
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

RE-ENGINEERING AND PROTOTYPING A LEGACY
SOFTWARE SYSTEM - JANUS VERSION 6.X

by

Julian R. Williams, Jr.
Michael J. Saluto

March 1999

Thesis Advisors: Man-Tak Shing
Valdis Berzins

Approved for public release; distribution is unlimited.

19990401 124

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management
and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 1999

3. REPORT TYPE AND DATES COVERED
Master's Thesis

TITLE AND SUBTITLE:
RE-ENGINEERING AND PROTOTYPING A LEGACY SOFTWARE SYSTEM -
JANUS VERSION 6.X

6. AUTHOR(S) Williams, Julian R. Jr., Michael J. Saluto

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the authors and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

12a. DISTRD3UTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRD3UTION CODE

13. ABSTRACT (maximum 200 words)
The U.S. Army is working to develop future generations of constructive combat simulation systems that can take

advantage of the wide availability of high-end Personnel Computers (PC). As part of this research and development process, the
U.S. Army looked to re-engineer a verified and validated legacy combat simulation into a version that can operate on a PC using
the industry supported and widely used Windows NT operating system. Janus, with its availability, familiarity, and applicability,
will serve as that re-engineering test case. The re-engineered version of Janus will maintain its existing functionality, and
include additional functionality to support Operations Other Than War (OOTW) and expanded Combat Service Support (CSS).
In its final form, the results of this re-engineering project will produce the Warrior Simulation. Warrior will serve as a basis for
future simulations.

This thesis describes the re-engineering activities required to reconstruct the Janus architecture from a legacy software
simulation system into one possessing an object-oriented architecture that complies with Department of Defense's (DoD) High
Level Architecture (HLA) standard.

This research indicates that procedural legacy simulations can be converted into an objected-oriented architecture that
complies with the HLA standards.

14. SUBJECT TERMS

Object-oriented Architecture, Prototyping, Forward Engineering, Reverse Engineering, Combat
Simulation, Three-Tier Architecture

15. NUMBER OF PAGES

197

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500

DTIC QUALITY INSPECTED 2

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

RE-ENGINEERING AND PROTOTYPING A LEGACY SOFTWARE SYSTEM
-JANUS VERSION 6.X

Julian R. Williams, Jr.
Major, United States Army

B.S., Hampton University, 1988

Michael J. Saluto
Captain, United States Army

B.S., United States Military Academy, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1999

Authors:

Approved by:
Man^Tak Shing, Thesis Advisor

Valdis^erzins, Ttiesis_Advisor

Jan Boger, Cl
Department of Computed Science

in

THIS PAGE INTENTIONALLY LEFT BLANK

IV

ABSTRACT

The U.S. Army is working to develop future generations of constructive combat

simulation systems that can take advantage of the wide availability of high-end Personnel

Computers (PC). As part of this research and development process, the U.S. Army

looked to re-engineer a verified and validated legacy combat simulation into a version

that can operate on a PC using the industry supported and widely used Windows NT

operating system. Janus, with its availability, familiarity, and applicability, will serve as

that re-engineering test case. The re-engineered version of Janus will maintain its

existing functionality, and include additional functionality to support Operations Other

Than War (OOTW) and expanded Combat Service Support (CSS). In its final form, the

results of this re-engineering project will produce the Warrior Simulation. Warrior will

serve as a basis for future simulations.

This thesis describes the re-engineering activities required to reconstruct the Janus

architecture from a legacy software simulation system into one possessing an object-

oriented architecture that complies with Department of Defense's (DoD) High Level

Architecture (HLA) standard.

This research indicates that procedural legacy simulations can be converted into

an objected-oriented architecture that complies with the HLA standards.

DISCLAIMER

The reader is cautioned that computer programs developed in this research may
not have been exercised for all cases of interest. While every effort has been made,
within the time available, to ensure that the programs are free of computational and logic
errors, they cannot be considered validated. Any application of these programs without
additional verification is at risk of the user.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
A. BACKGROUND 1

B. MOTIVATION 3

C. OBJECTIVES 4

D. THESIS ORGANIZATION 5

II. JANUS OVERVIEW 7
A. BACKGROUND 7

B. DESCRIPTION 8

C. ANALYSIS 9
1. Strengths 10
2. Weaknesses 10

III. METHODOLOGY 13
A. THE RE-ENGINEERING PROCESS 13

1. System Understanding 14
2. Reverse Engineering 15
3. Application Restructuring 16
4. Forward Engineering 17

B. BUILDING THE OBJECT MODEL 18
1. The Three-Tier Object-Oriented Architecture 18
2. Building the Simulation Objects 20
3. Building the Event Handler Objects 22

IV. PROTOTYPE: WARRIOR VERSION 1.4 29
A. BACKGROUND 29

B. THE WARRIOR PROTOTYPE 31
1. Purpose of the Prototype 31
2. Building the Prototype 32

C. PROTOTYPE REFINEMENTS 36
1. Return Value of the Execute_Event Method 36
2. Simulation History 37
3. Null Action of an Event in the Event Queue 38

D. LESSONS LEARNED 40

V. CONCLUSIONS AND RECOMMENDATIONS 43

Vll

A. CONCLUSIONS 43

B. RECOMMENDATIONS 44
1. Automated Tools 44
2. Cross-Reference Generators 44

APPENDIX A. PROPOSED THREE-TIER OBJECT-ORIENTED
ARCHITECTURE 47

APPENDIX B. EVENT CLASS HIERARCHY 49

APPENDIX C. SIMULATION OBJECT CLASS HIERARCHY 51

APPENDIX D. JANUS SIMULATION EVENT HANDLERS 53

APPENDIX E. JANUS CORE ELEMENTS 57

APPENDIX F. THE PSDL SPECIFICATION FOR THE EXECUTABLE
PROTOTYPE 77

APPENDIX G. THE ADA/C SOURCE CODE OF THE PROTOTYPE 83

LIST OF REFERENCES 179

BIBLIOGRAPHY 181

INITIAL DISTRIBUTION LIST 183

Vlll

LIST OF FIGURES

1. The Re-Engineering Process 14

2. The Prototype Process 29

3. CAPS General Structure 30

4. Top-Level Decomposition of the Executable Prototype 32

5. The JANUS Subsystem of the Executable Prototype 33

6. The GUI Subsystem of the Executable Prototype 34

7. The Graphical User Interface of the Executable Prototype 35

IX

THIS PAGE INTENTIONALLY LEFT BLANK

ACKNOWLEDGEMENTS

Thanks to all my fellow classmates. Without your guidance, assistance,

criticisms, and friendship I would have never made it. I owe a special thanks to

my family for all their support.

- Michael J. Saluto

My sincerest appreciation and thanks go to my thesis advisor, Professor

Man-Tak Shing. He took me under his wing and worked diligent hours helping

me to learn and understand numerous software-engineering ideas and concepts. I

know that at times I was slow to understand and often asked the same questions

repeatedly. My thanks go to him for his sincere patience and support.

I would also like to give special thanks to Professor Valdis Berzins. His

knowledge of the field is extraordinary and he provided me with many insightful

ideas, guidance, assistance, and most importantly, patience.

But most importantly, I want to send a very special thanks to my family

and friends for their sincere love, confidence, and support. Thanks.

- Julian R. Williams, Jr.

XI

I. INTRODUCTION

A. BACKGROUND

Up until just a few years ago, software development was conducted under the auspices

that a system1 would be developed and maintained for some period of time and then eventually

replaced by a totally new future system. However as budget purse strings tighten, the increased

dependence on commercial technology and the use of Commercial-off-the-shelf (COTS)

products, coupled with the wide spread use of legacy systems, it is becoming increasingly more

important and highly economical for concerned agencies to explore re-engineering

opportunities and strategies. Legacy systems like Janus embody substantial institutional

knowledge which include both basic and refined requirements, design decisions, and

invaluable advice and suggestions from military leaders that has been implemented over the

years. To effectively use these assets, it is important to employ a systematic strategy for

continued evolution of the current system to meet the ever-changing mission, technology and

user needs. However, knowledge is difficult to recover after many years of operation,

evolution, and personnel change. Janus software was originally written some twenty years ago

using, what many now view as, an archaic and ad-hoc methodology. In addition, Janus has

experienced a number of updates and maintenance revisions over recent years. Major changes

occurred during the transition to version 4.0 with the integration of new terrain features such as

roads, buildings, vegetation, water and other man-made features. The end result is a legacy

system that lacks the ability to evolve to meet the ever-changing demands needed to continue

1 The systems discussed in the thesis are software intensive: software constitutes a significant portion of the application. Unless
otherwise noted, the term "system" implies "software system".

as a valuable military training and analysis tool.

Re-engineering has frequently been proven to be more cost effective than new

development and is also known to better promote continuous software evolution. It is

essentially building a new system using the existing system as the basis for requirements or

design. Software re-engineering can defined as the systematic transformation of an existing

system into a new form to realize quality improvements in operation, system capability,

functionality, performance, or evolvability at a lower cost, schedule, or risk to the customer

[Ref. 1]. Such improvements often take the form of increased or enhanced functionality, better

maintainability, configurability, reusability, and/or other software engineering goals. This

process involves recovering existing software artifacts from the system and then re-organizing

them as a basis for future evolution of the system.

When re-engineering a legacy system, the use of object-oriented techniques introduces

certain complexities into the software analysis process. Primarily we find, as was the case with

Janus, that the software system was not originally designed and implemented using an object-

oriented approach. Thus, the products of reverse engineering, such as requirements or design

specifications, will probably reflect a functionally based approach. As a result, some form of

"transformation" of analysis and design is necessary in order to use the specifications.

Once a realizable specification is obtained, it is often very difficult to quickly determine

if the specification is in fact a true representation of the desired requirements. Prototyping

provides a means to validate system requirements while simultaneously allowing a prospective

user with the opportunity to get a brief feel for aspects of the proposed system. It is a well-

established approach that can be highly effective in increasing software quality [Ref. 2]. Used

in conjunction with conducting a major re-engineering effort, prototyping can be extremely

useful in assisting in many areas of software modification, validation, risk reduction, and the

refinement of user requirements.

B. MOTIVATION

In September 1996, USD(A&T) signed a memorandum promulgating the High Level

Architecture (HLA) as the architecture of choice for Department of Defense (DoD)

simulations. DoD additionally stated that all agencies shall cease further development or

modification of all simulations which have not achieved, or are not in the process of achieving,

HLA-compliance by the first day of FY 1999, and shall retire any non-compliant simulations

by the first day of FY 2001 [Ref. 3]. In April 1998, USD(A&T) reaffirmed that policy stated

in the September 1996 memorandum. To recap the full benefits of simulation interoperability

and reuse in the near-term, it is important to quickly transition our legacy to the HLA [Ref. 4].

In support of these policies and a vision to improve solider training opportunities, the U.S.

Army Training and Doctrine Command (TRADOC) Analysis Center in Monterey, California,

(TRAC-MTRY) began efforts to research and develop an HLA compliant, personal computer

(PC)-based, high-resolution, multi-sided, constructive combat simulation. The simulation

selected for development was Janus. The overriding goal of the project was a prototyped

HLA-compliant Janus, coded in C++, operating on a PC platform using the Windows NT

(WinNT) operating system [Ref. 5]. Large constructive software simulation systems like Janus

typically reside on bulky hardware platforms, usually running a UNIX-based operating system.

However, the significantly increased computing power of today's PCs, combined with their

low cost, availability, and wide familiarity make them a very attractive and logical choice for

future simulation systems.

A major goal in the ongoing research effort in the Software Engineering Laboratory at

the Naval Postgraduate School is the construction of a highly automated software engineering

environment to support computer-aided design, development, and reuse of large software

systems. A number of models and tools have been developed as a result of the research, many

of which largely support the task of re-engineering large software systems like Janus. TRAC-

MTRY tasked the Software Engineering Laboratory at the Naval Postgraduate School to assist

in its effort to re-engineer Janus into an object-oriented system. This thesis describes our

efforts to modernize Janus into more maintainable, evolvable system, and one that exploits the

recent speed, memory, and power enhancements of today's modern PCs.

C. OBJECTIVES

The primary objectives of our work were twofold; 1) propose a methodology to re-

engineer a legacy software system, and 2) produce an executable prototype of the design using

the Computer Aided Prototyping System (CAPS) and its supporting specification language, the

Prototyping System Description Language (PSDL). The work involved moving Janus, a

legacy combat simulation system, from an HP-UNIX based platform, written mainly in the

procedurally structured FORTRAN 77 programming language, to an object-oriented

programming environment running on a PC platform. It was additionally a goal of the

developers to rewrite Janus in an object-oriented programming language, preferably C++.

However, prior to rewriting Janus code, the developers needed a completed software

architecture of the existing Janus code functionality. The decision to develop an object-

oriented architectural design facilitated rewriting Janus in C++ and integration of a Graphical

User Interface (GUI). As any experienced software engineer will tell you, a well-designed

architecture is the first step to successfully re-engineering a software system because it acts as a

blueprint when designing the desired class structures, objects, attributes, interactions, and

needed parameters.

D. THESIS ORGANIZATION

Chapter II provides an overview of the Janus simulation system, including background

information on the system's creation and its development. It provides a brief description of the

model along with an analysis of the system to include a discussion of the system's strengths

and weaknesses.

Chapter III begins with a brief description of the re-engineering process and provides a

detailed account into the underlying steps of System Understanding, Reverse Engineering,

Application Restructuring, and Forward Engineering. The next section, Building the Object

Model, discusses the selected architecture and describes how the model was actually

constructed using simulation objects and the event handlers. The chapter concludes with a

brief analysis of the process.

Chapter IV describes the procedures used in constructing the executable prototype. It

outlines the purpose for the prototype, describes how it was done and then provides some

unique insight of lessons learned during the process.

Chapter V summaries the key elements of our re-engineering effort and provides some

insightful recommendations for future work and research in the area of legacy system re-

engineering.

THIS PAGE INTENTIONALLY LEFT BLANK

II. JANUS OVERVIEW

A. BACKGROUND
The Army used constructive combat simulation models for training since the late

1970s. One of the earliest such models, the McClintic Theater Model, was developed by

an Army War College employee by the name of Fred McClintic. The McClintic Theater

Model, which quickly became known simply as "MTM", was a prototype for "theater

style" constructive simulations used for training, typically at Division level or higher. [Ref.

6]

Janus began development as a contemporary of MTM, but was intended to meet

utterly different requirements. Responding to a Department of Energy requirement, Janus

was developed as a nuclear effects modeling tool by Lawrence Livermore National

Laboratory (LLNL). Fielded in 1978, the Janus simulation was named after the two-faced

Roman god of portals who guarded the gates of Rome by looking two ways at the same

time. Later, the U.S. Army Training and Doctrine Command (TRADOC) Analysis Center,

White Sands Missile Range, New Mexico (TRAC-WSMR) acquired the prototype from

LLNL as result of the Janus Acquisition and Development Project. DoD's interest in Janus

prompted the development of several parallel versions of the model during the late 1980s

and early 1990s. The original version, developed at LLNL, is known as Janus(L) while the

version adopted and successfully modified by TRAC-WSMR to meet Army combat

development needs is known as Janus(T). Both of these models achieved great success and

popularity amongst its users, which promulgated the Army to task TRAC-WSMR to

develop a multipurpose system from the best of Janus(L) and Janus(T). The simulation,

originally referred to as Janus (A), is now simply referred to as Janus. Janus has gained

immense popularity over the course of its lifetime and is currently in use by several allied

nations abroad to include Germany, France, Canada, and Australia. Here in the United

States, Janus is used not only by the U.S. Army, but also by the U.S. Marine Corps and the

Rand Corporation. The most recent version of Janus, version 6.88, is the analytical model

which is managed and maintained by TRAC-WSMR. There is also training version of

Janus, version 7.0, currently managed by the Simulation, Training and Instrumentation

Command (STRICOM) located in Orlando, Florida. [Ref. 7]

B. DESCRIPTION

Janus is a high resolution, software-based, constructive combat simulation model

used by Army leaders at brigade through platoon-sized units as an effective tool for training

staffs and analyzing combat tactics. The model simulates battle between two to six

opposing forces, depicting actions from individual systems and company-sized units, on up

through brigade and regimental-sized units. Each element is viewed on the Janus screen as

an icon. The icon may represent one or more pieces of equipment. For example, one icon

may represent one tank, or it may represent a platoon of tanks.

Janus is an interactive, closed, stochastic, ground combat simulation that features

precise color graphics. It is "interactive" in that command and control functions, entered

by military analysts, determine what actions take place in high tempo situations during

simulated combat. "Closed" in that the disposition of opposing forces is largely unknown

to the players in control of the other force. It is "stochastic" in the way the system

determines the results of actions like direct fire engagements, according to the laws of

probability and chance. The term ground combat implies that the principal focus is ground

maneuver and artillery units. However, Janus also models many other characteristics such

as weather and its effects, day and night visibility, engineer support, minefield employment

and breaching, rotary and fixed wing aircraft, resupply, and a highly robust and realistic

chemical environment. [Ref. 8]

The Janus system was originally designed to run on the Digital Equipment

Corporation VAX suite of computers running the Virtual Memory System (VMS)

operating system. The current "open systems" version runs on Hewlett-Packard

workstations under HP-UX and supports both Tektronix and X-window workstations. Our

work was solely concerned with the HP-UX version using X-windows workstations. The

graphics environment, controlled by FORTRAN subroutines, send the appropriate graphics

messages through the RTX X-window driver program to an X-window workstation. These

subroutines are included in the Janus executables. [Ref. 8]

C. ANALYSIS

Initially written in 1978, the model consists of sixteen executable programs written

in FORTRAN 77, with one additional subroutine written in the C programming language.

FORTRAN 77 and C are procedure-oriented languages; that is, they are defined in a way

that closely models the functions to be automated rather than the computer on which they

operate. Janus code development occurred over a number of years, involving many

different programmers, using several operating systems and various FORTRAN 77 and C

language compilers. In concert with the style of programming used at that time, its data

representation, instruction format, pointer usage, and control instructions are highly

characteristic of the FORTRAN 77 and C language programming styles. Each program is

made up from a number of subroutines and utility functions that were compiled separately

and then linked into system libraries. The executable code was then generated from those

system libraries. Several programs share common subroutines.

1. Strengths

As with all legacy systems, Janus has evolved over a number of years and as such,

embodies substantial organizational knowledge. Being referred to as a legacy system in

itself implies a system that contains many properties worth preserving. Janus has been

deployed for over twenty years and has undergone the scrutiny of real users with respect to

its functionality meeting their real needs. More specifically, the Janus simulation system

uses several very unique algorithms that have been very carefully constructed and refined

over the life of the system. These algorithms are used to simulate very highly complicated

state environments to include weather and temperature effects, chemical reactions, cloud

movements, direct and indirect fire events, and probabilities for line-of-sight, target

identification, recognition, and acquisition.

In addition to the extraordinary algorithms used in Janus, the simulation maintains a

huge database, which describes weapon systems extensively and in detail. Individual

fighting systems have distinct properties such as dimensions, weight, carrying capacity,

speed, weapons and weapons capabilities like range, type of ordinance and ammunition

basic load. [Ref. 9]

2. Weaknesses

Many of the Janus system variables and parameters used in the code are passed

between the various programs explicitly or via the use of global data sets, often called

FORTRAN common blocks. This form of programming uses a "structured" design

strategy and may be considered highly functionally oriented. Function-oriented design is

10

characterized by decomposing a system into a set of interacting functions that all share a

common centralized system state. Algorithm details and parameter manipulations are often

hidden in this style of design whereas the system state information can be viewed and

shared by all. This sharing of system state information can create serious problems since a

function can change the system state in a way that is inconsistent with the expectations of a

subsequent function. Furthermore, changes to a function and the manner in which that

function uses the system state information may also create many unanticipated changes in

the behavior of other functions.

As previously mentioned above, the Janus simulation system was originally

designed using a function-oriented approach to software development. In this approach the

design is commonly decomposed into a set of interacting units where each unit has a

clearly defined function. Design components in this approach are normally highly cohesive

around functions that operate on the global data sets, which make modifications and

upgrades very difficult and time consuming. For instance, the Janus database contains a

number of weapon systems to include tanks, helicopters and many other combat weapon

systems. Adding a new tank with characteristics dissimilar from those of other tanks in the

current database would require an immense amount of work and the programmer would

have to make modifications in many different sections of the software. Changing the

implementation of a weapon system or adding a new service, in almost any scenario, would

require the programmer to modify numerous sections of the software. Furthermore, many

of the newly modified sections would seem to many, to be totally unrelated to the

originally desired implementation change or service addition.

11

Finally, although FORTRAN is probably the language best suited for mathematical

and scientific programming, it possesses limited program structuring facilities and has very

limited support for data structuring. Thus, one can easily see that the current version of

Janus is not easily modified and maintainability is often very difficult and time consuming.

12

III. METHODOLOGY

A. THE RE-ENGINEERING PROCESS

Software re-engineering combines forward and reverse engineering techniques to

make a system that is more maintainable and more evolvable. Figure 1 illustrates this

process. Software re-engineering may be defined as any activity that improves one's

understanding of a software system and/or improves the software itself [Ref. 10]. This

definition partitions software re-engineering into two components: software

understanding and evolution. The first component, software understanding, involves

those activities that support program comprehension, such as measurement, browsing,

system understanding, and reverse engineering. The second component, evolution,

includes those activities geared toward software evolution such as redocumentation,

restructuring, and forward engineering. The approach taken in our research followed a

sequence of system understanding, reverse engineering, then followed by application

restructuring and finally forward engineering. The details of each activity are described

in the following paragraphs.

13

R
e
e
n
g
i
n
e
e
r
i
n
g

Forward Engineering

Forward
System

Specification

Forward

Design

vk t / Des gn \ /^v / Design Document /^-T
B \ {/%■,, A _,• /■c—' —i

n „■ / <■ =I] \ K Understanding / ^5
„Generation / Recovery \v^--_. / Recovery

^Reeng. X^ _^/ (Qleeng.

Reverse Engineering

Figure 1. Re-engineering Process

1. System Understanding

System understanding reflects the process of creating and maintaining an

understanding of the system through analysis, elicitation, and capture [Ref. 11]. The first

step in our process took the form of a series of brief meetings with the client, TRAC-

Monterey, which also included a short demonstration of the current software system. We

asked questions and made several notes on the system's operation and it's current

functionality. We paid particular attention to the client's view of the system to gather

their ideas on its strengths, weaknesses, and desired and undesired functionality.

Additionally we collected copies of the Janus User's Tutorial manual, Janus User

Manual, the Software Design Manual from a previous version of Janus (3.X/UNIX), and

the Janus Version 6.88 Release Notes. Our goal was to gather as much information as we

could about the current existing system to aid in gaining a clearer understanding of its

present functionality. This provided a sound foundation upon which to move up one

14

level of abstraction from implementation and focus on the system's underlying

architectural design. The intent of this procedure was to ensure that the systems' current

functionality was not lost nor misrepresented in the transformation into a more abstract,

modular format.

2. Reverse Engineering

Reverse engineering may be defined as the process of analyzing an existing

system; identifying its system components, abstractions and interrelationships; and then

creating the respective representation [Ref. 11]. In similar fashion, the focus of this step

was to abstractly capture the system's functionality and then produce modules that would

most accurately represent that functionality. Armed with the Janus source code, we

proceeded to divide the code by directories amongst each team member. Each team

member was assigned roughly six to seven directories to explore, examine, and gather

information. Using strictly manual techniques with UNIX commands and review

procedures, we were able to get a fairly good idea of what each subroutine was designed

to do. We additionally used the Software Programmers' Manual to aid in better

understanding each subroutine's function, its required parameters and coordinating

subroutines. In doing so we were able to group the subroutines by functionality to get a

better understanding of the major data flows between programs. Using that knowledge,

we developed functional models from the data flows. We used an automated tool known

as CAPS, developed by Professor Luqi and the Software Engineering group at the Naval

Postgraduate School, to assist in developing the abstract models [Ref. 12, 13]. CAPS

allowed us to rapidly graph the gathered data and transform it into a more readable and

usable format. Additionally, CAPS enabled us to develop our diagrams separately with

15

the associated information flows and stream definitions, and then join them together still

under the CAPS environment. These diagrams were then used to generate an executable

model of the system's architecture.

3. Application Restructuring

Next, we proceeded to develop the object models of the Janus system using the

aforementioned materials and products to create the modules and associations amongst

them. Chikofsky defines restructuring as the transformation of representations at the

same level of abstraction while preserving the system's external behavior [Ref. 11]. The

transformation of the functional models to object models was probably the most difficult

and most important step, primarily because it required a great deal of detailed technical

analysis and astute focus to mentally transform the current chaotic assembly of data and

functions into small, realizable objects each with its own set of attributes and operations.

In performing this step, we used our knowledge of object-oriented analysis applying

concepts from Object Modeling Technique (OMT) and the Unified Modeling Language

(UML) notations to create the classes and associated attributes and operations. This was

really a crucial step because we had to ensure that the classes we created accurately

represented the functions and procedures currently found in the original system. We used

the HP-UNIX systems at the TRAC-MTRY facility to run the Janus simulation software

to aid in verifying and/or supplementing the information we obtained from reviewing the

source code and documentation. This step enabled us to better analyze the simulation

system, gaining insight into its functionality and further concentrate on module definition

and refinement. Our goal was to develop viable class representations from the gathered

information, which would best represent the software's current functionality.

16

4. Forward Engineering

As in conventional software development, forward engineering begins with the

system specification. The newly developed object models along with our knowledge

gained during the system understanding phase served as our system specification for the

realization of the new system.

During this phase of the re-engineering effort, our team focus was to move

forward to develop the desired system for the Janus Simulation System from our newly

created object models. Again we closely analyzed each object, its associated attributes,

and operations to ensure we captured an accurate representation for future development

and integration into our newly planned object-oriented architecture. The team met

several times each week for a period of nearly three months to discuss the details of the

object models and the proposed structure of the Janus object-oriented architecture. We

also presented our findings weekly to the Janus domain experts at TRAC-MTRY and

members of Rolands & Associates, a local software developer also involved in the

project. Our re-engineering team additionally presented findings to numerous other

technical organizations within the software simulation development community to

include the OneSAF project, the Combat21 project, and the National Simulation Center at

Fort Leavenworth, Kansas. The gathered feedback from each session was then reviewed

and analyzed for possible incorporation into the object models for the Janus core

elements and development of the object-oriented software architecture.

17

B. BUILDING THE OBJECT MODEL

1. The Three-Tier Object-Oriented Architecture

We observed that possessing a solid software architecture is one of the key

elements in successfully re-engineering a legacy software system. Realizing this, we

opted to use a layering concept to provide an application architecture that would

minimize the negative impacts due to change in the base technology or in the addition of

any new application features. Layering application architecture has also been shown to

enhance the concept of software reuse by creating additional layers to separate the user

system interface client environment from the database management server environment

and other services. Some systems have achieved upwards of 60% reuse of software

within one domain of an application. [Ref. 14]

In designing our system, we wanted to use an object-oriented system architecture

to serve as the basis for our reengineering effort. Our current top-level communications

structure of the existing software did not decompose the system into clearly defined

subsystems where each subsystem comprised a related set of functions sharing a common

purpose and having a well-defined interface.

To create a truly object-oriented system architecture we chose to decompose the

Janus system vertically into layers. Each layer was built in terms of the ones below it.

The lower layer provides the basis for implementation to the layers above it. Thus, a

subsystem can communicate to a lower layer via a client-server relationship where clients

must know the interface of the server to use its provided functionality. This type of

architecture highly promotes system flexibility and reuse by allowing a subsystem or

layer to be modified, rewritten, and /or replaced without affecting or disrupting the

operation of the entire system.

After deciding upon a layered software architecture, we additionally selected to

use a closed architecture. This meant that each layer was limited to communicate only to

the layer immediately beneath it. Implementing this limitation reduced the dependencies

to just two layers: the current layer and the layer immediately beneath it. Reducing

dependencies amongst these layers of the architecture worked to localize changes to just

one layer as long as all of the interfaces associated with that layer remained the same.

Subsequently, if changes to an interface must occur, this type of architecture limits those

changes to the system to just the two layers interacting via the newly changed interface.

In our design, we chose to use a classic three-tier architecture (Appendix A) to

serve as our basis for the Janus system. This architecture took into account all the

benefits listed above by providing three layers of representation: a Presentation layer, an

Applications layer, and a Storage/Network layer. We mapped the functionality

represented in the current Janus top-level communications structure to our three-tier

architecture. The Janus User Interface maps directly to the presentation layer, which is

relatively free of application processing. The Applications layer contains the meat of the

system to include the core elements that perform the major event-processing tasks in

Janus, and the other components required for system operation. We additionally chose to

further divide the Applications layer into two sub-layers (Appendix A): a Domain layer,

which provides services to the Janus User Interface and a Services layer to provide

communication and access to the storage devices and the network. This finer

decomposition of the middle layer promptly introduced the concept of a multi-tiered

19

architecture as opposed to three, however the idea of a single "middle tier" remains. The

additional layers allowed us to further separate the responsibilities imposed by the three-

tier architecture and develop more modular, specialized, reusable components. We were

then able to map most of the functionality to the Domain layer, thus providing services

similar to those currently provided by the Janus GUI. Most of the work is done in the

Domain sub-layer. The components here perform the majority of the system processing

functions and application execution. The Services sub-layer provides access to both the

Janus Database and DIS/HLA infrastructure.

Using a three-tier architecture provided a clearly defined interface between each

layer, which allowed changes to a particular layer to be localized to that layer. For

instance, if the Janus database had to be completely changed due to size and format

constraints, this type of architecture would allow changes to be localized to just the

storage layer as long as the interface between the storage and services layers did not

change. In a similar fashion, if for instance the interface between database utilities and

the database did not provide the proper services, a change to that interface would be

needed to include any new interface requirements. This newly changed interface would

then demand appropriate changes be made to the services and storage layers to

accommodate those new interface changes. However, nothing in the domain layer would

need to be changed.

2. Building the Simulation Objects

After developing the three-tier architecture, our next goal was to expand this

architecture to encompass the functionality of the current Janus. As part of our reverse

engineering effort, we focused our attention on the Janus Combat Simulation and Core

20

Elements. In the current version of Janus, a user can create a Scenario by choosing run

parameters that control the environment, which consists of a terrain and weather

conditions databases. The user can also establish combat forces. Each force would then

contain a collection of combat units, command and control graphics, and any selected

obstacles.

Since Janus is such a large system, our first step was to build small, coherent,

realizable objects, each with its own attributes and operations, that would accurately

represent the functions and procedures of the current software. In order to accomplish

this task we divided the components of the current Scenario amongst the team members.

Each member reviewed the source code and documentation and created objects with

associated attributes and methods. After each member had an opportunity to work on his

or her object, the re-engineering team met to discuss the object models for the Janus core

elements and the object oriented architecture for the Janus system. As each member

presented their finding, others provided feedback. To ensure greater accuracy, we

presented our findings to the Janus domain experts from TRAC-MTRY and Rolands &

Associates. Based on their feedback the team revised the object models.

We focused primarily on the attributes of the system to create the objects since the

attributes were fairly well defined in the Janus documentation. By tracking the attributes,

we were able to find insights to how Janus manipulates data structures. Data structures in

Janus are FORTRAN arrays. Operational parameters are spread across a number of

arrays and are identified by an array index value. We found that information regarding a

particular object was not encapsulated. Encapsulation and information hiding allow the

programmer to change the internals without affecting the user provided the interface does

21

not changed. By encapsulating the attributes within the objects, we greatly reduced the

sophisticated programming skills required to understand Janus' data representation and

also reduced the risk and cost to modify future systems.

As part of revising our object models, we often tried to structure our objects to

obtain the greatest benefits of Object Oriented Programming (OOP) (Appendix E). Our

first effort was to arrange the objects into hierarchies. Hierarchies provide many valuable

advantages such as type extensions, inheritance, and dynamic dispatching. A specialized

object would inherit the primitive attributes and methods of its parent, but maintain the

flexibility to add or override attributes and methods in order to provide specific behaviors

to the object. For an example, if there was a new tank that exhibited slightly different

movement behavior than other tanks, a designer could create a subclass of the current

Tank Class. The subclass would then inherit all the attributes and methods of its parent

class. The designer could take advantage of similar behaviors by deciding not to override

any of the common methods and attributes of the Tank Class. He could also add specific

behaviors by overriding others or by adding additional methods and/or attributes.

3. Building the Event Handler Objects

After creating base objects with their associated attributes and simple methods,

we needed to ensure the primary functionality of the Janus Simulation System was

properly captured in our model. In order to accomplish this task, we looked at the

existing Janus code architecture. Central to the Janus Combat Simulation Subsystem is

the program RUNJAN, which is the main event scheduler for the simulation. RUNJAN

determines the next scheduled event (called a "process" in the Janus User Manual) and

executes that event. The existing Janus Simulation System uses 17 different categories to

22

characterize the events. RUNJAN then handles these 17 events using the following event

handlers:

1) DOPLAN - Interactive Command and Control activities

2) MOVEMENT - Update units positions

3) DOCLOUD - Create and update smoke and dust clouds

4) STATEWT - Periodic activity to write unit status to disk

5) RELOAD - Plan and execute the direct fire events

6) INTACT - Update the graphics displays

7) CNTRBAT - Detect artillery fires

8) SEARCH - Update target acquisitions, choose weapons against potential

targets, and schedule potential direct fire events

9) DOCHEM - Create chemical clouds and transition units to different chemical

states

10) FIRING - Evaluate direct fire round impacting and execute an indirect fire

mission

11) IMPACT - Evaluate and update the results of an indirect round impacting

12) RADAR - Update an air defense radar state and schedule a direct fire event

for "normal" radar

13) COPTER - Update a helicopter states

14) DO ARTY - Schedule an indirect fire mission

15) DOHEAT - Update units' heat status

16) DOCKPT - Activity to perform automatic checkpoints

17) END JAN - Housekeeping activity to end the simulation

23

The existing event scheduler relies on global arrays and matrices to maintain

attributes of the objects. Since our first task was to move these attributes to the

corresponding objects, our second task would be to distribute the event handling

functions to the individual objects. However, as discovered from our first task, many of

the current event handler categories contained redundant code and did not seem to be

very coherent to the objects we created. Thus, we realized the need to redefine some of

the event categories in order to provide a uniform framework and to eliminate redundant

coding of similar or identical functions. This also allowed us to take advantage of the

dynamic dispatching capabilities of the event handling functions inherit within our

object-oriented architecture. For example, the set of event handlers used for a particular

unit to search for targets, select weapons, prepare for a direct fire engagement, and then

execute that direct fire engagement differs depending upon whether the unit has a normal

radar, special radar, or no radar at all. The existing Janus Simulation System uses the

RADAR event handler to carry out the entire procedure if the unit has normal radar.

However, it uses the SEARCH, RADAR, and RELOAD event handlers to carry out the

procedure if the unit has special radar. Finally the system uses the SEARCH and

RELOAD event handlers to conduct the procedure if the unit has no radar at all.

Upon analyzing the Janus Simulation System event handlers, we were able to

successfully reduce the total number of event handlers needed in the simulation, from 17

to 14, by eliminating identified redundant code. Our 14 event handlers are as follows:

1) DOPLAN - Interactive Command and Control activities

2) MOVE_UPDATE_OBJ - Moves and update all objects in the simulation

3) SEARCH - Based on all detection devices, searches for potential targets

24

4) CHOOSE_DIRECT_FIRE_TARGETS - Once search is complete chooses

best target to engage. In future simulations, implementations may allow users

to choose targets.

5) COUNTERBATTERY - Simulates counter battery radar to find potential

targets

6) DO_DIRECT_FIRE - Executes direct fire events and updates ammunition

status

7) DO_INDIRECT_FIRE - Executes indirect fire events and updates

ammunition status

8) IMPACTJEFFECTS - Calculates results of round impacting.

9) UPDATE_HEAT_STATUS - Updates units' heat status.

10) UPDATE_CHEMICAL_STATUS - Update unit's chemical status

11) DISPLAY - Updates the graphics display.

12) WRITE_STATUS - Periodic activity to write units status to disk.

13) CHECK_POINT - Activity to perform automatic checkpoints

14) END_SIMULATION - Activity to end the simulation.

As can be seen in Appendix B, we renamed some of the event handlers to possess

more descriptive, meaningful names. We additionally combined some event handlers

having similar functionality into ones that were more easily understood and applicable to

the actual function. Every event now has an associated simulation object. This

associated object is the target of the event. Depending on the subclass to which an event

object belongs, the "execute" method of the event will invoke the corresponding event

handler of the associated simulation object (Appendix C). The simulation object

25

superclass defines the interface of the event handlers for the event groups. At the highest

level, it provides an empty body as the default implementation for the event handlers.

Events are dispatched to the appropriate subclass. The event handler of the subclass

overrides the inherited method in order to perform the desired behavior, if there is

something more specific that needs to be done for instances of the subclass.

The architecture described above enables a very simple realization of the main

simulation loop (Appendix G, Section 25). The pseudo code for the event control loop is

as follows:

initialization;
While not_empty(event_queue) loop

e := remove_event (event_queue);
e.execute();

End loop;
finalization;

Note that this same code is used to handle all of the event handlers, including

those for future extensions that have not yet been designed. Event objects with

associated simulation objects are created and inserted into the event queue by the

initialization procedure, the constructors of an object, and the actions of other event

handlers. Depending on the actual event, it is inserted into an event priority queue based

on time and priority.

Using the old event handlers under current the Janus simulation system to move a

tank, smoke cloud, or helicopter required three distinctly different event handlers,

MOVEMENT, COPTER and DOCLOUDS respectively. During our analysis we were

able to consolidate these three event handlers into one namely, MOVE_UPDATE_OBJ.

We observed that although a tank, a smoke cloud, and a helicopter are all distinctly

different, each one as an object has the capability to move and update its present location

26

and other parameters. Thus, the name MOVE_UPDATE_OBJ accurately described the

event. Additionally, under the old event handlers, depending on the particular simulation

object, the program would have to analyze each object using several conditionals in order

to determine which event handler to invoke. Under our architecture, we take advantage

of the dynamic dispatching capabilities provided by an object-oriented programming

language, to automatically dispatch the event to the appropriate event handler. Thus to

move a smoke cloud object, the new architecture will invoke the MOVE_UPDATE_OBJ

method of the Cloud Class. This allows the simulation to correctly move the cloud in

accordance with the current environment and also update the cloud's size and intensity.

Similarly, to move a tank or helicopter object, the new architecture would dispatch to the

appropriate MOVE_UPDATE_OBJ method of the Vehicle Class. This would

subsequently move and update the object's fuel consumption and other required

parameters based on the particular vehicular type.

Our newly designed architecture eliminates the need for the simulation loop to

know what kind of object it is handling. Thus when adding an object type not yet

designed, the simulation loop does not require additional code to invoke the new object's

event handlers. This eliminates the possibility of introducing errors into the existing parts

of the simulation by localizing all changes to the newly added object class.

27

THIS PAGE INTENTIONALLY LEFT BLANK

28

IV. PROTOTYPE: WARRIOR VERSION 1.4

A. BACKGROUND

Prototyping has increasingly become a widely used methodology to improve the

design of software projects [Ref. 15]. A prototype is an executable model of a proposed

software system that accurately reflects chosen aspects of the system, such as display

formats, the values computed or response times [Ref. 2]. The prototyping methodology

is based on an iterative guess/check/modification cycle that relies on prototype

demonstrations and customer reactions to validate behavior of the final system. The

following diagram in Figure 2 shows how to validate requirements using a prototype

process [Ref. 16]:

Requirements
Design/Modify

Prototype System

Prototype

1
. Performance Demonstrate

Prototype

Modularization
and Objects

Figure 2. The Prototype Process

Prototyping may be defined as an approach to software development that uses

prototypes or executable models to aid both developers and customers alike in visualizing

the proposed system, and to predetermine its system properties using an iterative process

29

[Ref. 2]. The primary purpose of a prototype is to serve as an executable model of

selected aspects of a proposed system and to help designers confirm and refine

requirements for a software system. Eliminating incorrect or poorly defined requirements

early in the software design cycle helps reduce the time and total cost of the system. If

these design errors are left to propagate, they may result in a large amount of wasted

effort spent developing software to meet incorrect or inappropriate specifications. Much

of the time, effort, and cost to produce the product will be thrown out. Designers will

have to go back to the drawing board to correctly re-define the requirements.

Computer-aided prototyping serves as a method to automate the design process.

Automation allows designers to quickly develop prototypes to analyze software systems.

One system currently under research at the Naval Postgraduate School is CAPS. The

main components of CAPS (Figure 3) are the Editors, the Execution Support, the

Software Base, and the Project Control [Ref. 17].

Editors

\. PSDL
^^ Editor

Ada
Editor

Interface ^r
Editor /

ECS V ^/ Translator

Project
User

nterfact

\
Control I]) Schediier

\.
f ^^omniler

/ Sof tware Base N.

Execution!
Support

Figure 3. CAPS General Structure

30

Using the Editors, the designer can sketch system data flow diagrams augmented

with timing and control constraints. PSDL is a high-level prototyping language designed

to support the specifications of real-time software systems. PSDL also helps organize

and retrieve reusable components from the Software Base. The Software Base is a

database system that consists of reusable designs and software components. The

Execution Support system contains the translator, the static scheduler, the dynamic

scheduler, and the debugger [Ref. 18].

CAPS provides many benefits, the most significant of which is that it can

automatically generate ADA source code resulting in more reliable systems at reduced

production costs. CAPS supports evolutionary prototyping that provides the following

benefits [Ref 17]:

1) Risk reduction by providing a systematic method for validating systems.

2) Reliable code through automation.

3) Reduced maintenance costs.

4) Fewer system integration problems by standardizing all interfaces.

B. THE WARRIOR PROTOTYPE

1. Purpose of the Prototype

We needed to develop an executable prototype to validate our object-oriented

Model of the Janus Subsystem. By using CAPS to rapidly create the prototype, we could

continue the prototyping process in order to refine the Janus interfaces, adjust the designs

to handle newly discovered issues, and exercise all parts of the architecture [Ref. 19].

31

Thus, the result of the prototype process is to validate the architecture to ensure that the

architecture will meet the user's needs.

2. Building the Prototype

When developing an executable prototype of the simulation, we focused on four

subsystems: Janus, GUI, JAAWS, and the POSTPROCESSOR. Our architecture did

not include re-engineering the JAAWS and POSTPROCESSOR subsystems.

Nevertheless, we felt it imperative to include these systems in our prototype to validate

the interface among these subsystems. Figure 4 shows the top-level PSDL structure of

the prototype.

PSDL Editor warrior la.

pporotor-

*FÜe^PSDL.:Edit- -•''Help

..Twin

3tatistics_request

;:,Strbänv
replay_reque*t

ifelecß

l|;-^Upes;

:. Spec-*

replay_request

reploy^positian

it'Griipü'''

V-V-PE
M

Save^Nöt Required4;• ':: -LCHeck-;

Figure 4. Top-level decomposition of the executable prototype

32

' PSDL Eaton warrior ; gj

J)B>M*0K;

FHo-"PSH Edtt- ','tWp

4s.t»»;j

;Set«»ti,;

Tapes

jpiGraeh-:;
,\ '.Dose'"

ISPS-PI

•'janus:;

pr

sinulatianjjistory

External

limtlatianjhistory

gane.tine evont_q

Figure 5. The JANUS subsystem of the executable prototype

Among the four subsystems, the Janus and GUI subsystems, depicted with double

circles, are made up of sub-modules as shown in Figures 5 and 6. The

POSTPROCESSOR and JAAWS subsystems, depicted with single circles, are mapped

directly to objects.

Due to time and resource limitations, we developed the prototype for a very small

simulation. In order to fully exercise all parts of the architecture we chose a single

object, a Tank, moving on a two-dimensional plane along with three event objects

(Move_Update_Object, Do_Plan, End Simulation), and one Post-Processor related

statistic, Fuel Consumption.

33

PSDl Editor: warrior _£U2]

Operator

Fil»' -PS1»/ Edit- ':*1|>}

;': Tapes'-:

:Parent
'.'.Spec.-,.

\ Graph'

leer interaction

. gct- Extemal V »t

scenario

rtatisties_request

External

replay_request

Save Not Required ; Check

Figure 6. The GUI subsystem of the executable prototype

After creating the PSDL specification of our prototype design (Appendix F), the

CAPS execution support system was able to generate the code that controls and

interconnects the subsystems. By providing functionality to the subsystems, we were

able to generate an executable prototype. When adding functionality, we were careful to

ensure we conformed to the object model we developed in a prior exercise. For example,

our design of the event handler required the handler to be able to execute events for all

kinds of simulation objects. In our prototype, this meant that the Move_Update_Object

event handler had to work with all different kinds of simulation objects. Although our

tank only moved in two dimensions, we choose to implement the MoveJJpdate method

34

of the base Vehicle Class to support 3-D movement because some objects must have the

capability to move in three dimensions. Using the object-oriented property of

polymorphism, we allowed the event handler to invoke the correct implementation based

on the object type, thus solving this problem. In addition, using the Transportable

Application Environment (TAE)2, we were able to develop a simple GUI to allow easy

access and execution of the prototype. The resultant prototype consisted of over 6000

lines of program source code and contained enough features to exercise our architecture

(Figure 7 and Appendix G).

-| :' • gul 1 :i

jy->;■':.■ ''POSITION^

JAAWS; POST PROCESSING

X = 2000.0 Y = -1000.0
Fuel Consumption = 12S.0

0.0

-5000.0

Calculate Fuel Consumption
1 ■ v.-- I

;■JANUS

Enter New Destinationi

Y-

2000

-1000^

Enter ! 1

-BOO J.0-- 0.0 500 D.O

Replay Simulation Stop Simulation I

Figure 7. The Graphical User Interface of the executable prototype

: TAE is a trademark of the National Aeronautical and Space Administration.

35

C. PROTOTYPE REFINEMENTS

As we worked through the prototyping process we made several refinements to

our architecture. The prototype resulted in the following refinements:

1. Return Value of the ExecuteEvent Method

Our first refinement was to change the Execute JEvent method's return value from

a null value to a value representing the time to reschedule the next event for the

simulation object. In the original implementation, the Do JEvent method retrieved an

event object from the queue, which was then dispatched to the correct Execute_Event

method via polymorphism. The Execute_Event method then executed the event on the

corresponding simulation object. If, while in the Execute JEvent method, the object

required rescheduling, it made an external call back to the Do_Event package to invoke

the Schedule JEvent method, thus adding the event object to the queue.

However, we felt that all queue operations should be localized to the Do JEvent

package and that execution of events should be localized to the Execute_Event package.

Therefore, by implementing the return value, we were able to separate these operations

(Appendix G). Now instead of the Execute JEvent method making an external call back

to the Do JEvent package to reschedule the event, the method just returns the time to

reschedule that event if necessary. Once control is returned to the Do_Event method, it

will reschedule the event. We introduced a special time value of "NEVER " to indicate

that the event should not be rescheduled. The proposed modifications changed

communications between the event dispatcher and the simulation objects from a peer-to-

peer type relation into that of a client/server type relationship. This change also served to

reinforce the object-oriented property of information hiding by eliminating the need for

36

the simulation objects to know the details of the event queue. It additionally reinforced

the property of polymorphism by allowing the dispatcher to use a single statement to

schedule all recurring events for all event types including those that may be added by

currently unknown future extensions to Janus.

2. Simulation History

Our second refinement to the architecture dealt with how to record the history of

the simulation run. Instead of recording the history in terms of periodic snapshots of

selected data values, we decided to record the simulation history as a sequence of events.

Our first implementation of recording the history was based on the current Janus model.

In this model, a special event, Write_Status, executed periodically to capture selected

data values and write them to disk. However, the prototype showed us that this model

was highly inefficient, inaccurate and often unreliable. For example, many of the

simulation objects' states remained constant through several Write_Status executions.

Most of the data captured was redundant. In order to increase the accuracy, the system

would have to capture more data values. Combined with the redundant data problem, one

could easily see how the size of the history file could easily-grow rapidly. Moreover, the

Write_Status event handler has to keep track of the status of the objects that own the

selected data values.

After further investigation, we realized that the state of the simulation only

changed when an event occurred. If we were able to capture each event in a history file,

we could then capture a true representation of the simulation as it occurred. Since we

were already using the event objects for the real-time simulation, using the event objects

to create a historical record provided a simple and uniform way to conduct post-

37

Simulation analysis. As we implemented this change, we discovered two primary

benefits. First, we were able to provide the post-simulation with the greatest resolution

without creating an excessively large database. By capturing the events, any quantity

calculated during the real-time simulation could also be calculated during the post-

simulation. Second, we eliminated the need for a Write_Status event from our

architecture. Instead of using the Write_Status event (Appendix B) to capture the history,

we made a single line modification to our DoJEvent method (Appendix G, Section 25).

After an event is executed, a copy of the event is placed in the Simulation Jiistory.

3. Null Action of an Event in the Event Queue

Our third refinement allowed the null action of an event to appear in the event

queue. A null action of an event does not affect the state of the simulation but serves as a

placeholder of a dormant object in the event queue and also serves as a method to allow

future events. In our first version of the prototype, we opted to not allow null events into

the event queue since this decision corresponds to the current Janus scheduling policies.

As implemented, we used the Create _New_Events method to scan through all of the

simulation objects once per simulation cycle to determine if any dormant objects became

active. If so, after determining the object and correct corresponding event, the

Create_New_Events method would reschedule the object in the queue.

The prototype revealed that this process required very complicated logic and

greatly reduced the efficiency of the system. By allowing a null action of an event in the

event queue, we eliminated the need for the Create_New_Events method to scan through

all of the simulation objects. We now put the responsibility on the event handlers to

manage dormant objects. Constructors for all kinds of simulation objects are used to

38

create the initial events in the queue. As described above, the Execute_Event method of

each event handler determines the next time to execute the event and returns it to the

DoJEvent method for rescheduling. However, if the Execute_Event method of an event

handler determines that the object is not yet active, it simply returns an estimated time to

the Do_Event method. The DoJSvent method will then invoke the event of the object

again at some time later in the simulation. Then, in the future when the event waiting in

the queue executes and the object becomes active, the event handler would determine the

correct action and return a schedule time for the meaningful event. For instance, if a

vehicle arrives at its destination, the Move_Update_Object event handler would flag its

event to do nothing and wait for some duration of time to allow the user to provide a new

destination. If this duration were not long enough, it would repeat this waiting process.

As soon as a user provided a new destination, the MoveJJpdatejDbject event handler

would return a value and enable its event to move the vehicle.

In its final version, the prototype showed this refinement greatly improved overall

system efficiency and simplified the code in the following areas:

1) Checking to verify if a dormant object became active is done once per activity

ofthat object instead of once per simulation cycle.

2) Null actions of events are fast since they are basically just a guard. The time

required to check a guard in a Null action of an event once per activity is

much less than that required to check the status of each simulation object once

during each simulation cycle.

3) Eliminating complicated code in order to find and test all simulation objects

reduces the computational load on the system.

39

D. LESSONS LEARNED

Throughout our prototyping experiment, we learned the benefits of using the

prototype process. Each iteration of the prototyping process produced several criticisms,

many of which resulted in the refinements described above, which ultimately produced a

more realistic prototype. In the end, we developed a prototype that successfully met the

users needs and validated our architecture.

We observed the many benefits of designing a prototype using an object-oriented

architecture. In the course of two weeks, with the assistance of CAPS, we were able to

rapidly build four versions of our prototype. As our prototype evolved, CAPS ensured

consistency of each version while the three-tiered object-oriented architecture allowed

localization of design issues and provided an easy means for extensions. For instance,

version 1 of our prototype consisted of only two event subclasses, MoveJJpdatejDbject

and End Simulation. Version 2 introduced a third event subclass, DoPlan. The

DoJPlan event allowed the user to select new destinations for the tank. Because of the

unique flexibility of our object design, we were able to add this event without having to

modify the event control loop, thus unaffecting the previously working code. After we

implemented Do_Plan, we discovered that our implementation forced the user to first

enter an X-coordinate followed by a corresponding Y-coordinate. Since our object-

oriented design localized the implementation of the Do_Plan event to just a few lines of

code, we were able to find, fix, and implement a better DoPlan event. In the final state,

we added an Enter Button to the GUI to allow the user to enter the coordinates in any

order or to allow the user to change one coordinate at a time.

40

In the final analysis it is easy to see that our architectural design benefited

immensely by our decision to use an object-oriented methodology and design. The use of

multi-tiered architectural concepts within our three-tier architecture allowed for isolation

of the Applications layer into separate components. This is very valuable in the sense

that it promotes the use of reusable components and allows for the distribution of tiers on

different physical computing hosts. Another benefit is that it provides flexibility to allow

different developers to construct specific tiers of the architecture, as is the case in our

project where a separate contractor is developing the system's GUI.

Additionally, the object-oriented properties of polymorphism and inheritance

greatly enhanced our ability to efficiently extend the behaviors and provide specific

behaviors to objects. For example, in version 2 of our prototype, we introduced the

POSTPROCESSOR module, which allowed users to view the vehicle's fuel

consumption. However, a fuel consumption calculation would require more specific

behavior from our tank's Move_Update_Object method. In addition, as described above,

in version 1 of our prototype we used polymorphism and inheritance properties to move

the tank, thus allowing the event handler to dispatch to the Tank Class. This again

demonstrated the unique object-oriented luxury of inheriting general-purpose movement

behaviors from the superclass. In version 2, we had to modify this behavior to show the

vehicle's fuel consumption. By calculating the time elapsed from the last movement and

using the vehicle's fuel consumption rate per time, we were able to compute the correct

amount of fuel consumed. In the end, the Tank Class Move_Update_Object method

consisted of a guard, one statement to invoke the superclass Move_Update_Object, and

three lines to calculate the amount of fuel consumed (Appendix G, Section 81). Again

41

using the properties of polymorphism and inheritance, additional objects such as

helicopters, airplanes and other mobile weapon platforms can be easily implemented in a

similar fashion.

42

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Our thesis research indicates that by applying reverse engineering, restructuring,

and forward engineering techniques, we were able to successfully evolve a procedurally

coded, function oriented legacy software system into a highly modular, object-oriented

software system capable of contending with current simulation systems. We developed

an architecture that supports the functionality of the current Janus simulation system,

while also maintaining the flexibility to evolve to handle new and future design changes.

Using object-oriented design and analysis techniques, we created objects and classes that

encapsulated related items and developed a structural model of the system. This enabled

future modifications of the system to be accomplished by manipulating those objects or

by introducing new objects into the system. For example, while working on the Janus

simulation system, TRAC-WSMR informed us that the Janus model for the Radar

implementation was outdated and that a new model would be out within a year.

However, we had already completed this section of our architecture and based it on the

currently outdated Radar model. Nevertheless, since we used an object-oriented

architecture, it will be relatively easy to incorporate any changes to our model since all of

the information regarding the Radar functionality is located in only two areas, the Red

and Blue Radar objects.

43

B. RECOMMENDATIONS

1. Automated Tools

As we look back on the Janus simulation re-engineering process, we can recall the

enormous amount of time and effort spent analyzing the system. This process was a

literal nightmare consisting of manually intensive sessions reading and tracing through

FORTRAN source code, reading technical and user manuals, not to include several

sessions spent actually running the Janus simulation software. Although this was an

extremely important phase of our project and one that could not be overlooked, it was

nevertheless, very time consuming and strenuous. The use of some well-defined

automated tools would have been helpful in gaining system understanding. Although one

can not assume that any one tool will be a "be all, do all", but rather having even a small

collection of tools will assist the software engineer in gaining system comprehension. As

such, we highly recommend the use of automated tools to aid in reducing the time and

effort spent analyzing the system, and also to assist the software engineer in examining

the raw data.

2. Cross-Reference Generators

As part of our research we often found ourselves manually searching through the

Janus source code to find answers to specific questions regarding a particular variable

(i.e. who uses it, where is it used, how is it used, etc.). Professor Berzins suggested using

the cross-reference option, which was readily available on the CS Department's

FORTRAN compiler. A cross-reference generator creates a list of all of the identifiers in

a program and for each identifier in the program, it indicates the statement in which that

identifier appears. The use of a FORTRAN cross-reference generator would have been

very helpful in gathering needed variable information and thus assisted us in

understanding the system. Even though we could not compile and run the Janus

simulation system on our SUN UNIX machines, the FORTRAN compiler could have

automatically built a cross-reference listing of all variables. Then by using this cross-

reference, we could quickly and easily find answers to our specific questions and thus

eliminate wasteful, time-consuming manual searches.

44

Throughout the conduct of our thesis research, few areas stand out as those

requiring a high degree of focus and intense attention to detail. System understanding

was one such area that demanded intensive manual activity and time. Techniques to

automate this process would allow the developers to devote more time and energy to the

overall design and implementation of the new system.

45

THIS PAGE INTENTIONALLY LEFT BLANK

46

APPENDIX A. PROPOSED THREE-TIER OBJECT-ORIENTED

ARCHITECTURE

Tier 1
User Interface

JANUS
User Interface

7! /I A £ ^

Tier 2
Applications

Domain

s 1

-J£-
Combat
Systems
DBMS
 ^r:

JL
Scenario

Management

V.

J«L
JANUS
Combat

Simulation
—f^ V.

^_

JAAWS

A
POSTP

~w

Core
Elements

^. \
Services ^->. \ \ / V.'

'f' V H

DB Utilities
Pass

Interface

$ A

Tier 3
Storage

\y

DIS/HLA

47

THIS PAGE INTENTIONALLY LEFT BLANK

48

APPENDIX B. EVENT CLASS HIERARCHY

Event
^>Time_For_Event: Float

Simulation Object
*ExecuteO

lmpact_Effects
^HExecuteÖ

Do_Plan
^Cxecute()

Write Status
♦ExecuteO

Display
*Execute()

Do Direct Fire
^ExecuteQ

Counterbattery
^ExecuteQ

Check Point
^ExecuteQ

Search
1»ExecuteÖ

Do Indirect Fire
^ExecuteO

Update_Chemical_Status
^ExecuteQ

Move_Update_Obj
^ExecuteQ

End Simulation
♦ExecuteO

Update_Heat_Status
♦Executed

Choose_Direct_Fire_Targets
^ExecuteQ

49

THIS PAGE INTENTIONALLY LEFT BLANK

50

APPENDIX C. SIMULATION OBJECT CLASS HIERARCHY

Note: The Simulation object class
hierarchy includes every core
element object which changes state
during the simulation. Future
extension may include Terrian and
Weather_Data if they are allowed to
change state during simulation.

Simulation Object

^>Origin: 2d Coord

♦Dp_Plan()
♦Move_Update_Obj()
♦Write_Status()
♦Do_Direct_Fire()
♦DisplayO
♦CounterbatteryO
♦Searchf)
♦C hcose_D i rect_Fi re_Tar gets()
♦Update_Chemical_Status()
♦Do_lndirect_Fire()
♦lmpact_Effects()
♦Update_Heat_Status()
♦Check_Point()
♦End_Simulation()

A

Combat Element

^name:type

A

Scenario

♦Do_Plan()
♦Write_Status()
♦DisplayO
♦Check_Pcint()
♦End_Simulation()

Cloud

♦Move_Update_Obj()

T
WM Cloud

Minefield

A

Barrier

Unit

♦SearchO
♦Chcose_Driect_Fire_Targets()
♦CounterbatteryO
%lndirect_Msn_Start()
♦lndirect_Msn_Cancel()
♦Change_Breach_Mode()
♦Do_Direct_Fire()
♦Do_lndirect_Fire()
♦Update_Chemical_Status()
♦Update_Heat_Staük()
»MoveJJpdate_ObjQ

WM Minefield
1

WM Barrier

Firing Transaction

<\

Direct Fire Transaction

A ♦lmpact_Effects()

Indirect Fire Transaction

*lmpact_Effects()

WM Unit WM DF Trans WM IF Trans

51

THIS PAGE INTENTIONALLY LEFT BLANK

52

APPENDIX D. JANUS SIMULATION EVENT HANDLERS

Name of Event Objects
responsible

to handle the
event

Remarks

Do_plan scenario May be initiated by the graphical user
interface and it in turn may schedule
other events. See Note 1.

Display scenario May be triggered at regular time
interval. See Note 1.

Write_Status scenario May be triggered at regular time
interval. See Note 1.

CheckJPoint scenario May be triggered at regular time
interval. See Note 1.

Move_Update_Obj Unit Updates units position due to
movement, and schedule the next
Move_Update_Obj event for the
object. Mapped to movement.f,
copter.f, update.f updsldr.f, updflyer.f

Cloud Updates shape, location (if needed),
and expiration time. It schedules the
next Move_Update_Obj event for the
object. Mapped to part of docloud.f,
cldupd.f, and chmcld.f.

Search Unit Update potential target list. Use
different methods depending on the
kind of sensors the unit has. It also
schedules the next search event for the
object. Mapped to search.f, part of
radar.f for normal and special radar.

53

Choose_Direct_Fire_Targets Unit Updates visibility levels and performs
IFF to produce confirmed target list.
Selects weapons for the targets in the
potential target list. Choose target
from the confirmed target list and
schedule a direct fire event. Use
different methods depending on the
kind of platform the unit belongs to
and the kind of sensors the unit has. It
also schedules next
Choose_Direct_Fire_Targets event for
the object. Mapped to dodetect.f,
detect.f, fiydetc.f, handoff.f, and
reload, and part of radar.f (for normal
radar).

Do_Direct_Fire Unit Creates a Direct_Firing_Transaction
object and schedules an
Impact_Effects event for the object.
Mapped to shoot.f, and adfire.f for
normal radar.

Do_Indirect_Fire Unit Execute an arty mission. Creates an
Indirect_Firing_Transaction and
schedule an Impact_Effects event for
the object. Mapped to doarty.f, and
part of firing.f. Event scheduled by
Do_Plan event.

Impact_Effects direct_firing_
transaction

Evaluate the effect of the direct fire
event and update the affected objects
accordingly. Mapped to dfmpact.f.

indirect_firing
transaction

Evaluate the effect of the indirect fire
event and update the affected objects
accordingly. May create cloud objects
and schedule Move_Update_Obj event
for the cloud objects. Mapped to
impact.f.

Counterbattery Unit Searches for enemy fires and
schedules next Counterbattery event
for the object. Feedback is provided
via Do_Plan event. Mapped to
cntrbat.f.

54

Update_Chemical_Status unit Updates chemical effects on unit and
schedules next
Update_Chemical_Status for the
object. Mapped to part of dochem.f

Update_Heat_Status unit Updates heat effects on unit and
schedules next Update_Heat_Status
for the object. Mapped to part of
doheat.f

End_Simulation scenario Clears the priority event queue and
performs housekeeping activities. See
Note 1.

Note 1. Depending on the graphical user interface design, this event may be replaced by
different events and assign the event handlers to the individual objects.

55

THIS PAGE INTENTIONALLY LEFT BLANK

56

APPENDIX E. JANUS CORE ELEMENTS

JANUS CORE ELEMENTS OVERALL STRUCTURE

Scenario

^-^
/ /

+Self

Environment

,/+Enemy

1" / 0..*
Forces

♦Get_Potential_Targets(Shooter_grid, Sensorjype, Weapon_type): targets 0..*

Command & Control

Map_Symbols CAC Overlay

57

2. ENVIRONMENT AND WEATHER DATA CLASSES

Environment

\

Terrain

Weather data

Wind model

;>wind_velocity: float
>inversion_factor: int
>wind direction : int

Wet bulb

;>relative_humidity: float
^temperature : float

Air model

|^>atmospheric_model : int
:(§j>air_mass_type : int

ailing : int

Viability
extinction coefficient curve

Thermal Optical

^visibility : int
^>sun_angle : int O

sky_to_g m d_cu rve

58

TERRAIN CLASS

Terrain

Elevation Data

§&XY: 2d Coord
levation : Float

Terrain features

^Description : Text
^.Height: Float
^Location : 2d coord
^Color: Int
^Fill_Pattem : Int
f£>Speed_degradation_Factor: Record

Speed Degradation Factor ts.
Record

Wheeled_Factor: Float
Tracked_Factor: Float
Footed_Factor: Float
Flyer_Factor: Float

End Record
♦HeightO: Meters
♦PLOS(angle): Probability

Linear_object

2D Object

2d_Shape
<^PIos_per_25m : Float

♦PLOS(angle): Probability

Building

^Num_of_floors: Natural
^Num_of_rooms: Natural
^>Construction_type : Enum
ä^Opening_%_exterior: Float
^Fortification_Time : Natural

♦PLOS(angle): Probability

A TV

Urban Vegetation Generic Area 2d_Shape

7S~

Current Janus allows up to
20 types of generic areas

Firing_port
^>XY : 2d_coord

Current Janus allows up to
7 types of vegetation areas

Current Janus allows up to
7 types of Urban areas

Current Janusallowsup to 99
building types

Functional Classification =
Residential, WtereHouse,
Commericial, Industrial, HighRise

Construction Type=Lightly Clad
Frame, Mass Construction,

"K

59

LINEAR OBJECT CLASS

Linear_object
§>Width(meters)
§>Perpendicular_PLOS

♦Plos(angle): float

O-
0..* Line_Segment

! Line Segement type = i^,
first, internal, last

Fence

^>Perpendicular_Plos: Float
^>Opaque_angle : Float

♦PLOS(angle): Probability

Generic Object

^Crossing_Time : Record

Road
§>Class: enum (Primary, Se condary)

♦PLOSfangle : = 1.0

Current Janus allows L^
up to 20 types of
fences.

Current Janus allows up to-
20 types of Roads.

Future Versions of Janus L\
should be able to represent ;
Power Lines

River

^>Class: enum(Primary,Secondary,Lake)
^>Crossing_Time : Record

♦PLOS(angle):=1.0

Generic Object: Current Janus
allows up to 20 types of Generic
Objects. Crossing Time =

Record
None_time : Float
Avlb_time : Float
Cev_time : Float
HV_Armor_time : Float
LT_Armor_time : Float
Wheeled_time : Float
Footed_time : Float

End Record

River: Current Janus allows up
I to 20 types of Rivers. Crossing Time !

Record
\Mieeled_time : Float
Tracked_time : Float

. Footed_time : Float
Amphibious_time : Float

End Record

T\

60

5. CLOUD CLASS

Cloud

A There are two kinds of clouds:
Chemical and Optical-Thermal.

Optical-Thermal clouds have6 types: HC,
WP, Bispectral, Fog Oil, Vehicular Exhaust,
and Dust They are created by 5 methods:
Vehicles, Smoke Pots, Grenades, Large Are
a Dispensers, and Artillery. Current Janus
only models 5 of the 30 possible
combinations. See pages E-6 and pages
81,82,131-135 oftheCSDATA Manual

T\,

Chemical

^Sigma_for_chem_x_dir_at_impact: float
^>Sigma_for_chem_y_dir_at_impact: float
^Sigma_for_chem_x_dir_at_lO0_sec: float
(^>Sigma_fbr_chem_y_dir_at_100_sec: float
^Horizontaljjrowthjactor: float
^>Verticlejgrowth_factor: float
^>Chemical_mass: float
(^Attack_concentration: float

♦Dose(Duration): Float
♦Move_Update_Obj()

OpticaMThermal

61

OPTICAL THERMAL CLASS

Optica!_Thermal

4|>Optical_dimensionJength: Float
^>Optical_dimension_width: Float
§j>Optjcal_dimension_thick: Float

' ^Thermal_dimension_length: Float
; §j>Thermal_dimension_width: Float
i ^>Thermal_dimension_thick: Float

♦OpacityO : Probability

Vehicular Exhaust

♦M ove_U pdate_Obj()

Smoke Pot

♦Move_Update_Obj()

Large_Area_Dispenser

^>Lengtii_at_which_top_stops_sloping Float
^>Total_downwind_cloud_length: Float
^1/2_width_of_short_end_of_trapezoid: Float
^Trapezoid_side_slope: Float
S^Trapezoid_top_slope: Float
^Max_1/2Jength_of_diamond: Float
^InitJal_diamond_length: Float
^IniSal_diamond_ht: Float

;fi£>Diamond_height_o,rowth_rate: Float
|fifc>Diamond_Status: Boolean
! ^>Diamond_w_corner: 2d Coord
i ^Diamond_s_corner: 2d Coord
i ^Diamond_e_corner: 2d Coord
j S^Diamond_n_corner: 2d Coord
;Sj>Diamond_top_elevation: Float
'■ §^Diamond_bottom_elevation: Float
: ^Trapezoid_Status: Boolean
I ^>Trapezoid_se_corner: 2d Coord
>fi^Trapezoid_ne_corner: 2d Coord
| S^Trapezoid_top_elevation_east_edge: Float
I {5^Trapezoid_bottom_elevatjon_east_edge: Float
'^Rectangle_Status: Boolean
^Rectangle_se_corner: 2d Coord

iS^Rectangle_ne_corner: 2d Coord
;^Rectangle_top_devation: Float
§^Rectangle_bottom_elevation: Float

♦Move_Update_Obj()

Grenade

{^Distance: Float
^Orientation: Float

♦Move_Update_Obj()

Artillery_Smoke

^>Coeff_a_length: float
^Coeff_a_width: float
^Coeff_a_thick: float
^Coeff_a_height: float
^Coeff_bJength: float
^Coeff_b_width: float
^Coeff_b_thick: float
fi^Coeff_b_height: float
^CoeffJJength: float
^Coeff_t_width: float
^CoeffJJhick: float
§>Coeff_t_height: float
^Coeff_p_length: float
^Coeff_p_width: float
^p.CoefF_P_thick: float
^Coeff_p_heigth: float
S^Coeff_qJength: float

^Coeff_q_width: float
fi^CoefF_q_thick: float
^>CoefT_q_height: float
§^Coeff_r_length: float
^Coeff_r_width: float
^p.Coeff_r_thick: float
S^Coeff_r_height: float
^>Coeff_s_length: float
S^Coeff_s_width: float
S^Coeff_s_thick: float
^Coeff_s_height: float

♦Move_Update_Obj()

Artillery can generate 4
types of douds(HC,WP,
BS, Dust). The algorithm
for computing the artillery
smoke clouds uses 7 sets
of coefficients (A, B, T, P,
Q, R, S). Each setof the
coefficients consists of 4
attributes (Length, Width,
Thick, Height). This data
is used within the Janus
smoke model's
mathematical formulas to
determine, over time, the
shape of the smoke cloud,
the height of the bottom of
the cloud off the ground, an
d the cloud thickness. The
data sources is the US
Army Atmospheric Smoke
Lab. See pg 82 of the
CSDATA Manual.

T\

62

BARRIER CLASS

Barrier

^>Length : Float
^»Breached : Boolean = False

♦Clearing_Cros9'ng_Time(Weather_Data, Engineer_Type): Float
♦Emplacement_Time(Weather_Data, Engineer_Type): Float
♦CreateO
♦MoveO
♦ActivateQ

\
\
\

When a barrier is created Breached
Flag is initialized to False. When
barrier is reduced, breached isthen
True and Clearing_Crossing_time
factor is eliminated

T\

Cl e a ri n g_cro ssi n g_ti m e
v: Float

^>Hvy_armor: Float
^>Lt_armor: Float
^Wheeled: Float
^Soldier: Float
^Other: Float

Weather Effect
Weather data

Emplacement _Time
v: Float

^>Hvy_armor: Float
^>Lt_armor: Float
^Wheeled : Float
^»Soldier: Float
^Other: Float

Ditch
^Length : Integer = 250

♦CIearing_Crossing_timeO
♦Emplacement_Time()

Craters
^>Length : Integer = 50

♦Clearing_Crossing_timeO
♦Emplacement_TimeO

Note: Could add wire, tank Barrier, Battle,
e posistion, etc.
However, JANUS currently still moves
dead vehicles with unit

Abatis
^>Length : Integer = 250

♦Clearing_Crossing_timeO
♦Emplacement_Time()

Deploy_AVLB
^>Deploy_Retrieve_time : Integer = 15.0

♦Cl'earing_Crossi ng_time()
♦Emplacement_TimeO

63

MINEFIELD CLASS

Minefield

mplacement_method : enum
^>mine_type : enum
^>dud_prob_float

♦Move_Update_ObjO

2d_Shape

VV H \ ^\

-Z-
Visibility_distance

^>buttoned : float
^unbuttoned : float
^>infantry: float

method: ^
hand, mech-1,
mech-2, artillery

! Detection_probability

uttoned : float
unbuttoned : float
infantry : float

Cleared_ lane_

^>no_of_mine : int

2d_Shape

+contains

Mine
^status: enum

Activation_probability
elly: float

^magnetic: float
^>track: float

Clearing_method
^>plow_r/s_prob : record
^>roller_r/s_prob : record

i(%.line_charge_r/s_prob : record
;^>push_r/s_prob : record
;^>infantry_r/s_prob : record

\

status
active, dud, exploded, detected

I All r/s_prob are
[record

reliability: float
: survivability: float
!end record;

"K

64

9. UNIT CLASS

Targetsjnjos: map(unit, visibilityjevel) such
that u in DOM(targets_in_los) if and only if u in
Los from self at the time of search. Visibility_
level is at time of last detect

~K I In the existing Janus- Detect updatesthe visibility levels L^

! for each potential target then based on the weapon,
! schedulesDo_Direct_Fire forthat unit and then schedules |
I the next Detect for the unit '

\
Counterbattery_Report

Arty_Mission

+Passenger

0..*

Mounts

A.
Unit

^>Targets_in_los

♦SearchO
%Choose_Driect_Fire_TargetsO
♦CounterbatteryO
♦l nd i re ct_M sn_Sta rtO
♦lndirect_Msn_CancelO
%Change_Breach_ModeO
%Do_Direct_FireO
♦Do_lndirect_FireO
*Update_ChemicaI_StatusO
♦UpdatelHeat_StatusO
♦Move_Update_ObjO

Needsfunction Get_
potential_targets(force)

Forces

0..1,
4-HOSt

7\

Targets

+Target

Vehicle Unit
Human Unit

~K
i

Ground Vehicle Unit
Aircraft Unit

A

Tracked Unit

♦Move_Update_Obj 0

1
VMieeled Unit Rotary_Unit

*Move_Update_ObjO j *Move_Update_Obj() |

Fixed_Wing_Unit

♦Move_Update_Obj 0

Dismounted Soldier Unit

♦Move_Update_ObjO

Qvilian Unit

%/love_Update_Obj(

65

10. VEHICLE UNIT CLASS

POL data
^tank_size : float
^>mov_consumption_rate : float
^>station_consumption_rate : float
^>f ueljype : enum(1-Mogas, 2-Diesel, 3-Aviation)
^>fuel_amount: float

Resupply_capability_data
^>resupply_type : enum(1-ammo, 2-Mogas, 3-Diesel, 4-aviation)
%>refuel_capacity : float

Work data
^>stat_rate : float
^>move_rate : float
§j>prep_rate : float
^>firing_rate : float

R ectangu!kr_soia

N

X^.

a

Vehicle Unit
^>vehicle_num : int
^>vehicle_name: string
^>max_visibility : float
^>sensor_height: float
^>crew_size : int
^>space_internal: float
^>sy mbol_num : int
^>class_symbol_num : int
^>troop_capacity : int
^location : location_ty pe
^destination : location_type
^»speed : float
^>alive : bool
^>target_list : target_list_ty pe
^>side : short
^>task_force : force_type
^suppressed : bool

Optical_thermal_contrast

^

^

Capacity _data
^>total_weight: float
4^>total_volume : float
<%>carry_weight: float
^>carry_volume : float

Chem data
^>self_rec_dose : float
^>current_dose : float
§j>incapacit_mean : float
§j>incapacit_sigma : float
^>death_sigma : float
^>death_mean : float
(§J>self_recog_resp_time : float
i^>chem_xmit_factor: float
^mask_time : float
^>crew_alarm_time : float
^>incapacit_resp_time : float
^>expir_resp_time : float
^>detector_wait_time : float
<^>alarm_concern : float
<^.in_MOPP : bool

/

Optical
>contrast: float

Thermal
äxposed_contrast: float

%>defilade_contrast: float

\
Functional characteristics

^>laser_designator: bool
:^>surveillance_type : short(0..2)
^>breach_capability : short(0..5)
^>firing_type : short(1..3)

Z
/
/
/
/

surveillance:
: 0=no capability
; 1=chemical detector
; 2=Cdr's Indep. Therm Viewer

\
\

firing:
1=direct fire
2=indirect fire
3=direct and indirect

\

K

breach:
0=none
1=AVLB
2=CEV
3=HV Armor
4=LT Armor
5=wheeled

66

11. AIRCRAFT UNIT AND GROUND VEHICLE UNIT CLASSES

Vehicle Unit

Ground Vehicle Unit Aircraft_Unit

^>Track_width : float
^Belly_width : float
^>Magnetic_shadow_width : float

^>class: short(1-normal, 2-Fogm, 3-Atr, 4-SpeciaI
^>flyer_type: int
^>low_velocity: float
^high_velocity: float
^>low_altitude : float
^>high_altitude : float

♦M ove_Update_Obj 0

♦low_velocityO
♦high_velocity0
♦low_altitudeO
♦high_altitudeO

Fixed_wing

>fuselage_type : int

♦fuselage_typeO
♦Move_Update_ObjO

Jammer

^jammer_type : int
^>power: float
^>angle_from_source : float
^concurrent_count: int

♦jammer_typeO
♦powerO
♦a n g I e_f ro m_so u rce 0
♦concurrent_countO

Rotory

^>hover_altitude : float
^>max_pop_time : float
^>mast_height: float
^>rotor_type: int

♦hover_altitude()
%max_pop_timeO
%nast_height()
%otor_typeO
♦Move_Update_ObjO

Radar

Jammer effectiveness

<^>has_effect: bool

♦has_effectO

Jammer effectiveness curve

67

12. MOBILE PLATFORM SUBSYSTEM CLASS.

Mobile_platform_subsystem

Sensor

V

BCIS

(%>BCIS_num : int
^>processing_time : sec
^>beamwidth : degree
l^>range_tolerance : meter

%>rocess_time()
♦beamwidth()
♦range_toleranceO

Smoke_dispenser

d^smoke_dispenser_type : int
&no_of_volleys: int

♦smote_dispenser()
♦no_of_volleys()

Mine_dispenser

^mine_dispenser_num : int

Weapon_system
O-

Munition

Direct_Fire_Weapon lndirect_Fire_Weapon

^>Tubes_per_system : Int
^>Setup_time : Float
§£>Planning_time : Float
^Lay_time : Float
^>Reload_time : Float
^>Tear_down_time : Float

Artillery Mortar

68

13. SENSOR CLASS

Sensor

nsor num : int

I.
Radar

Performance Curve

Performance Curve is an
instantiation of a curve.
See Curve Class

T^

Optical/Thermal Sensors

^>Sensor# : integer
|^>Fov_narrow(deg): float
|^>Fov_wide(deg): float
^>Narrow_to_wide_factor: float
^>Spectral_band : Enum

♦Retum_Spectral_Band()
♦Return_Visibility()

I

Spectral Band: b\
1=eyes,2=TV, 3=Eariy
FLIR, 4=Modem FLIR

/
y
/
/

Foot Prints

^Angle : Float
^Radius: Roat
^Range : Roat

On Board Seekers

^>Seeker_number: Integer
^Seeker_name : String
^Sensor_band : Integer
<§^Threshold_energy: Roat
^>Desigator_energy: Roat
^>1/2_angle_vertical(deg): Roat
^>1/2_angle_horizontal(deg): Roat
^>Scan_rate(sec): Roat
^>Weapon_type : Integer
^>False_targets_per_sq_m : Roat

There are 2 instances of foot prints
Inner Foot Print and Outer Foor Print

Range_Dependent_Characteri sties

<^Target_range(km): Roat
^>Terminal_Velocity(m/sec): Roat
^>Fall_Angle(deg): Roat
^Seek_time(sec): Float

69

14. RADAR CLASS

Radar

Note: JANUS does not
currently model GSR

ADA Radar

^scanjime: float
^>track_time: float
^>launch_time: float
^>min_target_vel: float

O-
Radar class

Counterbattery_Radar

^>effective_range: float
^>beam_angle: float
^>setup_time: float
(§j>breakdown_time: float
^>error_factor: float

Normal Special

Red radar

Note: Handoff
capabilities to
optical sensors

"k.

Blue radar

ircraft num : int
ProbJq_detect

The current model of IX
Radar corresponds to
existing Janus, even
though it is known to
contain logical flaws.

M ast_only_PD_Curve

Mov flank PD Curve Hover PD Curve

70

15. RED RADAR CLASS

velocity_altitude_index: int
fuselage_index: int

Fuselage_footprint

^track_prob_matrix: matrix

rotorjndex: int;

Hover_acquiation
^hover_acquisition_time: sec

♦timeO

fuselagejndex: int

Radar cross section

^>aspect_angle: degrees
^refected_radar_ägnal_strength : dB

Velocity_aItitude

.velocity_altitude_index: int
^altitude : meters
^velocity: km/hr

velocity_altitude_index: int
rotor index: int

Radarjange

^>min_radar_range: km
^max_radar_range : km

velocity_altitude_index: int

Track_prob

^response: bool
^>ph_degree : Float

ower_of_radar: dB
^>time_penalty: sec

<>

^>prob_for_index_0 : float = 0.0
^>prob_for_index_1 : float
^prob_for_index_2 : float
^>proob_for_index_3 : float = 100.0

Fuselage_radar_cross_section

%>aspect_angle : natural
d^>reflected_radar_sig_strength : dB

ijammer: int

j Jammer_effectiveness

| ^>has_effect: bool

♦has_effectO

71

16. MUNITION TYPE CLASS

Munition

Janus currently only ^
models indirect fire
munitions

j%>Range : Float
rime_of_flight: Float
,im_error_range : Float

\im_error_deflection : Float
^>Range_error: Float

!^>Ballistic_error_deflection : Float
^>Ballistic_error_range : Float
%Angle_of_fall_1-3 : Float
^>Angle_of_fall_wooded_1-3 : Float
^Angle_of_fall_town_1-3 : Float

i.%RAP_Factor: Float
:^>Lethal_area : 2D Shape

Smoke

♦Create_Cloud() !

High Explos've

♦Create_CloudO

_\^. J__
\ Associated to Optical-Thermal
Clouds-See Cloud Class

Chemical

♦Create_CloudO

FASCAM

^Mines_per_round : Int

♦Create_Minefield()

/
y

Associated to
Minefield Class

/
^ Terminal Guided

^>Submunitions_per_round : Int
^>Target_acquisition_radius: Float
^>False_target_factor: Float
^Reliability_of_round : Float
^>Reliability_of_submunition : Float

\

Associated to
Chemical
Clouds, see
Cloud Class

Improved Munitions

omblet_per_round : Int

Precision Guided

^>Submunitions_per_round : Int
^>Target_acquisition_radius: Float

;^>False_taget_factor: Float
;^>Reliability_of_round : Float
:^>Reliability_of_submunition : Float
^Designator: Enum

/
/

/

.A Z_
/
/

Associated to On_Board_Seeker
Class

\

72

17. DIRECT FIRE WEAPON CLASS

Direct_fire_Weapon

+targets +targeted by 1 @^weapon_num : int Unit j
j ^weapon_name: string 1

1

^layjime: float
;>reload_t,ime: float
>aim time: float

Affected by time_facton
MOPP effects

T\

Hit N Kill Data

§^>PH_data_set: ph_curve
Ä .PK_data_set: pk_curve

Firing_requirements

>fmc: bool
r status : enum
>hold_fire: boot
suppressed: bool

amounted: bool

Characteristics

>triggerPulls_per reload : int
>>round_speed: float
£min_SSKP: float
youndsjerjriggerPulls : int

♦update_ammo_count()

Guidance

;>mode: short(0..2)
*>fire_on_move : short(0..3)

/
/
/
/
/

Modes:
0= no guidance
1=guidance
2= cannot track through smoke

A

\
\
\
\

x
Fire on Move:
0=Yes, no restrictions
1=Stop, can move before impact
2= Stop, move after impact
3= Reduce speed to fire

"K

73

18. CURVE CLASS

Data_point
!<%>X:X_type
!%>Y: YJype

PD Curve

| Range,
[.Probability '

 xjype, I
Ly_type_ I

Curve i<-

^ A

li,

\ \
•^.

Band,
.Probability.

Extinction Coefficient Curve

\
\
\
\
\
\
\

\ Degree,
LFIoat_ _,_ J

Sky_to_Grnd_Cune

\
„X.. j Index, Float,

Track_Probabi I ity_Curve

\
\ ' Decibel, Float

Jammer effectiveness Curve

ICycles_per_milliradian, Mean |
'._resolvable_temp/contrast I

Performance Curve

74

19. 3D_SHAPE, 2D_SHAPE and LINE_SEGMENT CLASSES

3D_Shape ^-^ 0..* 2D_Shape

A
i
i

Rectangular_solid
i

{ordered}

2D_Shape
O

3..* Line Segment

Line_Segment 2D coord

75

20. PROBABILITY, 2D_COORDINATE, AND WAYPOINT DATA TYPES

;Type Probability is 0.0..1.0

Type 2d_Coord =
Record

X: Float
Y : Float

End Record;

T^

Type Waypoint =
Record

Origin : 2d_Coord
Eariiest_Time_To_Mov3: Float

End Record;

l\

76

APPENDIX F. THE PSDL SPECIFICATION FOR THE EXECUTABLE

PROTOTYPE

TYPE event_type
SPECIFICATION
END

IMPLEMENTATION ada event_type
END

TYPE event_queue_type
SPECIFICATION

OPERATOR erupt y_queue
SPECIFICATION

OUTPUT q: event_queue_type
END

END

IMPLEMENTATION ada event_queue_type
END

TYPE statistics_type
SPECIFICATION
END

IMPLEMENTATION ada statistics_type
END

TYPE scenario_type
SPECIFICATION

OPERATOR empty_scenario
SPECIFICATION
OUTPUT s: scenario_type

END

END

IMPLEMENTATION ada scenario_type
END

TYPE statistics_request_type
SPECIFICATION
END

IMPLEMENTATION ada statistics_request_type
END

TYPE replay_request_type
SPECIFICATION
END

IMPLEMENTATION ada replay_request_type
END

TYPE user_interaction_type
SPECIFICATION

OPERATOR stop_simulation

77

SPECIFICATION
OUTPUT x: user_interaction_type

END

END

IMPLEMENTATION ada user_interaction_type
END

TYPE location_type
SPECIFICATION
END

IMPLEMENTATION ada location_type
END

TYPE game_time_type
SPECIFICATION

OPERATOR zero
SPECIFICATION
OUTPUT z: game_time_type

END

END

IMPLEMENTATION ada game_time_type
END

OPERATOR gui_3
SPECIFICATION

INPUT statistics: statistics_type
INPUT replay: location_type
OUTPUT scenario: scenario_type
OUTPUT user_interaction: user_interaction_type
OUTPUT replay_request: replay_request_type
OUTPUT statistics_request: statistics_request_type
STATES scenario: scenario_type INITIALLY scenario_type.empty_scenario
STATES new_y: float INITIALLY 0.0
STATES new_x: float INITIALLY 0.0
STATES first_time: boolean INITIALLY TRUE

END

IMPLEMENTATION
GRAPH
VERTEX enter_new_plan_75_74
VERTEX get_y_68_67
VERTEX get_x_65_64
VERTEX get_re_30_2 9
VERTEX get_st_27_26
VERTEX edit_plan_24_23
VERTEX get_user_in_21_20
VERTEX gui_event_monitor_18_17: 50 MS
VERTEX display_st_31_30
VERTEX display_re_37_36
VERTEX initial_scenario_4 0_3 9
EDGE new_plan_entered enter_new_plan_75_74 -> edit_plan_24_23
EDGE new_y get_y_68_67 -> edit_plan_24_23
EDGE new_x get_x_65_64 -> edit_plan_24_23
EDGE scenario edit_plan_24_23 -> edit_plan_24_23
EDGE scenario edit_plan_24_23 -> EXTERNAL
EDGE statistics_request get_st_27_2 6 -> EXTERNAL
EDGE replay_request get_re_30_29 -> EXTERNAL

78

EDGE user_interaction get_user_in_21_20 -> EXTERNAL
EDGE statistics EXTERNAL -> display_st_31_30
EDGE scenario initial_scenario_40_39 -> EXTERNAL
EDGE replay EXTERNAL -> display_re_37_36
EDGE first_time initial_scenario_40_39 -> initial_scenario_40_39

DATA STREAM
new_plan_entered: boolean

CONTROL CONSTRAINTS
OPERATOR enter_new_plan_75_74
OPERATOR get_y_68_67
OPERATOR get_x_65_64
OPERATOR get_re_30_2 9
OPERATOR get_st_27_26
OPERATOR edit_plan_24_23
TRIGGERED BY ALL new_plan_entered

OPERATOR get_user_in_21_20
OPERATOR gui_event_monitor_18_17

PERIOD 300 MS
FINISH WITHIN 300 MS

OPERATOR display_st_31_30
OPERATOR display_re_37_36
OPERATOR initial_scenario_4 0_39
TRIGGERED IF (first_time = TRUE)

END

OPERATOR warrior_l
SPECIFICATION

STATES replay_position: integer INITIALLY 1
STATES replay_request: replay_request_type INITIALLY

replay_request_type.off
END

IMPLEMENTATION
GRAPH
VERTEX gui_3_2
VERTEX post_processor_6_5
VERTEX janus_9_8
VERTEX jaaws_12_ll
EDGE replay_position jaaws_12_ll -> jaaws_12_ll
EDGE replay_request jaaws_12_ll -> jaaws_12_ll
EDGE scenario gui_3_2 -> janus_9_8
EDGE user_interaction gui_3_2 -> janus_9_8
EDGE replay_request gui_3_2 -> jaaws_12_ll
EDGE statistics_request gui_3_2 -> post_processor_6_5
EDGE statistics post_processor_6_5 -> gui_3_2
EDGE replay jaaws_12_ll -> gui_3_2
EDGE simulation_history janusi_9_8 -> jaaws_12_ll
EDGE simulation_history janus_9_8 -> post_processor_6_5

DATA STREAM
scenario: scenario_type,
user_interaction: user_interaction_type,
statistics_request: statistics_request_type,
statistics: statistics_type,
replay: location_type,
simulation_history: sequence[e: event_type]

CONTROL CONSTRAINTS
OPERATOR gui_3_2
OPERATOR post_processor_6_5

TRIGGERED BY ALL statistics_request
OPERATOR janus_9_8
OPERATOR jaaws_12_ll
TRIGGERED IF (sequence.length(simulation_history) > 0)

END

79

OPERATOR enter_new_plan_75
SPECIFICATION
OUTPUT new_plan_entered: boolean

END

IMPLEMENTATION tae enter_new_plan_75
END

OPERATOR get_y_68
SPECIFICATION
OUTPUT new_y: float

END

IMPLEMENTATION tae get_y_68
END

OPERATOR get_x_65
SPECIFICATION
OUTPUT new_x: float

END

IMPLEMENTATION tae get_x_65
END

OPERATOR get_re_30
SPECIFICATION
OUTPUT replay_request: replay_request_type

END

IMPLEMENTATION tae get_re_30
END

OPERATOR get_st_27
SPECIFICATION
OUTPUT statistics_request: statistics_request_type

END

IMPLEMENTATION tae get_st_27
END

OPERATOR edit_plan_24
SPECIFICATION

INPUT new_plan_entered: boolean
INPUT new_y: float
INPUT new_x: float
INPUT scenario: scenario_type
OUTPUT scenario: scenario_type

END

IMPLEMENTATION ada edit_plan_24
END

OPERATOR get_user_in_21
SPECIFICATION
OUTPUT user_interaction: user_interaction_type

END

IMPLEMENTATION tae get_user_in_21
END

OPERATOR gui_event_monitor_18
SPECIFICATION

80

MAXIMUM EXECUTION TIME 50 MS
END

IMPLEMENTATION ada gui_event_monitor_18
END

OPERATOR display_st_31
SPECIFICATION

INPUT statistics: statistics_type
END

IMPLEMENTATION tae display_st_31
END

OPERATOR display_re_37
SPECIFICATION

INPUT replay: location_type
END

IMPLEMENTATION tae display_re_37
END

OPERATOR initial_scenario_40
SPECIFICATION

INPUT first_time: boolean
OUTPUT scenario: scenario_type
OUTPUT first_time: boolean

END

IMPLEMENTATION ada initial_scenario_40
END

OPERATOR post_processor_6
SPECIFICATION

INPUT statistics_request: statistics_request_type
INPUT simulation_history: sequence[e: event_type]
OUTPUT statistics: statistics_type

END

IMPLEMENTATION ada post_processor_6
END

OPERATOR janus_9
SPECIFICATION

INPUT scenario: scenario_type
INPUT user_interaction: user_interaction_type
OUTPUT simulation_history: sequence[e: event_type]
STATES game_time: game_time_type INITIALLY game_time_type.zero
STATES event_q: event_queue_type INITIALLY event_queue_type.empty

END

IMPLEMENTATION
GRAPH
VERTEX create_new_events_114_113
VERTEX do_event_66_65: 100 MS
VERTEX create_user_event_69_68
EDGE game_time do_event_66_65 -> create_user_event_69_68
EDGE game_time do_event_66_65 -> do_event_66_65
EDGE event_q do_event_66_65 -> do_event_66_65
EDGE simulation_history do_event_66_65 -> do_event_66_65
EDGE event_q create_new_events_114_113 -> do_event_66_65
EDGE game_time do_event_66_65 -> create_new_events_114_113
EDGE event q do event 66 65 -> create new events 114 113

EDGE event_q create_user_event_69_68 -> do_event_66_65
EDGE event_q do_event_66_65 -> create_user_event_69_68
EDGE scenario EXTERNAL -> create_new_events_114_113
EDGE simulation_history do_event_66_65 -> EXTERNAL
EDGE user_interaction EXTERNAL -> create_user_event_69_68

CONTROL CONSTRAINTS
OPERATOR create_new_events_114_113

TRIGGERED IF not(scenario_type.is_empty(scenario))
OPERATOR do_event_66_65

TRIGGERED IF not(event_queue_type.is_empty(event_q))
PERIOD 1000 MS

OPERATOR create_user_event_69_68
TRIGGERED IF (user_interaction = stop_simulation)

END

OPERATOR create_new_events_114
SPECIFICATION

INPUT game_time: game_time_type
INPUT event_q: event_queue_type
INPUT scenario: scenario_type
OUTPUT event_q: event_queue_type

END

IMPLEMENTATION ada create_new_events_114
END

OPERATOR do_event_66
SPECIFICATION

INPUT game_time: game_time_type
INPUT simulation_history: sequence[e: event_type]
INPUT event_q: event_queue_type
OUTPUT game_time: game_time_type
OUTPUT event_q: event_queue_type
OUTPUT simulation_history: sequence[e: event_type]
MAXIMUM EXECUTION TIME 100 MS

END

IMPLEMENTATION ada do_event_66
END

OPERATOR create_user_event_69
SPECIFICATION

INPUT game_time: game_time_type
INPUT event_q: event_queue_type
INPUT user_interaction: user_interaction_type
OUTPUT event_q: event_queue_type

END

IMPLEMENTATION ada create_user_event_69
END

OPERATOR jaaws_12
SPECIFICATION

INPUT replay_position: integer
INPUT replay_request: replay_request_type
INPUT simulation_history: sequence[e: event_type]
OUTPUT replay_position: integer
OUTPUT replay_request: replay_request_type
OUTPUT replay: location_type

END

IMPLEMENTATION ada jaaws_12
END

82

APPENDIX G. THE ADA/C SOURCE CODE OF THE PROTOTYPE

WARRIOR_l.ADB
with WARRI0R_1_STATIC_SCHEDÜLERS; use WARRI0R_1_STATIC_SCHEDULERS;
with WARRI0R_1_DYNAMIC_SCHEDULERS; use WARRI0R_1_DYNAMIC_SCHEDÜLERS;
with CAPS_HARDWARE_MODEL; use CAPS_HARDWARE_MODEL;

procedure WARRI0R_1 is
begin

init_hardware_model;
start_static_schedule;
start_dynamic_schedule;

end WARRI0R_1;

WARRIOR_l_DRIVERS.ADS
package WARRI0R_1_DRIVERS is

procedure POST_PROCESSOR_6_5_DRIVER;
procedure JAAWS_12_11_DRIVER;
procedure ENTER_NEW_PLAN_75_74_DRIVER;
procedure GET_Y_68_67_DRIVER;
procedure GET_X_65_64_DRIVER;
procedure GET_RE_30_29_DRIVER;
procedure GET_ST_27_26_DRIVER;
procedure EDIT_PLAN_24_23_DRIVER;
procedure GET_USER_IN_21_20_DRIVER;
procedure GUI_EVENT_MONITOR_18_17_DRIVER;
procedure DISPLAY_ST_31_30_DRIVER;
procedure DISPLAY_RE_37_36_DRIVER;
procedure INITIAL_SCENARIO_40_39_DRIVER;
procedure CREATE_NEW_EVENTS_114_113_DRIVER;
procedure DO_EVENT_66_65_DRIVER;
procedure CREATE_USER_EVENT_69_68_DRIVER;

end WARRI0R_1_DRIVERS;

WARRIOR_l_DRIVERS.ADB
— with/use clauses for atomic components.
with EVENT_TYPE_PKG; use EVENT_TYPE_PKG;
with EVENT_QUEUE_TYPE_PKG; use EVENT_QUEUE_TYPE_PKG;
with STATISTICS_TYPE_PKG; use STATISTICS_TYPE_PKG;
with SCENARIO_TYPE_PKG; use SCENARIO_TYPE_PKG;
with STATISTICS_REQUEST_TYPE_PKG; use STATISTICS_REQUEST_TYPE_PKG;
with REPLAY_REQUEST_TYPE_PKG; use REPLAY_REQUEST_TYPE_PKG;
with USER_INTERACTION_TYPE_PKG; use USER_INTERACTION_TYPE_PKG;
with LOCATION_TYPE_PKG; use LOCATION_TYPE_PKG;
with GAME_TIME_TYPE_PKG; use GAME_TIME_TYPE_PKG;
with ENTER_NEW_PLAN_75_PKG; use ENTER_NEW_PLAN_75_PKG;
with GET_Y_68_PKG; use GET_Y_68_PKG;
with GET_X_65_PKG; use GET_X_65_PKG;
with GET_RE_30_PKG; use GET_RE_30_PKG;
with GET_ST_27_PKG; use GET_ST_27_PKG;
with EDIT_PLAN_24_PKG; use EDIT_PLAN_24_PKG;
with GET_USER_IN_21_PKG; use GET_USER_IN_21_PKG;
with GUI_EVENT_M0NIT0R_18_PKG; use GUI_EVENT_M0NIT0R_18_PKG;
with DISPLAY_ST_31_PKG; use DISPLAY_ST_31_PKG;
with DISPLAY_RE_37_PKG; use DISPLAY_RE_37_PKG;
with INITIAL_SCENARIO_40_PKG; use INITIAL_SCENARIO_40_PKG;
with POST_PROCESS0R_6_PKG; use P0ST_PR0CESS0R_6_PKG;
with CREATE NEW EVENTS 114 PKG; use CREATE NEW EVENTS 114 PKG;

83

with DO_EVENT_66_PKG; use DO_EVENT_66_PKG;
with CREATE_USER_EVENT_69_PKG; use CREATE_USER_EVENT_69_PKG;
with JAAWS_12_PKG; use JAAWS_12_PKG;
— with/use clauses for generated packages.
with WARRI0R_1_EXCEPTI0NS; use WARRI0R_1_EXCEPTI0NS;
with WARRI0R_1_STREAMS; use WARRI0R_1_STREAMS;
with WARRI0R_1_TIMERS; use WARRI0R_1_TIMERS;
with WARRI0R_1_INSTANTIATI0NS; use WARRI0R_1_INSTANTIATI0NS;
— with/use clauses for CAPS library packages,
with DS_DEBUG_PKG; use DS_DEBUG_PKG;
with PSDL_STREAMS; use PSDL_STREAMS;
with PSDL_STRING_PKG; use PSDL_STRING_PKG;
with PSDLJTIMERS;

package body WARRI0R_1_DRIVERS is

procedure POST_PROCESSOR_6_5_DRIVER is
LV_STATISTICS_REQOEST :

STATISTICS JIEQUESTJTYPEJPKG.STATISTICS J*EQUEST_TYPE;
LV_SIMULATION_HISTORY : EVENT_TYPE_SEQUENCE;
LV_STATISTICS : STATISTICS_TYPE_PKG.STATISTICSJTYPE;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;

begin
— Data trigger checks.
if not (DS_STATISTICS_REQUEST_POST_PROCESSOR_6_5.NEW_DATA) then

return;
end if;

— Data stream reads,
begin

DS_STATISTICS_REQUEST_POST_PROCESSOR_6_5.BUFFER.READ(
LV_STATISTICS_REQUEST);

exception
when BUFFER_UNDERFLOW =>

DS_DEBUG.BUFFER_UNDERFLOW("STATISTICS_REQUEST_POST_PROCESSOR_6_5",
"POST_PROCESSOR_6_5");

end;
begin

DS_SIMULATION_HISTORY_POST_PROCESSOR_6_5.BUFFER.READ(
LV_SIMULATION_HISTORY);

exception
when BUFFERJJNDERFLOW =>

DS_DEBUG.BUFFER_UNDERFLOW("SIMULATION_HISTORY_POST_PROCESSOR_6_5",
"POST_PROCESSOR_6_5");

end;

— Execution trigger condition check.
if True then
begin
P0ST_PR0CESS0R_6(

STATISTICS_REQUEST => LV_STATISTICS_REQUEST,
SIMULATION_HISTORY => LV_SIMULATI0N_HIST0RY,
STATISTICS => LV_STATISTICS);

exception
when others =>

DS_DEBUG.UNDECLARED_EXCEPTION("POST_PROCESSOR_6_5");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end if;

84

— Exception Constraint translations.

— Other constraint option translations.

— Unconditional output translations,
if not EXCEPTION_HAS_OCCURRED then
begin

DS_STATISTICS_DISPLAY_ST_31_30.BUFFER.WRITE(LV_STATISTICS);
exception
when BUFFER_OVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("STATISTICS_DISPLAY_ST_31_30",
"POST_PROCESSOR_6_5"

end;
end if;

— PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(

"POST_PROCES SOR_6_5",
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID));

end if;
end POST PROCESSOR 6 5 DRIVER;

procedure JAAWS_12_11_DRIVER is
LV_SIMULATION_HISTORY : EVENT_TYPE_SEQUENCE;
LV_REPLAY_POSITION : INTEGER;
LV_REPLAY_REQUEST : REPLAY_REQUEST_TYPE_PKG.REPLAY_REQUEST_TYPE;
LV_REPLAY : LOCATION_TYPE_PKG.LOCATION_TYPE;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;

begin
— Data trigger checks.

— Data stream reads,
begin

DS_REPLAY_P0SITI0N_JAAWS_12_11.BUFFER.READ(LV_REPLAY_POSITION);
exception

when BUFFER_UNDERFLOW =>
DS_DEBUG.BUFFER_UNDERFL0W("REPLAY_P0SITI0N_JAAWS_12_11",

"JAAWS_12_11");
end;
begin

DS_REPLAY_REQUEST_JAAWS_12_11.BUFFER.READ(LV_REPLAY_REQUEST);
exception
when BUFFERJJNDERFLOW =>

DS_DEBUG.BUFFER_UNDERFLOW("REPLAY_REQUEST_JAAWS_12_11",
"JAAWS_12_11") ;

end;
begin

DS_SIMULATI0N_HIST0RY_JAAWS_12_11.BUFFER.READ(LV_SIMULATION_HISTORY);
exception
when BUFFERJJNDERFLOW =>

DS_DEBUG.BUFFER_UNDERFLOW("SIMULATI0N_HIST0RY_JAAWS_12_11",
"JAAWS_12_11");

end;

— Execution trigger condition check.
if (LENGTH(LV_SIMULATION_HISTORY) > 0) then
begin
JAAWS_12(
SIMULATION HISTORY => LV SIMULATION HISTORY,

85

REPLAY_POSITION => LV_REPLAY_POSITION,
REPLAY_REQDEST => LV_REPLAY_REQUEST,
REPLAY => LV_REPLAY);

exception
when others =>

DS_DEBUG.UNDECLARED_EXCEPTION("JAAWS_12_11");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end if;

— Exception Constraint translations.

— Other constraint option translations.

— Unconditional output translations,
if not EXCEPTION_HAS_OCCURRED then
begin

DS_REPLAY_P0SITI0N_JAAWS_12_11.BUFFER.WRITE(LV_REPLAY_POSITION);
exception

when BUFFER_OVERFLOW =>
DS_DEBUG.BUFFER_OVERFLOW("REPLAY_P0SITI0N_JAAWS_12_11",

"JAAWS_12_11");
end;

end if;
if not EXCEPTION_HAS_OCCURRED then
begin

DS_REPLAY_REQUEST_JAAWS_12_11.BUFFER.WRITE(LV_REPLAY_REQUEST);
exception

when BUFFERJDVERFLOW =>
DS_DEBUG.BUFFER_0VERFL0W("REPLAY_REQUEST_JAAWS_12_11",

"JAAWS_12_11");
end ;

end if;
if not EXCEPTION_HAS_OCCURRED then
begin

DS_REPLAY_DISPLAY_RE_37_36.BUFFER.WRITE(LV_REPLAY);
exception
when BUFFER_0VERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("REPLAY_DISPLAY_RE_37_3 6", "JAAWS_12_11'
end;

end if;

— PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then

DS_DEBUG. UNHANDLED_EXCEPTION.(
"JAAWS_12_11",
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID));

end if;
end JAAWS 12 11 DRIVER;

procedure ENTER_NEW_PLAN_75_7 4_DRIVER is
LV_NEW_PLAN_ENTERED : BOOLEAN;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;

begin
— Data trigger checks.

— Data stream reads.

86

— Execution trigger condition check.
if ENTER_NEW_PLAN_75_PKG.has_new_input then

begin
ENTER_NEW_PLAN_75(

NEW_PLAN_ENTERED => LV_NEW_PLAN_ENTERED);
exception

when others =>
DS_DEBUG.UNDECLARED_EXCEPTION("ENTER_NEW_PLAN_7 5_7 4");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end if;

— Exception Constraint translations.

— Other constraint option translations.

— Unconditional output translations,
if not EXCEPTION_HAS_OCCURRED then
begin

DS_NEW_PLAN_ENTERED_EDIT_PLAN_24_23.BUFFER.WRITE(
LV_NEW_PLAN_ENTERED);

exception
when BUFFER_OVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("NEW_PLAN_ENTERED_EDIT_PLAN_24_23",
"ENTER_NEW_PLAN_75_74");

end;
end if;

— PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then

DS_DEBUG.UNHANDLED_EXCEPTION(
"ENTER_NEW_PLAN_7 5_7 4",
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID));

end i f;
end ENTER NEW PLAN 75 74 DRIVER;

procedure GET_Y_68_67_DRIVER is
LV_NEW_Y : FLOAT;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;

begin
— Data trigger checks.

— Data stream reads.

— Execution trigger condition check.
if GET_Y_68_PKG.has_new_input then
begin
GET_Y_68(
NEW_Y => LV_NEW_Y);

exception
when others =>

DS_DEBUG.UNDECLARED_EXCEPTION("GET_Y_68_67");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end if;

87

— Exception Constraint translations.

— Other constraint option translations.

— Unconditional output translations,
if not EXCEPTION_HAS_OCCURRED then
begin

DS_NEW_Y_EDIT_PLAN_24_23.BUFFER.WRITE(LV_NEW_Y);
exception
when BUFFER_OVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("NEW_Y_EDIT_PLAN_24_23", "GET_Y_68_67");
end;

end if;

— PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(

"GET_Y_68_67",
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID));

end if;
end GET Y 68 67 DRIVER;

procedure GET_X_65_64_DRIVER is
LV_NEW_X : FLOAT;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;

begin
— Data trigger checks.

— Data stream reads.

— Execution trigger condition check,
if GET_X_65_PKG.has_new_input then
begin
GET_X_65(

NEW_X => LV_NEW_X);
exception

when others =>
DS_DEBUG.UNDECLARED_EXCEPTION("GET_X_65_64");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end if;

— Exception Constraint translations.

— Other constraint option translations.

— Unconditional output translations,
if not EXCEPTION_HAS_OCCURRED then
begin

DS_NEW_X_EDIT_PLAN_24_23.BUFFER.WRITE(LV_NEW_X);
exception

when BUFFER_OVERFLOW =>
DS_DEBUG.BUFFER_OVERFLOW("NEW_X_EDIT_PLAN_24_2 3", "GET_X_65_64");

end;
end if;

-- PSDL Exception handler.
if EXCEPTION HAS OCCURRED then

88

DS_DEBUG.UNHANDLED_EXCEPTION(
"GET_X_65_64",
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID));

end if;
end GET X 65 64 DRIVER;

procedure GET_RE_30_29_DRIVER is
LV_REPLAY_REQUEST : REPLAY_REQUEST_TYPE_PKG.REPLAY_REQUEST_TYPE;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;

begin
— Data trigger checks.

— Data stream reads.

— Execution trigger condition check,
if GET_RE_30_PKG.has_new_input then
begin
GET_RE_30(

REPLAY_REQUEST => LV_REPLAY_REQUEST);
exception
when others =>

DS_DEBUG.UNDECLARED_EXCEPTION("GET_RE_30_29");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end if;

— Exception Constraint translations.

— Other constraint option translations.

— Unconditional output translations.
if not EXCEPTION_HAS_OCCURRED then
begin

DS_REPLAY_REQUEST_JAAWS_12_11.BUFFER.WRITE(LV_REPLAY_REQUEST);
exception
when BUFFER_OVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("REPLAY_REQUEST_JAAWS_12_11",
"GET_RE_30_29");

end;
end if;

— PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(

"GET_RE_30_2 9",
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID));

end if;
end GET RE 30 29 DRIVER;

procedure GET_ST_27_26_DRIVER is
LV_STATISTICS_REQUEST :

STATISTICS_REQUEST_TYPE_PKG.STATISTICS_REQUEST_TYPE;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;

begin
— Data trigger checks.

89

— Data stream reads.

— Execution trigger condition check,
if GET_ST_27_PKG.has_new_input then
begin
GET_ST_27(

STATISTICS_REQUEST => LV_STATISTICS_REQUEST);
exception

when others =>
DS_DEBUG.UNDECLARED_EXCEPTION("GET_ST_27_26");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end if;

— Exception Constraint translations.

— Other constraint option translations.

— Unconditional output translations.
if not EXCEPTION_HAS_OCCURRED then
begin

DS_STATISTICS_REQUEST_POST_PROCESSOR_6_5.BUFFER.WRITE (
LV_STATISTICS_REQUEST);

exception
when BUFFERJDVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("STATISTICS_REQUEST_POST_PROCESSOR_6_5",
"GET_ST_27_2 6");

end;
end if;

— PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then

DS_DEBUG.UNHANDLED_EXCEPTION(
"GET_ST_27_2 6",
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID));

end if;
end GET ST 27 2 6 DRIVER;

procedure EDIT_PLAN_24_23_DRIVER is
LV_NEW_PLAN_ENTERED : BOOLEAN;
LV_NEW_Y : FLOAT;
LV_NEW_X : FLOAT;
LV_SCENARIO : SCENARIO_TYPE_PKG.SCENARIOJTYPE;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;

begin
— Data trigger checks.

if not (DS_NEW_PLAN_ENTERED_EDIT_PLAN_24_23.NEW_DATA) then
return;

end if;

— Data stream reads,
begin

DS_NEW_PLAN_ENTERED_EDIT_PLAN_24_23.BUFFER.READ(LV_NEW_PLAN_ENTERED);
exception

when BUFFERJJNDERFLOW =>
DS DEBUG.BUFFER UNDERFLOW("NEW PLAN ENTERED EDIT PLAN 24 23",

90

"EDIT_PLAN_24_23") ;
end;
begin

DS_NEW_Y_EDIT_PLAN_24_23.BÜFFER.READ(LV_NEW_Y);
exception
when BUFFER_DNDERFLOW =>

DS_DEBUG.BUFFERJJNDERFLOW("NEW_Y_EDIT_PLAN_2 4_2 3",
"EDIT_PLAN_24_23");

end;
begin

DS_NEW_X_EDIT_PLAN_24_23.BUFFER.READ(LV_NEW_X);
exception
when BUFFERJJNDERFLOW =>

DS_DEBUG.BUFFER_UNDERFLOW("NEW_X_EDIT_PLAN_24_23",
"EDIT_PLAN_24_23");

end;
begin

DS_SCENARIO_EDIT_PLAN_24_23.BUFFER.READ(LV_SCENARIO);
exception
when BUFFERJJNDERFLOW =>

DS_DEBUG.BUFFERJJNDERFLOW("SCENARIOJ£DIT_PLAN_24_23",
"EDIT_PLANJ24J23") ;

end;

- Execution trigger condition check.
if True then
begin
EDIT_PLAN_24(

NEW_PLAN_ENTERED => LVJSIEW_PLAN_ENTERED,
NEWJf => LV_NEW_Y,
NEW_X => LV_NEW_X,
SCENARIO => LVJ3CENARIO);

exception
when others =>

DSJ3EBUG.UNDECLARED J5XCEPTI0N("EDITJ?LAN_24_23");
EXCEPTIONJ4AS_OCCURRED := true;
EXCEPTION_ID := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end if;

- Exception Constraint translations.

- Other constraint option translations.

- Unconditional output translations,
if not EXCEPTION_HASJDCCURRED then
begin

DS_SCENARIO_CREATEJSIEWJSVENTS_114_113 .BUFFER. WRITE (LVJ3CENARI0) ;
exception
when BUFFER_OVERFLOW =^

DS_DEBUG.BUFFERJDVERFLOW("SCENARIO_CREATE J^EWJ3VENTS_114_113",

"EDIT_PLAN_24_23") ;

end;
begin

DSJ3CENARIO_EDITJ?LAN_24_23.BUFFER.WRITE(LVJ3CENARI0);
exception

when BUFFERJOVERFLOW =>
DS_DEBUG. BUFFERJ)VERFLOW (,,SCENARIO_EDIT_PLANJ24_23" ,

"EDIT_PLANJ24J23");

end;

91

end if;

— PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(

"EDIT_PLAN_2 4_2 3",
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID)

end i f;
end EDIT PLAN 24 23 DRIVER;

procedure GET_USER_IN_21_20_DRIVER is
LV_USER_INTERACTION : USER_INTERACTION_TYPE_PKG.USER_INTERACTION_TYPE;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;

begin
— Data trigger checks.

— Data stream reads.

— Execution trigger condition check.
if GET_USER_IN_21_PKG.has_new_input then
begin
GET_USER_IN_21(

USER_INTERACTION => LV_USER_INTERACTION) ;
exception
when others =>

DS_DEBUG.UNDECLARED_EXCEPTION("GET_USER_IN_21_20");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end i f;

— Exception Constraint translations.

— Other constraint option translations.

— Unconditional output translations,
if not EXCEPTION_HAS_OCCURRED then
begin

DS_USER_INTERACTION_CREATE_USER_EVENT_69_68.BUFFER.WRITE(
LV_USER_INTERACTION);

exception
when BUFFER_OVERFLOW =>
DS_DEBUG.BUFFER_OVERFLOW(

"USER_INTERACTION_CREATE_USER_EVENT_69_68", "GET_USER_IN_21_20");
end;

end if;

— PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(

"GET_USER_IN_21_20",
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID));

end if;
end GET USER IN 21 20 DRIVER;

procedure GUI_EVENT_MONITOR_18_17_DRIVER is

EXCEPTION HAS OCCURRED: BOOLEAN := FALSE;

92

EXCEPTION_ID: PSDL_EXCEPTION;
begin
— Data trigger checks.

— Data stream reads.

— Execution trigger condition check,
if True then
begin
GUI_EVENT_MONITOR_18;
exception

when others =>
DS_DEBUG.UNDECLARED_EXCEPTION("GUI_EVENT_MONITOR_18_17");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end if;

— Exception Constraint translations.

— Other constraint option translations.

— Unconditional output translations.

— PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then

DS_DEBUG.UNHANDLED_EXCEPTION(
"GUI_EVENT_MONITOR_18_17",
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID));

end if;
end GUI EVENT MONITOR 18 17 DRIVER;

procedure DISPLAY_ST_31_30_DRIVER is
LV_STATISTICS : STATISTICS_TYPE_PKG.STATISTICSJTYPE;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;

begin
— Data trigger checks.

— Data stream reads,
begin

DS_STATISTICS_DISPLAY_ST_31_30.BUFFER.READ(LV_STATISTICS);
exception

when BUFFERJJNDERFLOW =>
DS_DEBUG.BUFFER_UNDERFLOW("STATISTICS_DISPLAY_ST_31_30'\

"DISPLAY_ST_31_30");

end;

— Execution trigger condition check,
if True then
begin
DISPLAY_ST_31(

STATISTICS => LV_STATISTICS);
exception

when others =>
DS_DEBUG.UNDECLARED_EXCEPTION("DISPLAY_ST_31_30");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID := UNDECLARED_ADA_EXCEPTION;

end;
else return;

93

end if;

— Exception Constraint translations.

— Other constraint option translations.

— unconditional output translations.

— PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then

DS_DEBUG.UNHANDLED_EXCEPTION(
"DISPLAY_ST_31_30",
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID));

end i f;
end DISPLAY ST 31 30 DRIVER;

procedure DISPLAY_RE_37_36_DRIVER is
LV_REPLAY : LOCATION_TYPE_PKG.LOCATIONJTYPE;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;

begin
— Data trigger checks.

— Data stream reads,
begin

DS_REPLAY_DISPLAY_RE_37_36.BUFFER.READ(LV_REPLAY);
exception

when BUFFER_UNDERFLOW =>
DS_DEBUG.BUFFER_UNDERFLOW("REPLAY_DISPLAY_RE_37_3 6",

"DISPLAY_RE_37_36");
end;

— Execution trigger condition check,
if True then
begin
DISPLAY_RE_37(
REPLAY => LV_REPLAY);

exception
when others =>'

DS_DEBUG.UNDECLARED_EXCEPTION("DISPLAY_RE_37_36");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end if;

— Exception Constraint translations.

— Other constraint option translations.

— Unconditional output translations.

— PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then

DS_DEBUG.UNHANDLED_EXCEPTION(
"DISPLAY_RE_37_36",
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID));

end if;
end DISPLAY RE 37 36 DRIVER;

94

procedure INITIAL_SCENARIO_4 0_39_DRIVER is
LV_SCENARIO : SCENARIO_TYPEJ?KG.SCENARIOJTYPE;
LV_FIRST_TIME : BOOLEAN;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;

begin
— Data trigger checks.

— Data stream reads,
begin

DS_FIRSTJTIME_INITIAL_SCENARIO_40_39.BUFFER.READ(LV_FIRST_TIME);
exception
when BUFFER_UNDERFLOW =>

DS_DEBUG.BUFFER_UNDERFLOW("FIRST_TIME_INITIAL_SCENARIO_40_39",
"INITIAL_SCENARIO_40_39") ;

end;

— Execution trigger condition check,
if (LV_FIRST_TIME = true) then
begin
INITIAL_SCENARIO_40(

SCENARIO => LV_SCENARIO,
FIRSTJTIME => LV_FIRST_TIME);

exception
when others =>

DS_DEBUG.UNDECLARED_EXCEPTION("INITIAL_SCENARIO_40_39");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end if;

— Exception Constraint translations.

— Other constraint option translations.

— Unconditional output translations,
if not EXCEPTION_HAS_OCCURRED then
begin

DS_SCENARIO_CREATE_NEW_EVENTS_114_113.BUFFER.WRITE(LV_SCENARIO);
exception
when BUFFER_OVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("SCENARI0_CREATE_NEW_EVENTS_114_113",
"INITIAL_SCENARIO_40_39");

end;
begin

DS_SCENARIO_EDIT_PLAN_24_23.BUFFER.WRITE(LV_SCENARIO);
exception
when BUFFERJDVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("SCENARIO_EDIT_PLAN_24_23",
"INITIAL_SCENARIO_40_39");

end;
end if;
if not EXCEPTION_HAS_OCCURRED then
begin

DS_FIRST_TIME_INITIAL_SCENARIO_40_39.BUFFER.WRITE(LV_FIRST_TIME);
exception
when BUFFER_OVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("FIRST_TIME_INITIAL_SCENARIO_40_39",
"INITIAL_SCENARIO_40_39");

end;
end if;

95

— PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then

DS_DEBUG.UNHANDLED_EXCEPTION(
"INITIAL_SCENARIO_40_3 9",
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID));

end if;
end INITIAL SCENARIO 40 39 DRIVER;

procedure CREATE_NEW_EVENTS_114_113_DRIVER is
LV_GAME_TIME : GAME_TIME_TYPE_PKG.GAME_TIME_TYPE;
LV_SCENARIO : SCENARIO_TYPE_PKG.SCENARIOJTYPE;
LV_EVENT_Q : EVENT_QUEUE_TYPE_PKG.EVENT_QUEUE_TYPE;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;

begin
— Data trigger checks.

— Data stream reads,
begin

DS_GAME_TIME_CREATE_NEW_EVENTS_114JL13.BUFFER.READ(LV_GAME_TIME);
exception

when BUFFER_UNDERFLOW =>
DS_DEBUG.BUFFER_UNDERFLOW("GAME_TIME_CREATE_NEW_EVENTS_114_113",

"CREATE_NEW_EVENT S_l14_113");
end;
begin

DS_EVENT_Q_CREATE_NEW_EVENTS_114_113.BUFFER.READ(LV_EVENT_Q);
exception

when BUFFERJJNDERFLOW =>
DS_DEBUG.BUFFER_UNDERFLOW("EVENT_Q_CREATE_NEW_EVENTS_114_113" ,

"CREATE_NEW_EVENTS_114_113");
end;
begin

DS_SCENARIO_CREATE_NEW_EVENTS_ll4_113.BUFFER.READ(LV_SCENARIO);
exception

when BUFFER_UNDERFLOW =>
DS_DEBUG.BUFFER_UNDERFLOW("SCENARIO_CREATE_NEW_EVENTS_114_113",

"CREATE_NEW_EVENTS_114_113");
end;

— Execution trigger condition check.
if not (SCENARIO_TYPE_PKG.IS_EMPTY(LV_SCENARIO)) then
begin
CREATE_NEW_EVENTS_114(
GAMEJTIME => LV_GAME_TIME,
SCENARIO => LV_SCENARIO,
EVENT_Q => LV_EVENT_Q);

exception
when others =>

DS_DEBUG.UNDECLARED_EXCEPTION("CREATE_NEW_EVENTS_114_113");
EXCEPTION_HAS_OCCURRED':= true;
EXCEPTION_ID := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end if;

— Exception Constraint translations.

— Other constraint option translations.

96

— Unconditional output translations,
if not EXCEPTION_HAS_OCCURRED then

begin
DS_EVENT_Q_CREATE_USER_EVENT_69_68.BUFFER.WRITE(LV_EVENT_Q);

exception
when BUFFER_OVERFLOW =>

DS_DEBUG.BUFFERJDVERFLOW("EVENT_Q_CREATE_USER_EVENT_6 9_68",
"CREATE_NEW_EVENT S_l14_113");

end;
begin

DS_EVENT_Q_CREATE_NEW_EVENTS_114_113.BUFFER.WRITE(LV_EVENT_Q);
exception

when BUFFER_OVERFLOW =>
DS_DEBUG.BUFFER_OVERFLOW("EVENT_Q_CREATE_NEW_EVENT S_l14_113",

"CREATE_NEW_EVENTS_114_113");
end;
begin

DS_EVENT_Q_DO_EVENT_66_65.BUFFER.WRITE(LV_EVENT_Q);
exception

when BUFFER_OVERFLOW =>
DS_DEBUG.BUFFER_OVERFLOW("EVENT_Q_DO_EVENT_66_65",

"CREATE_NEW_EVENTS_114_113");

end;
end if;

— PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then

DS_DEBUG.UNHANDLED_EXCEPTION(
"CREATE_NEW_EVENT S_l14 _113",
PSDLJSXCEPTION'IMAGE(EXCEPTION_ID));

end if;
end CREATE NEW EVENTS 114 113 DRIVER;

procedure DO_EVENT_66_65_DRIVER is
LV_GAME_TIME : GAME_TIME_TYPE_PKG.GAME_TIME_TYPE;
LV_EVENT_Q : EVENT_QUEUE_TYPE_PKG.EVENT_QUEUE_TYPE;
LV_SIMULATION_HISTORY : EVENT_TYPE_SEQUENCE;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;

begin
— Data trigger checks.

— Data stream reads,
begin

DS_GAME_TIME_DO_EVENT_66_65.BUFFER.READ(LV_GAME_TIME);
exception

when BUFFERJJNDERFLOW =>
DS_DEBUG.BUFFER_UNDERFLOW("GAME_TIME_DO_EVENT_66_65",

"D0_EVENT_6 6_6 5");
end;
begin

DS_SIMULATION_HISTORY_DO_EVENT_66_65.BUFFER.READ(
LV_SIMULATION_HISTORY);

exception
when BUFFER_UNDERFLOW =>

DS_DEBUG.BUFFER_UNDERFLOW("SIMULATION_HIST0RY_D0_EVENT_6 6_6 5",
"D0_EVENT_66_65")

end;
begin

DS_EVENT_Q_D0_EVENT_6 6_65.BUFFER.READ(LV_EVENT_Q);
exception

97

when BUFFERJJNDERFLOW =>
DS_DEBUG.BUFFERJJNDERFLOW("EVENT_Q_DO_EVENT_66_65",

"DO_EVENT_66_65");
end;

- Execution trigger condition check.
if not (EVENT_QUEUE_TYPE_PKG.IS_EMPTY(LV_EVENT_Q)) then
begin
DO_EVENT_66(
GAME_TIME => LV_GAME_TIME,
EVENT_Q => LV_EVENT_Q,
SIMULATION_HISTORY => LV_SIMULATION_HISTORY);

exception
when others =>

DS_DEBUG.UNDECLARED_EXCEPTION("DO_EVENT_66_65") ;
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end if;

- Exception Constraint translations.

- Other constraint option translations.

- Unconditional output translations,
if not EXCEPTION_HAS_OCCURRED then
begin

DS_GAME_TIME_CREATE_NEW_EVENTS_114_113.BUFFER.WRITE(LV_GAME_TIME);
exception
when BUFFER_OVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("GAME_TIME_CREATE_NEW_EVENTS_114_113",
"DO_EVENT_66_65") ;

end;
begin

DS_GAME_TIME_DO_EVENT_66_65.BUFFER.WRITE(LV_GAME_TIME);
exception
when BUFFER_OVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("GAME_TIME_DO_EVENT_66_65",
"DO_EVENT_66_65");

end;
begin

DS_GAME_TIME_CREATE_USER_EVENT_69_68.BUFFER.WRITE(LV_GAME_TIME);
exception
when BUFFER_OVERFLOW =>

DS_DEBUG.BUFFERJDVERFLOW("GAME_TIME_CREATE_USER_EVENT_69_68",
"DO_EVENT_66_65");

end;
end if;
if not EXCEPTION_HAS_OCCURRED then
begin

DS_EVENT_Q_CREATE_USER_EVENT_69_68.BUFFER.WRITE(LV_EVENT_Q);
exception
when BUFFER_OVERFLOW =>

DS_DEBUG.BUFFER_OVERFLGW("EVENT_Q_CREATE_USER_EVENT_69_68",
"DO_EVENT_66_65") ;

end;
begin

DS_EVENT_Q_CREATE_NEW_EVENTS_114_113.BUFFER.WRITE(LV_EVENT_Q);
exception
when BUFFER_OVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("EVENT_Q_CREATE_NEW_EVENTS_114_113",
"DO EVENT 66 65");

98

end;
begin

DS_EVENT_Q_DO_EVENT_66_65.BUFFER.WRITE(LV_EVENT_Q);
exception
when BUFFER_OVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("EVENT_Q_DO_EVENT_66_65",
"DO_EVENT_66_65");

end;
end if;
if not EXCEPTION_HAS_OCCURRED then
begin

DS_SIMULATION_HISTORY_POST_PROCESSOR_6_5.BUFFER.WRITE(
LV_SIMULATION_HISTORY);

exception
when BUFFER_OVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("SIMULATION_HISTORY_POST_PROCESSOR_6_5",
"DO_EVENT_66_65");

end;
begin

DS_SIMULATI0N_HIST0RY_JAAWS_12_11.BUFFER.WRITE(
LV_SIMULATION_HISTORY);

exception
when BUFFERJDVERFLOW =>

DS_DEBUG.BUFFERJDVERFLOW("SIMULATI0N_HIST0RY_JAAWS_12_11",
"DO_EVENT_66_65");

end;
begin

DS_SIMULATION_HISTORY_DO_EVENT_66_65.BUFFER.WRITE(
LV_SIMULATION_HISTORY) ;

exception
when BUFFER_OVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("SIMULATION_HISTORY_DO_EVENT_66_65",
"DO_EVENT_66_65");

end;
end if;

— PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(

"DO_EVENT_66_65",
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID));

end if;
end DO EVENT 66 65 DRIVER;

procedure CREATE_USER_EVENT_69_68_DRIVER is
LV_GAME_TIME : GAME_TIME_TYPE_PKG.GAME_TIME_TYPE;
LV_USER_INTERACTION : USER_INTERACTION_TYPE_PKG.USER_INTERACTION_TYPE;
LV_EVENT_Q : EVENT_QUEUE_TYPE_PKG.EVENT_QUEUE_TYPE;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;

begin
— Data trigger checks.

— Data stream reads,
begin

DS_GAME_TIME_CREATE_USER_EVENT_69_68.BUFFER.READ(LV_GAME_TIME);
exception

when BUFFER_UNDERFLOW =>
DS_DEBUG.BUFFERJJNDERFLOW("GAME_TIME_CREATE_USER_EVENT_69_68",

"CREATE_USER_EVENT_69_68");
end;

99

begin
DS_EVENT_Q_CREATE_USER_EVENT_69_68.BUFFER.READ(LV_EVENT_Q);

exception
when BUFFER_UNDERFLOW =>

DS_DEBUG.BUFFERJJNDERFLOW("EVENT_Q_CREATE_USER_EVENT_69_68",
"CREATE_USER_EVENT_69_68");

end;
begin

DS_USER_INTERACTION_CREATE_USER_EVENT_69_68.BUFFER.READ(
LV_USER_INTERACTION);

exception
when BUFFER_UNDERFLOW =>

DS_DEBUG.BUFFER_UNDERFLOW("USER_INTERACTION_CREATE_USER_EVENT_69_68",
"CREATE_USER_EVENT_69_68");

end;

Execution trigger condition check.
if (LV_USER_INTERACTION = STOP_SIMULATION) then
begin
CREATE_USER_EVENT_69(

GAMEJTIME => LV_GAME_TIME,
USER_INTERACTION => LV_USER_INTERACTION,
EVENT_Q => LV_EVENT_Q);

exception
when others =>

DS_DEBUG.UNDECLARED_EXCEPTION("CREATE_USER_EVENT_69_68");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTION_ID := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end if;

- Exception Constraint translations.

- Other constraint option translations.

- Unconditional output translations,
if not EXCEPTION_HAS_OCCURRED then
begin

DS_EVENT_Q_CREATE_USER_EVENT_69_68.BUFFER.WRITE(LV_EVENT_Q);
exception

when BUFFER_OVERFLOW =>
DS_DEBUG.BUFFER_OVERFLOW("EVENT_Q_CREATE_USER_EVENT_69_68",

"CREATE_USER_EVENT_69_68");
end;
begin

DS_EVENT_Q_CREATE_NEW_EVENTS_114_113.BUFFER.WRITE(LV_EVENT_Q);
exception
when BUFFER_OVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("EVENT_Q_CREATE_NEW_EVENTS_114_113",
"CREATE_USER_EVENT_69_68");

end;
begin

DS_EVENT_Q_DO_EVENT_66_65.BUFFER.WRITE(LV_EVENT_Q);
exception
when BUFFER_OVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("EVENT_Q_DO_EVENT_66_65",
"CREATE_USER_EVENT_69_68");

end;
end if;

- PSDL Exception handler.
if EXCEPTION HAS OCCURRED then

100

DS_DEBUG.UNHANDLED_EXCEPTION(
"CREATE_USER_EVENT_69_68",
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID));

end if;
end CREATE_USER_EVENT_69_68_DRIVER;

end WARRI0R_1_DRIVERS;

4. WARRIOR_l_EXCEPTIONS.ADS
package WARRI0R_1_EXCEPTI0NS is
— PSDL exception type declaration
type PSDL_EXCEPTION is (UNDECLARED_ADA_EXCEPTION);

end WARRIOR_l_EXCEPTIONS;

5. WARRIOR_l_INSTANTIATIONS.ADS
with EVENT_TYPE_PKG; use EVENT_TYPE_PKG;
— Generic type packages
with

SEQUENCE_PKG;
package WARRIOR_l_INSTANTIATIONS is
— Ada Generic package instantiations

package EVENT_TYPE_SEQUENCE_PKG is new
SEQUENCE_PKG(EVENT_TYPE_PTR) ;

type EVENT_TYPE_SEQUENCE is new
EVENT_TYPE_SEQUENCE_PKG.SEQUENCE;

end WARRI0R_1_INSTANTIATI0NS;

6. WARRIOR_l_STREAMS.ADS
— with/use clauses for atomic type packages
with EVENT_TYPE_PKG; use EVENT_TYPE_PKG;
with EVENT_QUEUE_TYPE_PKG; use EVENT_QUEUE_TYPE_PKG;
with STATISTICS_TYPE_PKG; use STATISTICS_TYPE_PKG;
with SCENARIO_TYPE_PKG; use SCENARIO_TYPE_PKG;
with STATISTICS_REQUEST_TYPE_PKG; use STATISTICS_REQUEST_TYPE_PKG;
with REPLAY_REQUEST_TYPE_PKG; use REPLAY_REQUEST_TYPE_PKG;
with USER_INTERACTION_TYPE_PKG; use USER_INTERACTION_TYPE_PKG;
with LOCATION_TYPE_PKG; use LOCATION_TYPE_PKG;
with GAME_TIME_TYPE_PKG; use GAME_TIME_TYPE_PKG;
— with/use clauses for generated packages.
with WARRI0R_1_EXCEPTI0NS; use WARRI0R_1_EXCEPTI0NS;
with WARRI0R_1_INSTANTIATI0NS; use WARRI0R_1_INSTANTIATI0NS;
— with/use clauses for CAPS library packages,
with PSDL_STREAMS; use PSDL_STREAMS;
with PSDL_STRING_PKG; use PSDL_STRING_PKG;

package WARRI0R_1_STREAMS is
— Local stream instantiations

package DS_USER_INTERACTION_CREATE_USER_EVENT_69_68 is new
PSDL_STREAMS.SAMPLED_BUFFER(USER_INTERACTION_TYPE);

package DS_STATISTICS_REQUEST_POST_PROCESSOR_6_5 is new
PSDL_STREAMS.FIFO_BUFFER(STATISTICS_REQUEST_TYPE);

package DS_STATISTICS_DISPLAY_ST_31_30 is new
PSDL STREAMS.SAMPLED BUFFER(STATISTICS TYPE);

101

package DS_REPLAY_DISPLAY_RE_37_36 is new
PSDL_STREAMS.SAMPLED_BUFFER(LOCATION_TYPE);

package DS_SIMULATION_HISTORY_POST_PROCESSOR_6_5 is new
PSDL_STREAMS.SAMPLED_BUFFER(EVENT_TYPE_SEQUENCE);

package DS_SIMULATI0N_HIST0RY_JAAWS_12_11 is new
PSDL_STREAMS.SAMPLED_BUFFER(EVENT_TYPE_SEQUENCE);

package DS_SIMULATION_HISTORY_DO_EVENT_66_65 is new
PSDL_STREAMS.SAMPLED_BUFFER(EVENT_TYPE_SEQUENCE);

package DS_NEW_PLAN_ENTERED_EDIT_PLAN_24_23 is new
PSDL_STREAMS.FIFO_BUFFER(BOOLEAN);

— State stream instantiations

package DS_REPLAY_P0SITI0N_JAAWS_12_11 is new
PSDL_STREAMS.STATE_VARIABLE(INTEGER, 1) ;

package DS_REPLAY_REQUEST_JAAWS_12_11 is new
PSDL_STREAMS.STATE_VARIABLE(

REPLAY_REQUEST_TYPE_PKG.REPLAY_REQUEST_TYPE,
REPLAY_REQUEST_TYPE_PKG.OFF);

package DS_SCENARIO_CREATE_NEW_EVENTS_114_113 is new
PSDL_STREAMS.STATE_VARIABLE(

SCENARIO_TYPE_PKG.SCENARIO_TYPE,
SCENARIO_TYPE_PKG.EMPTY_SCENARIO);

package DS_SCENARIO_EDIT_PLAN_24_23 is new
PSDL_STREAMS.STATE_VARIABLE(

SCENARIO_TYPE_PKG.SCENARIO_TYPE,
SCENARIO_TYPE_PKG.EMPTY_SCENARIO);

package DS_NEW_Y_EDIT_PLAN_24_23 is new
PSDL_STREAMS.STATE_VARIABLE(FLOAT, 0.0);

package DS_NEW_X_EDIT_PLAN_24_23 is new
PSDL_STREAMS.STATE_VARIABLE(FLOAT, 0.0) ;

package DS_FIRST_TIME_INITIAL_SCENARIO_40_39 is new
PSDL_STREAMS.STATE_VARIABLE(BOOLEAN, true);

package DS_GAME_TIME_CREATE_NEW_EVENTS_114_113 is new
PSDL_STREAMS.STATE_VARIABLE(

GAME_TIME_TYPE_PKG.GAME_TIME_TYPE,
GAME_TIME_TYPE_PKG.ZERO);

package DS_GAME_TIME_DO_EVENT_66_65 is new
PSDL_STREAMS.STATE_VARIABLE(

GAME_TIME_TYPE_PKG.GAME_TIME_TYPE,
GAME_TIME_TYPE_PKG.ZERO);

package DS_GAME_TIME_CREATE_USER_EVENT_69_68 is new
PSDL STREAMS.STATE VARIABLE(

102

GAME_TIME_TYPE_PKG.GAME_TIME_TYPE,
GAME_TIME_TYPE_PKG.ZERO) ;

package DS_EVENT_Q_CREATE_USER_EVENT_69_68 is new
PSDL_STREAMS.STATE_VARIABLE(

EVENT_QUEUE_TYPE_PKG.EVENT_QUEUE_TYPE,
EVENT_QUEUE_TYPE_PKG.EMPTY);

package DS_EVENT_Q_CREATE_NEW_EVENTS_114_113 is new
PSDL_STREAMS.STATE_VARIABLE(

EVENT_QUEUE_TYPE_PKG.EVENT_QUEUE_TYPE,
EVENT_QUEUE_TYPE_PKG.EMPTY);

package DS_EVENT_Q_DO_EVENT_66_65 is new
PSDL_STREAMS.STATE_VARIABLE(

EVENT_QUEUE_TYPE_PKG.EVENT_QUEUE_TYPE,
EVENT_QUEUE_TYPE_PKG.EMPTY);

end WARRI0R_1_STREAMS;

7. WARRIOR_l_TIMERS.ADS
with PSDL_TIMERS;

package WARRI0R_1_TIMERS is
— Timer instantiations

end WARRI0R_1_TIMERS;

8. WARRIOR_l_DYNAMIC_SCHEDULERS.ADS
package warrior_l_DYNAMIC_SCHEDULERS is
procedure START_DYNAMIC_SCHEDULE;
procedure STOP_DYNAMIC_SCHEDULE;

end warrior_l_DYNAMIC_SCHEDULERS;

9. WARRIOR_l_DYNAMIC_SCHEDULERS.ADB
with warrior_l_DRIVERS; use warrior_l_DRIVERS;
with PRIORITY_DEFINITIONS; use PRIORITY_DEFINITIONS;
package body warrior_l_DYNAMIC_SCHEDULERS is

task type DYNAMIC_SCHEDULE_TYPE is
pragma priority (DYNAMIC_SCHEDULE_PRIORITY);
entry START;

end DYNAMIC_SCHEDULE_TYPE;
for DYNAMIC_SCHEDULE_TYPE'STORAGE_SIZE use 100_000;
DYNAMIC_SCHEDULE : DYNAMIC_SCHEDULE_TYPE;

done : boolean := false;
procedure STOP_DYNAMIC_SCHEDULE is
begin

done := true;
end STOP_DYNAMIC_SCHEDULE;

task body DYNAMIC_SCHEDULE_TYPE is
begin

accept START;
loop

enter_new_plan_75_74_DRIVER;
exit when done;

get_y_68_67_DRIVER;

103

exit when done;

get_x_65_64_DRIVER;
exit when done;

get_re_3 0_2 9_DRIVER;
exit when done;

get_s t_2 7_2 6_DRIVER;
exit when done;

get_user_in_21_20_DRIVER;
exit when done;

initial_scenario_4 0_3 9_DRIVER;
exit when done;

create_new_events_l14_113_DRIVER;
exit when done;

edit_plan_24_23_DRIVER;
exit when done;

create_user_event_69_68_DRIVER;
exit when done;

j aaws__l 2_11_DRIVER ;
exit when done;

post_processor_6_5_DRIVER;
exit when done;

display_re_37_36_DRIVER;
exit when done;

display_st_31_30_DRIVER;
exit when done;

end loop;
end DYNAMIC_SCHEDULE_TYPE;

procedure START_DYNAMIC_SCHEDULE is
begin

DYNAMIC_SCHEDULE.START;
end START_DYNAMIC_SCHEDULE;

end warrior_l_DYNAMIC_SCHEDULERS;

10. WARRIOR_l_STATIC_SCHEDULERS.ADS
package warrior_l_STATIC_SCHEDULERS is
procedure START_STATIC_SCHEDULE;
procedure STOP_STATIC_SCHEDULE;

end warrior 1 STATIC SCHEDULERS;

104

11. WARRIOR_l_STATIC_SCHEDULERS.ADB
with warrior_l_DRIVERS; use warrior_l_DRIVERS;
with PRIORITY_DEFINITIONS; use PRIORITY_DEFINITIONS;
with PSDLJTIMERS; use PSDLJTIMERS;
with TEXT_IO; use TEXT_IO;
package body warrior_l_STATIC_SCHEDULERS is

task type STATIC_SCHEDULE_TYPE is
pragma priority (STATIC_SCHEDULE_PRIORITY);
entry START;

end STATIC_SCHEDULE_TYPE;
for STATIC_SCHEDULE_TYPE'STORAGE_SIZE use 200_000;
STATIC_SCHEDULE : STATIC_SCHEDULE_TYPE;

done : boolean := false;
procedure STOP_STATIC_SCHEDULE is
begin

done := true;
end STOP_STATIC_SCHEDULE;

task body STATIC_SCHEDULE_TYPE is
PERIOD : duration;
gui_event_monitor_18_17_START_TIMEl : duration;
gui_event_monitor_18_17_STOP_TIMEl : duration;
do_event_66_65_START_TIME2 : duration;
do_event_66_65_STOP_TIME2 : duration;
gui_event_monitor_18_17_START_TIME3 : duration;
gui_event_monitor_18_17_STOP_TIME3 : duration;
gui_event_monitor_18_17_START_TIME4 : duration;
gui_event_monitor_18_17_STOP_TIME4 : duration;
gui_event_monitor_18_17_START_TIME5 : duration;
gui_event_monitor_18_17_STOP_TIME5 : duration;
do_event_66_65_START_TIME6 : duration;
do_event_66_65_STOP_TIME6 : duration;
gui_event_monitor_18_17_START_TIME7 : duration;
gui_event_monitor_18_17_STOP_TIME7 : duration;
gui_event_monitor_18_17_START_TIME8 : duration;
gui_event_monitor_18_17_STOP_TIME8 : duration;
gui_event_monitor_18_17_START_TIME9 : duration;
gui_event_monitor_18_17_STOP_TIME9 : duration;
do_event_66_65_START_TIME10 : duration;
do_event_66_65_STOP_TIME10 : duration;
gui_event_monitor_18_17_START_TIMEll : duration;
gui_event_monitor_18_17_STOP_TIMEll : duration;
gui_event_monitor_18_17_START_TIME12 : duration;
gui_event_monitor_18_17_STOP_TIME12 : duration;
gui_event_monitor_18_17_START_TIME13 : duration;
gui_event_monitor_18_17_STOP_TIME13 : duration;
schedule_timer : TIMER := NEW_TIMER;

begin
accept START;
PERIOD := TARGET_TO_HOST(duration(3.OOOOOE+00));
gui_event_monitor_18_17_START_TIMEl':= TARGET_TO_HOST(

duration(0.00000E+00));
gui_event_monitor_18_17_STOP_TIMEl := TARGET_TO_HOST(

duration(5.000OOE-O2));
do_event_66_65_START_TIME2 := TARGET_TO_HOST(duration(5.00000E-02)),
do_event_66_65_STOP_TIME2 := TARGET_TO_HOST(duration(1.50000E-01));
gui_event_monitor_18_17_START_TIME3 := TARGET_TO_HOST(

duration(3.00000E-01));
gui_event_monitor_18_17_STOP_TIME3 := TARGET_TO_HOST(

duration(3.50000E-01));

105

gui_event_monitor_18_17_START_TIME4 := TARGET_TO_HOST(
duration(6.OOOOOE-01))

gui_event_monitor_18_17_STOP_TIME4 := TARGET_TO_HOST(
duration(6.50000E-01))

gui_event_monitor_18_17_START_TIME5 := TARGET_TO_HOST(
duration; 9.OOOOOE-01))

gui_event_monitor_18_17_STOP_TIME5 := TARGET_TO_HOST(
duration; 9.50000E-01))

do_event_66_65_START_TIME6 := TARGET_TO_HOST(duration(1. 05000E+00));
do_event_66_65_STOP_TIME6 := TARGET_TO_HOST(duration(1.15000E+00));
gui_event_monitor_18_17_START_TIME7 := TARGET_TO_HOST(

duration(1. 20000E+00))
gui_event_monitor_18_17_STOP_TIME7 := TARGET_TO_HOST(

duration(1. 25000E+00))
gui_event_monitor_18_17_START_TIME8 := TARGET_TO_HOST(

duration(1.50000E+00)).
gui_event_monitor_18_17_STOP_TIME8 := TARGET_TO_HOST(

duration(1. 55000E+00))
gui_event_monitor_18_17_START_TIME9 := TARGET_TO_HOST(

duration(1.80000E+00))
gui_event_monitor_18_17_STOP_TIME9 := TARGET_TO_HOST(

duration(1.85000E+00))
do_event_66_65_START_TIME10 := TARGET_TO_HOST(duration(2 . 05000E+00));
do_event_66_65_STOP_TIME10 := TARGET_TO_HOST(duration(2.15000E+00));
gui_event_monitor_18_17_START_TIMEll := TARGET_TO_HOST(

duration(2 .15000E+00))
gui_event_monitor_18_17_STOP_TIMEll := TARGET_TO_HOST(

duration(2.20000E+00))
gui_event_monitor_18_17_START_TIME12 := TARGET_TO_HOST(

duration(2.40000E+00))
gui_event_monitor_18_17_STOP_TIME12 := TARGET_TO_HOST(

duration(2.45000E+00))
gui_event_monitor_18_17_START_TIME13 := TARGET_TO_HOST(

duration(2 . 70000E+00))
gui_event_monitor_18_17_STOP_TIME13 := TARGET_TO_HOST(

duration« 2.75000E+00))
START(schedule_timer);
loop
delay(gui_event_monitor_18_17_START_TIMEl -

HOST_DURATION(schedule_timer));
gui_event_monitor_18_17_DRIVER;
if HOST_DURATION(schedule_timer) >

gui_event_monitor_18_17_STOP_TIMEl then
PUT_LINE("timing error from operator gui_event_monitor_18_17");
SUBTRACT_HOST_TIME_FROM_ALL_TIKERS(HOST_DURATION(schedule_timer) -

gui_event_monitor_18_17_STOP_TIMEl);
end i f;
exit when done;

delay(do_event_66_65_START_TIME2 - HOST_DURATION(schedule_timer));
do_event_66_65_DRIVER;
if HOST_DURATION(schedule_timer) > do_event_66_65_STOP_TIME2 then
PUT_LINE("timing error from operator do_event_66_65");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) -

do_event_66_65_STOP_TIME2);
end if;
exit when done;

delay(gui_event_monitor_18_17_START_TIME3 -
HOST_DURATION(schedule_timer));

gui_event_monitor_18_17_DRIVER;
if HOST_DURATION(schedule_timer) >

gui_event_monitor_18_17_STOP_TIME3 then

106

PUT_LINE("timing error from operator gui_event_monitor_18_17");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) -

gui_event_monitor_18_17_STOP_TIME3);
end if;
exit when done;

delay(gui_event_monitor_18_17_START_TIME4 -
HOST_DURATION(schedule_timer));

gui_event_monitor_18_17_DRIVER;
if HOST_DURATION(schedule_timer) >

gui_event_monitor_18_17_STOP_TIME4 then
PUT_LINE("timing error from operator gui_event_monitor_18_17");
SUBTRACT_HOSTJTIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) -

gui_event_monitor_18_17_STOP_TIME4);
end if;
exit when done;

delay(gui_event_monitor_18_17_START_TIME5 -
HOST_DURATION(schedule_timer));

gui_event_monitor_18_17_DRIVER;
if HOST_DURATION(schedule_timer) >

gui_event_monitor_18_17_STOP_TIME5 then
PUT_LINE("timing error from operator gui_event_monitor_18_17");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) -

gui_event_monitor_18_17_STOP_TIME5);
end if;
exit when done;

delay(do_event_66_65_START_TIME6 - HOST_DURATION(schedule_timer));
do_event_6 6_65_DRIVER;
if HOST_DURATION(schedule_timer) > do_event_66_65_STOP_TIME6 then

PUT_LINE("timing error from operator do_event_66_65");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) -

do_event_66_65_STOP_TIME6);
end if;
exit when done;

delay(gui_event_monitor_18_17_START_TIME7 -
HOST_DURATION(schedule_timer)) ;

gui_event_monitor_18_17_DRIVER;
if HOST_DURATION(schedule_timer) >

gui_event_monitor_18_17_STOP_TIME7 then
PUT_LINE("timing error from operator gui_event_monitor_18_17");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) -

gui_event_monitor_18_17_STOP_TIME7);
end if;
exit when done;

delay(gui_event_monitor_18_17_START_TIME8 -
HOST_DURATION(schedule_timer));

gui_event_monitor_18_17_DRIVER;
if HOST_DURATION(schedule_timer) >

gui_event_monitor_18_17_STOP_TIME8 then
PUT_LINE("timing error from operator gui_event_monitor_18_17");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) -

gui_event_monitor_18_17_STOP_TIME8);
end if;
exit when done;

delay(gui_event_monitor_18_17_START_TIME9 -
HOST_DURATION(schedule_timer));

gui_event_monitor_18_17_DRIVER;
if HOST DURATION(schedule timer) >

107

gui_event_monitor_18_17_STOP_TIME9 then
PUT_LINE("timing error from operator gui_event_monitor_18_17");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) -

gui_event_monitor_18_17_STOP_TIME9);
end if;
exit when done;

delay(do_event_66_65_START_TIME10 - HOST_DURATION(schedule_timer)) ;
do_event_66_65_DRIVER;
if HOST_DURATION(schedule_timer) > do_event_66_65_STOP_TIME10 then

PUT_LINE("timing error from operator do_event_66_65");
SUBTRACT JiOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) -

do_event_66_65_STOP_TIME10);
end if;
exit when done;

delay(gui_event_monitor_18_17_START_TIMEll -
H0STJ3URATI0N(schedule_timer));

gui_event_monitor_18_17_DRIVER;
if HOST_DURATION(schedule_timer) >

gui_event_monitor_18_17_STOP_TIMEll then
PUT_LINE("timing error from operator gui_event_monitor_18_17");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) -

gui_event_monitor_18_17_STOP_TIMEll);
end if;
exit when done;

delay(gui_event_monitor_18_17_START_TIME12 -
HOST_DURATION(schedule_timer));

gui_event_monitor_18_17_DRIVER;
if HOST_DURATION(schedule_timer) >

gui_event_monitor_18_17_STOP_TIME12 then
PUT_LINE("timing error from operator gui_event_monitor_18_17");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) -

gui_event_monitor_18_17_STOP_TIME12);
end if;
exit when done;

delay(gui_event_monitor_18_17_START_TIME13 -
HOST_DURATION(schedule_timer));

gui_event_monitor_18_17_DRIVER;
if HOST_DURATION(schedule_timer) >

gui_event_monitor_18^17_STOP_TIME13 then
PUT_LINE("timing error from operator gui_event_monitor_18_17");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION(schedule_timer) -

gui_event_monitor_18_17_STOP_TIME13) ;
end i f;
exit when done;

delay(PERIOD - HOST_DURATION(schedule_timer));
RESET(schedule_timer);

end loop;
end STATIC_SCHEDULE_TYPE;

procedure START_STATIC_SCHEDULE is
begin

STATIC_SCHEDULE.START;
end START_STATIC_SCHEDULE;

end warrior_l_STATIC_SCHEDULERS;

12. WARRIOR EVENT MONITOR TASK PKG.ADS

108

— The wrapper task to provide mutual exclusion
— for calls from the prototype to TAE.

with PRIORITY_DEFINITIONS; use PRIORITY_DEFINITIONS;
with statistics_type_pkg; use statistics_type_pkg;
with location_type_pkg; use location_type_pkg;

package warrior_event_monitor_task_pkg is
task warrior_event_monitor_task is
pragma priority (BUFFER_PRIORITY);
entry event_monitor_entry;
entry display_st_31_entry(statistics: statistics_type);
entry display_re_37_entry(replay: location_type);
entry end_task;

end warrior_event_monitor_task;
end warrior_event_monitor_task_pkg;

13. WARRIOR_EVENT_MONITOR_TASK_PKG.ADB
— The wrapper task to provide mutual exclusion
— for calls from the prototype to TAE.

with generated_tae_event_monitor_pkg;
with panel_gui_3;

with text_io;
package body warrior_event_monitor_task_pkg is

task body warrior_event_monitor_task is
done : boolean := false;

begin
panel_gui_3. initialize_gui;
loop

select
accept event_monitor_entry do
if not done then

generated_tae_event_monitor_pkg.generated_tae_event_monitor;
end if;
end event_monitor_entry;

or
accept display_st_31_entry(statistics: statistics_type) do
if not done then

panel_gui_3.display_st_31(statistics);
end if;
end display_st_31_entry;

or
accept display_re_37_entry(replay: location_type) do
if not done then

panel_gui_3.display_re_37(replay);
end if;
end display_re_37_entry;

or
accept end_task do
raise Program_Error;
end end_task;

end select;
end loop;

end warrior_event_monitor_task;
end warrior event monitor task_pkg;

109

14. CREATE_NEW_EVENTS_114_PKG.ADS

with game_time_type_pkg; use game_time_type_pkg;
with event_queue_type_pkg; use event_queue_type_pkg;
with scenario_type_pkg; use scenario_type_pkg;

package create_new_events_114_pkg is

procedure create_new_events_114(game_time: in game_time_type;
event_q: in out event_queue_type;

scenario: in scenario_type) ;
end create_new_events_114_pkg;

15. CREATE_NEW_EVENTS_114_PKG.ADB

with simulation_object_Pkg; USE Simulation_Object_Pkg;
with event_type_pkg; USE event_type_pkg;
with event_type_pkg.move_pkg; use event_type_pkg.move_pkg;
with text_io;

package body create_new_events_114_pkg is
procedure create_new_events_114(game_time: in game__time_type;

event_q: in out event_queue_type;
scenario: in scenario_type) is

Event : Event_Type_Ptr;
Object_Ptr : Simulation_Object_Ptr;

begin —
Object_Ptr := Get_Unit (Scenario); — Just one unit in this version
if Can_move(Object_Ptr.all) and — Just one kind of initial event

not Get_Is_Scheduled(Object_Ptr.all)
then
— since this is currently the only type of event, move
Event := event_type_pkg.move_pkg.Construct_Event (Object_Ptr,

Game_Time) ,
Schedule_Event(Event, Event_Q);
Set_Is_Scheduled(Object_Ptr.all, true);

end if;
end create_new_events_114;

end create new events 114 pkg;

16. CREATE_USER_EVENT_69_PKG.ADS

with game_time_type_pkg; use game_time_type_pkg;
with event_queue_type_pkg; use event_queue_type_pkg;
with user_interaction_type_pkg; use user_interaction_type_pkg;

package create_user_event_69_pkg is

procedure create_user_event_69(game_time: in game_time_type;
event_q: in out event_queue_type;

user_interaction: in user_interaction_type);
end create_user_event_69_pkg;

17. CREATE_USER_EVENT_69_PKG.ADB

WITH Simulation_Object_Pkg; USE Simulation_Object_Pkg;
WITH Event_Type_Pkg; USE Event_Type_Pkg;
with event_type_pkg.end_sim_pkg; use event_type_pkg.end_sim_pkg;

package body create_user_event_69_pkg is

110

procedure create_user_event_69(game_time: in game_time_type;
event_q: in out event_queue_type;

user_interaction: in user_interaction_type) is

Event : Event_Type_Ptr;
Object_Ptr : Simulation_Object_Ptr := NULL;

begin —
if User_Interaction = stop_simulation then
— Only one kind of user interaction in this version.
Event := event_type_pkg.end_sim_pkg.Construct_Event(Object_Ptr,

Game_Time);
Schedule_Event(Event, event_q);

end if;

end create_user_event_69;
end create_user_event_69_pkg;

18. DELIMITER_PKG.ADS

package delimiterjpkg is
type delimiter_array is array (character) of boolean;
function initialize_delimiter_array return delimiter_array;

end delimiter_pkg;

19. DELIMITER_PKG.ADB

package body delimiter_pkg is
function initialize_delimiter_array return delimiter_array is
begin

return (' ' I ascii.ht I ascii.cr | ascii.lf => true, others => false);
end initialize_delimiter_array;

end delimiter_pkg;

20. DISPLAY_RE_37_PKG.ADS
with location_type_pkg; use location_type_pkg;
package display_re_37_pkg is

procedure display_re_37(replay: location_type);
end display_re_37_pkg;

21. DISPLAY_RE_37_PKG.ADB

with warrior_event_monitor_task_pkg;
use warrior_event_monitor_task_pkg;

package body display_re_37_pkg is
procedure display_re_37(replay: location_type) is
begin

warrior_event_monitor_task.display_re_37_entry(replay);
end display_re_37;

end display_re_37_pkg;

22. DISPLAY_ST_31_PKG.ADS

with statistics_type_pkg; use statistics_type_pkg;
package display_st_31_pkg is

procedure display_st_31(statistics: statistics_type);
end display_st_31_pkg;

23. DISPLAY ST 31 PKG.ADB

111

with warrior_event_monitor_task_pkg;
use warrior_event_monitor_task_pkg;

package body display_st_31_pkg is
procedure display_st_31(statistics: statistics_type) is
begin

warrior_event_monitor_task.display_st_31_entry(statistics);
end display_st_31;

end display_st_31_pkg;

24. DO_EVENT_66_PKG.ADS
with game_time_type_pkg;
with event_queue_type_pkg;
with warrior_l_instantiations;
with warrior 1 exceptions;

use game_time_type_pkg;
use event_queue_type_pkg;
use warrior_l_instantiations;
use warrior_l exceptions;

package do_event_66_pkg is

procedure do_event_66(game_time: in out game_time_type;
simulation_history: in out event_type_sequence;

event_q: in out event_queue_type);
end do_event_66_pkg;

25. DO_EVENT_66_PKG.ADB
with simulation_object_pkg;
with event_type_pkg;
with event_type_pkg.move_pkg;
with event_type_pkg.end_sim_pkg;

use simulation_object_pkg;
use event_type_pkg;
use event_type_pkg.move_pkg;
use event_type_pkg.end_sim_pkg;

package body do_event_66_pkg is

procedure do_event_66(game_time: in out game_time_type;
simulation_history: in out event_type_sequence;
event_q: in out event_queue_type) is

Next_Time : Game_Time_Type;
Event : Event_Type_Ptr;

begin —
Get_Next_Event(Event, event_q); — get event from event queue
Next_Time := Execu'te_Event(Event.ALL); — execute event and get next

— execution time
Game_Time := Get_Event_Time(Event.ALL); — update game time to time of

— event
Simulation_History := Add(Copy_Event(Event.ALL), Simulation_History);
if NextJIime /= NEVER then

Set_Event_Time(Event.ALL, NextJTime);
Schedule_Event(Event, event_q);

end if;

end do_event_66;
end do_event_66_pkg;

26. EDIT_PLAN_24_PKG.ADS

with scenario_type_pkg; use scenario_type_pkg;
with warrior_l_instantiations; use warrior_l_instantiations;
with warrior_l_exceptions; use warrior_l_exceptions;

package edit_plan_24_pkg is

112

procedure edit_plan_24(new_plan_entered: in boolean;
new_y: in float;
new_x: in float;

scenario: in out scenario_type);
end edit_plan_24_pkg;

27. EDIT_PLAN_24_PKG.ADB
with Location_Type_pkg; use Location_Type_pkg;

with Simulation_Object_Pkg; use Simulation_Object_Pkg;

package body edit_plan_24_pkg is

procedure edit_plan_24(new_plan_entered: in boolean;
new_y: in float;
new_x: in float;

scenario: in out scenario_type) is

unit: Simulation_Object_Ptr;
destination: Location_Type;

begin —
destination := To_Location(new_x, new_y);
unit := get_unit(scenario);
Set_Destination(unit.all, destination);

end edit_plan_24;
end edit_plan_24_pkg;

28. ENTER_NEW_PLAN_75_PKG.ADS
package enter_new_plan_75_pkg is

procedure enter_new_plan_75(new_plan_entered : out boolean);
procedure record_input(new_plan_entered : in boolean);
function has_new_input return boolean;
— True iff a user input has arrived
— since the last time this bubble was executed,

end enter_new_plan_75_pkg;

29. ENTER_NEW_PLAN_75_PKG.ADB
with psdl_streams; use psdl_streams;
package body enter_new_plan_75_pkg is
package new_plan_entered_buffer is new

sampled_buffer(boolean) ;
use new_plan_entered_buffer;

procedure enter_new_plan_75(new_plan_entered : out boolean) is
begin
— Get the value from new_plan_entered_buffer
buffer.read(new_plan_entered);

end enter_new_plan_75;

procedure record_input(new_plan_entered : in boolean) is
begin
— Save the value in new_plan_entered_buffer
buffer.write(new_plan_entered) ;

end record_input;

function has_new_input return boolean is
begin
— Check status of new_plan_entered_buffer
return new data;

113

end has_new_input;

end enter_new_plan_75_pkg;

30. EVENT_QUEUE_TYPE_PKG.ADS
WITH sorted_list_pkg;
WITH Event_Type_Pkg; use Event_Type_Pkg;

package Event_Queue_Type_Pkg is

type Event_Queue_Type is private;

PROCEDURE Schedule_Event (Event : IN Event_Type_Ptr;
Event_Q : IN OUT Event_Queue_Type);

PROCEDURE Get_Next_Event(Event : out Event_Type_Ptr;
Event_Q : IN OUT Event_Queue_Type);

FUNCTION Is_Empty(Event_Q : IN Event_Queue_Type) RETURN BOOLEAN;

FUNCTION Empty RETURN Event_Queue_Type;

private
package e_q_pkg is new sorted_list_pkg(element_type => Event_Type_Ptr,

"<" => "<");
type Event_Queue_Type is new e_q_pkg.sorted_list;

end Event_Queue_Type_Pkg;

31. EVENT_QUEUE_TYPE_PKG.ADB
with event_type_pkg.move_pkg; use event_type_pkg.move_pkg;
with event_type_pkg.end_sim_pkg; use event_type_pkg.end_sim_pkg;
with ada.text_io;

package body Event_Queue_Type_Pkg is

PROCEDURE Schedule_Event
(Event : IN Event_Type_Ptr;
Event_Q : IN OUT Event_Queue_Type) is

begin
add(Event_Q, Event);

end Schedule Event;

PROCEDURE Get_Next_Event
(Event : out Event_Type_Ptr;
Event_Q : IN OUT Event_Queue_Type) is

begin
get_smallest(Event_Q, Event);

end Get Next Event;

FUNCTION Is_Empty(Event_Q : IN Event_Queue_Type) RETURN BOOLEAN is
begin

return e_q_pkg.is_empty(e_q_pkg.sorted_list(Event_Q));
end Is_Empty;

114

FUNCTION Empty RETURN Event_Queue_Type is
begin

return Event_Queue_Type(e_q_pkg.empty);
end Empty;

end Event_Queue_Type_Pkg;

32. EVENT TYPE PKG.ADS

FileName: Event_Type_Pkg.ads
Author: Julian Williams
Date: 10 October 1998 •
Project: Janus/Warrior Combat Simulation for CAPS
Compiler: ObjectAda for Windows Ver. 7.1.1 (Professional)
Description: This package describes basic functions and procedures

involving event types in the Warrior Combat Simulation
model.

WITH Simulation_Object_Pkg; USE Simulation_Object_Pkg;
WITH Game_Time_Type_Pkg; USE Game_Time_Type_pkg;

PACKAGE EventJTypeJPkg IS

TYPE Event_Action_Type IS (MoveUpdateObj, EndSimulation);

TYPE EventJType IS ABSTRACT TAGGED PRIVATE;
TYPE Event_Type_Ptr IS ACCESS ALL Event_Type'Class;

— I FUNCTION Get_Event_Time
— I Pre: An unexecuted event exsist.
— I Post: Start time for the event is returned.

FUNCTION Get_Event_Time (Event: IN EventJType'Class)
RETURN Game TimeJType;

— I PROCEDURE Set_Event_Time
— I Pre:
— I Post:

PROCEDURE Set_Event_Time (Event: IN OUT EventJType'Class;
Time: IN Game Time Type);

— I FUNCTION Get_Object
--| Pre: An event exist.
— I Post: The object designated within the event is returned.

FUNCTION Get_Object (Event: IN EventJType'Class)
RETURN Simulation Object_Ptr;

—I FUNCTION Get_Action
--I Pre: An event exist.
--| Post: The action on the object in the event is returned.

115

FUNCTION Get_Action (Event: IN EventJType'Class)
RETURN Event_Action Type;

--I FUNCTION "<"
--I Pre: Two event types exist.
— I Post: The least valued event is returned.

FUNCTION "<" (Left, Right: IN Event_Type_Ptr) RETURN Boolean;

— I FUNCTION Execute_Event
— I Pre: A move event has been extracted from the event queue
— I and needs to be executed.
— I Post: Move event is executed and time executed is returned.

FUNCTION Execute_Event (Event: IN EventJType)
ETURN GameJTimeJType;

— I PROCEDURE Copy_Event
— I Pre: An move event exist.
— I Post: The move event is copied and a pointer to the copy is
--I returned.

FUNCTION CopyJEvent (Event: IN EventJType)
RETURN EventJTypeJPtr;

PRIVATE
TYPE EventJType IS ABSTRACT TAGGED
RECORD
Action : Event_Action_Type; -- desired action

-- to be performed
ObjectJPtr : Simulation_Object_Ptr := NULL; — pointer to

— simulation
-- object

Time : GameJTimeJType; — time to start
— event action

END RECORD;
END EventJTypeJPkg;

33. EVENT_TYPE_PKG.ADB

FileName: Event JType_Pkg.adb
Author: Julian Williams
Date: 10 October 1998
Project: Janus/Warrior Combat Simulation for CAPS
Compiler: ObjectAda for Windows Ver. 7.1.1 (Professional)
Description: This package describes basic functions and procedures

involving event types in the Warrior Combat Simulation
model.

with ada.text_io;
PACKAGE BODY Event Type Pkg IS

116

—I FUNCTION Get_Event_Time
— I Pre: An unexecuted event exsist.
— I Post: Start time for the event is returned.

FUNCTION Get_Event_Time (Event: IN EventJType'Class)
RETURN Game_Time_Type IS

BEGIN — Get_Event_Time
RETURN Event.Time;

END Get Event Time;

— I PROCEDURE Set_Event_Time
— I Pre:
— I Post:

PROCEDURE Set_Event_Time (Event: IN OUT EventJType'Class;
Time: IN Game_Time_Type) IS

BEGIN — Set_Event_Time
Event.Time := Time;

END Set Event Time;

— I FUNCTION Get_Object
— I Pre: An event exist.
— I Post: The object designated within the event is returned.

FUNCTION Get_Object (Event: IN Event_Type'Class)
RETURN Simulation_Object_Ptr IS

BEGIN — Get_Object
RETURN Event.ObjectJPtr;

END Get_Object;

— I FUNCTION Get_Action
— I Pre: An event exist.
— I Post: The action on the object in the event is returned.

FUNCTION Get_Action (Event: IN EventJType'Class)
RETURN Event_ActionJType IS

BEGIN — Get_Action
RETURN Event.Action;

END Get Action;

— I FUNCTION "<"
— I Pre: Two event types exist.
— I Post: The least valued event is returned.

FUNCTION "<" (Left, Right: IN Event_Type_Ptr) RETURN Boolean IS
Reply : Boolean;

BEGIN — "<"
IF Left.ALL.Time < Right.ALL.Time THEN

117

Reply := True;
ELSIF Left.ALL.Time > Right.ALL.Time THEN

Reply := False;
ELSE

Reply := (Left.ALL.Action < Right.ALL.Action);
END IF;

RETURN Reply;
END "<";

— I FUNCTION Execute_Event
--I Pre: A move event has been extracted from the event queue
--| and needs to be executed.
--1 Post: Move event is executed and time executed is returned.

FUNCTION Execute_Event (Event: IN EventJType)
RETURN Game_Time_Type IS

begin —
ada.text_io.put_line("In the base execute event routine.");
return 100;

end execute event;

—| PROCEDURE Copy_Event
— I Pre: An move event exist.
— I Post: The move event is copied and a pointer to the copy is
—| returned.

FUNCTION Copy_Event (Event: IN Event_Type) RETURN Event_Type_Ptr IS
begin —

ada.text_io.put_line("In the base copy routine");
return null;

end copy_event;

END Event_Type_Pkg;

34. EVENT_TYPE_PKG-END_SIM_PKG.ADS

FileName: Event_Type_Pkg.End_Sim_Pkg.ads
Author: Julian Williams
Date: 10 October 1998
Project: Janus/Warrior Combat Simulation for CAPS
Compiler: ObjectAda for Windows Ver. 7.1.1 (Professional)
Description: This package describes basic functions and procedures

involving event types in the Warrior Combat Simulation model.

PACKAGE Event_Type_Pkg.End_Sim_Pkg IS

TYPE End_Sim_Event_Type IS NEW EventJType WITH PRIVATE;

— I FUNCTION Execute_Event
— I Pre: An end simulation event has been extracted from the event
—| queue and needs to be executed.
— I Post: End Simulation is executed and time executed is returned.

FUNCTION Execute_Event (Event: IN End_Sim_Event_Type) RETURN
Game_T ime_Type;

118

— I PROCEDURE Construct_Event
— I Pre: No event exist.
— I Post: A move event is constructed and the event is returned.

FUNCTION Construct_Event (Object_Ptr: IN Simulation_Object_Ptr;
Time: IN Game_Time_Type)
RETURN Event_Type_Ptr;

— I PROCEDURE Copy_Event
— I Pre: An event exist.
— I Post: The event is copied and the copy is returned.

FUNCTION Copy_Event (Event: IN End_Sim_Event_Type) RETURN Event_Type_Ptr;

PRIVATE
TYPE End_Sim_Event_Type IS NEW EventJType WITH NULL RECORD;

END Event_Type_Pkg.End_Sim_Pkg;

35. EVENT_TYPE_PKG-END_SIM_PKG.ADB

FileName: Event_Type_Pkg.End_Sim_Pkg.adb
Author: Julian Williams
Date: 10 October 1998
Project: Janus/Warrior Combat Simulation for CAPS
Compiler: ObjectAda for Windows Ver. 7.1.1 (Professional)
Description: This package describes basic functions and procedures

involving
—| event types in the Warrior Combat Simulation model.

WITH Warrior_l_Static_Schedulers; USE Warrior_l_Static_Schedulers;
WITH Warrior_l_Dynamic_Schedulers; USE Warrior_l_Dynamic_Schedulers;
WITH Panel_Gui_3;
WITH warrior event monitor task pkg;

PACKAGE BODY Event_Type_Pkg.End_Sim_Pkg IS

— I FUNCTION Execute_Event
— I Pre: An end simulation event has been extracted from the event
— | queue and needs to be executed.
— I Post: End simulation is executed and time executed is returned.

FUNCTION Execute_Event (Event: IN End_Sim_Event_Type)
RETURN Game_Time_Type IS

Time : Game_Time_Type := Event.Time;
BEGIN — Execute_Event

Stop_Static_Schedule;
Stop_Dynamic_Schedule;
Panel_Gui_3.End_Simulation;
warrior_event_monitor_task_p^g.warrior_event_monitor_task.end_task;
RETURN Time;

END Execute Event;

— I PROCEDURE Construct_Event
— I Pre: No event exist.
— I Post: A move event is constructed and the event is returned.

FUNCTION Construct Event (Object Ptr: IN Simulation_Object_Ptr;

119

Time: IN Game_Time_Type)
RETURN Event_Type_Ptr IS

Event: Event_Type_Ptr;

BEGIN —
Event := NEW End_Sim_Event__Type'(Action => EndSimulation,

Object_Ptr => Object_Ptr,
Time => Time);

RETURN Event;

END Construct Event;

--| PROCEDURE Copy_Event
— I Pre: An event exist.
— I Post: The event is copied and the copy is returned.

FUNCTION Copy_Event (Event: IN End_Sim_Event_Type) RETURN Event_Type_Ptr IS
Copy: Event_Type_Ptr;

BEGIN — Copy_Event
Copy := Construct_Event(Get_Object(Event), Get_Event_Time(Event));

RETURN Copy;
END Copy_Event;

END Event_Type_Pkg.End_Sim_Pkg;

36. EVENT TYPE PKG-MOVE PKG.ADS

FileName: Event_Type_Pkg.Move_Pkg.ads
Author: Julian Williams
Date: 10 October 1998
Project: Janus/Warrior Combat Simulation for CAPS
Compiler: .ObjectAda for Windows Ver. 7.1.1 (Professional)
Description: This package describes basic functions and procedures

involving event types in the Warrior Combat Simulation model.

PACKAGE Event_Type_Pkg.Move_Pkg IS

TYPE Move_Event_Typ'e IS NEW EventJType WITH PRIVATE;

— I FUNCTION Execute_Event
— I Pre: A move event has been extracted from the event queue and needs
—| to be executed.
— I Post: Move event is executed and time executed is returned.

FUNCTION Execute Event (Event: IN Move_Event Type) RETURN Game Time Type;

—| PROCEDURE Construct_Event
— I Pre: No event exist.
— I Post: A move event is constructed and the event is returned.

FUNCTION Construct_Event (Object_Ptr: IN Simulation_Object_Ptr;
Time: IN Game_Time_Type)
RETURN Event_Type_Ptr;

— I PROCEDURE Copy_Event
— I Pre: An move event exist.
--I Post: The move event is copied and a pointer to the copy is
— I returned.

120

FUNCTION Copy_Event (Event: IN Move_Event_Type) RETURN Event_Type_Ptr;

PRIVATE

TYPE Move_Event_Type IS NEW EventJType WITH NULL RECORD;

END Event_Type_Pkg.Move_Pkg;

37. EVENT_TYPE_PKG-MOVE_PKG.ADB

FileName: Event_Type_Pkg.Move_Pkg.adb
Author: Julian Williams
Date: 10 October 1998
Project: Janus/Warrior Combat Simulation for CAPS
Compiler: ObjectAda for Windows Ver. 7.1.1 (Professional)
Description: This package describes basic functions and procedures

involving event types in the Warrior Combat Simulation
model.

PACKAGE BODY Event_Type_Pkg.Move_Pkg IS

— I FUNCTION Execute_Event
— I Pre: An move event has been extracted from the event queue
--| and needs to be executed.
— I Post: Move event is executed and time executed is returned.

FUNCTION Execute_Event (Event: IN Move_Event_Type)
RETURN Game_Time_Type IS

Time: Game_Time_Type;
BEGIN — Execute_Event

Time := Get_Event_Time(Event);
Move_Update_Obj(GetjDbject(Event).ALL, Time);
RETURN Time;

END Execute Event;

— I PROCEDURE Construct_Event
--I Pre: No event exist.
— I Post: A move event is constructed and the event is returned.

FUNCTION Construct_Event (Object_Ptr: IN Simulation_Object_Ptr;
Time: IN Game_Time_Type)
RETURN Event_Type_Ptr IS

Event: Event_Type_Ptr;

BEGIN —
Event := NEW Move_Event_Type'(Action => MoveUpdateObj,

Object_Ptr => Object_Ptr,
Time => Time);

RETURN Event;
END Construct Event;

121

— I PROCEDURE Copy_Event
— I Pre: An event exist.
— I Post: The event is copied and the copy is returned.

FUNCTION Copy_Event (Event: IN Move_Event_Type)
RETURN Event_Type_Ptr IS

Copy: Event_Type_Ptr;
BEGIN — Copy_Event

IF Get_Object(Event) /= NULL THEN
Copy := Construct_Event(Copy_Obj (Get_Object(Event).ALL),

Get_Event_Time(Event));
ELSE

Copy := Construct_Event(NULL, Get_Event_Time(Event));
END IF;
RETURN Copy;

END Copy_Event;

END Event_Type_Pkg.Move_Pkg;

38. GAME_TIME_TYPE_PKG.ADS
package game_time_type_pkg is

subtype game_time_type is integer range -1 .. integer'last;

never: constant game_time_type := -1;

function zero return game_time_type;

end game_time_type_pkg;

39. GAME_TIME_TYPE_PKG.ADB

package body game_time_type_pkg is

function zero return game_time_type is
begin

return game_time_type(0);
end zero;

end game_time_type_pkg;

40. GENERATED_TAE_EVENT_MONITOR_PKG.ADS
with Interfaces. Cr-
use Interfaces.C;

with linker_options_pragma_pkg;

package generated_tae_event_monitor_pkg is
procedure generated_tae_event_monitor;
pragma Import(C, generated_tae_event_monitor,

"generated_tae_event_monitor");

end generated_tae_event_monitor_pkg;

41. GET_RE_30_PKG.ADS

with replay_request_type_pkg; use replay_request_type_pkg;
package get_re_30_pkg is

procedure get_re_30(replay_request : out replay_request_type);
procedure record_input(replay_request : in replay_request_type);

122

function has_new_input return boolean;
— True iff a user input has arrived
— since the last time this bubble was executed,

end get_re_30_pkg;

42. GET_RE_30_PKG.ADB

with psdl_streams; use psdl_streams;
package body get_re_30_pkg is
package replay_request_buffer is new

sampled_buffer(replay_request_type);
use replay_request_buffer;

procedure get_re_30(replay_request : out replay_request_type) is
begin
— Get the value from replay_request_buffer
buffer.read(replay_request);

end get_re_30;

procedure record_input(replay_request : in replay_request_type) is
begin
— Save the value in replay_request_buffer
buffer.write(replay_request);

end record_input;

function has_new_input return boolean is
begin
— Check status of replay_request_buffer
return new_data;

end has_new_input;
end get_re_30_pkg;

43. GET_ST_27_PKG.ADS

with statistics_request_type_pkg; use statistics_request_type_pkg;
package get_st_27_pkg is

procedure get_st_27(statistics_request : out statistics_request_type);
procedure record_input(statistics_request : in statistics_request_type);
function has_new_input return boolean;
— True iff a user input has arrived
— since the last time this bubble was executed,

end get_st_27_pkg;

44. GET_ST_27_PKG.ADB

with psdl_streams; use psdl_streams;
package body get_st_27_pkg is

package statistics_request_buffer is new
sampled_buffer(statistics_request_type);

use statistics_request_buffer;

procedure get_st_27(statistics_request : out statistics_request_type) is
begin
— Get the value from statistics_request_buffer
buffer.read(statistics_request);

end get_st_27;

procedure record_input(statistics_request : in statistics_request_type) is
begin
— Save the value in statistics_request_buffer
buffer.write(statistics_request);

end record_input;

123

function has_new_input return boolean is
begin
— Check status of statistics_request_buffer
return new_data;

end has_new_input;
end get_st_27_pkg;

45. GET_USER_IN_21_PKG.ADS

with use'r_interaction_type_pkg; use user_interaction_type_pkg;
package get_user_in_21_pkg is

procedure get_user_in_21(user_interaction : out user_interaction_type);
procedure record_input(user_interaction : in user_interaction_type);
function has_new_input return boolean;
— True iff a user input has arrived
— since the last time this bubble was executed,

end get_user_in_21_pkg;

46. GET_USER_IN_21_PKG.ADB

with psdl_streams; use psdl_streams;
package body get_user_in_21_pkg is

package user_interaction_buffer is new
sampled_buffer(user_interaction_type);

use user_interaction_buffer;

procedure get_user_in_21(user_interaction : out user_interaction_type) is
begin
— Get the value from user_interaction_buffer
buffer.read(user_interaction);

end get_user_in_21;

procedure record_input(user_interaction : in user_interaction_type) is
begin
— Save the value in user_interaction_buffer
buffer.write(user_interaction);

end record_input;

function has_new_input return boolean is
begin
— Check status of user_interaction_buffer
return new_data;

end has_new_input;
end get_user_in_21_pkg;

47. GET_X_65_PKG.ADS

package get_x_65_pkg is
procedure get_x_65(new_x : out float);
procedure record_input(new_x : in float);
function has_new_input return boolean;
— True iff a user input has .arrived
— since the last time this bubble was executed,

end get_x_65_pkg;

48. GET_X_65_PKG.ADB

with psdl_streams; use psdl_streams;
package body get_x_65_pkg is

package new_x_buffer is new
sampled_buffer(float) ;

use new x buffer;

124

procedure get_x_65(new_x : out float) is
begin
— Get the value from new_x_buffer
buffer.read(new_x);

end get_x_65;

procedure record_input(new_x : in float) is
begin
— Save the value in new_x_buffer
buffer.write(new_x) ;

end record_input;

function has_new_input return boolean is
begin
— Check status of new_x_buffer
return new_data;

end has_new_input;
end get_x_65_pkg;

49. GET_Y_68_PKG.ADS

package get_y_68_pkg is
procedure get_y_68(new_y : out float);
procedure record_input(new_y : in float);
function has_new_input return boolean;
— True iff a user input has arrived
— since the last time this bubble was executed,

end get_y_68_pkg;

50. GET_Y_68_PKG.ADB

with psdl_streams;. use psdl_streams;
package body get_y_68_pkg is
package new_y_buffer is new

sampled_buffer(float);
use new_y_buffer;

procedure get_y_68(new_y : out float) is
begin
— Get the value from new_y_buffer
buffer.read(new_y);

end get_y_68;

procedure record_input(new_y : in float) is
begin
— Save the value in new_y_buffer
buffer.write(new_y);

end record_input;

function has_new_input return boolean is
begin
— Check status of new_y_buffer
return new_data;

end has_new_input;
end get_y_68_pkg;

51. GUI_EVENT_MONITOR_18_PKG.ADS
package gui_event_monitor_18_pkg is

procedure gui_event_monitor_18;
end gui_event_monitor_18_pkg;

52. GUI EVENT MONITOR 18 PKG.ADB

125

with warrior_event_monitor_task_pkg;
use warrior_event_monitor_task_pkg;

package body gui_event_monitor_18_pkg is
procedure gui_event_monitor_18 is
begin

warrior_event_monitor_task.event_monitor_entry;
end gui_event_monitor_18;

end gui_event_monitor_18_pkg;

53. INITIAL_SCENARIO_40_PKG.ADS
with scenario_type_pkg; use scenario_type_pkg;
package initial_scenario_4 0_pkg is

procedure initial_scenario_40(scenario : out scenario_type;
first_time : in out boolean);

end initial_scenario_40_pkg;

54. INITIAL_SCENARIO_40_PKG.ADB
package body initial_scenario_40_pkg is

procedure initial_scenario_40(scenario : out scenario_type;
first_time : in out boolean) is

begin
initialize_scenario(scenario);
first_time := false;

end initial_scenario_40;
end initial_scenario_40_pkg;

55. JAAWS_12_PKG.ADS
with replay_request_type_pkg; use replay_request_type_pkg;
with location_type_pkg; use location_type_pkg;
with warrior_l_instantiations; use warrior_l_instantiations;
with warrior_l_exceptions; use warrior_l_exceptions;

package jaaws_12_pkg is

procedure jaaws_12(
simulation_history: in event_type_sequence;
replay_request: in out replay_request_type;
replay_position: in out integer;
replay: out location_type);

end jaaws_12_pkg;

56. JAAWS_12_PKG.ADB
with simulation_object_pkg; use simulation_object_pkg;
with event_type_pkg; use event_type_pkg;

package body jaaws_12_pkg is

procedure jaaws_12(
simulation_history: in event_type_sequence;
replay_request: in out replay_request_type;
replay_position: in out integer;
replay: out location_type) is
— Precondition: not is_empty(simulation_history)
— Precondition: 1 <= replay_position <= length(simulation_history)
i: integer;
e: event_type_ptr;
o: simulation_object_ptr;

begin
— replay position = previous snapshot location or 1

126

— Set replay to the previous snapshot.
e := fetch(simulation_history, replay_position);
if get_action(e.all) = MoveUpdateObj then

o := get_object(e.all);
replay := get_location(o.all);

else — the previous position is not at a move event
replay := origin;

end if;

— Set i to the tentative new replay position
if replay_request = on then — reset to the beginning

replay_request := off;
i := 1;
— e := fetch(simulation_history, i) ;
— o := get_object(e.all) ;
— replay := get_location(o.all) ;
— replay_position := i;

elsif replay_position < length(simulation_history) then
i := replay_position + 1;

else i := replay_position; — Already at the end, stay there.
end if;

— Advance i to the location of the next move event if there is one.
— Invariant: 1 <= i <= length(simulation_history)

e := fetch(simulation_history, i);
while get_action(e.all) /= MoveUpdateObj loop

if i < length(simulation_history) then
i := i + 1;
e := fetch(simulation_history, i) ;

else — There is no next move event, stay at the previous position.
— i is at the last simulation history event and it is not
— a MoveUpdateObj event, so do nothing
— replay_position maintains the old value
— replay maintains either old value or origin
return;

end if;
end loop;
— i is at a new MoveUpdateObj event position
o := get_object(e.all);
replay := get_location(o.all);
replay_position := i;

end jaaws_12;
end jaaws_12_pkg;

57. LINKER_OPTIONS_PRAGMA_PKG.ADS
package linker_options_pragma_pkg is

pragma Linker_Options
pragma Linker_Options
pragma Linker_Options
pragma Linker_Options
pragma Linker_Options
pragma Linker_Options
pragma Linker_Options
pragma Linker_Options
pragma Linker_Options
pragma Linker_Options
pragma Linker_Options
pragma Linker_Options
pragma Linker_Options
pragma Linker_Options
pragma Linker_Options

warrior_tae.c");
"warrior_pan_gui_3.c") ;
"warrior_creat_init.c") ;
"warrior_init_pan.c");
"-I/local/tae/include") ;
"/local/tae/lib/sun4/libwpt.a");
"/local/tae/Xtae/lib/sun4/libXtae.a");
"/local/tae/Xtae/lib/sun4/libddo.a");
"/local/tae/lib/sun4/libwmw.a");
"/local/tae/Xtae/lib/sun4/libIV.a");
"/local/tae/Xtae/lib/sun4/libxterm.a");
"/usr/lib/libXm.a");
"/usr/lib/libXt.a");
"/usr/lib/libXmu.a");
"/usr/lib/libXext.a");

127

pragma LinkerJDptions("/usr/lib/libXll.a");
pragma Linker_Options("/local/tae/lib/sun4/libtaec.a") ;
pragma Linker_Options("/local/tae/lib/sun4/libtae.a");
pragma Linker_Options("/usr/lib/libtermlib.a");
pragma Linker_Options("/usr/lib/libm.a");
pragma Linker_Options("/usr/local/lib/libcxx.a") ;

end linker_options_pragma_pkg;

58. LOCATION_TYPE_PKG.ADS
package location_type_pkg is

type Location_Type is record
X
Y
Z

Float
Float
Float

: = 0 0;
: = 0 0;
: = 0 0;

end record;

FUNCTION *'+" (L1,L2 : Location_Type) RETURN LocationJType;

FUNCTION "-" (L1,L2 : Location_Type) RETURN LocationJType;

FUNCTION "*" (C : Float; L : Location_Type) RETURN LocationJType;

FUNCTION Length (L : LocationJType) RETURN Float;

FUNCTION "=" (L1,L2 : LocationJType) RETURN Boolean;

FUNCTION GetJX {L : LocationJType) RETURN Float;

FUNCTION Get_Y (L : LocationJType) RETURN Float;

FUNCTION Origin RETURN LocationJType;

FUNCTION To_Location(X, Y: Float) RETURN LocationJType;
end location_type_pkg;

59. LOCATION_TYPE_PKG.ADB

File Name: LocationJType_Pkg.Adb

WITH Ada.Numerics.Elementary_Functions; —Used for Square Root
USE Ada.Numerics.Elementary_Functions ;

PACKAGE BODY Location_Type_Pkg IS

FUNCTION "+" (L1,L2 : LocationJType) RETURN LocationJType IS
BEGIN

RETURN (X=> Ll.X + L2.X, Y=> Ll.Y + L2.Y, Z=> Ll.Z + L2.Z);
END;

FUNCTION "-" (L1,L2 : LocationJType) RETURN LocationJType IS
BEGIN

RETURN (X=> Ll.X - L2.X, Y=> Ll.Y - L2.Y, Z=> Ll.Z - L2.Z);
END;

FUNCTION "*" (C : Float; L : LocationJType) RETURN LocationJType IS
BEGIN

RETURN (X=> C * L.X, Y=> C * L.Y, Z=> C * L.Z);
END;

FUNCTION Length (L : LocationJType) RETURN Float IS

128

BEGIN
RETURN Sqrt((L.X * L.X) + (L.Y * L.Y) + (L.Z * L.Z));

END;

FUNCTION "=" (L1,L2 : Location_Type) RETURN Boolean IS
BEGIN

RETURN (L1.X=L2.X AND L1.Y=L2.Y AND L1.Z=L2.Z);
END;

FUNCTION Get_X (L : Location_Type) RETURN Float IS
BEGIN

RETURN L.X;
END;

FUNCTION Get_Y (L : LocationJType) RETURN Float IS
BEGIN

RETURN L.Y;
END;

FUNCTION Origin RETURN LocationJType IS
L : LocationJType:=(X=>0.0, Y=>0.0, Z=>0.0);

BEGIN
RETURN L;

END;

FUNCTION To_Location(X, Y: Float) RETURN LocationJType IS
L : LocationJType:=(X=>X, Y=>Y, Z=>0.0);

BEGIN
RETURN L;

END;

END LocationJTypeJPkg;

60. LOOKAHEAD_STREAM_PKG.ADS
with io_exceptions;

with delimiter_pkg; use delimiter_pkg;
package lookahead_stream_pkg is

function token return character;
— Returns the next non-blank character without removing it.
— Raises constraint_error if no more tokens in the buffer.

procedure skip_char; — removes the current character.

end_error: exception renames io_exceptions.end_error;
— Attempt to read past end of file,

end lookahead_stream_pkg;

61. LOOKAHEAD_STREAM_PKG.ADB
with text_io; use text_io;

package body lookahead_stream_pkg is
blank: constant delimiter_array := initialize_delimiter_array;
buffer: character;
empty: boolean := true;
— (~empty => buffer is the next character in the stream).

function peek return character is
begin

if empty then get(buffer); empty := false; end if;
return buffer;

end peek;

129

function token return character is
— Blank is a constant array, see top of package body,

begin
— Advance the lookahead stream to a non-blank character,

while blank(peek) loop skip_char; end loop;
-- Return the character without removing it from the stream,

return peek;
end token;

procedure skip_char is
begin

if empty then get (buffer); — Read and discard next character.
else empty := true; end if; — Discard character in the buffer,

end skip_char;
end lookahead_stream_pkg;

62. NATURAL_SET_IO_PKG.ADS
with natural_set_pkg;
with text_io;
with integer_io;

package natural_set_io_pkg is

procedure put(ns: in natural_set_pkg.set);

end natural_set_io_pkg;

63. NATURAL_SET_IO_PKG.ADB
package body natural_set_io_pkg is

package natural_io is new text_io.integer_io(NATURAL);

procedure put_n(i: in natural) is
begin

natural_io.put(i);
end put_n;

procedure mput is new natural_set_pkg.generic_put(put_n);

procedure put(ns: in natural_set_pkg.set) is
begin
mput(ns);

end put;

end natural_set_io_pkg;

64. NATURAL_SET_PKG.ADS
with set_pkg;

package natural_set_pkg is NEW set_pkg(NATURAL,"=");

65. PANEL_GUI_3.ADS
with Interfaces.C;
use Interfaces.C;

with statistics_type_pkg;
use statistics_type__pkg;
with location_type_pkg;
use location_type_pkg;

130

package panel_gui_3 is

— procedures for calling c routines to display info to GUI

procedure display_st_31(statistics: in statistics_type);

procedure display_re_37(replay: in location_type);

— procedures to be called by the c routines to handle push button events

procedure set_user_interaction;
pragma Export(C, set_user_interaction, "set_user_interaction");

procedure set_statistics_request;
pragma Export(C, set_statistics_request, "set_statistics_request");

procedure set_replay_request;
pragma Export(C, set_replay_request, "set_replay_request");

procedure set_new_plan;
pragma Export(C, set_new_plan, "set_new_plan");

procedure end_simulation;
pragma Import(C, end_simulation, "end_simulation");

procedure set_x(x : in double);
pragma Export(C, set_x, "set_x");

procedure set_y(y : in double);
pragma Export(C, set_y, "set_y");

procedure initialize_gui;
pragma Import(C, initialize_gui, "initialize_gui");

end panel_gui_3;

66. PANEL_GUI_3.ADB
with Interfaces.C;
use Interfaces. C;

with statistics_type_pkg;
use statistics_type_pkg;
with location_type_pkg;
use location_type_pkg;
with replay_request_type_pkg;
use replay_request_type_pkg;
with statistics_request_type_pkg;
use statistics_request_type_pkg;
with user_interaction_type_pkg;
use user_interaction_type_pkg;

with get_user_in_21_pkg;
with get_st_27_pkg;
with get_re_30_pkg;
with get_x_65_pkg;
with get_y_68_pkg;
with enter_new_plan_75_pkg;

with text_io;
with ada.float_text_io;
use ada.float text io;

131

package body panel_gui_3 is

procedure display_fuel_consumption(c: in double);
pragma Import(C, display_fuel_consumption, "display_fuel_consumption");

procedure display_xloc(x: in double);
pragma Import(C, display_xloc, "display_xloc");

procedure display_yloc(y: in double);
pragma Import(C, display_yloc, "display_yloc");

procedure display_mover(x, y: in double);
pragma Import(C, display_mover, "display_mover");

procedure display_st_31(statistics: statistics_type) is
d : double := double(statistics_type_pkg.convert(statistics));

begin

display_fuel_consumption(d) ;
end display_st_31;

procedure display_re_37(replay: location_type) is
x, y : double;

begin
— need code to extract x, y from location type;
— set x, y to dummy value 5.0, -5.0 for the time being
x := double (location_type_pkg.get_x(replay)) ;
y := double (location_type_pkg.get_y(replay));
display_xloc(x);
display_yloc(y);
display_mover(x, y) ;

end display_re_37;

procedure set_user_interaction is
v : user_interaction_type

:= user_interaction_type_pkg.stop_simulation;
begin

get_user_in_21_pkg.record_input(v);
end set_user_interaction ;

procedure set_statistics_request is
v : statistics_request_type := statistics_request_type_pkg.on;

begin
get_st_27_pkg.record_input(v);

end set_statistics_request ;

procedure set_replay_request is
v : replay_request_type := replay_request_type_pkg.on;

begin
get_re_30_pkg.record_input(v);

end set_replay_request;

procedure set_new_plan is
begin

enter_new_plan_75_pkg.record_input(true);
end set_new_plan;

procedure set_x(x : in double) is
begin

get_x_65_pkg.record_input(float(x));
end set x;

132

procedure set_y(y : in double) is
begin

get_y_68_pkg.record_input(float(y));
end set_y;

end panel_gui_3;

67. POST_PROCESSOR_6_PKG.ADS
with statistics_request_type_pkg; use statistics_request_type_pkg;

with statistics_type_pkg; use statistics_type_pkg;
with warrior_l_instantiations; use warrior_l_instantiations;
with warrior_l_exceptions; use warrior_l_exceptions;

package post_processor_6_pkg is

procedure post_processor_6(
statistics_request: in statistics_request_type;
simulation_history: in event_type_sequence;
statistics: out statistics_type);

end post_processor_6_pkg;

68. POST_PROCESSOR_6_PKG.ADB
with simulation_object_pkg; use simulation_object_pkg;
with event_type_pkg; use event_type_pkg;

package body post_processor_6_pkg is

procedure post_processor_6(
statistics_request: in statistics_request_type;
simulation_history: in event_type_sequence;
statistics: out statistics_type) is

o: simulation_object_ptr;
e: event_type_ptr;
fuel_used: float := 0.0;

begin
— This version assumes a vehicle never refuels
for i IN 1 .. length(simulation_history) loop

e := fetch(simulation_history, i);
if get_action(e.all) = MoveUpdateObj then

o := get_object(e.all);
fuel_used := get_fuel_used(o.all);

end if;
end loop;
statistics := convert(fuel_used);

end post_processor_6;
end post_processor_6_pkg;

69. REPLAY_REQUEST_TYPE_PKG.ADS
package replay_request_type_pkg is

type replay_request_type is private;

function on return replay_request_type;

function off return replay_request_type;

private
type replay_request_type is new boolean;

end replay_request_type_pkg;

133

70. REPLAY_REQUEST_TYPE_PKG.ADB
package body replay_request_type_pkg is

function on return replay_request_type is
begin

return true;
end on;

function off return replay_request_type is
begin

return false;
end off;

end replay_request_type_pkg;

71. SCENARIO_TYPE_PKG.ADS
with Simulation_Object_Pkg; use Simulation_Object_Pkg;
package scenario_type_pkg is

type scenario_type is private;

PROCEDURE Initialize_Scenario(Scl : OUT ScenarioJType);

function empty_scenario return scenario_type;

function is_empty(SCI : Scenario_Type) return boolean;

function get_unit(SCl : ScenarioJType) RETURN Simulation_Object_Ptr;

private
type scenario_type is record

Scenario_Name : String(1..20) := "empty scenario ";
Unit : Simulation_Object_Ptr := NULL; —Now only 1 obj,

could be List
—Terrain : Terrain_Type;
—Weather : Weather JType;

end record;

end scenario_type_pkg;

72. SCENARIO_TYPE_PKG.ADB
WITH Simulation_Object_Pkg.Ground_Object_Pkg.Tank_Pkg;

USE Simulation_Obj ect_Pkg.Ground_Obj ect_Pkg.Tank_Pkg;

PACKAGE BODY Scenario_Type_Pkg IS
function get_unit(SCl : ScenarioJType) RETURN Simulation_Object_Ptr IS

BEGIN
RETURN SCI.Unit;

END;

function empty_scenario return scenario_type is
dummy : scenario_type;

begin
return dummy;

end empty_scenario;

function is_empty(SCl : Scenario_Type) return boolean is
begin

return SCI.Unit = null;
end is_empty;

PROCEDURE Initialize_Scenario(Scl : OUT ScenarioJType) IS

134

BEGIN
Sei.Scenario_Name:="Scenario One ";
Sei.Unit := ConstructJDbj(Scheduled => False,

Name => "M1A1
Symbol => 1,
Force => 1,
Move_Period => 10,
Active => True,
Location_x => -100.0,
Location_y => -100.0,
Destination_x => 3000.0,
Destination_y => 3000.0,
Speed => 10.0,
Max_Speed => 25.0,
Fuel => 500.0,
Consumption => 0.36);

END;

END Scenario_Type_Pkg;

73. SEQUENCE_PKG.ADS
with natural_set_pkg;
with text_io;
use text io;

generic
type t is private;

package sequence_pkg is
type sequence is private;
subtype natural_set is natural_set_pkg.set;
function empty return sequence;
procedure empty(ss : out sequence);
function add(x : t; s : sequence) return sequence;
procedure add(x : in t; s : in sequence; ss : out sequence);
generic

with function equal(x,
function remove(x : t; s
function append(si, s2 :
procedure append(sl, s2
function fetch(s :
procedure fetch(s
function fetch(si
procedure fetch (si
function length(s
procedure length(s
function domain(s
procedure domain(s
generic
with function equal(x,

function is_in(x : t; s
generic
with function equal(x,

function part_of(si, s2 :
generic
with function equal(x, y

function generic_equal(si,
generic

with function "<" (x, y
function less_than(si, s2
generic

y : t) return boolean is <>;
: sequence) return sequence;
sequence) return sequence;
in sequence; ss : out sequence);

sequence; n : natural) return t;
in sequence; n : in natural; tt : out t);
sequence; low, high : natural) return sequence;

: in sequence; low, high : in natural; ss : out sequence);
sequence) return natural;

: in sequence; nn : out natural);
sequence) return natural_set;

: in sequence; ns : out natural_set);

y : t). return boolean is <>;
sequence) return boolean;

y : t) return boolean is <>;
sequence) return boolean;

s2
return boolean is <>;
sequence) return boolean;

t) return boolean is <>;
sequence) return boolean;

135

with function "<" (x, y : t) return boolean is <>;
with function equal(x, y : t) return boolean is <>;

function less_than_or_equal(si, s2 : sequence) return boolean;
generic
with function "<" (x, y : t) return boolean is <>;

function greater_than(si, s2 : sequence) return boolean;
generic
with function "<" (x, y : t) return boolean is <>;
with function equal(x, y : t) return boolean is <>;

function greater_or_equal(si, s2 : sequence) return boolean;
generic
with function equal(x, y : t) return boolean is <>;

function subsequence(si, s2 : sequence) return boolean;
generic
with function "<" (x, y : t) return boolean is <>;
with function successor(x : t) return t;

function interval(xl, x2 : t) return sequence;
generic

type et is private;
type st is private;
with function f(x : et) return t;
with function length(s : st) return natural is <>;
with function fetch(s : st; n : natural) return et is <>;

function apply(si : st) return sequence;
generic
with function f(x, y : t) return t;
identity : t;

function reduce(s : sequence) return t;
generic
with function f(x, y : t) return t;

function reducel(s : sequence) return t;
generic
with procedure generate(xl : in t);

procedure scan(s : sequence);
generic
with function input return t is <>;

function generic_input return sequence;
generic
with function input return t is <>;

function generic_file_input(file : file_type) return sequence;
generic

with procedure put(item : in t) is <>;
procedure generic_put(item : in sequence);
generic
with procedure put(item : in t) is <>;

procedure generic_file_put(file : in file_type; item : in sequence)
bounds_error : exception;
empty_reduction_undefined : exception;

private
type sequence_record;
type sequence_ptr is access sequence_record;
type sequence is record

p : sequence_ptr := null;
end record;

end sequence_pkg;

74. SEQUENCE_PKG.ADB

with lookahead_stream_pkg;

use lookahead stream pkg;

136

package body sequence_pkg is
use natural_set_pkg;

type sequence_record is record
value : t;
rest : sequence;

end record;

function empty return sequence is
s : sequence;

begin
return s;

end empty;

procedure empty(ss : out sequence) is
begin

ss := empty;
end empty;

function add(x : t; s : sequence) return sequence is
si : sequence;

begin
if s = empty.then

sl.p := new sequence_record' (value => x, rest => s) ;

else
sl.p := new sequence_record'(value => s.p.value,

rest => add(x, s.p.rest));
end if;
return si;

end add;

procedure add(x : in t; s : in sequence; ss : out sequence) is
begin

ss := add(x, s);
end add;

function remove(x : t; s : sequence) return sequence is
ss : sequence;
local_x : t := x;

begin — begin generator loop
declare

exit_from_generator_loop : exception;
procedure generator_loop_body(y : t) is
begin

if not equal(local_x, y) then
ss := add(y, ss);

end if;
end generator_loop_body;
procedure execute_generator_loop is new

scan(generator_loop_body);
begin

137

execute_generator_loop(s);
exception
when exit_from_generator_loop =>
null;

end; -- of generator loop
return ss;

end remove;

function append(si, s2 : sequence) return sequence is
ss : sequence;

begin -- begin generator loop
declare

exit_from_generator_loop : exception;
procedure generator_loop_body(x : t) is
begin
ss := add(x, ss) ;
end generator_loop_body;
procedure execute_generator_loop is new

scan(generator_loop_body);
begin

execute_generator_loop(si);
exception

when exit_from_generator_loop =>
null;

end; -- of generator loop
declare — begin generator loop

exit_from_generator_loop : exception;
procedure generator__loop_body(x : t) is
begin
ss := add(x, ss);
end generator_loop_body;
procedure execute_generator_loop is new

scan(generator_loop_body);
begin

execute_generator_loop(s2);
exception
when exit_from_generator_loop =>
null;

end; — of generator loop
return ss;

end append;

procedure append(si, s2 : in sequence; ss : out sequence) is
begin

ss := append(sl, s2);
end append;

function fetch(s : sequence; n : natural) return t is
index : natural := 1;

begin — begin generator loop
declare

generator_loop_return_value : t;
return_from_generator_loop : exception;
exit_from_generator_loop : exception;
procedure generator_loop_body(y : t) is

138

begin

if index = n then
generator_loop_return_value := y;
raise return_from_generator_loop;

end if;
index := index + 1;
end generator_loop_body;
procedure execute_generator_loop is new

scan(generator_loop_body);
begin

execute_generator_loop(s);
exception

when exit_from_generator_loop =>
null;
when return_from_generator_loop =>
return generator_loop_return_value;

end; — of generator loop
raise bounds_error;

end fetch;

procedure fetch(s : in sequence; n : in natural; tt : out t) is
begin

tt := fetch(s, n);
end fetch;

function fetch(si : sequence; low, high : natural) return sequence is
ss : sequence;

begin
for i in low .. high loop

ss := add(fetch(sl, i), ss);
end loop;
return ss;

end fetch;

procedure fetch(si : in sequence; low, high : in natural;
ss : out sequence) is

begin
ss := fetch(si, low, high);

end fetch;

function length(s : sequence) return natural is
index : natural := 0;

begin — begin generator loop
declare

exit_from_generator_loop : exception;
procedure generator_loop_body(y : t) is
begin
index := index + 1;
end generator_loop_body;
procedure execute_generator_loop is new

scan(generator_loop_body);
begin

execute_generator_loop(s);
exception

139

when exit_from_generator loop =>
null;

end; -- of generator loop
return index;

end length;

procedure length(s : in sequence; nn : out natural) is
begin

nn := length(s) ;
end length;

function domain(s : sequence) return natural_set is
ns : natural_set := empty;

begin
for i in 1 .. length(s) loop

ns := add(i, ns);
end loop;
return ns;

end domain;

procedure domain(s : in sequence; ns : out natural_set) is
begin

ns := domain(s);
end domain;

function is_in(x : t; s : sequence) return boolean is
local_x : t := x;

begin — begin generator loop
declare
generator_loop_return_value : boolean;
return_from_generator_loop : exception;
exit_from_generator_loop : exception;
procedure generator_loop_body(y : t) is
begin

if equal(local_x, y) then
generator_loop_return_value := true;
raise return_from_generator_loop;

end if;
end generator_loop_body;
procedure execute_generator_loop is new

scan(generator_loop_body);
begin

execute_generator_loop(s);
exception
when exit_from_generator_loop =>
null;
when return_from_generator_loop =>
return generator_loop_return_value;

end; -- of generator loop
return false;

end is_in;

function part_of(sl, s2 : sequence) return boolean is
n : natural := 0;

140

function matches_at(si, s2 : sequence; n : natural)
return boolean is

i : natural := 0;

begin
while i < length(si) loop
if equal(fetch(si, i + 1), fetch(s2, n + i)) then

i := i + 1;

else
return false;

end if;
end loop;
return true;

end matches_at;

begin
while n + length(si) <= length(s2) loop

if matches_at(si, s2, n + 1) then
return true;

else
n := n + 1;
end if;

end loop;
return false;

end part_of;

function generic_equal(si, s2 : sequence) return boolean is
i : natural := 1;
local_s2 : sequence := s2;

begin
if length(si) /= length(s2) then

return false;
end if;
declare -- begin generator loop

generator_loop_return_value : boolean;
return_from_generator_loop : exception;
exit_from_generator_loop : exception;
procedure generator_loop_body(x : t) is
begin

if not equal(x, fetch(local_s2, i)) then
generator_loop_return_value := false;
raise return_from_generator_loop;

end if;
i := i + 1;
end generator_loop_body;
procedure execute_generator_loop is new

scan(generator_loop_body);
begin

execute_generator_loop(si);
exception
when exit_from_generator_loop =>
null;

141

when return_from_generator_loop =>
return generator_loop_return_value;

end; -- of generator loop
return true;

end generic equal;

function less_than(si, s2 : sequence) return boolean is

local s2

natural := 1;
t;
sequence := s2;

begin -- begin generator loop
declare

generator_loop_return_value : boolean;
return_from_generator_loop : exception;
exit_from_generator_loop : exception;
procedure generator_loop_body(x : t) is
begin
y := fetch(local_s2, i);

if x < y then
generator_loop_return_value := true;
raise return_from_generator_loop;

elsif y < x then
generator_loop_return_value := false;
raise return_from_generator_loop;

end if;
i := i + 1;
end generator_loop_body;
procedure execute_generator_loop is new

scan(generator_loop_body);
begin

execute_generator_loop(si) ;
exception

when exit_from_generator_loop =>
null;
when return_from_generator_loop =>
return generator_loop_return_value;

end; -- of generator loop
return (length(si) < length(s2));

end less_than;

function less_than_or_equal(si, s2 : sequence) return boolean is
function It is new less_than;
function seq_equal is new generic_equal(equal);

begin
return It (si, s2) or else seq_equal(si, s2);

end less_than_or_equal;

function greater_than(si, s2 : sequence) return boolean is
function It is new less_than;

begin
return It (s2, si) ;

end greater_than;

142

function greater_or_equal(si, s2 : sequence) return boolean is
function It is new less_than;
function seq_equal is new generic_equal(equal);

begin
return lt(s2, si) or else seq_equal(si, s2);

end greater_or_equal;

function subsequence(si, s2 : sequence) return boolean is
i : natural := 0;
local_sl : sequence := si;

begin
if si = empty then

return (true);
end if;
declare — begin .generator loop

generator_loop_return_value : boolean;
return_from_generator_loop : exception;
exit_from_generator_loop : exception;
procedure generator_loop_body(x : t) is
begin

if equal(x, fetch(local_sl, i + 1)) then
i := i + 1;

if i = length(local_sl) then
generator_loop_return_value := (true);
raise return_from_generator_loop;

end if;
end if;
end genefator_loop_body;
procedure execute_generator_loop is new

scan(generator_loop_body);
begin

execute_generator_loop(s2) ;
exception

when exit_from_generator_loop =>
null;
when return_from_generator_loop =>
return generator_loop_return_value;

end; — of generator loop
return false;

end subsequence;

function interval(xl, x2 : t) return sequence is
ss : sequence;
y : t := xl;

begin
while (y < x2) loop

ss := add(y, ss);
y := successor(y);

end loop;

if y = x2 then
ss := add(y, ss);

143

end if;
return ss;

end interval;

function apply(si : st) return sequence is
ss : sequence;

begin
for i in 1 .. length(sl) loop

ss := add(f(fetch(si, i)), ss);
end loop;
return ss;

end apply;

function reduce(s : sequence) return t is
x : t := identity;

begin -- begin generator loop
declare

exit_from_generator_loop : exception;
procedure generator_loop_body(y : t) is
begin
x := f(y, x);
end generator_loop_body;
procedure execute_generator_loop is new

scan(generator_loop_body);
begin

execute_generator_loop(s);
exception
when exit_from_generator_loop =>
null;

end; — of generator loop
return x;

end reduce;

function reducel(s : sequence) return t is
x : t;
i : natural := 1;

begin
if s = empty then

raise empty_reduction_undefined;
end if;
x := fetch(s, 1);
declare — begin generator loop

exit_from_generator_loop : exception;
procedure generator_loop_body(y : t) is
begin

if i > 1 then
x := f(y, x);

end if;
i := i + 1;
end generator_loop_body;
procedure execute_generator_loop is new

scan(generator_loop_body);
begin

144

execute_generator_loop(s);
exception

when exit_from_generator_loop =>
null;

end; — of generator loop
return x;

end reduce1;

procedure scan(s : sequence) is
ss : sequence := s;

begin
while ss.p /= null loop

generate(ss.p.value);
ss := ss.p.rest;

end loop;
end scan;

function generic_input return sequence is
x : t;
ss : sequence;

begin
if token /= ascii.l_bracket then

raise data_error;
end if;
skip_char;
while token /= ascii.r_bracket loop

x := input;
ss := add(x, ss) ;

if token = ',' then
skip_char;

elsif token /= ascii.rjoracket then
raise data_error;
end if;

end loop;
skip_char;
return ss;

exception
when others =>

raise data_error;
end generic_input;

function generic_file_input(file : file_type) return sequence is
function get_sequence is new generic_input;
s : sequencer-

begin
set_input(file);
s := get_sequence;
set_input(standard_input) ;
return s;

end generic_file_input;

procedure generic_put(item : in sequence) is

145

begin
put(ascii.l_bracket);

if length(item) >= 1 then
put(fetch(item, 1));

end if;
for i in 2 .. length(item) loop

put(", ");
put(fetch(item, i));

end loop;
put(ascii.r_bracket);

end generic_put;

procedure generic_file_put(file : in file_type;
item : in sequence) is

procedure put_sequence is new generic_put;

begin
set_output(file);
put_sequence(item);
set_output(standard_output) ;

end generic_file_put;
end sequence_pkg;

75. SET_PKG.ADS
with text_io;
use text_io;

generic
type t is private;
with function t_equal(x, y : t) return boolean is "=";

package set_pkg is
type set is private;
function empty return set;
procedure empty(ss : out set);
function add(x : t; s : set) return set;
procedure add(x : in t; s : in set; ss : out set);
function remove(x : t; s : set) return set;
procedure remove(x : in t; s : in set; ss : out set);
function is_in(x : t; s : set) return boolean;
procedure is_in(x : in t; s : in set; bb : out boolean);
function union(si, s2 : set) return set;
procedure union(sl, s2 : in set; ss : out set);
function difference(si, s2 : set) return set;
procedure difference(si, s2 : in set; ss : out set);
function intersection(si, s2 : set) return set;
procedure intersection(si, s2 : in set; ss : out set);
function choose(s : set) return t;
procedure choose (s : in set; tt : out t) ;
function size(s : set) return natural;
procedure size(s : in set; nn : out natural);
function equal(si, s2 : set) return boolean;
procedure equal(si, s2 : in set; bb : out boolean);
function subset(si, s2 : set) return boolean;
procedure subset (si, s2 : in set; bb : out boolean);
generic
with function "<" (x, y : t) return boolean is <>;
with function successor(x : t) return t;

146

function interval(xl, x2 : in t) return set;
generic

type et is private;
type st is private;
with function f(x : t) return et is <>;
with function empty return st is <>;
with function add(x : et; s : st) return st is <>;

function apply(s : set) return st;
generic
with function f(x, y : t) return t;
identity : t;

function reduce(s : set) return t;
generic
with function f(x, y : t) return t;

function reducel(s : set) return t;
generic

with procedure generate(xl : in t);
procedure scan(s : set);
empty_set : exception;
empty_reduction_undefined : exception;
generic

with function input return t is <>;
function generic_input return set;
generic

with function input return t is <>;
function generic_file_input(file : in file_type) return set;
generic
with procedure put(item : in t) is <>;

procedure generic_put(item : in set);
generic

with procedure put(item : in t) is <>;
procedure generic_file_put(file : in file_type; item : in set);

private
type set_record;
type set_ptr is access set_record;
type set is record

p : set_ptr := null;
end record;

end set pkg;

76. SET_PKG.ADB.
with lookahead_stream_pkg;

use lookahead stream pkg;

package body set_pkg is
type set_record is record
value : t;
rest : set;

end record;

function empty return set is
s : set;

begin
return s;

end empty;

procedure empty(ss : out set) is
begin

147

ss := empty;
end empty;

function add(x : t; s : set) return set is
ss : set;

begin
if is_in(x, s) then

return s;

else
ss.p := new set_record'(value => x, rest => s);
return ss;

end if;
end add;

procedure add(x : in t; s : in set; ss : out set) is
begin

ss := add(x, s);
end add;

function remove(x : t; s : set) return set is
ss : set := empty;

begin — begin generator loop
declare

exit_from_generator_loop : exception;
procedure generator_loop_body(y : t) is
begin

if not (t_equal(x, y)) then
ss := add(y, ss);

end if;
end generator_loop_body;
procedure execute_generator_loop is new scan(generator_loop_body);

begin
execute_generator_loop(s);

exception
when exit_from_generator_loop =>
null;

end; — of generator loop
return ss;

end remove;

procedure remove(x : in t; s : in set; ss : out set) is
begin

ss := remove(x, s);
end remove;

function is_in(x : t; s : set) return boolean is
begin — begin generator loop

declare
generator_loop_return_value : boolean;
return_from_generator_loop : exception;
exit_from_generator_loop : exception;
procedure generator_loop_body(y : t) is
begin

if t_equal(x, y) then
generator_loop_return_value := true;
raise return_from_generator_loop;

end if;
end generator_loop_body;

148

procedure execute_generator_loop is new scan(generator_loop_body);
begin

execute_generator_loop(s);
exception
when exit_from_generator_loop =>
null;
when return_frora_generator_loop =>
return generator_loop_return_value;

end; — of generator loop
return falser-

end is_in;

procedure is_in(x : in t; s : in set; bb : out boolean) is
begin

bb := is_in(x, s);
end is_in;

function union(si, s2 : set) return set is
ss : set := empty;

begin — begin generator loop
declare

exit_from_generator_loop : exception;
procedure generator_loop_body(y : t) is
begin
ss := add(y, ss);
end generator_loop_body;
procedure execute_generator_loop is new scan(generator_loop_body);

begin
execute_generator_loop(si) ;

exception
when exit_from_generator_loop =>
null;

end; — of generator loop
declare — begin generator loop

exit_from_generator_loop : exception;
procedure generator_loop_body(y : t) is
begin
ss := add(y, ss);
end generator_loop_body;
procedure execute_generator_loop is new scan(generator_loop_body);

begin
execute_generator_loop(s2) ;

exception
when exit_from_generator_loop =>
null;

end; — of generator loop
return ss;

end union;

procedure union(si, s2 : in set; ss : out set) is
begin

ss := union(sl, s2);
end union;

function difference(si, s2 : set) return set is
ss : set := empty;

begin — begin generator loop
declare

exit_from_generator_loop : exception;
procedure generator_loop_body(y : t) is
begin

149

if not is_in(y, s2) then
ss := add(y, ss);

end if;
end generator_loop_body;
procedure execute_generator_loop is new scan(generator_loop_body);

begin
execute_generator_loop(si) ;

exception
when exit_from_generator_loop =>
null;

end; — of generator loop
return ss;

end difference;

procedure difference(si, s2 : in set; ss : out set) is
begin

ss := difference(si, s2) ;
end difference;

function intersection(si, s2 : set) return set is
ss : set := empty;

begin — begin generator loop
declare

exit_from_generator_loop : exception;
procedure generator_loop_body(y : t) is
begin

if is_in(y, s2) then
ss := add(y, ss) ;

end if;
end generator_loop_body;
procedure execute_generator_loop is new scan(generator_loop_body);

begin
execute_generator_loop(si);

exception
when exit_from_generator_loop =>
null;

end; _ -- of generator loop
return ss;

end intersection;

procedure intersection(si, s2 : in set; ss : out set) is
begin

ss := intersection(si, s2);
end intersection;

function choose(s : set) return t is
begin

if size(s) > 0 then
return s.p.value;

else
raise empty_set;

end if;
end choose;

procedure choose(s : in set; tt : out t) is
begin

tt := choose(s);
end choose;

150

function size(s : set) return natural is
k : natural := 0;

begin — begin generator loop
declare

exit_from_generator_loop : exception;
procedure generator_loop_body(y : t) is
begin
k := k + 1;
end generator_loop_body;
procedure execute_generator_loop is new scan(generator_loop_body);

begin
execute_generator_loop(s);

exception
when exit_from_generator_loop =>
null;

end; — of generator loop
return k;

end size;

procedure size (s : in set; nn : out natural) is
begin

nn := size (s) ;
end size;

function equal(si, s2 : set) return boolean is

begin
return subset(si, s2) and then subset(s2, si);

end equal;

procedure equal(si, s2 : in set; bb : out boolean) is
begin

bb := equal(si, s2);
end equal;

function subset(si, s2 : set) return boolean is
begin — begin generator loop

declare
generator_loop_return_value : boolean;
return_from_generator_loop : exception;
exit_from_generator_loop : exception;
procedure generator_loop_body(y : t) is
begin

if not (is_in(y, s2)) then
generator_loop_return_value := false;
raise return_from_generator_loop;

end i f;
end generator_loop_body;
procedure execute_generator_loop is new scan(generator_loop_body);

begin
execute_generator_loop(si) ;

exception
when exit_from_generator_loop =>
null;
when return_from_generator_loop =>
return generator_loop_return_value ;

end; — of generator loop
return true;

end subset;

procedure subset(si, s2 : in set; bb : out boolean) is

151

begin
bb := subset (si, s2);

end subset;

function interval(xl, x2 : in t) return set is
ss : set := empty;
y : t := xl;

begin
while not (x2 < y) loop

ss := add(y, ss);
y := successor(y);

end loop;
return ss;

end interval;

function apply(s : set) return st is
ss : st := empty;

begin — begin generator loop
declare
exit_from_generator_loop : exception;
procedure generator_loop_body(y : t) is
begin
ss := add(f(y), ss);
end generator_loop_body;
procedure execute_generator_loop is new scan(generator_loop_body);

begin
execute_generator_loop(s);

exception
when exit_from_generator_loop =>
null;

end; — of generator loop
return ss;

end apply;

function reduce(s : set) return t is
x : t := identity;

begin — begin generator loop
declare
exit_from_generator_loop : exception;
procedure generator_loop_body(y : t) is
begin
x := f (y, x) ;
end generator_loop_body;
procedure execute_generator_loop is new scan(generator_loop_body);

begin
execute_generator_loop(s);

exception
when exit_from_generator_loop =>
null;

end; — of generator loop
return x;

end reducer-

function reducel(s : set) return t is
x : t;
i : natural := 1;

begin
if size (s) = 0 then

raise empty_reduction_undefined;

152

end if;
declare — begin generator loop

exit_from_generator_loop : exception;
procedure generator_loop_body(y : t) is
begin

if i = 1 then
x := y;

else
x := f (y, x) ;

end if;
i := i + 1;
end generator_loop_body;
procedure execute_generator_loop is new scan (generator_loop_body);

begin
execute_generator_loop(s);

exception
when exit_from_generator_loop =>
null;

end; — of generator loop
return x;

end reduce1;

procedure scan(s : set) is
ss : set := s;

begin
while ss.p /= null loop

generate(ss.p.value);
ss := ss.p.rest;

end loop;
end scan;

function generic_input return set is
x : t;
ss : set := empty;

begin
if token /= '{' then

raise data_error;
end if;
skip_char;
while token /= '}' loop

x := input;
ss := add(x, ss);

if token = ',' then
skip_char;

elsif token /= '}' then
raise data_error;
end if;

end loop;
skip_char;
return ss;

exception
when others =>

raise data_error;
end generic_input;

function generic_file_input(file : in file_type) return set is
function get_set is new generic_input;

153

s : set;

begin
set_input(file);
s := get_set;
set_input(standard_input);
return s;

end generic_file_input;

procedure generic_put(item : in set) is
i : natural := 1;

begin
put(ascii.l_brace);
declare — begin generator loop

return_from_generator_loop : exception;
exit_from_generator_loop : exception;
procedure generator_loop_body(y : t) is
begin

if i > 1 then
put(", ");

end if;
put(y);
i := i + 1;
end generator_loop_body;
procedure execute_generator_loop is new scan(generator_loop_body);

begin
execute_generator_loop(item);

exception
when exit_from_generator_loop =>
null;

end; — of generator loop
put(ascii.r_brace);

end generic_put;

procedure generic_file_put(file : in file_type; item : in set) is
procedure put_set is new generic_put;

begin
set_output(file);
put_set(item);
set_output(standard_output) ;

end generic_file_put;
end set_pkg;

77. SIMULATION_OBJECT_PKG.ADS

File Name: Simulation_Object_Pkg.Ads
Discription: This package describes the basis for the Simulation Hierarchy

WITH game_time_type_pkg; USE game_time_type_pkg;
WITH Location_Type_Pkg; USE Location_Type_Pkg;

PACKAGE Simulation_Object_Pkg IS

TYPE Simulation_Object IS ABSTRACT TAGGED PRIVATE;— Basis of Simulation
Hierarchy

TYPE Simulation_Object_Ptr IS ACCESS ALL Simulation_Object'Class;

154

— PROCEDURE: Move_Update_Obj
PRE: Obj is of type Simulation_Object and exists

Time contains data (value is not never)
POST: updates Object's location. Time represents when to

reschedule.

PROCEDURE Move_Update_Obj(Obj : IN OUT Simulation_Object;
Time : IN OUT game_time_type);

— FUNCTION: Can_move

FUNCTION Can move(Obj : Simulation Object) RETURN boolean;

— FUNCTION: Copy_Obj
PRE: Obj is of type Simulation_Object and exists
Return: Makes a copy of the obj and returns a pointer to the new

obj

FUNCTION Copy Obj(Obj : Simulation Object) RETURN Simulation_Object_Ptr;

— FUNCTION: Get_Is_Scheduled
PRE: Obj is of type Simulation_Object and exists
Return: Returns the value of Is_Scheduled which is a boolean type

FUNCTION Get_Is_Scheduled(Obj : Simulation_Object'Class) RETURN Boolean;

— PROCEDURE: Set_Is_Scheduled
PRE: Obj is of type Simulation_Object and exists
POST: Assigns Value to Is_Scheduled

PROCEDURE Set_Is_Scheduled(Obj : IN OUT Simulation_Object'Class;
Value : Boolean);

— FUNCTION: Get_Destination
PRE: Obj is of type Simulation_Object and exists
Return: Returns the destination

FUNCTION Get_Destination(Obj : SimulationJDbject'Class)
RETURN Location_Type;

— PROCEDURE: Set_Destination
PRE: Obj is of type Simulation_Object and exists
POST: Assigns Value to the Destination

PROCEDURE Set_Destination(Obj : in out Simulation_Object'Class;
Value: in Location_Type);

FUNCTION: Get_Location
PRE: Obj is of type Simulation_Object and exists
Return: Returns the location

155

FUNCTION Get Location(Obj : Simulation Object'Class) RETURN LocationJType;

-- FUNCTION: Get_Fuel_Used
PRE: Obj is of type Simulation_Object and exists
Return: Returns the float

FUNCTION Get Fuel_Used(Obj : Simulation_Object) RETURN Float;

PRIVATE

TYPE Simulation Object IS TAGGED RECORD
Is Scheduled Boolean:=False;
Name String(1.. 20) ;
Graphic Symbol Natural;
Force Natural; —IE 1.
Move Period Integer;
Active Boolean; —True
Location Location Type;
Destination Location Type; —

Speed Float; —In M/sec
Max Speed Float; —In M/sec

END RECORD;

.6

—True = active part of sim, ie alive

Could be a sequence of
Location_Types

END Simulation_Object_Pkg;

78. SIMULATION OBJECT PKG.ADB

File Name: Simulation_Object_Pkg.Adb

PACKAGE BODY Simulation Object_Pkg IS

-- PROCEDURE: Move_Update_Obj

PROCEDURE Move_Update_Obj(Obj : IN OUT Simulation_Object;
Time : IN OUT game_time_type) IS

Float; — In seconds
Float; — In meters
LocationJType;
Location Type;

Time_Elapsed
Distance
Displacement
Velocity

BEGIN
— Stop motion if the object cannot move.
IF not Can_move(Simulation_Object'Class(Obj)) THEN

Obj.Speed := 0.0;
Obj.Is_Scheduled := false;
Time := never; — Do not reschedule a move event for this object
return;

END IF;

— How far are we
Time_Elapsed := Float(Obj.Move_Period);
Displacement := Obj.Destination - Obj.Location;
Distance := Length(Displacement);

— Set the speed
— Future versions will take terrain and weather into account here.

156

IF Distance > Obj.Max_Speed * Time_Elapsed
THEN Obj.Speed := Obj.Max_Speed;
ELSE Obj.Speed := Distance/Time_Elapsed;
END IF;

— Move and schedule the next move.
Velocity := (Obj.Speed/Distance) * Displacement;
Obj.Location := Obj.Location + (Time_Elapsed * Velocity);
Time := Time + Obj.Move_Period; —Schedules next event in

—Move_Period seconds

— Note: the above code works without modification
— for both two and three dimensions.

END Move_Update_Obj;

FUNCTION: Can move

FUNCTION Can_move(Obj : Simulation_Object) RETURN boolean IS
Min_Distance : Constant Float := 10.0;
Distance : Float;

BEGIN
Distance := length(Obj.Destination - Obj.Location);
RETURN Obj.Active — must be alive to move

and then Distance > Min_Distance;
— must not already be at the planned destination

END;

— FUNCTION: Copy_Obj

FUNCTION Copy_Obj(Obj : Simulation_Object) RETURN Simulation_Object_Ptr IS
BEGIN

RETURN NULL; —All are dispatched to leaves of hierarchy
END Copy Obj;

FUNCTION: Get Is Scheduled

FUNCTION Get_Is_Scheduled(Obj : Simulation_Object'Class) RETURN Boolean IS
BEGIN

RETURN Obj.Is_Scheduled;
END Get Is Scheduled;

PROCEDURE: Set Is Scheduled

PROCEDURE Set_Is_Scheduled(Obj
Value

BEGIN
Obj.Is_Scheduled := Value;

END Set Is Scheduled;

IN OUT SimulationJObject'Class;
Boolean) IS

FUNCTION: Get Destination

FUNCTION Get_Destination(Obj : SimulationJObject'Class)
RETURN LocationJType IS

BEGIN
RETURN Obj.Destination;

157

END Get Destination;

PROCEDURE: Set Destination

PROCEDURE Set_Destination(Obj : in out Simulation_Object'Class;
Value: in Location_Type) IS

BEGIN
Obj.Destination := Value;

END Set Destination;

FUNCTION: Get Location

FUNCTION Get_Location(Obj : Simulation_Object'Class) RETURN Location_Type IS
BEGIN

RETURN Obj.Location;
END Get Location;

FUNCTION: Get Fuel Used

FUNCTION Get_Fuel_Used(Obj : Simulation_Object) RETURN Float IS
BEGIN

RETURN 0.0;
END Get_Fuel_Used;

END Simulation_Object_Pkg;

79. SIMULATIONJ)BJECT_PKG-GROUND_OBJECT_PKG.ADS

— File Name: Simulation_Object_Pkg.Ground_Object_Pkg.Ads

PACKAGE Simulation_Object_Pkg.Ground_Object_Pkg IS

TYPE Ground_Object IS ABSTRACT NEW Simulation_Object WITH PRIVATE;

PRIVATE
TYPE Ground_Object IS ABSTRACT NEW SimulationjDbject WITH NULL RECORD;

END Simulation_Object_Pkg.Ground_Object Pkg;

80. SIMULATION_OBJECT_PKG-GROUND_OBJECT_PKG-

TANK_PKG.ADS

— File Name: Simulation_Object_Pkg.Ground_Object_Pkg.Tank_Pkg.Ads

PACKAGE Simulation_Object_Pkg.Ground_Object_Pkg.Tank_Pkg IS

TYPE Tank_Type IS NEW Ground_Object WITH PRIVATE;

— PROCEDURE: Move_Update_Obj

158

Description: Overloaded Simulaiton_Object's Method to work on Tank
Objects

PROCEDURE Move_Update_Obj(Obj : IN OUT TankJType;
Time : IN OUT game_time_type);

— FUNCTION: Can_move

FUNCTION Can_move(Obj : Tank_Type) RETURN boolean;

— FUNCTION: Get_Fuel_Used
Description: Overloads the SImulation_Object's Method

FUNCTION Get Fuel Used(Obj : TankJType) RETURN Float;

— FUNCTION: Copy_Obj
Description: Overloads the SImulation_Object's Method

FUNCTION Copy_Obj(Obj : TankJType) RETURN Simulation_Object_Ptr;

— FUNCTION: Construct_Obj
Description: Constructs a simulation obj

FUNCTION Construct_Obj(Scheduled
Name
Symbol
Force
Move_Period
Active
Location_x
Location_y
Destination_x
Destination_y
Speed
Max_Speed
Fuel
Consumption

Boolean-
String;
Natural-
Natural;
Integer-
Boolean;
Float;
Float;
Float;
Float;
Float;
Float;
Float;
Float) RETURN Simulation Object Ptr;

PRIVATE

TYPE TankJType IS NEW GroundjDbject WITH RECORD
Fuel : Float; —In Gallons
Fuel_Consumption : Float; —Gallons/Second
FuelJJsed : Float:= 0.0;

END RECORD;

END Simulation_Object_Pkg.GroundjDbject_Pkg.Tank_Pkg;

81. SIMULATION_OBJECT_PKG-GROUND_OBJECT_PKG-

TANK_PKG.ADB

— File Name: Simulation Object Pkg.Ground_Object_Pkg.Tank_Pkg.Adb

159

PACKAGE BODY Simulation_Object_Pkg.GroundJObject Pkg.Tank Pkg IS

— PROCEDURE: MoveJJpdatejObj

PROCEDURE Move_Update_Obj(Obj : IN OUT TankJType;
Time : IN OUT game_time_type) IS

Time_Elapsed : Float; --In Seconds
BEGIN
— Stop motion if the object cannot move.
IF not Can_move(Obj) THEN

Obj.Speed := 0.0;
Obj.Is_Scheduled := false;
Time := never; — Do not reschedule a move event for this object
return;

END IF;

— Move the tank using the general purpose move method
— from the most general superclass.
Move_Update_Obj(Simulation_Object(Obj), Time);

— Now do the fuel consumption bookkeeping.
Time_Elapsed := Float(Obj.Move_Period);
Obj.Fuel := Obj.Fuel - (Obj.FueljConsumption * Time_Elapsed);
Obj.Fuel_Used := Obj.Fuel_Used + (Obj.Fuel_Consumption

* Time_Elapsed) ;
END;

— FUNCTION: Can_move

FUNCTION Can_move(Obj : TankJType) RETURN boolean IS
BEGIN

RETURN Can_move(Simulation_Object(Obj)) — must satisfy inherited
— general constraints

and then Obj.Fuel > 0.0; — must also have fuel to move
END;

— FUNCTION: Get_Fuel_Used
Description: Overloads the SImulation_Object's Method

FUNCTION Get_Fuel_Used(Obj : TankJType) RETURN Float IS
BEGIN

RETURN Obj.FuelJOsed;
END;

— FUNCTION: Copy_Obj

FUNCTION Copy_Obj(Obj : TankJType) RETURN Simulation_Object_Ptr IS
Obj_Ptr : Simulation_Object_Ptr;

BEGIN
Obj_Ptr:= NEW TankJType'(Is_Scheduled => Obj.Is_scheduled,

Name => Obj.Name,
Graphic_Symbol => Obj.Graphic_Symbol,
Force => Obj.Force,
Move_Period => Obj.Move_Period,
Active => Obj.Active,

160

Location
Destination
Speed
Max_Speed
Fuel
Fuel_Consumption
Fuel Used

RETURN Obj_Ptr;
END;

=> Obj.Location,
=> Obj.Destination,
=> Obj.Speed,
=> Obj.Max_Speed,
=> Obj.Fuel,
=> Obj.Fuel_Consumption,
=> Obj.Fuel Used);

— FUNCTION:
Description:

Construct_Obj
Constructs a simulation obj

CTION Construct_Obj(Scheduled Boolean;
Name String;
Symbol Natural;
Force Natural;
Move Period Integer;
Active Boolean;
Location X Float;
Location Y Float;
Destination X Float;
Destination ~Y Float;
Speed Float;
Max Speed Float;
Fuel Float;
Consumption Float)

RETURN Simulati
Obj Ptr : Simulation Object _Ptr;
Location : LocationJType;
Destination : Location Type;

BEGIN
Location.X = Location X;
Location.Y = Location Y;
Destination.X = Destination X;
Destination.Y = Destination Y;
Obj_Ptr:= NEW r rank Type'(Is Scheduled =>

Name =>

on_Object_Ptr IS

Is Scheduled => Scheduled,
Name => Name,
Graphic Symbol => Symbol,
Force => Force,
Move Period => Move Period,
Active =>, Active,
Location => Location,
Destination => Destination,
Speed => Speed,
Max Speed => Max Speed,
Fuel => Fuel,
Fuel Consumption => Consumption,
Fuel Used => 0.0);

RETURN
END;

Obj Ptr;

END Simulation_Object_Pkg.Ground_Object_Pk'g.Tank_Pkg;

82. SORTED_LIST_PKG.ADS
generic

type element_type is private;
with function "<"(x, y: element_type) return boolean;

package sorted_list_pkg is
type sorted_list is private;

161

function empty return sorted_list;
— Returns an empty sorted list.

function is_empty(s: sorted_list) return boolean;
— True if and only if s has no elements.

procedure add(s: in out sorted_list; x: in element_type);
— s := s U {x}.

procedure get_smallest (s: in out sorted_list; x: out element_type);
— sets x to the smallest element of s and removes x from s.
— raises no_elements if s is empty.

no_elements: exception;
private

type sorted_list_record is
record

data: element_type;
next: sorted_list;

end record;
— The list is kept sorted in increasing order wrt "<".

type sorted_list is access sorted_list_record;
end sorted list pkg;

83. SORTEDLISTJPKG.ADB
— generic

type element_type is private;
with function "<" (x, y: element_type) return boolean;

package body sorted_list_pkg is
free_list: sorted_list := null;

procedure free(node: sorted_list) is
begin

node.next := free_list;
free_list := node;

end free;

function new_node(x: element_type; s: sorted_list)
return sorted_list is

node: sorted_list;
begin

if free_list = null then
return new sorted_list_record'(data => x, next => s);

else node := free list;
= free_list.next;
= x;
= s;

free_list
node.data
node.next
return node;

end if;
end new_node;

function empty return sorted_list is
begin

return null;
end empty;

function is_empty(s: sorted_list) return boolean is
begin

return (s = null);
end is empty;

162

procedure add(s: in out sorted_list; x: in element_type) is
begin

if is_empty(s) then s := new_node(x, s);
elsif x < s.data then s := new_node(x, s) ;
else add(s.next, x);
end if;

end add;

procedure get_smallest(s: in out sorted_list; x: out element_type) is
head: sorted_list := s;

begin
if is_empty(s) then raise no_elements;
else x := s.data;

s := s.next;
free(head);

end if;
end get_smallest;

end sorted list_pkg;

84. STATISTICS_REQUEST_TYPE_PKG.ADS

package statistics_request_type_pkg is
type statistics_request_type is private;

function on return statistics_request_type;

function off return statistics_request_type;

private
type statistics_request_type is new boolean;

end statistics_request_type_pkg;

85. STATISTICS_REQUEST_TYPE_PKG.ADB

package body statistics_request_type_pkg is

function on return statistics_request_type is
begin

return true;
end on;

function off return statistics_request_type is
begin

return false;
end off;

end statistics_request_type_pkg;

86. STATISTICS_TYPE_PKG.ADS

package statistics_type_pkg is
type statistics_type is private;

function convert(x: statistics_type) return float;

function convert(x: float) return statistics_type;

private
type statistics_type is new float;

end statistics_type_pkg;

87. STATISTICS TYPE PKG.ADB

163

package body statistics_type_pkg is
function convert(x: statistics_type) return float is
begin

return float(x);
end convert;

function convert(x: float) return statistics_type is
begin

return statistics_type(x);
end convert;

end statistics_type_pkg;

88. USER_INTERACTION_TYPE_PKG.ADS
package user_interaction_type_pkg is

type user_interaction_type is private;

function stop_simulation return user_interaction_type;

private
type user_interaction_type is new boolean;

end user_interaction_type_pkg;

89. USER_INTERACTION_TYPE_PKG.ADB
package body user_interaction_type_pkg is

function stop_simulation return user_interaction_type is
begin

return true;
end stop_simulation;

end user_interaction_type_pkg;

90. WARRIOR_GLOBAL.H
/* *** TAE Plus Code Generator version V5.3 [Merge Token: DO NOT DELETE.] ***
*/
I* *** File: global.h *** +/
/* *** Generated: Oct 15 11:20:08 1998 *** */

* PURPOSE:
* This global header file is automatically "#include"d in each panel
* file. You can insert references to global variables here.

* REGENERATED:
* This file is generated only once. Therefore, you may modify it without
* impacting automatic code merge.
*

* CHANGE LOG:
* 15-Oct-98 Initially generated...TAE
* ***+********************+**+*+•*+*****+******+***********************+**

*/ ...

#ifndef I_GLOBAL /* prevent double include */
#define IJ3LOBAL 0

/* macros for access to parameter values
*

* These macros obtain parameter values given the name of
* a Vm object and the name string of the parameter.
* The Vm objects are created by the Initialize_All_Panels
* function for a resource file.

164

* Reference scalar parameters as follows:
*

* StringParm(myPanelTarget, "s") — string pointer
* IntParm(myPanelTarget, "i") — integer value
* RealParm(myPanelTarget, "r") — real value

* For vector parameters, do the following:
*

* TAEINT *ival;
* ival = &IntParm(myPanelTarget, "i");
* printf ("%d %d %d", ival[0], ival[l], ival[2]);

#define StringParm(vmId, name) (SVAL(*Vm_Find(vmld, name),0))
#define IntParm(vmId, name) (IVAL(*Vm_Find(vmld, name), 0))
#define RealParm(vmId, name) (RVAL(*Vm Find(vmld, name), 0))

/* Dispatch Table typedef */

typedef VOID (*FUNCTION_PTR) ();
typedef struct DISPATCH

{
TEXT *parmName;
FUNCTION_PTR eventFunction;
} Dispatch;

#define EVENT_HANDLER static VOID /* a flag for documentation */

/* Display Id for use by direct Xlib calls: */

extern Display *Default_Display;

/* Externally define wptEvent so event handlers have access to it */

extern WptEvent wptEvent; /* event structure returned by Wpt_NextEvent */

#define SET_APPLICATIOtf_DONE \
{ \
extern BOOL Application_Done; \
Application_Done = TRUE; \
}

#endif

/* Automatic TAE-style indenting for Emacs users */
/* *** Local Variables:
/* *** mode:
/* *** c-indent-level:
/* *** c-continued-statement-offset:
/* *** c-brace-offset:
/* *** c-brace-imaginary-offset:
/* *** c-argdecl-indent:
/* *** c-label-offset:
/* *** c-continued-brace-offset:
/* *** comment-column:
/* *** comment-multi-line:
/* *** End:

165

** + */
c ** + */
0 ** + */
4 *** */
4 *** */
4 *** */
4 *** */
-4 * ** */
-4 *** */
45 * * * */
nil *** */

*** */

91. WARRIOR_PAN_GUI_3.H

/* *** TAE Plus Code Generator version V5.3 [Merge Token: DO NOT DELETE.] ***
*/
/* *+* pile: pan_gui_3.h *** */
/* *** Generated: Oct 15 11:20:08 1998 *** */
I* **********************************++++++++++++++++++++++++++++++++++++++

* PURPOSE:
* Header file for panel: gui_3

* REGENERATED:
* The following WorkBench operations will cause regeneration of this file:
* The panel's name is changed (not title)
* For panel: gui_3
*

* CHANGE LOG:
* 15-Oct-98 Initially generated...TAE
* **^*************
*/

#ifndef I_PAN_gui_3 /* prevent double include */
#define I_PAN_gui_3 0

/* Vm objects and panel Id. */
extern Id gui_3Target, gui_3View, gui_3Id;

/* Dispatch table (global for calls to Wpt_NewPanel) */
extern struct DISPATCH gui_3Dispatch[] ;

/* Initialize gui_3Target and gui_3View */
extern VOID gui_3_Initialize_Panel ();

/* Create this panel and display it on the screen */
extern VOID gui_3_Create_Panel ();

/* Destroy this panel and erase it from the screen */
extern VOID gui_3_Destroy_Panel ();

/* Connect to this panel. Create it or change its state */
extern VOID gui_3_Connect_Panel ();

/*
extern VOID warrior_Initialize_All_Panels ();
extern VOID warrior_Create_Initial_Panels ();

*/

/*# MTS 10-15-98
added the following procedure declarations

#*/

extern VOID set_user_interaction();
extern VOID set_statistics_request();
extern VOID set_replay_request();
extern VOID set_new_plan();

/*# MTS 10-23-98
added the following function declarations

#*/

extern VOID set_x();
extern VOID set y();

166

* ** */
c *** */
0 *** */
4 *** */
4 ** * */
4 * ** */
4 *** */
-4 *** */
-4 *** */
45 *** */
nil ** * */

*** */

FUNCTION VOID display_fuel_consumption() ;
FUNCTION VOID display_xloc();
FUNCTION VOID display_yloc();
FUNCTION VOID display_mover();
FUNCTION VOID end simulation() ;

tendif

/* Automatic TAE-style indenting for Emacs users */
/* *** Local Variables:
/* *** mode:
/* *** c-indent-level:
/* *** c-continued-statement-offset:
/* *** c-brace-offset:
/* *** c-brace-imaginary-offset:
/* *** c-argdecl-indent:
/* *** c-label-offset:
/* *** c-continued-brace-offset:
/* *** comment-column:
/* *** comment-multi-line:
/* *** End:

92. WARRIOR_CREAT_INIT.C
/* *** TAE pius Code Generator version V5.3 [Merge Token: DO NOT DELETE.] ***

*/
/* *** File: warrior_creat_init.c *** */
/* *** Generated: Oct 15 11:20:08 1998 *** */
/* **

* PURPOSE:
* Displays all panels in the initial panel set of this resource file
*

* REGENERATED:
* The following WorkBench operations will cause regeneration of this file:
* A panel is added to the initial panel set
* A panel is deleted from the initial panel set
* An initial panel's name is changed (not title)
* For the set of initial panels:
* gui_3
*

* CHANGE LOG:
* MERGE NOTE: Add Change Log entries BELOW this line.
* 15-Oct-98 Initially generated...TAE
* MERGE NOTE: Add Change Log entries ABOVE this line.
* **

*/
tinclude "taeconf. iiip"
iinclude "wptinc.inp"
♦include "warrior_global.h" /* Application globals */

/* One include for each panel in initial panel set */
#include "warrior_pan_gui_3.h"

/* MERGE NOTE: Add additional includes and functions BELOW this line. */
/* MERGE NOTE: Add additional includes and functions ABOVE this line. */

FUNCTION VOID warrior_Create_Initial_Panels {)
{
/* MERGE NOTE: Add additional variables and code BELOW this line. */
/* MERGE NOTE: Add additional variables and code ABOVE this line. */

167

* * * */
c + * + */
0 * * * */
4 • * + */
4 • * + */
4 * *■ * */
4 * * * */
-4 * ** */
-4 ** * */
45 * + * */
nil * * + */

* * * */

/* Show panels */

gui_3_Create_Panel (NULL, WPT_PREFERRED) ;

/* MERGE NOTE: Add additional code BELOW this line. */
/* MERGE NOTE: Add additional code ABOVE this line. */
}

/* Automatic TAE-style indenting for Emacs users */
/* *** Local Variables:
/* *** mode:
/* *** c-indent-level:
/* *** c-continued-statement-offset:
/* *** c-brace-offset:
/* *** c-brace-imaginary-offset:
/+ *** c-argdecl-indent:
/* *** c-label-offset:
/* *** c-continued-brace-offset:
/* *** comment-column:
/* *** comment-multi-line:
/* *** End:

93. WARRIORJNITJPAN.C
/* *** TAE plus Code Generator version V5.3 [Merge Token: DO NOT DELETE.] ***
*/
/* *** File: warrior_init_pan.c *** */
/* *** Generated: Oct 15 11:20:08 1998 *** */

* PURPOSE:
* Initialize all panels in the resource file.

* REGENERATED:
* The following WorkBench operations will cause regeneration of this file:
* A panel is deleted
* A new panel is added
* A panel's name is changed (not title)
* For the panels:
* gui_3
*

* CHANGE LOG:
* MERGE NOTE: Add Change Log entries BELOW this line.
* 15-Oct-98 Initially generated...TAE
* MERGE NOTE: Add Change Log entries ABOVE this line.

*/

#include "taeconf.inp"
#include "wptinc.inp"
tinclude "symtab.inc"
#include "warrior_global.h" /* Application globals */

/* One "include" for each panel in resource file */
ttinclude "warrior_pan_gui_3.h"

/* MERGE NOTE: Add additional includes and functions BELOW this line. */
/* MERGE NOTE: Add additional includes and functions ABOVE this line. */

FUNCTION VOID warrior_Initialize_All_Panels (resfileSpec)
TEXT *resfileSpec;
{
Id vmCollection;

168

*** */
c *** */
0 *** */
4 *** */
4 *** */
4 *** */
4 *** */
-4 *** */
-4 * * * */
45 *** */
nil *** */

** * */

/* MERGE NOTE: Add additional variables and code BELOW this line. */
/* MERGE NOTE: Add additional variables and code ABOVE this line. */

/* read resource file */
vmCollection = Co_New (P_ABORT);
Co_ReadFile (vmCollection, resfileSpec, P_ABORT);

/* initialize view and target Vm objects for each panel */
gui_3_Initialize_Panel (vmCollection);

/* MERGE NOTE: Add additional code BELOW this line. */
/* MERGE NOTE: Add additional code ABOVE this line. */
}

/* Automatic TAE-style indenting for Emacs users */
•/* *** Local Variables:
/* *** mode:
/* *** c-indent-level:
/* *** c-continued-statement-offset:
/* *** c-brace-offset:
/* *** c-brace-imaginary-offset:
/* *** c-argdecl-indent:
/* *** c-label-offset:
/* *** c-continued-brace-offset:
/* *** comment-column:
/* *** comment-multi-line:
/* *** End:

94. WARRIOR_PAN_GUI_3.C

/* *** TAE Plus Code Generator version V5.3 [Merge Token: DO NOT DELETE.] *v

*/
/* *** pile: pan_gui_3.c *** */
/* *** Generated: Nov 2 14:32:41 1998 *** */
/* ********** + ***************±***±**-k**i,-i, + i,.kir.k*i, + ir + ir + * + *±iri, + iri,iri,irir*i,iri, + + + + +

* PURPOSE:
* This file encapsulates the TAE Plus panel: gui_3
* These routines enable panel initialization, creation, and destruction.
* Access to these routines from other files is enabled by inserting
* '»include "pan_gui_3.h"*. For more advanced manipulation of the panel
* using the TAE routines, the panel's Id, Target, and View are provided.
*
* NOTES:
* For each parameter that you have defined to be "event-generating" in
* this panel, there is an event handler procedure below. Each handler
* has a name that is a concatenation of the parameter name and " Event".
* Add application-dependent logic to each event handler. (As generated
* by the WorkBench, each event handler simply logs the occurrence of the
* event.)
*

* For best automatic code merging results, you should put as many
* modifications as possible between the lines of the MERGE NOTE comments.
* Modifications outside the MERGE NOTES will often merge correctly, but
* must sometimes be merged by hand. If the modifications cannot be
* automatically merged, a reject file (*.rej) will be generated which
* will contain your modifications.
*
* REGENERATED:
* The following WorkBench operations will cause regeneration of this file:
* The panel's name is changed (not title)
* For panel: gui 3

169

* The following WorkBench operations will also cause regeneration:
* An item is deleted
* A new item is added to this panel
* An item's name is changed (not title)
* An item's data type is changed
* An item's generates events flag is changed
* An item's valids changed (if item is type string and connected)
* An item's connection information is changed
* For the panel items:
* enter_new_plan, get_re_30, get_st_27, get_user_in_21,
* get_x, get_y
*

* CHANGE LOG:
* MERGE NOTE: Add Change Log entries BELOW this line.
* 2-Nov-98 Initially generated...TAE
* MERGE NOTE: Add Change Log entries ABOVE this line.
* **

*/

#include "taeconf.inp"
#include "wptinc.inp"
iinclude "warrior_global.h" /* Application globals */
#include "warrior_pan_gui_3.h"

/* One "include" for each connected panel */

/* MERGE NOTE: Add includes, vars, and functions BELOW this line. */
/* MERGE NOTE: Add includes, vars, and functions ABOVE this line. */

Id gui_3Target, gui_3View, gui_3Id;
/* gui_3Dispatch is defined at the end of this file */

/* **

* Initialize the view and target of this panel.
*/

FUNCTION VOID gui_3_Initialize_Panel (vmCollection)
Id vmCollection;
{
gui_3View = Co_Find (vmCollection, "gui_3_v");
gui_3Target = Co_Find (vmCollection, "gui_3_t");

}

/* **

* Create the panel object and display it on the screen.
*/

FUNCTION VOID gui_3_Create_Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;

/* MERGE NOTE: Add code BELOW this line for gui_3_Create_Panel. */
/* MERGE NOTE: Add code ABOVE this line for gui_3_Create_Panel. */

if (gui_3Id)
printf ("Panel (gui_3) is already displayed.\n");

else
gui_3Id = Wpt_NewPanel (Default_Display, gui_3Target, gui_3View,

relativeWindow, gui_3Dispatch, flags);

}

/* ************************ ******************** ****************************

* Erases a panel from the screen and de-allocate the associated panel

170

* object.
*/

FUNCTION VOID gui_3_Destroy_Panel ()
{
/* MERGE NOTE: Add code BELOW this line for gui_3_Destroy_Panel. */
/* MERGE NOTE: Add code ABOVE this line for gui_3_Destroy_Panel. */

Wpt_PanelErase(gui_3Id) ;
gui_3Id=0;
}

/* **

* Connect to this panel. Create it or change its state.
*/

FUNCTION VOID gui_3_Connect_Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;
{
/* MERGE NOTE: Add code BELOW this line for gui_3_Connect_Panel. */
/* MERGE NOTE: Add code ABOVE this line for gui_3_Connect_Panel. */

if (gui_3Id)
Wpt_SetPanelState (gui_3Id, flags);

else
gui_3_Create_Panel (relativeWindow, flags);

}

/* **

* Handle event from parameter: enter_new_plan

*/

EVENT_HANDLER enter_new_plan_Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */
{ /* parm: enter_new_plan */
/* MERGE NOTE: Add code BELOW this line for parm: enter_new_plan. */
/* MERGE NOTE: Add code ABOVE this line for parm: enter_new_plan. */

set_new_plan();

/*#
printf ("Panel gui_3, parm enter_new_plan: value = %s\n",

count > 0 ? value[0] : "none");
#*/

} /* parm: enter new plan */

/* **i

* Handle event from parameter: get_re_30
*/

EVENT_HANDLER get_re_30_Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */
{ /* parm: get_re_30 */
/* MERGE NOTE: Add code BELOW this line for parm: get_re_30. */
/* MERGE NOTE: Add code ABOVE this line for parm: get_re_30. */

set_replay_request();

171

/*#
printf ("Panel gui_3, parm get_re_30: value = %s\n",

count > 0 ? value[0] : "none");
#*/

} /* parm: get_re_30 */

/ * *** + *********** + ** + * + + + + ******** + * + * + ** + **** + * + + + + + ■*-*** + * + *■**** + + * + *****■

* Handle event from parameter: get_st_27
*/

EVENT_HANDLER get_st_27_Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */
{ /* parm: get_st_27 */
/* MERGE NOTE: Add code BELOW this line for parm: get_st_27. */
/* MERGE NOTE: Add code ABOVE this line for parm: get_st_27. */

set_statistics_request();

/*#
printf ("Panel gui_3, parm get_st_27: value = %s\n",

count > 0 ? value[0] : "none");
#*/

} /* parm: get_st_27 */

* Handle event from parameter: get_user_in_21
*/

EVENT_HANDLER get_user_in_21_Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */
{ /* parm: get_user_in_21 */
/* MERGE NOTE: Add code BELOW this line for parm: get_user_in_21. */
/* MERGE NOTE: Add code ABOVE this line for parm: get_user_in_21. */

set_user_interaction();

/*#
printf ("Panel gui_3, parm get_user_in_21: value = %s\n",

count > 0 ? value[0] : "none");
#*/

} /* parm: get_user_in_21 */

* Handle event from parameter: get_x
*/

EVENT_HANDLER get_x_Event (value, count)
TAEFLOAT value[]; /* real vector */
FUNINT count; /* num of values */
{ /* parm: get_x */
/* MERGE NOTE: Add code BELOW this line for parm: get_x. */
/* MERGE NOTE: Add code ABOVE this line for parm: get_x. */

set_x((double)value[0]);

/*#
printf ("Panel gui_3, parm get_x: value = %f\n",

count > 0 ? value[0] : 0);
#*/

} /* parm: get_x */

172

/* **

* Handle event from parameter: get_y

'*/
EVENT_HANDLER get_y_Event (value, count)

TAEFLOAT value[]; /* real vector */
FUNINT count; /* num of values */
{ /* parm: get_y */
/* MERGE NOTE: Add code BELOW this line for parm: get_y. */
/* MERGE NOTE: Add code ABOVE this line for parm: get_y. */

set_y((double)value[0]);

/*#
printf ("Panel gui_3, parm get_y: value = %f\n",

count > 0 ? value[0] : 0);
#*/

} /* parm: get_y */

struct DISPATCH gui_3Dispatch[] = {
{"enter_new_plan", enter_new_plan_Event},
{"get_re_3 0", get_re_3 0_Event},
{"get_st_27", get_st_27_Event},
{"get_user_in_21", get_user_in_21_Event},
("get_x", get_x_Event},
{"get_y", get_y_Event},
{NULL, NULL} /* terminator entry */

};

/* MERGE NOTE: Add additional functions BELOW this line. */
/*# MTS 10-15-98

added the following routines to display info to gui
#*/
FUNCTION VOID display_fuel_consumption(c)
double c;
{

Wpt_SetReal(gui_3Id, "display_st_31", (TAEFLOAT)c);

}

FUNCTION VOID display_xloc(x)
double x;
{

Wpt_SetReal(gui_3Id, "xloc", (TAEFLOAT)x);

}

FUNCTION VOID display_yloc(y)
double y;
{

Wpt_SetReal(gui_3Id, "yloc", (TAEFLOAT)y) ;

}

FUNCTION VOID display_mover(x, y)
double x, y;
{

TAEFLOAT value[2];
value[0] = (TAEFLOAT)x;
value[1] = (TAEFLOAT)y;
Vm_SetReal (gui_3Target, "display_re_37", 2, value, PJJPDATE);

173

Wpt_ParmUpdate (gui_3Id, "display re 37");

FUNCTION VOID end simulation()
{

Wpt_PanelErase(gui_3Id) ;
Wpt_Finish() ;
SET APPLICATION DONE;

/* MERGE NOTE: Add additional functions ABOVE this line. */

Automatic TAE-style indenting for Emacs users */
*** Local Variables:
*** mode:
*** c-indent-level:
*** c-continued-statement-offset:
*** c-brace-offset:
*** c-brace-imaginary-offset:

* **
* **

* * *
* * *

c-argdecl-indent:
c-label-offset:
c-continued-brace-offset:
comment-column:
comment-multi-line:
End:

* + * */
c * * * V
0 * * + */
4 * * * */
4 * ** */
4 * ** */
4 * * * */
-4 * * * */
-4 * * * */
45 * * * */
nil * * * */

* * * */

95. warrior_tae.c

/* *** TAE Plus Code Generator version V5.3 [Merge Token: DO NOT DELETE.] ***
*/
/* *** File: warrior.c *** */
/* *** Generated: Oct 15 11:20:08 1998 *** */

* PURPOSE:
* This the main program of an application generated by the TAE Plus Code
* Generator.

REGENERATED:
This file is generated only once.
impacting automatic code merge.

Therefore, you may modify it without

NOTES:
To turn this into a real application, do the following:

1. Each panel that has event generating parameters is encapsulated by
a separate file, named by concatenating the string "pan_" with the
panel name (followed by a ".c"). Each parameter that you have defined
to be "event-generating", has an event handler procedure in the
appropriate panel file. Each handler has a name that is a
concatenation of the parameter name and the string "_Event". Add
application-dependent logic to each event handler. (As generated by
the WorkBench, each event handler simply logs the occurrence of the
event.)

2. To build the program, type "make". If the symbols TAEINC, ...,
are not defined, the TAE shell (source) scripts $TAE/bin/csh/taesetup
will define them.

174

* ADDITIONAL NOTES:
* 1. Each event handler has two arguments: (a) the value vector
* associated with the parameter and (b) the number of components. Note
* that for scalar values, we pass the value as if it were a vector with
* count 1.
*

* Though it's unlikely that you are interested in the value of a button
* event parameter, the values are always passed to the event handler for
* consistency.
*

* 2. You gain access to non-event parameters by calling the Vm package
* using the targetld Vm objects that are created in
* Initialize_All_Panels. There are macros defined in global.h to assist
* in accessing values in Vm objects.

* To access panel Id, target, and view, of other panels, add an
* "#include" statement for each appropriate panel header file.

* CHANGE LOG:
* 15-Oct-98 Initially generated...TAE
* **

"/

#include
#include
#include
#include
#include
*/

"taeconf.inp"
"wptinc.inp"
"symtab.inc"
"warrior_global.h"
"warrior_pan_gui_3.h"

/* Application globals */
/* Application globals

I* Globally defined variables */

Display *Default_Display;
WptEvent wptEvent; /* event structure returned by Wpt_NextEvent */
BOOL Application_Done;

/*# MTS 10-15-98
replace main routine by initialize_gui and generated_tae_event_monitor

main (arge, argv)

FUNINT
TEXT

arge;
*argv[];

#*/
CODE eventType;

COUNT termLines, termCols;
CODE termType;

/* PROGRAMMER NOTE:
* add similar extern's for each resource file in this application
*/

extern VOID warrior_Initialize_All_Panels ();
extern VOID warrior Create Initial Panels ();

175

struct DISPATCH *dp; /* working dispatch pointer */
struct VARIABLE *parmv; /* pointer to event VARIABLE */

/*# MTS 10-15-98
add the statement void initialize_gui()

#*/

void initialize_gui()
{

/* initialize terminal without clearing screen */
t_pinit (StermLines, StermCols, StermType);

/* permit upper/lowercase file names */
f_force_lower (FALSE);

Default_Display = Wpt_Init (NULL);

/* PROGRAMMER NOTE:
* To enable scripting, uncomment the following line. See the
* taerecord man page.
*/

/* Wpt_ScriptInit ("warrior"); */

/* initialize resource file */
/* PROGRAMMER NOTE:
* For each resource file in this application, calls to the appropriate
* Initialize_All_Panels and Create_Initial_Panels must be added.
*/

warrior_Initialize_All_Panels ("warrior.res");
warrior_Create_Initial_Panels () .;

/*# MTS 10-15-98
add the following initialization here

#*/
Application_Done = FALSE;

/*# MTS 10-15-98
commented out the loop and
add the statment generated tae event monitor I

/#* main event loop *#/
/#* PROGRAMMER NOTE:
#* use SET_APPLICATION_DONE in "quit" event handler to exit loop.
#* (SET_APPLICATION_DONE is defined in global.h)
*#/

while (!Application_Done)

#*/
void generated_tae_event_monitor()

{
if (Wpt_Pending())

{
eventType = Wpt_NextEvent (SwptEvent); /* get next WPT event */

switch (eventType)
{

case WPT PARM EVENT:

176

/* Event has occurred from a Panel Parm. Lookup the event
* in the dispatch table and call the associated event
* handler function.
*/

dp = (struct DISPATCH *) wptEvent.p_userContext;
for (; (*dp).parmName != NULL; dp++)

if (s_equal ((*dp).parmName, wptEvent.parmName))
{
parmv = Vm_Find (wptEvent.p_dataVm, wptEvent.parmName);
(*(*dp).eventFunction)

((*parmv).v_cvp, (*parmv) .v_count) ;
break;
}

break;

case WPT_FILE_EVENT:

/* PROGRAMMER NOTE:
* Add code here to handle file events.
* Use Wpt_AddEvent and Wpt_RemoveEvent to register and remove
* event sources.
*/

printf ("No EVENT_HANDLER for event from external source.\n");
break;

case WPT_WINDOW_EVENT:

/* PROGRAMMER NOTE:
* Add code here to handle window events.
* WPT_WINDOW_EVENT can be caused by windows which you directly
* create with X (not TAE panels), or by user acknowledgement
* of a Wpt_PanelMessage (therefore no default print statement
* is generated here).
*/

break;

case WPT_TIMEOUT_EVENT:

/* PROGRAMMER NOTE:
* Add code here to handle timeout events.
* Timeout events occur when an application has not received any
* user input within the interval specified by Wpt_SetTimeOut.
*/

printf ("No EVENT_HANDLER for timeout event.\n");
break;

case WPT_TIMER_EVENT:

/* PROGRAMMER NOTE:
* Add code here to handle timer events.
* Timer events occur on (or after) the interval specified when the
* event is registered using Wpt_AddTimer. Use Wpt_RemoveTimer to
* remove timers.
*/

printf ("No EVENT_HANDLER for event from timer source.\n") ;
break;

default:

printf("Unknown WPT Event\n");
break;
}

177

}

else if (Application_Done)
{

Wpt_Finish(); /* close down all display connections */

}

} /* end main */

/* Automatic TAE-style indenting for Emacs
/* *** Local Variables:
/* *** mode:
/* *** c-indent-level:
/* *** c-continued-statement-offset:
/* *** c-brace-offset:
/* *** c-brace-imaginary-offset:
/* *** c-argdecl-indent:
/* *** c-label-offset:
/* *** c-continued-brace-offset:
/* *** comment-column:
/* *** comment-multi-line:
/* *** End:

cs users */
* • * */

c * * * */
0 • * + */
4 * * * */
4 * * * */
4 ** * */
4 * + * */
-4 * + * */
-4 * * + */
45 * * + */
nil * * * */

* * * */

178

LIST OF REFERENCES

1. Reengineering Center, Perspectives on Legacy Systems Reengineering, pp. 3-5,
Software Engineering Institute, 1995.

2. Steigerwald, R, Luqi, and McDowell, J, CASE Tool for Reusable Software Component
Storage and Retrieval in Rapid Prototyping, Computer Science Dept, Naval
Postgraduate School, Monterey, California.

3. Memorandum from Under Secretary of Defense, For Secretary of the Army,
SUBJECT: DoD High Level Architecture (HLA) for Simulations, 10 September 1996.

4. Memorandum from Under Secretary of Defense, For Chairman DOD Executive
Council for Modeling and Simulation, SUBJECT: DoD Transition to the High Level
Architecture (HLA) for Simulations, 7 April 1998.

5. McGinnis, M., Pearman, G., Jackson, and L., Murphy, W., Development of a PC-
based, HLA Compliant, High-resolution, Constructive Combat Simulation, April 1998.

6. E-mail from Gerry Frazier, Senior Military Analysts, Modeling and Simulation
Operations Support Activity, SUBJECT: Constructive Simulation Models, 5 November
1998.

7. Titan, Inc. Applications Group, Janus 3.X/UNIX Software Design Manual, Prepared
for: Headquarters TRADOC Analysis Center, Ft. Leavenworth, Kansas, November
1993.

8. Titan, Inc. Applications Group, Janus 3.X/UNLX Software Programmer's Manual.
Prepared for: Headquarters TRADOC Analysis Center, Ft. Leavenworth, Kansas.
November 1993.

9. Titan, Inc. Applications Group, Software Simulation Support Group, The Janus User's
Manual Version 3, pp. 1-15, February 1990.

10. Arnold, R. S. Software Reengineering. IEEE Computer Society Press, 1993.

11. Feiler, Peter, Reengineering: An Engineering Problem/pp. 97-105, Component-Based
Software Engineering, 1990.

12. Luqi and Ketabchi, M., A Computer-Aided Prototyping System, 5(2), pp.66-72, IEEE
Software, 1988.

13. Luqi, System Engineering and Computer-Aided Prototyping, 6(1), pp. 15-17, Journal of
Systems Integration - Special Issue on Computer Aided Prototyping, 1996.

179

14. Austin, Toni, Idaho National Engineering Laboratory Software Reengineering Fact
Sheets, [http://www.inel.gov/technology_transfer/fact-htm/fact221.html]. July 1996.

15. Kiebak, A., Lichter, H., Schneider-Hufshchmidt, M, and Heinz, Z., Prototyping in
Industrial Software Projects, undated.

16. Luqi, A Graph Model for Software Evolution, IEEE Trans. On Software Engineering,
16, p. 917-927, 8 August 1990.

17. CAPS User Interface Manual (Section 2) from
http://wwwcaps.cs.nps.mvy.mil/Manuals/User Interface/section2.html

18. Luqi, Steigerwald, R., Hughes G., Naveda F., and Berzins V., CASP as a Requirements
Engineering Tool, Proc. 1991 Tri-Ada Conference.

19. Berzins, V., Shultes, B., Williams, J., Saluto, M., Janus Re-engineering Status Brief,
Computer Science Dept, Naval Postgraduate School, October 1998.

180

BIBLIOGRAPHY

Arnold, R. S. Software Reengineering. IEEE Computer Society Press, 1993.

Austin, Toni, Idaho National Engineering Laboratory Software Reengineering Fact Sheets.
[>ttp://www.inelgov/tecrmology_transfer/fact-htrn/fact221 .html]. July 1996.

Berzins, V., Shultes, B., Williams, J., Saluto, M., Janus Re-engineering Status Brief
Computer Science Dept, Naval Postgraduate School, October 1998.

CAPS User Interface Manual (Section 2) from
http://wwwcaps.cs.nps.navy.mil/Manuals/User Interface/section2.html

Chikofsky, E.J. & Cross II, J.H., Reverse Engineering and Design Recovery: A Taxonomy,
IEEE Software, January 1990.

Douglas, Bruce, P., Real-Time UML: Developing Efficient Objects for Embedded Systems,
pp. 203-218, Addison Wesley Longman, Inc., 1998.

E-mail from Gerry Frazier, Senior Military Analysts, Modeling and Simulation Operations
Support Activity, SUBJECT: Constructive Simulation Models, 5 November 1998.

Feiler, Peter, Reengineering: An Engineering Problem, pp. 97-105, Component-Based
Software Engineering, 1990.

Kiebak, A., Lichter, H., Schneider-Hufshchmidt, M., and Heinz, Z., Prototyping in
Industrial Software Projects, undated.

Larman, Craig, Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design, pp.273-279, Prentice-Hall PTR, 1998.

L.R. Larimer, Building an Object Model of a Legacy Simulation, MS Thesis, NPS, June
1997.

Luqi, A Graph Model for Software Evolution, IEEE Trans. On Software Engineering, 16, p.
917-927, 8 August 1990.

Luqi, Steigerwald, R, Hughes G., Naveda F., and Berzins V., CASP as a Requirements
Engineering Tool, Proc. 1991 Tri-Ada Conference.

Luqi, System Engineering and Computer-Aided Prototyping, 6(1), pp. 15-17, Journal of
Systems Integration - Special Issue on Computer Aided Prototyping, 1996.

Luqi and Ketabchi, M., A Computer-Aided Prototyping System, 5(2), pp.66-72, IEEE
Software, 1988.

181

Memorandum from Under Secretary of Defense, For Chairman DoD Executive Council for
Modeling and Simulation, SUBJECT: DoD Transition to the High Level Architecture
(HLA) for Simulations, 7 April 1998.

Memorandum from Under Secretary of Defense, For Secretary of the Army, SUBJECT:
DoD High Level Architecture (HLA) for Simulations, 10 September 1996.

McGinnis, M., Pearman, G., Jackson, and L., Murphy, W., Development of a PC-based,
HLA Compliant, High-resolution, Constructive Combat Simulation, April 1998.

Pimper, J. and Dobbs, L., Janus Algorithm Document, Version 4.0, Lawrence Livermore
National Laboratory, California, 1988.

Reengineering Center, Perspectives on Legacy Systems Reengineering, pp. 3-5, Software
Engineering Institute, 1995.

Steigerwald, R, Luqi, and McDowell, J, CASE Tool for Reusable Software Component
Storage and Retrieval in Rapid Prototyping, Computer Science Dept., Naval Postgraduate
School, Monterey, California.

Titan, Inc. Applications Group, Janus 3.X/UNLX Software Design Manual, Prepared for:
Headquarters TRADOC Analysis Center, Ft. Leavenworth, Kansas, November 1993.

Titan, Inc. Applications Group, Janus 3.X/UNLX Software Programmer's Manual.
Prepared for: Headquarters TRADOC Analysis Center, Ft. Leavenworth, Kansas.
November 1993.

Titan, Inc. Applications Group, Janus Version 6 Data Base Manager's Manual,
Simulation, Training & Instrumentation Command, Orlando, Florida, 1995.

Titan, Inc. Applications Group, Software Simulation Support Group, The Janus User's
Manual Version 3, pp. 1-15, February 1990.

182

INITIAL DISTRIBUTION LIST

Defense Technical Information Center.
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Road
Monterey, California 93943-5101

3. Chairman, Code CS
Naval Postgraduate School
Monterey, California 93943-5100

4. Dr. Man-Tak Shing, Code CS/SH
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

5. Dr. Valdis Berzins, Code CS/BE
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

6. U.S Army Research Office
ATTN: Dr. David Hislop (AMXRO-MCS)
4300 S. Miami Boulevard
P.O. Box 12211
Research Triangle Park, North Carolina 27709-2211

7. TRADOC Analysis Center-Monterey
Naval Postgraduate School
P.O. Box 8692
Monterey, California 93943-0692

8. Director
U.S. Army TRADOC Analysis Center
ATTN: ATRC
Ft. Leavenworth, Kansas 66027-5200

9. Director
U.S. Army TRADOC Analysis Center-WSMR
ATTN: Dr. Mel Parrish
White Sands Missile Range, New Mexico 88002-5502

183

10. MAJ Julian R. Williams, Jr 2
8432 17

TH
 Street North

St. Petersburg, Florida 33702

11. CPT Michael J. Saluto
159 Baker Street
East Peoria, Illinois 61611

184

