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ABSTRACT 

A round-robin series of damping tests was conducted in order to clarify the state of the art 
in damping measurement technology as applied to metal alloys, especially those possessing 
nonlinear damping properties. A variety of sample designs and test procedures were employed 
to measure the damping capacity of a metal with nonlinear damping as well as a low damping 
metal. Out of nineteen volunteers who originally expressed interest in the study, ten were able to 
provide data from a variety of test techniques. Nonlinear damping arises when intrinsic damping 
in the material varies strongly with changes in the amplitude of oscillating strain. Such materials 
are said to have strain dependent damping characteristics. Also, for materials possessing 
nonlinear damping, the measured damping of a test specimen varies with strain amplitude in a 
manner different than the intrinsic damping inherent to a local region of material under a uniform 
state of strain. The importance of this distinction is addressed in this report. The two materials 
that were used in the work were a high damping magnetic steel (composed of iron, chromium 
and molybdenum), known by the tradename of Vacrosil, and a high strength steel used by the US 
Navy, known as HY-100 steel. The Vacrosil used in the test program possesses high intrinsic 
damping with strain dependent characteristics. The HY-100 steel was used as a control sample 
since its damping is very low and not strongly strain dependent. In this report, specimen 
damping test results are presented and compared. In addition, a procedure for converting from 
specimen damping to intrinsic damping is employed, and results are also presented on this basis. 
Furthermore, some test participants were able to measure the elastic modulus of the material 
while measuring damping. This modulus data will also be presented and discussed. It is clear 
from the work that large measured differences in both specimen and intrinsic damping can result 
when different test methods are employed. The differences are primarily attributed to systematic 
errors in certain testing procedures, sample design and size, but the method of loading and type 
of measurement may also account for some of the differences. A supported effort to establish a 
standard test sample and a standardized measurement approach is recommended to advance the 
state of the art in this field. 

ADMINISTRATIVE INFORMATION 

This work was conducted by the Machinery Structures Acoustics Branch, Code 842 and 
Materials Processing Branch, Code 612 of the Carderock Division of the Naval Surface Warfare 
Center (NSWCCD). This work was sponsored by the Office of Naval Research, Code 332, FRN 
50015. The ONR Program Manager is Dr. Larry Kabacoff. The work was supervised by David 
Larrabee, Code 842 and Dr. L. Aprigliano, Code 612, Carderock Division, Naval Surface 
Warfare Center. 

INTRODUCTION 

The measurement of intrinsic damping in materials has long been used as an important 
tool to study microstructural characteristics in materials, such as the length of dislocation loops 
and the concentration of pinning sites. Intrinsic material damping measurements have also been 
used for nondestructive evaluation, quality control, and as an alternative approach to characterize 
nonmetallic and composite materials and structures [1]. Damping is also of interest as a useful 
feature in and of itself. For many structural/functional applications metal alloys and metal 
matrix composites with high intrinsic damping and modulus (HIDAMETS) offer promise for 
mitigation of unwanted noise and vibrations. For example, high speed turbines employ 
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HID AMETS for decreased vibration and resonance suppression, and for increased fatigue life 
[2]. Because of the interest in high damping multiphase inorganic materials (primarily metal 
alloys), accurate measurements of material damping must be made for engineering, research, and 
design needs. 

Damping tests vary in their geometry of loading and speed of oscillation. Forced steady 
state responses at resonance are common, as are free decay measurements and sub-resonant 
phase lag measurements. The types of sample deformation used in these tests are usually 
classified into one of the following types: longitudinal oscillation, torsion, or flexure. Test 
equipment varies from multi-purpose commercially available systems to those that are built "in- 
house" for highly specific needs. Thus, much of the data that is reported in the open literature 
does not follow a prescribed standard of testing. At present, there is a standard damping test 
(ASTM E 756), but this standard was designed for evaluation of the damping and modulus 
characteristics of linear polymeric materials, and not metal alloys or high stiffness composites. 
Furthermore, since sample types and loading vary greatly, the measured damping of a single 
material measured in separate devices has been shown to be very different due to the strain 
dependence of the material and the sensitivity of the equipment [3]. 

This report summarizes an effort to develop a clearer understanding of material damping 
as a function of strain in nonlinear high damping materials, and to develop a clear understanding 
of the state of the art of metal damping measurements. This understanding is necessary if 
advanced damping materials are to be used for reduced sound emission and structure-borne 
noise. 

DAMPING IN ALLOYS 

Damping is the dissipation of energy in vibrating systems, which results in the control of 
the amplitude of sustained oscillations, or their eventual decay. Many industries and military 
organizations employ damping technology to solve noise and vibration problems. Generally 
these involve addition of some form of damping treatment to vibrating structures, machines, 
and/or auxiliary systems. In addition to add-on damping techniques currently being used in the 
Navy, intrinsic material damping from highly damped alloys and metal matrix composites has 
been investigated as a potential means of making further advancements in the general area of 
damping technology and noise reduction practice. The approach has also been considered for 
specific component and part designs in naval seafaring and aircraft vessels that required noise 
mitigation. 

Ideally, a high damping structural material provides a sufficient amount of both stiffness 
and damping so that a machine part or vibrating element can be fabricated from it without added 
treatments. Such materials are most useful for parts or elements subjected to mechanical 
oscillations that cannot be damped by conventional external (or add-on) treatments. These 
materials can also be useful in situations where heat or other environmental factors (e.g. 
moisture, erosion) have to be considered, and where add-on treatments may be expected to fail. 
Finally, the material approach is also useful in attenuating longitudinal vibrations that can not be 
damped by conventional treatments 

Because high stiffness and strength are required in many important applications, metals 
that possess a large inherent damping capacity have been extensively sought [4,5]. Some 
specific applications include gears and gear webs, pump casings, engine parts, propellers, and 
others (see [5]). High damping metals are also used as plug inserts and cladding, and such 
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applications can provide a reduction of resonant amplification factors as well as the attenuation 
of ringing [5]. 

Linear Damping Properties and Low Damping Alloys 

Most metals are low damping and the damping that is present is not a function of the 
amplitude of the vibrations. In general, the damping of metals arises from the linear anelastic 
behavior of the material. 

Linear anelastic material behavior requires that the following conditions be imposed on 
stress, strain, and equilibrium in a material: 

1) For each value of stress in a material there must be an equilibrium value of strain (as a 
corollary, this condition requires an eventual complete recovery of strain upon unloading to zero 
stress). 

2) The equilibrium response is arrived at following some sufficient time delay (self- 
adjustment or relaxation). 

3) A linear stress-strain relationship is required. 

This definition differs from that of an ideally elastic material only in the condition 
imposed by item 2. For an ideally elastic material the equilibrium response is instantaneous and 
thus the difference between an ideally elastic material and an anelastic material is based only on 
the condition of instantaneous response. 

The condition of linearity is assumed in derivation of the measures of damping. Many 
materials under low to moderate stresses (i.e. stresses much lower than the yield point) satisfy 
the conditions of linearity. Linearity is embodied in the principle of superposition which states 
that when a sequence of stresses are applied to a material at different times the newly applied 
stress contributes to the resulting strain as though it were acting alone. In more specific terms 
this means that if there exists a stress history Oi(t) which produces a strain history £\(t), and a 
separate stress history 02(f) which produces a strain history of £2(0, then the sum <j\{f) +Ö2W will 
produce a strain of £i(t) + £2(t). 

One measure of damping is known as the loss factor, 77.    The loss factor of a typical 
machinery system is on the order of 10"2 to 10"'. Most structural metals like HY-100 have a loss 
factor on the order of 10"4 therefore the effect of the damping capacity of the material on the 
damping capacity of the system is negligible. 

Amplitude Dependence and High Damping Alloys 

Generally the loss factor of a "high damping" metal is on the order of 10"2 or higher. 
Indeed many alloy compositions have been studied and found to possess such levels of damping 
(e.g. see [2 - 9]). Mechanisms that give rise to damping in metals include the movement of point 
defects, dislocations, and domain walls. These effects give rise to macroscopic hysteresis in the 
stress strain curve and thus damping. Such processes may be frequency independent and occur 
well below the threshold for plastic deformation. The damping capacity of high damping metals 
is strain dependent (i.e. nonlinear) because the primary damping mechanisms function over a 
finite strain range. That is, a minimum stress is required to move the microstructural element, 
and when the element has moved through its full range, additional stress will not move it further. 
Such effects often give rise to a well-defined peak in the plot of measured damping vs. specimen 
strain amplitude. 
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Strain dependent response is termed "nonlinear" because the measured damping capacity 
varies with specimen strain amplitude. A generalized stress-strain diagram corresponding to a 
relatively large category of nonlinear damping mechanisms is illustrated in Figure 1. At low 
stresses (below <jt) and strains, damping is generally low. As the amplitude of cyclic stress is 
increased a threshold stress, o>, is reached. At amplitudes above this threshold, a damping 
mechanism is activated, causing hysteresis. However, as the amplitude of cyclic stress (or strain) 
is increased further, the mechanism becomes saturated . A characteristic saturation strain is used 
to designate this phenomenon, typically denoted as £o. There is no appreciable hysteresis above 
Co. 

This type of hysteretic response can be associated with a number of nonlinear anelastic 
damping mechanisms. For example, in dislocation breakaway a minimum stress is required to 
force dislocations over nearby pinning points during loading. Upon unloading, the elastic strain 
energy stored in the lattice of the material may be sufficient to move the dislocations back to 
their original positions. The net effect of this process is in essence an elastic response with 
damping. 

Strain f 

Figure 1, Generalized stress-strain hysteresis for material possessing strain dependent 
damping. 

The measure of damping that will be used for presentation of results in this report is loss 
factor, denoted by the symbol 77. The loss factor is defined as 

j] = 
AW 

2%W (1) 

where AW is the energy dissipated every cycle, as illustrated in Figure 2, and W is the strain 
energy in each cycle, as illustrated in Figure 3. 
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Other nonlinear anelastic damping mechanisms include the movement of mobile domain 
boundaries. Ferromagnetic domain walls, twin boundaries, antiferromagnetic domain walls, and 
phase domain walls fall into this category. A finite amount of stress (ot) is required to initiate 

this type of mechanism, i.e. a specific amount of stress is required to overcome an energy barrier 
so that the boundaries may move. Subsequently, the boundaries reorient to the applied stress, 
causing dissipation. Release of the applied stress subsequently causes the mechanism to act in 
reverse because the elastic strain energy stored in the material is sufficient to move the 
boundaries back across the energy barrier. The net effect is an elastic response with energy 
dissipation due to internal friction. It is again emphasized that these mechanisms become 
saturated at a limiting value of strain. 

For example, the magnetic domains in high damping ferromagnetic alloys are arranged in 
a randomly oriented pattern when the material is unstressed. Upon application of cyclic stress or 
strain, the domains change their orientation and tend to align themselves in the direction of 
loading as the load level is increased. Internal friction derives from the interaction of domain 
boundaries, thus causing dissipation. Below e0, the intrinsic damping increases with increasing 
strain; this is the region where the damping mechanism is active, and the level of dissipation 
increases with increasing strain amplitude. However, once the domains become fully aligned (at 
strains above e0) further loading cannot cause relative motion of the domains and the mechanism 
is said to be saturated. Above the saturation point, the level of dissipation (AW) becomes 
constant, but the stored energy W continues to rise. Therefore, for strain levels in excess of e0, 
the amount of energy that can be dissipated by this type of mechanism is limited to a fixed value, 
and the loss factor decreases with increasing amplitude of loading. These features are shown for 
a family of high damping ferromagnetics in Figure 4. The peaks shown in this figure are 
indicative of the saturation strain £o. 

The data obtained for a single strain dependent material in varied test configurations are 
often difficult to compare because of the inherent strain distributions that arise from the loading. 
All tests which are used for characterization of damping apply loading to a sample in such a way 
that strain distribution in the sample is non-homogeneous. When testing a sample of material 
possessing nonlinear damping, the experimentalist must record damping as a function of strain 
(or stress) amplitude. However, since strain is non-homogeneous in the sample volume, different 
values of damping will arise in different tests. 
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Figure 2. Hysteretic dissipation energy for material with nonlinear damping. 
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Figure 3. Measure of strain energy for material with nonlinear damping 
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Figure 4. Loss factors for variations of the Fe-Cr alloys measured by a variety of methods. 

Data from separate bending and torsion tests [3] show this effect; indeed the results 
indicate that the torsional tests produce significantly higher values of damping at the same levels 
of peak sample strain as shown in Figure 5. Also, the damping rises more steeply with peak 
sample strain in the torsion test. However, it is important to note that the strains on the abscissa 
are shear strains in the case of torsional data and axial strains in the case of bending data. These 
separate strains are not equivalent; indeed axial strains give a measure of length change while 
shear strains refer to the distortion of right angles. 
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Figure 5. Loss factor for non-linear metal test by different methods. 

Ultimately, a standard procedure is needed to address these inconsistencies. Such a 
procedure will necessarily involve deconvolution of measured specimen damping (from tests on 
whole samples), to intrinsic damping of the material. Important references on this topic include 
[10 - 13]. The intrinsic damping is that which would arise if the sample were stressed/strained 
uniformly (or homogeneously). To this extent, Roatta et. al [13] have shown that deconvolution 
to intrinsic strain is important for consistent damping results arising from separate torsion tests 
on cylinders and parallelepipeds. Also, Graesser and Wong [14], have proposed a correlation 
method which is intended to produce consistent results when considering separate axial, bending, 
and torsion tests. 

A round-robin program was started in response to these issues. However, it is not 
intended to solve all these problems and to set forth a proposed standard in this report. Instead, 
the emphasis was placed on the study of results from tests of round-robin samples, and the 
comparison of data on a measured basis, as well as on an intrinsic basis. To do this, a high 
damping ferromagnetic material with nonlinear damping (Vacrosil) was used as a test material. 
A low damping Navy steel, HY-100, possessing linear damping and known modulus was used as 
a control material. 

Magnetic alloys, like Vacrosil, which have large magnetostriction often have a high 
damping capacity. Magnetostriction is the tendency of magnetic domains to line up parallel to 
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the direction of applied tensile stress. Generally these materials have peak damping at strain 

amplitudes between 10~5 to 10"". Other commercial alloys that have been specifically 
developed to exploit this type of damping include the Co based alloy Nivco 10, and the Fe based 
alloys known as Silentalloy and Gentalloy. 

Cochardt, [15] as well as Smith and Birchak [16] proposed methods of calculating the 
intrinsic material damping based on the mechanism of movement of magnetic domain walls. 
Others [10-13] have pointed out the need for a method for calculating the intrinsic material 
damping from specimens subjected to inhomogeneous applied stress in the amplitude dependent 
range based on the stress distribution in the sample. A relationship is derived in [10] for 
measured specimen loss factor (r}s) as a function of maximum sample strain, in terms of strain 
distribution in the sample volume (dV/de) and local (or intrinsic) material loss factor (77) as 
follows: 

,dV 
I   ' r/(e)e —de 

1,ten~) = ±T. dV^~ (2) 
r «ma»       2   " V       , 

e—de 
Jo AP de 

The above equation can be used for either of two purposes: (1) substituting theoretical 
expressions for 77(e) and dVlde and comparing computed curves for r/.? to measured data, or (2) 
converting measured values of ris(£max) to 77(e) after correcting for inhomogeneous stress. In the 
second case, the resulting 77(e) could be compared to theoretical models, (e.g. see Ritchie and 
Pan [17]), or to other sets of intrinsic damping data. Equation (2) above can be solved for 
intrinsic damping when special conditions of loading are specified. A summary of equations for 
conversion of measured internal friction to intrinsic internal friction at constant maximum strain 
amplitude is found for torsion, longitudinal vibration, and flexure in [12]. These are repeated in 
the following section. 

Please note that the relationships are valid for sub-harmonic oscillations and n=\ modal 
conditions (i.e. first mode resonance). Conversion to intrinsic damping at higher order modes 
requires use of different formulae not reported here. 

DAMPING MEASUREMENT CONCEPTS 

There are several ways to measure damping and the techniques can be grouped by the 
method of oscillation used in a given measurement. Every technique has a unique method of 
holding the sample, introducing the vibration into the sample and measuring the sample's 
response. All methods require samples with a specific geometry that varies with the method as 
well as the apparatus. Because of this the strains introduced into the samples will vary. 
Relationships for determination of intrinsic damping based on common specimen shapes and 
loading conditions are delineated in the following sections. 

Longitudinal Oscillations in a Bar 

The method is applied to rods of material with either square or circular cross-section. 
This method of testing was first invented by Marx [18] for sustained oscillations at resonance, 
using a composite oscillator. As the method became widely used it was subsequently referred to 
as PUCOT (Piezoelectric Ultrasonic Composite Oscillation Test). 
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The formula that relates specimen damping to intrinsic damping for longitudinal 
oscillation is as follows [10]: 

where £ represents axial strain, e0 represents the maximum strain in the sample, r\s is the 
specimen damping and 77 is the intrinsic damping. Damping is first measured using a specimen 
of known geometry, under known conditions of strain. Specimen damping is then recorded as a 
function of the amplitude of the maximum strain in the sample. The specimen damping data is 
then curve-fit using an analytical formula, with the result denoted as 77,(60). The analytical 
formula for specimen damping, 77,(£0), is then substituted into the above equation, followed by 
appropriate algebra and calculus. This yields the intrinsic damping as a function of strain: 77(e). 
The case of a polynomial curve fit to specimen damping, and conversion to intrinsic damping is 
given in Appendix A. 

Torsion Loading 

Tests are done in torsion at both sub-harmonic and resonant conditions. Strain dependent 
damping is designated as a function of shear angle: r\{y). The relationship between intrinsic 
damping and specimen damping, 77,, is as follows for samples of circular cross-section [10]: 

r7(7,) = ^(7() + ^L^17^ (4) 
4     dys 

where y represents the value of the shear angle (which is twice the engineering shear strain) on 
the outer surface of the sample. The sample's cross section in this case was rectangular and so 
there is some error is made using this relationship for a circular cross section. However, the 
error is small. This process again involves curve-fitting of measured data, producing an 
analytical form for r]s(ys). The intrinsic damping is then computed with the above equation. 

Cantilever Beam 

Damping tests are common on cantilever beams. These are beams that are fully clamped 
at one end and free at the other. Loading is applied to the free tip. Sustained resonance and free 
decay are conventional conditions from which damping is measured. The formula for computing 
intrinsic damping as a function of axial strain due to bending is as follows [11]: 

*0="7,<*.) + k^ + k^ (5) 
9        des       9        de; 

where £, is the amplitude of strain on the surface of the beam at the root of the cantilever; 77,. is 
the measured damping of the specimen, and 77 is the intrinsic damping. The procedure for 
measurement and deconvolution is analogous to that for torsion, as discussed previously; only 
the form the of equation is different. A derivation of this formula is given in Appendix B. 

Fixed Guided Beam 

These tests are done on beam samples that are clamped on both ends. One end is held 
fixed and the other end is deflected while continuing to be held in stiff clamps. Commercial 
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apparatus that use this approach include Rheometric Scientific DMTA (Dynamic Mechanical 
Thermal Analyzer) and the Dupont Corporation DMA (Dynamic Mechanical Analyzer). The 
form of the conversion equation is identical to that of the cantilever beam. A derivation is given 
in Appendix B. 

9  '    de,       9 '     del 
ri(e,)=ri,(e,) + ie,2^ + ^?-^ (6) 

where es is the amplitude of strain at the surface of the beam; 77., is the measured damping of the 
specimen, and 77 is the intrinsic damping. A derivation of this formula is given in Appendix C. 

MEASUREMENT METHODS TO OBTAIN SPECIMEN DAMPING 

The following sections describe different test methods used to obtain the damping of a 
specimen of material. 

Free Decay of Oscillations 

This damping test first involves steady state excitation of a cantilever or torsion 
specimen, generally at first mode resonance. The excitation source is then switched off, and the 
oscillations are allowed to decay freely. The free decay of vibration amplitude is recorded. This 
is illustrated in Figure 6. Since the specimen vibrates at a resonant frequency the geometry of 
the sample must be changed to be able to test at different frequencies. Or, one must 
preferentially excite higher order modes and measure their decay (however, this adds complexity 
for assessment of intrinsic damping, and one must be certain that the selected mode of vibration 
does not convert to a different mode as free decay progresses). The number of cycles over which 
the damping is measured is a function of the damping capacity of the sample, with low damping 
materials measured over many cycles and high damping samples measured for only a few cycles. 

It should be noted that measurements of free decay on amplitude dependent samples 
could lead to difficulties in accurate determination of intrinsic damping. This was pointed out by 
Povolo [19] and by Ritchie et. al [20]. Average log decrement values are usually measured over 
a range of n amplitudes. If n is large then the average value can be grossly different than the true 
value if amplitude dependence is strong. However by appropriate numerical techniques [19, 20] 
the average value of free decay damping can be made to be a good estimate of the actual 
amplitude dependent damping. 
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Figure 6. Graphic representation of logarithmic decrement. 

For linear materials the free decay of a cantilevered beam is 

-fat 

y(t) = A0e 
AK
  cos(ötf+ a) 

where y(f) is the vibration (displacement, velocity, or acceleration) at time t, A0 is the amplitude 
during the first cycle, co is the circular frequency, a is phase and *P is the specific damping 
capacity [21]. Measuring A„, the amplitude of vibration of the «th peak, plotting ln(Ao/A„) versus 
the peak number and fitting a straight line passing through the origin, leads to the specific 
damping capacity ¥ 

¥ = 2w (7) 

where m is the slope of the line. 
Alternatively the log decrement, 8, can be directly used as a measure of damping. 8 is 

defined as either of the following: 

8 = ln(A„/A„+])       [for one cycle] 

5=-In 
77 

f 

V 
A k+n 

[for a small number of cycles, n] 

(8) 

(9) 
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where An and A„+1 are vibration amplitudes for successive cycles of free decay in the first 
equation, and Ak and Ak+„ are vibration amplitudes at the beginning and end of n successive 
cycles of free decay in the second equation. 

To measure the damping capacity of nonlinear material, the decay profile can be divided 
into blocks of several cycles. If the block contains a sufficiently small number of cycles, the 
decay in strain amplitude is small and so the change in *F is small. Therefore the damping is 
assumed to be constant within each block and the theoretical model adequately describes the 
experiment. The measured damping within the block is assigned to the stain amplitude at the 
mid-point of the block. 

Forced Resonance 

This damping measurement method involves either transverse vibration of a cantilevered 
beam or axial twisting of a bar, at resonant frequency. The technique is to measure the 
bandwidth of the resonance peak at half maximum (referred to as 'half-power bandwidth') and 
the natural frequency associated with resonance; this is shown in Figure 7. An equivalent 
approach for measuring the half-power bandwidth is to determine the frequency separation 3.0 
dB below the resonance peak (which gives rise to the name '3 dB down method'); this is shown 
in Figure 8. Again, the sample size must be changed in order to change the test frequency. Or, 
more commonly, multiple modes must be recorded and analyzed for half-power bandwidth and 
natural frequency. The half power bandwidth and 3 dB down tests produce the same result (they 
are in fact the same test), and lead directly to the measure of damping called inverse quality 
factor, ß"1 : 

Q-=^. = ^Z3. (10) 
CO„ CO„ 

where co„ is the natural frequency and Act) is the half-power bandwidth. The frequencies co2 and 
COi are the half-power frequencies where, by convention, co% > C0\. 

It should be noted that accurate determination of the resonant frequency is necessary for a 
reliable measurement of damping. Automatic resolution features offered on modern analyzers, 
combined with zoom analysis (fine resolution), allow for a reasonably accurate measurement of 
the natural frequency. However, one should check that the resonance frequency is truly accurate 
by use of circle-fit procedures, as described in Ewins [22]. A number of modern modal analysis 
software packages directly employ circle-fit methods for natural frequency determination. 

To determine amplitude dependence via inverse quality factor measurements, the sample 
must be excited to known vibration amplitude levels, and one must be able to convert from 
vibration amplitude to strain (requiring knowledge of deflection amplitudes and mode). One 
must be able to do so on a repeatable and reliable basis. It must also be possible to vary the 
vibration amplitude over a reasonable range. 
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Figure 7. Plot of relevant parameters for measurement of inverse quality factor. 
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Figure 8. Inverse quality factor according to the "3 dB down" method. 
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Deconvolution to intrinsic damping, by the equations presented earlier, is possible only 
for excitation of the first mode of vibration (and no others). The deconvolution equation is not 
valid for higher order modal oscillations or broadband vibrations. New equations need to be 
derived for tests which involve preferential excitation of higher order modes (i.e. excitation of 
individual modes, such as second mode, third mode, etc.). Also, a process would need to be 
developed for deconvolution under random and/or chirp broadband excitations. 

It can be shown [23] that for cases where damping levels are not in excess of Q'1 = 0.14, 
the measures Q~l ar*d r\ are nearly identical. For this reason, Q~l and r\ are often used 
interchangeably. 

Sub-Harmonic Oscillation (Phase Lag and Loss Factor) 

This method of measuring involves applying a small sinusoidal time-varying mechanical 
force and measuring the displacement of the sample. The phase angle, </>, of the lag between the 
applied load and the measured displacement is recorded. The tangent of 0 is a measure of the 
damping capacity. For simple linear models tan <j) is exactly equal to 77 [23], and for this reason 
it is often called the loss factor. 

Comparison of Damping Measures 

All the measures of damping capacity described above are unitless and assume that the 
materials are homogeneous and linear. The most common measures are loss factor and specific 
damping capacity. They can be interrelated by their inherent definitions [23] when damping 
levels are within the range 0 < rj < 0.14. 

7] = \fl2n = hin = Q'{ = tan 0 (11) 

MATERIALS AND TEST SAMPLES 

METAL ALLOYS 

The two alloys used in this study were Vacrosil and HY-100 steel (MIL-S-16216). The 
chemical composition of these alloys are given in Table 1. All the Vacrosil samples were taken 
from the same casting which was produced by Vacuumschmeltze GBD, and then vacuum arc re- 
melted a second time. All the HY-100 samples were taken from the same plate, produced by 
USX. 

TEST SAMPLE DESIGNS 

Since each test method required a specific sample size, it was not possible to make one 
sample to be tested on all apparatus. Therefore, a sample was made for each method as shown in 
Figure 5. The correlation between samples and test methods is listed in Table 2. 

NSWCCD-TR-1998/026 15 



Table 1. Composition of Vacrosil and HY-100 in weight percent. 

Element Vacrosil 
(wt%) 

HY-100 
(wt%) 

Fe 83.5 remainder 
C 0.003 0.155-0.165 
Cr 12.5 1.66-1.69 
Mo 2.36 0.57-0.59 
Mn 0.29 0.36-0.37 
P 0.008 0.013-0.014 
S 0.005 0.005 
Si 0.17 0.23-0.25 
Cu 0.79 0.14 
Ni 0.037 3.22-3.26 
Sn — 0.005-0.008 
Al 0.037 0.17-0.27 
V 0.005 0.008-0.009 
Ti 0.005 0.003 
N 0.006 — 

0 0.011 — 

s#**. 

BnU" r> % 

K  6 ■*" ■ r- ■—.:^Vr':<. \ 

10 

•ilPTK 

l^r-V' 

Figure 9. Samples made for test methods. 
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Table 2. Method/Sample correlation with Figure 5. 

Method Sample Sample dimensions (in) 
thickness width length 

A 10 0.125 0.5 8.0 
B 1 0.027 0.19 1.0 
C Not pictured 0.038 0.04 2.0 
D 11 0.038 1.0* 3.0 
E 13 0.60 0.20 2.0 
F 2 0.124 0.123 2.4 
G 3 0.06 0.06 1.9 
H 15 0.06 0.40 2.4 
I 12 0.039 0.20 1.4 
J 8 0.06 0.40 4.0 

*measured at root. 

FABRICATION OF TEST SAMPLES 

Blocks of material were cut from the casting or plate. The HY-100 was used in the 
quenched and tempered state. Oversize bars of Vacrosil were heat-treated before final specimen 
preparation. The heat treatment was performed in order to remove internal residual stress and 
optimize intrinsic damping. The heat treatment used was the same as that specified in Schneider 
et. al [6]. The heat treatment consisted of 1100°C for one hour and slow cooling in an argon 
filled chamber. The argon was maintained during the entire heating and cooling process. 
Cooling took place gradually, over nine hours. 

All Vacrosil samples were fabricated from these blocks using wire electrical discharge 
machining (EDM) as shown in Figure 10. The EDM method minimizes the possibility of 
residual stress, which would otherwise occur in sawing, milling, and grinding steps. Residual 
stress would affect the damping of the specimen, leading to an erroneous measure of the 
property. Magnetic fixtures were also avoided. Sustained magnetic fields (such as those 
generated by surface grinding machines) could have caused a permanent change in the magnetic 
domain structure of the material samples, which could bias the damping data.   Samples were 
taken from the interior of oversize bars. A flat surface was cut on one face and then slices were 
taken to make parallel faces of precise thickness. Individual samples were then cut to size from 
the slice, again using EDM. 
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Figure 10. System of sample fabrication. 

MICROSTRUCTURE OF VACROSIL 
In order to examine the microstructure of the Vacrosil, samples of the material were 

polished and etched. The large grains and subgrains of the as-cast microstructure are shown in 
Figure 11. After heat treating the microstructure was essentially unchanged as shown in Figure 
12.   Both microstructures also contain undissolved inclusions. Energy dispersive spectroscopy 
was performed on a Noran Voyager EDS system and the results are presented in Figure 13. The 
inclusions may be MnS or AI2O3.   Si and Mo are also present. 
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Figure 11. Microstructure of as-cast Vacrosil near the cast edge. (Vilella's etch) 

V 

■it 

"'&. 

Figure 12. Microstructure of heat treated Vacrosil. (Vilella's etch) 
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Figure 13. Elemental maps of Vacrosil inclusions. 

On some samples, EDM made unexplained parallel lines on the surface of the metal as shown in 
Figure 14 and Figure 15. These marks penetrated a short way into the surface as shown in 
Figure 16. In cases where the samples were small in thickness, the samples were polished to 
remove these marks when possible. In other cases samples were re-made in an attempt to 
procure a new sample without the surface anomalies. Invariably, some lines were seen on most 
samples. However, samples that were sent out for testing had only a few of the anomalies, or the 
lines were removed by metallographic polishing. 

Inquiries on this question were made with the manufacturer of the EDM (Hitachi) unit, 
but no-one could explain the nature of the observed lines. It is possible that, during spark 
melting, local regions of metal with high concentrations of Cr were melted to a slightly greater 
depth, forming the observed surfaces. Or there could have been an interaction of the EDM arc 
with selected magnetic domains at the surface of the Vacrosil, causing slightly more aggressive 
melting in those select regions, and the observed lines. 

Despite these minor difficulties, the fabrication process that was used produced the best 
possible samples with uniform properties and no residual stresses nor exposure to strong magnets 
or magnetic fields. 
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Figure 14. Surface of Vacrosil after EDM. 
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Figure 15. Close up of lines made by EDM (Vilella's etch). 
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Figure 16. Cross-section of area on Vacrosil after EDM 
which shows depth of marks from EDM. 

TEST PROCEDURES USED IN ROUND ROBIN PROGRAM 

Ten tests were completed on various apparatus. Test type and test parameters are 
summarized in Table 3. Details of tests are more fully explained in forthcoming sections. 

Table 3. Completed Damping Tests. 

Test 
Designation 

Type of Test Frequency 
(Hz) 

Strain Range 

A Cantilevered vibration decay 54.4,61.7 0.4 - 30 
B Cantilevered vibration decay 785 to 795, 862 3-62 
C Torsional vibration decay 0.5 15-540 
D Cantilevered resonance 244 to 283 0.5 - 400 
E Fixed guided resonance 30,35 60- 1160 
F Axial resonance 40,000 0.4 - 40 
G Torsional resonance vibration 1 0.3-51 
H Fixed guided sub-harmonic 

forced oscillation 
0.01, 0.1, and 1 293 - 660 

I Fixed guided sub-harmonic 
forced oscillation 

0.1, 1, 10 49 - 277 

J Double cantilever 0.5, 0.1, 0.05 and 0.01 150 |Lte-1000 

Curve-fitting of specimen damping results was done on the PC with TableCurve™ 2D 
software (originally released through Jandel Scientific, now distributed by SPSS Science). 
Deconvolution was accomplished using Eqs. (3) through (6), as appropriate. For deconvolution 
of torsion, cantilever, and fixed-guided data, the derivatives required for Eqs. (4-6) were 
computed by the TableCurve software. Analysis of the single set of data from longitudinal 
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oscillations involved curve-fitting of measured data, followed by substitution of the curve-fit 
formula into Eq. (3), and subsequent calculus necessary for determination of the intrinsic 
damping. 

FLEXUAL VIBRATION DECAY TESTS 
Method A used a cantilevered sample inside a vacuum chamber. A wave form generator 

and amplifier was used to drive an electromagnetic transducer that excited the beam at its natural 
frequency. A laser vibrometer was used to detect the vibrations of the cantilevered beam 
specimen. After steady state at the natural frequency and desired amplitude was achieved the 
current to the excitation transducer was interrupted. The free vibration decay of the specimen, as 
detected by the laser vibrometer, was recorded in digital form by an oscilloscope, which 
subsequently determined the peak voltages of the waveform. In order to characterize the strain 
dependence of damping, the decay profile was divided into blocks of several cycles, and the 
damping in each block was determined using a modified logarithmic decrement method as 
described on page 11. The frequency used in Vacrosil tests was 54.4 Hz over a stain range of 0.4 
|i£ to 30 \\z. The frequency used in tests on the HY-100 steel sample was 61.7 Hz. The 
measurements, the curve fit and the calculated intrinsic damping are shown in Figure 17. 

Vacrosil - Resonant Cantilever Beam,/= 54.4. Hz 
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Figure 17. Damping measurements of Vacrosil made by method A. 

Method B was performed using a AE0011 Acoustic Elastometer manufactured by Vibran 
Technologies Inc. Samples were driven to vibrate by a magnetic coil. A feed back loop was 
used in the instrument to vibrate the sample automatically at its resonant frequency with a 
constant amplitude controlled by AGC circuit. Changing the receiver gain varied the magnitude 
of the vibration amplitude. The vibration signal was processed by a data acquisition system and 

NSWCCD-TR-1998/026 23 



controlled by a PC-486 computer. The damping was determined by monitoring the free decay of 
the vibration amplitude after the signal processing unit turned off the exciting magnetic field. 
During the free decay over 10,000 cycles, signal data was sampled and used to calculate the 
damping. The measurement errors for the damping and resonance frequency are less that 2% 
and 0.01% respectively. The capacitance between the sample and an electrode was used as the 
sensor for the displacement of the vibrating sample. The distance of the capacitor electrodes 
could be varied by means of a micrometer. This variation of the capacitance changes the 
frequency,/, of the oscillator, and the relationship of the distance, x, and the oscillator frequency 
yields the sensitivity of the transducer, S = Af/Ax. The vibrating sample produces a FM signal at 
the output of the oscillator. This FM signal is demodulated, with a transfer factor of Sd = AV/Af 
= 0.89 mV/kHz. The demodulated LF signal represents the vibration of the sample, it has the 
frequency of the vibrating samples and an amplitude proportional to the displacement amplitude 
of the sample. A preamplifier with specified gain, G, amplified this LF signal. During the 
measurement, the output amplitude of the preamplifier was kept to a constant value of 8 volts, 
controlled by a AGC circuit. The vibration amplitude of the sample is given by the equation 

"    GS.S, 

The frequencies used varied between 785 to 795 Hz over a strain range of 3 \1£ - 62 (i.e. The 
measurements, the curve fit and the calculated intrinsic damping are shown in Figure 18. 

Vacrosil - Resonant Cantilever Beam./= 785 to 795 Hz 
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Figure 18. Damping measurements of Vacrosil made by method B. 
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TORSIONAL VIBRATION DECAY TEST 

Method C was performed using an inverted torsion pendulum. The pendulum is excited 
electromagnetically to the strain amplitude of about 10"6 and then allowed to oscillate freely. 
Contactless inductive displacement sensors measure the sample's response. Computer fitting of 
the damping sinusoidal curve obtains the loss factor and frequency values. The frequency used 
was 0.5 Hz. The measurements, the curve fit, and the calculated intrinsic damping are shown in 
Figure 19. 

Vacrosil - Torsion Pendulum,/= 0.5 Hz 
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Figure 19. Damping measurements of Vacrosil made by method C. 

RESONANT BEAM TEST 

Method D was performed using a cantilever beam of triangular shape. A swept-sine 
technique was used to excite the specimen at the tip, and the strain was measured with a strain 
gauge at the root of the beam. The frequencies used were 244 Hz for HY 100 steel and 283 Hz 
for Vacrosil, over a strain range of 0.5 (i£ to 400 |ie. The measurements, the curve fit, and the 
calculated intrinsic damping are shown in Figure 20. 
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Vacrosil - Resonant Tapered Cantilever Beam,/= 283 Hz 
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Figure 20. Damping measurements of Vacrosil made by method D. 

Method E was performed using the DuPont DMA 983 operated at resonance. The 
sample and fixturing arms form a compound resonance system. The sample is displaced and set 
into oscillation. Normally, a system so displaced would oscillate at the system's resonant 
frequency, with constantly decreasing amplitude due to the loss of energy within the sample. 
The amplitude signal from the LVDT is used to control the output signal of the 
electromechanical driver. The driver supplies additional energy to the driven arm forcing the 
coupled system to oscillate at constant amplitude. The frequency of oscillation is directly related 
to the stiffness or storage modulus of the sample under investigation, while the energy needed to 
maintain constant oscillation amplitude is a measure of the damping within the sample. Because 
sample flexure actually extends beyond the clamp face into the center of the clamps, the sample 
length measured must be corrected to reflect this extension of the real sample length. The length 
correction is a term that is added to the measured sample length to correct for this extension. 
The length correction is determined by the following method. The elastic modulus at room 
temperature is accurately measured by other means. Based on those values a length correction 
for the DMA software is adapted such that an equal value for the modulus was obtained by the 
DMA measurements. The required length correction varies somewhat with the stiffness of the 
material. Measurements were made at a frequency between 30 to 35 Hz over a strain range of 60 
^e — 1160 [o.e. The measurements, the curve fit and the calculated intrinsic damping are shown in 
Figure 21. 

26 NSWCCD-TR-1998/026 



Vacrosil - Fixed Guided Beam (DMA),/= 35 Hz 

0.05 

0.04 

3      0.03 

O 

0.02 

0.01 

•       Measured Specimen Damping 
B •• -    £3 Intrinsic Damping: r\ 
O © Curve Fit to Specimen Damping: r} 

2 3 
ris = a + b In £ + c(ln e) + rf(ln e) 

0 = 0.504316757 
b= 0.222240800 
c = 0.032198060 
d = 0.001467677 

0.0003 0.0006 0.0009 

Strain Amplitude (e) (in/in) 

0.0012 

Figure 21. Damping measurements of Vacrosil made by method E. 
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Figure 22. Alternative Curve Fit Applied to the Results of Method E 
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One must be careful, however, to make an appropriate choice for curve fitting. As shown 
in Figure 22, even though one curve fit to the data might be statistically better (higher R2) than 
another, deconvolution to intrinsic damping could lead to a counterintuitive result. The 
counterintuitive behavior in Figure 22 is seen as rising values of intrinsic damping above the 
strain level of 0.0007. For this reason, only the data from Figure 21 were used in overall 
comparisons of results from the round robin. 

AXIAL RESONANT TEST 

Method F was performed using a PUCOT (pulsed ultrasonic composite oscillator 
technique). A quartz piezoelectric bar (the drive crystal) was cemented to a second identical 
crystal (the gage crystal). Chromel wires supported each crystal. A closed loop crystal driver 
was used to generate and monitor drive and gage voltages. A voltage was applied across the 
drive crystal using the closed loop crystal driver. This drive voltage was minimized while the 
gage voltage was maximized to ensure that the system was resonating. The period of the 
specimen was then evaluated and compared to the period of the piezoelectric crystals. If the 
ratio between the two was within 5% of unity the data was kept. If the ratio was not within this 
range then the length of the specimen was changed and the system reassembled and tested again. 
The frequency used was 40 K Hz over a strain range of 0.4 |i£ to 40 |ie. The measurements, the 
curve fit and the calculated intrinsic damping are shown in Figure 23. See Appendix A for a 
detailed derivation of the intrinsic damping equation. 

Vacrosil - Marx Composite Oscillator (PUCOT),/= 40 kHz 
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Figure 23. Damping measurements of Vacrosil made by method F. 
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TORSIONAL RESONANT TEST 

Method G was performed using a Metravib inverted Torsion pendulum. The test piece is 
the return element of a compensated inverted torsional pendulum whose moment of inertia is 
very low. The torque created by the interaction between a magnet and the Helmholtz coils 
carrying a current is transmitted to the test piece by a high rigidity rod. The sample strain is 
detected by a light beam, supplied by a controlled source and reflected by a mirror that is 
attached by a rigid rod, toward a differential photovoltaic cell. A low drift amplifier supplies a 
voltage in proportion with the strain on the test piece. The suspension system wire pulley and 
counter weight removes any axial load on the sample. A damper lowers the effect of parasitic 
vibrations induced by the surroundings. The frequency used was 1 Hz over a strain range of 0.3 
|I£-51 \l£. 

The measurements, the curve fit and the calculated intrinsic damping from two separate 
curve fit formulas are shown in Figure 24 and Figure 25. It is interesting to note that the two 
different curve fit equations produce the same intrinsic damping result. This is due to the fact 
that there is a sufficient number of data points over a wide range of strain to describe a well 
defined trend (in this case a peak). The data from this set thus permits a repeatable damping vs. 
strain curve for multiple curve-fits. 

Vacrosil - Torsion Pendulum,/= 1.0 Hz 
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Figure 24. Damping measurements of Vacrosil made by 
method G with natural log curve-fit. 
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Vacrosil - Torsion Pendulum./= 1.0 Hz 
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Figure 25. Damping measurements of Vacrosil made by method G with a polynomial curve fit. 

SUB-HARMONIC FORCED OSCILLATION OF BEAMS 

Method H was also performed using the DuPont DMA 983, this time operated below the 
resonance frequency. This method used a cantilever sample driven at fixed frequencies and 
directly measures the phase angle between the applied load and the measured displacement. The 
measurements were taken at three distinct frequencies, 0.01, 0.1, and 1 Hz over a strain range of 
293 (ie to 660 [i.e. The measurements, the curve fit, and the calculated intrinsic damping are 
shown in Figure 26; results were nearly identical for the three frequencies. Results shown in 
Figure 26 are for/= 0.1 Hz. The linear curve fit formula identified on the plot of Figure 26 
produced the most reasonable result for intrinsic damping. Efforts to analyze the data using 
higher order curve fit formulae led to counterintuitive intrinsic damping results. 

Method I was performed using DMTA equipment manufactured by Rheometric 
Scientific. This method also used a cantilever sample driven at fixed frequencies and directly 
measures the phase angle between the applied load the measured displacement. The 
measurements were taken at three fixed frequencies, 0.1, 1, 10 Hz, over a strain range of and 49 
lie to 277 |ie. The measurements, the curve fit and the calculated intrinsic damping are shown in 
Figure 27, for the case of/= 10 Hz. 
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Vacrosil - Fixed-Guided Beam (DMA),/= 0.1 Hz 
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Figure 26. Damping measurements of Vacrosil made by method H. 
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Vacrosil - Fixed-Guided Beam (DMTA),/= 10.0 Hz 
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Figure 27. Damping measurements of Vacrosil made by method I. 
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Method J was performed using a flexion double cantilever apparatus at frequencies of 
0.5,0.1, 0.05 and 0.01 Hz over a strain range of 150 //£ - 1000 //£. Data samples are reported for 
increasing increments of strain. The measurements, the curve fit and the calculated intrinsic 
damping are shown in Figure 28. A second curve-fit analysis is shown in Figure 29. Damping 
results from the different frequency tests are generally indistinguishable, and were therefore 
grouped together. The curve-fit process on the first data set, shown in Figure 28, assumed a data 
point at the origin. Another curve-fit equation, shown in Figure 29, which excluded the origin 
produced similar results upon deconvolution to intrinsic damping, but only within the strain 
limits of e = 0.0002 to e = 0.0007. Above this strain, the deconvolved result becomes 
counterintuitive. It is again emphasized that the equations must be carefully fit to the data so that 
counterintuitive results are avoided. The simple linear equation that is used to fit the data in 
Figure 28 has a reasonably high correlation coefficient and captures the main trend of the data.  ' 
However, upon deconvolution to intrinsic damping, the deconvolved result indicates that 
damping will be negative for strains higher than 0.00082, which is physically impossible. In the 
next section there will be compilation and comparison of all round-robin results. For the 
purposes of comparing method J to the other test results, the data shown in Figure 28 will be 
used, while that of Figure 29 will not. 

Vacrosil - Double Cantilever Beam,/= 0.01 to 0.5 Hz 
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Figure 28. Damping measurements of Vacrosil made by method J 
with a polynomial curve fit forced through zero. 
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Vacrosil - Double Cantilever Beam,/= 0.01 to 0.5 Hz 
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Figure 29. Damping measurement of Vacrosil by method J and linear curve fit. 

RESULTS AND DISCUSSION 

A summary plot of results for the damping measurements for Vacrosil and HY-100 are 
shown in Figure 30 and Figure 31 respectively. Deconvolved intrinsic damping curves for 
Vacrosd are shown in Figure 32. In general, if there was a sufficient number of data and a well 
developed curve, then the curve fitting led to repeatable values of calculated intrinsic damping 
But, if there were insufficient data or if the trend of the data was not clear, then the choice of 
curve fit equation was seen to greatly affect the computed values of intrinsic damping 

r^nitc       °0nS!?£rmg the.S"mmary Plot of result* for Vacrosil (Figure 30), it is evident that the 
results are spread over a wide range. The differences in the data measured with disparate test 
methods are far wider than originally expected. Evaluation of Vacrosil results following 
deconvolution to intrinsic damping (as shown in Figure 32) does not help in the correlation of 
results because the correction is much smaller than the errors in measurement. Possible reasons 
for the large range of damping values include both inaccurate determinations of strain, as well as 
biasing sources of damping from the test system which was used. Neither of these can be 
quantified without further work. 

The damping results from tests on HY-100 steel are somewhat more consistent. Some of 
the test results show strain dependence and high damping for HY-100, a feature which has not 
been shown before and may be in error. 

The Young's modulus data for Vacrosil and HY-100 are presented in Figure 33 and 
Figure 34 respectively  Based on the HY-100 results, the modulus results produced by methods 
H and I are judged to be maccurate. The length corrections used in the DMA test of Method E 
were determined by measuring the modulus with an independent method. Thus the data was 
constrained to produce that modulus data. Although this is apparently an excellent way to obtain 
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accurate damping data from DMA's and DMTA's, it illustrates the inability of this method to 
independently measure the modulus of stiff materials. 

One final note regarding results from torsion tests. Torsion test samples m the round- 
robin program were made with a square cross-section. To meet time and schedule requirements, 
torsion test results were post-processed using Eq. (4), which is derived for the case of circular 
cross-section  Therefore, intrinsic damping results presented for torsion tests are not strictly 
precise  The post-processed results are a first approximation of intrinsic dampmg, however. 
Due to the existence of a wide spread in the collective set of data, this approximation is deemed 
reasonable for the purposes of this report. If better precision is desired in torsion tests with 
square samples, the post-processing method of Roatta et al [13] should be used. 
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r Test J, Double Canülever,/= 0.01 to 0.5 Hz 
D Test H, Fixed-Guided Sub-Harmonic Forced Oscillation, /= 0.1 Hz 
* Test B, Cantilevered Vibration Decay,/= 785 to 795 Hz 
X Test C, Torsional Vibration Decay,/= 0.5 Hz 
X Test I, Fixed-Guided Sub-Harmonic Forced Oscillation,/= 10 Hz 
V Test G, Torsional Resonance Vibration,/= 1.0 Hz 
<> Test A, Cantilevered Vibration Decay,/= 54.4 Hz 
+ Test D, Cantilevered Resonance,/= 244 to 283 Hz 
• Test F, Axial Resonance,/= 40 kHz 
O Test E, Fixed-Guided Resonance,/= 35 Hz 

Vacrosil - Specimen Damping - Measured Data and Curve Fit Results 
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Figure 30. Results of damping tests on Vacrosil. 
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r Test J, Double Cantilever,/= 0.01 to 0.5 Hz 
D Test H, Fixed-Guided Sub-Harmonic Forced Oscillation,/^ 0.1 Hz 
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Figure 31. Results of damping tests on HY-100. 
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Test J, Double Cantilever,/= 0.01 to 0.5 Hz 
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Test A, Cantilevered Vibration Decay,/= 54.4 Hz 
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Test E, Fixed-Guided Resonance,/= 35 Hz 

Vacrosil - Intrinsic Damping - Based on Conversion of Curve Fit to Measured Data 
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Figure 32. Intrinsic damping of Vacrosil calculated from each method. 
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Test B, Cantilevered Vibration Decay,/= 785 to 795 Hz 
■0 Test E, Fixed-Guided Resonance,/= 35 Hz 
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0 Test H, Fixed-Guided Sub-Harmonic Forced Oscillation,/= 0.1 Hz 
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Youngs Modulus for Vacrosil - Specimen Results 
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Figure 33. Young's modulus measured on Vacrosil. 
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Test B, Cantilevered Vibration Decay,/= 862 Hz 
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Youngs Modulus for HY-100 Steel: Measurement Data 
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Figure 34. Young's modulus measured on HY-100. 
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SUMMARY 

Results of the round-robin program indicate that more work will be needed to enable a 
good standard for measuring material damping in metals and stiff composites. Both a standard 
method for measuring stiff, linear, low-damping materials and a standard method for measuring 
strain dependent intrinsic damping in stiff, nonlinear, high damping materials must be 
established. The standard for nonlinear damping measurements should necessarily employ 
deconvolution from specimen damping to intrinsic damping. It should also reconcile the 
difference in strain measures that result from axial tests (a combination of dilitation and 
distortion) and torsion tests (pure distortion). The possible effect of frequency, which is often 
ignored as a variable in intrinsic damping of metals, should also be considered as part of any 
proposed standard. 

The magnitude of damping values presented on the round-robin summary plot for 
Vacrosil showed significant differences in damping levels and trends. Likely reasons include 
inaccurate measurement of specimen strain amplitude, and/or biasing sources of damping from 
the measurement system. Calculation of intrinsic damping did not improve the agreement of 
Vacrosil results, due to the gross spread of the data. 

The agreement of the damping measurement of HY-100 values was better, but not ideal. 
Most measurements showed that HY-100 was not strain dependent at strains less than 10 /!£, but 
a few methods indicated some strain dependence above that level. Without further work there is 
no way to know if the strain dependence shown for HY-100 steel is a real property, or the artifact 
of biasing sources from the test apparatus. The latter reason is not unlikely. 

The modulus data for HY-100 steel and Vacrosil show considerably better agreement, 
possibly because the modulus varies less with strain. However, not all investigators were set up 
to record modulus, so the set of data is not complete. Two modulus results for HY-100 are 
clearly inaccurate, these results were from DMTA and DMA machines. Because of the 
recognized limitations of these machines to accurately measure the modulus of stiff materials, it 
is recommended that the modulus be measured on a separate apparatus and that value be used to 
find the length correction in order to improve the accuracy of the damping measurements 

Results from this round-robin exercise demonstrate that damping in metals is difficult to 
measure on a repeatable and reliable basis, when using different methods of testing. For many 
common structural metals, damping is so low that it can be difficult to distinguish from 
background noise. On the other hand, for special metals with high damping, the damping may 
be strain dependent. The fact that strain is not homogeneous in the test specimen further 
complicates measurements on materials with strain dependent features. It is clear that further 
work is necessary if material damping measurements are to be made on a reliable basis. Any 
future damping standard should probably be linked with standard procedures for measuring 
modulus, thereby increasing confidence in the procedure. 
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APPENDIX A: CONVERSION RELATION FOR LONGITUDINAL SPECIMEN TEST 
WITH POLYNOMIAL FIT TO MEASURED DATA 

For the case of resonant (first mode) longitudinal oscillations in a bar of material with 
strain dependent damping properties, the amplitude dependent intrinsic damping is related to 
specimen damping by the following formula [10]: 

..lid   H(£o)g0 At, 
77(e) = ;77  I   i d£o 

2Ve de K ^e-e0 

(A-l) 

The damping (loss factor) of the specimen, r\s, is the result of a curve fit to measured 
data. The curve fit formula for 77, as a function of specimen strain amplitude (£0) is inserted into 
the integral above, and the calculus of Eq. (A-l) is conducted to produce intrinsic damping, 77, 
which is a function on axial strain is e. 

The first step in the conversion process involves curve-fitting of the specimen damping 
data. The integral is then solved and intrinsic damping evaluated. For the PUCOT results 
generated in the round-robin program, a third order polynomial was used. The details for 
determination of intrinsic damping, based on a polynomial curve-fit to specimen results, are 
given in this appendix. 

Let us first simplify notation, as follows: 

Let      y = T] 

ys=fls 
X = £ 

C=£b 

Using the new notation, Eq. (A-l) is 

*«-\T£^ 
PUCOT specimen data was fit with a third-order polynomial: 

ys(0 = a + bC+cC+dC 

Substitute ys into the integral of Eq. (A-2). The integral becomes: 

|y,(OCiC = Ha+b;+c;2+dC);dC 

0 -\x~Q        0 Vx  ' 
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c r \y-^^^^h\^^i-^f^d[±rf^   ™ 
w*-C V*-c     w*-c     oV^-T     oV^-c 

The problem will involve solution of the above four integrals. The following integral 
solution is available from calculus: 

u"du r   u a 
■du - 

2unJa + bu        2na     r un+xdu 
Ja + bu {2n + \)b      {In + X)bJ Ja + bu 

2na     c w"+ C 

{In + \)b J VöT 

The first integral on the right hand side of Eq. (A-3) is evaluated below. 

c 2CV^T 
3(-D 

2x   \   d{ 
\ 3(-i)JV?T 

du 2^1 a + bu 
'Ja + bu 

dC    _2j^C 

V^-c    -1 

= -2[Vx - x - Vx-O] = 2VJc 

2CV^T 
3(-D 

= --[2xVÖ-2 0Vx"] = 0 

,^-0^(2^)-^ 4 
3 

The second integral on the right hand side of Eq. (A-3) is evaluated next. 

x        yl C   ,,   2C2V^rC 
o V*   4 

<*c= 
5(-D 

4x   f   #£ 
;J 5t-l)iH 

3 

2c2V^T 
5(-D 

= _^[x2VO-02V^] = 0 
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The third integral on the right hand side of Eq. (A-3) is: 

C    .r.^^i 
oVx-C 7(-l) 

2(3)sK2# 

0 7(-i)J0V7T 
v 

16  \ 
15 

-x' 

2C3V^C 
7(-D 

--[*3Vö-o3V*>o 

C3     ^    6JC  16   I    32   ^ 
...   , JC = x2 =—x2 

JoV^T 7   15 35 ■J- 

By the same process, the fourth integral on the right hand side of Eq. (A-3) can be shown to be: 

x       y 4 

o^x-Q 

8x32   I     256 2   _. 

9 35 315 

Upon substitution of integration results into Eqs. (A-3) and (A-2), we obtain: 

1    d \  4   |    ,16   |      32   I     ,256   | 
y(jc)=—;=—^a—x2 +b—x2 +c—x2 +d x2 

2-JIdx}   3 15 35 315 

165   ! .    327   | .   ,2569 J 1        4 3   -       ,^ ^ 
y(x) = —7=\a x2 +b x2 +c x2 +d 

2-v/x|   3 2 15 2 35 2 315 2 

Upon simplification, 

,   N       1    1    L      \      8,    f       16      I      128^  I y(x)= rl2ax2 +-bx2 + — ex2 + dx2 
yK J    2   \ \ 3 5 35 

4,      8    2    64 , 3 .: y(x) = a + —bx + — cx  H dx' yK ' 3        5 35 
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Reverting back to our original notation, we have the following formula for intrinsic 
damping as a function of strain: 

4,       8     2    64 , , 
Ti(£)-a + -b£+-c£   +—de ,v 3        5 35 

(A-4) 

where a, b, c, and d are the coefficients of the third-order polynomial which was used to fit the 
measured specimen damping. 

Final note: for longitudinal specimen damping fit with an n-th order polynomial 

n,(£0) = Xfl*eo 
*=0 

where a0, au a2, .. .an are the coefficients of the n-th order polynomial, and Co is the strain 
amplitude of the specimen, it can be shown (from recursion) that the following equation will 
result for intrinsic damping as a function of strain e: 

2°1!   n        2'2! 223! 
77(e) = a0-—£u+ai—-£ +a2-—-£  +--- + an 

2"(/i + l)! 

3-1 5-3-1 (2/I + 1)-(2/Z-1)-(2H-3)--1 

This is a general form, which can be applied to longitudinal results requiring higher order 
polynomials to fit the specimen damping data. 
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APPENDIX B: DERIVATION OF RELATIONSHD? BETWEEN SPECIMEN DAMPING 
AND INTRINSIC DAMPING FOR A CANTILEVER BEAM 

This derivation closely follows the process reported in reference [11]. Assume that the 
beam is slender and configured as shown in Figure Bl. Therefore, we will neglect any effects 
which result from shear. 

x=0 x=l 
Figure Bl. Schematic of cantilever beam. 

The load W is applied at the origin of the coordinate system. The three dimensional 
sketch below indicates geometry and coordinate system. The axial stress and axial strain for the 
beam are as follows: 

Wxy 
o„ = 

<T«     W exx =—SL = —xy 
"      E      El 

We need only examine the x-direction axial strain, shown in Figure B2, since Poisson 
induced strains do not contribute to strain energy in the sample: 

X    =    I 
clamped 

Neutral   Surface 

Figure B2. Sample coordinates 
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The energy dissipated per cycle in a specimen is as follows: 

AW,V, =jAW(£)dV 
V 

where AW, is the energy dissipated per unit volume, and V, is the volume of the sample. 
Under the integral, e represents strain, the infinitesimal volume increment is designated by dV, 
and AW(£)is the local energy dissipated per unit volume, which is strain dependent quantity. In 
the same manner as [11], we will employ the volume-strain function dV/de. Using the Lebnitz 

rule, we obtain: 
£r dV 

AW V, = \AW(e)—-d£ J de o Ufc 

where £, is the maximum surface strain amplitude. The volume-strain function, dV/de, 

represents the region of volume where strains are less than or equal to a value e. This function 
must first be determined before an attempt may be made to solve the integral. 

Also, by definition: 

AW(e) = 27T?7(£)W(£) 

where 17(e) is the intrinsic damping loss factor, and W(e) is the strain energy per unit volume, 

defined as: 

W(e) = \     M     e2 

■^ elastic modulus 

The total energy dissipated by the specimen, per cycle, now becomes: 

£t 1 .„ idV , 

• 2        de 

AWX=—M\£2ri(£)—<l£ 
2      i d£ 

27zMEr  2  , ,dV 
...AW,:= \e2ri(e)-rde 

2V   J de 
.1  0 

Next, determine maximum strain energy stored per unit volume in the specimen 

wsvs = jwdv 
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WSVS=)(\M£
: dV 

de 
de 

W. 
Ml  7dV 

2V, i     de 
\e—de 

J        Ac 
s  o 

■ri(es) = 
AW, 

2nW. 

f  2 ,^dV, 
je2ri(e)—de 

(B-l) 
2dV , 

e—de 
de 

Before proceeding with integration, one must first determine the volume-strain function, 
dV/de, for the specific specimen design and loading. Two simple examples involving volume- 
strain function are given below. We will then proceed to the case of interest. 

Example 1; Torsion of a cylindrical wire, outer radius rs, length I. Strain amplitude is maximum 
(y) at the specimen surface (r = rs). The total volume (V*) having strain less than or equal to y is 
7trs

2 I. The volume V having radius r with strain less than or equal to /is mr I 

y=—r, 
r. 

V. 

r,Y    fv} 

vrv KYs j 

Therefore, the volume strain function is: 

dy      y 
= 2-fr 

We will now evaluate Eq. (B-l), except using shear strain yin place of axial strain e. The 
denominator of Eq. (B-l) is 

VMW-^ dy r; 4 

r, 

= -Vy2 

2  Ji 

The numerator of Eq. (B-l) is 

Ys dV 
Jy2f7(y)^y = 2-tjy3n(y)dy J dy y) i 
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Inserting the above results into Eq. (B-l), and re-arranging, produces the following result: 

r; 

Taking dldys of both sides of the above equation produces: 

(*A 

dys 

7. riAr,) dys 

Is 

\y'r](y)dy 

4    dys 

ri(yx)=ri.Ar.J + 4     dy, 

This is Eq. (4) in the main body of the report. 

Example 2: Pure bending of a beam with rectangular cross-section. Use symmetry - consider 
only the upper half of the beam shown in Figure B3. 

Width = b 

Height = h 

Length = / 

Figure B3. Schematic of pure bending of a beam with rectangular cross-section. 

y 
h/2  * 

U 

V=byl 

= bly 

II 

h/2 
y = —e 

bl 
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h/2        1 
 e =—V 
e,        bl 

v      blh 
V = £ 

l£. 

Considering V* to be the volume of half the specimen (recall symmetry) 

V £ 

vs £, 

dV vs 
de e. 

£f  idV ,      V/f  2, 
\e—d£ = — \e de 

J       Ac e   J de 's   0 

e.  3 3   '  * 

i£2Jl(£)^-d£=^\£27l(£)d£ 
i de        e, J 

'.v   0 

Substitution into Eq. (B-l) produces: 

3 £i 

rj?(£!)= — \e2ri(e)de 
's   0 

gX(£,) = Jg27? (£)j£ 

Take dldes of both sides of the above equation, 

( ~i 

de. 
-V(e,) 

(*. 

de. 
\e2rj(e)de 

£?<&?,(£,) 
3    J£r 

£^(£5) 

*?(£,)=' &,(£,) + 
e3, dr\s{es) 
3     de. 
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■n(£,)=n,(0+ 
£s dr\{£,) 
3    de. 

This is the result for a beam under pure bending. We now proceed to the case of the case 
of interest, the cantilever beam. 

The problem of interest: Cantilever beam of rectangular section (length = /, width = b, 
height = h). The vibration shape of a cantilever in primary resonance is very similar to the shape 
of the beam when deflected in a quasi-static manner by a force on the tip of the beam. The strain 
field is for this shape depicted in Figure B4 

I 
x  =  0 

x  =  I 

Figure B4. Vibrational shape of a cantilever in resonance. 

Of course, when sub-resonant oscillations are present the same static bending shape is 
assumed. Using the results from static elasticity, we have: 

Strain: 

W 
e =e„ =—xy 

"El 

Therefore, the surface strain amplitude at any x, £SUTf, is: 

• surf' ■£(xS = 
Wh 

2EI 

The maximum surface strain amplitude, £s, occurs at the root of the cantilever: 

i        Whl 
£*    e«"f\x=i     1EI 

W     2 
=> — = —£, 

El    hi 
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.'.£=£, 
XX 

l {hl 2) 

or 

e        xy hex — = —J-—   or = —y 
es    l(h/2) 2es     I 

A sketch of a line of constant e is shown in Figure B5. The hatched area below the line 
of constant strain represents the region of volume where strain levels are less than e. The line of 
constant strain falls off as l/x. 

he_ 

2e„ 

Figure B5. Plot of x-y space where e < £,. 

To get the volume-strain function, we need to calculate the volume V of the sample in 
which the axial strain is less than or equal to £. Due to symmetry about the neutral axis, we need 
only consider only the top half of the beam. 

v-ifrIHi*'* 
v = bhl e 

~Te. "\ 

he_ 

X 

7 
dx 

2ee,x 

ln*[^ 
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v = 
bhl 

— + ln/-ln—/ 
e. e, 

V 
bhl 

— + ln/- 
er 

In — + ln/ 
£, 

.\V = 
bhl £ 

2   £ .v V 

Upon continuing to consider only the upper half of the beam, we have: 

V F 
f ,   0 1- -In — 

K e. L £.J 

or   V = 
V 

's V 

-In-i- 

Now, taking a derivative with respect to strain produces the volume strain function. 

^-^i_-^ln — -^e —— 
d£     e,    £,     £,    e,    JL £, 

e. 

Je       er    ec .v .v 

We must next evaluate the numerator, N, and denominator, D, of the specimen loss factor 
equation, Eq. (B-l). This will allow us to determine the relationship between specimen loss 
factor and intrinsic loss factor. 

£f  2 , , dV , 

VAes) = — = 
D        £t  odV r 2 av . e—Je 

Evaluate denominator D first 
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£f  ->dV ,        V, r Z)=fe
2^£=-^  E2\n±dE 

i     de £5 i        e. 

ID = Je2(ln£-ln£,)te 

ID= jVln&fc -lneJe2Je 

m 
de 

3              3 
0 

1 

3 3 
lo 

„3|£j 

-ln£. 

,3    e] £* 1    ■«      ~ 
D     3 9 3 

^        1   V,      3 

9e. 

Next, evaluate the numerator N 

«. 
tf = fe277(e)^e 

= |e277(e) 

iV = -^fe2ln—rj(e)Je 
.5     0 

£„ 
Je2lne77(e)Je-lneJe277(e)Je 
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Forming the ratio N/D, the result for specimen loss factor becomes: 

n,(e,) = --j e. 
Je2 lne 7](e)Je - Ine( je

277(e) Je 

or 

E. f. 

—-V,(£J = }£2 ln£ri(£)de-Inev J"e27?(e)Je 

Taking J/Je, of both sides of the above equation, the left hand side (LHS) and right hand 
side (RHS) become: 

LHS = 
d (  e*   ,   A     e]di]s(Ex)   e

2 

de.. -£1(«,) 
\ 

9    de,        3 

RHS = 
Je.. 

je2 lne77(e)Je-lneJe277(e)Je 

The RHS consists of two terms, which are evaluated separately, below: 

0 — f e2 lner){e)de = e2 lne/7(£,) 
Je .v   0 

0 
Je, 

£' I 1 r 
lnej e2rj(e)Je  = lnet(e>7(et))+ — J e2r\{e)de 

£,'o 

1   £' 
.-. RHS = e2 ln e/7(es) - ln ev(e277(e()) J e2/](e)Je 

e/o 

^JrUeJ^ lJe2;7(£M£ 

9    Jer        3 
c J 
'.t   0 

OR 

e[JrUe£) + e[ r'£2 

9     de 

Again, take d/des of both sides of the above equation. On first examining the first and 
second terms of the LHS, we have: 
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© 
/„4 

de. 

e, dri(es) 

9    de. 9    de2,       9 '    des 
J 

0 (-i        \   ^ 

de. 
r-nCO 3     de, 

Next, evaluating the RHS, we have: 

_d_ 

de. 
J e2r]{e)de ■■&(£,) 

Therefore, we arrive at the following result, which is the desired relationship between 
specimen damping and intrinsic damping for a material with nonlinear damping characteristics. 

9     de de 

This is Eq. (5) in the main body of the report. 
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APPENDIX C: DERIVATION OF RELATIONSHIP BETWEEN SPECIMEN 
DAMPING AND INTRINSIC DAMPING FOR A FIXED-GUIDED BEAM 

A diagram showing the loading of fixed-guided beam is shown in Figure Cl. RA and RB 

represent the reaction forces developed at ends A and B, respectively. 6A and 6B represent the 
angular rotations at ends A and B, respectively. MA and MB represent the reaction moments 
developed at ends A and B, respectively. Y is deflection. 

RA=0,      eA=o 

K 

M        Wl 

A      2 

RB = w,     eB = o 

MB=- 
Wl 

YB=0 

Figure Cl. Loading of a fixed-guided beam. 

As a matter of convention let the x coordinate be collinear with the centroidal axis of the 
beam. Therefore, y is the distance from the centroid of the undeformed beam. The end 
deflection of the fixed-guided beam is: 

YA=- 
Y1EI 

End Deflection 

where / is the second moment of area of the beam cross-section, about the z axis. Deflection, 
rotation, moment, and shear values elsewhere along the length of the beam may be calculated 
using the following equations: 

Deflection:      Y = YA+6Ax + 
M.x2    RÄx

3    Wx3 

2EI      6EI     6E1 

n    n      MAx    RAx
2    Wx2 

Rotation:    0=0A+-   A   ^—  
El 2EI     2EI 

Moment:    M=MA + RAx-Wx 

Shear:     V = RA-W 
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Inserting zeros for RA and 6A, the equations become: 

Shear:     V = -W 

Moment:    M = MA - Wx 

MAx   Wx2 

Rotation:    6 = • AJ 

Deflection:    Y = YA + "A 

EI      2EI 

MÄx
2    Wx3 

2EI      6EI 

Plugging in known values for MA and yA, the above results simplify to the following: 

V = -W 

Wl 

2 

0 = 
Wbc    Wx2 

2EI    2EI 

Wl3     Wbc2    Wx3 

Y = +■ 
12EI     AEI     6EI 

The conditions of stress within a section of the beam are given next. 

^.,     „ My       W(l      } 
Fiber Stress:    a„ =  = — - x y 

I / I 2 

_      _      V r V 
Shear Stress:   oyx =axy=—]ydA = — "it-/ 

Now, for convenience, let us do a coordinate transformation to make the "built-in" end of 
the beam occur at x=0. We will keep y in the same direction (up). This will make the top 
surface of the beam, at the root of the clamp, the position of maximum strain amplitude, with 
positive strain and stress for the loading shown. Note also that there is 4-quadrant symmetry in 
this problem. 
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Let X = l-x (orx = l-X)) 

When x = 0,  X = l 
x = l,   X = 0 

Also let Z = -z 

[The z coordinate transform makes no difference, since there is no z dependence in the problem. 
But by setting z = -z, the new coordinate system is right-handed.] 

Shear: V = -W 

Wl Wl 
Moment: M = — - W(l-X) = WX- — 

2 2 

Rotation: 

Deflection: 

W W Wl 
e = JL{i-x)x = JLX(i-x)=^-x  ^r 

2EI 2EI 2EI       2EI 

wx> 

Y = — 
wr 
12EI 2El{ 2       3 J       12EI    2EI\2K 3 ) 

The main quantities that we need are as shown in Figure C2. 

Wl 
V = -W     and     M = WX  

2 
y 

-x 

x = o x = i 

Figure C2. Loading on centroid of beam. 

Now, revert notation back to the use of the lower case x and z for the new coordinate 
system. That is, simply let x = X and z = Z. The geometry and loading is shown in Figure C3. 
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♦ y 

-X 

Figure C3. Loading on fixed-guided beam with changed coordinates. 

Section Loads: 

V = -W 

M = W\x-- 

Section Stresses: 

<r_ =- 
My 

'--7*H> 
v ('K\*     ^ 

\\V ~y 
w[(h\2    2^ 

-2/  II    ~y 

Simplify Problem: neglect shear stresses by assuming that they are at least an order of magnitude 
smaller than the fiber stresses. This requires that we assume a long slender beam. 

Also, note the symmetry properties shown in Figure C4. 

. y 

A    © 1    6 

c  e D    ® 

Figure C4. Symmetry of system. 

The stresses and strain fields in A and D are equal at points of symmetry. The symmetry 
is mirror-like about the center of the beam: stresses on the upper surface at the root are identical 
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to those on the lower surface at the top. The stresses and strains in A and D are positive while 
those in B and C are negative. 

So in computations for volume strain function, we need only consider quadrant A, or, the 
region in x-y space bounded by 0 < y < hll, 0 < x < 111. 

For this simplified problem 

£„ =■ 
W_ 

El 
x  

2 

Simply refer to exx as e 

W(l 

El{l       ' 

The maximum strain amplitude, £,, occurs at the upper surface at the root (y=h/2, x=0). 

Whl 
£, - 

'     4EI 

Rewrite the expression for £ to include es 

W4I 2 2 

El 

\ 
1 — 

111 
y 

£ =■ 
Whl 

4EI 

x ^ 

111 

h/1 

y 
hll 

/.£ = £. 1 — 
111 

y 
hll 

Determination of Volume-Strain Function: define locus of points in x-y space where £ is 
constant, and where £ < £,. This is shown in Figure C5. 

h £ 

2£~ 
1 — 

111 
y 

.: y 

h £ 

27 
1 

111 
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h 

1 

h £ 
2£. 

x = 0 

Midpoint  of   Length 
of   beans   zero 
strain  for  all   y 

Figure C5. Locus of points where e is constant and less than es. 

Determine the volume of the sample (or, in this case the quarter sample) where the strain 
is less than or equal to e. 

dV = bdydx 

V = b   jdydx 
Cross- 
Hatched 
Area 

V=bf~EJ2jydydx + b 1  

bhl 
4 

Jo        Jo   J       Jo  x_ 2es    I 

111 

-I 
dx 

o     i_. 
Ill 

Let 7 = 1- 
112 

o   7-1 = - 
111 

* = -(l-r)       dx = --dy 

when x = 0 

( 
x = 1-A 

7=1 

/ e 
7 = — 

2 e. 
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/=- 
2£ 

h e (   l^rrdy     Me.    ,r        Me i    r— fly       m t ,     <£ ni  & 

o   Ji     v A P       "' 4P 2 JJl    7       4 £,. 
In- lnl 

V = 
bhl e 

e. 
■In 

'e^ 

VeW 

or V = 
M/ e 
4   £. 

1-ln 
'^ 

VeW 

Note: For the section of the specimen under study (quarter sample): 

bhl 
V=- 

e 

( 
1-ln 

fE^ 

V \£s JJ 

or 

1-ln 
f£W 

VeW 

or, perhaps more conveniently 

so, 

v = ü f.-u-ll £ 
e, V          e< V1 

a" 

£ 
1 — 

This is the same volume-strain function as was derived for the case of a regular cantilever 
beam. Therefore, the process required to finish the derivation is exactly the same as that which 
was done for the cantilever beam (with tip load only), as in the Appendix B. The relationship 
between specimen damping and intrinsic damping is as follows: 

,    s        <    ^7c  dlUe^    \   2d\i£^ 
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