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AFIT/GM/ENP/99M-4 

Abstract 

Reliable thunderstorm forecasts are essential to safety and resource 

protection at Cape Canaveral. Current methods of forecasting day-2 thunderstorms 

provide little improvement over forecasting by persistence alone and are therefore in need 

of replacement. This thesis focuses on using the mesoscale eta model to develop an 

index for improved forecasting of day-2 thunderstorms. 

Surface observations from the shuttle landing facility and the coincident output of 

the mesoscale eta forecast model were collected for the period of 1 May to 14 Sep 1998. 

Variables extracted from the eta forecast model output, as well as derived variables that 

incorporate the eta output variables, were divided into three data sets. A univariate 

logistic regression with the occurrence of a thunderstorm in the surface observation (the 

"truth") as the dependent variable, and the output/derived values from the eta model as 

the independent variable, discarded all but 94 of over 250 predictors that were considered 

important to thunderstorm occurrence. The data sets were further divided into model- 

building and validation sets for the purpose of building a logistic regression model. 

Regression coefficients were developed using the model-building sets and then applied to 

the validation sets for the purpose of forecasting a thunderstorm. Verification of the 

forecasts was accomplished using standard accuracy and skill measures, and comparisons 

were made against persistence and against model-based forecasts of the Neumann-Pfeffer 

Thunderstorm Index (NPTI). 

IX 



In cases where both persistence and the index developed through this research 

(called the eta thunderstorm index or ETI) were found to be significant, the ETI 

consistently outperformed persistence. Due to the small sample size of this research, 

further study is necessary to validate the results of this thesis. 



IMPROVING CAPE CANAVERAL'S NEXT-DAY THUNDERSTORM 

FORECASTING USING A MESO-ETA MODEL-BASED INDEX 

1. Introduction 

1.1 Overview 

Cape Canaveral Air Station and the Kennedy Space Center (CCAS/KSC) are an 

important part of America's space program. With nearly thirty percent of all space 

launch attempts being scrubbed or delayed due to weather (Roeder, 1998), it is easy to 

see the importance placed on forecasting launch weather. The 45th Weather Squadron 

(45 WS) based at Patrick Air Force Base, Florida is responsible for this forecast 

challenge. In their quest to visualize their mission statement, "exploit the weather to 

assure access to air and space," they sponsor operational research such as this thesis. By 

focusing research efforts on the weather phenomena that cause the greatest detriment to 

launch operations, they seek to minimize the impact of the weather. 

The most salient weather condition to launch planning, launch operations, and 

even day-to-day ground operations during the warm season (May 1-Sep 30) is 

thunderstorms. Therefore, correctly forecasting thunderstorm occurrence is of primary 

importance in reducing the percentage of scrubbed or delayed launches (Bauman and 

Businger, 1996). Current forecast methods provide only a marginal improvement over 

persistence (the probability of having a thunderstorm today if there was one yesterday) 

when forecasting next-day thunderstorms for planning purposes and therefore are in need 
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Figure 1 Map of Florida showing location of Cape Canaveral 



of replacement. By exploiting current knowledge of the weather through meteorological 

models and statistics, an improved thunderstorm forecast method can be attained. In an 

attempt to find this forecast method, it is necessary to analyze which factors are pertinent 

to thunderstorm formation and, therefore, forecasting, near Cape Canaveral. 

1.2 Background 

Forecasting thunderstorms at Cape Canaveral has always presented quite a 

challenge due to the complexity of boundary layer interactions in that area (Zhong and 

Takle, 1993). By definition, a cape is a piece of land that projects into a body of water. 

This projection in itself causes enough irregularity in the sea/land breeze pattern to 

present a forecast challenge (see Figure 1 and Figure 2). On top of this, the problem is 

compounded by a plethora of other boundary interactions such as two sea breezes (east 

and west coast of Florida), two river breezes (from the Indian and Banana rivers), 

convective outflows (even from the previous day), lake breezes, cloud shadow breezes, 

and even soil moisture breezes (Roeder, 1998). With all these complicating factors, it is 

easy to see why thunderstorms are difficult to forecast near Cape Canaveral. In the past, 

a variety of tools have been formulated to help the forecaster determine the probability of 

thunderstorm occurrence. 

Currently, forecasters at the 45 WS are using a 30-year-old technique as their 

primary objective tool for forecasting the thunderstorm probability for the current day 

(Roeder, 1998). This tool, called the Neumann-Pfeffer Thunderstorm Index (NPTI), was 

designed specifically for use at Cape Canaveral (Neumann, 1971). The NPTI uses 

variables obtained from the current 1200Z atmospheric rawinsonde sounding to give a 



percent probability of thunderstorm occurrence for that day. To forecast the day-2 

through day-7 thunderstorm probability, forecasters use a more subjective approach of 

looking at model guidance and using their meteorological knowledge (Roeder, 1998). 

• MESONET TOWERS 
 y 

Figure 2. Cape Canaveral, Florida 

Over the years, it has been observed that the probability of precipitation at Cape 

Canaveral relates well to the probability of thunderstorms (since most precipitation in the 

warm season is convective), and it is therefore one of the primary indicators that 

forecasters use when forecasting day-2 through day-7 thunderstorm probability (Roeder, 



1998). The 45th WS puts out a daily seven-day planning forecast that shows the 

probability of thunderstorms on station for each of the seven days. This seven-day 

forecast is one of the major tools that planners at the Cape use to schedule pre-launch 

space operations. The goal of this thesis is to improve the day-2 lightning probability 

(see Figure 3) through the development of a model-based index. 

1.3 Problem Statement 

Can the eta model output from the National Centers for Environmental Prediction 

(NCEP) be used to develop a statistically significant model-based thunderstorm index 

that is tailored for Cape Canaveral? If so, how does the index perform against persistence 

and against NPTI forecasts based on the eta model output? 

1.4 Importance of Research 

As mentioned above, the 45th WS is tasked daily with providing a forecast of the 

probability of thunderstorm occurrence for the current and following six days. This 

information is used by planners to adjust the ground operations schedules to give the 

highest probability of the operation being successfully accomplished (Wohlwend, 1998). 

The index developed by this research aims to improve the day-2 thunderstorm forecast 

and therefore seeks to minimize wasted resources due to inaccurate thunderstorm 

forecasting. Additionally, this research can be a foundation on which to build an index 

that extends past day-2 (mesoscale-eta model only forecasts out to 33 hours) by using a 
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different model such as the Medium Range Forecast (MRF), which forecasts out to 10 

days. Lastly, the results may show that the physics of the mesoscale eta model are not 

yet representative enough of actual processes in the atmosphere to resolve thunderstorms 

at the scale of those developing in the environment around the Cape. 

1.5 Overall Approach 

This thesis consisted of five main steps with quality control steps in each process. 

These five steps are collecting data, processing data, selecting variables, running the 

regression to find a model, and performing statistics to verify the validity of the model. 

The original intent of this study was to use model data from 1995 to 1998. However, due 

to a long series of data-gathering problems, only the model data from 1998 were 

sufficient for use. Model data for 1998 were obtained from the Environmental Modeling 

Center (EMC) at NCEP. The data files consisted of one thirteen-megabyte file for each 

of the 114 days that model data were available. Missing days are attributed to model 

maintenance and the occasional re-allocation of NCEP computer resources to concentrate 

forecasting efforts on hurricane movements (Rogers, 1998). Surface observations for 

KTTS (station identifier for Cape Canaveral, located at SLF in Figure 2) were obtained 

from the Air Force Combat Climatology Center in Asheville, NC. 

Data processing involved transforming the binary gridded model data sent by 

NCEP to its final form of one text file in matrix format with dimensions 114 by 241. 

This was accomplished through the use of GEMPAK and multiple Unix scripts, Fortran 

programs, and Mathcad programs. Another Fortran program was written to find which 

days, with respect to local time, in the surface observation data had an observed 



thunderstorm. For analysis purposes, the days with thunderstorms were then added to the 

data matrix so that the observations were in the same row as the forecast for that day. 

Next, the variables in the data file were saved by month and into three blocks of 45 days 

each. 

The variable selection phase consisted of running 1500+ individual univariate 

logistic regressions on the data files segmented by month. Variables that were found to 

be statistically important based on the univariate regressions in at least three of the five 

months were retained in a final data set for analysis. To prepare for the regression step, 

subsets of the 45-day blocks were taken to provide a model-building and verification set 

of sufficient sample size for each block. The regression step involved performing a 

stepwise logistic regression on each of the three model-building sets to determine the 

regression coefficients. With the coefficients in hand, the last step was to assess the fit of 

the model, and perform statistics to determine the forecast skill of the regression model. 

The measures of forecast skill used will be discussed in chapter three. 

1.6 Organizational Overview 

Chapter two contains a literature review and a discussion of theory involved in 

this thesis. The chapter begins with a discussion of fundamental thunderstorm theory. 

Next, the basics of numerical modeling are presented. Following the information on 

models, the eta model is discussed as well as some evaluations that have been performed 

on the model's representativeness. The chapter ends with information on previous 

attempts to improve upon current thunderstorm forecasting techniques to include the 

theory and a brief history of the NPTI. 



Chapter three describes the methodology used through all phases in the 

preparation of this thesis including the statistical process used along the way. 

Chapter four presents the analysis of the data and discusses the results and 

conclusions that can be drawn from these results. 

Chapter five is a summary of the research done and recommendations for future 

research. 



2. Literature Review and Theory 

2.1 Thunderstorm Fundamentals 

The Florida peninsula observes more thunderstorms than any other location in the 

United States (U.S. Weather Bureau, 1952). This maximum of thunderstorm activity can 

be attributed to the virtually ever-present conditions that favor thunderstorm 

development. These conditions are a moist layer near the ground surface, convective 

instability, and an initiator or trigger (Ray, 1986). Each of these factors is discussed 

below. 

The proximity of Cape Canaveral to the Atlantic Ocean, to the Gulf of Mexico, 

and to the vast network of rivers and lakes in the area provides more than ample low- 

level moisture for thunderstorm development. Low-level moisture availability is easily 

ascertained by analyzing surface dewpoints and the mean layer relative humidity in the 

lowest 5000 feet (Ray, 1986). Increases in soil moisture from previous thunderstorms 

may also contribute to further thunderstorm development. With these numerous moisture 

sources, the availability of moisture around the Cape is usually a given. 

Convective instability is present when within a lifted layer the rate of change of 

equivalent potential temperature with height is less than zero (Wallace and Hobbs, 1977). 

The term convective instability, also called potential instability, originated from Carl- 

Gustav Rossby in the 1930's when it was customary to plot soundings on a Rossby 

diagram which had equivalent potential temperature as a vertical coordinate (AWS/TR- 

79/006). The Rossby diagram never gained popular acceptance, and meteorologists in 

the U.S. moved to using the skew-T Log-p as the primary thermodynamic sounding chart. 
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Due to the release times of rawinsondes in the U.S., upper air data is usually at 

least a few hours old when convection starts to develop (Ray, 1986). Also, since virtually 

all of the tropics are convectively unstable up to about 6 km (Wallace and Hobbs, 1977) 

other methods for determining the possible areas of thunderstorm development are 

needed. One method to monitor low-level stability is to lift the surface temperature moist 

adiabatically to 500 millibars (mb). Larger positive values for the difference between the 

parcel temperature and the 500-mb temperature indicate decreasing stability. Other 

methods include monitoring cloud bases, pilot reports, and inversion cap strengths. 

A trigger, the third ingredient in thunderstorm development, is anything that 

causes air to rise. Fronts, jet streams, convergent zones, surface heating, surface troughs, 

outflow boundaries, and cloud boundaries can all act as triggers. During the summer, 

moisture and instability are typically always present around the Cape; therefore, the 

forecasting question becomes not if a thunderstorm will develop, but when and where one 

will develop (Roeder, 1998). This often is answered based on the location of the 

triggering mechanism. In the summer, surface heating usually reaches a maximum 

between 1400 and 1600 local standard time (LST) each day (Bluestein 1993, Vol. II) 

which coincides with the maximum land/sea temperature difference and the strongest 

surface winds (Zhong and Takle, 1992). Thus, there may be interaction of two triggering 

mechanisms in the development of thunderstorms. Cloud boundaries also present an 

interesting aspect in thunderstorm development. If there is a persistent cloud layer 

adjacent to a clear area, the surface below will undergo differential heating. This 

differential heating can cause convergence at the surface which, in turn, leads to rising 

11 



air. With the availability of moisture, and the virtually ever-present instability near the 

Cape, the main forecasting problem is therefore the forecasting of the trigger. 

The vast majority of thunderstorms that occur in the warm season of the Florida 

peninsula are referred to as "air-mass thunderstorms" in order to distinguish them from 

thunderstorms that occur due to synoptic-scale disturbances (Wallace and Hobbs, 1977). 

Due to the complex internal structure of cumulus clouds (Holton, 1992) an idealized life 

cycle of air-mass thunderstorms was developed from a program known as the 

Thunderstorm Project in the 1940's.   This life cycle consists of three stages: cumulus, 

mature, and dissipating. Air-mass thunderstorms typically have one or more cells that 

follow this life cycle each cell growing and decaying in rapid succession with the lifetime 

of an individual cell being about a half hour (Wallace and Hobbs, 1977). 

Apart from the life cycle, thunderstorms are generally classified into one of three 

primary types. These are the single-cell, the multi-cell, and the super-cell. The 

distinguishing factor that has the most influence on thunderstorm type is the vertical wind 

shear in the lower troposphere (Holton, 1992) with lower values of shear (<10 m/s below 

4 km) indicative of single-cell thunderstorms. Therefore, the weakly sheared low-level 

environment around the Cape is ripe for single-cell development. 

Though these single-cell, air-mass type thunderstorms around the Cape usually 

don't reach severe criteria, they nonetheless affect daily operations. In order to minimize 

any impact that thunderstorms have on operations, an ultra-conservative stance has been 

taken on weather limits for various criteria. These criteria are ceiling and visibility, 

precipitation, lightning, and winds. Each of the criteria listed below will be discussed in 

12 



relation to a space shuttle landing since the space shuttle is essentially a glider (i.e. it has 

one chance to land) while in the earth's atmosphere. 

- Ceiling and Visibility- pilot can lose sight of runway. 

- Precipitation- pits costly heat-absorbing tiles (labor intensive replacement 

process). 

- Lightning (both natural and triggered)- can cause electrical problems and 

damage tiles as above (can also come from detached cirrus anvils < 3hrs old). 

- Winds- shuttle could be blown off course. 

This list of hazards due to thunderstorms highlights the need for forecasters to pay close 

attention to the development, dissipation, and movement of thunderstorms (Bauman and 

Businger, 1996). 

2.2 Numerical Modeling 

2.2.1 Introduction 

With the advancement of computers over the last sixty years, the application of 

numerical methods to weather prediction has provided a valuable tool to forecasters. By 

representing the atmosphere with differential equations and then applying numerical 

methods to solve these equations, we have found that a reasonable approximation of the 

future state of the atmosphere can be attained. Current computer technology allows 

numerical weather forecasting on a global scale that at the beginning of the century was 

only a dream. 

13 



2.2.2 History 

In 1904, Vilhelm Bjerknes suggested that given certain initial atmospheric 

variables it should be possible, in principle, to predict the future state of these variables 

(Haitiner and Williams, 1980). The first attempt to apply this theory was in 1922 by 

Lewis F. Richardson. Using finite difference forms of dynamic equations to represent 

fluid motions of the atmosphere, he attempted a 6-hr forecast. The forecast ended in 

complete failure, but Richardson knew why. The primary reasons for his forecast's 

failure were due to the lack of upper-air data and the poor quality of initial data at the 

surface. Besides data problems, the process was also tainted by the state of knowledge of 

numerical methods and dynamic meteorology of the time (Holton, 1992). Richardson 

foresaw that the complications due to observational and computational difficulties might 

one day be resolved, but he didn't foresee the development of super-computers which 

make numerical weather forecasting feasible (Fleagle and Businger, 1980). According to 

Richardson, "Perhaps someday in the dim future it will be possible to advance the 

computations faster than the weather advances and at a cost less than the saving to 

mankind due to the information gained. But that is a dream." (Richardson, 1922) 

The first realization of this dream came in the late 1940's when a team of experts 

led by Jule Charney implemented a numerical weather forecast on the newly developed 

electronic computer. Using the advanced knowledge gained over the previous two 

decades, Charney noted some serious difficulties in using Richardson's equations. The 

main problem that Charney noted was that Richardson's equations allowed non- 

meteorologically significant waves to enter the solution. By simplifying the equations, 

Charney was able to produce a reasonable 24-hr forecast of the 500-mb height field 

14 



(Charney et al., 1950). Unfortunately, operational forecasts were still not possible, for it 

took nearly 24 hours to assimilate the data and output the forecast. 

In the late 1950's, the first operational numerical forecasts based on a three-layer 

barotropic model were produced from a joint venture between the U.S. Air Force Air 

Weather Service, the U.S. Weather Bureau, and the Navy Weather Service (Ray, 1986). 

As time progressed, increasing knowledge of the atmosphere, better communication of 

meteorological data, new methods of performing numerical calculations, and better 

computers led to large advances in the field of numerical weather prediction. The early 

1960's saw the first useful predictions of sea-level pressure, and the 1970's saw the birth 

of spectral transform methods, which are pervasive in global modeling. Since the 1970's, 

the field of numerical weather prediction has grown by leaps and bounds. Continued 

advances in computing power have led to highly complicated grid point and spectral 

models with high resolution and advanced physical parameterizations. The dreams of 

Bjerknes have obviously been far surpassed; we must wonder what advances lurk in the 

future to surpass our dreams. 

2.2.3 Modeling Fundamentals 

In order to describe a particular numerical forecast model as completely as 

possible, it is typical to classify the model based on three different categories. These 

categories highlight the basic concepts that set each model apart from the others and are 

based on the numerical method used to solve the equations, the scale at which the model 

is designed to provide information, and the type of equations used in the mathematical 
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model. Each of these categories is discussed below along with a discussion of initial and 

boundary conditions. 

2.2.3.1 Numerical Method Used 

The governing equations used to represent the atmosphere generally take the form 

of partial differential equations (PDE's) that need to be replaced by other functions in 

order to obtain solutions. The two main methods used are the finite difference method 

and the spectral method. The basics of each method, along with some considerations for 

each, are presented below. 

In the finite difference approach, variables of interest are defined at points on a 

grid usually of equal spacing. Some models use a simple approach of defining each 

variable at every point, while others use a staggered grid in which variables are defined at 

alternating points. Staggering the grid offers some advantages when defining the finite 

difference formulas used in solving the PDE's (Arakawa and Lamb, 1977). The most 

common method to convert the continuous PDE's into algebraic equations is to represent 

the derivatives in the PDE's as truncated Taylor series. Depending on how the expansion 

is carried out, the dependent variable can be represented by either a centered, forward, or 

backward difference in either time or space. For example, in a backward time-centered 

space (BTCS) difference, the time derivative would be solved in terms of the past few 

values (how many depends on the order of the derivative), and the space derivative would 

depend on values to either side of the grid point of interest (again, the number of points to 

either side depends on the order of the derivative). 
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Finite difference methods can also be classified as either explicit or implicit. In 

an explicit finite difference, the dependent variable is defined in terms of known values 

(as in the BTCS case). Explicit schemes often suffer from numeric instability in which 

errors grow exponentially with continued calculations. Another possible problem with 

some explicit schemes is the introduction of a spurious mode, known as the 

computational mode, into the solution (Holton, 1992). Various methods to account for 

stability and computational mode problems have been devised, but are too lengthy to 

discuss here. The advantage of explicit schemes is that they are less computationally 

expensive than implicit schemes. When the dependent variable is defined in terms of 

other unknown variables the scheme is known as implicit. Since more than one variable 

is unknown, the equations must either be solved iteratively or through matrix methods. 

While implicit schemes are generally stable, they often suffer from errors in the phase 

and amplitude of the solution (Haitiner and Williams, 1980). As with explicit schemes, 

methods to get around some of the problems with implicit schemes have been devised. 

Other sources of errors inherent to finite difference methods relate to the truncating of the 

Taylor series, the step size of the time and distance steps used in performing the 

calculations, amplitude errors that occur when trying to represent waves smaller than 

about five times the grid spacing, and the inability to represent waves smaller than two 

times the grid spacing (Haitiner and Williams, 1980). 

Spectral models use truncated orthogonal functions, called basis functions, to 

convert the PDE's into ordinary differential equations (ODE's). Common choices for 

basis functions are Fourier series, when the dynamic equations are in Cartesian 

coordinates, and spherical harmonics, when the dynamic equations are in spherical 

17 



coordinates (Holton, 1992). By using numerical methods to solve the ODE's, we are able 

to forecast the phase and amplitude of the basis functions (Holton, 1992). Since these 

functions now represent the phase and amplitude of the response, the values for the 

variables are now continuous, whereas in finite difference forms the values are only 

defined at grid points. One of the main benefits of using spectral models is that 

horizontal derivatives are evaluated exactly without the use of finite differences; this 

makes the calculation of horizontal advection highly accurate (Haitiner and Williams, 

1980). Also, truncation errors in the space differencing schemes are eliminated by the 

use of spectral methods. 

Since spectral methods use continuous functions, they are especially well suited 

for domains with periodic boundaries. This is why spectral models are generally always 

used in global modeling. Another reason spectral methods work so well in global 

modeling is that there is no need to map the spherical earth to a grid because all of the 

functions are already defined in spherical coordinates. 

The method described above is widely used in spectral modeling; however, it has 

a few downfalls. This method works very well for linear equations and often 

outperforms finite difference methods of similar resolution (Haitiner and Williams, 

1980). The problem lies in the fact that when this method is used to solve nonlinear 

equations, the number of simultaneous equations that need to be solved increases as the 

square of the number of modes (number of individual waves around the earth) that the 

model is attempting to resolve (due to the multiplication of series). This fact made 

spectral methods unmanageable for higher resolution models. To overcome this 

downfall, the 1970's saw the development of the spectral transform method. Through a 



series of transformations, this method reduces the number of variables in the equations 

and therefore severely decreases the amount of terms that need to be multiplied together 

(Orszag, 1970). Because of the spectral transform method high-resolution spectral 

models are possible. 

2.2.3.2 Scale of Interest 

Currently, the scale of most models fall into one of three categories: global, 

synoptic, or mesoscale. Global models are generally spectral models that focus on 

forecasting large-scale features such as the long wave pattern, the jet stream, and upper 

air wind patterns. To get "the big picture" of weather systems like frontal positions, 

synoptic scale models are used. These models usually cover a domain roughly the size of 

North America and are best for analyzing features with a length scale of approximately 

2000 kilometers (Ray, 1986). To properly model smaller phenomena like thunderstorms, 

mesoscale models are used. These models are generally high-resolution finite difference 

models that focus on phenomena with length scales less than 1000 kilometers. The size 

of the smallest phenomena that can be modeled depends on the grid resolution of the 

model. Due to the higher resolution and more complex physical parameterizations of 

mesoscale models, the domain size is usually limited by computer power. 

2.2.3.3 Equations Used 

The form of the equations used to represent the atmosphere determines the 

possible types of weather phenomena that can be modeled. Different ways to categorize 
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equation sets include barotropic models, baroclinic models, filtered models, and primitive 

equation models. Filtered models are usually based on simpler equation sets like 

baroclinic or barotropic models, but they are re-formulated to make up for some of the 

shortcomings of the unfiltered model. The more complicated primitive equation models 

permit the widest range of modeled phenomena but are the hardest to implement and 

require the most computer resources. Hydrostatic and non-hydrostatic versions of each 

model are also possible. 

From the information presented above, it is now possible to provide an example 

using these naming conventions. The eta model, the basis for this thesis, is now more 

fully described as a non-hydrostatic mesoscale primitive equation model. 

2.2.3.4 Initial and Boundary Conditions 

In order for a numerical model to output a forecast, the initial meteorological 

variables within the model's domain must be specified (Haitiner and Williams). Data 

that is ingested from various sources (rawinsonde, NEXRAD, satellite, aircraft, etc.) are 

quality controlled and manipulated to follow certain constraints and provide a suitable 

representation of the initial state of the atmosphere. The sophistication of the 

initialization process usually determines the amount and type of data that go into this 

initialization. Newer methods allow both synoptic data (data taken simultaneously at 

selected locations on the hour) and asynoptic data (data taken between synoptic 

observations, at other locations, or both) to be considered in the initialization process. 
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The initialization process also interpolates the data from the point of observation to the 

grid points of the model. 

There are two types of boundaries of concern to numerical weather prediction: 

physical and computational. At the surface of the earth, a physical boundary, 

mathematical difficulties exist due to the need for meteorological variables to terminate 

there within certain constraints. For example, wind speeds need to go to zero at the 

earth's surface. Computational boundaries exist at the edge of the model's domain. At 

these lateral boundaries, "the solution should depend continuously on the boundary 

conditions so that small changes in the boundary values produce only small changes in 

the solution (Haitiner and Williams, 1980)." Computational boundary problems exist for 

the lateral boundaries of finite difference models and windowed spectral models, but 

don't exist in global spectral models since they have periodic boundaries. As mentioned 

earlier, the method of differencing determines which points go into the calculation of the 

derivatives. If the model uses a forward difference in the interior of the domain, as the 

computations proceed toward the right edge there is a point (the number of grid points 

from the edge depends on the order of the Taylor series) at which it is no longer possible 

to continue calculations. Therefore, to perform calculations near a boundary a 

combination of differencing methods is usually necessary. 

2.2.4 The Mesoscale Eta Model 

The majority of the information given in this section on the eta model is from 

Black (1994). The mesoscale eta model is a numerical weather prediction model that 

derives its name from the high resolution of the model and the vertical coordinate system 
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that the model is based on. The eta vertical coordinate was first suggested by Mesinger 

in 1984 to reduce errors that occur in calculating the pressure gradient force, advection, 

and horizontal diffusion along steeply sloped coordinate surfaces. This coordinate 

system is defined by 

Pref\Zsfc)-PT 
1 = 

P~PT      I    Pref\Zsfc)-i 

Psfc-Pr, Pref(°)-PT 
(1) 

where pr is the pressure of the top level in the domain (currently 25 mb in the mesoscale 

eta model), pSfC and zSfC are the pressure and height of the model's lower boundary, and 

pref is a reference pressure that is a function of height above sea level. Since the equation 

is set up to normalize the eta coordinate, the values for eta range from unity at the surface 

to zero at the top of the domain. The advantage of the relationship given by equation 1 is 

that eta surfaces remain relatively flat in areas of steeply sloped terrain. 

NCEP currently produces four runs per day of the mesoscale eta model (00Z, 

03Z, 12Z, and 18Z). Due to different methods of initialization, and various changes 

being implemented only to certain run times (usually the 03Z and 18Z runs are changed 

together and the 00Z and 12Z runs are changed together), only the 03Z information will 

be described since it is the focus of this research. However, most of the information 

given is common to all runs. 

The 03Z eta model currently has a horizontal resolution of 32-km (see Figure 4) 

and 45 levels (see Figure 5) of varying thickness in the vertical (Rogers, 1998). This 

pairing was introduced into the operational suite of NCEP products on 3 June, 1998. 

Before June, the mesoscale eta model had 29-km resolution and 50 vertical layers. As a 
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Figure 4 Map showing the 29-km, 32-km, and 48-km eta domains 
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Figure 5 45 Vertical Levels of 32-km eta. Left margin shows approximate pressure 
levels corresponding to the layers of the eta model, and the right margin shows the 

approximate pressure difference between each eta level. 
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result of this change in resolution, the data for this thesis contains both versions of output. 

Relative maxima in the vertical resolution of the layers exist close to the surface and near 

the tropopause to allow better resolution in those areas. 

As mentioned before, the mesoscale eta model is based on finite difference forms 

of the physical and dynamical atmospheric equations. The grid layout used in the model 

is referred to as a semi-staggered Arakawa E grid which is rotated onto a tangential 

Lambert conformal map to minimize the convergence of the meridians at the center of the 

domain. A sample of the Arakawa E grid is shown in Figure 6 below. 

dx 

Figure 6 Semi-Staggered Arakawa E-grid 

In figure 6, each H represents a mass point (such as temperature or moisture) and each V 

represents values of the horizontal wind. The distance ^ld  is given as the resolution 

of the model (Arakawa and Lamb, 1977). 

Topography is represented in the model using a silhouette step-mountain method. 

Through a series of averaging the elevations within a region, the actual height of the 

surface is raised or lowered to correspond to the closest eta layer interface. Because of 
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this, the height of the topography around CCAS usually takes on values between 0 feet 

and 20 feet above sea level. 

The main prognostic variables of the eta model are temperature, u and v wind 

components, specific humidity, surface pressure, turbulent kinetic energy, cloud water, 

and cloud ice. In order to initialize the model, the Eta Data Assimilation System (EDAS) 

takes in data from the following sources: 

- Rawinsondes 

- Pibal winds 

- Dropwindsondes 

- Wind profilers 

- Surface land temperature and moisture 

- Oceanic surface data 

- Aircraft winds 

- Satellite cloud-drift winds 

- Satellite precipitable water retrievals 

- Aircraft temperature data 

- Surface winds over land 

- Velocity Azimuth Display (VAD) winds from NEXRAD 

- Satellite oceanic surface winds 

The 03Z run then uses the 00Z initialization panel as the first guess and begins to run a 

three-dimensional variational analysis (3-d VAR) on the data it has assimilated in the past 

three hours (from 00Z to 03Z). The object of using 3-d VAR is to map the input data to 

the 32-km eta domain with minimum analysis error by taking as many observations and 

past forecasts as possible into consideration (Rogers, 1998). Soil moisture is currently 
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initialized using climatological values because of the lack of standard moisture 

observations around the United States (Staudenmaier, 1996). Cloud water and cloud ice 

are also initialized differently than the other parameters and require a "spin-up" time 

before saturation can occur and precipitation can form. Since these parameterizations 

aren't fully developed in the early forecast periods, care must be taken in analyzing the 

output of these fields. 

To limit inertial gravity wave formation, a forward-backward scheme is used in 

the gravity wave adjustment phase. This technique eliminates the need for explicitly 

taking out waves with small wavelengths (Haitiner and Williams, 1980). The stability 

criterion for this scheme allows for relatively large time steps compared to other methods 

and also produces no computational mode. Vertical advection is accomplished by using a 

Euler-backward time scheme and a centered space scheme. The only exception to this is 

in the calculation of specific humidity where a piecewise linear method is used. 

Horizontal advection is accomplished through a combination of a modified Euler- 

backward scheme and a scheme developed by Janjic especially for horizontal advection 

on the E grid. For the advection of water vapor, a shape preserving scheme is used. 

Convective processes are handled by a Betts-Miller-Janjic scheme (BMJ). This 

scheme gradually relaxes the temperature and moisture profiles toward a profile that has 

been observed in nature. The BMJ model is set up to handle both shallow and deep 

convective processes in order to model convective precipitation (Staudenmaier, 1996). 

Other schemes included in the model include a Mellor-Yamada scheme to model 

turbulent kinetic energy, a radiation scheme developed by the Geophysical Fluid 

Dynamics Laboratory (GFDL), visibility schemes, and cloud ice and water schemes. 
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In 1997, and again in 1998, the Applied Meteorology Unit (AMU) at CCAS was 

contracted to evaluate the usefulness of the mesoscale eta model to forecasting at the 

Cape. Both subjective and objective studies were performed on data from the 1996 and 

1997 warm seasons. While these data sets fall into the timeframe that the 29-km version 

was being used, it is felt that due to the similarities in resolution and physics between the 

models, the results should apply equally well to the new 32-km version (Manobianco and 

Nutter Part II, 1998). The subjective portion of the study was performed to quantify the 

value added by the model forecasts to specific phenomena like thunderstorms, sea 

breezes, and fronts (NASA CR-205409, 1997). Results of the subjective verification 

suggest that the eta model is capable of forecasting organized convection but still lacks 

the resolution necessary to resolve individual air-mass type thunderstorms (Manobianco 

and Nutter Part n, 1998). Objective verification was performed on various individual 

parameters such as temperature, moisture, and winds at all levels. Results of this portion 

of the AMU study show that soundings generated by the model are generally too warm, 

too dry, and too stable, which also indicates that the model may not properly forecast 

thunderstorms. The AMU studies show that the model generally provides good forecast 

guidance, but until the resolution increases and more mesoscale information is 

incorporated in the model, the forecasting of individual thunderstorms is not possible 

(NASA CR-1998-207910). 

2.2.5 Previous Work 

Through the years, many different studies have been performed relating to 

thunderstorms around the Cape. These include many different sea breeze studies, flow 
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regime studies, and the development of the NPTI to name a few. A brief description of 

some of these works is presented. 

2.2.5.1 The NPTI 

One of the most important studies to the operational forecasting of thunderstorms 

at the Cape is that from which the NPTI was developed. Using multiple regression 

techniques on thirteen years of 12Z soundings from the Cape, Charles Neumann 

developed an index using variables found to be statistically important in the development 

of thunderstorms. He considered over 250 different variables from the soundings for 

inclusion in the model, of which only five survived to be included in the final model. 

Since non-linear trends in these variables were found to be important, Neumann included 

second and third order polynomials in these five variables to help explain as much of the 

variance as possible. The five variables in the equations are the 850-mb wind, the 500- 

mb wind, the mean relative humidity between 800 and 600-mb, the Showalter stability 

index (SSI), and the Julian day number. As a result of the regression analysis, it was 

determined that each month of the warm season had sufficiently different regression 

coefficients to warrant a separate equation. For a complete description of the formulation 

of the NPTI, see NOAA Technical Memorandum NWS SOS-8 (Neumann, 1971). 

The probability of thunderstorms given by the NPTI has been shown to perform 

only slightly better than persistence (Kelly, 1998; Wohlwend, 1998; Howell, 1998). 

However, due to the lack of a significantly better objective forecasting tool the NPTI 

remains in operational use at the Cape. The NPTI is currently only used for forecasting 
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thunderstorms less than 24 hours out. Attempts to quantify its usefulness in forecasting 

beyond the present day (Wohlwend, 1998) by using data from the mesoscale eta model 

have resulted in inconclusive results. The NPTI was calculated from the model data for 

the days of this research. The index developed by this research will be compared to the 

NPTI and persistence as a measure of its value-added to the forecasting process. 

2.2.5.2 Other Studies 

Various studies in the past have been performed to assess the predictors that are 

important to thunderstorm development around the Cape. The two discussed here, sea 

breeze studies and flow regime studies, have been widely researched and prove to be 

important factors in thunderstorm development. The mesoscale eta model should be able 

to resolve the flow regime, but the resolution may not yet be high enough to model the 

smaller spatial scales of the sea breeze. 

Recent sea breeze studies include those by Cetola (1997) and Zhong and Takle 

(1993). Both two-dimensional and three-dimensional sea breeze models were considered 

in these studies to determine the locations of the sea breeze front and areas of possible 

thunderstorm development. Both studies showed the sea breeze to be an important factor 

in the development of thunderstorms. Low-level moisture convergence, low-level 

vorticity, and low-level upward vertical motions were considered in this thesis as possible 

indicators of the presence of a sea breeze front. 

Some recent flow regime studies were performed by Bauman and Businger 

(1996), Kelly (1998), Lopez and Holle (1987), and less recently by Neumann (1970). A 
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brief description of the importance of each of these works is presented below. Bauman 

and Businger proposed a higher thunderstorm probability when the low-level winds are 

from the southwest. The utility in rotating the coordinate system to parallel the coast of 

the Cape was demonstrated by Lopez and Holle. Kelly proposed the value of using the 

K-index as a thunderstorm predictor. Neumann's studies point to the 3000' winds as the 

best single thunderstorm predictor. Each of these findings were implemented into this 

thesis and analyzed as predictors in thunderstorm development. 

31 



3. Methodology 

3.1 Overview 

The aim of this research was the development of a model-based index capable of 

outperforming persistence and the NPTI. The first step was the collection of the model 

and observational data. After the model data were collected, variables were extracted 

from the data files and either used as-is, or used to develop other variables. The data set 

was then divided into many different model-building and validation sets in order to apply 

a logistic regression to each. The fit of each regression model was assessed and 

validation was performed on each of the validation data sets. The index developed 

through the logistic regression procedure was then compared to persistence and the NPTI 

using standard verification and skill techniques to assess its forecasting ability. 

3.2 Data Processing 

The observational and forecast data used in this research came from two different 

sources. Observational data for KTTS were received over the World Wide Web from the 

Air Force Combat Climatology Center (AFCCC) as a text file. A Fortran program was 

then written to find which days had thunderstorms on station (defined as thunder heard by 

the KTTS weather observer). The output of the program was a file with a "0" for days 

without a thunderstorm, and a "1" for days with a thunderstorm. As a quality control, 

about half of the values in the output file were checked to make sure they corresponded to 

the observations. 
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The forecast data consisted of 114 files (one file per day) of the 33 hr forecast 

from the 03Z run of the mesoscale eta model between the period of 1 May to 14 Sep, 

1998. Twenty-one days of missing data were scattered over the four-and-a-half month 

period of the data set. Each of the data files came in a binary gridded format as described 

in Dey (1996) and contained all model output variables. Though the model runs at a 

resolution of 32-km, (29-km before June 3), NCEP stores the files on a 40-km Lambert 

conformal map projection. Software incorporated into the GEneral Meteorological 

PAcKage (GEMPAK) was used to extract the variables at the four nearest grid points 

surrounding KTTS (NW corner at 28.88N, -80.86W, SE corner at 28.55N, -80.40W). 

This step was also accomplished through the use of various UNIX scripts which 

automated the extraction procedure for multiple variables and millibar levels: the end 

result of this step was over 30,000 files. 

Following Djuric (1994), the value of each variable at KTTS was found using a 

distance weighted average from KTTS to each of the four nearest grid points. The value 

at KTTS, B, is given by 

where the Zt are the observations at each of the /=4 grid points and Wt is given by 

Wt = exp 
f   d^ 

V    CJ 
(3) 

The values of 4 are the distances from the grid points to KTTS, and c is defined by 

Djuric as a "suitably determined constant that controls the effective influence of an 

observation on the B value" Using the ratio of c to the average grid spacing of the 
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example given in Djuric's book, to the c for this grid and grid spacing (40-km) the value 

of c was estimated to be 26.5 (* 103 m2). The final value of c was found by graphically 

generating ten different isopleth patterns, assigning values to the four grid points and 

interpolating the value from the isopleths nearest to KTTS manually, and determining 

what value of c produced the same value as the interpolated value at KTTS. The value of 

c that produced the most consistent results was 27.9 (* 103 m2). The formulas above were 

then incorporated into a Fortran program that converts each of the 30,000 files (one file 

per day, per variable, per level) with the four grid points into one file per month, per 

variable, per level containing only the value at KTTS. 

Averaging the wind direction had to be handled differently than the other 

variables. As an example, consider the following. If the two western most grid points 

had winds from 350 degrees, and the two eastern most points had winds from 030 

degrees, then the averaging technique described above would result in a wind direction 

from 237 degrees. In reality, the wind direction should average from around 360 degrees. 

To account for this, if the grid had wind directions from both the northeast (NE) and 

northwest (NW) quadrants then 360 was added to the wind direction value in the NE 

quadrant before the averaging was accomplished. For the example given, the 030 

direction would be converted to 390 in order to perform the averaging. If the averaging 

produced a value above 360, then 360 was subtracted from the average (putting KTTS 

wind direction in the NE quadrant); otherwise, the average was left as is (wind direction 

at KTTS in the NW quadrant). In the case of the example, the resultant direction was 

from 364 degrees, or 004 degrees after 360 is subtracted: a more realistic value for the 

directions given. 
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One thing to note before using the data retrieved from the model is that no 

attempts are made to account for model errors or biases. All of the forecast data is 

therefore taken to be correct as output from the NWP model. This is known as the 

perfect prognosis assumption (Wilks, 1995). If the forecast generated by the model really 

is "perfect," then we should expect that the index generated by the regression equations 

will also provide a good forecast. 

Layer-averaged values used as predictors were calculated from a technique 

adapted from AWS/TR-83/001 standard programming guide (Duffield and Nastrom, 

1983) which accounts for the logarithmic structure of the atmosphere. Relative humidity, 

specific humidity, cloud ice, and cloud water averages were computed and quality control 

checked by comparison to the arithmatic average. Summary statistics were also 

calculated to ensure the maximum and minimum values fell within acceptable limits. 

The Showalter stability index (SSI) was also calculated for each day by use of a 

Fortran program using techniques from AWS/TR-83/001. Ten percent of the output 

SSI's were checked through graphical means on a Skew-T, Log-p diagram to ensure the 

values were correct. Values of SSI were used in computation of the NPTI and as a 

variable in the logistic regression. 

As mentioned above, the forecast data is stored on a Lambert conformal map. 

This has repercussions when trying to decode the wind direction and speed at the grid 

points. Fortunately, GEMPAK incorporates software that automates the conversion of 

winds from the Lambert map to a north-relative coordinate system. As a quality control 

check, the wind rotation was accomplished by use of the equations that NCEP uses to 

encode the winds to the Lambert map. These values were quality checked against the 
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values generated by GEMPAK and against wind plots also generated by GEMPAK. The 

u and v wind components for the 850-mb and 500-mb levels were decomposed from the 

wind direction and speed for use in the NPTI calculation and as variables for the logistic 

regression. 

Calculation of the NPTI was accomplished by writing a Mathcad program 

following the Fortran program of Neumann (1971). Input variables were the u and v 

wind components at the 850-mb and 500-mb levels, the SSI, the layer-averaged 800-mb 

to 600-mb relative humidity, and the Julian day number. Using data from Wohlwend 

(1998) the program was tested on three days of data. Values output from the program 

matched to Wohlwend's results to within 2%. 

Various forms of persistence were tested for significance in the logistic regression 

model. A diagram of the persistence form that proved the most significant with respect to 

likelihood ratio scores, t-test values, and Wald statistics (see section 3.3.1 on logistic 

regression) is included as Figure 7. This form weighs the current and next-day 

thunderstorm persistence value more or less heavily depending on whether there was a 

thunderstorm on the previous day. 

In order to decrease the size of the data files, variables that were represented in 

exponential notation were multiplied by an appropriate number so that they could be 

represented in decimal form. The variables that required this modification and the value 

that they were multiplied by are absolute vorticity (*105), omega (*105), cloud ice (*106), 

specific humidity (* 104), and moisture convergence (* 108). After the addition of the 

various persistence predictors, SSI, wind components, and many other variables, the final 

number of different variables in the matrix was 250. 

36 



The next step was to break up the data set by months and then perform a 

univariate logistic regression on each variable for each month. The Wald score and -2 

Log L scores were retained from each regression in order to assess which variables were 

statistically significant to thunderstorm occurrence. As described in the logistic 

regression section below, these scores follow a chi-square distribution. Variables that 

produced p-values for the Wald scores and -2 Log L scores of .30 or less for at least three 

of the five months were retained into a separate file for further evaluation. Mickey and 

Greenland (1989) suggest the use of a higher statistical level than the traditional .05 as a 

screening criterion in the early stages of model-building. This higher level helps identify 

values that may interact with other variables to produce better statistical significance of 

the model. Of the 250 variables in the original matrix, only 94 produced the required p- 

value for retention in the reduced variable file set. 

Each month of data was then separated into a model-building set and a validation 

set in order to develop a model for each month of data. Members in the validation set 

were chosen randomly by a computer program so that 80% of the data remained in the 

model-building set, and the remaining 20% went into the validation set. By building the 

model on one set of data and then validating it on another, it is possible to evaluate the 

predictive ability of the chosen model (Neter et al., 1989). One downfall to this is that 

the model-building set must be sufficiently large in order to provide a reliable model. A 

general guideline used by statisticians is to have the number of observations in the model- 

building set be 6-10 times more than the number of independent variables included in the 

model (Neter et al., 1989). These guidelines are based on the principle that a model will 
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Figure 7 Two-day Persistence 
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be overfit when the number of predictors is large compared to the number of observations 

(Wilks, 1995). Using stepwise logistic regression on the 94 remaining variables, an 

attempt was made to determine which variables were important to thunderstorm 

formation for each month. Unfortunately, after taking out data for validation, the small 

sample size of each model-building set resulted in a statistically insignificant model (as 

indicated by the -2 Log L scores and the extremely high standard errors in the estimated 

coefficients). 

Since breaking up the data by month resulted in the data sets being too small, the 

füll data set was then divided into three periods. The dates of these divisions are 1 May- 

15 Jun, 16 Jun-31 Jul, and 1 Aug- 14 Sep. Each trimester of data was labeled Tl, T2, and 

T3 respectively. From each of these new sets, three sets of model-building and validation 

data sets were built using randomly chosen days from each set in a 80/20 ratio as before. 

The three model-building and validation sets of each trimester were also added together 

into three model-building sets and validation sets of the full data set. Also, the different 

sets of Tl and T2, as well as T2 and T3, were added together to form additional model- 

building and verification sets (named T1T2 and T2T3 respectively). Hence, the resulting 

model and validation data sets were labeled Tl-A, Tl-B, Tl-C, Tl-All, T2-A through 

T2-A11 (as in Tl), T3-A through T3-A11, T1T2-A through T1T2-A11, T2T3-A through 

T2T3-A11, and Full-A through Full-All. Each "A", "B" and "C" suffix for the validation 

sets denotes a different 20% of data removed from the larger set from which it came 

(T1T2 for instance). The "ALL" suffix denotes the full period of data with no data 

removed for validation (all of the data for T2T3 for instance). 
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A stepwise logistic regression was then performed on each of these eighteen 

model-building sets, to determine which variables were significant, and physically 

meaningful, to the occurrence of a thunderstorm. The importance of the variables that 

came out of the stepwise regression was based on the Wald chi-square, the odds ratio, the 

t-value, and the residual deviance (as described in section 3.3.1 on logistic regression). 

The beta coefficients output by the statistical packages were then applied to the 

data in the validation sets using the logistic regression formula. Forecast thunderstorm 

probability values output by the regression equations were then verified using standard 

verification and skill techniques calculated using a 2 X 2 contingency table. The 

verification techniques used are discussed below in the section on verification. 

3.3 Statistical Methods 

A perfect forecast may never be achieved due to dynamical chaos inherent to the 

atmosphere (Wilks, 1995). How close we are able to come to a perfect forecast depends 

on how much we can reduce the uncertainty that the weather problem presents us. 

Statistical methods provide a basis to explain at least part of this uncertainty. Statistical 

procedures used in this thesis include logistic regression analysis for building a statistical 

model, and verification statistics to test the performance of the model. 

3.3.1 Logistic Regression 

Logistic regression has its roots in epidemiology where it is widely used to model 

the binary outcome variable of whether a person has a disease or not. The utility in using 

this method in other fields, such as meteorology, is beginning to gain wider acceptance. 
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In this thesis, logistic regression techniques have been used to model the probability of 

thunderstorm occurrence since the presence or absence of a thunderstorm can be 

represented using a dichotomous variable. 

The form of logistic regression used in this thesis is based on equation 1.1 from 

Hosmer and Lemshow (1989). For multiple logistic regression the equation is 

,   .      exp(ß0 +A st + ß2 x2 +... + /?„ xj 

l + exp(ß0 +ßl xx +ß2 x2 +... + ß„ xj 

where TT(X) is known as the logit transformation, the x„ are the observations, and the ß„ 

are the logistic regression coefficients. The forecast value is then determined by the 

equation  v(x) = K(X) + e, where s is the error with a mean of zero, and a variance of 

s - 7t(x)\\ - 7r(x)]. The major benefit of using logistic regression versus linear 

regression is that equation 2 restricts the forecast values to between 0 and 1 where linear 

regression has no such bounds. Another major difference between logistic and linear 

regression is that the errors follow a binomial distribution versus a normal distribution. 

As a result, the least squares method and residuals usually employed in linear regression 

modeling are no longer applicable. 

Since the least squares method isn't applicable, the logistic regression model uses 

what is known as the maximum likelihood function. "This function expresses the 

probability of the observed data as a function of the unknown parameters" (Hosmer and 

Lemshow, 1989). The maximum likelihood function determines the maximum likelihood 

estimator which models each estimate to agree most closely with the observed data. The 

likelihood estimators are then incorporated into another function resulting in what is 

known as the deviance (D). Deviance is found by the equation: 
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D = -2£ 
1=1 

ytin 
Tt 

\ytj 

+ (l + yt)bi (5) 

Where the fti are the maximum likelihood estimates and the j, are the i   forecast values. 

Deviance is the logistic regression equivalent of residuals in linear regression. 

In order to test the significance of the addition of independent variables to the 

model, the difference in the deviance of the model without the variables and with the 

variables is calculated. Since the deviance is calculated using the likelihood function, the 

model's significance can also be found using the formula G = -2 In(L), where L is the 

ratio of the likelihood of the model without the variables to the likelihood of the model 

with the variables, and G is known as the likelihood ratio test (also known as -2 Log L). 

An important property of the likelihood ratio test is that the values of G follow a chi- 

square distribution with n-1 degrees of freedom where n is the number of parameters in 

the model. Since the likelihood ratio test follows this distribution, it is easy to calculate 

p-values for G By choosing a level of significance of 95%, we are able to judge the 

significance of having included the variables in the model. If the p-value is 0.05 or less, 

then the addition of the variables to the model is judged to be significant. 

The method above describes how to assess the significance of the overall model. 

Once the overall model is judged to be significant, an assessment of the individual 

variables in the model can be made. One method to judge the significance of the 

estimated regression coefficients is to calculate a statistic called the Wald test (Hosmer 

and Lemshow, 1989). Values of the Wald test follow a chi-square distribution with n+1 

degrees of freedom and therefore can be interpreted using a p-value in the same manner 
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as in the likelihood ratio test. Another statistic to use in determining the significance of 

the predictors is the odds ratio. Simplification of the odds ratio formula results in the 

equation y/ = exp^), where y/is the odds ratio and ßx is the beta-coefficient of the 

independent variable. This statistic has found wide use because it approximates how 

much more likely a predictor is to be important on days that have a thunderstorm (x=l) 

than among days with no thunderstorm (x=0). A value of one indicates an equal 

likelihood between x=0 and x=l. For a value of y/ = 1.32, the variable is said to be 32% 

more likely to be present when x=l than when x=0. 

3.3.2 Verification 

The process of determining the quality of a forecast is known as forecast 

verification (Wilks, 1995). This process involves matching a set of forecasts to the 

observations to which they pertain in order to determine the effectiveness of the forecast 

method. Historically, verification of forecasts has been rather controversial due to the 

numerous methods of verification that are available (Panofsky and Brier, 1968). Because 

of this, a number of different verification techniques are used in order to give a broad 

view of the relation between the observations and forecasts. The verification methods 

used in this thesis are presented below. 

A 2 X 2 contingency table approach was used to verify the ability of the logistic 

regression model to forecast the occurrence of thunderstorms. This method requires 

categorical data as input to the contingency table matrix before calculations can be made. 

Since the output values of the logistic regression model fall in the range of zero to one, a 

cutoff value is needed so that the forecast values can be converted to zeros and ones 
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(Neter et al., 1989). The forecast data were visually compared to the observations to see 

what cutoff might work best. From the distribution of forecasts to observations, it was 

determined that a cutoff anywhere between 0.4 and 0.6 would produce the same overall 

result. So, 0.5 was chosen as the cutoff value; values 0.5 or greater were converted to a 

one, and values less than .5 were converted to a zero. The contingency table is set-up as 

shown in Figure 8. 

A Mathcad template was written that converted the forecast data to categorical 

data and then entered the data into a contingency table. Before verification statistics can 

be said to be significant, the dependence between the observations and forecasts in the 

contingency table must be determined (Wilks, 1995). Dependence indicates that the 

contingency table was created by related versus random events. The assessment of 

dependence was determined through the use of Yates' continuity corrected chi-square 

statistic, and Fisher's exact test (Everitt, 1992). 

Since the chi-square distribution is based on a continuous probability distribution, 

and the contingency table uses discrete events, it is suggested to use the following 

formulation of the chi-square distribution when dealing with small sample sizes (Everitt, 

1992) 

Ni\ad-bc\-.5N)2 

c     (a + b)(c + d)(a + c)(b + d)' 

This is known as Yates' continuity corrected chi-square. It follows the standard chi- 

square distribution with one degree of freedom; therefore, a value of 3.84 or higher (or 

P(chi-square) ^0.05) indicates dependence between the observations and forecasts. 
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c+d 

n = a + b 
+ c + d 

Figure 8 2X2 Contingency Table- "a" represents an event that was both forecast 
and observed, "b" represents an event that was forecast but not observed. Boxes 

and "d" follow similarly. Sums on the right and bottom margin are the 
marginal totals. 

"c" 
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Fisher's exact test is used when expected cell counts in the contingency table are 

less than about 5 (as most were with the sample sizes used in this thesis). To find the 

value of Fisher's exact test, the following formula is used to compute all possible 

combinations of the contingency table that produce the same marginal totals (column 

totals and row totals) 

(a + b)! (a + c)! (c + d)! (b + d)! 

a!b!c!d!N! 

Each combination of cells that produces the same marginal totals has a corresponding 

value of P associated with it. The value of Fisher's exact test is the sum of the P's from 

each combination that produces the same marginal totals. The value output by Fisher's 

exact test is a p-value, so a value less than 0.05 is assumed significant at at least a 95% 

significance level. 

With dependence established, it is now possible to calculate accuracy and skill 

scores. The first of these indicates the fraction of correct forecasts and is given by the hit 

rate (HR) 

HR = m. (9) 
n 

A perfect forecast results in a hit rate of one and lower values indicate worse forecasts. 

Threat score yes (no) indicates the number of correct "yes" ("no") forecasts divided by 

the total number of times the event was forecast and/or observed. Threat score yes (TSY) 

and threat score no (TSN) are given by 

a d 
TSY = -  and TSN = . (10/11) 

a+b+c d+b+c 
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A perfect forecast results in threat score values of one while lower values indicate worse 

forecasts. The probability of detection {POD) is the percent of time that the forecast 

event occurred and was also forecast (PODY for "yes" forecasts, and PODN for "no" 

forecasts). These are given by 

PODY = ^— and PODN = -^—. (12/13) 
a+c d+b 

The POD of a perfect forecast is one while lower values indicate worse forecasts. The 

proportion of forecast events that fail to occur is given by the false alarm rate. False 

alarm rate yes (FARY), and false alarm rate no (FARN) are given by 

FARY = -^— and FARN = -^. (14/15) 
a + b c+d 

A low false alarm rate is desirable; therefore, false alarm rates of zero are produced by a 

perfect forecast. 

To see if an event was overforecast or underforecast, the bias is computed. Bias 

is simply the ratio of "yes" forecasts to "yes" observations; it is given by 

BIAS = —. (16) 
a + c 

A bias of one indicates that the event was forecast as often as it was observed. A bias 

greater (less) than one means that the event was overforecast (underforecast). Since the 

bias doesn't take the correspondence of observations and forecasts into account, it isn't 

considered an accuracy measure. 

Forecast skill is a measure of the relative accuracy between a set of forecasts and 

some set of reference forecasts. Common choices for the accuracy measures (A) are 

those mentioned above. The reference forecast (Are/) used in this thesis was the 24-hour 
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persistence. A perfect forecast (Aperf) is with respect to the accuracy measure used. The 

formula for skill score using a reference forecast is 

SS =     ref    100. (17) 
A      - A 

A skill score of zero indicates no improvement over the reference forecast, and a score of 

100 indicates a perfect forecast. Skill scores less than zero indicate that the forecast 

method being evaluated performs worse than the reference forecast. Two other skill 

scores commonly used are the Kuipers skill score (KSS) and the Heidke skill score (HSS). 

They are computed using the formulas 

KSS=    (ad~bc) (18) 
(a + c)(b + d) 

and, 

HSS= l(ad-bc)  (19) 

(a + c)(c + d) + (a + b) (b + d) 

Perfect scores for the Heidke and Kuipers scores receive a score of one, forecasts 

equivalent to a random forecast receive a score of zero, and forecasts worse than that 

achieved from a random forecast receive negative scores (Wilks, 1995). 

The Brier score (AS) and Brier skill score (BSS) were also computed. The Brier 

score is computed by averaging the squared differences between the forecast probabilities 

(not the categorical forecasts as above) and the subsequent binary observations (Wilks, 

1995). Values for the Brier score range from zero, for a perfect forecast, to one with 

higher values indicating less accurate forecasts. The Brier score is given by 

SS = ^=ft(yk-ok)100. (20) 
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Where the yu are the forecasts, and the ou are the observations. The Brier skill score is a 

result of using the Brier score in the skill score formula (equation 16), and it is interpreted 

in the same manner as the other skill scores. 
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4. Analysis and Results 

4.1 Overview 

This chapter presents the findings of this research. The variables that were found 

to be important to the occurrence of thunderstorms are presented along with an 

explanation of their physical importance. The indices developed (one for each of the data 

sets) using these variables is referred to as the Eta Thunderstorm Index (ETI). Since a 

contingency table approach is used to verify the results, the dependence of the 

observations on the forecasts is determined using Yates' corrected chi-square and 

Fisher's exact test. These statistics are discussed to show the significance of the 

contingency tables and the significance of any comparison between persistence, the ETI, 

and the NPTI. Last, a comparison of the verification statistics calculated for each of the 

forecasts is presented along with an explanation of the significance of the forecasts. 

4.2 Variables Found to be Important 

As mentioned before, logistic regression was used to find the variables that were 

important to thunderstorm development. Unfortunately, the statistics calculated for Tl, 

T2, and T3 proved to be statistically insignificant, so no further analysis was performed 

on these sets. The set labeled Tl had only four days of thunderstorms in its 36 days of 

data, which was insufficient for building a reliable model. Sets T2 and T3 produced 

insignificant verification results on the validation data sets most likely due to the small 

sample size of the data sets (only 8 values in each set). The three remaining sets, T1T2, 
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T2T3, and the full set, produced the variables in Table 1 as important to thunderstorm 

occurrence. 

Table 1 Variables Found to be Important to Thunderstorm Occurrence 

T1T2 T2T3 FULL 

2-Day Persistence 2-Day Persistence 2-Day Persistence 
900mb Wind Direction 

(dir900) 
850mb Wind Speed 

(spd850) 
900mb Wind Direction 

(dir900) 
RH at Freezing Level 

(fzrel) 
500mb Wind V-Component 

Squared- (v500)2 
600mb Relative Humidity 

(rh600) 
250mb Absolute Vorticity 

Squared- (av250) 
575mb Specific Humidity 

(sh575) 
250mb Absolute Vorticity 

(av250) 

Hll^Bll^Ä|l^|i«Hi|H; 325mb Cloud Ice 
(ci325) 

Convective Available 
Potential Energy (CAPE) 

950mb Specific Humidity 
(sh950) 

The variables in Table 1 were each run through the logistic regression procedure for the 

three validation subsets of each of the three periods (T1T2, T2T3, and Full). The 

estimated beta coefficients for each period and the coefficients for the full set of data 

(model and validation sets added together) are presented in Table 2, Table 3, and Table 4. 

Table 2 Beta Coefficients for T1T2 
J^!x!:::::::^":":::^J:|:|:^^^^;x 

Intercept Persistence dir900 fzrel (av250)2 

T1T2-A -15.12289 .43427 .0159 .13232 .01192 

T1T2-B -13.08726 .36272 .01859 .09775 .00961 

T1T2-C -10.1404 .29357 .01062 .08287 .00234 

T1T2- ALL -12.34987 .33948 .014069 .09796 .01052 

* Intercept- intercept from logistic regression, Persistence- 2-day persistence indicator, 
dir900- 900-mb wind direction, fzrel- freezing level relative humidity, (av250)2- square 
of the 250-mb absolute vorticity. 
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Table 3 Beta Coefficients for T2T3 

Intercept Persist spd850 (v500)2 sh575 ci325 sh950 

T2T3-A -34.211 .61892 -1.1418 .21296 .3343 -.06738 .15203 
T2T3-B -28.108 .522 -.81636 .25095 .36386 -.06395 .09435 
T2T3-C -17.577 .35773 -.3383 .13805 .20857 -.06697 .05342 

T2T3-ALL -18.173 .36287 -.41732 .11579 .17611 -.04684 .07035 

intercept- intercept from logistic regression, Persist- 2-day persistence indicator, 
spd850- 850-mb wind speed, (v500)2- square of the 500-mb wind v-component, shXXX- 
specific humidity at the XXX-mb level, ci325- 325-mb cloud ice content. 

Table 4 Beta Coefficients for Full Set 

Intercept Persistence dir900 rh600 av250 CAPE 

FULL-A -11.66527 .3413 .00969 .09406 .08887 .00049 
FULL-B -12.67858 .35045 .01197 .10373 .06671 .0006 
FULL-C -9.80365 .31437 .00596 .08375 .0118 .00035 

FULL-ALL -11.80008 .329446 .009203 .093957 .102774 .000617 

^Intercept- intercept from logistic regression, Persistence- 2-day persistence indicator, 
dir900- 900-mb wind direction, rh600- relative humidity at 600-mb, av250- 250-mb 
absolute vorticity, CAPE- convective available potential energy. 

With the tables of important variables and beta coefficients, it is now possible to 

interpret the physical relation between each variable and thunderstorms. The sign of the 

beta coefficient indicates the relation between the variable and the occurrence of a 

thunderstorm. A positive (negative) beta coefficient means that higher (lower) values of 

the variable correspond statistically to thunderstorm occurrence. One important point 

common to all of the tables is that the range of beta coefficients for each predictor is 

rather small. This is desirable in that it indicates that the predictors for each data set have 

relatively the same effect. Tables of the residual deviance and t-value for each variable 

are included in Appendix B. 

The two-day persistence is common to the three subsets of data as expected. This 

variable shows the statistical dependence of thunderstorm occurrence on whether 
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thunderstorms were present the previous days. When the same synoptic regime 

dominates an area for a period of time, as is common in the summer, we expect that 

similar weather conditions should appear in a number of successive days. Therefore, 

under these conditions it is expected (statistically) that days with no thunderstorms will 

be followed by a day without a thunderstorm, and days with thunderstorms will be 

followed by another day with a thunderstorm. This is quite evident in the data used for 

this thesis; after July first, thunderstorms come in average runs of 4.4, and days without 

thunderstorms come in average runs of 4.1. 

Numerous studies have shown the 900-mb (or -3000') wind direction to be one of 

the best indicators of thunderstorms near Cape Canaveral. From Neumann (1970), "the 

estimated probability of thunderstorm occurrence displays marked variation with 3000- 

foot wind direction. The minimum value of 10 percent with northwesterly winds 

contrasts rather sharply with the maximum of nearly 60 percent with winds from the 

southwest." Cetola (1997) and Lopez et al. (1984) verified this for more recent data and 

indicated higher preference for thunderstorms with winds from the southwest through 

west. With a relatively low occurrence of northwesterly winds (see Howell (1998) for 

wind rose information), the positive correlation of wind direction to thunderstorm 

occurrence indicates southwesterly to westerly winds to be of prime importance. The 

most likely explanation as to why this variable is important is that it relates to the 

orientation of the coastline at the Cape, and therefore affects the convergence patterns of 

the wind near the shuttle landing facility. 

Positive correlation in the specific humidity at 575-mb, 950-mb, the relative 

humidity at 600mb, and the freezing level relative humidity are indicative of the depth of 
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the moist layer. Deep moist layers have been shown to be positively correlated with 

shower activity in the Florida peninsula (Frank and Smith, 1968). The presence of a deep 

moist layer could be indicative of upward moisture transport and therefore upward 

vertical motion which is a necessary factor to thunderstorm development. A question that 

begs to be asked is why the layer average values that were computed aren't in the list of 

variables in place of the individual levels. This occurs because of correlations in the data. 

Layer average values were found to be important, but when they were combined with the 

other model variables much of the deviance that they explained was already explained by 

other variables. The moisture variables used had less of a correlation with the other 

variables in the model and therefore made a larger contribution to explaining the 

deviance. 

The 850-mb wind speed and the square of the v-wind component at 500mb have 

also previously been shown to relate to thunderstorm occurrence. The beta coefficient for 

the 850-mb wind speed shows a negative correlation with thunderstorms. Neumann 

(1971) also found this to be true. In terms of wind components, the speed (or magnitude) 

of the wind is given by Speed = ^{u2 + v2). The constants in Neumann's research 

indicate negative correlation in the square of both the u and v component at 850-mb, and 

therefore the speed as well. Relatively light winds and low vertical wind shear are two of 

the defining characteristics of single cell thunderstorms (Ray, 1986); the results of the 

regression support this theory. 

A positive correlation in the square of the 500-mb v-wind component was found 

to be an important variable in both this thesis and in Neumann's work. This result 

"indicates that the effect of wind speed is not predominantly linear and direct but rather 
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parabolic" (Lopez et al., 1984). On 95% of the days with thunderstorms, the square of 

the 500-mb wind component was over 10 ms"1, compared to only 30% of the days 

without thunderstorms having speeds over 10 ms"1. Since the v-wind component relates 

to the meridional orientation, the square of this variable indicates an importance in the 

departure of the wind direction from the east and west. This result implies that the 

synoptic regime also plays an important role in thunderstorm occurrence. 

The next variable found to be important, absolute vorticity, is the sum of relative 

vorticity and planetary vorticity. Since relative vorticity is usually small compared to 

planetary vorticity (for mid-latitude synoptic systems) we would expect that the values of 

absolute vorticity are going to be mostly positive (Holton, 1992). Lower values of 

absolute vorticity should relate to negative relative vorticity, and higher values should 

relate to positive vorticity. Therefore, the positive correlation indicates that positive 

vorticity at 250-mb is important to thunderstorm occurrence. This indicates that the 

magnitude of the counter-clockwise rotation in the upper atmosphere relates to the 

strength of upward vertical motions in the atmosphere. Stronger values of absolute 

vorticity could also relate to the position of the sub-tropical jet stream and its associated 

convergence/divergence zones. 

The density of ice within the model layer at 325-mb was found to be negatively 

correlated to the occurrence of thunderstorms. Since the model data are forecasting the 

atmosphere at 12Z, this variable indicates that the presence of clouds at 325-mb hinders 

the development of thunderstorms throughout the day. The most likely explanation for 

why this variable is important is that the high clouds reduce the amount of surface 

heating thereby taking away a main trigger mechanism for thunderstorm development. 
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Convective available potential energy (CAPE) was also found to be positively 

correlated to thunderstorm occurrence. This variable is a measure of the positive buoyant 

energy available in the atmosphere to lift parcels. CAPE was found to only have a 

minimal impact on reducing the deviance for the full set of data but it was included since 

it did slightly reduce the deviance. Other stability indices also performed poorly, this is 

possibly a result of the eta model being too dry, warm, and stable (NASA CR-1998- 

207910, 1998). 

The reason that the variables that are important to thunderstorm occurrence 

change from period to period isn't clear. Each period contains the two-day persistence, a 

variable relating to the winds, and a variable relating to the relative humidity as the 

strongest predictors. With the exception of the SSI and day number, these results are 

close to what Neumann found in his research. The importance of stability is weakly 

indicated in the full set by the CAPE variable, and Neumann himself indicated that day 

number was a weak predictor only included to maintain consistency from month to 

month (Neumann, 1971). A possible explanation as to why the variables differ is that 

this research didn't have a large enough sample size (more years of data) to resolve 

features important for the whole summer. Or, the important variables may actually 

change from month to month. Another possible explanation is that the eta model may 

inconsistently model the atmospheric variables resulting in vacillation of the important 

variables. It is also possible that other non-linear interactions in the data that weren't 

explored could prove to be more important. Without further research using more data, it 

is difficult to say why there is difference in the predictors. 
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4.3 Significance of Contingency Tables 

Using the results of Yates' corrected chi-square and Fisher's exact test, the 

significance of the contingency tables for 24-hr persistence, the validation sets of the ETI, 

and the NPTI were assessed. The 24-hour persistence forecasts were proved to be related 

to the observations at a significance level of at least 92% for the full set, but proved 

insignificant for each validation set of T1T2 and T2T3 (T1T2-A through C, and T2T3- A 

through C). 

Validation sets of the ETI were shown to have good overall significance. All but 

T1T2-C produced significance levels of 95% or greater. Set T1T2-C gives a significance 

level of 94.7% when Yates' continuity corrected chi-squared and Fisher's exact test are 

averaged. Since both tests measure the significance of the contingency table, and since 

both tests are considered conservative, we can conclude that T1T2-C is also significant at 

the 95% significance level. 

None of the contingency tables produced by the NPTI data were found significant 

at the 95% significance level. Thus the NPTI proved to be a rather poor method of 

forecasting thunderstorms with little correlation between the forecasts and the 

observations. It should be noted that this is the NPTI forecast made using the eta model 

and not the NPTI from the atmospheric sounding that is in operational use at Cape 

Canaveral. 

4.4 Verification Statistics 

The verification statistics below are based on the contingency table approach 

mentioned earlier. Results are given only for cases in which Yates' corrected chi-square 
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and Fisher's exact test indicated that the contingency table was statistically significant. If 

persistence was found not to be statistically significant, then the skill score computed 

against the ETI was also insignificant and was not analyzed. The most significant results 

came from the three subsets of the full data set. Results from each data set are analyzed 

and discussed below. 

The contingency tables produced using the data from T1T2-A, T1T2-B, and 

T1T2-C showed only the ETI to be statistically significant at the 95% significance level. 

The average hit rate was a gracious 85.4%. This, coupled with a 6% FARN and a 

relatively low Brier score, leads to the conclusion that this method is quite robust. One 

slight detriment exists in the value of the bias; the average value of 133% indicates a 

slight over forecasting for this data set. The other accuracy and skill computations also 

reflect positively on the forecasting ability of the model used for each subset of the data. 

In subset T2T3-A, persistence and the ETI were found to be significant. 

However, both contingency tables had the same cell counts, so both methods produced 

the same statistics (so skill score = 0). In subset T2T3-B, none of the forecast methods 

proved to be statistically significant. Comparing the accuracy and skill measures of 

T2T3-A and T2T3-C, the average hit rate is 81.3%, the average FARN is 17%, and the 

average Brier score is a low 0.125. Average bias is close to 100% and therefore indicates 

neither over nor under forecasting of these models. 

For all of the subsets of the full model, both persistence and the ETI were found 

to be significant. Because of this, we can compare the two by use of the skill score. The 

positive values of the skill score indicate the ETI does a better job of forecasting than 

persistence. One similarity worth mentioning is that the value of PODN for persistence 
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and the ETI is the same within each subset. An analysis of these contingency tables 

revealed that the "b" and "d" cells were the same in each table, which indicates that the 

"observed no" column in the contingency table is identical for both persistence and the 

ETI. Since the other skill and accuracy scores are higher for the ETI, the logical 

conclusion is that the ETI's formulation results in better forecasting of the "observed yes" 

column. Again, the average hit rate of 84.7%, the average Brier score of. 113, and the 

relatively low bias of 116% suggest this method has merit in thunderstorm forecasting. 

Probably the most operationally significant forecast is the one that doesn't forecast a 

thunderstorm and a thunderstorm occurs. The statistics of this combination are 

represented in the probability of detection no accuracy measure (PODN). The average 

PODN for the ETI is only 8.6% compared to 17.8% for persistence. So, PODNis 

another indicator of the ETI's utility over persistence. 
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5. Summary and Recommendations 

5.1 Overview 

The previous chapters introduced, developed, and analyzed an index built of the 

mesoscale eta model for the purpose of thunderstorm forecasting. Even with a somewhat 

limited data set, the index showed skill in predicting thunderstorms at Cape Canaveral. 

Continued improvements in the mesoscale eta model will require a continued evaluation 

of predictors used in building the index. A larger database of mesoscale eta data should 

be analyzed in order to refine the index and possibly develop a dynamic index that 

changes from month to month. A summary of the findings of this research and some 

recommendations for further work are discussed below. 

5.2 Summary 

Mesoscale eta model data and observational data were collected for the warm 

season of 1998 and entered into a matrix for analysis. The data were then divided into 

three subsets demarcated by date: 1 May-15 Jun, 16 Jun-31 Jul, and 1 Aug-14 Sep. A 

stepwise logistic regression was performed on the full set of data and the three subsets to 

find which variables were important to the occurrence of thunderstorms at Cape 

Canaveral. Each of the data sets were then further divided into a model-building and 

validation set in an 80/20 ratio. The model-building sets were used to find the regression 

coefficients, which were then applied to the validation data sets. 

The probabilities output by applying the regression equations to the validation 

data sets were then categorized as either no thunderstorms (if the probability was less 
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than 0.5) or thunderstorms (if the probability was greater than or equal to 0.5). The 

categorized data were then entered into two-by-two contingency tables for statistical 

analysis and for comparison to the NPTI and persistence. Analysis of the three subsets of 

data showed only the ETI to be consistently statistically significant at the 95% 

significance level. Skill and accuracy scores for the subsets of data indicate a relatively 

high amount of forecast ability for the ETI. The full data set proved both persistence and 

the ETI to be statistically significant at the 95% significance level. In each of the 

validation sets, the ETI had increased skill over persistence. The NPTI was shown to be 

insignificant at the 95% level for all data sets. 

Though the verification results were favorable and the validation sets showed no 

signs of an overfit model, the small sample size make the results of this research only 

tentative. The results of this thesis are therefore of limited operational use, but they do 

provide a basis for further work. 

5.3 Recommendations 

The scourge of this thesis was definitely the data. Sources for archived eta data 

are rare, and when one is found the data sets are usually incomplete or contain periods of 

missing data. The amount of data received for this thesis was sufficient for only a 

preliminary study on the feasibility of using model data to build an index for forecasting 

thunderstorms. For a more definitive study on this topic, it is suggested that many more 

years of warm season data be included in the process. The representativeness of 

observational data could also be improved upon. This study only included observation 

data from the shuttle landing facility. Other sources such as radar data, satellite data, and 
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lightning data could be included to ensure a more representative pool of thunderstorm 

days. A greater pool of observational data and model data would help to smooth out the 

annual variability of the results and reduce the dependence of the results on the data set. 

The persnickety nature of the NPTI as a result of its linear regression basis was 

surpassed by the logistic regression formulation of the ETI. Logistic regression proved to 

be a valuable tool for this type of application and should continue to be used for studies 

of this type. One possible improvement on the methods of this thesis is to include more 

interaction terms in the regression. The multiplication of variables by one another or the 

inclusion of cubic terms may result in a better model. Also, if more data can be obtained 

a regime-based index may prove worth looking into. 

Another limiting factor to the success of this technique is the mesoscale eta model 

itself. With constant changes to the eta model, a study involving more than one warm 

season will result in having to use versions with differing resolutions, physical 

parameterizations, and initialization procedures. It is entirely possible that the variables 

that the model models as being important to thunderstorm occurrence change from 

version to version. Therefore, as the mesoscale eta model is updated, it will be necessary 

to continually adjust the regression coefficients to keep the forecast ability of the 

regression equations tuned. An extension of the methods used in this thesis to other 

forecast models such as the medium range forecast (MRF) might prove useful for 

forecasting past day-2. Continued effort on this topic is encouraged. 
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Appendix A: Variables Considered 

This appendix contains the list of variables (and levels) tested for significance to 

thunderstorm occurrence in this thesis. 

Absolute Vorticity (s"1)- 1000, 850, 750, 700, 500, 400, 250-mb's 

Cloud Ice (kg/m2)- 600 through 200 mb's in increments of 25 mb's 

Cloud Water (kg/kg)- 1000 through 600-mb's in increments of 25 mb's 

Dewpoint (K)- 1000 through 500-mb's in increments of 25 mb's, and 250-mb's 

Temperature (K)- 1000 through 500-mb's in increments of 25 mb's, and 250-mb's 

Omega (Pa/s)- 1000 through 500-mb's in increments of 25 mb's, and 250-mb's 

Relative Humidity (%)-1000 through 500-mb's in increments of 25 mb's, 400 mb's and 

250-mb's 

Layer Average Relative Humidity (%)- 300-500, 500-700, 600-800, 700-925, 800-1000 

mb's 

Specific Humidity (kg/kg)- Same levels as Relative Humidity 

Layer Average Specific Humidity (kg/kg)- Same levels as layer avg. Relative Humidity 

Cloud Water Layer Average (kg/kg)- 600-800, 700-900, 600-900, 800-1000 mb's 

Cloud Ice Layer Averages (kg/m2)- 200-400, 300-500, 400-600-mb's 

Heights (gpm)- 1000, 925, 850, 700, 600, 500, 400, 250-mb's 

Thickness (gpm)- 1000-500, 925-600, 700-400, 850-500, 500-250-mb's 

Wind Direction (degrees)- 1000-700 mb's in 50 mb increments, 600, 500, and 250-mb's 

Wind Speed (Knots)- Same levels as Wind Direction 
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U and V Wind Components (knots)- 850 and 500-mb's 

Binary Directional Wind Shear- 850-500, 950-750 mb's 

Directional Wind Shear- 850-500, 950-750 mb's 

Wind Speed Shear- 700-500, 950-800-mb's 

Squared Wind Speeds- 900, 850, 700, 500, 250-mb's 

Convective Precipitation (kg/m2)      Non-Convective Precipitation (kg/m2) 

CAPE (J/kg) 

Mean Sea Level Pressure (Pa) 

SWEAT Index (non-dimensional) 

10-Meter AGL Speed (knots) 

Total Precipitation (kg/m ) 

CINS (J/kg) 

K-Index (Celsius degrees) 

SSI (Celsius degrees) 

10 Meter AGL Direction (degrees)    Lifted Index (Celsius Degrees) 

Moisture Convergence (kg/kg/s) Helicity (m2/ s2) 

Climatology 

Day Number 

Categorical Persistence 

NPTI 

Persistence 

Categorical Winds 

Freezing Level RH (%) and Height (gpm) 

Categorical 10 Meter Wind Direction 

Categorical 950, 900, and 850-mb Wind Direction 
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Appendix B: Percent Deviance Explained and T-Value Tables 

Table B-l. T1T2-A: Percent Deviance Explained and T-Values 

Variables Persistence dir900 fzrel (av250)2 Total Dev. Exp. 

% Dev. Exp. 39.7 9.0 10.7 5.0 64.4 
t-value 3.24 2.10 2.31 1.64 tMW^^^^^^^M^^^y^^: 

*Persistence- 2-day persistence indicator, dir900- 900-mb wind direction, fzrel- freezing 
level relative humidity, (av250)2- square of the 250-mb absolute vorticity. 

Table B-2. T1T2-B: Percent Deviance Explained and T-Values 

Variables Persistence dir900 fzrel (av250)2 Total Dev. Exp. 

% Dev. Exp. 43.2 12.2 7.6 2.4 65.4 

t-value 3.38 2.08 2.19 1.17 ; 

*Variables sar ne as Table B-] 

Table B-3. T1T2-C: Percent Deviance Explained and T-Values 

Variables Persistence dir900 fzrel (av250)2 Total Dev. Exp. 

% Dev. Exp. 37.8 6.9 10.2 .1 55.0 

t-value 3.30 1.34 2.21 .27 '^^^^^^iiif^^^^^^^^. 

^Variables sai ne as Table B- 

Table B-4. T2T3-A: Percent Deviance Explained and T-Values 

Variables Persist spd850 v5002 sh575 ci325 sh950 Total Dev. Exp. 

% Dev. Exp. 41.3 2.5 11.0 8.2 4.8 8.5 76.3 

t-value 2.76 -2.40 2.42 2.48 -1.56 2.11 
2       _      „.     «-xi- *Persist- 2-day persistence indicator, spd850- 850-mb wind speed, (v500) - square of the 

500-mb wind v-component, shXXX-specific humidity at the XXX-mb level, ci325- 325- 
mb cloud ice content. 
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Table B-5. T2T3-B: Percent Deviance Explained and T-Values 

Variables Persist spd850 v5002 sh575 ci325 sh950 Total Dev. Exp. 

% Dev. Exp. 49.4 2.5 9.5 9.3 4.6 3.2 78.5 
t-value 2.61 -2.12 2.08 2.22 -1.47 1.47 m££#s&&?&tä&tt 

*Variables same as Table B-4. 

Table B-6. T2T3-C: Percent Deviance Explained and T-Values 

Variables Persist spd850 v5002 sh575 ci325 sh950 Total Dev. Exp. 

% Dev. Exp. 41.3 1.2 7.0 5.4 5.7 1.7 62.3 

t-value 3.05 -1.66 1.94 2.24 -1.74 1.19 1 

^Variables sar ne as Tab eB-4. 

Table B-7. Full-A: Percent Deviance Explained and T-Values 

Variables Persist dir900 rh600 av250 cape Total Dev. Exp. 

% Dev. Exp. 44.4 2.64 6.8 .7 .8 44.6 

t-value 4.63 2.08 2.53 1.03 .96 ! 

*Persistence- 2-day persistence indicator, dir900- 900-mb wind direction, rh600- relative 
humidity at 600-mb, av250- 250-mb absolute vorticity, CAPE- convective available 
potential energy. 

Table B-8. Full-B: Percent Deviance Explained and T-Values 

Variables Persist dir900 rh600 av250 cape Total Dev. Exp. 

% Dev. Exp. 50.1 4.2 7.0 .50 .75 62.55 

t-value 4.39 2.13 2.30 .67 .91 ! 

*variables san le as Table'. B-7. 

Table B-9. Full-C: Percent Deviance Explained and T-Values 

Variables Persist dir900 rh600 av250 cape Total Dev. Exp. 

% Dev. Exp. 44.6 1.8 7.5 .01 .3 54.23 

t-value 5.19 2.12 2.86 1.27 1.28 :.                         -                ■         ,'■      : 

^variables san le as Table B-7. 
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Appendix C: Verification Statistics 

Table C-l. Verification Statistics for T1T2-A 

T1T3UA Perfect 
Scores Persistence 

ETI NPTI 
Forecast Skill Forecast Skill 

HR% 100 75 87.5 50 43.8 -125 
TSY % 100 33.3 66.7 50 10 -35 

TSN % 100 71.4 83.3 41.7 40 -110 
PODY % 100 50 100 100 25 -50 
PODN % 100 83.3 83.3 0 50 -200 

FARY % 0 50 33.3 33.3 85.7 -71.4 
FARN% 0 16.7 0 100 33.3 -100 

BIAS % 100 100 150 

%$M!$MKM 

175 
HSS 1 .33 .71 -.20 
KSS 1 .33 .83 -.25 

BS 0 .25 .12 .23 

BSS % 100 ^:mSSi:^S$:$^%%iS 53.1 8.6 

Table C-2. Verification Statistics for T1T2-B 

T1T2-B   j Perfect 
Scores Persistence 

ETI NPTI 
Forecast Skill Forecast Skill 

HR% 100 75 87.5 50 50 -100 
TSY % 100 33.3 60 40 11.1 -33.3 

TSN % 100 71.4 84.6 46.2 46.7 -86.7 
PODY % 100 66.7 100 100 33.3 -100 
PODN % 100 76.9 84.6 33.3 53.8 -100 

FARY % 0 60 40 33.3 85.7 -42.9 
FARN% 0 9.1 0 100 22.2 -144 

BIAS % 100 167 167 233 
HSS 1 .35 .67 -.09 
KSS 1 .44 .85 -.23 
BS 0 .25 .13 .22 

BSS % 100 48.4 14.0 
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Table C-3. Verification Statistics for T1T2-C 

TIT2-C Perfect 
Scores Persistence 

ETI NPTI 
Forecast Skill Forecast Skill 

HR% 100 68.8 81.3 40 56.3 -40 
TSY % 100 28.6 57.1 40 30 2 
TSN % 100 64.3 75 30 46.2 -50.8 

PODY % 100 33.3 66.7 50 50 25 
PODN % 100 90 90 0 60 -300 
FARY % 0 33.3 20 40 57.1 -71.4 
FARN% 0 30.8 18.2 40.9 33.3 -8.33 
BIAS % 100 50 83.3 

W§99B& 

117 

' 
HSS 1 .26 .59 .09 
KSS 1 .23 .57 .10 
BS 0 .31 .11 .23 

BSS % 100 65.4 27.1 

Table C-4. Verification Statistics for T2T3-A 

T213-A Perfect 
Scores Persistence 

ETI NPTI 
Forecast Skill Forecast Skill 

HR% 100 81.3 81.3 0 43.8 -200 
TSY % 100 66.7 66.7 0 30.8 -108 
TSN % 100 70 70 0 25 -150 

PODY % 100 85.7 85.7 0 57.1 -200 
PODN % 100 77.8 77.8 0 33.3 -200 
FARY % 0 25 25 0 60 -140 
FARN% 0 12.5 12.5 0 50 -300 
BIAS % 100 114 114 

■;...   ■;■ 

143 
:::::::  '   .                ""*--. HSS 1 .63 .63 -.09 

KSS 1 .64 .64 -.10 
BS 0 .19 .14 .28 

BSS % 100 23.0 -49.2 
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Table C-5. Verification Statistics for T2T3-B 

T2T3-B  j Perfect 
Scores Persistence 

ETI NPTI 
Forecast Skill Forecast Skill 

HR% 100 68.8 75 20 50 -60 

TSY % 100 44.4 50 10 38.5 -10.8 

TSN % 100 58.3 66.7 20 27.3 -74.5 

PODY % 100 80 80 0 100 100 

PODN % 100 63.6 72.7 25 27.3 -100 

FARY % 0 50 42.9 14.3 61.5 -23.1 
FARN% 0 12.5 11.1 11.1 0 100 

BIAS % 100 160 140 

ÄIHÜHI 

260 

'4 
HSS 1 .38 .48 .19 
KSS 1 .44 .53 .27 
BS 0 .50 .23 .22 

BSS % 100 26.5 30.2 

Table C-6. Verification Statistics for T2T3-C 

T2T3-C Perfect 
Scores Persistence 

ETI NPTI 
Forecast Skill Forecast Skill 

HR% 100 68.8 81.3 40 62.5 -20 
TSY % 100 44.4 66.7 40 53.8 16.9 
TSN % 100 58.3 70 28 33.3 -60 

PODY % 100 50 75 50 87.5 75 

PODN % 100 87.5 87.5 0 37.5 -400 

FARY % 0 20 14.3 28.6 41.7 -108 
FARN% 0 36.4 22.2 38.9 25 31.3 

BIAS % 100 62.5 87.5 150 
HSS 1 .38 .63 .25 
KSS 1 .38 .63 .25 
BS 0 .313 .11 .23 

BSS % 100 65.4 28.1 
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Table C-7. Verification Statistics for Full-A 

FULL-A I Perfect 
Scores Persistence 

ETI NPTI 
Forecast Skill Forecast Skill 

HR% 100 83.3 91.7 50 50 -200 
TSY % 100 60 80 50 25 -87.5 
TSN % 100 77.8 87.5 43.7 40 -170 

PODY % 100 75 100 100 50 -100 
PODN % 100 87.5 87.5 0 50 -300 
FARY % 0 25 20 20 66.7 -167 
FARN% 0 12.5 0 100 33.3 -167 

BIAS % 100 100 125 

; 

150 
HSS 1 .63 .82 0 
KSS 1 .63 .88 0 
BS 0 .167 .08 .23 

BSS % 100 54.1 -40 

Table C-8. Verification Statistics for Full-B 

FULL-B Perfect 
Scores Persistence 

ETI NPTI 
Forecast Skill Forecast Skill 

HR% 100 75 79.2 16.7 54.2 -83.3 
TSY % 100 45.5 54.5 16.7 31.3 -26 

TSN % 100 68.4 72.2 12 42.1 -83.3 
PODY % 100 71.4 85.7 50 71.4 0 
PODN % 100 76.5 76.5 0 47.1 -125 
FARY % 0 44.4 40 10 64.3 -44.6 
FARN% 0 13.3 7.1 46.4 20 -50 

BIAS % 100 129 143 200 
HSS 1 .44 .55 .14 
KSS 1 .48 .62 .19 
BS 0 .25 .15 .22 

BSS % 100 40.5 11.6 
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Table C-9. Verification Statistics for Full-C 

R;LL-C Perfect 
Scores Persistence 

ETI NPTI 
Forecast Skill Forecast Skill 

HR% 100 75 83.3 33.3 62.5 -50 
TSY % 100 45.5 63.6 33.3 43.8 -3.1 
TSN % 100 68.4 76.5 25.5 47.1 -67.6 

PODY % 100 50 70 40 70 40 
PODN % 100 92.9 92.9 0 57.1 -500 
FARY % 0 16.7 12.5 25 46.2 -177 
FARN% 0 27.8 18.8 32.5 27.3 1.82 
BIAS % 100 60 80 130 

', 

HSS 1 .46 .65 .26 
KSS 1 .43 .63 .27 
BS 0 .25 .11 .22 

BSS % 100 56.7 13.9 
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Appendix D: Mathcad Template for Calculating NPTI 

The following is a Mathcad template for calculating the NPTI for days in June 

vrbs := READPRN("d:\mctemp\npti_vrbs.txt" ) file with NPTI variables 

mo_con:= READPRN("d:\mctemp\npti_mo_con.txt" ) file with monthly coefficients 

C ;= READPRN("d:\mctemp\npti_consts.txt" ) file with NPTI coefficients 

u       v       s t 

vrbs format:   daynum   rh    u500v500   u850 v850   ssi     rows(vrbs) = 114 

const format: may jun  jly   aug   sep (as in Neumann 71) cols(vrbs) = 8 

0     12      3       4 i := 24.. 46 

j:=0.. 113 

w := i    So this template only calculates NPTI for June. Need to change certai 
coefficients depending on the month of interest. 

vrbs.    := vrbs.    1.9438445 vrbs.    := vrbs.    1.9438445 
J'3 J'3 J' J' convert winds to knots 

vrbs.    :- vrbs. /1.9438445 vrbs. Ä := vrbs. ,-1.9438445 
J,4 J,4 j,6 j,6 

u. := vrbs. , s. := vrbs. , rh := vrbs. ssi. := vrbs. 
1 1,3 1 1,5 1 1, .£ 1 1. ' 

v := vrbs. t := vrbs. c day. := vrbs. , 
1 1,4 1 1,6 J\ 1,1 

&V=C0.W + Cl.W-Si + C2.W-t1 
+ C3.W-^ + C4.w<Si)2 + C5.W-(tI)

2 + ^^ 

&21 := C!0, W + CH,w'Ul + Cl2, w"Vi + C13,WUi Vl + C14, W- W2 + C15,W' (Vl)2 + C!6,W- (^ 

+   C17.W-WS + Cl..W^(Vi)2 + C19.W-(Vi)3 
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&3. :=C       -t-C       rh + C      -frbr + C      ■ (rh 
1 20,W^      21,W      1 22,W l     V 23,W V     1 

fx4. := C       H-C       ssi +C       (ssi. 
1 24,W 25, W       1 26,W \      1 

&5. i. :=C       -t-C       day. + C day. 
1 27,W 28,W       Jl 29,W \      "'l 

The following programs fix the results in the case of strong easteryl winds 

fxl. := 
i 

err<-t + ,3-s. + 15.4 

.01  if err<0 

fxl.  otherwise 

fxl err<-v. + 5u. + 78.9 

.01  if err<0 

fx2.  otherwise 
i 

The following programs make adjustments to the output due to the problems with usi 
linear regression methods (REEP) as discussed in the thesis text. 

fxl. := 
i 

fxl.   if 0<fxl.< 1 
l                 l 

.01   if fxl.< 0.01 
l 

.99 if fxl.>l 
i 

fx3. := 
i 

.01  if [rh- 15^< 0 

fx3.  otherwise 
i 

fx2:= 
i 

fx4. 

fx2.  if 0<fx2.< 1 
i i 

.01   if fx2< 0.01 

.99 if fx2>l 

.01  if fx4.< 0.01 
i 

fx4.  otherwise 
i 

Calculate the NPTI 

P Jun:=mo con     f mo con     fxl + mo con    -fx2 + mo con     fx3 
— —        0,W —        1,W —        2,W —        3,W 

+ mo con     fk4-i-mo con     fx5 
—        4,W —        5,W 

P Jun := 
—    i 

.01  if P Jun< 0 

P Jun  otherwise 
—    i 
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sample of output: multiplied by 100 to get percent 

tt:= 35.. 45 

Julian day # 

vrbstt,i 

NPTI 

P_Juntt-100 

166 

167 

169 

171 

172 

174 

176 

177 

178 

179 

180 

4.687 

35.312 

42.38 

38.291 

23.827 

52.479 

53.98 

52.07 

43.81 

39.023 

22.694 
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Appendix E: Mathcad program for 99% Ellipse Winds 

This program determines if the winds are in the 99% ellipse of the data set for the HPTI 

vrbs := READPRN ("d:\mctemp\npti_vrbs.txt"   )       Read in NPTI variables 

i := 0.. 113 index 

U := vrbs- -1.9438445 S- := vrbSj -1.9438445 

V- := vrbs-  1.9438445  t- := vrbs- -1.9438445 
1,4 1,6 

dayj := vrbsi x 

ma:=0.. 23 may 

ju := 24.. 46 jun 

jl := 47.. 74 jiy 

au := 75.. 101 aug 

se := 102.. 113 sep 

row numbers for the days of 
the month in my data set 

a5 := 

45.06 

33.46 

28.04 

30.72 

40.06 

yk5 

ct8 

-1.539 

.511 

1.7 

2.202 

.268 

.84897 

.89180 

.98686 

.84989 

.83772 

b8 := 

"24.06" 

21.78 

18.58 

19.26 

_ 24.93 _ 

redefine variables for easy id and 
change winds to knots 

b5 := 

34.26 

25.64 

23.18 

22.89 

27.15 

ct5 := 

st8 := 

.52844 

.45243 

.1616 

.52696 

.54610 

xh8:= 

xh5 := 

12.336 

5.065 

2.048 

.995 

2.560 

".82511" ".56497" 

.98741 .15816 

.97630 st5 := .21644 

.83962 .54317 

_.83772 _ _ .46020 _ 

a8 := 

33.79 

30.58 

25.88 

26.77 

35.78 

" -.12 " .596 " 

1.902 3.257 

2.146 yk8 := 4.941 

.061 4.359 

-2.573 _ 1.887 
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xp5    := (u    - xh5 Vct5 + (v    - yk5 Vst5 
^ ma     V ma 0/       0     \ ma    J     0/      0 

vp5     := (\    -yk5Yct5-(u    -xh5Yst5 J^ ma     V ma 0/       0     V ma 0/       0 

xp5.   := (u   -xh5)ct5 +■ (v.   - yk5 Yst5 
*JU        ^  JU 0/ 0       \  JU      J       0/ 0 

yp5.   := (v.   -yk5Vct5 - fu   -xh5Vst5 3V ju     \ ju    J    0/       0     V ju 0/      0 

xP5., := fu., - xh5 Vct5n +■ (v., - yk5   -st5 

may 

yP5.1:=fv.1-yk5nVct5 - (u, - xh5 ) ■ st5 
jl"   Vjl 0/        0      \ jl 0^0 

xp5    := fu    - xh5 Vct5 +■ fv    - yk5 Vst5 v au      \ au 0/       0     V au     J     0/       0 

yp5    := (v    -yk5)-ct5-(u    -xh5)st5 Jtau      I  au     J     0/       0     \ au 0/       0 

xp5    := fu   - xh5 Vct5 + fv   - yk5 Vst5 
se      \   se 0/       0     \ se     J     0/       0 

yp5    := fv   - yk5 Vct5 - fu   - xh5 Vst5 
-"se      V se     ^     0/       0     V se 0/       0 

jun 

jul 

aug 

sep 

sum5 
xp5 

ma 

'yp5    )2 

b5 

sumS   := 
ju 

xp5 
ju 

aS^^J». 
b5 

sumS, := 
Jl 

xp5. 

■>    \yp5il a5 )2 + ^-}[ 

b5 

sum5    := 
au 

xp5 
au 

2     \yP au 

0/ /,  r   \2 b5 

sum5    := ■ 
se 

xp5 
se 

a5)2
+

vYP5se 

b5 
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winds_99jpct.    := day. 

winds 99 pet        : 
—    —r    ma, l 

500 mb winds 

23 
0  if (sum5ma- l)<0 Y,   winds_99_pctma i  = 10 

5  otherwise ma = 0 

so there were two days in 
may with winds out of the 
99% ellipse 

winds_99_pct.      : 0  if (sum5.u - l)< 0 

5   otherwise 

46 

\    winds_99_pct-u i  = 0 

JU = 24 

winds_99_pct { 1 := 0  if (sum5.j- 1 )<0 

5  otherwise 

74 

\      winds_99_pct -j x  = 0 

jl=47 

winds 99 pet        := —    —v    au, l 
0  if (sum5    - l)< 0 ^ au 

5   otherwise 

101 

N      winds_99_pct au x   = 0 

au = 75 

winds_99_pct 0  if (sum5se - 1 ]<0 

5  otherwise 

113 

y       winds_99_pct se x   = 0 

se = 102 
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850-mb winds 

xp8    := (s    -xh8)ct8+(t    -yk8)st8 r ma      I ma 0/       0     \ ma    J     0/       0 may 

yp8     := ft    -yk8    ct8 -   s     - xh8    st8 ~ \ '  ma, 
ma'    I ma     "    0/       0     i ma 0/0 SUm8 

xp8    N2 

fyps  )2 

'a$)\[      ma) 

xp8.   := [s.  -xh.8    ct8 + t  - yk8    st8 
0/ ^b8 ^2 

0 

jun 

yp8.   := ft   - yk8 Vct8 - (s.  -xh8Yst8 (xP8i,,^ 

JU fyps- )2 

0/       fb8 "2 
xpS^^s^-xhSj.ctS^^-ykSj.st^ 

jul 
yp8ji := (v - yk8o) ct8o - (sji - xh8o) • st8o fxp8..v 

sum8.. := -  

, « (yP8i.)2 

xp8,u-(s,u-'d>8.)«8„^(',u-yk8„)-s'8.   aug 
{o'+~W 

yp8    := ft    -yk8Yct8-fs    -xh8Yst8 3V au      \ au     ^     0/       0     \ au 0/       0 

fxp8   )2 

sum8    := 
fyps )2 

xp8    := fs   - xh8 Yct8 + (t   -yk8Yst8 fa8V-h^ ^L 

sep 'm 

yp8    := ft   -yk8Yct8-fs    -xh8Yst8 Jr se      V se     J     0/       0     V se 0/       0 

(xp8
se:

2 

sum8    := 
fyps )2 

0/
        ^8o)

2 
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winds_99_pct 
ma, 2 

0   if  (sum8      - 1 )<0 \ ma 

8   otherwise 

23 

z winds 99 pet = 8 
ma, 2 

ma = 0 

one day with 850-mb 
winds out of the ellipse 

winds_99_pct 
JU,2 

0   if (sum8.u - l ]< 0 

8   otherwise 

46 

S 
ju = 24 

winds_99_pct .        = 0 
JU.2 

74 
winds_99_pct .,    := 0  if (sumS.j- 1 ]< 0 

8   otherwise 

\      winds_99_pct -j 2  = 0 

jl=47 

winds_99_pct 
au ,2 

0   if  (sum8     - 1 )<0 \ au 

8  otherwise 

101 

y      winds_99_pct au 2   = 0 

au = 75 

winds_99_pct 
se ,2 

0   if (sum8se - l)<0 

8   otherwise 

113 

Z    winds 99_pct = 0 
—    —r     se , 2 

se = 102 
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winds_99_pct = 

j(fl220 o 
U 123  0 0 

II124 ° 0 

|| 125  0 .0 

IB126 ° 0 

11127 0 0 

IB 128 ° 0 

II129  5 8 

ill130  5 0 

IB 131  0 0 

IB132  ° 0 

|jl33  0 0 

■ 134-0 0 

P135  ° .0 

H 136:0 0 

So, the 500 and 850-mb winds were out of 
the 99% ellipse (defined by Neumann's 
data) for day 129 and the 500-mb wind 
was out for day 130. 
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