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AFIT/GM/ENP/99M-11 

ABSTRACT 

This thesis uses neural networks to forecast winds at the Kennedy Space Center 

and the Cape Canaveral Air Station launch pads. Variables are developed from WINDS 

tower observations, surface and buoy observations, and an upper-air sounding. From 

these variables, a smaller set of predictive inputs is chosen using a signal-to-noise 

variable screening method. A neural network is then trained to forecast launch pad winds 

from the inputs. The network forecasts are compared to persistence, and peak wind 

predictions are found skillful compared to persistence. 

An ensemble modeling technique using Toth's and Kalnay's breeding of growing 

modes method is explored with neural networks. The inputs are perturbed an amount 

representative of measurement error. Ensemble member forecasts are found to diverge, 

but the ensemble spread does not often encompass the resulting weather. This is due to a 

disproportionate amount of error originating from the model compared to error 

originating from measurements. 

IX 



1.      Introduction 

1.1       Overview 

This thesis explores the feasibility of numerically modeling winds at the Kennedy Space 

Center and the Cape Canaveral Air Station (KSC/CCAS) with neural networks. Traditionally, 

weather phenomena have been numerically modeled with rigorously derived governing 

equations. However, model shortcomings arise due to an imperfect understanding or 

representation of those governing equations. Also, typical numerical weather prediction (NWP) 

models solve millions of variables for many iterations in time and are computationally expensive 

(Wilks, 1995). Perturbed ensemble forecasts have been generated from the NWP models to 

approximate model uncertainty, but are also limited by computer speed. Neural networks, 

however, provide another approach to numerical modeling that is powerful yet computationally 

efficient. Neural networks don't require an understanding of the governing equations; instead 

they require past examples of how the weather system behaved. From past examples, neural 

networks develop approximations of the governing equations with simple parallel linear 

equations. Their parallelism results in computational speed (Weiss and Kulikowski, 1991). This 

computational speed may allow one to generate many ensemble solutions from perturbed 

conditions. 

The need to forecast launch pad winds at KSC/CCAS provides a specific problem and 

impetus to develop a neural network ensemble weather model. Chapter 1 of this thesis discusses 

the background of the problem and provides a short summary of the problem, scope, approach, 

and results. Chapter 2 is a discussion of the pertinent theory to this thesis. Chaos theory is 

discussed first; it is important since the weather is thought to be a chaotic system (Lorenz, 1993). 

1 



Chaos theory is the basis of the next section: ensemble forecasting. This section discusses the 

rationale behind ensemble forecasting and describes a method of generating ensemble member 

forecasts. Finally, a third section discusses the structure and use of neural networks. Chapter 3 

discusses the methodology of how inputs were selected to develop the neural network model and 

how those inputs were processed. Chapter 4 discusses how well the model performed. Neural 

network performance and ensemble performance are considered separately. Finally, chapter 5 

draws conclusions about the model's performance and makes recommendations for similar 

modeling attempts. 

1.2       Background 

Launch Weather Officers (LWOs) at the 45th Weather Squadron (WS) are responsible for 

providing threshold forecasts that often determine whether or not a space launch proceeds. Each 

space vehicle, from the Delta II rocket to the Space Shuttle, is designed to tolerate a range of 

environmental conditions. Likewise, each vehicle requires a unique set of weather thresholds to 

be met for safe operation. The thresholds include thunderstorm and lightning probability, 

temperature, and wind speed, to name a few. Launching a space vehicle outside weather 

thresholds leads to a dangerous situation. A well known example is the space shuttle Challenger, 

which exploded because its O-rings were not properly designed for cold temperatures (Keel, 

1986). The costs of this oversight were enormous in every way. The loss of the Challenger and 

its seven crew members was a national tragedy, and it moved President Reagan to commission 

an investigation into its cause. Indeed, it was the greatest setback in NASA's history. The 

Challenger accident demonstrated the importance of understanding all environmental impacts 

and launching in a favorable environment. The LWOs of the 45th WS shoulder the responsibility 

of predicting whether or not environmental conditions will meet the space vehicle's thresholds. 



One critical prediction is the launch pad wind forecast. It is important that the winds 

remain below a threshold level when the shuttle, or a rocket, is standing unsupported on the 

launch pad. About eight hours before launch during the space shuttle countdown sequence, the 

structure that supports the shuttle, called the Rotating Support Structure, is rotated away from the 

shuttle. From that time until launch, the shuttle stands unsupported, but close to the support 

structure. Winds above threshold, during this critical period, could cause a collision between the 

shuttle and the support structure. Likewise, all the space vehicles go through a similar sequence 

of events and have limits to the amount of wind they can safely sustain. 

The launch pad wind forecast is one of the important services the LWOs provide and is 

one of their greatest challenges, especially in winter. Within the critical eight-hour pre-launch 

window, it is particularly difficult to forecast whether or not the winds will exceed the threshold 

value, especially when the winds are already close to the threshold value. The causes of strong 

winds vary by season. During the summer, strong winds are caused by meso-scale events, such 

as thunderstorms and the sea breeze front. During the winter, strong winds are primarily caused 

by synoptic-scale events and complicated by meso-scale events and local effects. Changing 

pressure gradients, fronts, land and ocean temperature contrast, stability, and a complex frictional 

environment are some of the factors the LWOs must consider. The fact that there are multiple 

launch pads to consider adds to the complexity of the task. 

To assist the LWOs in forecasting the wind, the 45 WS uses a sophisticated weather 

sensing system to support KSC/CCAS. The Weather Information Network Display System 

(WINDS) is a collection of 47 meteorological towers placed around KSC/CCAS (Computer 

Sciences Raytheon, 1998. These towers measure the wind, temperature, moisture and other 

properties at multiple heights above the surface. The density of the network is about one tower 



every 27 km2, and is most concentrated around the launch pads. Measurements are recorded at 

one and five minute intervals. WINDS is one of the most densely instrumented mesonetworks in 

the United States; it provides the 45 WS with a wealth of current and archived meteorological 

information. 

WINDS often supplies more information than the LWOs are able to absorb and use. In 

such situations, it's ideal to process the observations into smaller amounts of information the 

LWOs can readily understand and act upon. Numerical modeling techniques and a body of 

mathematical theory may be applied to the WINDS observations to do just this. More 

specifically, neural networks are suited to process complex information into simpler 

measurements, and chaos theory and ensemble modeling provide information about the likeliness 

of weather events. 

1.3       Problem 

The 45 WS has much information about the lower atmospheric winds near KSC/CCAS 

but lacks a skillful method of applying it towards synoptic wind forecasts. The amount of data is 

so large, and the complexity of the factors is so great, that the LWOs have not developed 

successful rules that forecast relatively small changes in the wintertime launch pad winds 

(Roeder, 1998). Currently, forecasters do not have a consistent method of forecasting changes in 

the wind on the order of a few knots. This deficiency can become critical when the wind speed 

is within ten knots of a threshold. 
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Figure 1 Locations of the 47 WINDS network towers.  Most towers record observations at 6 and 54 
feet.  Towers 0006 and 0110 record at 6, 12, 54, 162, and 204 feet.  Tower 0313 records at those levels 
and 295, 394, and 495 feet; eight levels in all. 



Thus, the goal of this thesis is to develop a model for the 45 WS LWOs that improves 

their ability to correctly forecast launch pad winds. The forecast model must demonstrate 

predictive power when compared to persistence; that is, the model's forecast must be better than 

not forecasting at all. 

1.4 Scope 

This thesis develops a data set containing predictors and outcomes of the launch pad winds and 

creates a neural network model that forecasts the wind. The model incorporates an ensemble 

forecasting technique that provides insight into variation caused by measurement errors. The 

model is validated with previous weather records and compared against persistence to quantify 

skill. 

1.5 Approach 

WINDS tower data and other secondary data sources are screened and used to develop 

the neural network. The network is processed on high performance computers at the Major 

Shared Resource Center using the MATLAB 5.2 © software package. A Fortran program 

simulates the network and generates the ensemble forecasts. 

1.6 Summary of Results 

This thesis develops a neural network model that is skillful against persistence at 

forecasting the launch pad winds four hours ahead. The model forecast exceeds a persistence 

forecast for peak wind by as much as 11 percent on average. This thesis also demonstrates an 

ability to develop perturbed ensemble forecasts, but they do not diverge quickly enough to be 

representative or useful. 



2.      Theoretical Background 

2.1       Chaos Theory 

In 1963, with the release of his paper, "Deterministic Nonperiodic Flow," Edward Lorenz 

introduced chaos theory. He discussed the implications of observed non-periodicity in natural 

systems on our ability to predict their future states (Lorenz, 1963). Understanding chaos theory is 

a key element in understanding the weather and the success (or failure) of weather models. 

2.1.1       Chaos Discovery 

Lorenz described chaos as sensitive dependence on initial conditions. He discovered this 

dependence while attempting to create a reproducible simulation of the weather with a simple 

convection model (Lorenz, 1993). He created a model with a set of non-linear equations and 

recorded the output values. Lorenz planned to use the output values to replicate initial conditions 

and restart his model at any point in time. He thought the model would produce the same 

outputs as the original model run. During the experiment, Lorenz rounded off the output values 

to three decimal places, thinking the precision would be sufficient for the model. When he 

reentered the output as input, he was surprised that the non-linear model produced answers that 

diverged from the original model run, eventually bearing no resemblance. This divergence 

resulted from the small perturbation in the initial conditions caused by rounding the input values. 

Lorenz realized the implications to forecasting the weather. Since there is always some amount 

of error in our meteorological measurements, even a perfect weather model will eventually 

diverge from the true atmospheric state. Lorenz stated this in his paper, and launched the field of 

chaos theory. 



2.1.2      Phase Space 

Chaos theory is essentially a study of phase space. A phase space is a multidimensional 

space used to describe the state of a system. Each of the coordinate axes pertains to a variable in 

the system (Wilks, 1995). A natural system traces a path through phase space (called a phase 

path, or trajectory) when at least one of its measurements is changing. Figure 2 shows an 

example of a simple phase space: temperature at some location and time. 

A Simple Phase Space 

Temperature 

Time 

Figure 2 A simple phase space.  Temperature and time coordinates define the phase space.  The 
trace of the temperature changing with time is the phase path. 

Chaotic systems trace paths through phase space that are bounded, and never cross or 

repeat themselves (Lorenz, 1963). An example serves well to describe the qualities of chaos. 

Consider the simultaneous set of equations in the Lorenz convection model: 

dx I dt = 
dy I dt = 
dz     I dt     = 

- 8   / 3 x   +    yz 
- 10     v   +   10    z 
- xy     +    28     v   -    z 



These equations trace out the phase path in Figure 3 when started from the initial condition 

x = 35, y = -10, and z = -7. 

Figure 3 A Lorenz attractor.  This figure shows the phase path of the simple convection model 
developed by Lorenz (1963). 

The axes represent the magnitude of the component in the x, y, and z directions. The smooth line 

connecting continuous points in phase space implies time. The function is bounded, because it 

repeatedly passes arbitrarily close to at least one point (Lorenz, 1963). In this case, it orbits 

arbitrarily close to two points. The function does not intersect itself; at no time does it take on an 

identical state as another time. Another property of this function is it contains a closed set of 

points. Since the function is bounded, all its solutions exist in a finite area. Within that area, 

there is a smaller set of points that are solutions to the function. The limit set of points in this, or 

any other chaotic system, is called an attractor. 



2.1.3       Chaotic Weather 

Our earth's weather meets the requirements to be called a chaotic system. Should one 

build a phase space with temperature, humidity, and wind measurements from locations around 

the world, one would most certainly find that it's been a bounded system. In fact, this phase 

space has been developed in the field of climatology. A large pursuit of climatologists is to 

describe the bounds of the states the atmosphere holds. The requirement that the earth's weather 

should never repeat itself to be considered chaotic also holds true. If measured with enough 

phase dimensions, the earth's weather is found to have never held two identical states. 

The so-called dishpan experiments suggest the primary forcings that govern the earth's 

chaotic weather. The dynamicist Dave Fultz built a model of the atmosphere in the early 1950s 

using a pan of water on a turntable (Hess, 1959). The pan was heated at the edges to simulate the 

tropical heating and cooled in the center to simulate polar cooling. The experiments produced jet 

streams and temperature patterns that look remarkably like the earth's weather. Some of the 

larger models even produced frontal boundaries (Holton, 1992). The experiments indicated 

differential heating, gravity, and the earth's rotation are the primary forcing mechanisms that 

control our weather (Lorenz, 1993). 

Differential heating, gravity, and the earth's rotation dictate certain states the atmosphere 

can hold. Heating air in one location more than another creates a difference in air density and 

causes circulations due to gravity.   The earth's rotation modifies the circulations through the 

Coriolis force. Much of the atmosphere's motions can be explained through these three forcings, 

and they often work together as a stable system; that is, they don't enter positive feedback states 

where disturbances amplify. Fair-weather cumulus development is an example of a common 

atmospheric process that damps out. Differential heating at the surface often results in cumulus 
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clouds, but the increased cloud cover often acts to reduce differential heating. Gravity waves are 

another example. When a mountain disturbs airflow, the waves in the disturbed flow are initially 

strong, but generally damp relatively quickly as they move away from the mountain. The point 

is, for many weather processes, differential heating, gravity, and the earth's rotation work 

together in such a way that tends to return the atmosphere to a stable condition. 

There are unstable conditions of the atmosphere that do develop, however. Otherwise the 

weather could be predicted much more accurately. When baroclinic systems are numerically 

modeled, small errors amplify quickly and cause significant errors over a period of days. 

With this knowledge, one can address the problem at the Kennedy Space Center. During 

summer, weather disturbances tend to be gravitational, or due to convection. The weather 

phenomena that occur are primarily due to the differential heating of the land and ocean. This 

causes a dense air over buoyant air situation, and the gravitational result is thunderstorms. Such 

thunderstorms and other gravitationally induced disturbances are stable modes of the 

atmosphere, and relatively easy to forecast. In fact, near the Kennedy Space Center, 

thunderstorms occur about two out of three days in the early afternoon every summer. In the 

winter, however, unstable modes appear. The baroclinic instabilities are enhanced by the strong 

contrast between the land and sea temperatures. The baroclinic modes present challenging 

forecasts. 

2.2       Ensemble Forecasting 

One of the more intriguing concepts to occur in dynamic meteorology is ensemble 

modeling. An ensemble model, in the meteorological sense, is a collection of model runs for the 

same time period. Usually the ensemble members are derived from slightly perturbed initial 

model conditions. The premise is that due to measurement error, one can't know the initial 

11 



conditions exactly. No matter how small the measurement error is, it will eventually lead to 

large errors. This is in part because some of the error is fast growing error that contributes to the 

atmosphere's baroclinicity. An ensemble forecast seeks to simulate the fast growing errors that 

could be part of the measurement error. A good ensemble of forecasts relies on two things: 1) 

The model must be a good model of the attractor, and 2) The perturbations must be close 

approximations of the maximum growing error (or growing mode), both in size, and in direction 

in phase space (Toth and Kalnay, 1993). 

The reason the error must be similar in size and direction can best be seen in a simple 

phase space. Consider a one-dimensional phase space of temperature at some location as it 

evolves over time, as depicted schematically in Figure 4. The dark line represents the evolution 

of the measured temperature in phase space. The other lines represent nearby trajectories of the 

Possible Phase Evolutions of Temperature 

Temperature 

True Phase Path 

Possible Phase 
Paths 

Moderately divergent 

Time 

Figure 4 This schematic depicts the temperature changing with time.  The fine lines are nearby 
trajectories in phase space.  In this situation, the phase paths diverge more quickly for higher initial 
values of temperature. 

12 



atmospheric attractor; they are possible states the atmosphere may hold. In this case, perturbing 

the temperature by warming it slightly causes the solution to diverge faster than by cooling it the 

same amount. In a multidimensional phase space, the direction of perturbation for each 

dimension (each scalar measurement) is chosen so the errors grow the fastest. 

564 

570 

576' 

582' 

Figure 5 This set of figures demonstrates how a baroclinic growing mode of the atmosphere can be 
interpreted from measurement error.  Five 500 mb height observations are given in chart a, each 
with up to 20 meters error.  The error could be adjusted into the benign pattern in chart b, or into 
the baroclinic pattern in chart c.  Both are plausible interpretations, given the limits of the data. 

13 



To understand how errors can be organized into a growing mode of the atmosphere, 

consider that synoptic forecasters have been doing just this for over one hundred years. They do 

it by using their imagination, weighting certain stations more strongly than others, and fitting a 

pattern to the measurements. When a synoptic forecaster first looks at plotted surface chart, it 

has measurement errors in it. The forecaster often adjusts the data to create the weather pattern 

believed to exist. Figure 5 is a demonstration. Suppose there are only five upper-air 

observations over the Central and Eastern United States at 500 mb (Figure 5a). The margin of 

error for each measurement is considerable, say ±20 meters. By adjusting the observations 

within the margin of measurement error, the height field can be analyzed in a relatively non- 

developmental pattern, as in Figure 5b. Or, by adjusting the error in the data another way, it can 

be analyzed as a weather pattern that is more likely to develop, as in Figure 5c. There are many 

ways to adjust the error in the data that produce physically allowable, and thus possible, states of 

the atmosphere. 

One way to explore and use the measurement error in the atmospheric analysis is through 

phase space. Each measurement for each location is assigned a phase dimension. In the example 

above, the observations of 500 mb heights produce the five-dimensional phase space. At a 

moment in time, it can be represented by the five-dimensional vector A, where each 

measurement holds a position in the vector: 

A = 5640   5620   5760   5810   5820 

In this case, the South Dakota observation holds the first dimension, the New York observation 

holds the second dimension, and so forth. The measurements contain an amount of error 

represented by the vector E. In this case, the error is ±20 meters of the measured value. Then 

the bounds of E are 

14 



abounds) = ± 20   ±20   ±20   ±20   ±20. 

The true value of the error is, of course, unknown, so it can be used to adjust the analysis A as is 

beneficial to describing the true state of the atmosphere. In Figure 5b, the error corresponding to 

each dimension was assumed to be 

E = 20   10   0   0   -10, 

while in Figure 5c, different error was assumed: 

E = -20   0   10   -10   10. 

Both assumptions are allowable because they fall within the bounds of measurement error. The 

difference is, if the errors in the first case are true, a rather benign weather regime exists, and the 

weather will change little. But if the errors in the second case are true, a baroclinic wave is 

generating, and the weather will change dramatically. The second case represents a maximum 

growing mode of the atmosphere. It's a way the measurement errors can be organized to cause 

the maximum amount of development, or change from the current state. From a forecaster's 

stand-point, it's good to know the maximum amount of development one could expect. 

The work of past synoptic forecasters is impressive and demonstrates the ability of the 

human mind to organize measurement errors into useful patterns. In 1892, Durand-Greville 

drew a beautifully organized synoptic surface chart depicting squall line passage over Europe, 27 

August 1890 (Figure 6; Fujita, 1986). It was no small effort to gather data from across Europe in 

the 1890's, and Durand-Greville must have compensated for many errors resulting from 

imprecise measurements, varying times of measurement, and lack of any measurement at all. 

Yet his chart looks like one a good forecaster might draw today. He did it by adjusting the 

15 



Figure 6 Recreation of Durand-Greville's synoptic chart, completed in 1892. The chart shows the 
pressure field of a squall line across Europe. Each lines represents an isobar of 1 mm of mercury. 
Durand-Greville's chart demonstrates that forecasters organize missing data and measurement 
uncertainties into reasonable weather patterns that develop and cause weather. Adapted from 
Fujita,1986. 
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measurements within what he thought were the margin of error. 

Forecasters can adjust the measurement errors in an analysis to produce realistic 

atmospheric patterns, but can a computer do the same? Can a computer mimic this forecasting 

art? The surprising answer is yes, and it is done in ensemble forecasting. 

In the early 1990s, Toth and Kalnay developed a simple and accurate method of 

simulating growing modes. They called it "breeding of growing modes," or BGM (Toth and 

Kalnay, 1993). To use this method, one first estimates the magnitude of the average error vector 

in phase space. This effectively estimates the error bounds for each measurement in the analysis. 

Next, the initial conditions of a model run are perturbed with a random error vector. The 

magnitude of the error vector is set equal to that of the average error vector. At first, the 

perturbed model usually converges towards the control forecast. This is because most of the 

error contributes in ways that are physically improbable. The model quickly regains balance by 

developing gravity waves and through other processes (as would the true atmosphere). But some 

of the initial random error contributes in physically meaningful ways that grow and develop. 

These growing errors tend to be errors that contribute to the baroclinicity of the atmosphere. The 

baroclinic part of the error catches up to and soon exceeds the gravitational (or convective) part 

of the error, as depicted in Figure 7. After sufficient time, the baroclinic errors dominate the 

error vector, and the solution diverges from the control forecast. At the end of the forecast 

period, the fast-growing error vector is scaled back to the size of the average error vector. The 

scaled-back fast-growing error vector is then used to perturb the next set of initial conditions for 

the control forecast. This cycle repeats, and soon the fast-growing error vector is a good 

approximation of a maximum growing mode of the atmosphere. The growing mode can be 

recycled indefinitely. 

17 



Amplitude 
(% climate variance) 

Adapted from Toth and Kalnay, 1993 

BaroclinicModes 

1 hour        1 day 1 week 

Figure 7 A schematic of the development of baroclinic and convective modes of the atmosphere. Convective 
instability causes more variance in the atmosphere on a time scale of a few hours. For longer time scales, 
baroclinic instabilities account for more of the variance. 

Multiple growing modes can be generated from other random perturbations. Each 

growing mode is slightly different, just as synoptic forecasters' interpretations and drawings of a 

weather chart differ in opinion to opinion. The different growing modes develop into an 

ensemble of model forecasts. The forecasts can be averaged, and the ensemble average usually 

predicts the weather better than any individual model forecast (Wilks, 1995). 

So far, developing ensemble models with growing modes has been somewhat of a 

computationally expensive process. A weather model must recalculate all its solutions for each 

ensemble member. Due to the size of most weather models, ensemble modeling has been limited 

to centers with large computers. However, there are simpler methods to model the weather that 

may allow others to explore the power of ensemble modeling. Neural networks provide one of 

those methods. 
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2.3       Neural Networks 

Neural networks have long been used for time-series prediction of chaotic systems and systems 

with unknown governing equations. In 1964, Hu used Widrow's adaptive linear network to 

forecast the weather (Gershenfeld and Weigend, 1994). In the 1992 Santa Fe Time Series 

Prediction and Analysis Competition, Wan placed first using a neural network to predict the 

Lorenz equations over a relatively short-term of 100 time steps. 

However, neural networks have been slow to gain popularity in meteorology due to the relative 

shortness of many data records and the large spacial fields that must be dealt with (Hsieh and 

Tang, 1998). Low spacial or temporal resolution may cause nonlinear instabilities in a neural 

network due to overfitting. Hsieh and Tang state that these obstacles may be overcome by using 

nonconvergent training methods and prefiltering the data, as will be explained. 

Neural networks began as an attempt to build numerical models that work in a similar 

manner as the brain (Gershenfeld, 1999). Figure 8 compares a biological neuron to an artificial 

neuron. In the brain, signals are received through synapses located on dendrites (Haykin,1994). 

The dendrites transmit the signals to the neuron center (the soma) by means of electrical 

potential. The neuron sums potential received from all dendrites, and if the potential is large 

enough, it activates and transmits an electric impulse across the axon. This electrical impulse is 

the signal to other neurons. Similarly, an artificial neuron, called a node, collects signals 

modified by a network of weights. The signals are summed in the node, and processed through a 

function to "activate" the sum into a new signal. The signal is then transmitted to other nodes. 
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Figure 8 An artificial neuron is designed after its biological counterpart. Where a biological neuron receives 
information through dendrites, an artificial neuron receives information through a set of weights. Each activates 
when the combined signals exceed a threshold. 

Neural networks process signals in parallel through layers of interconnected nodes. Each 

of they nodes, y-, is a function of the summation of each of the i input terms multiplied by a 

weight, and a bias. This relationship is expressed as follows: 

yj = f Y,WijXi + bj 

v / ) 

where Xj is the input term, wy- is the weight of Xj to node y-, and b, is the bias to node yj. The 

function/(called a transfer function) is chosen for the characteristics of its solutions. Figure 9 

displays three prominent transfer functions. The hyperbolic tangent is a useful transfer function. 

It's sometimes called a squashing function for its ability to "squash" an input between -1 and 1. 

These positive and negative signals provide a kind of "on/off' information similar to the way the 

brain sends electrical impulses through its neurons. Another common transfer function is the 

logistic function. It is similar to the hyperbolic tangent, but bounds its solution between zero and 

one. The linear function allows an unbounded solution. 
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Figure 9 Three common transfer functions. The hyperbolic tangent gives values near 1 when it is active 
(y = Ewx+b is positive) and values near -1 when it's not active. The logistic sigmoid is similar, but gives 
values near 0 when it's inactive. The linear function doesn't restrict the size of the solution. 

Neural networks are perhaps best described with images. Figure 10 is a diagram of a 

two-layer feed-forward neural network. The input layer is denoted by x variables, the middle 

layer by v variables, and the output layer by z variables. Inputs are multiplied by a weight, Wy, 

represented by the arrows. The bias represents a constant unit signal multiplied by a weight. 

Each weighted input and the bias are summed in the nl layer. Since the values in this layer are 

transitory and generally unimportant except to arrive at the output, it is called a hidden layer 

(likewise, its nodes are called hidden nodes). Each nl is processed through an activation 

function to become the hidden node value. The cycle repeats with the hidden node layer (the y 

variables) providing inputs to the output layer (the z variables). 

Neural networks can be very powerful. By using a linear equation for the transfer 

function to the outputs, the outputs can take on any value. This is because the linear function 

allows unbounded solutions. When the hyperbolic tangent or logistic transfer functions are used 

in the hidden layers, the network is able to interpret non-linear signals. These two abilities give 

neural networks their strength of generalization. A two layer feed-forward neural network with 

enough hidden nodes, a hyperbolic tangent activation function, and a linear final transfer 

function can be trained to approximate any continuous function arbitrarily well (Demuth and 

Beale, 1998). That is, with enough data and a sufficient number of nodes, a network can 
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simulate any function as well as desired. This ability to generalize is a neural network's capital 

strength. 

Figure 10 A representation of a neural network. Inputs are denoted by x values, hidden nodes byy values, and 
outputs by z values. The inputs and bias are weighted and summed (represented by arrows leading to the nl 
units). These sums are modified by a transfer function,/ and the results are hidden node values, y. These 
hidden node values are processed likewise to obtain the outputs, z. 

Another type of network, recursive neural networks, often can outperform feed-forward 

networks by simulating memory. For this property they were selected for use in this thesis. 

These networks consider not only present inputs, but past inputs as well. An example is the 

Elman recursive neural network. It simulates memory by feeding its previous hidden nodes to its 

22 



present hidden nodes as inputs (Figure 11). The recurrent nodes allow the Elman to both detect 

and replicate time-varying patterns (Demuth and Beale, 1998). The Elman's memory may last 

four to six time steps before the past signals are lost in the data's noise (Greene, 1998). Another 

type of network, the adaptive time delay neural network, adapts time delays to different variables 

to gain the best predictive signal (Gainey, 1993). 

Figure 11 The Elman recursive neural network simulates memory by using hidden node values from the 
previous time step as inputs. 

Neural networks learn to approximate a function by reducing the error between computed 

outputs (zk) and the given values of the outputs (tk). Normally, the network does this by reducing 

the sum of squared error (SSE) over n exemplar cases: 

One method to reduce the sum of squared error is through gradient descent (Gershenfeld, 1999). 

The gradient descent method determines the slope of the error field (Awy) and corrects the 
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weights by differentiation: 

MSSE) 

awy 

where r| controls the size of the correction increment (the learning rate). Typically, the network 

considers all the training cases (called a training epoch), and then corrects the set of weights by 

Awij to decrease the sum of squared error. As long as the transfer functions are continuously 

differentiable, the error gradient slope can be determined. Generally, the network will search for 

the point in the error hypersurface that is closest to zero. 

Error Surface with 
Local Minimum 

Sum of 
Squared 
Error 

Weighti 

Figure 12 A local minimum in the error surface may prevent a neural network from finding the 
global minimum. 

One of the challenges of designing a network is to overcome local minima in the error 

hypersurface. As the network descends the error gradient, it sometimes becomes trapped in a 

local minimum, such as in Figure 12. These minima seem to occur when the network 

approximates a function that is similar to the actual forcing function, but altered by some 

constant, or set of constants. Figure 13 shows outputs of two neural networks, both trained on a 
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set of points generated from the Lorenz equations presented earlier. The first network was 

approaching the global minimum of the data set; it looks similar to the actual attractor (depicted 

in Figure 3). The second trained to a local minimum; it appears quite warped. 

50 

-20   0 

501 

Figure 13 The two figures are simulations from separate feed-forward neural networks trained with the 
same data from the Lorenz equations. The simulation on the left is from a network that trained near the 
global minimum.  The simulation on the right trained to a local minimum. 

Convergence to local minima can be often be cured by adding a momentum term to the 

learning rate. One does this by considering the past slope of the error surface (AWjj(t-l)) in the 

slope of the present error surface (Awij(t)): 

AwK0 = V^ + *(AwK'-l» 
<5mj\t) 

where m is the momentum constant. With enough momentum, the network will roll out of the 

local minima. With too much momentum, it will become unstable and unable to settle in the 

global minimum. Typical values of momentum are chosen near 0.9 (Weiss and Kulikowski, 

1991), but the best value is dependent upon the data and found by trial-and-error. 

Noisy data presents another challenge that must be overcome. Nearly all data has 

measurement error because measuring devices are designed to operate within an error tolerance. 

Measurement errors teach the network a false impression of the actual forcing function. If a 

network is allowed, it will train on a data set until it learns the false signal in the noise. At this 
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point the network has overfit the data and it begins to lose its ability to generalize the forcing 

function. 

One solution to overfitting is the stop-training method. Stop-training is a nonconvergent 

method that works by comparing two sets of data that adhere to the same forcing function. First, 

a validation set of data is removed from the training set. The network trains on the training set, 

and tests its solution on the validation set. As long as the SSE for the validation set decreases, 

the network continues training (Figure 14). When additional training causes the validation set's 

SSE to increase, the network stops training and returns to the optimum weights and biases. 

SSE 

Training 
Set 

Validation 
Set 

Training Epochs 
Figure 14 The stop-training method prevents overfitting by halting training when decreasing the sum of 
squared error in the training set increases the sum of squared error in the validation set. 

Data preparation techniques such as normalization and prefiltering also improve convergence 

and a neural network's ability to simulate a function. Normalizing data within the bounds of-1 

or 0 to 1 often improves training performance (Weiss and Kulikowski, 1991). Prefiltering 

methods such as principle component analysis or canonical correlation analysis may be used to 

reduce the number of input variables (Hsieh and Tang, 1998). The purpose of prefiltering data is 

to remove variables that obscure the predictive signal in the data set. 
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Greene (1998) developed a signal-to-noise variable reduction technique as a prefiltering 

method. To use this technique, one generates a string of random numbers and includes it in the 

training set of data. This random variable represents pure noise. A network is trained on the 

inputs, and the sums of the squared weights for each variable are compared to those of the 

random variable. The variable with the lowest signal-to-noise ratio is removed from the training 

set, and the network is trained again. This process is continued until all variables have been 

removed. Upon completion, the set of variables that performed best (lowest SSE) is chosen as 

the most predictive. 

3.      Methodology 

3.1 Overview 

In this study of the launch pad winds there were five steps taken to develop the neural 

network model. First, the weather observations were selected and prepared as continuous scalar 

weather variables. Second, performing vector subtractions developed variables representing a 

measurement change over some distance ("deltas"). Third, the most predictive variables were 

chosen using the signal-to-noise variable screening method. Fourth, an Elman recursive neural 

network was trained on the data. Finally, an ensemble of forecasts was developed using a 

Fortran program to simulate the neural network. 

3.2 Preparing the Observations 

A successful neural-network model requires good data. The network can be trained only 

to the quality of its data. Data preparation is the most important and most time-consuming step 

27 



of the process. It includes choosing the data, accounting for missing values, and fitting the data 

to one time scale. 

3.2.1       Choosing the Weather Observations 

The first requirement to build this neural network model is to choose relevant data. For 

best results, one must choose high-quality, predictive weather variables (input) that explain much 

of the variation in the predicted wind variables (output).   Data was collected from scales larger 

than the WINDS network to provide the neural network with information about the large-scale 

environment. The collection of weather observations fit into three spacial and temporal scales. 

The WINDS towers were spaced on the order of a mile and recorded observations each five 

minutes. Surface and buoy observations were spaced on the order of 100 miles and recorded 

observations each hour. The Tampa sounding was the only upper air observation and was 

recorded each twelve hours. 

In general, observations were selected for the quality of their data and location of their 

observation site. Observation data sets with a high percentage of missing values were discarded, 

and sites were selected to present a balanced representation of the region. 

The surface and buoy observations were screened first for large blocks of missing data. 

Thirteen surface stations from the Florida Peninsula, three Coastal-Marine Automated Network 

(C-MAN) stations, and two buoys in the nearby Atlantic waters were considered. Off-hour 

reports were stripped from the observation sets. A total of five surface stations, a C-MAN 

station, and a buoy were then selected for their completeness of hourly data records (Table 1) 

and location (Figure 15). 
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Table 1 Surface and Buoy Observation Records 

Station Type % Observations 
Available 

Daytona Surface Report 95.1 

Jacksonville Surface Report 96.6 

Melbourne Surface Report 93.6 

Tamp Surface Report 96.5 

W. Palmbeach Surface Report 98.1 

41009 Buoy Station 96.3 

SPGF1 C-MAN Station 98.8 

Figure 15 Surface and buoy observation locations. The upper-air observations from Tampa were also used. 

The WINDS tower data set was also screened in a similar method to obtain the more 

manageable subset depicted in Figure 16. All the towers at launch pads were initially chosen. In 

the case that a launch pad had two towers, the tower with westerly sensors was kept (presuming 
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Figure 16 Ten towers used to develop weather variables predictive of the launch pad winds. 

most baroclinic systems would cause winds with a westerly component). The launch pad tower 

0002 was removed from the set because of an incomplete record due to late construction of the 

tower and other extended outages as well. The next type of tower selected included towers with 

three or more sensor levels. These towers tended to be in the vicinity of the launch pads, had 

high maintenance priority, and relatively complete data records. Several two-level towers on the 
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far perimeters of the WINDS tower network were chosen for their upstream location to the 

generally southeasterly travelling baroclinic systems. Completeness of data record was 

considered by examining the time series of observations on a MathCad© graph for obvious 

discontinuities. 

3.2.2 Replacing Missing Values 

Replacing missing values in the data set is a problem often encountered while preparing a 

neural network, as it was in this thesis. Tsoukalas and Uhrig (1997) cite the common sense (and 

technically correct) thing to do is replace missing values with the best estimate of what they 

would have been. A number of sophisticated methods of estimating missing values exist 

(Bishop, 1995), but a linear function fit over the period of missing data was chosen to make a 

simple estimate of their values. This type of estimation was used on data set E (astrophysical 

data from a variable star) in the Sante Fe time series prediction contest (Gershenfeld and 

Weigend, 1994), and its advantage is simplicity and relative accuracy for short time periods. 

3.2.3 Fitting Observations to One Time Scale 

Since the observations were taken at different time intervals, all observations were fit to 

one time scale. To train the network on realistic values, observations were arranged in time as 

they normally become available to forecasters. Upper-air observations were assumed to become 

available 90 minutes after the observations time. Surface observations were assumed to become 

available on the hour. WENDS tower observations were assumed immediately available. 

To eliminate some of the high frequency waves that may be considered noise to the 

WINDS network, a simple one-dimensional three-point smoother was applied to the observations 

(Haitiner and Williams, 1980). The smoothing function,^, is described as: 
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fj = (l-S)fj + -(fj + l + fj-l) 

where S = 2/3. The smoother dampened waves with frequencies greater than ten minutes. Since 

information within the ten-minute frequency band was eliminated, the data set was down- 

sampled by choosing each third observation. This effectively averaged each group of three 

consecutive observations. Figure 17 is an example of a WINDS tower data segment before and 

after smoothing and demonstrate some of the strengths and weaknesses of this technique. 

Though the time-averaged signal is smoother, it understates the actual peak wind by two knots. 

Peak Wind at Tower 0036, 90 feet 
November 11,1996, 00-08Z 

30 
5 minute sampling frequency 

7        8 

Figure 17 The WINDS tower observations were smoothed by averaging three consecutive points. 
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3.3       Developing Predictive Variables 

Wind measurements dominated the variables chosen to train the network to predict the 

launch pad winds. The wind was transformed to u and v components so it could be treated as 

two scalars. This circumvented the 0-360 discontinuity and provided the neural network with 

continuous measurements. Subtracting components of the wind at different heights developed 

measures of vertical wind shear. Likewise, subtracting components of the wind at the same 

height, but different locations developed horizontal wind shear measurements. Wind component 

subtractions from different levels of different towers represented a combination of vertical and 

horizontal shear. The WINDS tower network provided peak wind speeds, and a measure of wind 

directional deviation that indicates its variability. Sea level pressure observations were also 

included to describe the wind field. 

The remaining variables were largely measures of differential heating. This group 

contained diverse variables. Temperature, dew point, relative humidity, and cloud ceiling 

heights were included to aid the neural network in recognizing frontal weather. Vertical and 

horizontal gradients of temperature and moisture were developed through component 

subtractions. The solar elevation angles for Kennedy Space center were calculated and included 

as well. 

In all, 153 experimental variables were developed from the three types of observations. 

Appendix A contains a complete listing. 

3.4       Reducing the Variables 

A salient set of variables was selected from the original 153 through Greene's signal-to- 

noise data reduction method (Greene, 1999). The method was performed on MATLAB© with 

an Elman recursive neural network with fifteen hidden nodes (the code is listed in appendix B). 
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A multi-processor SGI Power ONYX Infinite Reality Systems computer (provided by the Major 

Shared Resource Center at Wright-Patterson Air Force Base) was used to run the program. The 

network was trained to forecast the u and v components and peak speed of the wind fifteen 

minutes into the future. Table 2 lists the fifteen measurements the network trained to forecast. 

The network was trained on 408 days of variables (96 samples per day) from the winters of 

1995-6, 1996-7, and 1997-8. Observations from 1 November through 10 December 1996 

validated the network solution. Due to the size of the data set, the least useful variables were 

initially eliminated ten at a time. As the set became smaller, fewer variables were eliminated 

each time. Prior values of the predicted values were kept in the training set for programming 

ease until twenty-five variables remained. 

The least predictive variables (at a 15-minute prediction interval) were the upper-air, 

surface, and buoy variables. The cloud ceiling heights were the least predictive at all. Dew 

points, upper-air temperatures, and sea level pressures tended to provide little predictive power 
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Figure 18 Mean sum of squared error for the network tended to decrease as the least predictive 
variables were removed.  The best performance occurred with 20 variables; removing additional 
variables resulted in a loss of performance measured by higher mean SSE. 
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to the neural network. Somewhat surprisingly, previous peak wind speeds also were found not 

highly predictive of future peak wind speeds. 

Figure 18 graphs the values of SSE against the number of variables. The error decreased 

rather steadily until the minimum occurred at twenty variables. As the set was decreased to one 

variable, the SSE increased significantly. Of the twenty variables that accomplished the lowest 

SSE, fifteen were the present values of the predicted variables (Table 2). Of the remaining five, 

two were a horizontal shear measurements, one a vertical shear measurement, and two were v 

wind components at 204 feet. Other variables that proved relatively predictive included 

directional deviation of the wind, the combined horizontal and vertical shear variables, and the u 

component of the wind at Jacksonville. Table 3 lists these variables. Appendix A includes a 

more detailed rank order of the variables. 

Table 2 The Predicted Variables (Targets) 

Tower Height (ft) Measurement 

0393 60 U wind component 

0393 60 V wind component 

0393 60 Peak wind speed 

0397 60 U wind component 

0397 60 V wind component 

0397 60 Peak wind speed 

1101 54 U wind component 

1101 54 V wind component 

1101 54 Peak wind speed 

1101 162 U wind component 

1101 162 V wind component 

1101 162 Peak wind speed 

0036 90 U wind component 

0036 90 V wind component 

0036 90 Peak wind speed 
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Table 3 Ten Additional Predictive Variables 

Location Height (ft) Variable Rank 

Tower 1101 204 V wind component 7 

Towers 1101 &0061 162 U difference (h. shear) 14 

Tower 1101 12 & 162 U difference (h. shear) 15 

Tower 3132 204 V wind component 16 

Tower 1101 12 & 162 V difference (v. shear) 17 

Tower 0393 60 Directional Deviation 21 

Towers 1101 & 0714 54 U difference (h. shear) 22 

Tower 0061 162 V wind component 23 

Tower 3132 394 Directional Deviation 24 

Jacksonville Surface U wind component 25 

3.5       Training the Network 

Once the most salient set of variables was identified, the random variable was removed, 

and an Elman Recursive Neural Network was trained to forecast the fifteen target variables 

fifteen minutes into the future. For experimental purposes, networks were also trained to 

forecast fewer variables, and predict over longer time intervals, though these models may not 

have had the most predictive variables for the task. If procedure were followed strictly, one 

would repeat the signal-to-noise variable screening method to mirror each proposed neural 

network (it is possible that other variables are more predictive at different time intervals, or more 

predictive for certain towers). However, given time constraints, the one screening method was 

used for all forecast times and all fifteen forecast variables. 
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3.6       Generating a Forecast Ensemble 

An ensemble of slightly perturbed neural network forecasts was generated through a 

Fortran program. The program made multiple time-step forecasts by updating input values with 

time iterated output values. Initial conditions to these forecasts were perturbed using the 

breeding of growing modes method to develop ensemble forecast members. 

3.6.1       The Basic Model 

The Fortran program used to generate the ensemble of forecasts is listed in appendix B. 

The program was designed to forecast an array of variables, xi through xn given those variables 

at a previous time step (Figure 19). One could also include the variables yi through ym to aid 

prediction (these variables were envisioned as large scale environmental information that does 

not change significantly over the forecast period). The program passed observed wind variables 

to the neural network model, and the model forecast the variables one time-step. Then the 
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Figure 19 The schematic depicts the basic iterative process of the neural network model. The x values are 
iterated in time, while the y values remain constant. 
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program iterated the observations one time-step ahead by replacing the current values with 

forecast values. The program could run as many time steps as desired. The rationale behind not 

updating all variables (i.e., the y variables) was so they could be variables that don't change 

much during the forecast time (such as upper-air or surface observations), and would be difficult 

to accurately forecast their change on a small scale. 

3.6.2      Perturbing the Model 

To generate an ensemble of slightly different, but equally likely forecasts, the iterative 

inputs to the model (i.e., the x variables in Figure 19) were perturbed by the breeding of growing 

modes method. Figure 20 depicts the structure of the growing mode cycle. On the far left of the 

image, the variables observed at one time step before the present are added to corresponding 

perturbations. Initially, the perturbations are randomly chosen numbers scaled back to a 

predefined vector length (this length is chosen to approximate the amount of error in the 

measurements). The perturbed observations are passed to the model, which produces a forecast 

for the present time. The forecast for the present time is compared to the present 
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Figure 20 The schematic depicts steps in developing a perturbed forecast representative of a 
growing mode.  The input vector (t-1) is perturbed with an error vector (initially random numbers; 
subsequently the previous model run's forecast error vector).  The perturbed observations (t-1) are 
passed to the neural network model and produce forecasts.  A forecast error vector is found by 
comparing the forecasts to the current measured values (t). This error vector is used to perturb the 
current observations, and the forecast runs multiple time-steps. 
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observations; their difference is the forecast error. This error vector is scaled-back to the 

predefined error length (as before) and used to perturb the present observations. The program 

then forecasts multiple time steps based on the present perturbed observations. The cycle 

repeats, but the scaled back forecast error vector is used to perturb the observations instead of 

random numbers. By starting with multiple perturbations and modeling each set of perturbed 

observations separately, an ensemble of forecasts is generated. 

4.      Results 

4.1 Overview 

Neural networks were able to achieve skill against persistence. The best results were 

obtained by limiting the number of tower locations predicted, and increasing the time interval of 

the prediction. 

4.2 Recursive Neural Network Performance 

Unfortunately, the MATLAB program did not simulate the trained network as an Elman 

Neural Network, and simulated it as a feed-forward network instead. This effectively eliminated 

the memory property that often improves performance of the neural network. Reproducing the 

network with Fortran code and MathCad© identified this problem. The MATLAB simulation of 

the network could be only be duplicated by omitting contributions from the recursive nodes (the 

y(t-l) nodes in Figure 11). Engineers at MATLAB have examined the problem and raised it to 

the authors of the Elman code. As of yet, the cause of the problem remains unknown. To work 

around this problem, a feed-forward network was substituted for the Elman network in the 

Fortran program by removing several lines of instruction. 
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The network solutions were examined for skill against persistence (i.e., skill against 

forecasting no change in the wind). To determine skill, the mean absolute error for the model's 

forecast was compared to that of a persistence forecast. Mean absolute error was calculated for 

persistence and the forecast as 

l<£ 
MAEpers=—Yy>k-l ~°k\  an(l 

t=l 

1    " 
MAEfcst = -Y\yk-ok\, 

where o is the observed value and v is the forecast value over time interval k. 

Networks using the twenty most predictive variables to forecast the wind fifteen minutes 

ahead at the five locations did not achieve skill against persistence. The mean absolute error for 

each variable was greater than that of not forecasting at all (Table 4). But encouragingly, the 

MAE Difference between the Model and Persistence 

0 

-1 

-2 

-3 

=^-      ~ =  

Knots 

Peak Wind 

1                                                          1                                                          1 1 1 1 1  

U Component 

8 

Hours 

10 12 14 16 

Figure 21 Though none of the variables achieved positive skill against persistence, the peak wind 
forecasts performed the best. 
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network tended to produce the least error when predicting peak winds. Figure 21 shows 

comparisons between the performance of peak wind forecasts and u-wind-component forecasts. 

Though none achieve a positive difference (representing skill against persistence), the peak wind 

forecasts performed the best. 

Table 4 Mean Absolute Error for a 15-Minute Forecast 

Measurement MAE MAE Percent error 

Forecast Persistence above persistence 

0393-60 U 1.19 .88 35% 

0393-60 V 1.18 .81 46% 

0393-60 PK 1.40 1.17 20% 

0397-60 U 1.28 .91 41% 

0397-60 V 1.10 .84 31% 

0397-60 PK 1.40 1.20 17% 

1101-54U 1.02 .76 34% 

1101-54V .94 .76 24% 

1101-54 PK 1.37 1.10 25% 

1101-162U 1.21 .94 29% 

1101-162 V 1.14 .88 30% 

1101-162 PK 1.41 1.06 33% 

0036-90 U 1.20 .82 46% 

0036-90 V 1.48 .82 80% 

0036-90 PK 1.53 1.06 44% 
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Through experimentation, a feed-forward neural network was generated that achieved 

skill against persistence. The network was designed with twenty-five hidden nodes and used 

sixty-three input variables. The network was trained to forecast the winds at tower 0393 (a 

shuttle launch pad) four hours ahead. Thirty-nine days from November and early December 

1996 were used to test the network against persistence. Overall, the network outperformed a 

persistence forecast in absolute error (Table 5). The peak-wind forecast was 11 percent better 

than persistence on average, and its maximum absolute error was 20 percent less. 

Table 5 Absolute Error (knots) 

Model Forecast vs. Persistence 

U-Component V-Component Peak Wind 

Forecast (mean) 3.38 3.04 3.32 

Persistence (mean) 3.38 2.95 3.68 

Forecast (max) 12.3 18.5 19.7 

Persistence (max) 21.7 22.2 24.1 

The neural networks were most successful when forecasting the winds for several hours 

ahead. The networks trained to forecast fifteen minutes ahead never achieved skill against 

persistence. Generally, forecasts for all time intervals were more similar to persistence than the 

observed weather. That is, the network tended to forecast the variables to change little. Figure 

22 is an example. In the figure, the forecast is more similar to persistence than to the observed 

weather. But when it varies from persistence, it tends to vary in the direction that gives it 

predictive power. In the case of the fifteen minute forecasts, the variation from persistence 

wasn't nearly as predictive. This may be due to measurement resolution. After fifteen minutes, 
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any one variable changes about one knot on average. The measurement error of the wind sensors 

is 0.3 m/s, or about 0.6 knots (Computer Sciences Raytheon, 1998). The measurement error, 

which could account for over half the variation in the wind, may overwhelm the short-term 

signal. 
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Figure 22 For each 15 minutes, this graph shows the measured peak wind, a four hour forecast, and 
a four hour persistence forecast (the observed weather lagged four hours).  If the forecast were 
perfect, it would coincide with the solid line.  It is much more similar to the persistence forecast, 
but more often closer to the observed weather.  Thus, it achieves skill. 

The decision to smooth and down-sample the data may have caused additional error. 

Smoothing eliminated high frequency signals that may have been predictive, and down-sampling 

created a small amount of phase error for frequencies less than 15 minutes. 

4.3       Ensemble Model Performance 

The ensemble aspect of this model functioned properly, but did not substantially add to 

the model's usefulness. The error in the forecasts was overwhelmingly attributable to error in 

the model, not error in the measurements. Therefore, perturbing the input variables to simulate 
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variation due to measurement error did not significantly change the forecasts. The end result was 

the forecasts clustered tightly together and rarely bounded the actual outcome. 

The ensemble forecasts diverged after a sufficient number of model iterations. Increasing 

the magnitude of the perturbation vectors could accelerate divergence. Figure 23 compares 

perturbed ensemble members to an unperturbed control forecast. The forecast variable and units 

are unimportant because the model lacked skill, but the paths of the ensemble 

Unperturbed 
Model 

Perturbed 
Models 

Ensemble Member Divergence 

70       80 

Figure 23 Though the ensemble technique was not as useful as hoped, the technique worked and 
the perturbed members diverged from the control forecast over time. 

members are noteworthy. Initially, the perturbed forecasts are nearly identical to the control 

forecast. Slowly they begin to diverge, and eventually take different, seemingly non-periodic 

paths. Appendix C contains the Fortran code for the ensemble model. 
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5.      Conclusions and Recommendations 

5.1       Conclusions 

Neural network models can be trained to skillfully predict wintertime winds at the 

Kennedy Space Center launch pads. However, the problem is by no means easy, and a training 

set must be rigorously prepared to achieve an appreciable amount of skill. The amount of skill is 

also strongly influenced by the neural network architecture, forecast interval, and number of 

forecast variables. Inevitably, well-trained networks require human-learning as well as machine- 

learning. A systematic technique that consistently provides the best solution does not exist, so 

one must learn through trial-and-error. In this thesis, experimentation proved fruitful. 

Neural networks performed best on WINDS tower data when trained to forecast periods 

of several hours. This may be a result of wind sensor measurement error. The sensors' error 

tolerance is about 0.6 knots, and the mean absolute change in wind at the launch pad towers over 

fifteen minutes was around 1 knot for the period studied. Over half the variation was attributable 

to measurement error. Over a period of four hours the mean absolute change in wind rose to 3-4 

knots. Only 15-20 percent of the variation could then be attributed to measurement error. 

The ensemble aspect of the model functioned properly but did not add value to forecasts. 

One of the assumptions that must hold true to develop useful ensemble weather forecast is the 

model must approximate the atmosphere well. Unfortunately, the models did not learn to 

forecast the weather well enough. The neural network models resembled persistence more than 

the weather it forecasts. Mean absolute error values confirmed this. An example is the forecast 

for the peak winds at tower 0393. The mean absolute error between the peak wind forecast and 

the observed peak wind was 3.32 knots. However, the peak wind forecast was more similar to 

persistence, and their mean absolute error was only 1.93 knots. The ensemble technique is more 
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likely to add value if the neural network forecasts are skillful against persistence and resemble 

the observed values more than the persistence values. 

5.2       Recommendations 

The results of this thesis could be improved upon by carefully selecting and screening 

specialized training data. To aid a neural network in learning wind behavior when the winds are 

near threshold values, the network should train on those events only. All other weather events 

may distract the network from learning to predict the near-threshold case. It is important large 

errors and large changes due to irresolvable processes (i.e., thunderstorms) are screened from the 

database since they are considered noise to the desired signal. Since the network reduces the 

sum of squared error, large errors seriously distort a neural network's training (Tsoukalas and 

Uhrig, 1997). High winds due to thunderstorms are particularly distracting to the learning 

process because their onset is rapid, short-lived, and generally below WINDS network resolution 

(high winds from a thunderstorm are typically evident at one tower at a time). The network 

should learn a better solution if it doesn't seek to minimize the large errors due to thunderstorms. 

Likewise, uninteresting periods of weak winds also may diminish a neural network's ability to 

predict periods of strong winds and should be eliminated. Since the WINDS tower wind sensors 

have a fixed error tolerance, +0.33 m/s, weak winds may contain a larger percent of error. As the 

training set becomes more specialized, the network should learn to predict the special situation 

better. 

Another method to improve forecasts is by using a more sophisticated neural network 

architecture or improved training techniques. The networks in this thesis were effectively trained 

with feed-forward neural networks. However, recursive neural networks are advantageous 

because they measure the rate change of input variables over time. Adaptive time delay neural 
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networks, a specialized form of recursive neural networks, learn the best time intervals to 

measure the rate change of input variables. These features may reduce a network's sum of 

squared error performance by as much as an order of magnitude (Gainey, 1993). Many 

variations in training techniques also exist. All networks developed in this thesis trained with the 

resilient backpropagation algorithm (a specialized form of the learning algorithm discussed in 

chapter 3), but many others exist and may train a network more efficiently, if not better. 

In conclusion, this thesis demonstrates the feasibility of predicting launch pad winds at 

KSC/CCAS with a neural network model. Improvements upon these results may be achieved 

through careful data preparation and successful use of a recursive neural network. A simple 

feed-forward neural network outperformed a persistence forecast using relatively noisy data. If 

the data set's noise can be reduced, predictive performance should increase substantially. 
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APPENDIX A.  ORIGINAL MODEL INPUTS 

This appendix lists the 153 variables tested for predictive ability towards the winds at towers 
0393, 0397,1101, and 0036. The tower variables are coded as a combination of the tower 
number and the sensor height in feet. Surface and buoy observations are coded by their name or 
symbol. Tampa upper-air observations are coded by their pressure level. U = u-wind 
component, V = v-wind component, PK = peak wind speed, DDEV = directional deviation, T = 
temperature, Td = dew point temperature, RH = relative humidity, SLP = sea level pressure, CIG 
= cloud ceiling height, GUST = gust speed, and HT = geopotential height. Rank indicates their 
relative predictiveness, as determined by the signal-to-noise technique (1 highest, 153 lowest): 

Rank Variable 
1 0393-60 U 
12 0393-60 V 
10 0393-60 PK 
8 0397-60 U 
13 0397-60 V 
3 0397-60 PK 
11 1101-54 U 
4 1101-54 V 
20 1101-54 PK 
18 1101-162 U 
5 1101-162 V 
19 1101-162 PK 
6 0036-90 U 
2 0036-90 V 
9 0036-90 PK 
21 0393-60 DDEV 
95 0393-60 T 
101 0393-60 RH 
134 0397-60 DDEV 
99 0397-60 T 
94 0397-60 RH 

1101-6 T 
102 1101-6 RH 

1101-12 U 
1101-12 V 
1101-12 PK 

110 1101-12 DDEV 
15 1101-12 U - 1101-162 U 
17 1101-12 V - 1101-162 V 

1101-54 DDEV 
84 1101-54 T 
139 1101-54 RH 

1101-204 U 
7 1101-204 V 
114 1101-204 PK 
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1101-204 DDEV 
1101-204 U - 1101-54 U 
1101-204 V - 1101-54 V 
1101-162 DDEV 
1101-6 RH - 1101-204 RH 

97 1101-6 T - 1101-204 T 
1101-6 T - 0819-6 T 

92 1101-54 U - 0819-54 U 
85 1101-54 V - 0819-54 V 
119 1101-6 T - 1012-6 T 

1101-54 U - 1012-54 U 
1101-54 V - 1012-54 V 

22 1101-54 U - 0714-54 U 
1101-54 V - 0714-54 V 
1101-54 DDEV - 0714-54 DDEV 

124 0061-6 T 
105 0061-12 U 

0061-12 V 
135 0061-12 PK 

0061-54 U 
0061-54 V 

138 0061-54 PK 
0061-162 U 

23 0061-162 V 
100 0061-162 DDEV 
14 1101-162 U - 0061-162 U 

1101-162 V - 0061-162 V 
1101-162 DDEV - 0061-162 DDEV 
3132-6 T - 0398-6 T 
3132-54 U 
3132-54 V 

115 3132-54 DDEV 
0393-60 U - 3132-54 U 
0393-60 V - 3132-54 V 
0397-60 U - 0415-54 U 
0397-60 V - 0415-54 V 
3132-162 U 
3132-162 V 

125 3132-162 PK 
3132-204 U 

16 3132-204 V 
3132-204 DDEV 
3132-295 U 
3132-295 V 
3132-295 PK 
3132-394 U 
3132-394 V 
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24 3132-394 DDEV 
3132-492 U 
3132-492 V 
3132-492 PK 

r 

3132-492 U - 3132-54 U 
3132-492 V - 3132-54 V 
3132-492 T - 3132-54 T 
3132-492 U - 0061-54 U 
3132-492 V - 0061-54 V 
3132-54 U - 2016-54 U 

123 3132-54 V - 2016-54 V 
143 Solar elevation angle 
118 Daytona U 
86 Daytona V 
151 Daytona CIG 

Daytona T 
122 Daytona Td 

Daytona SLP 
25 Jacksonville U 
109 Jacksonville V 
153 Jacksonville CIG 
96 Jacksonville T 
108 Jacksonville Td 

Jacksonville SLP 
104 Melborne U 

Melborne V 
149 Melborne CIG 
106 Melborne T 

Melborne Td 
130 Melborne SLP 

Tampa U 
137 Tampa V 
152 Tampa CIG 
121 Tampa T 
89 Tampa Td 

Tampa SLP 
87 Wpalmbeach U 
98 Wpalmbeach V 
150 Wpalmbeach CIG 
111 Wpalmbeach T 
107 Wpalmbeach Td 
132 Wpalmbeach SLP 
91 41009 U 
127 41009 V 
116 41009 GUST 
113 41009 SLP 
126 41009 T 
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88 SPGFl U 
146 SPGFl V 
133 SPGFl GUST 
117 SPGFl 

SPGFl 
SLP 
T 

147 500mb HT ( m) 
148 500mb 

500mb 
T(C) 
U 

136 500mb V 
145 700mb T 
129 700mb U 
128 700mb V 
142 850rab T 
120 850mb U 
112 850mb 

925mb 
V 
T 

141 925mb Td 
103 925mb U 
93 925mb V 
144 500mb U - 850mb U 
131 500mb V - 850mb V 

925mb T - 850mb T 
925mb U - 850mb U 

140 925mb V - 850mb V 
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APPENDIX B. MATLAB CODE 

%  script M-file elmansnr.m 
% This script M-file trains an elman neural network on a set of features 
% and a deliberately random variable.  The first layer weights are 
% compared to the weights of the random variable and rank ordered. 
% It records the average sum of squared error of the network. 
[rl,cl]=size(matrixl); 
[r2,c2]=size(matrix2); 
r2=r2+l; 
matrix3=[matrixl,matrix2]; 
clear matrixl matrix2; 
[pn,minp,maxp,tn,mint,maxt]=premnmx(matrix3,matrix3(1:15,:)); 
clear matrix3 
noisel=rands(cl-1)',- 
P=[noisel;pn(:,1: (cl-1))]; 
clear noisel 
T=tn(:,2: (cl)) ; 
rl=rl+l; 
PR=[]; 
PRadd=[-l   1]; 
for num=l:rl 

PR=[PR;PRadd]; 
end 
clear PRadd num 
netl=newelm(PR, [15,15] , { ' tansig' , 'purelin' }, ' trainrp ') ,- 
noise2=rands(c2-l)'; 
v.P=[noise2;pn(:, (cl+1) : (cl+c2-l))]; 
V.T=tn(:, (cl + 2) : (cl+c2) ) ; 
clear noise2 pn tn maxp minp maxt mint 
netl.trainParam.epochs=2 0 0; 
netl. trainParam. show=5 ,- 
netl=init(netl); 
netl.IW{1,1}=netl.IW{1,1}/10; 
[netl,trl] =train(netl, P,T, [] , [] ,v) ; 
clear P T v PR 
Wl=netl.IW{l,l}; 
Wlsq=Wl.*Wl; 
sumWlsq=sum(Wlsq); 
for num=l:rl 

sig(num)=10*logl0(sumWlsq(num)/sumWlsq(l)); 
end 
[signal order]=sort(sig); 
clear sig 
signal=[signal;order]; 
clear order rl r2 cl c2 num 
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APPENDIX C. ENSEMBLE MODEL FORTRAN CODE 

PROGRAM emodel.f 
************************************************************************ 

* This program uses Elman RNN weight and bias matrices to produce an 
* ensemble of wind forecasts for the Kennedy Space Center. 
* This model forecasts at one hour intervals. 
* MATLAB seemed to train and simulate the network as a feed-forward 
* network. Therefore I've commented out the recursive matrix. 
* 

* Variables 
* meas is a source matrix of measurements for this program. 
* le is the number of time steps read into the source matrix. 
* inp is the number of model inputs (and variables in meas). 
* outp is the number of outputs in the forecast. 
* subm is the subset of meas the ensemble model uses. 
* oldm is the set of measurements from the past time step. 
* newm is the set of measurements from the present time step. 
* mod is the number of models, the first model is unperturbed. 
* nodes is the number of hidden nodes in the Elman RNN. 
* step is the number of time steps the model runs. 
* run is the number of consecutive periods the model runs. 
* pert is the matrix of perturbations. 
* randv is a matrix of random variables to initialize the perturbations. 
* minm and raaxra are vectors of minimum and maximum measurements for 
* each variable.  They are taken from the training set of data. 
* oldh is a matrix of hidden nodes from the previous time step. 
* warm is the number of time periods the model warms up its growing 
* modes and hidden nodes before making a forecast. 
* wl is the matrix of weights between the inputs and hidden nodes. 
* wir is the matrix of weights between the past hidden nodes and 
* the present hidden nodes. 
* bl is the vector of biases to the hidden nodes. 
* w2 is the matrix of weights between the hidden nodes and the outputs. 
* b2 is the vector of biases to the outputs. 
* maxerror is the maximum allowed magnitude of the growing modes. 
* cump (cumulative perturbation) is used to find the perturbations' 
* magnitudes. 
* start chooses the starting location of subm within meas. 
* i,l,m,r and t are counting variables for loops. 
* a and b are used loosely as counters for both outp and nodes. 

parameter (mod=3,inp=15,step=8,le=5 0 0,run=3) 
parameter (warm=10,outp=15,nodes=15) 
parameter (size=le+run+warm+4) 
real meas(le,inp),subm(size,inp),oldm(inp),newm(inp) 
real pert(mod,inp),fcst2(mod,outp),fcst3(mod,outp,step,run) 
real randv(mod,inp),minm(inp),maxm(inp),oldh(mod,nodes) 
real wl(inp,nodes),wir(nodes,nodes),bl(nodes) 
real w2(nodes,outp),b2(outp),maxerror,cump 
integer m,i,t,1,r,start,a,b 

* Set constants 
start=l 
maxerror=.15 
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* Output files 
open(unit=ll,file='modi.dat') 
open(unit=12,file='mod2.dat') 

* Read data 
open (20, file='./varsl5.txt') 
read(2 0,*) ((meas(l,i),i=l,inp),l=l,le) 
open (25, file='./wl2.txt') 
read(25,*) ((wl(i,a),i=l,inp),a=l,nodes) 
open (30, file='./wlr2.txt') 
read(30,*) ((wlr(a,b),a=l,nodes),b=l,nodes) 
open (35, file='./w22.txt') 
read(35,*) ((w2(a,b),a=l,nodes),b=l,outp) 
open (40, file='./bl2.txf) 
read(40,*) (bl(a),a=l,nodes) 
open (45, file='./b22.txt') 
read(45,*) (b2(a),a=l,outp) 
open (50, file='./randv.txt') 
read(50,*) ((randv(m,i),i=l,inp),m=l,mod) 
open (55, file='./minm2.txt') 
read(55,*) (minm(i),i=l,inp) 
open (60, file='./maxm2.txt') 
read(60,*) (maxm(i),i=l,inp) 

* Initialize perturbations. 
* Fill the perturbation matrix with zeroes.  Leave zeroes in the 
* first row so the first model is unperturbed. 
* Scale back random vectors magnitude "maxerror" 

do m=l,mod 
do i=l,inp 
pert(m,i)=0 

enddo 
enddo 
do m=2,mod 

do a=l,outp 
pert(m,a)=randv(m,a)*10 

enddo 
enddo 
do m=2,mod 

cump=0 
do a=l,outp 

cump=cump+pert(m,a)**2 
enddo 
if(cump.gt.maxerror)then 

do a=l,outp 
pert(m,a)=pert(m,a)*maxerror/cump 

enddo 
end if 

enddo 

* Initialize oldh to zeroes. 
do a=l,nodes 

do m=l,mod 
oldh(m,a)=0 

enddo 
enddo 

54 



Choose the data and normalize between 1 and -1. 
do a=l,step+run+warm 

do i=l,inp 
subm(a,i)=2*(meas(a-1+start, i)-minm(i))/(maxm(i)-minm(i))-1 

enddo 
enddo 

Assign values to oldm and newm. 
do i=l,inp 

oldm(i)=subm(l,i) 
newm(i)=subm(2, i) 

enddo 

Perturb measurements. 
call modpert(oldm,pert) 

Run model 
call model(pert,oldh,fcst2,wl,wir,w2,bl,b2) 
print*, 'fcsts ' ,fcst2(1,1),fcst2(1,2),fcst2 (1,3) 

Find new perturbations. 
call newpert(newm,fcst2,pert,maxerror) 

Warm-up recursive hidden-nodes and growing modes (perturbations). 
do a=2,warm 

do i=l,inp 
oldm(i)=subm(a, i) 
newm(i)=subm(a+l, i) 

enddo 
call modpert(oldm,pert) 
call model(pert,oldh,fcst2,wl,wir,w2,bl,b2) 
print*, -fcsts ',fcst2(1,1),fcst2(1,2),fcst2 (1,3) 

call newpert(newm,fcst2,pert,maxerror) 
enddo 

Generate "run" forecasts of "step" length. 
b=warm-l 
do r=l,run 
b=b+l 

do i=l,inp 
oldm(i)=subm(b,i) 
newm(i)=subm(b+l,i) 

enddo 
call modpert(oldm,pert) 
call model(pert,oldh,fcst2,wl,wir,w2,bl,b2) 
call newpert(newm,fcst2,pert,maxerror) 
call modpert(newm,pert) 
do t=l,step 

call model(pert,oldh,fcst2,wl,wir,w2,bl,b2) 
do m=l,mod 

do a=l,outp 
pert(m,a)=fcst2(m, a) 
fcst3(m,a,t,r)=0.5*(fcst2(m,a)+l)* 

$ (maxm(a)-minm(a))+minm(a) 
enddo 

enddo 
enddo 
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do m=1,mod 
do t=l,step 
print*,fcst3 (m,l,t,r),fcst3(m,2,t,r),fcst3(m,3,t,r) , 

$     m,'m',t,'t',r,'r' 
enddo 

enddo 
enddo 

* Write to output file 

write(ll,21) ((fcst3 (l,a,t,l),a=l,outp),t = l,step) 
write(12,21)((fcst3(2,a,t,1),a=l,outp),t=l,step) 

21   format(15f9.3) 
end 

***************************************************************** 

* model subroutine * 
************************************************************************ 

subroutine model(pert,oldh,fest,wl,wir,w2,bl,b2) 

* Declare arrays and variables 
parameter(mod=3,inp=15,outp=15,nodes=15) 
integer a,b,m,i 
real wl(inp,nodes),bl(nodes),wir(nodes,nodes) 
real w2(nodes,outp),b2(outp),pert(mod,inp),fest(mod,outp) 
real hidn(nodes),nin(nodes),nout(outp),oldh(mod,nodes) 

* The first subscript in wir is for the old hidden nodes.   The 
* second subscript indicates the curent hidden node it connects to. 

* Simulate Elman RNN 
do m=l,mod 

do a=l,nodes 
nin(a)=0 
do i=l,inp 
nin(a)=nin(a)+wl(i,a)*pert(m,i) 

enddo 
* do b=l,nodes 
* nin(a)=nin(a)+wlr(b,a)*oldh(m,a) 
* enddo 

hidn(a)=(exp(nin(a)+bl(a))-exp(-nin(a)-bl(a)))/ 
$ (exp(nin(a)+bl(a))+exp(-nin(a)-bl(a))) 

* oldh(m,a)=hidn(a) 
enddo 
do a=l,outp 

nout(a)=0 
do b=l,nodes 
nout(a)=nout(a)+w2(b,a)*hidn(b) 

enddo 
fest(m,a)=nout(a)+b2(a) 

enddo 
enddo 
end 
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************************************************************************ 

* modpert subroutine * 
************************************************************************ 

subroutine modpert(data,pert) 

* Declare arrays and variables 
parameter (mod=3,inp=15,outp=15) 
integer m,i 
real data(inp),pert(mod,inp) 

* Perturb measurements 
do m=l,mod 

do i=l,outp 
pert (m, i) =pert (m, i) +data (i) 

enddo 
do i=outp+l,inp 
pert(m,i)=data(i) 

enddo 
enddo 
end 

************************************************************************ 

* newpert subroutine * 
************************************************************************ 

subroutine newpert(newm,fest,pert,maxerror) 

* Declare arrays and variables 
parameter (mod=3,inp=15,outp=15) 
integer a,m 
real newm(inp),fest(mod,outp),pert(mod,inp),maxerror,cump 

* Calculate new perturbations 
do a=l,outp 
pert(l,a)=0 

enddo 
do m=2,mod 

do a=l,outp 
pert (m, a) =f cst (m, a) -newm (a) 

enddo 
enddo 

* Scale new perturbations 
do m=2,mod 

cump=0 
do a=l,outp 

cump=cump+pert(m,a)**2 
enddo 
if(cump.gt.maxerror)then 

do a=l,outp 
pert(m,a)=pert(m,a)*maxerror/cump 

enddo 
end if 

enddo 
end 
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