

Combat Simulation Laboratory Department of Systems Engineering United States Military Academy West Point, New York 10996-1779

THE ENHANCED, INTEGRATED SOLDIER SYSTEM ON JANUS (ARMY)

By

Cadet Peter N. Benchoff Cadet Jack Strother CPT Mark Tillman

Directed By

LTC James E. Armstrong, Jr.

April 1993

Department of Systems Engineering Technical Report #930427

DTIC QUALITY INSPECTED 4

REPORT D		orm Approved OMB No. 0704-0188						
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.								
1. AGENCY USE ONLY (Leave blan	nk)	2. REPORT DATE April 1993	3. REPORT TYPE AND Technical Report	DATES C	COVERED			
4. TITLE AND SUBTITLE The Enhanced, Integrated Soldi	ier Sys			5. FUND	ING NUMBERS			
6. AUTHOR(S) CDT Peter N. Benchoff CDT Jack Strother CPT Mark Tillman								
7. PERFORMING ORGANIZATION N USMA Operations Research Cer West Point, New York 10996) AND ADDRESS(ES)			DRMING ORGANIZATION RT NUMBER			
9. SPONSORING / MONITORING AG	GENCY	NAME(S) AND ADDRESS(E	5)		nsoring / monitoring ncy report number 7			
11. SUPPLEMENTARY NOTES								
12a. DISTRIBUTION / AVAILABILIT	Y STA	TEMENT		12b. DIS	TRIBUTION CODE			
Distribution Statement A. Approved for public Release; di	stribu	tion unlimited.						
13. ABSTRACT (Maximum 200 we The purpose of this report is to (TEISS). Our analysis was cond TEISS and conventional platoon validate the TEISS equivalency developed by the Army. To conduct the first portion of TEISS soldiers. We conduct ou	docun lucted . The numbe	in two phases. The first second portion of the an er and to conduct a trade nalysis, we selected a con	phase consisted of an e alysis built on the resul off analysis on two wea aventional platoon-size	examinations ts of the spon system element	ion of equivalence between first by attempting to ems that are presently being with which to compare the			
14. SUBJECT TERMS JANUS					15. NUMBER OF PAGES 150 16. PRICE CODE			
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED		CURITY CLASSIFICATION THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFI OF ABSTRACT UNCLASSIFIE		20. LIMITATION OF ABSTRACT			

Course No. <u>SE 489</u> Section No. <u>01</u> Instructor <u>CPT Tillman</u> Date <u>27 Apr 93</u>

TEISS Stage I COEA

Name	Yr	Co
Peter N. Benchoff	93	D3
Jack Strother	93	C3

Page 1 of 40

Table of Contents

in the second second

Execu	itive Summary	5-4
Cost	and Operational Effectiveness	5-18
	The Acquisition Issue	5 - 9
	The Need	5-6
	The Threat	6
	Environment	6-7
	Constraints	7-9
	Operational Concept	9
	Alternatives	9-13
	Functional Objectives	9-10
	Description of Alternatives	10-13
	Analysis of Alternatives	13-17
	Models	13-14
	Measures of Effectiveness	14-16
	Trade-Off Analysis	16-17
	Summary of Results	17-18
Recor	nmendations	18
Anner	A - Original Scenario Construction B - CSG Output C - Ph/Pk Data Sets D - Battle Narrative E - Initial Rounds Placement F - Force Files G - Design Matrix H - Equivalency Calculations I - Post Processing Data J - Confidence Interval Calculations Adum - Phase II Testing 4:	19-40 19-30 31 32 33 34 35 36 37-38 39 40-42
Enc	losure 1 - Phase II Ambush Scenario/Description	42-43
	T THOSE IT MIDUBIL DEGHALIO/DEBELIPEION	-2 -5

 2 - Phase II Description of Alternatives, MOEs, and Recommendations 3 - Phase II Factorial Design Construction 4 - MOE Analysis for Average Enemy Losses Table of Contents (Continued) 	Summary 44-56 57 58
5 - MOE Analysis for Detection Ratio 6 - MOE Analysis for 1/(Friendly rounds fired/	59
Enemy Killed / Friendly systems involved)	60
7 - MOE Analysis for Average Engagement Range	61
8 - MOE Analysis for Number of Detections	62
9 - MOE Analysis for Average Kill Range	63
10- MOE Analysis for Percent Contribution	64
11- JEDA Output for Phase II Simulations	65

.

.

£

:

EXECUTIVE SUMMARY

The purpose of this report is to document the results of our analysis concerning The Enhanced Integrated Soldier System (TEISS). Our analysis was conducted in two phases. The first phase consisted of an examination of equivalence between TEISS and a conventional platoon. The second portion (Found in the Appendum of this report) of the analysis built on the results of the first by attempting to validate the TEISS equivalency number and to conduc a trade off analysis on two weapon systems that are presently being developed by the Army.

To conduct the first portion of the analysis, we selected a conventional platoon-size element with which to compare the TEISS soldiers. We conducted our simulation in a raid scenario, with a light Infantry platoon raiding a drug processing plant. After drafting the scenario on Janus(A), we modeled conventional soldiers, TEISS soldiers, and their weapon systems in Janus (A). Our conventional soldier was modeled with guidance from Army Field Manuals and common sense, while the TEISS soldier was modeled to reflect the TEISS system's project goals and other information from the White Sands Missile Range, the Dismounted Battle Laboratory, ARDEC, and NATICK.

Our simulation runs, in Phase I, sought to establish a point equating the lethality and survivability of a conventional platoon as compared to a TEISS section. Our

analysis in this area revealed that thirteen TEISS soldiers equal the lethality and survivability of the conventional ζ^4 platoon.

After finding the equivalency point, we began the Phase II of our analysis, the validation of our thirteen man equivalency figure and a trade off analysis on the Track-Box sight and the Objective Infantry Combat Weapon (OICW). Simulations in phase II utilized a new scenario, with the major engagement consisting of an ambush of fleeing drug cartel henchmen. These simulations, through the full factorial design analysis, showed that the thirteen man force is not truly equivalent to a conventional platoon due to scenario dependence. Second, the OICW is a significantly better weapon than the Track-Box sight in the hands of both the conventional soldier and the TaISS soldier. And finally, the TEISS soldier, as he is planned is a extremely lethal weapon whose technology and abilities out distance our conventional tactics. We recommend further development in these areas to ensure that accurate trade off analyses are performed in the future.

I. The Acquisition Issue:

The first section of the COEA establishes the basis for the analysis of the TEISS system. This section clearly demonstrates the need for the system, the environment that the system will operate in, and other information that will quide the analysis of the TEISS system.

A. The Need

The basis of warfare throughout the ages has been based on the individual fighting abilities of the infantryman. The infantryman that can hold his ground and wrestle the enemy's territory from him, will win any type of conflict. Recent technologies have drastically increased the lethality of combat systems, but these increases have more often than not fallen to non-infantry weapons. The individual soldier is still fighting at the same technological level as his predecessors were in World War II.

Recently the Army has placed emphasis on the individual infantryman, the weapons that he uses and the equipment that enhances his lethality and survivability. As a result, many different agencies have begun development of equipment for the future TEISS soldier. Our study was conducted to take these present systems and some of the near future systems equipment and evaluate them as a whole. This analysis was conducted to act as a basis for all further studies on the

TEISS equipment that the Army's research laboratory will undoubtedly develop.

B. The Threat

As the Army moves in to the 21st. Century, it will be called on to complete a host of missions that planners would have never dreamt possible a few years ago. The cold war has ended, yet the need for the Army has stiffened. The loss of the Soviet Union has seriously eroded the balance of power in the world, and as a result the world is plagued with civil and border wars. In addition to the Soviet breakdown, the rise of illegal narcotics trade and its longterm effect on the U.S. have made the Narcotrafficers a serious national security threat. Any of these concerns represent possible missions for our future Army.

These contingencies call for missions that depart from the counter-Soviet mechanized warfare that has consumed our army for the last forty years. These new missions more than likely fall into the category of low-intensity conflicts that demand the use of infantrymen. And in our present era of military budget cutting, these missions will have to be accomplished with fewer and fewer men and resources.

C. Environment

As the world continues to become less orderly and conflicts spring up around the globe, it becomes very difficult to determine where the TEISS operating environment

will be, or who he will face in combat. There is however a specific combat environment that has supported offensive operations and will undoubtedly do so again. This area is Central and Northern South America .

Central and Northern South America $\int_{\infty}^{4^{n}}$ vital to the future of the U.S. because of its role in the illegal flow of drugs into the U.S.. This area was the site of anti-drug operations in the 1980's and will probably support combat operations again. This area of the globe also serves as a good place to evaluate the TEISS soldier, because of the harsh climate and rugged terrain.

The TEISS system will be evaluated in a mission setting that is extremely challenging. The mission takes place in a very mountainous region, filled with river and pond obstacles and thick tropical foliage. This environment serves as an excellent place to evaluate the TEISS soldiers Line of Sight (LOS) capabilities, movement capabilities, and mission flexibility.

D. Constraints

In order to conduct an equality analysis, we were constrained in two major areas; weaponry, and tactics.

In the area of weaponry, there were a few limitations that limited the scope of the test. First, both the conventional soldier and the TEISS soldier used the same conventional weaponry (those found in today's Army platoons). This was done so that the TEISS would not benefit from the enhanced killing and incapacitating

capability of his near-future weapon, the OICW. This study is concerned with testing the effects of this advanced weapon. Second we modeled the M203 grenade launcher as an indirect fire weapon. This allowed the M203 to be used as a direct and indirect grenade firing weapon while maintaining the ability of the operator to fire the M16A2 host weapon. Because of the indirect firing capabilities of the M203 and the Janus(A) model, the M203 was able to add to the effectiveness of the mission by suppressing the enemy and ruining his visibility by using smoke rounds to obscure the path of the assaulting forces. Third, we did not use any mines, chemical weapons, or rocket propelled grenades. We believe that it is very unlikely that the guards at a cocoa processing plant would have any of these capabilities. Finally, we did not use any aviation assets for close air support or use any artillery for fire support. The stealthy hunter/killer platoon in our hypothetical scenario would not realistically have these assets.

The second area, of the analysis that involved limitations, was the use of duplicate conventional tactics. There are two primary reasons why conventional tactics were used. First, as with the near-future limitation, we are more interested in the direct substitution of the TEISS soldier into the role of the conventional soldier. By allowing TEISS to operate with different tactics, the comparison would lose its credibility. Second, no one has really developed a set of tactics for the TEISS system,

because no one really knows how many TEISS soldiers should attempt a platoon sized mission. This lack of knowledge is not only a limitation, but is also the primary question that we are trying to answer in this study.

E. Operational Concept

The TEISS soldier, when substituted in the proper proportion for a conventional infantry platoon, will be able to conduct operations in any present day environment and will be able to utilize near-future weapons and tactics to exploit the advantages inherent to the TEISS system. In addition, the proportional number of TEISS soldiers will be able to conduct a full spectrum of missions with equal or greater combat effectiveness.

II. Alternatives

A. Functional Objectives

The TEISS future infantry soldier is the enhanced version of the present-day infantry soldier. It has no degradation due to NBC environments and has enhanced communication. The TEISS soldier has greater survivability due to body armor and has enhanced accuracy and lethality. His probability of hit and kill is greater than that of the conventional infantry soldier, while the enemy's probability of kill is lower due to the body armor. We increased the probability of kill for the TEISS because he has enhanced sight and can focus on the more lethal areas of the enemy. Because of his increased accuracy, he is more lethal. We want the TEISS soldiers to be able to use weapons that the infantry soldier is unable to handle, complete missions in difficult terrain, and use enhanced tactics, such as a greater distance between the soldiers during movement.

B. Description of Alternatives

The following alternatives have been considered and evaluated in order to determine how many TEISS soldiers equal a conventional infantry platoon in lethality. The alternatives consist of the conventional infantry platoon, a Low-End TEISS, and a High-End TEISS. Each alternative is divided into three elements - the security element, the attack element, and the support element. We have three different TEISS soldiers - the TEISS leader, the TEISS M203, and the TEISS SAW. The TEISS leader carries the M16A2 rifle, while the TEISS M203 and SAW have greater accuracy and lethality than the conventional M203 and SAW. The TEISS alternatives do not have a M60 Light Machine Gun because our simulation runs showed that the M60, coupled with either the M203 or the SAW, gave the TEISS section much more firepower with just a few TEISS soldiers than the conventional infantry platoon did with thirty-four soldiers.

We built the conventional soldiers and the TEISS soldiers using Army Field Manuals and c mon sense. We used typical infantry soldiers and their weapons for the conventional infantry platoon. The weapons that the

conventional infantry platoon used were the M16A2 rifle, the 5.56mm SAW, the M203, and the M60 Light Machine Gun. Building TEISS soldiers required some more information, which we got from White Sands Missile Range, Dismounted Battle Laboratory, ARDEC, and NATICK. We enhanced certain attributes of the TEISS soldier based on the goals of the client, the conventional weapons of the infantry soldier, and common sense. A couple of the attributes that we enhanced were the accuracy and the lethality by increasing the probability of a hit and probability of a kill. The weapons that the TEISS soldiers used were the M16A2 rifle, the SAW, and the M203.

1. Conventional infantry platoon The conventional infantry platoon consists of thirty-four soldiers. The headquarters section consists of one platoon leader, one platoon sergeant, one ratello, and two M60 units, with each M60 unit consisting of two men. The three squads each have a squad leader, two team leaders, two M203s, two SAWs, and two riflemen. The security element is placed on both flanks of the assault and support elements with each security team consisting of an M203 and a SAW. The support element consists of the two M60 units, the platoon sergeant, and two M203s. Finally, the attack element consists of the platoon leader, RTO, three squad leaders, six team leaders, six riflemen, two M203s, and four SAWs. This turns out to be one full squad, one squad minus

the M203s, and one squad minus the M203s and SAWs attacking the drug processing plant.

2. Low-End TEISS

The Low-End TEISS alternative only has seven soldiers. There is a TEISS leader, four SAWs, and two M203s. Within this section, the assault force consists of the TEISS leader, one SAW, and one M203, while the support element has one SAW and one M203 and the security on both flanks has one SAW each. The Low-End TEISS has a small enough number of TEISS soldiers in order for them to take longer to raid and kill all the enemy than the conventional infantry platoon. We would hope to see significantly lower responses from our MOEs measured in the simulation runs.

3. High-End TEISS

The High-End TEISS alternative operates with twenty TEISS soldiers so that it would take less time than the base case to complete the mission. There are four soldiers in the security element, eight in the support element, and eight in the assault force. One SAW and one M203 are in each security element; four SAWs, three M203s, and one TEISS leader are in support as well as the attack force. Opposite from the Low-End TEISS alternative, we would hope to see significantly higher responses from our MOEs measured in the simulation runs.

We assumed a linear relationship between the Low-End and High-End TEISS alternatives based on the number of soldiers versus the time it takes to raid and kill all of

the enemy. The independent variable is the number of TEISS soldiers, whereas the dependent variable is the MCE. The time it takes to kill all the enemy and the survival percentage varies as the number of TEISS soldiers is varied. Our graphs have the number of soldiers along the x-axis and the MOE along the y-axis From this linear relationship, we could determine how many TEISS soldiers would equal the conventional infantry platoon in lethality, which is thirteen TEISS soldiers.

III. Analysis of Alternatives

A. Models

In order to evaluate the TEISS soldier alternatives, we needed to model the use of the soldiers in a drug raid. This was done by using the Janus(A) computer simulation system. This system has many features that made it a good model with which to conduct our evaluation. First, Janus allows us to recreate the terrain of a Latin American country where drug lords might operate, which allowed us to evaluate the TEISS soldiers in Latin America terrain. Second, Janus easily allows us to use the TEISS soldier in a Monte-Carlo simulation scenario and evaluate its effectiveness over a series of <u>eight</u> runs for each alternative, where we would then measure the mean response of each MOE and estimate Confidence Intervals at a specific significance level. Janus makes this a very easy and rapid task through Auto Janus and because of its ability to speed

up time. This ability allowed us to conduct multiple runs with different random number seeds. The randomness, coupled with multiple runs, provided enough data to compare the TEISS soldier alternatives to a conventional present-day infantry platoon.

B. Measures of Effectiveness

In order to evaluate the effectiveness of the two TEISS soldier alternatives, it was important to select measures of effectiveness (MOE) that measured the systems ability to satisfy our functional objectives and mission needs. Keeping this in mind, we picked the following MOEs:

1. Mission time

2. Survival percentage

We had other MOEs as well; however, statistically they were unusable at a specified significance level.

1) Mission Time

Definition of the Measure: Mission time is the elapsed time from the first shots until all the enemy is killed. Input data are the moment of the first shot and the moment the last enemy is killed.

Dimension of the Measure: Interval - elapsed time in term of minutes and seconds.

Limits of the Range of the Measure: The output may assume any positive value.

Rationale for the Measure: It is a direct measure of the interactive lethality of all the weapon systems. We

determined that the faster the element killed all of the enemy, the greater the lethality the element possessed. Decisional Relevance of the Measure: This measure can be used to compare mission times to each other or to a standard. This is important because it allows us to see what number of TEISS soldiers equal the lethality of a conventional platoon.

Associated Measures:

Probability of Hit

Probability of Kill

Accuracy of Rounds

Lethality of Rounds

2) Survival Percentage

Definition of Measure: Survival percentage is the converse of kill percentage. Kill percentage is the number of TEISS killed divided by the initial number of TEISS soldiers. Input is number of TEISS killed per initial number of TEISS. Dimension of the Measure: Ratio - a rate in terms of friendly survivors per mission. Unit of measure of output is survivors.

Limits on the Range of the Measure: The measure must include one mission, and as the numerator gets smaller the measure gets better. The output may assume any positive value up to one.

Rationale for the Measure: This measure addresses the element's offensive capability. Survival percentage shows that a good defense is a good offense. This is beneficial because we do not want to have a smaller survival percentage of TEISS soldiers than the conventional platoon. Basically, this means that we want fewer losses for the TEISS soldiers than the conventional soldiers. Since both TEISS alternatives have fewer soldiers than the conventional infantry platoon, they must have fewer losses in order to have an equal or higher survival percentage. For example, if the High-End TEISS alternative and the conventional platoon both suffer two losses, the two TEISS losses out of twenty TEISS soldiers are more detrimental because the survival percentage is lower than the two losses out of thirty-four conventional soldiers.

Decisional Relevance of the Measure: We want a smaller number of soldiers with an equal or higher survival percentage. Survival percentage is an indicator of enhanced survivability. If fewer soldiers are killed, the firepower is greater for a longer period of time.

Associated Measures:

Kill percentage

Mission time

C. Trade-Off Analysis

Now that we have a step platform of thirteen TEISS soldiers, we can perform trade-off analysis on three other areas of interest. These areas are weapons, environmental conditions and terrain, and tactics. For analysis of other weapons, we can use the Objective Infantry Combat Weapon

(OICW) and the track-box sight. We can test the TEISS soldiers in different environments for analysis of environmental conditions. We can also change the mission or change the terrain in which the TEISS soldier operates, such as analyzing how well the TEISS soldiers perform an ambush. In analyzing tactics, we can use new tactics to exploit the advantages that TEISS soldiers possess.

IV. Summary

After building the TEISS soldier, we conducted simulation runs on Janus (A). From the results of the simulation runs for the TEISS soldiers, we were able to determine the number of TEISS soldiers that equal the lethality of a conventional infantry platoon. We did this based on the linear relationship we drew from the two TEISS Thirteen TEISS soldiers equal the lethality alternatives. of the conventional platoon. Mission time gave us an equal lethality with 12.52 soldiers, while survival percentage gave us equal lethality with 13.11 TEISS soldiers. We did not weight either MOE, but we decided to round to thirteen TEISS soldiers in order to have equal lethality of a conventional platoon. We rounded to thirteen soldiers for a couple of reasons. First, we felt that since thirteen soldiers gave us more firepower than twelve soldiers, it would be safer for the soldiers against the enemy. Also, thirteen soldiers is more conservative. Second, thirteen soldiers gives us an odd number, which allows for two even-

numbered sections along with the leader. The even sections are also more in line with Army doctrine.

Recommendation

For any operations or missions that require the platoon-sized element, we recommend that thirteen TEISS soldiers take their place. The TEISS soldiers have enhanced capabilities, such as communications, body armor, and greater accuracy and lethality because of higher probabilities of a hit and a kill. This gives them a distinct advantage over conventional infantry soldiers.

Annex A

Scenario Script

I. A New World Order

As the Army moves into the 21st Century, it moves into an old and yet surprisingly new world. In the 21st Century the Army will bear a striking resemblance to the frontier armies of the post Civil War era. The force will be reduced to extremely low levels, yet it will still be responsible for conducting successful operations over huge geographic regions. The defeat of the South, like the crumbling of the Soviet threat, forced the army to focus on activities other than conducting and training for large scale warfare.

In the post civil war era, the army was responsible for preserving civil order in the South, while simultaneously fighting an unconventional war against the Indian nations west of the Mississippi River. The challenges for the future army will be no smaller. In the 21st Century, the army will be called on to deploy across the globe to preserve international order or conduct humanitarian missions, as in Somalia, while simultaneously being asked to conduct low intensity or unconventional types of warfare against novel enemies, such as the drug cartel forces of Central America. The mission challenges of the future will undoubtedly place great stress on the operational capabilities of the Army. More will have to be done with less.

II. A New World Infantry

Doing more with less will hit home hardest at the lowest levels of the Army. In particular, the responsibility for conducting successful operations will fall onto the shoulders of the light infantry platoon. No other current Army unit has the combination of flexibility and strength to conduct the potential missions of the future.

Based on the perceived future of the Army, the mission focus of the light infantry platoon should shift also. Training and preparation should center on being a "jack of all trades" force. A force equally capable of fighting low intensity or unconventional wars, and providing humanitarian aid or acting as international policemen. Analysis of the possible future missions of the infantry platoon, shows that some missions are inherently more dangerous than others. These dangerous missions, such as fighting low intensity or unconventional wars, require more attention than others due to the elevated risk of death associated with combat. This increased attention, should come in the form of the development of realistic scenarios that meet these future combat situations. In light of the U.S.'s increasing commitment to stop the flow of drugs into the country, one possible mission brings itself to our attention. The army will undoubtedly be tasked to help reduce the flow of drugs into the U.S.. The successful accomplishment of this mission will fall on the shoulders of the light infantry platoon.

III. A Old World Mission

In 1986, the U.S. Army conducted Operation Blast Furnace, its first offensive action to curb the flow of drugs into the U.S.¹ Operation Blast Furnace, which targeted cocaine processing labs in Bolivia, involved 160 soldiers of the 193rd. Infantry Brigade (Light) and six UH-60 Black Hawk helicopters.² An intelligence preparation of the battlefield (IPB), conducted by the Army, identified "the coca base/cocaine hydrochloric acid (HCL) laboratory as the critical attack node" of the operation.³ In the operation, the infantrymen were responsible for attacking processing labs, subduing any resistance, capturing any "narcotrafficers" present, and destroying any means of cocaine production present at the objective.⁴ As in the past, the future light infantryman will undoubtedly be called on again to conduct similar combat operations. In the future however, there are two new major concerns. First the narcotrafficers are more heavily armed now than in 1986,

and the second second

¹Jaime Malamud-Goti, Smoke and Mirrors, (Boulder: Westview Press, 1992) 30. ²Jaime Malamud-Goti, Smoke and Mirrors, (Boulder: Westview Press, 1992) 30. ³LTC John T. Fishel. "Developing a Drug War Strategy, Lessons From Operation Blast Furnace." Military Review 71 no 6 (1991): 62. ⁴LTC John T. Fishel, "Developing a Drug War Strategy, Lessons From Operation Blast Furnace," Military Review 71 no 6 (1991): 62.

and the types of raids that 160 men conducted in 1986 will be tasked out to the thirty four-men of the light infantry platoon due to the diminished size of the army.

IV. A Typical New World Mission

In order to be prepared to conduct missions similar to those in Operation Blast Furnace, it is important to understand the operational requirements and tactics involved in raiding a Central American drug processing lab. The rest of this paper will chronicle the flow events that occur as a typical light infantry platoon attempts a mission of this nature.

Before discussing the operation itself, it is necessary to know what resources the typical light infantry platoon can employ in an attack. In its present configuration, the light infantry platoon consists of 34 soldiers divided into a seven man headquarters section and three nine man squads. The headquarters section is composed of the Platoon Leader, Platoon Sergeant, the RATELO, two M-60 machine gunners, and two M-60 assistant gunners. Each member of the section carries the M16A2 rifle except for the two M-60 gunners. Each of the nine man squads is comprised of a Squad Leader, and two team leaders who are armed with M16s, two squad automatic machine gunners armed with SAW light machine guns, two grenadiers armed with M16s and M203 40mm grenade launchers, and two riflemen armed with M16A2 rifles.

Individuals may also carry an assortment of hand grenades, light antitank weapons, demolition charges, and 9mm Barretta pistols. The platoon communicates to its higher command utilizing an AN/PRC-77 radio, which is operated by the RATELO, and the Platoon Leader communicates to his Platoon Sergeant and Squad Leaders via AN/PRC-126 radios. The platoon, may also be equipped with up to two 60mm mortars for indirect fire support, if the mission demands it. In addition to the weaponry and communications gear, the platoon carries its own food, water, and medical supplies.

Now that the force has been identified, it is now necessary to decide how the light infantry platoon will conduct its attack against the cocaine lab. The tactic of choice for this type of mission is the same tactic that was employed in Operation Blast Furnace: the raid. This tactic can be seen as appropriate for many reasons. According to the Army, the raid is "an attack that includes a planned withdrawal from the objective."⁵ Since the drug processing facility has no real tactical advantage, it is not desirable to occupy it after destroying its ability to process cocaine. In addition, raids are "done to destroy or capture enemy personnel or equipment."⁶ This statement fits the mission at hand perfectly if the enemy is considered to be

⁵Field Manual 7-70, <u>Light Infantry Platoon/Squad</u>, (Washington: Department of the Army, 1986) 5-27. ⁶Field Manual 7-70, <u>Light Infantry Platoon/Squad</u>, (Washington: Department of the Army, 1986) 5-27.

narcotrafficers, and their equipment is defined as cocaine processing paraphernalia.

Now, all that is necessary to set our platoon in motion is a target. Target identification, the location of suspected or known processing plants, would be conducted by higher headquarters using a wide array of intelligence gathering means. National resources, such as satellite intelligence, or high-altitude aerial photography can be used in conjunction with local information gathered by native intelligence organizations. Once these sources identify a target that is suitable for our platoon to engage, intelligence will be given to the Platoon Leader, and the mission will be launched. Suitable targets can include processing plants with fewer than ten permanent structures and armed guard forces of fewer than ten to twelve men. To send a platoon against a processing plant with more structures or armed defenders, would place the platoon in great danger due to their lack of numerical superiority and their degraded ability to control the situation.⁷ Assuming that a suitable target has been selected, and the intelligence has been provided to the platoon, the operation can now be launched.

The raid itself will follow a five phase format.⁸ The first phase occurs when the platoon infiltrates the

⁷Interview with CPT Jeffrey Terhune, Infantry Officer, 28 Jan. 1993.

⁸Field Manual 7-85, <u>Ranger Unit Operations</u>, (Washington: Department of the Army, 1987) 5-2.

Infiltration may take any of a number of objective area. forms, such as by foot, by air-assault, by airborne insertion, or by amphibious insertion.⁹ Depending on the situation, this movement will most likely be conducted at night to exploit the low-light vision and thermal sensing capability that the Army possesses.¹⁰ This phase ends when the platoon reaches a pre-determined assembly area in the general area of the processing plant. Movement is then initiated to an objective rally point. This rally point is located approximately two to four kilometers from the processing plant. It will also serve as a place for the platoon to link up after the raid has taken place.¹¹ At this time a four man reconnaissance element will be sent out to locate the cocaine lab. Once it has been found, two soldiers from the team will keep eyes on the objective, while the other two will return to inform the Platoon Leader of their discovery. The Platoon Leader and the Squad leaders will then conduct a leaders recon of the objective, observing it from different vantage points to ensure that the target is consistent with the pre-mission intelligence. If it is, the leader's recon party moves back to the objective rally point and begins phase two.

<u>a ngang sa ana panangan kan ang nang kanang ka</u>

⁹Field Manual 7-85, <u>Ranger Unit Operations</u>, (Washington: Department of the Army, 1987) 4-6 - 4-23. ¹⁰Interview with CPT Jeffrey Terhune, Infantry Officer, 28 Jan. 1993. ¹¹Interview with 1LT Claude E. House, Infantry Officer, 26 Jan. 1993.

Phase two consists of sealing off the objective from possible reinforcement or support. The sealing force can consist of up to four soldiers from a squad that has been designated as the support squad.¹² They will observe and cover the likely approach routes to the objective. Next, the Platoon leader will then place his key weapons, the M-60 machine guns, orienting their fires towards the objective. These key weapons, taken from the HQ section of the platoon, will be placed in positions with the remainder of the support squad. Along with the M-60s, the rest of the support squad will orient its fires on the objective to support the assaulting element of the raid.¹³ After placing the key weapons, the platoon leader will join the assault element of the raid.¹⁴ This element will consist of one or two rifle squads depending on the size of the processing plant. The assault element will take up pre-raid positions in the nearest covered and concealed positions outside of the objective.¹⁵ The assault then moves into the third phase.

The third phase is the raid phase itself. On a designated signal, the assault party will rapidly advance on the objective while the support squad and the M-60s fire in support of the movement. The attack continues until the "enemy force at or near the objective is overcome by

12Ibid. 13Ibid. 14Ibid. 15Ibid.

surprise and violent attack, using all available firepower for shock effect."¹⁶ Phases four and five are then rapidly carried out. Phase four involves the rapid destruction of the facility before any reinforcing forces can reach the processing plant. Phase five is initiated as the platoon consolidates at the objective rally point and "quickly withdraws from the objective" with prisoners and other important seized items.¹⁷ The completion of the fifth phase signifies the end and a new beginning for the light infantry platoon. After conducting the mission, the unit will discuss its lessons learned, and prepare to be called on again to carry out another mission.

nie werden der der eine Besternen under Besternen der Besternen Besternen er einen diese Sternen um erste Beste

V. The New New World Order

The anti-drug mission discussed in this paper is perhaps the most fitting mission to discuss. It is by far the most dangerous and risky type of mission that a light infantry platoon can realistically attempt. It stretches the limits of the platoon's manpower, firepower, and communications system. This mission is however, only one small task that the light infantry platoon will have to accomplish in an era of "more with less." And as the new world order becomes newer, the missions will undoubtedly

16Field Manual 7-85, <u>Ranger Unit Operations</u>, (Washington: Department of the Army, 1987) 5-2. 17Field Manual 7-85, <u>Ranger Unit Operations</u>, (Washington: Department of the Army, 1987) 5-2.

become more difficult and the resources with which to complete them will become more scarce.

Π

.-

Bibliography

al e de la deservicie en la factura de la contraction de la contraction de la contraction de la contraction de

Fishel, John T. LTC. "Developing a Drug War Strategy, Lessons From Operation Blast Furnace." <u>Military Review</u> 71 no 6 (1991): 61-69.

- Field Manual 7-70. Light Infantry Platoon/Squad. Washington: Department of the Army, 1986.
- Field Manual 7-85. <u>Ranger Unit Operations</u>. Washington: Department of the Army, 1987.

House, Claude E. 1LT. Interview. 26 Jan. 1993.

Malamud-Goti, Jaime. <u>Smoke and Mirrors.</u> Boulder: Westview Press, 1992.

Terhune, Jeffrey W. CPT. Interview. 28 Jan. 1993.

ŧ

31

CSG output

	Janus C	Commands:											
	CC CC												
			Systems							_			
			Max R	Max	Wpr			Crew	Elen	-	hem	Gra	Host
	S_2 stem	System	Speed		i Rng		ght	Size	Spac		mit	Sym	Cap
	Number	Name	Km/Hr	Km	Km		(m)		(m)		'ctr		
	5	Teiss_203	6.0	4.0	.3		5.0	1	1.		1.0	24	*
	244	Teiss_LDR	6.0	4.0	.3		5.0	1	1.		1.0	21	*
0	245	Teiss_SAW	6.0	4.0	1	6	5.0	1	1.		1.0	22	*
04/22/93 16:10	246	Teiss_M60	6.0	4.0	1.1	L é	5.0	1	1.		1.0	23	*
3 1	6	CSOL_203	6.0	2.5	.3		2.0	1	1.	. 0	1.0	25	*
2719	247	CSOL_LDR	6.0	2.5	.3	2	2.0	1	1.	. 0	1.0	20	*
11-0	248	CSOL_SAW	6.0	2.5	1	2	2.0	1	1.	. 0	1.0	84	*
	249	CSOL_M60	6.0	2.5	1.1	Lí	2.0	1	1.	. 0	1.0	18	*
expense for x36123b1	250	CSOL_RFL	6.0	2.5	.3		2.0	1	1.	. 0	1.0	19	*
c36.													
or .			•										
251	Janus (Commands:											
cher	SY CO	C FF											
	SY	STEM FUNC	FIONAL C	HARAC	TERIS	STICS							
nen	System	System	Laser	Mine	Engr	Fire		Logis				Chem	
แมล	Number	Name	Desig	Disp	Type	Cat	Type	e Type	Type	Type	e Disp	o Det	
Printed at Government	5	Teiss_203	0	0	0	3	0	2	3	0	0	0	1
l al	244	Teiss_LDR	0	0	0	1	0	2	3	0	0	0	1
nlea	245	Teiss_SAW	0	0	0	1	0	2	3	0	0	0	1
Pri	246	Teiss_M60	0	0	0	1	0	2	3	0	0	0	1
		CSOL_203	0	0	0	1	0	1	3	0	0	0	1
	7	CSOL_LDR	0	0	0	1	0	1	3	0	0	0	1
	18	CSOL_SAW	0	0	0	1	0	1	3	0	0	0	1
	249	CSOL_M60	0	0	0	1	0	1	3	0	0	0	1
	250	CSOL_RFL	0	0	0	1	0	1	3	0	0	0	1
	Janus	Commands:											
	SY	cc vv											
		S	ystems V	leight	:s & '	Volum	es						
			- No	ormal	(fue)	1&amm	0) A	ddition	nal Ca	apaci	lty		
	System	Sys	tem We	eight	V	olume	١	Weight	7	Volur	ne		
	Number	Nam	e ()	lbs)	((CuFt)		(lbs)		(CuFt	:)		
	5	Teiss	_203 2	270.0		4		40.0		3			
	244	Teiss		260.0		4		50.0		4			
	245	Teiss		270.0		4		40.0		3			
	246	Teiss		280.0		4		30.0		3			
	6	CSOL_		260.0		4		30.0		3			
	247	CSOL_		250.0		4		40.0		3			
	248	CSOL_		260.0		4		30.0		3			
	249	CSOL_		270.0		4		20.0		2			
	242	0001_				-		40 0		2			

250

_ _ _ _ _ _ _ _

CSOL_RFL

250.0

4

40.0

ne este de la substance esta en electrica de la compañía de la compañía de la compañía de la compañía de la com

Janus Commands:

SY	СС	DD	
		DETECTION DATA	
		Minimum	•

	DETECT	ION DATA					
		Minimum 🕚	Detectio	on			
System	System	Dimension	Contrast	Class	Thermal	Sensors	
Number	Name	[meters]	[Exposed]	[Defilade]	Primary	Secondary	
5	Teiss_203	0.20	3.0	3.0	4	2	
		0.20	3.0	3.0	4		
245			3.0	3.0	4		•
			3.0	3.0	4		
6					1		
247					1		
					· 1		
					1		
250	CSOL_RFL	0.20	5.0	6.0	1	2	
Janus Comr SY CC	nands: MM						
Syste	em Vulnerabi						
			-		-		
-	-						
				. (=		
	_						
	—						
250 	CSOL_RFL	0.1000	0.3000		0.5000		-
Janus Comm	ands:						
SY CC	PP						
	Systems POL	Data					
			Tank •	-	tion Rate	Fu	
	System	Fuel	Size	(gal	/hr)	Carry	ing
System	-						
Number	Name	Type	(gal)		ry Moving	f Capac	ity
Number 5 Tei	Name ss_203	2	33	0.5	6.0	f Capac	ity
Number 5 Tei 244 Tei	Name ss_203 ss_LDR	2 2	33 36	0.5 0.5	6.0 6.0	f Capac	ity
Number 5 Tei 244 Tei 245 Tei	Name ss_203 ss_LDR ss_SAW	2 2 2	33 36 33	0.5 0.5 0.5	6.0 6.0 6.0	g Capac	ity
Number 5 Tei 244 Tei 245 Tei 246 Tei	Name ss_203 ss_LDR ss_SAW ss_M60	2 2 2 2 2	33 36 33 33	0.5 0.5 0.5 0.5	6.0 6.0 6.0 6.0	(Capac	ity
Number 5 Tei 244 Tei 245 Tei 246 Tei 6 CSO	Name ss_203 ss_LDR ss_SAW ss_M60 L_203	2 2 2 2 *	33 36 33 33 *	0.5 0.5 0.5 0.5 *	6.0 6.0 6.0 6.0	(Capac	ity
Number 5 Tei 244 Tei 245 Tei 246 Tei 6 CSO 247 CSO	Name ss_203 ss_LDR ss_SAW ss_M60 L_203 L_LDR	2 2 2 2 *	33 36 33 33 *	0.5 0.5 0.5 *	6.0 6.0 6.0 6.0 *	(Capac	ity
Number 5 Tei 244 Tei 245 Tei 246 Tei 6 CSO 247 CSO 248 CSO	Name ss_203 ss_LDR ss_SAW ss_M60 L_203	2 2 2 2 *	33 36 33 33 *	0.5 0.5 0.5 0.5 *	6.0 6.0 6.0 6.0	(Capac	ity
	Number 5 244 245 246 6 247 248 249 250 Janus Comr SY CC System Number 5 244 245 246 - 247 248 249 250 Janus Comr System Number 5 244 245 246 - - - - - - - - - - - - -	Number Name 5 Teiss_203 244 Teiss_LDR 245 Teiss_SAW 246 Teiss_M60 6 CSOL_203 247 CSOL_LDR 248 CSOL_SAW 249 CSOL_M60 250 CSOL_RFL Janus Commands: SY CC MM System Vulnerabi System System Number Name 5 Teiss_203 244 Teiss_LDR 245 Teiss_SAW 246 Teiss_M60 CSOL_203 247 CSOL_LDR 248 CSOL_SAW 249 CSOL_M60 250 CSOL_RFL Janus Commands: SY CC PP	System System Dimension Number Name [meters] 5 Teiss_203 0.20 244 Teiss_LDR 0.20 245 Teiss_SAW 0.20 246 Teiss_SAW 0.20 246 Teiss_M60 0.20 247 CSOL_LDR 0.20 248 CSOL_SAW 0.20 249 CSOL_M60 0.20 250 CSOL_RFL 0.20 Janus Commands: System Width System System Width Number Name (m) 5 Teiss_203 0.1000 244 Teiss_LDR 0.1000 244 Teiss_SAW 0.1000 244 Teiss_M60 0.1000 245 Teiss_SAW 0.1000 246 Teiss_M60 0.1000 246 Teiss_AW 0.1000 248 CSOL_SAW 0.1000 249 CSOL_M60 <	System System Dimension Contrast Number Name [meters] [Exposed] 5 Teiss_203 0.20 3.0 244 Teiss_LDR 0.20 3.0 245 Teiss_SAW 0.20 3.0 246 Teiss_M60 0.20 3.0 6 CSOL_203 0.20 5.0 247 CSOL_LDR 0.20 5.0 248 CSOL_SAW 0.20 5.0 249 CSOL_M60 0.20 5.0 250 CSOL_RFL 0.20 5.0 Janus Commands: SY CC MM System Vulnerability to Mines Track Belly System System Width Width Number Name (m) (m) 3000 244 Teiss_LDR 0.1000 0.3000 246 Teiss_M60 0.1000 0.3000 246 Teiss_M60 0.100	System System Dimension Contrast Class Number Name [meters] [Exposed] [Defilade] 5 Teiss_203 0.20 3.0 3.0 244 Teiss_LDR 0.20 3.0 3.0 245 Teiss_SAW 0.20 3.0 3.0 246 Teiss_M60 0.20 3.0 3.0 6 CSOL_203 0.20 5.0 6.0 247 CSOL_LDR 0.20 5.0 6.0 248 CSOL_SAW 0.20 5.0 6.0 249 CSOL_M60 0.20 5.0 6.0 250 CSOL_RFL 0.20 5.0 6.0 Janus Commands: SY CC MM Midth Width Wi Number Name (m) (m) (m) System System Width Width Wi Number Name (m) (m) (m)	System System Dimension Contrast Class Thermal Number Name [meters] [Exposed] [Defilade] Primary 5 Teiss_LDR 0.20 3.0 3.0 4 244 Teiss_LDR 0.20 3.0 3.0 4 245 Teiss_SAW 0.20 3.0 3.0 4 246 Teiss_M60 0.20 3.0 3.0 4 6 CSOL_203 0.20 5.0 6.0 1 247 CSOL_LDR 0.20 5.0 6.0 1 248 CSOL_SAW 0.20 5.0 6.0 1 250 CSOL_M60 0.20 5.0 6.0 1 250 CSOL_RFL 0.20 5.0 6.0 1 248 CSOL_RFL 0.20 5.0 6.0 1 3nus Commands: System Width Width Nidth Number Name (m)<	System System Dimension Contrast Class Thermal Sensors Number Name [meters] [Exposed] [Defilade] Primary Secondary 5 Teiss_203 0.20 3.0 3.0 4 2 244 Teiss_LDR 0.20 3.0 3.0 4 2 245 Teiss_SAW 0.20 3.0 3.0 4 2 246 Teiss_M60 0.20 3.0 3.0 4 2 247 CSOL_203 0.20 5.0 6.0 1 2 247 CSOL_M60 0.20 5.0 6.0 1 2 249 CSOL_M60 0.20 5.0 6.0 1 2 Janus Commands: SY CC MM Mdth Width Niath Number Name (m) (m) (m) 1 2 System Vulnerability to Mines Track Belly Total Magnetic

f

250

CSOL_RFL

	кк сс	· · · · ·				
		Crew Membe				
					m damage category.	
stem	-				Catastophic	
umber				Firepo		
5		03 0.00	0.00	0.00	1.00	
244	Teiss_L		0.00		1.00	
245	Teiss_S				1.00	
246	Teiss_M			0.00	1.00	
6	CSOL_LE	0.00 R	0.00	0.00	1.00	
247	CSOL_LE	0.00 R	0.00	0.00	1.00	
248 -	CSOL_SA	.w 0.00	0.00	0.00	1.00	
249	CSOL_M6	0.00	0.00	0.00	1.00	
250	CSOL_RF	L 0.00	0.00	0.00	1.00	
anus Y		ms - Kill C				
Y lote:	KK SY Syste Enter percen	t of kills	which fall	into each d	amage category.	
Y lote: Entri	KK SY Syste Enter percen es must sum	t of kills to 100 perc	which fall ent for eac	into each d h system)		
Y ote: Entri ystem	KK SY Syste Enter percen es must sum System	t of kills to 100 perc Mobility	which fall ent for eac Firepower	into each d h system) Mobil. &	Catastrophic	
Y Ote: Entri ystem umber	KK SY Syste Enter percen es must sum System Name	t of kills to 100 perc Mobility Only	which fall ent for eac Firepower Only	into each d h system) Mobil. &	Catastrophic	
Y Ote: Entri Ystem Jumber 5	KK SY Syste Enter percen es must sum System Name Teiss_203	t of kills to 100 perc Mobility Only 0.00	which fall ent for eac Firepower Only 0.00	into each d h system) Mobil. & Firepower 0.00	Catastrophic Kill 1.00	
Y Ote: Entri ystem umber 5 244	KK SY Syste Enter percen es must sum System Name Teiss_203 Teiss_LDR	t of kills to 100 perc Mobility Only 0.00 0.00	which fall ent for eac Firepower Only 0.00 0.00	into each d h system) Mobil. & Firepower 0.00	Catastrophic Kill 1.00 1.00	
Y ote: Entri ystem umber 5 244 245	KK SY Syste Enter percen es must sum System Name Teiss_203 Teiss_LDR Teiss_SAW	t of kills to 100 perc Mobility Only 0.00 0.00 0.00	which fall ent for eac Firepower Only 0.00 0.00 0.00	into each d h system) Mobil. & Firepower 0.00 0.00 0.00	Catastrophic Kill 1.00 1.00 1.00	
Y ote: Entri ystem umber 5 244 245	KK SY Syste Enter percen es must sum System Name Teiss_203 Teiss_LDR Teiss_SAW Teiss_M60	t of kills to 100 perc Mobility 0.00 0.00 0.00 0.00 0.00	which fall ent for eac Firepower Only 0.00 0.00 0.00 0.00	into each d h system) Mobil. & Firepower 0.00 0.00 0.00	Catastrophic Kill 1.00 1.00 1.00 1.00	
Y ote: Entri ystem umber 5 244 245	KK SY Syste Enter percen es must sum System Name Teiss_203 Teiss_LDR Teiss_SAW Teiss_M60 CSOL_203	t of kills to 100 perc Mobility Only 0.00 0.00 0.00 0.00 0.00 0.00	which fall ent for eac Firepower Only 0.00 0.00 0.00 0.00	into each d h system) Mobil. & Firepower 0.00 0.00 0.00 0.00	Catastrophic Kill 1.00 1.00 1.00 1.00 1.00	
Y Entri ystem jumber 5 244 245 246	KK SY Syste Enter percen es must sum System Name Teiss_203 Teiss_LDR Teiss_SAW Teiss_M60 CSOL_203 CSOL_LDR	t of kills to 100 perc Mobility 0.00 0.00 0.00 0.00 0.00 0.00 0.00	which fall ent for eac Firepower Only 0.00 0.00 0.00 0.00 0.00	into each d h system) Mobil. & Firepower 0.00 0.00 0.00 0.00 0.00 0.00	Catastrophic Kill 1.00 1.00 1.00 1.00 1.00	
Y fote: Entri ystem umber 5 244 245 246 7 18	KK SY Syste Enter percen es must sum Name Teiss_203 Teiss_LDR Teiss_SAW Teiss_M60 CSOL_203 CSOL_LDR CSOL_LDR	t of kills to 100 perc Mobility 0.00 0.00 0.00 0.00 0.00 0.00 0.00	which fall ent for eac Firepower Only 0.00 0.00 0.00 0.00 0.00 0.00	into each d h system) Mobil. & Firepower 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Catastrophic Kill 1.00 1.00 1.00 1.00 1.00 1.00	

ander en ser en ser

Weapon/Round Characteristic

-						
	Lay	Aim	Reload	Rounds/	Trigger	Round
Wpn	Time	Time	Time	Trigger	Pulls/	Speed
Name	[sec]	[sec]	[sec]	Pull	Reload	[km/sec]
M203T	2.0	3.5	3.5	1.0	1.0	0.1
M203	3.0	4.0	4.0	1.0	1.0	0.1
5.56Rfl	3.5	2.5	3.5	3.0	7.0	0.6
5.56SAW	4.0	2.0	4.5	6.0	33.0	0.975
7.62Lmg	4.0	2.0	5.0	6.0	40.0	0.875
M16A2T	3.0	2.0	3.0	3.0	20.0	0.6
SAWT	3.5	1.5	4.0	6.0	33.0	0.975
MSOT	3.5	1.5	4.5	6.0	40.0	0.875
9mm	2.0	1.0	2.0	1.0	11.0	0.35
9mmT	1.5	0.5	1.5	1.0	11.0	0.35
OIW	3.0	2.0	10.0	1.0	6.0	0.09
	Name M203T M203 5.56Rfl 5.56SAW 7.62Lmg M16A2T SAWT M60T 9mm 9mmT	Wpn Time Name [sec] M203T 2.0 M203 3.0 5.56Rfl 3.5 5.56SAW 4.0 7.62Lmg 4.0 M16A2T 3.0 SAWT 3.5 9mm 2.0 9mmT 1.5	WpnTimeTimeName[sec][sec]M203T2.03.5M2033.04.05.56Rfl3.52.55.56SAW4.02.07.62Lmg4.02.0M16A2T3.02.0SAWT3.51.5M50T3.51.59mm2.01.09mmT1.50.5	WpnTimeTimeTimeName[sec][sec][sec]M203T2.03.53.5M2033.04.04.05.56Rfl3.52.53.55.56SAW4.02.04.57.62Lmg4.02.05.0M16A2T3.02.03.0SAWT3.51.54.0M60T3.51.54.59mm2.01.02.09mmT1.50.51.5	WpnTimeTimeTimeTimeTriggerName[sec][sec][sec]PullM203T2.03.53.51.0M2033.04.04.01.05.56Rfl3.52.53.53.05.56SAW4.02.04.56.07.62Lmg4.02.05.06.0M16A2T3.02.03.03.0SAWT3.51.54.06.0M60T3.51.54.56.09mm2.01.02.01.09mmT1.50.51.51.0	WpnTimeTimeTimeTriggerPulls/Name[sec][sec][sec]PullReloadM203T2.03.53.51.01.0M2033.04.04.01.01.05.56Rfl3.52.53.53.07.05.56SAW4.02.04.56.033.07.62Lmg4.02.05.06.040.0M16A2T3.02.03.03.020.0SAWT3.51.54.06.033.0M60T3.51.54.56.040.09mm2.01.02.01.011.09mmT1.50.51.51.011.0

Janus Comm	ands SI V	N W			
Maanang	Ordnance for	r blug system	number	5	
-	d Number	- wide system	. manmer		Rel Wpn/Ord to use
		Man (Ond	Basic	-	if Ammo Expended
(elative	Absolute	wpn/ord	Basic		
		Name		(Minutes)	
1	5	M203T	36	2	2
2	72	M16A2T	150	2	1-
Janus Comm	ands SY V	W			
Weapons /	' Ordnance for	blue system	number	6	
-	d Number	-			Rel Wpn/Ord to use
	Absolute	Wpn/Ord	Basic	-	if Ammo Expended
	(1-250)	Namo	Load	(Minutes)	(1-15)
1	5.	M203T	36	2	2
. 2	51	5.56Rfl	150	2	1
Janus Comm	ands SY V	W			
					· ·
Weapons /	Ordnance for	blue system	number	244	
-	d Number	_			Rel Wpn/Ord to use
-	Absolute	Wnn /Ord	Basic		if Ammo Expended
					(1-15)
1		M16A2T		2	2
-	77		55	2	1
3	142	WIO	66	2	*
Woonong /	Ordnance for		number	245	
-	d Number	. Dide system	number		Rel Wpn/Ord to use
-			Deeie		
					if Ammo Expended
	(1-250)			(Minutes)	(1-15)
1	73	SAWT	600	2	*
Weapons /	Ordnance for	blue system	number	246	
Wpn/Or	-1 NT1				
-	a Number			Upload	Rel Wpn/Ord to use
Relative	Absolute	Wpn/Ord	Basic	Upload Time	_
	Absolute		Basic Load	Time	if Ammo Expended
(1-15)	Absolute (1-250)	Name	Load	Time (Minutes)	if Ammo Expended (1-15)
(1-15) 1	Absolute (1-250) 74	Name M60T	Load 900	Time (Minutes) 2	if Ammo Expended
(1-15)	Absolute (1-250)	Name	Load	Time (Minutes)	if Ammo Expended (1-15)
(1-15) 1 2	Absolute (1-250) 74 77	Name M60T 9mmT	Load 900 55	Time (Minutes) 2 2	if Ammo Expended (1-15)
(1-15) 1 2 Weapons /	Absolute (1-250) 74 77 Ordnance for	Name M60T 9mmT	Load 900 55	Time (Minutes) 2 2 247	if Ammo Expended (1-15) 2 *
(1-15) 1 2 Weapons / Wpn/Or	Absolute (1-250) 74 77 Ordnance for d Number	Name M60T 9mmT blue system	Load 900 55 number	Time (Minutes) 2 2 247 Upload	if Ammo Expended (1-15) 2 * Rel Wpn/Ord to use
(1-15) 1 2 Weapons / Wpn/Or Relative	Absolute (1-250) 74 77 Ordnance for d Number Absolute	Name M60T 9mmT blue system Wpn/Ord	Load 900 55 number Basic	Time (Minutes) 2 2 247 Upload Time	if Ammo Expended (1-15) 2 * Rel Wpn/Ord to use if Ammo Expended
(1-15) 1 2 Weapons / Wpn/Or Relative (1-15)	Absolute (1-250) 74 77 Ordnance for d Number Absolute (1-250)	Name M60T 9mmT blue system Wpn/Ord Name	Load 900 55 number Basic Load	Time (Minutes) 2 2 247 Upload Time (Minutes)	if Ammo Expended (1-15) 2 * Rel Wpn/Ord to use if Ammo Expended (1-15)
(1-15) 1 2 Weapons / Wpn/Or Relative (1-15) 1	Absolute (1-250) 74 77 Ordnance for d Number Absolute (1-250) 51	Name M60T 9mmT blue system Wpn/Ord	Load 900 55 number Basic Load 250	Time (Minutes) 2 2 247 Upload Time (Minutes) 2	if Ammo Expended (1-15) 2 * Rel Wpn/Ord to use if Ammo Expended
(1-15) 1 2 Weapons / Wpn/Or Relative (1-15)	Absolute (1-250) 74 77 Ordnance for d Number Absolute (1-250)	Name M60T 9mmT blue system Wpn/Ord Name	Load 900 55 number Basic Load	Time (Minutes) 2 2 247 Upload Time (Minutes)	if Ammo Expended (1-15) 2 * Rel Wpn/Ord to use if Ammo Expended (1-15)
(1-15) 1 2 Weapons / Wpn/Or Relative (1-15) 1 2	Absolute (1-250) 74 77 Ordnance for d Number Absolute (1-250) 51 76	Name M60T 9mmT blue system Wpn/Ord Name 5.56Rfl 9mm	Load 900 55 number Basic Load 250 55	Time (Minutes) 2 2 247 Upload Time (Minutes) 2 2	if Ammo Expended (1-15) 2 * Rel Wpn/Ord to use if Ammo Expended (1-15)
(1-15) 1 2 Weapons / Wpn/Or Relative (1-15) 1 2 Weapons /	Absolute (1-250) 74 77 Ordnance for d Number Absolute (1-250) 51 76 Ordnance for	Name M60T 9mmT blue system Wpn/Ord Name 5.56Rfl 9mm	Load 900 55 number Basic Load 250 55	Time (Minutes) 2 2 247 Upload Time (Minutes) 2 2 248	if Ammo Expended (1-15) 2 * Rel Wpn/Ord to use if Ammo Expended (1-15) 2
(1-15) 1 2 Weapons / Wpn/Or Relative (1-15) 1 2 Weapons /	Absolute (1-250) 74 77 Ordnance for d Number Absolute (1-250) 51 76	Name M60T 9mmT blue system Wpn/Ord Name 5.56Rfl 9mm	Load 900 55 number Basic Load 250 55	Time (Minutes) 2 2 247 Upload Time (Minutes) 2 2	if Ammo Expended (1-15) 2 * Rel Wpn/Ord to use if Ammo Expended (1-15)
(1-15) 1 2 Weapons / Wpn/Or Relative (1-15) 1 2 Weapons / Wpn/Or	Absolute (1-250) 74 77 Ordnance for d Number Absolute (1-250) 51 76 Ordnance for d Number	Name M60T 9mmT blue system Wpn/Ord Name 5.56Rfl 9mm	Load 900 55 number Basic Load 250 55	Time (Minutes) 2 2 247 Upload Time (Minutes) 2 2 248	if Ammo Expended (1-15) 2 * Rel Wpn/Ord to use if Ammo Expended (1-15) 2
<pre>(1-15) 1 2 Weapons / Wpn/Or Relative (1-15) 1 2 Weapons / Wpn/Or Relative</pre>	Absolute (1-250) 74 77 Ordnance for d Number Absolute (1-250) 51 76 Ordnance for d Number Absolute	Name M60T 9mmT blue system Wpn/Ord Name 5.56Rfl 9mm blue system Wpn/Ord	Load 900 55 number Basic Load 250 55 number Basic	Time (Minutes) 2 2 247 Upload Time (Minutes) 2 2 248 Upload Time	if Ammo Expended (1-15) 2 * Rel Wpn/Ord to use if Ammo Expended (1-15) 2 Rel Wpn/Ord to use if Ammo Expended
(1-15) 1 2 Weapons / Wpn/Or Relative (1-15) 1 2 Weapons / Wpn/Or	Absolute (1-250) 74 77 Ordnance for d Number Absolute (1-250) 51 76 Ordnance for d Number	Name M60T 9mmT blue system Wpn/Ord Name 5.56Rfl 9mm blue system	Load 900 55 number Basic Load 250 55 number	Time (Minutes) 2 2 247 Upload Time (Minutes) 2 2 2 248 Upload	if Ammo Expended (1-15) 2 * Rel Wpn/Ord to use if Ammo Expended (1-15) 2 Rel Wpn/Ord to use

Printed at Government expense for x36123b1 04/27/93 16:10

,

	Weapons	s / Ordnance	for blue syst	em number	249	•	
		'Ord Number			Upload	Rel Wpn/Ord to use	!
	lative	e Absolute	Wpn/Ord	Basic	Time	if Ammo Expended	
	1-15)	(1-250)	Name	Load	(Minutes)	(1-15)	
	1	53	7.62Lmg	900	2	2	
	2	76	9mm	55	2	1	
	Weapons	/ Ordnance	for blue syste	em number	250	· · · · · · · · · · · · · · · · · · ·	
	Wpn/	'Ord Number	-		Upload	Rel Wpn/Ord to use	
0	Relative	e Absolute	Wpn/Ord	Basic	Time	if Ammo Expended	
16:1	(1-15)	(1-250)	Name	Load	(Minutes)	(1-15)	
3	1	51	5.56Rfl	250	2	*	
04/27/93 16:10							
	Janus Co	mmands.					
x36123bl	WP RR	initialitab.					
361							
for	Ability	to Fire on t	he Move strictions. 1 peed to fire. Guidance Mode 0 0 0 0			•	
nse							
dxo	Fire on:	0=Yes,no re	strictions. 1	=Stop, can	move before	impact	
Ina	the move	e: 3=Reduce s	peed to fire.	2=Stop,ca	n only move	after impact	
un.	Weapon	Weapon	Guidance	Fire on	On-Board	Altitude	
13.10	Number	Name	Mode	the Move	Sensor	[meters]	
Ű.	. 5	M203T	0	3			
eq a	6	M203	0	3			
'rin(51	5.56RIL E ECON	0	0			
<u>م</u>	52	5.56SAW	. 0	0			
	2	7.62Lmg M16A2T	0	3 0			
	73	SAWT	. 0	· 0			
	- 73	M60T	0	0		. •	
	76	9mm	0	0			
	77	9mmT	0	0		·	
	142	OIW	0	0			
			[×]				

Sector Sector

.

· · · ·

aliste Balikin (da da da da

<u>م م</u>

Janus (Commands:		
SY W	P MM		
MOPP E	ffects on Weap	oon Performance	
Weapon	Weapon	MOPP	
Number	Name	Time Factor	P(Hit) Factor
5	M203T	1.0	1.00
6	M203	1.2	0.7
51	5.56Rfl	1.2	0.8
52	5.56SAW	1.2	0.8
53	7.62Lmg	1.2	0.8
72	M16A2T	1.0	1.00
73	SAWT	1.0	1.00
74	M60T	1.0	1.00
76	9mm	1.1	0.95
77	9mmT	1.0	1.00
2	OIW	1.0	1.00

1

.

					·	•					-		
Janus Co	mmands:												
SY VV													
Syst	ems Vulner	abili	ty to Ar	tille	ry								
			Vulne	rabil	ity C	ategory	7						
Jystem	System				hru 2								
Number	Name '		Expc	sed	Pr	otected	1						
5 T	eiss_203		3			4							
	eiss_LDR		3			4							
245 T	eiss_SAW		3			4							
246 T	∋iss_M60		. 3		•	4							
	SOL_203		2			3							
	SOL_LDR		2			3							
	SOL_SAW		2			3							
			2			3							
250 C	SOL_RFL		2			3							
249 C: 250 C: Janus Cor SY AA AH Tubes per Bomblets Planning Reload Tm ICM Eff S	nmands: CC			_									
AI	RTILLERY C	HARACI											
			Sys	tem Nu	umber	⁷ 5							
	Mu	nition	Reliab	ility									
Tubes per	: 1.0			Rc	ound	Sub-M							
Bomblets	1.0		Op	en ().9	0.0							
Planning	5.0		Woo	od 0	.85	0.0							
Reload Tn	n 5.0		Tot	wn 0).8	0.0							
ICM Eff S	5 0.0											¥.	,
ICM Eff 1	0.0										Ĵ	V	r ti
HE,WP,FL	5.0									لرما	in	N	11 0 11
									ind			e,	or the
									$\nabla^{\mathbf{v}}$	· .	- 0		αA (V
				•						10	~	ili	
Janus Com	mands:									\sim	Ý		
SY AA	СС										ل مرد	• •	
										イ	,		
AR	TILLERY CH	HARACT	ERISTICS	5								•	
				em Nu	mber	6							
	M117	ition	Reliabi			5							
Tubes per				-	und	Sub-M							
Bomblets	1.0		Ope		.9	0.0							
Planning	5.0		Woo		.9								
Reload Tm						0.0							
CM Eff S			Tow	/n U	.8	0.0							
ICM EIF S ICM Eff I													
E,WP,FL	5.0												
anus Com													
anus Com SY AA	mands: II												
AA AA	± ±												
r+111 ~~~~	Dound 11	ot====											
	Round All tem Initia			vel									
			- 1										
System	System					TYPE							
lumber	Name	HE		H IC	G1	G2	FM	WP	BS	FL	RP	T1	
5	M203T	30	6										
5	M203	30	6										

Janus Commands: SY AA HE HE LETHAL AREAS for BLUE system number 5: Teiss_203 Inerability AOF 800 AOF 1600 AOF 2400 Category OPEN WOOD TOWN OPEN WOOD TOWN OPEN WOOD TOWN PERS P/PROT 63.6 38.5 38.5 63.6 38.5 38.5 63.6 38.5 38.5 _____ SY AA HE Janus Commands: HE LETHAL AREAS for BLUE system number 6: CSOL_203 VulnerabilityAOF800AOF1600AOF2400CategoryOPENWOODTOWNOPENWOODTOWN 04127193 Janus Command SY AA AA ARTILLERY ALG Vulnerabilit 1 PERS STANE 2 PERS PRONE 3 PERS P/PRO 3 PERS PRONE 63.6 38.5 38.5 63.6 38.5 38.5 63.6 38.5 38.5 Janus Commands: ARTILLERY ALGORITHM SELECTION for System Number 5: M203T Vulnerability Cat. Algorithm Vulnerability cat. Algorithm 1 1 PERS STAND 2 15 TRU WHL HVY 2 2 PERS PRONE 16 SP CAN LT 1 2 3 PERS P/PROT 17 SP CAN MED 1 4 PERS FOXHOL 2 18 TANK MEDIUM 1 19 TANK HI 20 MRL HVY 1 1. / TANK BRIDGE 1 21 8 APC TRK HVY 1 22 ADW TRK I 1 1 9 APC TRK MED 23 ADW TRK II 1 10 APC TRK (+) 1 24 ADW LAU WHL 1 11 APC WHL MED 1 25 AA GUN TRK 1 1 26 HEL MED I 12 APC WHL LT 1 1 13 TRU WHL MED 27 HEL MED II 1 14 TRU WHL LT 1 28 HEL MED III 1

Janus Commands:

SY AA AA

RTILLERY ALGORITHM SELECTION for System Number 6: M203

	٧ı	ulnerability Cat.	Algorithm	Vulnerability cat.	Algorithm
	1	PERS STAND	2	15-TRU WHL HVY	1
	2	PERS PRONE	2	16 SP CAN LT	1
5	3	PERS P/PROT	2	17 SP CAN MED	1
	4	PERS FOXHOL	2	18	
5	5	TANK MEDIUM	1	.19	
	6	TANK HI	1	20 MRL HVY	1
5	7	TANK BRIDGE	1	21	
	8	APC TRK HVY	1	22 ADW TRK I	1
5	9	APC TRK MED	1	23 ADW TRK II	1
5	10	APC TRK (+)	1	24 ADW LAU WHL	1
	11	APC WHL MED	1	25 AA GUN TRK	1
2	12	APC WHL LT	1	26 HEL MED I	1
	13	TRU WHL MED	1	27 HEL MED II	1
5		TRU WHL LT	- 1	28 HEL MED III	-
			-		~

77

;

ł

Printed at Government expense for x36123h1 04/27/93 16:10

Annex C

Ph/Pk datasets

i

Table	211 for P	H (CONV_	7.62 Lt MG)	
		400	600	800	<u> 1200</u>
SSDF	.45	.40	.35	.25	
SSDH	.45	.40	.35	.25	
SSEF	.80	.50	.40	.20	, . C5
SSEH	.90	.60	.40	.30	.10
SMDF	Not Used				
SMDH	Not Used				
SMEF	.75	.65	.55	.40	.10
SMEH	.80	.70	.60	.45	.15
MSDF	.35	.20	.10	.01	
MSDH	.40	.30	.20	.05	
MSEF	.55	.45	.35	.25	.05
MSEH	.60	.50	.40	.20	.05
MMDF	Not Used				
MMDH	Not Used		4 T		
MMEF	.55	.30	.20	.05	.05
MMEH	.60	.45	.25	.15	.05

Table	263 for PH	(SIPE_	5.56Rfl)		
		250	500	750	1011
SSDF	.99	.63	.60	.46	
SSDH	.99	.63	.60	.46	.26
SSEF	.99	.95	.90	.70	.50
SSEH	.99	.95	.90	.70	.50
SMDF	Not Used				
SMDH	Not Used				
SMEF	.99	.95	.90	.70	.50
SMEH	.99	.95	.90	.70	.50
MSDF	.99	.63	.60	.46	.26
MSDH	.99	.63	.60	.46	.26
MSEF	.99	.95	.90	.70	.50
MSEH	.99	.95	.90	.70	.50
MMDF	Not Used				
MMDH	Not Used				
MMEF	.99	.95	.90	.70	.50
MMEH	.99	.95	.90	.70	.50

. •

e

na and a second seco

Table	264	for PH	(SIPE_5 300	.56 SAW 8	SIPE_7.62 900	Lt MG) 1200
SSDF		.99	.63	.60	.46	.26
SSDH		.99	.63	.60	.46	.26
SSEF		.99	.95	.90	.70	.50
SSEH		.99	.95	.90	.70	.50
SMDF	Not	Used				
SMDH	Not	Used				
SMEF		.99	.95	.90	.70	.50
SMEH		.99	.95	.90	.70	.50
MSDF		.99	.63	.60	:46	.25
MSDH		.99	.63	.60	.46	.25
MSEF		.99	.95	.90	.70	.50
MSEH		.99	.95	.90	.70	.50
MMDF	Not	Used				
MMDH	Not	Used				
MMEF		.99	.95	.90	.70	.50
MMEH		.99	.95	.90	.70	.50

Table for the CONV_30MM Airburst for PH 200 400 600 100 SSDF .90 .70 .42 .28 SSDH .90 .70 .42 .28 .28 .90 .70 .42 SSEF .90 .42 .28 SSEH .70 SMDF Not Used SMDH Not Used .90 .70 .42 .28 SMEF .28 .90 .42 SMEH .70 .90 .70 .42 .28 MSDF .70 .28 MSDH .90 .42 MSEF .90 .70 .42 .28 MSEH .90 .70 .42 .28 MMDF Not Used MMDH Not Used .90 .70 .42 .28 MMEF .70 .90 .28 MMEH .42 The probabilities are the same for all because of the All the PKs are equal to 1 for 30MM. airburst capability.

Table	for the SIPE_30 100	MM Airburst fo 200	or PH 400	500
SSDF	.99	.80	.55	.40
SSDH	.99	.80	.55	.40
SSEF	.99	.80	.55	.40
SSEH	.99	.80	.55	.40
SMDF	Not Used		-	
SMDH	Not Used			
SMEF	.99	.80	.55	.40
SMEH	.99	.80	.55	.40
MSDF	.99	.80	.55	.40
MSDH	.99	.80	.55	.40
MSEF	.99	.80	.55	.40
MSEH	.99	.80	.55	.40
MMDF	Not Used			
MMDH	Not Used			
MMEF	.99	.80	.55	.40
MMEH	.99	.80	.55	.40
	obabilities are			
airbur	st capability.	All the PKs a	are equal to	o 1 for 30MM.

•

ł

Table	for	PH	(CONV_9MM)
			F 0

20020				
		50	100	150
SSDF	.70	.35	.15	.05
SSDH	.70	.35	.15	.05
SSEF	.90	.55	.30	.10
SSEH	.90	.55	.30	.10
SMDF	Not Used			
SMDH	Not Used			
SMEF	.80	.40	.20	.05
SMEH	.80	.40	.20	.05
MSDF	.50	.25	.10	.05
MSDH	.50	.25	.10	.05
MSEF	.65	.35	.20	.05
MSEH	.65	.35	.20	.05
MMDF	Not Used			
MMDH	Not Used			
MMEF	.50	.30	.10	.05
MMEH	.50	.30	.10	.05

Printed at Government expense for x35143d3 04/27193 16:24

.

Table for PH (SIPE_9MM) 50 100 150 _ _ _ .80 .45 .25 .15 SSDF .15 .25 .80 .45 SSDH SSEF .99 .75 .40 .20 .20 SSEH .99 .75 .40 Not Used SMDF Not Used SMDH .90 .50 .30 .15 SMEF .90 .50 .30 .15 SMEH .15 .70 .20 MSDF .35 .15 .70 .35 .20 MSDH .75 .15 MSEF .50 .30 .75 .15 .50 .30 MSEH Not Used MMDF Not Used MMDH .65 .15 MMEF .40 .20 .65 .40 .20 .15 MMEH

i

(CONV_5.56Rfl) Table 164 for PK 100 400 800 200 _ _ _ .40 .35 M/DF .20 .05 .01 M/DH .50 .45 .30 .10 .01 M/EF .60 .55 .40 .20 .05 .50 M/EH .70 .60 .05 .30

Table 165 for PK (CONV_5.56 SAW) 400 600 800 1200 M/DF .60 .55 .50 .45 .40 M/DH .60 .55 .50 .45 .40 .70 .65 .50 M/EF .60 .55 M/EH.70 .65 .60 .55 .50

		400	600	800	1200
M/DF	.80	.70	.60	.50	.30
M/DH	.80	70	.60	.50	.30
M/EF	.90	.80	.70	.60	.40
M/EH	.90	.80	.70	.60	.40

Table 390 for PK (SIPE_5.56Rfl). CHANGE from Table 390 to 1000.

.70

.80

100 200 400 _ _ _ 800 .50 .45 .30 .15 .10 .60 .55 .20 .10 .40 .65 .70 .50 .30 .15

.60

.40

Table	1001 for PK	(SIPE_7	.62 Lt MG).		
		400	600	800	1200
M/DF	.90	.80	.70	.60	.40
M/DH	.90	.80	.70	.60	.40
M/EF	.99	.90	.80	.70	.50
M/EH	.99	.90	.80	.70	.50

Table 1002 for PK (SIPE_SAW). ---100 200 400 800 .60 M/DF .70 .65 .55 .50 M/DH .70 .50 .60 .65 .55 M/EF .75 .70 .80 .65 M/EH .80 .75 .70 .65 .60

M/DF

M/DH

M/EF

M/EH

ŧ

.15

.

f matut Int 14

ţ

Table	1003 for PK	(CONV_9MM)		
		50	100	150
M/DF	.85	.70	.50	.25
M/DH	.85	.70	.50	.25
M/EF	.90	.80	.60	.40
M/EH	.90	.80	.60	.40

Table	1004 for P	K (SIPE	_9MM)	
		50	100	150
M/DF	.90	.80	.60	.35
M/DH	.90	.80	.60	.35
M/EF	.99	.90	.70	.50
M/EH	.99	.90	.70	.50

For the conventional soldiers, we used the probabilities that were already in the database. We swithced some of the flank and head-on shots because head-on shots have more area to hit than flank shots, but the database had higher flank probabilities than head-on probabilities.

We enhanced the probability of hit for the Teiss soldiers because they have advanced sight capabilities. We enhanced the probabilities anywhere from approximately 10-15 percent above the conventional probabilities. Since they have advanced sight capabilities, we feel that they have an increased possibility of hitting lethal areas; therefore, we increased their probability of kill as well. For the Red Ph tables, we used what values were already in the database, whereas for the Pk values, we used the values that Rob Walker and Vic Ferson came up with. They used a ratio of the vulnerable area of the soldier to the overall area of the soldier for the Pk tables.

Relative	#	PH / PK	Table	
51 CON	V_5.56Rfl	164/164		
52 CON	V_5.56 SAW	165/165		
53 CON	V_7.62 Lt MG	211/211		
72 SIP	E_5.56Rfl	263/390	==>	1000
73 SIP	E_5.56 SAW	264/391		1002
74 SIP	E_7.62 Lt MG	264/391	==>	1001
75 CON	V_9 mm	1000/1003		•
75 SIP	E_9 mm	1001/1004		

٢_

era es estelaciónse

in a thank and a the

Table	164 for PH	(CONV_5	5.56Rfl)		
		100	200	400	<u>800</u>
SSDF	.32	.16	.08	.04	
SSDH	.32	.16	.08	.04	
SSEF	.99	.64	.32	.16	
SSEH	.99	.64	.32	.16	
SMDF	Not Used				
SMDH	Not Used				
SMEF	.64	.32	.16	.08	
SMEH	.64	.32	.16	.08	
MSDF	.32	.16	.08	.04	
MSDH	.32	.16	.08	.04	
MSEF	.48	.24	.12	.06	
MSEH	.48	.24	.12	.06	
MMDF	Not Used				
MMDH	Not Used				
MMEF	.24	.12	.06	.03	
MMEH	.24	.12	.06	.03	

Table	165 for PH	(CONV_S	SAW)		
	<u> </u>	100	200	400	800
SSDF	.50	.40	.30	.20	
SSDH	.50	.40	.30	.20	
SSEF	.80	.65	.60	.55	.35
SSEH	.80	.65	.60	.55	.35
SMDF	Not Used				
SMDH	Not Used				
SMEF	.90	.70	.50	.45	.25
SMEH	.90	.70	.50	.45	.25
MSDF ·	.40	.25	.15	.05	
MSDH	.40	.25	.15	.05	
MSEF	.60	.55	.50	.45	.20
MSEH	.60	.55	.50	.45	.20
MMDF	Not Used		• •		
MMDH	Not Used				
MMEF	.40	.35	.30	.25	.05
MMEH	.40	.35	.30	.25	.05

Printed at Government expense for x35143d3 04/27/93 16:24

Annex D

Battle Narrative for Conventional Soldier Raid (TEISS 6 and 18 man are similar)

The steps for conducting the Scenario as it was performed for this COEA:

1. Load Scenario

2. Display CAC#1 (Showing assault positions, assault lanes, the support section and security element's position's, the Objective rally point, the limit of advance, and the release point)

<<Scenario begins after leader's recon has been completed, two members of the recon party remain in the support position and the assault position keeping eyes on the objective, and the security teams have already reached their positions>>

3. Place all units (Red and Blue) on hold fire until instructed to remove this restriction

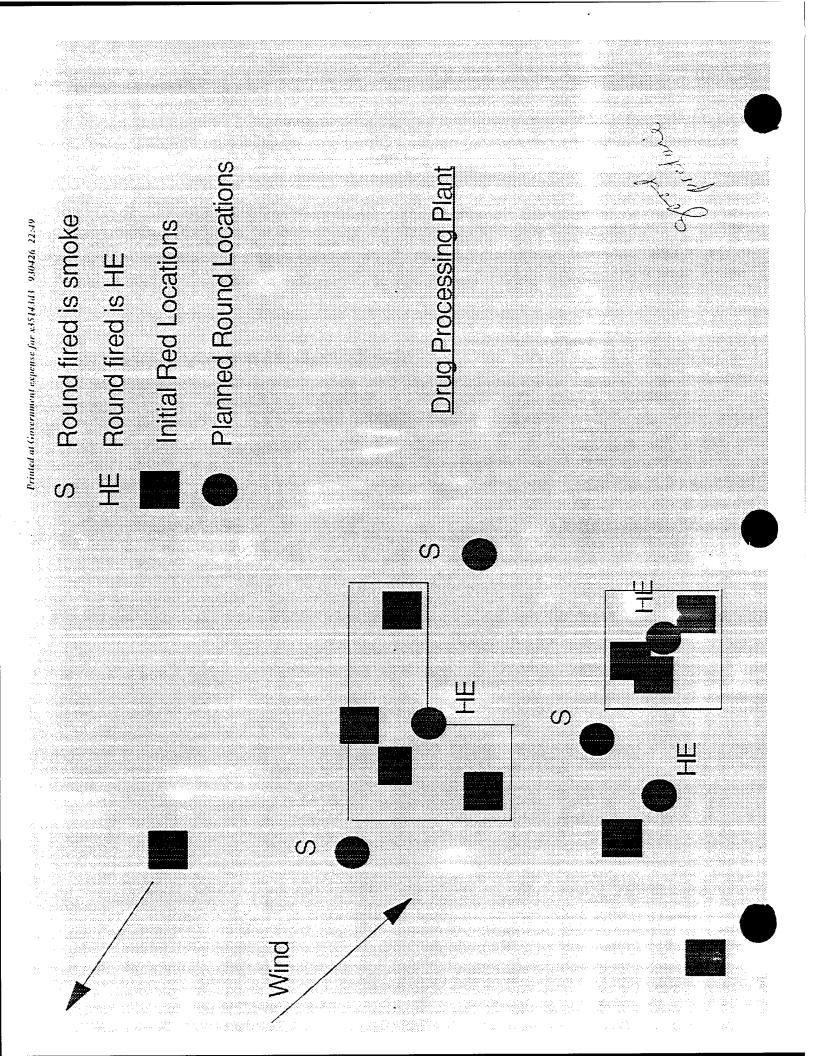
4. Zoom view, size 8, centered on the RP

5. Set Realtime Sync (RS) to 15 until the assaulting squads approach their assault positions.

6. Set RS to 4 and stop task forces (assault squads) individually as they move within the CAC assault position boundaries.

7. Set RS to 1 when they have been stopped

8. Allow Support section to move into their positions and stop, then plan initial timed M203 fires in accordance with Annex E.


9. When M203 firing pound signs show on the screen, take the support squad off hold fire, then immediately take the Red forces off of hold fire, then release the assaulting forces by clicking "GO" with the puck, and take them off hold fire as rapidly as possible.

10. Allow battle to continue until the Red force is eliminated.

Annex E

Initial Timed M203 Fires Placement and Types

NOTE: The diagram on the following page shows the aiming points for initial M203 Rounds fired in the CSOL Raid. For TEISS High and Low levels, these aiming points were also used, but due to the number of M203s used, all targets were not engaged.

Annex F

Mission Force Files

Enemy (RED) Forces

1 CMDR

3 LTMG

1 SVD

5 RFL

Conventional Soldier Forces

2 CSOL_LDR 2 CSOL_M60 16 CSOL_RFL 6 CSOL_203 6 CSOL_SAW

Low TEISS Force

Assault Force 1 TEISS_LDR 1 TEISS_SAW 1 TEISS_203 Support Section 1 TEISS_SAW 1 TEISS_203 Security 2 TEISS_SAW

High TEISS Force

Security 2 TEISS_SAW 2 TEISS_203 Support Section 4 TEISS_SAW 1 TEISS_LDR 3 TEISS_203 Assault Force 1 TEISS_LDR 4 TEISS_SAW 3 TEISS_203

35

Annex G

 Π

Design Matrix

	. ·	Run Type	
	1 34 Man CSOL	2 8 Man TEISS	3 20 Man TEISS
Run # (Random # Seed)			
1 (01693)	11	12	13
2 (89525)	21	22	23
3 (11149)	31	32	33
4 (93953)	41	<u>*2</u>	43
5 (12823)	51	52	53
6 (17800)	61	62	63
7 (29983)	71	72	73
8 (34972)	81	82	83

36

•

Annex H

finin 1994. – Thursdan Andrewski, 11. andre – Inder Arbert ar det ten in der sterne in der Arbertige einer Bereiter.

Equivalency Calculations

Using the following data :

Time to mission completion - MOE #1

TEISS TIME of MSN

X values	Y values	CSOL Y value
5	3.8875	1.8625
16	.94375	

and the two point equation of a line : $y - y_1$ = y₂ - y₁ $x - x_1$ $x_2 - x_1$

У	-	3.8875	=	.94375 - 3.8875
	x	- 5		16 - 5
У	-	3.8875	=	(x - 5) -2.6761

 $y = -2 \times 6761 x + 5.22557$

Substituting CSOL's MOE average for Y

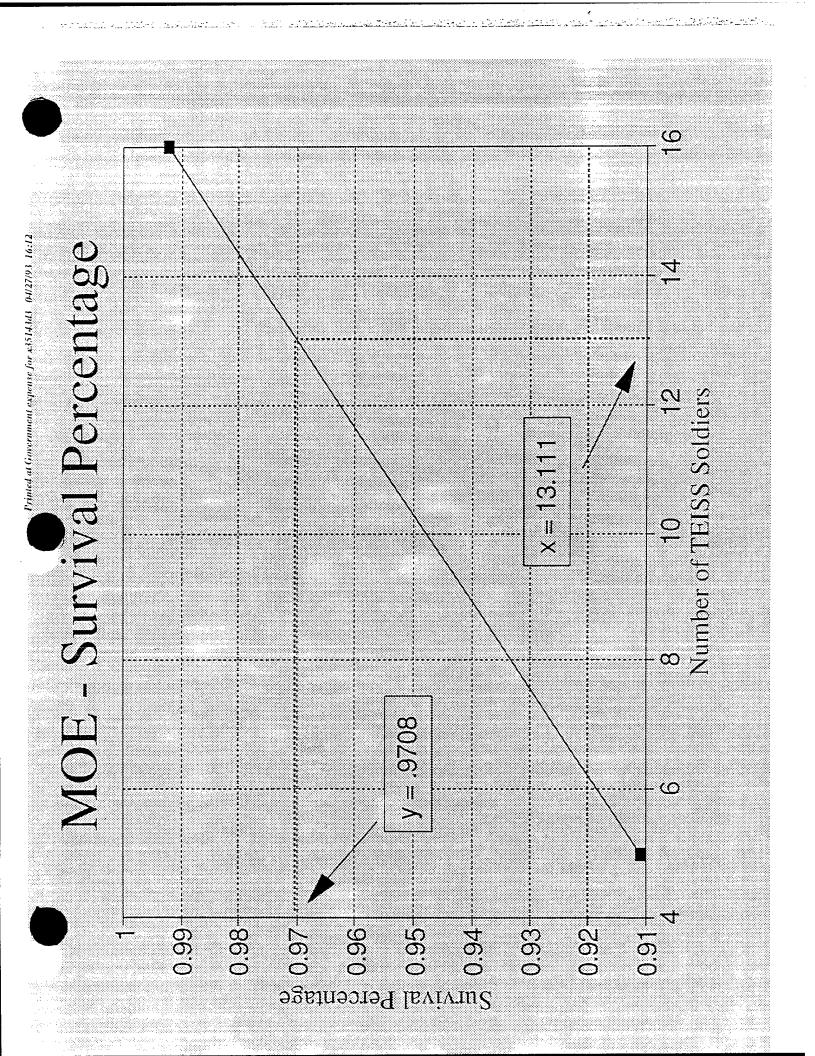
X, or the equivalent # of TEISS soldiers is :

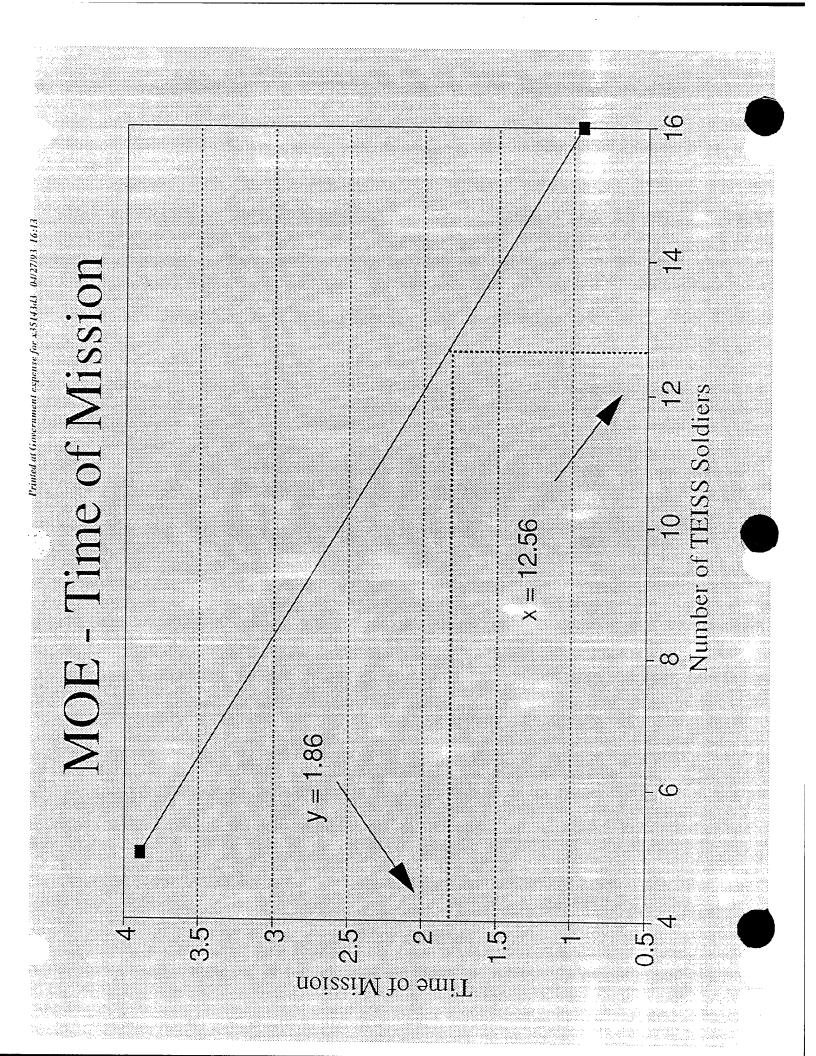
%	Survival	Percentage	-	MOE	#2
---	----------	------------	---	-----	----

Σ	(, or the eq	puivalent # of	TEISS soldiers	is :
2	X = 12.5675			، مستحدی ن ن
94-	Survival H	Percentage - M	OE #2	# 54 UN UN - 1 A
	X values	Y values	CSOL Y value	Road Harris
	5	.910714	.970833	
	16	.992188		

and the two point equation of a line : $y - y_1$ Y2 - Y1 $x - x_1$ $x_2 - x_1$

y - .910714 = .992188 - .910714 x - 5 16 - 5 y - .910714 = (x - 5) .00741y = .00741 x + .87368




Substituting CSOL's MOE average for Y,

X, or the equivalent # of TEISS soldiers is :

X = 13.111

.

Annex I

ł

Post Processing Data

Time End	e to Missi	on		
Run		St time.	End. Tm.	
- non	["] 11	30	31.62	1.62
	21	27	28.87	1.87
	31	27	28.07	1.07
	41	31	33.72	2.72
	51	30	32.48	2.48
	61	29	30.47	1.47
	71	23 27	28.67	1.67
	81	30	32	2
Ave	01	50	02	1.8625
7.00	12	23	28	1.0020
	22	23	29.5	6.5
	32	23	25.52	2.52
	32 42	23	23.73	0.73
	42 52	23 23	23.73	2.43
	52 62	23 23	25.43 29.42	2.43 6.42
	72	23	23.42	0.42
	82	23	29.6	0.9 6.6
Ave	02	20	23.0	3.8875
AVC	13	. 27	31.08	4.08
	23	27	27.52	9.50 0.52
	33	27	27.48	0.48
	43	27	27.48	0.48
	53	27	27.48	0.48
	63	27	27.55	0.55
	73	27	27.48	0.48
	83	27	27.48	0.48
Ave		_/		0.94375

ş

Printed at Government expense for x35143d3 04/27/93 16:14

,

Annex J

Quattro Pro 4.0 Confidence Interval Calculations

NOTE: The following confidence intervals were calculated to ensure that the MOE's that we conducted our experiment with were actually significant. The comparison of TEISS to CSOL utilized a two tailed Bonferroni test that accounts for the low levels of confidence. We also used the confidence intervals as a method of showing that the High and Low TEISS level MOE data points distinctly "trapped" the CSOL MOE value.

ALSO NOTE: For the Confidence intervals T - values of 1.51 = 85% CI 1.41 = 80% CI

The calculations are shown in the spreadsheet output that follows.

40

. e.

MOE - Survival Percentage

ŧ

moe ourman creentage					
Run#		CSOL	Teiss-	Teiss+	
	1	1	1	1	
	2	1	0.857143	1	
	3	0.966667	0.857143	1	
	4	0.933333	1	1	
	5	0.966667	0.714286	0.9375	
	6	1	0.857143	1	
	7	1	1.	1	
	8	0.9	1	1	
		TCSOL	. T+ - CSOl	_	
	1	0	0		
	2	-0.14286	0		
	3		0.033333		
	4	0.066667			
	5				
	6	-0.14286	0		
	7	0	Ō		
	8	0.1	0.1		
AVG			0.021354	/	
VAR	X	0.014577		inva	
t-STAT		1.35	1.41	Norra	
1/2 LN		0.057626		((*	
UPBC	IJΝ	-0.00249	0.042637		
LOBC		-0.11775			
SIG		Yes	Yes		

van ie brand i one me wit untraining me wit resting me ter (1425 ter (1425)

:

Printed at Government expense for x35143d3 04/27/93 16:15

Printed at Government expense for x35143d3 04127193 16:14

MOE -	Time to	Mission	Completion

Run#	CSOL	Teiss-	Teiss+
1	1.62	5	4.08
2	1.87	6.5	0.52
3	1.07	2.52	0.48
- 4	2.72	0.73	0.48
5	2.48	2.43	0.48
6	1.47	6.42	0.55
7	1.67	0.9	0.48
8	. 2	6.6	0.48
-	TCSOL	T+ - CSOL	
1	3.38	2.46	
2	4.63	-1.35	
3	1.45	-0.59	
4	-1.99	-2.24	
5	-0.05	-2	
6	4.95	-0.92	
7	-0.77	-1.19	
8	4.6	-1.52	
AVG	2.025	-0.91875	V.
VAR	7.4824	2.151412	•
t-STAT	1.51	1.51	4
1/2 LN	1.460335	0.783058	ell.
UPBOUN	3.485335	-0.13569	\mathcal{O}
LOBOUN	0.564665	-1.70181	
SIG	Yes	YES	
-			

80% CI for Survival Percentage MOEs AVG 0.970833 0.910714 0.992188 VAR 0.001409 0.011297 0.000488 t-STAT 0.896 0.896 0.896 0.01189 0.033671 1/2 LN 0.007 UPBOUN 0.982723 0.944385 0.999188 LOBOUN 0.958943 0.877044 0.985188 SIG Yes Yes

マナント

N= # P ins

5:00

ł

ł

AVG	1.8625	3.8875	0.94375
VAR	0.28765	6.38905	1.60657
t-STAT	1.415	1.415	1.415
1/2 LN	0.268314	1.264531	0.634105
UPBOUN	2.130814	5.152031	1.577855
LOBOUN	1.594186	2.622969	0.309645
SIG	Yes	YES	

Ϊ,

Phase II Testing

9

Enclosure 1

Phase II Scenario Description

The second phase of the design utilized as the primary engagement, a far ambush. (See Annex L for a detailed report of our research and a script of the proper steps to conduct an ambush) In this scenario, the primary changes included an increased number of enemy gunmen, from ten to twentyfive, and the use of different tactics for the TEISS force.

The scenario begins with the TEISS platoon moving in to conduct the raid as it was executed in the first scenario. This time, however, an alert sentry feels as if the processing plant's security has been compromised. He alerts his companions, now numbering twenty-five, at which time they mount on trucks and a zodiac inflatable boat and leave the plant as rapidly as possible. The TEISS force recognizing that their target is fleeing, calls for a helicopter extraction. Two UH-60 Black Hawk helicopters (four for the conventional platoon), pickup and displace the thirty members of the platoon to an ambush site in the gunmen's direction of escape (Two remain to destroy the contents of the processing plant.). The TEISS force divides, upon arrival at the release point, into two one soldier security detachments, an ambush supporting section, and an ambush assault section. They assume their positions in a y-shaped ambush and await the gunmen's arrival. The gunman experience difficulties with their trucks and zodiac

and are forced to abandon them in favor of dismounted travel.

ł

The ambush itself is designed to exploit the TEISS soldier's technological advantages. As a result, the ambush begins for the TEISS platoon near maximum weapon range and lasts for five minutes, including an assault across the objective. The conventional platoon, following more conventional tactics, initiated the ambush at a range well inside of the maximum effective weapon range for the M16A2 rifle (300m).

Enclosure 2

Phase II Description of Alternatives, MOEs, Summary and Recommendations

B. Description of Alternatives

والمحافظ فالمتحد والمحافظ والمحافظ والمكتر والمحافظ والمحافظ فتتحافظ والمحافظ والمحافظ المحاف المحتوي المحافظ

The following alternatives have been considered and evaluated in order to determine the effectiveness of the track-box sight and the OICW. For our analysis in stage two, we chose to alter two factors in the TEISS system the weapon system and force type. The two force types consist of what we called the "low-end" force level, using a conventional infantry platoon and a "high-end" 17 (13 firers) man TEISS section for the simulation, while the different weapon system alternatives, the track-box sight equipped M16A2 and the Objective Infantry Combat Weapon (OICW), were used by both the conventional platoon and the TEISS section.

Each run of the scenario eventually broke alternative is divided into three elements - the security element, the attack element, and the support element. We have three different TEISS soldiers - a TEISS leader, the TEISS M203, and the TEISS SAW. The TEISS leader carries the SAW, and the TEISS M203 and SAW have greater accuracy and lethality than the conventional M203 and SAW. The TEISS alternatives do not have a M60 Light Machine Gun because our simulation runs showed that the M60, when included in the scenario, was too lethal. This made the TEISS section much more lethal

44

and as a result, incomparable with the conventional infantry platoon consisting of thirty-four soldiers.

For the purposes of the simulation, we constructed the conventional soldiers and the TEISS soldiers, on the Janus (A) database, using Army Field Manuals and common sense. Attempts were made at all stages to ensure that the construction of these systems created realistic soldier systems. For the sake of our analysis, we used our modeled, basic infantry soldiers and their weapons for the conventional infantry platoon force structure. The weapons that the conventional infantry platoon used were the M16A2 rifle, the 5.56mm M249 SAW, the M203, and the M60 Light Machine Gun. Building TEISS soldiers required some more information, which we got from White Sands Missile Range, Dismounted Battle Laboratory, ARDEC, and NATICK. We enhanced certain attributes of the TEISS soldier based on the goals of the TEISS project, the conventional weapons of the infantry soldier, and common sense. A couple of the attributes that we enhanced were the accuracy and the lethality by increasing the probability of a hit and probability of kill. We also modified the probability of the TEISS system being kill once hit. This change was made to help model the TEISS soldier's heightened awareness of the combat situation and the effectiveness of his body armor.

Alternatives:

1. Low-End Conventional infantry platoon The conventional infantry platoon consists of thirty-four soldiers. Two of the soldiers were left back at the drug processing plant so there are thirty-two for the ambush with only thirty engaging because two are in security. The security element is placed on both flanks of the assault and support elements with each security team consisting of one SAW each. The support element consists of the two M60 units, a conventional leader, three M203s, two SAWs, and five riflemen. Finally, the assault element consists of a conventional leader, one SAW, two M203s, and eleven riflemen.

سابية المستحد والمتحد والمحمد والمحافظ والمحافظ والمحافة المحافة

2. High-End TEISS

The High-End TEISS alternative has seventeen soldiers. Two of the TEISS soldiers were left at the drug processing plant so there are fifteen for the ambush with only thirteen engaging because two are in security. Among the fifteen soldiers, there are two TEISS leaders, six SAWs, and seven M203s. Within this section, the assault force consists of a TEISS leader, two SAWs, and four M203s, while the support element has one leader, three SAWs and two M203s, and the security on both flanks has one SAW each. We would hope to see significantly higher responses from our MOEs measured in the simulation runs.

The track-box sight enhances sight capability and is placed on the M203s for both the TEISS soldiers and the conventional soldiers. Also, for the conventional soldiers,

46

the track-box sight is placed on the M16A1 rifles used by the riflemen. The OICW replaces the conventional riflemen's M16A1 as well as the M203s for both TEISS and conventional soldiers since it is a totally different weapon system.

ŧ

B. Measures of Effectiveness

In order to evaluate the effectiveness of the four TEISS soldier alternatives, it was important to select measures of effectiveness (MOE) that measured the systems ability to satisfy our functional objectives. Keeping this in mind, we picked the following MOEs:

1. Average Enemy Loss

2. Detection Ratio

- 3. 1/(Friendly Rounds/ Enemy Killed/ Friendly Systems Involved)
- 4. Average Engagement Range
- 5. Number of Detections
- 6. Average Range to Kill
- 7. Percent Contribution

1) Average Enemy Loss

Definition of Measure: Average enemy loss is the number of enemy soldiers killed during the battle.

Dimension of the Measure: Integer - a number in terms of enemy soldiers killed per mission.

Limits of the Range of the Measure: The output may assume any positive value.

Rationale for the Measure: This measure addresses the lethality of the TEISS soldiers as compared to the conventional soldiers. It also measures the lethality of the track-box sight compared to the OICW. Decisional Relevance of the Measure: This measure can be used to compare the number of kills using the track-box sight and the OICW to each other or to a standard. This is important because it allows us to see which weapon is more effective. This measure also can be used to compare the number of kills for the TEISS soldiers and conventional soldiers.

Associated Measures:

Lethality of Rounds

Accuracy of Rounds

2) Detection Ratio

Definition of Measure: Detection ratio is the number of friendly detections to the number of enemy detections. Input data are the moment of the first detection and when the last detection occurs.

Dimension of the Measure: Ratio - number of friendly detections to the number of enemy detections.

Limits of the Range of the Measure: The output can assume any positive value.

Rationale for the Measure: Detection Ratio is beneficial because it directly measures a functional objective of the TEISS systems. One of the key functional objectives is the ability of the TEISS soldiers to detect the enemy in advance. If the soldiers set up in an ambush can be alerted to the presence of the enemy early, then the ambush has been effectively enhanced.

Decisional Relevance of the Measure: By comparing the number of enemy detections versus friendly detections, we

can evaluate which system has better, more beneficial sensors. This will allow us to see whether the TEISS soldiers detect more than the conventional soldiers. Associated Measures:

Probability of Hit

Probability of Kill

Loss Exchange Ratio

3) 1/(Friendly Rounds/ Enemy Killed/ Friendly Systems Involved)

Definition of Measure:

Dimension of the Measure:

Limits of the Range of the Measure: The output may assume any positive value.

Rationale for the Measure: It is a measure of weapon effectiveness based on the number of weapons.

Decisional Relevance of the Measure: This measure can be used to compare the effectiveness of the track-box sight and OICW for the TEISS and conventional soldiers. The number of weapons is normalized to account for the different number of weapons used by the TEISS and conventional soldiers.

Associated Measures:

Probability of Hit

Probability of Kill

Kill percentage

4) Average Engagement Range

Definition of Measure: The average engagement range is the how far away the enemy is when friendly forces engage. Dimension of the Measure: Integer - a number in terms of distance (kilometers).

Limits of the Range of the Measure: The output may be any positive value.

Rationale for the Measure: This measure shows how far away the enemy is when friendly forces engage and can be used to measure the effective ranges of the different weapon systems for TEISS soldiers as well as conventional soldiers. Decisional Relevance of the Measure: This measure can be used to compare the effective ranges of the track-box sight and the OICW for TEISS and conventional soldiers. Associated Measures:

Probability of Hit

Probability of Kill

5) Number of Detections

Definition of Measure: Number of detections is the number of times that friendly forces detect or 'see' the enemy forces.

Dimension of the Measure: Integer - a number of sightings. Limits of the Range of the Measure: The output can be any positive value.

Rationale for the Measure: It is a direct measure of the enhanced sight capabilities of the TEISS soldiers as well as the original capabilities of the conventional soldiers.

Decisional Relevance of the Measure: This measure can be used to compare the TEISS soldiers and conventional soldiers sight capabilities to each other. It can also be used to compare the different types of weapons used.

Associated Measures:

Percent contribution

Kill percentage

6) Average Range to Kill

Definition of Measure: The average range to kill is the distance between the enemy and friendly forces when the enemy is killed.

Dimension of the Measure: Integer - a number in terms of distance (kilometers).

Limits of the Range of the Measure: The output can assume any positive value.

Rationale for the Measure: This measure shows how far away the enemy is when friendly forces kill the enemy and can be used to measure the effective ranges of the different weapon systems for TEISS soldiers as well as conventional soldiers. Decisional Relevance of the Measure: This measure can be used to compare the effectiveness of the track-box sight and the OICW for TEISS and conventional soldiers. This measure also can be used to compare which weapon system is more effective at longer ranges.

Associated Measures:

Probability of Hit

Probability of Kill Percent contribution Kill percentage

7) Percent Contribution

Definition of Measure: Percent contribution is the amount that each weapon system contributed to the number of overall kills.

Dimension of the Measure: Ratio - a rate in terms of number of kills per weapon system.

Limits of the Range of the Measure: The measure must include at least one kill, and the output may assume any positive value up to one.

Rationale for the Measure: This measure addresses the element's diverse offensive capability.

Decisional Relevance of the Measure: This measure can be used to compare the offensive capability of each weapon system. It can be used to compare the track-box sight to the OICW for TEISS and conventional soldiers. Associated Measures:

Kill percentage

C. Trade-Off Analysis

We wanted to conduct weapon testing and perform a trade-off analysis on the track-box sight and the OICW. For analysis of the track-box sight and the OICW, we used a 34 man conventional platoon and a 17 man TEISS section. From

the trade-off analysis, we found that the OICW performs better than when soldiers used the track-box sight. We also found that the conventional soldiers performed better than the TEISS soldiers with respect to the MOEs. Some of the reasons, that the conventional soldiers dominated several of the MOEs, are that the TEISS section did not use M60s. The M60's, utilized by the conventional soldiers, were a major influence on several MOEs. Also, the conventional soldiers, in order to execute the scenario, were given the same intelligence that the TEISS soldier had. By this we mean that the conventional soldiers' ambush positions were the same as those that the TEISS soldiers occupied. These positions were in the enemy's line-of-march assuring that the ambush would take pace. The conventional platoon's attributes, with regard to communications and detection devices, would not normally know the enemy's eventual position with certainty.

IV. Summary

The second phase of our analysis consisted of a full factorial design with force composition and weapon type making up the design points of interest. In this phase we sought to validate our phase I result, that specified that thirteen TEISS soldiers provide the same lethality as thirty firing conventional infantry soldiers. Our Phase II analysis, also concerned itself with conducting a trade off analysis on two emerging Infantry weapon systems, the M16A2

Track box sight system, and the Objective Infantry Combat Weapon. In order to more fully develop tactics and test the operational capabilities of the TEISS soldier, the second phase of the analysis utilized a new scenario. The new scenario, conduced on the same type of terrain, had as its major engagement, a far-ambush of fleeing guerilla/drug cartel gunmen.

The phase II simulations yielded a variety of interesting results and conclusions. First, the thirteen man TEISS force is not truly equivalent to a conventional platoon. Second, the OICW is a significantly better weapon than the Track-Box sight in the hands of both the conventional soldier and the TEISS soldier. And finally, the TEISS soldier, as he is planned is a extremely lethal weapon whose technology and abilities out distance our conventional tactics.

Recommendation

After conducting both phases of the TEISS analysis, we recommend that more simulation be conducted in two areas. First, further investigation into the size of the equivalent TEISS section must be conducted. Our results, in both scenarios seem to be very scenario dependent, with thirteen TEISS soldiers being somewhere near correct. Additional simulation using thirteen firing TEISS soldiers in heavily wooded terrain, is yielding results that show that the

equivalent force is well below thirteen.18 This validates the need to further test the force size before any costly organizational decisions are made. Secondly, further analysis must be conducted into the realm of tactics. The technical capabilities of the TEISS soldier clearly undermine many of the pillars that our conventional tactics are built on. When viewed in a TEISS soldier reference frame our conventional tactics, with respect to speed, surprise, maneuver, mass, and security are very conservative to say the least. Because technology dictates tactics, and because tactics are a major contributor to combat effectiveness, further analysis and development is necessary in this area.

- A <u>new second and a second second second</u> and the second and and a second second second second and the second and the second second

Based on our simulation results, we believe that future simulations should include the M60 machine-gun. In the phase I experiments, the M60 was omitted in order to better equate lethality. In the phase two simulations, the lack of the M60 proved to be a major factor in the inequality detected between the two forces. As a result any TEISS force should be armed with an M60.

18 Taken from SE489 Design work conducted by Cadets Robb Walker '93, and Vic Ferson '93.

Enclosure 3

		Factor					
		$\begin{array}{c c} - & \text{Conv} \\ + & \text{TS}_{1} \\ + & \text{TS}_{1 \leq S} \end{array} \begin{array}{c} - & \text{TBS} \\ + & 2 \\ + & 0 \\ 1 \leq \omega \end{array}$		3	Notes		
		Soldier Type	Weapon Type	Inter action			
	1	-	-	+	Con./TBS		
Design	2	+ .	-	-	TEISS/TBS		
Design Point	3	-	+	-	Con./OICW		
	4	+	+	+	TEISS/OICW		

Factorial Design Construction

Con. = Conventional Equipped Platoon with 30 soldiers having the capability to fire on the enemy during the simulation.

TEISS = TEISS section with thirteen soldiers having the capability to fire on the enemy during the simulation.

SB = Force Armed in part with M16A2 rifles with the Track box sight system.

OICW = Force Armed in part with the Objective Infantry Combat Weapon.

Enclosure 4

a la cala de la contra tratta 2022 de la contracta de la contracta de la Calacia.

-

MOE Analysis for Average Enemy Losses · .

•

: "....

and the second second

۴.

n =

4

77

(1⁻)

Canstants		1		Low Level	High Level
k =	2		Factor 1: Force	Infantry: 34 men	TEISS: 17 men
p =	1				
RanNum 1 =	1693				
RanNum 2 =	89525		Factor 2: Weapon	Weapon: M16 with	Weapon: OICW
RanNum 3 =	11149			Sight Box	
RanNum 4 =	93953	-4			
RanNum 5 =	29983	18	1.17°×		
RanNum 6 =	34972	Y			
t =	1.478	<u>ب</u>			

. e

3 23 3

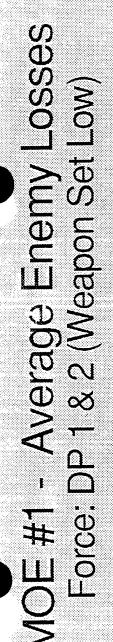
3.

i1

3

p' *

ł


MOE #1 - Average Enemy Losses

ż

			RandNumt i	RandNum2	RandNum3 F	andNum4	
			1693	89525	11149	93953	
DP	Farce	Weapon	Ren 1	Run 2	Run 3	Rựn 4	
1	-	-	23	23	23	23	
2	+	-	6	7	8	10	
3	•	+	23	24	24	23	
4	+	+	22	11	11	10	
Total Effects:	Force		-9	-14.5	-14	-13	
	Weapon		8	2.5	2	0	
	Force & W	eapon	8	1.5	1	0	

Factor 1:	Force	Factor 2: Weapon
Mean Effect:	-12.625	Mean Effect: 3.125
Variance: Half Length:	6.229167 1.844418	Variance: 11.72917 Half Length: 2.530918
Upper Bound:	-10.7806	Upper Bound: 5.655918
Lower Bound:	-14.4694	Lower Bound: 0.594082
Significant	Yes	Significant Yes

Force & Weapon		
Mean Effect:	2.625	
Variance:	13.22917	
Half Length:	2.687885	
Upper Bound:	5.312885	
Lower Bound:	-0.06288	
Significant	No	

X

Printed at Government expense for x35143d3 930507 (05:21

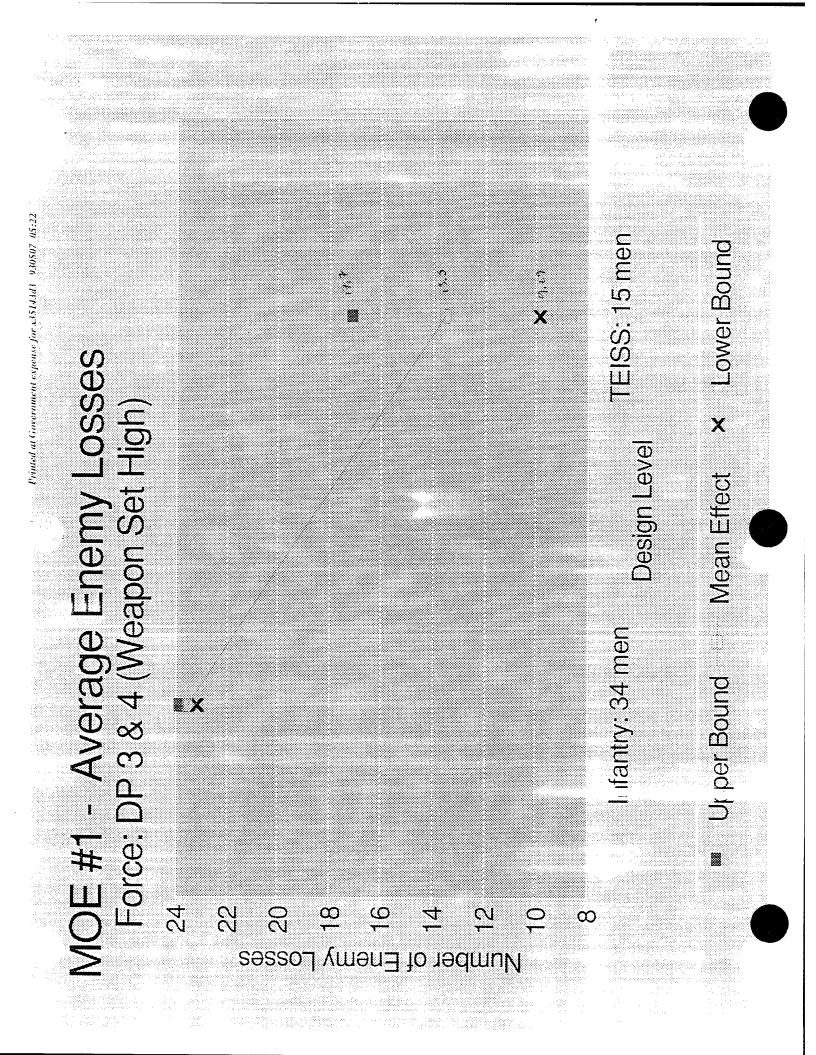
o, w d d Enemy Losses 2 2 2 2 2 2 2 2 2 2 2 2

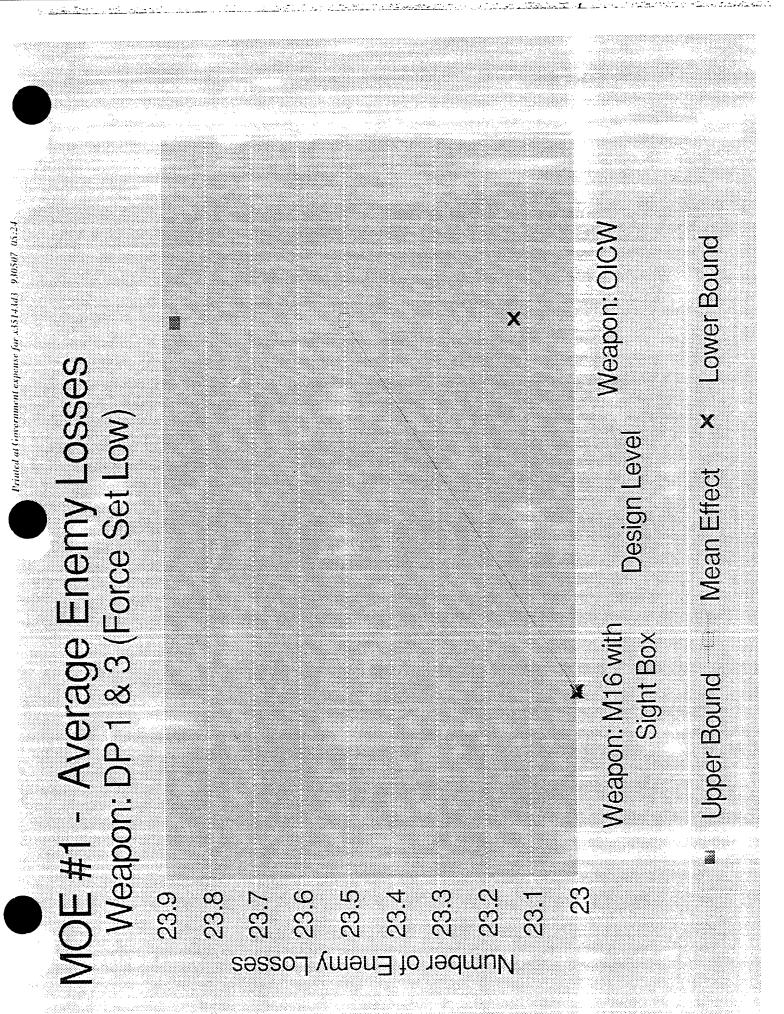
TEISS: 15 men

Design Level

nfantry: 34 men

Х


Lower Bound


X

Mean Effect

Jpper Bound

.

MOE #1 - Average Enemy Losses Weapon: DP 2 & 4 (Force Set High)

<u>8</u>

9

4

#

Printed at Government expense far x35143d3 930507 05:25

Number of Enemy Losses

<u>2</u>

 $\frac{1}{2}$

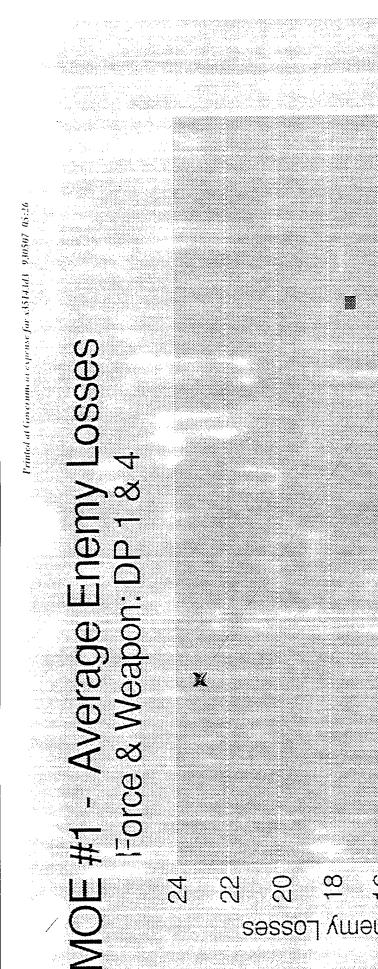
Lower Bound X Mean Effect Upper Bound

*

Х

Weapon: OICW

Design Level


Weapon: M16 with Sight Box

X

Ô

 ∞

*




X

$\frac{1}{2}$ 10 <u>N</u> 0 20 4 22 24 Number of Enemy Losses

Enclosure 5

MOE Analysis for Detection Ratio

ent expense for x45143d8 [93050 [0532]

Printel at G

M

Х

#

ထဲ

Detection Ratio

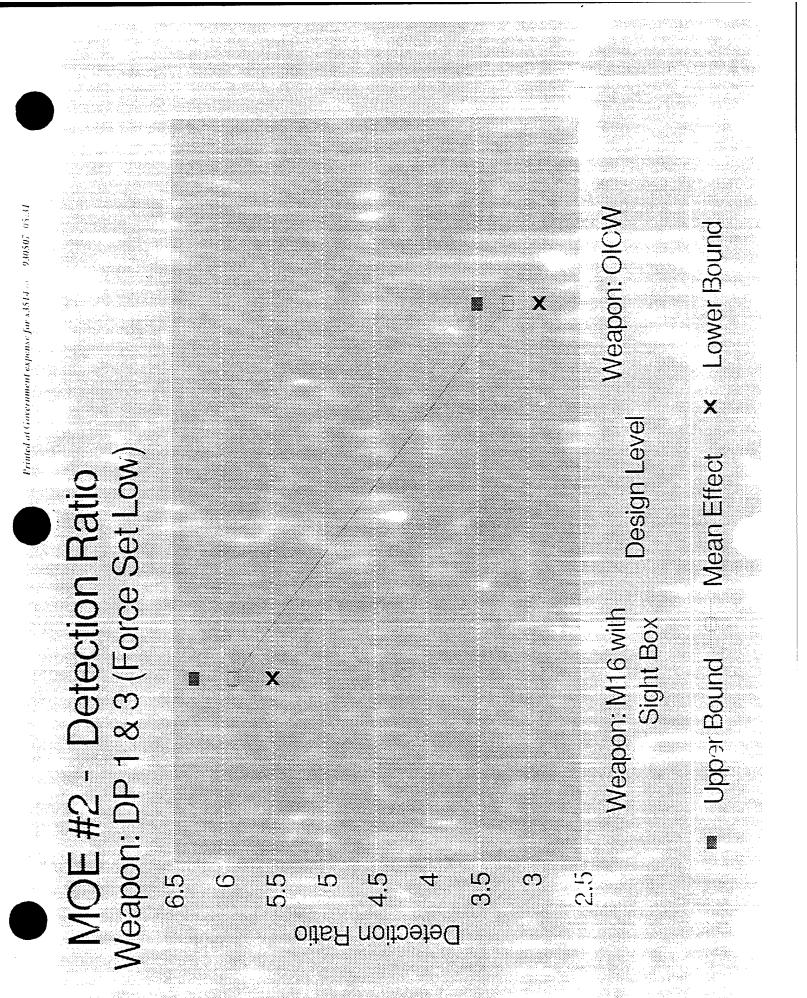
Weapon⁻ OICW

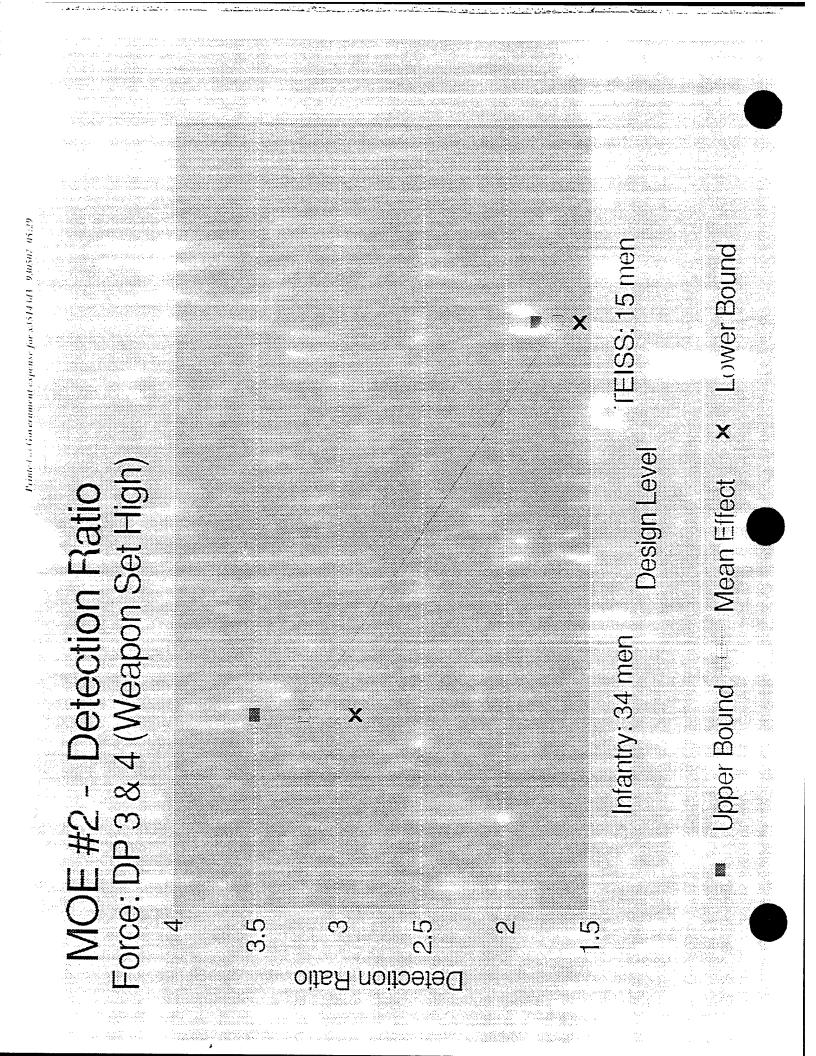
Design Level

Weapon: M16 with

<u></u>

X


Sight Box


Lower Bound

X

Mean Effect

Jpper Bound

-ower Bounc

X

Constants	1. 181 (S), 1		Low Level	High Level
k =	2	Factor 1: Force	Infantry: 34 men	TEISS: 17 men
p =	1			
RanNum 1 =	1693			
RanNum 2 =	89525	Factor 2: Weapon	Weapon: M16 with	Weapon: OICW
RanNum 3 =	11149		Sight Box	
RanNum 4 =	93953	· · · ·		
RanNum 5 =	29983			
RanNum 6 =	34972			
t =	1.478			
n =	4			

ann a bha ann a an 1966 an chailte an tharachtar ann ann ann an tharachtar an tharachtar an chairte an chairte

-

MOE #2 - Detection Ratio

			RandNumt 1693	RandNum2	RandNum3 11149	RandNum4 93953	
DP	Farce	Weapon	Bun 1	ି ଲିଜ ୧	Run 3	Run 4	
1	-	-	5.13	5.78	6.05	E.51	
2	+	-	1.24	1.17	1.54	1.68	
3	-	+	2.86	3.14	2.91	3.89	
4	+	+	1.45	1.64	1.93	1,77	
Total Effects:	Force		-2.65	-3.055	-2.745	-3.51	
	Weapon		-1.03	-1.085	-1.375	-1.3	
I	Force & W	/eapon	1.24	1.555	1.765	1.39	

Factor 1:	Force	Factor 2: Weapon
Mean Effect:	-2.99	Mean Effect: -1.1975
Variance: Half Length:	0.1 50083 0.286293	Variance: 0.027575 Half Length: 0.122716
Upper Bound:	-2.70371	Upper Bound: -1.07478
Lower Bound:	-3.27629	Lower Bound: -1.32022
Sianificant	Yes	Significant Yes

Force & Weapon		
Mean Effect:	1.4875	
Variance:	0.050775	
Half Length:	0.166521	
Upper Bound:	1.654021	
Lower Bound:	1.320979	
Significant	Yes	

AVER	AGE OVER A	ALL RUNS S						
	SYSTEM	MUNITION	ROUNDS			MUNITION USAGE		
		·						"60.28
					"undef" "undef"		"undef" "undef"	
INDI	VIDUAL RUN	N STATISTI	CS"					
RUN"		 HC "	2	 0	"undef"	100.0%	"undef"	"60.32
RUN"	22" Teiss2	HC "	2	0	"undef"	100.0%	"undef"	"60.3(
RUN"	23"	HC "		0	"undef"	100.0%	"undef"	"60.32
	24"			0		100.0%	مہ مہ می شہ مہ میں برس بس ہے	"60.17

.

on and her and the second s

"kpersel: KILLS "RUN 24 SCEN " "BLUE SYSTEMS	PER SYSTEM IARIO 491"	EMPLOYED"	NUMBER EMPLOYED	KILLS PER" JISTEM EMPLOYED"
"ALL BLUE	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	6 7 8 10 7.75	19 19 19 19 19 19 19	0.32 0.37 0.42 0.53 0.41
"=====================================	. 	KILLS BY	NUMBER EMPLOYED	KILLS PER" SYSTEM EMPLOYED"
" "ALL RED " " "	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	0 0 1 1 0.50	28 28 28 28 28 28 28	0.00 0.00 0.04 0.04 0.02
"=====================================	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	60.32 60.30 60.32 60.17 60.27		

"range1: DETECT/FIRE/KILL RANGE HISTOGRAM" ÷ " ALL BLUE" "-VS-ALL RED" "RANGE(KM)in: RUN 21---- Scenario 490 Run:" 21RUN 22---- Scenario 490 Run 0.77 0.88 0.99 1 0.22 0.33 0.44 0.00 0.11 0.55 0.66 "AVERAGE" 2.2 5.2 15.0 1 0.0 0.0 0.5 1.0 11.0 "DETECTS" 0.2 0.0 2.8 0.0 411.2 819.2 19 0.0 0.0 "FIRES" 0.0 0.0 0.0 0.0 0.0 0.0 1.0 6.8 0.0 "KILLS" 0.0 0.0

t

"ser1: SYSTEM "RUN 24 SO "BLUE SYSTEMS	EXCHANGE RAT: CENARIO 491"	10"	KILLS BY	KILLS OF	SER"
"ALL BLUE " "	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"		6 7 8 10 7.75	0 0 1 1 0.50	"undef" "undef" 8.00 10.00 15.50
"RED SYSTEMS		· · · · · · · · · · · · · · · · · · ·	KILLS BY	KILLS OF	SER"
"ALL RED "" "	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"		0 0 1 1 0.50	6 7 8 10 7.75	0.00 0.00 0.12 0.10 0.06
"END GT(MIN) "	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	60.32 60.30 60.32 60.17 60.27			·
					========="

.

:

.

"time1: DI " ALL BLU		FIRE/KI	LL TIME	HISTOG	RAM"					
"-VS- AL	L RED"		C	amia 10	0 Bun . "	אזזם 1 1	22	Scenar	-io 490	Run
"TIME(MIN). 0.00	in: RUI 6.50	13.00	Scen 19.50	26.00	32.50	39.00	45.50	52.00	58.50	65
"AVERAGE" "DETECTS" "FIRES" "KILLS"	9.8 0.0 0.0	0.0 0.0 0.0	0.2 0.0 0.0	2.5 0.0 0.0	$\begin{array}{c} 15.8\\ 0.0\\ 0.0\end{array}$	12.5 0.0 0.0	12.2 0.0 0.0	12.5 0.0 0.0	26.0 1298.2 6.0	1 13

,

RUN 21-	Se	cenario 4	190 Run:'	' 21"RUN ========	22 =====	nario	490 Rui	1:" 22"RU
·	DETI	ECTIONS	DF	& IF FIR	ES		DF & II	FKILLS
TIME (MIN)	MEAN RANGE	AVERAGE DETECTS	MEAN DF RANGE	AVG # DIRECT		MEAN DF RANGE	AVG # DIRECT	MEAN IF RANGE
0.00 6.50 13.00 19.50 26.00 32.50 39.00 45.50 52.00 58.50 65.00	0.99 0.00 1.11 2.26 2.14 2.05 2.04 1.42 1.08 1.03	9.75 0.00 0.25 2.50 15.75 12.50 12.25 12.50 26.00 19.75	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.92\\ 0.91 \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 1296.25\\ 133.00\end{array}$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 1.75\end{array}$	

Π

oven en de service service and and a service service en en en en and her and the service of the service of the

"csul: COMBAT SYSTEM UTILIZATION" "RUN 44---- SCENARIO 490"

· ·

	'csul: COMBAT S 'RUN 44 SCI '			INITIAL STRENGTHS"					
	BLUE SYSTEMS		PERCENT CONTRIB	INDIV SYS	SEL GROUP	GROUP	CSU"		
	'=====================================	RUN" 41 RUN" 42 RUN" 43 RUN" 43 RUN" 44 AVERAGE"	4.54 9.09 27.27 10.00 11.11	0 0 0 0 0	0 0 0 0 0	"undef" "undef" "undef" "undef" "undef" 0.00	"undef" "undef"		
,	"" "TEISSS " "	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE"	50.00 18.18 27.27 40.00 37.04	0 0 0 0 0 0	0 0 0 0 0	"undef" "undef" "undef" "undef" 0.00	"undef" "undef"		
	"" "Teiss2 " "	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE"	45.45 72.73 45.45 50.00 51.85	0 0 0 0 0	0 0 0 0 0	"undef" "undef" "undef" "undef" 0.00	"undef" "undef"		
	" "UH-60 "	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE"	0.00 0.00 0.00 0.00 0.00 0.00	0 0 0 0 0	0 0 0 0 0	"undef" "undef" "undef" "undef" 0.00	"undef" "undef"		
	"			INITIAL STRENGTHS"					
	"RED SYSTEMS		PERCENT CONTRIB	INDIV SYS	SEL GROUP	GROUP	CSU"		
	//						"======"		
	"=====================================	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE"	0.00 "undef" 0.00 0.00 0.00	0 0 0 0 0 0	0 0 0 0 0	"undef" "undef" "undef" "undef" "undef" 0.00	"undef" "undef"		
	11	RUN" 42 RUN" 43 RUN" 44	"undef" 0.00 0.00 0.00 0.00	0 0 0	0 0 0	"undef" "undef" "undef" 0.00 "undef" "undef" "undef"	"undef" "undef" "undef" 0.00 " "undef"		
	" " "" "LT "	RUN" 42 RUN" 43 RUN" 44 AVERAGE" RUN" 41 RUN" 42 RUN" 43 RUN" 44	"undef" 0.00 0.00 0.00 "undef" 0.00 0.00	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	"undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef"	"undef" "undef" 0.00 "undef" "undef" "undef" "undef" "undef" 0.00		
	" "LT " " " " LT MG "	RUN" 42 RUN" 43 RUN" 44 AVERAGE" RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE" RUN" 41 RUN" 42 RUN" 42 RUN" 43 RUN" 43 RUN" 44	"undef" 0.00 0.00 0.00 "undef" 0.00 0.00 0.00 "undef" 0.00 "undef" 0.00 0.00 0.00			"undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef"	"undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef"		
	" "LT "LT MG " "RIFLEM	RUN" 42 RUN" 43 RUN" 44 AVERAGE" RUN" 41 RUN" 42 RUN" 42 RUN" 43 RUN" 44 AVERAGE" RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE" RUN" 41 RUN" 42 RUN" 43 RUN" 43 RUN" 43 RUN" 44	"undef" 0.00 0.00 "undef" 0.00 "undef" 0.00 0.00 "undef" 0.00 0.00 100.00 "undef" 100.00 "undef" 100.00 0.00			"undef" "undef"	"undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef"		

17 17 13	RUN" 4ء RUN" 44 AVERAGE"	$0.00 \\ 0.00 \\ 0.00$	0 0 0	0 0 0	"undef" "undef" 0.00	"undef" "undef" 0.00
"Trk Ut	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE"	0.00 "undef" 0.00 0.00 0.00	0 0 0 0 0 0	0 0 0 0 0	"undef" "undef" "undef" "undef" 0.00	"undef"
"ZODIAC " "	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE"	0.00 "undef" 0.00 0.00 0.00	0 0 0 0 0	0 0 0 0 0	"undef" "undef" "undef" "undef" 0.00	"undef" "undef"

,

.

•

" ALI "-VS- "RUN -	DETECTI DETECTI ALL RED" LUE DETECTS RED 175	RTO 190" RED	DETECTION" RATIO 1.45	END GT" " 60.32
42 43 44 " "AVG"	125 145 147 148.00	76 75 83 	1.64 1.93 1.77 1.67	59.75 60.33 60.30 "

÷

ş

"dfkch1: DETECT/FIRE/KILL TOTALS CHART" " ALL BLUE" "-VS- ALL RED" 1 "RUN 41---- Scenario 490 RUN" 41 42 43 44 "TOTAL" 175.00 125.00 145.00 147.00 "DETECTS" 420.00 350.00 372.00 "FIRES" 393.00 "KILLS" 22 11 11 10

1

"dfktal: DETECT/FIRE/KILL AVERAGES"

" ALL BLUE" "-VS- ALL RED" "RUN 41---- SCENARIO 490"

11						AVERAGE RANGES"				
, 11 11	DETECTS	FIRINGS		KILLS		DETECT	FIRINGS KILLS"		" [LLS"	
"RUN		DF	IF	DF	IF	MINE		DF only	DF	IF EN
" 41	175	 391	0	22	0		1.263	0.845	0.548	0.000 6
42	125	418	2	11	0	Ő	1.469	0.893	0.773	0.000 5
43 44	$\begin{array}{c} 145\\ 147\end{array}$	348 370	2 2	$\begin{array}{c} 11 \\ 10 \end{array}$	0 0	0 0	1.449 1.395	0.889 0.890	0.768 0.771	0.000 6 0.000 6
" TOT	 592	1527	6	 54	0					
AVG	148.0	381.8	1.5	13.5	0.0	0.0	1.385	0.879	0.680	0.000 6
SDV	20.6	29.9	1.0	5.7	0.0	0.0	0.093	0.023	0.118	0.000
"95% TOTT	CONFIDE			(NORMAL 2.4	DISTRI 0.0	BUTION 0.0	N)" 1.202	0.834	0.448	0.000 5
LOW UPP	107.7 188.3	323.2 440.3	0.0 3.4	24.6	0.0	0.0	1.568	0.924	0.912	0.000 6

"fer1 " AL		E EXCHANG	E RATIO"				:	
"-VS-		RED"						
"RUN	41	SCENARIC	100"					
"	RED	BLUE"						
"RUN	LOSSES	LOSSES	LER	INIT RED	INIT BLUE	IFR	FER	EN .
"								
41	22	1	22.00	0	0	0.00	"undef"	60.32
42	11	0	0.00	0	0	0.00	"undef"	59.75
43	11	1	11.00	Ó	0	0.00	"undef"	60.33
44	10	1	10.00	0	0	0.00	"undef"	60.30
"								
"AVG"	13.50	0.75	18.00	0	0	0.00	"undef"	60.17

.

.

\$

AVER	AGE OVER <i>I</i>	ALL RUNS S	ELECTED"					
	SYSTEM	MUNITION	ROUNDS	KILLS	ROUNDS PER KILL	MUNITION USAGE		
								"60.17
	ALL SYS Teiss2	HC " HC "	2.0	0.0	"undef" "undef"	100.0% 100.0%	"undef" "undef"	
INDI	VIDUAL RUN	N STATISTI	==== ==== CS "					
RUN"		HC"	2	0	"undef"	100.0%		"60.32
RUN"	42" Teiss2	HC"	2	0	"undef"	100.0%		"59.75
RUN"	43" Teiss2	HC"	2	0	"undef"	100.0%		"60.33
	44" Teiss2	 НС."	2	0	"undef"	100.0%		"60.30

"kper "RUN " "DLUE		PER SYSTEM ARIO 490"	KILLS BY	NUME	BER JOYED	KILLS PE System E	
"==== "ALL : "	======================================	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE"	22 11 11 10 13.50	- -)	0 0 0 0 0		"undef" "undef" "undef" "undef" "undef"
"====: " "RED	SYSTEMS		KILLS BY	NUME EMPI	ER SER SYED	KILLS PE	
"==== "ALL] "	 RED	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE"	1 (1 1 0.75		0 0 0 0 0		"undef" "undef" "undef" "undef" "undef"
'END (======================================	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE"	60.32 59.75 60.33 60.30 60.17				

,

.

" ALL BLU	L RED"					4.1	4.2	0	÷- 400	Deem
"RANGE(KM)	in: RUN 0.11	41	Scena 0.33	0.44	Run:"	41RUN 0.66	42	0.88	10 490	Run 1
0.00	0.11	0.22	0.00							
"AVERAGE" "DETECTS"	0.5	0.0	0.0	0.5	0.5	1.0	3.2	22.0	25.8	1
"FIRES"	0.0	0.0	0.5	6.5	1.2	0.8	18.8	142.8	198.0	1
"KILLS"	0.0	0.0	0.0	2.8	0.5	0.0	4.2	6.0	0.0	

contraction and the states of the test of the test of the states of the

a a la calendaria de la companya de

.

"serl: SYSTEM "RUN 44 SC "BLUE SYSTEMS	EXCHANGE RAT	10"	KILLS BY	KILLS OF	SER"
"ALL BLUE " " " "	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE"		22 11 11 10 13.50	1 0 1 1 0.75	22.00 "undef" 11.00 10.00 18.00
"RED SYSTEMS			KILLS BY	KILLS OF	SER"
"ALL RED " " "	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE		1 0 1 1 0.75	22 11 11 10 13.50	0.04 0.00 0.09 0.10 0.06
"END GT(MIN) " " "	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE"	60.32 59.75 60.33 60.30 60.17			"

,

·#

. .

" ALL BLU		FIRE/KI	LL TIME	HISTOG	RAM"					
"TIME(MIN)	in• DIII	1 41	Scen	ario 49	0 Runt"	41 RUN	42	Scenar	io 490	Run
						40 00	56.00	64 00	72 00	80
0.00	8.00	16.00	24.00	32.00	40.00	48.00	20.00	64.00	12.00	00
"AVERAGE" "DETECTS" "FIRES" "KILLS"	9.0 0.0 0.0	0.0 0.0 0.0	0.5 0.0 0.0	17.8 0.0 0.0	16.2 0.0 0.0	$14.2 \\ 0.0 \\ 0.0$	22.5 83.2 5.2	67.8 300.5 8.2	0.0 0.0 0.0	

.

"time2: D " ALL BLU		FIRE/KII	LL TIME	HISTOGE	RAM"						
"-VS- ALL RED" "TIME(MIN)in: RUN 41 Scenario 490 Run:" 41RUN 42 Scenario 490											
	in: RU	v 41	Scena	ario 490) Run:"	41RUN	42	Scenar			
0.00	6.50	13.00	19.50	26.00	32.50	39.00	45.50	52.00	20.20		
"AVERAGE" "DETECTS" "FIRES" "KILLS"	9.0 0.0 0.0	0.0 0.0 0.0	0.2 0.0 0.0	2.5 0.0 0.0	16.0 0.0 0.0	13.2 0.0 0.0	$12.3 \\ 0.0 \\ 0.0$	14.8 0.0 0.0	58.8 338.5 12.0	2 4	

,

\$

	time_rn ALL B -VS- RUN 41-	LUE"	ייר	ANGE VS D 190 Run:"		42	Scenario	490 Rur	1:" 42"RUN	1 43
"		DETH	ECTIONS	 DF	& IF FI	RES		DF & II	FKILLS	
11 11 11	TIME (MIN)	MEAN RANGE	AVERAGE DETECTS		AVG # DIRECT		MEAN DF RANGE	AVG # DIRECT	MEAN IF RANGE	AV IN
".	0.00 6.50 13.00 19.50 26.00 32.50 39.00 45.50 52.00 58.50 65.00	0.95 0.00 1.11 2.36 2.14 2.05 1.95 1.26 1.03 1.19	9.00 0.00 0.25 2.50 16.00 13.25 12.75 14.75 58.75 20.75	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 336.50\\ 45.25\end{array}$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.00 1.50	$\begin{array}{c} 0.00\\$	

.

.

"RUN82 SO "		PERCENT	INITIAL S		PERCENT ()F"
BLUE SYSTEMS		CONTRIB	INDIV SYS	SEL GROUP		CSU
"=====================================	RUN" 12	0.00	0	0	"undef"	
	RUN" 22	30.00	0	0 0	"undef" "undef"	
••	RUN" 32 RUN" 42	0.00	0	0	"undef"	
	RUN" 52	10.00	Ő	ŏ	"undef"	
17	RUN" 62	10.00	Ō	0	"undef"	
17	RUN" 72	0.00	0	0	"undef"	
**	RUN" 82 AVERAGE"	0.00	0 0	0 0	"undef" 0.00	"undef 0.0
"	RUN" 12	80.00	0	0	"undef"	"undef
"TEISSS	RUN 12 RUN 22	40.00	.0	ŏ	"undef"	
**	RUN" 32	50.00	Ő	Ō	"undef"	
"	RUN" 42	60.00	0	0	"undef"	
11	RUN" 52	30.00	0	0	"undef"	
••	RUN" 62	40.00	0	0	"undef"	
11	RUN" 72	60.00	0	0	"undef"	
**	RUN" 82 AVERAGE"	60.00 52.50	0	0 0	"undef" 0.00	"undef 0.0
"					"undef"	
"Teiss2 "	RUN" 12 RUN" 22	20.00 30.00	0	0 0	"undef"	
**	RUN" 32	50.00	Ő	õ	"undef"	
••	RUN" 42	40.00	õ	Õ	"undef"	"undef
"	RUN" 52	60.00	0	0	"undef"	
17	RUN" 62	50.00	0	0	"undef"	
	RUN" 72	40.00	0	0 0	"undef" "undef"	
•	RUN" 82 AVERAGE"	40.00 41.25	0	0 0	0.00	0.0
"			INITIAL S	======= TRENGTHS "		
n 		PERCENT				
"RED SYSTEMS "====================================		CONTRIB	INDIV SYS	SEL GROUP	GROUP	CSU ======
"CMDR	RUN" 12	"undef"	0	0	"undef"	
it :	RUN" 22	0.00	0	0	"undef" "undef"	
		0 00		n – – – – – – – – – – – – – – – – – – –		
17	RUN" 32	0.00 "undef"	0	0		
	RUN" 32 RUN" 42	"undef"	0 0 0	0 0 0	"undef"	"undef
•	RUN" 32		0	0	"undef" "undef" "undef"	"undef "undef "undef
17	RUN" 32 RUN" 42 RUN" 52 RUN" 62 RUN" 72	"undef" 0.00 0.00 "undef"	0 0 0 0	0 0 0 0	"undef" "undef" "undef" "undef"	"undef "undef "undef "undef
и 11 11	RUN" 32 RUN" 42 RUN" 52 RUN" 62 RUN" 72 RUN" 82	"undef" 0.00 0.00 "undef" "undef"	0 0 0 0 0	0 0 0 0	"undef" "undef" "undef" "undef" "undef"	"undef "undef "undef "undef "undef
n n n n n 1 	RUN" 32 RUN" 42 RUN" 52 RUN" 62 RUN" 72 RUN" 82 AVERAGE"	"undef" 0.00 "undef" "undef" 0.00	0 0 0 0 0	0 0 0 0 0	"undef" "undef" "undef" "undef" "undef" 0.00	"undef "undef "undef "undef "undef 0.0
, , , , ' 'LT	RUN" 32 RUN" 42 RUN" 52 RUN" 62 RUN" 72 RUN" 82 AVERAGE"	"undef" 0.00 "undef" "undef" 0.00 		0 0 0 0 0	"undef" "undef" "undef" "undef" "undef" 0.00 	"undef "undef "undef "undef "undef 0.0 "undef
' ' ' ' ' LT	RUN" 32 RUN" 42 RUN" 52 RUN" 62 RUN" 72 RUN" 82 AVERAGE" RUN" 12 RUN" 22	"undef" 0.00 "undef" "undef" 0.00 "undef" 0.00		0 0 0 0 0 0	"undef" "undef" "undef" "undef" "undef" 0.00 "undef" "undef"	"undef "undef "undef "undef "undef "undef "undef
, , , , , , , ,	RUN" 32 RUN" 42 RUN" 52 RUN" 62 RUN" 72 RUN" 82 AVERAGE"	"undef" 0.00 "undef" "undef" 0.00 "undef" 0.00 0.00		0 0 0 0 0	"undef" "undef" "undef" "undef" "undef" 0.00 	"undef "undef "undef "undef "undef "undef "undef "undef
' ' ' ' ' LT '	RUN" 32 RUN" 42 RUN" 52 RUN" 62 RUN" 72 RUN" 82 AVERAGE" RUN" 12 RUN" 12 RUN" 22 RUN" 32	"undef" 0.00 "undef" "undef" 0.00 "undef" 0.00		0 0 0 0 0 0 0 0 0	"undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef"	"undef "undef "undef "undef "undef "undef "undef "undef "undef "undef
" " " " " LT "	RUN" 32 RUN" 42 RUN" 52 RUN" 52 RUN" 62 RUN" 72 RUN" 82 AVERAGE" RUN" 12 RUN" 12 RUN" 22 RUN" 32 RUN" 42 RUN" 52 RUN" 62	"undef" 0.00 "undef" "undef" 0.00 "undef" 0.00 0.00 "undef" 0.00 0.00 0.00			"undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef"	"undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef
" " " " " " " "	RUN" 32 RUN" 42 RUN" 52 RUN" 52 RUN" 62 RUN" 72 RUN" 82 AVERAGE" RUN" 12 RUN" 22 RUN" 32 RUN" 42 RUN" 52 RUN" 52 RUN" 62 RUN" 72	"undef" 0.00 "undef" "undef" 0.00 "undef" 0.00 "undef" 0.00 "undef" 0.00 "undef"			"undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef"	"undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef
' ' ' ' ' ' ' '	RUN" 32 RUN" 42 RUN" 52 RUN" 52 RUN" 62 RUN" 72 RUN" 82 AVERAGE" RUN" 12 RUN" 12 RUN" 22 RUN" 32 RUN" 42 RUN" 52 RUN" 62	"undef" 0.00 "undef" "undef" 0.00 "undef" 0.00 "undef" 0.00 "undef" "undef" "undef"			"undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef"	"undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef
" " "" " LT "	RUN" 32 RUN" 42 RUN" 52 RUN" 52 RUN" 62 RUN" 72 RUN" 82 AVERAGE" 	"undef" 0.00 "undef" "undef" 0.00 "undef" 0.00 "undef" 0.00 "undef" "undef" "undef" 0.00			"undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef"	"undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef
" " " " " " " " "	RUN" 32 RUN" 42 RUN" 52 RUN" 52 RUN" 62 RUN" 72 RUN" 82 AVERAGE" RUN" 12 RUN" 12 RUN" 22 RUN" 32 RUN" 52 RUN" 52 RUN" 62 RUN" 62 RUN" 72 RUN" 82 AVERAGE"	"undef" 0.00 "undef" "undef" 0.00 "undef" 0.00 "undef" 0.00 "undef" "undef" "undef" "undef" "undef"			"undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef"	"undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef
" "LT " " "	RUN" 32 RUN" 42 RUN" 52 RUN" 52 RUN" 52 RUN" 62 RUN" 72 RUN" 82 AVERAGE" RUN" 12 RUN" 22 RUN" 52 RUN" 52 RUN" 62 RUN" 62 RUN" 72 RUN" 82 AVERAGE"	"undef" 0.00 "undef" "undef" 0.00 "undef" 0.00 "undef" 0.00 "undef" "undef" "undef" 0.00 "undef" "undef" 0.00 "undef" 0.00			"undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef"	"undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef
LT LT LT	RUN" 32 RUN" 42 RUN" 52 RUN" 52 RUN" 62 RUN" 72 RUN" 82 AVERAGE" RUN" 12 RUN" 12 RUN" 22 RUN" 32 RUN" 52 RUN" 52 RUN" 62 RUN" 62 RUN" 72 RUN" 82 AVERAGE"	"undef" 0.00 "undef" "undef" 0.00 "undef" 0.00 "undef" 0.00 "undef" "undef" "undef" "undef" "undef"			"undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef"	"undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef
" "LT " " " "LT MG	RUN" 32 RUN" 42 RUN" 52 RUN" 52 RUN" 52 RUN" 72 RUN" 82 AVERAGE" RUN" 12 RUN" 22 RUN" 32 RUN" 52 RUN" 52 RUN" 62 RUN" 72 RUN" 82 AVERAGE" RUN" 12 RUN" 12 RUN" 12 RUN" 22 RUN" 32	"undef" 0.00 "undef" "undef" "undef" 0.00 "undef" 0.00 "undef" "undef" "undef" "undef" 0.00 "undef" 0.00 "undef" 0.00 "undef" 0.00 "undef" 0.00 "undef" 0.00			"undef" "undef"	"undef "undef
" "LT "LT " "LT MG	RUN" 32 RUN" 42 RUN" 52 RUN" 62 RUN" 72 RUN" 82 AVERAGE" RUN" 12 RUN" 22 RUN" 32 RUN" 42 RUN" 52 RUN" 62 RUN" 62 RUN" 62 RUN" 72 RUN" 82 AVERAGE" RUN" 12 RUN" 12 RUN" 12 RUN" 12 RUN" 22 RUN" 32 RUN" 42	"undef" 0.00 "undef" "undef" 0.00 "undef" 0.00 "undef" 0.00 "undef" "undef" 0.00 "undef" "undef" 0.00 "undef" 0.00 "undef" 0.00 "undef"			"undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef" "undef"	"undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef "undef

11,

"-VS-	L BLUE" ALL RED"	ON RATIO' RIO 489" RED DETECTS		DETECTION" RATIO	END GT"
12 22 32 42 52 62 72 82	40 46 40 37 43 39 30 34		13 15 10 10 17 12 9 9	3.08 3.07 4.00 3.70 2.53 3.25 3.33 3.78	28.00 29.50 25.52 23.73 25.43 29.42 23.90 0.00
"AVG"	38.62		11.88	3.25	23.19

.

" ALL BLU	L RED"	IRE/KILL cio 489 1		CHART"	:			
1.01.22	12	22	32	42	52	62	72	82
"TOTAL" "DETECTS" "FIRES" "KILLS"	40.00 17.00 10	46.00 31.00 10	40.00 23.00 10	37.00 25.00 10	43.00 21.00 10	39.00 29.00 10	30.00 27.00 10	$34.00 \\ 4.00 \\ 10$

·

.

"csul: COMBAT SYSTEM UTILIZATION" "RUN 14---- SCENARIO 490"

.

میں در اور میں ہور ہوتا ہے۔ پیکس تری اور اور اور میں در اور

•

, ,	'RUN 14 SCI '	ENARIO 490		INITIAL S			
	BLUE SYSTEMS		PERCENT CONTRIB	INDIV SYS	SEL GROUP	PERCENT OF GROUP	CSU"
, , , ,	'=====================================	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	21.74 17.39 17.39 4.54 15.38	6 6 6 6 6 6	36 36 36 36 36 36 36	16.67 16.67 16.67 16.67 16.67	1.30 1.04 1.04 0.27 0.92
,	'CSOL_L	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	4.35 4.35 8.70 4.54 5.49	2 2 2 2 2 2	36 36 36 36 36	5.56 5.56 5.56 5.56 5.56	0.78 0.78 1.56 0.82 0.99
•	'CSOL_M	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	13.04 13.04 21.74 13.64 15.38	2 2 2 2 2 2 2	36 36 36 36 36 36	5.56 5.56 5.56 5.56 5.56 5.56	2.35 2.35 3.91 2.45 2.76
_	"CSOL_R	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	56.52 56.52 39.13 63.64 53.85	16 16 16 16 16 16	36 36 36 36 36 36	$\begin{array}{r} 44.44 \\ 44.44 \\ 44.44 \\ 44.44 \\ 44.44 \\ 44.44 \\ 44.44 \end{array}$	1.27 1.27 0.88 1.43 1.21
	"CSOL_S "	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	4.35 8.70 13.04 13.64 9.89	6 6 6 6 6	36 36 36 36 36 36	16.67 16.67 16.67 16.67 16.67	0.26 0.52 0.78 0.82 0.60
	" "UH-60 "	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	0.00 0.00 0.00 0.00 0.00	4 4 4 4 4 4	36 36 36 36 36 36	$11.11 \\ 11.1$	0.00 0.00 0.00 0.00 0.00
	" " "	===========		INITIAL S	TRENGTHS"		
	" "RED SYSTEMS "====================================		PERCENT CONTRIB	INDIV SYS		PERCENT OF GROUP	CSU"
	 "CMDR " "	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	0.00 0.00 "undef" "undef" 0.00	2 2 2 2 2 2	28 28 28 28 28 28		0.00 0.00 'undef" 'undef" 0.00
	" "LT " " "		0.00 0.00 "undef" "undef" 0.00	8 8 8 8 8 8	28 28 28 28 28 28 28	28.57 28.57 28.57 28.57 28.57 28.57	0.00 "undef"
	" "LT MG "	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"		0 0 0 0 0	28 28 28 28 28 28 28	0.00	'undef" 'undef" 'undef" 'undef" 0.00
	"RIFLEM	RUN" 11 RUN" 12	100.00 0.00	11 11	28 28	39.28 39.28	2.54 0.00

n n n	RUN" 13 RUN" 14 AVERAGE"	"undef" "undef" 50.00	11 11 11	28 28 28	39.28 39.28 39.28	"undef" "undef" 0.64
"SVD " " " "	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	0.00 100.00 "undef" "undef" 50.00	4 4 4 4 4 4	28 28 28 28 28 28 28	14.28 14.28 14.28 14.28 14.28 14.28	
"Trk " " " "	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	0.00 0.00 "undef" "undef" 0.00	2 2 2 2 2 2 2 2	28 28 28 28 28 28 28	7.14 7.14 7.14 7.14 7.14 7.14	
"Trk Ut " " " "	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	0.00 0.00 "undef" "undef" 0.00	0 0 0 0 0	28 28 28 28 28 28 28	0.00 0.00 0.00 0.00 0.00	"undef" "undef" "undef" "undef" 0.00
"ZOĐIAC " " " "	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	0.00 0.00 "undef" "undef" 0.00	1 1 1 1 1	28 28 28 28 28 28 28	3.57 3.57 3.57 3.57 3.57 3.57	0.00 0.00 "undef" "undef" 0.00

Enclosure 6

MOE Analysis for 1/(Friendly rounds fired/ Enemy Killed / Friendly systems involved)

MOE #3 - 1 / (Friendly Rounds / Enemy Killed / Friendly Systems)

Constants ^{or} 19	unaippen, com		Low Level	High Level
k =	2	Factor 1: Force	Infantry: 34 men	TEISS: 17 men
D =	1			
RanNum 1 =	1693			
PanNum 2 =	89525	Factor 2: Weapon	Weapon: M16 with	Weapon: CICW
RanNum 3 =	11149		Sight Box	
RanNum 4 =	93953			
RanNum 5 =	29983			
RanNum 6 =	34972			
t =	1.478			
n =	4			

DP	Force	Weapor	RandNum1 RandNum2 RandNum3 RandNum4 1633 89525 11149 93953 3 Ron 4 Run 2 Run 3 Run 4
1	•	-	1.5546719682 2.031169 2.010283 1.496
2	+	-	0.0699588477 0.081675 0.093858 0.124908
3	•	+	1.6638297872 1.902098 1.508318 1.464419
4	+	+	0.951653944 0.445238 0.534286 0.456989
Total Effects:	Force		-1.098444482 -1.70318 -1.44523 -1.18926
	Weapon		0.4954264577 0.117246 -0.03077 0.15025
	Force & W	eapon	0.3862686386 0.246317 0.471196 0.181831

Factor 1:	Force	Factor 2: Weapon
Mean Effect:	-1.35903	Mean Effect: 0.183039
Variance:	0.074198	Variance: 0.049568
Half Length:	0.201298	Half Length: 0.16453
Upper Bound:	-1.15773	Upper Bound: 0.347568
Lower Bound:	-1.56033	Lower Bound: 0.018509
Significant	Yes	Significant Yes

Force & Weapon		
Mean Effect:	0.321403	
Variance:	0.017255	
Half Length:	0.097073	
Upper Bound:	0.418476	
Lower Bound:	0.224331	
Significant	Yes	

Printed at Government expense for x3314348 - 930507 - 05:37

MOE #3 - 1 / (Friendly Rounds / Enemy Killed / Force: DP 3 & 4 (Weapon Set High)

Х

1 / (FrHd/EnKL/#Fr)

FEISS: 15 mer

Design Level

Infantry: 34 men

X

Lower Bound

X

Mean Effect

Jpper Bound 👘

Printed at Government expense for x3514.448 9302 05.36

OE #3 - 1 / (Friendly Rounds / Enemy Killed Force: DP 1 & 2 (Weapon Set Low)

X

1

-ower Bound

Х

ರ

Mean Eff

lpper Bound

y ag

EISS: 15 men

Design Level

nfantry: 34 men

X

MOE #3 - 1 / (I ⁻riendly Rounds / Enermy Killed / Weapon: DP 2 & 4 (Force Set High)

0.0 0.3 ର. ୦ 0.8 0.5 0.4 0.7 (בנאַמ/בָּטאָר*ו*#בָג) / ו

X

Weapon: OICW

Design Level

Weapon: M16 with

X

Sight Box

Lower Bound

X

Mean Effect

Jpper Bound

Printed at Government expense for x3514343 930577 05238

MOE #3 - 1 / (Friendly Rounds / Enemy Killed Weapon: DP 1 & 3 (Force Set Low)

8

Weapon: OICW

Design Level

Weapon: M16 with

X

Sight Box

X

Lower Bound

x

Mean Effect

Jpper Bound

Printed as viocerument expense for x3S14343 930507 05540

Killed E #3 - 1 / (Friendly Rounds / Enemy I Force & Weapon: DP 1 & 4

N

 ∞

X

0.6

0.4

Weapon: OICW

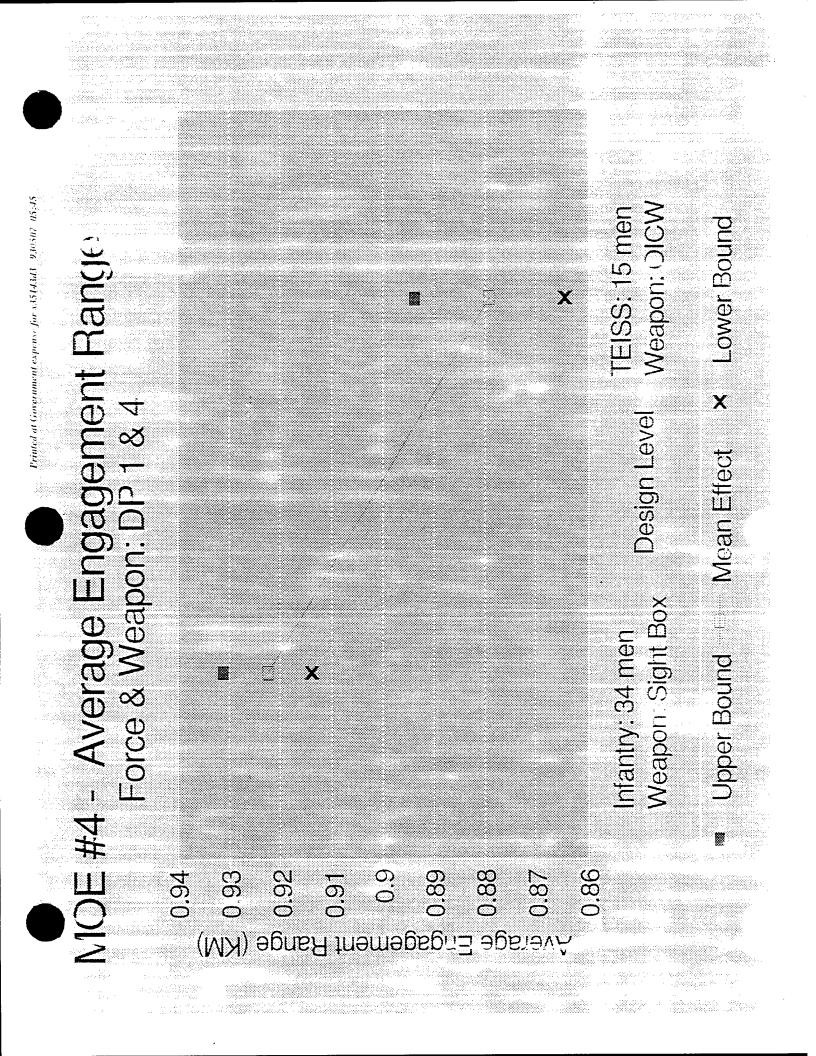
Design Level

Weapon: Sight Box

nfantry: 34 men

-ower 3ound

X


Mean Effect

Jpper Bound

EISS: 15 men

X

Enclosure 7 MOE Analysis for Average Engagement Range

OE #4 - Average Engagement Range Weapon: DP 2 & 4 (Force Set High) 0.93

Average Engagement Range (KM)

X

Weapon: OICW

Design Level

Weapon: M16 with

Sight Box

X

Lower Bound

X

Mean Effect

Jpper Bound

VIOE #4 - Average Engagement Range Weapon: DP 1 & 3 (Force Set Low) 0.94

X

0.0

0.88 0.78 0.92 0.86 0.84 0.8% (MM) apreA increased a equilateration (MM)

0.8

0.76

Weapon: OICW

Jesign Level

Weapon: M16 with Sight Box

X

2

-ower Bound

X

Mean Effect

Jpper Bound

Printed at Government expense for x3514448 - 940507 - 05342

MOE #4 - Average Engagement Range Force: DP 3 & 4 (Weapon Set High)

Average Engagement Range (KM)

2

X

TEISS: 15 men

Design Level

nfantry: 34 men

Х

Lower Bound

X

Mean Effect

Upper Bound

.

Printed at Government expense for x3514343 930507 05541

MOE #4 - Average Engagement Range Force: DP 1 & 2 (Weapon Set Low)

(MX) songe find the mean of th

-ower Bound

X

Mean Effect

Jpper Bound

TEISS: 15 mei

Design Level

nfantry: 34 men

Х

X

للمردية والمستستين والمراجع المستعمر والم

Constants			Low Level	High Level
k =	2	Factor 1: Force	Infantry: 34 men	TEISS: 17 men
p =	1			
RanNum 1 =	1693			
RanNum 2 =	89525	Factor 2: Weapon	Weapon: M16 with	Weapon: OICW
RanNum 3 =	11149		Sight Box	
RanNum 4 =	93953			
RanNum 5 =	29983			
RanNum 6 =	34972	•		
t =	1.478			
n =	4			

MOE #4 - Average Engagement Range

			RandNumt	BandNum2	RandNum3	RandNum4.	
			1693	89525	11149	93953	
DP	Force	Weapon	Bun 1	Run 2	Run 3	Run 4	
1	•		0.912	0.913	0.924	0.941	
2	+	-	0.908	0.917	0.933	0.917	
3	-	+	0.806	0.722	0.818	0.839	
4	+	+	0.845	0.893	0.889	0.89	
Total Effects:	Force		0.0175	0.0875	0.04	0.0135	
	Weapon		-0.0845	-0.1075	-0.075	-0.0645	
	Force & W	eapon	0.0215	0.0835	0.031	0.0375	

Factor 1:	Force	Factor 2: Weapon
Mean Effect:	0.039625	Mean Effect: -0.08288
Variance: Half Length:	0.001155 0.025112	Variance: 0.000336 Half Length: 0.013551
Upper Bound:	0.064737	Upper Bound: -0.06932
Lower Bound:	0.014512	Lower Bound: -0.09643
Significant	Yes	Significant Yes

Force & Weapon		
Mean Effect:	0.043375	
Variance:	0.000759	
Half Length:	0.020355	
Upper Bound:	0.063731	
Lower Bound:	0.023019	
Significant	Yes	

Enclosure 8

MOE Analysis for Number of Detections

:

and a state of the sec

MOE #5 - Number of Detections

Constants	Sec. 2. Star		Low Level	High Level
k =	2	Factor 1: Force	Infantry: 34 men	TEISS: 17 men
p =	1			
RanNum 1 =	1693			
RanNum 2 =	89525	Factor 2: Weapon	Weapon: M16 with	Weapon: OICW
RanNum 3 =	11149		Sight Box	
RanNum 4 =	93953			
RanNum 5 =	29983			
RanNum 6 =	34972			
t =	1.478			
n =	4			

	Weapon Force & We		46 26	14 10	13 12	22.5	
Total Effects:	Force		-220	-259	-237	-237.5	
4	+	+	175	125	145	· 147	
3	•	+	369	374	370	381	
2	+	-	103	101	120	121	
1	•	•	349	370	369	362	
DP	Force	Weapon	HandNum1 H 1693 Bun 1	99525	18-10 Numo :1149 Run 3	93953	

Factor 1:	Force	Factor 2: Weapon
Mean Effect:	-238.375	Mean Effect: 23.875
Variance: Half Length:	255.2292 11.80619	Variance: 235.7292 Half Length: 11.34622
Upper Bound:	-226,569	Upper Bound: 35.22122
Lower Bound:	-250.181	Lower Bound: 12.52878
Significant	Yes	Significant Yes

Force & Weapon		
Mean Effect:	12.875	
Variance:	89.72917	
Half Length:	7.000213	
Upper Bound:	19.87521	
Lower Bound:	5.874787	
Significant	Yes	

N()E #5 - Number of Detections //eapon: DP 2 & 4 (Force Set High) 170

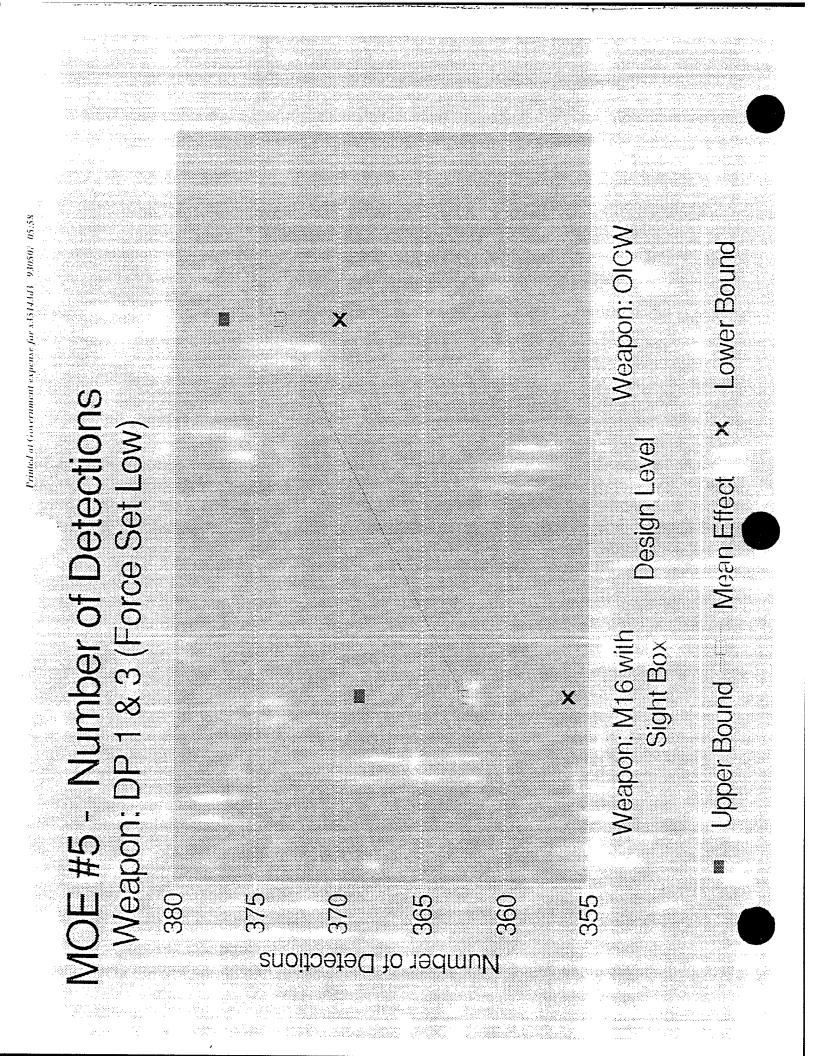
00 140 110 150 130 120 100 Number of Detections

X

Lower Bound X Mean Effect Jpper Bound

*

Sight Box


Design Level


Weapon: M16 with

Х

8

Weapon: OICW

OE #5 - Number of Detections Force: DP 1 & 2 (Weapon Set Low) MOE #5 -400

∎X

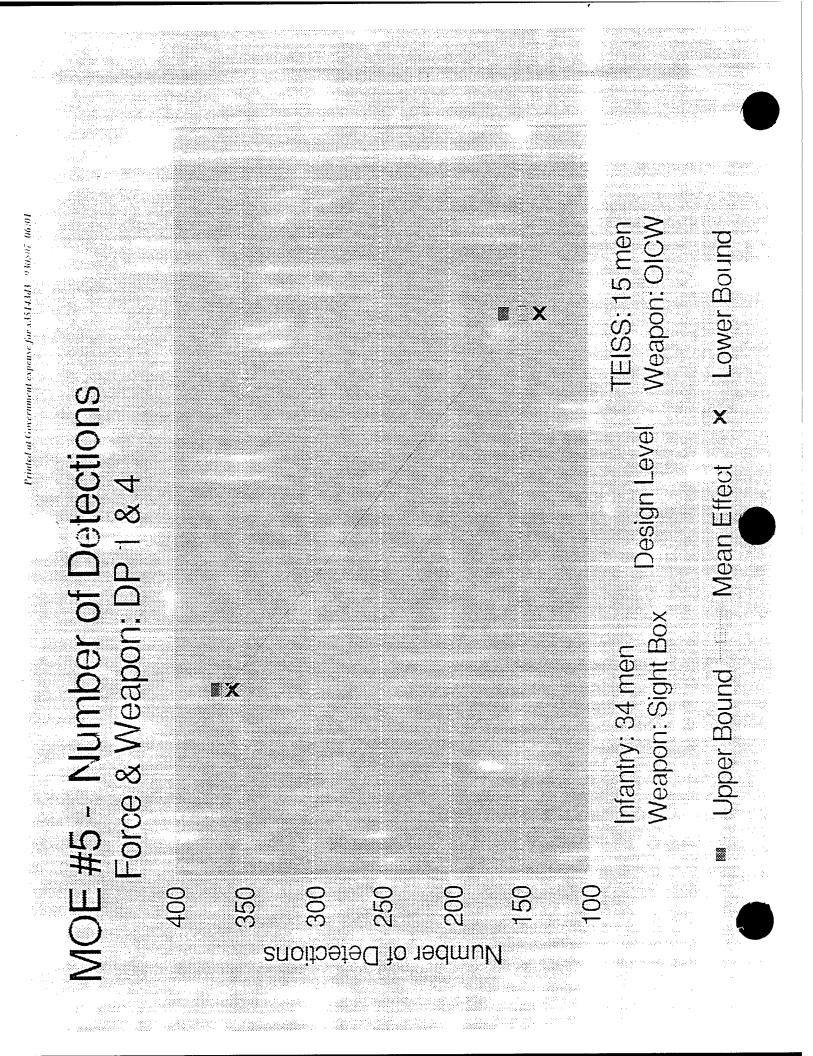
Mumber of Detections

-ower Bound

X

Mean Effect

Jpper Bound


EISS: 15 men

Design Level

nfantry: 34 men

X

MOE Analysis for Average Kill Range

MDE #6 - Average Range to Kil Weapon: DP 2 & 4 (Force Set High)

X

Printed at Ginvernment expense far x4514Ad 230507 06:12

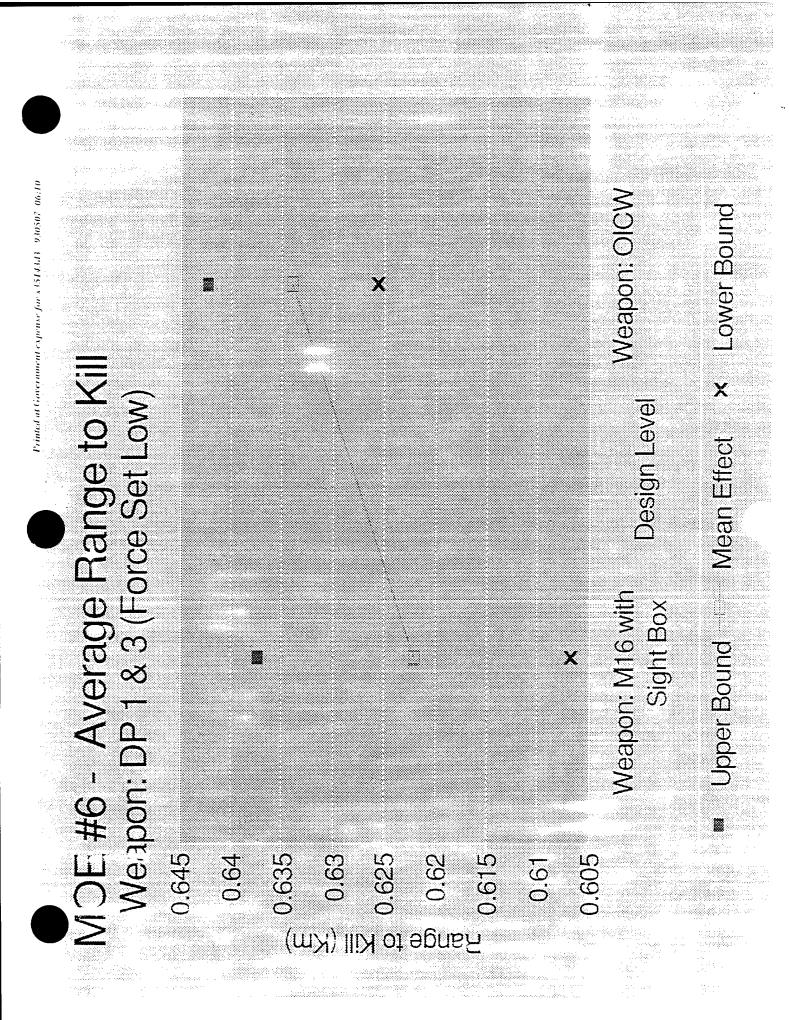
Weapon: OICW **Design Level** Sight Box Weapon: M16 with

Х

Lower Bound

x

Mean Effect


Upper Bound

*

TEISS: 15 men Weapon: OICW Lower Bound X MOE #6 - Average Range to Kil Force & Weapon: DP 1 & 4 X **Design Level** Mean Effect Weapon: Sight Box nfantry: 34 men Jpper Bound Х ~~~ 0.8 0.78 0.76 0.74 0.72 0.72 0.66 0.68 0.62 0.64 0.0

Printed at Government expense for x35143d3 930507 06:12

Range to Kill (Km)

NOE #6 - Average Range to Ki Force: DP 3 & 4 (Weapon Set High)

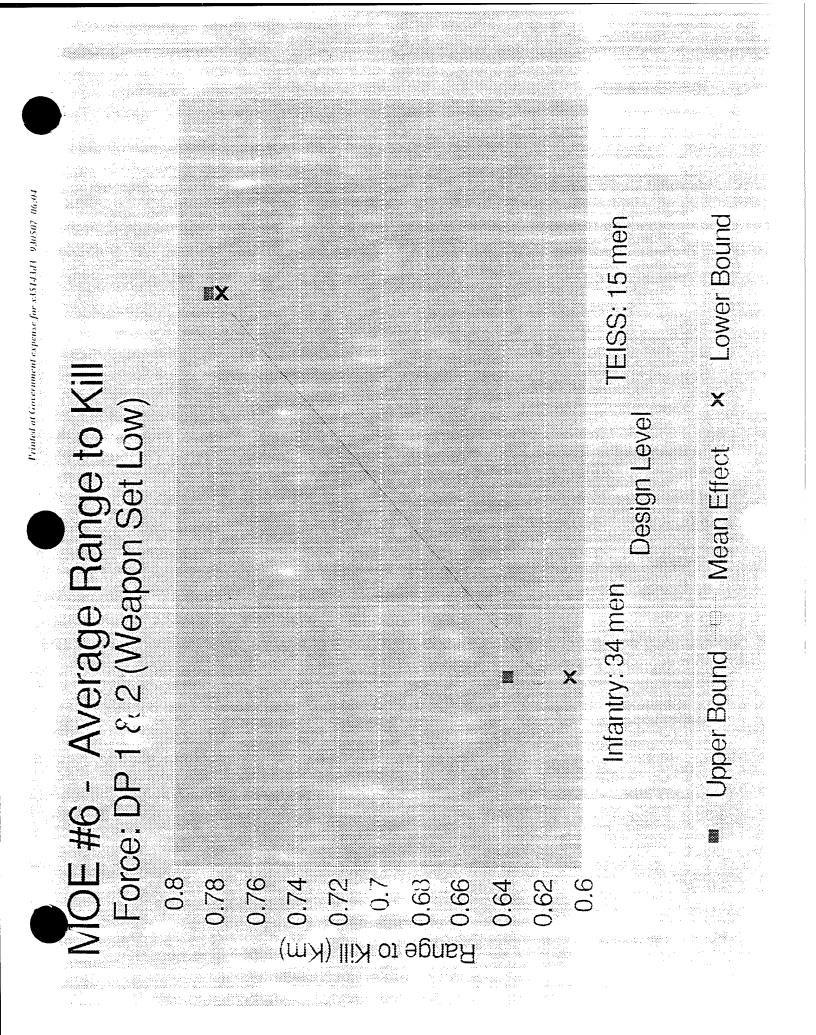
쮋

0.8 0.78 0.76 0.74 0.72 0.3 0.68 0.66 0.64 0.62 Range to Kill (Km)

ITEISS: 15 men Design Level

nfantry: 34 men

X


X

Lower Bound

X

Mean Effect

Jpper Bound

		•		
Constants			Low Level	High Level
k =	2	Factor 1: Force	Infantry: 34 men	TEISS: 17 men
p =	1			
RanNum 1 =	1693			
RanNum 2 =	89525	Factor 2: Weapon	Weapon: M16 with	Weapon: OICW
RanNum 3 =	11149		Sight Box	
RanNum 4 =	93953			
RanNum 5 =	29983			
BanNum 6 =	34972			

MOE #6 - Average Range to Kill

			RandNumt	Bandhum2	RandNum3	RandNum4	
			1693	89525	11149	93953	
DP	Force	Weapon	Bun 1	Run 2	Run 3	Run 4	
1	*	-	0.623	0.63	0.646	0.589	
2	+	-	0.787	0.783	0.777	0.777	
3	-	+	0.628	0.652	0.634	0.622	
4	+	+	0.548	0.773	0.768	0.771	
Total Effects:	Force		0.042	0.137	0.1325	0.1685	
	Weapon		-0.117	0.006	-0.0105	0.0135	
	Force & W	eapon	-0.122	-0.016	0.0015	-0.0195	

Factor 1:	Force	Factor 2: Weapon
Mean Effect:	0.12	Mean Effect: -0.027
Variance: Half Length:	0.002961 0.040209	Variance: 0.003701 Half Length: 0.044955
Upper Bound:	0.160209	Upper Bound: 0.017955
Lower Bound:	0.079791	Lower Bound: -0.07195
Significant	Yes	Significant No

Force & Weapon	
Mean Effect:	-0.039
Variance:	0.003146
Half Length:	0.041451
Upper Bound:	0.002451
Lower Bound:	-0.08045
Significant	No

1.478

4

t = n =

:

-VS-	CTED BLUE SYST ALL RED" 31 SCENAF						
AVER	AGE OVER ALL F	UNS SI		***			
	SYSTEM MUNI	TION	ROUNDS	ROUNDS PER KILL	MUNITION	MUNITION CONTRIB	
				 می هد هم هن خبر بیر _ک و خبر می م			"77.12
INDIV	VIDUAL RUN STA	TISTI	CS"	* = = = = = = = = =			
===== RUN "	31"		g a 10 10 a a 12 a	 			" "77.12
RUN"	32"			 			"77.12
RUN"							"77.12
' 'RUN"	34 "			 			"77.13

n and a she a name watan ta watan a she tang a sanan ta bali tan 1996. Ta watan ta she ta she ta she ta she ta

.

• • •

"kpersel: KILLS PER SYSTEM EMPLOYED" "RUN 490---- SCENARIO 490"

.

.

"RUN 490 SCE "BLUE SYSTEMS	NARIO 490"	KILLS BY	NUMBER EMPLOYED	KILLS PER" SYSTEM EMPLOYED"
"ALL BLUE	RUN" C RUN" C RU	23 24 24 23 23.50	36 36 36 36 36 36	0.67 0.64 0.65
"=====================================		KILLS BY	NUMBER EMPLOYED	KILLS PER" SYSTEM EMPLOYED"
""ALL RED "" "	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	1 2 0 0 0.75	28 28 28 28 28 28 28	0.04 0.07 0.00 0.00 0.00 0.03
"=====================================	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	77.12 77.12 77.12 77.13 77.12		

*

"-VS- "RANG	L BLU	E" L RED" in: RUN	31	· Scena	GE HISTO Ario 490 0.44	Run:"	31RUN 0.66	32 0.77	Scenar 0.88	io 490 0.99	Run 1
"AVEF "DETE "FIRE "KILI	ECTS" ES"	0.2 0.0 0.0	0.5 0.0 0.0	0.5 0.0 0.0	0.8 14.5 2.2	2.5 56.0 7.5	8.0 65.5 4.8	6.2 52.5 4.2	20.0 76.0 1.8	37.5 197.0 1.2	3

فللمحاذ فستعتد والمناجع والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمت

"ser2: SYSTEM H "RUN 490 SCH "BLUE SYSTEMS	EXCHANGE RATI	[0"	KILLS BY	KILLS OF	SER"
"ALL BLUE "	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"		23 24 24 23 23.50	1 2 0 0 0.75	23.00 12.00 "undef" "undef" 31.33
"RED SYSTEMS			KILLS BY	KILLS OF	SER"
"ALL RED	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"		1 2 0 0 0.75	23 24 24 23 23.50	0.04 0.08 0.00 0.00 0.03
"END GT(MIN) " "	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	77.12 77.12 77.12 77.13 77.13 77.12			

"time1: DETECT/FIRE/KILL TIME HISTOGRAM" " ALL BLUE" ÷ "-VS- ALL RED" "TIME(MIN)in: RUN 31---- Scenario 490 Run:" 31RUN 32---- Scenario 490 Run 9.00 18.00 27.00 36.00 45.00 0.00 54.00 63.00 72.00 81.00 90 "AVERAGE" "DETECTS" 1.8 0.0 0.0 0.0 50.8 39.0 116.0 78.5 87.5 "FIRES" 0.0 0.0 0.0 0.0 0.0 0.0 493.5 0.0 0.0 "KILLS" 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.5

UN 31-	Sc =======	cenario 4	490 Run:" === === ===	======================================	========			n:" 32"RUN	=
	DETI	ECTIONS	DF	& IF FIR	ES		DF & II	F KILLS	_
TIME (MIN)	MEAN RANGE	AVERAGE DETECTS	MEAN DF RANGE	AVG # DIRECT		MEAN DF RANGE	AVG # DIRECT	MEAN IF RANGE	2
0.00 9.00 18.00 27.00 36.00 45.00 54.00 63.00 72.00 81.00 90.00	0.41 0.00 0.00 2.17 1.96 1.70 1.11 0.99 0.00	$ \begin{array}{r} 1.75\\ 0.00\\ 0.00\\ 50.75\\ 39.00\\ 116.00\\ 78.50\\ 87.50\\ 0.00\\ \end{array} $	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 493.50\\ 0.00\end{array}$	$\begin{array}{c} 0.00\\$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 23.50\\ 0.00\\ \end{array}$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	

"csul: COMBAT SYSTEM UTILIZATION" "RUN 24---- SCENARIO 491"

"RUN 24 SC	ENARIO 49		INITIAL S	TRENGTHS"		
"BLUE SYSTEMS		PERCENT CONTRIB	INDIV SYS	SEL GROUP	PERCENT O GROUP	CSU"
"" "TEISSL " "	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	33.33 28.57 25.00 20.00 25.81	2 2 2 2 2 2	19 19 19 19 19 19	10.53 10.53 10.53 10.53 10.53 10.53	3.17 2.71 2.38 1.90 2.54
"TEISSS	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	16.67 42.86 62.50 60.00 48.39	8 8 8 8 8 8	19 19 19 19 19 19	42.10 42.10 42.10 42.10 42.10 42.10	0.40 1.02 1.48 1.42 1.08
"Teiss2 "	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	50.00 28.57 12.50 20.00 25.81	7 7 7 7 7 7	19 19 19 19 19 19	36.84 36.84 36.84 36.84 36.84	1.36 0.78 0.34 0.54 0.75
"UH-60 "	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	0.00 0.00 0.00 0.00 0.00	2 2 2 2 2 2 2	19 19 19 19 19 19	10.53 10.53 10.53 10.53 10.53 10.53	0.00 0.00 0.00 0.00 0.00
" " "		PERCENT	INITIAL S	TRENGTHS "	PERCENT O	F"
"RED SYSTEMS		CONTRIB	INDIV SYS	SEL GROUP	GROUP	CSU'"
"CMDR " " "	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	"undef" "undef" 0.00 0.00 0.00	2 2 2 2 2	28 28 28 28 28 28		"undef" "undef" 0.00 0.00 0.00
"LT"""""""""""""""""""""""""""""""""""	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	"undef" "undef" 0.00 0.00 0.00	8 8 8 8 8 8	28 28 28 28 28 28 28	28.57	"undef" "undef" 0.00 0.00 0.00
"LT MG " "	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	"undef" "undef" 0.00 0.00 0.00	0 0 0 0	28 28 28 28 28 28 28		"undef" "undef" "undef" "undef" 0.00
"RIFLEM " "	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	"undef" "undef" 100.00 0.00 50.00	11 11 11 11 11 11	28 28 28 28 28 28 28	39.28 39.28 39.28 39.28 39.28 39.28	"undef" "undef" 2.54 0.00 0.64
"SVD ", "	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	"undef" "undef" 0.00 100.00 50.00	4 4 4 4 4 4	28 28 28 28 28 28 28	14.28 14.28 14.28	"undef" "undef" 0.00 7.00 1.75
"Trk "	RUN" 21 RUN" 22	"undef" "undef"	2 2	28 28	7.14 7.14 7.14	"undef" "undef"

17 17 17	RUN" 23 0.00 RUN" 24 0.00 AVERAGE" 0.00	2 2 2	28 28 28	$\begin{array}{ccccccc} 7.14 & 0.00 \\ 7.14 & 0.00 \\ 7.14 & 0.00 \\ \end{array}$
"Trk Ut	RUN" 21 "undef" RUN" 22 "undef" RUN" 23 0.00 RUN" 24 0.00 AVERAGE" 0.00	0 0 0 0 0	28 20 28 28 28 28	0.00 "undef" 0.00 "undef 0.00 "undef" 0.00 "undef" 0.00 0.00
"ZODIAC	RUN" 21 "undef" RUN" 22 "undef" RUN" 23 0.00 RUN" 24 0.00 AVERAGE" 0.00	1 1 1 1 1 1	28 28 28 28 28 28 28	3.57 "undef" 3.57 "undef" 3.57 0.00 3.57 0.00 3.57 0.00 3.57 0.00

TT

,

" AL "-VS- "RUN :	21 SCENA BLUE		DETECTION" RATIO	END GT"
"RUN	DETECTS RED	DETECTS BLUE	KA110	
" 21 22 23 24	103 101 120 121	83 86 78 72	$ \begin{array}{r} 1.24\\ 1.17\\ 1.54\\ 1.68\end{array} $	60.32 60.30 60.32 60.17
"AVG"	111.25	79.75	1.39	60.27

"dfkch1: DETECT/FIRE/KILL TOTALS CHART" " ALL BLUE" "-VS- ALL RED" "RUN 21---- Scenario 490 RUN" 21 22 23 24 "TOTAL" "DETECTS" 103.00 101.00 120.00 121.00 "FIRES" 1458.00 1449.00 1457.00 1361.00 "KILLS" 6 7 8 10

"dfktal: DETECT/FIRE/KILL AVERAGES" " ALL BLUE" "-VS- ALL RED"

"RUN	21	SCENARIO 490"			AVERAGE RANGES"					
H 11	DETECTS	FIR]	INGS	F	KILLS		DETECT	FIRINGS KILLS"		" "LLS"
"RUN		DF	IF	DF	IF	MINE	DEILOI	DF only	DF	IF EN
" 21 22 23 24	103 101 120 121	$ \begin{array}{r} 1456 \\ 1447 \\ 1455 \\ 1359 \\ \end{array} $	0 2 2 2 2	6 7 8 10	0 0 0 0	0 0 0 0	1.520 1.545 1.494 1.431	0.908 0.917 0.933 0.917	0.787 0.783 0.777 0.777	0.000 6 0.000 6 0.000 6 0.000 6
TOT AVG SDV	445 111.2 10.7	5717 1429.2 47.0	6 1.5 1.0	31 7.8 1.7	0 0.0 0.0	0 0.0 0.0	1.494 0.049	0.919 0.011	0.780	0.000 6
"95% LOW UPP		NCE INTE 1337.1 1521.4	ERVALS 0.0 3.4	(NORMAL 4.4 11.1	DISTRI 0.0 0.0	BUTION 0.0 0.0	N)" 1.398 1.591	0.898 0.940	0.771 0.789	0.000 6 0.000 6

the of the **rest of the state of the**

	L BLUE" ALL R 21	SCENARIO	ł					
" "RUN	RED LUSSES	BLUE" LOSSES	LER	INIT RED	INIT BLUE	IFR	FER	EN
"								
21	б	0	0.00	28	19	1.47	0.00	60.32
22	7	0	0.00	28	19	1.47	0.00	60.30
23	8	1	8.00	28	19	1.47	5.43	60.32
24	10	1	10.00	28	19	1.47	6.78	60.17
"								
"AVG"	7.75	0.50	15.50	28	19	1.47	10.52	60.27

Enclosure 10

MOE Analysis for Percent Contribution

¢

"BLUE SYSTEMS		KILLS BY INDIV SYS	KILLS BY SEL GROUP	PERCENT" CONTRIBUTIO
"TEISSL " " " "	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE"	1 3 1 1.50	22 11 11 10 13.50	4.54 9.09 27.27 10.00 11.11
"TEISSS " " "	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE"	11 2 3 4 5.00	22 11 11 10 13.50	50.00 18.18 27.27 40.00 37.04
"Teiss2 " " "	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE"	10 8 5 5 7.00	22 11 11 10 13.50	45.45 72.73 45.45 50.00 51.85
"UH-60 " " "	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE"	0 0 0 0.00	22 11 11 10 13.50	0.00 0.00 0.00 0.00 0.00 0.00
" "RED SYSTEMS "====================================		KILLS BY INDIV SYS	KILLS BY SEL GROUP	PERCENT" CONTRIBUTION
"CMDR " " "	RUN" 41 RUN" 42 RUN" 43 RUN" 43 AVERAGE"	0 0 0 0.00	1 0 1 1 0.75	0.00 "undef" 0.00 0.00 0.00
"LT " " " "	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE"	000	1 0 1 1 0.75	0.00 "undef" 0.00 0.00 0.00
"LT MG " " " "	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE"	0 0 0 0 0.00	1 0 1 1 0.75	0.00 "undef" 0.00 0.00 0.00
"RIFLEM " ' '	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE"	1 0 1 0 0.50	1 0 1 1 0.75	100.00 "undef" 100.00 0.00 66.67
SVD	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE"	0 0 0 1 0.25	1 0 1 1 0.75	0.00 "undef" 0.00 100.00 33.33
Trk	RUN" 41 RUN" 42 RUN" 43 RUN" 44	0 0 0 0 0	1 0 1 1	0.00 "undef" 0.00 0.00

.

**	AVERAGE"	0.00	0.75	0.00
" "Trk Ut "	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE"	0 0 0 0.00	1 0 1 1 0.75	0.00 "undef" 0.00 0.00 0.00
"ZODIAC "	RUN" 41 RUN" 42 RUN" 43 RUN" 44 AVERAGE"	0 0 0 0.00	1 0 1 1 0.75	0.00 "undef" 0.00 0.00 0.00
"=====================================	RUN" 41 RUN" 42 RUN" 43 RUN" 43 RUN" 44 AVERAGE"	60.32 59.75 60.33 60.30 60.17		
"=====================================			************	

"BLUE SYSTEMS		KILLS BY INDIV SYS	KILLS BY SEL GROUP	PERCENT" CONTRIBUTION
"TEISSL " " "	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	2 2 2 2 2 2 2.00	6 7 8 10 7.75	33.33 28.57 25.00 20.00 25.81
"TEISSS " " " "	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	1 3 5 6 3.75	6 7 8 10 7.75	16.67 42.86 62.50 60.00 48.39
"Teiss2 " " "	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	3 2 1 2 2.00	6 7 8 10 7.75	50.00 28.57 12.50 20.00 25.81
"UH-60 "" "	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	0 0 0 0.00	6 7 8 10 7.75	0.00 0.00 0.00 0.00 0.00 0.00
' 'RED SYSTEMS '====================================	· · · · · · · · · · · · · · · · · · ·	KILLS BY INDIV SYS	KILLS BY SEL GROUP	PERCENT" CONTRIBUTION"
CMDR	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	0 0 0 0.00	0 0 1 1 0.50	"undef" "undef" 0.00 0.00 0.00
LT	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	0 0 0 0.00	0 0 1 1 0.50	"undef" "undef" 0.00 0.00 0.00
LT MG	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	0 0 0 0.00	0 0 1 1 0.50	"undef" "undef" 0.00 0.00 0.00
RIFLEM	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	0 0 1 0 0.25	0 0 1 1 0.50	"undef" "undef" 100.00 0.00 50.00
SVD	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	0 0 0 1 0.25	0 0 1 1 0.50	"undef" "undef" 0.00 100.00 50.00
rrk	RUN" 21 RUN" 22 RUN" 23 RUN" 24	0 0 0 0	0 0 1 1	"undef" "undef" 0.00 0.00

f

11	AVERAGE"	0.00	0.50	0.00
"""""""""""""""""""""""""""""""""	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	0 0 0 0.00	0 0 1 1 0.50	"undef" "undef" 0.00 0.00 0.00
"" "ZODIAC "	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	0 0 0 0.00	0 0 1 1 0.50	"undef" "undef" 0.00 0.00 0.00
"=====================================	RUN" 21 RUN" 22 RUN" 23 RUN" 24 AVERAGE"	60.32 60.30 60.32 60.17 60.27		"

.

"END GT(MIN)

percon1: PERC RUN 14→ SC	ENT CONTRIBU	TION"		
BLUE SYSTEMS		KILLS BY INDIV SYS	KILLS BY SEL GROUP	PERCENT" CONTRIBUTION"
CSOL_2	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	5 4 4 1 3.50	23 23 23 22 22.75	21.74 17.39 17.39 4.54 15.38
	RUN" 14 AVERAGE"	1 1 2 1 1.25	23 23 23 22 22 22.75	4.35 4.35 8.70 4.54 5.49
CSOL_M	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	3 3 5 3 3.50	23 23 23 22 22 22.75	13.04 13.04 21.74 13.64 15.38
CSOL_R	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	13 13 9 14 12.25	23 23 23 22 22 22.75	56.52 56.52 39.13 63.64 53.85
CSOL_S	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	1 2 3 2.25	23 23 23 22 22 22.75	4.35 8.70 13.04 13.64 9.89
UH-60	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	0 0 0 0.00	23 23 23 22 22 22.75	0.00 0.00 0.00 0.00 0.00 0.00
RED SYSTEMS		KILLS BY INDIV SYS	KILLS BY SEL GROUP	PERCENT" CONTRIBUTION"
CMDR	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	0 0 0 0 0.00	1 1 0 0 0.50	0.00 0.00 "undef" "undef" 0.00
LT	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	0 0 0 0 0.00	1 1 0 0 0.50	0.00 0.00 "undef" "undef" 0.00
LT MG	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	0 0 0 0.00	1 1 0 0 0.50	0.00 0.00 "undef" "undef" 0.00
RIFLEM	RUN" 11 RUN" 12 RUN" 13 RUN" 14	1 0 0 0	1 1 0 0	100.00 0.00 "undef" "undef"

END GI	'(MIN)
--------	--------

"	AVERAGE"	0.25	0.50	50.00
"SVD "	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	0 1 0 0 0.25	1 1 0 0 0.50	0.00 100.00 "undef" "undef" 50.00
""" "Trk " "	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	0 0 0 0.00	1 1 0 0 0.50	0.00 0.00 "undef" "undef" 0.00
""" "Trk Ut "	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	0 0 0 0.00	1 1 0 0 0.50	0.00 0.00 "undef" "undef" 0.00
"ZODIAC	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	0 0 0 0.00	1 1 0 0 0.50	0.00 0.00 "undef" "undef" 0.00
"=====================================	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	77.13 77.10 77.12 77.12 77.12 77.12		

and the second second second

" "BLUE SYSTEMS "====================================	CENARIO 490"	KILLS BY INDIV SYS	KILLS BY SEL GROUP	PERCENT" CONTRIBUTION'
`"CSOL_2 " " " " "	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	3 4 0 0 1.75	23 24 24 23 23.50	$ \begin{array}{r} 13.04\\ 16.67\\ 0.00\\ 0.00\\ 7.45 \end{array} $
"CSOL_L " "	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	4 1 0 1.50	23 24 24 23 23.50	17.39 4.17 0.00 4.35 6.38
"CSOL_M " " "	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	4 7 7 6 6.00	23 24 24 23 23.50	17.39 29.17 29.17 26.09 25.53
"CSOL_R " "	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	8 6 12 10 9.00	23 24 24 23 23.50	34.78 25.00 50.00 43.48 38.30
"CSOL_S " 	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	4 6 5 6 5.25	23 24 24 23 23.50	17.39 25.00 20.83 26.09 22.34
"UH-60 " " " "	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	0 0 0 0.00	23 24 24 23 23.50	0.00 0.00 0.00 0.00 0.00
" "RED SYSTEMS "====================================		KILLS BY INDIV SYS	KILLS BY SEL GROUP	PERCENT" CONTRIBUTION"
"CMDR " " "	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	0 0 0 0.00	1 2 0 0 0.75	0.00 0.00 "undef" "undef" 0.00
"LT " " " "	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	0 0 0 0.00	1 2 0 0 0.75	0.00 0.00 "undef" "undef" 0.00
"LT MG " " "	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	0 0 0 0.00	1 2 0 0 0.75	0.00 0.00 "undef" "undef" 0.00
"RIFLEM "	RUN" 31 RUN" 32 RUN" 33 RUN" 34		1 2 0 0	100.00 50.00 "undef" "undef"

\$

11	AVERAGE"	0.50	0.75	66.67
" "SVD "	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	0 1 0 0 0.25	1 2 0 0 0.75	0.00 50.00 "undef" "undef" 33.33
" "Trk " "	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	0 0 0 0.00	1 2 0 0 0.75	0.00 0.00 "undef" "undef" 0.00
" "Trk Ut " " "	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	0 0 0 0 0.00	1 2 0 0 0.75	0.00 0.00 "undef" "undef" 0.00
" "ZODIAC "	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	0 0 0 0.00	1 2 0 0 0.75	0.00 0.00 "undef" "undef" 0.00
"GT(MIN) " " "	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	77.12 77.12 77.12 77.12 77.13 77.12		

"END GT(MIN)

.

\$

Enclosure 11

JEDA Output for Phase II Simulations

		etect1: DETECTION RATIO" ALL BLUE"							
	"-VS-	ALL RED"							
	"RUN	11 SCENA	RIO 490"						
V		BLUE	RED	DETECTION"					
	"RUN	DETECTS RED	DETECTS BLUE	RATIO	END GT"				
	"				"				
	11	349	68	5.13	77.13				
	$\overline{12}$	370	64	5.78	77.10				
	13	369	61	6.05	77.12				
	14	362	55	6.58	77.12				
	"				"				
	"AVG"	362.50	62.00	5.85	77.12				

والمسر المستعدية ويشر والمترج والمترج والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد

......

.

"dfkch1: DETECT/FIRE/KILL TOTALS CHART" " ALL BLUE" "-VS- ALL RED" "RUN 11---- Scenario 490 RUN" 11 12 13 . 13 14 "TOTAL"
 349.00
 370.00

 503.00
 398.00

 23
 23
 369.00 362.00 "DETECTS" "FIRES" 389.00 500.00

23

22

¢

ł

"KILLS"

"dfktal: DETECT/FIRE/KILL AVERAGES"

" ALL BLUE" "-VS- ALL RED" "RUN 11---- SCENARIO 490"

"RUN	11	SCENARI	LU 490				AVERAGE RANGES"				
19	DETECTS	FIR]	INGS	KILLS			DETECT	FIRINGS KILLS"			
"RUN		DF	IF	DF	IF	MINE		DF only	DF	IF EN	
" 11 12 13 14	349 370 369 362	503 398 389 500	0 0 0 0	23 23 23 22	0 0 0 0	0 0 0 0	1.550 1.523 1.542 1.509	0.912 0.913 0.924 0.941	0.623 0.630 0.646 0.589	0.000 7 0.000 7 0.000 7 0.000 7	
TOT AVG SDV	1450 362.5 9.7	1790 447.5 62.5	0.0 0.0	91 22.8 0.5	0 0.0 0.0	0.0	1.531 0.018	0.923 0.014	0.622	0.000 7	
"95% LOW UPP	CONFIDE 343.5 381.5	NCE INTE 325.0 569.9	ERVALS 0.0 0.0	(NORMAL 21.8 23.7	DISTRI 0.0 0.0	BUTIO 0.0 0.0	N)" 1.494 1.567	0.896 0.950	0.575 0.669	0.000 7 0.000 7	

"fer1 " ALI "-VS-		E EXCHANGI RED"	E RATIO"					
"RUN	11	SCENARIO	490"					
	RED	BLUE"						
"RUN	LOSSES	LOSSES	LER	INIT RED	INIT BLUE	IFR	FER	ENI
"								
11	23	1	23.00	28	36	0.78	29.57	77.13
12	23	1	23.00	28	36	0.78	29.57	77.10
13	23	Ō	0.00	28	36	0.78	0.00	77.12
14	22	Ō	0.00	28	36	0.78	0.00	77.12
"								
"AVG"	22.7 5	0.50	15 50	28	36	0.78	58,50	77.12

.

•

"SELE	CTED BLU ALL H	IRECT FIRE R UE SYSTEMS" RED" SCENARIO 49				i.		
"==== "AVER	AGE OVEI	R ALL RUNS S	======= ELECTED"	ı				"
"====: " "	SYSTI	EN MUNITION			ROUNDS PER KILL	MUNITION	MUNITION	14
"								"77.12
		EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	CS"					
"RUN"				:======		*********		"77.13
" "RUN"	12")	,, ong and and and and	, and any any any any any any any any a		"77.10
" "RUN"								"77.12
" "RUN"	14"							"77.12

"kpersel: KILLS "RUN 14 SCE	PER SYSTEM NARIO 490"	EMPLOYED	"		
" "BLUE SYSTEMS "====================================		KILLS B	NUMBER Y EMPLOYE	KILLS PER" D SYSTEM EMP	LOYED"
"ALL BLUE " " " "	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 2 3	6 6 6 6	0.64 0.64 0.64 0.61 0.63
" "RED SYSTEMS "====================================	21 - 22 - 22 - 22 - 24 - 25 - 25 - 25 - 25	KILLS B	NUMBER Y EMPLOYE	KILLS PER" D SYSTEM EMPI	LOYED"
"ALL RED " " " "	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	0.50	1 2 0 2 0 2		0.04 0.04 0.00 0.00 0.02
"END GT(MIN) " " " "==============================	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	77.13 77.10 77.12 77.12 77.12 77.12			

" ALL BL "-VS- A "RANGE (KM	LT. RED"	11	- Scena		Run:"	11RUN 0.66	12 <u></u> -	Scenar 0.88	io 490 0.99	Run 1
"AVERAGE" "DETECTS" "FIRES" "KILLS"	0.2 0.0 0.0	0.5 0.0 0.0	0.5 0.0 0.0	0.5 8.0 2.5	0.5 29.5 7.8	3.8 14.5 4.2	5.0 9.0 4.8	$14.5 \\ 34.8 \\ 1.2$	36.2 169.2 0.8	3 18

,

"ser1: SYSTEM "RUN 14 SO "BLUE SYSTEMS		10"	KILLS BY	KILLS OF	SER"
"ALL BLUE " "	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"		23 23 23 22 22 22.75	1 1 0 0 0.50	23.00 23.00 "undef" "undef" 45.50
"RED SYSTEMS			KILLS BY	KILLS OF	SER"
"ALL RED " " "	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"		1 1 0 0 0.50	23 23 23 23 22 22 22.75	0.04 0.04 0.00 0.00 0.02
"END GT(MIN) " " "	RUN" 11 RUN" 12 RUN" 13 RUN" 14 AVERAGE"	77.13 77.10 77.12 77.12 77.12 77.12			"

۰

·\$

"time1: DETECT/FIRE/KILL TIME HISTOGRAM" " : ALL BLUE" "-VS- ALL RED"										
"TIME(MIN)		N 11	Scen	ario 490	0 Run:"	11RUN	12	Scenar	io 490	Run
0.00	8.00				40.00				72.00	80
"AVERAGE" "DETECTS" "FIRES" "KILLS"	1.8 0.0 0.0	$0.0 \\ 0.0 \\ 0.0$	0.0 0.0 0.0	0.0 0.0 0.0	2.5 0.0 0.0	60.2 0.0 0.0	31.8 0.0 0.0	125.5 0.0 0.0	64.2 0.0 0.0	7 44 2

,

"time rngl: TIME VS RANGE VS DFK" " ALL BLUE" "-VS- ALL RED" "RUN 11 Scenario 490 Run:" 11"RUN 12 Scenario 490 Run:" 12"RUN 12								
ber Der	ECTIONS	DF	& IF FIR	ES		DF & II	FKILLS	
" TIME MEAN " (MIN) RANGE		MEAN DF RANGE	AVG # DIRECT	AVG # INDIR	MEAN DF RANGE	AVG # DIRECT	MEAN IF RANGE	AV IN
$\begin{array}{c} 0.00 & 0.41 \\ 8.00 & 0.00 \\ 16.00 & 0.00 \\ 24.00 & 0.00 \\ 32.00 & 2.21 \\ 40.00 & 2.14 \\ 48.00 & 1.94 \\ 56.00 & 1.65 \\ 64.00 & 1.05 \\ 72.00 & 1.10 \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 2.50\\ 60.25\\ 31.75\\ 125.50\\ 64.25 \end{array}$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	

.

	"csul: COMBAT S "RUN 490 SCH	SYSTEM UTI ENARIO 490	LIZATION"	INITIAL ST	PRENGTHS"		
	" "BLUE SYSTEMS "====================================		PERCENT CONTRIB	INDIV SYS		PERCENT OF GROUP	" CSU" ======"
** <u>-</u>	"CSOL_2 "" "	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	13.0416.670.000.00	6 6 6 6 6	36 36 36 36 36 36	16.67 16.67 16.67 16.67 16.67	0.78 1.00 0.00 0.00 0.44
	"CSOL_L "	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	4.35	2 2 2 2 2 2 2	36 36 36 36 36 36	5.56 5.56 5.56 5.56 5.56	0.75 0.00 0.78
	"CSOL_M "	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	17.39 29.17 29.17 26.09 25.53	2 2 2 2 2 2 2	36 36 36 36 36 36	5.56 5.56 5.56 5.56 5.56 5.56	3.13 5.25 5.25 4.70 4.58
_	"CSOL_R " "	RUN" 32 RUN" 33 RUN" 34	34.78 25.00 50.00 43.48 38.30	16 16 16 16 16 16	36 36 36 36 36 36	$\begin{array}{r} 44.44 \\ 44.44 \\ 44.44 \\ 44.44 \\ 44.44 \\ 44.44 \\ 44.44 \end{array}$	0.56
	"CSOL_S		17.39 25.00 20.83 26.09 22.34	6 6 6 6 6	36 36 36 36 36 36	16.67 16.67 16.67 16.67 16.67	1.04 1.50 1.25 1.56 1.34
	"UH-60 "	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	0.00 0.00 0.00 0.00 0.00 0.00	4 4 4 4 4 4	36 36 36 36 36 36	11.11 11.11 11.11 11.11 11.11 11.11	
	"======================================			INITIAL S	================== TRENGTHS "		"
	"RED SYSTEMS		CONTRIB	INDIV SYS	SEL GROUP	GROUP	CSU"
	"=====================================	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	0.00 0.00 "undef" "undef" 0.00	2 2 2 2 2 2 2	28 28 28 28 28 28 28	7.14	0.00 0.00 undef" undef"
	"LT ". "	RUN" 31 RUN" 32 RUN" 33 RUN" 34 AVERAGE"	0.00 0.00 "undef" "undef"	8 8 8 8 8 8	28 28 28 28 28 28 28	28.57 28.57 28.57 " 28.57 " 28.57 "	undef" undef"
	" "LT MG "	RUN" 34 AVERAGE"	0.00 0.00 "undef" "undef" 0.00	0 0 0 0 0	28 28 28 28 28 28 28	0.00 " 0.00 " 0.00	undef" undef"
	"RIFLEM "	RUN" 31 RUN" 32		11 11	28 28	39.28 39.28	2.54 1.27

11 	RUN" 33 "unde RUN" 34 "unde AVERAGE" 66.	f" 11	28 28 28		"undef" "undef" 0.95
"SVD	RUN" 31 0. RUN" 32 50. RUN" 33 "unde RUN" 34 "unde AVERAGE" 33.	00 4 f" 4 f" 4	28 28 28 28 28 28 28		3.5 "undef" "undef"
"Trk " "	RUN" 31 0. RUN" 32 0. RUN" 33 "unde: RUN" 34 "unde: AVERAGE" 0.0	00 2 E" 2 E" 2	28 28 28 28 28 28	7.14 7.14	0.00 0.00 "undef" "undef" 0.00
"Trk Ut " " "	RUN" 31 0.(RUN" 32 0.(RUN" 33 "under RUN" 34 "under AVERAGE" 0.(0000 E"0 E"0	28 28 28 28 28 28 28	0.00 0.00	"undef" "undef" "undef" "undef" 0.00
"ZODIAC " " " "	RUN" 31 0.0 RUN" 32 0.0 RUN" 33 "undef RUN" 34 "undef AVERAGE" 0.0	00 1 " 1 " 1	28 28 28 28 28 28		0.00

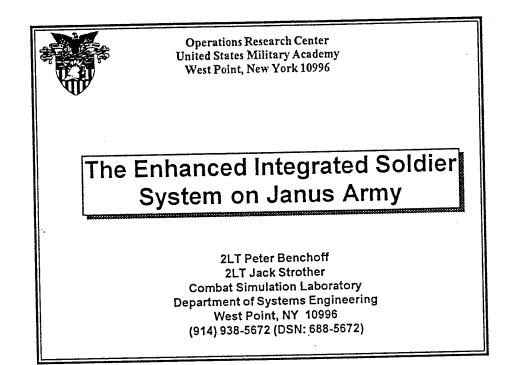
"-VS-	Etl: DETECTI L BLUE" ALL RED" 31 SCENA BLUE DETECTS RED	ON RATIO" RIO 490" RED DETECTS BLUE	DETECTION" RATIO	END GT"
31 32 33 34	369 374 370 381	129 119 127 98	2.86 3.14 2.91 3.89	77.12 77.12 77.12 77.13
" "AVG"	373.50	118.25	3.16	77.12

,

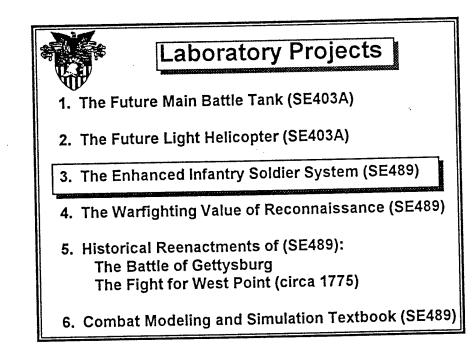
"dfkch1: DETECT/FIRE/KILL TOTALS CHART" " ALL BLUE" "-VS- ALL RED" "RUN 31----- Scenario 490 RUN" 31 32 33 34 "TOTAL" "DETECTS" 369.00 374.00 370.00 381.00 "FIRES" 470.00 429.00 541.00 534.00 "KILLS" 23 24 24 23

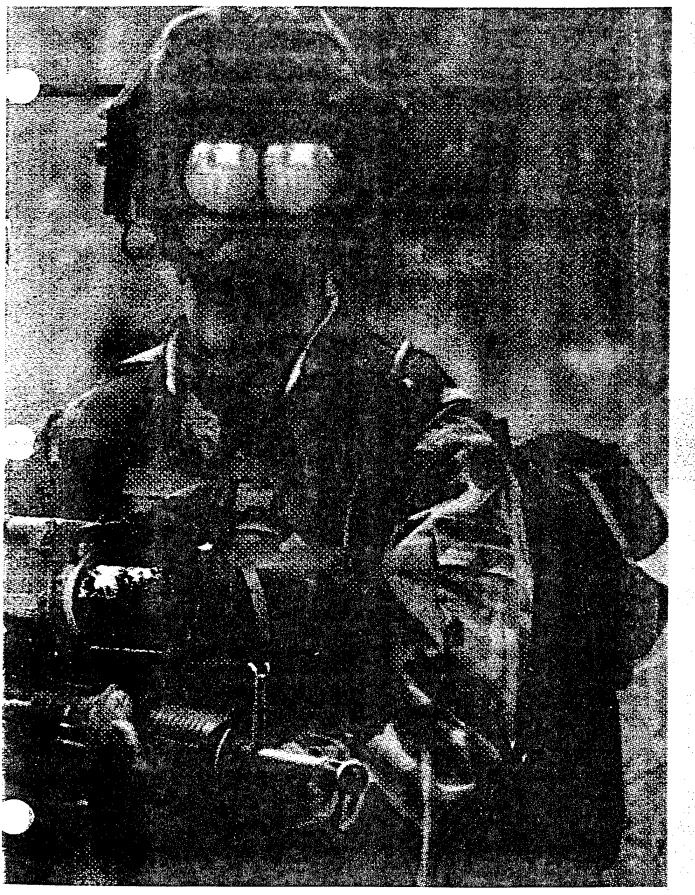
ŧ

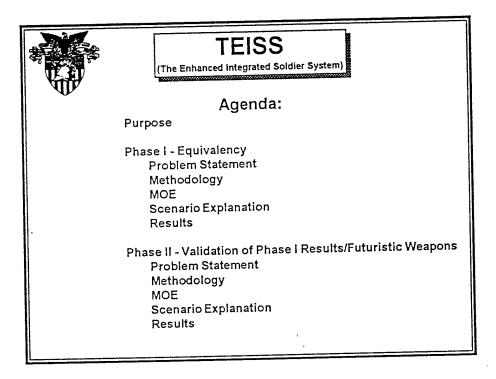
"dfktal: DETECT/FIRE/KILL AVERAGES" " ALL BLUE" "-VS- ALL RED" "RUN 31---- SCENARIO 490"

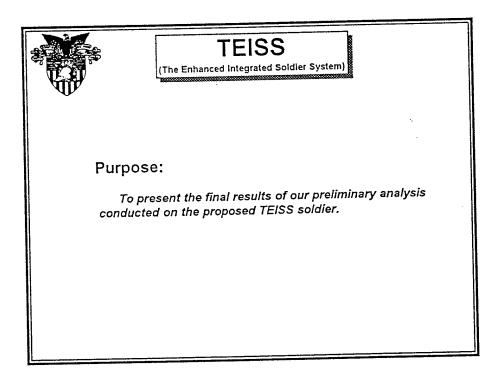

للعقائمة المشغانين فبالقيطيا والمستطالبات إرزا

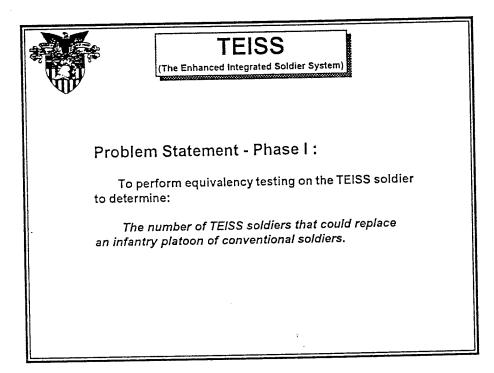
"RUN	21	SCENART	0 490				A	VERAGE RA	ANGES"	
, 11 11	DETECTS	FIRINGS K		ILLS		DETECT	FIRINGS	INGS KILLS"		
"RUN	<u> </u>	DF	IF	DF	IF	MINE	DEIECI	DF only	DF	IF EN
31 32 33 34	369 374 370 381	470 429 541 534	0 0 0 0	23 24 24 23	0 0 0 0	0 0 0 0	1.502 1.488 1.523 1.464	0.806 0.722 0.818 0.839	0.628 0.652 0.634 0.622	$\begin{array}{c} 0.000 & 7 \\ 0.000 & 7 \\ 0.000 & 7 \\ 0.000 & 7 \\ 0.000 & 7 \end{array}$
TOT AVG SDV	1494 373.5 5.4	1974 493.5 53.6	0.0	94 23.5 0.6	0.0	0.0	1.494 0.025	0.800	0.634 0.013	0.000 7
"95% LOW UPP	CONFIDE 362.8 384.2	NCE INTE 388.5 598.5	RVALS 0.0 0.0	(NORMAL 22.4 24.6	DISTRI 0.0 0.0	BUTIO 0.0 0.0	N)" 1.445 1.543	0.699 0.901	0.609 0.659	0.000 7 0.000 7

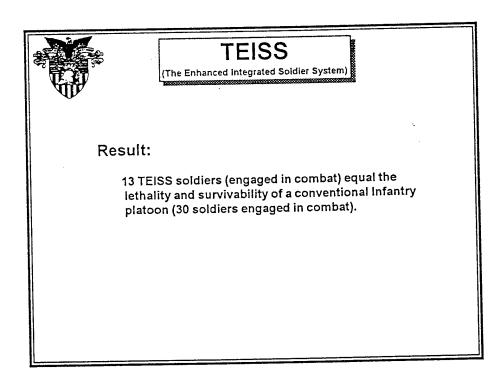

"-VS-	: FORCE L BLUE" ALL F 31	E EXCHANG RED" SCENARIO						
н.	RED	BLUE"						
"RUN	LOSSES	LOSSES	LER	INIT RED	INIT BLUE	IFR	FER	ENI
" 31	23		23.00	28	36	0.78	29.57	77.12
32	23	2	12.00	28	36	0.78	15.43	77.12
33	24	Õ	0.00	28	36	0.78	0.00	77.12
34	23	ŏ	0.00	28	36	0.78	0.00	77.13
"								
"AVG"	23.50	0.75	31.33	28	36	0.78	40.28	77.12


i i

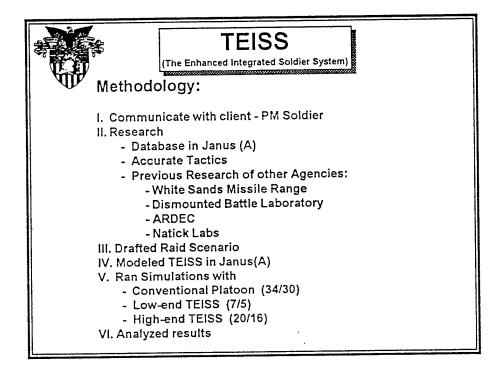

•

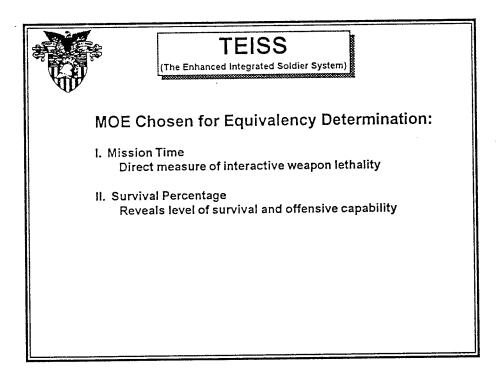


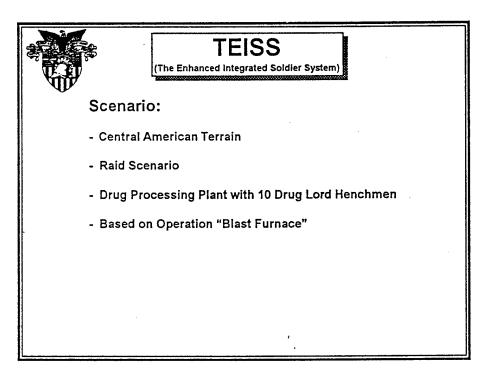




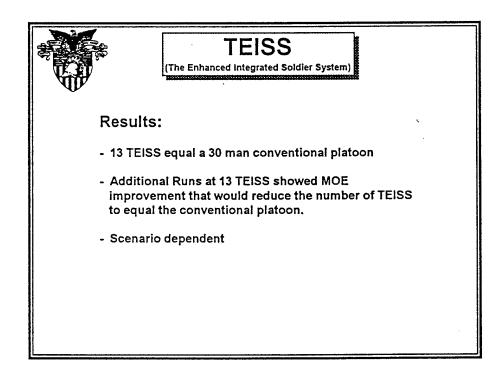
Sec.3

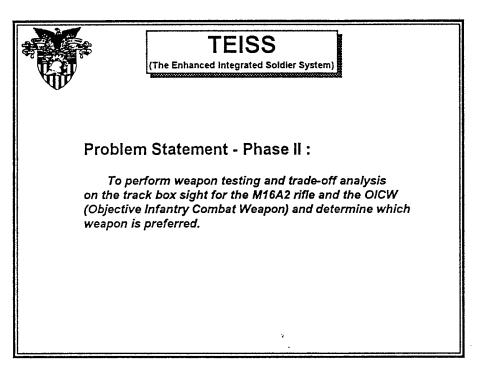


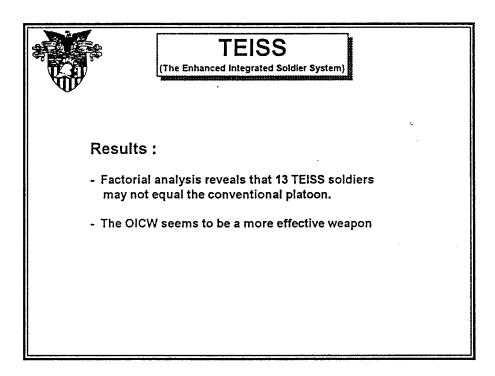

કા વ્યું છું

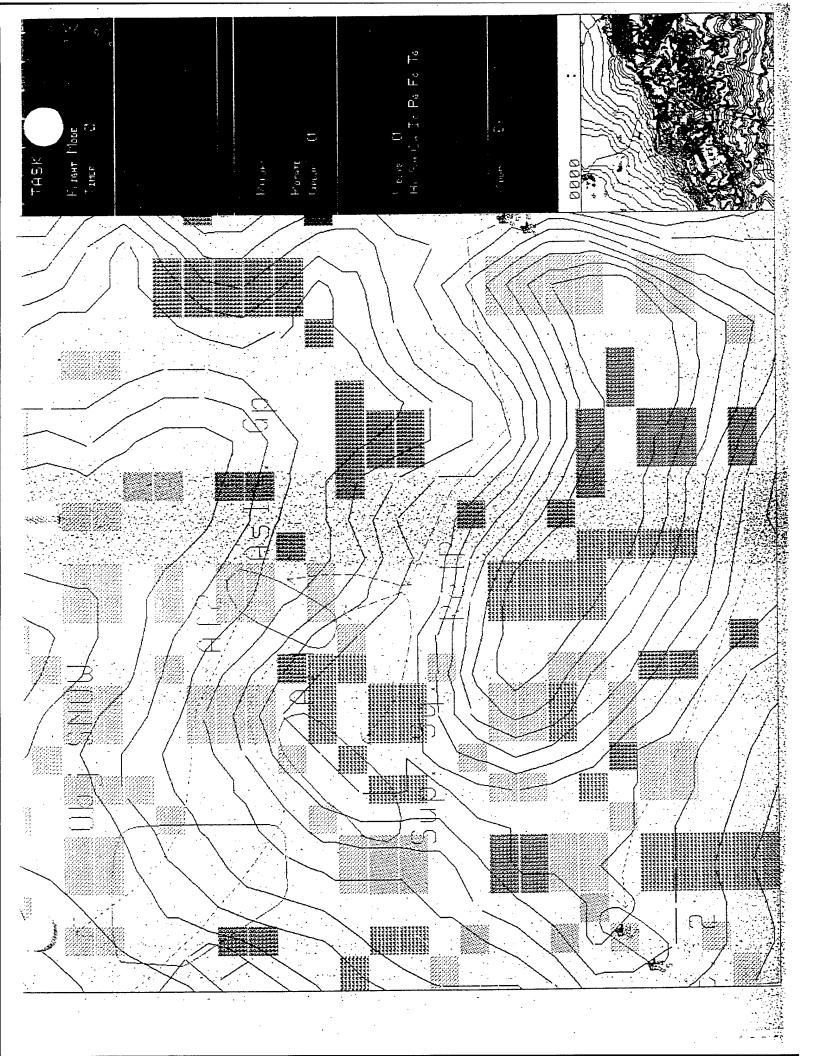


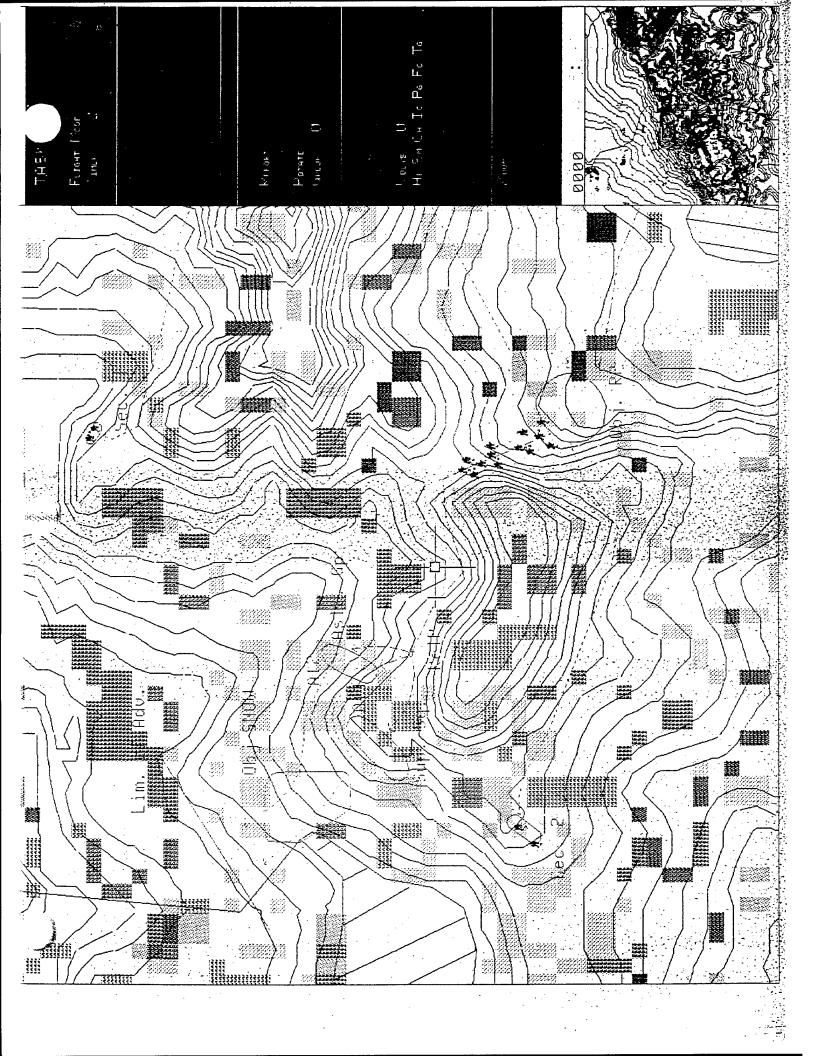
and a second pro-

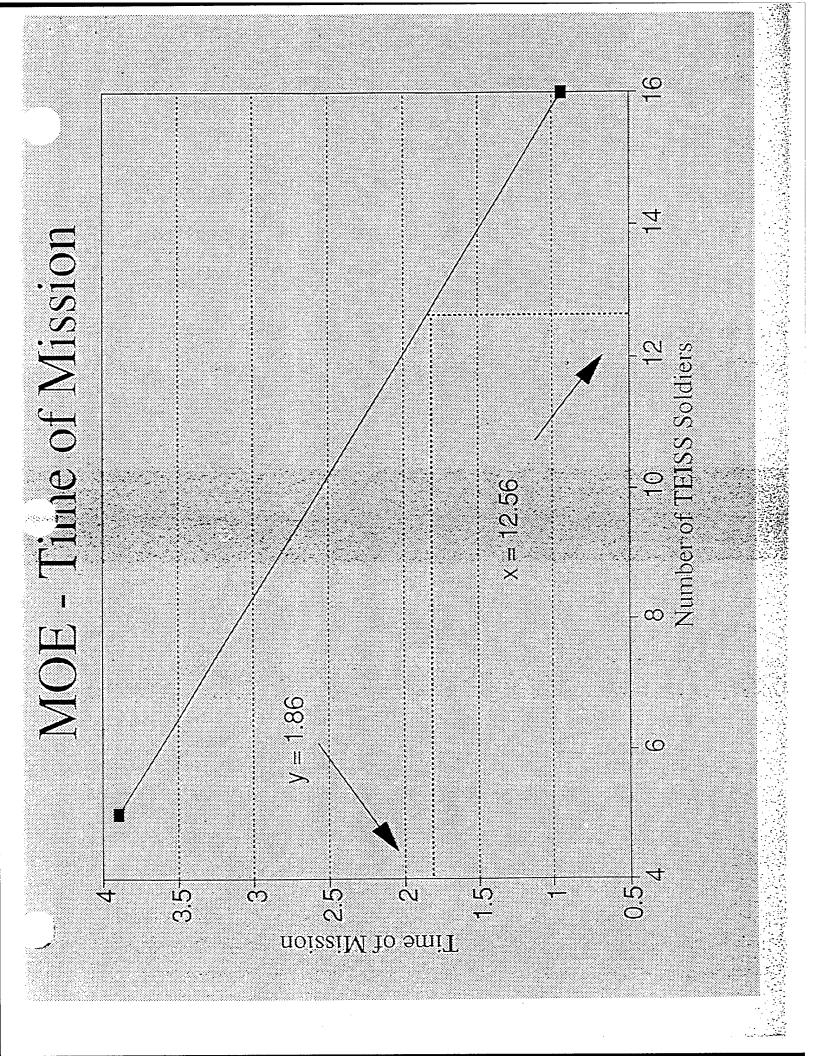


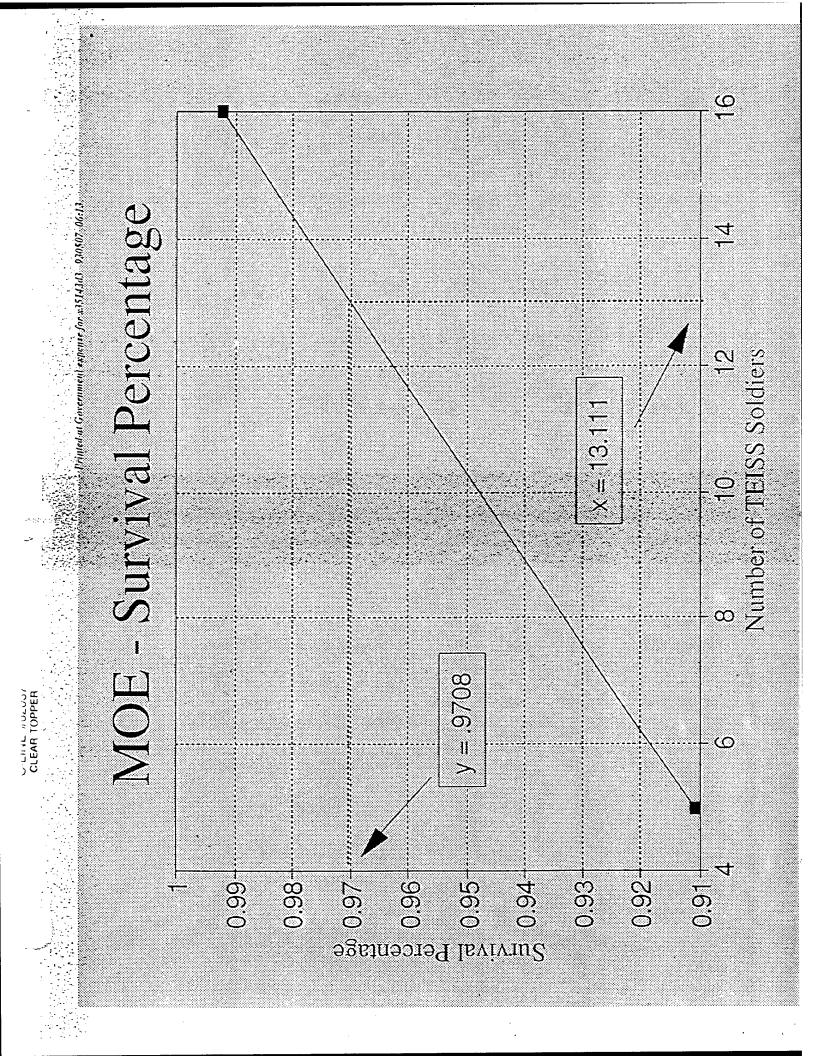

35323.j

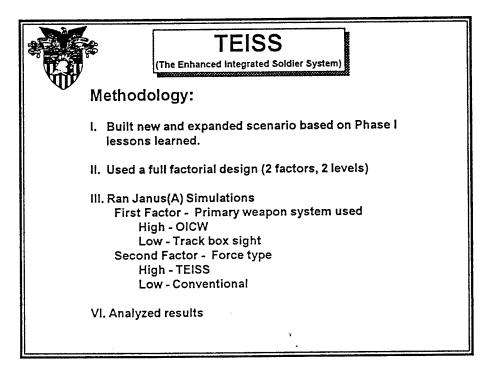


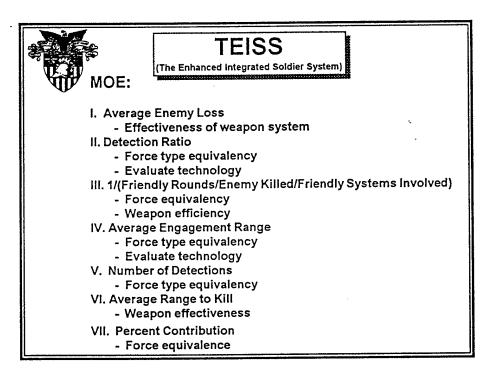

CONSULT

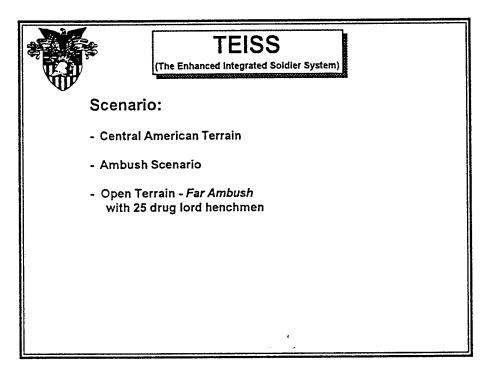


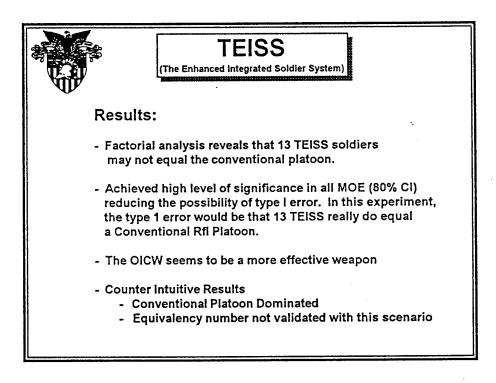


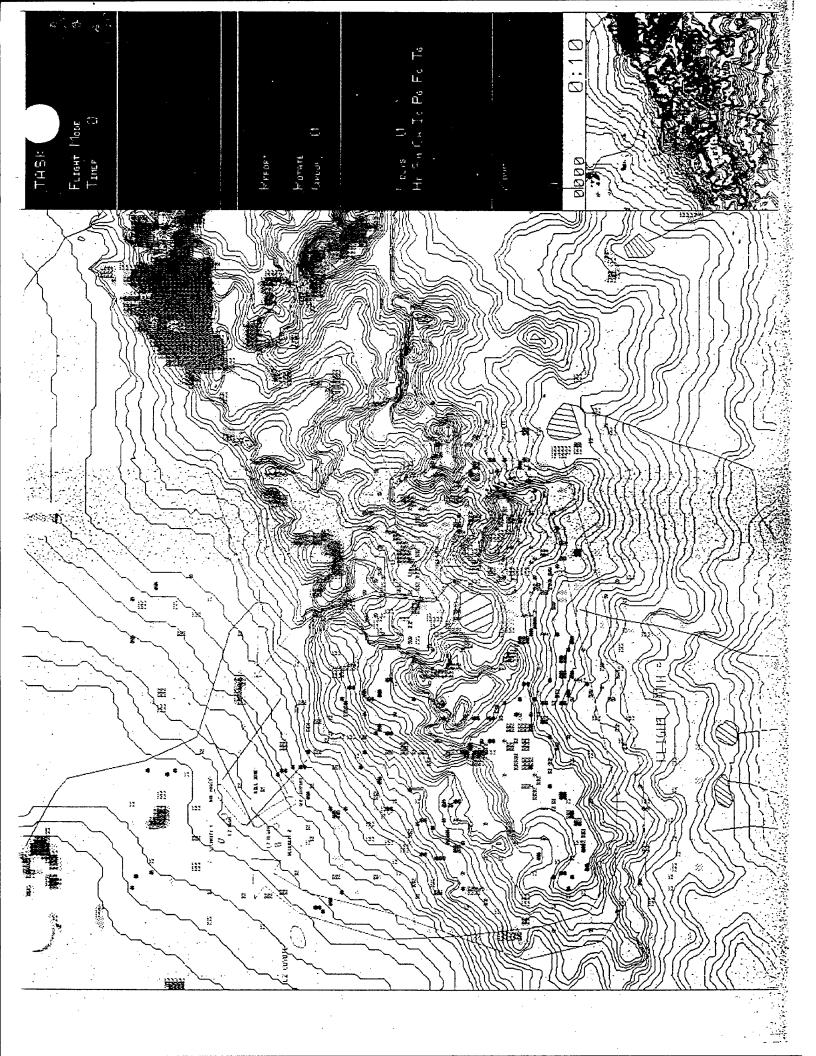

400.89488

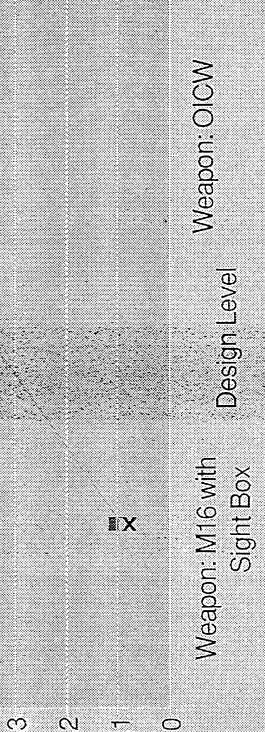




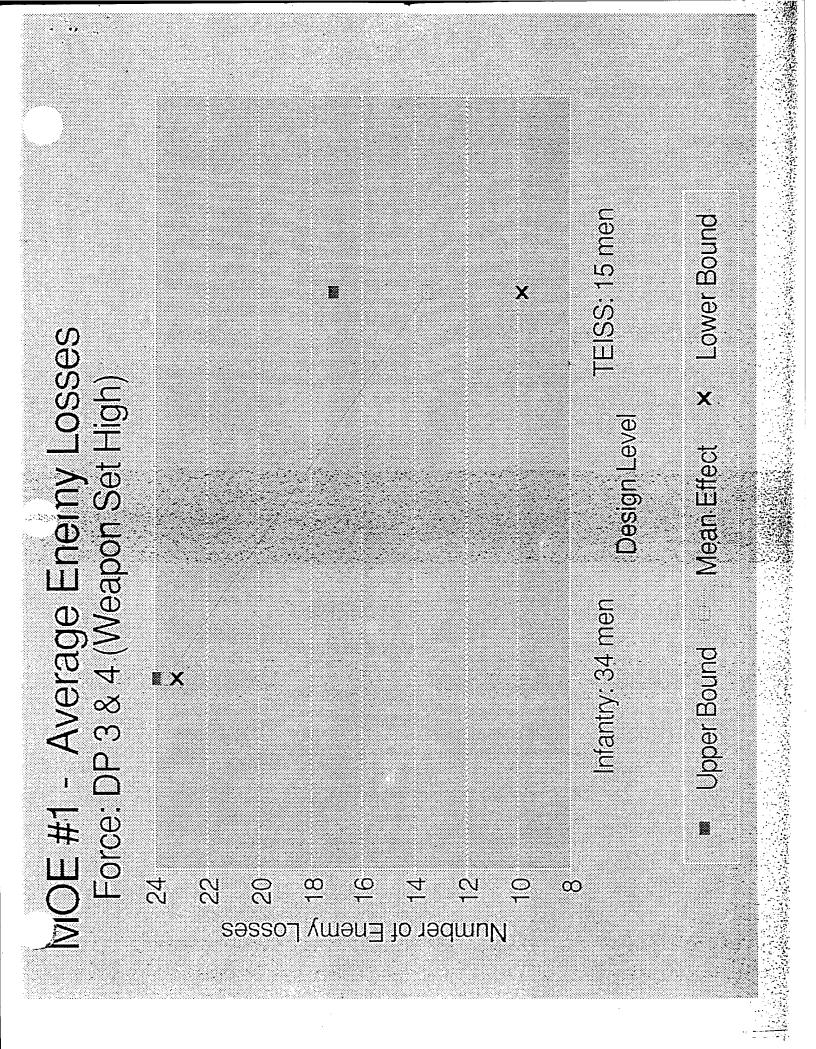


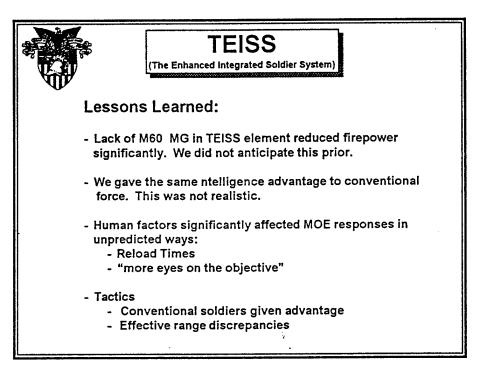



(Sitting)

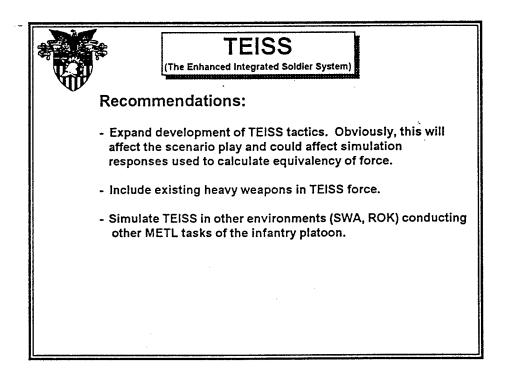

. .

VIOE #3 - 1 / (Friendly Hounds / Enemy Killeu / Weapon: DP 2 & 4 (Force Set High)


Lower Bound


X

Mean Effect


Jpper Bound া

Х

65:38:68

