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ABSTRACT 

This thesis creates a new algorithm to replace the Neumann-Pfeffer Thunderstorm 

Index (NPTI). The NPTI was created to provide an objective means of determining the 

probability of a thunderstorm occurrence. The 45th Weather Squadron at Patrick AFB, 

Florida, uses the NPTI to provide the probability for the occurrence of thunderstorms at 

Cape Canaveral. The probability is used for mission planning and resource protection, 

and increasing the accuracy of NPTI can potentially save billions of dollars for the United 

States space program. 

Stratified logistical regressions are performed and probability equations are 

derived for May through September using upper air data and surface observations for 

Cape Canaveral. A logistical regression of NPTI was also performed. Variables include 

combinations of the climatological frequency of thunderstorms, the conditional 

probability of thunderstorms, the u and v components of the 850-mb, 700-mb, and 600- 

mb winds, the 800-mb to 600-mb mean relative humidity, the K index, and the 

Thompson index. The two resulting algorithms are compared to NPTI and persistence, 

and are evaluated based on their ability to forecast thunderstorms correctly. The primary 

performance metrics used to evaluate the algorithms are hit rate, threat score, probability 

of detection, false alarm rate, Brier skill score, and ratio skill score. 

The investigation results indicate that the new algorithms are suitable for use by the 

45th Weather Squadron and are an improvement on NPTI. The results show that the 

best algorithm, Stratified Logistic Thunderstorm Index (SLTI), has a 57% better hit rate, 

ix 



a 51% better threat score, and a 68% better probability of detection than NPTI. In 

addition SLTI shows a 59% lower false alarm rate than NPTI. Because of the significant 

improvement over NPTI, the algorithm should be prepared for operational use at Patrick 

AFB. 



1.       Introduction 

Weather has always played an important part in launch and recovery operations in 

the aerospace field, but in recent years the accuracy of forecasts has become paramount. 

Accidents resulting from launches during poor weather have highlighted the need for 

good forecasts. Fundamentally, accurate predictions are needed to maximize safety and 

reduce costs. Therefore, a review of current techniques with the intent of improving 

accuracy can have a real value, especially if an improvement is realized. This research 

project focuses on one method used in the prediction of thunderstorms and has the goal of 

increasing its accuracy. 

1.1       Overview 

Cape Canaveral, Florida, is the origin of many of this nation's space missions and 

these missions are very sensitive to weather conditions. Therefore, weather thresholds 

play a large part in daily operations. See Figure 1 for the geographic location of Cape 

Canaveral. In addition to the forecasts for normal resource protection, each launch 

vehicle has its own forecast criteria. One criterion of special interest is the probability of 

having a thunderstorm on station. Typically the 45th Weather Squadron (WS) at Patrick 

Air Force Base is responsible for providing the daily thunderstorm forecast. The 45' WS 

uses the Neumann-Pfeffer Thunderstorm Index (NPTI) to predict the possibility of 

exceeding the thunderstorm threshold. The NPTI is an algorithm which, when supplied 

with five input variables, calculates the probability of a thunderstorm being reported on 

station on the current day. The NPTI is designed to be valid for the current day, and 

decisions about operations are made from this probability. 
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Figure 1  Map of Florida 

The NPTI was created over 25 years ago and recent updates brought to light some of its 

inaccuracies (Howell, 1998). This thesis focuses on finding a more accurate algorithm 

for calculating the probability of a thunderstorm. 

1.2       Background 

Weather affects all aspects of space operations, including rolling out, launching, 

and recovering vehicles. Unfortunately, the Cape Canaveral complex is located in an 

area which generates one of the highest frequencies of thunderstorms in the world (Falls 

et al., 1971). This means a high priority must be placed on thunderstorm forecasting. 



1.2.1       Thunderstorms 

The high frequency of thunderstorms in this area is related to the presence of all 

the necessary ingredients for thunderstorm formation: moisture, instability, and lift. The 

first of these, moisture, is abundant throughout Florida. This enhanced moisture is due in 

part to the presence of two major bodies of water on either side of the state. However, 

Cape Canaveral has additional moisture available because of its location on a peninsula 

surrounded by rivers. Figure 2 shows the extent of the availability of water. The Cape's 

southerly location also affects the second ingredient, instability. The warmer temperatures 
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Figure 2 Map of Cape Canaveral 



of the subtropics supplement the warm summer temperatures and increase the instability 

of the atmosphere. The third ingredient, lift, is provided by more complex mechanisms. 

Easily tracked and analyzed synoptic features normally provide lift, but during summers in 

Florida, these features are rare (Byers and Rodebush, 1948). When there are no synoptic 

features, smaller scale interactions-primarily the sea breeze-take over. How the sea 

breeze interacts with the local environment becomes a predominant parameter in 

determining lift and therefore predicting thunderstorms (Byers and Rodebush, 1948). 

1.2.2       Neumann-Pfeffer Thunderstorm Index (NPTI) 

Forecasters at the 45th WS, at Patrick Air Force Base, use the Neumann-Pfeffer 

Thunderstorm Index (NPTI) as the primary tool to determine the probability of 

thunderstorms. The NPTI algorithm, developed in 1971 by C. J. Neumann, calculates the 

probability of a thunderstorm and outputs a yes or no thunderstorm forecast. It uses five 

input variables from the morning (1200 Universal Coordinate Time (UTC)) radiosonde. 

They are the daily climatological thunderstorm probability, the 850-mb winds, the 500-mb 

winds, the 600-mb to 800-mb mean relative humidity, and the Showalter Stability Index. 

Each variable has been regressed linearly by month against the dependent variable, daily 

thunderstorm frequency. This frequency is the day-by-day record of whether or not a 

thunderstorm occurred. The coefficients obtained from the regression of each variable are 

used as variables in a further regression (Neumann, 1971; Hope and Neumann, 1972). 

The NPTI was developed using data from 1951 through 1969 in a statistical analysis. In 

1987, a correction was applied to the coefficients in the algorithm, and the form with the 

corrected coefficients is the one used currently (Roeder, 1998). 



1.3       Statement of the Problem 

How can forecast accuracy be increased? The inclusion of an additional two 

years of data into the regression analysis has been shown to offer no significant 

improvement in the accuracy of NPTI (Howell, 1998). Furthermore, it has been shown 

that the NPTI has no increase in accuracy over forecasting with persistence (Neumann, 

1971; Howell, 1998). Persistence uses the last occurring event as the forecast for the next 

event. This thesis reports on three alternative methods to improve NPTI's forecast 

accuracy. The first method uses alternative variables in the regression to obtain a new 

algorithm. The second method uses nonlinear regression techniques. Finally, the third 

method separates the data into categories and regresses the categories separately. 

1.3.1       Objectives 

The goal of this thesis is to improve the objective forecast accuracy of afternoon 

thunderstorm predictions at Cape Canaveral. The aim is to create an algorithm with 

improved accuracy over current methods of forecasting thunderstorms. Because 

persistence performs better than NPTI, an improvement over persistence corresponds to 

an improvement over NPTI. Therefore, a hit rate of 76% is necessary to be 95% 

confident of improving on the 71% hit rate of persistence found in this study. The 

increased accuracy would lead to increased safety of operations and a reduction of costs 

incurred by avoiding decisions based on incorrect forecasts. 



1.3.2       Scope 

This thesis is limited to the study of predicting summer thunderstorms at the Cape 

Canaveral complex in eastern Florida. Thunderstorm occurrence, from 1950 to 1996, 

recorded by the official observation site and the lightning detection system are used for 

the dependent variable in a regression. While the observation site has moved several 

times, these small geographical shifts are considered insignificant (Neumann, 1970). The 

research includes only thunderstorms that occurred during the convective season, which 

for the purposes of this thesis, is defined as the summer months from May through 

September. This period also corresponds to the period for which Neumann created the 

NPTI, and is also comparable to timeframes of Howell's study (Howell, 1998). During 

this convective season, there is a shortage of transient synoptic mechanisms that cause 

lift. This lack of synoptic forcing allows the probability of the thunderstorms to be 

closely linked to the state of the local environment as opposed to the state of an air mass 

that moves into the region. 

The data for the study includes surface observations and radiosonde data from 

1950 to 1996. Radiosonde data from 0900UTC to 1600UTC represent the upper air 

environment. Surface observations from 1100UTC to 0400UTC (0700-2400L) are used 

to determine thunderstorm frequency and for verification of regression algorithms. 

Ninety percent of the data is used to perform regression and analysis while ten percent is 

for verification. The verification data is randomly selected and removed from each 

database. The final algorithm predicts the probability of a thunderstorm at Cape 

Canaveral for a given day. This forecast is valid from 1100UTC to 0400UTC (0700- 

2400L). 



1.3.3       Benefit of solving the Problem 

Every year, various mission activities at Cape Canaveral are delayed or cancelled 

due to weather. Correct weather forecasts can reduce the number of unnecessary delays 

and cancellations, while incorrect forecasts can increase the physical and capital risk 

involved with operation in bad weather. In the Cape Canaveral area, there are over $8 

billion in facilities. Furthermore, there are over 5000 pre-launch operations per year; and, 

of an average 60 attempted launches per year, only 35 are successful (Roeder, 1998). 

Also, the exposed nature of much of the outdoor work necessary for launch operations 

makes weather an important decision factor when considering the safety of personnel. It 

is estimated to cost $1 million just to de-fuel then prepare the space shuttle again after a 

thunderstorm is forecast (Roeder, 1998). In addition, because of the nature of how 

launch vehicles acheive orbit, missing a launch window can mean missing an 

opportunity, possibly forever. Therefore, reducing the number of delays or cancellations 

due to incorrect forecasts is a high priority. Increased accuracy can save lives, money, 

and time. 

1.4       Procedure 

The research for this thesis involves three main tasks. These tasks include data 

analysis and manipulation, regression, and verification. The first task, data analysis and 

manipulation, is an important part of preparing for the regression of the data. Without 

good preparation of the data, relationships between variables could be overlooked. The 

second task uses the data to obtain an algorithm for forecasting thunderstorms, and the 



third task evaluates the algorithms created. S-plus® andMathcad" are used for all 

statistical calculations. 

The first task can be broken down into organizing the dependent data, searching 

for independent variables, finding correlations between variables and the dependent data, 

and finding categories in which to regress the data. Once the data are obtained from the 

observations, the measured values are used as variables, or further variables are derived 

from combinations of them. Unfortunately, some measured values are missing from the 

observations. These missing values are replaced by interpolated values. Next, the 

correlation between variables and thunderstorm frequency is determined. This 

correlation provides insight into which variables work best for regression. Finally, the 

data is divided into various categories. Each category, such as wind sector or month, is 

regressed separately. This stratification allows the accuracy of the regression to be 

maximized for each division. 

The second task, regression, provides the algorithm for use by the 45l WS. 

Accuracy is improved by changing the method of regression. Neumann used linear 

regression for a linear fit, but a curvilinear fit is better because the dependent variable is 

dichotomous. Every value in the set of dependent variables is either 1 or 0. Because of 

this dichotomous nature, data is regressed against a logistic distribution which has a 

maximum of 1 and a minimum of 0. To compare the forecast ability of an algorithm 

created with logistic regression to an algorithm created with linear regression, the 

logistically regressed algorithm, Logistic Neumann-Pfeffer Thunderstorm Index 

(LNPTI), is computed using the same variables as NPTI. Another algorithm, the 



Stratified Logistic Thunderstorm Index (SLTI), is created by using the regressions 

derived from the stratified data. 

The final task, algorithm verification, determines which method is recommended 

for operational use. Verification is accomplished using the contingency table method 

(Wilks, 1995). The forecasts from each algorithm are verified with the independent data 

set and compared with persistence and the current NPTI. Only an algorithm showing 

significant improvement in forecast accuracy over the current NPTI is acceptable. The 

algorithm with the best skill score is the one recommended for use. 

1.5        Summary of Results 

Three new algorithms were created to forecast afternoon thunderstorms. They 

were objectively verified using standard measures of accuracy and skill scores. Four 

hundred thirteen independent events were used as a verification data set. The verification 

data was different than the regression data used to create the algorithms. The algorithm 

found to be the best, the Stratified Logistic Thunderstorm Index (SLTI), achieved a 78% 

hit rate. Using Ratio Skill Scores, STLI shows a 49% improvement over NPTI and a 

24% improvement over persistence. All other measures of accuracy showed similar 

results. The results show that the new algorithms produce forecasts that are correct more 

often than either NPTI or persistence. 



2.       Literature Review 

Studying thunderstorms is an ongoing project in the field of meteorology. This 

chapter will review previous research and explain some of the theoretical concepts used 

to forecast thunderstorms. The topics addressed include the generation of thunderstorms 

in Florida, current thunderstorm prediction techniques, and statistical theory used in this 

project. 

2.1       Thunderstorm Genesis 

A large number of studies have been made of the thunderstorm activity on the 

Florida peninsula.   Because of the large number of studies, almost every meteorological 

parameter has been recorded, tracked, analyzed, or graphed at some point. These studies 

have provided a much greater understanding of the processes that cause thunderstorms for 

this area. Some increase in forecasting accuracy can be attributed to improved 

observational capabilities such as better radar and satellite coverage. However, part of the 

increased forecasting accuracy comes from a better understanding of the meteorological 

processes involved. This section reviews some of the findings of these studies and 

outlines how the studies lead to the forecast techniques used today. 

The interest in Florida's weather is due to the frequency and regularity of its 

convective events. Even today, many of the thunderstorms are difficult to predict with a 

high degree of accuracy. The fact that Florida has the highest number of thunderstorms 

per year in the U.S. has been known for quite some time. In 1945, the United States 

Weather Bureau produced a report, using data as far back as 1906, showing Florida with 
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the highest average number of thunderstorm occurrences (Byers and Rodebush, 1948). 

Radar was used to produce an even finer scale picture of this frequency of occurrence 

(Frank et al. 1967). The variability of the frequency of thunderstorms, both spatially and 

temporally, has also been studied. Byers and Rodebush (1948), Gentry and Moore 

(1954), and Frank et al. (1967) looked at the organization of convective activity with 

respect to synoptic-scale forcing. These early studies tried to show that forecasting from 

purely a synoptic point of view was not sufficient. 

Thermal mechanisms could not sufficiently explain how thunderstorms in Florida 

were created, in cases where no synoptic forcing was present, so a dynamic explanation 

was pursued. Byers and Rodebush (1948) pointed out that thermal instability is present 

continuously, but does not represent a mechanism sufficient to cause thunderstorms. They 

postulated that low-level horizontal convergence, due to the sea breeze, was the necessary 

ingredient for thunderstorm generation. Further studies began focusing on sea breezes. 

By the early 1950s, the interaction of the sea breeze with the local environment 

was beginning to be explained with models and observations. Gentry and Moore (1954) 

used precipitation records to estimate the correlation of the sea breeze to the temporal and 

spatial location of convection. Estoque (1962) explained the interaction of the sea breeze 

with the synoptic wind field. He pointed out that if the synoptic flow is onshore before the 

onset of the sea breeze the resulting sea breeze is weaker because advection inhibits a 

large rise in air temperature. Frank et al. (1967) used radar data to show that the location 

of thunderstorms moves across the peninsula with the sea breeze. Sea breezes became the 

accepted reason for the formation of thunderstorms. Unfortunately, forecasting the sea 

breeze is as difficult as forecasting thunderstorms. 
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Continued study of the sea breeze refined the understanding of its structure and 

increased the knowledge of its mechanics. Reed (1979) differentiated between local scale 

sea breezes and peninsular scale sea breezes by measuring the strength of the diurnal 

oscillation of wind velocity. Nicholls et al. (1991) showed soil moisture to be an 

important factor in the speed of movement of the sea breeze front. More average soil 

moisture slows the speed of the sea breeze front, while less average moisture increases the 

speed. Xian and Pielke (1991) found the strength of the sea breeze circulation to be 

associated with the initial static stability and the rate of heating. Further study of the 

interaction of the sea breeze with the synoptic wind field by Bechtold et al. (1991) showed 

displacement of the sea breeze front in the direction of the synoptic flow. 

Many of the recent thunderstorm studies focus on how the interaction between the 

sea breeze and the environment affects convection. Four scales of processes were 

suggested for the cause of thunderstorms in Florida (Cooper et al, 1982). These scales 

were synoptic, peninsular, mesoscale, and convective scale. Cooper described how the 

precursor conditions at each of the scales can determine the dynamics of the other scales. 

This creates a feedback loop which continues until surface heating stops at sunset. Lopez 

et al. (1984) found that the vertical distribution of moisture is related to the degree of 

convective activity. More moisture in a layer up to 650mb correlated to more 

thunderstorms. Lopez et al. (1984) and Bauman et al. (1997) found that the stabilizing 

effect of warming and drying, caused by the subsidence from the Atlantic High reduced 

the chance of thunderstorms despite a strong sea breeze. These studies provided insight 

into when and where sea breezes form. 
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2.2       NPTI Prediction Technique 

The work done by Charles Neumann in the late 1960's is the basis for the 

Neumann-Pfeffer Thunderstorm Index used today. Neumann published three reports, one 

of which became a journal article, which describe the specific thunderstorm environment 

at Cape Canaveral. In addition, the papers report on the factors found useful in 

forecasting thunderstorms. This section reviews those factors and describes the methods 

used to create the NPTI. 

The first report by Neumann in 1968 provided a climatological study of 

thunderstorm occurrences in the Cape Canaveral area. It provided a detailed description 

of the frequency of thunderstorms. Neumann found the distinct shape of the probability 

distribution suggests that thunderstorm probability is dependent on what day of the 

summer it is. Days were numbered sequentially from May through September, and then 

the distribution was smoothed to more clearly show the trend.   Neumann used a 15 day 

moving average to smooth the data (See Figure 3). The equation used to obtain this 

average, A, is given by equation 1, 

n+l 1      «+/ 

, * (1) 
k=n-l 

where n = day number, 
Tk = frequency of thunderstorm occurrence for that day number. 

One discovery was the shape of the distribution of thunderstorm occurrence. This led to 

the day number being used as a regression variable to incorporate climatology into the 

forecast. 
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Figure 3  15-Day Average of Thunderstorm Frequency 
(adapted from Neumann, 1971) 

The second report by Neumann in 1970 provided a climatological study of the 

3000-foot winds in the Cape Canaveral area. Wind direction and speed were transformed 

to u and v components. This avoided the discontinuity created as wind crossed from 360° 

to 0° and allowed the wind to be converted to a scalar quantity. The 850-mb winds were 

chosen to represent the 3000-foot winds used in the 1970 study. This level was used to 

allow information derived from the sea breeze to be exploited as a predictor and was also 

found to have a large correlation to thunderstorm occurrence. The 500-mb winds were 

chosen to represent the upper level synoptic regime. This regime could indicate the 

presence of subsidence. Neumann fitted the u and v components of the winds at both 

850-mb and 500-mb, for each month, to a binomial distribution. These binomial 

distributions were then used as the semi-major and semi-minor axes of an ellipse. 

Neumann used the ellipses as functions to set limits on the values used in the regression. 

This bounding was necessary because the Regression Estimation of Event Probabilities 

(REEP) used to create a prediction equation can result in unrealistic probabilities for 
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extreme values of variables. The key result of his report was a better understanding of 

how local wind correlated with thunderstorms. 

Finally, Neumann chose the remaining variables after calculating the correlation 

of many kinds of atmospheric parameters to thunderstorms. Two factors correlated the 

most to thunderstorm occurrence. They were the mean 800-mb to 600-mb relative 

humidity and the Showalter Stability Index (SSI). Both factors measure the stability of 

the atmosphere and were included as regression variables. 

Neumann used two techniques to account for the nonlinear trends in the data. The 

first technique used second and third order polynomials to represent each independent 

variable in an initial regression. These polynomials allowed the coefficients to better fit a 

curve to each variable. The second technique was to regress the results of the first 

regression as opposed to regressing all the polynomials at once. The polynomial function 

used as an initial regression of the 850-mb winds is given by equation 2, 

2   .   _   A      2 
850 f (Xj ) — f (s850, tg50) - a0 + ajSgjo + a2tg50 + a3s850tg50 + a4s850 + a5t 

3 2 2 ./ 
+ a6S850   + a7S850  ^850 "*" a8S85ot850    + a9*-850 

where Xi = 850-mb winds, 
s = the u wind component in kt, 
t = the v wind component in kt, 
ao..9 = the regression coefficients. 

The polynomial function for the initial regression of the 500-mb winds is given by 

equation 3, 

f (X2 )= f (u300,v500)= b0 + b,u50o + b2v500 + b3u500v50O + b4u500
2 + b5v 

(2) 

2   ,   ,_ 2 
500 (3) 

3 2 2 3 
+ b6u300 + b7u500 v500 + b8u500v500 + b9v500 

where X2 = 500-mb winds, 
u and v = the u and v wind components in kt, 
bo..9 = the regression coefficients. 
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The polynomial functions for 800-mb to 600-mb mean Relative Humidity, 
number are given by equations 4, 5, and 6 respectively, 

SSI, and day 

f(X 3)^00+^X3+c2X3
2+c3X3

3 
(4) 

f(X 4)=d0 + d,X4 + d2X4
2 

(5) 

f(X 5)=e0+eiX5+e2X5
2 

(6) 

where X3 = 
X4 = 

x5 = 
C0..3, 

= Mean relative humidity, 800-mb to 600-mb in 
= Showalter Stability Index in degrees Celsius, 
= Day number, 
Ü0..2, and eo..2 = regression coefficients. 

percent, 

The combination of the results of the previous regressions used in a final regression is 

given by equation 7, 

P = g0 + glf (X, )+ g2f (X2 )+ g3f (X3 ) +g4f (X4 ) +g5f (X5 ) (7) 

where P = Probability of thunderstorm occurrence, 
g0 5 = the regression coefficients, 
X1..X5 = the results of the previous functions 

The final result represents the probability of thunderstorms for that afternoon. Using the 

REEP method, any results greater than 1 or less than 0 are rounded off to fit within that 

interval. 

2.3       Conditional Climatological Frequency 

The probability for the occurrence of a thunderstorm can also be calculated from 

the historical sequence of thunderstorm events. To understand this method of 

forecasting, it is important to understand how a historical sequence is related to 

conditional climatology and persistence. Once this relationship is understood, a forecast 
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using the sequence can be derived. This forecast can be thought of as a kind of multiple- 

day persistence. 

Conditional climatology can be used as an alternative to probability derived from 

simple relative frequency. The method for computing both is similar. As an example, 

the relative frequency of thunderstorm days can be calculated from the ratio of days 

thunderstorms occurred to the total number of days observed. Similarly, the conditional 

probability is the ratio of the number of days with thunderstorms and some other event to 

the total number of days with thunderstorms. In this case, the conditional probability is a 

subset of the relative frequency. Using the conditional probability gives a more accurate 

forecast; however, the parameter used as a condition must be statistically related to the 

occurrence, or the conditional probabilities will be the same with or without the 

parameter (Wilks, 1995).   This leads to the consideration of persistence as a possible 

parameter. 

Persistence should be understood before being used as a forecast variable. 

Statistically, persistence describes the dependence among successive events. For that 

reason, another name for persistence is positive serial dependence (Wilks, 1995). Using 

this concept, if a thunderstorm occurred yesterday, the probability for a thunderstorm 

today is higher. This dependence on prior events implies that the second event is 

conditional to the first with a partial cause-and-effect relationship. Therefore, persistence 

is a conditional probability (Wilks, 1995). 

For weather forecasting, the conditional probability for persistence is often 

rounded to 0% or 100%; however, an exact value can be calculated using climatological 

relative frequencies. This calculation is made from a set of recorded prior events. For 
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persistence, two climatological relative frequencies are determined: the relative 

frequency of thunderstorms given no thunderstorms yesterday, and the relative frequency 

of thunderstorms given thunderstorms did occur yesterday. The fact that the frequencies 

are found not to be equal shows there is dependence between the occurrence of 

thunderstorms yesterday and thunderstorms today. The magnitude of the difference 

between the two probabilities is a measure of the strength of dependence (Wilks,1995). It 

is the strength of the dependence that is exploited to improve upon the persistence 

method of forecasting. 

For this study, determining the conditional probability given multiple days of 

occurrence or nonoccurrence required recording the pattern of events. The method 

created uses a sequential record, spanning a specific number of days, showing the pattern 

of when a thunderstorm did or did not occur. A day with a thunderstorm occurrence is 

labeled "1," and a day without a thunderstorm occurrence is labeled "0." Ordered with 

the most recent day on the left, thunderstorms yesterday but no thunderstorms the day 

before would be recorded as "10." This represents a 2-day pattern of persistence. Six 

days might appear as "110010." It is these patterns that become the condition for 

thunderstorms. For persistence, if the equation for the conditional probability (p) of 

thunderstorm occurrence today given a thunderstorm occurrence yesterday is 

p\=Yx{xt =l|XM=l}     , (8) 
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then conditional probability for two day persistence is 

p0ro=Pr{x,=0|XM=0,X,_2=0} (9a) 

p001=Pr{X(=0|XM=0,X,_2=l} (%) 

pl10 = Pr{x, = l|XM=l,X(_2=o} (9c) 

pln= ?r{Xt= l\Xt_^l,Xt_2=l}. m 

These conditional probabilities are also known as transition probabilities in a first order 

Markov Chain (Wilks, 1995). The multi-order conditional probabilities are found by 

expanding the first-order Markov chain, 

pl,=Pr{x,= 1 1*^=1,X,_2=j} 
; (10) 

PV.*=Prfc= * |^,-i =i. ^,-2 =j .X,-3=k , ,Xt_m=x} 

The variables ij,k,..x represent the historical sequence of thunderstorm occurrence. The 

probability calculated in this manner would represent the probability of a thunderstorm 

given a pattern of occurrence in the past. This probability could be used as the forecast as 

opposed to persistence's 0% or 100% forecast. 

The conditional nature of thunderstorms is expected given the assumption that the 

environment causing the thunderstorm does not change or move from day to day, and 

synoptic changes are rare or occur after long time periods. This leads to the question of 

how far back the dependence is statistically significant. The occurrence of thunderstorms 

may be dependent on not only the previous day but also on days prior. The next step is to 

find the conditional probability given different patterns of occurrence over a longer 

period and test the statistical significance. Presumably, the farthest time period back that 

can be used is the time scale of synoptic changes. At this time, thunderstorm occurrence 

is no longer dependent on prior occurrences, but on some synoptic change. 

Unfortunately, the availability of data often restricts the scope of the test. 
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2.4      Regression Methods 

There are many methods for finding functions to fit curves to data, and the worth 

of each is dependent on the application. Constraints such as availability of data, type of 

data, and type of response dictate which regression method to use. This section gives a 

further description of the regression method used by Neumann and explains the use of 

logistic regression as an alternative. 

2.4.1       Multiple Multivariate Linear Regression 

The Regression Estimation of Event Probabilities (REEP) is a regression method 

often used in meteorology to find a function with prediction capabilities. The results of 

the function created by this method of regression are considered to be an approximation 

of probability of occurrence (Wilks, 1995). Unfortunately, unrealistic probabilities can 

Level 1 Regression 

yi = A0 
+ Ax xi + ■A2 (Xi)2 

i 

y2 = B0 + By x2 + B2 (x2)
2 

Level 2 Regression ' 

p = Co + Ci yi + c2: h 
Figure 4 Multiple Multivariate Regression Functions 
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result when values outside those originally regressed are used for prediction. In the event 

a result is found to be above 1 or below 0, the probability is assumed to be 1 or 0, 

respectively. This regression method was used by Neumann to find a set of prediction 

algorithms. 

Multiple multivariate linear regression is an extension of REEP that takes into 

account some forms of nonlinear response. To do this, the regression is divided into two 

levels. In the first level, a polynomial function of each variable is created. This is done 

to include the nonlinear response of each parameter in the regression. Then each function 

is linearly regressed against thunderstorm occurrence. The outcome for each regression 

in level one is a set of coefficients for each polynomial function. These coefficients are 

used with their corresponding function to calculate a new value. The values calculated 

from each function are passed to level two where they are the variables for a new 

multivariate function (Figure 4). When the level two function is regressed against 

thunderstorm occurrence, another set of coefficients is created. These level two 

coefficients are the slope and intercepts of the surfaces represented by the functions. 

These coefficients are used with the level two function to calculate the probability of a 

thunderstorm. Once all the regressions are complete and the coefficients known, the 

procedure to find the probability of a thunderstorm is relatively simple. First, enter the 

meteorological variable from independent data into its corresponding level one function. 

Insert the results from all the level one functions into the corresponding variables in the 

level two function. The result of this function represents the probability of thunderstorm 

occurrence and is continuous from 0 to 1. 
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Continuous Linear Response 

Occur   (1) 

Dichotomous 
Observations 

Not Occur  (0) /i»»» » * 

Continuous Logistic Response 

y1 = B0 + Bx  Xx  + ... 

(1) 

(0) 

Dichotomous ^ 
Observations     J2 ~~ 

_ ^ 1 +e 

(50+BlXl + ...) 

(VSlXl + -> 

Figure 5 Examples of Regression Responses 

2.4.2       Logistic Regression 

Logistic regression is a more exact method of modeling nonlinear dichotomous 

weather events. When the dependent variable is not continuous, the response function 

should be curvilinear (Neter et ed., 1983). To meet this constraint, logistic regression 

maps the data to an asymptotic logarithmic distribution.   Accordingly, logistic regression 

has the advantage of being automatically constrained to a range of probabilities between 

0 and 1 (Figure 5). This characteristic is due to the asymptotic nature of the exponential 

function used as the model distribution. The distribution modeled in Figure 5 is given by 

equation 11, 

E(Y): 

1 + e 

JA. + AX 
(ii) 

where  ß0 = a coefficient that affects placement of the curve laterally, 
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/?! = a coefficient that alters the slope of the curve (Dillon and Goldstein, 1984). 

Multiple multivariate logistic regression follows the same steps as multiple multivariate 

linear regression to arrive at a predictive function. 

2.5       Statistical Forecast Verification 

Statistical analysis is a necessary part of any forecasting process because no 

forecasting method is perfect. To estimate the effectiveness of a forecasting tool, some 

measure of accuracy must be used. This section describes the statistical measures used in 

this research, which are common in the field of weather forecasting. 

The 2X2 contingency table is a simple method of displaying all outcomes for a 

binomial process. Figure 6 shows how each quadrant is defined and gives the 

calculations for marginal frequencies. N represents sample size. For a perfect forecast, b 

Observed 

Yes          No 

Yes 
Forecast 

No 

a b a + b 

c d c + d 

a + c b + d N = 
a+b+c+d 

Figure 6 Two-By-Two Contingency Table 
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and c would contain entries of 0 with a + d = N (Wilks, 1995). For example, each time a 

thunderstorm was forecast it occurred, and each time no thunderstorm was forecast none 

occurred. The numbers entered in each block of a contingency table are dependent on a 

yes or no forecast. However, most forecasts are a probability, not yes or no. To use the 

contingency table it is necessary to define a probability above which the event is forecast 

to occur and below which the event is forecast not to occur. This probability is called a 

cutoff value. Once the cutoff value is decided, the probability forecasts can be 

categorized as yes or no forecasts, and the contingency table can be completed.   It is 

important to understand that the accuracy of the forecast and the values for each block of 

the contingency table are highly dependent on the choice of cutoff value. 

The contingency table can be used to calculate various measures of accuracy. Hit 

rate (HR), given by equation 12, calculates the percent of correct forecasts for the total 

number of forecasts and is the most easily understood and widely used (Wilks, 1995): 

HR = —-100 
N . (12) 

It is calculated from the contingency table and describes the general quality of the 

method. For thunderstorm forecasting, it describes how often a forecast is correct. The 

best hit rate is 100% and the worst is -100%. 

Threat score (TS), given by equation 13, 

TS = 100 
a + b + c (13) 

measures the percent of correct forecasts for the number of times an event occurred or 
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was forecast to occur (Wilks, 1995). Threat Score, sometimes called critical success 

index (CSI), does not have some of the undesirable qualities of hit rate. Hit rate describes 

the ability of a method to get all forecasts correct while TS calculates the ability of a 

method to get all forecasts correct after removing correct "no thunderstorm" forecasts. 

TS does not give credit for forecasting a thunderstorm not to occur but it counts against 

the method if it,s wrong. 

Sometimes it is beneficial to know the accuracy of a "no thunderstorm" forecast 

as well. This can be provided by using Threat Score No (TSN). TSN calculates the 

ability of a method to get all forecasts correct after removing correct "yes thunderstorm" 

forecasts. Equation 14 calculates the percent of correct "no thunderstorm" forecasts after 

removing correct "yes thunderstorm" forecasts: 

TSN = 100 
b + c + d        . (14) 

The best threat score is 100% and the worst 0%. 

The Probability of Detection (POD), given by equation 15, 

POD = —^--100 
a + c (15) 

measures the ratio of correct "yes thunderstorm" forecasts to the number of times a 

thunderstorm occurred (Wilks, 1995). The best POD is 100% and the worst is 0%. 

The Probability of Detection No (PODN), given by equation 16, 

PODN = -^—-100 
b + d (16) 
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measures the ratio of correct "no thunderstorm" forecasts to the number of times a 

thunderstorm did not occur (Wilks, 1995). The best PODN is 100% and the worst is 0%. 

The False Alarm Rate (FAR), given by equation 17, 

FAR = 100 
a + b (17) 

measures how often an incorrect "yes thunderstorm" forecast was made versus the 

number of times "yes thunderstorm" was forecast (Wilks, 1995). The best FAR is 0% 

and the worst is 100%.   The False Alarm Rate No (FARN), given by equation 18, 

FARN = -^—-100 
c + d (18) 

measures how often an incorrect "no thunderstorm" forecast was made versus the number 

of times "no thunderstorm" was forecast (Wilks, 1995). The best FARN is 0% and the 

worst is 100%. 

The Skill Score (SS), is given by equation 19, 

ssref=   A"Aref   -100 
A       - A "■perf     "ref ng\ 

where A = measure of accuracy for the method of interest, 
Aref = measure of accuracy for the method used as reference (usually persistence), 
Aperf = measure of accuracy for a perfect forecast method. 

SS compares a forecast method to a reference forecast method such as persistence. It 

measures how much better or worse than the reference forecast the forecast of interest is. 

The best SS is 100% and the worst is 0%. 
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The Bias Ratio, given by equation 20, 

BIAS = ^ 
a + c (20) 

shows whether a forecast method is over forecasting or under forecasting an event. Over 

forecasting creates a bias greater than 1 while under forecasting creates a bias less than 1. 

A perfect forecast has a bias of 1. 

The Heidke Skill Score (HSS) compares the hit rate of the forecast method to the 

hit rate from a random forecast (Wilks, 1995). Given by equation 21, 

HSS = 2^^) 
(a + cXc + d)+(a + bXb + d) (2i) 

HSS is a simplified skill score which uses as a reference forecast method the hit rate of a 

random forecast with the same marginal distributions as the verification data set. The hit 

rate from a random forecast is calculated from the marginal probabilities in the 

contingency table of the verification data set. A perfect score is 1. 

The Kuipers Skill Score (KSS) is similar to HSS. It compares the hit rate of two 

forecast methods. Given by equation 22, 

ad-bc 
KSS = 

(a + cXb + d) (22) 
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KSS is also a skill score, but it uses the hit rate of an unbiased random forecast for the 

reference forecast method (Wilks, 1995). A perfect score is 1 and the worst score is -1. 

The Brier Score (BS), is given by equation 23, 

BS = i-£(yt-ot)
2 

n
   *=i (23) 

where n = number of cases, 
yk = forecast probability, 
ok = observed probability (1 if occurred, 0 if did not occur). 

The BS measures the accuracy of a probabilistic forecast for a dichotomous event (Wilks, 

1995). It has the advantage of calculating a measure of accuracy without first specifying 

a cutoff value. The Brier Score is equivalent to the mean-squared error. A perfect Brier 

Score is 0 and the worst is 1. 

The Ratio Skill Score (RSS) shows how one forecast method compares to a 

reference forecast method. It compares the Brier Score of the forecast method of interest 

to the Brier Score of the reference forecast method. RSS, given by equation 24, 

RSS  =  BSref~BS  .100 

BSref (24) 

where BS = the Brier Score of the forecast method of interest, 
BSref = the Brier Score of the reference forecast. 

RSS is the same as the skill score with a perfect forecast of 0. 

To show that the result of the forecast is dependent on the forecast and is not 

random, a %2 test is performed. This gives the forecast validity and shows that the result 
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is statistically significant. First, the expected value for each block of the contingency 

table is calculated using equation 25, 

E.. =-—L 

N (25) 

where Ey = the expected value of the i,j block of the contingency table, 
N = total sum, 
ni = marginal sum of the ith row, 
rij = marginal sum of the jth column. 

2 :. The expected value is used in the Pearson's Chi Squared Test to find % in equation 26, 

x2 = ±±^-^ 
i=l j=l V (26) 

where Etj = the expected value of the i,j block of the contingency table, 
tiij = the value of the i,j block of the contingency table. 

The X2 is compared to its distribution using one degree of freedom (Everitt, 1992). % 

greater 3.843 shows there is dependence between the forecasts and observations at the 

95% confidence level. The larger %2 is the stronger the dependence (Devore, 1995). 
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3.       Methodology 

This chapter describes the several lengthy steps involved in improving the NPTI. 

The first section describes methods of data organization and the data manipulation used 

to obtain several arrays of observations. The second section describes how additional 

variables were derived from the basic information provided by the original data. The 

third section describes the analysis of the data to determine the best variables to be 

regressed. The fourth section explains how the data was regressed to create algorithms, 

and the last section explains how the various methods were verified. 

3.1       Data 

It is important to understand the type and makeup of the data used for this 

research, and to be aware of how it was manipulated. This allows for an understanding of 

what the final algorithm represents and how it can be affected by various changes in the 

variables. The data were obtained through several different sources, combined, and 

reorganized to allow division into different categories. Then the data were placed into an 

array and, where possible, missing values were interpolated. The first subsection 

describes where the data comes from and its content and format. The second subsection 

describes how the data were modified and what the benefit was. The last subsection 

describes how the data were organized. 
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Table 1 Surface Observations Available 

May June July August September 

Years with        1950-1977    1950-1977    1950-1977    1950-1977    1950-1977 
1982 1982 1982 1982 1982 

Observations    19g? _ 19%    1937 -1996    1987-1996     1987-1996     1987-1996 

3.1.1       Data Acquisition 

Surface observations were obtained from the Air Force Combat Climatology 

Center (AFCCC). The observations contained the standard meteorological parameters 

such as temperature, pressure, winds, humidity, weather description, and visibility. 

Table 1 shows which years had observations available for each month. The surface 

observations were stored as a single text file with each line of text containing all the 

elements of a single observation. Because the valid time of the forecast is from 1100 

UTC to 0400 UTC the next day (0700 hours to 2400 hours Eastern Standard Time), only 

thunderstorms documented within this time period were considered. Each observation 

was screened for the acronyms TS, TSRA, +TSRA, and -TSRA for each day from May 

to September of each year. A day with a thunderstorm occurrence was annotated with a 

1, while a day with no thunderstorm occurrence was annotated with a 0. Appendix A 

contains the Fortran code for screening the surface observations. 

Upper air observations taken by rawinsonde were also obtained from the AFCCC 

during a previous research effort. Not every day had an observation and some years had 

no observations at all. A large gap in data occurred from 1971 to 1982. 
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Table 2 Upper Air Observations Available 

May June July 

1950 -1969 
1983 - 1989 
1992 -1995 

August 

1950-1969 
1983 
1985 -1988 
1992 -1995 

September 

1950-1969 
1983 - 1988 
1992 -1995 

Years with 

Observations 

(including 

missing data) 

1950 - 1970 
1983 - 1985 
1987, 1988 
1991 -1995 

1950-1969 
1983-1985 
1987, 1988 
1991 -1995 

Years with 

Observations 

(after missing 
data removed) 

1950-1952 
1954 
1956 -1970 
1983 - 1985 
1987, 1988 
1994 

1950 -1953 
1955 -1969 
1983 -1985 
1987, 1988 

1950-1969 
1983-1988 

1950 -1969 
1983 
1985-1988 

1950 - 1969 
1983-1988 

Table 2 shows which years had upper air observations available for each month. The 

upper air observations were stored as a single text file, and each line of text represented 

one pressure level of a specific sounding. The elements recorded for each pressure level 

include height, temperature, dew point, wind direction, wind speed, and relative 

humidity. Some elements were missing for various pressure levels, and every sounding 

measured different pressure levels in addition to the mandatory pressure levels. In 

addition, the hours soundings were available were different from day to day. The NPTI 

algorithm forecasts thunderstorms for the day using information available from that 

morning. Therefore, only data within the interval from 0900 UTC to 1600 UTC were 

used. The set of observations from each hour was saved as a separate file. This allowed 

later divisions of data to be made more easily. Appendix B contains the Fortran code for 

screening the upper air observations. 

Because multiple years of surface observation records were missing, records of 

lightning strikes were used as a substitute to document thunderstorm occurrence. See 
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Table 1 for missing years. Lightning strike records from 1985 to 1997 were obtained, 

courtesy of Dr. Richard E. Orville, from Global Atmospherics Corporation. Of the years of 

lightning strike data available, only 1985 was missing surface observations. The data are a 

record of flash days, with a count of how many cloud-to-ground lightning strikes occur per 

day within a designated set of coordinates. Any day with a recorded lightning strike was 

interpreted as a thunderstorm day and annotated with a 1. Otherwise, it was assumed no 

thunderstorm occurred and the day was annotated with a 0. To validate this assumption, 

days with both with surface observations and lightning strike data were compared. The 

area bounded by the coordinates 28.2° N to 28.6° N and -80.3° E to -80.75° E resulted in 

the least error, less than 10%, between the two data sets and was used for the year without 

surface observations, 1985. Thunderstorm days transformed from lightning strike data 

were incorporated into the climatological frequency of thunderstorms derived from surface 

observations. With this data set, an extra year, 153 days, of information were added to the 

data available to be analyzed. 

3.1.2       Data Manipulation 

It is not uncommon for data to be missing from an upper air sounding. 

Unfortunately, to forecast using NPTI, every variable must have a value, or a result for 

the algorithm cannot be calculated. This means only soundings with all the required 

values present can be used. Therefore, it is important to ensure that as much missing data 

can be accounted for as possible. 

If the value for an element of a sounding is missing, the whole sounding does not 

necessarily need to be discounted. Even if the missing data are from a necessary level, 
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the surrounding data may provide a clue as to what the value for the missing piece of data 

might be. Assuming temperature and dew point are continuous across small distances, it 

is possible to account for missing data by interpolation. The accuracy of interpolation 

depends on how much data are missing and how close the nearest known data point is. 

The closer the pressure level of a known element is to the pressure level of the missing 

element, the more likely the interpolation will be accurate. 

To check this method of data replacement, data denial verification was 

accomplished. Soundings with no measurements missing were selected and saved in a 

separate data set. Those soundings then had measurements purposely deleted (withheld). 

Values were estimated for the deleted values using interpolation, and the difference was 

measured between the true (withheld) value and the interpolated value. Five hundred 

thirty-four soundings with no data missing below 300-mb were used in the verification. 

Also, 9 interpolation methods were tested for filling in missing data. These included: 

Linear interpolation Linear with climatology 

Cubic spline interpolation Cubic spline with climatology 

Averaging method Averaging method with climatology 

Minimum change method Minimum change method with climatology 

Temporal averaging 

Having a minimum mean square error was one condition for choosing which method to 

use. While the mean square error was lowest for cubic spline methods, it produced some 

extreme outlying errors. Figure 7 shows an example of when a method with a higher 

mean square error is better than a method with extreme outlying errors.   These outlying 

errors represent points at which the interpolation resulted in large over- or under- 

estimates for a value. Thus, minimizing the error at outlying data points (outliers) was 

34 



35 



Table 3 Mean Square Errors of Interpolation 

Location of Missing Data       Lowest Mean Square Error     Highest Mean Square Error 

1 point missing 
center of data set 

1 point missing 
end of data set 

7 points missing 

Temperature  0.452 °C Temperature  0.873 °C 
Dew point       1.473 °C Dew point      2.452 °C 

Temperature   0.693 °C 
Dew point      0.888 °C 

Temperature   3.388 °C 
Dew point       1.162 °C 

Temperature  0.660 °C Temperature   3.398 °C 
Dew point       1.610 °C Dew point      4.676 °C 

U 
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* 

Extreme Outlying Errors 

I 
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in   m 
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Figure 7 Outlying Errors 
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the second condition for choosing an interpolation method. Table 3 shows where the 

highest and lowest mean square errors occurred. 

It was found that interpolation accuracy also depended on the amount of data 

missing and on where within the observation the missing data occurred. In general, cubic 

spline interpolation was the most accurate if few points were missing. The more 

measured data points available, the more accurate the determination of the 1st and 2nd 

derivatives were. An accurate determination of the 1st and 2nd derivatives allows a more 

accurate estimate of a missing point. However, cubic spline interpolation also had some 

of the largest outliers. Linear interpolation was found to be more accurate than other 

methods of interpolation if many data points were missing or data were missing at the 

ends of the data set. Linear interpolation also had the fewest outliers. The characteristics 

of these two methods led to the creation of the minimum difference and averaging 

methods. The minimum difference method calculates both the cubic spline and the linear 

interpolations and uses the value which has changed the least from the closest known 

value. The averaging method uses the average of the cubic spline and linear 

interpolations. Using the minimum difference method resulted in a lower mean square 

error than linear interpolation and a lower number of outliers than cubic spline 

interpolation alone. Thus, the minimum difference method was chosen to recover 

missing data during the rest of the research. 

Two factors were considered for implementation of an interpolation method. The 

first factor was deciding how much data to interpolate. With interpolation, any number 

of points can be chosen; however, too many would be impractical. Due to memory 
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Table 4 Observations Available for Final Data Set 

May June July August September 

Final 1950-1970 1950-1969 1950-1969 1950-1969 1950-1969 
1985 1985 1985-1988 1985-1988 1985-1988 

Interpolated      1987j 1988 1937,1988 1994 1994 1994 
Data set 1994 

and disk space limitations, elements of pressure levels from lOOOmb to 500mb in 50-mb 

increments were chosen as the data points to be used. These levels also represent the 

mandatory data levels, except 925-mb, from the standard upper air rawinsonde. A second 

consideration in choosing which interpolation method to use was deciding how many 

missing points would be allowed before the observation was considered unusable. For 

linear interpolation, at least two other known points are needed, and three points are 

needed for cubic spline interpolation. To ensure a minimum of error, only observations 

with at least one data point below 800-mb, one data point between 600-mb and 800-mb, 

and one data point above 600-mb were used for interpolation. 

After all interpolation was complete and the days where interpolation could not be 

used were removed, 61 temperature interpolations and 1528 dewpoint interpolations were 

used to fill in missing data. This resulted in the recovery of 966 days, approximately 6 

years, of upper air observations. Table 4 shows the observations available after 

interpolation. 

3.1.3       Data Organization 

To keep track of observations and when they occur, a simple numbering system 

was created. This was done because observations were not continuous throughout the 
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year, and the number of days per month is different depending on the month.   Because 

the first day of interest is May 1st and September 30th is the last day of interest, days of 

summer were labeled 1 through 153. Each observation was assigned a day number 

corresponding to when during the summer the observation was taken. Observations were 

also assigned a number from 1 to 7191 which represented continuous numbering from 

1950 to 1996 excluding October to April. May 1st 1951 was numbered 154. This 

numbering system allowed upper air observations and surface observations to be easily 

combined. 

Once the upper air observations had been interpolated they were reorganized so 

that each observation filled a single row in an array. Additional information, such as the 

number of interpolations per observation and the number of known data points per 

observation, were also recorded for use later in the study. The rows could then be 

matched with the corresponding information about thunderstorm occurrence. With 6 

elements per pressure level and 11 pressure levels, 66 columns of upper air 

meteorological data were recorded. The end product was one array of numbers with rows 

representing an observation and columns representing an element type such as 

temperature or wind direction. 

3.2       Derived Variable Calculation 

With the measured data obtained from the observations, an additional three 

categories of data can be derived. These categories are thunderstorm indices, 

climatological frequency of thunderstorms, and multi-day persistence. Values for all 

three categories were calculated and incorporated into the data set to be regressed. The 
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first sub-section below lists the thunderstorm indices used, and the following two sub- 

sections explain how the climatological frequency and multi-day persistence patterns 

were derived. 

3.2.1       Thunderstorm Indices 

Thunderstorm indices are created from a combination of meteorological variables 

and are meant to show the likelihood of a thunderstorm under the given meteorological 

conditions.   A number of other parameters are calculated in an effort to insure all pieces 

of information with some possible predictive value were used. Equations for the these 

calculations were taken from the Air Weather Service (AWS) equation and algorithm 

guide (Duffield and Nastrom, 1983). Table 5 lists the thunderstorm indices and 

parameters computed for every observation and tested for possible use in the final 

algorithm. 

Table 5 Variables Derived From Upper Air Observations 

Thunderstorm Indices Other Meteorological Parameters 

Showalter Stability Index (SSI) Lifted Condensation Level (LCL) 
Lifted Index (LI) Convective Condensation Level (CCL) 
KIndex Mean Relative Humidity (1000-mb to 700-mb) 
Vertical Totals (VT) Mean Relative Humidity (600-mb to 800-mb) 
Cross Totals (CT) 500-mb Thickness 
Total Totals (TT) 700-mb Thickness 
Thompson Index (TI) 850-mb Thickness 
Microburst Day Probability Index (MDPI) 850-mb to 500-mb Thickness 

850-mb to 700-mb Thickness 
700-mb to 500-mb Thickness 
1000-mb to 500-mb Vertical Wind Shear 
700-mb to 500-mb Vertical Wind Shear 
1000-mb to 700-mb Vertical Wind Shear 
850-mb to 600-mb Vertical Wind Shear 
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3.2.2       Frequency Analysis 

Climatological frequency represents how often, over a specified number of years, 

a day has had thunderstorms. The frequency can also be calculated for other time periods 

such as weeks, months, or years. An example of a daily climatological frequency can be 

seen in Figure 8 which comes from the surface observations described in section 3.1.1. 

Each bar represents the total number of thunderstorm days that occurred on that day of 

the summer over a 38 year period. By dividing the total number of thunderstorms by 38, 

the climatic probability can be calculated. Converting and using this frequency as a 

probability assumes that the probability of a thunderstorm is in some part dependent on 

the time of year. Because there is so much variability from day to day in the frequency of 

thunderstorms, the question becomes: how small a time frame can a climatological 

probability represent and still be useful? Neumann used a 15-day moving average but 

claimed that a shorter moving average might be better (Neumann, 1968). By calculating 

the climatological probability for a number of time periods and using an independent data 

set to verify each one, the optimum time period can be determined. 
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Figure 9 Weight Function for Climatological Frequency 

For this study, a 15-day weighted moving average was chosen over a linear 

moving average. The probability using a 15-day weighted moving average was obtained 

using the equation 27, 

P = n    N 
,1 j£ ' vXi-* + T„+* / + T„ 

t ■Jk 
+ 1 

(27) 

where Pn = weighted moving average on the day number of interest 
n = day number of interest, 
T = frequency on day n, 
k = number of days distant from day n, 
N = total number of years averaged. 

Each day, except the day of interest, is weighted by .9/Jk .    The weighted days are 

summed, and the total is divided by the sum of the weights and by N. This method gives 

a decreasing weight to each day as shown in Figure 9. 
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Figure 10 15-Day Weighted Moving Average of Climatological Probability 

Figure 11  15-Day Linear Moving Average of Climatological Probability 

To account for the fact that data is not available to be averaged within the first and last 7 

days of the year, equation 29 was altered such that the summations used only 3-days. 

Figure 10 illustrates the increased resolution available using the weighted average 

method. Of particular interest were the twin local maxima of probability apparent at the 

end of June and the beginning of July. This trend was noted by Neumann during his 

analysis, but the additional data used in this research has reduced the strength of the 

maxima (Neumann, 1968). These maxima were apparent in 90% of the individual yearly 
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records, yet the trends were not captured using a linear moving average as displayed in 

Figure 11. Also, a local minimum in probability became apparent at the end of August. 

The climatological probabilities using the 15-day weighted moving average were 

substituted for the day number in the day number function used by Neumann. 

3.2.3       Multi-day Persistence 

The conditional climatology of the various patterns of persistence is calculated to 

allow the inclusion of persistence as a variable during regression. The patterns of 

persistence are a sequence of thunderstorm occurrence or nonoccurrence. A 

thunderstorm occurrence is recorded as a 1, while nonoccurrence is recorded as a 0. The 

pattern is read from left to right with the most recent occurrence on the left. For example, 

Oil would represent no thunderstorms occurring yesterday, but thunderstorms occurring 

on the two days prior. These sequences were recorded as both a binary and decimal 

value during the initial data screening for thunderstorms. See Appendix A for the Fortran 

source code for creating the historical sequence. Also the conditional probabilities were 

calculated without using the data saved for verification. The binary representation was 

used for easier comprehension. The decimal representation is used to calculate the 

conditional climatology of 2-, 3-, 4-, 5-, and 6-day persistence patterns for each of the 

five months, using the method described in section 2.3. A Mathcad® 7.0 program 

(Appendix G) performed the calculations. The resulting probabilities are used as a 

regression variable. 
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3.3       Statistical Data Reduction 

Because of the large amount of information available, various statistical analyses 

were used to determine the best regression variables. The less important variables were 

not considered for regression, so as to reduce the number of variables to a manageable 

number. The following sub-sections describe the two types of analysis used. 

3.3.1       Point Biserial Correlation Coefficient (Rpb) 

Correlation was used to describe the association between variables and the record 

of thunderstorm occurrence. The 10 variables with the highest correlation were 

considered for regression. Measuring the association between continuous variables and 

dichotomous variables requires a type of correlation called point biserial correlation 

(Gibbons, 1976). The point biserial correlation is a reduced form of the Pearson Product- 

moment Correlation. The point biserial correlation coefficient is given by: 

pb~^ * VEF^)
2
   ' (28) 

where n\ = number of thunderstorm occurrences, 
«o = number of nonoccurrences, 
n = total number of observations, 
Xj = mean of the variables paired with occurrences, 

X0 = mean of the variables paired with nonoccurrences, 

X = mean of all the variables 
X = variable of interest. 
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Table 6 Ten Highest Biserial Correlations 

Thunderstorm Indices Winds     Humidities 
Thompson Index   .371      850-mbU-wind -.307 700-mbRH         .307 
K Index               .360      900-mbU-wind -.303 650-mbRH         .303 
SSI                     -.291       800-mb U-wind -.296 1000-mb to700-mb RH .293 

950-mbU-wind -.294 

This type of correlation was used on all the variables in the data set and on 6 polynomial 

variations of the variables (Appendix F). The highest correlations are shown in Table 6. 

Correlation analysis was performed on the conditional climatology and the 

climatological frequencies to determine if either showed any potential as a predictive 

variable in a regression. Also, the correlation coefficient was calculated for simple 

persistence. The results shown in Table 7 show that the probability determined from 6 

day persistence is more predictive than simple persistence. In addition, the correlation 

coefficient was calculated for day number as used by Neumann and for raw frequency 

(unaltered data). The results also show that day number has the lowest correlation to 

thunderstorm occurrence while the raw frequency has the highest when comparing 

climatological frequency variables. The low correlation of day number is to be expected 

because day number makes no allowances for variability in the observed frequency. 

Also, the raw frequency was expected to have a higher correlation than the moving 

averages. This is because the smoothing of the moving averages reduces the correlation. 

Table 7  Climatological Correlation Results 

Conditional Probability (example) Correlation Climatological Frequency Correlation 
Simple Persistence                (1) .329 Day number .231 
2-day Persistence                (11) .388 Raw Frequency .270 
3-day Persistence              (001) .395 3-day Weighted Average .252 
4-day Persistence            (0110) .400 15-day Weighted Average .243 
5-day Persistence          (11010) .411 15 -day  Linear Average .236 
6-dav Persistence (010110) .441 
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To determine which moving average to use, all moving average methods were 

individually regressed. The results of each regression were used to make forecasts using 

the independent data set, and the forecasts were measured for accuracy. The regression 

showed that the 15-day weighted average had the highest accuracy. 

The correlation of wind direction versus thunderstorm occurrence was used to 

determine which wind sectors would best stratify the data sets. A Mathcad® 7.0 program 

was used to record whether the wind occurred within a sector (Appendix H). Another 

Mathcad® 7.0 program (Appendix I) was used to find the correlation of wind occurrence 

within a sector versus thunderstorm occurrence. The directions bounding the sectors were 

altered by 10° increments until the highest correlation was found for each pressure level. 

Figure 12 shows the sector with the highest correlation for each month. 

Figure 12 Highest Correlated Wind Sectors 
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3.3.2       Principal Component Analysis 

Principal component analysis (PCA) was used to reduce the number of variables 

without losing too much of the original predictive information within the data set. The 

smaller number of variables used in linear combination still retain most of the variance 

contained within the original data set (Dillon and Goldstein, 1984). The PCA was run 

using S-plus® 4.5. The principal components were calculated using a correlation matrix as 

opposed to a covariance matrix because of the differing units of each variable. Using the 

correlation matrix prevents arbitrary magnitudes of variance from being created by the 

arbitrary scaling of the units (Wilks, 1995). The variables were divided into four groups 

and a PCA was performed on each group. The groups included thunderstorm indices, 

temperature- based variables, moisture-based variables, and wind-based variables. The 4 

variables with the highest coefficients from each group were then used in a final PCA. 

The following variables from each group were identified as being able to explain the most 

variance when used in combination: Thompson index, 800-600-mb mean relative 

humidity, 550-mb heights, and the 750-mb U-component of the wind.   These variables 

correspond well to the parameters from the literature review thought to cause 

thunderstorms. 

After performing the correlation analysis and the principal component analysis, 8 

variables were chosen for regression. These variables were the 850-mb winds, the 700-mb 

winds, the 600-mb winds, the Thompson index, the K index, the 800-600-mb mean 

relative humidity, the 6-day conditional climatology, and the 15-day weighted moving 

average. The algorithms produced have different combinations of these variables. 
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3.4       Algorithm Development 

This section explains how both algorithms are created. The derivation for each is 

similar, even though the variables used differ. Even the creation of the categorically 

stratified algorithm uses the same steps, although it requires many more repetitions. 

3.4.1 Logistic NPTI (LNPTI) 

A logistic regression of the original NPTI variables was performed to judge their 

performance using a regression method other than linear regression. As in the original 

NPTI, each month was regressed separately. The regression was run using S-plusR 4.5 

and all of the coefficients were gathered into one file. Finally, a prediction equation for 

each month was created by combining the coefficients with their respective functions. 

3.4.2 Stratified Logistic Thunderstorm Index (SLTI) 

The stratified logistic regression method is an extension of the idea of creating a 

regression equation for each month. This method is used to better represent the 

relationship between the wind variables and the predictand. This relationship changes 

statistically with each wind sector as shown in section 3.3.1. With stratification, the 

variables represented in each sector have to be regressed separately. The stratification 

method divides the data into months and then further divides each month's data set into 

wind sector data sets. These final data sets are the data sets regressed. For example, a 

regression is performed on variables observed on days in May with the winds at 900-mb 

from the sector 300° to 160°. A separate regression is performed on the variables 

observed in May with the winds at 900-mb outside the sector 300° to 160°. 
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To keep the number of variables for the final algorithm as small as possible, only 

the variables chosen in the previous section were used. This is necessary because 

stratification causes the number of coefficients needed to become prohibitively large. 

The chosen variables were the 850-mb winds, the 700-mb winds, the 600-mb winds, the 

Thompson index, the K index, the 800-mb to 600-mb mean relative humidity, the 6-day 

conditional climatology, and the 15-day weighted moving average. The coefficients for 

the Thompson Index for the Southeast wind sector during July were found to produce 

forecasts with worse accuracy than persistence. Fortunately, the coefficients for the 

Northeast sector produced forecasts with better accuracy than persistence even when used 

on variables from the Southeast sector. Therefore, July uses only Northeast sector 

coefficients for the Thompson index. To forecast using the resulting 545 coefficients, the 

day being forecast for must first be fit into a month and wind sector category. The 

month- and wind-dependent coefficients are then used with the 8 variables in the 2 levels 

of regression equations. 

3.5       Verification 

Each forecast method was verified to demonstrate its value and determine its 

effectiveness. The ten percent of data saved before regression began was used to 

complete the verification. Each forecast method was used to calculate and record the 

probability of a thunderstorm occurrence using the verification data set. Whether or not a 

thunderstorm occurred was also noted. This data was then used to estimate the accuracy 

of all four methods. Contingency tables of each of the possible cutoff values were 

created. Also, measures of accuracy and skill scores were calculated for each of the 
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entire range of possible cutoff values. Graphs, shown in chapter 4, display the results 

created from the range of cutoff values. These graphs visually provide the best cutoff 

value for a given accuracy measure. By displaying the results of all the methods on a 

single graph, a comparison of each method's overall ability can be made. Finally, 

persistence was assessed in the same manner. 

The values comprising any specific contingency table can be determined from the 

graph of all possible contingency tables. The lines labeled A through D inside Figure 13 

represent the possible values for each of the similarly labeled four blocks in a 

contingency table for an arbitrary forecast method. The abcissa represents the cutoff 

values for each contingency table, and the ordinate is the number of forecasts for a 

specified block of the contingency table at a given cutoff value. Each horizontal line 

represents the values of a block in the contingency table for persistence and shows 
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Figure 13 Hypothetical Example of Possible Contingency Table Graph 

the number in each block remains constant for persistence. The other lines represent 

blocks for the possible contingency tables for the arbitrary forecast method. A line drawn 

vertically from a given cutoff value intersects each of the other lines. The ordinate value 

at the intersection is the value for the representative block in a contingency table having a 

cutoff equal to that of the ordinate. 
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Cutoff =.21 

Observed                                       Observed 

Other 

Yes 

Yes         No Persistence Yes         No 
A 

156 
B 

147 Yes 
A 

100 
B 

50 

Forecast Forecast 

No 13 
c 

97 
D 

No 69 
c 

194 
E 

Figure 14 Hypothetical Contingency Table 

A vertical line at a cutoff of twenty-one percent would give the values shown in the 

contingency tables in Figure 14. 

Only limited information can be gained about the accuracy of a forecast method 

by comparing corresponding blocks in two different contingency tables. Once a cutoff is 

chosen for a contingency table, no information is available about contingency tables with 

other cutoffs. The evaluation of one forecast method over another is better accomplished 

using a graph displaying all possible cutoffs for a contingency table. The accuracy of one 

method over another is then represented by the area between lines representing 

corresponding blocks. For lines A and D, areas above persistence are good, and for lines 

B and C, areas below persistence are good. The larger the area, the better one method is 

over the other. Graphs can also be made in a similar manner for the measures of 

accuracy. The accuracy of one method over another is then represented by the area 

between lines representing corresponding measures of accuracy. 
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4.       Results and Analysis 

The NPTI was designed to predict thunderstorms using morning soundings. It 

was created at a time when the investigation of sea breeze mechanics, which play a large 

part in thunderstorm formation, had just begun. Also, the computer capacity to perform 

the necessary calculations was quite small. Since then, a better understanding of 

thunderstorm formation has been gained and computer power has increased dramatically. 

By using these advantages, an improvement in forecasting skill was realized. The results 

discussed in this section show the increase in accuracy obtained to date. 

4.1       Persistence Results 

Persistence is often used as a judge of other forecasting techniques. Therefore, 

persistence's forecast ability was evaluated and used as a milestone. No cutoff value is 

necessary because persistence is already a dichotomous value. The contingency table in 

Figure 15 contains the verification results from the independent data set. It is easy to see 

persistence forecast correctly more often than it forecast incorrectly. Of the 413 forecasts 

verified, 294 were forecast correctly and 119 were forecast incorrectly. 

Observed 
Yes         No 

Yes 
Forecast 

No 

A 

100 
B 

50 

69 
c 

194 
D 

Figure 15  Contingency Table for Persistence Forecast 
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BS  HR  TS  TSN POD PODN FAR FARN 

Persistence    28.8    71.2    46.0    62.0    59.2      79.5      33.3      26.2 

Table 8 Accuracy Measures (%) for Persistence 

Table 8 lists the various skill scores for persistence. The threat scores (TS and TSN) and 

probabilities of detection (POD and PODN) show that correctly forecasting "no 

thunderstorm" is the reason that hit rate (HR) is high. The False Alarm Rate (FAR) is 

33.3%, while the value block c in the contingecy table indicates persistence 

underforecasts thunderstorms. Despite these problems, persistence does well with a Brier 

Score (BS) of 28.8%. 

4.2       NPTI Results 

The performance of NPTI was evaluated using the statistical methods described in 

chapters two and three. The Neumann-Pfeffer Thunderstorm Index did poorly compared 

to persistence. Figure 16 shows that no cutoff can be chosen so that all four blocks of the 

NPTI contingency table are simultaneously better than persistence. One of the better 

cutoffs found was 21%. The contingency tables for this cutoff are shown in Figure 17 

and the accuracy measures using 21% are shown in Table 9. In all cases except POD, 

Table 9 shows NPTI does worse than persistence. This is more easily seen by looking at 

Figure 18. The HR and TS never do better than persistence. TS and POD do increase as 

the cutoff is lowered, but the value in block b in Figure 16 shows this gain is offset by an 

increase in false alarms. In addition, the skill scores showed poor performance compared 
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Figure 16 Graph of Possible Contingency Tables of NPTI 

to persistence. A %2 of 4.723 at 95% confidence level showed a small dependence 

between forecast and observation. Therefore, NPTI's accuracy may be random chance. 

NPTI 

Yes 

Forecast 

No 

Observed 

Yes No 

Observed 

Persistence     Yes No 
A 

104 
B 

175 

65 
c 

69 
D 

Yes 
A 

100 
B 

50 

Forecast 

No 69 
c 

194 
D 

Figure 17 Contingency Tables for NPTI (Cutoff .21) and Persistence 
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Table 9 NPTI Accuracy Measures (Cutoff .21) 

BS HR TSY TSN POD PODN FAR FARN HSS KSS 

NPTI .320 .420 .302 .233 .615 .283 .627 .485 -.093 -.10 

Persistence .288 .712 .460 .620 .592 .795 .333 .262 .394 .387 

Skill RSS SS SS SS SS SS SS SS 
Scores (%) 

-11.1 
HR 
-101 

TS 
-28.4 

TSN POD PODN FAR FARN 
-104 5.8 -250 -88.2 -84.9 

Figure 18 Graph of Possible NPTI Accuracy Measures 
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4.3       New Algorithm Results 

The newly derived algorithms did much better than NPTI when compared to 

persistence. Without choosing a cutoff, all three algorithms achieved a better Brier 

Score. Table 10 shows that SLTI has a 47% better BS than persistence, and Table 11 

shows that LNPTI has a 44% better BS than persistence. Because persistence had a 

better BS than NPTI, the two new methods were also better than NPTI. The ratio skill 

score, using NPTI as the reference, was 49.75%Choosing a cutoff that caused all four 

blocks of the contingency table to be simultaneously better than persistence or NPTI was 

possible using either new method. The highest skill scores were found when using a 

cutoff close to the cutoff where lines B and C intersect in Figure 19 and in Figure 22. A 

cutoff of 44% was used to create the contingency tables in Figure 20 and in Figure 23 and 

gives a HR of 77.2% for SLTI and 75.1% for LNPTI. 

Both SLTI and LNPTI displayed the large ranges of cutoff values where the 

forecast method performed better than persistence. These areas are shaded in Figure 21. 

Any choice of cutoff between 20% and 60% for SLTI provides a higher hit rate, threat 

score, or probability of detection than persistence. For LNPTI, Figure 24 shows that any 

choice of cutoff between 25% and 55% provides a higher hit rate, threat score, or 

probability of detection than persistence. All skill scores for SLTI in Table 10 show at 

least 12% better than persistence. A%2 for SLTI of 128.5 at 95% confidence level showed 

a strong dependence between the forecast and observation. SLTI had the best 

performance overall. 
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Figure 19 Possible Contingency Tables for SLTI 

Figure 25 through Figure 27 show how much better SLTI was than NPTI. The 

distance between corresponding lines is a measure of improvement of one method over 

the other. The graphs show large areas between the lines that indicate SLTI is better than 

LNPTI. 
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Figure 20 Contingency Tables for SLTI (Cutoff .44) and Persistence 

Figure 21 All Possible SLTI Accuracy Measures 
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Table 10 SLTI Accuracy Measures (Cutoff .44) 

BS HR TS TSN POD PODN FAR FARN HSS KSS 

SLTI 

Persistence 

.161 

.288 

.772 

.712 

.558 

.460 

.680 

.620 

.704 

.592 

.829 

.795 

.270 

.333 

.200 
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.527 

.262 

.524 

.890 

Skill 
Scores (%) 
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Figure 22 Possible Contingency Tables for LNPTI 
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Figure 23 Contingency Tables for LNPTI (Cutoff .44) and Persistence 
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Figure 24 LNPTI Accuracy Measures Using All Possible Cutoff Values 

Table 11 LNPTI Accuracy Measures (Cutoff .44) 

BS 

.165 

.288 

HR 

.76 

.712 

TSY 

.546 

.460 

TSN POD PODN FAR FARN HSS KSS 

LNPTI 

Persistence 

.663 

.620 

.704 

.592 

.80 

.795 

.29 

.333 

.204 
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.504 

.262 

.503 

.890 
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Scores (%) 

RSS SS 
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SS 
TSN 

SS 
POD 

SS 
PODN 

SS 
FAR 

SS 
FARN 
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Figure 25 SLTI and NPTI Hit Rate 
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Figure 27 SLTI and NPTI Probability of Detection 

5.       Conclusions and Recommendations 

This study began as an attempt to verify the idea that logistic regression could 

improve the forecast ability of the NPTI algorithm. The research revealed that using 

other variables might also provide improved capability. The goal then expanded to 

include the search for the variables which could provide the highest increase in accuracy. 

Because all possible combinations of variables were not tried, further increases in 

accuracy may be possible by finding better variables to regress. 

5.1       Conclusions 

Logistic regression creates a more accurate forecast algorithm than linear 

regression when forecasting thunderstorms at Cape Canaveral. By using the same 

variables and only changing the regression method, LNPTI shows significant 

improvement over NPTI. LNPTI's highest hit rate is 17 percent higher than the highest 

hit rate NPTI was able to achieve. Also, there is more than one cutoff that allows the 

values in every block in the LNPTI contingency table to be better than the corresponding 

NPTI contingency table values. 

Two additional changes to NPTI show a further increase in forecast accuracy. 

The first change, using separate regressions for each wind sector during each month, 

allow the accuracy of each regression to be maximized for the variables used. By using 

separate regressions for each sector, the regression coefficients are tuned to the two 
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synoptic regimes that most influence thunderstorm occurrence. The different regressions 

create coefficients that best forecast thunderstorms given the different environments of 

the regimes. The second change, altering the variables used for regression, increases the 

predictive capability of the algorithms. One factor causing an increase in forecast 

capability is the change in the thunderstorm index used as a variable. Both the Thompson 

index and K index shows higher correlation to thunderstorm occurrence than the SSI, and 

test regressions of each of the variables individually indicate SSI performs the worst of 

the three. Therefore, replacing SSI with the Thompson index and the K index increases 

the accuracy of the algorithm. Additionally, regressing multiple wind levels that more 

closely correspond to those seen during sea breezes gives the regression more 

discriminatory power. These levels also correspond to those mentioned in the literature 

review and correlation analysis. Each of these changes in variables adds a little more to 

the predictive power of the algorithm. 

5.2       Recommendations 

NPTI should be replaced with an algorithm created by logistic regression. 

Logistic regression has been shown to improve the performance of the methods created 

by Neumann and to have more accuracy than persistence. All three new methods show 

similar forecast ability, but the Stratified Logistic Thunderstorm Index has the highest hit 

rate, threat score, and Brier score. The accuracy of NPTI has been demonstrated to be 

very poor in this study. NPTFs accuracy is even worse than persistence, and this finding 

agrees with previous studies. Because of NPTI's poor performance, the Stratified 

Logistic Thunderstorm Index should be implemented as soon as possible. 
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5.3       Suggestions for Future Research 

Future study of this subject could go in two general directions. The method of 

regression used with NPTI can be further researched or new methods can be tried. 

Continued experimentation with combinations of variables may produce further 

improvement in accuracy. Testing the components of the thunderstorm indices with a 

decomposition of the variables could provide insight into which environmental 

parameters would work the best. Different variables in combination with further 

categorization of synoptic regimes for each regression may also provide an increase in 

forecast accuracy. Further research of the affect of dividing regressions by wind sector 

and month would reveal how much accuracy can be improved in this manner. 

Two entirely different approaches are also likely to yield an increase in accuracy. 

The first is to use the wind tower data to better take advantage of the predictive 

information in the sea breezes. One morning sounding is not capable of providing the 

resolution necessary for understanding the complex pattern of sea breezes in the Cape 

Canaveral area. Since sea breezes play such an important part in thunderstorm 

production, more detailed information on their activity should be used in forecasting. 

The numerous wind towers in the Cape Canaveral area would give more information on 

the creation and strength of the local sea breezes.   Another approach would be to use 

multi-station regression instead of single station regression. Single station regression has 

little prediction capability for air masses that advect into the area after the morning 

sounding. If the environment changes the probability of thunderstorms will change. 

Having more than one station included in the regression will allow changes in the 
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environment to be detected before they reach Cape Canaveral. Either approach could 

provide a better forecast for the 45th Weather Squadron. 
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APPENDIX A. FORTRAN CODE FOR SCREENING 

SURFACE OBSERVATIONS 

PROGRAM tcount !for 1950-1996 

!This program converts observations to thunderstorm days. A thunderstorm day is defined 
!as TS,TSRA,+TSRA,or -TSRA occurring at least once per local day. Because 
[observations are recorded in UTC time but thunderstorm days are defined in local time, 
Idate change must be considered. 1100UTC through 2400UTC observations are counted toward the 
Icurrent day. 0000UTC through 0400UTC observations are counted toward the previous day. 

IMPLICIT NONE 
INTEGER, Parameter :: x=5 Icreates binary history of x # of days 
INTEGER:: YR,MON,DAY,HR,MIN,F,G,H,I,J,K,L,m,N 
INTEGER, DIMENSION(47,5,31):: COUNT 
CHARACTER, DIMENSION(x):: D*l 
CHARACTER:: ID*4,CODE*5,COMMA*l,WX*5,REST*5,DIR*3,SPD*2,VIS*6 

OPEN(45,FrLE='970847.txt',STATlJS='OLD') 
OPEN(21 ,FILE='frequency5 .txt') 

L=0 
count=0 
DOWHIEE(L.NE.l) 
READ(45,*,END=999)YR,MON,DAY,ID,CODE,HR,MIN,DIR,SPD,COMMA,VIS,WX,REST 

IF ((MON.gt.4).and.(MON.lt.lO)) THEN 

ICounts Thunderstorms occurring today (UTC and local) 

IF(HR.gt.lO)THEN 
IF((WX.EQ."TS").or.(WXEQ."TSRA").or.(WX.EQ."+TSRA").or.(WX.EQ."-TSRA"))THEN 

COUNT(YR-49,MON-4,DAY)= 1 
ENDIF 

ENDIF 
i******************************************************************** 

ICounts Thunderstorms occurring yesterday local and today UTC 

IF (HR.lt.5) THEN 
IF((WX.EQ."TS").or.(WX.EQ."TSRA").or.(WX.EQ."+TSRA").or.(WX.EQ."-TSRA"))THEN 

ICounts thunderstorms occurring on June 31st local 
land July 1st UTC 

IF ((MON.eq.7).and.(DAY.eq.l)) COUNT(YR-49,2,30)=:1 

ICounts thunderstorms occurring on the last day of 
Ithe month, except for June 

IF ((MON.ne.7).and.(DAY.eq.l)) COUNT(YR-49,MON-5,31)=l 
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I********************************************************** 

ICounts thunderstorms occurring on any day except 
!the last day of the month 

IF (DAY.ne.l) COUNT(YR-49,MON-4,DAY-l)=l 
ENDIF 

ENDIF 
ENDIF 

ICounts Thunderstorms occurring Sept 30th local and Oct 1st UTC 
i ********************************************************************* 

IF ((MON.eq.l0).and.(DAY.eq.l).and.(HR.lt.5)) COUNT(YR-49,5,30)=1 

L=0 
WX=" " 
ENDDO 

999 L=0 

i*********************************************************************** 

lOutput to a file 
i*********************************************************************** 

H=0 IWhole day numbf 
DOK=l,47 

G=0 !Year day number 
F=0 IPersistence 
D='0' IHistory in binary 
DO J=l,5 

DO 1=1,30 
H=H+1 
G=G+1 
N=0 [History in decima 

DO m=l,x Iconverts binary history to decimal 
IF (D(m).eq.'l') N=N+2**(x-m) 

ENDDO 

WRITE(21,*) COUNT(K,J,I),' ',H,' ',G,' ',F,' ',(D(m),m=l,x),' \N 
F=COUNT(K,J,I) 

DO m=x,2,-l Iconverts binary history to decimal 
D(m)=D(m-l) 

ENDDO 

IF (F.eq. 1) THEN Irecords persistence into history in binary 
D(1)=T 

Else 
D(1)='0 

ENDIF 

IF ((J.ne.2).and.(J.ne.5).and.(I.eq.30)) THEN 
H=H+1 
G=G+1 
N=0 
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DO m= 1 ,x [converts binary history to decimal 
IF (D(m).eq.T) N=N+2**(x-m) 

ENDDO 

WRITE(21,*) COUNT(K,J,31),' ',H/ ',G/ ',F,' ,,(D(m),m=l,x),' ',N 
F=COUNT(K,J,31) 

DO m=x,2,-l 
D(m)=D(m-l) 

ENDDO 

Iconverts binary history to decimal 

IF (F.eq. 1) THEN Irecords persistence into history in binary 
D(1)=T 

Else 
D(1)='0' 

ENDIF 

ENDIF 
ENDDO 

ENDDO 
ENDDO 

25    FORMAT (3112) 
35    FORMAT (4713) 

END 
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APPENDIX B. FORTAN CODE FOR SCREENING 

UPPER AIR OBSERVATIONS 

PROGRAM UAbyhour !for 1950-1996 
i****************************************************************** 

!This program sorts Upper Air data. Only summer months with data between 09UTC to 16UTC are saved. 
i*********************************************************************** 

INTEGER:: YR,MON,DAY,HR,PRESSURE,HGT,L,H 
CHARACTER :: MONTH*3,TEMP*3,DPT*3,DIR*3,SPD*3,RH*3 
OPEN(75,FILE='uadata.txt',STATUS='OLD') 
OPEN(19,FDLE='U A9.txt') 
OPEN(20,FILE=,UA10.txt') 
OPEN(21 jqLE=*UAl 1 .txt') 
OPEN(22,FILE='UA12.txt,) 
OPEN(23,FILE='UA13.txt') 
OPEN(24,FTLE=:'UA14.txt') 
OPEN(25,FTLE='UA15.txt') 
OPEN(26,FILE='UA16.txt,) 
L=0 
DO WHILE (L.NE.l) 
READ (75,*,END=999) HR,DAY,MONTH,YR,PRESSURE,HGT,TEMP,DPT,DIR,SPD,RH 

i*********************************************************************** 

IConverts Text month to number 
i*********************************************************************** 

IF (MONTH.eq.'MAY') MON=5 
IF (MONTH.eq.'JUN') MON=6 
IF (MONTH.eq.'JUL') MON=7 
IF (MONTH.eq. AUG) MON=8 
IF (MONTH.eq.'SEP') MON=9 
IF((MONTH.ne.'MAY').and.(MONTH.ne.,IUN,).and.(]VIONTH.ne.'JUL').and.& 
&(MONTH.ne.,AUG').and.(MONTH.ne.'SEP')) THEN MON=0 
ENDIF 

i*********************************************************************** 

!Allows only summer months between certain hours to be saved 
i*********************************************************************** 

IF ((MON.ge.5).and.(MON.le.9)) THEN 
IF ((HR.ge.9).and.(HR.le.l6)) THEN 

WRITE((HR+10),85) HR,DAY,MONYR,PRESSURE,HGT,' ',TEMP,' ',DPT,' ',DIR,' '.SPD,' ',RH 
ENDIF 

ENDIF 
ENDDO 

999 L=0 
i************************************************************************ 

! This section puts in the end observations needed to use combine.f90 
i************************************************************************ 

DOH=9,16 
WRITE((H+10),87) H,T,T,'19987 800',' 999',' 999',' 999',' 999',' 999',' 999' 
WRITE((H+10),87) H,T,T,'1998',' 900',' 999',' 999',' 999',' 999',' 999',' 999' 
WRITE((H+10),87) H,,l,,,r,'1998,,,1000V 999',' 999',' 999',' 999',' 999',' 999' 

ENDDO 
85    FORMAT (12,' ',12,' ',11,' ',14,' ',14,' ',15,10a) 
87    FORMAT (12,' ',al,' \al,' >4,' \a4,6a4) 

END 
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APPENDIX C. INPUT CONSTANTS FOR CURRENT NPTI 

F(X1) May 
0.1727535E+00 
0.1051405E-01 
0.1604004E-01 
0.3773833E-03 
-0.1206595E-03 
0.2659499E-03 
-0.1010322E-04 
-0.2995797E-04 
0.2443706E-04 
-0.8702967E-05 

F(X1) June 
0.3593742E+00 
0.2334107E-01 
0.1553199E-01 
0.1121490E-03 
-0.5153501E-03 
-0.1334638E-03 
-0.1292631E-05 
-0.1528670E-05 
-0.2406814E-04 
-0.2729250E-06 

F(X1) July 
0.4379572E+00 
0.4200581E-01 
0.9613875E-02 
0.2973285E-03 
-0.1928031E-03 
-0.1363037E-02 
-0.5532370E-04 
0.5288076E-04 
-0.4731448E-04 
0.2012023E-04 

F(X1) August 
0.4354426E+00 
0.3692987E-01 
-0.5944290E-03 
-0.4935843E-05 
0.2941582E-03 
-0.6893766E-03 
-0.6002453E-04 
-0.3215410E-05 
-0.1252746E-04 
0.5158292E-04 

F(X1) September 
0.2868158E+00 
0.1150187E-01 
0.7388294E-02 
0.1446295E-03 
-0.1896570E-03 
-0.9508320E-04 
-0.9760508E-05 
-0.1847868E-05 
0.4754807E-05 
-0.2164692E-05 

F(X2) May 
0.1222090E+00 
0.8970767E-02 
0.1238091E-01 
0.1530813E-03 
0.1435101E-04 
0.2574404E-03 
-0.3452270E-05 
-0.1025880E-04 
-0.7730953E-05 
-0.1276384E-05 

F(X2) June 
0.3322431E+00 
0.2193566E-01 
0.1054781E-01 
0.9557068E-04 
-0.1835915E-03 
0.3771296E-04 
-0.1445187E-04 
-0.9028485E-05 
0.2304699E-05 
-0.6225688E-05 

F(X2) July 
0.4401347E+00 
0.3111313E-01 
0.1254637E-02 
0.1287248E-03 
0.1927784E-04 
-0.1803830E-03 
-0.2351527E-04 
0.1468542E-04 
-0.5562572E-05 
-0.5263795E-05 

F(X2) August 
0.4004517E+00 
0.3162476E-01 
0.2487462E-02 
0.8781690E-04 
0.8207381E-05 
0.2306297E-03 
-0.3665728E-04 
-0.1493087E-04 
-0.1199524E-04 
-0.1924274E-05 

F(X2) September 
0.2534370E+00 
0.9343341E-02 
0.5741805E-02 
0.6548849E-04 
-0.1114670E-03 
-0.5738156E-04 
-0.3442634E-05 
-0.6619258E-05 
0.4766845E-05 
0.5612928E-05 

F(X3) May 
0.6787956E-01 
-0.7066473E-02 
0.3165507E-03 
-0.1972934E-05 

F(X3) June 
0.1357487E+00 
-0.1913794E-01 
0.7981991E-03 
-0.6220716E-05 

F(X3) July 
0.3103540E-01 
-0.1501027E-01 
0.7151766E-03 
-0.5382679E-05 

F(X3) August 
0.1167747E+01 
-0.7547790E-01 
0.1655678E-02 
-0.9955816E-05 

F(X3) September 
0.7477421E-01 
-0.1267558E-01 
0.4923630E-03 
-0.3633523E-05 

F(X4) May 
0.4313504E+00 
-0.7493180E-01 
0.2996801E-02 

F(X4) June 
0.5758111E+00 
-0.6988162E-01 
0.1929542E-02 

F(X4) July 
0.5912066E+00 
-0.5364221E-01 
0.5560704E-03 

F(X4) August 
0.5572201E+00 
-0.4718516E-01 
-0.1221637E-02 

F(X4) September 
0.3793839E+00 
-0.5686991E-01 
0.2028510E-02 

F(X5) May 
-0.4076566E+01 
0.5680419E-01 
-0.1853897E-03 

F(X5) June 
-0.9433578E+01 
0.1124140E+00 
-0.3199223E-03 

F(X5) July 
-0.1056197E+01 
0.1680696E-01 
-0.4594649E-04 

F(X5) August 
-0.1015726E+02 
0.9691268E-01 
-0.2210247E-03 

F(X5) September 
0.1715063E+02 
-0.1273040E+00 
0.2391982E-03 

Poly( May) 
-0.2301289E+00 
0.5305769E+00 
0.3176902E+00 
0.3939341E+00 
0.5062279E+00 
0.3771116E+00 

Poly( June) 
-0.3631833E+00 
0.6408592E+00 
0.3698111E+00 
0.4674823E+00 
0.3246658E+00 
0.1280630E+00 

Poly( July) 
-0.4364970E+00 
0.6707261E+00 
0.3778238E+00 
0.5361906E+00 
0.3803952E+00 
-0.3222886E-01 

Poly( August) 
-0.3678722E+00 
0.6470548E+00 
0.4291340E+00 
0.5193311E+00 
0.5951137E+00 
-0.3374881E+0O 

Poly( September) 
-0.4959048E+00 
0.5209985E+00 
0.5681123E+00 
0.5062233E+00 
0.5703800E+00 
0.8640252E+00 
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APPENDIX D. INPUT CONSTANTS FOR LOGISTIC NPTI 

F(X1) May 
-0.245742152E+1 
-0.175571837E+0 
-0.377914846E-1 
0.108514491E-2 
-0.447443648E-2 
0.167817244E-2 
-0.375266585E-4 
0.602941212E-4 
0.199788826E-3 
-0.928873549E-4 

F(X2) May 
-0.112808872E+1 
-0.122880696E+0 
-0.365253507E-1 
0.153282128E-2 
-0.812714790E-2 
0.862859923E-3 
-0.137977701E-3 
0.621995635E-4 
0.209652551E-3 
-0.890941803E-4 

F(X3) May 
-0.744794227E+1 
0.207507920E+2 
-0.202790761E+2 
0.707965717E+1 

F(X4) May 
-0.572143733E+0 
-0.265854007E+0 
-0.195574097E-1 

F(X5) May 
-0.374463884E+0 
0.937591149E-2 
-0.202255210E-3 

Poly( May) 
-0.166123602E+2 
0.380953959E+1 
0.284121773E+1 
0.386390824E+1 
0.413317458E+1 
0.274441936E+2 

F(X1) June 
-0.874825903E+0 
-0.108233194E+0 
-0.605543392E-1 
-0.866053496E-3 
-0.221838304E-2 
0.207449860E-2 
0.523305038E-4 
-0.712906654E-4 
0.247086324E-4 
0.653953357E-4 

F(X2) June 
-0.936047050E+0 
-0.162072255E+0 
-0.985218517E-1 
-0.477099398E-2 
-0.242612182E-2 
0.151235824E-3 
0.186775455E-3 
-0.188589110E-3 
0.286149798E-4 
0.927775530E-4 

F(X3) June 
-0.344504077E+1 
-0.412995409E+1 
0.289025740E+2 
-0.226658267E+2 

F(X4) June 
-0.879854110E-1 
-0.223271178E+0 
-0.335588679E-1 

F(X5) June 
-0.205195233E+0 
0.233530223E-1 
0.219217299E-4 

Poly( June) 
-0.702350958E+1 
0.461139118E+1 
0.220907802E+1 
0.247766016E+1 
0.403659792E+1 
0.169227621E+1 

F(X1) July 
-0.125785528E+0 
-0.136059651E+0 
0.554984982E-2 
-0.126541745E-2 
-0.273152413E-2 
-0.184289137E-2 
0.908985678E-4 
-0.477644243E-4 
-0.116388478E-3 
0.436216815E-6 

F(X2) July 
-0.691599188E+0 
-0.188523902E+0 
-0.102000033E+0 
-0.915040098E-3 
0.385324800E-3 
-0.269224384E-2 
0.288908716E-3 
0.211414286E-3 
-0.345330314E-4 
0.114394286E-3 

F(X3) July 
-0.339693534E+1 
0.266573401E+1 
0.829061265E+1 
-0.703647151E+1 

F(X4) July 
-0.740427130E-1 
-0.211274506E+0 
-0.898311775E-2 

F(X5) July 
-0.345612993E+0 
0.103337183E-1 
-0.246551690E-3 

Poly( July) 
-0.563431384E+1 
0.424573142E+1 
0.187438950E+1 
0.314187661E+1 
0.274126511E+1 
0.195046844E+0 

F(X1) August 
-0.241378075E+0 
-0.112923323E+0 
0.585889123E-2 
0.414499420E-2 
-0.110424454E-2 
-0.227515840E-2 
0.123380071E-3 
-0.358966390E-4 
0.228944231E-3 
-0.892181291E-4 

F(X2) August 
-0.459351617E+0 
-0.134189574E+0 
-0.564064289E-1 
0.150876188E-2 
0.813519706E-3 
-0.194646161E-2 
0.233551088E-3 
0.303933232E-4 
-0.126352118E-4 
0.485406835E-4 

F(X3) August 
-0.387478991E+1 
0.673636499E+1 
-0.353171058E+0 
-0.226668992E+1 

F(X4) August 
-0.237429897E+0 
-0.197372491E+0 
0.871663496E-2 

F(X5) August 
-0.327403324E+1 
0.166762482E+0 
-0.213724215E-2 

Poly( August) 
-0.513263981E+1 
0.383315244E+1 
0.184741373E+1 
0.250967823E+1 
0.304620980E+1 
0.156779011E+3 

F(X1) September 
-0.875096225E+0 
-0.845048228E-1 
-0.197709309E-1 
-0.417157588E-3 
-0.134699595E-2 
-0.223001017E-2 
0.102828663E-3 
-0.156920183E-3 
0.211764502E-4 
-0.221632376E-4 

F(X2) September 
-0.741845629E+0 
-0.736043120E-1 
-0.771094900E-1 
0.396630824E-2 
-0.289976281E-2 
-0.254828753E-2 
0.107212321E-3 
-0.110120140E-3 
0.170345705E-3 
-0.662082877E-5 

F(X3) September 
-0.198661296E+2 
0.725721396E+2 
-0.929219261E+2 
0.408593202E+2 

F(X4) September 
-0.708225493E+0 
-0.300976815E+0 
0.165095989E-1 

F(X5) September 
0.570336424E+1 
-0.141837861E+0 
0.724549114E-3 

Poly( Semptember) 
-0.350185959E+1 
0.460598495E+1 
0.153949334E+1 
0.485909819E+1 
0.232653736E+1 
-0.282196658E+1 
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APPENDIX E. MATHCAD® TEMPLATE FOR FORECAST 

VERIFICATION 
ORIGDfel 

Creates contingency table data in vector format 
(V - Observed   U - Forecast) 

Contingency (V,U) :=   Counting 4<-0 

for je 1.. rows(V) 

Counting ;<- Counting j + 1 if (V =U.) ■ (V=l) 

Counting «- Counting  + 1 if (V. < U. \ 

Counting3«-Counting3 + 1 if (V.>U) 

Counting4«-Counting4 + 1 if (v=u)• (V-=0) 

Counting «-^Counting 

Counting 

V is vector of l's and O's 
representing observed occurrenc 
or nonoccurrence of an event. 

U is vector of l's and O's 
representing forecast occurrence 
or nonoccurrence of an event. 

Example Data 

Observed data Forecast data y■. 

T :=Contingency (x,y) 

Yes Forecast & Observed 
Yes Forecast & No Observed 
No Forecast & Yes Observed 
No Forecast & Observed 
Total # of Events 

T2:=n(T) T2 = 

Observed 
Yes No 

3   1 

0   1 

Creates contigency table in Table format 

n(V): 

n, ,«-v, 1,2        2 

n„ ,«-V, 2.1 3 

2.2 4 

Yes   Forecast 
No 

Convert percentages to YesCP/NofO') forecast 

convert (V, cutoff) := 

for je 1.. rows(V) 

-1   if V.>cutoff 
J 

-0 if V.< cutoff 
J 

P = 

'0.5 " 1 

0.3 0 

0.49 convert (p,.5) = 0 

0.6 1 

0.9 1 
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Hit Rate 
Note: in each case, V is contingency table data in vector format 

v tv 
HR(V) :=— -100 

V,. HR(T) =80 

Threat Score Yes/No 

V, 
TSY(V) :=- i ■100 

V1+V2-HV3 

TSY(T) =75 

V. 
TSN(V) :=- •100 

V4 + V2 + V3 

TSN(T) =50 

Probability of Detection Yes/No 

PODY(V) :=- ■100 
V + V 1^     3 

PODY(T) = 100 

V. 
PODN(V) :=- •100 

V -hV 
4^    2 

PODN(T) =50 

False Alarm Rate Yes/No 

FARY(V) :=- •100 
V -l-V 1^    2 

V, 
FARN(V) :=- •100 

V -t-V 
4^     3 

FARY(T) =25 

FARN(T) =0 

Forecast Bias 

V +V 
BIAS(V) :=— -100 

v1 + v3 

BIAS(T) = 133.333 

Heidke Skill Score 

HSS(V) := 2.fVi.v4-v2-v3 

V1 + V3)-(V3 + V4J+(V
1 

+ V2J-1V2 + V4 
HSS(T) =0.545 

Kuipers Skill Score 

KSS(V) :=• 
V -V - V  V VI 4 2     3 

vi + v3)-(v2 + v4 
KSS(T) =0.5 
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Chi squared Note: V is contingency table data in vector format 

2 2     [(„(V))    -(E(V))  J 
Xsq(V) := Xi    L  L      — ~ 

i=l   j=l 
(E(V))j Xsq(T) =1.875 

Perfect Chi 2 

Xsq(Perf) =5 

Persistence Chi 2 

Xsq(Pst) =0.139 

Brier Score 

BS(V,P):=- 
100 

rows(V) 

rows (V) 

k= 1 

Note: V is the vector of observed values and P is the 

vector of forecast probabilities for each observed event 

BS(x,p) =15.002 

Ratio Skill Score 

,_BS(V,p)-BS(V,P) 
RSS(V,P,p):=- 

BS(V,p) 
100 

Skill Score   (c - accuracy measure) 

SS(c,P,Perf,p) ;=   c(P)-c(p)   ,m 

c(Perf)-c(p) 

Note: V is the vector of observed values, P is the vector of 

forecast probabilities for each observed event, and r is the 

vector for the persistence forecast 

RSS(x,p,P) =74.997 

Note: c is the accuracy measure function being measured, 

P is the contingency table data for the forecast in vector 

format, Perf is the contingency table data for the perfect 

forecast in vector format, and r is the contingency table 

data for the persistence forecast in vector format. 

SS(HR,T,Perf,Pst) =66.7 

Perfect Scores 

HR(Perf) =100 

TSY(Perf) =100 

TSN(Perf) =100 

POD Y( Perf) = 100 

PODN(Perf) = 100 

FARY(Perf) =0 

FARN (Perf) =0 

BIAS (Perf) =100 

HSS(Perf) =1 

KSS(Perf) =1 

Persistence Scores 

HR(Pst) =40 

TSY(Pst) =25 

TSN(Pst) =25 

PODY(Pst) =33.3 

PODN(Pst) =50 

FARY(Pst)=50 

FARN(Pst) =66.667 

BIAS(Pst) =66.667 

HSS(Pst) =-0.154 

KSS(Pst) ="0.167 

Forecast Scores 

HR(T) =80 

TSY(T) =75 

TSN(T)=50 

PODY(T) =100 

PODN(T) =50 

FARY(T) =25 

FARN(T)=0 

BIAS(T) =133.333 

HSS(T) =0.545 

KSS(T) =0.5 

Skill score of each accuracy measure 

SS(HR,T,Perf,Pst)=66.7 

SS(TSY,T,Perf,Pst) =66.7 

SS(TSN,T,Perf,Pst) =33.3 

SS(PODY,T,Perf,Pst) = 100 

SS(PODN,T,Perf,Pst) =0 

SS(FARY,T,Perf,Pst) =50 

SS(FARN ,T,Perf,Pst) = 100 

SS(HSS,T,Perf,Pst) =60.6 

SS(KSS,T,Perf,Pst)=57.1 
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APPENDIX F. BISERIAL CORRELATION RESULTS 

row# V V2 V3 v+v2 V+V3 V2+V3 V+V2+V3 

1000m b 
Heights 31 -0.0984 -0.1143 -0.1242 -0.1143 -0.1242 -0.1242 -0.1242 

Temperature 32 0.0699 0.0645 0.0594 0.0646 0.0594 0.0595 0.0595 

Dewpoint 33 0.1786 0.1741 0.1675 0.1743 0.1675 0.1678 0.1678 

Relative Humidity 34 0.1510 0.1508 0.1495 0.1510 0.1504 0.1502 0.1506 

U-wind component 35 -0.2632 -0.0774 -0.0316 -0.0958 -0.0320 -0.0337 -0.0341 

V-wind component 36 -0.1987 0.0053 -0.0048 -0.0061 -0.0049 -0.0047 -0.0049 

950mb 
Heights 37 -0.0801 -0.0838 -0.0872 -0.0838 -0.0872 -0.0872 -0.0872 

Temperature 38 0.1845 0.1874 0.1856 0.1874 0.1856 0.1857 0.1857 

Dewpoint 39 0.1748 0.1760 0.1715 0.1761 0.1715 0.1717 0.1718 

Relative Humidity 40 0.0659 0.0594 0.0539 0.0621 0.0586 0.0565 0.0589 

U-wind component 41 -0.2936 -0.0233 -0.0983 -0.0438 -0.0989 -0.0986 -0.0992 

V-wind component 42 -0.1801 0.0254 -0.0485 0.0153 -0.0488 -0.0488 -0.0491 

900m b 
Heights 43 -0.0537 -0.0557 -0.0576 -0.0557 -0.0576 -0.0576 -0.0576 

Temperature 44 0.1922 0.1900 0.1864 0.1901 0.1864 0.1865 0.1865 

Dewpoint 45 0.2085 0.2074 0.1975 0.2077 0.1976 0.1981 0.1981 

Relative Humidity 46 0.1049 0.0927 0.0808 0.0980 0.0909 0.0866 0.0916 

U-wind component 47 -0.3026 -0.0159 -0.0617 -0.0356 -0.0622 -0.0625 -0.0630 

V-wind component 48 -0.2031 0.0282 -0.0426 0.0175 -0.0429 -0.0427 -0.0430 

850mb 
Heights 49 -0.0282 -0.0295 -0.0308 -0.0295 -0.0308 -0.0308 -0.0308 

Temperature 50 0.1519 0.1466 0.1398 0.1467 0.1398 0.1401 0.1401 

Dewpoint 51 0.2338 0.2314 0.2196 0.2332 0.2198 0.2207 0.2209 

Relative Humidity 52 0.1784 0.1665 0.1516 0.1724 0.1648 0.1592 0.1654 

U-wind component 53 -0.3066 -0.0325 -0.0561 -0.0532 -0.0567 -0.0576 -0.0581 

V-wind component 54 -0.2140 0.0118 -0.0408 -0.0001 -0.0411 -0.0412 -0.0415 

800m b 
Heights 55 -0.0075 -0.0085 -0.0095 -0.0085 -0.0095 -0.0095 -0.0095 

Temperature 56 0.0885 0.0772 0.0653 0.0777 0.0654 0.0659 0.0660 

Dewpoint 57 0.2579 0.1688 0.2088 0.1852 0.2093 0.2121 0.2125 

Relative Humidity 58 0.2245 0.2075 0.1867 0.2164 0.2071 0.1977 0.2073 

U-wind component 59 -0.2956 -0.0443 -0.0487 -0.0637 -0.0492 -0.0505 -0.0510 

V-wind component 60 -0.2119 -0.0067 -0.0388 -0.0189 -0.0391 -0.0396 -0.0399 

750mb 
Heights 61 -0.0072 -0.0081 -0.0089 -0.0081 -0.0089 -0.0089 -0.0089 

Temperature 62 0.0085 -0.0102 -0.0259 -0.0093 -0.0258 -0.0250 -0.0249 

Dewpoint 63 0.2755 -0.0441 0.1620 -0.0133 0.1629 0.1655 0.1664 

Relative Humidity 64 0.2743 0.2616 0.2407 0.2691 0.2615 0.2522 0.2616 

U-wind component 65 -0.2825 -0.0316 -0.0488 -0.0495 -0.0493 -0.0505 -0.0509 

V-wind component 66 -0.1950 -0.0098 -0.0340 -0.0202 -0.0342 -0.0342 -0.0344 

80 



700mb row#       V V2           V3 V+V2 V+V3 V2+V3 V+V2+V3 

Heights 67 0.0074 0.0067 0.0060 0.0067 0.0060 0.0060 0.0060 
Temperature 68 -0.0407 -0.0654 -0.0807 -0.0639 -0.0805 -0.0796 -0.0794 

Dewpoint 69 0.2892 -0.1849 0.1616 -0.1726 0.1622 0.1600 0.1607 
Relative Humidity 70 0.3068 0.2965 0.2765 0.3032 0.2970 0.2879 0.2969 

U-wind component 71 -0.2649 -0.0099 -0.0384 -0.0253 -0.0388 -0.0394 -0.0398 
V-wind component 72 -0.1820 -0.0028 -0.0376 -0.0125 -0.0378 -0.0378 -0.0380 

650m b 
Heights 73 -0.0026 -0.0032 -0.0039 -0.0032 -0.0039 -0.0039 -0.0039 

Temperature 74 -0.0636 -0.0987 -0.1026 -0.0955 -0.1021 -0.1024 -0.1020 
Dewpoint 75 0.2888 -0.2520 0.2057 -0.2484 0.2060 0.2031 0.2035 

Relative Humidity 76 0.3029 0.2821 0.2550 0.2939 0.2844 0.2701 0.2837 
U-wind component 77 -0.2467 0.0063 -0.0301 -0.0059 -0.0303 -0.0305 -0.0308 
V-wind component 78 -0.1769 -0.0039 -0.0527 -0.0139 -0.0529 -0.0530 -0.0532 

600mb 
Heights 79 0.0031 0.0026 0.0020 0.0026 0.0020 0.0020 0.0020 

Temperature 80 -0.0588 -0.1011 -0.0011 -0.1194 -0.0036 -0.0160 -0.0182 
Dewpoint 81 0.2714 -0.2477 0.2101 -0.2461 0.2103 0.2083 0.2085 

Relative Humidity 82 0.2863 0.2687 0.2453 0.2791 0.2715 0.2585 0.2706 
U-wind component 83 -0.2300 0.0150 -0.0298 0.0039 -0.0300 -0.0300 -0.0303 
V-wind component 84 -0.1590 -0.0029 -0.0592 -0.0116 -0.0593 -0.0595 -0.0597 

550mb 
Heights 85 -0.0019 -0.0024 -0.0030 -0.0024 -0.0030 -0.0030 -0.0030 

Temperature 86 -0.0246 -0.0161 0.0392 -0.0209 0.0386 0.0416 0.0409 
Dewpoint 87 0.2420 -0.2263 0.1881 -0.2255 0.1882 0.1866 0.1867 

Relative Humidity 88 0.2508 0.2299 0.2062 0.2419 0.2341 0.2194 0.2327 
U-wind component 89 -0.2082 0.0025 -0.0174 -0.0068 -0.0176 -0.0177 -0.0179 
V-wind component 90 -0.1395 -0.0058 -0.0572 -0.0134 -0.0573 -0.0571 -0.0572 

500m b 
Heights 91 0.0032 0.0027 0.0022 0.0027 0.0022 0.0022 0.0022 

Temperature 92 0.0092 -0.0276 0.0424 -0.0286 0.0423 0.0434 0.0433 
Dewpoint 93 0.1989 -0.1821 0.1357 -0.1816 0.1358 0.1345 0.1346 

Relative Humidity 94 0.2044 0.1847 0.1630 0.1961 0.1891 0.1752 0.1877 
U-wind component 95 -0.1707 -0.0161 -0.0086 -0.0232 -0.0087 -0.0091 -0.0092 
V-wind component 96 -0.1339 -0.0340 -0.0313 -0.0388 -0.0313 -0.0314 -0.0315 
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Thunderstorm Indices row# V V2 V3 v+v2 V+V3 v2+v3 v+v2+v3 

SSI 97 -0.2906 -0.1912 -0.1574 -0.2059 -0.1591 -0.1605 -0.1621 

LI 98 -0.2616 0.0816 -0.1692 0.0256 -0.1725 -0.1589 -0.1626 

K 99 0.3423 0.3603 0.3580 0.3603 0.3580 0.3581 0.3581 

VT 100 0.1441 0.1375 0.1304 0.1377 0.1304 0.1306 0.1306 

CT 101 0.2518 0.2652 0.2635 0.2650 0.2635 0.2637 0.2637 

TT 102 0.2766 0.2797 0.2789 0.2797 0.2789 0.2790 0.2790 

Tl 103 0.3521 0.3710 0.3648 0.3711 0.3648 0.3651 0.3651 

MDPI 104 0.1713 0.1697 0.1681 0.1698 0.1682 0.1682 0.1682 

CCL 105 0.1161 0.1220 0.1200 0.1220 0.1200 0.1200 0.1200 

LCL 106 0.1474 0.1478 0.1482 0.1478 0.1482 0.1482 0.1482 

LCL-CCL 107 0.1474 0.1478 0.1482 0.1478 0.1482 0.1482 0.1482 

RH 1000 to 700m b 108 0.2934 0.2905 0.2740 0.2919 0.2742 0.2752 0.2754 

RH 800 to 600mb 109 0.2533 0.2538 0.2450 0.2540 0.2450 0.2455 0.2456 

Thickness 
500m b 110 0.0710 0.0707 0.0704 0.0707 0.0704 0.0704 0.0704 

700mb 111 0.1381 0.1379 0.1376 0.1379 0.1376 0.1376 0.1376 

850mb 112 0.1455 0.1450 0.1446 0.1450 0.1446 0.1446 0.1446 

800 to 500m b 113 0.0362 0.0357 0.0353 0.0357 0.0353 0.0353 0.0353 

800 to 700m b 114 0.1037 0.1033 0.1030 0.1033 0.1030 0.1030 0.1030 

700 to 500m b 115 -0.0061 -0.0066 -0.0071 -0.0066 -0.0071 -0.0071 -0.0071 

Vertical Wind Shear 
1000to500mb 116 -0.0841 -0.0753 -0.0510 -0.0756 -0.0510 -0.0514 -0.0515 

700 to 500mb 117 -0.1076 -0.0928 -0.0605 -0.0935 -0.0606 -0.0613 -0.0614 

700 to 1000mb 118 -0.0730 -0.0783 -0.0580 -0.0784 -0.0580 -0.0586 -0.0586 

850 to 600mb 119 -0.0880 -0.0853 -0.0735 -0.0856 -0.0735 -0.0739 -0.0740 
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APPENDIX G. MATHCAD® TEMPLATE FOR 

CONDITIONAL PROBABILITIES 
This program is a function of an array( include the patterns of persistence), the 
length of pattern to look at, and a day number withholding function. It loops 
through the decimal equivalent of the binary patterns of persistence and 
increments a thunderstorm counter or a no thunderstorm counter for the pattern 
observered for that day. The next day is read and the loop starts again. 
The output is an array holding the number times a thunderstorm follows each 
pattern by month and how many times no thunderstorm follows each pattern by 
month. 

Function to withhold dav number of missing years 
(uses lightning data)(x is day number) 

La(x) := ((x< 5048) + (x> 5355))((x< 4285) + (4896< x)) 

Count(V, n, ex):= 

day < 
2-2,5 

■0 

r<—cols(V) 

ck-1 

m<—1 

for   ie  1.. rows(V) 

for  je  1.. 2n 

if   (V.r=j-l)"(ex(Vi;2) = 1 

daYj m^daYj>m+1 

day 

if   (V.r=j-l)(ex(V.2) = 1 

vi,3>n 

Vi,3>n 

day 
j + 2",m 

-day + 1 
j + 2 ,m 

day 

if  ((m=1)(d=30)) + (d-31) 

d<-0 

m<—m +■ 1 

if vi,3=1 

m<—1 

d<-0 

d-t- 1 

day 83 

VL3<153 

Vj>3<153 

Vi.l = 1 

vu-o 



This program is a function of an array(created by Count program) and the 
length of pattern to look at. It loops through the decimal equivalent of the 
binary patterns of persistence and calculates the conditional probability 
from the relative frequencies. The output is an array holding the 
conditional probability of a thunderstorm for each pattern. 

NextDayProbyMon (V, n) answer1 .,<—0 

for  he 1.. 5 

for  i e  1.. 2r 

answerj h«- 

answer 

V i,h 

Vi h + V      n 
I + 2  ,h 

Example Result 
Probability of a Thunderstorm given a 

3 Day Persistence Pattern 

May Jun Jul Aua       Sep 

000' 0.132 0.235 0.281 0.272 0.193' 

001 0.260 0.264 0.282 0.333 0.228 

010 0.220 0.325 0.386 0.340 0.195 

011 0.232 0.398 0.333 0.370 0.258 

100 0.414 0.552 0.695 0.590 0.542 

101 0.484 0.606 0.587 0.567 0.605 

110 0.393 0.643 0.628 0.508 0.473 

111 0.462 0.654 0.727 0.690 0.520 
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Example Result 
3 Day Pattern Frequencies 

(number of pattern occurrences) 

Pattern ^ Jun Jui Auq Sep 

[000 1 " 87 100 95 85 102 

001 27 33 37 49 29 

010 18  27 27 32 15 

011 13  45 42 51 24 

100 48  74 89 79 71 

101 15  43 37 51 23 

110 24  74 81 66 44 

111 18 134 208 156 52 

000 572 325 243 227 426 

001 77  92 94 98 98 

010 64  56 43 62 62 

011 43  68 84 87 69 

100 68  60 39 55 60 

101 16  28 26 39 15 

110 37  41 48 64 49 

111 21  71 78 70 48 . 

Patterns 
Preceding 
Thunderstorms 

Patterns 
Preceding 
no Thunderstorms 
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APPENDIX H. MATHCAD® TEMPLATE FOR 

CREATION OF WIND SECTORS 

This program is a function of data set array and level of wind to be correlated. 
The u and v components of the wind are converted to direction for every level. 
A variable is set to 1 or 0 depending on whether the wind falls within the 
specified sector. Every level is determined. The output is an array of l's and O's 
with each column representing a different level. These columns can then be 
correlated to thunderstorm occurrence. 

WndSector(V, level) := 

anSrows(V),12^° 

for ie 1.. 11 

for je l..rows(V) 

dir«- 0   if Vj,<level>=° 

71 
— - atan 
2 

Vlevel-Hl) 

Vj,( level) 

4- n'[vi, (level)<0J 
180 

7C 

if [Vj,(leve,)*0] 

m<-0  if (((dir>0)-(dir<190)) + (dir>300)) 

m<-l  if (dir>190)-(dir<300) 

ans 
Wl 

-m 

ans 
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APPENDIX I. MATHCAD® TEMPLATE FOR 

BISERIAL CORRELATION 

This program is a function of data set array and column of variable to be correlated. 
It loops through the array, calculates the average values of the variable with and without 
thunderstorm occurrence, and counts the number of occurrences and nonoccurrences. 
It uses these numbers to calculate the point biserial correlation coeffecient. 

biserial(V,c) := sX3«-0 

s3<-0 

S<-0 

for ie l..rows(V) 

sX^sX^V 

Sj^-i 

if Vi,lsl 

sX2^-sX2-hVic 

s2^s2 + l 

if vu-o 

sX3<-sX3-»-Vi 

■S3 + I 

for j e 1.. 3 

sX 
X<- 

J 

J 

Sj 

for ie 1..rows(V) 

S Sn-fV.-Xl 

ans<- 

ans 

S2'S3  r^2        3 

Js 

Calculate number of 
thunderstorm occurrences 

Calculate number of 
thunderstorm non occurrences 

Calculate averages 

Calculate Correlation 
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APPENDIX J. ALGORITHM AND INPUT CONSTANTS FOR 

STRATIFIED LOGISTIC THUNDERSTORM INDEX 
ORIGIN= 1 

This algorithm takes an array of variables and the coefficients determined by regression and 
outputs and array of probabilities representing the probability of thunderstorm occurrence. 

Final(V,FC,NE,SW,coeff,gl,g2,g3,g4,g5):= 

w«-(20 24   103  99   109) 

lev«-(53  71   83) 

for je 1.. rows(V) 

m«-ceil 

V.   - 153-floor 
J,2 

j.2 

153 
-I- ceil 

V 
j.2 

153-floor 
Vj.2- 

153 

62 
- 1 

31 

lev2«-47  if (m=l) + (m=5) 

lev2<-65  if (m=2) 

lev2«-59  if (m=3) + (m=4) 

dir«— 0  if V. ,    =0 
j,lev2 

71 
— - atan 
2 

/V \ j,lev2-t-l 

V 
j,lev2   / 

+ JI-(V. .   _<0 1    j,lev2 

mdir«— 1 

mdir«— 1 

mdir«— 1 

mdir«— 1 

mdir«— 1 

mdir«—0 

mdir«—0 

mdir«—0 

mdir«-0 

mdir«—0 

for is 1.. 5 

if mdir=l 

for i e 1.. 5 

temp 

if (((dir<160)-|-(dir>300))m=l) 

if (((dir<190)-|-(dir>310))m=2) 

if (((dir<180)H-(dir>300))-m=3) 

if (((dir<190) + (dir>300))m=4) 

if (((dir<160) + (dir>310))m=5) 

if ((dir>160)(dir<300)m=l) 

if ((dir>190)(dir<310)m=2) 

if ((dir>180)(dir<300)m=3) 

if ((dir>190)-(dir<300)-m=4) 

f ((dir>160)-(dir<310)-m=5) 

S4[V'-(-M) 
,coeff,m,il 

temp 

ans.<- 
i 

1+e temp 

180 
if V. ,    *0 j,lev2 
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determines what month it is 

defines the wind level to use 

determines wind direction from u and 
v wind components 

defines the wind sector to use 

calculates level 1 regression equation 
results of the 1st five variables (all but 
winds)for the NE sector 



temp«- -zl(\^ 1 
VJ lev. .1 + 1 

NE m 

temp 

6 
1 + etemp 

temp*-g2jVjfleVi 
2 

VJ lev. 
,2+1 

NE m 

gtemp 

1-t-e 

temp^g3jVjleVi 3>VjleVi 3+1 

temp 

,NE,m 

ans„<- 
1+etemp 

if mdir=0 

for i E 1.. 5 

temp«- g4J"Vj> /     \, coeff, m, i +- 5l 

temp 
ans.«- 

1    1 + etemp 

temp«-gl(Vj>leViji,Vj>leViji + 1,SW,m 

temp 

ans,«- 
o 

1-r-e1 temp 

temp«-g2jVjleVi 2>VjleVi 2+1 

temp 

,SW,m 

ans?«- 
1 + e1 temp 

temP«-g3(Vj>leVij3,Vjj)eVij3+l!SW,m 

temp 
ans„«- 

temp 1+e 

result. ,«— V. , 

result. „«-V. . 
J,2        J,5 

temp«-g5[ans ,ans   ans   ans4,ans5, ans6, ans?, ansg,FC, m 

temp 

result. „«- 
J,3 

1 + e1 temp 

calculates level 1 regression equation 
results for NE 850-mb winds 

calculates level 1 regression equation 
results for NE 700-mb winds 

calculates level 1 regression equation 
results for NE 600-mb winds 

calculates level 1 regression equation 
results of the 1st five variables (all but 
winds) for the SW sector 

calculates level 1 regression equation 
results for SW 850-mb winds 

calculates level 1 regression equation 
results for SW 700-mb winds 

calculates level 1 regression equation 
results for SW 600-mb winds 

calculates level 2 regression equation 
results 

result 
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1st ten coefficients of each 
column are for 850-mb 
winds 

SW = 

1st level regression functions of South West winds 

850-mb wind function 

gKa.b.cf.m^cf^-Hcf^-a + cf^^ 

700-mb wind function 

g2(a,b,cf,m):=cf11;m+cf^ 

600-mb wind function 

&a,b,cf,m):=cf3lim + d^ 

May     June   July   August  September 

^-0.75919036 "0.84779476 -0.40809706 "0.5277348 "0.52109344' 

-0.13746693 -0.15052973 -0.22200973 "0.19402977 -0.11915831 

-0.03594596 "0.08425752 -0.09686717 -0.08303573 -0.11216879 

-0.00624943 -0.0032473 "0.01330786 "0.00251802 "0.01291393 

-0.01048502 -0.00365127 -0.00615273 "0.00350807 0.00186946 

0.00106757 0.00177423 0.00040953 "0.00451718 "0.00074532 

-0.00017196 0.00008448 0.00008634 0.00021188 0.00054875 

-0.00014651 -0.00000376 -0.00019842 -0.00031611 -0.00052938 

-0.0000142 -0.00004783 -0.00034994 0.00010146 -0.00018399 

-0.00003904 0.00013329 0.00002408 -0.00003721 0.00011901 

-1.12567318 -0.66017489 0.22076714 "0.11558421 "0.17808479 

-0.15739506 -0.16380442 -0.1774006 -0.13462212 -0.08943668 

0.00432637 "0.04127778 "0.03227301 "0.03459424 "0.05784074 

0.00372987 0.0017943 "0.00566766 0.00313752 "0.00357767 

-0.00863015 "0.00708765 "0.00784701 "0.00243253 "0.00422197 

0.00522078 0.00281135 "0.00035433 "0.00301364 0.00279638 

-0.00012226-0.00001356-0.00002144 0.00011727 "0.00002639 

0.00005712 0.00013638 -0.00011283 0.00000259 0.00011895 

0.00027315 "0.00009932-0.00011724 0.00009431 -0.00015752 

0.00009121 0.00010967 0.00013858 "0.00001557 0.00018713 

-1.70812358 -0.49854714 0.4455526 "0.06419189 -0.00433269 

-0.09810054 -0.14480572 -0.16233696 "0.15369527 "0.04228522 

-0.00926169 -0.07276583 0.04851311 0.00083738 "0.03132065 

0.00820946 "0.00405125 -0.00002992 0.00127029 "0.00542831 

-0.00129416 -0.00423608 -0.00845094 "0.00531093 0.00354932 

0.00753021 "0.00050512 -0.0000204 -0.00126907 -0.00196243 

0.00000875 0.00003869 -0.00006097 "0.0000378 0.00025694 

0.00023735 "0.00004204 "0.0000786 0.00003954 "0.00033321 

0.00031963 "0.0001298 0.00004709 0.000082  0.00009964 

0.00013389 0.00004934 -0.00008114 -0.00002679 -0.00005453 

2nd ten coefficients of each 
column are for 700-mb 
winds 

last ten coefficients of each 
column are for 600-mb 
winds 
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850-mb wind function 1 st level regression functions of North East winds 

gl(a,b,cf,m):=cf1)m + cf2;ma + cf3;m^^^ 

700-mb wind function 

g2(a,b,cf,m) :=cf11;m + cf12>ffi-a + cf13;m-b + cf14m.a.b + cf15 m.a2
+cf16m.b2

+cf17 m-a + cflg m a •b + cf,,--^ -hcf^ •bJ 

600-mb wind function 

«3<a,bfcf,m):=d^n+<^-.a^ 

NE = 

May     June   July   August  September 

-1.39735457 "0.81192688 -0.45935162 -0.5277348 -1.42248341' 

-0.16337932 -0.17903852 -0.13418957 -0.19402977 0.01011239 

-0.01924393 -0.11318309 -0.05640643 -0.08303573 -0.0153742 

0.00157409 -0.01017808 0.00150876 "0.00251802 0.0044145 

-0.00787899-0.01144756 0.00081352 -0.00350807 "0.00223024 

-0.00045066 0.00027117 -0.00194646 -0.00451718 -0.00468089 

0.00037086 0.0006944  0.00023355 0.00021188 0.00005116 

-0.00017156 0.00003373 0.00003039 -0.00031611 -0.00024535 

0.00036136 0.00000176 -0.00001264 0.00010146 0.00018699 

-0.00006346 0.0002151  0.00000485 -0.00003721 -0.0000611 

-1.93562709 "1.50057274 "1.98545234 "0.75533321 "1.35217142 

-0.17937277 -0.05107418 0.02737546 "0.08707048 "0.02634108 

-0.05167431 -0.00833508 -0.14228185 -0.01727309 -0.0304689 

-0.00275655 0.00303799 0.00598971 -0.00344996 -0.00199523 

-0.00901157 -0.00337095 0.00881725 "0.00097115 -0.00331195 

0.00005605 0.00509632 -0.00652579 "0.00296889 "0.00128174 

-0.00010536 0.00009911 -0.00045195 0.00018757 0.00008544 

0.00028875 -0.00028071 0.00065115 0.00036129 0.00006235 

0.00078496 "0.00023966 "0.00067685 0.00015726 0.00006666 

-0.00016811 -0.00013838 0.00012697 -0.00011107 0.00001151 

-2.65493895 -1.32577775 "1.72384294 "0.94921838 "1.44168343 

-0.15548608-0.07542698 0.04864186 -0.07508946-0.01195839 

-0.05776902 -0.03263039 "0.08591294 -0.01646786 -0.00765895 

-0.0023119 0.00317909 -0.00628692 0.0011504 -0.00448007 

-0.00199548 -0.00503603 0.00104194 -0.00176458 0.00008548 

0.00099906 -0.00057824-0.00472537 0.00113819 -0.00451049 

0.00004846 -0.00004537 "0.00057493 0.00020504 0.00001635 

0.00000459 0.00006697 0.00000348 -0.00002301 0.00001679 

0.00038321 0.00090595 -0.00115929 0.00000735 "0.00001327 

-0.00002425 -0.0004214 0.00003981 -0.00004252 -0.00016118 

1 st ten coefficients of each 
column are for 850-mb 
winds 

2nd ten coefficients of each 
column are for 700-mb 
winds 

last ten coefficients of each 
column are for 600-mb 
winds 
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Coefficients for 2nd level regression (function g5) 

May June July        August       September 

-3.52422053 "3.19376065 -4.34717717 -2.88225896 -2.88225896 

2.02870833   2.71884464   3.66172082   3.66588934   3.66588934 

-2.36366193 "7.01820778 0.23900732 "0.73233145 "0.73233145 

8.40441166 8.15811753 9.22149719 2.96923916 2.96923916 

FC = -3.30920217-4.42014698-3.42312361 1.56811367 1.56811367 

0.02861214 2.17740649 1.44730897 -2.73732854 -2.73732854 

2.52491409 3.50578959 2.62274102 0.48034821 0.48034821 

3.40919978 -0.3646134 "1.20114017 0.52840618 0.52840618 

-2.93856522   1.66948952   2.00008196   0.60340528   0.60340528 

2nd level regression function 
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APPENDIX K. CLIMATOLOGICAL FREQUENCIES 

Climatological Frequencies using 15-day 
weighted average for each Day number 

1 May is day 1 

1 May 

Climo = I 

0.146 

0.122 

0.122 

0.073 

0.09 

0.121 

0.132 

0.161 

0.154 

0.164 

0.174 

0.202 

0.206 

0.227 

0.219 

0.208 

0.201 

0.202 

0.206 

0.213 

0.224 

0.231 

0.234 

0.239 

0.24 

0.254 

0.266 

0.279 

0.29 

0.293 

0.291 

0.295 

0.303 

0.317 

0.333 

0.336 

Climo = 

0.334 

0.33 

0.335 

0.345 

0.349 

0.356 

0.352 

0.351 

0.359 

0.371 

0.381 

0.392 

0.402 

0.412 

0.428 

0.45 

0.458 

0.468 

0.464 

0.47 

0.47 

0.476 

0.479 

0.48 

0.47 

0.469 

0.47 

0.477 

0.488 

[0.495 

0.497 

0.496 

0.489 

0.495 

(71^0.493 

10.495 

■ 0.493 

l^4M 0.481 

M 0.47 

k$\ 0.466 

III 0.466 
10.468 

^| 0.468 

10.464 
iP 0.462 

Climo = 

m-\ 0.45S 

1^0.46 
Rj 0.465 
K 0.464 
E 0.47 
§£7«10.468 

BS"! 0.468 

mj 0.466 

jj 0.467 

10.465 

10.468 

10.476 

10.473 

W-- °-472 

pöl 0.468 

ftojj, 0.466 

&M 0.465 

f^ 0.474 

pf|o4Sl 
Sin 0.482 
foä: 0.479 
|ö3J 0.476 

p| 0.467 

|05; 0.471 

Climo = 

0.477 

M 0.486 

mk 0-47S 

0.475 

0.467 

0.469 

0.466 

0.474 

0.461 

0.439 

0.416 

0.398 

0.382 

0.372 

0.352 

0.336 

0.317 

0.312 

0.316 

0.327 

0.328 

0.333 

0.328 

0.326 

0.331 

0.335 

0.332 

0.321 

0.306 

0.294 

0.288 

0.281 

0.277 

0.263 

0.276 

Climo 
jfjlj 0.233 

j 0.213 

0.259 

0.277 

0.317 

0.195 

0.195 
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APPENDIX L. 6-DAY CONDITIONAL PROBABILITIES 

000000 

000001 

000010 

000011 

a6 = 

0.145 0.19   0.268 0.33   0.191 

0.113 0.396 0.277 0.149 0.179 

0        0.265 0.292 0.31    0.195 

0.12   0.243 0.304 0.375 0.15 

0.171 0.29   0.368 0.185 0.188 

0.5     0.286 0.083 0.25   0.167 

0.2     0.19   0.286 0.2     0.286 

0.091 0.167 0.308 0.25    0.24 

0.324 0.273 0.222 0.238 0.222 

0.167 0.444 0.25 0.231 0.2 

0.4     0.125 0.429 0.2     0.25 

0        0.25    0.333 0.545 0.2 

0.353 0.211 0.273 0.318 0.24 

0.2     0        0.308 0.5     0.125 

0.333 0.375 0.467 0.143 0.267 

0.167 0.304 0.194 0.414 0.263 

0.263 0.316 0.353 0.467 0.282 

0.167 0.222 0.4 0.25   0 

0.1      0.429 0.75 0        0 

0.2     0.333 0.222 0.308 0.5 

0.429 0.286 0.571 0        0.2 

0        0        0.333 0.2     0 

0.25    0.5     0.333 0.3     0.167 

0        0.444 0.357 0.667 0 

0.3     0.316 0.227 0.36   0.2 

0.429 0.545 0.2 0.5     0.444 

0        0.6     0.8 0.182 0.2 

0.5     0.125 0.143 0.278 0.286 

0        0.231 0.429 0.308 0.2 

0.25    0.333 0.429 0.286 0.4 

0.333 0.412 0.231 0.4     0.333 

0        0.516 0.385 0.459 0.2 

Columns 
1 May 
2 Jun 
3Jul 
lAug 
> Sep 

a6 = 

■ 0.422 0.571 0.674 0.537 0.508 

1° 0.412 0.864 0.625 0.5 

Ig!) 0.444 0.615 0.571 0.7     0.625 

I0'75 0.375 0.684 0.615 0.462 

10.167 0.615 0.571 0.571 0.545 

Hl 0.333 0.857 0.625 0.5 

■ 0.286 0.25 0.8 0.563 0.75 

■ l 0.769 0.462 0.6     0.75 

■ 0.545 0.571 0.5 0.611 0.545 

Ho 0.6 0.6 0        0.5 

■j 1 1 0.333 1         1 

Bo.5 0.5 0.5 0.615 1 

fc 0.222 0.75 0.6 0.5     0.75 

1° 0.5 0.833 0.714 0 

■ l 0.8 0.538 0.5     0.8 

111 0.522 0.688 0.6     0.571 

H 0.407 0.667 0.625 0.447 0.436 

■ 0.571 0.545 0.765 0.733 0.5 

1° 0.667 0.7 0.778 0.375 

■ 0.2 0.5 0.786 0.5     0.583 

■ 0.667 0.6 0.75 0.455 0.429 

■ 0.5 0.75 0.4 0.444 0.5 

lo 0.727 0.625 0.333 0.571 

Ifjl 0.688 0.368 0.5     0.5 

B 0.467 0.719 0.636 0.714 0.478 

Hi 0.833 0.722 0.688 0.6 

■I 0.5 0.444 0.875 0.667 0.5 

10.5 0.684 0.636 0.714 0.571 

11,0 286 0.636 0.78 0.655 0.6 

II 0.5 0.75 0.692 0.722 0.333 

iölO.667 0.515 0.707 0.758 0.429 

|4 0 0.667 0.755 0.658 0.563 
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