(yn
(i+1) - Uii+V) + (S^y'iX^Ya^it^).   (47) 

yields the estimates for the remaining elements in «4(,+1). This completes an 
M-step of the generalized EM algorithm. 

Because each M-step of the generalized EM scheme increases the search 
function, P(M,A;X^i+1)) > P(Af,A;\®). The generalized EM iteration is 
repeated until 

\og[P(Af,A; A('+1>)] - \og[P(Af,A; \®)] 
l + log[P{Af,A;\W)] 

< € (48) 

for some desired e > 0. However, since Q(A'+1;A') is not maximized during 
each iteration, the maximum increase possible in P(Af,A;X^i+l)) for each 
iteration is not achieved. This leads to the second approach. 

13 



To attain the maximum increase in P(Af,A; A(i+1)), one could attempt 
to maximize Q(A('+1); A(,)) during each iteration of the EM algorithm. A 
straightforward method to maximize Q(A(,+1); A(,)) is to iterate over the up- 
date equations for {ni},{oi} and A until 

l + Q(AÜ+i.O;Aü.O) <C (49) 

where the superscript (j, i) represents the double iteration (j represents the 
inner iteration to maximize Q and i represents the EM iteration), e7 > 0 is 
some desired tolerance. 

This second method was implemented and used to generate the examples, 
and it seems to be efficient in practice. One drawback to this double itera- 
tion scheme appears as the algorithm nears convergence. The reestimation 
formulas for {A;} and A must be executed twice, and Q must be calculated 
twice to establish that Q has been maximized. Standard numerical optimiza- 
tion methods like the ones described in [13] or [3] are another possible way 
to maximize Q with respect to {A/} and A at each EM stage. Use of these 
numerical methods was not pursued in this paper. 

7    An Example 

To illustrate the performance of the algorithm, 8193 samples of the GFM 
signal s(t) = ,4£f=1exp[;27r\///0m(i)] were added to 8193 sampes of a zero 
mean, unit variance, complex white Gaussian noise sequence. Observe that 
this GFM signal's carrier function is almost periodic. The modulation func- 
tion was choosen as 

m(*)=*+2^7"//(*)<** (5°) 
where f0 = 0.1, /(*) was the output of a second order autoregressive (AR) fil- 
ter with poles at 0.99e±2,r/1000 driven by zero mean real white Gaussian noise 
with variance 2.5 x 10-9, and the modulation index A was equal to 2. 10240 
samples were collected from the AR filter, and the first 2047 samples were 
dropped to eliminate the transient response. The remaining 8193 samples 
were used to generate 8193 samples from s(t). Figure 1 shows the signal spec- 
trogram obtained using 64 nonoverlapping 128 point DFTs. The SNR was 
set to approximately — IdB where the SNR was defined as 101og[5.42] (i.e. 
A = 1/5). The resulting signal plus noise sequence was broken up into 64 
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Figure 1: GFM signal spectrogram 
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consecutive nonoverlapping 128 point DFTs. Figure 2 shows the spectrogram 
of signal plus noise at — 7dB SNR. the variances of the 

The EM estimation algorithm was initialized as follows. The mixing 
proportions of the mixture PDF p(u\a(tn); A,) were set to 1/6, and the means 
and variances of the five Gaussian component PDFs were set to f0y/l and 
(12 x 1282)-1 respectively. The state feedback matrix for the prior PDF of 
the modulation function was chosen as 

A = 
1   128 
0     1 m) 

and the control input sequence was set to {[128,0]'}. The covariance matrix 
of the process noise was 

- ~2 Q = °\ 
1283/3 1282/2 
1282/2  128 

(52) 

where a2
q = 5.7220-6. The prior mean a was set equal to the zero vector, 

and the prior covariance matrix Q0 was set equal to Q. The initial estimate 
of the state vector was choosen as a(tn) = [m(in),0]'. Lastly, the stopping 
tolerances e and e7 were equal to 10-4. 

Figure 3 shows the spectrogram of estimated signal. Figure 3 is re- 
ally a plot of the mixture PDF p(2irf\a{tn); A) where / = fc/4096 for k = 
0,...,4095 which includes the normalized noise power spectrum. The to- 
tal and average mean square error between the modulation function and 
the estimate modulation function was 43.0952 and 0.6630 respectively. The 
total and average mean square error between the slope of the modulation 
function (over 128 point intervals) and the estimated slope was 0.1855 and 
2.8995 x 10~3 respectively. The estimates of the frequencies of the GFM 
were 0.0996, 0.1408, 0.1733, 0.1989 and 0.2221. The amplitude estimates for 
each frequency of the GFM were 0.1806, 0.1953, 0.1847, 0.1766, 0.1891. The 
estimate of the signal to noise ratio was -7.6491 dB. 

8    Summary 

This paper described a new algorithm based on the EM method for estimating 
the parameters of a GFM signal in noise. The example demonstates that the 
algorithm seems to work quite well at low SNRs; however, multiple trials of 
the example need to be run to evaluate the algorithms performance. 
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Figure 2: — 7dB GFM signal plus noise spectrogram 
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Figure 3: Estimated GFM signal spectrogram 
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Abstract 

This paper addresses Automatic Detection and Track- 
ing (ADT) of frequency lines in lofargrams. In case 
of low SNR's and highly variable line frequencies and 
amplitudes conventional sequential detection techniques 
(e.g. Nearest Neighbour or Probabilistic Data Asso- 
ciation), with severely limited branching factors, are 
known to suffer from various difficulties. On the con- 
trary algorithms based upon Hidden Markov Models 
(HMM) appear as a promising way to handle this 
problem since they allow, (1) to take into account as 
long as possible observed data blocks (batch process- 
ing), (2) to delay the decisions (knowledge of future), 
(3) to select adaptively between several frequency 
line variation models implemented in parallel. 

This paper describes the implementation of such an 
HMM-based line ADT and provides some experimen- 
tal results obtained on realistic complex simulated 
data. These results clearly outperform a classical re- 
cursive NNA ADT that had been previously imple- 
mented as reference. 

I.    Introduction 

Among the various underwater sounds the narrow-band 
tones are of special interest because they are generally 
produced by man-made rotational machinery. On spec- 
trograms (the so-called lofargrams) these tones result in 
spectral lines that can be isolated or included in a fam- 
ily of related lines. This paper addresses the problem of 
Automatic line Detection and Tracking (ADT) in spec- 
trograms, each line being processed separately without 
taking into account that some lines may belong to a fam- 
iiy- 
This problem is difficult because generally the available 
SNR, is rather low, the frequency and amplitude are ran- 
domly time-varying and the underwater propagation of- 
ten induces some severe fading effects. Moreover the 
tracking process may also be disturbed by line crossings. 
Spectrogram line ADT is part of the general Multiple- 
Target-Tracking problem (MTT) encountered in all sur- 
veillance systems such as radar, infrared and sonar. MTT 
has been studied for several decades [1]. Since the begin- 
ning the basic components of MTT are track initiation 
(and deletion), track prediction and association of new 
detected events selected by gating techniques.   At the 

beginning, due to limited available computational capa- 
bilities, the solutions adopted for this problem were gen- 
erally mono-hypothesis and recursive without knowledge 
of the future. In these classical solutions each track was 
updated on each scan by associating only, either the most 
likely event selected by Nearest Neighbour Association 
for example (NNA [1]), or a combination of events by 
the Probalistic Data Association method (PDA [2]). All 
the other possible hypotheses were not explored. Ob- 
viously better results can be achieved when using the 
multiple hypothesis tracking method (MHT), that is to 
say by assuming that at any given scan, several possible 
events are associated to each track. In this way later 
events (the future) are taken into account in order to 
choose the various possible associations at the present 
time. Nevertheless the classical MHT algorithm [3] is 
complex and its actual results are hampered by the dif- 
ficulty of keeping the number of hypotheses reasonable. 
In spectrogram line ADT progress has recently been ac- 
complished by using the Hidden Markov Model ([4] to 
[7]). In the HMM-based line ADT the embedded line 
and measurement models have proved to be very effec- 
tive and the Viterbi algorithm allows for taking into ac- 
count the knowledge of the future more easily than the 
MHT method. A number of HMM line ADTs have al- 
ready been described. For example, in [5] the influence of 
observation model dimension is studied: frequency, am- 
plitude and phase. In [8] the computational burden as- 
sociated with a full Viterbi approach is reduced by using 
the two thresholds of the sequential detection algorithm 
(Wald). 
In fact the effectiveness of a line ADT depends, among 
other things, on three factors: firstly, the accuracy of 
the involved models (e.g. the state transition and obser- 
vation probability distributions); secondly, the duration 
of the observation data block available to the algorithm; 
thirdly, the extent of the decision delay. Moreover line 
detection and line tracking remain basically two different 
functions which resort to different algorithms. 
In this context our main study objectives encompass (1) 
clear understanding of the relations between the vari- 
ous choices of parameter values included in the Markov 
models and the three factors above, (2) development of 
HMM-based ADT algorithms taking into account the re- 
sult of the first objective both for line initiation and line 
tracking, (3) rough comparison of the obtained results 
with those obtained by conventional techniques (NNA). 



The paper is organized as follows. Section II presents 
the HMM theory applied to the line ADT problem. Sec- 
tion III describes the detection algorithm and Section IV 
the tracking algorithm. Conclusions about the obtained 
HMM-based line ADT are finally presented in Section V. 

II.    Application of HMM to line 
extraction 

P(Ot/Xt = x) = C A(Ot, Xt = x) with 

c=e-»&±n 7^zrOk k *22(ai 

A = (1 - Pi) + 

k\K\H\' yP(Xl>ri)J   i=i 

H\ P(XJ > n) ^ Xj(X)(ai) ^Uiz^. 

This result will be used for line detection and tracking 
in Sections III and IV. 

A.    Lofar Lines 

A lofargram is an energy time-frequency representation 
provided by successive Short Time Fourier Transform 
(STFT). On lofargrams the narrow band tones result in 
spectral lines embedded in background noise. Generally 
the frequency and amplitude of each line are more or less 
randomly time-dependent. 
The frequency resolution of the STFT is supposed to be 
adapted to the maximum line variation rate so that the 
line bandwidth is smaller than the frequency resolution. 
The duration of each frequency line can range from a 
few scans to several hundred scans. Generally the SNR 
of the interesting lines is rather low. For a given SNR 
the more stable a line, the easier is the detection of the 
line. 
At each scan t only the (spectral) maxima larger than 
a threshold rj related to the noise level are taken into 
account. Let us name as events the selected maxima. 
Each event i is characterized by its amplitude a,- and by 
its frequency /,•. The set of all the events at time t con- 
stitutes the observation Ot, i.e. the input of the ADT 
algorithm. As it will be seen further, for the HMM-based 
ADT this observation Ot is completely characterized by 
its likelihood (conditional probalibilty) P(Ot/Xt = xt), 
Xt = xt where x stands for the frequency value of the 
line at scan t (state vector). 
This conditional probability may be deduced from the 
probabilistic data description used in the PDA approach. 
For this purpose let us now assume that the observation 
at scan t Ot is composed of K events, K = Ks + Kfa, 
where Ks is the number of valid alarms (0 or 1, the prob- 
ability of detection being Pi — P(Ks = 1)), and Kja is 
the number of false alarms distributed as a Poisson vari- 
able with mean pi (depending on the threshold n used 
for the event detection). Let us also assume that (1) in 
the case of a false alarm, the frequency is uniformly dis- 
tributed on the frequency range H of the STFT output 
and the amplitude is distributed according to a truncated 
chi-square variable, (2) for a valid alarm the frequency 
is gaussian with mean equal to the frequency value xt of 
the line (and a known standard deviation <r), the ampli- 
tude is a non central truncated chi-square, X%(A), vari- 

able with A = Jj£ depending on the SNR. Assuming 

finally that the previous variables are mutually indepen- 
dent and randomly mixed, the likehood of the observed 
set of events Ot is given by [2] 

B. HMM definition and useful algorithms 

An observed process (Ot)t is an HMM if there exists a 
hidden process (Qt)t taking discrete values in finite set 
Q such that: 

• (Qt)t is a Markov process, 

• the value of {Ot)t at scan t depends on the hidden 
process (Qt)t only by its present value at scan t , 

• the past and the future values of the observed process 
are conditionally independent knowing the present 
Qt of the hidden process. 

In our frequency lines ADT the states are the possible 
values of the frequency lines, a spectral line therefore 
corresponds to a sequence of the hidden Markov process 
(Qt)t and the observation, as defined in the previous sec- 
tion, consists in a set of measured couples (frequency, 
amplitude). 
In this HMM context, for a given observation sequence 
(öo, •■-, OT) three basic algorithms [9] have proved to be 
useful: 

• the Forward algorithm provides: 

P(QT = q,O0,...,OT) and P(O0,...,OT) 

• the Forward-Backward algorithm provides: 
P(Qu = q,O0,...,OT)    u<T 

• the Viterbi algorithm provides the single MAP se- 

quence Qo = qi ,.-QT — q* which maximizes 
the joint probability: 

P(Qo = qm,..,QT = q(-T),Oo!...,0T) 

C. HMM and continuous modeling 

In the addressed problem the frequency values are ac- 
tually continuous. Before applying HMM it is therefore 
necessary to quantify frequencies. In practice this task 
is acomplished by dividing the whole range H of STFT 
output into a large number M of adjacent frequency sub- 
bands. After this discretization the state i coresponds to 
the presence of the frequency / within the ith of these 
subbands. 
In some domains, speech processing for example, the 
HMM modeling allows effective estimation of the model 
parameters from a sufficient numbers of samples. Such 
an estimation requires a high quality training data set. 
For the lofargram line ADT problem considered here we 
have preferred to deal with simple a priori analytic mod- 
els from which it is easy to derive the HMM models. 



For this purpose the (possibly non linear) dynamic and 
measurement equations of the continuous process, e.g. : 

a Generalized Likelihood Ratio Test (GLRT) has to be 
used: 

{ 
Xt+1 =f(Xt) + WtwithPXo 

Yt =g(Xt) + Bt 

(dynamic equation) 
(measurement equation) 

(where noises wt and nt are assumed to be zero-mean un- 
correlated Gaussian variables with known standard de- 
viations) are integrated over each of the M subbands in 
order to get state transitions probabilities a»j and ob- 
servations probabilities. Additional details about this 
integration in the reference [7]. 
In the case of spectral line ADT it has been noticed that 
the frequency line variations can generally be correctly 
modeled by one of the three models below: 

• in many cases by a zero order dynamic equation 
such as Xt+i — Xt + Wt. Here Wt is a zero-mean 
Gaussian noise ^(0, %) and aw is chosen accord- 
ing to the line short terme stability, 

• in some cases, by a zero order dynamic equation 
including a known deterministic slope: Xt+i = 
Xt + x + Wt ■ Here this slope x is assumed slowly 
varying and its value is estimated from the past of 
the line, 

• finally by a first order model given by: 

xt+1 = xt + xt + wt 
Xt+1 =Xt + Wt 

with PXo 

with P- 
Xo 

where Wt is a Gaussian noise M"(0,a ■ ) indepen- 
dent of Wt and where a ■ is chosen according to 
the long term line stability and aw according to 
the short term stability. 

Each of these models allows a straightforward derivation 
of the state transition probabilities. 

III.    Line detection 

This first stage aims at detecting the spectral lines. It is 
a simple binary decision test to be applied on each (/, t) 
bin of the spectrogram output in order to decide Hi "a 
line is present" or HQ "only background noise is presen- 
t". 
Let us now consider a block of T + 1 scans of the spec- 
trogram output and assume that the line to be detected 
is longer than T + 1. Using expression of A(Ot, Qt = q) 
given in Section ILA instead of the usual P{Ot/Qt = q) 
and assuming that the background noise is time inde- 
pendent, the Forward-Backward algorithm provides : 

An(Q   -tr)-P(Q" = «'0°>->°T/'Hi) 
AMQ» ~q)-       P(00,...,0T,/7io) 

that is to say the likelihood ratio that a line is present 
at the point frequency / (corresponding to the state q) 
and time t = u. 
In fact the position q is unknown in hypothesis %\ and 

MaxP(Qu = q,Oo,...,0T/ni) 
A9fbiq) = P(ÖO,...,ÖTJH0) 

> 
< 7- 

In real situations several lines may be simultaneously 
present and therefore a detection is considered for every 
q for which Aib(q) > j. 
In real situations the standard deviation aw may also be 
very different from one line to another. Two zero-order 
models are therefore used in parallel: a model 1 with a 
small aw (for stable lines),a model 2 with a large aw 
(for unstable lines). Then the GLR test is performed 
with: 

Max(A/j(g/model 1), A/j(g/model 2)) 7. > 
< 

Wo 

In practice for each block, the above detection process 
is performed at the middle of the block center (i.e. at 
u = y), then the block is one-scan shifted in order to 
obtain the detection at the next time, and so on recur- 
sively. 
It is also worth noticing that this processing provides 
an incoherent statistical integration of frequency varying 
lines similar to the classical so-called Automatic Line In- 
tegration (ALI) that provides an incoherent determinis- 
tic integration of frequency constant lines. Figure 1 to 
4 demonstrate the effectivness of this bi-model Forward- 
Backward line detector on a simulated (but realistic) lo- 
fargram output. Here T = 21 scans and the decision 
delay is 10 scans. 

IV.    Line tracking 

Once detected a line is tracked. The tracking is per- 
formed recursively by blocks of duration T, shifted by 
^(50 % overlapping): for each block the line is updated 
with the first half of the whole block duration MAP tra- 
jectory provided by the Viterbi algorithm. 
Three line models have been implemented in parallel, (1) 
zero-order model with small s.d. aw (for stable lines), 
(2) zero order model with larger s.d. aw (for constant 
Doppler unstable lines), and (3) first order model with 
small aw (for stable lines with high Doppler rates). 
Moreover the commutation between these three models 
is triggered by a Bayesian test (the LRs being given by 
the Forward algorithm) on the recent past of the line 
frequency variations. 
Figures 5 and 6 demonstrate the effectiveness of this line 
ADT on the same simulated lofargram data as figure 1. 
Parameters for the tracking part of the algorithms have 
been set as follows: T = 21 scans, decision delay of 10 

=0.01 
Ws 

scans, aWl=<rw3 =0.1 Hz, aWi =0.6 Hz and a, 
Hz/scan. 
The results obtained by a standard NNA algorithm, for 



the same lofargram data, are shown figure 7 for com- 
parison purpose. For this last ADT algorithm the time 
constant for detection is limited to 3 scans, the associ- 
ation being performed at each scan with a delay of one 
scan (NNA 1-back-scan algorithm); moreover a single 
first-order dynamic model is used. 

V.    Conclusions 

The problem of HMM-based line detection and track- 
ing in spectrograms has been addressed. The obtained 
detection and tracking algorithms provide us with satis- 
fying results both for simulated input data and for real 
data (not shown here). Compared to conventional NNA 
tracking algorithms the improvement is notable, mainly 
because HMM solution allows us to use long duration 
blocks (batch processing) and large decision delays. 
Finally it should also be mentioned that the computa- 
tional burden with HMM ADT's remains quite tractable: 
for the same input data, the increase of the computa- 
tional power between the HMM solution (result figure 6) 
and the standard NNA solution (result figure 7) is only 
about 3 higher. 
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Figure 1: Detected events (Observation) 
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Figure 2: Output of forward-backward detection 
with zero order model, crw =0.1Hz 



Figure 3: Output of forward-backward detection 
with zero order model, 0-^=0.6Hz 
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Figure 4: Output of forward-backward detection 
using 2 zero-order models 
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Figure 5: Detected events (Observation) 

Figure 6: Output of multimodels HMM ADT 
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Tracking in the presence of intermittent spurious objects 
and clutter 

D J Salmond* and N J Gordon1 
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ABSTRACT 

The sampling based bootstrap filter is applied to the problem of maintaining track on a target in the 
presence of intermittent spurious objects. This problem is formulated in a multiple hypothesis framework 
and the bootstrap filter is applied to generate the posterior distribution of the state vector of the required 
target - i.e. to generate the target track. The bootstrap technique facilitates the integration of the available 
information in a near-optimal fashion without the need to explicitly store and manage hypotheses from 
previous time steps. 

Keywords: Target tracking, Bayesian methods, bootstrap filter, SIR filter, particle filter, Monte Carlo 
methods 

1. INTRODUCTION 

There are many situations where it is required to maintain or initiate tracks on objects in the presence of 
spurious and potentially misleading measurements. This paper is concerned with the particular problem 
of maintaining track on a target in the presence of intermittent spurious objects. These spurious objects 
or sources are spawned in close proximity to the required target at random times and persist for random 
periods. Only one such source is present at any instant and its birth/death process is modelled by a 
Markov process. The problem is complicated by the presence of dense random clutter. Position and 
discrimination (signature) information is available on the objects and clutter from a scanning sensor. It 
is further assumed that the resolution of the sensor is finite, so when in close proximity, the target and 
spurious object may generate only a single common return. There is a high degree of measurement 
association uncertainty. 

The usual (Bayesian) approach to problems of this type involves some form of multiple hypothesis 
filter. For optimality, it is necessary to take account of the history of every possible measurement 
association hypothesis. As measurements accumulate, this rapidly becomes infeasible, and some 
hypothesis pruning and/or merging scheme, such as Probabilistic Data Association (see Bar-Shalom and 
Li [1]) or some mixture reduction method (see Pao [2]), must be imposed. In particular, a successful 
application of the IMMJPDAF (Interacting Multiple Model Joint Probabilistic Data Association Filter) to 
the problem of tracking splitting targets with finite sensor resolution, which is clearly related to the 
example of this paper, is reported by Bar-Shalom, Chang and Blom [3]. Also a multiple hypothesis 
approach to tracking two closely spaced targets with finite sensor resolution is presented by Koch and van 
Keuk [4]. If system or measurement nonlinearities are present, further approximations (typically a version 
of the extended Kaiman filter) must be employed. 

©British Crown Copyright 1998/DERA 
Published with the permission of the Controller of Her Britannic Majesty's Stationery Office. 
*DERA, Ively Road, Famborough, Hants, U.K. 
tDERA, St Andrews Road, Malvem, Worcs, U.K. 



In this paper, we adopt a different approach to implementing the formal Bayesian recursive filter. 
Instead of attempting to construct a functional approximation (almost invariably based on Gaussians) of 
the required pdf (probability density function), a large set of random samples are employed as an 
equivalent representation. This is the central tenet of the bootstrap filter proposed by Gordon et al [5] for 
nonlinear/non-Gaussian dynamic state estimation. It was noted by Avitzour [6] that this filter can be 
applied directly to problems involving measurement association uncertainty, provided that the measurement 
likelihood can be specified (also see Gordon [7]). The main advantage of this approach is that 
measurement association hypotheses from previous time steps do not need to be explicitly stored - they 
are contained implicitly in the sample set. In this case, suboptimality is due to the number of samples 
being finite, and as the sample size tends to infinity, the exact (optimal) result is obtained. 

In the following sections, a statement of the above tracking and identification problem is given 
and outlines of the standard and hybrid versions of the bootstrap filter algorithm are supplied. An 
expression for the measurement likelihood necessary for application of the bootstrap filter is obtained and 
some simulation results are presented. This work is an extension of the results and analysis presented by 
Salmond et al [8]. 

2. GENERAL PROBLEM STATEMENT 

2.1 Scenario 

The dynamics of the primary target (T) are described by the following (known) discrete system model: 

*Tk+l =fTk(XTk> wTk) (2.1) 

where xTk is the target state vector, wTk is system driving noise, and f Tk describes the dynamics of the 
target. 

At some random time step the target may spawn a secondary object D in the vicinity of T. 
Thereafter the secondary object moves independently of T according to the following dynamic model: 

XDk+l =fDk(XDk. wDk) (2.2) 

where xDk is the state vector of D. The initial distribution of xDk at birth is a (known) function of 
xTk. The secondary object disappears after a random period and later (following another random period) 
another object D may be produced. The birth /death sequence of the object D is described by a Markov 
process. If yk = 0 indicates that D does not exist at time tk and yk = 1 indicates that D is in existence, 
the transitions 0->l and l->0 depend only on the probabilities: 

p01 = Pr{ Yk = 1 I Yk-. = 0 }  and p10 = Pr{ yk = 0 I yk., = 1 } . (2.3) 

Clearly, Pr{ yk = 1 I yk., = 1 } = 1 - p ,„ and Pr{ yk = 0 I yk., = 0 } = 1 - p0, . If the time step At is 
constant, the average period between the death of one secondary object and the birth of another is 
At/p 01 , while the average lifetime of D is At/p 10. Note that with this model only two objects may be 
present at any instant. 

At k=0, it is assumed that only the primary target T is present (y0 s 0). The prior distribution of 
xTO is also assumed to be known. 



2.2 Sensor model 

At each time step k, Nk position measurements zik are received from a sensor whose position is precisely 
known. If only the primary target T is present (i.e. Y=0), the probability of detecting the target is PTO. 
If the secondary object D is also present (i.e. y=l), depending on its proximity to the primary target and 
the relative geometry, the sensor may be capable of resolving two objects or it may only be able to resolve 
a single composite object. If the two objects can be resolved, then the probability of receiving a 
measurement from T is PTO and the probability of receiving a measurement from D is PDD (and these are 
independent events). If the objects cannot be resolved, the probability of receiving a single composite 
measurement is PJD. These probabilities may be functions of the appropriate T or D states. Additionally, 
other spurious or clutter measurements (independent of the two objects) may also be produced by the 
sensor. We assume that these clutter measurements are uniformly distributed over the measurement space 
and that they are not subject to resolution limitations (although this would only be significant in 
exceedingly dense clutter). The number of clutter measurements received at a given time step follows a 
Poisson distribution with mean m. 

Associated with each position measurement zik is a classification flag or signature parameter 
c; k which may provide an indication of the type of object from which the measurement originated (target, 
secondary object, composite or clutter), but gives no direct information on object position, c {k could be 
a discrete output (for example, target, secondary object or clutter) or a continuous parameter such as a 
measure of target amplitude. The Nk measurements and classifications received at time tk are denoted 

Z'   = Hz.. ,c,J,(z   ,c,J, ... ,(z    ,cvj\   , (2.4) k 
{(ilk>clk),(z2k,c2k),... ,(zNtk,cNtk)} 

and the set of all data received up to and including time tk is denoted 

zk={z\,z>2,...,z\} . ^ 

It is assumed that the association between measurements and the objects is a priori unknown. An 
association hypothesis "K defines a mapping X from the subscripts of the measurements to their source 
(target (T), secondary (D), composite (J) or clutter(C)): 

X:{\,2, ... ,Nk} -> {T,D,J,C} . 
Given X, the conditional pdfs of the measurements z {k are denoted by 

PT ( z, k I xTk) if Hi) = T ,     pD ( zik I xDk) if X(i) = D ,   PJ ( zik I xTk, xDk ) if X(i) = J , 

and Pc(zik)     if A.(i) = C . 

The performance of the classifier is denoted similarly by pr ( c;k I xTk ) for X(i) = T, etc. Note that the 
classifier performance may be state dependent. It is assumed that these conditional distributions are 
known. 

Although the specification of the classifier output is essentially identical in form to that of the 
measurements, it is convenient to make the distinction between z and c to emphasise that two quite 
different types of information are available, one of which is strongly indicative of object position while 
the other is primarily dependent on object type. However, if the classifier output is state dependent (albeit 
only weakly), then this also provides some information on the object state vector. The bootstrap filter (see 



below) is able to exploit this. 

2.3 Requirements 

It is required to construct the current posterior pdf p(xTk I Zk) of the target at each time step k. 

3. MEASUREMENT/CLASSIFICATION LIKELIHOOD 

3.1 State vector 

For this problem it is convenient to define a system state vector 

2£k = ( X-Tk ' X-Dk ' Yk ) 

which evolves with time according to equations (2.1) to (2.3).  Note that if yk = 0,   xDk »s redundant. 
In this case it is convenient to set xDk = xTk . 

3.2 General form of likelihood 

By careful consideration of the possible measurement-state associations, the likelihood of the state vector 
X given the data set Z' (dropping the time subscript k) may be shown to be (for m>0) 

yP 

V(Z/\X)~(l-y)fT(xj\Z
/)   *   yO-PJf/x^xJZ') 

(3.1) 

Here, the likelihood ratio 

^(x   |z,c) = _ 
' m 

1    PT(z|xT)   PT(° I*T) 

m      Pc(i) Pc(c) 
(3.2) 

CD is similar and 

fi.(x   ,x   |z,c) 
1    Pj(z|xT'XD)   PJ(

C
IXT.XD) 

m Pete) PC(
C
) 

(3.3) 

The function fT(x T I Z'), which may be interpreted as the likelihood of xT for the case of a single target 
in clutter, is given by 

fT(xjZ^ = (1-PW + PTDE *rteTl VCi} ' 
j-i 

(3.4) 

fD(x D I Z') is similar and 



fjCV*,, I Z>) = (1 -p»> + P^ ^iT.xD I z.)Cj) . (3-5) 

Also Pres is the probability that T and D can be resolved (if y=l) and this  is  a function of xTk and 

ÜDk 

The likelihood (3.1) has three principal terms. The first of these (for y=0) corresponds to cases 
when the secondary object is not present so that only measurements from the prime target or clutters are 
available. The second term (for y=l and Pres=0) represents the case where the secondary object is present 
but it is not resolved so that only measurements from the composite object or clutter are available. The 
third term (for y=l and Pres=l) corresponds to the case where again the secondary object is present but it 
can be resolved from the target. Various special cases follow directly from this expression, for example 
if 7^0 the likelihood for a single target in clutter is obtained. Also for Y=1 and PTD=PTD=Pres=l, we recover 
the special case presented by Salmond et al [8]. 

3.3 Solution for Gaussian measurements and uniform clutter 

The above solution is valid for any form of (time independent) measurement error characteristic (including, 
for example, quantisation effects and skewed or truncated distributions). Likewise, any form of clutter 
distribution may be employed provided it is independent of the state X. Moreover, the bootstrap technique 
(see below) may be directly applied to such distributions. However, consider the common assumptions 
of Gaussian measurement errors and uniformly distributed clutter: 

PT ( z I x ) = pD ( z I x ) = N( z ; h(x) , R ) ,       p, ( z I xT , xD) = N( z ; h/x^, xD) , Rj) , 

and Pc ( z ) = 1/v- 

Here, the measurements z are independent, zero mean Gaussian perturbations about a function of the state. 
In the above expressions, N indicated a Gaussian pdf. For the resolved objects the (possibly nonlinear) 
measurement function is h and the covariance of the Gaussian perturbation or error is R. For the 
composite return, the measurement function h; depends on both x T and x D . This function could depend 
on some centroid of xT and x D such as (x T + xD)/2. Also, the measurement error has covariance R, 
which may be different to that of the resolved objects. For example, in the case of a radar sensor, the 
composite measurement might have a larger error due to glint type effects. The parameter V in the clutter 
distribution is the volume of the sensor surveillance region (which is assumed to "comfortably" encompass 
T and D).  Note that the spatial density of clutter measurements in this case is u = m/V. 

In this case, the likelihood p(Z' I 2D in (3.1) is specified by (for u>0) 

* p_(c | x )        (    i A 
<>(x   |z,c) = * T        T   exp   -Itz-htxJfR-Uz-htx )) 

T  ~ /i^Rfp     PC<
C

> 2 
(3.6) 

and CD is similar. Also 



fT(xT|Z') = (l-PTO) 

P N     pT(c. I X  ) TO        £ [    T   exp 
VT^RJU   i-i       Pc(cj) 

i(z.-h(xT))TR-'(z -h(x )) 

(3.7) 

fD(xD I Z') is similar and 

^(i,..2LD I Z')=(1-PJD) 

p.(c I X  ,x   ) 

/I27CRJ u   *"» pc(cP 
exp (z -h (x ,x ))TR.-'(z -h (x ,x )) 

2     "J 

(3.8) 

4. OUTLINE OF THE BOOTSTRAP FILTER 

4.1 Basic formulation 

The bootstrap filter (which is also sometimes denoted the SIR - sampling importance resampling - filter) 
is described by Gordon et al [5],[9]. Briefly, suppose we have a set of independent random samples 
{Xk_,(i) : i=l,..,Ns} drawn from the pdf p(Xk., I Zk.,). The bootstrap filter is an algorithm for propagating 
and updating these samples to obtain a set of values { Xk(i) : i=l,..,Ns }, which are approximately 
distributed as independent random samples from p(X k | Z k). Thus the filter is an approximate 
mechanisation (simulation) of the prediction and update stages of a recursive Bayesian filter. 

Prediction: Each sample is passed through the system model to obtain samples from the prior at 
time step k to give Xk'(i) = f k-i(2£k-i(i).w k.,(i)), where w k.,(i) is a sample drawn from the pdf 
of the system noise p(wk.i)- 

Update: On receipt of the data set Z/, evaluate the likelihood of each prior sample and so obtain 
a normalised weight for each sample: 

Ik, = 
p(Z'k|X*(i)) 

(4.1) 

E p(z'k|x;(j)) 
j-i 

Thus define a discrete distribution over {Xk*(i):i=l,..,Ns}, with probability mass q^ associated 
with element Xk*(i). Now resample (with replacement) Ns times from the discrete  distribution 
to generate samples  {Xk(i):i=l,..,Ns}, so that for any j,     Pr{Xk(j) = XkCi)}^- 

The above steps of prediction and update form a single iteration of the recursive algorithm. To 
initiate the algorithm, N samples {X ,*(i):i=l,..,Ns} are drawn from the known prior p(X,). These 
samples feed directly into the update stage of the filter. The samples Xk(i) are approximately distributed 
as the required pdf p(Xk I Zk). 

It was pointed out by Avitzour [6] that this sample based filter could be directly applied to 
problems involving measurement association uncertainty - also see Gordon [7]. To apply the technique 



it is necessary to construct the likelihood p(Z'k IXk)- see equation (4.1). This is available for the 
problem defined above (see equation (3.1)) and so the bootstrap filter may be directly applied. 

The justification for the bootstrap filter is based on an asymptotic result. It is most difficult to 
prove any general result for a finite number of samples. Likewise it is most difficult to make any precise, 
provable statement on the crucial question of how many samples are required to give a satisfactory 
representation of the densities for filter operation. However, it is clear that the required number N s 

depends on at least four factors: (i) the dimension of the state space, (ii) the typical "overlap" between the 
prior and the likelihood, (iii) the complexity of the state pdf, and (iv) the required number of time steps. 
If N s is too small, the number of truly distinct values in the sample set may collapse, particularly if the 
system noise is low or non-existent. This is a major drawback of the bootstrap approach. The hybrid 
version of the bootstrap filter described below is intended to avoid this degeneracy - also see Gordon et 
al [5] and [9] where these practical issues are discussed further. Another recent analysis of sample based 
filters with other suggestions for maintaining a valid representation of the state distribution is given by 
Carpenter et al [10] and Pitt and Shephard [11]. 

4.2 Hybrid version of the bootstrap filter 

The hybrid form of the bootstrap filter suggested by Gordon [7] is one approach to compensating for the 
finite size of the bootstrap sample set. The scheme was devised particularly for cases where the 
distribution of the state space may be multimodal and so is suited to problems involving measurement 
association uncertainty. 

In most filtering problems it is known a priori that the state space parameters are continuous rather 
than discrete and so it is natural to consider smoothing the bootstrap sample set by fitting a continuous 
distribution at each time step. To retain the advantage of the sampling approach it is essential that the 
fitted distribution should be sufficiently versatile to follow the probability mass distribution of the samples 
- in particular, as noted above, the possibility of widely spaced modes should be accommodated. To meet 
this requirement, the hybrid filter employs a Gaussian mixture distribution to fit the weighted sample set 
(Xk*(i) : i=l,..,Ns}. Thus the modified update procedure is as follows: 

Obtain the discrete distribution over {Xk*(i): i=l,..,Ns} with probability mass q^ associated with 
element Xk"(i) using equation (4.1) as before. Then, instead of resampling directly, obtain a 
Gaussian mixture approximation to the posterior pdf at time step k: 

C(k) 
p<xjzk)-EßkJN<xk;X    Pkj)  , (4.2) 

j-1 

where N is a Gaussian pdf, C(k) is the number of mixture components required to approximate 

the weighted sample set, X    is the mean of the j* component, Pkj is the covariance of the j* 
coo 

component and ßkj is the weight attached to the jth component (clearly £ ßkj = l). Ns samples 
j-i 

{Xk(i): i=l,..,Ns} are then drawn from this mixture to complete the update stage. 

By using a mixture approximation to the weighted samples, the gaps between the samples are effectively 
"filled in" in a way that is consistent with the disposition of the probability mass indicated by the relative 
location and importance of the samples. 



The technique used to fit the mixture to the sample set is a form of kernel density estimation. 
Firstly a Gaussian kernel is placed around each sample to form a Gaussian mixture of Ns components: 

EqkjN(X ;X'(j),hPk') . Here, pfc' = £ qkj(X£(j) -^XX^Ü) "Xk)
T   1S the overa11 ^variance of 

j-i j-i 

N,. 

the sample set, X = V q . X* (j)   IS (he overall mean and h = 0.5 Ns
_2/d   is a multiplicative factor, d being 

—k    j-i 
the dimension of the state space.  (The form of h is motivated by considering an equivalent rectangular 
grid of points over the state space.)   This mixture is then "reduced" by merging groups of similar 
components in such a way that the overall mean and covariance of the mixture is unchanged. This is done 
using a technique described by Salmond [12] which attempts to achieve the desired reduction while 
minimising changes to the structure of the mixture.   The number of components C(k) in the reduced 
mixture is less than or equal to some specified upper bound Cmax. In the simulation below Cmax has been 
set to 50.   The parameters h and C^ control the smoothness of the fitted mixture and are essentially 
(problem dependent) tuning parameters. However, simulation experiments indicate that filter performance 
is not highly sensitive to these parameter values. 

There are a number of potential advantages in the hybrid formulation of the bootstrap filter. The 
most obvious is that by smoothing the samples it should be possible to reduce the number of samples N 
s relative to the standard filter and still maintain satisfactory performance. The acceptable reduction is 
likely to be problem dependent. Another advantage is that the Gaussian mixture approximation (4.2) 
provides a convenient functional form for the posterior pdf, from which it is easy to find marginal means 
and covariances or to plot marginal pdfs. Furthermore, this is a convenient form for the analysis of linear 
operations on the posterior (such as linear prediction). Also note that efficient routines exist for generating 
random samples from multivariate Gaussian distributions, so that it is simple to generate posterior samples 
via (4.2). 

5. SIMULATION EXAMPLE 

5.1 Scenario 

Several simulation experiments have been performed for a scenario in the X-Y plane. Both objects T and 
D (if it exists) are assumed to obey the common second order, linear, Cartesian model. The X-coordinate 
for this model is 

xik- =xik 
+Atxnc +(At2/2)Wi 

Xik.l   =  Xik   +  AtW,Xk 

Xk (5.1) 

for i = T and D. The Y coordinate is similar. The driving noise sequences wTXk,wTyk,wDXk 

and w D Y k are independent Gaussian random processes of variance q. Note that since the models for T 
and D are the same in this example, trajectory characteristics cannot be used to distinguish between T and 
D. If the dynamics of T and D were known to be different and this could be modelled (as allowed in the 
general formulation). This would aid the discrimination process. The state vector for the system is 



—k        V    T ' *T' ^T ' ^T ' *D ' X° '    D '    D '     'k 

In the example below, the system driving noise q is set to 0.0152 and the time step At=0.25. Also, the 
probability of D being born at time k+1 given that it does not exist at k is p0, = Pr{ yk+I = 1 I yk = 0 } 
= 0.1, and the probability of it dying is p I0 = Pr{ yk+1 = 0 I yk = 1 } = 0.2. Thus the average lifetime of 
a D object is 5At, and the average interval between the death of one D object and the birth of another is 
lOAt. 

Measurements of range and bearing ( z j k = ( z {r k, z; e k)) are taken from a sensor located at the 
origin. Thus for measurements originating from T or D, the nonlinear measurement function is defined 
by 

ziRk = rx(i)k 
+ viRk        ^    ziek = ex(i)k 

+ v,ek     > (5-2) 

where for resolved objects (Ä,(i)=T or D) 

rX(i,k = ^x(i)k + yx(i)k and    6X(i)k = tan 

and for the case of an unresolved composite measurement (X,(i)=J) 

-i 

(       \ 
y>.(i)k 

v
xx(i)k j 

(5.3) 

(5.4) 

The measurement errors v i r k and v; e k are independent, zero mean, Gaussian processes of variance G r
2 

and ce
2 , respectively (for i(i)=T, D or J). T and D may be resolved provided they do not fall into the 

same range/bearing resolution cell (Ar, A9), i.e. 

p
res(2LT>x ) = res ^—T ' —D 

0 if | rT - rD | < Ar and 16T - 9D | < A0 . 

1 otherwise 

(Also see the resolution model suggested by Koch and van Keuk [4].) For the example results presented 
below: 

<jr = 0.01 , Ar = 0.05 , G6 = 0.01 radians and A6 = 0.05 radians. 

Note that the measurement error is substantially less that the sensor resolution, a common feature of radar 
systems. Also the detection probabilities for T, D and the composite return are all 0.99 (i.e. PTO = PDD 

= PJD = 0.99). 

Clutter measurements are uniformly distributed in range and bearing over the field of view of the 
sensor. In the simulation experiments, an acceptance gate in the measurement space is defined to reject 
any measurements that clearly originate from clutter and do not assist in the estimation of the state vector. 
This gate is defined by the maximum extent of the predicted T and D position samples plus four standard 
deviations of the measurement error. In the simulation experiment below, the clutter density is high: the 
average number of clutter returns in a Ar x A0 resolution cell is 0.25 and the average number of returns 
in a a r x a e cell is 0.01. 



Associated with each measurement is a discrete classification flag which takes the values T, D or 
C. The classifier performance of the sensor against the target is a function of the target aspect presented. 
Assuming that the target's axis is directed along its velocity vector, the classification performance is a 
function of \|f = 6heading - 0T (where -180° < y < 180°) where 8T is the sightline angle between the sensor 
and the target with respect to the X-axis and 

eheading "tan"'^/*. 

is the target heading relative to the X-axis. The classification probabilities for the simulation example 
are given in the following table: 

Origin of 
actual 

measurement 

Classifier output 

T D C 

T 
for 10°<lyl<170° 

0.6 0.3 0.1 

T 
for 0°<li)il<10o or 170°<li|/l<180o 0.45 0.45 0.1 

D 0.3 0.6 0.1 

J 0.45 0.45 0.1 

C 0.15 0.15 0.7 

Thus it is assumed that for D and clutter, performance is independent of aspect. Note that when the 
subtended target aspect is within 10° of the target's axis, the classifier output is equally likely to be T or 
D. At other aspects, performance is useful. Also the classifier has a 10% chance of mistaking the T, D 
or J for clutter, and correctly recognises clutter with a probability of 70%. The composite return J is 
equally likely to be classified as T or D - there is no classification J in this example. The state 
dependency of the target classification performance considerably complicates the estimation problem. The 
accuracy of the state information affects the degree to which the filter can rely on the classifications, 
while, conversely, it is possible to leam about the direction of the target velocity vector from the sequence 
of classifications. As already noted, the bootstrap filter is able to accommodate (and exploit) this state 
dependency. 

At k=0, 7=0 so that only T is present. The prior distribution of the position of T is Gaussian with 
mean (xT0,yTO) and covariance 

0 TX0 0 

'TYO 

^ 

The prior distribution of the initial target velocity is defined in terms of direction and magnitude: the 
direction being uniformly distributed over [0 , 2n) and the magnitude being uniformly distributed over 
[0,VTmax].  In the example below, 



xT0 = 0.1   ,   yT0 = 1.9 

GTX0   =  aTY0   = 0-25 

and VTmax = 0.05   . 

The prior distribution of the position and velocity of each D at birth is assumed to Gaussian with mean 
xTand a diagonal covariance matrix. In the example below, the standard deviation of the x and y 
positions is 0.03 (= 3ar = 0.6Ar) and the standard deviations of the x and y velocity components is 0.01 
(= 0.2V Tmax). Thus, D type objects are generated in close proximity and with similar velocities to the 
target (relative to the problem parameters). 

5.2 Illustrative results 
The results of a simulation experiment over 50 time steps are shown in figs 1-4 for both the standard and 
hybrid versions of the bootstrap filter. The simulated measurements and actual object paths are identical 
for the two filters so a direct comparison is possible. Furthermore, the measurement and classification 
statistics are perfectly matched to the filter parameters as are the dynamics of T and D. The standard filter 
is run with Ns = 50000 sample points while the hybrid version employs only Ns = 5000 samples. In the 
implementation of the hybrid filter, the samples for which y=l are clustered separately from those with 
7=0. Thus the discrete nature of y is maintained. 

Diagrams 
The two plots of fig 1 show the object paths, measurements and track for the standard bootstrap filter. 
In the upper plot, the actual path of the target is shown as a continuous line joining diamonds which 
indicate the target positions at each time step. The actual paths of the secondary D type objects are shown 
as continuous lines connecting crosses. There are two of these D type paths (alive at different times) in 
this example. The remaining individual symbols indicate the positions of those measurements that 
actually originate from the target. Those measurements correctly classified as type T are shown as 
diamonds, those incorrectly classified as type D are shown as crosses and those incorrectly classified as 
clutter are shown as asterisks. Those measurements which are the product of an unresolved T/D pair are 
surrounded by a square box. The position estimate (i.e. the mean of the posterior, E[xTk , y Tk I ZJ) from 
the tracking filter is shown as a dashed line. The lower plot of fig 1 shows all measurements accepted 
by the filter over the 50 time steps. The notation is as above and the track from the filter is repeated. 
Note that the lower plot encompasses the region shown in the upper diagram. 

Fig 2 presents an analysis of the tracking problem, again for the standard bootstrap filter, as a 
function of time. The top left plot of fig 2 shows the type of measurements and associated classifications 
originating from T and D. At each time step, there is either a single measurement from the target T if 
D is not present, a single composite measurement J if the object is present but not resolved and two 
measurements T and D if D is present and the objects are resolved. Note that in this example, T and D 
are always detected. The classifications (T, D or C) associated with the measurements are indicated by 
different measurement symbols. The two periods when D is present (i.e. y=l) can be clearly seen. The 
actual value of y is also shown in the lower left plot of fig 2 together with the estimated value (continuous 
line) of y from the filter, i.e E[ yk I Z,. ]. The top right plot shows the number of measurements that pass 
the filters acceptance test. This indicates the level of corrupting clutter. Finally the lower right plot 
indicates the filter estimation error in the Y coordinate. The continuous line shows the error in the mean: 
E[ yTk I Zk ] - y Tk- The dashed lines indicate the 98% error limits, i.e. 98% of the probability mass of 
the Y marginal posterior pdf lies within these limits. 



Figs 3 and 4 show similar information for the hybrid version of the filter. However, since the plot 
of measurement types from T and D would be identical for both filters, this has been replaced by a plot 
showing the estimation error for the X coordinate of the hybrid filter. 

Observations 
Comparing the two sets of figures (1 and 2 with 3 and 4) it can be seen that the results from the two 
versions of the bootstrap filter are broadly similar. The main detailed differences are in the estimates of 
Y and in the track mean and confidence limits in the vicinity of the resolved D type object (about time 
steps 40 to 45). Also the standard version of the filter accepts rather more clutter measurements during 
the initial transient of the first few time steps. 

The filters successfully accommodate the release of two D type objects (at different times) 
produced in close proximity to the target and moving with similar velocities. In the case of the first 
release at time step 20, the object only exists for 6 time steps and is never resolved. This has little effect 
on the filters although there is some indication of an increase in the estimate of y (possibly due to a 
perceived jump in the target measurements when the decoy is launched and a change in the dynamics - 
which is effectively smoothed by the averaging of the two object paths). In the case of the second release 
at time step 35, the object gradually separates from the target and is resolved as a separate entity after 4 
time steps. This presents a more difficult problem. The dynamics of D are quite similar to T. 
Furthermore, during the 7 time steps when T and D are resolved, the target is incorrectly classified as a 
D type object on 4 occasions while D is correctly classified on only 3 occasions. The filters correctly 
recognise this uncertainty as is shown by the increase in the interval between the 98% confidence limits 
which accommodate the separating T/D pair. This is particularly clear for the hybrid version <see fig 4). 
Note that soon after the two objects are resolved, the estimates of y rise to above 0.8 (or 0.9 for the hybrid 
version) showing that the filters are confident that two objects are present. When D dies, the estimates 
of y rapidly fall to about 0.2. 

The number of clutter measurements accepted by the filters is generally between about 5 and 10 
for each time step after the transient has decayed. Although this is quite high, the acceptance gate is 
generous so that these false returns are often fairly remote from the objects. Also, the classifier correctly 
recognises clutter on 80% of occasions. Nevertheless, the filters do successfully accommodate this level 
of disturbance. Note that, save for a single time step, the actual target position falls within the 98% 
confidence limits shown in figs 2 and 4. 

In this example, the initial target position was xT, = 0, y Tk = 2, and the initial velocity was 0.03 
in the positive X direction. For the observer at the origin, the target aspect the target aspect over the 50 
time steps was always within the interval 10°<l\|/l<170° (as is clear from fig 1) where the target 
classifications are informative. However, it should be noted that when the velocity estimate is very 
uncertain (particularly during the initial transient) the filter must allow for the possibility of the target 
classifications providing no discrimination against D type objects. 

6. CONCLUDING REMARKS 

The formal Bayesian solution to a complex nonlinear problem has been implemented using the sample 
based bootstrap filter. The test case included finite sensor resolution in the range-bearing domain, tracking 
in a Cartesian frame, interfering spurious objects and clutter, and state dependent classification 
information. Similar, good performance was obtained from the basic form of the bootstrap filter and from 
a hybrid version (the latter operating with only 10% of the samples required for the standard filter). The 
filters implicitly handle a large number of association hypotheses without explicit, complex hypothesis 



construction and management. 

The performance of the bootstrap method should be compared with other schemes including 
nearest neighbour, the IMMJPDAF [3] and an "explicit" multiple hypothesis approach. In particular, the 
trade-off between tracking performance, computation time and computer code complexity should be 
investigated. Furthermore, although the reported simulation example is representative of a number of other 
experiments, a full Monte Carlo study is required for proper assessment. Finally, the Bayesian model 
employed here allows only a single spurious object to exist at any one time. The model should be 
extended to allow for a number of such sources. 
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Fig 1: Object paths, measurements and track for standard version of the bootstrap filter 
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Abstract 

This paper studies the augmented bearings-only target motion analysis problem, characterized 
by (1) bearing measurements augmented with received signal-to-noise ratio measurements, and (2) 
a combined acoustic propagation and sensor performance prediction model. A novel track-before- 
detect empirical maximum a posteriori (EMAP) approach is presented in which measurements are 
assumed independent prior to the detection decision. A limiting case of the EMAP formulation 
is the maximum likelihood formulation of the traditional bearings-only problem. By treating the 
range measurement corresponding to a bearing measurement as the missing information, the method 
of expectation-maximization is used to derive an algorithm for EMAP estimation. The EMAP 
algorithm is very simple — it is an iteratively reweighted linear least-squares algorithm, and does not 
require computing the gradient of the EMAP objective function. Moreover, the EMAP formulation 
enables a simple heuristic for compensating for model mismatch between the acoustic propagation 
prediction and the real world. The capacity to compensate for mismatch is important in applications 
that have insufficient data to produce accurate acoustic predictions. Triangulation and constant 
velocity target examples are presented. 

1    Introduction 
The fidelity of currently available ocean acoustic propagation and sensor performance prediction models 
is often not completely satisfactory, that is, accurate models of the environment may yield predictions 
that are mismatched to the real world because of the lack of adequate or current environmental data. 
Nonetheless, it may be possible with care to exploit such propagation models for target motion analysis 
(TMA) purposes. The main contributions of this paper are a novel mathematical treatment of the 
fidelity issue for passive sonar TMA, first reported in [1], and the derivation of an iteratively reweighted 
linear least squares estimation algorithm using the method of expectation-maximization (EM). It is a 
remarkable fact that this new algorithm does not require computing the gradient of the environmental 
prediction model in most cases of practical interest. 

The idealized TMA problem studied in this paper is called the augmented azimuthal bearings-only 
TMA problem. Specifically, this is the TMA problem that arises when azimuthal bearing measurements 
are augmented with (i) received signal-to-noise ratio (SNR) measurements and (ii) a combined acoustic 
propagation and sensor (CAPS) signal processing model. This problem is physically unrealistic in that it 
avoids all discussion of multipath propagation, elevation angle measurements, etc.; however, the problem 
does have one salient merit — it pushes the fidelity of the acoustic model to the forefront. Thus, the 
augmented bearings-only TMA problem is well suited to the stated purpose of this paper. The methods 
proposed here are directly applicable to more realistic and important problems, e.g., TMA using cone 
angle measurements from linear arrays, but these problems are outside the scope of the present paper. 

Clutter is a harsh reality for all TMA problems, that is, target measurements are obscured by other 
measurements unrelated to the target of interest. Clutter may be due to either random fluctuations in 
the noise background, or it may be due to interference, e.g., other targets. The difficult problems of 
correctly assigning measurements to target and of censoring (suppressing) clutter are critically important 
to successful performance of all TMA algorithms. Measurements of SNR yield improved target state 

•This work was supported by the Office of Naval Research. 



estimates in the presence of clutter, even in the absence of a detailed CAPS model, because measured 
SNR is informative for the assignment problem [2]. Investigations of how to incorporate CAPS models of 
uncertain fidelity into the TMA problem split naturally into two phases. The first phase addresses the use 
of a CAPS model in clutter-free environments. The critical question to answer in the first phase is "Can 
a CAPS model reliably improve TMA estimates when no clutter is present?" The second phase addresses 
using the model in the presence of clutter, so the appropriate question becomes "Can a CAPS model 
reliably contribute to the joint assignment and TMA estimation problem in cluttered environments?" 
Neither problem is trivial, and both are important in applications. This paper contributes to the clutter- 
free first phase of the investigation. 

Two formulations of the augmented bearings-only TMA problem are discussed. The formulations use 
nearly indistinguishable statistical PDF's of the measured bearings, but they differ significantly in their 
statistical interpretation and in their use of the CAPS model. The first formulation is standard because it 
assumes measurements are statistically independent, conditioned on target state. Maximum likelihood 
(ML) target state estimates are defined using a specified target motion model and can be obtained 
numerically by gradient ascent procedures which require computing the derivatives of the CAPS model 
with respect to target state variables, or by search procedures (e.g., genetic algorithms) which perform 
extensive enumeration of possible target state variables. 

The second formulation is novel in that it assumes the measurements determine a sequence of statis- 
tically independent pre-detection "empirical" PDF's on target state. Multiplying these densities gives 
the overall empirical density on target state. Empirical maximum a posteriori (EMAP) target state es- 
timates are defined by evaluating the empirical density for a specified class of parametric target motion 
models. EMAP estimates are computed numerically — without taking the gradient of the CAPS model 
— by the new EM-based algorithm derived in this paper. In contrast to ML estimation, EMAP target 
estimation requires computing integrals of the CAPS model with respect to a parameterized target den- 
sity, called herein the geometric kernel. It will be seen that adjusting the down-range variance parameter 
of the kernel is an intuitive method for compensating for mismatch between the CAPS model and the 
real world. 

Section 2 develops notation and basic probabilistic structures used throughout the paper. Section 
3 discusses the ML formulation of the augmented bearings-only TMA problem for constant velocity 
targets. The EMAP formulation for constant velocity targets is presented in Section 4. Derivation of 
the EMAP estimation algorithm is given in Section 5. The asymptotic equivalence of the EMAP and 
ML approaches to the augmented TMA problem is derived in Section 6. Examples are given in Section 
7. Summary and concluding remarks are given in Section 8. 

2    Notation and Definitions 

The radiated sound field of a single point target of unknown source level impinges upon a sensor array, 
and the sensor signal processor generates an estimate of arrival angle and SNR at the sensor location. 
Arrival angles are estimates of azimuthal bearings, so the observable target coordinates lie in a horizontal 
plane. It is assumed that the CAPS model computes the probability density function (PDF) of the 
measured SNR at the sensor output as a function of signal arrival angle, sensor location, target location, 
and target source level. Although the functional form of the PDF of the measured SNR is important in 
the application, it is not important to the theoretical formulations discussed in this paper. 

Let (x, y, z) denote target position at an arbitrary, but fixed, time. Azimuthal angles are measured in 
the x-y plane counter-clockwise from the positive x axis. Let 5(7) denote target source level (within the 
sensor bandwidth) radiated in the azimuthal direction 7 when the target bow points in a fixed reference 
direction, taken here to be the positive x-axis. Target source level also depends on elevation angle, but 
for simplicity only azimuthal variation is considered here. Let Z = (0, £) denote the measured bearing 
6 and the measured SNR £ of the target when sensor position is X° = (x°,y°,z°). The target source 
level s radiating in the direction of the sensor depends on the aspect angle that the target presents to 
the sensor. If there are no ocean currents, so that the bow points in the direction of motion, simple 
geometrical considerations in the azimuthal plane gives the conditional density 

Ps\xyzx°y°z°(s\z,y,Z,X0,y°,Z0) = S(s - Sxyxoyo), (2.1) 

where &{■) denotes the Dirac delta function, and 

Sxyx*y* = S (tan"1   ¥—£   -tan"1   jL   - TT) , (2.2) 



where x' and y' axe the derivatives of x and y with respect to time. The second term in the argument 
of (2.2) is the true target heading. The factor of n in (2.2) arises because radiated source level 5(7) is 
referenced to the target, not the sensor. The density (2.1) is readily replaced by other PDF's to obtain 
fully stochastic models of source level; however, the deterministic form (2.1) is adequate for the purposes 
of this paper. 

Both ML and EMAP formulations of the augmented bearings-only TMA problem employ a marginal- 
ization approach to incorporate aspect angle and to avoid estimating target depth. Let the likelihood 
function of the given CAPS model of bearing and SNR be denoted by 

Peti\XyzsX°y°z° (0, Z\x, V, z, s, x°, y°, z°). 

Application of Bayes Theorem gives 

P0€s|xyz*°y°z° (ö> £> SIX> ^ 2> X°'> 2/°> Z°)     =    P0«|xyzsx°y°z° (#, £1*, V, Z, S, X°,y°, Z°) 

xPs|xyzx°y°z° (s\x, y, Z, X°, y°, Z°). (2.3) 

Substituting (2.1) into (2.3) and integrating over all s gives 

PöC|xyzx0y<>z° (#, £,\x, J/, Z, X°,y°, Z°) = p^|xyzsx°y°z° (#> £\x, J/, Z, Sxyxoy°,X°, y°,Z°). (2.4) 

Marginalizing over target depth in the conditional PDF (2.4) gives 

J z„ 
Pez\xyzsx°y°z°(6,&,y,z, Sxyxoy<,,x°,y°,z°)pz(z) dz = 

n 

P0£|xysx°y°z° (#, €\x, V, Sxyx°y°, X°, y°, Z°), (2.5) 

where the second term in the integrand denotes the a priori target depth PDF, which is zero outside 
the water column [zmin, zmax] and is assumed known. If the target has a known fixed depth, then the a 
priori target depth density is simply the Dirac delta function located at the given target depth. 

The marginal PDF (2.5) is called simply the CAPS density throughout the sequel. In general, the 
CAPS density is written 

Pz\xxo{Z\X,X°) = Pe?|xysx°y°z°(0, €\x,y, Sxyxcyc ,x°,y°', z°), (2.6) 

where target state is defined by X = (x, y,s). The absence of velocity in the notation for target state 
is not strictly correct because source level depends on aspect angle; however, this omission leads to 
no difficulties when used with deterministic aspect angle dependence (2.2) and constant velocity target 
motion models (see Equation (3.2)). 

For later reference, the down-range marginal density of a PDF fxy(x,y) with respect to the (one- 
dimensional) Cartesian variables x and y is denned by 

fOO 

f<t,(<p)=        fxy(pcos 4>,psin <t>) p dp,        -TT<4><7T, (2.7) 
Jo 

where (p, <j>) are the polar coordinates of the target. The PDF fxy{x, y) is said to be diffuse down-range 
if 

fxyipaxhpsmfi p ex j ^W>       £ > £ (2.8) 

It follows from (2.8) that a diffuse down-range density is not necessarily diffuse in x and y. 

3    Maximum Likelihood Formulation 
Let Z = {Zn}%=1 = {6n, £n}n=i denote a sequence of independent sensor measurements on the same 
target obtained at sensor locations X° = {X°}^=1 = {x^,y°,z°}%=1 and at times {tn}%=i- The 
measurements are not required to be identically distributed. Let X = {Xn}„=:1 = {a;n,J/n,Sn}^=i 
denote the sequence of target states at the measurement times {t„}^=1. Without loss of generality, it is 
supposed that {tn}n=i are listed in increasing order, that is, tn < tn+i, n = 1,...,N — 1. 



As is typical in TMA problems, the measurements Z are assumed independent, conditioned on target 
state. The conditional likelihood function of Z is then given by 

JCZ\XX°(Z\X,X°)= JJ pZn]XnXo(Zn\Xn,XZ). (3.1) 
n=l 

A deterministic target motion model is specified, so that xn = x(tn), yn = y{tn), and s„ = s(tn). The 
standard target motion model for bearings-only TMA is constant velocity, so 

x(t) 
y(t) 

iff — t 

iff - ti 2/1 
+ t-tt 

tN — t\ 
XN 

VN 
= a(t) Xl 

2/i 
+ ß(t) XN 

VN 
h <t<tN-      (3.2) 

The model (3.2) uses end-point parameterization because the position parameters {xi,yi,XN,VN} are 
dimensionally commensurate (a useful feature if Cramer-Rao lower bounds on estimation error are com- 
pared); however, the end-point model is mathematically equivalent to the more common position-velocity 
model. Substituting the velocity implicit in the end-point parameterization (3.2) into the aspect angle 
dependent source level function (2.2) gives 

s(tn) = sn = 5(7„), 

where the source level reference angle is given by 

7„ = tan  * Vn-y°n — tan" 

1< n < N, 

VN -2/1 

XN — Xi 
— 7T. 

(3.3) 

(3.4) 

Target state is therefore fully parameterized by A = {xi:yi,XN,yN}, so that 

X = X(\) = {x(\),yW,s(\)}. 

Hence, the target state estimate is determined from the ML parameter estimate 

AML =argmax£Z|xx'>(Z|AT(A),X0). (3.5) 

Taking the gradient of the conditional likelihood function with respect to A and setting the result to zero 
gives the necessary conditions to be solved by appropriate numerical procedures. 

A potentially serious difficulty with using the necessary ML conditions is that the gradient of the 
CAPS model is required with respect to the target parameter vector A. Because the gradient is typically 
required at each iteration of a numerical procedure, ML estimates are often difficult and time consuming 
to compute. Also, the use of gradients may exacerbate any underlying CAPS model infidelity. 

A maximum a posteriori (MAP) formulation can be obtained from the ML formulation by incor- 
porating an appropriate a priori density on the end-point parameters of the constant velocity target 
model. Alternatively, a target process noise model can be included to compensate for target maneuvers. 
MAP estimators are not pursued further in this paper; however, the EMAP formulation presented in 
the next section is readily adapted to either of these approaches to MAP estimation. 

Marginalizing (3.1) over the SNR measurements Z? = {fn}£=i gives the (non-augmented) bearings- 
only TMA likelihood function 

N 

£ze\xx°(Ze \X,X°) = JJ Pe„\xnx°n(8n \Xn,X°), (3.6) 
n=l 

where Zg = {ön}^=1. The traditional bearings-only TMA problem is obtained from (3.6) by assuming 
straight line propagation in the azimuthal plane and by omitting source level. In this special case, simple 
geometry and additive Gaussian noise assumptions give 

Pen\xnx*SOn\Xn,X°n) = 
v/2lran

eXPi    2ol 
6n — tan' -i(yn-y°n\\2\ 

\xn-x°n)\  j 
(3.7) 

where an denotes the standard deviation of 9n.  Substituting (3.7) into (3.6) and taking the natural 
logarithm gives the usual cr~2-weighted nonlinear least squares problem of traditional TMA. 



4    Empirical MAP Formulation 

Traditional TMA statistical models are post-detection models, that is, they assume a priori that the 
measurements Z belong to a common target having a specified parametric form (e.g., equations (3.2)- 
(3.4)). Post-detection tracking implies that measurements are independent if they are conditioned on 
the target. ML estimators thus answer the question "Given data generated from a target track, which 
parameterized track best fits the data?" 

In contrast, the EMAP estimators proposed here differ fundamentally from traditional post-detection 
TMA because they are joint detection-estimation methods which seek to answer the alternative question 
"Does a target track of the specified parametric form fit the data?" A generalized likelihood ratio test 
(GLRT) in which track parameters are estimated and substituted into a likelihood ratio is the EMAP 
answer to the question; however, it is the estimated track — and not the GLRT detector — which is the 
object of interest in this paper. 

The data {(Zn,X°)}^=1 are assumed statistically independent because measurements are not speci- 
fied a priori to belong to the same track. Independence implies that 

N 

Pzx°(Z,X°) = JJ Pz»x>{Zn,XZ). (4.1) 
n=l 

The data {(Zn,X°)}^=1 contribute independent probability density assessments of "potential" target 
position and source level that are valid at the times at which the measurements are obtained. Let Xn = 
{X%}n=i = {xn^yn^sn}n=i denote so-called "empirical" random variables associated with potential 
locations and source levels. Empirical random variables are assumed independent when conditioned on 
their corresponding measurements and sensor locations; hence, the empirical target location PDF for 
the full data set is 

N 

Px"|zx° (Xu \Z,X°) = JJ Px<?|znxS (*J? \Zn,X°). (4.2) 
n=l 

The empirical target likelihood function (4.2) is evaluated for specified parametric target motion models, 
once the conditional density of X% is defined. 

Full target state is not observable from a single bearing measurement. Consequently, the dummy 
random variable rn is introduced to model the "missing" sensor range measurement corresponding to 
9n, and the density of the empirical variable X% is expressed as a marginal density over rn. Using Bayes 
Theorem, the marginal density is written in the form 

J*2|Z.XS(*»|Z»,*£) = 

/    J>x?y?|rns«z„xs (a£»0n \rn,s^, Zn,X°) Pr„s?|znx» (r„,«2 \Zn,X°) drn.      (4.3) 
Jo 

The statistical relationship between the missing range measurement rn and the other random variables 
must be defined. Several applications of Bayes Theorem gives the identity 

Prns?|znx»(r„,s°|Zn,X°)    =     ^„|r„*„s<jx;;(Sn|r„,0n,s£,X°) (4.4) 

Prn\e„X'n(rn\dn,X°) Q 
7. TTlä Y^T Ps"|r„9„XS (sn Fn,0„,An). P«„|0„X° (?n|0n,A£) 

The last term in (4.4) is defined by (cf. Equation (2.1)) 

J>s?|r„*nXS («2 |r„, 0n, X°n) = 6(8% - Srn$ J, (4.5) 

where 

and where primes in (4.6) denote derivatives with respect to time. Substituting (4.4)-(4.6) into (4.3), 
marginalizing over empirical source level, and using Bayes Theorem in the purely data dependent de- 



nominator in (4.4) gives 

Px?y«|z„x° [xn,yn \Zn,Xn) =  
PenC„|X»(Oln,^n|A°j 

/•oo 
/    ^y?|r„s«z„x» (x",y"|rn,5r„e„,Zn,X°) 

Jo 
xP?n|rn«„s?x° (£n |rn,0n,Srn(?n,X°) pr„|önxS (r„ |Ö„,X°) dr„. (4.7) 

Substituting the integral (4.7) into (4.2> gives the overall empirical PDF as a product of integrals. If the 
measurement f„ is unavailable, it is easy to show that the appropriate integral is identical to (4.7), but 
with the middle term omitted; thus, data sets in which measured SNR is only intermittently available 
are easily accommodated. 

Each term in the integrand of the integral representation (4.7) has a meaningful physical interpre- 
tation. The first term, called the geometric kernel, is a density on empirical target position, and it 
is conditioned on range, bearing, source level, measured SNR, and sensor position. For augmented 
bearings-only TMA problems, the geometric kernel is assumed to be a bivariate Gaussian whose mean 
vector and covariance matrix are determined by the conditioning variables. The kernel's mean vector is 
determined by range, bearing, and sensor location; the kernel's covariance matrix is a joint function of 
all the conditioning variables and is determined, in principle, via the CAPS model. Purely geometric 
considerations for the special case when the sensor lies at the origin) gives the kernel in the form 

Px|?y«|r„s«Z„X°  (*",</" \rn,S^Zn,X°) 

1 h± 
2nanKnrl 6XP ] 2r2 L 

x%-x°n- rn cos 0„ 
Vn -y£-r„sinl9n 

A(#n,crn,/Tn) 
xn  ~xn- rn COS 0n 

Vn ~Vn -rnsm6n 
(4.8) 

where A(6n,an,Kn) is the inverse covariance matrix (see Appendix A of [1]). Loosely speaking, the 
cross-range and down-range variances of the geometric kernel are determined by the sensor and the 
environment, respectively, together with square law azimuthal dispersion of empirical target location. 

The standard deviation of the measured bearing 6n is denoted by an = a(6n,£,n,sn,X°), and it is 
determined by sensor signal processing considerations. The bearing variance cr2(-) may be constant, but 
in general it depends parametrically on bearing because of beamwidth equalization issues (i.e., some 
beams may be narrower than others), on measured SNR and target source level because measurement 
variance typically depends on SNR, and on sensor location because the CAPS model may depend on 
absolute (not relative) sensor location. 

The standard deviation of the missing range measurement rn, denoted by Kn = K(On,^n,sn,X°) in 
(4.8), is determined by the CAPS model. The down-range variance /c2(-) may depend parametrically on 
bearing because the CAPS model may not be azimuthally symmetric, on measured SNR and source level 
because they influence down-range estimation error, and on sensor location because the CAPS model 
may be location sensitive. 

The down-range variance K
2
 of the geometric kernel provides a new and potentially useful parameter 

that can be used to compensate for mismatch between the CAPS model and the real world. Using a 
down-range variance greater than K

2
 will decrease the CAPS model influence on TMA estimates and, 

conversely, using a smaller variance will increase its influence. This opens the possibility in practice of 
using what may be called a "monotone" simulated annealing scheme in which the down-range variance 
is initially made too large, and is then monotonically reduced in stages to the correct theoretical level 
implied by the CAPS model, namely K

2
. When CAPS modeling fidelity is considered a significant 

issue, it may be reduced only to the level thought reliable in the application. Such inflation/deflation 
procedures might also be employed whenever an explicit form for K\ is not readily obtained from the 
CAPS model. 

The second density in the integrand of (4.7) is contributed by the CAPS model, which in general 
depends on the absolute location of the sensor in the ocean, i.e., azimuthal dependence of the propagation 
model can vary with sensor location. Simpler CAPS models may be used to reduce computational 
complexity if desired. If a deterministic CAPS model is available, it may be worthwhile — depending 
on the application — to use it as the mean of a Gaussian PDF with a suitably specified range and 
bearing dependent variance [3]. Such statistical models must be used with caution when received signal 
levels less than a certain threshold level cannot be reported in association with a bearing measurement. 
Truncation and renormalization of the Gaussian densities may be necessary to compensate for this effect. 

The third density in the integrand of (4.7) specifies the sensor measurement window for the missing 
range measurement. It is derived by assuming that the a priori joint density of the measurement pair 



(fn, 0n) corresponds to a uniformly distributed point over a feasible region H(X°) of the x-y plane whose 
inner and outer radii are given by the radial functions rmin(9n,X°) and rmax(0n,X°), respectively. The 
outer radius may be interpreted as the maximum range at which signals of specified (maximum) source 
level are detected with specified probability Pd- Similarly, the inner radius may be interpreted as the 
near-field limit of the sensor, i.e., the minimum range at which the sensor's beamformer reliably estimates 
bearings. Thus, in polar coordinates, the joint density of {rn,0n) is given by 

An*„|xs(r»,0nro = j 
A{X°n) r», 

0, 
for(rn,0n)€ft(X£), 
otherwise, 

where A(X°) is the reciprocal of the area of the feasible region TZ(X°). Conditioning on bearing as well 
as sensor location gives, using Bayes Theorem, 

Prn|0nX°(r, n\6n,X°) - i 
e(9n,X°) rn,        for rmin(9n,X°) <rn< rmax(0n,X£), 

0,        otherwise, (4.9) 

where the normalization constant is e(8n,X°) = 2/(rliax(9n,X°) - r^in(ön,X°)). The a priori bearing 
density Pen\x° i^n\X°) is uniformly distributed if and only if the normalization constant e(9n,X°) is 
independent of 9n. 

The integral representation appropriate for the augmented bearings-only TMA problem is obtained 
from the general expression (4.7) by substituting the specific forms (4.8) and (4.9). The result is 

PxQy°\znx°ntä,y°\Zn,XZ) =cn(0n,£„,sn,X°) J        pMTnenSnXo^n\rn,9n,s^,X°) 

rmi„(0„,X°) 

xexp{ä y°-vZ 
rn cos 9n 

rn sin 9n 
A.(#„,0"n,K„) 

where the proportionality factor is given by 

e{9n,X°n) 

x%-x°n-rncos9n 

Vn -Vn-rn sin 9n 

Pe*\xz(8n\XZ) 

drn 

2TT(T(9n,Zn,Sn,XZ)K(9n,Zn,Sn,X°)   PenMX'n{ßn^n\X«)' 

(4.10) 

(4.11) 

The integral representation (4.10) is fundamental to the formulation of the EMAP likelihood function. 
When the geometric kernel is independent of the CAPS model, the empirical density on the left hand side 
of (4.10) is the transform of the CAPS density; the kernel of this non-standard function transformation 
is the bivariate Gaussian density called herein the geometric kernel. 

Appendix B of [1] shows that the down-range marginal density of the integral (4.10) is closely 
approximated by the Gaussian distribution, provided the bearing measurement standard deviation cr„ 
is small, say on the order of several degrees or less. This is an important analytical result because it 
confirms that bearing measurement variance is not a function of the CAPS model. The result also shows 
(with appropriate use of diffuse priors) that the traditional bearings-only TMA problem is recovered from 
(4.10) via down-range marginalization. The standard ML approach (see Section 3) to the augmented 
bearings-only TMA problem is obtained asymptotically as K -»■ 0, as shown below in Section 6. 

Let A = {xi,yi,XN,yrf}, just as in the ML formulation of Section 3. Substituting the target model 
parameterization (3.2)-(3.4) into the integral representation (4.10), and then substituting the result into 
the likelihood function (4.2) gives 

f N 

px^izxo(x(X),y(X)\Z,X°) = I J] Cn(9n^n,SXen,X°) 
ln=l 

X \ II        /       PMr~e„s2x°„(Zn\rn,0n,Sxen,XZ)exp 
n=l        A rmin(fin,X°) 

where the quadratic form Qn = Qn{rn', A) of the exponential term is 

-Qn(rn; A) 
2r2 

drn »,    (4.12) 

0n = 
a(tn)xi + ß(tn)xN -x°n-rncos0n 

<*(*n)s/i + ß(tn)yN -Vn-rn sin 0n 
A(0n,crn,/cn) a(tn)xi + ß(tn)xN - < - rn cos 0„ 

ot{tn)yi + ß(tn)yN -y%-rn sin0n 

(4.13) 



and source level as a function of aspect angle is, using (4.6) for constant velocity target motion, 

Sx$n =s(en- tan"1 IM^VL] - n) , (4.14) \ [xN - Xi J        ) 

and where the bearing and down-range standard deviations of the geometric kernel are given by 

on    =   <r(On,£n,S\en,XZ), (4.15) 

Kn      =     K{6n,£n,Sxen,Xn). 

The forms of cr(-) and «;(•) are derived from the sensor and CAPS models; their target range dependence 
in (4.15) arises via target parameterization. 

The likelihood function (4.12) yields the EMAP parameter estimate 

AEMAP = argmax pxnyn\ZXo(x(X),y(\)\Z,X°). (4.16) 

The standard necessary conditions for the EMAP estimate (4.16) are found by setting the gradient of 
the posterior likelihood (4.12) with respect to the position parameters A to zero. It is a remarkable fact 
that the EMAP necessary conditions do not require computing the gradient of the CAPS model if target 
source level is independent of aspect angle, that is, if 5(7) is independent of 7, and if CAPS fidelity 
issues are addressed by the down-range variance inflation/deflation strategy discussed above. 

5    Derivation and Statement of EMAP Algorithm 

A general EMAP estimation algorithm is derived in this section using the method of EM. Familiarity with 
the method of EM is assumed in this section. General discussions of the method are widely available; 
for a general introduction, see [4, 5, 7]. For applications of the EM method specifically to Gaussian 
mixtures, see [6, 8, 9]. The EMAP algorithm is derived for constant velocity target motion; however, 
the derivation is very general and is easily extended to more general models. 

The EMAP algorithm may be derived by discretizing the integrals in the likelihood function (4.12); 
however, discretization needlessly obscures the discussion. Instead, integrals are retained in the following 
derivation. The objective of the E-step is to define the so-called auxiliary function of the EM method 
and to simplify it if possible. The auxiliary function depends on two sets of target end-point parameter 
vectors, A' = {x'i,y'i,x'N,y'N} and A = {xi,yi,xN,yN}, where A' is an initial (given) estimate and A 
is arbitrary. The terms of the auxiliary function that are functions of A are, using the quadratic form 
Qn(rn;ty defined by equation (4.13), 

¥(A) = --*MSE(A) + *CAPS(A) - *VAR(A), (5.1) 

where 

*MSE(A) = £ /       «*■.«»(»»;A') g„(r„;A) ^p- (5.2) 

rmin(9n,A-°) 

is a weighted mean squared error, 

N      rm„(e„,X°) 

*CAPs(A) = j^ j       wenin{rn;\') log[p€n|rn9„s?x=(Ur„,0n,SA*„,X°)] drn (5.3) 

is a contribution due to taxget source level dependence on aspect angle, 

^y rmi3((öii|An) 

*VAR(A) = £        J      weMrn;X) log[<T(0n,Zn,Sxen,XZ)K(en,Sn,Sxen,Xn)} drn        (5.4) 
n=1  rmin(e„,X°) 



is a contribution due to variance dependence on target source level, and where the weights in (5.2)-(5.4) 
are given by the (Bayesian) ratio 

, Pinirngnsgxg(6,|r„,fln, Sye„,X°n) exp { -°"2<S-;V)} k ,    , 
W0.U(rn, A ) = rmM,(t„xa) 

L l • (5.5) 
/      P6,|r,g,.gxs(en|r„,gn,5vg.,.yg)exP{ -Qfr(^} ^ 

Further details of this important but tedious step are straightforward, given familiarity with the appli- 
cation of EM to Gaussian mixtures, and are omitted. 

The weights (5.5) are nonnegative, so it is evident from (5.2) that *MSE(A) is a nonnegative quadratic 
function of A. If target source level is independent of aspect angle, the term *CAPS (A) is omitted from the 
auxiliary function (5.1) because it is independent of the parameter vector. Similarly, the term *VAR(A) 

is omitted if the variances of the geometric kernel are independent of the CAPS model. 
The objective of the M-step is to maximize the auxiliary function as a function of the parameter 

vector A. Consider first the important special case where the auxiliary function comprises only the 
weighted squared error term, *MSE(A). Let the time dependent matrix H(t) be given by the 2 x 4 
matrix 

H(t) = 
a(t)    ß(t)    0 0 
0        0        a(t)    ß(t) (5.6) 

(c/. Equation (3.2)). The weights (5.5) depend on the initial parameter vector A', but not on A; hence, 
setting the gradient of *(A) with respect to A to zero and solving for A gives the updated parameter 
estimate 

A+ = argmax*(A) = argmin #MSE(A) = I ^ An(en,£„) J      f ]£ 6«(0"' &) ) , (5-7) 

where An(6n, £„) is the 4x4 matrix given by 
rm»it(«„,X°) 

An(en,£n)=H'(tn)A(9n,crn,Kn)H(tn)        J   .  W6nin{rn-\')^, (5.8) 

%n +rncosOn 

y°+rnsin9n 
^. (5-9) 

rmin(e„,x°) 

and bn(0n, £„) is a vector of length 4 given by 

bn(0n, £n) = H'{tn)K{6n, an, Kn) /       iüÖTi?n (r„; A') 

»•mb(»»,X») 

It is evident that the matrices given in (5.8) have rank at most 2, so the matrix whose inverse is required 
in (5.7) attains full rank if only if the target is observable (in the statistical sense) from the measured 
data set. Observability questions are widely discussed in bearings-only TMA problems, but he outside 
the intended scope of this paper. 

The EMAP algorithm is an iteratively reweighted linear least squares algorithm for the special case 
when only the weighted squared error term need be retained. Explicitly, the algorithm for this special 
case takes the following recursive form: Let S0 denote the given, or assumed, target source level, and 
let an = <r(6n,£n,So,X°) and K„ = K(9n,£n,So,X°) for 1 < n < N. Initialize the target end-point 
parameter 

and set k = 0. For k > 0, define the unnormalized weight function 

c*,C, (r»; AW) = P€n|r.,..gxs ttnlrn,Bn, S0,X°n) exp j ~Qn(™ ^] j , (5.10) 

where the quadratic form is defined by (4.13). Compute the 3N one-dimensional integrals 

»•m«(«n, X») 

#>(/)=       J      «7,.{„(rB;A<*>) ^r,        l<n<N,    /= 1,2,3. (5.11) 
TmiD(e„,X°) 



Using the integrals (5.11), compute the 4x4 matrix 

A(k) = E ^rr: H'(tn)A(6n,an,Kn)H(tn) 
n=l ^(1) 

and the length 4 vector 

n=\ \dn    (1) y°n 
+ dik)(2) r cos0n 

Finally, compute the updated parameter vector 

A(*+D = (4<*>)   V> 

(5.12) 

(5.13) 

(5.14) 

Linear least squares problems such as (5.7) are in practice best solved by reliable methods of numerical 
matrix analysis, instead of using the normal equations (5.14). Details are left to the reader. 

The M-step cannot neglect the terms *CAPS(A) and *VAR(A) in the general case when target source 
level is dependent on aspect angle, or when the down-range and cross-range variances of the geometric 
kernel are dependent on the CAPS model. Solving for the updated parameter vector in the M-step 
requires solving the following problem: 

A+ arg max'*(A) = arg min {*MSE(A) - 2*CAPS(A) + 2*VAR(A)} . (5.15) 

The minimization problem (5.15) is evidently a nonlinear penalized least squares problem and must 
be solved by numerical methods such as Gauss-Newton. Unfortunately, evaluating the gradient of the 
objective function in (5.15) requires taking the gradient of the CAPS model, so the EMAP algorithm 
for the general case requires solving a difficult numerical problem at each step of the iteration, and it 
is thus comparable in computational complexity to algorithms based on the ML approach discussed in 
Section 3. Whether or not the penalized least squares formulation (5.15) can be exploited to advantage 
in the application is an open question. 

6    ML Approach as the Asymptotic Limit of EMAP 

Laplace's method for obtaining asymptotic expansions of integrals is used in this section to reveal the 
close relationship between the EMAP integral representation (4.10) and the standard Gaussian bearing 
error expression (3.7). Consider the generic Laplace-type integral 

rb 

/(A) = /  e-x*Wf(t) dt, 
Ja 

(6.1) 

where <j>(t) is such that its absolute minimum on the interval [a, b] occurs at the point t = to, where 
a < t0 < b, <f>'{to) = 0, and <f>"(t0) > 0. It is assumed that f(t) has at least 2 and cj>(t) has at least 4 
continuous derivatives on [a,b]. The classical Laplace asymptotic expression, given by 

'w-^^-'-ffl. (6.2) 

holds as A -> oo. It is derived rigorously using Watson's lemma in [10]. Expression (6.2) is merely the 
first term in an asymptotic expansion of the integral (6.1). The next term is not given in [10], but can 
be derived following their method (after fixing a minor numerical error in a coefficient). Omitting the 
tedious details, the result is 

7(A) = e-A^°> [^ /(to) (A^"(to))_i +V*C (A0"(to))-
f} + o (L^-) - 

where the coefficient C is given by 

C-f{M\2\r(M)   "3^o) -/,(<0)^ + /"(t0)- 

(6.3) 

(6.4) 
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These asymptotic results axe applied to integrals of the form (4.10) and (5.11). 
The particular integrals of interest in this paper take the form 

•^^f'«'"'^-^-^}*' f=W' <«> 
where 

a(r)    = 

Hr)    =    ~2 

1- 
x cos 9 + y sin 9 

x sin 9 — y cos 9 
(6.6) 

The special case J\(K) is equivalent to (4.10), as is seen by letting 

r = rn,    r1=rmin(9n,X°),    r2 = rmax(9n,X°), 

x = x%-x°n,    y = yn
1-y°n, 

K = Kn = K,(9n,£n,sn,X°),    a = an = a(9n,€n,sn,X°), 

Cn = 2n 0(9n,£n, sn,Xn) K(6n,^n, sn,Xn) cn(9n,£n,sn,Xn), 

P(r)      =     P?„|r„9ns?Xs(£n|r„,0n,s",X°), 

and by algebraically manipulating the quadratic form. The asymptotic form of (6.5) is sought as K -> 0; 
hence, K~

2
 plays the role of A and a(r) plays the role of <j>(t) in (6.1). The necessary condition for the 

minimum of a(r) is that its derivative be zero. The unique root of a'(r) = 0 is 

TQ= x cos 9 + y sin 9. (6.7) 

It is assumed that r0 is interior to the range of integration in (6.5). The second order condition is also 
satisfied, that is, 

dPa(r) 
dr2 

1 
>0. 

r=r0      (
x cos 9 + y sin 9)2 

The function 

ff(r)=2^^r)r"'eXp{~^} 
plays the role of f(t) in (6.1). Using (6.2) and the fact that a(r0) = 0 gives the asymptotic result 

(6.8) 

MK) = 9(ro)i 
2TT 

v K-2a"(r0)' 

Substituting (6.7) and (6.8) into (6.9) and simplifying gives 

K->0. (6.9) 

J/(«) = 
Cn     p(x cos 9 + y sin 9)     _ ] — 1 

\2ncr \xcos 
os9 + ysm9) f -1 (xsia.9 -ycos9\2\ n /„ ,„v 
9 + ysm9f-ieXP\2^Wos9 + ysin9) /'    * "> °" (6-10) 

Because (xcosö + ysm9,xsin9 - ycos9) are the coordinates of the point (x,y) after rotating the 
coordinate system by 9, 

xsia9 — ycos9 
xcos9 + y 

^ß$ = tan (tan"* (I) - 9) - tan"* (*) - 9, 
+ «sin# V \xJ      / \x/ 

(6.11) 

where the approximation in (6.11) is valid for small bearing measurement errors. Substituting (6.11) 
into (6.10) gives the approximation 

T/ \~    °n    p(xcos9 + ysm9) (-1 /. , /j/\\2l 
y/2^a\XCos9 + ysm9\e-1        12cr2 V \x)l J 

(6.12) 
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For i = 1, (6.12) is 

T/ \ ~ °n p(xcos9 + ysin6)        ( -1  / i /V\\21 MK)^ V2-J eXPl2^(g-tan     (D) I" ^ 
The result (6.13) is important because it shows that the classical ML formulation of the bearings-only 
TMA problem is recovered in the limit as K -> 0. 

Greater accuracy may be sought by using the next term in the asymptotic expansion; however, as 
is clear from (6.4) and the derivation above, evaluating the next term requires computing derivatives of 
the CAPS density function. The necessary derivatives may be computed for simple examples, but in 
general such derivative computations are probably of little practical use in this context. 

Care must always be exercised in the use of asymptotic expansions to replace numerical integrals, 
and this application is no exception. Applying the result (6.12) to approximate the integrals (5.11) gives 
the asymptotic ratios 

^(3) = 1      K^Q 

d{
n
k)(l)      \(x%-x°n)cosen + (y%-y°n)smen\2'    * ^   ' 

and 

d{nk)(2) 

d{
n
k)(l)      \(x%-x°n)cosen + (y%-y°n)Smen\' 

K->0. 

However, if these first order results are substituted into the EMAP algorithm in place of the numerical 
integrals, the dependence of the EMAP iterations on the CAPS model is lost entirely. The reason for 
this surprising result is that the EMAP approach is not valid at the limit point K

2
 = 0 because K

2 

is a variance and must remain strictly positive. An important implication of this observation is that, 
for sufficiently small nonzero values of K2

 , the EMAP algorithm will experience slow convergence rates. 
Numerical experience supports this observation. In those (highly atypical) applications in which the 
CAPS model is known to have such good fidelity that K

2
 must be chosen very small, it is necessary 

to use a succession of progressively smaller values of K
2
 to obtain satisfactory convergence rates in the 

EMAP algorithm. On the other hand, if a high fidelity CAPS model is known, the ML — not the EMAP 
— approach is the appropriate formulation of the problem. 

Small measurement errors are typical in applications; however, if measurement errors are sufficiently 
large that the approximation (6.13) is inadequate, one may use the alternative density 

MK) = C" P(XC°!i+ ySlng) exp    fi (^in9-ycosß\   . 

in the traditional ML formulation. The model (6.14) is closely related to the pseudo-linear approxima- 
tions used for traditional bearings-only TMA. The earliest references to approximations of this type are 
[11] and [12]; pseudo-linear methods are discussed extensively in [13], where an extensive bibliography 
is given. 

The limit (6.13) is the product of two terms, a CAPS environmental prediction term depending on 
both measured SNR and bearing, and a geometric term depending on only measured bearing. In the 
fundamental ML equation (3.1), the same product is obtained by writing 

Pz„|x„xs(^„ \Xn,X°n) =pM9„Xnx- «n \6n,Xn,X°nK,|X„X» (*„ \Xn,X°n). (6.15) 

The factorization (6.15) follows directly from Bayes Theorem. The first term in (6.15) is independent of 
6„ if the CAPS model is azimuthally symmetric. 

7    Examples 

7.1    Triangulation 

To illustrate application of the EMAP estimation algorithm of Section 5, consider first the example 
in Figure 1, which shows ownship moving on a fixed course of 5° at a speed of 10 knots (« 5.14 me- 
ters/second) toward a fixed target initially 10,000 yards (9144 meters) away at a bearing of 0° (recall 
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Figure 1: Classic triangulation example. 

that all angles are measured counter-clockwise from the x axis). This is a classic triangulation problem 
in which the target parameters A = {x, y} are estimated from a series of azimuthal bearing measure- 
ments Ze = {0n}n=i taken at times t = {in}^=1. In this example, ownship takes bearing and SNR 
measurements at 1 minute intervals on a 10 minute leg for a total of 11 measurements. 

It is assumed that target source level is a known constant, independent of aspect angle, and that the 
target is an omnidirectional point source of relatively low frequency, so that propagation loss due to ab- 
sorption is negligible. An infinite, homogeneous, isovelocity (1500 meters/second) ocean is assumed, with 
a constant, isotropic ambient noise field. These assumptions imply straight-line, direct path propagation. 

Assuming additive, zero-mean, white Gaussian noise with known second order statistics, the stochas- 
tic model for the SNR measurements Z$ = {£n}n=i *s 

Z(r,t)=Z{r)+q(t), (7.1) 

where £(r) is the mean SNR from the propagation loss model and q(t) is the noise process with variance 
T)2. The propagation loss model for this problem is given by the passive sonar equation, which relates 
received signal excess level SNR to target source level SL, propagation loss PL, ambient noise level 
NL, and sensor directivity index DI [14]. In decibels, the passive sonar equation is given by 

SNR = SL-PL-NL + DI. (7.2) 

For this example, the notional target is assumed to have a source spectrum level (SSL) of 140 dB//l 
pPa near 1 kHz, so that 

SL = SSL + 10 log A/ (7.3) 

for broadband detection, where A/ is the receiver bandwidth in Hertz. Propagation loss is due to 
spherical spreading, so the pressure field for a point source falls off as r, where r is range to the target. 
In decibels, this gives 

PL = 20 log r. 

Noise level is defined in terms of the noise spectrum level (NSL), 

NL = NSL + 10\ogAf. 

(7.4) 

(7.5) 

Nominal curves for the ambient noise spectrum level in the open ocean axe plotted in [14]. The value of 
62 dB//l /iPa is used for NSL in this example. 

The sensor model used for this example is a discrete line array of 25 elements with 1 meter spacing, 
using broadband detection in a 100 Hz band centered at 1 kHz. Simple geometrical considerations give 
a directivity index for this array of approximately 15 dB//l /JPa [15]. The cone angles measured by 
the line array are taken as azimuthal bearings in this example, with the additional assumption that 
the target and the sensor are at equal depths. The separation between sensor and ownship is assumed 
negligible and is ignored for this idealized problem. 

Substituting (7.3)-(7.5) in (7.2) gives the mean SNR, in decibels, as 

10 log ^(r) = SSL - 20 log r - NSL + DI. (7.6) 
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Substituting (7.6) in (7.1) and writing the result as a probability density function gives 

P««|rn.o(£n|r„,SL) =M(Zn\Urn),T)2) (7.7) 

for the CAPS density of the n-th SNR measurement f„, where Af(-\p, o"2) denotes a Gaussian PDF with 
mean /z and variance a2 evaluated at an arbitrary point. 

The EMAP algorithm stated in Section 5 is essentially unchanged for this reduced order triangulation 
problem. The target parameters to be estimated are the fixed locations A = {x, y}. The quadratic terms 
Qn = Qn(?n;\) in (4.13) become 

Qn = 
x - x° - rn cos 6n 

y-y°n -rnsin0n 
\(On,an,Kn) 

x - x°n - rn cos 6n 

y~Vn -rnsm9n 
(7.8) 

for the fixed target model.  For triangulation, the matrix H(tn) defined in (5.6) reduces to the 2 x 2 
identity matrix, the matrix (5.8) reduces to the 2x2 matrix 

rmnx(9n.X») 
/drn 

(7.9) 
rmin(e„,X°) 

and the vector (5.9) reduces to the length 2 vector 

r»«(»nj;i 

bn(0n,£n) = A(9n,an,Kn) /        w$ns,n (r„; A') 
x°n + r„ cos 6n 

y°n +rnsinOn 

drn 
(7.10) 

Tmin(6„,X°) 

Figure 2 shows plots of the likelihood function (4.12) for various values of the target location param- 
eters A, with and without the CAPS model.  For each n, 79 sample ranges, from 500 to 20,000 yards 

(a) With environmental model. (b) Without environmental model. 

Figure 2: EMAP likelihood functions (dB//max) for triangulation example. 

equispaced every 250 yards, were used for the numerical integration of (4.12). Both plots were generated 
with measurement standard deviations a = aor and K = Kor (see Appendix A of [1]), with dimensionless 
standard deviations at r = 1 of CTO = 0.0175 and «o = 0.0873 for each bearing measurement. The value 
of CTO corresponds to a bearing standard deviation of 1°. The values of a and K translate roughly to 
cross- and down-range standard deviations of 200 and 1000 yards, respectively, for a target 10,000 yards 
away. An SNR measurement standard deviation 77 equivalent to 2 dB was used for the plot in Figure 
2(a). Comparison of the two plots reveals that the contours for the likelihood function with the CAPS 
model are much more compact; the augmented problem is much less diffuse in range. Similar plots (not 
included here) show that the contours generated with the environmental model approach those generated 
without the model as 77 is increased. 

The scatter plot of Figure 3 shows the estimation results for 250 Monte Carlo runs of the EMAP 
algorithm. For each run, new measurements Z = {0„,fn}nLi were generated, and the location pa- 
rameters were initialized for a target at 15,000 yards with a 45° bearing.   The values CTQ = 0.0175, 
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Figure 3: EMAP algorithm results for a 250 run Monte Carlo simulation. The EMAP and ML 90% 
containment ellipses are shown with solid and dashed lines, respectively. 

Ko = 0.0873, and r\ equivalent to 2 dB were used for the measurement standard deviations. An increase 
in the log-likelihood function (4.12) of less than 1 x 10~12 was used as the stopping criterion for the 
EMAP algorithm. The average number of iterations for each run was approximately 145. Included in the 
plot are the 90% containment ellipses based on the sample covariances of the EMAP and ML estimates, 
where the ML estimates (not plotted) were computed with the CAPS model as described in Section 3. 
The two containment regions are almost indistinguishable. In fact, the EMAP estimates approach the 
ML estimates exactly as the down-range variance K

2
 is taken sufficiently small (see Section 6). 

7.2    Constant Velocity Target 

As a second example of application of the EMAP algorithm, consider the constant velocity target problem 
where the target parameters to be estimated are the end points of target motion, A = {xi,yi,xjv,yN}. 
Figure 4 shows ownship moving on a fixed course of 5° at a speed of 10 knots on the first leg, followed 
by a fixed course of 95° at a speed of 10 knots on the second leg after a 1 minute simulated maneuver. 
The target starts 10,000 yards away at a bearing of 0°, and moves with a constant speed of 5 knots on 

7000       (000      tOOO 

Figure 4: Constant velocity target example. 

a 180° course. Ownship takes bearing and SNR measurements at 1 minute intervals on both 10 minute 
legs for a total of 22 measurements. 

Figure 5 shows the results of a 250 run Monte Carlo simulation of the EMAP algorithm for this 
problem using the same environmental model, sample ranges, values for ao, to, and 77, and stopping 
criterion used for the triangulation example. For each run, new measurements Z = {On,€n}%Li were 
generated, and the location parameters were initialized for a target moving from 15,000 yards away at a 
bearing of 45°, to a position 10,000 yards away at a 315° bearing, both with respect to ownship's initial 
position. The average number of iterations for each run was approximately 100. The 90% containment 
ellipses based on the sample covariances of the EMAP estimates and the ML estimates (not plotted) 
are shown about the true target end points. As with the triangulation example, the EMAP and ML 
containment regions are nearly equivalent. 
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(a) Final location (IA',J/A'' (b) Initial location (xi,j/i). 

Figure 5:  EMAP algorithm results for constant velocity target example.   The EMAP and ML 90% 
containment ellipses are shown with solid and dashed lines, respectively. 
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Figure 6: Down-range weights for first bearing at several iterations. 

Figure 6 shows plots of the weights (5.5) for the 79 sample ranges down the first line of bearing 
at several iterations for a single run of the EMAP algorithm for the constant velocity target example. 
These weights describe the distribution of the components in the mixture for the first bearing. As the 
iterations increase, the peak of this distribution moves "like a log rolling under a carpet" closer to the 
component associated with the empirical target most likely to have generated the measurement. On the 
first iteration, the weight associated with the largest sampling range down the first line of bearing is 
equal to 1 due to the poor initialization. The remaining weights are all zero, as the sum of all the weights 
must add to 1 for each bearing. On the second iteration, the estimate of A improves, and more mixture 
components contribute to the PDF of the target. The weight scales of the second and subsequent plots 
in Figure 6 are reduced to make the weight distributions more pronounced. Examination of the plot in 
Figure 6 for the final iteration of one run of the EMAP algorithm reveals that the standard deviation of 
the weight distribution is approximately 1000 yards, which is roughly the value of K for the target range 
in this example. The down range variance specifies a window over which the CAPS model is averaged 
(in a weighted sense) or smeared. The EMAP algorithm samples the CAPS model, and approaches the 
ML algorithm discussed in Section 3, as K? is made sufficiently small. 

7.3    Comments 

The above examples are generalized for unknoum source level by treating source level as an unknown 
parameter, and estimating it between EM iterations. This extension of the EM method is referred to 
as the Generalized EM, or GEM, method, and is discussed in [7]. Source level is estimated in the GEM 
framework by conducting a one dimensional search on source level to increase the value of the auxiliary 
function between iterations. That is, source level is chosen to maximize the auxiliary function over its 
value at the current target positional estimates, rather than to maximize the auxiliary function over the 
whole parameters space simultaneously. It is shown in [7] that the likelihood function does not decrease 
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after an iteration of GEM, and that GEM converges if the likelihood function is bounded above. Though 
this approach to estimating source level presents no great difficulties, the EMAP algorithm is more than 
just a simple iteratively reweighted linear least squares algorithm in this case, and is not pursued further 
in this paper. 

In the above examples, no attempt was made to speed up the EMAP algorithm convergence rate. 
The same "monotone" simulated annealing scheme suggested in Section 4 for compensating for model 
mismatch would speed up convergence at the beginning of the EM iterations, where initial estimates 
may be poor due to a bad initialization. Using non-equispaced sampling ranges and decreasing the 
number of ranges would also speed up convergence. Increasing the spacing down-range is justified, as 
the down-range standard deviation K increases in proportion to range. 

8    Summary and Concluding Remarks 

Two formulations of the augmented bearings-only TMA problem have been presented. One formulation 
is based on maximum likelihood, and it is classical in that it is a post-detection tracking approach in 
which measurements are conditioned on the target state. The other formulation is novel in that it is 
based on an empirical MAP method in which measurements are unconditionally independent because 
they are pre-detection measurements; that is, measurements are assumed unconditionally independent 
until proven conditionally independent by a detection decision. The EMAP approach is analogous to a 
GLRT method for simultaneous detection and track estimation. 

An algorithm for solving the augmented bearings-only TMA problem using the EMAP formulation 
is derived by the method of EM. The general EMAP algorithm is an iteratively reweighted linear least 
squares method provided (i) source level is independent of aspect angle and («) fidelity issues are treated 
by adjusting the down-range variance of the geometric kernel. Thus, the EMAP algorithm is a linear 
algorithm in most cases of practical interest. It is a remarkable corollary of the EMAP algorithm that the 
traditional, i.e., non-augmented, bearings-only TMA problem can be solved by an iteratively reweighted 
linear least squares algorithm. In the most general case, however, the EMAP algorithm is a nonlinear 
penalized least squares algorithm whose potential value in the application remains unexplored. 

The empirical approach leads naturally to an integral representation of the measurement density in 
which possible lack of fidelity in the CAPS model is compensated by adjusting the down-range variance 
K of the geometric kernel of the integrand. In effect, the proposed compensation averages the CAPS 
model prediction over a sliding Gaussian window whose size, both down-range and cross-range, increases 
linearly with the down-range direction because of cylindrical spreading. It is shown that in the limit, 
as the size of the averaging window goes to zero, the EMAP approach is equivalent to the standard ML 
approach, the preferred approach when CAPS predictions are reliable. 

Triangulation and constant velocity target examples were presented to illustrate application of the 
EMAP algorithm. These examples assumed a known source level and direct path, straight-line propa- 
gation with propagation loss due to spherical spreading. The EMAP algorithm estimates were nearly 
equivalent to the ML algorithm estimates for a reasonably sized value of the down-range variance K

2
. 

The EMAP algorithm is generalized to unknown source level by using the Generalized EM method to 
estimate source level between EM iterations. 

Different sensor types lead to different expressions for the geometric kernel and, hence, to different 
integral representations. For example, for linear arrays the angular measurement is conical angle, not 
azimuthal bearing; therefore, the geometric kernel generalizes to a trivariate Gaussian in (x, y, z) with 
one fixed variance corresponding to the cone angle measurement and two free variances that compensate 
CAPS prediction infidelities. In this case, for unbounded isovelocity ocean models, the integral of the 
representation is over the surface of a cone with vertex at the acoustic center of the array, axis along 
the array, and half angle equal to the measured conical angle, instead of a line integral over a ray as 
for simple azimuthal bearings. For bounded non-isovelocity ocean models, the rays comprising the locus 
of the cone are distorted by internal refraction and boundary reflections into a manifold whose detailed 
structure is determined by the acoustic model. Generalizing the geometric density term used in the 
EMAP formulation to other sensors with limited observability (in the statistical sense) would seem to 
present few intrinsic conceptual difficulties. 

17 



Acknowledgments 

The authors thank Marcus Graham and John Baylog, both with the Naval Undersea Warfare Center, 
for their many stimulating conversations and comments. 

References 

[1] R. L. Streit, "Bearings-Only Target Motion Analysis With Propagation Loss Models of Uncertain 
Fidelity," Proceedings of the Third International Conference on Theoretical and Computational 
Acoustics, Newark, New Jersey, 14-18 July, 1997, to appear. 

[2] D. Lerro and Y. Bar-Shalom, "Interacting Multiple Model Tracking With Target Amplitude Fea- 
ture," IEEE Trans, on Aerospace and Electronic Systems, AES-29, 1993, pp. 494-509. 

[3] J. G. Baylog, Personal communication, Naval Undersea Warfare Center, Newport, RI, 15 July 1996. 

[4] A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum Likelihood from Incomplete Data via 
the EM Algorithm," Journal of the Royal Statistical Society, Series B, vol. 39, pp.1-38, 1977. 

[5] C. F. J. Wu, "On the Convergence Properties of the EM Algorithm," Annals of Statistics, 11, 1983, 
pp. 95-103. 

[6] R. A. Redner and H. F. Walker, "Mixture Densities, Maximum Likelihood, and the EM Algorithm," 
SIAM Review, 26(2), 1984, pp. 195-239. 

[7] G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions, Wiley k Sons, 1997. 

[8] D. M. Titterington, A. F. M. Smith, and U. E. Makov, Statistical Analysis of Finite Mixture 
Distributions, Wiley &: Sons, New York, 1985. 

[9] R. L. Streit and T. E. Luginbuhl, "Maximum Likelihood Training of Probabilistic Neural Networks," 
IEEE Trans, on Neural Networks, NN-5, 1994, pp. 764-783. 

[10] N. Bleistein and R. A. Handelsman, Asymptotic Expansion of Integrals, Holt, Rinehart, and Win- 
ston, New York, 1975. 

[11] R. G. Stansfield, "Statistical Theory of D.F. Fixing," J. IEE, London, pt. 3A, vol. 94, no. 15, 1947, 
pp. 762-770. 

[12] C. J. Ancker, "Airborne Direction Finding - The Theory of Navigation Errors," IRE Trans, on 
Aeronautical and Navigational Electronics, 1958, pp. 199-210. 

[13] A. Holtsberg, A Statistical Analysis of Bearings-Only Tracking, Doctoral Dissertation, Lund Insti- 
tute of Technology, Dept. of Mathematical Statistics, 1992. 

[14] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics, 3rd ed., 
Wiley & Sons, 1982. 

[15] R. J. Urick, Principles of Underwater Sound, 3rd ed., McGraw-Hill, New York, 1983. 

[16] A. Graham, Kronecker Products and Matrix Calculus with Applications, Wiley & Sons, New York, 
1981. 

18 



A Variety of PMHTs 

Peter Willett, Yanhua Ruan Roy Streit 
University of Connecticut Naval Undersea Warfare Center 

Storrs, CT 06269 Newport, RI 02841 

Abstract 

The PMHT is an algorithm of considerable beauty. In practice, its performance turns out to be 
at best similar to that of the PDAF in most cases; and since the implementation of the PDAF is less 
intense numerically the PMHT has been having a hard time finding acceptance. The task, therefore, 
is to "make the PMHT work". 

The PMHT's problems its "nonadaptivity" to poor track quality, "narcissism" in the face of a 
string of apparently missed detections, and "over-hospitality" to clutter. In this paper we show 
modifications on the original basic PMHT which offer some improvement. We explore, among other 
things, the use of "homothetic" measurement models; the "end-point" and "start-point" PMHTs, 
which modify the PMHT assumptions such that the estimation goal is the track at only one point; 
maneuver-based PMHTs, including those with separate and joint homothetic measurement mod- 
els; a modified PMHT whose measurement/target association model is more similar to that of the 
PDAF; PMHTs with eccentric and/or estimated measurement models. The above are improvements 
on the basic PMHT based on modifications of the underlying model. We also offer basic-PMHT 
implementations with aided convergence. 

1    Introduction 
Both the multi-hypothesis tracker (MHT) and probabilistic data association filter PDAF [1, 2] track 
imperfectly-detected targets in clutter via a hard-association model. That is, these algorithms enumerate 
the possible associations between measurements and target(s), and evaluate which is best. And because 
there are a great many such associations a full enumeration is computationally infeasible, hence for each 
algorithm the search is suboptimal. 

The PMHT [3] makes modification to the measurement model. The PDAF and MHT assume, quite 
rightly, that a target can generate at most one measurement per scan; the PMHT sacrifices this constraint, 
and posits the measurement/target association process as independent across measurements. By doing so, 
it is able to render a fully-optimal (under a modified assumption) tracker. The associations become soft - 
in fact, governed by their posterior probabilities - and the integer-programming problem of target tracking 
is rendered continuous and amenable to an iterative "hill-climbing" method via the EM algorithm. The 
PMHT has much in common with the EM algorithm as applied to the estimation of parameters in a 
Gaussian mixture. 

The PMHT is a very nice algorithm, in our opinion. It is probabilistically-sound (all the "bad" 
parts of the PMHT are out in the open in the original assumptions), and it is easily extensible. This 
extensibility has been exploited in a number of ways, such as those dealing with multiple targets [4], 
nonlinear models [5], and target-maneuver [6, 7]. It is very likely that this easy extensibility will be the 
aspect to the PMHT which provides it a wider audience and acceptance. 

However, as of yet the PMHT has not managed to "beat" the simple PDAF in the game of lost-tracks. 
Therefore, in this paper, we propose to exploit the PMHT's easy extensibility to attempt its improvement. 
We develop a series of model-varied PMHTs and test them; since our goal is straightforward, we test 
in the most straightforward manner possible, by simulation in a linear Gaussian environment, with one 
target, imperfect detection, and clutter. 



In the first section we discuss in some detail our perception of the PMHT's problems: its lack of 
adaptivity to a track being lost, its inability to sense an impending track loss, and its tendency to 
welcome several clutter measurements as a single detection of high accuracy. We then dwell briefly on a 
variety of different modifications on the PMHT: there are fifteen PMHT variations in all. We test them, 
and conclude. Many details are left out of this paper: for the interested reader, please see [8]. 

It will be seen, unfortunately, that no modification on the PMHT is uniformly superior to the simple 
PDAF; in certain situations no PMHT beats the PDAF. However, it will be seen that in very adverse 
tracking environments several PMHTs are much improved, offering, for example 50% lost tracks versus 
the PDAF's 80%. 

2    PMHT Problems 

The weakness of the PMHT is in its dependence on a good track-initialization. If initialized on the 
correct trajectory and allowed to iterate, the PMHT will perform very well indeed. However, reliance on 
some clairvoyant initialization is not a desirable property in a tracking algorithm, and while the PMHT 
is not incapable of recovering from a poor initialization, its tendency to be satisfied with a relatively 
minor likelihood-function local peak is a problem. There are a number of reasons why the PMHT is 
particularly prone to this, and while all are inter-related and in any case could be explained away as 
poor initialization, it is instructive to consider them separately that modifications can be made. 

clrtfftion 
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Figure 1: Illustration of the non-adaptivity of the basic PMHT: true detections are shown as o's, false 
alarms as D's, the PMHT's internal estimate of its state error covariance as the larger ellipses, and the 
measurement error covariances which control the w's are shown as smaller dashed ellipses. Note both 
that the PMHT's state error covariances have shape controlled by the measurement covariances (both 
are circular in this plot); and that while the state error covariances increase in size, the u;'s are sought 
over a fixed-size volume. 

2.1    Non-Adaptivity 

Before examining the PMHT, let us consider the behavior of the PDAF. The PDAF forms posterior 
probabilities of each measurement being associated with the current track (called the ß's in [1]) by 
computing the probability of each detection under an assumption of Gaussianity, with mean the predicted 
value of the measurement, and with covariance that of the innovations, usually denoted S. On an intuitive 
level, therefore, if the current track estimate from the PDAF is apparently poor, the resulting "large" 
S will force an adjustment in the posterior probabilities such that a wider field of view is encouraged; 
that is, when the track is looking poor, the PDAF looks further afield for a valid measurement. If this 



action occurs soon enough and there is a valid un-missed measurement nearby, then a "rescue" of the 
track is effected; if not, then S grows without bound and the track is declared lost. With the PMHT, 
regardless of the quality of the current state estimate the posterior probabilities that measurements are 
track-generated is controlled by the measurement covariance R. There is no adaptivity whatever, and 
the PMHT is to a large extent incapable of rescuing itself from a currently-poor track estimate. This is 
illustrated in figure 1. 

PMHT 

PDAF 

Figure 2: Illustration of a difference between the PDAF and PMHT: the former's state estimation 
covariances are adjusted in shape by the data, while the latter's are adapted only in size, not shape. 

A further aspect to this non-adaptivity is through the estimation covariance shape. Specifically, the 
spread of its validated measurements enters the PDAF update as its "spread of the innovations" term, 
and the internal PDAF state estimate covariance (the P) adjusts its shape to reflect it. There is no 
mechanism at all for the PMHT to have other than spherical P's. This is illustrated in figure 2. 

2.2 Narcissism 

Further examination of figure 1 illustrates another PMHT problem: even a single false-alarm near an 
incorrect track estimate is satisfactory to the PMHT, and the lack of a reasonable number of validated 
detections does not faze it. This willingness to believe that its track is progressing normally in the face 
of overwhelming evidence to the contrary is certainly related to the "nonadaptivity" of the search for 
valid measurements discussed in the previous subsection. 

2.3 Hospitality 

In both the PDAF and PMHT the estimation covariance that would appear at scan t in the absence 
of any measurement at scan t is reduced by an amount corresponding to the perceived quality of the 
measurement(s) at scan t. Consider the case that there are several "valid" measurements. In the 
case of the PDAF the spread-of-the-innovations terms amounts to an admission of confusion by the data 
association step, and the perceived measurement quality is low. For the PMHT, however, we have R < R. 
The situation is presented schematically in figure 3. Intuition suggests that the PDAF behavior is in 
most tracking situations reasonable, while that of the PMHT is not, since the plurality of measurements 
hints that some must be clutter. 
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Figure 3: Illustration of the effect of multiple "valid" measurements on the PDAF and PMHT. As 
this number increases beyond unity, the PMHT perceives a high-quality "multiple" measurement (i.e. 
R < R, a result which intuition suggests is incorrect. 

3    Fixing the PMHT 

3.1    The Homothetic PMHT 

The homothetic PMHT, discussed previously in [10, 4], is a modification on the basic PMHT model such 
that measurements at scan t can come any Gaussian density having mean x(t) and variance {KpR}p=1. 
Typical values used are P = 2, with «i = 1 and «2 = 3. The "homothetic" nomenclature derives from 
"having the same mean"; that is, the model has been altered from having one target to P targets, and EM 
MAP estimation proceeds under the constraint that each of these models has the same track {x(t)}J=1. 

Figure 4:   Illustration of the eccentric measurement covariance ellipses assumed under the "Spirograph" 
homothetic PMHT model. 



3.2    The Spirograph PMHT 

"Spirograph" refers to a children's toy, an aid to the drawing of flower-like designs of concentric ellipses 
which are rotated relative to each other. Essentially this is a more-involved homothetic PMHT. Whereas 
the homothetic PMHT assumes that measurements at scan t can come any Gaussian density having 
mean x(i) and variance {KpR}^=1, the variances in the case of the spirograph PMHT can be any of 
{RpJ-p-!- As illustrated in figure 4 we use P = 3, with Ri = R, and the other two eccentric ellipses 
with respectively major and minor axes lying in the direction of (currently-estimated) PMHT motion. 

true trajectory 

false alarm 

Figure 5:    Illustration of the eccentric measurement covariance ellipses encouraged by a track estimate 
which is diverging from the true trajectory, under the adaptive homothetic model. 

3.3 An Adaptive Homothetic PMHT 

In this case we have P — 2, with the first (p = 1) homothetic model the standard (R) one, and the 
second (p = 2) a measurement noise model which is estimated from the data in the batch. 

3.4 The PMHT with a PDAF Measurement Model 

There is a legitimate complaint that the PMHT measurement model, in which measurement/track associ- 
ations are independent across all measurements, is unrealistic. For the case of a single target modification 
of the PMHT to the PDAF mesaurement mode is straightforward. 

3.5 A Detection-Oriented PMHT 

The basic PMHT's narcissism discussed earlier stems at least partly from its inability to realize that a 
string of missed detections is inappropriate. We therefore consider modifying the PMHT such that there 
must be at least one detection in P scans of data - or at least by making the event that all P scans of 
data contain nothing but false alarms infeasible. 

3.6 The Endpoint PMHT 

It is arguable that the PMHT's goal of track estimation - that is of estimation of {xs(t)}^=1 - is 
incompatible with the true aims of target tracking. If a set of scans from t = 1 to t = T is available, a 
reasonable assumption is that the most-recent data is in scan T, and estimation of the entire trajectory 
which led to xs(T) is unnecessary. If this is accepted, then the basic PMHT model, in EM terms, can 
be modified such that we have (for a single target) 
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Figure 6: Illustration of the covariances used to calculate the IU'S under the endpoint PMHT. These are 
given as the innovation covariances (the S's) derived from a Kaiman smoother with initial conditions x(l) 
and covariance P(l), and x(T) with covariance 0 - and no measurements. Note that these covariances 
wax and then wane as the scan number increases. 

X = x(T), 

Z — {zr(£)}, where zr(£) is the rth measurement vector at time t, 

K = {{{fcr(£)}rii}£=ii {x(*)}^Ti1}' where kr(t) is the target from which the rth measurement at time 
t arises. 

Thus, the state previous to the current scan is moved from an estimation goal (i.e. X) to nuisance 
variables (i.e. K). 

This may appear a very significant modification, but in fact the implementation of the endpoint 
PMHT is very similar to that of the basic PMHT. The main difference is that the expectation is now 
taken also over the now-unwanted intermediate trajectory variables. 

BCtCCtlGQ 

Figure 7: Illustration of the covariances used to calculate the w's under the startpoint PMHT. These 
are given as the innovation covariances (the S's) derived from a linear model with initial conditions x(l) 
and P(l). Note that, as opposed to figure 6, these grow monotonically as the scan number increases. 



3.7    The Startpoint PMHT 

This is a variation on the endpoint PMHT: we have 

# = x(l), 

Z = {zr(t)}, where zr(i) is the rth measurement vector at time t, 

K, = {{{kr{t)}rLi}f=n {x(£)}£=2}i where kr(t) is the target from which the rth measurement at time t 
arises. 

The main difference, therefore, is that estimation is of the start value x(l) rather than the end value 
x(T). This has somewhat less intuitive appeal, but there are advantages. One is that, as illustrated in 
figure 7, is that the "look" regions become uniformly larger as t increases, which, while not precisely 
adaptive, is more in keeping with the true uncertainty in the data. 

3.8 The Maneuvering PMHT 

It turns out that the PMHT model is easily augmented to incorporate an underlying Markov maneuver 
process - naturally, this appears as part of the augmented "nuisance" EM variables fC, which are split 
into {k1}, the original measurement/target association variables, and {fc2}, where k2{t) — I means that 
the (Markov) maneuver model is in state I at time t. 

3.9 The Maneuvering/Homothetic PMHT 

The maneuvering PMHT is again augmented to include a homothetic mesurement model. The random 
processes determining which of the homothetic measurement and maneuver process noises are active are 
independent. 

3.10 The Joint Maneuver/Homothetic PMHT 

The maneuver and homothetic processes, as above, are made joint. That is, either all measurements 
at scan t come from the low-variance measurement noise and the low-variance process noise is active 
between scan t — \ and t\ ot both have high variance. 

3.11 A Deflationary PMHT 

It has been stated previously that the major problem with the basic PMHT is of track-initialization; 
that is, the likelihood surface over which the basic PMHT performs its maximization is often so "busy" 
with local maxima that convergence to a good trajectory is unlikely. Thus, a means to smoothen the 
likelihood surface is sought. An approach which has been commonly applied is to innate the measurement 
covariance. It is hoped that if the initial EM iteration is performed with a large R, and subsequent 
iterations use smaller and smaller {deflating) R's, then the eventual convergence to the global maximum 
will be encouraged. The idea is similar to that of simulated annealing, although "downhill" steps are not 
used. 

3.12 A Homoscedastic PMHT 

Whereas "homothetic" refers to measurement noise models having the same mean and difference covari- 
ances, "homoscedastic" corresponds to identical covariances and different means. If a set of P offsets 
{5xp(£)}p=1 is specified, then we have 

p{z,x) = P(x(i))nP(x(«)ix(t-i))nn 
t=2 t=lr=l 

P 
^TipA/" {*.(«); H[x(t) + fiXp(t)],R(t)} 
•P=I 

(1) 



This means that measurements can come from a variety of points offset from the true trajectory, and 
the intention is that an increased "look" region can be so obtained. To retain some degree of faith to 
the original model, we take 8x\(t) = 0; the other offsets are generated as Gaussian with zero mean and 
covariance P(t). 

4    Results 

4.1    Model and Parameter Values 

We use a two-dimensional kinematic model with position-only measurements. Some notes and parameter 
values: 

• The inter-scan time is At — 30 seconds. 

• We have am = 100 meters. 

• We explore varying process noises: ap = .0001, ap = .001, and ap = .01. 

• We explore various probabilities of detection: Pd G {50%, 70%, 90%}. 

• We explore various clutter densities, A £ {10-5,5,10-6 5}. 

• We choose a track length T = 30 scans of data. 

For the most part, targets begin their trajectories at scan t = 0 (explained shortly) with position 
coordinates (0,0) and velocity coordinates (5,5) meters per second, corresponding to 13.8 knots. We also 
examine the cases in which the initial velocities are (1,1) and (20,20) meters per second. 

Some further details follow: 

Time-Initialization. We use two-point time-initialization. 

Declaration of Lost Tracks. We declare a track lost if 

(x?(T)-xre(T))2 + (xS(r)-xrue(T))2   >   2(4am)2 (2) 

in which the subscripts 1 and 3 refer to the two position coordinates. 

RMSE. We compute the root mean square error in the obvious way, with two exceptions. First, we 
do not use tracks considered to have been lost. Second, we give only the RMSE for the final scan 
t = T of data. 

Clutter. For each scan a Poisson random variable is generated with parameter XV, in which A is the 
clutter density and V denotes the (square) volume over which the false alarms are to be generated. 

Monte Carlo Iterations. All simulations are on the basis of 200 Monte Carlo simulation runs. The 
exception to this is the PDAF, for which 500 runs are used. 

Volume. This "volume" refers to the region V (two-dimensional, in our case) over which false-alarms 
are generated. For the basic PMHT and the PDAF, as long as V is both not too small and encloses 
the target, there is little concern. However, for some of the PMHT varieties, particularly those 
such as the homothetic and deflationary models, an inaptly-chosen region can cause significant 
problems. To avoid the "carry-along" phenomenon we center the clutter at the origin rather that 
at the true trajectory. 



4.2    The Results 
We test the various PMHT's described earlier, and also the PDAF, in: 

• A = 10-5-5, initial speed 13.8 knots, Pd £ {50%,70%,90%}, ap e {.01,.001,.0001}, am = 100 - 
pictured in figure 8 with Pd = 90% and ap = .0001; 

• A = 10~6-5, initial speed 13.8 knots, Pd € {50%, 70%, 90%}, av G {.01, .001, .0001}, am = 100 - 
pictured in figure 9 with Pd = 90% and ap = .01; 

A number of other situations are discussed in [8] and are referred to in the sequel. 
The results in terms of in-track percentage are given in respective tables 1, and 2, Further results in 

terms of RMSE for non-lost tracks are given in tables 3 and 4. We attempt to digest these in table 5. 
This lists the average rank (rank 1 is best, rank 16 is worst) for each of the sixteen algorithms tested, 
in each of the 63 situations in which the tests were run (in [8]), in terms of lost tracks and of RMSE for 
non-lost tracks. 

We have the following comments: 

PDAF. This tracker, unfortunately from our point of view, is almost consistently the best. Exceptions 
appear only to be in the case of very heavy clutter and maneuvering targets, situations in which 
certain of the PMHT algorithms perform better but not excitingly. 

PMHT without sliding. This is the basic form of the PMHT, performed on batches of length 6 which 
overlap by exactly one sample, and tracks do not grow. Generally the performance of this is inferior 
to other PMHTs. However, it is seen that when tracking is working, the RMSE is low. 

Sliding PMHT. This is the basic PMHT, performed on sliding batches of length 12, with a skip 
parameter of 3 scans. In most cases this is better than the basic PMHT with fixed batches; but 
other PMHTs have better performance. All PMHTs except the first use such a sliding window and 
batch length. 

Homothetic PMHT. This simple modification improves the PMHT enormously in almost all cases. 
Naturally, due to the increased size of the assumed measurement noise, the RMSE is comparatively 
large. 

Spirograph PMHT. It is somewhat surprising that this version of the PMHT is not promising, and 
appears to be worse than the sliding PMHT. 

Adaptive/Homothetic PMHT. This modification shows very little promise. While its rank perfor- 
mance is reasonable, its performance in heavy clutter, in slow-moving, and in fast-moving target 
situations is abysmal. 

PMHT with a PDAF Measurement Model. It was expected that there was little difference be- 
tween the PMHT measurement model and that of the PDAF, and indeed that was found. 

Detection-Oriented PMHTs. Particularly the second of these, in which the event that no detections 
arrived in P = 3 scans was made infeasible, was a strong performer. Its results were similar to 
those of the homothetic PMHT. This is a promising PMHT. 

Endpoint PMHT. This PMHT is not promising. While its ranks are reasonable, its better perfor- 
mances tended to occur in situations in which the PDAF did much better. It is apparently strongly 
negatively affected both by a fast target and by a taxget with high process noise. 

Startpoint PMHT. Particularly in terms of RMSE, but also to a lesser degree in lost-tracks, this is a 
promising PMHT. 

Maneuver PMHT. Despite its rank statistics this PMHT does well, particularly in those situations in 
which the PDAF is poor. 



Independent Homothetic/Maneuver PMHT. This PMHT is better than the previous, and is a 
particularly strong performer. 

Joint Homothetic/Maneuver PMHT. The performance of this PMHT was disappointing. It is felt 
that some degree of tuning is possible, hence it will not be abandoned. 

Deflationary PMHT. The performance of this convergence-aided PMHT is not uniformly good, but 
is intriguing. Of particular note is its strong performance for the slow-moving target, and corre- 
spondingly awful performance for the fast-moving target. 

Homoscedastic PMHT. This convergence aid works well, but is perhaps slightly inferior to the defla- 
tionary PMHT. Improvement may be possible with some tuning. 

5    Summary 

The PMHT is a neat tracking algorithm, but has not shown its superiority to the simple PDAF. In this 
paper we have tried an extensive number of modifications to the PMHT, with the goal of finding those 
which are promising enough to pursue and "tune". The situation explored is of a single kinematic model 
in clutter, and is linear both plant and measurement. We have attempted to keep parameters in line 
with active sonar practice. 

Before describing the modifications the basic PMHT's "problems" were discussed in some detail. 
These include the PMHT's "nonadaptivity", meaning that unlike the PDAF its look-region is not data- 
adaptive; the PMHT's "narcissism", meaning that the PMHT is unwilling to believe its track lost even in 
the face of seemingly convincing evidence to the contrary in terms of a long string of missed detections; 
and the PMHT's "hospitality" to a perceived plurality of detections, many of which can be clutter. 

We make a number of observations: 

• The PMHT is improved by a sliding batch. 

• The PMHT is improved by a homothetic measurement model. 

• Whatever problems the PMHT may have, they do not appear to have much to do with the mea- 
surement model: if a PDAF-like measurement model is employed there is little difference in per- 
formance. 

• A version of the PMHT which makes the event that several scans in a row are all detection-free 
infeasible is a particularly strong performer, and worthy of further study. 

• A version of the PMHT which "tracks" only beginning value of the batch appears to be a strong 
performer, not only in terms of lost tracks but also, somewhat surprisingly, in terms of RMSE. 

• The use of a maneuver model, particularly a maneuver model with a homothetic measurement, 
seems to be a good idea even when the target does not maneuver. The ability of the track to 
execute a maneuver appears to encourage the PMHT to be less narcissistic. 

• A PMHT model in which the maneuver process and homothetic model are probabilistically linked 
has not shown good performance. However, our experience is that this is a particularly hard PMHT 
to tune, and we will explore it further. 

• Our attempts at automatic aiding of convergence of the PMHT to a global likelihood maximum 
were not successful. 

• Several PMHTs are consistently better than the PDAF in terms of RMSE for tracks which are not 
lost. 

• In extremely adverse situations certain PMHTs, especially those noted above and particularly the 
maneuvering PMHTs, are much better than the PDAF in terms of lost tracks. 



• For the most part, the PDAF remains a better and more dependable tracker than the PDAF. 

The last bullet is the most important, and is also the most disappointing. However, we are encouraged 
by certain of the PMHTs above, and shall continue attempting improvement. 

Acknowledgement 

This research has been supported by the Office of Naval Research through NUWC, Division Newport, 
under contract N66604-98-M-3735. 

References 
[1] Y. Bar-Shalom, X.R. Li, Estimation and Tracking: Principles, Techniques and Software, Artech 

House, Inc., 1993. 

[2] Y. Bar-Shalom, X.R. Li, Multitarget-Multisensor Tracking: Principles and Techniques, YBS Pub- 
lishing, 1995. 

[3] R.L. Streit and T.E. Luginbuhl, "Probabilistic Multi-Hypothesis Tracking", NUWC-NPT Technical 
Report 10,428, February 1995. 

[4] C. Rago, P. Willett, and R. Streit, "Direct Data Fusion Using the PMHT", Proceedings of the 1995 
American Control Conference, June 1995. 

[5] E. Giannopoulos, R. Streit, and P. Swaszek, "Probabilistic Multi-Hypothesis Tracking in a Multi- 
Sensor, Multi-Target Environment", em First Australian Data Fusion Symposium, November, 1996. 

[6] A. Logothetis, V. Krishnamurthy, and J. Hoist, "On Maneuvering Target Tracking via the PMHT", 
Proceedings of the Conference on Decision and Control, December 1997. 

[7] Y. Ruan, P. Willett, and R. Streit, "The PMHT for Maneuvering Targets", Proceedings of the 1998 
SPIE Conference on Signal and Data Processing of Small Targets, April 1998. 

[8] P. Willett, Y. Ruan, and R. Streit, "A Variety of PMHTs"   University of Connecticut Technical 
Report TR 98-04, October 1998. 

[9] R. Hutchins, private communication, April 1998. 

[10] C. Rago, P. Willett, and R. Streit, "A Comparison of the JPDAF and PMHT Tracking Algorithms", 
Proceedings of the 1995 International Conference on Acoustics, Speech, and Signal Processing, May 
1995. 



8000 

2000 

-4000- 

-6000 

-8000'  
-flOOO 

* ? * "   *   ? 

-4000 -2000 2000 4000 8000 

Figure 8: The true, PMHT and PDAF tracks with A = lO"55, Pd = 90%, ov = .0001, am = 100, and 
initial speed 13.8 knots. Detections are o's, and the final scan only of clutter (i.e. t = T) is shown, with 
clutter returns denoted by x. 
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Figure 9: The true, PMHT and PDAF tracks with A = 10-65, Pd = 90%, ap = .01, am = 100, and 
initial speed 13.8 knots. Detections are o's, and the final scan only of clutter (i.e. t = T) is shown, with 
clutter returns denoted by x. 



<7p = .01 a„ = .001 <7„ = .0001 
Pd = .5 Pi = .7 Pi = .9 Pi = .5 Pi = .7 Pi = .9 Pi = .5 Pi = .7 P„ = .9 

PDAF 1 4 19 4 4 29 3 10 29 
PMHT (no slide) 3 7 14 6 10 20 13 12 18 
PMHT (sliding) 6 8 23 10 18 30 6 8 26 

Homothetic PMHT 9 13 32 6 16 25 8 12 18 
Spirograph PMHT 4 10 20 5 10 18 7 15 16 

Adap./Hom. PMHT 0 0 2 0 2 2 1 1 3 
PMHT (PDAF meas) 4 14 25 8 9 25 0 17 33 
D.O. PMHT (P=l) 7 11 24 9 18 33 7 11 28 
D.O. PMHT (P=3) 6 7 21 10 17 29 5 8 25 

Endpoint PMHT 0 0 1 25 43 54 24 41 54 
Startpoint PMHT 4 11 19 9 18 40 14 21 21 
Maneuver PMHT 19 32 50 25 34 50 24 35 58 

Man. PMHT (horn) 16 41 50 19 37 59 20 33 59 
Man. PMHT (jnt) 2 7 13 2 10 24 4 12 9 

Deflat. PMHT 6 16 37 15 14 34 7 18 28 
Homosc. PMHT 11 31 25 13 23 34 11 21 30 

Table 1: Illustration of the performance of the various tracking approaches, in terms of in-track per- 
centage. The situation here is of initial speed 13.8 knots, clutter density IO-55 per square meter, and 
am = 100 meters. 

<7p = .01 <7P = .001 CTp = .0001 
Pi = .5 Pi = .7 P« = .9 P* = .5 Pd = -7 Pd = .9 Pd = .5 Pi = .7 Pd = .9 

PDAF 60 86 94 66 90 95 64 89 94 
PMHT (no slide) 32 46 67 45 62 69 40 65 64 
PMHT (sliding) 33 57 75 47 67 72 46 71 76 

Homothetic PMHT 53 70 91 51 76 87 49 68 81 
Spirograph PMHT 42 56 76 42 58 76 43 67 69 

Adap./Hom. PMHT 6 23 42 15 39 62 19 31 49 
PMHT (PDAF meas) 34 64 70 44 54 74 38 65 74 
D.O. PMHT (P=l) 19 45 74 25 45 82 23 50 81 
D.O. PMHT (P=3) 35 68 81 49 70 76 46 75 80 

Endpoint PMHT 9 12 31 50 69 88 57 76 89 
Startpoint PMHT 31 61 89 47 64 81 44 59 85 
Maneuver PMHT 35 55 71 45 67 88 57 69 84 

Man. PMHT (horn) 49 68 87 49 68 85 46 80 93 
Man. PMHT (jnt) 40 68 91 43 73 89 40 71 86 

Deflat. PMHT 40 61 85 44 72 90 52 74 85 
Homosc. PMHT 43 71 88 54 72 82 37 67 81 

Table 2: Illustration of the performance of the various tracking approaches, in terms of in-track per- 
centage. The situation here is of initial speed 13.8 knots, clutter density IO-6,5 per square meter, and 
am = 100 meters. 

o-p = .01 Op = .001 Op = .0001 
Pd = .5 Pd = .7 Pd = .9 Pd = .5 Pd = .7 Pd = .9 Pd = .5 Pd = .7 Pd = .9 

PDAF 410 410 260 390 360 230 410 350 230 
PMHT (no slide) 300 280 230 330 190 120 180 120 110 
PMHT (sliding) 140 220 200 230 200 130 270 220 130 

Homothetic PMHT 330 270 220 390 330 240 310 210 230 
Spirograph PMHT 260 300 180 280 290 200 390 280 360 

Adap./Hom. PMHT — — 350 — 230 320 290 520 280 
PMHT (PDAF meas) 310 170 170 190 170 140 300 150 100 
D.O. PMHT (P=l) 230 270 170 180 270 120 280 210 140 
D.O. PMHT (P=3) 140 220 170 240 150 130 250 220 130 

Endpoint PMHT — — 70 160 130 90 190 150 110 
Startpoint PMHT 350 330 300 260 190 170 260 210 160 
Maneuver PMHT 140 180 140 160 120 80 200 120 100 

Man. PMHT (horn) 260 210 180 260 210 120 250 140 170 
Man. PMHT (jnt) 200 260 250 290 340 350 340 340 240 

Deflat. PMHT 280 180 170 250 170 90 260 230 140 
Homosc. PMHT 220 240 170 240 140 150 350 170 130 

Table 3: Illustration of the performance of the various tracking approaches, in terms of RMSE at the 
final scan for those tracks not considered lost. The situation here is of initial speed 13.8 knots, clutter 
density IO-5'5 per square meter, and am = 100 meters. 



<7p = .01 <TP = .001 crp = .0001 
Pi =   5 Pa = .7 Pa = .9 Pa =   5 Pd = .7 Pa =   9 Pa=  5 Pa = .7 Pd = .9 

PDAF 150 100 90 120 70 50 120 60 50 
PMHT (no slide) 120 110 110 130 70 70 90 80 60 
PMHT (sliding) 150 100 100 140 80 60 120 90 70 

Homothetic PMHT 170 130 110 190 100 80 180 90 110 
Spirograph PMHT 140 110 120 170 110 100 190 160 110 

Adap./Hom. PMHT 330 330 320 370 390 310 360 370 360 
PMHT (PDAF meas) 140 100 80 80 70 60 90 70 60 
D.O. PMHT (P=l) 200 170 120 280 220 120 240 250 140 
D.O. PMHT (P=3) 130 120 100 130 90 70 140 90 70 
Endpoint PMHT 140 110 120 80 80 80 120 90 80 
Startpoint PMHT 220 200 230 140 70 70 140 90 60 
Maneuver PMHT 110 130 110 80 90 80 120 90 80 

Man. PMHT (horn) 160 170 110 150 130 90 160 130 100 
Man. PMHT (jnt) 200 170 140 190 160 120 230 180 110 

Deftat. PMHT 90 100 90 100 60 60 120 70 60 
Homosc. PMHT 110 110 100 90 70 60 130 70 60 

Table 4: Illustration of the performance of the various tracking approaches, in terms of RMSE at the 
final scan for those tracks not considered lost. The situation here is of initial speed 13.8 knots, clutter 
density 10~6,5 per square meter, and am — 100 meters. 

in-track RMSE 

PDAF 4.6 7.3 
PMHT (no slide) 11.6 5.9 
PMHT (sliding) 8.8 6.4 

Homothetic PMHT 5.9 11.3 
Spirograph PMHT 10.6 11.2 

Adap./Hom.  PMHT 7.8 7.7 
PMHT (PDAF meas) 8.9 7.5 
D.O. PMHT (P=l) 8.2 5.7 
D.O. PMHT (P=3) 5.2 10.2 
Endpoint PMHT 8.1 9.6 
Startpoint PMHT 10.7 3.9 
Maneuver PMHT 11.8 12.0 

Man. PMHT (horn) 8.7 12.9 
Man. PMHT (jnt) 13.7 15.3 

Deflat. PMHT 5.3 4.1 
Homosc. PMHT 5.9 5.0 

Table 5:    The average rank of each of the 16 algorithms in each of the 63 situations tested, 
column is in terms of in-track percentage, and the second in terms of RMSE. 

The first 


