
Thwfia~sA.IHenzinger,,,,
Shankar Sastry :(Eds').,

Hybri yvstems:-
CO~putation and Control:ý,

'First -'WW - 16 "-
Int~ernatoia ~or ' hHCC

Berkey1Iliornia,,USA9 A pdT i9S
Proceedrn

~4

.A' -~ r K -C PS

fi
S -er.

PLJG-31-1999 10:04 ARO RTP 9195494310 P.02

August 31, 1999

Memo to.

Per my voice message telephone convcration this moming, rm requesting the following
changes be made on a final report submitted to DTIC receiving the following AD number:

ADA361 329

Changes to be made on the Standard Form 298

Change Block 5 to read DAAG55-98-1-0259

Change Block 10 to read ARO 38745.1-MA-CF

If you have any questions to this request plasc call me at DSN 832-4220.

Thank you

Sylvia Hall
U.S. Army Research Office
RTP, NC 27709-2211

TOTAL P.02

REPORT DOCUMENTATION PAGE- _ _ApproedOMB No. 0704-188

)~csna"~ b~as for gV* 00"Won oaf "Wsmn~gg e ist Ipne ftaai W1 -t 0Ioft dWakphBU~MSe~s ejsig t.a.,..1f =o dtIf b~ Go=f

4. TITLE AND SUBTITLE 5.FUNDING NUMBERS

Hybrid Systems: Computation and Control DAAoh0-96-1-03hI

6. AUTHOR(S) i .=

Thomas A. Henzinger and Shankar Sastry (Eds.)

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Regents of the University of California REPORT NUMBER

c/o Sponsored Projects Office
336 Sproul Hall
Berkeley, CA 94720-5940

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING I MONITORING
AGENCY REPORT NUMBER

U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211 /vr.O q9 ./- '-.

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as
an official Department of the Army position, policy or decision, unless so designated by other documentation.

12a. DISTRIBUTION I AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

This volume contains the proceedings of the First International Workshop on Hybrid

Systems: Computation and Control, HSCC'98, organized April 13-15, 1998, at the

University of California, Berkeley. The focus of the workshop is on mathematical

methods for the rigorous and systematic design and analysis of hybrid systems.

A hybrid system consists of digital devices that interact with analog environments.

Driven by rapid advances in digital controller technology, hybrid systems are

objects of investigation of increasing relevance and importance. The emerging area

of hybrid systems research lies at the crossroads of computer science and control

theory: computer science contributes expertise on the digital aspects of a hybrid

system, and control theory contributes expertise on the analog aspects. Since

both research communities speak largely different languages, and employ largely

different methods, a major purpose of the workshop is to bring together researchers

from both disciplines. The workshop will also include demonstrations of software

tools for the design, analysis, and simulation of hybrid systems.

14. SUBJECT TERMS I% NUMBER IF PAGES
hybrid systems-hierarchical, nonlinear, and safety-critical; 15

computer science; control theory; digital devices; analog 16. PRICE CODE
environments; timed regular languages.

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OR REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280M500 Standard Form 298 (Rev. 2-49)
Pm2g8ed by ANSI Std.239-298-102

Lecture Notes in Computer Science 1386
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Barcelona
Budapest
Hong Kong
London
Milan
Paris
Santa Clara
Singapore
Tokyo

Series Editors

Gerhard Goos, Karlsruhe University Germany
Juris Hartmanis, Cornell University NY, USA
Jan van Leeuwen, Utrecht University The Netherlands

Volume Editors

Thomas A. Henzinger
Shankar Sastry
University of California at Berkeley
Department of Electrical Engineering and Computer Sciences
Berkeley, CA 94720, USA
E-mail: { tah,sastry } @eecs.berkeley.edu

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Hybrid systems : computation and control ; first international
workshop ; proceedings / HSCC '98, Berkeley, California, USA,
April 13- 15, 1998. Thomas A. Henzinger ; Shankar Sastry (ed.). -
Berlin ; Heidelberg; New York ; Barcelona ; Budapest ; Hong Kong
; London ; Milan ; Paris ; Santa Clara ; Singapore ; Tokyo : Springer,
1998

(Lecture notes in computer science ; Vol. 1386)
ISBN 3-540-64358-3

CR Subject Classification (1991): C.l.m, C.3, D.2.1,F.3.1, F.1.2, J.2

ISSN 0302-9743
ISBN 3-540-64358-3 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer -Verlag. Violations are
liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1998
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10632061 06/3142 - 5 4 3 2 1 0 Printed on acid-free paper

Preface

This volume contains the proceedings of the First International Workshop on
Hybrid Systems: Computation and Control, HSCC'98, organized April 13-15,
1998, at the University of California, Berkeley. Following several meetings that
were initiated by Anil Nerode at Cornell University, this is the first of a newly
constituted, regular annual series of workshops on hybrid systems. Papers from
the earlier meetings were published in the Springer-Verlag Lecture Notes in
Computer Science series, volumes 736, 999, 1066, 1201, and 1273. The steer-
ing committee of the new workshop series includes Panos Antsaklis (University
of Notre Dame), Nancy Lynch (Massachusetts Institute of Technology), Amir
Pnueli (Weizmann Institute, Israel), Alberto Sangiovanni-Vincentelli (Univer-
sity of California, Berkeley), and Jan van Schuppen (CWI, The Netherlands).

The focus of the workshop is on mathematical methods for the rigorous and
systematic design and analysis of hybrid systems. A hybrid system consists of
digital devices that interact with analog environments. Driven by rapid advances
in digital controller technology, hybrid systems are objects of investigation of in-
creasing relevance and importance. The emerging area of hybrid systems research
lies at the crossroads of computer science and control theory: computer science
contributes expertise on the digital aspects of a hybrid system, and control the-
ory contributes expertise on the analog aspects. Since both research communities
speak largely different languages, and employ largely different methods, a major
purpose of the workshop is to bring together researchers from both disciplines.

The three-day workshop will feature six invited keynote speakers and 26 con-
tributed talks that were selected from 55 submissions by a technical program
committee. The keynote lecturers will be Panos Antsaklis (University of Notre
Dame), Stephen Boyd (Stanford University), Edward Lee (University of Califor-
nia, Berkeley), Alberto Sangiovanni-Vincentelli (University of California, Berke-
ley), Joseph Sifakis (VERIMAG, France), and Murray Wonham (University of
Toronto). Additional invited addresses will be given by Linda Bushnell from the
Army Research Office and by Helen Gill from the Defense Advanced Research
Projects Agency. The workshop will also include demos of software tools for the
design, analysis, and simulation of hybrid systems.

The program committee was chaired by the editors and included Rajeev Alur
(University of Pennsylvania), Karl Astrom (Lund University, Sweden), Albert
Benveniste (INRIA-IRISA, France), Ahmed Bouajjani (VERIMAG, France),
Michael Branicky (Case Western Reserve University), Peter Caines (McGill Uni-
versity), Datta Godbole (PATH Berkeley, California), Mark Greenstreet (Uni-
versity of British Columbia), Vineet Gupta (NASA Ames, California), Bruce
Krogh (Carnegie Mellon University), Stephane Lafortune (University of Michi-
gan), Kim Larsen (Aalborg University, Denmark), Oded Maler (VERIMAG,
France), Stephen Morse (Yale University), Anil Nerode (Cornell University),
Peter Ramadge (Princeton University), Roberto Segala (University of Bologna,

AI

Italy), and Howard Wong-Toi (Cadence Berkeley Labs, California). In the se-
lection process, the program committee was aided by the following reviewers:
L. Aceto, K. Al-Wahedi, E. Asarin, E. Badouel, G. Barrett, 0. Bournez, A.
Chutinan, P. Codognet, R. Debouk, A. Deshpande, A. Fehnker, A. Hicks, R.
Jagadeesan, M. Kourjanski, Y. Lakhnech, F. Lin, J. Lygeros, H. McClamroch,
R. Nikoukhah, G. Pappas, A. Puri, R. Rajamani, H. Schumacher, R. Sengupta,
A. Skou, M. Sorine, C. Tomlin, and C. Weise. The steering committee handled
all submissions that were co-authored by the program chairs.

We are grateful to all invitees, contributors, and reviewers for making the work-
shop a success. In addition, we wish to thank Carol Block for administrating
the workshop organization, John Lygeros and Serdar Tasiran for organizing the
tool demos, Alexa Brudy and Flora Oviedo for organizational support, and the
Army Research Office for generous financial support.

January 1998 Thomas A. Henzinger
Shankar Sastry

Table of Contents

E. Asarin
Equations on Timed Languages 1

A. Balluchi, M. Di Benedetto, C. Pinello, C. Rossi,
A. Sangiovanni-Vincentelli
Hybrid Control for Automotive Engine Management: The Cut-Off Case 13

A. Beydoun, L.Y. Wang, J. Sun, S. Sivashankar
Hybrid Control of Automotive Powertrain Systems: A Case Study 33

S. Bornot, J. Sifakis
On the Composition of Hybrid Systems 49

L. Bushnell, 0. Beldiman, G. Walsh
An Equivalence between a Control Network and a Switched Hybrid System 64

B. Carlson, V. Gupta
Hybrid cc with Interval Constraints 80

T. Dang, 0. Maler
Reachability Analysis via Face Lifting 96

A. Fehnker
Automotive Control Revisited: Linear Inequalities as Approximation of
Reachable Sets 110

E.D. Ferreira, B.H. Krogh
Switching Controllers Based on Neural-Network Estimates of Stability
Regions and Controller Performance 126

V. Friesen
A Logic for the Specification of Continuous Systems 143

M.R. Greenstreet, I. Mitchell
Integrating Projections 159

K.X. He, M.D. Lemmon
Lyapunov Stability of Continuous- Valued Systems under the Supervision
of Discrete-Event Transition Systems 175

T.A. Henzinger, V. Rusu
Reachability Verification for Hybrid Automata 190

G. Lafferriere, G.J. Pappas, S. Sastry
Subanalytic Stratifications and Bisimulations 205

G. Lehrenfeld, R. Naumann, R. Rasche, C. Rust, J. Tacken
Integrated Design and Simulation of Hybrid Systems 221

E.S. Lemch, P.E. Caines
Hierarchical Hybrid Systems: Partition Deformations and Applications
to the Acrobot System 237

Viii

C. Livadas, N.A. Lynch
Formal Verfication of Safety-Critical Hybrid Systems 253

J. Lygeros, N.A. Lynch
Strings of Vehicles: Modeling and Safety Conditions 273

J. Lygeros, G.J. Pappas, S. Sastry
An Approach to the Verification of the Center-TRACON Automation
System 289

Z. Manna, H.B. Sipma
Deductive Verification of Hybrid Systems Using STeP 305

A.S. Matveev, A.V. Savkin
Reduction and Decomposition of Differential Automata: Theory and
Applications 319

B.M. Miller
Optimization of Generalized Solutions on Nonlinear Hybrid
(Discrete-Continuous) Systems 334

T.W. Neller
Information-Based Optimization Approaches to Dynamical System Safety
Verification 346

C. Tomlin, J. Lygeros, S. Sastry
Synthesizing Controllers for Nonlinear Hybrid Systems 360

J.H. van Schuppen
A Sufficient Condition for Controllability of a Class of Hybrid Systems 374

X. Li, T. Zheng, J. Hou, J. Zhao, G. Zheng
Hybrid Regular Expressions 384

M. 2efran, J.W. Burdick
Stabilization of Systems with Changing Dynamics 400

List of Authors 417

Equations on Timed Languages *

Eugene ASARIN

Institute for Information Transmission Problems
19 Bolshoi KaretnyY lane, 101447, Moscow, Russia

asarin@ippi.ras.ru

Abstract. We continue investigation of languages, accepted by timed
automata of Alur and Dill. In [ACM97] timed regular expressions equiv-
alent to timed automata were introduced. Here we introduce quasilinear
equations over timed languages with regular coefficients. We prove that
the minimal solution of such an equation is regular and give an algo-
rithm to calculate this solution. This result is used to obtain a new proof
of Kleene theorem ([ACM97]) for timed automata. Equations over timed
languages can be also considered as an alternative way of specifying these
languages.

1 Introduction

Timed automata ([AD94]) form the best investigated class of hybrid systems.
It is known which problems about these automata are decidable and which are
not, and there are tools for testing emptiness, evaluating reachable states etc.
([DOTY96]). However some theoretical aspects and parallels with ordinary finite
automata are still not clear. This paper may be considered as a continuation of
([ACM97]) where timed languages were analyzed from the traditional linguistic
viewpoint - and timed regular expression capable to specify exactly the same
languages as timed automata were introduced.

We take for a model following classical (forty years old) results about finite
automata, regular languages and linear equations (see e.g. [Brz62]).

Any system of linear equations in the form

n

Xi = ai+ E jXj = 1,...,n, (1)
j=1

where Xi stand for unknown languages and aiflij - for given regular coeffi-
cients, has a regular minimal solution. The regular expression for this solution
can be found effectively from the coefficients.

For any finite automaton a system (1) can be easily constructed, each un-
known Xi of the system corresponding to a state qj of the automaton. In the

SThis research was supported in part by the Russian Foundation for Basic Research
under the grants 97-01-00692 and 96-15-96048; and by the International Association
for the Promotion of Cooperation with Scientists from the Independent States of the
Former Soviet Union (INTAS) under the grant 94-697.

2

minimal solution, the language Xi is exactly the language accepted by the au-
tomaton starting from the state qi.

As a corollary these two classical results imply Kleene theorem ([Kle56])
about regularity of languages accepted by finite automata.

Our aim is to port these results to timed automata and to introduce a class of
equations over timed languages capable to specify languages of one-clock timed
automata. These equations are similar to classical linear equations (1). However
the following example shows that a straightforward timed adaptation of linear
equations cannot work.

a 2a C 5 C :=0

b a b b,c=2 a,c <1 b,c>7

q3 Accept q3 Accept
a a,c=

Fig. 1. Two automata

Example 1. The language of the first (untimed) automaton on Figure 1 can be
represented by the following equations:

{X = aX2 +bX 3
X2 =b +aX3
X3 =a

Xi here stands for the language accepted from the state qj and each transition
from qi to qj labeled with a can be represented by a term aXj in the equation for
Xi. Roughly speaking, such a transition corresponds to concatenating its label
a to the language.

The case of the second (timed) automaton is more complicated because now
there are two kinds of transitions. Some of them reset the clock and in this case
they also can be represented by concatenation of the label (with time restriction)
to the language. However some transitions do not reset the clock. We cannot
write an equation like X1 = aX 2 + bX3 with a constraint on the sojourn time
in state qI, because after completing action b the automaton enters the state q3
with a modified clock value.

To deal with this problem we introduce another composition operation on
timed languages (o operation) which corresponds to non-resetting transitions.
We introduce quasilinear equations on timed languages which use both kinds

3

of concatenation (. and o) and are strong enough to represent one-clock timed
automata.

Our main result is that any system of equations of this class with regular
coefficients has a regular minimal solution. We give an algorithm to find out this
solution.

The paper is motivated by the theory of timed automata, however the major
part of it (sections 3-4) contains an automata-free theory of timed languages,
regular timed expressions and quasilinear equations on timed languages. At our
opinion, this linguistic approach could be useful for other classes of hybrid sys-
tems as well.

The outline of the paper is as follows. In section 2 we recall the definition of
timed regular languages from [ACM97]. In section 3 the new operation o over
languages is formally introduced. This operation is crucial for representing timed
automata by equations. We investigate algebraic properties of this operation and
show, that o can be eliminated in a sense. In section 4 quasilinear equations are
introduced and solved. The possibility to solve this kind of equations is the
main result of the paper. In section 5 we recall the definition of timed automata
and apply our main result to languages of these automata. For any one-clock
automaton we construct a quasilinear system, which represents the language
of this automaton. This provides an alternative proof of expressive equivalence
of timed automata and timed regular expressions from ([ACM97]). In the last
section further work is discussed.

2 Timed Regular Languages

We reproduce in a slightly modified form the basic definitions of timed languages
and timed regular equations from [ACM97]. Let Z be a finite alphabet and let
IR+ denote the set of positive real numbers. A signal over Z is a timed sequence
of elements of Z, i.e. a finite sequence w = ((a,,ti), ... , (an,)t)) with ai E
and ti E IR+, such that 0 < t, < ... < in. We will also write this signal as

1 a2 .. an 3

where ri = ti, and ri+i = ti+i - ti, i.e. ri are relative delays between ai oc-
currences. We call tn the length of w and denote it by jw]. The empty signal
is denoted by E. Its length equals 0. The set of all signals is denoted by S(L).
Subsets of S(Z) are referred to as (timed) languages. For every w1 , w2 E S(Z)

s h a 2 ... a- and w 2 = bbs2 ... b- we define their concatena-
tion as w = WW2 = al ... ab ... b .This notion can be extended naturally
to concatenation of languages by letting

LiL 2 = {wiw 2 w 1 E Li A W2 E L2 }.

An integer-bounded interval is either [1, u], (1, u], [1, u), or (1, u) where I E IN
and u E]N U {oo} such that I < u. We exclude oo] and use I for [1, 1].

4

Definition 1 (Timed Regular Expressions). The set £(E) of timed regular
expressions over an alphabet E, (expressions, for short) is defined recursively as
either a, aO• a2 , ae + &2, &* or (a)i where a E E, a, a1 , a 2 E &(L') and I is an

integer-bounded interval.

The semantics of timed regular expressions, E : S(Z) -- ES(2), is given by:

Ma = {ar :r E]R+}
101i + Ce2l = haulj U [a2iý
lia = U&

l1(a):1 = IMjnf{w: Iwl J I}

Some comments should be given here. First, the semantics of a is not a
singleton, but a non-countable language. The intuitive meaning of this expression
is that some unknown time passes and then event a happens. Operations +, • and
" are the same as for untimed languages. The only operation which introduces
time explicitly is "time restriction" () which chooses only those signals in the
language, whose lengths belong to the constraining interval I.

Example 2.

[((ab)(2;3)c) ool = {afbYczI12 < x + y < 3; x + y + z = 100}.

To simplify notation we write 6 for the following regular expression (a*)o,
whose semantics is exactly e.

Expressions introduced here form a proper subclass of those introduced in
[ACM97], because here intersection is not allowed in the syntax. This change
explains the difference between the formulation of Theorem 15 below from that
of the same theorem in [ACM97].

3 Operation o

Begin with the following shift operation over signals, which just delays the be-
ginning by t and preserves relative delays between events.

Definition 2. For a signal w a- a• t 2 . . . at- let Stw = a+tat2 . . .a

We say that a language is shift-invariant, if S-tL = L for any t > 0, i.e.
any signal w belongs (or does not belong) to L simultaneously with Stw. The
following condition is sufficient for shift invariance - the regular expression
should not begin with something in (. Formally speaking

Lemma 3. If a regular expression has a form 'i ai43i where cai ý e and ai does
not contain (), then its language is shift-invariant. We call this type of regular
expressions dull.

5

Now we can define a new composition operation over timed languages which
is crucial for describing timed automata.

Definition4. Let L1 and L2 be timed languages. Then

L, o L2= {ww 2 1wi E L1 and SJlww 2 E L2 }.

W1 W2.

W2

W1 0W2 0 p 0 p 0 i o p p

Fig. 2. Two compositions

In other words, for two signals w, = ((a,,ti),..., (a.,,tn)) E L1 and w 2 =

((b 1, si), . ., (bn, s..)) E L2 such that t,, < s1 we include the signal ((a,, ti),.
(an, tn), (b1 , si), .. ., (bin, Smn)) into L1 o L2 . Figure 2 illustrates o-composition in
comparison with concatenation.

First of all, state some simple algebraic properties of this composition oper-
ation.

Proposition 5 (Algebraic properties of circle). - operation o is +-distri-
butive: (a +)3) o-f = a o -y + 0 'oyj and a o (3 + 7) = a o1+ a o07

- operation o is associative: (a o/3) o ^ = a o (P3 o 0)

- ao(03Y)=(ao3)7y if6ý)3

j We suppose that o cannot be expressed in terms of other operations. However,
it can be eliminated for regular languages.

Proposition6 (Circle elimination). If L1 and L2 are regular, then L1 o L2
is regular. The regular expression for it can be obtained algorithmically.

Circle elimination is easy with the following prefix form of regular expressions

Lemma 7. Any regular expression can be effectively transformed to the form:

n

-Y + T(ak)Ikf33k (2)
k=1

6

or
n

S+ -1 + D a(o)/k, (3)
k=1

where ^ is dull and ck ý 6.

The proof is by induction over the structure of regular expression. The only bad
operation is Kleene star - all others are trivial. To deal with Kleene star suppose
that S is already in the prefix form (2) S = (7 + -ka(Cek)ai#k) and transform the
expression S* to the form SS* + e and open the parentheses:

85-5" = + T, (&k)I) + = +Z('k)IfikS*.
k k

which is already in the required form (3). The case when S is in the form (3) is
considered similarly.

It is easy to calculate o-composition with terms of (2) or (3):

- If y is dull then 5 o 0 = S-/;
- 5 0 (a),# = (Sa)L8 if a ý 6;

S c= S.

Proposition 6 is now immediate.
We illustrate Proposition 6 by the following example.

Example 3. Let us eliminate o from S = (d)3 o ((ab)sc)*. First transform the
second term to the prefix form: ((ab)sc)* = (ab)sc((ab)sc)' + -, and second
calculate S = ((d)sab)sc((ab)sc)* + (d) 3 .

We can introduce the following analogue of Kleene star for o-composition.

Definition8. L*=eULULoLULoLoLU ...

This operation can also be eliminated for regular languages. However this
result is less straightforward.

Proposition9 (Circled star elimination). If L is regular, then Lo is regu-
lar. The regular expression for it can be obtained algorithmically.

Notice that this is easy for terms of (2). In fact, if / is dull then y$ =
and

= (/+ e.

The general case is more difficult. We give only a sketch of proof. First of
all, transform the expression to the prefix form (2). Let 0 = 7o < -1 < r 2 <
... < 7-, = oo be all the endpoints of intervals I,,. For each values of i and
k either (ri, 7i+z) C I (in this case we say that ack is active on (7j, 7j+j)),
or Ik n (ri, 7i+,) = 0. If ak is active, it means that it is allowed to terminate
anywhere inside the interval (7-, 7i+,). Otherwise it is not allowed to terminate in

(7j, ri+,). Let Ai = {kljak active on (ri, Ti+±)}. -/ is allowed everywhere, and 8k
should happen after the corresponding active ak. For each i we define a regular

7

expression Ai - (-+ - kEj akf3k)*. Its language contains concatenations of
words, active on (Ti, ri+1). Any word from Ai if it fits into (Tr, 1ri+1) may occur

during this time interval.
Let w be a signal from LO. It can be parsed as follows:

W = WOSOWSIl... WmSm, (4)

where m < n, 7-i occurs during wi, shifts of wi belong to some (ak)xk/3 k or to

y and Si E Ai. The idea behind this parsing is to see what happens at finitely
many critical times ri and to allow any number of -y and a0klk, where k E Ai to
happen on the interval (Ti,7ri+±) (see Fig. 3).

........
a1a4p4 I I I A

T0-- Ti '2 T3

Fig. 3. Parsing a signal from L@

All these requirements can be written as a regular expression. For sake of
simplicity we ignore the case when some wi boundary is exactly at rj or if some
wi covers several consecutive T-2 .

For any ri find out what happens in w at 7i-, i.e to which term (ak)Ik/3 k

or to y/ belongs (the shift of) wi. We also find when ri occurs: during a or ý.
All this information for all the 7i forms the pattern of the word w. Notice that
there are finitely many possible patterns. An example pattern P (corresponding
to Fig. 3) is as follows: "a 3 at 70, f84 at 71, -/ at r 2 and the signal is finished
before 73" (for this pattern to be valid, a3 and C4 should be active at (70, Ti)).

Now consider each pattern separately. For any pattern, using parsing (4) and
expressions A• we can write a regular expression which defines the set of all the
words in L9 having this pattern. Instead of a heavy general formula consider
only the expression corresponding to our sample pattern P:

Last, to obtain the final regular expression we sum expressions Ep over all valid
patterns P.

4 Quasilinear Equations

Definition 10. A system of quasilinear equations has the following form:

Xi = ai + E IjXj + E yj, o Xj, i , ... ,n, (5)
j=l j=1

8

where Xi stand for unknown timed languages and ai, fij, Vij - for given regular
coefficients.

We can now formulate the main result of the paper.

Theorem 11. The minimal solution of a system of quasilinear equations is reg-
ular. Its regular expression can be obtained algorithmically from expressions for
the coefficients.

The rest of this section is devoted to the sketch of proof of this theorem and
algorithm description. Without loss of generality suppose that P3j do not contain
the empty signal e. Otherwise we can move this empty signal from O3 j to 71j.

The first thing to do is to separate unknowns to which concatenation is
applied from those to which o is applied. To achieve this aim we create another
copy of each unknown.

Lemma 12. The following system:{ = ai++ ijy+ o
j=1 j=1 (6)

Yi = Xi

has the same solutions as the original system (5). Formally X 1 = L1, X,
L, is a solution to (5) iff X, = Yj = Lj,...,X. = Yn = Ln is a solution to (6)
and all the solutions to the latter system have this form.

The following lemma gives a solution to a single equation with only one
operation. Its proof is fully similar to the proof of the same result for discrete
equations.

Lemma 13. - The minimal solution to X = a + -/ o X is X = eo ;
- The minimal solution to Y = a + O3Y is Y = 3* c;

The algorithm of solving the system (6) is similar to the classical algorithm
for discrete languages and consists in iterated application of Lemma 13 together
with circle elimination from Section 3. At the first stage we begin with the first
equation and express X1 from it as

11 12 12X1 =-y~lo (a1 + E JllY + E lJ o X3).

j=1 j=2

Eliminating circles, this equation can be transformed to the form

1 n

j-1 j-=2

We put this expression into the second equation and solve it for X2. And we con-
tinue till X,, for which we find an expression that contains only Ys and not X

9

unknowns. Then the second stage begins. We go backwards putting this expres-
sion for X, into equation number n - 1. This allows to find X,-free expression
for X,,- 1 and so on until we reach X1 once again. Now the system has the form

n

Xi= cex/ +Z/3lXj
Y, = Xi.

Replacing Yj by Xi we obtain the o-free system

xi = c~
j=1

and we express again

nxl= 0, (cellXs)
j=2

put the result into the second equation, find X 2 and so on. This is the third stage
of the algorithm. The fourth (and the last) stage consists in going backwards
putting the regular expression for X, into equation n - 1 and so on. This ends
up with finding regular expressions for all the Xj. This concludes the algorithm
and the proof of Theorem 11.

5 Applying Equations to Timed Automata

First recall shortly the definition of timed automata and their languages.

Definition 14 (Timed Automaton, [AD94]). A timed automaton is a tuple
2t = (Q, C, A, Z', S, F) where Q is a finite set of states, C is a finite state of
clocks, Z7 is an output alphabet, A is a transition relation (see below), S C Q
an initial set and F C Q an accepting set. An element of the transition relation
is of the form (q, 0, p, q', a) where q and q' are states, a E Z -an output symbol,
p C C and 0 (the transition guard) is a boolean combination of formulae of the
form (c E I) for some clock c and some integer-bounded interval I.

A clock valuation is a function v : C -- IR+ U {0} (which is the same a vector
v E (IR+ U {0})ICI). We denote the set of all clock valuations by Xi For a clock
valuation v and a set p C C we put for any clock variable c E C

Reset v(c) = {0 if c E p
v(c) if c 0 p

That is, Resetp resets to zero all the clocks in p and leaves the other clocks
unchanged. We use 1 to denote the unit vector (1,..., 1).

10

A finite run of the automaton is a sequence

S, S2 S.
(qo, vo) ---+ (qj, vi) -- + . . . ---+ (q.•, v.),

ti t 2 t'

where qi E Q, vi E W, Si E A, ti E IR+, and which satisfies the following condi-
tions:

Time progress: 0 < tj < ... < t, (for convenience we put to = 0);
Succession: If Si = (q, 4, p, q', aj) then qj-1 = q, qg = q', the condition 0(vi-I +

(ti - 4i-0)1) holds and vi = Resetp(vi-I + (ti - ti-1)l).

An accepting run is a run satisfying the additional conditions:

Initialization: qo E S; Vo = 0;
Termination: q, E F.

The trace of such a run is the signal
atla t2-ti . . . t.-t.-I'

1 •2 " -n ,

whose length is tn. The language of a timed automaton, L(%), consists of all the
traces of its accepting runs.

Now recall the main result of [ACM97].

Theorem 15 [ACM97]. A timed language L can be accepted by a timed au-
tomaton of Alur and Dill iff it can be represented in the form

where Li are regular languages and W - a homomorphism.

(The terminology of [ACM97] is slightly different.)
The difficult direction is of course to find regular expressions for a given

automaton. This operation in ([ACM97]) is split into 2 parts. The first one
consists in reduction to one-clock automata.

Lemma 16 [ACM97]. Any timed language L accepted by a timed automaton
can be represented in the form

L = L~)~

where Li are languages accepted by one-clock automata and (P - a homomor-
phism.

Our equation techniques is of no help here. However our result can simplify the
proof of the second part.

11

Lemma17 [ACM97]. Any timed language L accepted by a one-clock timed
automaton is regular.

Given a one-clock timed automaton it is easy to construct an equivalent
system of quasilinear equations.

In order to do it, for any control state of the automaton qj introduce an
unknown Xi. For a transition from qi to the accepting state with the label a
and the guard (c E I) put ai = (a)I. For a transition from qj to qj with label a,
guard (c E I) and no reset put 7yij = (a),. For a transition qi to qj with label
a, guard (c E I) and reset (c := 0) put flj = (a)I. Finally write the system of
equations

n n

Xi = ai+Z) 3 jXj + 1:-1i Xj, i 1..n, (8)S3= ,.is

of the form (5).

The quasilinear system obtained in such a straightforward way from the one-
clock automaton can be solved using the algorithm of the previous section. The
following lemma concludes the new proof of Lemma 17 and Theorem 15.

Lemma 18. Xi in the minimal solution of equations (8) is the language accepted
by the automaton from the state qi with initial value of the clock c = 0.

Example 4. Consider the second (timed) automaton on the Figure 1. According
to the general construction corresponding quasilinear equations are like this:

X, = (a)5X 2 +(b) 2 oX 3

X2 (b)(7,oo) +(a)(0,l0) 0 x3 (9)
X3 (a)8

For the system 9 the procedure of section 4 gives the solution

{X = (a)5(b)(7,o) + (a) 5 ((a)(o,lo)a)8 + ((b) 2 a)8
X2 = (b)(7,oo) + ((a)(o,lo)a)s
X3 = (a)8

6 Conclusions and Further Work

In this paper a new linguistic formalism for timed languages is proposed. This
formalism is adequate for timed automata. However there are still many ques-
tions to investigate.

- Which is the complexity of the algorithms?
- Is it possible to apply this approach directly to multi-clock timed automata?
- Which are other possible applications of this formalism? In particular, is it

convenient for specification of timed systems?
- What can be done for more complicated equations?

12

References

[ACM97] Eugene Asarin, Paul Caspi, and Oded Maler. A Kleene theorem for timed
automata. In Proc. 12th Annual IEEE Symposium on Logic in Computer
Science, pages 160-171, Warsaw, June 1997. IEEE Computer Society.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183-235, 1994.

[Brz62] Janusz A. Brzozowsld. A survey of regular expressions and their applica-

tions. IRE Trans. on Electronic Computers, EC-11(3):324-335, 1962.
[DOTY96] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine. The

tool KRONOS. In Rajeev Alur, Thomas A. Henzinger, and Eduardo D.

Sontag, editors, Hybrid Systems III, Verification and Control, number 1066
in Lecture Notes in Computer Science, pages 208-219. Springer-Verlag,
1996.

[Kle56] S.C. Kleene. Representations of events in nerve nets and finite automata.
In R. McNaughton and H. Yamada, editors, Automata Studies, pages 3-42.
Princeton University Press, 1956.

Hybrid Control for Automotive Engine
Management: The Cut-Off Case

A. Balluchit M. Di Benedettot C. Pinellot C. Rossi§ and

A. Sangiovanni-Vincentellit¶

tPARADES, Via San Pantaleo, 66, 00186 Roma, Italy,
balluchi,pinello,alberto~parades.rm.cnr.it

tDipartimento di Ingegneria Elettrica, Universith dell'Aquila, Poggio di Roio, 67040
L'Aquila, Italy, dibenedeOgiannutri.caspur.it

§Magneti Marelli S.p.A., Via del Timavo, 33, 40134 Bologna, Italy,
Carlo.Rossi~bologna.marelli.it

¶Department of Electrical Engineering and Computer Science, University of
California at Berkeley, CA 94720

Abstract. A novel approach to the control of an automotive engine in
the cut-off region is presented. First, a hybrid model which describes the
torque generation mechanism and the power-train dynamics is developed.
Then, the cut-off control problem is formulated as a hybrid optimization
problem, whose solution is obtained by relaxing it to the continuous
domain and mapping its solution back into the hybrid domain. A formal
analysis as well as simulation results demonstrate the properties and the
quality of the control law.

1 Introduction

Hybrid systems have been the subject of intensive study in the past few years
with particular emphasis placed on a unified representation of the problem in
terms of rigorous mathematical foundations (see [5], [10], [7], [6], [3], [4]). In our
opinion, it is important to address significant domains of application of hybrid
control to develop further understanding of the implications of the model on the
control algorithms. In the automotive industry, engine behavior is in general
partitioned into regions of operation where appropriate control action are ap-
plied to yield the desired result [2]. The region of operation considered here is
characterized by the driver who, by releasing the gas pedal, requests no torque
to the engine. An obvious strategy to minimize gas consumption and emissions
when no torque is requested is to shut fuel injection off, an operation called cut-
off. However, cutting off fuel injection as soon as the gas pedal is released, causes
a sudden torque reduction that may result in unpleasant oscillations compromis-
ing driving comfort. The open-loop control policy implemented by the industry
today, consists of air and fuel input modulation, that is, throttle closure is slowed
down and, when air quantity is below a threshold, fuel injection is gradually re-
duced to zero. As is often the case, heuristic rule-based controls need extensive
tuning, yield satisfactory solutions only in a limited range of operations and are
hardly optimal with respect to the emissions and fuel consumption.

14

In this paper, we introduce a novel, theoretically sound, closed-loop approach
to cut-off control. The "plant" consists of two parts: the engine responsible for
torque generation, modeled as a combination of an Extended Finite State Ma-
chine and of a Discrete Event system, and the powertrain modeled as a fourth-
order linear Continuous Time system. The goal is to control the evolution of the
system from an initial condition (the state of the system when the gas pedal has
been released and the manifold pressure has approached its idle regime value)
to cut-off, minimizing the amplitude of the undesired oscillations. The available
control actions are on fuel injection and spark ignition, the inputs to the engine,
occurring only once per engine cycle for each piston. The torque generated is the
output of the engine and the input to the powertrain. The powertrain dynamics
contain the potential oscillatory behavior to be minimized. The wheel revolu-
tion speed and the angular velocity of the crankshaft are components of its state.
The timing of the torque generation mechanism is determined by the angle of
the crankshaft. Consequently, the control problem is a Hybrid System Control
problem, which is further complicated by the delay between the time in which
the decision on the quantity of fuel to be injected is taken (at the beginning of
the exhaust phase) and the time the effect of this decision takes place (during
the next expansion phase).

Our approach to the hybrid problem at hand is to relax the problem to the
continuous domain assuming that the torque signal can be modulated contin-
uously over time within a given range of values. The problem so obtained is
non trivial since the objective function is non differentiable. In [1] we devised a
strategy that solves this problem to yield an optimal control law for the contin-
uous domain. Then, this solution in the continuous domain was mapped back
into the discrete domain. The control algorithm used sliding mode control in
a region of the state space. Sliding modes yielded a control strategy that had
implementation problems since it is required a fairly large number of switchings
in the injection policy. In this paper we present a novel strategy which elim-
inates completely the sliding mode. The solution, mapped back in the hybrid
domain, is demonstrated to yield a behavior that is close (within a precisely
specified bound) to the behavior of the control in the continuous case. From the
application of our control strategy by our industrial partner on a commercial ve-
hicle, the proposed solution appears to be far superior than the present, heuristic
approach in performance, emission control, memory and CPU occupation.

2 Problem formulation

2.1 Plant model

In this paper, we deal with 4-stroke N-cylinder gasoline engines. Our model con-
sists of the composition of N sub-models, one per cylinder. The single cylinder
sub-model M consists of three parts:

A deterministic Finite State Machine is a six-tuple M = {I, Y, S, so, A, -y} where I is
the (finite) set of inputs, Y is the (finite) set of outputs, S is the finite set of states,
so is the initial state, A : S x I -+ S is the next state function, -y : S x I -+ Y is the
output function. An Extended Finite State Machine is an FSM where the input and
output space are not necessarily finite and can be subsets of R.

15

1. an Extended Finite State Machine (EFSM)'describing pistons' behavior;
2. a Discrete Event system (DE)2 modeling torque generation;
3. a Continuous Time system (CT) modeling the powertrain.

Powertrain Model. The powertrain model is described by a continuous time sys-
tem model developed at Magneti Marelli Engine Control Division. The model,
whose parameters have been identified and validated, contains phenomena in-
volved in powertrain oscillations that are of interest in cut-off control. Powertrain
dynamics are modeled by the linear system

AP + bPu1)

W = (2)

State • = [a,, w", Wp]T represents the axle torsion angle, the crankshaft revolu-
tion speed, the wheel revolution speed, and Oc represents the crankshaft angle.
The input signal u is the torque acting on the crank. The linearized powertrain
dynamics (1) is asymptotically stable since it models a passive mechanical sys-
tem, and is characterized by a real dominant pole A,, and a pair of conjugate
complex poles A ± jp/, responsible for the oscillating behavior.

Piston's behavior. The behavior of each piston in the engine is abstractly rep-
resented by the Extended Finite State Machine shown in Figure 1, where S =

{H, I, C, E}. The four states of the EFSM are as follows.

- Exhaust run (H). The piston goes up, expelling combustion exhaust gases.
- Intake run (I). During its down-run the piston loads the air-fuel mix.
- Compression run (C). During its up movement the piston compresses the

loaded mix.
- Expansion run (E). The compressed mix combustion, generated by a spark

signal, produces a sudden pressure increase which pushes the piston down-
wards.

The transitions of the EFSM occur when a piston reaches the bottom or top
dead point. The guard condition enabling the transition is expressed in terms
of the piston position ý measured on the crankshaft, considering the offset 0,o
which corresponds to the angle the crank is mounted on the shaft. The EFSM
outputs the integer variable k which is incremented by one at each transition.

Torque generation. The quantity of air entering the cylinders during the intake
run is controlled by a throttle valve (often directly connected to the gas pedal).
The control system keeps the fuel quantity proportional to air load, so that
the combustion process produces a minimum amount of waste and is maximally

2 A DE system is intended in the sense of [8].

16

a (b(t)

.(k) ~k

- u(O k) = *0) --- 5O

(k1) =G(k)J=A (k) UN 8+ uQ)

.(k)l(t 0+8r it) 1(

(t0')

E C

u00= z(k)

Fig. 1. Hybrid model for a single cylinder.

efficient. In electronic injection controlled engines, the fuel quantity is determined
by the duration of the injection phase that takes place during the exhaust run.

The torque is generated during the expansion phase. Ideally, spark timing
should occur at the precise time the piston reaches the end of its up-run in
the compression phase. However, since combustion takes a non zero time to
complete, it is convenient to time spark ignition before the piston concludes
the compression phase. The time for spark ignition is usually refered to as spark
advance, and it is expressed in terms of the angle the crankshaft covers before the
piston reaches its next top dead center. Spark advance is not constant. It depends
on temperature of the cylinders and of the loaded mix, and on the revolution
speed of the crankshaft. The effect of spark advance, the other control variable
considered here, is a modulation of the maximum value of torque that can be
generated given the quantity and quality of the combustion mix. If the spark
advance is optimal for torque generation, the modulation factor has the value 1,
otherwise it is positive but less than one.

The generated torque is a complex function of time during the expansion
phase, in practice it is replaced by the average value over the interval of time
corresponding to the expansion phase.

The process of torque generation is characterized by the delays between the
times in which fuel injection and spark advance are set and the time in which
such decisions have an effect. Control signals are then subject to a transport
process which can be represented by a DE system which is active at every EFSM
transition. Such DE system, represented in Figure 1 with dashed boxes, receives
as inputs:

- the integer k (an output of the EFSM);
- the mass of air-fuel mix q E R• loaded in the intake phase;

17

- a binary control variable j E {0, 1} which indicates whether or not the fuel
is present in the mix;

- the modulation factor r E [rmin, 1] due to non optimal spark timing.

The DE system output is the torque u(k). At the EFSM transition E -+ H the
DE system reads its inputs q(k) and j(k), and stores in its state z E R the
maximum amount of torque achievable during the next E phase, obtained by
the mix-to-torque gain G. Such value is corrected at the I -+ C transition by
the modulation factor r(k) due to the chosen spark advance. The DE output
u(k) is always zero except at the C -+ E transition when it is set to the value
stored in z. Between two transitions of the EFSM, occurring at times tk and
tk+l, the input signal u(t) to the powertrain model is given by u(t) = u(k) for
t E [tk, tk+1).

Engine hybrid model. An engine is characterized by the number of cylinders,
most cars have four, but there are engines that have a different number of
cylinders3 . The pistons are connected to the crankshaft, so that the phases of
their behavior are related to each other. The overall model of torque generation
for a N-cylinder engine is then the combination of N EFSMs as in Figure 1 and
of N DE systems representing the behavior of each piston. The hybrid model
of the complete engine is obtained by adding to torque generation model the
powertrain CT dynamics (1).

In this paper we focus on the most relevant case of a 4-cylinder engine.
Its model, referred to in the rest of the paper as M 4,yl, has input signals
j =[U1, j2, h, i4]T and r = [ri, r 2 , r3, r4]T properly synchronized with the cor-
responding DE models; we denote by J 4 ,yl and lZ4cyl the classes of functions
IN -+ {0, 1}4 and N -+ [rmain, 1]4, feasible for j and r. Signal q is instead shared
among the cylinders. Without loss of generality, we assume that in M44yl
- the initial EFSM states are Sol = H, S02 = I, S03 = C, S04 E;
- the crankshaft offsets 0,,, are Oc = 011o3 = 180', ¢•o 2 = 0';4 =
- the initial value of the crankshaft angle 0 (0) is set to zero.

2.2 The optimization problem

The optimization problem is to control fuel injection and spark advance so that
vehicle acceleration peaks are minimized during the cut-off operation. Throttle
closure produces a decreasing evolution of the manifold pressure towards the
idle regime value. We identify as the starting point of the cut-off operation the
time to = tk at which qa(k) equals the steady-state air quantity with pedal
released, q'. We also assume that before to the injection signals were active, so
that z, (0) = z2 (0) = z3 (0) = z4 (0) = GqO. To simplify notation, we set to = 0
and k = 0.

3 For example, Formula 1 racing cars can have 8, 10 or 12 cylinders. Fiat Coupb 2000
Turbo has 5.

18

Assuming vehicle speed equal to wheel speed, vehicle acceleration is a(t)
R ..p(t), where R is the wheel radius. To isolate oscillations from monotone
behavior, the following state transformation is applied. Set

['I =K[* =PC(3
with x' E R, x E]R2 , P1 E 1×3, and P2 E]R2x3, where P is obtained from the
eigenvectors of AP. Rewrite (1) as

[\; 0 - [Ao i] [, where AL (4)

Denoting by c E R 1X2 the product between the third row of AP, the last two
columns of P` and R, the oscillating component of the acceleration can be
expressed as an output of the following linear system in the reduced state x

,t(t) = Ax(t) + bu(t) (5)
d(t) = R WP(t) = c x(t). (6)

The objective of the cut-off control strategy is to minimize the peaks of the
acceleration 5(t) until they are less than a threshold of perception ath > 0.

Consider the circle
Bp = Ix E W 2:1 11J <5 p, P = iithJlCll , (7)

where . [] denotes the Euclidean norm. By asymptotic stability of system (5),

when u(t) = 0 the norm of x(t) decreases over time since d(i = 2AxTx and
A < 0. Therefore, if at some time f, the state has been driven to x(t) E Bp, the
control u(t) = 0 keeps the trajectory in BP and the acceleration d(t) is bounded
above by the acceleration ath for t > f. Cut-off control problem can then be
formulated as the optimization problem of steering the state x to the circle Bp
minimizing the acceleration peak. Once in B., fuel injection can be safely shut
off with vehicle oscillations below threshold.

Then the cut-off optimization problem can be formulated as follows.

Problem 1. Given the engine hybrid model M4cvl, find j E J 4,yl and i E R-4 cyl
such that

sup 40(t)[I = min sup W0(t)I (8)o<t<_T J =J i E A~yl O<_t<_T

r = r E 14cyl

Dynamics of Hybrid Model M4 cyl with C(0) = (o s.t.
x(O) = xo 0 Bp,

subject to: x(T) E Bp, (9)
Z1 (0) = Z2 (0) = z 3(O) = z4 (0) = Gq°,
q(k) = q', for all k > 0

where x0 = P2(0, x(T) = P2 ((T), & is given by (6), the final time T is free,
((o, 0)T is the continuous state value at the beginning of the cut-off operation,
Bp is as in (7) and q0 is the steady-state air quantity with gas pedal released.

19

3 Continuous-time model solution

The main difficulties in Problem 1 are that the plant to be controlled is hybrid
and that the input signals are bounded. Our strategy is to relax first the hybrid
problem into the continuous domain, and then to map the solution back to the
hybrid domain. The relaxed problem is as follows:

Problem 2. Given

U = {u : [0, +oo) -+ R I u(t) is measurable and 0 < u(t) < M, Vt > 0} (10)

with M = Gq° and q' the steady-state air quantity after pedal release,

min sup I(t)[I (11)
u E U O<t<T

,ý(t) = Ax(t) + bu(t)

subject to: x(O) = Xo ý Bp (12)
IIx(T)IJ = p

where lI(.)I is as in (6) and T is finite.

Let R(O) E R12 be the 0 rotation matrix in R12 and let (.)± be the +7r/2 ro-
tation operator defined as z± = R(I)z for any z E 112. Let XM = -A-'bM
be the equilibrium point with u = M and v = --IIxMIK-1(xM)±. In our pre-
vious paper [1], it was shown that there exists u E U, which steers the state
of (5) to the origin along a straight line, provided that xo is inside the do-
main DM = CM/ Av, where A,, = {x E 121 (vTx)(bTR(--•)x) > 0} and CM =

{x E R2I xTR(-i)(Ax + bM) < 0} (see4Figure 2). During such motion the
cost function Ia() I monotonically decreases to zero. However, the time to reach
BP becomes unbounded when x0 is such that vTx0 -+ 0.

Proposition 3. Let A = infu E U supO<t<T I (t)l subject to (5). Consider

S0 if vTx > 0

M if vTx <O if x ý DM

uX - .R(--2)Ax (13)

tTR(_i)b if (R(9)V)Tx > 0

0 if (R(9)V)Tx < if x E Dm

If (cxM)(cb) > 0 then (13), with 9 E (0, cos-l(IbTvI libI-1)) is an optimal so-
lution to Problem 2, i.e. A = suPo<t<T "(0t) with u as in (13). Otherwise, no
optimal solution in finite time exist, but, for any e > 0 exists 0 > 0 such that
control (13) steers xo to Bp in finite time with suPO<t<T]P(t)I - A < e.

For all models of existing cars available to us, (cxM)(cb) > 0 was verified so (13)
was actually optimal. Figure 2 reports the closed loop phase space under con-
trol (13) with (cxM)(cb) > 0 and 9 = 0. Let 0(u, xo, t) denote a trajectory of (5)

4 CM has center in iR(-)b and radius ýiKbl]. Its boundary contains the origin (with

tangent collinear to vector b) and xM = -A-'bM, the equilibrium point with u = M.

20

bfx 0

/PM-
X2/o --

VT =0 XII I I X I I I

. I- ,'L-A
I ,

-s I • I I' I

- , / i
.' .' / /

-20 -10 0 10 20

Xl

Fig. 2. Optimal trajectories for the relaxed control problem. If x V VM, u is equal to

either M (continuous line) or 0 (dotted line). Otherwise 0 < u < M (dash-dot line).

and let R(Tr, xo) = {z E R213u E U, s.t. z = 0 (u, xo,T)} be the reachable set in

a specified time T from an initial point x 0 . We shall prove Proposition 3 analyz-

ing the properties of 7Z(T, x0). Direct application of basic elements of trajectory

analysis gives the following results.

Proposition 4. (Proposition 5.1.1 in [9]). Given system (5) with x(O) = xo and

u E U, the reachable set R(7-, x 0) is convex and compact.

Proposition 5. (Theorem 8.1.1 in [9]). Given system (5) with x(O) = x 0 and

u E U, if x E R.(-r,xo) then x can be reached from x 0 in time r by means

of a trajectory that corresponds to a bang-bang control with a finite number of

switchings, that is u(t) E {0, M} for any t E [0, r] and u(t) has finite number of

discontinuity points in [0, -].

Proposition 6. (Corollary 2.4.3 in [9]). Let V/(u, xo, t) be a trajectory of (5) that

corresponds to the feasible input fi(.) E U, from xo to x, = V4(u, xo, T). Suppose

that x, is not an interior point of lZ(Zr, xo). Introduce the adjoint variables p E

R 2 and Hamiltonian H(O,p, fi) = pT(Ax + bfi). Then, there exists a trajectory

p(.) such that p 8H = _ATp with p(t) # 0 for all t E [0, T] andax

minH(O(u,xo,t),p(t),u(t)) = H(0(a,xo,t),p(t),fi(t)) = v (14)
uEU

for almost all t E [0, T] with v a constant.

Corollary 7. Let 0 (fi, xo, t),p(t), fi(t) satisfy the minimum condition (14), then

fi(t) = M, if bTp(t) > 0, and fi(t) = 0, if bTp(t) < 0. For any time interval of

length less than or equal to 1, fi(t) has at most one discontinuity point.

21

Proposition 8. Let 4(U, xo, t) be the solution of (5), from xo, with i! as in (13).
(1) If r> 0 is a point of local maximum for Id(t)I and u2(t) is continuous att = 7,

then ft(r) E {0, M} and x, =)(12, xo, r) is such that cA x,7 - xM M) = 0.

(2) If rl, T2 > 0 are two successive local maxima for Is(t)l, then r2 -rl <i 7r/pu
(where equality holds if f1(t) is continuous at -r and T2), and 1&(ri)I > ld(r 2)1.

Using Proposition 8, we can concentrate only on reachable sets in time 7- <
to prove optimality of (13).

Corollary 9. Given system (5) and input class U, points on the boundary of the
reachable set R.(r, x 0), with T < M, are reached from x0 by means of a bang-bang
control u : [0, 7] -+ {0, M} with at most one switching.

The boundary of the reachable set 7Z(r, x0) for T < z, is readily obtained as

aR(T, Xo) = {,E R x2 = -yo (a) Vx = -yM(a), with a E [0, T]},

where -yo (-), yM (') are the parametric curves

-yo(a) = eAro- + (I - eA(7--cr)) xM, -yM(a) =eA AX0 + (eA(7-ca) -eAr)xM

corresponding to u(t) = 0 (u(t) = M,resp.) for t E [0, a) and u(t) = M (u(t) = 0,
resp.) for t E [a, T-]. Curves -yo (-), -yM (') are of class Co and i9R(T, xo) is closed for
-y0-) = 'yM(O) = ea7'o -= X(0) and -yM(r) = yo0(0) - eAr(X0o--XM)+-XM = X(M).

However, curve OaZ(T, xo) is not, in general, of class C1 at x(o) and x(M), since

070 = AeA(7-a)XM and -M - Ae A(-)XM . (15)

Proof of Proposition 3. We shall first consider the case 0 = 0 in (13) and discuss
later the introduction of a 0 5 0. Let ?P(i!, xo, t) be a trajectory of system (5)
corresponding to control 1i as in (13), with 0 = 0, from an intial condition xo.
Note that, for any t such that V)(u, x0, t) 'DM, 0(') is of class C'.

For particular xo, I&(.)I is monotonic along 0(fi, xo, t), from x0 to (0, O)T, and
hence achieves its maximum at xo. One can easily obtain that, the region Q of
such initial conditions contains DM and is bounded as follows: if (cXM)(cb) > 0,
by lines cA(x - xM) = 0, cAx = 0, and the two trajectories with u = M
passing resp. through (0, O)T and x•, with x, s.t. cA(x, --xM) = 0 and cx, = 0;
otherwise, if (cxM)(cb) • 0, by lines cA(x--xM) = 0, vTx = 0, and the trajectory
with u = M passing through (0, 0)T.

If xo ' Q, 15(.)I achieves a maximum along 0 (i2,x0o,t), for some time r >
0 such that x, = 0(ii,Xo,-) satisfy either cA(xT - xM) = 0 or cAx, = 0.
Optimality of control (13) is proved by showing that at time r, any other control
u E U, different from ii, achieves a value of 15(-)1 which cannot be lower than
co(i xo, -)1

lc0(ii,axo,r)I < IcO(u,xo,-T)l : sup IcV((u,xo,t)IforanyuiUE/U. (16)
O<t<T

22

cX 0 cX =0

eT
7c

,* "\ '. XO
...........

' /•O ------,-- --. ..
- - -- - 7 -.--- -... . 7.(r, xo) " " - -" /

Case (a) Case (b)

Fig. 3. Reachable sets for final conditions on the locus of points maximum.

Such inequality will be proved analyzing the reachable set 7Z(r, xo). From Propo-
sition 8, we have r- < Z. Consider x0 V EDM. Two cases are in order either: (a)
fi(t) has a discontinuity point for some I c [0, r], or (b) fi(t) is constant in [0, -r].

(a) We first show that, in this case, 4-(r) is collinear to the line s passing

through x, and parallel to AeA(r-F)XM. Consider fl(t) = 0 for t E [0,;r) and
1(t) = M for t E [r, r]. We have ý(T) AeAT (X_--eA~ xM). But, since

from (13) the operator eAT steers point x0 to the swicthing line v x = 0, e-AT

maps XM (which lies on vTx - 0) to a vector collinear to xo. Then, !-(-rT)dt•

is parallel to AeA(r-F)XM. If, instead, Ui(t) = M for t E [0,?) and ii(t) = 0
for t E [rr], k-(T) = AeAT ((xo - XM) + e-ArXM) and, analogously to above,
e-AF maps xM to a vector collinear to xo - XM. Hence, in both cases 4- (T) is
collinear to s. Furthermore, from (15) one can easily obtain that line s is also
tangent to 8Z(7-, x0) at x,. Due to the convexity property of the reachable set,
1Z(-r, xo)/Ix, is all located on the same side of s, namely the one which does not
contain the origin. Since these arguments are valid for any final time, it follows
that IZ(t',xo), with t' < ' is always tangent to V(ii, xo,t) at t = t'.

Now, since by construction, I•(-)] is maximal along (ii, xO,t) at t = -, c is
perpendicular to AeA(r,-)XM and s can be written as (cx,) c(x - x,) = 0. Since
Vx E 7Z(T, Xo)/Xr, (cx,) c(x - x,) > 0, condition (16) holds for any u & i2.

(b) If instead ii(t) is constant in [0, 7-], necessarily, x, equals either x(O) or
x(M) and, hence, OZ•(r, xO) is not of class C' at x , . Evaluating from (15) the
tangent vectors to yo(.) or -yM(.) at x,, one obtains a direction parallel to b
(with a = r) and a direction parallel to AeATxM (with a = 0). Further, it is
easy to check that, for the same x•, the latter ranges from the line parallel to
b (as xo -+ x,) and the line perpendicular to cT (as vTxo -+ 0). Vector b is not
collinear to 4(7(-) expect for x, lying on vTx = 0. Then, also in this case, we can

dt I I

23

conclude that 7Z(-r, xo)/x,- on the side of c(x - x,) = 0 opposite to the origin,
and Vx E TZ(r, xo)/x,, (cx,) c(x - x,) > 0. Hence, (16) holds.

Moreover, suppose now that V(fl, xO, t) enters)M with ,U = 0, through vTx
0. Consider r = min{tJ(vThV(0, xo, T-) = 0}. The boundary of the set of points
reachable in time t < r is given by curves -M(a), eAaxo + (I - eAa)xM and
eAaxo = 0(0, xo, a) with a E [0, T]. Hence, any other control, which steers xo to
the origin, cannot achieve a value of the cost function smaller than]cxr I, since
curve 0 (0, x0 , a) with a E [0,,T] can never be crossed for it is a piece of the
boundary of the reachable set.

Control (13) is not an optimal solution to Problem 2 for, as discussed in [1],
it does not provide finite time convergence to BP for xo E EDM s.t. vTXO = 0.
Rotating switching line vTx = 0 by a 0 > 0, convergence to BP within a finite
time is achieved.

If (CXM)(Cb) > 0, ii as in (13), with 0 E (O, cos-l(ibTv 1ibI1-1), is again
an optimal solution to Problem 2. In fact, since the center of CM belongs to
(R(9)v)Tx = 0 with 0 = cos-l(IbTvIIIbll-1)) and V)(0,x0,t) is convergent to
the origin, for any 0 in the interval above x(t) = 0(0,xo,t), with x0 E 'DM
s.t. (R(O)v)Txo > 0, reaches line (R(O)v)Tx = 0 in a point contained in DM.
For (cxM)(Cb) > 0,]a(')J monotonically decreases along 0(0,xo,t) and hence
"ii is optimal. Conversely, if (CXM)(cb) <_ 0, for any xo E D)M between lines
cAx = 0 and vTx = 0, J&(')1 monotonically increases along 0(0,xo,t). Let
0cA = cos-' (IcAv]]]cA]t-1) denote the angle between lines cAx = 0 and vTx - 0.
For any 0 E (0,O0A), given x0 E DM s.t. vTxo = 0,]a(')l is maximum at
0(0, xo, 0/u) on line (R(O)v)Tx = 0, and

lim { max IcO(O, xo,t)I} = lim 1cO(O0,xoO/')I = IcxoI.
0--+0+ tE[O,T] 0-+0+

Hence, given any 01 E (0, 0,A), one can always find 0 E (0, 0,A) such that
Ic¢O(O,xo,/1,)l < Ic<k(O,xo,1/,J)I. For any xo E DM which can be steered
to (R(O)v)Tx = 0 with u = 0, an upper bound for IcJP(0,xo,9/p)I - Icxol is

given by Ic (e-A- -_ I) v±i-•llbll. Hence, for any e > 0, choosing 9 E (O,9 cA)

if Ic e- -I) v±I'MI-I blI < e, or 0 E (0,0,) with 0. solution to equation

Ic (eA' - I) v±i- Ilbll = E, yields supo<t<T c1(01x,t)I - A < E. Q.E.D.

4 Hybrid system control scheme

Control law (13) is clearly not feasible for the hybrid model M4,y,, introduced
in Section 2, for three main reasons:

(a) available torque is limited to 0 and to interval [r.inM, M];
(b) there is a delay between the time of injection and the time at which the

corresponding torque is generated;
(c) torque generation has to be synchronized with the powertrain dynamics.

24

Our solution to point (a) is to use bang-bang control everywhere in the state
space, introducing an appropriate switching surface a(x) = 0. To simplify dis-
cussion of point (b), set x(k) := x(tk) and u(k) := u(tk) for all k. Control
signal j (k), at current time tk corresponding to an E -+ H transition of the
i-th cylinder, will produce, at the next expansion run of the i-th cylinder, the
torque u(k + 3). Such signal will feed the continuous system during the interval
[tk+3, tk+4), steering the state from x(k + 3) to x(k + 4). A prediction of x(k + 3)
is obtained from x(k) by a forward integration of (5). Because of the synchro-
nization constraint mentioned in (c), switchings of the torque u cannot occur,
in general, exactly on o(x) = 0. This issue is the main difficulty for devising a
robust control strategy and is the main subject of this section.

If it is predicted that x(t) will cross the switching surface 0'(x) = 0 at some
t E (tk+3, tk+4), one can decide to switch ji either at tk or tk+1 . In certain
conditions if switching is anticipated, an acceleration peak may be introduced.
For this reason, we decide to switch always at time tk+l, i.e.

(0 if x(k +3) E Bp
•(k)= 0 if a(x(k + 3)) Ž_ 0 if x(k + 3) ' Bp. (17)

1 if a(x(k + 3)) < 0

Control law (17) may fail to switch injection to 0 when state x enters Bp,
and possibly go into a limit cycle. If u(t) = M, for t E [tk+3, tk+4], there
may be crankshaft speeds such that delay tk+4 - tk+3 causes the trajectory
0(M, x(tk+3), t) to intersect Bp leaving both decision points x(k+3) and x(k+4)
outside Bp. A necessary condition for this not to happen is to have IIx(tk+4)I1 <
IIx(tk+3)[[. The locus of points which under control u = M increase their norm
in time A is S= Ix I Ilxi < IleA(X - XM) + XMI (18)

Suppose there exist two distinct intersections of the boundaries of BP and AfA,
namely P!1) and x,2), as shown in Figure 4. Let V)M- (x, a) -A (+

be the point such that 0/(M, OM-(x, a), 2) = x. Let O41)(.) and C 2)(.) be the

curves (l1)(a) = OM-(XA,a), and 02)(a) = OM-(XB,a), with a E 7r]

where XA, XB are such that vTXA = 0, VTXB = 0, vT(xA - XM) <0, vT(xB -

XM) <0 and 1)()) x) E 2 (.). Let xD = 44 2)(7r), and define the
switching function in (17) as

f(vTb/IbII)-lvTx if (b±Tx < b±TxB) V (bjTx > b±TxD)

a(x) = (b/IJbII)T(x - x') if b±T xB < bjTx < b±TxD (19)

with x' s.t. (b±T - x') = 0) A (x' E

Control 3,(k) in (17) switches on the curve described as follows (see Figure 4):
the half line vTx = 0 with vT(x - x_) < 0, and xp = -pv±; the arc of the

boundary of BP from xP to x(2); the arc of c42)(.) from 2 to XD; the half line
vTx = 0 with vT(x - XD) > 0. Such choice can prevent from the existence of
limit cycles as illustrated in the following lemma.

25

(1) . ().. ... (1)
XA<

ArT\

X2 (1)((2

X1

Fig. 4. Derivation of the hybrid switching surface.

Lemmal10. If IIxMII > p, there exists a Wcmin finite such that, substituting A
in (18) for Amax = 3_._9_ (with Wcmin in rpm), if a trajectory of system .A4u

under control law ji(k) as in (17), with w•(t) >_ Wcmin = Vt > 0, intersects

oa(x) = 0 trough the arc 4(2) (a) with a E [0, ir] at some time t E [tk+3 , tk+4],
then x(t) E BX for all t > tx+4 +

Proof. Note that limA•o NAf =NA, where No is the disk with boundary passing
by both XM and the origin 0 and center in -Mb. From hypothesis I XMIf > P

x) x!2) e 1132, with i') $ a(2). (20)

By continuity and monotonicity, there exists a finite time Ama~rl > 0 and cor-
respondingly a speed Wcminl = A--L2 7• ' such that for all A < Ama~l, (20) holds

and (19) is well-defined.
Under the hypotheses of the Lemma, all points x(k + 4) belong to the set

SA={X: a -eAJ442)(a),with a E [0,ir] and 3E [0, A]}, (21)

with boundaries: 442)(a) with a E [0,ir]; c44 lM(2), where 44c2 (a)(2 eAA 442) (a),

with a C [0, ir]; ¢(O, xD,S), with 3 C [0, A]; ¢(O, xs, 3), with 3 e [0, A].
If x(k ± 4) C B,,, j%(k + 1) = 0 and x(t) C B,, Vt > tk+4. If x(k + 4) € Bp,,

3, (k±+1) = 1. If S4 n44l) (.) -0, then the trajectory ¢ (M, x(k +4), t) originating

at x(k + 4) under u(t) = M enters B,,through the arc from x(1) to x(2). Since

] xM] > p, 4¢(M,x(k +4),t) reaches B,, at time t,, < tk+4 "± •
By construction there exists a/r > k + 4 such that x(!e - 1) . B, and

x(18) e BA,, since x((- 1) € N4, with tw 1 < t, < t. Consequently injection

switches to zero, and x(t) e B,, Vt fo tr. lim4 -o44 2)(.) = limt->0 S4 = 2r2)(.)

26

Necessarily SA nv)1
) (') = 0. By continuity and monotonicity, there exists a finite30

time Amax > 0 with Amax < Amax1 and correspondingly a speed Wcm•n -- .

such that for all A < Am ax SA fv)b(1)(-) = 0. Q.E.D.

To find Ama of Lemma 10, we derive a function f(A) which is positive if

SAa fl b1) = 0, negative otherwise. We first determine the trajectory VbC(), where
n)(A(a) = OM-((A, a), with a E [0, 7r], and vTtA = 0 such that Vb!() is

tangent toCA at point xA = b(aA). At point xA

c2 a (22)

/IaPCA ~A~ M.(2

Condition (22) is satisfied for aA = juA+cos-I vTvrs (eAAxMX) Consider
x(1) (•(l) (a(')), with c(l) - cos-1 ve'-+rs (xA), and define f(=d) =ix(1) -

xMII - JixA - XMl. Control Ji does not lead to limit cycles when crossing A if

f(A) = I141) - XMIl - I1XA - XMII > 0. (23)

Convergence of the trajectories intersecting the switching surface on 0b2) is ad-
dressed in the previous lemma. However, we need to prove convergence for all
initial conditions.

Let us compare the trajectories when intersecting the line vTx = 0, which
is the optimal switching surface for the continuous case. In the hybrid case, the
switching occurs with some delay due to the discretization of the decision points.
There are two cases to analyze: a) vJx < 0, i.e. the intersection is to the left of
Bp, b) VT(X - XM) > 0, i.e.the intersection is to the right of Bp.

In both cases, we can bound the difference between the value of the norm
of the points on the optimal trajectory and those corresponding to the hybrid
control law. We can also compare the performance of the hybrid control law with
respect to accelerations peaks. Note that since the switchings occur at different
points, we compare the points on the next intersection on the optimal switching
line vTx = 0, to be able to compare norms.

Let xMo be such that vTXMO = 0, with VXMO <. Consider the point x(2)

reached under control u = M for A seconds, i.e., the point that corresponds to
the switching of control occurring as far as possible from the optimal switching

surface. The hybrid trajectory then reaches vTx = 0 at point xM() under control
u = 0, that is

e~x +X, (3) A eI cos'1 VTMO.(2

_ 2 eA(XM) + XM O v e er MO)) (2)

(1 X)o = A-
LetxMO -e TxMO be the point reached by the continuous trajectory from
xMO, we define

U (XMO A) =-1M (i~3~) 11 _1X()11, wo(XMo,A") = Icy-I e. wO(xMO, A),

27

the increase in norm due to non optimal switching and the corresponding increase
in the peak following the transition, where ac - cos- 1 (VT y)•

Let xOM be such that vTXOM = 0 and vT(XOM -- XM) > 0, and anal-

ogously to the previous case, consider the points x(OM = b(M, XoM, -) and
X(2) hbixOM = 00 ,A) respectively on the continuous and on the hybrid trajectory,(3) = (0, X(2OMCS-

the latter subsequently reaches"O43) - '(M OM' • cos- 1V__() ,, and with the
(2) 11.12) 11O0M

same meaning we define
WM(XOM, A) = IIx o3 - IX(o 11h wM (xoM,A) = Icyi

The two functions w°(xMo, A) and wM(XoM, A) bound the increase in norm
due to the late switching for the u = M -+ u = 0 transition and for the u = 0 -+
u = M transition of torque value respectively. Not surprisingly, both functions
are monotonically decreasing with respect to JHxMooII,IIxoMI and w. = 30, that is
the increase in norm is less for high revolution speeds and for initial conditions
that are far from Bp.

Now we are ready to discuss the convergence of the control law. Here we have
to show that the trajectories originating from points away from Bp tend towards
B,. To do so, we show that the norm of two consecutive intersection points of
the same trajectory under the hybrid control law on vTx - 0, vT(x - XD) > 0

decreases. Because of the monotonic behavior of w° (XMO, A) and wM(xoM,,A),

the worst initial condition is the closest to the origin which may not switch
between V(1) and C(2). To identify such initial condition, consider figure 5.

...-..."

x 2 d .:..::..) :/ (-•3

S... -.- • ..) -, , : •.••---X2 Wcmin
....(3)

"L\
S.....---------:

ZA'X

Xl J2

Fig. 5. Limiting trajectory and Parameters ranges.

The trajectory obtained by back integration from XA with torque u = M
switches to u = 0 at some point x, between vTx = 0 and b3Tx = 0, where

= e-A eAAv. The worst point is x, = xA-) = ¢?I)(o(--)) with A.-1) E [0,7']

28

solution to f)TV)1) (a) = 0. In fact points on jjTx = 0 correspond to a switching
occurring with the maximum delay A with respect to the ideal switching. Now,
let x(-2) e-AAx(-1) be the point on vTx = 0 from which the latest switching
from u = 0 to u = M leads to XA. All other points on vTx = 0 with 0 <
VIX < vTX (- 2)) fall into B. and are characterized by Lemma 10. Let x(3) be the

point on v x = 0 after a late switching from XA, then Ix(-2)I -[Ix(II bounds
from below the decrease in norm on the trajectory between two consecutive
intersection points with vTx = 0, v1(x -A A 0, due to the way we picked
the switching surfaces and XA. If indeed

IIx-2)1 _- 1X)1ll = IIx(-l)Ie•e- - IIXAIleý'-w°(xA,A) > 0 (24)

then, all the other initial conditions farther than xA2) from the origin yield
trajectories with decreasing norms, and the control law is convergent.

In the end, control law 3, is convergent for all w, >_ if A is such that

C1 OA A aBp :A 0, i.e. if 3 x~(, (2) E]R2 so to construct a(x) as in (19),
C2 limit cycle condition (23) holds,
C3 norm convergence condition (24) holds.

Performance of the hybrid control law with respect to acceleration peaks can
be compared to the continuous one.

Proposition 11. For any choiche of the parameters, such that conditions C1,
C2, C3 are satisfied, and (CXM)(cb) > 0, there exists a PA > 0 such that:

Given xo with IIxo0I > pAe 1 , let x = O(ii,xo,t), with f E [0,T] and
ii as in (13), be such that maxtc[O,T] 1cb(i(x),xo,t)1 = IcxI. Let T be such

that (i, ,xo,T) E aB., with ft given by M 44yl under control 3i(k). Let & =

0(f2,xo, t), with t E [0,'t], be such that maxtE[0,1] JcO(fi,xo,t)J = Ic.I, and let

xV -b(f, xo, tv), with t" E [0, ir/p] be such that vTxV = 0. Then, if vTxo < 0
0•< Ic. - Ic:•I < w°(xVAm) <w°(pAv±, Ama), (25)

where Am 30 . If vTxo > 0
WcM i,

0• Ic.Il Ictl .5 w• (Xv, Ama.) !5 wM(pAV±, Amra). (26)

In particular 3(k)is optimal for Problem 1, i.e. IcxI - IctJ = 0 if xo belongs to
either R3 X I vTx <0 , yT(x _ XM) < 0} or R 4 {X I vTx > 0, yTx > 0}.

5 Experimental Results

The proposed cut-off control strategy has been implemented and tested at
Magneti-Marelli Engine Control Division on a commercial car, a 16 valve 1400
cc engine car equipped with drive-by-wire electronics. The engine control elec-
tronics is a 4LV Magneti Marelli on board computer based on a 25MHz 32-bit

29

Althair Motorola microprocessor with fixed point arithmetic unit. The experi-
ment was carried out driving the car in the test ring and measuring the important
parameters and variables that determine the performance of the control strategy.

5.1 Model Parameters

The continuous powertrain dynamics of the car is described by

[0 1 -7.556 [0
AP= -448.1 -5.186 30.87 V = 150051

3.042 .02773 -. 21050

and have dominant pole A1 = -0.05460 and complex poles A ± jpu = -2.671 -
j21.54, where the parameters of the model were carefully identified on the actual
engine. The output map from states 4 = [ae, w", Wp]T to the vehicle acceleration
a (in meters per square second) is P = [.8022, .007313, -. 05525]. The maximum
torque achievable when the engine is idle with spark advance r = 1, is M = 12.41
Nm. The state space transformation matrix

[0.05155 0.04924 7.252 1
P- 20.83 0.12780 -0.5979J

[0.1596 -0.9517 7.195

allows us to rewrite the powertrain dynamics in the uncoupled form (4)

b .-74 10 1 ,1- 02 03

= 1.923 |, [c', c] = [-1.85710-, 3.726102, -2.52310-]
-14.321

The acceleration perception threshold was set to 0.03 the acceleration due to
gravity. Hence p is 7.872.

5.2 Convergence Analysis

Before starting the experimentation of the proposed control algorithm, a corner
analysis with respect to the vehicle inertia momentum J 2 was carried out, in or-
der to establish the minimum crankshaft speed Wcmin for which (17) converges.
Figure 5 reports the minimum crankshaft speed, obtained from conditions C1,
C2, C3, for a given J 2 and for spark advance modulation factor ri in {0.6, 0.8, 1}.
It is interesting to note that, acting on the spark advance, one can reduce sub-
stantially Wemin. For the identified value J 2 = 73.95, we have w Cmin - 396rpm,
356rpm, 329rpm, respectively for ri = 1, 0.8, 0.6.

To prevent engine from stopping, cut-off strategies are usually not applied
for w, <-- 1000rpm. With the identified parameters, for w, = 1000rpm, f(A))
8.22, IIXA-2)1 -_ IIx(3)1[- 7.92, hence convergence of (17) is ensured.

30

5.3 Discussion

The cut-off control strategy is applied after the accelerator pedal is released
and the manifold pressure is equal to 300 mbar. A simple Leunberger observer
is used to estimate the state of the powertrain's continuous dynamics, from
which the oscillatory components _ are derivered. The initialization procedure
computes also the observer gain matrix L, to obtain satisfactory convergence of
the observer. The switching function a(x), given in section 4, has been described
by piecewise linear approximation with 20 points.

In the sequel the performances achieved by the proposed cut-off strategy
are compared with the performance of a currently implemented open-loop strat-
egy and with an instantaneous uncontrolled cut-off operation. Figure 6 shows
the evolution of 4 components of observer state during a cut-off operation. The
switching curve a(x) 0 0, as it is approximated in the implementation, is re-
ported along with Bp. Next, the evolution of the crankshaft speed, in rpm, is
reported next. Only a significant positive peak is recognizable in the crankshaft
speed. Such behavior is also shown in the next plot in terms of vehicle accelera-
tion. As expected, once injection is set to zero permanently d(t) remains bounded
within the perception threshold. Finally, the last plot shows the evolution of the
injection signal.

The experimental results fully confirm the theory of Section 4. When com-
paring this strategy with the open loop strategy used in the previous implemen-
tation, we observed a much better performance in terms of acceleration peaks
and driving comfort. One could argue that this improvement, predicted by the
theory, has been obtained with a more expensive implementation. Actually our
strategy resulted in a much smaller memory occupation and in a very reason-
able CPU time. In fact, the code size was 70% and the data size was 50% of the
ones needed by the previously implemented strategy. The CPU power needed
to run the control algorithm was about 1% of the available computing power.
In addition, our strategy, being closed loop, needed much less tuning effort than
the open loop strategy.

6 Conclusions and future work

In this paper, we presented a novel approach to engine control in the cut-off
region, based on a hybrid model of the torque generation and of the power-train
dynamics in a four-stroke engine. A control problem on this hybrid system is
defined and solved using a sequence of approximations. The properties of the
control law so obtained have been characterized, thus offering better confidence
on the quality of the results with respect to commonly used heuristic, open loop,
approaches. In addition, since the control law is closed loop, expensive tuning
processes can be avoided yielding a commercially appealing solution. We expect
to see the final version of the control laws in products by the first half of 1998. In
addition, we expect to extend the approach to the problem of idle speed control
that shares several key features with the cut-off control problem.

31

.

W (t

Fig. 6. Evolutions in the . sub-space of observer state during cut-off operations. From

left to right: the proposed control, a currently implemented strategy and instantaneous
cut-off. State samples are linked by a continuous arc if in the previous cycle injection
took place, dotted one if it did not. Evolution of the corresponding revolution speed (in

rpm), vehicle acceleration (in m 2/second, dotted line represents total acceleration a(t)
and continuous line represents the oscillating component a(t)), and injection signal.

7 Acknowledgments

This research has been partially sponsored by PARADES, a Cadence, Magneti-Marelli
and SGS-Thomson GEIE, and by CNR. We wish to acknowledge the support of the
management of Magneti Marelli, and, in particular of Drs. Pecchini, Mortara and
Romeo, without which this work would not have been possible. ISI provided the X-
Math environment to carry out the simulation and the development of the control law.
Dr. Alberto Ferrari developed two powerful simulation environments, both including
X-Math. One is based on Ptolemy, a University of California simulation and design tool
for heterogeneous systems, the other on BONES, a commercial simulation tool from the
Alta group of Cadence, These environments have been essential to develop, tune and
implement the control strategy. Dr. Luca Benvenuti offered insightful comments on the
results of the paper.

32

References

1. A. BALLUCHI, M. D. BENEDETTO, C. PINELLO, C. Rossi, AND A. SANGIOVANNI-

VINCENTELLI, Cut-off in engine control: a hybrid system approach, in 36th CDC,
San Diego, CA, 1997.

2. J. B. HEYWOOD, Internal Combustion Engine Fundamentals, McGraw-Hill Book

Co., Inc., NY, 1989.
3. C. HORN AND P. J. RAMADGE, Robustness issues for hybrid systems, in 34th

CDC., New Orleans, LA, 1995, pp. 1467-1472.
4. L. Hou, A. MICHEL, AND H. YE, Stability analysis of switched systems, in 35th

CDC, Kobe, Japan, 1996, pp. 1208-1212.
5. A. S. MORSE, ed., Control using logic-based switching, vol. 222 of Lecture notes in

control and information sciences, Springer-Verlag, London, U.K., 1997.
6. T. NIINOMI, B. H. KROGH, AND J. E. R. CURY, Synthesis of supervisory con-

trollers for hybrid systems based on approximating automata, in 34th CDC., New
Orleans, LA, 1995, pp. 1461-1466.

7. S. PETTERSSON AND B. LENNARTSON, Stability and robustness for hybrid systems,
in 35th CDC, Kobe, Japan, 1996, pp. 1202-1207.

8. A. SANGIOVANNI-VINCENTELLI, Embedded system design and hybrid systems, in

Control using logic-based switching, A. S. Morse, ed., vol. 222 of Lecture notes in
control and information sciences, Springer-Verlag, London, U.K., 1997, pp. 17-38.

9. H. J. SUSSMANN, Lie brackets, real analyticity and geometric control, in Differential

Geometric Control Theory, R. W. Brockett, R. S. Millman, and H. J. Sussmann,
eds., vol. 27 of Progress in Mathematics, Birkhiuser, Boston Basel Stuttgart, 1983,
pp. 1-117.

10. H. YE, A. N. MICHEL, AND L. Hou, Stability theory for hybrid dynamical systems,
in 34th CDC., New Orleans, LA, 1995, pp. 2679-2684.

Hybrid Control of Automotive Powertrain
Systems: A Case Study *

Ali Beydoun,* Le Yi Wang***, Jing Sun and Shiva Sivashankar t

1 Introduction

This paper is concerned with the problem of hybrid control strategies for auto-
motive powertrain systems. Automotive systems represent an important class of
practical hybrid systems which are characterized by the following features:

1. The systems are inherently hybrid, i.e., hybrid control is not merely a choice.
This is exemplified by transmission gear positions (discrete) and engine
throttle control (analog).

2. System dynamics are highly nonlinear and contain parametric errors and
structural uncertainties. Any model that is suitable for control system de-
velopment will inevitably contain large modeling errors.

In this paper, a hybrid control design approach is used to develop control
strategies for coordination of automotive engine and transmission systems. The
main goal is to improve system performance, fuel economy, robustness, and other
performance specifications. The design procedure follows closely the main ideas
of the method introduced recently in [4]. The method employs performance in-
dices in guiding both analog and discrete control actions such that robust stabil-
ity and performance of closed-loop hybrid systems are maintained, in the pres-
ence of modeling errors, disturbances, and structural uncertainties. The method,
however, must be modified significantly in this case study to accommodate prac-
tical constraints, including actuator saturations, gear shifting limitations, and
real-time computation requirements.

1.1 Automotive Powertrain Hybrid Systems

Consider a typical automotive powertrain system shown in Figure 1. Depending
on engine mechanical configurations, control signals may include throttle angle 9

SThis research is supported in part by NSF Grant ECS-9634375 and several research

grants from Ford Motor Company.
* Advanced Vehicle Technology, Ford Motor Company, Mail Drop 76, 21500 Oakwood

Blvd., Dearborn, Michigan 48121.
• Department of Electrical Engineering, Wayne State University, Detroit, Michigan

48202, Tel.: 313-577-4715, Fax: 313-577-1101, Email: lywang(gece.eng.wayne.edu
t Ford Motor Company, Scientific Research Laboratory, P.O. Box 2053, MD 2036,

Dearborn, Michigan 48121-2053

34

(which is controlled either manually by the driver's foot pedal, or electronically
by engine controllers), spark advance 6, exhaust gas recirculation EGR, air/fuel
ratio AFR, transmission gear position G, swirl control valve (SCV), etc. The
outputs of the system may include vehicle speed, emission pollutants (such as
HC, CO, and NO,), fuel consumption, etc. There are certain discrete actions
which cannot be controlled by powertrain control systems. For instance, the
action of the driver to switch on cruise control is an uncontrollable discrete
action. On the other hand, gear positions and SCV actions are discrete control
variables.

The design objectives include fast and smooth acceleration responses to the
driver's pedal commands; low fuel consumption; low levels of tailpipe emissions;
and reduction of noise and vibration; among others. These performance measures
are to be achieved in a wide range of operating conditions in the presence of
discrete uncertainties such as cruise control switching, and analog disturbances
such as load changes from road conditions.

Several important characteristics of powertrain systems have rendered classi-
cal control design methodologies ineffective in developing high efficient modern
powertrain control systems. First, Powertrain systems are inherently hybrid.
Gear selections and switching of cruise control are clearly discrete actions which
can only assume a finite number of values. In contrast, 0, 6, EGR, AFR are
analog signals. Discrete actions such as gear shifts will cause a rapid change of
internal states (such as engine speed) and system dynamics.

Driver's Command

Pedal I Cruise Control Switch

Powertrain Control Systems

1 01 AFR EGR Gear SCV

Powertrain System Hardware

Acceleration Fuel Emission NVH

Fig. 1. Powertrain Systems

Second, powertrain hybrid systems are highly nonlinear, operate in a wide
range of conditions and have to tolerate large disturbances and uncertainties,
have both controllable and uncontrollable discrete events. To achieve a total

35

trade-off among competing performance specifications, it becomes necessary to
apply complicated control mechanism and search for optimal combinations of
control variables.

Besides the nonlinear and hybrid nature of powertrain systems, hardware
limitations also impose certain constraints on control strategies. First, actuators
such as throttle and spark have significant saturation limits, determined either by
mechanical design limits or operating conditions. Second, the control decisions
must be made with limited on-board computation resources. Third, frequent
gear shifting and gear hunting should be avoided.

1.2 Generic Hybrid Control Structures

Automotive powertrain systems are special cases of the generic state-space hy-
brid systems depicted in Figure 2.

d

X
'u

Hybrid Systems

6d

Fig. 2. Hybrid Systems

Mathematically, hybrid systems in state-space form are expressed as

S= f(x, u, d; s; t) +±A(x, u, d; s; t),

s = DES(6d, a) (1)

where x(t) E R' is the analog state, u(t) E R m the analog control input, d E O2d

the analog disturbances; s E IQ is the discrete state, 6 d E f25 is the uncontrolled
discrete action. f2b is called discrete uncertainty set. a(t) E Z is the discrete
control action, and E is a finite set of admissible discrete control actions. A E f2
represents model uncertainties. Q2 is called model uncertainty set. f is assumed
to be continuous in x and u. DES is a discrete event automaton.

36

The discrete action a (i.e., 6d or a) takes the form of o, = (s, sl) where s

is the old discrete state and si the new one. Associated with a discrete action

at t, the system nominal dynamics will switch from i = f(x, u, d; s; t) to i =

f(x,u, d; sI; t), and the state x will jump from x(t_) to x(t+).

For the powertrain systems in this study, the discrete-event system, which
includes the gear set and its shift schedule, contains essentially the four gear

positions of gears 1 through 4. For the purpose of control design, the powertrain
systems will be modeled as a second-order nonlinear system without time-delay.

This approximation, combined with engine-to-engine deviations, environmental

changes, inherent time-delays, external disturbances and structural uncertainty,
results in large modeling errors. As a result, control strategies must not only
deliver satisfactory performance under a nominal condition, but also guarantee
robustness against all such uncertainties.

2 Simplified Powertrain Models

d (road condition, temperature, etc.)

I manifold pressure p
throttle 0 ,vehicle speed v

gear shift a Engine-Transmission gear position s

6 d (cruise switching, etc.)

Hybrid Controller

Fig. 3. Engine-Transmission Hybrid Control Systems

37

For this case study, we employ a simplified powertrain system model which
contains an engine, a static transmission system and a simple buffer representing
a torque convertor. Its structure is depicted, together with a hybrid controller,
in Figure 3. The engine model is based on a 1.8L 4 cylinder port fuel injection
engine. The model was developed by Ken Butts from Ford Research Lab in
collaboration with Mathworks Inc. [2], based on a paper by P.R. Crossley and
J.A. Cook [1]. This model can be obtained free of charge from Mathworks. While
the model does not quantitatively represent a modern production powertrain
system, it is significantly representative in its structure and essential features.
As a result, the control strategies developed based on this model can be readily
extended to cover more realistic powertrain systems.

2.1 Models

We assume that the powertrain system is equipped with an electronic throttle.
As a result, the throttle angle or air charge becomes the primary analog control
variable. The air charge rate rh (g/s) through the throttle body is a function of
the throttle angle 0 (degree) and manifold pressure p (KPa),

r= f (0)g(p),

where
f(0) = 2.821 - 0.052310 + 0.1029902 - 0.000630'

and
2 VP_2

- .Pv -2, p > 0.5p.;

[1, p < 0.5p•.

In a normal operating condition, the atmospheric pressure Pa is approxi-
mately Pa = 100 KPa.

The manifold dynamics is usually modeled as a first order linear system which
relates air charges to the changes in manifold pressure p:

, = k(mh - k)

where k = 0.5786 is a constant under some idealized assumptions, M (g/s) is the
air charge rate into the cylinders. The induction of air into engine cylinders can
be modeled as a nonlinear function of the engine speed N (rad/s) and manifold
pressure p,

k = -0.366 + 8.979pNr - 337Nrp 2 + 0.01pN,2

where N, is the engine rotational speed in rad/sec, which is related to the engine
speed N in RPM by

Nr= 2-7N.
60O

38

The engine speed is related to the vehicle speed by a transmission system
which defines the ratio of engine speed to vehicle speed for each gear position.
We assume that the transmission has 4 gear positions with the corresponding
ratios

N- = /3(i), i = 1,2,3,4
V

with 03(1) = 28.10,03(2) = 15.69, 03(3) = 10.30,03(4) = 7.26, in (rad/s)/(m/s). To
capture the damping effect of torque convertors, the transient values of /3 when
gear shifting occurs will be an exponential function from the old value to the
new value, taking an average of 0.5 second to finish the transition.

Combining the above equations, we obtain the first dynamic equation

= krh - k(-0.366 + 8.979pNr - 337Nrp 2 + O.01pN2)

= ao + alp/(i)v + a 2/3(i)vp 2 + a3p(/3(i)) 2 v 2 + u

where a0 = -k(-0.366), a, = -kkn(8.979), a 2 = -kkn(-337), a 3 = -kk2 (0.01),
and kn = L6; and for control design purposes, we define

u=kmh

as the control signal. If the throttle is not saturated, the real control variable,
i.e., the throttle angle, can be determined by the throttle body mapping for a
given u.

For a 4-cylinder 4-stroke engine, it is easy to compute that the air charge for
each individual cylinder per intake stroke is

M, = 60

2N

Now, the brake torque Te (Nm) produced by the engine can be experimen-
tally established as a nonlinear regressed function of cylinder air charge Me,
spark advance 6 (degree), engine speed Nr (rad/s), exhaust gas recirculation
EGR, and air-to-fuel ratio AFR. In this model, EGR is fixed as a constant,
hence does not appear in the model.

Te = 2 x 0.7376(-181.3 + 379.36M, + 21.91AFR - 0.85AFR2 + 0.266

-0.028j2 + 0.027Nr - 0.000107N2 + 0.00048N,6 + 2.556M, - 0.0562 M,).

To maximize engine efficiency, it is usually desirable that the spark advance
is selected such that the engine torque output is maximized. Such a value of the
spark is called MBT (maximum brake torque) spark. In this model, the MBT
spark can be computed from the nominal model as a function of the air charge
and engine speed

0.26 + 0.00048N, + 2.55M,
6 = 2(0.0028 + 0.05M/)

39

Furthermore, to maximize the efficiency of the three-way catalyst, the air-
to-fuel ratio must be close to the stoichiometric value which in our case is 14.6.

The vehicle accelaration follows the Newton's law

F
W

where F is the net force on the vehicle for acceleration, W the vehicle weight in
Kg, and g is the gravity acceleration in (m/s 2). For the (hypothetical) vehicle
we are considering, g = 9.8, W = 1134 Kg (or 2500 lbs). F is related to engine
power and load by

FP - PL
V

where Pe and PL are engine brake power and load (Watts), respectively. The
engine brake power can be computed as Pe = ANTe, where N is the engien
speed in RPM and Te is the engine brake torque in Nm.

A typical expression for the load is PL = a + by2 , where the values of a
and b depend on vehicles and road conditions. An example of these values are
a = 2.011 x 10-3 and b = 1.5 x 10-6. For hilly roads, a and b become bigger.

In summary, the system we are considering can be modeled as a second-order
nonlinear system,

S= A (p,v,i)

P= f(p,v,i) +u

where
1 27rTeN - (a + bv2)

fvPv~)W V

fp(p, v, i) = ao + ajknp/3(i)v + a203(i)vp 2 + a3pfi2(i)v 2 .

For design purposes, the transport delay has been omitted. The robust design
we shall employ can be shown to guarantee robustness against modeling errors
and delays. These will be demonstrated in our simulation.

2.2 Control Configurations

The hybrid control system in Figure 3 will consist of:

1. A robust analog controller which feeds back from the analog states (vehicle
speed and manifold pressure) and discrete state (gear position) to determine
the throttle position so that tracking control can be achieved in the presence
of modeling errors and external disturbances.

2. A discrete event model which, other than initial states, has four states rep-
resenting gear positions. Some constraints will disable certain transitions

40

between the states. Most obviously, the upshift gear skip from 1 to 4 is not
allowed. Other gear skips are allowed, but usually not desirable.

3. A manager which decides gear shifting actions. At each decision time, the
manager will act on a constrained set of gear shifting events to decide whether
a gear shift should be commanded. The constrained set is determined by
the following critria: (1) Discrete constraints: This comes from the discrete
event model, which eliminates several gear shifting actions such as 1-4, due to
physical constraints. (2) Hybrid constraints: There are certain lower limits on
engine speeds, called lugging limits, for gear shift decisions to avoid excessive
harshness and vibration. These are hybrid limits since they depend on both
analog output (vehicle speed) v and discrete state (gear) s.

3 Hybrid Control of Powertrain Automotive Systems

The current production strategy for powertrain control employs static mapping
tables to schedule throttle and spark, and throttle-speed-gear operating points
for gear shifting. For example, gear shifting from the second gear to the third gear
will occur if the vehicle speed and throttle position move across a pre-calibrated
line on the speed-throttle space.

The hybrid gear strategy developed in this paper employs feedback lineariza-
tion and robust HI design to derive an analog strategy for the throttle control,
and a performance index to guide gear switching decisions. Details will be pro-
vided in the subsequent subsections. Generally speaking, this is the same idea
as the performance guided robust hybrid control strategy introduced in [4]. Un-
der some theoretical conditions, the generic strategy of [4] is shown to maintain
robust stability and robust performance.

In applying this generic strategy to this case study, we have encountered
some severe practical constraints which lead to several important modifications.
Due to such modifications, the clean theoretical results of [4] do not hold rigor-
ously in this case study. However, our simulation results still demonstrate similar
stability, performance improvements, and robustness, to those claimed in [4].

3.1 Constraints and Strategy Modifications

Two-Time-Scale Strategy It is noted that the goal of analog control differs
from that of discrete actions. To react promptly to the adverse effects of random
disturbances on the system, the analog control must perform quickly. On the
other hand, due to transient behavior of gear shifting and the desire to avoid
gear hunting, discrete actions should have limited speed. As a result, we employ
a two-time-scale method in this case study. In this method, one defines two time
scales, T and Td, where T is the sampling interval for analog control and Td is

41

the discrete decision interval. T is much smaller than Td. Usually, Td = kdT for
some integer, say, kd = 10.

As a result, gear shifting decisions will only be made at kTd for k = 0, 1, 2,..
In the time window [kTd, (k + 1)Td], an analog robust controller is employed to
robustly stabilize the system, reduce the deviation of the vehicle speed from
the driver's command speed, and achieve satisfactory fuel consumption. Analog
control is then discretized with sampling interval T.

Real-Time Computation and Short Time Prediction Powertrain control
strategies are to be implemented on-line. Due to the limited on-board computa-
tional resources, they must be computationally very efficient. The performance
guided switching control of [4] computes first the expected worst-case future
performance for each discrete state, and then selectes the one offering the best
future robust performance. While there are cases where such future robust per-
formances can be explicitly computed [4] [8] [9], in automotive powertrain ap-
plications such computation is not only overly time consuming but impossible
since the future commands from the driver are not available. A tradeoff, which
is used in this study, is to replace the future performance index by its short
horizon approximation. In this case, the performance measure is evaluated ap-
proximately only up to a short step into the future. For our simulation, the step
is 2Td, where Td is the interval for discrete decisions.

Actuator Saturation The throttle angle is saturated near 90 degrees. Also,
the control authority of the throttle angle on the air charge depends on the
manifold pressure. When the manifold pressure is close to atmospheric pressure
100 (KPa) that corresponds to the wide-open throttle operation, the throttle
will lose control authority. In both cases, only the gear shifting remains a control
variable. We have modified the hybrid control strategy such that it is reduced
to discrete feedback only when either the throttle is WOT (wide open throttle)
or the manifold pressure is close to the atmospheric pressure.

Unquantified Modeling Errors Although it is well understood that second-
order models of engine systems are subject to significant modeling errors, due
to data fitting errors, limited test data, engine-to-engine deviations and varia-
tions in operating conditions, the modeling errors cannot be well quantified. As
a result, computation of the worst-case performance against modeling errors be-
comes difficult. On the other hand, a selection of the switching penalty matrix
defines the level of robustness against modeling errors. In this case study, we
select a switching penalty matrix to balance robustness, performance, and gear
shifting frequency. Then simulation is performed to evaluate the design.

42

3.2 Analog Control Design

During the time interval between discrete decision instances, discrete states
(gear) are unchanged and the analog control becomes the sole control author-
ity. Apparently, in this case, the analog control must deliver the usual robust
performance in the presence of modeling errors, time delays and disturbances.

The analog control employed here is a nonlinear robust H' controller which
is constructed according to the design method developed in [5]. The design
method involves the following steps.

1. Feedback Linearization
Suppose the desired vehicle speed profile is given by Vd(t). Note that for
vehicles equipped with electronic throttles, the profile Vd is interpreted as
the driver's pedal positions. In the case of the manual throttle operated by
the driver, the profile Vd(t) is the desired profile perceived by the driver.
The second-order powertrain nominal model is feedback linearizable and all
the functions used in feedback linearization can be explicitly derived.
Define z, = v - Vd, Z2 = fv(p,v,i). Then, we have il = Z2 - Vd and

o~f,. af, .
Z2 = -- V + -

fv OP
SZ2 (p V, i) u)

W.

As a result, the nominal nonlinear system is transformed by a state mapping
(zI,z 2) = T(p,v,i) and control mapping u = 0(p,v,i,w) to a linear system.
It is noted, however, that modeling errors will be mapped into the new
system as nonlinear uncertainties.

2. Design of the State Feedback
Now, a linear state feedback K can be constructed by employing the Ric-
cati inequality approach developed in [5]. Numerically, this can be easily
done by using Matlab functions. The system model in this case is a linear
nominal part with nonlinear uncertainties. The modeling errors are given by

lIA(x, u)11 • El l1X11 + E211ulI where E1 and E2 are error bounds. The linearized

nominal system is simply i = Az + Blw + B2 dA and y = Cz, where

Note that the term d, includes Vd as well as other possible disturbances.
The performance criterion is the Hc-type performance

+0 .
(yTWwy + W TW,,,w)dt <_ Y2 f d.TWadddt, Vt.

43

It was shown in [5] that a sufficient condition for the performance criterion
to be satisfied is that the Riccati Equation

ATp+PA - P[BI(Ww + 62)-1B 2 B2 Wj1B 2 - (Elia + 626b)]P
6b d

+[CTWYC + 611] = 0

has a positive definite solution P, where 6a and -b are positive constants
selected by the designer. Finally the state feedback is given by

K -(Ww + '2)-Bl) P
Lb

3. Control Signal Construction
The overall analog control is constructed as follows: At time t, v(t) and p(t)
are measured. Then zi (t) = v(t) - Vd(t) and z2 (t) = f (p(t), v(t), i(t)) are
computed. After applying the linear state feedback w(t) = K[zi (t), z2 (t)]T,

we obtain the original control from

u(t) = W(t) - Z2 _ fp(t), v(t), i(t)).
Bp

The design procedure has been applied to automotive engine control problems
and demonstrates robustness against significant modeling errors, disturbances
and engine delays [6].

3.3 Priority Functions and Switching Decisions

In this powertrain control problem, gear shifting is the discrete decision which
must be made by a manager. Due to the requirements of on-line implementation,
the optimization problem must be solved in a short period of time and solutions
must be updated frequently. This forbids optimization over a large window of
time interval. The decision-making process is based on a short-term performance
index which contains three terms

J = WaJaW + W 8if + Ws,

where Ja is a term on tracking performance, Jf is a measure of fuel consumption,
and J8 reflects switching penalties. Wa, Wf, W, are weightings to reflect tradeoffs

among these competing performance objectives. Essentially, Ja = ftt+2 Td jv(i-) -

Vd(r)ld7_ jf = ftt+2Ta atC,. d7, and J, is given by a 4 x 4 matrix whose (i,j)-th
element is the switching penalty for gear shifting from position i to position j.
This decision is made at kTd, k = 0, 1, 2,.

44

4 Simulation Results

Substantial simulation has been performed to evaluate the hybrid control strate-
gies, under various conditions. Selections of parameters for simulation are first
provided.

Sampling interval for analog control T = 0.05 second. Discrete decision in-
terval Td = 0.5 second. Weighting values for gear shifting: Wa = 400, Wf = 400,
W, = 5. Gear shifting penalty is defined by a matrix SP whose (i, j)-th compo-
nent is the switching penalty for shifting from gear i to gear j.

0 1 50 100001

SP= 10 0 5 100
100 10 0 10

1000010 5 0

Note that the large value 10,000 entered for shifting from 1 to 4 or vise versa
essentially excludes these shifts. If such shifts are physically forbidden, one can
simply enter a much larger value to prevent such discrete decisions. Vehicle
loads from road conditions are given by PL = a + by2 , where a = 2.011-1, and
b = 1.5 x 10' for flat roads and b = 2.65 x 10-6 for hilly roads. External
disturbances and modeling errors are added to the model in simulation.

1. Robustness and performance of switching control. The main purpose of this
test is to evaluate the robustness, stability and performance of analog con-
trollers for each fixed gear position, in the presence of modeling errors, time
delays, disturbances. In Figures 5, 6, and 7, the robust analog controllers, to-
gether with the hybrid switching decision on gear selections, demonstrate ro-
bustness, stability and performance. For comparison purposes, we combined
the same robust analog controllers with a typical production gear-shifting
strategy. Similar robust performances are observed in Figure 4.

2. Different road and acceleration conditions.
Due to system nonlinearity, powertrain system performance varies signifi-
cantly with vehicle loads and acceleration profiles. For instance, vehicle loads
become much higher on a hilly road than on a fiat road. In this study, we
tested system performance under various road conditions including flat sur-
faces and hilly roads, as well as a combination of both. We also tested system
performance under various acceleration commands, including fast and slow
driving profiles. Figures 5 , 6, and 7 show that the system performes very
well under these various conditions using a robust controller with a hybrid
gear strategy.

3. Comparison to typical production gear shifting strategies.
While it is quite obvious that hybrid control methodologies offer clearer
understanding of design tradeoff and more systemetic development tools,
comparison is necessary to evaluate if the hybrid control actually offers any

45

advantages over the traditional production gear strategies in their perfor-
mances. For this purpose, a typical and current production gear shifting
strategy is employed, whose performance is depicted in Figure 4, to compare
to the performance of the hybrid gear strategy in Figure 5. With a reasonable
selection of weighting values, the hybrid strategy outperfoms the production
gear strategy in our simulation.

4. Manual versus electronic robust throttle controller.
To compare the electronic robust controller with a driver, we model a driver's
manoeuvre of the foot-pedal in response to the vehicle speed by a PI con-
troller where aggressive drivers might be modelled by using larger values Kp
and K 1 in the PI controller. For this simulation, Kp = 2 and K, = 0.05.
Performance of this PI controller is illustrated in Figures 8 and 9. While
test results show that the robust controller (Figures 4 and 5) offers better
overall performance than the PI controller in tracking the desired vehicle
speed, it should be cautioned that the comparison is limited by our model-
ing of the driver's behavior which might be much more complicated than a
PI controller.

5. Effects of weighting functions and switching penalty on system robustness
and performance.
We used simulation to gain an understanding on roles played by the weight-
ing matrices and potential guidelines in selecting such matrices. The follow-
ing observations, which are to be expected, were made regarding the effects
of the following parameters: As Wa increases, the tracking of speed is better,
but fuel consumption becomes higher, as shown in Figures 5 and 10. On
the other hand, as Wf increases, one observes an improvement on fuel con-
sumption, at the expense of worse performance in speed tracking as shown
in Figures 5 and 11. Finally, as W8 increases, infrequent gear shifting occurs
and therefore causes higher fuel consumption as shown in Figure 12.

References

1. P.R. Crossley and J.A. Cook, IEE International Conference Control 91, Conference
Publication 332, Vol. 2, pp. 921-925, Edinburgh, U.K, March 1991.

2. The Simulink Model, developed by Ken Butts, Ford Motor Company. Modified by
Paul Barnard and Ted Liefeld, Mathworks, Inc.

3. L.Y. Wang, A. Beydoun, J. Cook, J. Sun and I. Kolmanovsky, Optimal hybrid
control with automotive applications, in Logic-Based Switching Control, A.S. Morse
(ED.), Springer, 1996.

4. L.Y. Wang, P. Khargonekar and A. Beydoun, Structures and control of hybrid
systems, Hybrid Systems V, Notre Dame, Indiana, September 1997.

5. L.Y. Wang and W. Zhan, Robust disturbance attenuation with stability for lin-
ear systems with norm-bounded nonlinear uncertainties, IEEE Trans. Automat.
Control, Vol. AC-41, 1996, pp. 886-888.

46

6. W.J. Zhang, Robust stabilixzation and disturbance attenuation of nonlinear sys-
tems with applications to engine systems, Ph.D. dissertation, Wayne State Uni-
versity, 1997.

7. A.S. Morse (Ed.), Control Using Logic-Based Switching, Springer Verlag, LNCIS
222, 1996.

8. G.L. Grossman, A. Nerode, A.P. Ravn and H. Rischel (Eds.), Hybrid Systems,
Springer Verlag, LNCS 736, 1993.

9. P. Antsaldis, W. Kohn, A. Nerode and S. Sastry (Eds.), Hybrid Systems II, Springer
Verlag, LNCS 999, 1995.

1, . I o . .

Fig. 4. Powertraln systems con- Fig. 5. Powertrain systems con-

trolled by robust analog controller trolled by robust analog controller

and production gear strategy under and hybrid gear strategy under flat

flat road condition. road condition.a = • : 20

47

3 30

2 2 '

0 10 3 00
SI 3030

30r •o

Fig. 6. Powertrain systems con- Fig. 7. Powertrain systems con-
trolled by robust analog controller trolled by robust analog controller
and hybrid gear strategy under hilly and hybrid gear strategy under comn-
road condition. bined road conditions.

100

0 00 10 1.0

2 30 2

23t

1'A

Fig. 8. Powertrain systems with a Fig. 9. Powertrain systems with a

manual throttle and production gear manual throttle and hybrid gear
strategy under flat road condition. strategy under flat road condition.

48

55 i2t

Fig. 10. Powertraln systems con- Fig. 11. Powertraln systems con-

trolled by robust analog controller trolled by robust analog controller

and hybrid gear strategy under flat and hybrid gear strategy under flat

road condition. The weighting W,, is road condition. The weighting Wf is
increased to 700. increased to 800.

jt 2 Los

Fig. 12. Powertraln systems controlled by robust analog controller and hybrid gear

strategy under f wat road condition. The weighting Wf is increased to 25.

inceaed.o.00 inrese to 800

On the Composition of Hybrid Systems

S6bastien Bornot and Joseph Sifakis
Sebastien. Bornotoimag. fr Joseph. Sifakis~imag. fr

VERIMAG, 2 rue Vignate, 38610 Gi~res, France

1 Introduction

Concurrent systems can be usually specified as systems of communicating pro-
cesses obtained by composing sequential processes by means of binary parallel
composition operators. The latter express process interaction in terms of action
composition. Their semantics is usually defined by two types of rules.

- Synchronization rules that specify how an action of the product process is
defined as the result of the (simultaneous) occurrence of two actions in two
component processes.

- Interleaving rules, that specify how an action of a component process is an
action of the product process. These rules allow some component processes
to be idle while the others progress.

Combining synchronization and interleaving rules is essential for the spec-
ification of systems as process coordination requires both synchronization and
waiting. However, their adequate combination must satisfy two conflicting re-
quirements :

Deadlock-freedom : Deadlocks may appear in the product process as a re-
sult of enforcing synchronization, for instance, when two processes are at states
from which only non matching synchronization actions can be performed. Such
deadlocks can be avoided by using "escape" transitions generated by applica-
tion of interleaving rules. However, the presence of both synchronization and
interleaving actions may imply non maximal progress.

Maximal progress : When synchronization of two actions is possible, inter-
leaving rules, used precisely to avoid deadlocks, may be applicable. Maximal
progress means that synchronization is preferred to interleaving when both are
possible. This is sometimes achieved by using restriction or hiding operators that
prune out interleaving actions.

The above problems are amplified for timed or hybrid systems where time
progress is synchronous and waiting times are bounded. This can be easily ob-
served when hybrid specifications are obtained by adding timing constraints to
untimed communicating systems specifications, as it has been pointed out in
[SY96].

In [SY96,BS97b] it is claimed that specifying time progress conditions inde-
pendently from discrete transitions may be source of inconsistencies in specifica-
tions. We propose a model where time progress constraints are associated with

50

actions and thus time progress is directly related with the ability of a system to
perform actions. This model satisfies the property of time reactivity in the sense
that if no action is enabled at a state, time can progress.

Following the process algebra approach, we consider discrete (untimed) sys-
tems represented as terms generated from a set of abstract actions by using
operators such as prefixing, non deterministic choice and parallel composition.

We extend the semantics of these operators to hybrid actions.
For a given abstract action a, a hybrid action extension of a, is defined as a

triple (ga, da, fa) where ga and da are unary predicates and fa is a total function
on a continuous set of states. The predicate ga is a guard characterizing the states
from which a is enabled while da is a deadline satisfied by all the enabling states
at which the action a becomes urgent (time progress is stopped). The function

fa represents the effect of the action when it is executed.
As usually, for a given n-ary operator op, the hybrid actions of the term

op(ti,..., t,,) are obtained by composing the hybrid actions of the arguments ti.
We show that the semantics of operators on abstract actions can be extended to
hybrid actions in different manners. The extensions have the same semantics for
discrete transitions but may differ in urgency (ability to perform actions within
a given delay).

We assume that parallel composition of two discrete systems can be expressed
as the non-deterministic choice of terms starting with interleaving or synchro-
nization actions (by means of some expansion theorem [BK85]). The expansion
theorem is extended to hybrid actions in the following manner :

- To guarantee maximal progress, non-deterministic choice is replaced by pri-
ority choice that gives higher priority to synchronization actions over inter-
leaving actions.

- Synchronization operators between abstract actions are extended to hybrid
actions. The guard and the deadline resulting from the synchronization of
two hybrid actions depend on the guards and deadlines of the synchronizing
hybrid actions. We show that for hybrid actions different synchronization
operations of practical interest can be defined by taking as synchronization
guards and deadlines modal formulas. In particular, we identify three im-
portant synchronization modes : AND-synchronization where the guards of
the synchronization action is the conjunction of the guards of the contribut-
ing actions. MAX-synchronization used to model synchronization with wait-
ing and for which the synchronization action occurs as soon as all of the
contributing actions have been completed. MIN-synchronization where the
synchronization action occurs as soon as one of the contributing actions is
completed.

The paper is organized as follows. In section 2, we define hybrid extensions of
discrete systems as a labeling homomorphism that extends prefixing and choice
operators. Section 3 presents a framework for parallel composition of hybrid
systems as an extension of parallel composition of untimed systems. For the

51

three basic synchronization modes parallel composition rules are proposed that
guarantee both local deadlock-freedom and maximal progress. We conclude by
indicating possible application directions.

2 Hybrid extensions of discrete systems

We consider a simple (discrete) algebra of terms SA with prefixing and non-
deterministic choice. We show that a hybrid extension of SA can be defined
as a labeling of the underlying transition system associating with a state s, an
evolution function >, and with any action a a hybrid action h(a).

2.1 Discrete systems

Consider the language of terms SA defined by the grammar

s::= Nil I a.s I s+s

where Nil is a constant and a E A, a set of atomic actions.
With a term of SA we associate transition relations subsets of SA x A x SA

defined by
a

a.s -S *8
a / a a

si-4Sl implies s 1 + s 2 -* si' and s2 +S - S

We consider that + is an associative commutative operator with Nil as zero
element. Any term s is congruent (strongly bisimilar) to a term of the form

s = E ai.si (taken to be Nil if I = 0)
iEI

2.2 Hybrid extension of SA

A hybrid extension of SA is defined as a pair (V, h) where

- V is a continuous state space isomorphic to R' for some n > 0
- h is a labeling of SA such that :

"* h(s) = (s, >,), where >, : V x R+ -+ V is an, evolution function. We write
v >• t for >s(v,t). We require that >s is additive, i.e.,
Vv E V Vt1,t 2 E R+. V N (tl + t 2) = (v N t1) N t2 .

"* h(a) = (a, g, d, f) where g and d are two unary predicates on V and
f : V -+ V. We suppose that d = g. We call g, d, f the guard, the
deadline and the jump respectively of the hybrid action h(a) associated
with a.

The hybrid extension of the term s = ai.s is represented by the term
h(s) = Ej h(ai).h(si).

We define hereafter the semantics of h(s) in two steps. First, we associate
transition relations with hybrid actions h(ai) on the continuous state space V.
Then, we define the transition relation of the hybrid extension.

52

Definition 1. Let b = (a, g, d, f) be a hybrid action associated with a in some
tatransition s -4 s' of SA. We define transition relations -+ for t E R+ and 4 for

a E A subsets of V x V:
tb v -4 v > t if Vt' < t. -,d(v>,t')

- b:v-f(v) if g(v)

The two relations describe the behavior of b from a continuous state v. b
v t-+ v >, t means that the execution of b can be delayed for t time units and
b v -4 f(v) represents the effect of a jump.

Definition 2.
The semantics of h(s) =j• bi.h(si) where bi = (ai, gi, di, fi) and h(s) = (s, >)
is defined as a family of labeled transitions, subsets of (SA x V) x (A U R+) x
(SA x V) by the rules

- Ifbi : v - vi then (s,v) -4 (si,vi)
- If Vi E I. bi : v -+ v >s t then (s, v) 4 (s, v >s t).

Remark 3.
Notice that the projection of the transition relations on discrete state compo-
nents agrees with the transition relations of the associated discrete system. This
justifies the use of the term "extension".

Time can advance in h(s) for s = -i ai.si only if all the hybrid actions
h(ai) agree to let time advance. This rule determines a time progress condition
associated with s similar to the "invariants" in [ACH+95] and "time progress
conditions" in [KMP96]. Associating time progress with actions is an important
feature of the presented model as it will be shown throughout the paper. For a
given hybrid action, its guard characterizes the states from which the action is
possible while its deadline characterizes the subset of the states where the action
is enforced by stopping time progress.

The condition d =* g guarantees that if no action is enabled from a state
then time can progress. In fact, time progress can stop only at states where a
guard is enabled. Using terminology from synchronous language [JM94] we call
this property time reactivity.

The relative position of d with respect to the corresponding g determines the
urgency of an action. For a given g, the corresponding d may take two extreme
values: d = g which means that the action is eager and d = false which means
that the action is lazy. A particularly interesting case is the one of delayable
action where d is the falling edge of g (cannot be disabled without enforcing its
execution) (figure 1).

2.3 Choice operators

Let B = {bi}b~j be a set of actions bi = (ai, gj, di, fi) labeling transitions issued
from a term with evolution function >. We use the modal operators OX<k P

53

d=g F 7 I I > eager

d=g g delayable

d = false lazy

Fig. 1. using deadlines to specify urgency

(eventually p within k) and 0 <k P (once p since k) where p is a unary predicate
on V, and k E R+ U {oo}.

O<k p (v) if 3t E R+ 0 < t < k. p(v > t)
S<k p (v) if 3t E R+ 0 <t < k. 3' E V. v =v'> t A p(v')

As usual, we write Op and 0 p for 0<,o p and S_ <o. p respectively, and EOp
and B p for -,O-np and -' -ýp respectively.

We have already defined a non-deterministic choice operator Ej bi.si which
combines the semantics of hybrid actions in a very simple manner. The discrete

transition relation is the union of the discrete transition relations of the hy-
brid actions bi and the timed transition relation is the intersection of the timed
transition relations of the bi's. This semantics corresponds to a maximally ur-

gent behavior in the sense that an action may occur when Vigi holds and time
progress stops as soon as Vidi holds. In practice, it is often useful to define
other choice operators with less prompt semantics ([BS97a]). We define a choice
operator taking into account priorities between actions. Instead of considering
non-deterministic choice between actions bi = (al, gi, di, fi), for i = 1, 2, one can
consider that, for instance, b2 has higher priority than b, which leads to restrict-
ing the guard and the deadline of b, to gl' and dj' respectively. One may take

g,' = g, A -92 and di' = di A gl' to resolve conflicts between b, and b2 in favor of
b2 . This is a well-known manner to give priority to actions in untimed systems.
However, for timed systems priority can concern not only instantaneous conflict
resolution but also take into account possibility of waiting. For instance, if we
take 91' = g, A 1-ý92 and dj' = di A gl', we restrict the enabling states of bi to
only those states from which b2 will never be enabled.

Definition 4. priority order

Consider the relation <C Ax (NU{oo}) xA. We write a, <k a 2 for (a,, k, a 2) E<
and suppose that

54

<k is a partial order relation for all k E N U {oo}
a, <k a 2 =* Vk' < k. a, <k' a 2

a, <k a 2 A a 2 <1 a 3 ==• a, <k+l a 3

Property : The relation a, < a 2 = 3k a, <k a2 is an order relation.

Definition 5. priority choice operator
Given <, a priority order and {bi.si}iEI, a set of term, we define the priority
choice operator J< such that :

j<bSii1 = I: b'i.s
iEI

where if bi = (ai, gi, di, fi) then b'Y = (ai, g', d'i, fi) with g'i = giAAai<hai -O<_kgj
and d'i = d, A g'j.

Notice that if ai <k aj then in E b'i.si "aj has higher priority than ai in the
interval [0, k]" that is, ai is disabled if aj will be enabled within k time units.

92

91

91 __ a l <0 a2

91' / / > a, <1 a 2

91'. . a, <,, a2

0 1 2 3 4 5 6 7 8 9

Fig. 2. Different priorities for a2 over a,

Consider the guards gl, 92 of the actions a,, a2. Figure 2 gives the guards
9'l obtained when g9 is restricted by considering the priority orders a, <0 a 2,
a, <1 a 2 , a, <co a 2 .

55

Proposition 6. The priority choice operators defined above satisfy the following
properties.

1. 'gi = 0(g'i V Vai<<ai gj)
2. 0 ViEI gi = 0 ViE 9'i

The first property means that if action ai can occur in the non-prioritized
choice then either ai can occur in the prioritized choice or some action of higher
priority.
The second property is a consequence of the first and simply says that
preserves (local) deadlock-freedom : if some action can be executed in the non-
prioritized choice then some action can be executed in the prioritized choice and
vice versa.

3 Parallel composition

In this section we define parallel composition operators by following the same
approach as in the previous section. First, we show how parallel composition on
hybrid systems can be defined as an extension of parallel composition on untimed
systems. We thus obtain general composition rules for which some practically
interesting cases are discussed later.

3.1 Extending parallel composition from untimed
to hybrid systems

Untimed systems We consider a general framework for the composition of
untimed terms. For this, we suppose that the vocabulary of actions A contains
a distinguished element I and consider the set A, of the words generated from
A with a commutative operator 1 such that for all a, all = I. The operator I
is usually called communication function [BK85]. The words are used to repre-
sent synchronization actions that is, actions that result from the synchronous
occurrence of atomic actions. a1 Ia2 = I means impossibility of synchronization.

In the sequel, we suppose that there are no other simplification rules for I
but the rule for I and that a word ailaj is given in reduced form.

Consider the language of terms SAL defined by the grammar

s::= s E SA I sits

The semantics of the parallel composition operator is defined by the rules

f1 s 1 Si 81118 I~2 81'11I S2 '

S2 4S T2 a, ia2 54 1~ implies a's2 - s2'S2 I1 1 S 1 S2' 11 81'

S4 sl' implies { S2 II S2 4 S2' 11 s281 s~~21 S1s 4 s82I1s1

56

is a commutative operator that can be expressed in terms of non-deterministic
choice. It is well-known that for q, = ai.si and q2 = 'j aj.sj,

ql 11q2 ai.(si 11 q2) + E aj.(sj 11 qj) + E ai'aj.(sj 11 sj)

ij i,3

The first two summands start with interleaving actions while the last one starts
with synchronization transitions (only terms such that ailaj 5 I_ appear).

Hybrid extension of SA, For given (Vi, hi) hybrid extensions of q2 for i = 1, 2,
a hybrid extension (V, h) for q 1 1 q2 is defined by

- V = VI x V2
- If Tj = si -4 si' is a transition of qj then q, q2 has transitions of the form

T = S1 11s82 + s8' 11 s 2' where A = ai or A = alia 2. We take h(-r) = (si II

S2, Sl X C>s2) h(_) (51' IS2, >si, X >s21) where
"* h(A) = hi(ai) if A = ai and h(A) = h, (a,)ih 2 (a2) if A = a,1 a2 (we extend

the communication function in an appropriate manner to hybrid actions,
see below).

"* >1 X >12 : (Vj x 1V2) x R+ -+ V1 x 1V2 is such that (vl,v2)(>ýs x•>, 2)t=(vI >S1 t, V2 >1 0).

This definition leads, by taking bi = hi(ai) and bj = h2 (aj), to a scheme of
expansion theorem for parallel composition where E and E are arbitrary choice
operators (as defined in the previous section and in [BS97a])

h(qi 11q2) = hi(q) 11)h 2 (q2) = Ei bi.h 1 (si) I1 Ej bj.h 2 (sj)

=e, bj.(hi(sj) IIj b3jh 2 (sj)) e e3 bj.(h 2(sj) Jjl b .hi(si))
E Ei,j (bjibj).(hm(sj)II h2(sj))

If D and E) are non-deterministic choice operators then maximal progress is
not guaranteed as an interleaving action may be executed when synchronization
is possible. For this reason, we define parallel composition as the priority choice
of the expanded terms with infinite priority to synchronization actions bilbj over
the interleaving actions bi and bj. This corresponds to priority choice for the
minimal order < such that at <o aij and a3 <o aij for any i, j. By using the
notations

B = {bj.(h 1 (sj) II-J bj.h 2 (sj))}i U {b.(h2 (sj)j jI bi.hl(si))}j
U{ (bjibj).(hl (si) Ij h2(sj))}ij

and h1 (q1) = >j bi.h 1 (si) and h2 (q2) = j bj.h 2 (sj), we have
hi(si) 11 h2(s2) = E< B which is equivalent to

E-• bi'. (hz(si) I[h2 (S2)) +Ej bj'.(h2(sj)jj hj(sj))+Ei,j bj'bj.(hj(sj)jj h2(sj))

(figure 3)
In the above term, bi', bh' are the actions obtained by restricting bi and bj due
to priority. We now define biibj.

57

811S2

IIal, a2•

alla2

SS 1 82

4ih2 h 4
(sj II s2, Ns 11 >N)

bl ' " b, ib2

(81', N811) (82 ', >S2') (81'I11 S2', >si 1W 8'

Fig. 3. Hybrid extension for parallel composition

Suppose that h(ai) = bi = (ai,gi, di,fi) for i E I. If aiaj = _L then we
take bilbi = I. Otherwise, we write bij = bijbj = h(ailaj) = hi(ai)ih 2 (aj)
(ailaj,gij, dij, fi x fj) where
f, x f3 : V1 x V2 -4 V1 x V2 such that (fi x fJ)(vl,v2) =-- (f(v),fj(v 2)).

We propose in the next subsection a method for defining gij and di, j by re-
specting the requirements gij =* gi V gj and dij =* di V dj which mean that bij
may be caused only by bi or bj.

Proposition 7. If gij => gi V gj, the above definition guarantees the following
properties

1. local deadlock-freedom preservation that is,

O(V givVgj)= (Vg', vVg'v V gi,j)
ieI jEJ iEl jEJ iEI,jEJ

2. maximal progress that is, interleaving actions are executed only if synchro-
nizations bij are disabled forever.

58

It is important to notice that these properties hold independently of the way
the guards and deadlines of the synchronization actions are defined.

3.2 Synchronization modes of hybrid actions

Given two hybrid actions bl, b2 we define the guard gl,2 and the deadline dl, 2
of the hybrid action b, lb 2 = (a, ia2 , 91,2, d1 ,2 , fl,2) resulting from their apropriate
synchronization.

Composition of guards : synchronization modes As already discussed
in [SY96,BS97b], for timed and hybrid systems the guard 91,2 can be in general
a modal formula in terms of the guards gi and g2. We consider in particular
three important synchronization modes :

AND-synchronization requires that synchronization takes place only when
both synchronized transitions can be executed. This means 91,2 = g9 A 92. Con-
sider the example of two synchronizing actions with guards g, and 92. Then, in
general interleaving actions are needed to avoid deadlock. Their guards in this
case will be gm' = g9 A C-i(gj A 92) and 92' = 92 A 0-i(g, A 92)-

MAX-synchronization requires that the first of the two synchronized ac-
tions that becomes enabled awaits for the other to become enabled. The enabling
of the latest action triggers synchronization. A consequence of this assumption
is that waiting may be unbounded. For a given execution trace, the time inter-
val in which the synchronized action is enabled has as lower bound the max-
imum of the times they become enabled and as upper bound the maximum
of the times they become disabled. The corresponding guard 91,2 is defined by

92

Fig. 4g1,2

g1

Fig. 4. AND-synchronization

59

91,2 = (0g, A 92) V (g, A 092). For this condition to express synchronization with
waiting, it is necessary that if s, and S2 are the source states of the transitions
labeled by b, and b2 , these states should always be reached with values v, and v2
such that vi ý=s Ogi (remember that the meaning of 0 depends of the evolution
function >,,). In the case where there are only two synchronizing actions whose

91,2

91

Fig. 5. MAX-synchronization

guards are gi and 92, the interleaving actions will have guards gl1 = g1 A 13-- 91 ,2
and 92' = 92 A EC3g1,2, which can be simplified into gl' = g9 A rnE `92 and

921 = 92 A DI "gl.

MIN-synchronization is the dual of the previous synchronization mode,
and it implies that the synchronization action aj a 2 can occur when one of the
two synchronizing actions is enabled and the other will be eventually enabled.
That is, synchronization may occur in a time interval whose lower bound is
the minimum of the times they become enabled and the upper bound is the
minimum of the times they become disabled. The corresponding guard 91,2 is
described by the formula 91,2 = (0)g, A 92) V (g, A 0g2). In the case where

9 2' 9

91'

92

91

Fig. 6. MIN-synchronization

60

there are only two synchronizing actions with guards g, and g2, the interleaving
actions will have guards gl' = g1 A E]-ngl,2 = gi A E]-ng2 and 92' = g2 A D-g9.

Composition of deadlines : typed transitions For two given hybrid actions
bi = (ai, gi, di, fi), i = 1, 2 the deadline dl, 2 corresponding to bm1b 2 must satisfy
the following condition

dl,2 g1,2 A (dA v d2)

Of course, the most urgent solution is to take dl,2 = g1 ,2 A (di V d2) but this
often leads to situations where the computed deadline dl, 2 does not correspond
to the intuition [BS97a]. For this reason but also to introduce a simple model
where deadlines are defined from guards by means of simple assumptions about
urgency of the actions, we slightly modify our model.

We suppose that the deadline di of a hybrid action bi = (ai, gi, di, fi) is
defined by a function 6J: 2V -+ 2 V such that Ji(gi) = di.

An example of such a function is 4 (falling edge). When di = gi 4. we have a
delayable action according to our terminology. Another example is the identity
function 1 = Ag.g which can be used to define eager actions. Finally, a trivial
case is the function 0 = Ag.f alse that allows to define lazy actions.

We call the function 5i E { 0 , .-, 1 } types of the action. Types characterize
the urgency of an action which is minimal for 0 and maximal for 1. Clearly,
for synchronization between b, and b2 it is necessary to define 61,2 such that

161,2(91,2) g'* 91,2 A (6i(gl) V 62(92)) (a)

Proposition 8. The following table gives the most urgent type 61,2 satisfying
(a) for any mode (AND, MAX, MIN) in terms of 61, 62.

0 (000

This result allows to reason only in terms of types of actions and drastically
simplifies the general framework.
To complete the results we show that the type of a transition is preserved by
priorities and thus the type of interleaving actions is the same as the type of the
corresponding synchronizing transitions.

Proposition 9. If di = gi or di = gi 4. and gi' = gi A ED-g for some g, then
di = di A gi' is such that di' = gi' or di' = gi' 4. respectively.

61

4 Applications

As an application of the above results, we define a parallel composition op-
erator for typed hybrid actions that is, actions bi = (ai, g, gj, fJ) such that
6 E•f{ 0,4, 1}.
We suppose that for each pair of actions (a,, a2) the synchronization mode is
given. The resulting interleaving and synchronization actions depend on the syn-
chronization mode. The synchronization action b1,2 is b1,2 = (al la2, 91,2,61,2, fl,2)
where 91,2 is defined in 3.2 according to the synchronization mode and J1,2 is as
specified in the table given in 3.2. The interleaving actions b'Y are of the form
b'i = (ai, g'j, 6', fi) where g'i = gi A DE-'91,2 and Y'j = 6i (by proposition 9) for
i = 1,2.

Some applications of this general framework can be found in [SY96] where it is
shown that for timed Petri nets the underlying synchronization mode is MAX-
synchronization. This allows to represent state machine decomposable timed
Petri nets as the MAX-parallel composition of timed automata with delayable
actions and makes possible the application of efficient timing analysis techniques
to timed Petri nets.

An application domain for our results is modeling of multimedia systems
where combinations of the different synchronization modes are necessary for a
natural description of timing constraints. Several formalisms used in this area
offer such possibilities. One of the most general seems to be the model of Time
Stream Petri Nets, by Diaz et al[SDLdSS96]. These are Petri nets with interval
time constraints where nine different synchronization modes can be associated
with delayable transitions. It can be shown that the guards corresponding to
the different synchronization modes can be expressed compositionally as modal
formulas in terms of the guards of the components.

We are currently studying the application of the results to define the seman-
tics of the language used in the MADEUS tool for the specification of multimedia
documents [JLSIR97]. This language allows the description of timing constraints
by means of logical and relational operators used to express causality and syn-
chronization relations. The interesting fact is that very often a combination of
the three synchronization types is necessary to specify coordination. The results
of the study will be published in [BST97].

5 Discussion

We present a general framework for the composition of hybrid automata. We
show that from elementary hybrid actions, choice and parallel composition, com-
plex systems can be defined.

The main difference with other approaches is that we associate with actions
time progress conditions which specify for how long an enabled action may wait.
Time progress conditions at a given state depend on the urgency of the enabled
actions.

62

The big variety of choice and parallel composition operators results from

the different ways enabledness and urgency of components can be combined.
Contrary to untimed systems, it is necessary to use modalities to express different
kinds of composition that are of practical interest. However, for many tractable

subclasses of hybrid automata modal operators can be eliminated, e.g. for linear
hybrid automata ([ACH+951). In that case, modalities are used just for notation

convenience and do not modify the basic model.

Different choice operators can be expressed in terms of a basic non-deterministic

choice operator which combines the behaviors of the contributing actions so as
to obtain maximum urgency. Restricting guards to respect priorities leads to the
definition of less prompt choice operators. Other kinds of restrictions remain to

be investigated.

Priority choice plays an important role for the definition of a parallel com-
position operator that respects maximal progress and avoids deadlock by means
of appropriate interleaving actions.

The proposed framework is very general. Validation by practice is necessary.

It is important to notice that so far AND-synchronization has been used for timed
process algebras and the different timed extensions of the language Lotos [LL95]

as well as for timed and hybrid automata. MAX-synchronization is implicitly
used in the different extensions of timed Petri nets.

We believe that AND-synchronization is more appropriate for responsive

synchronization, where process coordination is supposed to be strong enough to
impose that all the timing constraints of the contributing actions are respected.

This is often the case for input/output, sender/receiver synchronization where
one of the actions is not submitted to deadline constraints. For example, in

the train-gate example often mentioned in the literature [ACH+95] communica-

tion between the two processes (train and gate) is responsive as the gate reacts

to input signals sent by the train. Applying AND-synchronization to obtain
the product automaton means that the deadlines and upper bounds of each
process must be respected. On the contrary, synchronization between the gate

process and a car stopped before the gate should allow for waiting and MAX-
synchronization seems more appropriate in this case. We believe that MAX-

synchronization should be used to extend parallel composition of asynchronous
processes ý la CSP. When a hybrid system is obtained as the hybrid extension

of an untimed system of communicating automata, it is seems natural to use
MAX-synchronization for actions that can wait indefinitely before synchroniz-
ing.

Finally, MIN-synchronization corresponds to a kind of (symmetric) interrupt

and one can hardly imagine examples where the use of this synchronization mode

alone suffices.

Acknowledgement : We thank S. Graf, S. Tripakis, E. Olive as well as
M. Jourdan of the Opera project of INRIA for fruitful discussions about possible
applications.

63

References

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid
systems. Theoretical Computer Science, 138:3-34, 1995.

[BK85] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with
abstraction. Theoretical Computer Science, 37(1):77-121, May 1985. Fun-
damental studies.

[BS97a] S. Bornot and J. Sifakis. On the composition of hybrid systems (complete
version). 1997.

[BS97b] S. Bornot and J. Sifakis. Relating time progress and deadlines in hybrid
systems. In International Workshop, HART'97, pages 286-300, Grenoble,
France, March 1997. Lecture Notes in Computer Science 1201, Spinger-
Verlag.

[BST97] S. Bornot, J. Sifakis, and S. Tripakis. Modeling Urgency in Timed Systems.
To appear in COMPOS'97, LNCS, September 1997.

[JLSIR97] M. Jourdan, N. Layaida, L. Sabry-Ismail, and C. Roisin. An integrated
authoring and presentation environment for interactive multimedia docu-
ments. In 4th Conference on Multimedia Modeling, Singapore, November
1997. World Scientific Publishing.

[JM94] M. Jourdan and F. Maraninchi. Studying synchronous communication
mechanism by abstractions. In IFIP Working Conference on Programming
Concepts, Methods and Calculi, San Miniato, Italy, June 1994. Elsevier
Science Publishers.

[KMP96] Y. Kesten, Z. Manna, and A. Pnueli. Verifying clocked transition systems.
In School on Embedded Systems, Veldhoven, The Nederlands, November
1996.

[LL95] G. Leduc L. L6onard. An extended lotos for the design of real-time sys-
tems. In workshop DARTS'95, Bruxelles, Belgium, November 1995.

[SDLdSS96] P. S~nac, M. Diaz, A. L6ger, and P. de Saqui-Sannes. Modeling logical and
temporal synchronization in hypermedia systems. In Journal on Selected
Areas in Communications, volume 14. IEEE, jan. 1996.

[SY96] J. Sifakis and S. Yovine. Compositional specification of timed systems.
In 13th Annual Symposium on Theoretical Aspects of Computer Sci-
ence, STACS'96, pages 347-359, Grenoble, France, February 1996. Lecture
Notes in Computer Science 1046, Spinger-Verlag.

An Equivalence Between a Control Network and
a Switched Hybrid System

Linda Bushnell*, Octavian Beldiman ' and Gregory Walsh

Abstract. A simple model for ideal control networks is proposed in this
paper. A model for hybrid systems due to Witsenhausen is extended by
adding both a discrete output and input. This extended model is used
for modeling an ideal network of interactive hybrid systems. An equiv-
alence is established between the network model and the Witsenhausen
model. This equivalence allows for simulating complicated systems, and
extending different properties of Witsenhausen type systems to control
network systems. A simple HVAC application is modeled using the above
equivalence.

1 Introduction

Recently, the area of control networks has attracted increased interest. Control
networks are seen as a possible way to analyze and design complex dynamical
systems that either axe scattered over a large area, or have real-time require-
ments that make the data transmission process a critical one. Several architec-
ture standards have been developed in industry. Some of the most representative
are the BACnet (building automation and control network) standard and the
CAN (controller area network) standard.

The BACnet has been designed to provide a standard communication and
environmental control network for commercial and government buildings and
campus environments. The primary application for this standard is HVAC con-
trol. CAN has been designed primarily for automotive applications. For instance,
Brduninger et. al. [15] use the CAN standard to accommodate the growing need
for data communications in trucks and busses. Several other standards are also
available. Ozgiiner et. al. [14] use the control network standard FOSU (Ford-Ohio
State University) to control automotive suspension.

Modeling and analysis of these networks have just started to develop. Al-
though some introductory papers have been published ([2],[3]) very few papers
discuss modeling or analysis issues. In [4] Walsh studies the race condition be-
havior for networks of hybrid systems. In [5], Tindell et. al. give bounds on the

** Department of Electrical and Computer Engineering, Box 90291, Duke University,

Durham, NC 27708-0291, lgb~ee.duke.edu and ovb~ee.duke.edu
Department of Mechanical Engineering, University of Maryland, College Park, MD
20742, gwalshgeng.umd.edu

* Dr. Bushnell is also with the U.S. Army Research Office, P.O. Box 12211, RTP, NC
27709-2211. This research was supported in part by the Army Research Office grant
number DAAH04-93-D-0002.

65

message response times in a CAN network. More recently, Wong and Brockett
[10] study the effect of the communication bandwidth constraints upon these
systems.

The subject of control networks is strongly connected to the modeling and
analysis of hybrid systems. A vast amount of literature can be found in that
direction, in both the field of control and computer science ([6], [7], [8], [9], [11],
[12]).

The Witsenhausen model is an older and simpler model [1], and seems to
be a good starting point for modeling control networks. Our proposed model
allows for distinguishing between the low-level, continuous dynamics and the
high-level, discrete switching commands in the network. The high-level strategy
is implemented with regard to the way the systems respond to events. We will
see that this is actually established by choosing the discrete input transition sets
and network priorities assignments.

A slightly modified version of the Witsenhausen model is presented in section
2. The modification consists of adding a discrete output to announce a transition
of the discrete state. Then extensions of this model are presented in section 3.
A network of these systems is proven to be equivalent to a Witsenhausen model
in section 4. Each of the sections contains an example for the models presented.
In section 5 we present a simple HVAC application and we used the equivalence
in section 4 to build a simulator for it.

2 The Witsenhausen Model

Without loss of generality we consider only autonomous models. Time-varying
vector fields may be made autonomous by adding time as a new state.

The Witsenhausen model for hybrid systems is developed as follows:

- state: (i, x) E M x R, where M is a finite set of integers.
- transition sets: A transition from discrete state i to discrete state j is trig-

gered when the continuous state x reaches a given set Jij in R. Define the
arrival and departure sets as: J+ = UjJji and Ji- = UjJij.
There are three assumptions on the transition sets:

Assumption 1 (1) for any three distinct indices i,j, k the sets Jij and Jik
are distinct; (2) for all i in M, the set Ji- is closed; and (3) for all i in M
the sets J[- and J+ are disjoint.

- vector field: f : M x R, _+ Rn.
- trajectory: Suppose the initial state is mo. As long as x ý Jmo the system

evolves with the vector field f(mo,-) as

() = .f(mo, X(t)).

When the state reaches the set J,;. , because this set is closed and the path is
compact, there is an earlier intersection time t, corresponding to xi E J,;O.

66

This x, can belong to only one of the sets Jmoi. Let it be Jmom1 . From ti
the discrete state is changed to ml, and the system evolves as:

t(t.) f f(mi,x(t))

with initial condition x(t1) = xi.
- discrete output: Any time when a switching takes place, a discrete output is

generated as a function of the new discrete state: Ol = d(ml) at time t1 .

The model may also include a control input u : M x R -+ Rr with u(m,.)
continuous. The vector space would then be defined as:

f : M x R x R -. •.

The control is usually a function of time and the current state. The closed
loop system, where the control is replaced by its dependence on the state is of
the form:

±(t) = f(m, x(t), u.m(t, x(t))) = g(m, x(t)), m E M.

An example of a trajectory for a Witsenhausen system showing a transition
from discrete state m0 to discrete state mi is presented in figure 1.

x I J 0

I V x

xx

x1

x

Fig. 1. An example of a trajectory for a Witsenhausen system.

To summarize, a Witsenhausen system is defined by the structure:
(M, 12, f, d, w, J), where: M is a finite set of integers representing the discrete

state space, Q is a finite set of integers representing the discrete output set,
f : M x R, x Rr is a function of class C' in the second argument, d: M x J -+ M
is the discrete state transition function that indicates the next discrete state
when the continuous state has reached one of the transition sets, w : M -+ D is
the discrete output function and J E p(Rn) is the set of the transitions sets.

67

H

_.1

I J3

-1

Fig. 2. Hysteresis function for Example 1.

To illustrate the above discussion, an example of a hybrid system due to
Tavernini [9] is described as a Witsenhausen system:

Example 1. Consider the system:

S= X2 - ¢(xl)

x2 = H(V)(xi, x 2)) - €(X2) (1)

where 4, and 0 are continuous, and H is a multi-valued function as in figure 2.
For this system we have three discrete states corresponding to the three

possible values of H: M = {0, 1, 2}. For each discrete state we associate a discrete
output by: w : M -+ fl, w(m) = m, so 2 = {0, 1, 2}. The field f is obtained for
each discrete state replacing the corresponding value of H.

The set of transition sets is
J = {J 01 ,J 02 , J10, J20o, where: Joi = {(x,y) : 4(x,y) :5 a}, Jo2 - {(x,y)

4(x, y) > 8}, Jio = {(x, y) : 0 (x, y) > 1} and J 2o = {(x, y): 4(x, y) < -y}.
The discrete state transition function d is given by:

d 0 1 2
Jo0 1 2

J02 2A1 2
J10 0 0 2

J20o0 1 0

For example, if the system is in the discrete state 0, and the continuous state
reaches the transition set Jol, then the discrete state will switch to state 1. If
the continuous state then reaches the set J02, the discrete state remains 1.

68

3 Extended Models

The Witsenhausen model covers a large class of hybrid systems, although some
discrete phenomena (like autonomous or controlled jumps in the continuous
state) are not taken into account. The model lacks the ability to exchange infor-
mation with the external world. Even with adding a discrete output function, as
in section 2 the model still has no discrete input capabilities.

In a network environment, however, the systems have to exchange informa-
tion. To use a Witsenhausen model for these systems, it has to be augmented
with discrete inputs. The effect of these discrete inputs will be to change the
control law, and hence the vector field of the closed loop system, rather than the
vector field of the open loop system. This extension is presented in this section.

3.1 State Dependent Control Switching

The first extension is the case where the control can be switched when the
continuous state meets certain conditions, even if the vector field is not modified.

We assume that the control changes when the continuous state reaches some
transition sets that respect condition similar to those from the Witsenhausen
model.

For each discrete state the control may be one of a finite numbers of controls,
depending on the continuous state. Then we can replace that discrete state with
a finite number of discrete states, one for each possible control.

Using this method we obtain a new set of discrete states M. The only new
switchings are those introduced by a change in control and we assumed that the
transition sets for these switching respect Assumption 1.

For each discrete state m E M, we have a continuous input:

Um.tW = U.m(t, x(t)),m M k.

The switching in the discrete state is governed by the continuous state, therefore
this extended system is of Witsenhausen type.

Such systems are met when the control strategy is different for different
regions in the state space.

Example 2. An example of such system is an inverted pendulum. For small de-
viation, the linearization is a good approximation and a classical controller, e.g.,
state feedback, can be used. When the pendulum is outside this region the con-
troller can be switched to some other controller, e.g., a bang-bang controller.

3.2 Discrete External Commands

In a more general context, the control can be switched not only as a consequence
of reaching some regions in the state space, but when receiving some external
commands as well. A typical example of such switching is when a hybrid system
receives a reset command: the control is switched to the control law correspond-
ing to a given initial discrete state.

69

These systems are no longer equivalent to the Witsenhausen systems de-
scribed in section 2. For this extension, the discrete commands can come at any
time, no matter where the continuous state is. Therefore, the switching in the
control, and thus the discrete state is not determined by the continuous state
alone.

We will assume that at a given time the system receives a finite sequence of
inputs. The equation for the continuous state is the same:

±(t = f(m, x(t), U(mt))

but the switching in the state is no longer triggered only when x(t) reaches J;;.
The system now has an additional discrete input vk E V, where V is a finite

set. For any discrete states m, n E M there is a set Vmn C V, maybe empty,
having the property that if the system was in the discrete state m and received
a discrete input Vk E Vmn, then the system switches to the discrete state n.

Denote by V,+ = U-i Vim the arrival input set for state m, i.e., the set of
discrete inputs that would switch the system to state m. Let VW = Ui Vmi be
the departure input set for state m, that is, the set of all discrete inputs that
would force the system to leave the discrete state m.

Assumptions similar to those for the transition sets in section 2 are needed:

Assumption 2 (1) for all i,j, m E M the sets Vmi and Vmj are distinct if i 0 j,
and (2) for all m E M the sets Vn and V,+ are disjoint.

We can define V E P(V) the set of the input transition sets, and the discrete-
input discrete-state transition function v : M xV -+ M, such that v(m, Vmn) = n
(Vm n is the set of discrete inputs that would produce a transition from discrete
state m in discrete state n).

After receiving a discrete input the system jumps in the corresponding state
(which may be the same state). If the continuous state is in one of the transition
sets for that state, the system jumps instantaneously in the new state.

In order to avoid a loop when connecting these system in a network we
assume that the discrete output is triggered by the continuous state only (more
precisely when the continuous state reaches one of the transition sets).

The mathematical model of these systems is therefore represented as
(M, V, 2, f, d, w, 3, V, v), where: (M, 2, f, d, w, J) is a Witsenhausen system

defined in section 2, V is a finite set of integers representing the discrete input
set, V E P(V) is the set of discrete transition sets and v : M x V -+ M is the
discrete-input discrete-state transition function that indicates the next discrete
state corresponding to a given input

We will call such a system an extended Witsenhausen system.

Remark. The only assumption we made about the time distribution of the dis-
crete input is that at a given time the system receives a finite sequence of inputs.
Suppose that at a given time the system receives the inputs {vI, v2 , ..., vk }. Then
the resulting discrete state is obtained by sequentially processing these inputs.
More exactly, the next discrete state will be v(v(... v(mo, vi),... , V v .),
where mo is the initial discrete state.

70

The extended Witsenhausen systems interact with the environment via dis-
crete inputs and discrete outputs. A block diagram for such a system is shown
in figure 3.

v 0
SHybrid

U Plant X

Hybrid

i.......
ICo~ntroller:

I-- --------------------
Fig. 3. Block diagram for an extended Witsenhausen system.The solid lines represent
continuous signals and the dotted lines represent discrete signals.

These are the types of systems that one would expect in a network envi-
ronment. Different systems in the network interact with each other, possibly
changing their internal state when receiving messages from the other systems
in the network. Messages are external commands that do not depend on the
continuous state of the system, at least not directly. From this point of view,
each individual system in the network is of the extended Witsenhausen type.

In the next section we will assume that all the extended Witsenhausen sys-
tems have the same input and output alphabet.

4 A Network of Systems

A control network is a collection of hybrid systems exchanging information to
achieve a common goal. The term information stresses the fact that the systems
exchange messages in response to some change in their discrete states. A control
network is not the communication channel between a plant and its controller.

In this section, we will show a way to model a network composed of extended
Witsenhausen systems.

There are a number of ways one can connect some extended Witsenhausen
systems:

1. parallel connection: The systems have the same discrete input. This connec-
tion is trivial in the sense that each system evolves individually, without
interacting with the others.

71

2. serial connection: The discrete output of a system is the discrete input of
the next system. Such connection could model a pipelined environment, such
as a manufacturing line. Each stage signals when it finishes processing an
item. The the next stage receives this signal and knows that it has to start
working on the item.

3. loop connection: The discrete output of one system is the discrete input of
the second, and the discrete output of the second is the discrete input of the
first. This can model any kind of hybrid plant / hybrid controller system.

4. network connection: This is the connection we are interested in for this paper.
The discrete output of a system is the discrete input of all the other systems
(except itself). Each of the systems has a priority, such that if several systems
send a discrete output at the same time, they will be arranged in the order
of the priorities. In that case all the systems will receive a finite ordered
sequence of inputs, and will process it according with the above remark.

Note that the network connection described above neglects the transmission
delays associated with the network. Hence, any two systems in the network can
communicate with each other without transmission delays. A block diagram of
a network connection of extended Witsenhausen systems is shown in figure 4.

I System System System
1 2 N

1lo 1 2T 2 ýN ýON

Network

Fig. 4. Block diagram of a network connection.

Consider N extended Witsenhausen hybrid systems connected in a network,
labeled in the decreasing order of their collision priorities:

(mi, Vi, st, fi,wi, di,maii, pot, vo), i = 1, . . . , N.

We now state the main proposition of this paper:

72

Proposition 1. A network of N extended Witsenhausen hybrid systems is equiv-
alent to a Witsenhausen system obtained by concatenating the individual systems.

More precisely, the system obtained by concatenating the individual systems is
(M, Q2, f, d, w, J), where:

- M= M I M 2 X ... X MN
-- fl 0 "1 X f?2 X ... X ON

- f= [(, w2,...,fN])- W= W)W)* N
- j= {A 1 x A2 x ... x AnIA E 9i or]Bi E J,Ai = C(Bi) Vi and there

is at least an i for which Ai E 7i}, where C is the usual notation for set
complement.

- d is the discrete state transition function which is defined as follows:
Let m = (mi, m2,..., MN) E M and J = (A1 , A 2 ,..., AN) E J. We have
to define n = (nl, n2,..., nN) such that n = d(m, J).
Construct the sequence {ik}1•<.<r of indices for which Aik E J.h (in increas-
ing order). Then we can also construct the sequence {vk}1<k<r such that
Vk = wi, (mik, Aj.).

Take ni, = dik (mik, Ai).
For the other components, construct iteratively the next state, considering
as a sequence of discrete inputs the sequence {Vk}.
Note that the case when the sequence {ik} has more than one element cor-
responds to a collision (because several systems will try to send their output
on the network at the same time). Then the network will broadcast their
output in the order of their priority (due to our assumption that the sys-
tems has been labeled in decreasing order of their priorities, e.g., system 1
has the highest priority).

Remark. For this composed system the continuous state is the concatenation of
all individual continuous states:

X(t) = [Xl (t), X2 (t), - -- , Xn (t)]'

and the discrete state takes values in the Cartesian product of the discrete state
spaces of each system (still a finite set):

M = (Ml, M2, ... , ran) E M, x M2 x ... x Mn.

Proof. We have to prove two things: first we have to prove that the transition
sets for the network respect the three assumptions needed for the Witsenhausen
model, and then we have to prove that the switching of the discrete state for the
network is triggered by its continuous state.

We'll consider N = 2. The proof for a general N is a simple extension of this
case.

Suppose we aggregate two Witsenhausen models. One of them has continuous
state x(t) E M and discrete state d E D, and in the other has continuous state
y(t) E N and discrete state e E E.

73

Denote by J+d and Jd the arrival set into and the departure set from the
discrete state d for the first system, and by J+ and J- the arrival set into and
the departure set from the discrete state e for the second system.

Since the two system are Witsenhausen, the sets JTd and J+ are closed (in
M, respectively N).

Let's denote by Jd and Jj the arrival set into and the departure set from
the discrete state (d, e) for the composed system (the model for the network).

If we ignore the interaction between the two systems (the fact that the switch-
ing in the discrete state of one of the systems could generate a message through
the network that may trigger the switching of the discrete state for the second
system) then we have:

Jje = (J.d x N) U (M x J,)
Jd+ = (J.+d X C(JY)) U (PJ~d) X Jy+e)

Indeed, the network leaves state (d, e) either when the first system leaves
state d or when the second system leaves state e. Similarly, the network comes
into state (d, e) either when the first system comes into state d and the second
does not leave state e or the other way around.

These new sets respect the Assumption 1:

1. To prove that J n J+f = 0, suppose that there is a point in this intersection:
(x, y) E J, n Jd+ . Then (x, y) E Jj. So either x E J.d or y E J-e. In both
cases (x, y) cannot belong to]+d,, thus the departure and arrival sets are
disjoint.

2. Jj is closed because it is a finite union of closed sets.
3. The third assumption (the fact that the sets of the form J(de)(fg) are disjoint)

is ensured by the fact that the sets Jx(d)(f) and Jx(e)(g) are disjoint since they
are transition sets for Witsenhausen systems (and the former sets are simple
Cartesian products of the later sets).

However this does not take into account the switching generated by sending
messages on the net. Assume now that there is some interaction between the
two systems. This does not change the departure sets (only their distribution),
but affects the arrival sets. The effect is that one arbitrary transition set, let's
say J(mn)(dn) is added to J+ (the transition of m to d could send a message to
trigger n to e). Then we have a problem if J(mn)(dn) E M x J-".

But the way we defined the transition function for the composed system
allows us to get rid of this problem: the discrete state of the network goes directly
to the final state, avoiding the possible transparent state. So, even if we take into
account the messaging, the transition sets still verify the assumptions from the
Witsenhausen model.

The only thing left to prove is that a change in the discrete state is triggered
only when the continuous state reaches one of the sets in 3.

A change in the discrete state of the overall system happens if and only if
some of the individual systems change their discrete states. An individual system

74

p can change its discrete states i in two cases: either its continuous state reached
the departure set J-- or an external command in the departure input set Vi-
has been received through the network.

In the first case the change in the discrete state is triggered by the continuous
state. In the second case, let q be the system that issued the command. System
q can send an output on the net only when its continuous state reaches one
of the transition sets. So in this case, the change in the discrete state of the
system p is triggered by the continuous state of the system q. That means that
in general, the change in the discrete state of the composed system is triggered
by its continuous state.

This proves the fact that the system obtained by concatenating all the indi-
vidual system from the network is of Witsenhausen type.

Example 3. Consider two extended Witsenhausen systems:

ii•(t) = fi (qj, xi), i = 1, 2

having two discrete states qj G {O, 1} with transition sets:) xlx < a} and
J(') f {xIx > bi) i - 1, 2 (the notation Jmn actually means that d(m, Jmr) =

n).
Take f = 02 = 0, 1, wi (m) = w2 (m) = m, and Vi = V2 = 0, 1.
Suppose Vi = {Vol} = {{1}} (if the system was in state 0 and receives an

input 1 then it will switch to state 1). The equivalent system for a network
composed of these two systems is presented as:

M = {0, 1} x {0, 1} = {(0, 0), (0, 1), (1, 0), (1, 1)}
Q f2l x 122 = {(0, 0), (0, 1), (1, 0), (1, 1)}

f =[fl, A~r
w : M --+ 2,w(m) = m

-o ,j M) x j j x j j) XC (j(i2)-), j (l) X iC(j2) j) X j(2 X

j(-), C(j((()-) (J1) 2
010 101

Denote by J1 ,... , J12 the elements of J, then: d((0, 0), Ji) = d((0, 0), J 2) =

d((0, 0), J3) = (1, 1), d((1, 0), J4) (0, 0), d((1, 0), J5) = d((1, 0), J6) = (1, 1),
d((0, 1), J 7) = (0, 0), d((0, 1), J8) = d((0, 1), J9) = (1, 1), d((1, 1), Ji 0) = (1, 0),
d((1, 1), J1) = (0, 1), and d((1, 1), J1 2) = (0, 0).

This example illustrates the equivalence between a control network of two
extended Witsenhausen systems and a Witsenhausen system.

5 A Simple HVAC Application

In this section we present a very simple temperature control problem to illustrate
the extended Witsenhausen model and the equivalent model of a control network.

75

room 3
F2
F2 F = fan

room 2
S = temp.S2

sensor
room 1

F1 $1

Fig. 5. Plan of a building.

In figure 5 we show a plan of a building with 9 rooms, 2 ventilation fans
and 3 temperature sensors. We will consider that the sensors and the fans are
connected by a network so that they can exchange information, and that there
is no central controller involved.

We want to model this system so that we can simulate its behavior for dif-
ferent control strategy for the fans.

The fans can have only two states: on and off. We denote by mr the state of
the first fan (mi = 0 if the first fan is off and m, = 1 is the first fan is on), and
by M2 the state of the second fan. If a fan is on, the adjacent rooms are heated
with a rate r, and the third room is heated with a rate r/2.

We will assume very simple equations for the temperature in the rooms (u
represents the temperature):

- room 1: ul, = -ul + rmm + 0.5rm 2
- room 2: u•i = -U 2 + rmm + rm 2

- room 3: u3 = -U 3 + 0.5rml + rM 2

The sensors will send a signal if the temperature in that room is above an
upper limit Tmaz or below a lower limit Tmin. We notice that we don't need to
model the fans because their influence is implicit in the temperature equations
for the rooms. We will consider the following control strategy:

- if the temperature in room 1 is above Tmrax switch fan 1 off.
- if the temperature in room 1 is below Train switch fan 1 on.
- if the temperature in room 3 is above Tmaxz switch fan 2 off.
- if the temperature in room 3 is below Tmrin switch fan 2 on.
- if the temperature in room 2 is above Tma, switch both the fans off.
- if the temperature in room 2 is below Tmrin switch both the fans on.

76

Each room can be modeled as an extended Witsenhausen model with four
discrete states, each state corresponding to a possible combinations of states for
the fans.

ov=2

u<mnv=2 u>Tmax

u>Tmax u<Tmin
o=0 o=1

0 3
v=3

Fig. 6. Underlying finite state automaton for room 1.

The equations corresponding to room 1, for each discrete state are:

- q, = 0 ui = -ul (both fans are off)
-q = 1 ul = -uz + r (first fan on, the second off)
-q = 2 u= -uz + 0.5r (first fan off, the second on)
-q = 3 ul = -ul + 1.5r (both fans on)

The equations for the other two rooms are similar.
Figure 6 presents the underlying finite state automaton for the first room.

Note that transitions can occur either if the temperature passes the limits, or if
a discrete input, v, is read from the network. This discrete input was generated
by another room whose temperature passed the limits. Below each transition
due to the continuous state, the discrete output, o, is specified.

The control strategy for the fans is coded in the way the discrete inputs/outputs
are defined in the control network. We define six messages that can be exchanged
between rooms, having the following meaning: v = 0: fan 1 is off, v = 1: fan 1
is on, v = 2: fan 2 is off, v = 3: fan 2 is on, v = 4: both fans are on and v = 5:
both fans are off.

Once we have defined each extended Witsenhausen system that is connected
to the network, we can form the equivalent Witsenhausen model for the network.

77

The continuous state will be u = (ul,u 2 ,u3) E RI. The discrete state will be
q = (qj, q2, q3). The transition sets are Cartesian products of the individual
transition sets, or their complements.

For instance the transition set from state (0, 0, 0) to state (1, 1, 1) is:
(_00, Tran1] x (Tmi,, 00) x (Train, 00).
Using this model we simulated the network in Matlab, and the behavior of

the system for two different fan control strategies is shown in figure 7. In the
simulator used, the transitions sets were not precomputed, but once the system
crossed one of the limit temperatures, the new discrete state was established.

In figure 7 the system is simulated for two fan control strategies: the first
one is the one described above, and the second one is very similar, with the only
difference that when the temperature in room 2 reaches one of the limits, only
fan 1 is turned on or off.

Using the equivalence to a Witsenhausen model, from Proposition 1, a net-
work of systems is very easy to simulate. Otherwise for each network one would
have to write a specific simulator.

Temperature in the rooms, for the first control strategy
1.2 , I I I ,

room 2

12
0.4m z o ,

S 0.82"1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Temperature in the rooms, for the second control strategy
1.2 Tm 04 room 2

:A l l

2 .8 ':.

E 0.6- , : : -

04room 1 rom 3

0.2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

Fig. 7. Temperature in the three rooms for the two fan control strategies. We used
T,... = 1, T•i. = 0.4, r = 1.

78

6 Conclusions

The equivalence between a network of extended Witsenhausen systems and a
Witsenhausen system has been proven in this paper. This equivalence offers us
a way to analyze and design control networks. Once we know certain properties
about Witsenhausen systems, we can apply them directly to the network. For
instance, in [6], Branicky extends the Lyapunov stability theory to switched
systems, which are similar to the Witsenhausen systems discussed in this paper.
This extended theory can be a way to analyze the stability of the control network.
Also, in [1] Witsenhausen proves some necessary conditions for optimal control
of his models, which can be applied to the control network to solve optimal
control problems.

The main assumption in our derivation was that the control network has
no communication delays. In a real network this does not happen, although for
control networks, which are designed for high speed small packages, the delays
are very small. A critical problem occurs when several component systems change
their states simultaneously. Then the sequence of messages will come scattered
in time, requiring some kind of robustness for the system that has to process that
information. More precisely the transition sets corresponding to two successive
discrete sets should not be arbitrarily close. This problem is a future research
topic.

Additional future research includes extending stability results to Witsen-
hausen systems, as well as extending the limit cycle theory of nonlinear systems.
Also the effect of the assumptions made about the network, and ways to in-
troduce perturbation factors that would model the environmental connection
between different systems in the network will be studied.

References

1. H. S. Witsenhausen. "A class of hybrid-state continuous time dynamic systems,"
IEEE Transactions on Automatic Control, 11(2):161-167, v1966.

2. R. S. Raji. "Smart networks for control," IEEE Spectrum, June 1994, p. 49-55.
3. D. Radford. "Spread-spectrum data leap through ac power wiring," IEEE Spec-

trum, November 1996, p. 48-53.
4. G. Walsh. "On race conditions for networked control systems," in Proceedings of

the 3 0 th CISS,Princeton, NJ, March 1996, p 411-415.
5. K. Tindell, A. Burns and A.J. Wellings. "Calculating controller area network

(CAN) message response times," Control Eng. Practice, vol. 3, no. 8, p. 1168-1169,
1995.

6. M. S. Branicky. "Studies in hybrid systems: modeling, analysis, and control," Ph.D.
dissertation, MIT, June 1995.

7. A. Back, J. Guckenheimer and M. Myers. "A dynamical simulation facility for
hybrid systems," in Grossman et al. [13], p. 255-267.

8. A. Nerode and W. Kohn. "Models for hybrid systems: Automata, topologies sta-
bility." In Grossman et al. [13], p. 317-356.

79

9. L. Tavernini. "Differential automata and their discrete simulators." in Nonlinear
analysis, Theory, Methods and Applications, 11(6): 665-683, 1987.

10. W. S. Wong and R. W. Brockett. "Systems with finite communication bandwidth
constraints - Part I: State estimation problems," in IEEE Transactions on Auto-
matic Control, 42(9): 1294-1299.

11. R. W. Brockett. "Hybrid models for motion control systems." in H.L. Trentelman
and J.C. Willems, editors, Essays in Control: Perspectives in the Theory and its
Applications, p. 29-53, 1993.

12. R. W. Brockett. "Dynamical systems and their associated automata." in U.Helmke,
1%. Menniken and J.Saurer, editors, Systems and networks: Mathematical theory and
applications. Akademie Verlag, Berlin 1994.

13. R. L. Grossman, A. Nerode, A. P. Ravn, H. Rischel editors Hybrid systems, volume
736 of Lecture notes in computer science. Springer-Verlag, New York, 1993.

14. U. Ozgiiner, H. Goktas, H. Chan. Automotive suspension control through a com-
puter communication network. 1 t IEEE Conference on Control Application, 1992.

15. J. Br~uninger, R. Emig, T. Kiittner and A. LUffie. Controller Area Network for
Truck and Bus Application., SAE Transactions, v 99, sect 2, 1990, p 704-714.

Hybrid cc with Interval Constraints

Bjdrn Carlson * Vineet Gupta?*

Abstract. Hybrid cc is a constraint programming language suitable for
modeling, controlling and simulating hybrid systems, i.e. systems with
continuous and discrete state changes. The language extends the con-
current constraint programming framework with default reasoning and
combinators for programming continuous behavior. The most important
constraint systems used in Hybrid cc are nonlinear equations and ordinary
differential equations over intervals. We describe the implementation of
the Hybrid cc interpreter and constraint solvers, and evaluate the perfor-
mance using some example programs.

1 Introduction

Hybrid cc [GJS97, GJSB95] is a compositional, declarative language, based on
constraint programming, which enables modeling and simulation of hybrid sys-
tems in one framework. In Hybrid cc, a hybrid system is specified by a set of
constraints on its temporal behavior. Each constraint describes an internal rela-
tionship of the system, e.g. the heat loss of a container as a function of time, or
the acceleration as it depends on mass. The constraints are based on standard
formalisms used in physics and engineering, such as differential equations and al-
gebraic equations. Discrete events and state changes, such as turning on a heater
when the ambient temperature drops too low, are specified using the combina-
tors of concurrent constraint programming [Sar93] and default logic [Rei8O]. The
formal operational semantics of Hybrid cc is described in [GJS97].

This paper presents an implementation of Hybrid cc. We have chosen an in-
terval constraint system for our implementation, since this gives us the ability
to model some uncertainty in the parameters. The two most important classes
of constraints used in our implementation are (nonlinear) algebraic and ordi-
nary differential equations. Algebraic constraints are solved by interval propa-
gation using indexicals, interval splitting, the Newton-Raphson method and the
Simplex algorithm. Differential equations are integrated using a version of the
fourth-order Runge-Kutta method with adaptive stepsize, modified for interval
variables. We use constraint propagation to solve the simultaneous differential
equations.

Interval constraints provide Hybrid cc with the expressive power required for
many modeling problems [GSS95], where inequalities are used to express physical

Netscape Communications, 650 E. Middlefield Road, Bldg.1, Mountain View CA
94043; bjornOnetscape .com

S Caelum Research Corporation, NASA Ames Research Center, M/S 269-2, Bldg 269,
Rm 127, Moffett Field CA 94035, vgupta~ptolemy.arc.nasa.gov

81

constraints like bounds on force magnitudes etc. In addition, many physical
systems are imprecise in nature, i.e. we cannot construct a perfectly accurate
model. The imprecision is captured by interval constraints. By using constraint
propagation inside the numerical integrator we are further able to strengthen
the precision of the integration by adding redundant constraints, which narrow
the divergence (see example in Section 3) that follows from imprecise initial
conditions.

Our implementation is based on an interpreter and compiler written in C and
Yacc. The compiler translates each program into a graph of expressions, which
is interpreted combinator by combinator. The interpreter keeps a constraint
store similar to the store of traditional constraint programming languages. The
memory is managed using a conservative garbage collector for C.

The implementation is easily embeddable in other systems. For example, we
have integrated Hybrid cc with Java, both as a Win32 dynamic library with an
API for compiling and running Hybrid cc under Windows 95 and Windows NT,
and as a remote procedure call interface for compiling and running Hybrid cc
remotely. We have also developed a modeling client in Java with support for
visual Hybrid cc programming, and graphical output, both as graph plots and
2.5 D animations generated by sampling variables during the execution of an
Hybrid cc program.

The performance of Hybrid cc on interval constraint benchmarks shows that
.its interval propagation is comparable with the best interval solvers e.g. clp(Newton)
[VMK95]. Clearly, our interval version of the Runge-Kutta method is not as fast
as standard libraries for integration over real-valued variables. However, by using
interval variables and constraint propagation inside the numerical solver, we get
a more flexible and robust system for modeling with differential equations.

The paper is structured as follows. In Section 2 we give a brief introduction
to Hybrid cc and give its operational semantics. We then give a description of
the constraint solvers in Section 3. Finally we conclude with a comparison with
related work and an evaluation of the performance of the interpreter.

2 Hybrid cc - the language and its use

Hybrid cc extends concurrent constraint programming with defaults, continuous
combinators and objects. The basic set of combinators in Hybrid cc are as follows:

c tell the constraint c
if d then A if d holds, reduce to A
unless d then A reduce to A unless d holds
A, B parallel composition
new V in A V is local to A
forall C(X) do A do A[I/X] for each instance I of class C
hence A execute A at every instant after now

X(T1, ... , Tk) execute X with parameters T1 , . . ., Tk

The constraint system we have implemented is as follows.

82

Continuous Constraints. These constraints assert equalities and inequalities over
arithmetic terms. The syntax is as follows:

ContConstr ::= Term RelOp Term) cont(LVariable)
RelOp ::= = 1 >= I <=
Term ::= LVarExpr f Constant I Term BinOp Term I UnOp(Term)

Term'
LVarExpr ::= LVariable I UVariable.LVarExpr

BinOp ::= + I - I* I /I
UnOp::= - I sin cos I log I exp I prey

LVariables are variable names which start with a lowercase character while
Constants are floating point numbers. LVarExprs are LVariables or property
expressions (see paragraph below). The semantics of most constructs is as ex-
pected. For example, exp(x) is the exponential function e', Term' denotes the
derivative of Term with respect to the implicit variable time.

cont(x) asserts that x is continuous. Thus, always cont(x) asserts that x
is always continuous. The effect of asserting cont(x) in a point phase is that
the value of x in the point phase is set to the value of x at the end of the
previous interval phase. Note that asserting x' = 3 automatically asserts that x
is continuous, as differentiability implies continuity.

Ask arithmetic constraints also allow the Relops <, >,!=.

Non-arithmetic Constraints. These are constraints on non-arithmetic variables
- these variables do not change their values continuously. The syntax for such
constraints is given by

DConstr ::= UVarExpr I UVarExpr = DExpr
UVarExpr ::= UVariable I UVarExpr.UVarExpr

DExpr ::= UVarExpr I String [(Varnist)[VarList]HccProg
I (VarList)HccProgI UVarExpr(VarList)[VarList]HccProg

VarList ::= UVariable I LVariable I VarList, VarList

A UVariable is a variable name starting with an uppercase character. UVarExpr's
are UVariables or property expressions (see below). HccProg is any Hybrid cc
program, defined above.

A DConstr given as a UVarExpr is a signal constraint. These constraints
are typically used to communicate to some other statement of code that a certain
state is reached or a certain property is true.

A String is any string of characters enclosed within double quotes. These are
mostly used for properties of objects - i.e. Switch = "on".

The constraint X = (V1 ,..., Vk)HccProg sets up a closure definition. It
defines X to behave like AV 1 ... AVk.HccProg with the exception that X can
only be f3-reduced when all k arguments are given. The factorial function can
now be defined recursively as follows:

P = (n, m, Q){ if (n > 0) then new x in {Q(n - 1, x,Q), m = x * n},
if (n =0) then m = 1}

83

so the call P(n, x, P) computes x = n!. Closures are first class objects, and can
be passed around as data.

The constraint C = B(V 1,..., Vk)[Pl,..., PI]A sets up a class definition. It
defines a class C, where the constructor takes k arguments, and the properties
of C are named Pi, 1 < i < 1. Note that a property Pi can point to a closure,
this is how methods are defined. A property is treated as a variable inside A.
The functor B is optional, and if used, it must be constrained to a (base) class
from which C inherits all the properties. The code in A is used for defining any
instance of C (see below).

Objects are created using the same syntax as for a closure call C(Name, t,1..., tk)
where C will be bound to a class definition. The argument Name is mapped to a
property named Self. A property x can be referred inside the code as x, but from
outside it must be referred as Name.x. Any code in C is run with Self = Name
to initialize the object.

Ask constraints for the above have a similar syntax, except that the Relop
is also allowed. Note that asks do not make sense for closure and class definitions,
as we do not perform any unification on these. Thus asking A = (M)HccProg
will always answer unknown.

Computational model of Hybrid cc. The computational model is based on reduc-
tions of statements. Let o- denote a variable store, i.e. a set of interval constraints
x e [a, b], string, atom, closure and class constraints. An Hybrid cc system con-
sists of a store, a set of Hybrid cc statements, and some auxiliary structures.

An Hybrid cc system alternates between being in a point phase and in an
interval phase. The initial phase is a point. Let A be the initial statement to
be reduced. By the semantics of the operators, defined below, a stable point is
eventually reached for A (we assume throughout that no infinite sequence of re-
ductions occurs), where all constraints have been propagated, and all reductions
of statements in A have been completed.

Now, either the stable store o- is inconsistent, and the computation is aborted,
or it is consistent. In the latter case, the computation enters the interval phase.
The statements to be reduced in this phase consist of each B that was reduced
by hence B in the point phase, together with the statement hence B itself (re-
member that hence B means that B is to be reduced continuously and forever).

Similar to the point phase, all the statements in the set described above are
reduced until a stable point is reached. This determines the set of constraints
that are continuously true in the current phase, and the set of statements to
be reduced at the next point phase. The length of the interval phase is the
longest interval during which the constraint set is unchanged - this is ensured
by making sure that none of the asked constraints changes status. For example,
consider the program

x = 0, hence {x'= 1, if (x = 2) then y = 1} (1)

In the interval phase following x = 0, x evolves continuously according to x' = 1,
through the interval (0, 2) until x = 2 is about to become true. At this point the
set of constraints may change, so the next point phase is started.

84

We first describe the reduction rules for each operator of Hybrid cc, and then
provide the algorithm for the interpreter. The following reduction rules apply in
either phase. F denotes a set of Hybrid cc program fragments, 0 denotes the store,
next the set of program fragments to be run in the next phase, and default
a set of suspended else statements. The expression o H- c denotes entailment
checking.

Tell ((F, c), o-, next, default) -+ (FV, o- U {c}, next, default)

Ask o- u- d((F, if d then A), o-, next, default) -+ ((F, A), o-, next, default)

Unless ((F, unless d then A), o-, next, default) --*
(F, a, next, (default, unless d then A))

Par ((F, (A, B)), Lo, next, default) -+ ((r, A, B), o-, next, default)

Forall u I- IT, ... In are instances of C
((F, forall C(X) do A), o-, next, default) --

((F, A[I 1/X] .. ., A[II/X]), o-, next, default)

New ((r, new X in A), a, next, default) -- ((F, A[Y/X), -, next, default)
(Y new)

Call P = (V,,...,Vk)A
((rF,P(, . . .1 , 4)), -, next, default) -*

((F, A[ti/V 1 , ... , tk/Vk]), o-, next, default)

The rule for hence A differs in point and interval phases.

Hence Point ((F, hence A), o-, next, default) -+

(F, o-, (next, hence A), default)

Hence Interval ((F, hence A), o-, next, default) -+
((F, A), o-, (next, A, hence A), default)

The tell rule propagates the effects of the constraints using the algorithms
described in the next section. The combinator forall also suspends such that
if any further instance I of C is created in the current phase, the combinator
adds A[I/X] to F. Similarly, for o- I- c, if c is neither detected true or false in
the current store, the statement that contains c is suspended and reconsidered
whenever any of the variables in c changes value (e.g. is pruned).

The algorithm for the interpreter is the same in both phases, except for the
integration at the end of the interval phase. It involves the following steps:

1. Run the reduction rules on the current (F, o-, next, default), till no further
reductions can take place.

2. If a- is inconsistent, return 0.
3. If default is empty, return 1.

85

4. Remove one statement from default- unless c then A. If o- - c, go to step
3.

5. Add A to F. Run the interpreter on the current state. If the result is 1 and
a V c, return 1.

6. Undo the effects of the previous step by backtracking. Run the interpreter
on the current state. If the result is 1 and o I- c. return 1. Otherwise return
0.

Note that the effect of the last three steps is that a maximal set of defaults
is chosen and executed (similar to the maximal extensions of [Rei80]). This
is similar to the causal loops in synchronous languages [Hal93, BB91, Har87,
SJG96]. There can be many different maximal sets, our interpreter chooses any
one randomly. For example unless X then Y, unless Y then X can reduce
to either X or Y but not both. If no maximal set exists, as for the statement
unless X then X, then the computation must be aborted.

A Hybrid cc program A is run as follows.

1. Run interpreter with F = A, and empty o, next and default in the point
phase. If the result is 0, abort.

2. Run the interpreter in the interval phase with r = next, as returned by the
point phase. o-, next and default are again empty. If the result is 0, abort.
Record all the tells, and also the ask constraints that were checked during
the phase.

3. Integrate the arithmetic constraints that were told in the previous step,
until one of the ask constraints changes status (i.e. goes from false to true
or unknown, etc.). Go to step 1 with F = next.

Hybrid cc also contains various constructs from synchronous programming,
e.g. do A watching c, when c do A, but since their behavior can be derived
from the behavior of the above constructs we omit them here.

Implementation. Our interpreter implements essentially the above algorithm,
with a few changes. For example, the interpreter is not recursive, but uses
stacks for managing the backtracking. The compiler of Hybrid cc straightfor-
wardly translates each statement A into an expression graph, where each node
corresponds to an operator of the language. We optimize memory by sharing
code as far as possible.

We omit a detailed description of the implementation, since most of it is
based on standard techniques for how a concurrent constraint language based
on reductions is implemented, e.g. we have borrowed from AKL and cc(FD)
[HSD92, Jan94] in how constraints and suspensions are treated, how memory is
managed (using a conservative garbage collector for C), and how backtracking
is implemented (using choicepoint and trail stacks).

86

3 The constraint solvers

3.1 Nonlinear equations

We consider in the following only constraints of the form f(x) = 0, as all
other constraints can be 'reduced to this form by introducing slack variables.
Interval pruning is used as the basic means for constraint solving. We have
implemented four pruning operators: indexicals, interval splitting, the Newton-
Raphson method, and the Simplex method. The pruning is hence stated as:
given f(x) = 0 and an interval constraint x E [a, b] for x, apply one or more
operators to f(x) to compute a new interval [a,, bi] C [a, b] for x. If this fails,
the constraint is deemed inconsistent.

An indexical is the fastest way to update the interval for x [HSD92, Car95].
Given f(x, y) = 0, we try rewriting the constraint in an explicit form x = g(y),
for some term g. Now x is set to [a, b] ng(I/y), where y E I holds in the current
store, and g is evaluated over intervals.

For example, consider x + y = 0, x C [0,3], and y C [-1,-2]. Then the
indexical x = -y is used to set x to [1, 2].

Splitting of intervals is used to narrow the interval for x by splitting it re-
cursively. Given f(x, y) = 0, x C [a, b], y E I, we split [a, b] until the small-
est a, E [a, b] is found such that 0 C f(a,, I). Hence, if 0 E f([a, '-]), then2]

al C [a,] and otherwise a, E [a•-, b]. Similarly, b, is computed, thus
x E [ai, bi].

For example, given x 2 = 1 and x C [-oo, oo], it follows that 0 E [-oc, 0],
but 0 ý [-eo, -100] say, so a, is determined to be in [-100, 0]. Eventually, a, is
determined to be -1.

The third pruning method is the Newton-Raphson method adapted to intervals[AH83,
VMK95]. As in splitting, the leftmost and rightmost zeros for f(x) are computed
separately. Let f'(x) = dj() I = [a, b] such that 0 E f(I) and 0 0 f'(I) (thisdx

guarantees that there is only one zero in I, and can be accomplished by split-
ting), and let miE Ii. Let 10 I, and define 1i+1 = Ii f(mi - L(?}). Iterate
until 1i = 'i+1. It follows that 0 E f(Ii).

In practice, we combine splitting and the Newton-Raphson method for quick
results, just as in clp(Newton). Splitting is useful in reducing the size of an in-
terval, but is inefficient in pinning down the roots exactly. The Newton-Raphson
method finds roots very quickly, if they are known to lie in a small interval. For
example, given x2 = 1 and x E I = [-oo, oo], we split I recursively until I is
split down to [-2, -1]. By setting 10 to I, and applying the Newton Raphson
method, Ii = [-1, -1] is produced. Similarly, [1, 1] is produced for the rightmost
zero. Hence, the final interval returned by the pruning operator is [-1, 1]. Note
that this interval is clearly an approximation to the set of solutions, since only
-1 and 1 are solutions to the equation.

The Simplex method is used as a global pruning method and is applied only at
certain times due to its high cost, unlike the previous lightweight methods, which
are applied incrementally. It is useful for detecting inconsistent conjunctions that
otherwise lead to slow convergence of the propagator, a well-known problem

87

when inequalities are used. For example, consider the conjunction {x < y-e, y •
x - c}, for some small c > 0. This conjunction is inconsistent but the pruning
algorithm reduces the size of the intervals by c at each iteration, forcing a large
number of iterations before an inconsistency is detected.

Given a set of constraints C = {c, ... , ck}, we linearize them into a set of
linear constraints L = {fl = 0, .. . , lk = 0}, by replacing each nonlinear term, e.g.
xy, by a new variable z uniformly throughout the set C. The detection of common
subexpressions is useful here. Hence, each li is of the form ao +a, z, +...+ an zn =
0, for some constants aj and variables zj. Note that C is consistent implies L is
consistent.

Now, we apply the Simplex method to L to check whether L is inconsistent,
using standard techniques. If successful, the Simplex algorithm can be used again
for pruning the original variables of C. For each such variable x, a, (the new
minimum value of x) is computed by minimizing x, and b, (the new maximum)
by maximizing x.

By applying the above, a conjunction such as x + y = 3, 2x - y = 0 produces
the interval constraints x E [1, 1] and y E [2, 2] immediately, whereas the other
operators produce no pruning. The conjunction x < y - c, y • x - c is shown to
be inconsistent.

Implementation. Internally, each constraint c is decomposed into a set of pairs,
(x, f), where x is a variable in c and f is either the indexical that prunes x,
derived as above, or c itself. The latter is then used for splitting and Newton-
Raphson. Each variable y points to a set of such pairs, such that when y is
pruned, the variables dependent on y are also pruned. Prunings are propagated
by a variant of the arc-consistency algorithm (Figure 1).

We use an optimization based on the fact that decomposing a constraint
as above produces equivalent variants, and hence when one variant is true the
others are true too [Car95]. Hence, for each (x, f) that is dequeued, if f is marked
as entailed, the pair is ignored since no more pruning is generated by f. When a
pair (x, f) is enqueued, the list of variables of f is checked. If all of them (except
the slack variables) are bounded by an interval [a, a], f is marked entailed. All
pairs generated from the same constraint share the entailment mark, hence when
one is marked, they are all marked.

Telling in a point or interval phase. In a point phase, if we constrain the vari-
able x', then in addition to the propagation described above we infer that x is
continuous, and set its value to the limiting value in the previous interval phase,
if one exists.

In an interval phase, for an arithmetic constraint t = 0, for which t' is defined,
the arithmetic constraint t' = 0 is also added (this is done recursively while the
derivatives of all the variables are defined). For example, if x + y = 0 is added,
then x' + y' = 0 is added too, if x' and y' are defined in the current state.
This is sound, and improves the propagation and entailment checking by adding
redundant constraints.

88

int propagate(queue) {
while (queue is not empty) {

(var,constraint) = dequeue (queue);
if constraint is marked entailed continue;
if constraint is an indexical

interval = intersect (var,evalIndexical (constraint));
else

interval = project(var,constraint); // using splitting, NR
if interval is empty return 0;
if interval is a strict subset of var {

var = interval;
enqueue (var->constraints,queue);
if all variables in constraint are determined

mark constraint entailed;
}

}
return 1;

Fig. 1. Pseudo-code for the propagator

3.2 Entailment checking

Let the current store be o-. In the point phase, a constraint t = 0 is entailed if
t evaluates to [0, 0] in a, where each operator is evaluated over intervals rather
than points, and where a variable x is replaced by [a, b], where x E [a, b] belongs
to a-. Similar reasoning is applied to t < 0 and t < 0. We assume that each
arithmetic constraint is normalized to one of the forms above.

In the interval phase, if t = 0 was true in the previous point store, and t' < 0
holds in a, then t < 0 also holds in a. Similarly, for any positive natural number
n for which j(n) is defined, if t(') o 0 and t(') < 0 are true in a-, for all m s.t.
0 < m < n, t < 0 is true in a. The constraint t = 0 is consequently true in the
interval phase if t(m) = 0 is ruled true for all m for which t(P) is defined.

3.3 Ordinary differential equations

We use a version of Runge-Kutta integration with adaptive step-size for integrat-
ing the differential equations numerically[PTVF92] (although it is easy to add
other integration methods). The initial conditions of the integration are given
by the store from the most recent point phase.

The pseudo-code for the integrator is shown in Figure 2, where we give the
simpler fourth-order Runge-Kutta with no error checking to illustrate the inter-
play between propagation and integration.

We have made three changes to the basic Runge-Kutta algorithm. First, we
use interval arithmetic throughout. This makes the system more flexible since

89

integrate (diff-eqs,check-list) {
let h be the initial step size (0.1);
let V be the dependent variables of diff-eqs;
set the initial values of V by the store from the point phase;
propagate;

next:
integrate V;
if a constraint in check-list is overshot, backtrack and shrink h;
if a constraint in check-list changes state, stop;
go to next;

}

integrate V { // 4th order Runge-Kutta with no error-control
compute k1 from current x' (for each x in V);
for i in [2,4] {

initialize a new store;
update x (for each x in V) to compute ki;
propagate;
compute ki for current x' (for each x in V);

}
set new x = old x + i/6*kl + 1/3*k2 + 1/3*k3 + 1/6*k4;
propagate; // to get values of variables after time-step

Fig. 2. Overview of the integration procedure

we do not require specific initial conditions, e.g. a variable x can be constrained
to [0, 100] at the start of the integration. However, the interval arithmetic also
introduces a divergence problem. For some examples, the solution interval for a
variable x grows in size as the integration proceeds, i.e. we lose precision. We
are exploring methods for improving this automatically, but meanwhile we rely
on using redundant constraints to contain the divergence (see example below).

Second, each step in the integration includes propagation (but with no use
of the Simplex algorithm), so that we can solve simultaneous equations of an
arbitrary form. In the standard Runge-Kutta procedure, x,+, is computed from
xn (its previous value) by considering the explicit equation x' = f(x) and com-
puting X,+l by: Xn+l = Xn + L..lciki, and ki is defined as: k, = hf(x•,), ki =
hf(x,, +bilk, +.- .+b(i-1)ki-1), 1 < i < 6, where bij and ci are constants given
by the Runge-Kutta formulas, and h is the time step.

In Hybrid cc we do not necessarily have the equation x' = f(x), but rather one
or several equations on x', e.g. (x') 2 = x. We thus compute ki by first setting each
dependent variable (x for which x' is constrained) to xn +bil 1 k, +.- -+bi(i-)ki-,
where Xn is the previous interval for x, and then propagating, in an initially
empty store ci, the consequences of the differential equations. At quiescence, ki
is set to [hai, hbi], where x' is constrained to [ai, bi] in o-i. Afterwards, each ui is

discarded.

90

Example 1. The following system of equations describes the tank temperature(t)
and concentration of a substance a (ca) in a tank being stirred (the other pa-
rameters are constants) [Kay96].

Ca-- _i-c_ -koeEltca

t - - koe-E/tca

This system is highly nonlinear due to the exponential containing t. It diverges
very quickly given an initial state such as 0.933 < Ca < 0.934, 353.358 < t _<

353.36 - after some steps t and ca both become [0, oc). Adding the constraints
c, > 0.8445 and t' < 0 to the set of differential equations keeps the intervals
for ca and t considerably narrower (the width being of the order 10-2). These
constraints can be obtained automatically by using qualitative methods [Kay96].

Third, the integration is made to interrupt exactly at the time instant when
some constraint in a given list of constraints to be checked changes its state.
This is necessary to make the results of the implementation be independent of
the step-size, modulo numerical errors. Thus in the program 1, x = 2 is false
while x e (0, 2), but when the integrator reaches x = 2 we must switch to the
point phase. The point when the integrator stops is called the breakpoint.

The standard Runge-Kutta procedure however does not know about the
breakpoints, so it may overshoot, e.g. in the program above, go from x = 1.9 to
x = 2.3 in one step, depending upon the current integration stepsize. Hence, we
must force the integrator to consider every "important" point.

We detect overshooting by recording, for each given constraint to be checked,
whether it is initially true or false or neither. For each integration step, we check
whether the status of any constraint changes, e.g. goes from true to false. When
we detect overshooting, we backtrack, i.e. we undo the most recent integration
step, and try a smaller step size to find the point when the break should happen
exactly, e.g. in the program above, force the integrator to reach x = 2. Currently,
we use a simple linear interpolation technique for computing the smaller step
size, though more sophisticated techniques are possible.

4 Examples and Evaluation

We now give an idea of the performance of Hybrid cc on some representative
benchmarks picked from [vHLB97]. We show the runtimes of Hybrid cc computing
all the solutions to each problem on a SPARCstation 20 system. For example,
the Broyden Banded functions are computed by the following constraints:

f x,..ý= xi(2 +5x) +l1- j~Xj(+ Xj) (1 < i<n)

where J2 = {j I j # i&max(1, i - 5) _< j < min(n, i + 1)}, which for n = 3 is
written in Hybrid cc as:

91

0 = x1 * (2 + 5*xi^2) + I - x2*(x2+1),

0 = x2 * (2 + 5*x2-2) + 1 - xi*(xl+i) - x3*(x3+1),

0 = x3 * (2 + 5*x3-2) + 1 - xl*(xi+i) - x2*(x2+1),

-1 <= xl, xl <= 1, -1 <= x2, x2 <= 1, -1 <= x3, x3 <= 1

For these problems, the constraint solver of Hybrid cc finds the unique solution
to within 10-6.

The other examples we have considered are the Mor6-Cosnard nonlinear in-
tegral equations, an interval arithmetic problem (i4), and a combustion problem
[vHLB97]. We give the runtimes for some different n in the case of the Broyden
Banded, and the Mor6-Cosnard equations.

Example run-time (sec) Example run-time (sec)

Broyden 10 0.13 Mor6-Cosnard 40 39.8
Broyden 40 0.6 Mor6-Cosnard 80 436
Broyden 160 2.6 interval 4 21.2
Mor&-Cosnard 10 0.4 combustion 6.2
These numbers compare with the numbers published for clp(Newton) as fol-

lows. In the Broyden and Mor6-Cosnard, Hybrid cc is between 3 and 5 times
as fast, taking the difference between the hardware used into account. For the
interval-4 example, Hybrid cc is twice as fast as clp(Newton), and for the com-
bustion example 50% slower.

We present a longer example illustrating the use of Hybrid cc in modeling a
hybrid system. The scenario modeled is a pool table with several balls rolling
on it with various initial velocities. The balls keep rolling in a straight line until
they hit another ball or the edge of the table or fall into a pocket, or come to
rest due to friction.

The class Ball defines a ball with initial parameters giving its position and
velocity. Its properties are its position and velocity, and some signals to notify
changes in its velocities etc. The initial velocity and position is set up. The
direction of motion of the ball is also computed as cos 2 0, where 0 is the direction
of motion of the ball. The ball is active until it falls into a pocket, indicated by
trap Pocketed in ... - at that moment all program fragments associated
with the ball are terminated. While the ball is rolling, its velocity decreases
according to friction. If ChangeX or ChangeY become true, then the program
issuing the Change signal computes the new velocity. lcont (x) asserts that the
variable x is left continuous, and rcont (x) asserts that the variable x is right
continuous.

The closures Edge and Collisions keep checking if the balls collide with the
edge of the table or with each other. In each case a new velocity is computed for
the ball(s) involved, according to the standard laws of kinematics. The closure
Pocketed checks if any ball has fallen into a pocket, and issues the appropriate
signal to terminate the ball's existence.

Ball = (initpx, initpy, initvx, initvy)
Epx, py, vx, vy, ChangeX, ChangeY, Pocketed] {

px = initpx, py = initpy,

92

vx = initvx, vy = initvy,

new direction in {
direction =vx-2/(vx-2 + vy-2),

do always{
cont(px), cont(py),

lcont(vx), lcont(vy),

if (ChangeX 11 ChangeY) then direction = vx'-2/(vx-2 + vy-2),

unless (ChangeX 11 ChangeY) then direction' =0,

px' vx, py' = vy,

unless ChangeX then{

cont(vx),

if (vx < 0) then vx' = fric *direction-O.6,

if (vx > 0) then vxI = -fric *direction-O.5,

if (vx 0) then vxI = 0

unless ChangeY then f

cont(vy),
if (vy < 0) then vy' = fric *(I. - direction)-06
if (vy > 0) then vy' = -fric *(1 - direction)-0.6,

if (vy 0) then vy' = 0

} watching Pocketed

Edges = ý

always forall Ball(X) do{
if (X.px = radius IIX.px = xMax - radius) then {
XEdgeCollis ion,
X.ChangeX, X.vx -prev(X.vx)

if (Xpy = radius 11 X.py = yMax - radius) then f

YEdgeCollis ion,

X.ChangeY, X.vy = -prev(X.vy)

Collisions = O

always forall Ball(A) do forall Ball(B) do

if (A < B) then //not the same ball

if ((B.px - A.px)-2 + (B.py - A.py)-2 =4*radius-2) then{

Collision,

if (A.px = B.px) then f

A.ChangeY, B. ChangeY,
A.vy =prev(B.vy),

B.vy = prev(A.vy)

93

if (A.px < B.px) then
A.ChangeX, B.ChangeX,
A.ChangeY, B.ChangeY,
new c in new ix in f

c (A.py - B.py)/(A.px - B.px),
ix (prev(B.vx - A.vx) + c*prev(B.vy - A.vy))/(l+c-2),
B.vx = prev(B.vx) - ix,
B.vy = prev(B.vy) - c*ix,
A.vx + B.vx = prev(A.vx + B.vx), // X-momentum
A.vy + B.vy = prev(A.vy + B.vy) // Y-momentum

}

}

Pockets = ()
always forall Ball(X) do

if (prev(X.px)-2 + prev(X.py)-2 <= pocket-2
IIprev(X.px)-2 + (prev(X.py)-yMax/2)-2 <= pocket-2
Ilprev(X.px)-2 + (prev(X.py)-yMax)-2 <= pocket-2
II(prev(X.px)-xMax)-2 + prev(X.py)-2 <= pocket-2
11(prev(X.px)-xMax)-2 + (prev(X.py)-yMax/2)-2 <= pocket-2

1I(prev(X.px)-xMax)-2 + (prev(X.py)-yMax)-2 <= pocket-2)
then

X.Pocketed

always { radius = 3, xMax = 150, yMax = 300, pocket = 7, fric = 1},
Ball(Bi, 10, 10, 25, 25),
Ball(B2, 20, 11, -35, 55),
Ball(B3, 80, 51, -15, 49),
Edges),
Collisions 0,
Pocketso)

The last few lines set up the initial configuration. We ran this program for
74 simulated time units, after which all the balls were either at rest or pocketed
- the total time of execution was 0.77 seconds on an UltraSparc 2.

5 Related work

The SHIFT programming language developed at UC Berkeley [DGS96, SDG96]
is also intended for simulation of hybrid systems. Programs in SHIFT are syn-
chronous concurrent collections of hybrid automata [ACH+95]. Computations
proceed in alternating point and interval phases, as in Hybrid cc. SHIFT has
an object-oriented framework for constructing models, and also has constructs

94

with side-effects which are useful in writing state-machines. However it is not
a declarative language - the transitions and states have to be explicitly pro-
grammed. The interaction of concurrency and side-effects also causes semantic
problems in maintaining determinism. In the current implementation of SHIFT,
only fixed step-size Runge-Kutta integration is supported, and breakpoints can
occur only at the end of a step.

Differential equations with intervals are an active field of research, we will not
attempt to provide a survey here. Most of the research is concerned with using
intervals to provide validated solutions to differential equations, i.e. a statement
of the form that the solution must lie in a certain interval. For a starting point
into the field, see the tutorial by George Corliss [Cor95].

The field of interval reasoning is even larger. Several systems for interval con-
straint solving have been built, one of the recent ones is clp(Newton) [VMK95,
vHLB97], which uses similar propagation methods, but also exploits multiple rep-
resentations of constraints. This naturally leads to better pruning of the intervals
in many problems. However the above comparison shows that in many problem
instances, the performance of our system is comparable to that of clp(Newton).

6 Conclusion and Future Work

We have presented an implementation of a programming language for hybrid
systems, Hybrid cc. The key feature of the language, which is reflected in the
implementation, is that it is constraint-based, using interval constraints. The
interval constraints are necessary to make Hybrid cc applicable to many model-
ing problems, and the interval propagation used inside the numerical solver for
differential equations improves the accuracy of the integration.

Hybrid cc will be used to construct real-life models for engineering and ed-
ucational purposes. We have already started some work in this direction, and
plan to use Hybrid cc for simulation of rovers and spacecraft.

References

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analy-
sis of hybrid systems. Theoretical Computer Science, 138:3-34, 1995.

[AH83] Gotz Alefeld and Jurgen Herzberger. Introduction to Interval Computations.
Academic Press, 1983.

[BB91] A. Benveniste and G. Berry. The synchronous approach to reactive and
real-time systems. Proceedings of the IEEE, 79(9):1270-1282, September
1991.

[Car95] Biorn Carlson. Compiling and Executing Finite Domain Constraints. PhD
thesis, Uppsala University, 1995.

[Cor95] G. F. Corliss. Guaranteed error bounds for ordinary differential equations.
In W.A.Light and M.Marletta, editors, Theory of Numerics in Ordinary and
Partial Differential Equations, volume IV of Advances in Numerical Analy-
sis, pages 1-75. Oxford University Press, 1995.

95

[DGS96] Akash Deshpande, Aleks Gollu, and Luigi Semenzato. The SHIFT pro-
gramming language and run-time system for dynamic networks of hy-

brid automata. Technical report, UC Berkeley PATH Project, 1996.

www-path. eecs. berkeley. edu/shift/doc/ieeshift .ps.

[GJS97] Vineet Gupta, Radha Jagadeesan, and Vijay Saraswat. Computing with
continuous change. Science of Computer Programming, 1997. To appear.

Available from http://ic.arc.nasa.gov/people/vgupta.
[GJSB95] Vineet Gupta, Radha Jagadeesan, Vijay Saraswat, and Daniel Bobrow. Pro-

gramming in hybrid constraint languages. In Panos Antsaklis, Wolf Kohn,

Anil Nerode, and Sankar Sastry, editors, Hybrid Systems II, volume 999 of
Lecture notes in computer science. Springer Verlag, November 1995.

[GSS95] Vineet Gupta, Vijay Saraswat, and Peter Struss. A model of a photocopier

paper path. In Proceedings of the 2nd IJCAI Workshop on Engineering
Problems for Qualitative Reasoning, August 1995.

[Hal93] N. Halbwachs. Synchronous programming of reactive systems. The Kluwer
international series in Engineering and Computer Science. Kluwer Academic
publishers, 1993.

[Har87] D. Harel. Statecharts: A visual approach to complex systems. Science of

Computer Programming, 8:231 - 274, 1987.
[HSD92] Pascal Van Hentenryck, Vijay A. Saraswat, and Yves Deville. Constraint

processing in cc(fd). Technical report, Computer Science Department,
Brown University, 1992.

[Jan94] S. Janson. AKL - A Multiparadigm Programming Language. PhD thesis,
Uppsala University, 1994.

[Kay96] Herbert Kay. Refining Imprecise Models and Their Behaviors. PhD thesis,
University of Texas at Austin, 1996.

[PTVF92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Nu-
merical Recipes in C. Cambridge University Press, 1992.

[Rei80] Ray Reiter. A logic for default reasoning. Artificial Intelligence, 13:81 -

132, 1980.
[Sar93] Vijay A. Saraswat. Concurrent constraint programming. Doctoral Disserta-

tion Award and Logic Programming Series. MIT Press, 1993.
[SDG96] Luigi Semenzato, Akash Deshpande, and Aleks Gollu. The SHIFT ref-

erence manual. Technical report, UC Berkeley PATH Project, 1996.
www-path.eecs.berkeley.edu/shift/doc/shift.ps.gz.

[SJG96] V. A. Saraswat, R. Jagadeesan, and V. Gupta. Timed Default Concurrent
Constraint Programming. Journal of Symbolic Computation, 22(5-6):475-
520, November/December 1996. Extended abstract appeared in the Proceed-

ings of the 22nd ACM Symposium on Principles of Programming Languages,

San Francisco, January 1995.
[vHLB97] Pascal van Hentenryck, Michel Laurent, and Frederic Benhamou. Newton:

Constraint programming over non-linear constraints. Science of Program-
ming, 1997. to appear.

[VMK95] Pascal Van Hentenryck, David McAllester, and D. Kapur. Solving polyno-

mial systems using a branch and prune approach. SIAM Journal of Nu-
merical Analysis, 1995. (Accepted). (Also available as Brown University

technical report CS-95-01.).

Reachability Analysis via Face Lifting*

Thao Dang and Oded Maler

VERIMAG, Centre Equation, 2, av. de Vignate, 38610 Gi~res, France,
{Thao.Dang, Oded.Maler}limag. fr

Abstract. In this paper we discuss the problem of calculating the reach-
able states of a dynamical system defined by ordinary differential equa-
tions or inclusions. We present a prototype system for approximating
this set and demonstrate some experimental results.

1 Introduction

One of the main activities in verifying a discrete system consists in finding the
set of system states which are reachable, via the transition relation, from a given
initial set of states (control synthesis for discrete-event systems [RW89] can ul-
timately be reduced to some variant of reachability analysis [AMP95-b]). For
small finite-state systems this is done using simple graph algorithms which ma-
nipulate set-theoretical representations of the reachable sets. For systems which
are very large, or even infinite, symbolic methods are used, that is, the set of
states reachable after k steps of the system is represented by some formula rather
than being enumerated explicitly.

Some of this technology has been exported to certain classes of hybrid systems
which deserve to be termed piecewise-trivial dynamical systems. These systems,
such as timed automata [AD94] or PCD systems1 [ACH+95], [AMP95-a] exhibit
a trivial dynamics in the continuous phase, and all their complexity is due to
the interaction between this dynamics and the discrete transitions. For such
systems, given some initial polyhedral subset of the state-space, the sets of all
its successors via the continuous dynamics can be calculated by straightforward
linear algebraic calculation. Even with this simplicity, the reachability problem
for such systems is undecidable or even worse ([HKPV95], [AM95]). A practical
conclusion from the experience with this class of systems is not to look for fully-
automatic decision procedures but rather for more modest goals while trying to
analyze continuous systems.

In this paper we discuss the problem of extending the methodology of cal-
culating reachable sets to systems with non-trivial continuous dynamics and
no discrete dynamics at all,2 namely systems defined by ordinary differential

* This research was supported in part by the European Community project HYBRID

EC-US-043. VERIMAG is a joint laboratory of CNRS and UJF.
Dynamical systems with piecewise-constant derivatives; The term Linear Hybrid Au-
tomata used in [ACH+95] is unfortunate and causes confusion with linear systems.

2 Discrete transitions can later be incorporated naturally into the continuous tech-
niques, if and when such techniques are established.

97

equations. We formulate the problem and describe a technique, suggested by M.
Greenstreet [G96], for over-approximating reachable sets. We then introduce a
variation on this technique which can be applied more easily to more than two
dimensions. Finally we show the results obtained by an experimental implemen-
tation of the algorithm for both linear and non-linear systems.

2 Statement of the Problem

2.1 Deterministic Systems

Definition 1 [Dynamical System.] A differential dynamical system is S
(X, f) where X = Jn is the Euclidean space and f : X -+ X is a continu-
ous function (vector field). A behavior of S starting from a point xo E X is a
trajectory 4: 1R+ -+ X satisfying 6[0] = xo and for every t,

d6[t]/dt = f(6[t]).

People less pedantic than the average formal methodologists would simply say:

S= f(W).

It can also be expressed in a somewhat more operational manner:

X[t] = Xo + f(6[r])dT.

The set of states reachable by the system from x0 is defined as

Reach(xo, f) = {f[t] : t > 0}.

Typically when we want to prove safety properties of such a system we would
like to show that Reach(xo, f) n Q = 0 for some Q C X. Except for the rare
case when Reach(xo, f) has a closed-form solution, such as {fxoeAt : t E R+}

for linear systems, the common way to achieve that goal is to use numerical
integration to calculate an approximation of Reach(xo, f) incrementally. This
means starting from 6[0] = x0 and applying some iteration

6[(n + 1)A] = 6[nA] + g(6[nA])

where A is the discretization step and g is supposed to be a good approximation
of the integral.

According to the strict standards of discrete verification, this approach is far
from being satisfactory: first, we compute 6 only for a small subset of time points,
and we might miss a visit of the system in Q at some t, nA < t < (n + 1)A.
Secondly, even for points of the form t = nA, we compute only an approximation
of 6[t]. And finally, the calculation is not guaranteed to terminate (and if it
terminates, it is not always for a good reason). Termination of the calculation

98

of Reach(xo, f) means that the trajectory becomes periodic,3 i.e. 6[t] = [t]
for some t' > t, which may sometimes happen numerically only because we
approximate the ideal mathematical reals by a finite subset of the rationals.
Nevertheless, generations of mathematicians, pure and applied, assure us that
given reasonable f and Q, we can find A and g such that we need not worry
about the first two problems. As for the third one, we should accept it as a sad
fact of life, as do all engineers who use simulation methods.

To summarize, given a system (X, f), an inital state xo and a set of bad
states Q, we have a methodoloy, or a semi-algorithm (modulo some numerological
conditions) for verifying that from x0 you never reach Q:

o := x{o};
repeat i = 1,2...

R: Ri- 1 U Next(Ri-1)
until (Ri = Ri- 1) V (Ri n Q 5 0) V (The user gives up)

Here, Next(Ri) means just integrating numerically starting from the last element
of Ri. Up to this point this is nothing but rephrasing, in a somewhat awkward
manner, the common practice of simulation.

2.2 Non-deterministic Systems

In many situations we cannot be sure of the initial conditions nor of the dynamics
of the system. In most cases we will have an equation of the form

= f(x,u).

where u is some unobserved external disturbance, about which we know only
some constraints. 4 The behavior of the system resulting from interaction with
any admissible input u can be characterized using differential inclusion [AC84]
of the form

where F : X -+ 2X is roughly

U f(X, u).
U

This is the continuous analogue of a non-deterministic transition system. Such a
system, when started at some initial state x0 , usually produces dense bundles of
trajectories (solutions), which we denote by L(F, xo). The set of states reachable
from xo at time t (which was simply {•[t] : t E R+ } in deterministic systems) is
defined as

Reacht(xo,F) = 6[t].

tEL(F,xo)

3 Which is always the case in finite-state systems.
4 Things get even more complicated in control synthesis problems whose generic form

is i = f(x, u, v) where u and v are two different types of external inputs.

99

The set of all states visited during the interval [0, t] is

Reach[o,t](xo,F)= U Reach,(xo,F)
-E[o,t]

and the set of all reachable states is

Reach(xo, F) = Reach[o,,o] (xo, F).

In order to apply the symbolic verification methodology we would like to have
a diverging sequence to, t 1 ,... of time points and calculate a sequence Ro, R1 ...
such that Ro = {xo} and for every i, Ri = Reach[o,t,](xo,F). As in the case of
numerical integration of a single trajectory, the calculation of Ri+1 will be based
on f and Ri, and from a computational viewpoint, the main novel feature here
is the calculation of differential successors of a set of points rather than that of a
single point. This motivates us to attack first a slightly more restricted version of
the problem: calculating the reachable states of a deterministic system starting
from a set P C X, namely to find

Reach(P,f) = U Reach(x, f).
xEP

This problem already exhibits the major computational difficulty associated with
representing and simulating a set of trajectories (see figure 1 for an illustration
of the above notions).

Reach(xo, f) Reach(xo, F) Reach(P, f)

XO XO P

Fig. 1. Calculating reachable states for: 1) A deterministic system starting at a point,
2) A non-deterministic system starting at a point and 3) A deterministic system starting
at a set.

3 The Face Lifting Approach

We assume from now on that everything takes place inside a bounded subset of
X in which f is Lipschitz.

100

3.1 Arbitrary Polyhedra

The first ingredient of any solution is a formalism for representing subsets of X.
Not being computer algebraists, we restrict ourselves to polyhedral sets. These
are sets which can be written as boolean combinations of linear inequalities.5

Polyhedral sets come in two major varieties, convex and non-convex. Those of
the former type can be written as conjunctions of inequalities (intersections of
half-spaces) and they are uniquely determined by their sets of vertices.

If the initial set P is convex and f preserves convexity (as in the case of
linear systems), we are lucky because for every t we have

Reacht(conv(x1,. . ., xJ), f) = conv(Reacht(x1 , f),..., Reacht(xn, f))

where conv denotes the convex hull. With this property it would have been
sufficient to simulate a finite number of trajectories starting at the vertices.
However, in the case of arbitrary differential systems, the approximation of a
non-convex polyhedron by its convex hull is usually useless. Just consider what
such an approximation gives when P contains a bifurcation point.

The treatment of non-convex polyhedra poses enormous problems in terms
of representation, normal forms (which are important to detect the condition
Ri+1 = Ri), etc. In the sequel we present a technique, due to M. Greenstreet
[G96], which we call face lifting. In the abstract sense, face lifting can be applied
to systems in any dimension, but concretely, its practical application to 3 or
more dimensions is not at all evident.

The approach is based, first of all, on the following basic observation concern-
ing continuous trajectories: if some point y E Reacht (x, f) - P for an interior
point x E P, then there exists a point x' E bd(P) (the boundary of P) and t' < t
such that y E Reacht, (x', f). In other words,

Reach[o,t] (P) = P U Reach[o,t] (bd(P)).

Hence, when coming to calculate Ri+1 from Ri it is sufficient to look at the
boundary of the latter (the union of its faces in the case of polyhedral sets and,
in particular, its edges in 2-dim).

Consider a face e of a polyhedron such that it is included in the set charac-
terized by the linear equality a x = b. Let fe (x) denote the outward component
of f(x) relative to e, that is, the projection of f(x) on the normal to e, and let
f(e) denote its maximum over x E N(e), where N(e) is some neighborhood of
e. Clearly, if f(e) is negative, the face does not contribute new reachable states
which cannot be reached from other faces. Otherwise, for every A, one can find
an e such that all the points reachable from e in time A satisfy

a x < b + A .- (e) + E.

Geometrically speaking, this amounts to lifting the face e outward by A. f(e) + E
(see figure 2). (We omit some details concerning the relation between A,N(e),

5 If you want to impress non-logicians, you can say they axe possible models of sen-
tences in the first order theory of (1R, +, <) or something.

101

Sand the Lipschitz constant of f, which guarantees the desired property of
the approximation). This gives the following procedure for over-approximating
Reach[o, A] (P, f):

Calculate f(e) for every face e of P. Based on these find the appropriate 6
and push every e whose f(e) is positive by A . f(e) + e to obtain P'.

/V

v I el2 ". 1..•e' ~ . . e3:
V, .. vt/ • ,e

Fig. 2. A 2-dimensional example of the approach: a polyhedron P and a sample of the
values of f on its edges. Only edges ei, e2 and e3 have a positive outward component
of f and they are pushed into e'1 e'2 and e'a- The vertices {vi,. .. ,V4} are replaced by

{v~2.

By construction, we have Reach[o,A] (P, f) C_ P'. It can be shown that locally,
you can make the difference between the reachable set and its approximation as
small as you like, by taking smaller A. Better approximation can be achieved
by cutting a face into sub-faces whenever f has a large variation over the face.

However, there are cases where, in the long run, the method will produce un-
boundedly large over-approximations of Reach(P, f), as shown in figure 3.

We have implemented the method for dimension 2 and obtained results sim-
ilar to those obtained by other means (see section 4 for experimental results).
However the extension to more than two dimensions is difficult as the special
properties of the plane no more hold. In 1l2, an ordered set of vertices always
defines a unique polygon6 and the abstract operation of identifying a face can
be realized by picking a pair of neighboring vertices. Similarly, the face lifting
operation can ultimately be realized by replacing vertices in a list.

This is not true in more than two dimensions, where even convex polyhedra
can exhibit a complicated structure with degeneracy which makes face recogni-
tion very hard. Consequently, we have tried another approach, slightly inspired
by the basic ideas underlying the numerical solution of PDEs.

6 In fact, if we do not insist on connected polygons, it defines either the polygon or its

complement.

102

•---- - - - - - -

Fig. 3. A bad example: consider an axes-parallel rectangle and a constant vector field
f with non-zero components in both dimensions. The reachable set lies between the
two dotted diagonal lines, but the method will produce the whole upper-left orthant.

3.2 Griddy and Isothetic Polyhedra

Consider the sub-class of polyhedra which can be obtained by boolean combi-
nations of inequalities of the form xi < c where xi is a component of x and
c is an integer constant. 7 In other words, we partition the space into uniform
hyper-rectangles and consider all polyhedra which can written as unions of those
(see figure 4-a). We call these gi-iddy polyhedra.

Since such polyhedra are "finitely generated" (in a bounded sub-space) they
admit a very simple representation using n-dimensional 0 - 1 matrices. It is also
easy to determine whether an (n - 1)-dimensional hypercube is indeed part of
the face of the polyhedron, and there is a systematic simple way to enumerate
all the faces and calculate f, which is now always parallel to one of the axes (see
figure 4-a). With such a representation we can apply, in principle, face lifting in
any dimension.

Techniques developed for griddy polyhedra can be adapted to the more
general class of isothetic polyhedra, generated by arbitrary axes-parallel hyper-
rectangles. These can be represented by a non-uniform grid depending on the
represented polyhedron. The set of grid coordinates in any dimension consists
of all projections of vertices of the polyhedron (see figure 4-b) and may change
during the computation. The non-uniform grid has two main advantages over
the uniform one:

1. Space: a griddy polyhedron which can be decomposed into few large rectan-
gles can be represented more succinctly. However, when this method is used
to represent, say, an approximation of a circle, the grid becomes very dense
and this advantage is lost.

'~Of course, c can belong to the set of integer multiples of some rational constant as
well.

103

------- 7 , : . ._ ..

,. , . , ,.........

! -! - : ! .. -.. ":..! -. --- ----... . . :
: -,

(a) (b)

Fig. 4. (a) A Griddy Polygon. Some of the faces are annotated by their corresponding
outward directions. (b) An isothetic polygon and its associated non-uniform grid. Face
lifting can cause a refinement of the grid.

2. Expressive power and accuracy: with a fixed grid we need to push every face
further to the next integer value, which sometimes creates an unnecessary
over-approximation, beyond what is inherent in face lifting alone (see exam-
ple in the next section). With a variable grid we can push faces as little as
we want.

Both methods are not very space efficient and we are currently investigating
a canonical and much more succinct representation of these polyhedra.

4 Experimental Results

We have implemented griddy face lifting in 2 and 3 dimensions using the above-
mentioned representation methods. For the uniform grid we use simply an n-
dimensional array. For the non-uniform grid we use a linked list representation
which currently consumes much more computation time.

In both methods we decompose every face into elementary hyper-rectangular
elements and apply the basic operation of numerical optimization of f to every
such element. This is, of course, less efficient than a coarser decomposition of
the face into larger hyper-rectangles, an approach we intend to implement in the
future. On the other hand, this is better in terms of accuracy. All the results
described below, except for the 3-dimensional example, were obtained using the
fixed grid implementation.

4.1 Linear Systems in JR2

In figure 5 we demonstrate the behavior of the algorithm on various classes of
linear systems of the form t = Ax (see [HS74] for the classification). We treat
the following cases:

104

Type A Initial set

Center (0.0 -. '

Cet 3 .0-0.0) [-0.25,0.25] x [-0.25, 0.25](3.0 0.0

Node -5.0 0.0) [0.2,0.5] x [0.2,0.4]
0.0 -2.0)

Saddle 0-5.00.0) [0.0, 0.4] x [-0.0, 0.4]

(-2.04-.0\

Sink -2.0-3.0) [-0.1, 0.3] x [0.1, 0.3]Sin 3.0 -2.0

Sometimes, the use of a fixed grid generates an over-approximation which
covers all the space. This is evident in the case of a center where every edge will
have a non-zero outward component in some dimension.8 Consequently we have
changed in these cases the rounding rule to obtain the desired result, that is, we
push a face to the nearest grid unit and not necessarily outward. The price is
in not being an over-approximation anymore. Using a variable grid is another
way to solve this problem. Note that optimization of a linear f is much cheaper
computationally in the linear case.

4.2 Mixing Tank

This example, taken from [SKE97], is a typical non-linear equation encountered
in chemical engineering. The variables xi, x2 denote, respectively, the height and
the concentration of liquid in a mixing tank with two inlets (with different rates
and concentrations) and one outlet. The equation is

dr = a, - a2,ij7

'= a(1 - a4X 2)

With our choice of parameters, (1.322, 1.652) is an equilibrium state of the sys-
tem. In figure 6 the states reachable from an initial set [1.12 x 1.17] x [1.56 x 1.68]
are depicted, and one can see the convergence to the equilibrium.

8 At least, this case is not generic.

105

-. X1

x2

xl
xl

Fig. 5. Reachable sets of linear systems of type: 1) Center, 2) Node, 3) Saddle and 4)
Sink. The white rectangles denote the initial sets.

4.3 Airplane Safety

The next example is taken from [LTS97]. The state variables xl, x2 represent,
respectively, the velocity and the flight path angle. Their evolution is governed
by

aý 2
S= _a__ -- gsinx 2 +

- aLX1(1-cX2) _ DcosX2 +A 1 cx
m +1 M U2

106

x2111

'1121.3,5 2 X

!.=,_ =.I;xl

Fig. 6. Mixing Tank

The problem is to determine the safe subset of the state-space, i.e. the states

from which the system does not leave the envelope P defined as the rectangle
[Vmin, Vma.] x [Omin, ema=]. This is equivalent to calculating the complement
of the set of states reachable from X - P by the reverse system. The results,
depicted in figure 7 correspond to specific choices of values for parameters and
for the controls ul = Omin, U2 = Tma, (left) and ul = Oma=, U2 = Tmin (right).
The results are consistent with those obtained in [LTS97].

0.0
184.0

0.393

ganmma(rad)
gawma(tad). -

I___ __2_A i -0.393
0.0' 238.0 V(rn/s) ý40.0

Fig. 7. Airplane Safety

107

4.4 Linear Systems in IR3

In figure 8 one can see the reachable set of a 3-dimensional system with

starting from the initial region [-0.025,0.025] x [-0.1,0.1] x [0.05, 0.07].

Fig. 8. Reachable states (left) starting from an initial region (right) for a 3-dimensional
linear system.

5 Relation to other Work

There are various works concerning the calculation of reachable sets for differen-
tial inclusions. Many of these works are numerical analytic in nature, concerned
mostly with calculation of abstract error bounds and less with the crucial ques-
tions of data-structures for high dimensional sets.

The problem of calculating Reach(P, f) can be rephrased as a PDE9

0ý0
at=-grad(V).f8t

where p X x 1R+ -+ {0, 1} is defined as V(x, t) = 1 iff x E Reach[o,t] (P, f) and
in particular p(x, 0) = 1 iff x E P. Sometime a "continualized" version of V is

9 We owe this insight to P. Caspi [C93]. See also [TPS98] for a PDE-based approach.

108

used, namely a function W : X x JR+ -4 R such that W(x, 0) = 0 exactly when x
is on the boundary of P and f(x, 0) > 0 if x is inside P. Various methods exist
for tracking the evolution of W, see, e.g. [S96]. So far we have found no special
computational nor didactic advantage in viewing the problem as a PDE instead

of a direct ODE formulation, but this might change in the future.

In [PBV96] an alternative approach was suggested based on cutting the state-

space into cubes, and associating with every cube a rectangular differential in-

clusion which is a differential inclusion of the form ci < ii < di for every i,

with constants ci and di. The reachability problem is decidable for this class

of systems [PV94], and the idea here is to do exact calculations on an approx-
imate model, where the bounds on f are calculated in a preprocessing stage.

Similar to face lifting, this approach can guarantee, by refining the grid, error
bounds only for a finite time horizon. This approach has been applied to several

examples in [HW96] and in [SKE97]. Some of the ideas underlying face lifting
appear already in [KM91] where the authors try to prove a homomorphism from

a transistor-level differential model into an automaton. While doing so they also

cut the space into a grid and try to calculate the reachability relation among
cubes.

Finally, in [G96], [GM98], the authors try to extend face lifting to higher

dimensions using another strategy. They restrict themselves to polyhedra which
can be written as intersections of cylindrifications of two-dimensional (arbitrary)
polygons. This way all the operations are performed on the two-dimensional
projections of the polyhedron. There are obvious advantages and shortcomings
of this approach compared to the grid-based one, and only time will tell their

relative performances in practice.
Acknowledgment We thank Mark Greenstreet for introducing us to the face
lifting concept, and for answering many technical questions. Part of this work was
done while the second author was visiting Berkeley, benefiting from discussions
with P. Varaiya, S. Sastry, C. Tomlin, G. Pappas and many others. At VERIMAG
we are indebted to comments of E. Asarin, 0. Bournez and P. Caspi on dynamical
systems and to the help of Y. Raoul and S. Tripakis in software engineering.

References

[AD94] R. Alur and D.L. Dill, A Theory of Timed Automata, Theoretical Com-
puter Science 126, 183-235, 1994.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis and S. Yovine, The Algorithmic Anal-
ysis of Hybrid Systems, Theoretical Computer Science 138, 3-34, 1995.

[AM95] E. Asarin and 0. Maler, Achilles and the Tortoise Climbing Up the Arith-
metical Hierarchy, in P.S. Thiagarajan (Ed.), Proc. FST/TCS'95, 471-
483, LNCS 1026, Springer, 1995.

[AMP95-a] A. Asarin, 0. Maler and A. Pnueli, Reachability Analysis of Dynamical
Systems having Piecewise-Constant Derivatives, Theoretical Computer
Science 138, 35-66, 1995.

109

[AMP95-b] E. Asarin, 0. Maler and A. Pnueli, Symbolic Controller Synthesis for Dis-

crete and Timed Systems, in P. Antsaklis, W. Kohn, A. Nerode and S.
Sastry(Eds.), Hybrid Systems II, LNCS 999, Springer, 1995.

[AC84] J.-P. Aubin and A. Cellina, Differential Inclusions: Set-valued Maps and
Viability Theory, Springer, 1984.

[C93] P. Caspi, Global Simulation via Partial Differential Equations, Unpub-
lished note, Verimag, 1993.

[G961 M.R. Greenstreet, Verifying Safety Properties of Differential Equations,
in Proc. CAV'96, 277-287, 1996.

[GM98] M.R. Greenstreet and I. Mitchell, Integrating Projections, these proceed-
ings.

[HW96] T.A. Henzinger and H. Wong-Toi, Linear Phase-Portrait Approximation
for Nonlinear Hybrid Systems, in R. Alur, T.A. Henzinger and E.D. Son-
tag (Eds.), Hybrid Systems III, 377-388, LNCS 1066, Springer, 1996.

[HKPV95] T.A. Henzinger, P.W. Kopke, A. Puri and P. Varaiya, What's Decidable
about Hybrid Automata?, Proc. 27th STOC, 373-382, 1995.

[HS74] M.W. Hirsch and S. Smale, Differential Equations, Dynamical Systems
and Linear Algebra, Academic Press, 1974.

[KM91] R.P. Kurshan and K.L. McMillan, Analysis of Digital Circuits Through
Symbolic Reduction, IEEE Trans. on Computer-Aided Design, 10, 1350-
1371, 1991.

[LTS97] J. Lygeros, C. Tomlin and S. Sastry, Multiobjective Hybrid Controller
Synthesis, in 0. Maler (Ed.), Proc. Int. Workshop on Hybrid and Real-
Time Systems, 109-123, LNCS 1201, Springer, 1997.

[PBV96] A. Puri, V. Borkar and P. Varaiya, e-Approximation of Differential Inclu-
sions, in R. Alur, T.A. Henzinger and E.D. Sontag (Eds.), Hybrid Systems
III, 363-376, LNCS 1066, Springer, 1996.

[PV94] A. Puri and P. Varaiya, Decidability of Hybrid Systems with Rectangu-
lar Differential Inclusions, in D. Dill (Ed.), Proc. CAV '94, LNCS 1066,
Springer, 1996.

[RW89] P.J. Ramadge and W.M. Wonham, The Control of Discrete Event Sys-
tems, Proc. of the IEEE 77, 81-98, 1989.

[S961 J.A. Sethian, Level Set Methods : Evolving Interfaces in Geometry, Fluid
Mechanics, Computer Vision, and Materials Science, Cambridge, 1996.

[SKE97] 0. Stursberg, S. Kowalewski ans S. Engell, Generating Timed Discrete
Models of Continuous Systems, in Proc. MATHMOD'97, Vienna, 1997.

[TPS98] C. Tomlin, G. Pappas, and S. Sastry, Conflict Resolution for Air Traffic
Management: A Study in Multi-Agent Hybrid Systems, IEEE Trans. on
Automatic Control, to appear.

Automotive Control Revisited
Linear Inequalities as Approximation of Reachable Sets

I

Ansgar Fehnker *

CSI
P.O. Box 9010, 6500 GL Nijmegen, the Netherlands

ansgar@cs.kun.nl

ABSTRACT: Reachability analysis of hybrid system imposes restrictions on
the continuous and discrete behavior. In this paper a method is proposed to
approximate the reachable set of linear systems by linear inequalities. It allows
to use the full continuous dynamics of hybrid systems for reachability analysis.
This method is applied to an automotive control problem, which was presented
by Stauner et al. in [SMF97].

1 Introduction

This paper presents an approximation technique for reachable sets of hybrid
systems and applies this technique to a problem known from literature. Stauner,
Miller and Fuchs presented in [SMF97] an automotive control problem as real-
life benchmark problem for the analysis of embedded reactive systems. They
verified some safety-properties for a system which controls the height of one
wheel of a car. They determined upper and lower bounds on the height, they
showed that the (extended) controller does not change the height in bends,
and proved that two special control locations can not be attained at the same
moment. In addition Stauner et al. examined the step response (in the sense of
Control Theory) of the system.

Verification of safety properties, which impose restrictions on the reachable
states, requires the use of approximation techniques, because the exact reach-
able sets are difficult to compute and difficult to handle. In general there are two
possibilities to cope with this problem. First, one can use an approximation of
the hybrid system, i.e. specify a hybrid system with simpler continuous dynam-
ics, which includes the behavior of the original system. Stauner et al. used an
approximation of nonlinear hybrid systems by linear hybrid systems, i.e. systems
where the continuous behavior is governed by variables with piecewise constant
derivatives [SMF97, Sta97]. This method is based on the method presented in
[HH95, HWT96]. The second possibility is to approximate the reachable sets,
but to use (a slight approximation of) the full continuous dynamics of the orig-
inal specification. Puri, Borkar and Varaiya presented an approximation tech-
nique for Lipschitz differential inclusions [PBV95] using a small perturbation
of the original system. These perturbations use variables with piecewise con-

* Research supported by Netherlands Organization for Scientific Research (NWO)

under contract SION 612-14-004

111

stant derivatives. The approximation technique presented in this paper is of the
second type. It uses bounded polyhedra, which include the reachable sets, and
requires that the continuous behavior is governed by piecewise linear differential
equations.

The following section presents the HIOA model of Lynch et al. A short de-
scription of the automotive control problem is given in the third section. In

section 4 and 5 some aspects of linear inequalities and linear systems are dis-
cussed, leading to an approximation method. The last section presents some
results for the automotive control problem.

2 The HIOA model

We use the model of Hybrid I/O Automata (HIOA) by Lynch, Segala, Vaan-
drager and Weinberg [LSVW96] for the description of systems which show both
continuous and discrete behavior. This model allows shared variables as well as
shared actions. Within this model it is possible to reason about composition
of hybrid systems, implementation relations between systems and it allows to
describe the continuous behavior of hybrid systems separately from the discrete
behavior.

A hybrid I/O automaton (HIOA) A = (U, X, Y, Z", Zint, zout, 9, 2, w)
consists of:

- Three disjoint sets of input, internal and output variables U, X, Y, respec-
tively. Let V be the union of these sets. V is the set of valuations of V.
Valuations will also be called states.

- Three disjoint sets zin, Eint, Lout of input, internal and output actions. Z.,7
contains e, a special environment action, which models the occurrence of
input which is unobservable except (possibly) through its effect on input
variables. ZU denotes the union of the input, internal en output actions.

- A nonempty set 9, a subset of V, containing the initial states. This set is
closed under change of values for input variables.

- A set D C V x E' x V of discrete transitions. By definition each input action
of a HIOA is always enabled. The environment action only affects inputs and
the input variables may change, when a discrete transition occurs.

- A set of trajectories W over V. A trajectory w is a mapping from I to states,
where I is a left-closed interval of the time axis R_0 , with left endpoint equal
to 0. (In general it is sufficient to define the time axis as subgroup of the
real numbers with addition.) W must contain point trajectories, it has to
be closed under subintervals and if a trajectory w restricted to [0, t] is an
element of W for all t E IR->, then w has to be an element of W, too. We
assume in this paper that w is integrable.

An important concept of HIOA is that of hybrid executions. A hybrid execution
fragment a is an alternating infinite or finite sequence of trajectories and actions
a = w0a1w1 If a is a finite sequence then it ends with a trajectory. We call
a a hybrid execution, when the first state of a is an element of 0. A state s is

112

defined to be reachable if there exists a finite hybrid execution, with last state
equal to s.

The hybrid trace of an hybrid execution records the visible behavior of the
execution. The set of all hybrid traces describes the external behavior of a HIOA.
A HIOA A implements a HIOA B, if the traces of A are a subset of the traces of
B. A implements B requires that A and B are comparable, meaning they have the
same external actions and the same external variables. A simulation relation (or
just simulation) is usually used to prove that the traces of HIOA A are a subset
of the traces of a HIOA B. A simulation is a relation which maps all states of a
hybrid execution a of A to states of some hybrid execution of B, such that the
traces of these executions are the same. For more detail see [DL97] or [HSV94].

Complex hybrid systems can be modeled by composing HIOAs. Two HIOAs
A and B can be composed if they are compatible, which means they have no
output actions or output variables in common and no internal variable of either
is a variable of the other. The composition of two compatible HIOA is itself
an HIOA. The input variables of the composition are the union of A and B's
input variables minus the union of their output variables. The same holds for the
input actions. A HIOA is closed if there are no input actions or input variables.
Consequently the environment action has no influence on closed systems and can
be omitted in the specification. Considering the automotive control problem, we
will see in section 3 that the EHC and filtered environment are modeled with
input and output, but the composition of these has no input at all.

Hybrid systems typically use two types of variables: variables which range
over finite (or at most countable) sets, and variables which range over (a subset
of) R. The model of Alur et al [ACH+95] uses locations and data variables
for this purpose. We define VD as the set of discrete variables and VC as the
set variables ranging over reals. We can define V as VD U Vc, and the set of
valuations V as VD x Vc. We identify Vc with (a subset of) R'. Let SD an sc
denote the projection of the state s on VD and Vc respectively.

Transitions are specified in precondition/effect style (table 1 and 2). Pre-
conditions are predicates with variables from V. If a transition is enabled and
eventually taken, the state is changed according to the specification of the ef-
fect. If a precondition is true or the effect is defined by identity, it is usually
omitted. When a transition takes place, the values of the input variables may
change arbitrarily. We call a hybrid system clocked with sampling time ts ample,
if discrete transitions may only occur every tsample time units. See for example
table 2.

3 The System

This section presents the hybrid system used for the automotive control prob-
lem [SMF97] in terms of the HIOA model by Lynch et al. The model used by
Stauner et al. is followed as close as possible. For further technical details and a
motivation of the specific choices within this model see [SMF97] or [Sta97].

The system consists of different components. First, we have the chassis, whose

113

chassis

filter

wheel

Fig. 1. The EHC in its environment

height can be changed by pneumatic suspension with a compressor and an escape
valve. The height is measured by a low-pass filter, which filters disturbances of
high frequency, caused for example by holes in the road. The electronic height
control (EHC) uses the filtered height to decide, whether to use the compressor,
the escape valve, or to do nothing.

The chassis level is influenced by external disturbances and by the escape
valve and compressor. The rate of change of the height h of the chassis is the
sum of the changes due to disturbances, denoted by e, and the changes due
to compressor and escape valve, denoted by c. The continuous behavior of h is
modeled by the linear differential equation

S= e + c (1)

If the controller uses the escape valve, the height h decreases with a rate c in the
interval [evmin, evmax], while using the compressor increases the height h with
c E [cpmin, cPmarl]. The bounds of the disturbances are given by e E [emin, emax].
To ensure that the EHC is able to avoid unbounded increase or decrease of
height we assume emin = evma, and ema, = cpmin. Of course, one would prefer
more realistic and less restrictive assumptions as that the average influence of
the environment has to be smaller than the average influence by the controller.
Stauner et al. believed "(...) that the limits of the expressiveness of (linear)
hybrid automata are reached with statements of this kind" [SMF97, p. 144].

The filter keeps track of the height, with the restriction that it takes some
time until changes in height are properly detected. This feature is useful, because
it limits the influence of short and small disturbances. The filter is modeled by

1 = (h - t) (2)

Here the constant T determines the time the filter needs to adjust the filtered
height properly. The filter also has an input action back (synchronization label
seLf in [SMF97]), which allows to reset the filtered height to the setpoint sp.
The filtered environment (table 1) describes the behavior of the height and the

114

actions: continuous variables: init:
input: back input: c E R• e E [emin, emax]
internal: none internal: e, h E R h = sp
output: none output: f E R f = sp
discrete transitions:
back: Effect: f := sp
trajectories: w is an I-trajectory, if the following holds for all t E I:

w. = (h- f)
w.h = e + c
w.e r [eemin, emax]

Table 1. The filtered environment

filtered height due to input of the EHC and disturbances by the environment.
Initially the controller is in control location in-tolerance and neither the escape

valve nor the compressor are used, thus c = 0. If the filtered height exceeds an
upper limit otu, then the controller enters control location down, with effect that
the height decreases with a rate c E [evmin, evmax]. If the controller is in location
down and the filtered height gets smaller than a given upper limit itu, then the
controller re-enters control location in-tolerance and resets the filtered height to
the setpoint sp. Similarly there is a control location up, which is entered if the
filtered height f falls below a lower limit otl, with effect c E [cpmin, Cpmax]. In
this case the controller re-enters in-tolerance when f exceeds itl. To get a realistic
model we assume oil < itl < sp < itu < otu.

The controller uses different values for otl, itl, itu, otu depending on whether
the car is driving or stopped, denoted by indices d and s. If the controller leaves
in-tolerance it makes a nondeterministic choice between the modes driving and
stopped. The HIOA of the EHC (table 2)2 uses the modes s for the stopped car
and d for the driving car. The model assumes additionally that transitions can
only be taken every ts ample seconds.

In the remainder of this paper matrix and vector multiplication are used. We
assume that all matrices and vectors have elements in R and are of a proper
size. The block matrix (A) will be denoted as (A; B). AT and aT denotes the
transposition of the matrix A and vector a respectively. We assume a norm
like the Euclidean norm. The maximum, minimum, compactness of sets etc. are
defined with respect to this norm.

4 Transitions and Linear Inequalities

The composition of the EHC and the filtered environment has some useful prop-
erties, which allow a reachability analysis of this system. The system is clocked,
the enabling conditions of the transitions are defined by linear inequalities and

2 The hybrid automata used in [SMF97] uses on some places strict equalities like >.

115

actions continuous variables discrete variables
input: none input: f E R input: none
internal: stay internal: td:ok E t>0 internal: mode E {d, s}
output: to-down, output: c E R loc E {down, up,

to-up, in-tolerance}
back output: none

init: týock = 0 A c = 0 A loc = in-tolerance

discrete transitions:
to-down(m): to-up(m):
Pre: A tclock = tsample Pre: A tclock = tsample

Aloc E {in-tolerance, up} A loc E {in-tolerance, down}
"A (oc = up) -+ (m = mode) A (loc = down) -+ (m = mode)
"A f >otUm A f < otlm,

Eff: loc := down Eff: loc := up
tclock := 0 tclock :- 0

c :E [evmin, evmax c :E [CPmin, CPmaxl
mode := m mode := m

stay: back:
Pre: A tclock = tsample Pre: A tclock = tsample

"A V A loc = in-tolerance A V A loc = down
A V f E [otl,, otus] A f E [otimode, itUmode]

V f E [otbd, otud] VA lOc = up
V A loc = down A f E [itlmode, OtUmodel

A f > itUmode Eff: loc := in-tolerance
V A loc = up tclock := 0

A f _it.mod c:= 0
Eff: tlock := 0

trajectories: w is an I-trajectory, if the following holds for all t E I:
W.tclock = 1
W.tclock tsample

If w.loc = in-tolerance then w.c = 0
If w.boc = up then w.c E [CPmin, Cpmax]
If w.loc = down then w.c E [evmn, evmax]

Table 2. The EHC

the assignments are linear. Additionally the continuous behavior is governed by
piecewise linear differential equations and the initial set is a bounded polyhe-
dron. The composition of the EHC with the filtered environment is also closed.
The main components of a hybrid system are the transitions and the trajecto-
ries, sometimes referred to as discrete transitions and continuous transitions. In
this and the next section we discuss some features of both (discrete) transitions
and trajectories.

Many examples of hybrid systems use linear inequalities for the specification

116

of transitions or to define the set of initial states. Linear inequalities occur also
in approximation techniques of nonlinear hybrid systems [HH95, PBV95] and
are also used to verify invariants hybrid regular expressions [XHT97].

Given the linear inequality

aT x < b (3)

with x E R', a E R'• and b E IR, the set of solutions K is a half-space of R'.
The vector a is a normal on the hyper-plane which separates K from KC, i.e.
a is orthogonal to the hyper-plane, and points to the complement of K. An
intersection of halfspaces is called polyhedron. Using the matrix product we can
define a polyhedron as set of solutions K C R' of

Ax < b (4)

A is a m x n matrix, with m the number of inequalities, b E Rm is a vector and
'_<' means that each element of A x is less than or equal to the corresponding
element of b.

We see that the EHC and the filtered environment have preconditions and
effects of a special structure. The atomic predicates over continuous variables
are of the form A sc _5 b, with sc, b E R.'", A E R'm×x. Consequently the precon-
ditions of the EHC define unions respectively intersections of polyhedra. Note
that no strict inequality like '<' is allowed, because for computational reasons
we want that all the polyhedra are closed, i.e. they contain their boundaries (see
footnote 2). Given a HIOA A which uses strict inequalities, we can replace all
'<'by '<' and we yield a HIOA B which is implemented by A.

Polyhedra are convex, which means that if x, and x2 are elements of a polyhe-
dron, the convex combination AxI+(1-)A)x 2 E K is an element of the polyhedron
for all A E [0, 1]. The convex hull of set K, conv(K), is the smallest polyhedron
which contains all convex combinations of points x 1 , x2 E K. Given a finite set
{P',... , Pk} of points in]', the convex hull of this set is a bounded polyhedron,
also called a polytope. The vertices of this polytope will be members of the set
{Pi, ... ,Pk}, though not every point pi needs to be a vertex.

In the next section it will be necessary to find a maximum of a linear function
with linear constraints. This problem is often referred to as LP-problem (Linear
Programming). There are several equivalent forms for the LP-problem, but it is
usually defined as follows: Given c E Rn, b E]m, A E Rmn 'In find the maximum

max{cT xIAx < b} (5)

If K f {xIAx < b} is a nonempty polytope, it is possible to calculate the vertices
P,•.. , pk of K. This leads to the following lemma:

Lemma 1. Let K = conv(pi, pk) be a polytope and suppose c : RI>o -4]Rn

such that each element ci is analytic. Then there exist tmrax > 0 and a vertex p

117

D

Fig. 2. c(t) moves from c(O) to c(t 2)

of K which satisfies

c(t)T p = maxc(t)T X Vt E [0,tr] (6)xEK

This lemma says that there exist a vertex which is optimal at t 0 and which
stays optimal for at least tmag. time units. The optimum does not have to be
unique, and if two or more vertices are optimal then all points which are a convex
combination of these points are also optimal. The proof uses the fact that all
functions c(t)Tpi are analytic mappings from R to R. Among these there has to
be a function which is greater than or equal to the other on an interval. More
information on polyhedra and solving the LP-problem can be found in [Sch86],
[GMW91] or [Fis9l].

Figure 2 illustrates lemma 1 for two dimensions. The maximum (6) is attained
from 0 up to tj in vertex A. At time tj the maximum is not unique, it is attained
in every point on edge AB. Without the assumption c(t)i analytic, one could
easily construct a function c(t) (e.g. using sin(1/t)), such that the maximum will
not be constantly attained in one vertex, for any interval [0, tmax].

Because polyhedra are convex the theorems on convex sets, or even stronger
theorems, are holding. A nonempty intersection of two polyhedra is a polyhedron,
and a nonempty intersection of a polytope with a polyhedron yields a polytope.
The image of a linear function of a (bounded) polyhedron is also a (bounded)
polyhedron.

The effect of the transitions of the EHC is specified by an assignment s'D

OD, where OD is a mapping from VD to VD and an assignment s' := A sc + b,
where A is m x n matrix and b E R'. We will also allow nondeterministic
assignments to polytopes. We already have seen that the preconditions define
sets of polyhedra and with the foregoing we can conclude that the effect will
map these to a set of polyhedra.

118

5 Trajectories and Linear Systems

In the last section we have seen that polyhedra are important in studying transi-
tions. This section presents a method which uses polyhedra as approximation of
reachable sets. Therefore we need some theory on linear time invariant systems.
For a general introduction to Control Theory and Linear systems see [BG80] or
[Bro70].

Considering the composition of EHC with the filtered environment we see
that the behavior of the continuous variables is modeled in two ways. We divide
the set of continuous variables Vc in two sets Z and Q. The trajectories of
the variables in Z are continuous functions z : I -+ Z, which are defined by
differential equations. Q contains the variables that take only values in bounded
subsets of R. Though Q is a subset of Vc, the trajectories of these variables are
generally not continuous,

We assume that the continuous behavior of the variables in Z is defined by
a linear, time invariant differential equation as follows

i(t) = A z(t) + B q(t) (7)

In the remainder of this section we will call z (internal) state and q input, for
both are defined analogous to states and inputs as known in Control Theory,
even if the corresponding variables are not input or internal variables of the
HIOA. The filtered environment (table 1) uses Z = {f, h} and Q = {e, c}.

The unique solution of the differential equation (7) with initial state z(O) = zo
is given by 3

t
z(t) = eAtzo + eA(t-a)B q(a)dor (8)

We abbreviate the right-hand side by p(zo, t, q).
In Control Theory one often wants to find a time optimal control for the

system (7), assuming q : I -+ Q and z0 E Zo, with Q and Z0 bounded and
closed subsets of jR' and R' respectively. Let Reach(Zo,tf, Q) denote the set
of states that can be reached from the initial set of states ZO at time tf with
inputs in Q. Denote the boundary of a set S by 6(S).

The reachable states form a convex, bounded set. So, if we assume zf E
6(Reach(Zo, ti, Q)) then there exists a supporting hyperplane (tangent plane)
that contains zf. Let cf be the normal on this hyperplane such that cT Z <f
f zf for all reachable states z. However, if we assume that the reachability

set is unknown, we can not choose such a zf and determine the normal cf. But
fortunately it is possible to find for a given cf and an arbitrary t f, an input ý and
an initial state z0 such that cz < c" p(zoif, •) for all z e Reach(Zo,<t, Q).

Lemma 2. Suppose ZO C R'• and Q c]R' are compact and convex sets. Let cf
be a vector in R' and ti E I. Then there exists a io e 6(Zo) and a mapping

3 Note that eAt is a symbolic notation for the fundamental solution of -= A z

119

j

-3 -2 -1 0 1 2 3

Fig. 3. The bounds on reachable height and filtered height after 1, 2 and 3
seconds (solid) and their approximations (dash-dotted). Initially f -0, h = 0
and .c = intolerance.

q: 1 -+ 6(Q) with

co zo = max cozo (9)

zoEJ"

c0 e- Atq(t) =maxcT e -AtqV [O if] (0

f 'if = ma cz ()

with 2f j c(ýo, tj, q), co = e A T tfcf and Zf = Reach(Zo,tf,Q).

(9) and (10) can be proved using the fact that there always exists a maximum
of a linear function on a compact and convex set (see [LM67]). It should be
noted that io and 4 are not necessarily unique. Using (9), (10) and (8) shows
straightforward that cf(ýo(io, t, 4) - ýo(zo, tf, q)) > 0 holds for arbitrary zo and
q, therefore (11) is proven. The relations between zf, u and zo given by this
lemma, are used to prove the bang-bang principle (or theorem of Lee-Markus
[LM67]). This principle states that it is always possible to reach an extreme state
with an extreme control.

Suppose we want to find for a given matrix A = (cT,; ... ;c,") a vector b
(bi; ... ;bl) such that Reach(Zo, tf, Q) gC {z1Az < b}. Let cO. : e A T

tfC, then
we can find io, from (9) and an optimal ýi from (10). Then cT z < bi holds for
all elements z in the reachability set, with bi := cT ýo_ýj ,tf, ýj). If we apply this
method to all ci, we get that the reachable set is included in the polyhedron
defined by A z < b. Whether the polyhedron is bounded depends on the choice
of matrix A. Figure 3 shows an example of how the reachable states of the
composition of the EHC and the filtered environment were approximated (using
the same matrix A as in the next section). We can approximate the reachable

120

states arbitrarily close by adding proper row-vectors to A.
Often we are not only interested in the reachable set on certain points in

time, but also in constrains on the reachable states in an interval of time. To get
a lemma similar to 2, we need restrictions on Zo and Q. In the remainder of this
section we assume that both Zo and Q are not only convex and compact but also
bounded polyhedra. Reach(Zo, [0, tf]], Q) denotes the set of states which can be
reached from Zo with input in Q within time tf.

Lemma 3. Suppose Zo gC R' and Q C IRm are bounded polyhedra. Let C.na. be
a vector in R'R. Then there exits a zo E J(Zo), and a tmax > 0 and a constant

SE {qIq : [0,tmax] -+ S(Q)} with

T At T At Vt E0,tma=] (12)cmaxe zO = max Cmaxe zo,
zoEZo

T Tcm eA(tm " -t/q(t) - m axc~maxe (tm•°=t)q, Vt F [0, tmax] (13)

cmaxi(t) = max c a±z(t), Vt E [0, trnax] (14)

with z(t) = 9(zo, t, q) and Z(t) = Reach(Zo, t, Q).

The proof uses the existence of an interval [0, tmarl] on which the maximum of
T At is attained in one vertex 20 of Z0 (see lemma 1). The same holds forCma2 ,e ZO ~o(e)

q; there exists an interval [0, tma,2] where ý is constant. Take tma, as minimum
of tmaxl and tmax2 . Similar to the proof of lemma 2 we use (12), (13) and (8)
to show that cL, (ýO(Po,t, 4) - o(zo, t, q)) > 0 holds for arbitrary zo,q and all
t E [0, tma,], and therefore (14) is proven. For q is constant on [0, tmax] we are
able to simplify the integrals that arise from (8)

Suppose Zo is a bounded polyhedron, and matrix A is chosen such that Zo is
contained in the bounded polyhedron {zIA z < bo} for a certain bo. Then lemma
3 allows to find a b(t) := CL.,'(t) such that Reach(Zo,t, Q) C {zjAz < b(t)}
for all t in some interval [0, tmaz]. The upper bound tmaa, depends solely on the
matrix A, Q and Zo and not on the choice of b0 . This allows to approximate the

reachable set even if tample > tmax. In this case the approximation technique is
applied iteratively to the result of the preceding approximation, until the number
of iterations times tmax exceeds tsample.

We are often also interested in a single bounded polyhedron that includes
the states which are reachable within interval [0, tmad]. For this purpose we
can use the inequality A z < maxtE[0,tm,,,] b(t). In general this approximation

gets worse with a longer interval [0, tmad]. It should be noted that {(z;t)lz E
Reach(Zo, t, Q)} is generally not convex, and hence it is difficult to handle tran-
sitions that do not take place at a specified time. Therefore we restrict the model

to clocked HIOAs.
Lemma 3 provides a method to approximate the reachable set of such a

HIOA. Let REACH(t, 1) denote the set of reachable states at time t with ini-

tial set e and let REACH([0, t], 1) denote the set of all states, which are reach-
able within time t. The approximation of the continuous parts of the reach-

able states with bounded polyhedra of the form {zjAz < b}, is denoted by

121

aprx(REACH(., 19), A). Let S be a set of states, then trans(S) is the set of
states after applying the transition rules.

Let e denote the set of initial states. We choose a matrix A and a vector b such
that the initial values of the variables in Z are included in bounded polyhedra
of the form {z IA z < b}. The algorithm used for the reachability analysis has
the following structure. Initially we choose 9o = (9 and i = 0. In the first
step we determine the bounds of aprx(REACH(([0, tsampje], Oi), A). In the next
step we determine Oi := aprx(REACH(tsampl,, ei), A) and 9 i+1 := trans(9i).

We increase i by one and return to the first step. The algorithm terminates if
Oi+1 C Oi. Notice that there are no guarantees that the algorithm terminates
and it is easy to find a counterexample.

We can apply this algorithm when the hybrid system is clocked, its continuous
behavior is governed by piecewise linear differential equations, the transitions are
defined by linear inequalities and the assignments are linear. In the previous sec-
tion we have seen that the composition of the EHC and the filtered environment
has these properties.

6 Results

In [SMF97] Stauner et al. use HYTECH to verify properties of the composed
system. First, they showed that the EHC keeps the height of the chassis within
certain bounds. Next, they proved that the escape valve and compressor are
never used at the same time. They had to include two automata, which model
the escape valve and the compressor. In addition, they extended the model with
a bend detection and showed that the EHC does not change the height in bends.
Stauner et al. also examined the stability of the EHC after a step-like distur-
bance.

This paper re-examines only the bounds of the chassis level and the step re-
sponse of the EHC. The second and third property involve mainly discrete vari-
ables. Consequently one can not expect that a different approximation technique
improves these results. We used MATHEMATICA and MATLAB to re-examine the
automotive control problem.

6.1 Bounds for the Chassis Level

The bounds of the chassis level are given by the maximum and minimum value of
h of all reachable states. We derived the bounds of the chassis level for a system
with cpmin = 1 m, cpmax =2 m evmin -2 mm evmax -1 and sp
0 mm. Therefore e lies in the interval [-1 1 The constants that define
the transitions are chosen as otl, = -40 mm, otu5 = 20 mm, Otid = -1Omm,
OtUd = 10mm, itll = -6mm, itus = 16mm, itld = -6mm, itUd = 6mm.
Stauner et al. used as time constant of the filter T = 2 s and as sampling time

tsampe = 1 s. They chose h = 0 mm and f = 0 mm as initial values. Using this
setting they verified that the chassis level h is always in [-47 mm, 27 mm]. This
means that the outer limits otlr and otu, are never exceeded by more than 7 mm.

122

tsample - 1 S tsample = 0.5 s
T = 2 s [-43.0, 23.6] [-42.6, 23.3]
T = is [-42.0,22.1] [-41.5,21.6]

Table 3. The bounds of the chassis level h in mm

They expected that the results can be improved by using a smaller time constant
T and a smaller sampling time.

The behavior of f en h is governed by the following differential equation

f=#(h-f) (15)
h~e+c

with eE[-1-7, 1-]andc=0!-,c E[-72 , --1 -]orcE[1 2 ,2']
depending on the control location. With a more heuristic approach - using the
solution of (15) - it can be found that the real height will exceed the outer
tolerance limits with about emrax(T + tsample) mm and emin(T + t.,ample) mm
respectively.

We re-examine these results for T E {2 s, 1 s} and tsample G {0.5 s, 1 s}. We
are mostly interested in the bounds on the height, but also in the bounds on the
filtered height and the bounds on the difference between filtered and real height
i.e. we want to determine the upper limits of f, -f, f - h,h - f, h and -h.
Hence we use the matrix A := (1 0; -1 0; 1 - 1; -1 1; 0 1; 0 - 1) to define the
polyhedra that include the reachable filtered height and real height. Thus tma",
from lemma 3 is equal to 1.

The initial states are (f,h)T E {Ix E]R2 Ax < (10 30 20 20 10 3 0)T}. This
shortens the required time to run the algorithm. The influence of this choice
on the results is limited, for all initial sets that contain the origin converge
rapidly to the same collection of reachable sets. The results can be found in table
3. Obviously the proposed approximation technique gives better results. They
coincide almost with the limits a more heuristic approach yields. In addition, the
bounds are tighter for smaller T and t sampl, as expected. It is worth to mention
that states which satisfy (loc = up) A (f < sp + otls/d) or (loc = down) A (f _>
sp + otus/d) are not reachable within this setting. So the transitions to-up and
toAown can be simplified.

6.2 Step Response of the EHC

In the previous subsection we examined the response of the EHC to small distur-
bances. In this subsection we assume that there only is one disturbance of step
shape and no other disturbances occur. Disturbances of step shape are typical
test functions to examine the stability of a controller. At an arbitrary moment,
when the system in in-tolerance and f = 0 mm, the height makes a jump to j.
This is the only disturbance and we assume e = 0--!"2i. The jump can be simu-
lated by taking f = 0 mm, h = j and tc1ock E [0 s, 1 s] as initial values. For the

123

j [11, 12] [12,13] [13,14] [14,15] [15,16] [16,17] [17,18] [18,19] [19,20]
tlmax 5.8 4.6 4.0 3.6 3.2 3.0 2.8 2.7 2.5
tremax 13.8 13.6 14.0 14.6 15.2 16.0 16.8 17.7 18.5
hend [0.1,4.4] [0,4.4] [0,4.3] [0,4.4] [0,4.3] [0,4.3] [0,4.2] [0,4.3] [0,4.2]

Table 4. Some results for the step response of the EHC. The values of tlmax
and tremax are given in seconds, and those of j and hend in mm.

quality of the approximations decrease with a longer interval, we took initially
tclock E [0 s, 0.1 s],...t'Jok G [0.9s, I s].

Stauner et al. assumed a jump j E (16mm, 18mm] and that the system is in
driving mode. In this case we expect that the controller uses the escape valve
after disturbances of this size. Additionally they assumed that the escape valve
operates at its minimum value, hence evmin : evnax = 1 This restric-
tion was necessary to avoid arithmetic overflows. For this setting they found
that the controller leaves in-tolerance at most 4.3 s after the disturbance and
re-enters it after at most 22.3 s. They verified that the chassis level then lies in
[-1 mm, 6 mm].

For the same setting it is possible with the proposed approximation technique
to show that the controller leaves in-tolerance at most after 3 seconds, re-enters
in-tolerance at most after 16.9 seconds and the chassis level then lies in the
interval [3.0 mm, 4.1 mm]. It is also possible to investigate the step response
for a system with the original setting for evmin and eVmax and a number of
intervals for j. The results can be found in table 4. It shows for jumps j within
the specified intervals the maximum time the controller needs to detect the
disturbance (tima.), the maximum time the controller needs before re-entering
in-tolerance (trermax) and the interval that contains h after re-entering in-tolerance
(hend). The interval [10 mm, 11 mm] was not considered, because a jump with
j = 10 mm can not be detected in finite time.

Figure 4 illustrates the behavior of the EHC due to jumps in [13 mm, 14 mm]
occurring at iclock •0 . We see that the EHC enters location down after 3 sec-
onds and re-enters location in-tolerance at least after 13 seconds. All reachable
state will ultimately converge to points on the diagonal, for the filtered height
converges to the real height.

7 Conclusion

The program used for the analysis is quite preliminary and it will cost some
time to make it suitable for other problems than the automotive control prob-
lem. Hence the required CPU-times are less impressive (re-examining the step
responses (table 4) lasted less than one hour, the reachability analysis required,
depending on the choice for tsampe and T up, to one day). An extension to,
or implementation into a more general program will be done in the future. To

124

locintolerance loc=down

5 a

- 10

12

filtered height filtered height

Fig. 4. Step response due to a jump in [13 mm, 14 mm] starting at tclock = 0

ensure that the algorithm is applicable to more realistic models, an analysis of
the complexity will also be done in the future

The proposed approximation technique gives obviously better results for the
reachability analysis of a hybrid system with restricted discrete dynamics, but
uses the full dynamics of the linear system (linear in the sense of Control The-
ory) that describes the continuous dynamics. The most restrictive assumption is
that the system has to be clocked. Fortunately many real-life problems within a
controller-environment setting have this property.

If we apply our technique to systems with piecewise constant derivatives, this
restriction can be weakened. The matrix A in (7) will be zero, consequently tma,
from lemma 3 will be infinity. Additionally the reachable sets will form a convex
set in time and the approximation will be exact. This simplifies analysis of the
system and hence the assumption of a clocked hybrid system can be dropped.
For this class of hybrid system, the method proposed in this paper coincides
with the methods for Linear Hybrid Systems as presented e.g. in [ACH+95].

Purn et al. approximated a Lipschitz differential inclusion arbitrarily close
by a piecewise constant inclusion and then used polyhedra to approximate the
reachable set [PBV95]. Lipschitz differential inclusions form a more general class
of systems than linear systems. For in this paper only the latter were considered,
it was not necessary to approximate the continuous behavior, assumed that the
discrete behavior satisfies certain restrictions.

Reachability analysis of hybrid systems requires restrictions on the discrete
and continuous dynamics. The hybrid system Stauner et al. used for the automo-
tive control problem provides a discrete behavior that allows us to use properties
of linear systems for analysis of the continuous part.

125

References

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analy-
sis of hybrid systems. Theoretical Computer Science, 138:3-34, 1995.

[BG80] David Burghes and Alexander Graham. Introduction to Control Theory,
including Optimal Control. Ellis Horwood series in mathematics and its
applications. John Wiley & Sons, New York, 1980.

[Bro70] Roger W. Brockett. Finite Dimensional Linear Systems. John Wiley &
Sons, New York, 1970.

[DL97] E. Dolginova and N. Lynch. Safety verification for automated platoon ma-
neuvers: A case study. In Oded Maler, editor, HART'97, LNCS 1201.
Springer-Verlag, 1997.

[Fis9l] Gerd Fischer. Analytische Geometrie. Friedr. Vieweg & Sohn, Braun-
schweig, 1991.

[GMW91] Philip E. Gill, Walter Murray, and Margaret H. Wright. Numerical Linear
Algebra and Optimization, volume 1. Addison-Wesley, 1991.

[HH95] T.A. Henzinger and P.-H. Ho. Algorithmic analysis of nonlinear hybrid
systems. In P. Wolper, editor, CAV 95: Computer-aided Verification, LNCS
939, pages 225-238. Springer-Verlag, 1995.

[HSV94] L. Helmink, M.P.A. Sellink, and F.W. Vaandrager. Proof-checking a data
link protocol. In H. Barendregt and T. Nipkow, editors, Proceedings In-
ternational Workshop TYPES'93, Nijmegen, The Netherlands, May 1993,
LNCS 806, pages 127-165. Springer-Verlag, 1994. Full version available as

CWI technical report.
[HWT96] T.A. Henzinger and H. Wong-Toi. Linear phase-portrait approximations

for nonlinear hybrid systems. In R. Alur, T.A. Henzinger, and E.D. Sontag,
editors, Hybrid Systems III, LNCS 1066, pages 377-388. Springer-Verlag,
1996.

[LM67] E.B. Lee and L. Markus. Foundations of optimal control theory. The SIAM
series in applied mathematics. Wiley, New York, 1967.

[LSVW96] N. Lynch, R. Segala, F.W. Vaandrager, and H.B. Weinberg. Hybrid I/O
automata. In R. Alur, T. Henzinger, and E. Sontag, editors, Hybrid Systems
III, LNCS 1066, pages 496-510. Springer-Verlag, 1996.

[PBV95] A. Puri, V. Borkar, and P. Varaiya. c-approximation of differential inclu-
sions. In Proceedings of the 34th IEEE Conference on Decision and Control
(CDC 95), 1995.

[Sch86] Alexander Schrijver. Theory of Linear and Integer Programming. John
Wiley & Sons, 1986.

[SMF97] Thomas Stauner, Olaf Miller, and Max Fuchs. Using hytech to verify an
automotive control system. In Oded Maler, editor, HART'97, LNCS 1201,
pages 139-153. Springer-Verlag, 1997.

[Sta97] Thomas Stauner. Specification and Verification of an Electronic Height Con-
trol System using Hybrid Automata. Master's thesis, Munich University of
Technology, 1997.

[XHT97] Li Xuandong, Dang Van Hung, and Zheng Tao. Checking hybrid automata
for linear duration invariants. In ASIAN' 97, LNCS 1345, pages 166-180.
Springer-Verlag, 1997.

Switching Controllers Based on Neural Network
Estimates of Stability Regions and Controller

Performance

Enrique D. Ferreira and Bruce H. Krogh

Department of Electrical and Computer Engineering
Carnegie Mellon University

email: edf/krogh@ece.cmu. edu

Abstract. This paper presents new results on switching control using
neural networks. Given a set of candidate controllers, a pair of neu-
ral networks is trained to identify the stability region and estimate the
closed-loop performance for each controller. The neural network outputs
are used in the on-line switching rule to select the controller output to
be applied to the system during each control period. The paper presents
architectures and training procedures for the neural networks and suf-
ficient conditions for stability of the closed-loop system using the pro-
posed switching strategy. The neural-network-based switching strategy
is applied to generate the switching strategy embeded in the SIMPLEX

architecture, a real-time infrastructure for soft on-line control system up-
grades. Results are shown for the real-time level control of a submerged
vessel.

1 Introduction

A common approach to control complex dynamic systems is to design a
number of different controllers, each for a particular operating region or
performance objective, and then to switch among the controllers in real
time to achieve the overall control objective. This is, for example, the
philosophy behind gain-scheduled controllers. Recently, switching control

strategies have been proposed for adaptive control of unknown systems
[1],[9], and to optimize the performance of stabilizing controllers for a
known plant [8].

It is useful to view switching control systems as hybrid systems, that
is, systems with both continuous state variables and discrete state vari-
ables. The plant state variables (assuming a continuous-variable system)
and possibly continuous state variables in the controllers constitute the
continuous state of the switching control system; the index of the cur-
rent controller being applied to the system, and possibly discrete vari-
ables in the sequential switching logic, constitute the discrete state. Sys-

127

tern performance and stability are also normally defined in terms of the
continuous-state trajectories. Analysis of switching control systems from
either perspective is difficult because of the interaction between the con-
tinuous and discrete dynamics through the switching rules.

Given a collection of controllers for a nonlinear dynamic system, neural
network techniques are presented for estimating the regions of stability
and performance of each controller, and an on-line switching strategy is
proposed based on these neural network estimates. Sufficient conditions
are presented for closed-loop stability of the switching control system. On
the application side, we describe the use of the neural network strategy
to implement the switching rules in the SIMPLEX architecture, a real-
time environment developed at the Software Engineering Institute at
Carnegie Mellon University that provides protection against errors in
control system upgrades [11],(4] and [10]. Results are presented for the
real-time control of the level of a submerged vessel.

2 Problem Formulation

We consider the problem of controlling a nonlinear system described by
the state equations

X+l= f(XkUk(1)

Xk E S, uk E D

where XCk E R n is the state vector and uk E R' the control input vector.
The connected sets S C R', D C R' represent physical constraints
on the system state and control, respectively. The discrete-time state
equation reflects the sampled-data implementation of a computer control
system. The control objective is to take the state to the origin.

We assume M state feedback controllers have been designed for this
system, with the ith control law given by g' : R' -+ R'. We assume
the origin is a stable equilibrium for each of the controllers in some
(unknown) region. The objective of the switching strategy is to select
one of the control outputs to apply the system at each control instant to
achieve the largest possible region of stability for the closed-loop system
with a good transient response.

The closed-loop system created by the application of each controller is
characterized by a stability region and a performance index. The region
of stability for controller i is defined as

128

R'={ Xo : X4 (Xo) E S, g'(x1(Xo))ED Vk > k, and

limr x (xo) = (
k-+ oc

where x4(xo) denotes the trajectory of the system (1) with the initial
state xo at k = 0 under control law g'. We consider performance indices
for the controllers of the form

00

J6(Xo) = B' + E SkUi((x,,)), i= 1,... ,M (3)
k=O

where 0 < 6 < 1 is a discount factor, U' : Rn -+ R is a positive definite
state cost function, and B' is the bias coefficient for the ith controller.
We assume (3) converges for 6 = 1.

The proposed approach for selecting the controller at each sampling in-
stant is illustrated in figure 1. Neural networks are used to compute
estimates of the stability regions R' and performance indices Jd at the
current state, denoted by R' and J5, respectively. The index of the con-
trol input to be applied for the next period, denoted ik, is then selected
as

S= arg Mt (Xk) (4)
iEI(xk ,Lk)

where

I(xk, Lk) = {ilxk E A', and if i # ik-1, j,(xk) < L'}

with Lk = {fL,... ,LLM} and for i =1,... ,M

oo if k =0 or xk A ! ik_
L'= L if i ik

Smin L 1 } if i =iA

In words, the scheduler selects the controller with the minimum estimate
performance index from among the controllers for which the current state
is in the estimated stability region and, for the controllers other than the
current controller, the current estimated performance index is less than
the corresponding bound L'. The limits L" guarantee a controller is not
re-selected once it has been used until its performance index has de-
creased below the lowest value reached when it was last active. If the
system leaves the stability region of the controller used during the previ-
ous period, all controllers become candidates again by setting L' = oo
for all i = 1,... , M. This selection criterion is motivated by the min-

129

switching strategies based on Lyapunov functions proposed in [8] and
[6]. The strategy proposed in this paper replaces the Lyapunov functions
with the neural network estimates of the performance measure, making
it viable for systems for which the dynamics are not known precisely or
Lyapunov functions cannot be found by analysis.

3 Neural Networks

Neural networks are used in two ways in the proposed scheme. The sta-
bility region estimator is a classifier, identifying when the system is stable
for a given state. The performance estimator produces an estimate of the
cost-to-go function (3) from a given state. In both cases a two-layer feed-
forward network is used for its capacity as an universal approximator
with a size that is small relative to the size of the data set [3].

1Ceduling diagram.n

-t j .

Fig.1. Cntro Scerformnce duigram

130

The input-output behavior of the two-layer network with linear outputs
units is described by

y = b. + W• x + WT 02(b 2 + Wr 0 1 (b, + Wrx)), (5)

where x E 7Z° is the input vector, y E 7R7" the output vector, Wi E
i7 "i-1, i -= 1,2,3 and Wo E R'3 "0, the weight matrices for each

layer of ni units, bi E 7R"*' the threshold vectors for each layer and
0i : 7•i -+ 7Vm, i = 1, 2; the nonlinear functions for each hidden layer.
The functions Oi(.) for the hidden units of the neural network are all
chosen to be the hyperbolic tangent functions applied to each component
of its input vector (i.e. Oij(x) = tanh(xj)). In our application, the input
vector x is the state of the plant for both the stability region estimators
and performance estimators.

3.1 Estimating Stability Regions

For the stability region estimators, the neural network output y is a two-
dimensional vector with components ranging roughly between -1 and 1
in the region of approximation. The ideal output values are (y1, y2) =

(1,-1) when x belongs to R' and (y1, y2) = (-1, 1) when x is not in
R'. To make a distinct classification in the non-ideal case (i.e., when the
components of y are not equal to =b1), two positive threshold parameters,
0 and 6, are selected to implement the following decision rule:

Stability Region Classifier: Declare x belongs to R' if and only if:

1. yl(x)-- y2(x) > 0, and
2. 11V. (y, (x) - y2(x))l < s,

where the notation V. denotes the gradient with respect to x.

The stability region classifier is motivated by the necessity of obtaining
conservative approximations for the stability regions. The parameter 9
is chosen after the network is trained so that the classification is correct
for all the training and validation data. The parameter 6 is chosen much
smaller than the maximum of the norm of the gradient of the network
output over the domain.

The training of the neural network for the stability region estimator is
based on supervised learning procedures. This approach is widely used
for pattern recognition and classification applications [3]. To initialize the
training for each controller, the following three regions A C B C C are
defined, based on a priori knowledge of the closed-loop system behavior:

131

1. Inner region A. A very conservative region which includes all the
states from which covergence to the origin is certain.

2. Study region B. The region on which the training procedure is going
to be conducted.

3. Unsafe region C. The bounding region in which the system is either

unstable or the state is outside the operating region of interest.

By making experiments with the controllers starting at states belonging
to region B, and observing if the evolution leads the system to region A
or to region C, data is obtained for region B to train the neural network.
This procedure is carried out initially using off-line data, but training
can continue on line as the system operates.

Compaijsons of the neural network stability region estimator with other
approaches to stability region approximation have been presented in [7].
We have found that in all cases, with a reasonable amount of training,
the neural network obtains an estimate of the stability region which is
much less conservative than most other methods. Moreover, since it is
not model-based, the neural network classifier can be applied to systems
using empirical data.

3.2 Estimating Performance Indices

Estimating performance indices such as (3) is a standard problem in
Neuro-dynamic programming [2]. A Heuristic Dynamic Programming
(HDP) algorithm [13] is used to train the networks. The training algo-
rithm uses an estimation of the cost-to-go at xk given by

JJ" (Xk) = U t (xk) + ±6 ,J(xk+l) (6)

where J,*(xk) is the desired value for the network for state xk. Equation
(6) is motivated by the definition of Jd (x) (3) neglecting the bias term B'

which is added directly to the output of the network. In our applications,
U'(x) is a standard quadratic form,

Ui(x) = xT P x, pT=p>O, i=1,... ,M.

The HDP training procedure, illustrated in figure 2, is described briefly
as follows. Given the new state value xk+1 at time k + 1, the neural net-
work with parameters from time k, denoted NNi(k), is used to predict
both Jl(xk) and j4(xk+l). The latter value is used to compute J'*(Xk)

as defined in (6). The difference ek = J,*(xk) - j3(Xk) is used, in a back-

132

propagation algorithm, to update the parameters in the neural network

to produce NN2 (k + 1) (indicated by the arrow through the NN, block).

S: : Xk ". -xU X)
g'(x) UNI± +

Fig. 2. HDP learning scheme.

Analytical results for related problems in the context of Q-learning [5]

and temporal differences [12] indicate that convergence should be ex-
pected under rather mild conditions. A principal difference between our
application and most work on learning cost-to-go performance indices

is that the estimated values of the performance indices do not influence
the control laws. We assume, rather, that each of the given controllers

stabilizes the system and the feedback laws remain fixed.

4 Analysis of Closed-Loop Performance

We first consider the system behavior in the perfect information case,

that is, when the performance measures and stability regions• are known

for each controller. We then consider the effect of using the neural net-

work estimators rather than the exact values.

The approach to analyzing the closed-loop system follows the technique

for the rain-switching strategy suggested in [8] for the continuous-time

case. To restate the basic Lyapunov results for our discrete-time context,
suppose for each control law g' there is a known Lyapunov function V'(x)
for the closed-loop system under that control law within the region of

stability R'. Moreover, suppose the control applied at each sample instant

is chosen according to the min-sw-itching strategy, that is, the control is

selected which corresponds to a Lyapunov function with the minimum
value among all the Lyapunov functions evaluated at the current state.

The following theorem is the discrete-time version of the result in [8].

133

Theorem 1. If the system given by (1) is controlled by the min-switching
strategy applied to a set of known Lyapunov functions, the origin is
asymptotically stable in the region R = U R'. Moreover, the function

W(x) = {Vi(x)} (7)
iE~j Ix ER i}

is a Lyapunov function on R.

Proof. Follows from the continuous-time result in [81, mutatis mutandis.

We now apply this result to the min-switching strategy considered in
this paper by observing that if the performance indices J' (3) converge
(6 = 1), they are in fact Lyapunov functions for the respective controllers.

Theorem 2. Given the system defined by (1) and a collection of con-
trol laws gi, i = 1,... , M. Suppose for each control law the origin is
asymptotically stable for the closed-loop system

Xk+l = Fi(xk)

in a connected region Rk, and J5 given by (3) converges for 6 = 1. Then
there exists a 6* E (0, 1) such that the origin is asymptotically stable in
the region R = U Ri for the closed-loop system controlled by the min-
switching strategy [8] for any 6 E (6*, 1]. Moreover, for any 6 E (6", 1]
the function

Js= min J (8)iE3I xGR-i}

is a Lyapunov function on R.

Proof. For each i, if J, converges, it follows from the definition of Jf
that it is continuous in 6 and therefore there exists some V. E (0, 1)
such that for all 8 E (S7, 1] Jj is a Lyapunov function for the closed-
loop system under control law i on R'. The theorem follows by letting
6"=max(6S,... ,8).

We now turn to the min-switching strategy using the neural network
estimators. In the following we assume the stability region estimators

134

are all conservative, that is, for all i = 1,... , M, Rk C R'. Moreover, we
assume all the stability region estimates are nonempty and connected.
These assumptions are reasonable given the properties of neural network
classifiers and the ability to initiate the training for the stability region
estimators based on a priori knowledge of the capabilities of the given
controllers.

Theorem 3. Suppose the assumptions of Theorem 2 are satisfied and
the performance estimates are computed using S E (6*, 1] where S* is as
specified in Theorem 2. Furthermore, suppose Jis is continuous on R'. If
for some e > 0 the performance estimates satisfy

I13j(x) - Js(x)lI < c for all x E A'i, i=1.., (9)

and the min-switching strategy is applied for some x, E R = U k t re-
sulting in a state trajectory such that there exists K E Af for which
Xk Enl, Vk > K, then xk- X, where

x, = UX = U{x I JA(x) _ sup J•(i)} (10)

and

x= xER'J- AJ6(x) < •2e}.

Proof. For a given Xo E R, let ik be the sequence of controllers selected
by the min-switching rule. If there exists some K and I E {1,... , M}
such that ik = I for all k > K, the theorem is true since the origin is a
stable equilibrium for controller 1. On the other hand, if the controller
switches infinitely often, there must be one controller I which is selected
infinitely often. Let the sequence of time indices 0 < kl < k2 ... be an
infinite sequence of sampling instants when controller I is selected with
xk E klR, V k > ki. The min-switching rule implies

is,(Xj+l) < l(Y;(j), Vj

because of the limits Lk,. Since the il (xk.) are bounded from below, the

sequence j4,(xk,) converges to some constant C.

For each i = 1,... , M let rl'(x) denote the error in the ith performance
estimate at state x where it is assumed Ir7'(x)I < e for some e > 0. This
implies that when the i~h controller is applied at a state x E k,

135

,ýV;(x) J;((x)-;()

=dJ(x) + Y7
t(F'(x)) -

< 6 Ji(x) + 2e.

Since J, is a Lyapunov function for the system under controller i, A J, (x) <
0. Returning to the specific controller 1, suppose that there are an infinite
number of the xki that remain a finite distance from the set

x ={x EE -AJ15(x) < 21}.

This would imply the sequence Aj3(xk2) is negative and bounded away

from zero infinitely often, contradicting jil(xk,) -+ C. Therefore, xk, -+

X1. More precisely, given any 2 > 0, there exists some K• such that the

distance d(xk3 , X') < Z for all ki > Ki. This is illustrated in figure 3.

While controller I is applied, .4 (xi,) is monotone non-increasing since

J, is a Lyapunov function for the system. Therefore, J.4(xJ,) < Js4(xk,),
for k > kj until another controller becomes active (see figure 3). Define
It = {k E A/uik = l} and .5 = sup J6(*). Then, for any given / > 0 we

:REX',

have

J6(xk) < sup JA(xk,) < .A +,3 Vk E !z,k > Kj

because of the continuity assumption on J.4(x). Since this has to be true

for any 1, after a finite K in which all the controllers that are not used

infinite number of times do not become active anymore, the sequence xk
is arbitrarily close to X,.

This theorem indicates that when the performance estimates are used
rather than the exact performance indices, the min-cost switching strat-

egy will drive the state to a neighborhood of the origin determined by
the magnitudes of the errors in the performance estimates for each con-

troller. Theorem 3 does not guaranteed the neighborhood is arbitrar-
ily small, however. Moreover, the exact performance measures are not
known in general, so the neighborhood in Theorem 3 could not be com-
puted even if the bound on the estimation error was known. These dif-

ficulties are eliminated when 6 = 1, however, since in this case we have
AJ6(X) = - U(x).

136

Corollary 4. Under the assumptions of Theorem 3 with S = 1, if the
min-switching strategy is applied for some xo E R = U ki resulting in a
state trajectory such that xk-* fl Ri, then

xk -4 {x E RnIU(x) _< 2e}.

5 An Application

One of the principal motivations for developing the controller switching
strategy presented in this paper is to provide a method for implement-
ing the switching rules in the SIMPLEX architecture, a real-time environ-
ment developed at the Software Engineering Institute at Carnegie Mellon
University that provides protection against errors in control system up-
grades. Figure 4 shows a typical configuration for SIMPLEX in which there
are three controllers: a safety controller, a reliable baseline controller, and

Fig. 3. Trajectory of the system illustrating convergence

to X,.

an experimental controller representing a new, untested control module.
The basic idea of the SIMPLEX system is to guarantee that the base-
line controller performance is maintained if there are problems in the
experimental controller. This is accomplished by monitoring the control
outputs and system performance when the experimental controller is in-
stalled, and switching control back to the baseline controller if problems
are detected. The safety controller is invoked when it is necessary to take
more extreme action to return the system to the operating region for the
baseline controller.

137

Fig. 4. SIMPLEX architecture.

Clearly the ability for the SI-MPLEX system to provide the desired pro-
tection against errors in the experimental controller depends entirely on
the rules used to switch between controllers. These rules are very dilfi-
cult to create and maintain, even for small systems. The neural network
approach proposed in this paper provides a means of obtaining less con-
servative estimates of the stability regions for the controllers, and also a
method for determining when to switch from the safety controller back
to the baseline controller based on estimates of their performance.

We present results here on the implementation of the mm-switching con-
trol strategy for a level-control system for an underwater vessel. This sys-

tem has been designed in the Software Engineering Institute at Carnegie
Mellon University as a testbed for the development of dependable and
evolvable systems using the SIMPLEX architecture. The expermental sys-
tem consists of a water tank in which a vessel can move vertically by

changing the size of the air bubble inside it. Air is moved in and out of
the vessel through a flexible tube connected to a cylinder-piston mech-
anism. Figure 5 shows a schematic diagram of the system components.
The control goal is to stabilize the vessel at an arbitrary position inside
the water tank. The position of the vessel and the size of the air bubble
are measured directly using ultrasound sensors. A stepper motor controls
the piston movement. Constraints are imposed by the bottom of the tank
and the water level. The control input is limited by the maximum speed
of the stepper motor.

138

water level - I tube

Diver! _i h

p2 X
A1

ston

Water Tank

Fig. 5. Schematic diagram for the submerged vessel sys-

tem.

A set point of yst = 25 in was selected. Two controllers were used to test
the switching strategy. Both controllers are state feedback controllers
used in the original SLMPLEX architecture implementation. One controller,
ul, has an acceptable performance close to the set point while the sec-
ond controller, u 2 , performs better in a larger operating region using a
bang-bang action, but with unacceptable oscillations near the set point.
An analytical model was used for initial training of the neural network,
then experimental data from twenty runs were used to adapt the pa-
rameters of the neural networks to estimate the performance indices of
both controllers. Figure 6 shows a typical data profile to estimate the
performance index of one of the controllers and figure 7 shows a slice of
the resulting performance estimate.

Figures 8 shows a switching experiment for a step change in the setpoint

value for yet from 13 to 25 inches. Figure 9 shows the estimated perfor-

mance indices during the run. From the figure we observe that controller
2 is preferred for larger values of y. After approximately 5.5 seconds Ji
becomes smaller than Ps and the scheduler switches to controller 1.

139

12a

Yt -i
25

in

b ubble size Cn):

45

.2 '

0 -4

0 5 10 15 20 0 5 10 15 M0
timne (S) time (S)

Fig. 6. Data obtained from an experimental run for a con-
troller.

Performance Index

0.5

0.4-.... .

0.31,----

0.1

0.0
... ... 0.6

0.01 ~..... 0.2 0.4

-0. 0
bblsie -0.01 .2 -0.4 -.

b~bbI SJZS -0.02diver position

Fig. 7. Performance index estimate (ý = 0).

140

6 Discussion

This paper presents a method for switching among a set of given con-
trollers using multilayer feedforward neural networks and neuro-dynamic
programming techniques. In contrast to switching control strategies aimed

14

Sbubbe Size 1n6)
12 d er... -i°n ..)

10 4

6 2

4 I---

2

0 10 20 30 0 10 20 30
time(s) time(s)

Fig. 8. Level relative position of the vessel and bubble size
during a switching experiment.

Performance Indices
0.7

0 .6

0 .5 :•.................. • :...................

0 .4 i.................. •...................... :........0.6.

0.2i !........

0 5 10 is 20 2S
fte(s)

Fig. 9. Performance indices estimates for controllers for

the submerged vessel during a switching experiment.

141

at adapting to unknown plant dynamics, the objective in this work is to
select the best controller from among a set of controllers that have been
designed for a known plant. This objective is most closely aligned with
the switching control strategies proposed in [8] and [6]. By using neu-
ral networks to estimate the stability regions and performance indices
for the controllers, the switching strategy depends on experimental data
from the actual system, rather than analytical models that may lead
to misleading or incorrect switching rules. We present a new result on
the stability of the nin-switching strategy using estimates of Lyapunov
functions.

The convergence and stability results in this paper are sufficient con-
ditions. There are several open problems concerning the verification of
these conditions in applications and the possibility of obtaining less con-
servative results. For the closed-loop behavior, the ramifications of con-
tinued learning and persistent excitation need to be studied further. It
would be desirable to introduce techniques by which performance es-
timate learning could be achieved for the controllers that are not cur-
rently controlling the system, by introducing, perhaps, a model of the
system being controlled. The introduction of adaptive control to deal
with changes in the plant dynamics may also be important for some
applications.

Acknowledgments

This research has been supported by the Uruguayan government through
a CONICYT-IBD grant, the Organization of American States and DARPA,
contract number F33615-97-C-1012.

References

1. J. Balakrishnan and K.S. Narendra. Adaptive control using multi-
ple models. IEEE Trans. on Automatic Control, 42(2):171-187, Feb
1997.

2. Dimitri P. Bertsekas and John Tsitsiklis. Neuro-Dynamic Program-
ming. Athena Scientific, Belmont, MA, 1996.

3. Christopher M. Bishop. Neural Networks for Pattern Recognition.
Oxford University Press, Oxford, Great Britain, 1995.

142

4. M. Bodson, J. Lehoczky, R. Rajkumar, L. Sha, D. Soh, M. Smith,
and J. Stephan. Control configuration in the presence of software
failures. In Proc. 32nd IEEE Conf. Decision Control, volume 3, page
2284, San Antonio, TX, Dec 1993.

5. S.J. Bradtke, B.E. Ydstie, and A.G. Barto. Adaptive linear
quadratic control using policy iteration. In Proc. American Con-
trol Conference, volume 3, pages 3475-9, Baltimore, MD, Jun 1994.

6. Michael S. Branicky. Stability of switched and hybrid systems. In
Proc. 33rd IEEE Conf. Decision Control, volume 4, pages 3498-
3503, Lake Buena Vista, FL, Dec 1994.

7. E.D. Ferreira and B.H. Krogh. Using neural networks to estimate
regions of stability. In Proc. of 1997 American Control Conference,
volume 3, pages 1989-93, Albuquerque, NM, Jun 1997.

8. J. Malmborg, B. Berhardsson, and K.J. Astr6m. A stabilizing
switching scheme for multi-controller systems. In Proc. of the IFAC
World Congress, volume F, pages 229-234, San Francisco, Califor-

nia, USA, 1996. IFAC'96, Elsevier Science.

9. A.S. Morse. Supervisory control of families of linear set-point con-
trollers - part i: Exact matching. IEEE Trans. on Automatic Control,
41(10):1413-31, Oct 1996.

10. D. Seto, L. Sha, A. Chutinan, and B.H. Krogh. The simplex archi-
tecture for safe on-line control system upgrades. Submitted to. 1998
American Control Conference.

11. L. Sha. A software architecture for dependable and evolvable indus-
trial computing systems. In Proc. IPC'95, pages 145-156, Detroit,
MI, May 1995.

12. J.N. Tsitsildis and B. Van Roy. An analysis of temporal-difference
learning with function approximation. IEEE Trans. on Automatic
Control, 42(5):674-690, May 1997.

13. P. Werbos. A menu of designs in reinforcement learning over time.
In W.T. Miller III, R.S. Sutton, and P. 'Werbos, editors, Neural Net-
works for control, chapter 3. MIT Press, 2nd edition, 1991.

A Logic for the Specification of
Continuous Systems*

Viktor Friesen

Technische Universit5.t Berlin
Forschungsgruppe Softwaretechnik (Sekr. FR5-6)

Franklinstr. 28/29
D-10587 Berlin, Germany

e-mail: friesen@cs.tu-berlin.de

Abstract. The paper proposes a first-order logic for the specification
of continuous components of hybrid systems. The particularity of the
approach lies in its interpretation of individual variables not as functions
over time or as point-based values, but as environment-based values. An
environment-based value closely models the local behavior of a function
defined on a continuous time domain. The advantage of the approach
is that it enables us to consider the derivation operator as an ordinary
unary logical function. Thus, the logic is free from any built-in operators;
they can all be defined on the elements of the carrier set of environment-
based values.
To facilitate the definition of additional logical functions and predicates
like limit, derivation of arbitrary order or continuity, the user is allowed
to specify them in the intuitive notation of functions defined on time.
The semantics of the logic provides two lifting operators, which lift the
functions and the predicates to the appropriate semantic spaces. These
lifting operators do not violate the intuitive meaning of the introduced
constructs. An outline of the proof of this fact is given.

1 Introduction

A specification of a system usually determines a set of permitted system behav-
iors. If T is the considered time domain', V a finite set of system variables, and
Val a set of possible values, then a state is an assignment of a value to each
system variable and a behavior is an assignment of a state to each time point.
The set of all states is denoted by Z and the set of all system behaviors by
BEH, i.e. Z:= V -+ Val and BEH:=T -- Z. With these definitions, the task of
a specification is to define an appropriate subset of BEH.

To formally specify hybrid systems, powerful specialized description tech-
niques for discrete and continuous parts of the system are needed. Also required

This work is being funded as part of the KONDISK program of the German Research
Foundation (DFG).

1 T is often chosen as a finite or infinite interval of real numbers R or as the natural
numbers N.

144

are means for combining discrete and continuous components naturally. For more
than twenty years, numerous logics and model-based languages have been avail-
able, which are tailored to the proper specification of discrete systems like VDM
[7] or Z [11]. The central concepts on which these languages are based are state
invariants and operations. The system is specified by describing a state invari-
ant INV C Z and a finite set of operations oi,..., on, each of them denoting a
binary relation on Z. Roughly speaking, the invariant specifies the static, and
the operations the dynamic, aspects of a system. The system variables are in-
terpreted as elements of Val. The state invariant INV and the operations oi
are specified using predicates on Z and Z x Z, respectively, both formulated
in predicate logic. In the case of real-time extensions of such formalisms, the
user can additionally describe some time aspects of the system behavior, like the
duration of an operation or the time the system remains in a particular state.
Because ordinary predicate logic is used, the available toolkit can be extended
by defining supplementary functions and predicates, thus leading to flexibility
in the choice of the specification means, cf. [7, 11].

Continuous systems cannot be described in the same style, since their dy-
namics is not expressible by operations; instead, differential equations are often
used. These contain derivatives of state variables. Because the derivative of a
function at a certain time point t cannot be determined if only the value of
this function at t is known, the variables are usually interpreted not as elements
of Val, as in the discrete case, but as functions T -+ Val (cf. the topological
approach of [8]) or I -+ Val with a non-empty interval I C T (cf. Hybrid Tem-
poral Logic [6], Hybrid Automata [1], (Extended) Duration Calculus [10]). In
most of these approaches, the derivation is a built-in operator that may be ap-
plied only to system variables and not to arbitrary expressions because the latter
may represent nondifferentiable behavior. The possibilities for enlarging the ex-
isting specification means are very limited, especially compared with discrete
specification languages. One of the reasons for this restriction is the difficulty of
guaranteeing the semantic compatibility of the newly introduced operators with
the underlying semantics because the semantic space (often chosen as the set of
piecewise differentiable functions) is normally not closed against the user-defined
operators (cf. [10, p. 18]).

From the point of view of logics, the derivation is a logical function, and
equality is a logical predicate, so a differential equation can be seen as an or-
dinary (atomic) logical formula. If an appropriate interpretation of the system
variables can be found such that the derivation is definable as an ordinary total
logical function on this interpretation set, then the derivation can be removed
from the set of built-in operators of a specification language and replaced by a
conventional user interface, allowing the definition of additional logical functions
and predicates. In doing so, a substantial advantage with respect to the flexibil-
ity of the specification language can be achieved because additional definitions
are not only restricted to derivation.

In this paper, the Continuous Environment-Based Logic (CEL) is presented.
The syntax of CEL is the syntax of the ordinary first-order logic. The main par-

145

ticularity is the special interpretation of the individual variables as environment-
based values from the semantic space, called ValE. The state space of the system
is thus equal to V -+ ValE. On the one hand, this interpretation allows defini-
tion of the derivation, the limit, the continuity, and other well-known notions of
calculus as conventional total logical functions and predicates on the elements of
ValE. As the semantic space is closed against all these user-defined constructs
and they are all total, each syntactic CEL-term has a well-defined semantics.
On the other hand, continuous systems can be specified using CEL, without
explicitly mentioning the time variable and without interpreting the variables as
functions of time, because the elements of ValE contain only local information.

The paper is organized as follows. In Section 2, we introduce the logic CEL,
describing in particular its syntax, two different interpretations of the syntax,
and the relation between these interpretations. Section 3 presents examples of
user-defined functions and predicates and illustrates how they can be used to
specify continuous systems. Some concluding remarks are given in Section 4.

2 The Logic CEL

2.1 Semantic Space

To motivate the structure of the environment-based values, we consider the fol-
lowing problem. Let f : R -+ R be a function and t E R Which information
about f is necessary and sufficient to decide the following questions: Is f contin-
uous at t? Does the limit (derivative) of f at t exist and, if so, what is its value?
On the one hand, we obviously do not have to know the values of f on whole R.
On the other hand, it is not enough to know only the value off at t, i.e. f(t).
The knowledge off in every E-environment of t is sufficient, but for no concrete
E-environment is it really necessary. So, roughly speaking, we can represent the
local behavior of f around t by the collection of all functions matching pairwise
on some e-environment of t.

To formalize this idea, we define the set BF:=IR -4+ Val of basic functions,
which play the role of f in the above motivation. Because in CEL we want to be
able to define limit, derivation, continuity, and other similar environment-based
notions as total functions and predicates on ValE and because such functions
do not always yield a defined value when defined conventionally, we allow basic
functions to be partial (denoted by -i÷). Next, we define the equivalence relation
- on BF x IR. (ji, ti) ' (f2 , t2) states that fA and f2 behave equally in an e-
environment of t1 and t2, respectively. (We use the syntax of Z [11] to express
mathematics. < denotes the domain restriction of a function. (a, b) stands for
an open real-valued interval bounded by a and b.]R>o denotes the positive real
numbers. The application of the auxiliary function Shift on (f, x) shifts to the
right the basic function f for the value of x.)

S: (BF x R) ++ (BF x R)
Vi:JR2 :BF; ti,tk :]R (j1 , t±) -f (f2, kt 2) + f

3: R>o - (tl -E, tl + E) < f = Shift((tý -e,tk + -) < f2, tl - k•)

146

An environment-based value is represented by a function mapping each time
point t E R to a set of all basic functions matching pairwise on some e-envi-
ronment of t (domf denotes the domain of f, lPi the set of non-empty subsets).
We model the local behavior by all functions and for all points of time in order
to avoid different representations for the same local behavior. An environment-
based value contains less information than a definition of a function on any
nonempty interval and more than a conventional point-based value. We do not
require any analytical restrictions on the values of Val; throughout this paper
continuous systems are seen as the set of all systems defined on a continuous
time domain.

VaIE:={ev :•R -+ P BF I (Vt, t : R e Vf : ev(ti); f2: ev(tk) *

(f1 ,ti) - (f2 ,t 2) A
(Vf BF - (f, ti) -' (fi, ti) •ý f E ev(ti)))}

The auxiliary function CreateEnv BF x IR - ValE, which is needed for
later developments, gets a basic function and a time point as arguments, and
yields the environment-based value characterized by this pair. Formally, it is
(uniquely) defined by

CreateEnv(f , t):=(p ev : ValE I f E ev(t)).

2.2 Syntax

As mentioned above, the syntax of CEL does not differ from the syntax of
ordinary first-order logic. We specify it for the sake of completeness.

Definition 1 (individual variables, signature). We denote the (countable)
set of individual variables by V. A signature S is a triple (Fs, Ps, as), where Fs
is a finite or countable infinite set of function symbols, Ps a finite or countable
infinite set of predicate symbols with Fs n Ps = o, and as : Ps U Fs -+ N the
arity function. A p E Ps with as(p) = n is called an n-ary predicate symbol,
and an f E Fs with a(f) = n an n-ary function symbol. If a(f) = 0, then we
call f a constant.

Definition 2 (terms). The set Ts of S-terms over a signature S is defined as
the smallest set with the following properties:

- All individual variables v E V are terms.
- All function symbols c E Fs with arity 0 are terms.
- Iff E Fs is an n-ary function symbol (n > 0) and t1 , . . . , t, are terms, then

f (ti,..., t) is also a term.

Definition 3 (atomic formulas). The set of atomic formulas AtFors over a
signature S is the smallest set with the following properties:

1. Every 0-ary predicate symbol p E Ps is an atomic formula.

147

2. If p e P (n > 0) is an n-ary predicate symbol and ti,... ,,t are terms, then
p(ti,..., t,) is an atomic formula.

Definition 4 (formulas). The set of formulas Fors over a signature S is the
smallest set with the following properties:

1. AtFors C Fors (each atomic formula is a formula).
2. Let A, B E Fors. Then (-1 A), (A =• B) and (V v * A) are elements of Fors.

The parenthesis may be omitted according to the usual priority rules. We
use the common logical abbreviations: A V B stands for -- A =• B, A A B for

-(- V A - B), and 3v e A for-i Vv e--A.

2.3 Environment-Based Interpretation

The semantics of CEL is developed according to the same standard structural
definitions as the semantics of ordinary first-order logic. The primary difference
is the interpretation of individual variables not on arbitrary carrier sets, but on
the set ValE. Since we give another interpretation to the same syntax later (the
so-called function-based interpretation, cf. Section 2.4), we mark the notions
introduced in this section with an E. We denote the sets Valk -+ Vale and
P(ValE) of n-ary functions and relations upon Vale for n E N1 by 'E'. and 'PE,
respectively.

Definition 5 (E-interpretation). Let S be a signature. An E-Interpretation
(environment-based interpretation) 1E is defined as follows:

1. IE assigns to each n-ary function symbol f with n > 0 an n-ary function on
E-values, i.e. IE(f) E YnE.

2. Iv assigns to each constant c E Fs an E-value, i.e. IE(C) E ValE.
3. IE assigns to each n-ary predicate symbol p with n > 0 an n-ary relation

on E-values, i.e. IE(p) E Pn.
4. IB assigns to each 0-ary predicate p one of the Boolean values tt or if.

Definition 6 (E-evaluation of terms). Let S be a signature and IE an E-
interpretation of S. For each E-assignment 0 : V -+ ValE, we define the function
f3IE : Ts -+ ValE as follows:

1. 3 _,E(v):=O3 (v) for every v E V
2. /01E(c):=IE(c) for each c E Fs with a(c) = 0
3. Oi.E(f (tl,..., tn)):=IE(f)(fli_(ti),... ,flt(tn)) for n > 0, f E Fs, as(f) = n,

ti,... , tn E TS

Definition 7 (E-evaluation of formulas). Let S be a signature, IE an E-
interpretation of S, and 0 an E-assignment of V. We define wIE,, : Fors -+

{tt, if} by structural induction over the construction of formulas as follows:

148

1. ((ttt if (f31E(tl), ... , flj(t.)) E I(p)

"WP , t , otherwise

for p E Ps with as(p) = n > O, ti,...,tn E Ts

w1,'O(p):=IE(p), for p E Ps with as(p) = 0

2. W (-, B):={ tt if wj"43(B) = ff
ff if wIE,3(B) = tt

3. ,/(B =ý C):= {ff if wi,(B) = tt and wIE,,(C) = ff

f tt otherwise

4. WI,,,3(Vv* B):= {tt if for all ev E ValE wj,,,f3 (B) = tt holds

VO'V : V -+ ValE is defined as follows:

/3ev(\:f ev if x =v
Sf'3(X) if x v

Definition 8 (E-validity of formulas). Let S be a signature and IE an E-
interpretation of S. The partial function wIE : Fors -i+ {tt,ff} is defined as
follows:

tt if for all /3: V -- ValE w, 1,(A) = tt holds
wi. (A):= ff if for all /3: V -* ValE wIE,, (A) = ff holds

I undefined otherwise

2.4 Function-Based Interpretation

The elements of ValE have a rather complex structure, thus it would be very
awkward to define all the functions and predicates the user may need for the
specification of continuous behavior on the set ValE. The function-based inter-
pretation presented in this section interprets the individual variables of CEL on
basic functions. The function symbols are interpreted not as arbitrary functions
f : BFn -+ BF, but as admitted functions which preserve -'n (Q- is the ex-
tension of •- to n-dimensional vectors of functions). The predicate symbols are
interpreted as admitted predicates, defined as subsets of BF' x IR which are closed
against -n. All these structures are much more familiar to the user, compared
with their E-based counterparts.

The result of an F-evaluation of a formula depends not only on the interpre-
tation IF and an assignment /3, but - unlike E-interpretations - also on the
current time point t. A formula is F-valid if it evaluates to true for all interpreta-
tions, assignments, and time points. Thus, compared with an E-interpretation,
an F-interpretation is more intuitive but less abstract because of the explicit
dependence on time. In Section 2.5, it will be shown that, under some circum-
stances, the E-validity and the F-validity are equivalent.

149

Definition 9 (admitted functions and predicates). The families of admit-
ted functions (Y, I n E N1) and admitted predicates (PF I n E N1) axe defined
as follows:

- _9 n:={F BFn -+ BF I

VfJ2 : BF'; t, t2 : IR * (fl, t1) "n (f2, t2) =• (F(fl), ti) -, (F(f2), t2)}
- PF.P.: P(BFn X R) I

VfI,2 : BF'; t, t2 : R *
(fl, ti) E P A (fl, tj) -.n (f2, k2) =ýý (f2, k2) E P}

It can be shown that the family of admitted functions is closed against com-
position. More precisely, if F E 97n and G E .F5, then for each h, : BFn+m-1-

BF (I < n) defined by

hi(]l,. .. ,n+m-i):=f(fi,. .. ,f-i, G(fl,... ,fi+m--),f+m,. .. ,f+m--),

hi E yF+m-1 holds. Moreover, it can be shown that the sets PnF of admitted
predicates are closed against union, intersection, and complement.

Definition 10 (F-interpretation). Let S = (Fs, Ps, as) be a signature. An
F-interpretation (function-based interpretation) IF has the following properties:

1. IF assigns to each n-ary function symbol f with n > 0 an n-ary admitted
function, i.e. IF(f) E .F,.

2. IF assigns to each constant c E Fs a constant basic function IF (c) E BF.
3. IF assigns to each n-ary predicate symbol p with n > 0 an n-ary admitted

relation, i.e. IF (P) E nf.
4. IF assigns to each 0-ary predicate symbol p one of the two Boolean values

tt or ff.

Definition 11 (F-evaluation of terms). Let S be a signature and IF an F-
interpretation of S. For every F-assignment fi: V -+ BF we define the function
,3j, : Ts -+ BF as follows:

1. /3iP(v):=f3(v) for all v E V
2. /01,(c):=IF(c) for all c E Fs, as(c) = 0
3. /31,(f(tl,.. - , tn)):=IF(f)(i(t), . 0.. , (t)) for n > 0,f E Fs, as(f) = n,

ti, ... , tn E Ts

Definition 12 (F-evaluation of formulas). Let S be a signature, IF an F-
interpretation of S, 03 an F-assignment of V, and t E IR. We define WJF,,3,t :
Fors -+ {tt, if} by structural definition over the construction of formulas as
follows:

1. WIft((T1, T)):= tt if ((/3 10(Ti), ... ,/31 (Tn)),t) E I(p)
~ T~): ffl otherwise

for p E Ps with as(p) = n > 0, T1,..., T, E Ts

wIPOt,(p):=IF(p) for p E Ps with as(p) = 0

150

2. B):= tt if wi,,t(B) = ff
Sff if wIF,P,t(B) = tt

3. ff if WIFj,,t(B) = tt and wjIFj,t(C) = ff
F,3,t(B • C):= tt otherwise

4. ,i tt if for all bf E BF wLobft(B) = tt holds

{v * B ff otherwise

Vib/ : V -+ BF is defined as follows:

13 bf if x= v
,3(x) if x 5 v

Definition 13 (F-validity of formulas). Let S be a signature and IF an F-
interpretation of S. The partial function WIF : Fors -4 {tt,ff} is defined as
follows:

tt if for all,3: V -+ BF and
for all t E R WiF,,,t(A) = tt holds

Wi (A):= ff if for all / : V - BF and
for all t E R. wIF,13,t(A) = ff holds

undefined otherwise

2.5 Relation Between E-Interpretations and F-Interpretations

As mentioned above, under special circumstances the E-validity and the F-
validity coincide. In this section, we define the notion of compatible interpre-
tations and show that under such interpretations this assertion is true. Before
doing this we define the lifting operators, which allow the definition of logical
constructs using basic functions BF instead of ValE, thus switching from a com-
plex to a much simpler structure. These BF-definitions can then be implicitly
lifted to ValE.

The operators LFP and LPp, defined below, lift point-based functions and
predicates defined on E, like +, -, <, < etc., to (admitted) functions and
predicates on basic functions (cf. the upper part of the diagram in Fig. 1).

Definition 14 (lifting of point-based functions and predicates). We de-
fine the families of lifting operators for point-based functions (LFp I n E N1)
and predicates (LPP I n E N1) as follows:

- LF~ : (Val' --+ Val) -+

VF: (Valn -_+ Val); f : BFn * LFP(F)(f) =

{(t, F(f 1 (t),.. ,fn(t))) I t E = domfi A (fi(t),... ,f&(t)) E domF}
- LP': ?(Valn) -+ pF

VP: F(Valn) o LPP(P) =

{((fi,-.- , . t) I t E ninU1 domfi A (fi(t),.. - ,fn(t)) E P}

151

Point-Based: Valn --+ Val P(Val")I I
LFPý LPP,

Function-Based:)- C BF• -n BF 'Pf C P(BF' X R)

LFn LPn

Environment-Based: .TF = Val! -* ValE = P(nVal)

Figurel. Effect of the lifting operators

The operators LFn and LPn lift admitted functions and predicates defined

on basic functions to functions and predicates defined on ValE (cf. the lower part

of the diagram in Fig. 1).

Definition 15 (lifting operators). We define the families of lifting operators

for functions (LFn I n E N1) and predicates (LPn I n E N1) by the following

axioms (the function CreateEnvn is the extension of CreateEnv (cf. Sec. 2.1) to
the n-dimensional vectors of functions):

- LF,, : Yn + g.

VF : YnF; f: BFn; t : * LF•(F)(CreateEnvn(f, t)) = CreateEnv(F(f), t)
- LP:F _+ -

VP: ; f: BFn; t: R * (f, t) e P 4 CreateEnv (f , t) E LPn(p)

It can be shown that LFn and LPn are well-defined [4].

Definition 16 (compatible interpretations). Let S be a signature, IF an
F-interpretation of S, and IE an E-interpretation of S. We say IF and IE are

compatible if the following holds:

1. For all e E Fs with as(c) = 0 IF(c) E IE(c)(t) for all t E R
2. For all f E Fs with as(f) = n > 0 IE(f) = LFn(IF(f))
3. For all p E Ps with as(p) = 0 IE(p) = IF(p)
4. For all p E Ps with as(p) = n > 0 IE(p) = LPn(IF(p))

The definition states that a 0-ary function symbol c is mapped by IE on an
E-value that represents the constant behavior of the function IF (c). For each F-

interpretation there exists (exactly) one compatible E-interpretation. The reverse
is not true, because an E-interpretation can assign to 0-ary function symbols E-

values, which does not constitute constant behavior. Therefore, there are more
E-interpretations than F-interpretations.

The lifting operators LFn and LPn allow the definition of logical E-constructs
in the straightforward manner. But so far there is no guarantee that the meaning

152

of E-constructs defined in this way is preserved by the lifting operators. Hence,
we cannot execute the usual logical tasks, like formula manipulation or deduc-
tion, in E-interpreted CEL with the F-meaning of the constructs in mind. The
following theorem shows that, under compatible interpretations, the F-validity
and the E-validity are equivalent, thus proving the correctness of using lifted F-
constructs in E-interpretations (we need both claims because wi, and wIE may
be undefined (cf. Def. 13 and 8)).

Theorem 17. Let S be a signature, IF an F-interpretation of S, IE an E-
interpretation of S that is compatible with IF, and A an S-formula. Then, the
following holds:

1. wI, (A) = tt if and only if wiE (A) = tt
2. wIF (A) = ff if and only if wIE (A) = ff

Proof (sketch)

1. Let ,3, be F-assignments of V, T E TS a term, and t', t" E IR. Using
structural induction, it can be proved that i-' distributes through terms and
formulas under F-interpretations:
(a) (V v V- (0'(v), t') ~ y(v), t")) € yT), t') - ((T), t")

(b) (Vv: V * (13'(v),t') ". (13"(v),t")) =v V t,(A) = WI,,3,,t" (A)
With these results, it can be shown that, if a formula F-evaluates to true for
one fixed time point and for all F-assignments, then this formula is F-valid:

(3 t : R * V13: V -+ BF t wx•,Bt(A) = tt) * wiF(A) = tt

The analogous result holds for wrong formulas.
2. Let 13 be an F-assignment of V, T E Ts a term, and t E IR. 0't : V --

ValE denotes the E-assignment corresponding to 13 and t. It is defined by
13 t (v):= CreateEnv (13(v), t). The relation between corresponding assignments
under compatible interpretations regarding terms and formulas is expressed
by the following two facts, which can be proved by structural induction over
the construction of terms and formulas, respectively:
(a) CreateEnv (1IF (T), t) = 3tE (T)
(b) wifl,t(A) = w1 E, 3 i(A)

3. With the results from 1. and 2., the assertions of the theorem can be proved
in a few steps.

3 Specification Examples

In this section, we illustrate how the logic CEL can be used to describe continuous
systems. As CEL does not contain any built-in functions and predicates, we must
first introduce the required concepts. This is done in Section 3.1. In Section
3.2, these concepts are employed to specify two small continuous systems using
the syntax of ZimOO [4], an object-oriented specification language for hybrid
systems whose semantics is based on CEL.

153

3.1 User-Defined Concepts

When specifying continuous systems with CEL, the E-interpretation is assumed
because it is much more abstract compared with the F-interpretation. However,
it would be very awkward to define all the functions and predicates the user
may need directly on the set ValE. Fortunately, admitted functions Y7• and
predicates pF (cf. Def. 9), together with the lifting operators LF, and LP, (cf.
Def. 15), provide a sound interface to the E-interpretation of CEL. Thus, we are
allowed to specify the required logical constructs as elements of F.F or PF in an
intuitively comprehensive manner. When used in the specifications of continuous
systems, these functions and predicates are implicitly lifted to elements of J7.E or

np, respectively. Theorem 17 ensures that the intuitive meaning is not violated.
Here, we use the syntax of Z instead of conventional mathematics to introduce
logical constructs.

Functions and Predicates The construct introduced first is the unary pred-
icate bp which characterizes points with defined local behavior (== is the def-
inition symbol). const describes constant local behavior. It is obvious that Sp

and const are admitted predicates. Thus, their liftings can be used in continuous
specifications.

p_ =={f:BF; t :RI t E domf}
const_== {f BF; t :R (3B: R>o; v : Val * (t -E, t+ e) C domf A

ran((t - e, t + e) <•f) = {v})}

The next three functions define the limit from the left, the limit from the
right, and the "ordinary" limit. As the set Val must meet certain requirements
to allow the definition of limit (it should be at least a metric space), we interpret
Val henceforth as the set of real numbers. In the definition, we use the type seqoo
and the function limseq, which are not defined here. They denote the type of
infinite sequences and the limit of sequences, respectively. We consider a function
to be a set of pairs - a view familiar to Z users. It can easily be proved that all
the three limits are admitted functions.

-+4-

S.... : BF -+ BF

Vf : BF.
f = {x,l: R I (let SEC == seqo{t: domf I t < x} e

(3s : SEC * limseq s = x) A
(Vs : SEC * limseq s = x •> limseq(A n : N1 f(s n)) = 1))}

f = {x,1: R• (let SEC == seqo{t : domf t> x}.
(B s : SEC 0 limseq S = x) A
(V s: SEC * limseq s = x => limseq(A n : N1 * f(s n)) = 1))}

J = Jnf

154

The admitted unary predicates Z and ' characterize local behavior with
existing limit from the left or from the right, respectively. The unary predicates
C, C, and C describe local behavior that is continuous from the left, continuous
from the right, and (merely) continuous, respectively.

L_=={f:BF; t:l RttEdomf}

._={f:BF; t: R t Edomf}

C_== {f:BF; t:I• tEdomfAtE domf A f(t) =f(t)}+.- +._

C_ I{f BF; t: t E domf A t E dom f A f (t)= f(t)}

The notion of limit can now be used to define the derivation operator. It is
a total function, so it can be proved that it is an admitted one.

" :BF -+ BF

Vf : BF a
f={t, d: I (let DQ== {h, w: R I h 5 0 A {t,t+ h} g domf A

w = (f(t + h) - f(t))/h}

.0 E domDQ A DQ(O) = d)}

The unary predicate D describes differentiable local behavior.

V_ == {f: BF; t:RI t domi}

The admitted binary predicate =c states that, if the local behavior rep-
resented by the right-hand side of =c is continuous, then the left-hand side
describes defined local behavior. =,o is not common in conventional analysis,
but it has proved very helpful when specifications contain explicit differential
equations because =,,, can manage discontinuities in the right-hand side of the
equation.

=CO: IP((BF x BF) x R•)

VfJ,f2 : BF; t : R *
((fl,f2), t) C =c. < (6p(fl, t) A 6p(f2, t) A f1 (t) = f 2 (t)) V -* C(f 2 , t)

Data Types Data types are subsets of Vale which constitute total local behav-
ior. They can be defined using unary admitted predicates.

First, we define the auxiliary operator EnvPoint which takes a unary predi-
cate pr as its argument and yields another unary predicate. A pair (f, t) fulfills
this resulting predicate if and only if a neighborhood of t exists such that, for
every t' from this neighborhood, (f, t') fulfills the original predicate pr. Note,

155

that (f, t) is not required to fulfill pr. EnvPoint maps admitted predicates to
admitted ones.

EnvPoint : P(BF x R) -+ P(BF x R)

Vpr : P(BF x R) *
EnvPoint pr = {f : BF; t : R

-3 B T : seq..R \ {t}) 0 limseq T = t A
(V i: dom T * (f, T i) 0pr)}

The most general data type BASIC contains all total local behaviors.

BASIC == Jp_ n EnvPoint(*p)

The following definition introduces the data types used in the specifications
in Section 3.2. LIM denotes the total local behaviors with existing limits from
the left and the right. The frequently used data type SEM characterizes piece-
wise differentiable local behavior, i.e. local behavior without accumulation of
nondifferentiable points. CONT and DIFF denote continuous and differentiable
behavior, respectively. The data type CONST describes the constant behav-
ior. STEP models step functions defined on a continuous time domain. Finally,
CLOCK describes differentiable local behavior with the gradient 1.

LIM -- BASIC n L_ L_
SEM LIM n EnvPoint(D)
CONT ==SEM n C_
DIFF ==SEM n D_

CONST == BASIC n const_
STEP == BASIC n EnvPoint(const_) n (U-L C_)

CLOCK == {f: BF; t : R I (f,t) E DIFF A1(t) = 1}

3.2 Examples of Continuous Systems

As mentioned above, the logic CEL was used to describe the semantics of the
continuous classes of ZimOO [4], an object-oriented specification language for
hybrid systems. ZimOO is based on Object-Z [3], an object-oriented extension of
Z [11]. It extends Object-Z, allowing descriptions of the discrete and continuous
features of a system in a common formalism. ZimOO supports three different
kinds of classes: discrete, continuous, and hybrid. We use the syntax of the
continuous ZimOO classes to give some examples of CEL-specifications.

Axioms are used to specify the state space of continuous ZimOO classes.
They are formulated using the syntax of first-order logic and interpreted as
CEL-formulas, the E-interpretation being assumed. There are no built-in logical
functions or predicates in the kernel of ZimOO. Instead, we use the functions
and predicates defined in the previous subsection (as justified at the beginning

156

of Section 3.1, the functions and predicates defined there may be used in E-
interpreted CEL-formulas and therefore in ZimOO classes). Additionally, we use
the common point-based functions and predicates defined on reals like +, -, _<,
etc. They can all be lifted to .E[or PE by the composition of LFP and LFn or
by the composition of LPP and LP,, respectively. In particular, the equality on
reals is lifted to T2E. Note that, consequently, we use a point-based equality which
depends only on the current real value of the expressions involved, neglecting
their local environments.

Cat and Mouse The cat-and-mouse-problem [91 is a simple benchmark from
the area of real-time and hybrid systems. We specify it here to demonstrate the
description possibilities of languages based on CEL (cf. the class CatAndMouse).
The example deals with a cat trying to catch a mouse, which in turn attempts
to escape into a hole. The problem is one-dimensional, i.e. the cat, the mouse,
and the hole are on a straight line, the cat and mouse moving along this line.
Initially, the mouse, which is located between the cat and the hole at distance
mo from the hole, starts running towards the hole at a constant velocity vm. t,
time units later, the cat, which is positioned at co, starts chasing the mouse at
the constant velocity v,. All these constants are declared as real numbers in the
axiomatic schema of CatAndMouse.

CatAndMouse

0o, co :>o

Vm, Vc R<0
tc :]R>0

mo < co

t: CLOCK

xm, xc : CONT
res: STEP INIT

res = 1 V res =2 t = 0
- C res * = x c > 0 xm mo

xm =co if res 1 then vm else :c xc= CO
=c, if t > tc V x, > 0 then vc else 0 res= 1

The state space and the dynamics of the system are described in the state
schema of CatAndMouse. As the example contains an explicit delay, we need
a clock variable t. The current positions of the mouse and the cat are denoted
by the variables xm and xc, respectively. The result of the "race" is encoded in
the variable res. res = 1 means the mouse wins, res = 2 means the cat is the
winner. When the constants to, too, 1, 2 etc. are used in the state schema, their
values are implicitly lifted to ValE, i.e. to CONST. The second axiom states

157

that the value of res, which initially equals 1, can change if and only if the cat
overtakes the mouse before it disappears into the hole. The last two axioms can
be interpreted as differential equations describing the movement of the mouse
and the cat. Depending on the value of res, xm behaves according to ,,m = Vm or
Xm = i,. =,, ensures that if res does not jump and i, represents defined local
behavior, then the derivative of xm exists and fulfills one of the two differential
equations. In jump points of res and in points where xC is not differentiable, the
value of xm is uniquely determined by the continuity of xm.

Billiards As a further example, we specify the billiards game from [2]. The
billiard table is assumed to have the length L and the width W. Friction is
neglected, i.e. we assume the absolute values of the ball velocities v, and v. in the
x- and y-directions to be constant. The current position of the ball is described
by the pair (x, y), the velocity directions by dx and d.; the current velocity is
therefore given by (d: - vx, dy - vy). The first implication in the state schema
states that the x-velocity vx may only change its direction d. if a collision with
one of the x-borders occurs. The third implication ensures that such a change
takes place when an x-border is reached. The second and the fourth implications
describe the same facts for the y-direction.

Note the use of the limit operators in the last two implications. They can
be applied not only to individual variables but also to expressions because the
(lifted) multiplication operator "." is total on ValE x ValE, thus yielding a proper
element of ValE which can be further processed by the limit operators.

Billiards

L, W, vx, v: R>o

x, y: CONT
d4, dv : STEP

(dz = -1 V d; = 1) A (dy = -1 V d= 1)
=co d4 vy

-'C d4,= x =O V x =L INIT
-iC dy=ýy=OV y W 0<x<L

x =0Vx =L =ý-dT.v= -d.v__ -- , 0 <y< W

y = o V y = W d. v. = -dy. vy [d = dy = 1

4 Conclusion

The paper describes the Continuous Environment-Based Logic (CEL) and pro-
poses its use for the specification of continuous components of hybrid systems.

158

The syntax of CEL is the syntax of first-order logic. The semantic particularity
is the interpretation of variables on the set ValE of environment-based values.
The elements of ValE contain less information than any nonempty interval of a
behavioral function, but more than a conventional point-based value, lying more
or less in between. Because of this choice of the semantic space, the derivation
and other environment-based constructs can be defined directly on E-values, and
the interpretation of the variables as functions can be avoided. The definition
of additional logical constructs can be performed in a comprehensively intuitive
manner with explicit access to the time variable. The lifting operators translate
these constructs implicitly into the semantics of CEL. It has been shown that for
compatible interpretations the meaning of the constructs is preserved. CEL has
been used for the semantics definitions of an object-oriented specification lan-
guage for hybrid systems. In general, it can be very useful for formal semantics
definition of object-oriented simulation languages for dynamic systems.

Acknowledgments

I wish to thank Matthias Weber for his valuable comments. Thanks also to Phil
Bacon for polishing up my English.

References

1. R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems. In
Grossman et al. [5], pages 209-229.

2. R. Alur, C. Courcoubetis, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical
Computer Science, 138:3-34, 1995.

3. R. Duke, P. King, G. A. Rose, and G. Smith. The Object-Z specification language:
Version 1. Technical Report 91-1, Department of Computer Science, University of
Queensland, St. Lucia 4072, Australia, April 1991.

4. V. Friesen. Objektorientierte Spezifikation hybrider Systeme. PhD thesis, Technical
University of Berlin, 1997.

5. R. Grossman, A. Nerode, H. Rischel, and A. Ravn, editors. Hybrid Systems, volume
736 of LNCS. Springer-Verlag, 1993.

6. T. A. Henzinger, Z. Manna, and A. Pnueli. Towards refining temporal specifications
into hybrid systems. In Grossman et al. [5], pages 60-76.

7. C. B. Jones. Systematic Software Development using VDM. Prentice Hall, second
edition, 1990.

8. B. P. Mahony. The Specification and Refinement of Timed Processes. PhD thesis,
Department of Computer Science, University of Queensland, Australia, 1992.

9. 0. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In J. W.
de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, editors, Real Time:
Theory in Practice, volume 600 of LNCS, pages 446-484. Springer-Verlag, 1992.

10. A. P. Ravn. Design of Embedded Real-Time Computing Systems. PhD thesis,
Technical University of Denmark, Lyngby, 1995.

11. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, second edition,
1992.

Integrating Projections

Mark R. Greenstreet Ian Mitchell
Department of Computer Science Scientific Computing and

Computational Mathematics
University of British Columbia Stanford University
Vancouver, BC V6T 1Z4 Stanford, CA 94305-9025
Canada USA
mrg~cs .ubc. ca mitchellfsccm. stanford. edu

Abstract This paper describes three techniques for reachability analy-
sis for systems modeled by ordinary differential equations (ODEs). First,
linear models with regions modeled by convex polyhedra are considered,
and an exact algorithm is presented. Next, non-convex polyhedra are con-
sidered, and techniques are presented for representing a polyhedron by its
projection onto two-dimensional subspaces. This approach yields a compact
representation, and allows efficient algorithms from computational geome-
try to be employed. Within this context, an approximation technique for
reducing non-linear ODE models to linear nonhomogeneous models is pre-
sented. This reduction provides a sound basis for applying methods for
linear systems analysis to non-linear systems.

1 Introduction

We are interested in verifying that circuits, as modeled by systems of non-
linear ordinary differential equations (ODE's), correctly implement discrete
specifications. Challenging verification problems arise when VLSI designers
use methods such as precharged logic, single-phase clocking, and sense-amp
based techniques that depend on the analog properties of the circuits to
obtain better performance. In current practice, design validation relies heavily
on simulation tools such as SPICE [Nag75]. However, even the best model
is only approximate, and each simulation run can only consider a particular
set of functions as inputs to the circuit and a particular set of values for
model parameters. To obtain a reasonable level of confidence in a design, a
large number simulations must be run. This process can be extremely time
consuming; yet, in the end, simulation can not prove the correctness of a
design.

Recently, we have been exploring an alternative approach to the problem
of circuit-level design verification, based on ideas from dynamical systems the-
ory. Correctness criteria for a circuit can be formulated in a logic which has
meaning in both continuous and discrete domains. Rather than considering
individual simulation runs, correctness criteria become topological properties
in the continuous domain that must hold for an invariant set that contains all
possible trajectories of the ODE model. To establish these invariants, we con-
struct regions such that all trajectories on the boundaries flow inward [GM97].
For simple models these regions can be constructed manually, but for models

160

arising in real circuits more automated methods are required. In [Gre96], we
showed how these invariant sets can be constructed by reachability analysis
using numerical integration.

An important advantage of our approach is that our analysis is based
on ODE models similar to those that are used for industrial circuit simu-
lation. Thus, our results are comparable with those obtained by traditional
simulations-by speaking the same language as circuit designers, we encour-
age interaction with the eventual users of our techniques. Furthermore, con-
siderable effort continues to be invested in developing accurate models for
current fabrication processes. By using ODE models as the basis of our work,
we can exploit these advances directly.

Two contributions are made by this paper. First, we describe an effi-
cient way of representing non-convex high dimensional polyhedra using two-
dimensional projections. This representation is by no means universal; how-
ever, it has shown promising results for a small number of circuits that we
have analysed. Second, we show an integration based approach for computing
reachability between regions represented using projections. Although we use
floating point arithmetic in our implementation to obtain acceptable perfor-
mance; in principle, the same techniques could be implemented with rational
arithmetic and conservative rounding to create a strictly conservative imple-
mentation of the algorithm. The theoretic aspects of these contributions are
contained in section 3. Preceding that section is a description of our models.

2 Models

In this section we show how to construct ODE models for our analysis. Sec-
tion 2.1 describes the construction of models for MOS circuits. These cir-
cuits require inputs, and we typically wish to verify a circuit for all legal
inputs. Readers familiar with circuit modeling may wish to skip directly to
section 2.2, which describes Brockett's annulus construction and shows how
it can be used to model inputs to our circuits.

2.1 Circuit Models

We model MOS circuits as a collection of voltage controlled current sources
and (linear) capacitors. A voltage controlled current source defines a relation-
ship between the voltages on its terminals and the currents flowing into those
terminals. By convention, current is the flow of "positive charges," and a flow
of electrons into the device is represented by a negative current. Consider the
device depicted below:

161

U

a C

db -b

The device U is connected to three nodes, a, b, and c. The voltage V, denotes
the voltage at node a, and likewise for Vb and V1. We write Vba to denote
Vb - Va and likewise for Vrb. The current i• denotes the current flowing into
device U through node a. If U is a voltage controlled current source, then ia
is a function of the voltages Va, Vb and V,. We write ia = Ua (Va, Vb, V,).

More generally, let V denote the vector of node voltages in the circuit,
and let iu denote the vector of currents flowing into U through each node of
the circuit. We write

iu = 1U((1)

For example, an n-channel MOSFET can be modeled as a three terminal,
voltage controlled current source. The three terminals are the gate, g, the
source, s, and the drain, d. A simple model (see [GD85], equations 2.85 -
2.87) is

ig(Vg,V ,V yd) = 0
id(Vg, V,, Vd) = 0, if Vd> 0 & Vg, < Vt

= G(Vg., - Yt)2, ifVd, _0 & Vd >>Vg9 -Vt >_0

= GVd.(2(Vg - Vt) - Vd8), if Vd• Oand V, - _ VVs_ (2)
= -id(Vg, Vd, Vs), if Vd8 < 0

is(vg, V, Vd) = -id

where Vt is the "threshold voltage" of the transistor, and G is the transcon-
ductance. These two constants are determined by the size and shape of the
transistor and by properties of the fabrication process.

A capacitor defines a relationship between the time derivatives of the
voltages on the terminals and the currents flowing into these terminals. For
a capacitor of fixed capacitance C connected to nodes a and b,

_ =CdVA CdV~ib = -ia dt dt

More generally, a capacitor U defines a matrix valued function Cu such that

d= (3)

For the models arising from MOS circuits, this matrix corresponds to a net-
work of voltage dependent, two-terminal capacitors. Physically, there must
be some capacitance between every pair of nodes; in practice, many of these
capacitances are small and neglected when constructing a circuit model. Any
realistic model will associate at least one capacitor with each node; for such
models, Cu (V) is real-symmetric and positive definite.

162

Given models for each device in the circuit, we construct an ODE model
for the whole system using Kirchoff's current law. As depicted in figure 1,
Kirchoff's current law states that the sum of the currents flowing into each
node of the circuit must be zero. Likewise, the sum of the currents flowing into
each device must be zero. Both of these constraints are direct consequences
of charge conservation.

Ia,1 ib,1

ai,2 4 a Kirchoff's Current Law:

Zc,2 Id,2 id,3 ,

U2 U3 Vx E {a... f}. im = 0
m= 1

U4 d e f

4w E flm... 6}.•i = o

S f U 5
6,6

Zf,5 Zd,5 id,6

Fig. 1. Kirchoff's Laws

From Kirchoff's current law, we have

ZUEC c 7(F)• + UE-I IU(9)
where C denotes the set of capacitor devices, and I denotes the set of current
source devices. Solving for dV/dt yields

dVt = - (EUc CU(7))) (ZuE 1 U(CV)) (4)

which is an ODE model for the circuit.
The device models above are simplistic, allowing a shorter presentation

and making the analysis in the remainder of this paper tractable. While these
models capture many of the key features of MOS circuit operation, we note
that the transistor model of equation 2 neglects the body effect and short
channel effects. Similarly, when modeling capacitors we make the simplifying
assumption that CU is a constant; in real MOS designs, Cu depends sub-
stantially on V. Kirchoff's current law is itself an approximation of Maxwell's
equations, and so ignores "displacement currents." Typically, designers use
more accurate models than those presented for transistors and capacitors-
here we have chosen to avoid complexity while retaining the key features of
realistic circuit models.

2.2 Input Signals

The problem of verifying an entire chip at the ODE level appears to be hope-
lessly intractable. Instead, we focus on the problem of verifying small circuits

163

and showing that the outputs of one circuit satisfy the constraints that we
assume for inputs to other circuits. Such a method requires a mechanism for
specifying the expected inputs and the allowed outputs of each small circuit.

VoI Voh dx/dt V1 Vh td l.........i

S.V o l

The Annulus A "typical" trajectory

Fig. 2. Brockett's Annulus

Figure 2 depicts the annulus proposed by Brockett [Bro89] that we use to
specify the levels and transitions of signals. When a variable is in region 1, its
value is constrained but its derivative may be either positive or negative. We
will consider this a logically low signal. When the variable leaves region 1, it
must enter region 2. Because the derivative of the variable is strictly positive
in this region, it makes a monotonic transition rising to region 3. Regions 3
and 4 are analogous to regions 1 and 2, and correspond to logically high and
monotonically falling signals respectively. Because transitions through regions
2 and 4 are monotonic, traversals of these regions are distinct events. The
properties of the annulus provide a topological basis for discrete behaviours.

Many common signal parameters are represented by the geometry of an
annulus. The horizontal radii of the annulus define the maximum and mini-
mum high and low levels of the signal (i.e. Vol, Voh, V11, and Vmh in figure 2).
The maximum and minimum rise time for the signal correspond to trajecto-
ries along the upper-inner and upper-outer boundaries of the annulus respec-
tively. Likewise, the lower-inner and lower-outer boundaries of the annulus
specify the maximum and minimum fall times.

3 Reachability Analysis

In this section we present our theoretic results. After looking at the con-
nection between verification and reachability, we examine three increasingly
difficult reachability analyses: linear models with convex polyhedra, linear
models with non-convex polyhedra, and finally nonlinear models with non-
convex polyhedra.

164

3.1 Verification as Reachability

Many circuit verification problems can be formulated as reachability analysis
problems. For example, consider a circuit that implements a simple state
machine. An ODE model provides a mapping between the continuous circuit
state (node voltages) and the time derivative of that state. Thus, given a point
in the continuous space, the value and derivative of each signal is known.
Using a Brockett annulus, each signal can be interpreted discretely as being
low, rising, high, or falling. The continuous model implements the discrete
specification if every reachable point in the continuous model corresponds to
a state or transition of the discrete specification.

First consider the verification of bounded prefixes of trajectories. For a
circuit with d nodes, the continuous state space is Rd. We assume that the
derivative function for the model is autonomous (i.e. independent of time) and
finitely piecewise continuous (therefore locally bounded). Given a bounded
region Q c Rd, Qo C Q, and tf e R+, we want to show that all trajectories
that start in Qo at time 0 will remain in Q for all times up to tf. Our approach
to this problem is to construct a sequence of time steps to < t, < ... < tk

such that to = 0 and tk = tf. For i = 1.. .k, we construct a region Qi
such that any trajectory that starts in Qi-1 at time ti-1 will be in Qi at
time ti. We then construct a second set of regions Q', Qk-1 such that any

trajectory that starts in Qi at time ti will remain in Qý up to and including
time ti+,. If U= Q(C Q, then all trajectories that start in Qo at time 0 will
remain in Q for all times up to tf as can be readily shown by the construction
of Ql.

Now consider infinite trajectories. Let Q, Qi, Qi, and ti be constructed
as above, D = U"=o ... Q•, and Q+= U- ... Q,. If Qk C Q+, then any
trajectory that starts in Qo remains in D forever. To see this, let x : R+ -+ Rd

be a trajectory with x(0) E Qo. Let rmin = miný=1 tk - tk-1. There exists a
sequence of times, Tm,, such that for all m > 0, x(rm) E Q+ and rm _Ž mrmin.
The proof is completed by induction on m. For m = 0, rm = 0. For m > 0,
let j E {0... k - 1} such that x(7mn-1) E Qj. Let

7Tm= mr_1 + (ti+1 - ti) Ž T7m-1 + Tmin >•M * Tmin

Then, x(7m) E Qj+i C Q+.
In general, it is not feasible to represent exactly the reachable regions

of systems modeled by ODEs. Most non-linear ODEs, including those that
arise when modeling VLSI circuits, do not have closed form solutions. Because
proof of safety properties is our objective, over estimation of the reachable
space is conservative-false negatives are possible, but not false positives.

Consequently, we use "containing approximations", within which lie the true
reachable state spaces.

As described above, the next few sections examine three different cases of
reachability analysis. First, we consider the special case of linear ODE's where
the initial region is a convex polyhedron-we show that the Qi sequence can

165

be computed exactly, and the Qý sequence can be computed with arbitrary
accuracy. In general, convexity is not preserved by non-linear models, and we
develop our treatment of non-linear models in two steps. First, section 3.3
presents a conservative approximation technique for the particular class of
non-convex polyhedra that can be represented by their projections onto two-
dimensional subspaces; however, linear models are retained. In section 3.4 we
show how these projection polyhedra can be used with non-linear models.

3.2 Linear models and convex polyhedra

This section presents the special case where the ODE model is linear, and
Q0 is convex. An ODE model is linear if it can be written in the form

i = Ax (5)

where x : R+ -+ Rd is a trajectory and A E Rdxd is a matrix (note that this
definition of "linear" is more general than the one used in much of the hybrid
systems literature). We assume that A has a full-rank set of eigenvectors. If
not, a small perturbation of A will produce such a matrix, and the techniques
presented in section 3.4 can be applied. With this assumption, the solution
of equation 5 is [HS74]

x(t) = e Ax(0) (6)

For any fixed value of t, etA is a linear operator that can be represented by
a matrix, and etA is invertible.

A d-dimensional convex polyhedron with m faces can be represented by
linear program of the form

Mx<B (7)

where M G Rmxd is a matrix and B c]Rm is a vector (see [PS82]). We write
(M, B) to denote the linear program of equation 7, and write x E (M, B) to
denote that x satisfies this linear program.

Polyhedra can be bloated. If (M, B) is a linear program, and u is a real
number, then, bloat((M, B), u) is the polyhedron obtained by moving each
face of M outward by u. Let ,A E R d be a vector such that that its jth element
is given by Ai(j) = u MiI 2 , where IIMj112 denotes the L2 norm of row j of

M. Then,

bloat((M, B), u) = (M, B - A) (8)

Convexity is preserved by linear operators. In particular, let the linear
program (MO, B 0) describe the convex region Qo, let ti E R+, and let A
be the matrix representation of a linear ODE model. A point x is reachable
from Q0 at time t, if and only ifx E (Moe-tA, B), which follows directly from

166

equations 6 and 7. Thus, we can construct Q1 .. Qk such that for i = 1 ... k,
any trajectory that starts in Qi-1 at time ti- 1 will be in Qi at time ti. In
particular,

Q, = Moe-tiA,B) (9)

These Qi are exact.

xi = x Q' ti = 0.64
il = X0

Q0

Fig. 3. A simple linear system

Although the Qi's (the reachable regions at each time step) are convex, the
same does not necessarily hold for the Qý's (the regions reachable during all
times between steps). For example, consider the system depicted in figure 3.
Trajectories are counter-clockwise circles centered at the origin. Although Qo
and Q, are both convex, the minimal region for Q' is the region swept out
by moving Qo through an arc of t1 radians (the shaded region in figure 3).
Region Q' is not convex.

Rather than trying to solve for Q' exactly, we will find an approximation.
Note that i = Ax is locally bounded; therefore it is bounded in Q. Define
the scalar IIXJImax = maxxEQ fJAxjJ 2 . A trajectory that starts in region Qi at
time ti remains within a distance (t4+ 1 - ti)IIP]lmax of Qi until time ti+,. Let

Q bloat((Moe- , B), IIdl[max) (10)

For any trajectory x such that x(ti) E Qi and for any time t E [ti, t + 11,
x(t) E Qý as required.

Although the Qý are containing approximations, each one is computed
from an exact Qi--the errors of making a conservative approximation do
not accumulate between time steps. To achieve accurate estimates of the
reachable space, the time steps should be relatively small so that there is
little of Qý outside of Qi U QU+ - For example, this approach would compute
a large overestimate of Q' for the time step depicted in figure 3.

A straightforward approach to verification is to construct a sequence of
Qi and Qý as described above, and verify that each Qý is contained in Q.
If all containments are established, then the verification is complete. Other-
wise, choose i such that Qý is not contained in Q. A counterexample to the
verification is established if either of the exact solutions Qi or Qi+1 is not
contained in Q. If neither of the exact solutions provide a counterexample,

167

divide the step from Qi to Qi+l into two smaller steps and repeat the verifi-
cation. This process terminates when containment of all the Qý's is verified,
a counter-example is found, or the time step is smaller than is meaningful
for the chosen model. In the latter case, the property cannot be verified with
the given model. Typical variation in MOS circuit parameters can ±20% or
more, although closely matched circuits (e.g. sense-amplifiers, see [Bak9O])
can be designed that are balanced to within a few parts per thousand.

3.3 Linear models and non-convex polyhedra

Although systems with linear ODE models can be analysed quite accurately
using the techniques described in the previous section, such systems do not
have a rich enough phase space structure for interesting digital computation.
In a linear system, the asymptotic behaviour of trajectories is either conver-
gence towards the origin, divergence to infinity, or an orbit centered at the
origin. In order to examine more interesting systems, we need techniques to
analyse non-linear models. In general, these models do not preserve the con-
vexity of polyhedra; therefore, we begin by describing the class of non-convex
polyhedra that we use in our analysis.

Representation
We represent high dimensional polyhedra by their projections onto two di-
mensional subspaces, where these projections are not required to be convex.
Conversely, a full dimensional polyhedron can be obtained from its projec-
tions by back-projecting each into a prism in Rd and computing the inter-
section of those prisms (see figure 4). More formally, let {U1 , u2,.... Ud} be
an orthogonal basis for Rd. If P is a polygon, we write (ux(p),uy(p)) to
denote the basis of P. We write ConvexHull(P) to denote the convex hull
(see [PS85]) of P, and it is understood that X(ConvexHull(P)) = X(P)
and Y(ConvexHull(P)) = Y(P). We write prism(P) to denote the inverse
projection of P back into the full dimensional space:

prism(P) = {(X, ... Xd) E Rdl(xx(p), xy(p)) E P} (11)

Let P be a collection of polygons. The object represented by P is Q(P) where

Q(P) = fl prism(p) (12)
P=P•

We note that faces of Q(P) correspond to edges of the projection polygons.
If P is a projection polygon, and e is and edge of P, we write X(e) and Y(e)
to denote X(P) and Y(P) respectively. Likewise, we define prism(e) to be

prism(e) = f(X1 Xd) E RdIX(ex) 1 Xy(,)) E e} (13)

168

L: Projection

LLx y x

z

-- Maximal

z •Reachable

Fig. 4. A three dimensional polyhedron and its projections

If e is an edge of a projection polygon, we write face(e, 1) to denote the
corresponding edge of e:

face(e, P) = Q(7P) nfprism(e) (14)

We write face (e) when P is apparent from context.
There are several advantages to this representation. First, it corresponds

to an engineer's intuitive notion of how a circuit works. Typically, each signal
is "controlled" by a small number of other signals. Pairing each node with
each of its controlling nodes naturally captures the causal behaviour of the
circuit. Because most circuits have limited fan-in and fan-out, the number of
such pairs, and hence the number of polygons, is proportional to the number
of nodes in the circuit.

From the perspective of a numerical analyst, the engineer's intuition
means that a full dimension polyhedral representation of the reachable re-
gion may provide unneeded freedom in its ability to represent constraints
between every possible combination of variables. In the same way that many
matrices encountered in practice contain interaction between only limited
sets of variables, in many ODE systems each variable only directly influences
a small number of others. Dense storage and manipulation of sparse ma-
trices is wasteful; similarly, representing the reachable state space as a full
dimensional polyhedron may be exponentially extravagant.

Finally, there are algorithmic advantages to using projections. The exis-
tence of a sound method for computing the evolution of bounding polyhedra
represented in this manner is key to verification. In addition, all geomet-
ric operations take place in two dimensions where there are many results

169

and algorithms available from computational geometry [PS85]. Lastly, it is
relatively easy to compute the convex hull of a polygon, thus producing a
containing approximation of that polygon in the form of a linear program.

Of course, there are many polyhedra that cannot be exactly represented
by this approach. First, indentations on the surface of an object can not
be represented; likewise, many perforated objects and knot-like objects can
only be approximated. We require that the projections are orthogonal; there-
fore, edges formed by the intersection of projections must be at right-angles.
Further experimentation is needed to determine the significance of these lim-
itations when analysing circuits modeled by ODEs.

Reachability
Let Q(Po) be a polyhedron, and let i = Ax be a linear model for a system.
Given a monotonically increasing sequence of times, t 1 ... tk, we will construct
a sequence of polyhedra Q(P 1) ... Q(Pk) such that trajectories that start in
Q(Po) at time i = 0 are contained in Q(Pi) at time t = ti. Our approach
is based on three observations, which we justify below. First, it is sufficient
to consider trajectories emanating from the faces of Q(Po), as these will
define the faces of the polyhedron at later times. Second, for each edge e of
a projection polygon, it is straightforward to construct a convex containing
approximation for face(e). Third, the method described in section 3.2 can be
used to determine reachability from this convex approximation.

Because Ax is locally bounded, trajectories are continuous and cannot
cross. Therefore, trajectories starting on a face of the polyhedron provide
bounds for trajectories starting in the interior.

To construct a convex approximation for face (e) let

Z(P) = f prism(ConvexHull(P)) (15)
PEP

It is straightforward to show that ConvexHull(Q(P)) C Z(P), and
ConvexHull (face(e, 7')) C ConvexHull(Q(P)))n prism(e). Therefore,

ConvexHull(face(e, P)) C Z(P) n prism(e) (16)

Given P, a linear program for Z(P) can be constructed by computing the
convex hull for each polygon in P and taking the conjunction of their con-
straints. Each polygon is two dimensional, allowing efficient (i.e. O(n log n))
algorithms to be used. Once Z(P) is calculated, it is easily extended to pro-
duce Z(P))n prism(e) for each edge. This provides our convex approximation
of face(e,P).

The method described above allows us to construct a d - 1 dimensional
convex approximation for each face of Z((Po). The reachable space from each
face can then be computed by the techniques given in section 3.2. The bound-
ary of the region reachable from Z(Po) is contained in the union of the regions
reachable from the faces.

170

In order for the same algorithms to be used for the next time step, we
would like to compute a containing approximation of this boundary as a se-
ries of projections-describing the new boundary in the same way that Z(7Po)
was described. Given a linear program for a face, the projection of that face
onto a plane can be computed by finding an extremal vertex of the projec-
tion, and tracing the rest of the vertices with a series of pivots (see [AF92]).
Because there may be an exponentially large number of vertices in this pro-
jection, such an approach may be slow. To avoid tracing too many vertices,
extremal vertices can be computed for a fixed set of directions, and edges as-
sociated with these vertices joined to produce a containing approximation of
the projection. Regardless of the method chosen to compute the projections,
an object that contains everything reachable from Q(Po) can be constructed
by filling in the projection polygons (another straightforward operation).

An unattractive feature of this approach is that the reachable polyhedron
for each face must be projected onto all planes used for the original projection
polygons. Intuitively, this is because with a linear model, we can calculate
the exact image of the convex approximations of the face for arbitrarily large
times. During such an extended time interval, the polyhedron can rotate, and
any face can become an extremal face for any projection.

3.4 Non-linear models and non-convex polyhedra

We extend the methods of the previous section to non-linear models in three
steps. First, we will approximate the non-linear model by a linear model
and a correction term. Second, we show how this correction term can be
described as an non-determinate function of time, allowing the non-linear
ODE to be approximated by a first order linear differential equation with an
non-determinate nonhomogeneity. Finally, by bounding the solutions of the
nonhomogenous system, we obtain a containing approximation of solutions
to the original non-linear system.

Because the method from section 3.3 considers each face separately, we
focus on the problem of finding the points reachable in time At from a point in
face (e) for some edge e, for a model whose derivative function has an L2 norm
bounded by IIl[Imax. In determining the region reachable from face(e), only
points in bloat(face(e), (ZAt)illmax) need to be considered. The derivation of
the linear approximation and correction term is handled by the model-in
other words, we leave it to the ingenuity of the programmer. When the model
is evaluated, bloat(face(e), (At)[JJiJmax) is available as a linear program, so
linear bounds can be readily obtained describing the region in which the
approximation and correction must be valid.

As an example, consider the transistor model presented in equation 2
with Vt = 0.5. For a particular bloated face, assume 1.2 < Vg, < 1.6 and
2.4 < Vt, < 3.1. Then, everywhere in this region id, = G(Vg, - Vt) 2 . Lin-
earizing about the mid-point of the region and choosing an additive con-
stant to minimize the worst-case absolute value of the error, we get ids

171

G(1.8Vg, - 1.69) ± f(vg,, Vd,), where C(vg,, Vd,) e [-0.02, 0.02]. Similar tech-
niques apply when the feasible region includes more or other modes of the
transistor's operation.

Linear models can also be computed for input signals that are described
using annuli (recall figure 2). As for the transistor model, the input signal
model queries the linear program for the bloated face to determine upper and
lower bounds for the value of the signal. For any given value of the signal, the
annulus specifies upper and lower bounds for its time derivatives. From this
description, a linear model with an error term can be computed. For such
signals, the error term can be quite large; especially when the signal can be
in the first (logical low) or third (logical high) regions of the annulus.

The non-linear correction term is a function of the state of a trajectory:

S= Ax + c(x) (17)

The model provides bounds on c(x); thus, we write c(x) E E for some E C R•d.

For any particular trajectory, the correction term can be understood as a
function of time, and we write

S= Ax + ý(t) (18)

By computing the set of points reachable by trajectories for all functions ý
with ý(t) E E, we obtain a containing approximation for the original, non-
linear system.

Equation 18 is a linear, nonhomogeneous, first-order differential equation.
Such equations have a closed form solution [Apo67], namely:

x(t) = etA x(0) + e I e`A (u)du (19)

The etA x(o) term is the solution to the linear approximation and the
etA f At ea (u)du term is the perturbation arising due to the non-linear
correction in the model. A bound on the contribution of this correction term
is computed next.

We assume that A has a full rank set of eigenvectors. If not, A can be
perturbed slightly so as to satisfy this condition, and the perturbation can
be reflected by slightly enlarging the correction term. Now, A can be di-
agonalized [HS74]; thus e-tA = D-le-tA'D, where D is the diagonalizing
matrix, and At is diagonal. The elements of e-tA" (also a diagonal matrix)
can be readily bounded for all t e [0, At]. Using standard optimization tech-
niques [PS82], a linear program can be constructed that is a containing ap-
proximation for the values of etA fLAt e-uA (u)du.

The previous paragraph provides a mathematically rigorous way to bound
the contribution to trajectories of the non-linear component of the model.
We expect that it would be impractical to implement this method due to its
reliance on diagonalizing A-a procedure that is both time-consuming and

172

numerically sensitive. Instead, we plan to sample e-uA for several values of
u E [0, At] using a numerical approximation such as an integration algorithm.
From these samples, approximate bounds on the non-linear contribution can
be found. Just as with the mathematically rigorous approach, these bounds
can be expressed as a linear program.

Using one of the methods in the previous two paragraphs, a containing ap-

proximation in linear program form for eA fAt e-uAc(u) can be constructed.
Section 3.3 built a linear program containing the values of etAface(e). For rea-
sons that will be explained shortly, we will instead use a linear program that
contains the values of etAfacel(e), where

face'(e, (16t)II-illma.)
= bloat(Z('P), P11lmax) n prism(extend(e, (nt0l.•4max))

extend(e, (At)IlIllmax)
= e with end points extended outward by (At)llillmax

Note that face(e) C face'(e). A containing approximation for the sum of
etA fto e-UAý(u) and etA face'(e) can also be described by a linear program,
and we can approximate the boundary of the reachable space at time At as
the union of these linear programs for each face.

The methods described in this section rely on representation of the reach-
able space by a collection of two dimensional projections. For example, we
use an approximation of the convex hull of the reachable space which is
derived from the convex hulls of the projections. Furthermore, we need to
know the endpoints of each edge when creating the convex approximation of
the corresponding face. Finding the endpoints is straightforward when they
are defined by segment intersections in a plane. Therefore, each integration
step must end by computing projection polygons for the new reachable space
object.

The technique described in section 3.3-projecting the convex hull for
each transformed face onto each projection plane-could be applied here as
well. For the methods described in this section, it is only necessary to project
each transformed face back to the projection plane for its original edge. Let e
be an edge of polygon P and e' be an adjacent edge of another polygon. Then
e and e' are orthogonal. Also note that all points of face(e') lie on the inside of
face'(e, (At)II1I4max). Therefore, all trajectories starting from face(e') remain
on the inside of face'(e) at the end of the time step. Thus, the projection of
the boundary of the polyhedron into the plane of P is completely determined
by the projection of the faces arising from edges in P at the beginning of the
time step.

4 Conclusion

Many verification problems can be formulated as questions of reachability.
With a circuit modeled by a system of ordinary differential equations, the

173

reachability problem can be formulated as: "given an initial region Qo and
an ending time tf (possibly +oo), find a region Q such that all trajectories
starting in Qo at time t = 0 remain in Q at least until time t = tf."

We have addressed this problem for three classes of models and regions.
First considering linear models with convex regions, we showed how the region
reachable at a future time can be computed exactly. Furthermore, a contain-
ing approximation for points reachable through all times up until that future
time can be computed with a simple trade-off between effort and accuracy.
We note that the HYTECH tool [HH95] represents reachable regions as a
union of convex polyhedra, and it is possible that the techniques presented
there could be applied in this first context.

Because models with non-linearities do not preserve the convexity of re-
gions, it was next necessary to identify an efficient representation for non-
convex polyhedra. For our purposes, projection polyhedra-where an object
is represented by its projection onto two dimensional subspaces-provide such
a representation, allowing us to apply efficient algorithms from computational
geometry in two-dimensions to our higher dimensional problems.

Finally, we addressed the analysis of non-linear systems, by approximat-
ing the non-linear model by a linear term and a non-linear correction. The
correction can be kept small by computing separate such models for each
face of the reachable space, and can be approximated by a non-determinant
"error" function of bounded magnitude. This construction allowed us to con-
vert a non-linear model into a linear nonhomogenous differential equation,
which can be solved analytically, and such solutions allow us to bound the
reachable space.

The analysis presented in this paper shows that ideas from computational
geometry, dynamical systems, formal methods, linear algebra, and numeri-
cal computation can all contribute to the verification of systems with ODE
models. The authors are currently implementing a tool to demonstrate these
techniques.

Acknowledgements

We appreciate an extended e-mail discussion with Oded Maler and Thao
Dang on reachability with continuous models. Jack Snoeyink and Danny
Chen have guided us about what is and what is not feasible in computational
geometry.

References

[AF92] D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and ver-
tex enumeration of arrangements and polyhedra. Discrete Computational
Geometry, 8:295-313, 1992.

[Apo67] Thomas M. Apostle. Calculus, volume 1. John Wiley and Sons, Inc., New
York, second edition, 1967.

174

[Bak90] H.B. Bakoglu. Circuits, Interconnections, and Packaging for VLSI.
Addison-Wesley, 1990.

[Bro89] R. W. Brockett. Smooth dynamical systems which realize arithmetical and
logical operations. In Hendrik Nijmeijer and Johannes M. Schumacher,

editors, Three Decades of Mathematical Systems Theory: A Collection of
Surveys at the Occasion of the 50th Birthday of J. C. Willems, volume

135 of Lecture Notes in Control and Information Sciences, pages 19-30.

Springer, 1989.
[GD85] Lance A. Glasser and Daniel W. Dobberpuhl. The Design and Analysis of

VLSI Circuits. Addison-Wesley, 1985.
[GM97] Mark R. Greenstreet and Ian Mitchell. Reachability with discrete and ODE

models. In Michael Lemmon, editor, Fifth International Hybrid System
Workshop, Notre Dame, September 1997.

[Gre96] Mark R. Greenstreet. Verifying safety properties of differential equations.
In Proceedings of the 1996 Conference on Computer Aided Verification,
pages 277-287, New Brunswick, NJ, July 1996.

[HH95] T.A. Henzinger and P.-H. Ho. HYTECH: The Cornell Hybrid Technology
Tool. In P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, editors, Hy-
brid Systems II, Lecture Notes in Computer Science 999, pages 265-293.
Springer-Verlag, 1995.

[HS74] Morris W. Hirsch and Stephen Smale. Differential Equations, Dynamical
Systems, and Linear Algebra. Academic Press, San Diego, CA, 1974.

[Nag75] L.W. Nagel. SPICE2: a computer program to simulate semiconductor
circuits. Technical Report ERL-M520, Electronics Research Laboratory,
University of California, Berkeley, CA, May 1975.

[PS82] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Opti-
mization: Algorithms and Complexity. Prentice Hall, Englewood Cliffs,
NJ, 1982.

[PS85] Franco P. Preparata and Michael I. Shamos. Computational Geometry: An
Introduction. Texts and Monographs in Computer Science. Springer, 1985.

Lyapunov Stability of Continuous-Valued Systems
under the Supervision of Discrete-Event

Transition Systems

Kevin X. He and Michael D. Lemmon
Dept. of Electrical Engineering

University of Notre Dame
Notre Dame, IN 46556, USA

(219)-631-8309
fax:(219)-631-4393

lemmon@maddog.ee.nd.edu

1 Introduction

This paper examines the Lyapunov stability of equilibrium points for switched
control systems [Mor95]. A switched control system is a continuous-valued sys-
tem whose control law is switched in a discontinuous manner as the system
state evolves over a continuous-valued subset of R'. Of particular interest in
this paper are switched systems in which the switching logic is generated by a
discrete-event transition system that can be represented as either a finite au-
tomaton or bounded Petri net.

There are a variety of prior results identifying sufficient conditions for such
systems to be Lyapunov stable at their equilibrium point. In [Pel9l] and [Sav96]
a single positive definite functional is found which is Lyapunov for all control
systems in the collection. Multiple Lyapunov function approaches in [Bra94]
and [Hou96] have been presented which should be applicable to a larger set of
systems than the single Lyapunov function methods. In certain cases, where the
switched systems are linear time invariant and the switching regions are defined
by conic sectors, it has been suggested that candidate Lyapunov functionals can
be numerically computed by finding feasible points of a linear matrix inequality
[Pet96] [Ran97].

While these prior results have provided great insight into the Lyapunov sta-
bility of switched systems, previously published results do not discuss the role
or structure of the switching law in any detail. In the case of the computational
methods proposed in [Pet96] and [Ran97], disregard for the switching laws struc-
ture may lead to linear matrix inequalities (LMI's) that are larger than needed
and hence provide an overly restrictive sufficient condition for switched system
stability. These conditions are overly restrictive in that the resulting system can
only tolerate very small disturbances. This paper examines the numerical ques-
tion and asks what sort of information about the switching law can be used to
significantly reduce the computational complexity and conservatism associated
with finding candidate Lyapunov functions of switched systems. The principal
result of this paper states that if the switching law can be represented as a
discrete-event transition system such as a finite automaton or Petri net, then
it suffices to examine live fundamental cycles of the directed graph associated
with such structures to assess switched system stability. In particular, the results

176

and viewpoints suggested in this paper provide a way in which the traditional
control theoretic methods cited above can be combined with results from com-
puter science [Alu94] [Alu96] concerned with the behaviour of timed transition
systems.

The remainder of the paper is organized as follows. In section 2, we first
introduce a formal model for switched control systems which are supervised by
a discrete-event transition system. Section 3 states recent results [Bra94] [Pet96]
providing sufficient conditions for switched system stability using a multiple
Lyapunov function approach. Section 4 motivates, states, and proves the paper's
principal result. Section 5 presents two examples illustrating the value of using
fundamental cycles in assessing switched system stability. Section 6 concludes
with topics and directions for further study.

2 Problem Statement

Let X C R' be a smooth n-dimensional manifold and let I be a finite set of N
integers. Let A be a constant dimensional distribution,

A = span{f/,..., fN} (1)

where fi : X -+ X for i = 1,..., N are locally Lipschitz vectorfields over X.
We let a switched dynamical system be described by the following set of
equations.

W= A()(x(t)) (2)
i(t) & ~(t),i(t-)) (3)

where x : R -+ X, i : R -+ I, and q : X x I -+ I. i(t-) refers to the righthand limit
of the function i(t) at point t. In the sequel, we refer to each fi as a subsystem
of the switched system. The preceding model is similar to that used in [Tav87].

A trajectory of the switched system is the ordered pair, (x, i), where x :
S-+ X and i : R -+ I which solves the system equation. The value taken by
the trajectory at time t E R is denoted by (x(t), i(t)). We say that (x, i) solves
the system equation if and only if the equations are satisfied almost everywhere
by x(t) and i(t) for t E R. This paper does not treat questions concerned with
the existence of solutions. In general, however, solutions (when they do exist)
will not be unique due to the nondeterminism in the switching law.

Let (x, i) be the trajectory generated by a switched dynamical system. The
set of switching times, Q2, of a trajectory (x, i) will be

S=t :-lim i(T) r-t-lim i J() (4)

The set of switching events, 8, of trajectory (x, i) is denoted as

L(i,t) E I x R: t E +,i =-lim i(J-) (5)

177

We define the timed projection Pt : £ -+ R by the equation Pt[(iT-)] = r and
the event projection, Pe : E -+ I by the equation Pe[(j,<')] = j.

The switching sequence, is a mapping A: Z -+ E such that

Pt[A(n)] < Pt[A(n + 1)] (6)

for all n E Z. Suppose A is a switching sequence. Let I* be the set of all strings
formed from I. We let Ae = Pe[A] E I* and At = Pt[A] denote the event and
time projections of A, respectively. Let the subsequence of times when system j
is turned on and off be denoted as Atj E I*. In other words,

Atj = At (n1), At(n, + 1),... At(nk), At(nk + 1),.- (7)

where nk is a subsequence of Z such that Pe[A(nk)] = j. Define the interval
completion I(At,j) as the set obtained by taking the union of all open intervals
in which system j is active. In other words,

00

I(At,j) = U (At(nk), At(nk + 1)) (8)
k=1

Denote E(At,j) as a subsequence of Atj when the subsystem j is turned on. In
other words,

E(At,j) = At(ni), At (n2),..., At(n), (9)

The preceding model of a switched system assumes a very general switching
function, q. To obtain more precise results, however, we need to specify the na-
ture of the switching function. A common choice is to associate a discrete-event
transition system such as a finite automaton or Petri net with the switching sys-
tem. In this paper we limit our scope to finite automata. An automaton is tied
to the switched system by associating the vertices to the switched system's sub-
systems and by associating the arcs with switching sets called guards. The timed
automaton [Alu94] and hybrid automaton [Alu96] provide tangible examples of
this approach. In this paper we begin by considering a discrete-event transition
system that is represented by a finite automaton, (V, A).

A finite automaton associated with the switched system is the directed
graph (V, A) where V = I is a set of vertices and A C V x V is a set of directed
arcs. By definition, the automaton associates a subsystem fi with each vertex of
the (V, A). We define the guard, f 2ij of arc (i, j) E A as

2j = {x E X :j = q(x,i)} (10)

The ordered pair (i, j) is an arc of A if and only if f2ij 5 0. The guard therefore
represents a subset of the switched system's state space in which a switch can
occur. The guard set f2ii will sometimes be denoted as fli and represents the set
in which subsystem fi remains active.

The preceding paragraph characterized the switching logic by a finite au-
tomaton (V, A). It is straightforward to generalize this approach to consider
more complex switching logics. In particular, let's consider how this might be

178

done for a switching logic generated by a Petri net. A Petri net is represented
by a directed graph (V, A) where the vertex set consists of two types of ver-
tices, places, P, and transitions, T. The vertex set, therefore, takes the form
P x T = V. We associate this directed graph structure with the switched system
by letting P = I. We therefore associate a subsystem with each place of the
Petri net. The guards, Dij, are associated with the transition t E T which con-
nect the ith and jth places of the network. Petri nets provide natural structures
for modeling concurrency and synchronization in parallel systems. In general, a
Petri net can provide a more expressive characterization of a system's switching
logic than can be provided by a finite automaton.

Let (x, i) be the trajectory generated by a switched dynamical system. The
trajectory is said to be deadlock free if the event projection of the switching
sequence Pe [A] is not finite. We say that the trajectory is live if the event projec-
tion of the switching sequence Pe [A] contains an infinite number of each index,
i E I. In other words any subsystem can be switched an infinite number of times
in a switching sequence. We say that the trajectory is nonZeno if the timed
projection of the switching sequence Pt[A] satisfies

E Pt[A(n)] >00 (11)
n=1

We say that the switched system is live, deadlock free, or nonZeno if all of its
trajectories are live, deadlock free, or nonZeno, respectively.

An important issue which is not addressed in this paper concerns neces-
sary and sufficient conditions for a switched system to be live, deadlock free, or
nonZeno. In this paper, we assume that the switched system is live and nonZeno.

3 Prior Results

This section briefly discusses prior results on switched system stablity. Let (x, i)
be any trajectory generated by the switched dynamical system. Assume that
fi (O) = 0 for all fi E A. The equilibrium point x = 0 is said to be stable in
the sense of Lyapunov if and only if for all c > 0 there exists 6 > 0 such that
Ix(to)II < 6 implies IIx(t)II < e for all t > to.

In the following we will denote the open ball of radius r centered at the origin
as

B(r) = Ix ER : I1xJ < r} (12)

The sphere, S(r), of radius r centered at the origin is the set

S(r)={xER : Ilxll=r} (13)

Let A be a switching sequence for a switched dynamical system where At is its
time projection. we say that a continuously differentiable function V : fn __+ R+

is Lyapunov-like function over sequence At if and only if V (x(t)) < 0 for all
t E I(At) and V is monotonically nonincreasing on E(At). Using this definition of

179

a Lyapunov like function, the following sufficient condition for Lyapunov stability
was proven in [Bra94]. The proof uses standard techniques employed in proving
Lyapunov stability for nonautonomous systems. A significant generalization of
this result will be found in [Hou96].

Theorem 1. Suppose we have candidate Lyapunov functions Vj (j E I) and
suppose that the switched system is nonZeno and satisfies fi(O) = 0 for all j E I.
If Vj is a Lyapunov like function for switching sequence Atj for all j E I. then
the equilibrium point x = 0 of the switched system is stable in the sense of
Lyapunov.

The preceding theorem provides a sufficient condition for Lyapunov stability
of switched systems. The condition requires that a set of Lyapunov like functions
be determined for all possible switching sequences A that can be generated by
the system. The determination of Lyapunov like functions may not be possible in
general. For switched systems in which each subsystem is a linear time invariant
system and the guard sets are represented by conic sectors in lRn, a method for
determining the Lyapunov like functions was presented in [Pet96] and [Ran97].
Assume that each subsystem can be written as

i(t) = Aix(t) (14)

where Ai E ,nxn and i E I. Assume that the guard sets can be bounded by
conic sectors parameterized by symmetric matrices Qij. In other words, consider
sets,

i c_ {x f E nlx'QQjx < 0} (15)

Q2j represents the set in which the ith subsystem is free to operate and f2ij
(where i : j) denotes the guard set for the transition between the ith and jth
vertices. If we can find real matrices, Pi = PF > 0 for all i E I and real constants
ai > 0 and aij > 0 such that

AýPj + PjA, + ajQjj < 0 (16)

Pi - Pj + ajjQj < 0 (17)

then the functionals, Vj = x'Pjx are Lyapunov like functions of the switched
system. This particular condition is more restrictive than that formulated in
[Bra94]. But it can be readily reformulated as a linear matrix inequality (LMI)
which can be solved using interior-point methods for convex optimization.

4 Main Result

The sufficient conditions presented in [Bra94] [Hou96] and used in [Pet96] [Ran97]
to compute candidate Lyapunov functionals provide an approach for testing
switched system stability. These methods, however, do not explicitly account
for the structure of the switching logic. For example, the stability theorems in

180

[Bra94l [Hou96] require that Vj be Lyapunov like for all possible switching se-
quences. These papers place no assumptions on the nature of the switching laws.
The computational methods demonstrated in [Pet96] assume no structure on the
switching logic and therefore consider the worst case switching law in which every
possible switch has to be considered. Neglecting the structure of the switching
law can result in an extremely high dimensional linear matrix inequality which
may be more restrictive than it needs to be.

In this section, we present and prove a result which shows that when the
switching logic can be characterized by a finite automaton, then we only need to
search for Lyapunov like functions over a restricted set of fundamental cycles
in the finite automaton. Essentially, the following result shows that rather than
having to examine whether a set of candidate functions are Lyapunov like for
all possible switching sequences, we only need consider whether the candidate
functions are Lyapunov like over a potentially smaller sized set of fundamental
cycles.

Let the directed graph (V, A) have n + 1 vertices, io, i,- 1, in. The sequence
of arcs

(i0, il), (il, i2),", (ir.--l Wn (18)

is called a path of length n. A cycle of a directed graph is any path such that
io = in. A cycle of length n

(io, il), (il, i2), • ,(i.-1, i0) (19)

is said to be fundamental if ij 5 ik for all j, k not equal to zero or n and
for all j 5 k. The following results are basic facts from graph theory. In any
fundamental cycle, any two vertices are connected by one and only one path.
An arc of a directed graph that is in a cycle is also in a fundamental cycle.
For any cycle, C, in a directed graph, there exists a set of fundamental cycles
C1, C2, , CN such that

N

Arcs(C) = U Arcs(CE) (20)
i

Finally, the fundamental cycles of a directed graph can be determined in poly-
nomial time by constructing a minimal spanning tree for the graph. Note that
the fundamental cycles of a graph are non-unique.

To state and prove the main result of this paper, we first need to establish
some facts about fundamental cycles generated by live switched systems. The
first principal lemma is a result saying that any event sequence generated by a
switched system can be constructed by recursively inserting fundamental cycles
into a legal switching sequence. We then introduce a sufficient condition for
a fundamental cycle to be uniformly bounded with respect to time. These
two results are then combined to establish the Lyapunov stability of the entire
switched system.

Lemma2. In the automaton associated with a live switched system, every arc
is in at least one fundamental cycle

181

Proof: Let (V, A) denote the finite automaton associated with a switched
system. Assume that there exists an arc (i, j) E A which is not in any cycle
of (V, A). Therefore, once we go through arc (i, j) then there is no path back
to vertex i E V. Therefore in any switching sequence \ that contains arc (i, I)
the number of times when vertex i is reached will be reached is finite which
contradicts the definition of a live transition system. Therefore every arc of a
live automaton is in a cycle. Furthermore from the fundamental results about
cycles in directed graphs, we know that every arc is in at least one fundamental
cycle, so the the lemma is proven. 9

In the sequel, we will say an arc is a live arc if it is in a fundamental cycle.

"Lemma 3. Any switching sequence A generated by a live switched system can be
decomposed as

IAe ala2a 3 (21)

where al is a prefix of Ae, 93 is a suffix of Ae, and a2 is a fundamental cycle of
the switched system's automaton.

Proof: Assuming there exists a switching sequence A with event projection Ae
such that the decomposition doesn't exist. This means that there is no substring
in Ae which is a fundamental cycle. But from the definition of a live switched
system, we know that every arc must be in a cycle. Let il be the vertex where
such a cycle starts. If the cycle is fundamental, then we have a contradiction and
the proof is finished. But if the cycle is not fundamental, then there is a vertex
i 2 which is crossed more than once in the cycle. Consider the cycle starting
from i 2. Either this cycle is fundamental, or not. If not, then we can repeat the
above argument to find a smaller cycle within this one. However, because the
automaton is finite, this recursion has to terminate in a fundamental cycle. We
therefore have a contradiction and the lemma is proven. .

Proposition 4. Given a switching sequence A generated by a live switched sys-
tem, let A : Z -+ I* be a sequence of sequences in 1* constructed by the recursive
procedure:

1. A[O] is a fundamental cycle Co
2. A[n] = ao1 Ca 2 where U1 0 2̀ = A[n - 1] and C, is a fundamental cycle.

Then there exists a set of Ci such that A[n] is a prefix of A for all n.

Proof- From lemma 3 we know that any switching sequence can be decom-
posed to 0`10"20`3 where o-2 is a fundamental cycle. Note that if we pull out oa2
from the switching sequence, then a10 3̀ is still a possible switching sequence.
We can now decompose the resulting sequence 0`10 3̀ using lemma 3 to pull out
another fundamental cycle of the automaton. Since the switching sequence is
countable, we can repeat this process to pull out a countable sequence of funda-
mental cycles. This sequence is the set of Ci referred to in the above proposition.
0

182

A given sequence of events can be generated in various ways by a switched
system. What we'd like to do is ensure that the cycle is well-behaved in some ap-
propriate sense. In particular, we'll require that the continuous-state trajectory
over the cycle is uniformly bounded with respect to time. The following lemma
provides sufficient conditions for the system to be uniformly bounded.

Lemma 5. Let Ae be any cycle generated by the live switched system consisting
of events

Ae = jl,., -Jg (22)

where jK+I = jl with switching times

to, ti, .tg (23)

So that ti is the time when the ith system is switched off and the i + 1st system
is switched on.

If there exist a set of continuously differentiable functions Vj : Rn -+ f for
j E I such that ýIj(x(t)) <_ 0 for all t E [tj-i,tj), then for any e > 0 there
5(e) > 0 such that for all H1x(to)I[< 5(e), lzx(t)II < e for all t E [to,tK].

Proof: Consider an arbitrary e > 0 and let

OK min VJK (x) (24)
aES(C)

Define the closed set,

QK = {x E B(e): VK (x) < OK} (25)

Choose PK such that for all x E B(pK), we have V9K (x) <,3 K. We now define

,
3 K_-1 min Vj,m _(x) (26)

,ES(pK)

and introduce the closed set,

QK-1 = {x E B(PK) : <K-l(X) • 1 (27)

Choose PK-1 as was stated above and continue this process to construct a mono-
tone sequence of sets

Q1 9 02 "'QK-1 QK (28)

Note that f2j is invariant with respect to subsystem fj because of the condition
on V. Therefore, we expect that if we start in B(po), we should stay in set B(c),
which is sufficient to establish the lemma's conclusion. *

A cycle for which such functionals can be found will be said to be uniformly
bounded. We now state and prove the main result of this section. This result
uses the preceding proposition to show by induction that each of the sequences
in the supersequence of lemma 3 is uniformly bounded if each fundamental cycle
is uniformly bounded.

183

Theorem 6. Consider a live nonZeno switched system where fj (0) = 0 for all
j E I. Let A be a switching sequence generated by the system. Let p denote a sub-
sequence of contiguous switches in \ such that Pe [p] is a fundamental cycle of the
system's automaton. Let p denote the infinite sequence formed by concatenation
of p with itself.

If there exist a set of continuously differentiable functions Vj : ' -_+ R which
are Lyapunov like over sequence ptj for all j E I, then the system is stable in
the sense of Lyapunov.

Proof: From our earlier lemma, we know that any switching sequence can
be constructed by inserting fundamental cycles into a legal switching sequence.
Let

A = [], \[I],-. A[n], •(29)

By definition A[0] is a fundamental cycle and under the theorem's hypothesis
this is uniformly bounded.

Now assume that the sequence A[n] is uniformly bounded. By assumption the
fundamental cycle inserted into A[n] is uniformly bounded. Note also, however,
that since Vj is Lyapunov like we require that if x(to) E 01, then it must return
to that set. Hence the addition of the fundamental cycle does not change the
boundedness of the original sequence A[n]. We can therefore conclude that A[n +
1] is uniformly bounded.

We now consider the limit as n -+ cc. Since the J determined for uniform
boundedness is indepedent of time, we can conclude that it holds for sequences
of arbitrary length and hence the system is stable in the sense of Lyapunov..

5 Example

In this section, we present some examples illustrating the application of the
result in the preceding section to the computation of Lyapunov-like functionals
using the LMI methods.

First, consider a live switched system whose automaton is shown in figure 1.
Associated with each vertex is an LTI subsystem of the form

x = Aix (30)

where i = 1, 2,...,6. In addition to Ai E Rx2, we associate the "self-switching"
set characterized by the symmetric matrix Qi. Figure 1 shows the given automa-
ton and the assumed matrices associated with each vertex. Each arc (i, j) in the
automaton has a matrix Qij associated with it. The arcs are shown in figure 1
also.

From the automaton we can identify a set of four fundamental cycles. These
fundamental cycles are obtained by determining a minimal spanning tree for the
automaton's directed graph. This spanning tree is shown in figure 2 and the
resulting fundamental cycles are 2 - 5 - 4, 2 - 5 - 4 - 1, 2 - 5 - 6, 2 - 5 - 6 - 3.

184

-[1o, J .3, . ..0 A 7 1 t 12

01g =. 0T3e1 0-1 o 3f 0 -0.111 0Oie [wt7 044 0.13301~~10.033 -0ie IG1 .1116 .M 1

03

.04I .17100o.03 (..133 0.11181 [d.0.1710 0.0302

10.00 40.1710 0.7044 -0.6M3 0.60 -0.1710

Fig. 1. The automaton of the example live switched system

22

z2

Fig. 2. Spanning Tree Identifying Switched System's Fundamental Cycles

From the theorem proven above, we know that it suffices to find a set of
continuously differentiable functions, Vj, which are Lyapunov-like for each fun-
damental cycle in the automaton. Determining such Lyapunov-like functions can
now be done using the method suggested in [Pet96] and [Ran97]. We establish
four sets of matrix inequalities corresponding to the four fundamental cycles.
For cycle 2 - 5 - 4, we have the set of inequalities,

AýP, + PiAi + a± Qj •_ 0 i = 2,5,4

P 2 - P 4 + a42Q42 < 0

P 5 - P 2 + a25Q25 < 0

P 4 - P5 + a 54 Q54 < 0

185

A similar set of inequalities can be formed for the other three cycles. To find
the Lyapunov like functions, Vi = x'Pix, we want to make sure that all funda-
mental cycles are stable, so we build a large LMI which includes all the matrix
inequalities associated with the four fundamental cycles. For this example, there
are a total of 15 matrix equations.

The feasibility of the 15 equation LMI can be readily checked using the
LMI toolbox [LM193]. As indicated before, the LMI's feasibility guarantees the
Lyapunov stability of the switched system. In this example, however, the LMI is
infeasible which means we cannot say whether the switched system is stable or
not. Let's consider two ad hoc strategies for forcing such systems to be stable.
The first strategy removes unstable fundamental cycles from the system. The
second strategy determines a state feedback controller that stabilizes the system.

Consider the example system and check the feasibility of the LMI associated
with each fundamental cycle. We discover that the LMI associated with cycle
2 - 5 - 6 is infeasible. Computer simulations show that cycle 2 - 5 - 6 is unstable.
The first approach mentioned above will use a supervisory control to disable the,
transition from node 6 to node 2. The disabling of the transition essentially
removes the unstable fundamental cycle from the system. With the unstable
cycle disabled, we form a LMI for the three remaining fundamental cycles. In
this example, the reduced LMI for the supervised system is feasible thereby
indicating that the supervised switched system is Lyapunov stable. Simulation
results for this example have verified this conclusion.

Alternatively, the second strategy determines a state feedback controller that
stabilizes the unstable fundamental cycle. The LMI associated with the unstable
cycle for the controlled system has the form,

(Ai + K)'Pj + P(Aj + K) + ajQj !5 0 i = 2,5,6

P 2 - P 6 + a62Q62 < 0

P5 - P 2 + C&25Q25 < 0

P6 - P5 + a5 6Q56 < 0

where Ki E R2, i = 2, 5, 6 are stabilizing controllers to be determined. This is
a nonlinear matrix inequality that can be tranformed into a LMI by reparam-
eterizing the feedback controller, Ki. Let Ki = P7-½Vi, then these inequalities
become

A'Pi + PiA+ + V,+ V½ + acQj <_ 0 i = 2,5,6

The resulting matrix inequality is clearly linear. We combine the above LMIs for
the unstable cycle with the LMIs for the other three fundamental cycles and use
the LMI toolbox to check for a feasible solution. In this example, the resulting
LMI is feasible and the solution obtained by the LMI toolbox determines the
matrices Pi and the controller gain Ki which stabilize the system.

We now consider another example in which some transitions in the automaton
are not live. Consider the switched system whose automaton is shown in figure
3.

186

.0.10 020 - 1 0 0O

0.0 0.17M
-3

01

10.- 4.- 0-1Y 1

1.. ... 3 ,[=

r.0.000 0.0704 /• ,, r 1 " .0.201 r-.0- -.3000]
0,.000 0840,o,*0. 00 Ii .0.000. .7 ..0

Fig. 3. The automaton of the switched system of example 2

From the automaton, we identify two fundamentals cycles, namely, cycle 1- 2-3
and cycle 1 - 4 - 3. We thus know that the system is not a live system, since arc
(5, 6), (6, 2) and (5, 3) are not in either of the fundamental cycles. One implication
of our new result is that we can identify the "live part" of the system by identifing
all the fundamental cycles in its automaton and all the live arcs associated with
them. From lemma 2, we know that a live arc is guaranteed to appear infinite
times in a switching sequence, whereas an arc which is not a live arc can appear
only once in a switching sequence and therefore its appearance can not affect
the stability of the switched system. We thus only need to consider all the live
arcs in deciding stability of the whole switched system. In this example, we only
need to establish LMI for the two fundamental cycles and check the existance of
a set of Lyapunov-like functions Vj for j = 1, 2,3,4.

Using the same method as in the previous example, we find a total number
of 9 LMIs for the two fundamental cycles. In comparation, if we had proceeded
using the technique originally proposed in [Pet96], then we would need to build
an LMI which accounted for all individual transitions that could possibly happen.
If the automaton had N vertices and A arcs, then we would have at least N + A
equations in our linear matrix inequality. For our particular example, we would
have a 14 equation LMI to solve.

The implication of increasing LMI size is that it represents an overly restric-
tive sufficient condition for system stability. In our case, we can see this quite
easily by solving the 9 equation LMI obtained by examining the fundamental
cycles of the system versus the 14 equation LMI obtained by using the methods
in [Pet96]. The P matrices obtained in both cases for our example are shown in
figure 4

In computing the first table, the LMI toolbox required 13326 flops to deter-

187

original method simplified method
0.0418 -0.00841 68.6535 -12.4057]

-0.0084 0.0677 -12.4057 113.0276

0.0309 -0.00201 57.2575 -2.57431
-0.0020 0.0064 -2.5743 11.0493 J

'0.0363 0.01061 '62.5312 22.69581
0.0106 0.0200j 22.6958 35.5830J (31)

0.0335 -0.0015 57.5544 -1.92791
S-0.0015 0.0050 -1.9279 8.2600 J
0.0980 -0.0028

-0.0028 0.1315

0.0447 -0.0068
6 -0.0068 0.1218

Fig. 4. P matrices for example 2

mine the P matrices for the original method. The simplified method developed
in this paper only required a total of 8665 flops. So our method clearly has a
lower computational complexity than the original method of [Pet961. More im-
portant than this, however, is the difference between the matrices. As can be
clearly seen above, the singular values for the P matrices obtained from the sim-
plified approach are around 50. For the original approach in [Pet96], however,
these values are about .1. Since the singular value is a measure of how close
the matrix is to being singular, this means that the original method was almost
unable to determine the candidate Lyapunov functions. With minor changes in
the Q matrices it is quite possible to generate examples in which the original
method is unable to find the required P matrices, but our method would find
such matrices. In addition, the size of the singular values for P provide an upper
bound on the size of disturbance which the system can tolerate. The larger the
singular value is, the larger this upper bound is. Clearly, the simplified method
provides a largher upper bound on the disturbance that can be tolerated. So,
the simplified method provides a less conservative assessment of the system's
stability than the original method.

Remark: The use of fundamental cycles in assessing system stability is, in
fact, more closely related to the results of [Hou96] rather than [Bra94]. The sig-
nificance of the [Hou96] results, in our opinion, lies in the fact that one only
need establish Lyapunov like behaviour over discrete switching times. In this
regard, we should be able to use our results to determine potentially less restric-
tive stability conditions in which all Lyapunov-like functions need not always be
monotone decreasing.

Remark: The LMI we constructed using the [Pet96] method actually takes
into account all the possible switchings, i.e. all the arcs in the automaton to
determine the system's stability, whereas our simplified method only consider
all the live arcs, since we know that only the live arcs can affect the switched

188

system's stability. Therefore, it is obvious that our simplified method is less
restrictive than the [Pet96] method.

Remark: The value of fundamental cycles go well beyond the immediate
objective of saying a "yes" or "no" assessment of system stability. Fundamental
cycles represent a basic characterization of the automaton's graph which can
be very useful in analysis and synthesis. In particular, we believe it should be
possible to use fundamental cycles to help decouple the LMI construction prob-
lem into a set of smaller problems. We also believe that the identification of
"unstable" or "uncontrollable" fundamental cycles should provide a basis for in-
troduction of supervisory control schemes in the switching law. The implication
here is that the use of fundamental cycles in the qualitative analysis of switched
systems potentially represents an important tool for the analysis and synthesis of
switched systems. The stability analysis presented in this paper is only a simple
example illustrating its potential use.

6 Future Work

This paper has presented a sufficient method for switched system stability which
takes advantage of prior knowledge of the system's switching logic. In particular,
it was shown that if the switching logic can be shown to be generated by a finite
discrete-event transitions system such as a finite automaton or Petri net, then it
suffices to determine Lyapunov-like functions only over the fundamental cycles
of the state machine.

The preliminary results presented in this paper are encouraging and suggest
several possible directions for future study. One future direction involves extend-
ing the concepts introduced here to study switching logics generated by Petri
nets [Lem98]. The use of unfolding methods should allow the efficient identifica-
tion of fundamental cycles in the Petri net's reachability tree, thereby providing
a sufficient test for the stability of such systems. Another promising avenue of
future study involves developing sufficient tests for uniform ultimate bounded-
ness (bounded-amplitude) in switched systems. For important classes of systems,
we can also formulate these sufficient conditions as matrix inequalities [Bet97]
thereby allowing the efficient testing of switched system performance with re-
spect to a specified ultimate bound. Examples of this approach will be also be
found in [Lem98].

7 Acknowledgements

We gratefully acknowledge the partial financial support of the Army Research
Office (DAAH04-95-1-0600) and the National Science Foundation (NSF-ECS95-
31485).

189

References

[Mor95] A.S. Morse, Control using logic based switching, In A. Isidori, Trends in Con-
trol, Springer-Verlag, Great Britain, 1995.

[Pel9l] P. Peleties and R. DeCarlo, Asymptotic Stability of m-switched systems using
Lyapunov-like functins. In Proceedings of the American Control Conference,
pp 1679-1684, Bost, MA, June 1991.

[Sav96] A.V. Savkin, I.R. Petersen, E. Skafidas, and R.J. Evans, Robust control
via controlled switching, In Proceedings of CESA '96, pages 1117-1122, Lille
France, 1996

[Bra94] M. Branicky, Stability of Switched and Hybrid Systems, In Proceedings of the
33rd Conference on Decision and Control, pp 3498-3503, Lake Buena Vista,
FL, December 1994.

[Hou96l L. Hou, A.N. Michel, and H. Ye, Stability Analysis of Switched Systems, In
Proceedings of the 35th Conference on Decision and Control, pages 1208-1212,
Kobe Japan, December 1996.

[Pet96] S. Pettersson and B. Lennartson, Stability and Robustness for Hybrid Sys-
tems, In Proceedings of the 35th Conference on Decision and Control, Kobe
Japan, December 1996.

[Ran97] M. Johansson and A. Rantzer, Computation of Piecewise Quadratic Lyapunov
Functions for Hybrid Systems, to appear in IEEE Trans. of Automatic Con-
trol, 1997

[Alu94] R. Alur and D.L. Dill, A Theory of Timed Automata, Theoretical Computer
Science, 126:183-235, 1994

[Alu961 R. Alur, T. Henzinger, and P-H Ho., Automatic Symbolic Verification of Em-
bedded Systems, IEEE Transactions on Software Engineering, 22:181-201,
1996.

[Tav87] L. Tavernini, Differential automata and their discrete simulators, Nonlinear
Analysis, theory, methods, and applications, 11(6):665-683, 1987.

[Bra95] . S. Branicky, Studies in Hybrid Systems: Modeling, Analysis, and Control,
Technical Report LIDS-TH-2304 of the Laboratory for Information and De-
cision Sciences, MIT, 1995.

[Des95] A. Deshpande and P. Varaiya, Viable Control of Hybrid Systems, Hybrid Sys-
tems II, A. Nerode (ed.), LNCS Volume 999, Springer-Verlag, 1 995.

[Lem98] M.D. Lemmon, K. He, and C.J. Bett, Modeling Hybrid Control Systems using
Programmable Timed Petri Nets, to appear in L'Automatisation des Proces-
sus Mixtes (ADPM'98), Rheims France, March 19-20, 1998.

[Bet97] C.J. Bett and M.D. Lemmon, Bounded Amplitude Control using Multiple
Linear Agents, Technical Report ISIS-97-004, Dept. of Electrical Engineering,
University of Notre Dame, Notre Dame, IN 1997. (revised version submitted
to Automatica)

[LMI93] Matlab Inc., "LMI Toolbox User Manual", 1993.

Reachability Verification for Hybrid Automata

Thomas A. Henzinger'* and Vlad Rusu 2**

EECS Department, University of California, Berkeley, CA
tah~eecs .berkeley. edu

2 SRI International, Computer Science Laboratory, Menlo Park, CA

rusu~cs1. sri.com

Abstract. We study the reachability problem for hybrid automata.
Automatic approaches, which attempt to construct the reachable region
by symbolic execution, often do not terminate. In these cases, we re-
quire the user to guess the reachable region, and we use a theorem prover
(Pvs) to verify the guess. We classify hybrid automata according to the
theory in which their reachable region can be defined finitely. This is the
theory in which the prover needs to operate in order to verify the guess.
The approach is interesting, because an appropriate guess can often be
deduced by extrapolating from the first few steps of symbolic execution.

Keywords: hybrid automata, reachability verification, theorem proving.

1 Introduction

Hybrid automata are a specification and verification model for hybrid systems
[ACH+95], systems that involve mixed continuous and discrete evolutions of
variables. The problem that underlies the safety verification for hybrid automata
is reachability: can an unsafe state be reached from an initial state by executing
the system? The traditional approach to reachability attempts to compute the
set of reachable states by successive approximation, starting from the set of initial
states and repeatedly adding new reachable states. This computation can be
automated and is guaranteed to converge in some special cases [KPSY93, AD94,
ACH+95, HKPV95, RR96], for which the reachability problem is decidable. In
general, however, this approach, which we call reachability construction, may
not be automatable or may not converge.

It is for this reason that in this paper, we pursue a different approach, called
reachability verification. In reachability verification, the user guesses the set of
reachable states, and then a theorem prover is applied to verify the guess. A
guess has the form of a logical formula, which is true exactly for the states that
are guessed to be reachable. We classify hybrid automata as to what logical

This research was supported in part by the ONR YIP award N00014-95-1-0520, by
the NSF CAREER award CCR-9501708, by the NSF grant CCR-9504469, by the
AFOSR contract F49620-93-1-0056, by the ARO MURI grant DAAH-04-96-1-0341,
by the ARPA grant NAG2-892, and by the SRC contract 95-DC-324.036.
Supported by Lavoisier grant of the French Foreign Affairs Ministry and by SRI.

191

theory suffices to define the set of reachable states. The formula to be guessed
must lie in this theory, and the verification part amounts to a proof in this
theory. Hence, the simpler the theory, the more constrained the guess and the
easier the verification. In some cases-for example, the case of additive-inductive
hybrid automata, where the set of reachable states is definable in a decidable
subtheory of (i, IV, +, <)- the verification part is often completely automatic.
The reachability verification approach is interesting because when successive
approximation does not converge, a suitable guess can often be found by studying
and extrapolating the first few iterations of successive approximation. In this
way, some automatic heuristics can be developed to aid the guessing part.

The rest of the paper is organized as follows. In Section 2, we present the
hybrid automaton model, the reachability construction method, and the reach-
ability verification method. We restrict our attention to linear hybrid automata,
for which reachability construction can be automated and has been implemented
in verification tools such as HyTech [AHH96]. In Section 3, we classify linear
hybrid automata according to the theory in which the set of reachable states
is definable. For example, all linear hybrid automata for which reachability
construction converges are polyhedral, as their reachable region can be defined
in (i, +, <). We give examples of linear hybrid automata whose reachable
regions are quite simple yet non-polyhedral (e.g., additive-inductive), as well as
examples of linear hybrid automata whose reachable regions are quite: complex
(e.g., most naturally expressed using trigonometric functions). We also present a
restricted subclass of additive-inductive automata for which the reachable region
can be computed algorithmically, even though reachability construction does not
necessarily terminate. Finally, in Section 4 we describe an embedding of hybrid
automata into the theorem prover Pvs [ORR+96], and apply the reachability
verification method to some well-known examples for which reachability con-
struction fails.

2 Linear Hybrid Automata and Reachability Analysis

Hybrid automata [ACH+95] are finite automata enriched with a finite set of real-
valued variables. In each location, the variables evolve continuously according to
differential activities, as long as the location's invariant remains true; then, when
a transition guard becomes true, the control may proceed to another location,
and reset some of the variables to new values. We restrict our attention to a
simple class of hybrid automata, allowing only straight-line activities and resets
of variables to zero. More general feature can be approximated in the simpler
framework, with additional locations, transitions, and variables [HHWT98].

Below (Figure 1) is an example of a linear hybrid automaton. It has the
three locations s1, s2, s3 and the three variables x, y, z. The automaton starts
at location s, with variable x set to 0 and variables y, z set to 1, and control can
remain at location si while the invariant x < y is true. Here, x increases with
slope 1 (i = 1) and y remains constant at 1 (, = 0). Thus, control can stay
at s, for at most 1 time unit, until x reaches 1. When this condition becomes

192

true, control leaves si by taking a transition. Here, the only available transition
is the one that leads to S2, which is enabled when x = y. Then, control goes
to location 82, where x decreases (d- = -1), and stays there until x reaches 0.
When this happens, the transition from 82 to s 3 is enabled and control goes to
S3, by assigning variable z to 0 in the process. The process continues likewise at
location 33.

zl

X =0 X= <= -Y X> =0<

z~l y 0 x y y 0 X 0 y l
z 0 1=0 z:=0 1

S1 82 83

Figure 1. Example of a linear hybrid automaton

Syntax of linear hybrid automata. A convex linear predicate is a system of
linear inequalities over given variables. A linear predicate is a finite disjunction
of convex linear predicates. A linear hybrid automaton consists of the following
elements:

- a finite set X = {Xl,X2,... ,xn} of variables;
- a finite set L of locations;
- a finite multiset of transitions T C L x L;
- for each location 1 e L:

"* an invariant Inv(l), which is a convex linear predicate on the variables;
"* an activity Act(l), which is a tuple of differentials laws (on law per vari-

able) of the form i = A(l, x). Here, A(l, x) is a rational constant, also
called the slope of variable x at location 1;

"* an initial condition Init(l), which is a convex linear predicate on the
variables;

- for each transition t E T:

"* a guard Guard(t), which is a convex linear predicate on the variables;
"* a reset Reset(t), which is a set of variables Reset(t) C X.

Semantics. The semantics of hybrid automata builds upon the following pre-
liminary notions. A valuation is a function v : X --+ f? that associates a real
number v(x) to each variable x E X. Given a variable valuation v and a lin-
ear predicate P over the variables, we say v satisfies P, written P(v) = true,
if by replacing in P each variable x with its value v(x), one obtains a true

193

statement. In particular, if valuation v satisfies the invariant of location I (re-
spectively, the guard of transition t) we write Inv(l)(v) = true (respectively,
Guard (t)(v) = true). Given a valuation v and a subset Y C X of variables, we
write v[Y := 0] for the valuation that assigns 0 to all variables in Y, and agrees
with v on all variables in X \ Y. Given a valuation v, a location I E L, and a
non-negative real r C R+, we write v -ýt r for the valuation that assigns to each
variable x in X the value v(x) + A(l, x) r, where A(l, x) is the slope of variable
x at location 1.

The semantic features of a hybrid automaton are the following:

- a state is a pair (1, v), where I is a location and v a valuation such that
Inv(l)(v) = true;

- for a non-negative real r E 1Ii+, there is a continuous step of duration r
between two states (1, v) and (l, v') denoted (1, v) -4 (l, v'), if v'= v +1 -r;

- for a transition a = (1, P') E T, there is a discrete step of label a between two
states (l,v) and (l',v') denoted (l, v) 4- (l',v'), if Guard (t)(v) = true and
V' = v[Reset(t) := 0];

- a run is a finite sequence of continuous and discrete steps (to, Vo) -- (ll1, VO) -'
. .". -+ (I., V.) such that the first state (lo, vo) is initial; i.e., vo satisfies the
initial condition Init(lo).

A state is reachable if it coincides with the last state of a run. A'linear region is
a pair (1, P), where 1 is a location and P is a linear predicate on the automaton
variables. A state (s, v) satisfies the linear region (1, P) if s = and v satisfies P.
In this case we also say that the region (1, P) contains the state (s, vz). The
reachability problem for linear hybrid automata is: given a linear hybrid auto-
maton A and a set R of linear regions,- is there a reachable state of A that' is
contained in some region in RZ. We discuss below two kinds of approaches to
this problem.

Reachability construction [ACH+95]. This method performs a symbolic
execution of the hybrid automaton. It consists in successively approximating
the reachable region, starting from the initial region, and iterating successor
operations until the computation converges. There are two kinds of successors.

The continuous successor of a region (1, P) is the region (1, Aj) that con-
tains all the states that can be reached from states satisfying (1, P), by a single
continuous step. The predicate P is obtained by extension of P at location 1.
Suppose P is a linear predicate over the variables x1 ,... , xn, and that variable
xi evolves in location 1 by the law ii = ki (for all i E .1,... ,n}); then, the
extension of P at location I is described by the following predicate:

P1 = r _> O.P(xl - k, .- ,...,Xn -kn") (1)

It can be shown that the elimination of the existential quantifier in formula
(1) can be performed, and it again produces a linear predicate in variables
x,,... , xn: the continuous successor of a linear region is still a linear region.

194

The discrete successor of a linear region (1, P) by a transition (1, 1') e T is the
region (1', that contains all the states that can be reached from states

satisfying (1, P), by a single discrete step. The predicate P!(,v) is obtained from
P by projection over transition (1, P). Suppose that P is a linear predicate over
variables x1,. .. , x,, and transition (1, V') resets the variables xil , xi2,. .. , xip;

then, the projection of P over transition (1, V') can be described by the following
predicate:

poz) = (xi, = 0 A xi2 = OA Ax.A = 0) A xi,3xi, 2 . . 3 ,xn)
(2)

It can be shown that the elimination the existential quantifiers in formula (2) can
be performed, and it again produces a linear predicate in variables xl,... ,xn.
Thus, the discrete successor of a linear region is still a linear region.

Reachability construction consists in iterating the following Post procedure:

Input: set A of linear regions.
Output: set B of linear regions, initially empty.
For each linear region (1, P) in the set A, for each transition (1, l') with origin 1:

- let P, be the intersection of P with the guard of transition (1, V)
- let P2 be the projection of P, over transition (1, V)
- let P3 be the intersection of P2 with the invariant of l'

- let P4 be the extension of P3 at state lU
- let P5 be the intersection of P4 with the invariant of l'
- add (l', Ps) to set B.

We denote by Postk (I) the set of regions obtained by applying k times the
Post operation to the set of initial regions I = {(l, Init(1), A Inv(l))Il E L}, and
by Post*(I) the countably infinite union VkEIV Postk(I). This is also called
the reachable region, and it represents all the reachable states of the hybrid
automaton. Once Post*(I) is computed, the reachability problem for a set of
linear regions R? can be solved by checking if the intersection Post* (I) n R is
non-empty.

We call reachability construction the process of computing the sequence I,
Post(I), Post2 (I) ... of sets of regions. If, for some k G NV, it is the case that
Postk+l(I) C Postk(I), then reachability construction terminates in finitely
many steps, and Post*(I) = Postk(I). This does not happen in general for
linear hybrid automata [HKPV95]. Some subclasses for which reachability con-
struction terminates have been identified, such as timed automata, initialized
rectangular hybrid automatal,and others [KPSY93, AD94, ACH+95, HKPV95,
RR96]. For these classes, the reachability problem is decidable. Reachabil-
ity construction is the procedure implemented in symbolic model-checking tools
like HyTech [AHH96].

1 For these classes, termination is achieved by slightly modifying the automaton.

195

Reachability verification. We define a new approach to the reachability prob-
lem, called the reachability verification method. This method can succeed in
cases when reachability construction fails. Reachability verification consists of
two steps: first, to guess the reachable region; second, to verify that the guess
is correct. In many cases (some of which are presented in Sections 3 and 4), a
suitable guess can be found using the simple heuristic described below, and the
verification can be performed by induction, using a theorem prover.

It appears that when reachability construction does not terminate, the reach-
able region of a hybrid automaton can still behave in a regular manner. As an
example, consider the hybrid automaton in Figure 1. By studying the reach-
ability construction over a few iterations (performed in this situation by the tool
HyTech), it can be seen that the reachable region is described by the following
set of regions:

{(s, , 3i E Iv.(i > lAx_< iAy =iAz = 1)),

(82,3i E Iv.(i > lAx < iAy =iAz = 1)), (3)
(s3 , 3i E [v.(i _> lAx = 0 A y = z + i A i < y < i+ 1))}

The above expression involves a quantifier over a new natural-number variable i.
Thus, a simple heuristic to guess the reachable region is to observe a few itera-
tions of reachability construction, and to search for a reachable region of the form

i] c IV ... 3iq E IV.1Z(ij,... ,iq); that is, the reachable region involves some
new natural-number variables i 1, ... , iq in addition to the automaton variables.

A typical situation is to guess a reachable region written using only one
natural-number variable j, which represents the number of iterations of the Post
procedure. In this case, we call the guessed region directly inductive, and proving
that the guess is correct amounts to prove that for all j G EV, Postj (I) = TZ(j).
This can be performed by induction using a theorem prover. In particular, we
need to show the two following proof obligations: 7R(O) = {Ini(l), A Inv(l) Il E .L}
for the base step, and Vj E EV.Post(7Z(j)) = 7Z(j + 1) for the induction step.
As we shall see in Section 3, these proof obligations can often be discharged
automatically.

In other situations the guessed region may not be directly inductive, but it
can be made so by introducing new variables and constraints. For instance, the
reachable region defined by expression (3) is not directly inductive, since the
natural-number variable i does not represent the number of iterations. But this
region becomes directly inductive by adding the constraints j = 3i, j = 3i + 1,
and j = 3i + 2 respectively to the three regions in the set (3). That is, we define
the sets of regions l(j) = {(sl,3i C NV.(j=3iAi > lAx <iAy=iAz=l)),
(s2,3iEIV.(j =3i+lAi> 1Ax<iAy=iAz=1)),(s3,3iEIV.(j=3i+2A
i > lAx=OAy=z+iAi <y _<i+1))} and now the "guess" Bj E IV.R(j)
is directly inductive, with j representing the number of iterations.

Finally, even in situations when the guess is not (or cannot be transformed
into) directly inductive, a useful approach is to prove that it is an invariant
of the system. This can often be done automatically and it is often enough in
practice for proving safety properties. We present sample proofs in Section 4.

196

We now give a classification of hybrid automata according to the theory in which
their reachable region can be written finitely. The less expressive this theory,
the less interactive theorem proving is needed for doing reachability verification.

3 Reachable Region Classification

The first class that we define contains in particular all the hybrid automata for
which reachability construction terminates.

Definition 3.1 (polyhedral hybrid automata). A linear hybrid automaton
is polyhedral if its reachable region can be expressed as a set of pairs {(l, P1) I E L}
such that for each location 1 G L, P1 is a formula of the theory2 (ii?, +, <). E

We say a linear hybrid automaton is finitely constructible if its reachability con-
struction terminates: i.e., for some k G IV, Post*(I) = Postk(I). While all
finitely constructible hybrid automata are polyhedral, the converse is not true:
it is easy to construct a hybrid automaton such that for all k E IV, Postk (I) is the
closed interval [0, k]; thus, the reachable region Post* (I) is the interval [0, oo),
but reachability construction does not converge in finitely many steps. The class
of finitely constructible hybrid automata includes the timed automata [AD94]
and the initialized rectangular hybrid automata [HKPV95] (with some minor
modifications to force the reachability construction to terminate) as well as some
other restricted classes [KPSY93, RR96].

Definition 3.2 (additive-inductive hybrid automata). A linear hybrid au-
tomaton is additive-inductive if its reachable region can be expressed as a set
of pairs {(l, PI) I I G L} such that for each location I E L, P, is a formula
of the theory (1R, IV, +, <) in which all natural-number variables are outermost
existentially quantified. El

For instance, the hybrid automaton in Figure 1 is additive-inductive: we have
seen that its reachable region (3) involves the real variables x, y, z and the
natural-number variable i, which is outermost existentially quantified.

Proposition 3.3. The class of polyhedral hybrid automata is strictly included
in the class of additive-inductive hybrid automata.

Proof. The inclusion is obvious (since any formula of (ff?, +, <) is also a formula
of (R, IV, +, <)). Let us show that the inclusion is strict. For this, consider the
hybrid automaton in Figure 1. We have seen that it is additive-inductive, and let
us suppose it is finitely constructible, thus polyhedral by a previous observation.
Then, formula (4) 3i E IV.(i > lAx < iAy = iAz = 1) can be also expressed in
the theory (1R, +, <); that is, the set of triples (x,y, z) satisfying (4) constitute
a finite union of convex polyhedra P 1,... , PN in JR3 . Since (4) is the countably

2 Whenever we define a logical theory, we allow (unless explicitly restricted) arbitrary

first-order quantification and boolean connectives.

197

infinite union ViCN(i > 1 A x < i A y = i A z = 1), it follows that at least one of

the convex polyhedra Pj coincides with the union of infinitely many polyhedra
of the form (5) (x < i A y = i A z = 1). This is not possible, because the union
of polyhedra of the form (5) is not convex (they are all disjoint). 0

Suppose the user can guess a reachable region like in Definition 3.2 (using the
simple heuristic of extrapolating from the first few reachability steps) and that
furthermore the guess is directly inductive (cf. end of Section 2). Then, verifying
that the guess is correct can be done by induction in a completely automatic man-
ner. Indeed, both the base and the inductive steps of the proof require computing
the extension and projection operations (cf. equations (1), (2) of Section 2) for
formulas of the theory (f1, N, +, <). This amounts to proving finitely many im-
plications of the form Vx G JRn.Vi E J' m.3y E E.V(x, i, y) =• 0 (x, i, y). Proving
such an implication can be done automatically, by eliminating the existential
quantifiers on the real variables using the Fourier-Motzkin algorithm [Zie95]
(transforming the universal quantifiers into existential ones by taking the nega-
tion of the formula whenever necessary). At the end we are left with a formula
of Presburger arithmetic, which is decidable.

In the situation where the guessed region is not directly inductive, one can
still attempt make it directly inductive as indicated in Section 2, by introducing
new variables (one of which represents the iteration number) and new constraints
connecting the existing and the new variables. Finally, even when a guess is not
directly inductive, it can be useful (as an invariant of the system) to prove safety
properties. We demonstrate these approaches in Section 4 on some well-known
examples.

We now define a class of linear hybrid automata whose reachable region
can be defined in terms of natural and real numbers, using addition and multi-
plication. Consider the theory (, ,4,, .{ NXN, *NxR, <) of reals and naturals
with multiplication between naturals .XN, multiplication between naturals and
reals 'N, xR, and inequality. Any formula in this'theory is a boolean combination
of linear inequalities in the real variables" with polynomial coefficients in the
natural-number variables; for example, (n 3 - 1) • x + m. y + n > 0, where x, y
are real variables and m, n are natural-number variables.

Definition 3.4 (multiplicative-inductive hybrid automata). A linear hy-
brid automaton is multiplicative-inductive if its reachable region can be expressed
as a set of pairs {(l, P/) 1 1 G L} such that for all location 1 E L, P1 is a formula
of the theory (R, NV, +, NxN, "NxR, <) with all the natural-number variables

outermost existentially quantified. 01

The linear hybrid automaton3 in Figure 2 is multiplicative inductive: it can be
shown easily that the reachable region at location s, is defined by the formula (6)
3n E JA.(n > 1 Ax = 1 An~ y = 1 A v = 0 Au = 0), where x, y, u, v are real
variables, and n is a natural-number variable.

3 In Figure 2, activities i = = it = i? = 0 at all locations are not represented.

198

u < v- 1'u :=u+ I,x :=x +y

S S2 :LL __ = 0,V : LL_

Figure 2. Multiplicative-inductive hybrid automaton

Proposition 3.5. The class of additive-inductive hybrid automata is strictly
included in the class of multiplicative-inductive hybrid automata.
Proof. The proof of this proposition is based on the following observations.
Given two predicates V and V) on the real variables xj,... ,xn, we identify so
and V) with the sets of points in R' that they respectively define. We define the
maximal distance A(so, V;) between W and V) as follows: if W or 0 are empty then
A(so,4) is a special value I_; otherwise, A(W,O) is the lowest upper bound of
the set of distances in 1R between a point satisfying so and a point satisfying 4.

Consider now an additive-inductive hybrid automaton, a location 1 of the au-
tomaton, and the formula Dil G N ... Diq E lTV.,o(xi, ... x., ii ... iq) that defines

the reachable region of the automaton at location 1. Without restricting the
generality, it is possible to suppose that formula s is a convex linear predicate in
variables xj,... , x, il,... , iq. We define a sequence (Wm)m>1 of linear predi-
cates by the relation som(xl,... •, xn) = (xi, xn, M... , m); i.e., the sequence
of predicates (Wm)m>i is obtained by replacing in formula s all integer variables
by the value m. Thus, any predicate in the sequence (som)m>i is a convex linear
predicate on Xi,... , xn; that is, any predicate Wom is a convex polyhedron in Rn.

We now define the sequence (Am) m>1 by Am = A(som, Wm+) for all m > 1.

We show that the sequence (Am)m>i can behave in one of three possible man-
ners. In the first case, there are infinitely many polyhedra som that are empty
and thus for infinitely many m > 1, Am =1L. Otherwise, there exists an index
M > 1 such that for all m > M, all polyhedra Wm are non-empty. Then it can
be shown that for all m > M, each vertex of sm+l is obtained from some vertex
of Vr, by translation by some constant vector w E JWn. The vector w depends
on the vertex but not on the index m. If all such vectors w are 0, then we have
the second case: for all m > M, the polyhedra Wm are equal, and hence the
sequence (Am)m>M is constant. Otherwise, at least one vector w is not 0 and
we have the third case: for all m > M, Am > Iwl > 0 (where 1Iw denotes the
length of vector w).

Consider now the hybrid automaton in Figure 2 and suppose that it is
additive-inductive. We have seen that the formula (6) 3i G JV.(i > 1 A x =
1 A i • y = 1 A v = 0 A u = 0) represents the reachable region of this hybrid

automaton at location 53. We apply the previous constructions: we obtain the
sequence of predicates som = (x = 1Am.y = lAy = 0Au = 0) and the sequence
of distances Am = 1/m(m + 1), for all m > 1. The last sequence is strictly
decreasing and converges to 0. But we have seen that this cannot be the case for
a sequence (Am) m>1 obtained (as described above) from the reachable region
of an additive-inductive hybrid automaton. Hence, the multiplicative-inductive
hybrid automaton in Figure 2 is not additive-inductive. El

199

Reachability verification can still be applied to multiplicative-inductive hybrid
automata, provided the user guesses the reachable region. For instance, con-
sider the hybrid automaton in Figure 2, whose initial region I is defined by
location sl. We apply reachability verification: we guess the reachable region
at location 83 to be formula (6) above (using the heuristic of observing the first
steps of reachability construction). This guess is furthermore directly inductive
(cf. end of Section 2): to prove that the guess is correct, we show by induction
that for all k > 1, the region Postk(I) at location 83 is described by the formula
(x = 1Ak.y = lAy = 0Au = 0). However, unlike the case of additive-
inductive hybrid automata, this proof can only be partially automated. Indeed,
the extension and projection operations (equations (1), (2) of Section 2) can be
computed automatically for predicates in (Alr, N, +, NXN, "NxR <): these oper-
ations require eliminating the existential quantifiers on the real variables, which
can be done using a generalization of the Fourier-Motzkin algorithm [BR97].
But after the quantifier elimination, we are left to decide a first-order formula of
the (undecidable) theory (NV, +, ., <). This last formula has to be dealt with by
theorem proving. So, the verification process is more involved than in the case
of additive-inductive hybrid automata.

X =1, y= 0 x:= 3x -4y
:)y := 4x + 3y

Figure 3. Hybrid automaton with exponential/trigonometric reachable region

While the theory of natural numbers with addition, multiplication and order
is extremely expressive for encoding purposes, there exist linear hybrid auto-
mata whose reachable regions are most naturally expressed in terms of other
operations, like exponentials and trigonometric functions. Consider the hybrid
automaton in Figure 3. The transition sets the variables to new values4 that we
denote x',y'. Let 9 E R be such that 5cos9 = 3. Then, we have x' = 5(xcos0-
y sin 9), y' = 5(x sin 9 + y cos 9). Interpreted as a vector operation, the previous
relations just say that vector Ix', y'] has a length 5 times greater than vector [x, y],
and that [x', y'] is rotated by angle 0 from [x, y]. Thus, the reachable region is
defined by formula Bn E IV. DO E R. (x = 5' cos nO A y = 5n sin nm A 5 cos 0 = 3).
This would suggest that reachable regions need quite expressive theories in order
to be expressed finitely. However, it is easy to show that the previous region can
be encoded in the first-order theory of integers with multiplication: let code(x, y)
be an encoding function of pairs of integers as natural numbers, and consider the
natural numbers of the form (7): 2 code(rly) •3code(X2Y2) .. pCd(,y) Here,

Pn is the n-th prime number, and xn, Yn are the terms of the sequence defined
by x, = 1, y, = 0, and the transition relation of the automaton. Clearly, the fact
that (xn, yn) is in the reachable region is encoded by the existence of natural
numbers of the form (7), which can be described in the theory (IV, +,., <).

4 The linear assignments can be simulated by appropriate slopes, tests, and resets.

200

Finally, we mention a restricted subclass of linear hybrid automata for which the
reachable region can be computed algorithmically, even though reachability con-
struction does not necessarily terminate. Some well-known examples of hybrid
automata (like the ones we discuss in Section 4) are in this class. We say a hybrid
automaton is time-predictable if for each location P' and each pair of transitions
(1, l') and (1, 1") with destination (resp. with origin) 1, there exists an interval of
R+ such that transition (W, s") can be fired at any moment within the given in-

terval, after the firing of transition (s, s'). We say a hybrid automaton is without
nested cycles if its graph is equivalent to a regular expression (on the transition
names) without nested * operations. We have proved ' that time-predictable
hybrid automata without nested cycles are additive-inductive but not polyhe-
dral (cf. Definitions 3.1, 3.2), and that their reachable region can be computed
algorithmically, by a procedure different from reachability construction. This
shows that there exist hybrid automata for which the reachability problem is
decidable, even though reachability construction does not terminate.

4 Hybrid Automata in PVS

We outline the modeling of hybrid automata and reachability verification in
Pvs [ORR+96]. First we specify a theory polyhedra En] of n-dimensional poly-
hedra (parametric in the dimension n E IV). It contains essentially the defini-
tions of extension, projection (formulas (1), (2) of Section 2), and intersection
operations on polyhedra. Writing such, first-order predicates in the higher-order
Pvs specification language is straightforward. Then, we write another theory
that is specific to the particular hybrid automaton to be analyzed (containing the
definition of the automaton features: states, transitions, activities, invariants,
guards, and resets). This second theory uses (imports) the theory polyhedra n]),
instantiating n with the number of variables of the hybrid automaton. Finally,
in a third theory called symbolic-analysis we specify the types and operations
of reachability analysis (independent of any particular hybrid automaton): the
region type (record of state and polyhedron), the continuous and discrete suc-
cessors of a region, and a post predicate on regions, according to the definition
of the Post operation (cf. Section 2):

region : TYPE = [# thestate: state, thepoly: poly #1

continuous(rl:region) : region =

thestate:= thestate(rl),
thepoly:= intersection(extend(thepoly(rl),

slope (thestate (rl))), invar (thestate (r1)))

5 The proof is not presented here due to lack of space.

201

discrete (rl:region, t:trans) : region =

thestate := dest(t),
thepoly:= intersection(project(reset(t),

intersection(thepoly(rl),guard(t))),
invar (dest (t)))

post(RI,R2:setof [region]) : bool =

FORALL (r2:region): member (r2,R2)
IMPLIES EXISTS(rl:region,t:trans):
member(rl,R1) AND orig(t)=thestate(rl)
AND r2 = continuous(discrete(rl,t))

To prove statements about the reachable region Post* (I), we use induction and
the predicate post. We now describe the application of reachability verification
to examples of hybrid systems modeled by additive-inductive hybrid automata.

The leaking gas burner. The hybrid automaton in Figure 4 models a leaking
gas burner [CHR91]: location si (resp. S2) stands for the leaking (resp. the non-
leaking) state of the system; variable x is used to control the time spent in each
state, variable y is a global clock, and variable z measures the total time spent

by the gas burner in the leaking state. A design requirement for the leaking

81X 82

x~y7, :-= 0 -X X :- 0 tu

X:= 0

Figure 4. Leaking gas burner automaton

gas burner is that in any interval of time of at least 60 seconds, the leaking
time does not exceed 5% of the total time. This can be expressed by the fact

that linear predicate y _> 60 => 20z < y is an invariant of the system (i.e., true
in all reachable states). The specification in Pvs of this example includes the

theories polyhedra [n] with n instantiated by 3 (the number of variables of the
automaton), and symbolic-analysis for the reachability analysis of the sys-
tem. The system itself (hybrid automaton in Figure 4) is specified in a theory
leaking-gas-burner, that contains the description of the automaton: loca-
tions with invariants and differential laws, and transitions called s1_tos2 and
s2_to_si, with their guards and variables to reset. The reachability construc-
tion does not terminate 6 but by studying the first few iterations, one can guess

6 Although backwards reachability construction terminates in this case.

202

that the reachable region is described by the following set of linear regions (from
which it can be seen that the hybrid automaton is additive-inductive):

{(si,0<x< lAx = y = zV~i E IV.(i > lAO < x < lAO < z-x < iA3Oi+z < y)),
(82, 0 < z < lAy =x+zAx > OV3i E .(i > 1AO < xAO < z < i+lA3Oi+x+z < y))}

However, this guess is not directly inductive (cf. end of Section 2) because the
natural-number variable i does not represent the number of iterations. It is
possible to make the guess directly inductive, by introducing a new natural-
number variable j and two new constraints j = 2i, j = 2i + 1. More precisely,
we define the sets of regions 1Z(j) such that for all j > 2, 1Z(j) is equal to:

{(s1,3i E iN.(i > 1Aj = 2iA0 < x < 1A0 < z-x < iA3Oi+z < y)),
(s2 ,3i EcV.(i > 1 Aj = 2i±+ 1 A0 < xA 0<z <i + 1 A 30i +x+ z< y))}

Furthermore, R7(O) equals {(sl, 0 < x <_ A x = y = z), (s2, false)} and IZ(1)
equals {(si, false), (s 2 , 0 < z < I A y = x + z A x > 0)}. Now, the new "guess"
3j e ENV.(j) is directly inductive (with j representing the number of iterations).
We prove by induction on j that Postj(I) = R.(j), for all j e EN. This means
that Post*(I) = 3j E IV.R(j); i.e., the guess of the reachable region is correct.

Finally, to prove the design requirement of the gas burner y Ž 60 =ý 20z < y,
we prove that it is implied by Post* (I). Except for some details (like the ex-
pansions of the definitions for continuous, discrete, post etc), Pvs can do all
the proofs automatically, using its built-in decision procedures.

The reactor temperature controller. This example is taken from [JLHM91].
It is a variant of the nuclear reactor temperature control problem, in which
non-linear evolutions are approximated by piecewise-linear functions [HHWT98].
The reactor automaton (cf. Figure 5) has three locations: in the no-rod location,

rod, no-rod rod.2

x_>510 x-510 X<550 x 510 x >510

/1:! ---] -- -- 550 x 550
11l_ 2=1ll=1 y1_> 20 Y2 ý lj y •20 V1 =' ---Y2 --

Figure 5. Reactor temperature control automaton

the temperature x increases according to the law , E [1, 5], and control can stay
in location no-rod as long as the temperature does not exceed 550. When the
temperature reaches 550, the reactor uses one of two cooling rods, and the control
goes to a location where temperature decreases, according to law ± E [-5, -1] or
i E [-9,-5], depending on the cooling rod that is used. When the temperature
falls to 510, the rod is removed and the reactor goes back to the no-rod location.
After a rod has been used, it cannot be used again before 20 time units. This is
specified using two clocks yi and Y2: when the control leaves the location rodi
(that is, rod i is removed from the reactor) the clock variable y1 is reset, and
the next entry to location rodi is guarded by the condition yj > 20. A design

203

requirement for the temperature control system is that the temperature never

reaches the upper limit (x = 550) in the no-rod location of the automaton with

both rods unavailable (y, < 20 and Y2 < 20). The reachability construction

from the initial region (location no-rod, variables x = 510, yi = Y2 = 20) does

not terminate. However, the reachable region behaves in a regular manner; by

studying the output of the model checker HyTech, it can be guessed that the

reachable region for location no-rod (the location that interests us) has the form:

(x < 550) A [(y, = Y2 A x > yx + 490 A x <5y, + 410) V

Di G IV.(x > y 1 +510Ax < 5y, +510Ay 2 Ž yi +36+28iAy 2 yj +±100+80i)V

3i E EV.(x > y +51 OAx < 5y, +510AY2 Yl + 16+28iAY2 • Yl +±80(1 +i)) V

Di E IV'.(x > y2 +510Ax < 5y 2 +51OA9y, > 9y2 +112+220iAy, <_ y2+48(i+2))V

3i E NV.(x > y 2 +51OAx < 5y2+510A9y1 > 9y 2 +292+220iAy1 < y2+68+48i)].

We prove in Pvs that the above predicate is an invariant at location no-rod

of the automaton. For this, we show that our guess R? satisfies I C R and

Post(RT) C R?. This is enough for proving the design requirement: indeed,

the above predicate implies the negation of the 'dangerous' region x = 550 A

yl < 20 A Y2 < 20, so the design requirement is met. Except for details like

definition expansion, these proofs are completely automatic in Pvs.

5 Conclusion

We have presented a new approach to the reachability problem of hybrid auto-

mata. The idea is to guess the form of the reachable region and to use theorem

proving for verifying that the guess is correct. We have classified hybrid auto-

mata according to the theory in which their reachable region can be written

finitely. In this classification, we have identified the additive-inductive and

multiplicative-inductive hybrid automata, for which the guess can be done using

a simple heuristic and the verification by induction. We have presented some

applications using the prover Pvs. In the future, we plan to automate the
method as much as possible (including automated guess heuristics and adapted

strategies for the Pvs proofs) for being able to cope with larger examples.

Related work. [BW941 exploit the regularity of cycles on a discrete model

(automata with counters). Their approach is fully automatic but it is limited

to linear operations on the variables that are idempotent. [BBR97] present a

similar approach for a restricted class of hybrid automata (there is a fixed interval

of time between transitions), but their method is fully automatic. Abstract
interpretation of hybrid automata [HPR94] would automatically recognize the

regularities of polyhedra and detect an invariant which, in general, is only an

over-approximation of the actually reachable states. Finally, [VH96] describe an

approach based on stepwise refinement for the verification of hybrid systems,

where Pvs is used to prove the correctness of each refinement step.

Acknowledgments. Thanks to Natarajan Shankar, Luca de Alfaro, Peter

Habermehl, and the anonymous reviewers of the Hybrid Systems workshop for

useful comments and suggestions.

204

References

ACH+95. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X.
Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of
hybrid systems. Theoretical Computer Science, 138:3-34, 1995.

AD94. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer

Science, 126:183-235, 1994.
AHH96. R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verifica-

tion of embedded systems. IEEE Transactions on Software Engineering,
22(3):181-201, 1996.

BBR97. B. Boigelot, L. Bronne, and S. Rassart. An improved reachability analy-
sis method for strongly linear hybrid systems. In Proc. of the 9th Confer-

ence on Computer-Aided Verification, CAV'97, LNCS 1254, pages 167-178.
Springer-Verlag, 1997.

BR97. A. Burguefio and V. Rusu. Task-system analysis using slope-parametric
hybrid automata. In Proc. of the 3rd Conference on Parallel Processing,
Euro-Par'97, LNCS 1300, pages 1262-1273. Springer-Verlag, 1997.

BW94. B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In Proc.
of the 6th Conference on Computer-Aided Verification, CAV'94, LNCS 818,
pages 55-67. Springer-Verlag, 1994.

CHR91. Z. Chaochen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations. In-
formation Processing Letters, 40:269-276, 1991.

HHWT98. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of non-
linear hybrid systems. IEEE Transactions on Automatic Control, 1998. To
appear.

HKPV95. T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What's decidable
about hybrid automata? In Proc. of the 27th Annual ACM Symposium on
Theory of Computing, STOC'95, pages 373-382, 1995.

HPR94. N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid
systems by means of convex approximations. In Proc. of the 1st Static
Analysis Symposium, SAS'94, LNCS 864, pages 223-237. Springer-Verlag,

1994.
JLHM91. M. Jaffe, N. Levenson, M. Heimdahl, and B. Melhart. Software require-

ments analysis for real-time process-control systems. IEEE Transactions
on Software Engineering, 17(3):241-258, 1991.

KPSY93. Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Integration graphs: a class
of decidable hybrid systems. In Proc. of the 1st Workshop on Theory of
Hybrid Systems, LNCS 736, pages 179-208. Springer-Verlag, 1993.

ORR+96. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. Pvs: Com-
bining specification, proof checking, and model checking. In Proc. of the 8th
Conference on Computer-Aided Verification, CAV,'96, LNCS 1102, pages
411-414. Springer-Verlag, 1996.

RR96. 0. Roux and V. Rusu. Uniformity for the decidability of hybrid automata.
In Proc. of the 3rd Static Analysis Symposium, SAS'96, LNCS 1145, pages

301-316. Springer-Verlag, 1996.
VH96. Jan Vitt and Josef Hooman. Assertional specification and verification using

Pvs of the steam boiler control system. In Formal Methods for Industrial
Applications: Specifying and Programming the Steam Boiler Control, LNCS
1165, pages 453-472. Springer-Verlag, 1996.

Zie95. G. M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in
Mathematics. Springer-Verlag, 1995.

Subanalytic Stratifications and Bisimulations*

Gerardo Lafferriere', George J. Pappas2 , and Shankar Sastry2

1 Department of Mathematical Sciences,

Portland State University, Portland, OR 97207
e-mail: gerardoomth. pdx. edu

2 Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, Berkeley, CA 94720

e-mail: gpappas, sastry~eecs .berkeley. edu

Abstract. Decidability results for the verification of hybrid systems
consist of constructing special finite state quotients called bisimulations
whose properties are equivalent to those of the original infinite state
system. This approach has had success in the case of timed automata
and linear hybrid automata. In this paper, the powerful frameworks of
stratification theory and subanalytic sets are presented and used in or-
der to obtain bisimulations of certain analytic vector fields on analytic
manifolds.

1 Introduction

Hybrid systems consist of finite state machines interacting with differential equa-
tions. Various modeling formalisms, analysis, design and control methodologies,
as well as applications, can be found in [2-4,10,13]. The theory of formal verifi-
cation is one of the main approaches for analyzing properties of hybrid systems.
The system to be analyzed is first modeled as a hybrid automaton, and the
property to be analyzed is expressed using a formula from some temporal logic.
Then, model checking or deductive algorithms are used in order to guarantee
that the system model indeed satisfies the desired property.

Many verification algorithms are essentially reachability algorithms which
check whether the system can reach certain undesirable regions of the state
space. Even though for finite state, discrete systems this approach has had suc-
cess, when dealing with the infinite state space of a hybrid automaton, model
checking algorithms are in danger of not terminating. Decidability results for
analyzing hybrid systems consider special finite state quotients of the original
infinite state hybrid automaton called bisimulations [11]. Bisimulations are spe-
cial quotient systems in the sense that checking a property on the quotient
system is equivalent to checking the property on the original system. If an in-
finite state hybrid automaton has a finite state bisimulation then the analysis
and verification procedure is decidable.

* Research supported by the Army Research Office under grants DAAH 04-95-1-0588

and DAAH 04-96-1-0341.

206

Obtaining bisimulations for purely discrete, finite state automata is clearly
decidable since the underlying state space is finite. Correspondingly, the process
of constructing bisimulations for hybrid systems may not terminate because of
the infinite cardinality of the continuous state space and dynamics. In this paper,
we consider the problem of constructing finite state bisimulations for purely
continuous systems. More precisely, given an analytic vector field on an analytic
manifold, a set of initial conditions and a set of unsafe states, we would like
to construct a finite state transition system such that checking reachability on
the finite graph is equivalent to checking reachability of the original continuous
system.

In order to tackle this problem, the powerful frameworks of subanalytic sets
and stratification theory [5,12, 16] are used. Subanalytic sets are an important
class of sets having many desirable "finiteness" properties. For example, rela-
tively compact subanalytic sets have finitely many connected components. In
addition, subanalytic sets are closed under intersections, unions, complementa-
tion as well as forward images under proper maps and inverse images. Stratifi-
cation theory allows us to deal with many technical issues concerning sets and
their boundaries and is crucial in refining partitions. With these tools we present
an algorithm for constructing bisimulations of analytic systems as well as a proof
that the algorithm terminates in the case of linear vector fields in R•2 with real
or purely imaginary eigenvalues.

The outline of the paper is as follows: In Section 2 we review the notion of
bisimulations as well as the algorithm for computing bisimulations for transition
systems. Section 3 presents some basic facts about stratification theory and
subanalytic sets and in Section 4 we use these facts to construct bisimulations
of analytic vector fields. Finally, Section 5 presents interesting issues for further
research.

2 Bisimulations

A more detailed exposition of the material described in this section can be found
in [11]. A transition system H = (Q, E, -+, Qo, QF) consists of a set Q of states,
an alphabet Z of events, a transition relation -+c Q x Z x Q, a set Qo C Q of
initial states, and a set QF C Q of final states. The transition system is finite
if the cardinality of Q is finite and it is infinite otherwise. A region is a subset
R C Q. Given 0- E Z we define Pre, (R) as

Pre,(R) = {q E Q I 3p E R and (q, o,p) E-+}

and Pre(R) as

Pre(R) = U Pre,(R)

Let ,-,C Q x Q be an equivalence relation on the state space and let Q/1- de-
note the resulting quotient space. A ,,--block is a union of equivalence classes.
For a region R we denote by R/I- the smallest -,,-block that contains R. Thus,

207

Qo/l and QF/ are -- blocks containing the initial and final states respec-
tively. The transition relation -+_ on the quotient space is defined as follows: for
Q1,Q2 E Q1 Q-, (Q1, 0, Q 2) E-+- iff there exist q1 E Q, and q2 E Q2 such that
(qi, o-, q2) E-+. The quotient transition system is then H/ -= (Q/ -, E,-+~,Q01 -, QFI -).-

The quotient system H/ - is a bisimulation of H iff QF is a ,-,-block and for
all 0- E Z and all ,-,-blocks R, the region Pre, (R) is a ,--block. A bisimulation
is called finite if it has a finite number of equivalence classes. Bisimulations are
very important because bisimilar transition systems generate the same language.
Therefore, checking properties on the bisimilar quotient is equivalent to checking
properties of the original transition system. This is very useful in reducing the
complexity of various verification algorithms. In addition, if H is infinite and
H/I . is a finite bisimulation, then verification algorithms for infinite systems (for
example, hybrid systems) are guaranteed to terminate. A successful application
of this approach for timed automata can be found in [1].

Two states p,q E Q are bisimilar denoted p z q iff there exists a bisimulation
- such that p - q. It can be shown that if p P, q' then

1. p E QF iff q C QF
2. if (p, o, p') E-* then there exists q' such that (q, o, q') E--+ and p' 1 q'
3. if (q, o-, q') E-+ then there exists p' such that (p, o-, p') E-+ and p' p-, q'

It should be noted that the notion of bisimulation is very similar to the notion of
dynamic consistency [7]. Given a transition system H, the following algorithm
computes the bisimilarity partition. The algorithm terminates if the bisimilarity
quotient is finite.

Algorithm (Bisimilarity for transition systems)
Set Q/1 = {QF, Q \ QF}

while 3 R,R' E Q1 and o- E E such that 0 C Rn Pre,(R') C R, do
refine Q/1 (Q/ - \{R}) Uj{R n Pre,(RM), R \ Prea(R')}

end while

Initially the quotient space consists of two equivalence classes, QF and Q \ QF
(here \ denotes set difference). The algorithm then checks whether there exist
-- equivalence classes whose preimage under Pre, for some o- is neither empty
nor a -- equivalence class. If there are none then a bisimilarity quotient has been
reached. Otherwise there exists R, R' e Q/ such that R n Pre,(R') : 0 and
RnPre,(R') is a proper subset of R for some o- E Z. Then the algorithm refines
the partition by splitting R into R n Pre, (R') and R \Pre, (R'). This procedure
is repeated either forever or until a bisimilarity quotient is reached.

Inspired by the above bisimulation algorithm, we would like to have an algo-
rithm for obtaining finite bisimulations of analytic vector fields. More precisely,
the original transition system consists of a (infinite cardinality) real analytic
manifold M and the transition relation is generated by the flow of an analytic
vector field. A collection of subsets A of M can be used to describe initial con-
ditions, guards conditions, invariants as well as undesirable regions of the state

208

space. These sets typically exist within each discrete location of a hybris system.
Given A we attempt to partition M into a finite bisimilarity quotient M/ -..
If the attempt is successful, then checking reachability of various elements of
A can be directly done on the finite transition system M/ -.. Even though an
algorithm computing bisimulations may not, in general, terminate, it may be
feasible to guarantee termination for certain classes of vector fields and sets. In
order to tackle these very interesting questions, we will use the framework of
subanalytic sets and stratification theory.

3 Subanalytic Sets and Stratifications

3.1 Real analytic functions, Manifolds, and Stratifications

In this section we describe some fundamental properties of subanalytic sets. We
concentrate on properties which are useful for the purpose of constructing a
bisimulation for the flow of a real analytic vector field. The most important
result here is the Stratification Theorem (Theorem 2). For this and other impor-
tant results on subanalytic sets the main references are [5, 12, 16]. We begin by
recalling several standard concepts and facts (see [6] and [9] for more details).
In this paper, "manifold" means finite-dimensional, Hausdorff, second countable
manifold. We say a manifold is real analytic (CW) if the transition maps between
local charts are analytic functions on their domains (which are open subsets of
]Rn). An embedded submanifold S of a manifold M is a topological subspace of
M together with a differentiable structure such that the inclusion from S into
M is a smooth immersion (i.e. has full rank at every point). A vectorfield X on
the real analytic manifold M is analytic if its coordinates in any local chart are
analytic. If X is an analytic vector field then any integral curve of X is analytic.

We are interested in intersection properties of sets. From this point of view,
infinitely differentiable (Co-) functions are not sufficiently "nice". For example,
it is not hard to construct a Cm-function whose zero set is a Cantor-like set.
(In fact, any closed subset of R is the zero set of some C'-function.) On the
other hand, real analytic functions are free from such pathologies. The following
classical result illustrates this point.

Theorem 1. Let I be an open interval and f: I -+ R be an analytic function.
Let Z = {x E !If (x) = }. Then either Z = I or Z has no accumulation point
in I. Equivalently, if f is not identically zero, then every compact subset of I
contains at most a finite number of zeros of f.

Definition 1. Let M be a real analytic manifold. An analytic (Cw) stratification
of M is a partition S of M with the following properties:

1. each S e S is a connected, real analytic, embedded submanifold of M,
2. S is locally finite (i.e. every compact subset of M intersects at most finitely

many sets in S),
3. given two sets S, P G S, P :A S, such that S n P 7 0 then S C P and

dim S < dim P. (We denote by P the closure of P.)

The sets in a stratification are called strata.

209

3.2 Semianalytic and subanalytic sets

Let M and N be real analytic manifolds and let C' (M, N) denote the set of
analytic functions from M into N. (If f E Cw (M, N) we say f is of class CW.)
Given an analytic manifold U, we denote by Z(Cw (U, R)) the Boolean algebra
generated by the sets of the form {x : f(x) = 0} or {x : f(x) > 0}, where

Definition 2. Let M be a real analytic manifold. A subset A of M is semi-
analytic in M if for every p E M, there is an open neighborhood U of p in
M such that U n A E L(CW (U,•R)). If A C M is semianalytic in M we write
A G SMAN(M).

Definition 3. Let M be a real analytic manifold. Define SBANrc(M) and
SBAN(M) by

1. A E SBANrc(M) if and only if there is (N,f, A*) such that N is a real
analytic manifold, f E Cw(N, M), A* E SMAN(N), A* is relatively compact
and A = f(A*);

2. A E SBAN(M) if and only if A is a locally finite union of members of
SBANrc(M).

We say that A is subanalytic in M if A E SBAN(M). It is easy to see that
A C SBANrc (M) if and only if A is subanalytic in M and relatively compact. The
following properties of subanalytic sets are easily derived from the definitions.

1. SBAN(M) is closed under locally finite unions and intersections.
2. If A E SBAN(M) and f: M -+ N is of class Cw and proper on A, then

f(A) E SBAN(N). (A function f is proper if f-'(K) is compact whenever
K is.)

3. IfA E SBAN(N) and f: M -+ N is of class Cw, then f-'(A) E SBAN(M).

The following two properties require more subtle proofs. They can be derived
from the the stratification theorem for subanalytic sets.

4. If A E SBAN(M) then M \ A E SBAN(M).
5. A subanalytic set has a locally finite number of connected components, each

of which is subanalytic.

Example 1. Points are subanalytic, and so is any locally finite union of points,
for example Z' as subset of R'. The empty set and M are both in SBAN(M).
Let a, b E R, a < b, then [a, b], [a, b), (a, b] and (a, b) are subanalytic in R. The
open ball B(p, r) centered at p of radius r in R' is in SBAN(R').

Example 2. In general, as is clear from the definition, SMAN(M) is contained
in SBAN(M). In particular, any semialgebraic subset of R' is in SBAN(R').

The following properties clarify further the relation between subanalytic sets
and their ambient space. Here we assume that M is a real analytic manifold.

210

6. Let N be a C', embedded submanifold of M. Then A E SBAN(M)
An N CE SBAN(N).

7. Let N be as in (5). Let A C N be relatively compact and A C N. Then
A E SBAN(N) r= A E SBAN(M).

8. For every p E M and every neighborhood W of p, there exists an open
neighborhood Vp of p such that: (a) Vp is relatively compact, (b) Vp C W,
and Vp E SBAN(M).

Remark 1. Let N be a C', embedded submanifold of M. Then if A E SBAN(N)
and N E SBAN(M) it does not follow that A E SBAN(M), as the following
example shows.

Example 3. Consider the set S 1{: n E N}. As a subset of the open interval
(0, o) the set S is subanalytic since every compact subset of (0, oo) intersects
S in finitely many points. However, as a subset of R it is not subanalytic. (See
Theorem 1.)

Theorem 2 (Stratification Theorem). Let M be a real analytic manifold
and A C SBAN(M), A locally finite. Then there is a Cw stratification S of M
such that:

1. S C SBAN(M),
2. S is compatible with A. That is, every set in A is a union of strata from S.

Remark 2. It is possible to obtain stratifications in which the strata have ad-
ditional properties. We mention one here which will be useful in the proof of
Theorem 5. A block in M is a relatively compact, connected, CW, embedded sub-
manifold S of M such that there exists a C' surjective diffeomorphism q : C -+ S
- where C is the open unit cube in R;k, and k = dimS - such that the graph
of 0 is subanalytic in IRk x M. We will assume from now on that the strata in S
are blocks.

The following theorem is very useful in proving that certain sets are suban-
alytic.

Theorem 3. Consider any formula F of first order predicate calculus with free
variables xl,... , x, in analytic manifolds M 1,... , M, which is obtained from
formulae in some set Y that involve the xi and other variables yj (yj E Nj, Nj
an analytic manifold) by means of the logical operations of conjunction, disjunc-
tion, negation, universal and existential quantification. Suppose that the quan-
tifications are locally bounded (i.e., that every time a quantifier Qxi occurs,
with Q = B or Q = V, then, if SQ (xi,y) is the scope of Qxi and y are the
other variables that are free in SQ, it follows that for every compact set K of
the y domain there is a compact J of the xi domain such that, for each g e K,
"(Qxi)SQ(xi,y)" is satisfied if and only if "(Qxi E J)SQ(xi,F)" is satisfied).
Then if the formulae in T define subanalytic sets, so does F.

211

The theorem is simply a consequence of the closure properties of the class of
subanalytic sets under Boolean operations and taking direct and inverse images
(provided that in the case of direct images the map is proper, see [16]). In view
of this result one can, in many cases, prove that a set is subanalytic by writing
its definition. The following is an example.

Proposition 1. Let X be an analytic vector field on RI'r. Let S C R]n be a C',
embedded submanifold, which is also a subanalytic set. Let F = {q E S: X(q) G
TqS} (here TqS is the tangent space to S at q). Then F is subanalytic in R]n.

Proof. We can write r = X-'(TqS) and a tangent vector (q,v) is in TqS if and
only if

q E SA (v = OV

(E (0V < <1)=:,(3p (peSApp qA(3r>O3s>O (r 2 =1Ip- q12

A s= =Iv112 A j1s(p - q) rvl12 < 2r2s2 A jjq - P112 <

Moreover, as long as q remains in a compact set, the variables p, r, and s can
be restricted to lie in a compact set. 0

The following proposition can be proved similarly and will be used in the
proof of the Theorem 5.

Proposition 2. Let q : (0, 1) -- R be a C' surjective diffeomorphism with R C

SBANrc(I'). Then limr 0o and lims-,i • exist.l[€(s~lI'I¢(s)II

A deeper and more central result for our analysis is the following. For a proof
see [15].

Theorem 4. Let A be a locally finite family of nonempty subanalytic subsets
of a real analytic manifold M. For each A G A, let F(A) be a finite set of real
analytic vector fields on M. Then there exists a subanalytic stratification S of
M, compatible with A, and having the property that, whenever S e S, S C A,
A E A, X E F(A), then either (i) X is everywhere tangent to S or (ii) X is
nowhere tangent to S.

We finish this section with a simple proposition which illustrates some of
the good intersection properties that analytic curves have with subanalytic sets.
The "finiteness" property indicated in the proposition makes it possible to define
transitions between strata in a natural way.

Proposition 3. Let I be an open interval, M a real analytic manifold and
-y: I -+ M a real analytic function. Let S be a Cw stratification of M by subana-
lytic sets (that is, S c S =. S c SBAN(M)). If[a, b] C I then there exists a finite
partition {x 1 , ... , x,,} of [a, b] with the property that for each i = 1,... , n - 1
there exists a stratum Si E S such that y((xi, xi+i)) C Si.

212

Proof. Consider the family I = {y 1 (S) n [a, b]: S E S}. Since -y([a, b]) is com-
pact and S is locally finite, the family I is a finite partition of [a, b]. By Property 3
of subanalytic sets the sets in I are subanalytic in I. By Theorem 2, there exists
a C' stratification 3' of [a, b] compatible with I. Therefore, J consists of a fi-
nite number of points and open intervals. Moreover, for each J E J' there exists
S E S such that -y(J) C S, as desired. 0

Example 4. The assumption of subanalyticity in the proposition can not be
dropped. Consider the stratification of]R2 by the following five sets:

S' = {(0, 0)}

S 2'=ý(X' Y):x > 0A y= xsin}

s = {(x, y): x <•0 A y = xsin 1--}

S 4, = {(X7YW:, X: A ,y > xsin -11 U.{(o,,Y): Y > 01

S" = {f(x,,,y): x•o 0 ,Ay <xsin I} U. {(,oY): Y < 0•

Notice that S$, S2 and S3 form the graph of the function f(x) = x sin.1
(f(0) = 0), while S4 and S5 denote the region above and the below the graph,
respectively. Each set is a C', embedded submanifold of R2 and they clearly sat-
isfy the condition on the dimension of the strata in the closure of other strata.
Finally, consider the constant vector field X = o. Then the integral curve y/ of
X through (0, 0) is the x-axis (parameterized by x itself). Therefore, the image
by -y of any interval containing 0 intersects both S4 and S5 an infinite number
of times.

Fig. 1. Infinite crossings on a compact interval

213

4 Bisimulations of Analytic Vector Fields

Here we describe a process for the construction of a bisimulation for the flow of
a real analytic vector field. We assume that we are given a real analytic vector
field X on a connected real analytic manifold M as well as a finite family A of
relatively compact subanalytic sets. These sets may describe initial conditions,
guards, invariants or undesirable regions of the continuous evolution within a
discrete location of a hybrid automaton.

We now invoke Theorem 4 (here there is a single vector field on every stratum)
to obtain a stratification S of M by subanalytic sets vwhich is compatible with
A and such that on each stratum X is either everywhere tangent or nowhere
tangent. More precisely, for each S E S either: (1) for all q in S, X is tangent to
S at q, or (2) for all q in S, X is not tangent to S at q. We now wish to study
how the integral curves of X enter and leave each stratum of S. For this we need
a more precise definition-of what we mean by-entering and leaving a stratum.

Definition 4. Given two subsets S, T of M, and a real analytic curve 7: I --

M (I'an open interval), we say that -/ leaves S through T (or enters T from S)
if one of the following exiting conditions is satisfied:

El there exist a, b e I such that 1/(t) E S for all t E (a, b) and 1(b) E T
E2 there exist a,b E I such that 1(a) E S and -y(t) E T for all t C (a, b).

The following proposition shows that this definition covers all possible "ex-
iting" situations for strata of S.

Proposition 4. Let S E S and 7 be as above. If there exists to,ti E I such that
^(to) E S and y(t1) 0 S then there is a stratum T such that either El or E2
holds.

It is clear from Definition 4 that in case El; T n S : 0., By property 3 of
a stratification, we conclude T C S and dimT < dim S. Similarly in case E2,
S cT and dimS < dim'T.

Definition 5. We call a stratum' S C S tangential if the vector field X is tangent
to S at every point of S. We call a stratum transversal otherwise.

The following proposition clarifies further the possible exit situations.

Proposition 5. Let S, T be strata in S and -/ an integral curve of X which
leaves'S through T. Then one (and only one) of the following holds:

1. condition El holds, S is a tangential stratum and T is a transversal stratum.
2. 'condition E2 holds, S is a transversal stratum and T is s tangential stratum.

Our goal is to construct a bisimulation as a quotient of the equivalence rela-
tion induced by the stratification S. More precisely, we would like to define the
equivalence relation '-s by p -. ý q iff p,q belong to the same stratum of S. In
M/ -s there is a transition from the stratum S to the stratum T iff an integral
curve of X leaves S through T. In order to obtain a bisimulation we need the
stratification S to satisfy the following two conditions:

214

1. if an integral curve of X starting at a point of the stratum S does not exit
S, then no other integral curve starting in S leaves S,

2. whenever an integral curve of X which starts in S leaves the stratum through
T, then all other integral curves which start in S leave the stratum through
T.

In order to satisfy those conditions we refine the stratification further ac-
cording to exit features of the integral curves. We describe the iterative process
below, which is analogous to the bisimulation algorithm described in Section 2.
If the process terminates we obtain the desired bisimulation.

Definition 6 (Refinement Process). The process has two steps which will
need to be iterated. In the first step we refine the tangential strata and in the
second we refine the transversal strata.

Step 1 Let S be a tangential stratum. For each T G S, T C 3, T :A S let ST
denote the set of points q E S for which the integral curve of X through q
leaves S through T. Let So = S \ UST, where the union is taken over all
strata T contained in S and different from S. So, So is the set of points
q e S such that the integral curve of X through q at time t = 0, remains
in S for all t > 0. We subdivide S into the sets ST and So. This is a finite
subdivision of S.

Step 2 Let R be a transversal stratum. Let Rb - { ES :S S£ R, R C S}. For
each S e R6 and T C S (T : S), let RsT be the set of points r E R such that
the integral curve through r leaves R through ST. Also, let Rs. denote the
set of points r E R such that the integral curve through r leaves R through
So. We subdivide R into the sets Rs, RSO where S varies over Rb. This is
a finite subdivision of R.

Remark 3. The new subdivision sets from Step 1 and Step 2 are not in general
subanalytic. Therefore, Step 2 requires some clarification since we claim that
trajectories "leave R through" one of the sets ST or So. According to definition 4
we need to verify either El or E2. The following proposition gives the key
argument.

Proposition 6. Assume the tangential stratum S is subdivided as in Step 1. Let
"/ : [to, ti] -+ M be an integral curve of X such that -1(t) E S for to • t < ti. If
there exists a set S. resulting from the subdivision of S such that 7Y(to) E S. and
-y(ti) E S,. then y(t) E S,. for to < t ti.

Proof. It follows immediately from the definition of the sets in Step 1, since
once a point of a trajectory is in one such set, then for as long as the trajectory
remains in S it will belong to the same set. 11

Notation: we will write -yq to denote the integral curve of X which passes
through q at time 0, i.e. with y (0) = q.

Proposition 7. With S and R as above, for each q G R such that yq leaves R
through S, there exists S, (S, = ST for some T or S. = So) such that -yq leaves
R through S,.

215

Proof. Let yjq : I -- M, a, b E I be such that -y(a) E R and -y(t) E S for a < t < b
(we are assuming R is transversal so E2 holds). Let S1, ... , Sk be the sets in
the subdivision of S given by Step 1. Let t4 = inf{t E (a, b) : yq(t) C S2}. Then
a = min{ti} = ti(for some io. We claim that -yq leaves R through Si.. To see
this let s1 E (a, b) be such that yq(si) E Si.. Suppose there is s with a < s < s,

and -1q(s) E Sj for j :A i0 . Then there exists so with a < so < s < s1 and
7q(so) E Si.. But this contradicts the previous proposition, so we must have
^q(s) E Si. for a < s < s1 . 0

Notice that in Step 2 we may be subdividing some sets which are in the
closure of some tangential set. This requires the iteration of the two steps. In
general, we should not expect this process to terminate even if we deal with a

finite number of strata or if we limit our study to a compact set. The following
example illustrates this point (see Figure 2).

Example 5. Let M = R 2 and X be the linear vector field 1 x. Assume

the stratification consists of the following five strata: S, = {(0, 0)}, S 2 {(4, 0)},
S3 ={(x,0) :0 < < 4}, S4 = {(x,0) :x > 4}, and S5 2 \U!S. The

S - -2 2 4

Fig. 2. Process does not terminate

integral curves of X are spirals moving away from the origin. Here S, and S5
are tangential strata. The others are transversal strata. There is no subdivision
possible (or necessary) for S1. The curves through S5 exit at one of the three
strata S2 , S 3 , or S4 . Step 1 requires that we subdivide S 5 into three regions.
Two regions are composed of (parts of) the integral curves of X which exit S5

through S3 and S 4 respectively. The third is composed of (a part of) the single
integral curve which exits through the point S 2 . Step 2 now requires that we
subdivide the transversal strata according to a similar rule, but now curves from
S 3 leave through three different regions and we must subdivide this stratum

216

further (into three regions, in fact). The subdivision point corresponds to the
first point of intersection of S3 and the integral curve from S2 run backwards
in time. This now causes one of the regions in Ss to be subdivided further and
clearly the process will not terminate.

For linear vector fields on the plane, the existence of "spiral" points, such
as above, is the only obstruction to the procedure as the following theorem
illustrates.

Theorem 5. Let M = R2 , X be the linear vector field Ax and assume that the
eigenvalues of A are either real or purely imaginary. Let K be a compact set
and define SK = {S E S S n K :A 0} (which is therefore finite). Then the
Refinement Process applied to SK terminates.

Proof. We will carry out the proof in more generality than necessary. See the
remark below.

If A = 0 then the process terminates with Step 1, since for each 2-dimensional
S, we have S = So. If A 0 0, then the zero set of A is either {(0,0)} or a
line through the origin. We will deal in detail with the first case. The second
case can be analyzed with similar methods. We will assume that {(0, 0)} is a
stratum of S (S can be made compatible with {(0, 0)}). This implies that tan-
gential 1-dimensional strata will not be subdivided further since such a stratum
is an arc of a single trajectory of X. Hence, we only need to study the tangen-
tial 2-dimensional strata and the transversal 1-dimensional strata (there are no
transversal 2-dimensional strata).

The first iteration of the process requires a special analysis. Let R, S E S, S
2-dimensional and R 1-dimensional, transversal and contained in S. Let So be
as in Step 1 and RSo as in Step 2. The following lemma characterizes Rso.

Lemma 1. There is a finite stratification of Rso by subanalytic subsets of lR2.

Proof. Since R is a block (see Remark 2), there is a C' diffeomorphism q5
(0, 1) -+ R whose graph is subanalytic in R1 x JR2. On the interval (0, 1) the
connected sets are intervals and hence subanalytic in R. Therefore, connected
sets in R are subanalytic and their boundary (in R) consists of at most two
points. To prove the lemma we show that Rs0 has finitely many connected
components.

Suppose to the contrary that Rs. has infinitely many connected compo-
nents. Then there exists two infinite sequences {si}, {ti} in the interval (0, 1)
such that, for all i, si < ti < si+', 0(si) C Rs,, and 0(ti) 0 Rso. For each i,
consider the curve Ci made up of the arcs ¢([si, si+']), Fi = {f71(,,i) (: t 0},

i+1 = {(+l(t) : t > 0}, and the point (0, 0). This is a continuous, closed,
simple curve and therefore it divides the plane into two open connected sets.
The trajectory -71(t,) enters one of these sets. This trajectory does not intersect
the others and it can not pass through (0, 0). Moreover, it can not leave the
region through R since all trajectories cross R in the same direction. Therefore,
1(t i)(t) must remain in the same region for all t > 0. On the other hand, by

217

construction ^10(t,) must leave S. Let i be the first t such that yo(t,)(t) 0 S. So,
qi = 7€(t,)(i) E S \ S. The set S U R U {(0, 0)} is connected, relatively compact,
subanalytic, and contains each Ci. By construction each qi is in a different con-
nected component of S \ S, but this is a contradiction since S \ S has a finite
number of connected components. Therefore, so does Rso as desired. 0

Since the sets So will not be subdivided in subsequent iterations of the re-
finement process, neither will the sets Rs0 . If the stratum T G S, T C S is
0-dimensional (i.e. T is a singleton) then Rs, is also 0-dimensional (by unique-
ness of solutions). The following lemma characterizes the sets Rs, when T is a
1-dimensional stratum.

Lemma 2. If T e S is 1-dimensional then Rs, is open in R.

Proof Let q E Rs,. The trajectory 7q enters ST and leaves S through T. Let
t, be the smallest value of t such that ^1q(t) e T. Set p = yq(ti). Since X is
transversal to R and T we can find relatively open (connected) neighborhoods
NR of q in R, NT ofp in T, and 6 > 0, such that V = {fy(t) : y E NR, ItI < 6}
and W = {Ty(t) : y C NT, It < J} are open, V n W = 0, V nl R NR,
and W n T = NT. Moreover, we can choose the above so that {fy/(t) y E
NR,0 < t <6} C SfnV and {7y(4) :yE NT,-- < t <01 C SfnW. (These
constructions are a consequence of basic theorems on differential equations.)
We can also assume that the only strata of dimension 0 or 1 which intersect
S U V U W are R and T (because S is a stratification). Notice that if 7 is a
trajectory of X such that 1(s) E W, then there exists s' such that -y(s') E WfT
and 1(t) G W for all t between s and s'. By continuous dependence on initial
conditions, for all s > 0 there exist a neighborhood NR C NR of q in R and
0 < S < 6 such that 1-1q(t) - -yy(t)I < e, for all y E V = NR x (-S,S) and
0 < t < t1. The set F = {7q(t) : 0 < t < ti} is compact and contained in the
open set Se = S U V U W. Set d = ½dist(q, {Tyq(t) : 6 < t < t 1 }). We choose
e > 0 so that e < d, {r : dist(r, F) < 6} C Se, and the ball, B(p, -), of center p
and radius e, is contained in W. Then for all y E NR, 7y(t) e Se for 0 < t < ti
and 7y(ti) E B(p,6). We assume further, that NR C B(q,e). Let t 2 = inf{t >
0 : -yy(t) E W} (so t 2 > 0 because V n W = 0). We claim that if y E NR, then
-yy(t) C S for all 0 < t < t 2. Suppose to the contrary that there exists t with
0 < t _< t2 and -y(t) 0 SU W. Let i = inf{t : 0 < t < t 2 ,-/y(4) 0 SU W}.
Since -y(t) E S for 0 < t < 6, we know that i > 6 > 0. On the other hand,
-/y(-) C V. Therefore, -y(f) E 3n Se and so /y(t) E Rn V" = NR C B(q,e). But
then dist(-yq(-), q) _< dist(-q(i), -/y-)) + dist(-y(T), q) < 2e, which contradicts
the choice of -. Hence, we have 7y(t) E S for y E NR and 0 < t < t 2 . By the
definition of t 2 and because S is open we can find g > 0 such that 7y (t) E S for
0 < t < t 2 + g and 1y (t 2 + T) C W. This implies that -/y must exit S through T,
i.e. y E RsT. Therefore, NR C Rs, and RsT is open in R. 0

We continue with the main proof. For a 1-dimensional stratum T we can write
T = U ¢.1 0(Ji), with Ji open intervals. For each endpoint ai of Ji, xi = ¢(ai)

218

is in the complement of RST, So, either {xi} = RsT, for some 0-dimensional
stratum Ti, or xi is in the relative boundary of Rs0 in R. In either case, there
are only finitely many such points xi. It follows that Rs, has a finite number of
connected components.

We have shown that after one iteration we obtain a finite number of singleton
sets (points) pMi) and 1-dimensional connected subanalytic sets A(1) such that
all the new subdivision sets are unions of sets in p(i) UA('). Subsequent iterations
will only depend on sets of the form RST with T E P(') U A(1 (not on Rs0). In
fact, if we define for n > 2, p(n) as the collection of sets Rs,, with T E p(n-i),
then subsequent subdivisions depend on p(n) 0 0 (that is, if p(n) = 0 then the
Refinement Process terminates). Such sets Rs, are always singletons and there
is always a finite number of them. Moreover, by its definition, for each point p
with {p} E p(') there is a unique {q} IE P() and tp < 0 such that p = yq(t).

Suppose now that the Refinement Process does not terminate. Then there is
a trajectory -1 of X and an infinite sequence of points x, with {x,} e p('), and

-y = 7(t,) with t, -+ -no. Since we are only subdividing sets in SK the sequence
must stay in a compact set. We may assume that {fx} converges to a point xo.
Consider first the case when the eigenvalues of A are real. Then xo = (0, 0).
Moreover, there exists a one dimensional stratum R of S which contains infinitely
many zn's and therefore (0,0) E R. Assume that R is diffeomorphic to the
interval (0, 1) via € as above, with lim,,o 04(s) = (0, 0). By Proposition 2 there

exists v = lim,-o (A direct calculation shows that the following limit also
ll (s)ll"

exists: w = limt,,- We must have v : -w, otherwise R can not
intersect -y for Jt, large enough. By changing coordinates and restricting the
study to a neighborhood of (0, 0) we may assume that {-f(t) : t < to} and R
are both graphs of functions, 0'- and OR respectively, with domain (0, 1). At
two consecutive intersections s 1 , s 2 of these graphs, the vector X must point to
opposite sides of the graph of OR. By continuity, for some s, s1 < s < s 2 the
vector X(OR(s)) must be tangent to the R. This contradicts the transversality of
R. Therefore, R and -/ can not intersect near (0, 0) and the Refinement Process
must terminate. In case A has purely imaginary eigenvalues, xo # (0, 0) since all
trajectories are periodic. Still a similar argument applies using v as above and
w = X(xo). This concludes the proof of the main theorem. 0

Remark 4. The same proof extends to analytic vector fields on the plane with
isolated equilibria and with the property that bounded trajectories are either
periodic or have "limit" directions (the vector w in the proof). The existence of
those limit directions was the only part in the proof that used the linearity of X
in an essential way.

5 Conclusions

We presented some preliminary results on obtaining finite bisimulations of ana-
lytic vector fields. An algorithm is provided and termination is guaranteed for a
class of linear vector fields.

E !EI

219

Even though in this paper continuous dynamic systems were considered,
the extensions to hybrid systems, even though harder, are conceptually similar.
Bisimulations of hybrid systems can still be considered in the framework of
subanalytic stratifications by allowing multiple vector fields as well as reset maps.
However, the reset maps must be in some sense compatible with the flows for
the procedure to terminate. This requirement is already necessary when dealing
with a timed automata where the clocks run with irrational slopes.

It should be noted that the main results of this paper are existential since
they prove the existence of finite bisimulations. However, there is a long way
to making this procedure computationally effective. For certain classes of vector
fields the construction can be made effective. For example, one could generalize
the decidability result in [8] for multi-polynomial vector fields on the plane, by
effectively constructing a finite bisimulation using techniques similar to the ones
in this paper (allowing for semialgebraic sets instead of just polyhedra).

Furthermore, if the bisimulation algorithm does not terminate (or is not com-
putable), it may be useful to consider system overapproximations, or abstractions
[14], for which the algorithm would terminate (or can be computed).

References

1. R. Alur and D.L. Dill, A theory of timed automata, Theoretical Computer Science
126 (1994), 183-235.

2. R. Alur, T.A. Henzinger, and E.D. Sontag (eds.), Hybrid systems III, Springer-
Verlag, 1996.

3. P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry (eds.), Hybrid systems II,
Springer-Verlag, 1995.

4. P Antsaklis, W. Kohn, A. Nerode, and S. Sastry (eds.), Hybrid systems IV,
Springer-Verlag, 1997.

5. Edward Bierstone and Pierre D. Milman, Semianalytic and subanalytic sets, Inst.
Hautes Ltudes Sci. Publ. Math. (1988), no. 67, 5-42.

6. William M. Boothby, An introduction to differentiable manifolds and riemannian
geometry, Academic Press, 1975.

7. P. Caines and Y.J. Wei, The hierarchical lattices of a finite state machine, Systems
and Control Letters 25 (1995), 257-263.

8. Karlis Cerans and Juris Viksna, Deciding reachability for planar multi-polunomial
systems, Hybrid Systems III (Berlin, Germany) (R. Alur, T. Henzinger, and E.D.
Sontag, eds.), Lecture Notes in Computer Science, vol. 1066, Springer Verlag,
Berlin, Germany, 1996, pp. 389-400.

9. J.A. Dieudonn6, Foundations of modern analysis, Academic Press, 1969.
10. R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel (eds.), Hybrid systems,

Springer-Verlag, 1993.
11. T.A. Henzinger, Hybrid automata with finite bisimulations, ICALP 95: Automata,

Languages, and Programming (Z. Fiil6p and F. G6cseg, eds.), Springer-Verlag,
1995, pp. 324-335.

12. H. Hironaka, Subanalytic sets, In Number Theory, Algebraic Geometry, and Com-
mutative Algebra, in honor of Y. Akizuti, Kinokuniya Publications, 1973, pp. 453-
493.

13. 0. Maler (ed.), Hybrid and real-time systems, Springer-Verlag, 1997.

220

14. George J. Pappas and Shankar Sastry, Towards continuous abstractions of dy-
namical and control systems, Hybrid Systems IV (Berlin, Germany) (P. Antsaklis,
W. Kohn, A. Nerode, and S. Sastry, eds.), Lecture Notes in Computer Science, vol.
1273, Springer Verlag, Berlin, Germany, 1997, pp. 329-341.

15. Hector J. Sussmann, Subanalytic sets and feedback control, Journal of Differential

Equations 31 (1979), no. 1, 31-52.
16. - , Real-analytic desingularization and subanalytic sets: An elementary ap-

proach, Transactions of the American Mathematical Society 317 (1990), no. 2,
417-461.

Integrated Design and Simulation of Hybrid
Systems

Georg Lehrenfeld', Rolf Naumann', Rainer Rasche 2 , Carsten Rust3 and
JEirgen Tacken 3

Heinz Nixdorf Institut, Paderborn University

georg~uni-paderbom.de
2 Mechatronics Laboratory, Paderborn University

{naum,rasche}@mlap.uni-paderborn.de
3 C-LAB, Joint R&D Institute of Paderborn University and Siemens Nixdorf

Informationssysteme AG
{car,theo}lc-lab.de

Abstract. In this article we present a new approach for the design of hy-
brid systems composed of discrete and continuous parts. In our approach
the system designers can start their specifications with the discrete as
well as with the continuous parts. Both paradigms can be used with
there own methodology and Tools. There are integration mechanisms for
both paradigms. For the integrated simulation C code is generated. The
advantages of our approach are demonstrated by modeling all important
aspects of a system for building up motorcades. The model includes a
discrete part selecting one of the different strategies modeled in the con-
tinuous parts. These are strategies for velocity and distance control for
vehicles.

1 Introduction

The increasing complexity of hybrid systems leads to the necessity of improved
design methodologies. Hybrid Systems in our context are mechatronic systems
with discrete and continuous parts. An important task in hybrid system modeling
is to guarantee a correct and well working interaction of all different system parts.
This can be achieved by a common design process for the whole system in which
every engineer can use his well known design method for discrete or continuous
parts. The result is a model of the whole system in which the different parts can
be simulated and analyzed together.

There are a lot of tools for the modeling of the different parts. For continu-
ous systems there are Adams, Dymola [EB096], alaska [Mai93a] and Dads for
multi-body systems and for control systems Matlab [Mai93b] and MATRIXx
[int97]. For electrical engineering SABER from Analogy Inc. in Oregon is one of
the important tools there. The specification tools for the discrete parts are state
oriented. Important tools are STATEMATE [i-L97] for StateCharts, DesignCPN
[K.97] for colored petri nets, Skate for Lustre [HCRP91]. Some of these tools,
like SABER or Dymola, try to include the whole range of technical disciplines

222

(mechanics, hydraulics, electronic,...) within the formalism of hybrid systems.
In the area of computer science some approaches exist where continuous system
parts can be integrated into the discrete modeling languages. In [PL95,WS95]
petri net models are extended for the integration of the continuous parts. In
[GW96] a graph based formal model is used for hybrid systems. Based on this
formalism a tool KANDIS [OGW95] exists for the construction of mixed ana-
log/digital hardware systems. The formal model allows a common graph based
modeling of differential equations systems together with discrete time or discrete
event systems. Every node in the graph has his own "firing rule". This "firing
rule" may either be one for discrete event time systems, one for discrete event
systems and one for continuous time systems.

Another very interesting approach for modeling of hybrid systems is the
SHIFT [DGS97] language that has been developed within the California PATH
project. SHIFT is a programming language for describing dynamic networks of
hybrid automata.

In all these approaches the designers of one or even both domains have to
specify their parts with tools and in a modeling paradigm not well known. The
problem by this approaches is to find an adequate description and representation
for every discipline that is practicable for the engineer.

In our approach we describe continuous parts by a system of coupled differen-
tial and algebraic equations that can be formulated in three special description
languages DSC, O-DSL and O-DSS. O-DSS is used for the topological level,
O-DSL for the dynamic nonlinear parts. Descriptions in O-DSS and O-DSL
are translated into DSC as base for a process oriented simulator. The discrete
parts are described in extended Predicate/Transition-Nets (Pr/T-Nets). They
are a form of high-level petri nets with advanced capabilities of transitions and
tokens. Transitions can carry first order formulas which have to calculated by
firing transitions. There exist a modeling environment SEA1 (System Engineer-
ing and Animation) developed at C-Lab which offers full support for designing
and animation with Pr/T-Nets. Both design methodologies are extended for the
integration of models specified in other modeling paradigms. One can start with
the continuous parts as well with discrete parts. The other system parts can be
integrated in both environments. So, the designer in every field of application
can use his own well known modeling paradigm and has to add the other part,
designed by another engineer, later. The integrated simulation of the different
model parts is realized by generating C code from both modeling environments.

In the following sections we will give a brief introduction in our approaches
of modeling discrete and continuous parts with integration techniques of the
particular other part. After that we will give a specification example by modeling
motorcades in which continuous as well as discrete parts have to be modeled.

prototype available at http://www.c-lab.de/sea/

223

2 Domain specific Methods

2.1 Continuous Modeling

For the last 20 years MLaP has been working on software systems to support
the design of mechatronic systems. These systems consist of components from
mechanics, hydraulics, electrical engineering, electronics and information pro-
cessing. In the shape of CAMeL (Computer-Aided Mechatronics Laboratory)
[Ric96] a collection of different programs has evolved at MLaP that support
the integrative system design from modeling to analysis and synthesis to re-
alization. At the basis of all components is the representation of the system
in the computer by means of appropriate description elements. For this pur-
pose three description languages were defined to be employed on different levels
of the design process. To describe the system on the topological level there is
O-DSS (Objective Dynamic System Structure). The dynamic, nonlinear (and
linear) continuous systems are described by a system of coupled differential and
algebraic equations that can be formulated in the O-DSL (Objective Dynamic
System Language) description language.

StateSpaceOdss named: motorType.
parameter: #(Km) on: ScalarOdss;

#(Jm) on: ScalarOdss;
input: #(alpha) on: ScalarOdss;

#(getriebeMoment) on: ScalarOdss;
output: #(phiMotorP) on: ScalarOdss;

#(phiMotor) on: ScalarOdss;

state: #(phiP) on: ScalarOdss;
#(phi) on: ScalarOdss;

auxiliar: #(deltaMoment) on: ScalarOdss;

auxiliarEquation:
deltaMoment := ((Km * alpha) - getriebeMoment) * (1/ Jm);

stateEquation:
phiP' := deltaMoment;
phi' := phiP;

outputEquation:
phiMotorP := phiP;
phiMotor := phi;

end.

Fig. 1. Listing of the motor type

Fig. 1 displays the O-DSL description of the dynamic behavior of a simple
engine. The first line defines the system motorType from the class of the contin-
uous systems StateSpaceOdss. The system interface is defined by the keywords
parameter, input, and output. In our case we have the parameters Km and

224

Jm, the inputs alpha and getriebeMoment and the outputs phiMotorP and phi-
Motor. The dynamic equations are given in the body of the system. The behavior
of the engine is represented by a linear differential equation of 2nd order that is
converted in state-space into a system of two differential equations of 1st order
with the following states: the revolution phiP and the angle phi of the motor
shaft following the keyword state. After that, we formulate an auxiliar equation
for the calculation of the difference torque (deltaMoment) between the torque
of the motor shaft and that of the gear shaft (auxiliarEquations). The dif-
ferential equations are described in the stateEquations. The derivation of a
state is expressed by a prime mark (phiP'). Eventually the output equations are
formulated.

For computer processing the models are represented in the process-oriented
description language DSC (Dynamic System Code) [HMN96,Hom97]. The com-
pilation of the model from O-DSS to O-DSL to DSC and the resulting com-
plex transformations (MBS formalisms) are effected by corresponding compilers
[HMN96]. For input purposes, a convenient graphical block editor is available
that allows formulation and management of the components on the O-DSS and
O-DSL levels.

As the systems are becoming ever more complex, it is indispensable to formu-
late hybrid systems; they are systems that may comprise continuous and discrete
system parts. The continuous parts describe the system dynamics while the dis-
crete ones define logical switches that can trigger and manage events. Up to the
present, the simulation of complex hybrid systems has been the only possibility
of analysis and synthesis; therefore the research on novel methods and proce-
dures is highly topical [Lyg96,Kow97,Eng97]. Connection of the discrete systems
to the CAMeL tools available at MLaP can be effected on three different levels:

1. extension of the O-DSL language by elements of discrete components;
2. description of every discrete component in C code blocks with input/output

behavior (SEA-Environment) that, along with the continuous parts, can be
linked to form a simulator;

3. description of the discrete components by means of a particular tool and
coupling on the simulator level.

The degree of the coupling between the discrete and the continuous system
parts decreases from top to bottom level. On the first level the system is speci-
fied in just one language that gives the engineer easy access to the formulation
of hybrid systems; yet, one has to limit work to only particular groups of dis-
crete systems (e.g., automata) in order to guarantee a rather clear language with
just a few description elements. Subsequent further processing requires a rather
costly extension of the languages and tools underneath by the discrete compo-
nents (DSC, Simulator). The procedure described on the second level does not
necessitate novel description elements; however, it brings about restrictions as to
the usability of discrete components. In order to couple the discrete blocks to the
continuous ones, the former have to have input/output behavior; they must also
be able to read the continuous values and to generate continuous outputs. For

225

this purpose the interfaces to the components have to be defined unequivocally.
The simplest kind of handling hybrid systems is the coupling on the simulator
level that will only require synchronization and data exchange (e.g., by means
of sockets, DDE, file) of the values (continuous and discrete ones) computed
independently of one another.

O-DSL

DSC

C-Code (- continuous system and (7 external functionsLi couplings for discrete systems

simnulation code

Fig. 2. Integration of discrete system

At the moment MLaP is working on the coupling of discrete systems to
continuous ones by way of a combination of levels 1 and 2. For the set of finite
automata description elements will be defined (automata, events, and messages)
that will serve to generate interface frames on the DSC level that allow coupling
to the continuous system.

In order to evaluate the discrete system parts C code will be generated and
coupled with the simulation frame (Fig. 2). With this extension it is possible to
formulate many kind of hybrid systems (from the view of an engineer), but it is
not useful for the description of parallel and non-deterministic systems. A suit-
able method for these kind of systems are the Pr/T-Nets, that can be described
with the SEA-Environment. From SEA a O-DSL frame can be generated that is
represented as a block in the CAMeL environment, so the discrete components
and the continuous components can be connected graphically. On simulation

226

level the integration of the Pr/T-Nets is done by linking generated C Code for
discrete and continuous components.

2.2 Discrete Modeling

The SEA (System Engineering and Animation)-Environment [KTT97,KKT96]
developed at C-LAB offers full support for the modeling and design of the dis-
crete parts of a hybrid system in a modular and distributed manner. It offers a
graphical abstraction mechanisms for alternative views of one model and sup-
ports the integration of modules specified with other modeling paradigms includ-
ing continuous ones. The SEA-Environment is based on a formal model with a
local paradigm that allows an unambiguous modular specification, namely ex-
tended Predicate/Transition-Nets (Pr/T-Nets). They are a form of high level
petri nets but they support a more compact specification of complex systems
than pure petri nets.

Pr/T-Nets [GL81] are bipartite graphs consisting of places and transitions
connected with directed arcs called edges. The places may contain tokens that
are consumed and produced by transition. The edges define the "flow" of the
tokens. An edge from a place to a transition means the transition consumes
tokens from the place and an edge from a transition to a place means that the
transition produces tokens on the place. The tokens of a Pr/T-Net are tuples
of constants over a set of data types. To further specify the flow in Pr/T-Nets
edges may be annotated by sums of constant or variable tuples and transitions
may carry first order formulas over a set of constants and variables and a firing
rule used to calculate variables occurring on output edges of a transition.

P1 P1

~~zY 1 © :81

Fig. 3. Pr/T-Net example

Fig. 3 shows a Pr/T-Net consisting of three places (P1,P2,P3) and one tran-
sition (Ti). The tokens are integers and the firing rule of T1 adds the inputs
x and y and stores the result in z. The left side of Fig. 3 shows the net before
firing of Ti and the right side afterwards.

We extended the basic definition of Pr/T-Nets in order to support the inte-
gration of models specified in other modeling paradigms.

We defined a timing concept to allow the modeling of time dependent system
parts. This concepts allows the definition of enabling and firing delays for tran-
sitions. The enabling delay determines the time delay before a transition may

227

become active after it has been enabled for any substitution and the firing delay
specifies how long a transition is active. If a transition is active, the tokens from
the input places are removed but the tokens for the output places are not yet
produced.

Furthermore, we allow hierarchical specifications to support a modular spec-
ification of complex systems. Places or transitions of an extended Pr/T-Net may
be refined by subnets. Such hierarchical nodes have a special semantics which
is defined via the activity of their subnet. A subnet of a structured transition is
active as long as the structured transition itself is active which is similar to the
philosophy of structured nets as described in [CK81]. The subnet of a structured
place is active as long as the structured place contains at least one token which
is similar to the hierarchical concept in statecharts [Har78].

For an easy integration of textual specification languages we allow code of
programming languages within the firing rule of transitions. In our current im-
plementation this can be C/C++ code.

For the integration of graphical specification languages the SEA-Environ-
ment allows the definition of an abstract graphical representation for a subnet
used to refine a hierarchical node. This representation is also capable to "con-
tinuously" represent the system's behavior and state changes during simulation.
The description of the abstract representation may use arbitrary graphical el-
ements. Hence, existing graphical specification languages can be (re)produced
by using their predefined symbols as the abstract representation of the Pr/T -
subnets. All these extensions are explained in more detail in [KKT96].

After the specification of a system part as an extended Pr/T-Net we are able
to validate the specification. With the built in Pr/T-Net simulator and -animator
the specification can be executed and tested. The readability of the simulation
is supported by the animator which shows the abstract graphic representation
of the underlying Pr/T-Net models.

If the model satisfies the expectations of the designer C or C++ code can
be generated from the model. On the one hand the C++ code can be linked
together to conceive a prototype realization of the system. But on the other
hand C code including special statements for the integration into the CAMeL
tools for the specification of the continuous system parts can be generated.

For the integration of continuous system parts into the SEA-Environment
several possibilities exist. One is the integration of C code generated from the
CAMeL tools for a continuous model part as annotation of a transition. In
this case every time the transition fires one simulation/execution step within
the continuous model is performed. The variables at the input edges of the
transitions can be used as input for the continuous model and the output can
be imported via the variables of the output edges into the Pr/T-Net. Section 3.2
contains an example for this integration method.

A second way is the direct transformation of differential equations into Pr/T-
Nets as described in [Bri95]. In this case the differential equations have to be
discretized.

228

Another possibility is the use of predefined library elements for example
from a block diagram library for differential equations to rebuild the specified
continuous system parts. Fig. 4 shows as an example the specification of a drive
train modeled with such a library cf. Section 3.1). Fig. 5 shows the realization

KM 0

R R

Fig. 4. Linearized Model of drive train build from block diagram library elements

of some of the library elements with their abstract graphical representation and
the Pr/T-Net specifying its behavior.

y=x*c delay = D Z=x-y delay = 1

multiply integrate connect sum interface

Fig. 5. Collection of library elements

229

In case of the library construction and the direct transformation the con-
tinuous models have to be discretized for realizing them as a Pr/T-Net model.
This means that the decision for the final implementation technique was already
done. With the first integration method several implementation techniques for
the continuous model are possible.

After integrating the continuous model parts they must be connected to the
discrete parts. Therefor elements from an interface library are used. The right-
most element in Fig. 5 is such an element from this library used for converting
a discrete value into a continuous one. The token on the place in the middle is
copied within every time step to the right place. The value of the token on the
middle place is changed by adding a token with the new value on the left place.

3 Specification for Motorcades

In this section a part of a mechatronic system serving as an application example
for our approach is described. The model is depicted in Fig. 6. It is used for
controlling the velocity of a car that shall drive in a motorcade. Inputs for the
model are the position of a car driving in front of the considered car (s-leading),
the desired distance between two cars driving in a motorcade (ds.ref) and the
desired velocity of the car (v-reD. Outputs are the velocity (v-real) and the
position (s-real) of the car. The latter is needed by other cars for controlling
their velocity.

S... • !• • i~ ~i• • •.. :•l ., . •• •!ii•!! ii •;• ::... : :.:.:..

DFsig.6 ytmwt icrtcniuu nnterfce pathus

Th wol odl ail conist ftreprs h lc P onts~ osS

tem Parts' is needed for computing the position and the velocity of the car,
whereas the block 'Discrete System Parts' decides whether the car shall drive
with the reference velocity or make up a motorcade with the car driving in front

of itself. The continuous block contains units for both controlling the velocity
dependent on the reference velocity as well as controlling the velocity dependent
on the position of a leading car. At each time one of these models has to be
used according to the decision of the discrete system. A third block is needed
for interfacing the continuous and discrete model parts.

230

As can be seen in the figure several interactions between the different sys-
tem parts are necessary. On the one hand the decision made within the discrete
system parts depends on the position of the car computed within the continu-
ous system parts. On the other hand the continuous computations are in turn
influenced by the event flag triggered asynchronously within the discrete system
parts. To summarize all system parts - continuous and discrete ones - have to
deal with continuous signals as well as with events triggered asynchronously.

In the following we describe how the example was modeled following our
approach to use dedicated tools for modeling the discrete and continuous parts,
whereby each tool supports the modeling of interface elements to the particular
other part, the generation of code for the other tool and the integration of code
generated by the other tool.

3.1 Continuous Parts

With regard to making up motorcades, we consider the longitudinal vehicle be-
havior. The real vehicle comprises drive and brake trains. The braking pedal acts
on the master cylinder transmitting the force to the wheel brake cylinder. This
leads to the brakes being actuated. In driving mode, the use of the accelerator
alters the throttle valve position. The engine torque depends mainly on the ac-
tual engine-rotation speed and the position of the accelerator pedal. This engine
torque is being transmitted to the driving wheels via the clutch, the gear-box,
the cardan shaft, and the differential. It is transmitted to the tyre and will have
an accelerating effect on the car body.

Engine Inertia Wheel Inertia Linear Slip Vehicle Mass
Model

Fig. 7. Linearized model of the drive train

In order to model this complex dynamic behavior of the vehicle, we can make
some simplifications and linearize the model [SR96]. An integration of the indi-
vidual masses allows reduction to three masses for the drive train to be described.
One mass represents the engine inertia added to the inertias of the clutch and
of the gear (engine inertia). The second mass (wheel inertia) represents the iner-
tias of the gear, shaft, and differential all related to the differential ratio and the
inertias of the differential, axis, and tyre. The third mass represents the vehicle
body. Fig. 7 displays this simplified substitute model including a linearized tyre
model.

In the following, we will deal with the control concepts for longitudinal vehicle
dynamics in order to obtain a certain velocity as well as a specified distance

231

distance�� linearized S followerr~ • contrler drive train

ds ds•=t • camera

Sleader

Fig. 8. Structure of distance control

Vref + velocity ca,_ linearized real

controller drive train

Fig. 9. Structure of velocity control

between two vehicles. Due to the complexity of this hybrid system, we focus on
single-input/single-output controllers in order to demonstrate the switch from
velocity control to distance control. Fig. 8 and Fig. 9 display the structures of
the control strategies. In Fig. 8 the input to the drive train is the throttle angle
a, the output is the distance covered by the car body s. The distance covered by
the leading vehicle acts as an excitation signal along with the reference distance
dsref. A camera placed in front of the vehicle following up measures the real
distance dsreai. Fig. 9 sketches the real velocity vrea, controller with the reference
velocity vr, , the controller, the plant and the feedback loop.

The conditions for a switch from velocity control to distance control, when
the vehicle detects another one running in front, are specified in the discrete
components described in the next section. Since we use linearized drive train
models, the switch can be done without triggering a fading process. For imple-
mentation, it is important to mention that the inputs and states of the plant
such as the throttle angle a, velocities, angles and rotation rates of the drive
train model must be "frozen" right before the switch. After the switch, these
values serve as the initial conditions for the system with the changed controller
structure.

Fig. 10 shows the interaction between the discrete and the continuous compo-
nents. The interior of the discrete component is provided by the SEA-Environ-
ment (cf. Section 3.2). The interface block receives the input values sileading,
ds-ref and v-ref and transmits either the distance controller input Ads or the

232

Ss real Interface

a leadi • Continuous System Parts

s ead.n

sleadi Disertle: +iii if (flag = 'dc') -

System ds ref thenAv = 0; [
Nrts . ..flag,: ii elseA ds 0;

Fig. 10. Block diagram of the hybrid system

velocity controller input A v in dependency of the flag value from the discrete
block.

3.2 Discrete Parts

In this section we will describe the Pr/T Net models for the blocks 'Discrete

System Parts' and 'Interface' of Fig. 6. Afterwards the integration of C code for
the continuous model parts generated by the CAMeL tools (cf. Section 2.1 and
3.1) will be explained.

Discrete System Parts

srreal the[discrete4s

dsrl dsrref;

as.. refref

S~(ds >.-detta d) &&

(ds -• -elta) (s >•delltd) (da; < delta a)

Fig. 11. Pr/T-Net model for the discrete system parts

233

Fig. 11 shows the Pr/T Net for the block 'Discrete System Parts'. The inputs
of this subsystem (s-real, s-leading and ds-ref) are continuous values. The net
triggers an event (flag) when a switch between velocity control and distance
control is necessary within the continuous system parts. A value indicating the
mode for computation ('dc' or 'vc') is attached to the event. Checking whether
a switch of the mode is necessary takes place whenever the change of the own
position (s-real) exceeds a certain amount (deltas). This is detected by transition
T2 . If the input value differs less than delta, from the last considered value
(s-ref, stored in place P4), it is consumed by transition T1 . In order to invoke the
computation of flag transition T2 produces a token on place P7 . The transition
T5 , that becomes enabled due to this token, reads the actual position of a leading
vehicle and the actual reference distance from the places P 5 and P6 . These values
are updated by the transitions T3 and T4 continuously. Transition T5 reads the
actual mode of computation from the place Ps and computes the difference
ds between the actual distance (ds-real) and the reference distance (ds-ref).
According to these values one of the transitions T5 , T6 and T7 fires changing the
mode to a new value if necessary. In order to avoid a permanent switch of the
mode a change from velocity control to distance control is not done until the
distance of the vehicle falls below a value smaller than the reference distance
(ds-ref - deltad) and in turn a change from distance control to velocity control
is not done until the real distance exceeds (ds-ref + deltad).

s_real Interface

s

......f v = O
(la..................g d c) :1

. A:::::::::::::

The model depicted in Fig. 12 realizes the interface between the discrete sys-

tem parts and the continuous ones. It is responsible for a continuous production
of the values Ads and Av needed by the continuous system parts. The values
depend on the continuous values s~real, s leading, ds~ref and v~ref as well as on

234

the value flag which is determined asynchronously by the discrete system parts.
The transformation of the event flag into a continuous signal is done by an ele-
ment of the library depicted in Fig. 5. Furthermore the library elements connect
and sum are used for the computation of the output values. The continuous pro-
duction of the output values is done by the transitions T1 and T2 . The value for
the controller, that is not active, is set to 0.

Continuous System Parts

the Pr/T-Net depicted i~':'n Fi.13wsspcfedohlmdlldsacecnrolr

+ V_real

velocity controller and linearized drive train : are proided asCcd enrtdb

the AeLtool. The traNsitimonsl for the aotnd ous areanotted wirths ucin

a telocitycotrolleran ard drive train are e crtiin

4 Summary

The presented approach of an integrated modeling environment of hybrid sys-
tems leaves it up to the designer which part he would like to design first. For the
discrete parts he can use the SEA modeling environment for specification with
Pr/T-Nets. Special interfaces are available to integrate continuous parts of the

system. These parts can be specified with the CAMEL tools. In this environment
one can also integrate discrete parts via interfaces to the Pr/T-Net tools. In both
environments different possibilities exist for the integration of parts specified in
the other modeling paradigm. Th e used for the presented example is the in-
tegration of C code generated by the other environment. In this case no further
investigations are necessary for the integration of the other model parts. So this
integration method provides the easiest way for checking the correctness of the
discrete parts working together with continuous parts and vice versa. The non
trivial example of building up a motorcade shows the usefulness of this approach.

235

As an advantage of our approach every designer can model in his well known
modeling paradigm and can simulate the whole system with all its different parts.

References

[Bri95] M. Brielmarm. Modelling differential equations by basic information tech-
nology means. In Proceedings of the 5th International Conference on Com-
puter Aided Systems, Theory and Technology (EUROCAST'95), Innsbruck,
Austria, May 1995.

[CK81] L. A. Cherkasova and V. E. Kotov. Structured nets. In J. Gruska and
M. Chytil, editors, Mathematical Foundations of Computer Science, volume
118 of Lecture Notes in Computer Science. Springer Verlag, 1981.

[DGS97] A. Deshpande, A. Gdllfi, and L. Semenzato. The SHIFT Programming Lan-
guage and Run-time System for Dynamic Networks of Hybrid Automata.
Technical report, Department of Electrical Engineering and Computer Sci-
ences, University of California, Berkeley, 1997. CA 94720.

[EB096] H. Elmqvist, D. Brack, and M. Otter. Dymola - User's Manual, Version
3.0. Dynasim AB, 1996.

[Eng97] S. Engell. Modeling and Analysis of hybrid dynamic systems (in Ger-
man: Modellierung und Analyse hybrider dynamischer Systeme). Automa-
tisierungstechnik (at) 4/97, 1997.

[GL81] H.J. Genrich and K. Lautenbach. System Modelling with High-Level Petri
Nets. Theoretical Computer Science, 13, 1981.

[GW96] C. Grimm and K. Waldschmidt. Kir - a graph-based model for description
of mixed analog/digital systems. in Proceedings of IEEE Euro-DAC/Euro-
VHDL, Genf, Switzerland, September 1996.

[Har78] D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231-274, June 1978.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
dataflow programming language LUSTRE. Proceedings of the IEEE,
79(9):1305-1320, September 1991.

[HMN96] M. Hahn and U. Meier-Noe. The Classification Concept in the Object-
Oriented Modelling Language Objective-DSS, Exemplified by Vehicle Sus-
pensions. In Proc. of the IEEE International Symposium on Computer-Aided
Control System Design, Dearborn, Michigan, September 1996.

[Hom97] C. Homburg. SIMBA - Increasing Efficiency in the Simulation of Heteroge-
nously modelled Mechatronic Systems. In Proc. of the 9th European Sim-
ulation Symposium (ESS-97) "Simulation in Industry", Germany, Passau,
October 1997.

[i-L97] i-Logix Inc. Statemate MAGNUM Reference Manuals, 1997.
[Int97] Integrated Systems Inc. MATRIXx Reference Manuals, 1997.
[K.97] Jensen K. Coloured Petri Nets - Basic Concepts, Analysis Methods and

Practical Use. 3, Pratical Use. EATCS Monographs on Theoretical Com-
puter Science. Springer Verlag, 1997.

[KKT96] B. Kleinjohann, E. Kleinjohann, and J. Tacken. The SEA Language for
System Engineering and Animation. In Applications and Theory of Petri
Nets, LNCS 1091, pages 307-326. Springer Verlag, 1996.

[Kow97] J. Kowalewski, S.; Preuaig. Verification of sequential controllers with timing
functions for chemical processes. In Proc. of IFAC 13th World Congress,
Vol. J, pages 419-424, Francisco, USA, 1997.

236

[KTT97] B. Kleinjohann, J. Tacken, and C. Tahedl. Towards a Complete Design
Method for Embedded Systems Using Predicate/Transition-Nets. In Proc.

of the XIII IFIP WG 10.5 Conference on Computer Hardware Description

Languages and Their Applictations (CHDL-97), pages 4-23, Toledo, Spain,
April 1997. Chapman & Hall.

[Lyg96] J. Lygeros. Hierarchical, Hybrid Control of Large Scale Systems. PhD thesis,

University of California, Berkeley, 1996.
[Mai93a] P. et. al. Maiaer. alaska 2.0 Handbuch (in German). TU Chemnitz, I&M,

Chemnitz, 1993.
[Mai93b] P. et. al. Maiaer. MATLAB, High Performance Numeric Computation and

Visualization Software. The Math Works Inc., 1993.

[OGW95] Peter Oehler, Christoph Grimm, and Klaus Waldschmidt. KANDIS - a
tool for construction of mixed analog/digital systems. In Proc. of IEEE

Euro-DAC, Brighton, September 1995.
[PL95] S. Pettersson and B. Lennartson. Hybrid Modelling focused on Hybrid Petri

Nets. In Proc. of the @nd European Workshop on Real-time and Hybrid

Systems, Grenobel, France, June 1995.
[Ric96] J. Richert. Integration of Mechatronic Design Tools with CAMeL, Exempli-

fied by Vehicle Convoy Control Design. In Proc. of the IEEE International
Symposium on Computer-Aided Control System Design, Dearborn, Michi-
gan, September 1996.

[SR96] J. Seuss and J. Richert. Control Structures for Vehicle Convoy Control. In
Proc. of the International Symposium on Advanced Vehicle Control (AVEC-

96), Monterey, California, June 1996.
[WS95] R. Wieting and M. Sonnenschein. Extending High-Level Petri Nets for

Modeling Hybrid Systems. In Proc. of the IMACS Symposium on Systems
Analysis and Simulation, Berlin, Germany, June 1995.

Hierarchical Hybrid Systems: Partition
Deformations and Applications to the

Acrobot System. *

Ekaterina S. Lemch t Peter E. Caines §

Abstract
In [3],[5] the notion of dynamical consistency was formulated for hybrid systems so

as to define the set of dynamically consistent hybrid partition machines M', 7r e 1, as-
sociated with a given continuous system S. This theory includes the notions of a hybrid
between-block (HBBC) and in-block controllable (HIBC) partition machine, the lattice
HIBC(S) of (HIBC) partition machines, and that of the associated hierarchical-hybrid
feedback control systems. In this paper, a brief summary of this theory is presented,
and the robustness properties of a partition machine M' with respect to deformations
of the boundaries of the blocks of ir is outlined. An application to the hybrid control
of an underactuated double pendulum (Acrobot) system and a fully actuated dou-
ble pendulum system is then presented. The pendulum example also introduces some
properties of the blocks of a state space partition (such as in-block controllability to a
distinguished state and controlled umbilical paths) which promise to facilitate the de-
sign of hierarchical hybrid control systems. Finally, some global controllability results
for nonlinear systems are sketched which have application to the construction of HIBC
partitions for mechanical systems.

1 Introduction

In this paper the problem of state quantization, or abstraction, for the design

of controllers for continuous systems is treated as a hierarchical control prob-
lem using the formulation developed in [6],[4] and [51). The central notion in
this theory is that of dynamical consistency (DC) wherein an abstract transition
from one partition block of states to a second is required to satisfy the following
condition: every state in the first block can be driven along a trajectory directly

- Work partially supported by NSERC grant number OGP 0001329, NSERC-FCAR-Nortel
grant number CRD 180190 and NASA-Ames Research Center grant number NAG-2-1040.

t Department of Electrical Engineering, McGill University, 3480 University Street, Montreal,
Quebec, Canada H3A 2A7. lemch@cim.mcgill.ca

t Department of Electrical Engineering, McGill University, 3480 University Street, Montreal,
Quebec, Canada H3A 2A7. Current address: Department of Mechanical and Automation Engi-
neering, The Chinese University of Hong Kong, Shatin, N.T.Hong Kong. peterc@cim.mcgill.edu

§Also affiliated with the Canadian Institute for Advanced Research.

238

into the second block without excursions into any other block. This notion per-
mits the definition of the finite state partition machine associated with a given
continuous system S and a given (finite analytic) state space partition -r (see
below and [4],[5]). Consequently, high level hierarchical (or abstracted) control
actions maybe be defined and applied to the low level (or base) system. The
basic definitions of hierarchical hybrid control theory are reviewed in Section 2
and we note that the recent formulations of finite bisimulations of continuous
systems ([1],[7]) involve notions very similar to that of dynamical consistency.

We consider here three aspects of hierarchical hybrid control in the context
of general systems and in terms of a controlled double pendulum example.

First, in Section 3, we discuss the general problem of robustness for the high
level dynamics of a partition machine M1 with respect to system partition per-
turbations. More specifically, we introduce a theory of the robustness of high level
(partition machine) dynamics with respect to perturbations of the boundaries
of the blocks of a state space partition -r. After formally defining a large class
of admissible perturbations (or deformations), we give conditions for the high
level dynamics of the hierarchical system to be insensitive to such deformations.
The condition for such insensitivity to hold for sufficiently small perturbations is
that the hybrid in-block controllability (HIBC) condition is preserved for the de-
formed partition blocks. We note that it is precisely the HIBC condition which
is employed in the lattice theoretic formulation of (multilayered) hierarchical
control systems in [6],[4] and [5]. Furthermore, the problem of finding conditions
for a partition -r to be HIBC is equivalent to that of giving conditions for the
global controllability of the given system within the subsets of the state space
specified by the (open connected) blocks of the partition 7r.

Second, in Section 4, we treat the construction of partition blocks and DC
transitions (or connections) for the underactuated double pendulum system
(called the Acrobot) and its fully actuated form (i.e. the double pendulum with
torques applied at the shoulder and the elbow). In order to do this we use
certain novel state space decompositions, employing blocks possessing the in-
block controllability property with respect to distinguished state elements (e.g.
equilibrium states) and those which are the tubular neighborhoods of umbili-
cal controlled trajectories. These constructions promise to facilitate the design
of hierarchical hybrid control systems. We also construct partition blocks by
considering the evolution of certain state subsets under specified controls (in
particular friction); this gives rise to boundaries which are (piecewise) invariant
manifolds with respect to specified sets of controls. The fully actuated version of
the Acrobot is then used to illustrate such constructions of HIBC partitions and,
further, their deformation into HIBC partitions. We note that in recent work of
Broucke [1] the construction of cell boundaries as invariant sets with respect to
specified control laws has also been considered.

Third, in Section 5, we sketch some general controllability results for non-
linear systems and some energy based notions which have application to the
construction of HIBC partitions for mechanical systems.

239

2 Hybrid Partition Machines

Consider the differential system

S: ý= f(x,u), xe R'n,ue Rm,u(.)eU, f :D x~m CRn+m-+ Rn, (1)

where we assume that

(i) U is the set of all bounded piecewise Cq (R1) (q Ž_ 1) functions of time
with limits from the right (i.e. functions which are q times continuously
differentiable, except possibly at a finite number of points in any compact
interval, and which are bounded and have limits from the right);

(ii) F 6 C1 (Rn+ m) and for each u e U, F(x,u(t)) satisfies a global Lipschitz
condition on D, uniformly in t e R'; and

(iii) D is assumed to be a closed set and to have a non-empty, path-connected
interior.

We shall refer to these conditions on F, D, and U as the standard (control ODE)
conditions.

Definition 2.1 A finite analytic partition of the state space D C Rn of (1) is
a finite pairwise disjoint collection of subsets 7r = {X 1 , X 2 ,..., X1,rI} such that
each Xi is non-empty, open and path-connected, and is such that

I11
D = U (Xi U 0Xi),

i= 1

where, further, the boundary OXi of every block Xi is a locally finite union of
connected components of n - p dimensional, p > 1, analytic manifolds (possibly
with boundary). H(D) shall denote the set of all finite analytic partitions of D.
For partitions 7r,1,7ir2 e H7(D), 7r2 is said to be weaker than 7in, .denoted rl _ -r2,

if, for every Xi e ir, {X 1 ,.. Xn}, there exists Yj 6 7n2 = {Y 1,"' Ym} such
that Xi C Yj .

For the definition of dynamical consistency we need the following notion: a
state y e OXi n aXi is said to be a facial (boundary) state of the pair of blocks
Xi, Xj if y lies in the relative interior of n - 1 dimensional connected components
of the boundaries OXi and i9Xj. The set of facial (boundary) states is the set of
all states which are the facial states of some pair of blocks.

Definition 2.2 For ir e II(D), (Xi, Xj) e ir x ir is said to be a dynamically
consistent (DC) pair (with respect to S) if and only if either i = j, or, if i 0 j,
for all x in Xi, there exists ux(.) e U, defined upon [0, T,], 0 < T: < o, and
there exists a facial boundary state y e OXi n OXi, such that:

(i) Vt e [0, T,), 0(t, x, u,) e Xi, and limt_.T- 0(t, x, uX) -- Y;

240

and for the state y in (i) there exists uy e U defined on [0, Tv), 0 < Tv < oo, such
that

(ii) Vt f (O,Ty),k(t,y,uy) 6 Xj;

where 0(.,., .) in (i) and (ii) denotes the transition function of the vector field
f(., .) with respect to the control functions u ,uy e U and the initial conditions
x, y, respectively.

El

Definition 2.3 Given -r e1 H(D), the hybrid DC partition machine

M1= (r= Vi IT , U 1i ; 1<_i,j A, 45),

based upon the system S, is the finite state machine defined by (Xj,F3j) =

Xj, for all ij, 1 < ij < Hi-l, if and only if (Xi,Xj) is DC. H(S) shall denote
the set of all hybrid partition machines of S.

El

Definition 2.4 Hybrid In-block Controllability
A hybrid partition machine M' is called hybrid in-block controllable (HIBC) if

for every Xi e 7r, and for all x,y e X2 , the following holds:!

3u(.) e U,9T,0 < T < 0o, (Vt,0 < t < T, (t,x,u) E Xj) A q(T,x,u) = y, (2)

i.e. each block Xi e 7r is controllable for the system S.

The reader is referred to [3],[5] for more information on all notions introduced
in this section.

3 Partition Deformations

In this section we establish conditions under which the dynamics of M' are
robust with respect to sufficiently small perturbations of the partitions defining
M•. All of the definitions and results here are taken from [9].

Definition 3.1 A piecewise analytic (p.a.) deformation of the (finite analytic)
n

partition boundary 07r = J OXi of D is a function F : Dir -+ D with the

following properties

(i) F is continuous;

(ii) F gives a 1 to 1 correspondence between 07r and F(Dir);

241

(iii) F is piecewise analytic, in the sense that for every block Xj, 1 < i < n,
there exists a finite partition {D',m} of the boundary aXi such that

ki ki tm

axi= U C,= U (U Dm),
m=1 m=1 s=1

and such that the restriction of the function F to Dsm, 1 < i < n, 1 < m <
ki, 1 < s < tin, is an analytic function; and

(iv) F(OD) = OD.

Definition 3.2 Let ir = {X 1 ,X 2,' ,Xn} be a finite analytic partition of the
sef D and let F be any function F: Or + D which maps the partition bound-
ary Oir into D. A partition 7r' = {XV1,X 2 ,... ,X1,,,} of the set D is called a

deformation of ir induced by F if and only if ir' = F(O-7r).

Theorem 3.1 Let ir = {X 1,X 2 ,... ,Xn} be a finite analytic partition of the
compact set D and let F be a p.a. deformation of the partition boundary 0ir.
Then,

(i) there exists a unique finite analytic partition -7r" = {X, X....., XI 1 I} Of

the set D which is a deformation of the partition ir induced by F; and

(ii) IirF I = 1lI = n; in other words, the cardinality of a finite analytic partition
is invariant under piecewise analytic deformations.

0]

Definition 3.3 Let ir' be a deformation of a partition 7r induced by F, where
F is a p.a. deformation of the partition boundary. ir' is called an e -deformation
of the partition ir (denoted ir,) if

1i" - It'I---maxZra7 llz - F(z)II =

Lemma 3.1 Let ir = {X1 ,X 2 ,... ,X.) be a partition of a compact set D and
let irt = {X, X,.2.. , X} be any deformation of ir induced by F, where F is a
p.a. deformation of the partition boundary. Then there exists E*, E* > 0, such
that if llr-ir'Il < e*, then for any i, 1 < i < n, there exists a unique j, 1 < j _< n,
such that

(i) xin X 0;

(ii) f(DXi) = aX.

242

(We shall call X' the image of Xi under F.)3

Henceforth, we shall say that a deformation ir' is a small deformation (of ir)
if 11tr- ir'll < e*, where E* is specified by Lemma 3.1. Further, by Lemma 3.1, for
small deformations we can assume without loss of generality that Xi, 1 < i < n,
is the image of Xi under F.

Theorem 3.2 Let ir = {X 1 ,X 2 ,"',X.} be an HIBC partition of the set D,
and let F be any p.a. deformation of the partition boundary of ir such that the
induced deformed partition ir' = {X', X 2 , ... , X,'} is a small deformation and
is HIBC. Then there exists e, e > 0, such that whenever 1ir - ir'll < 6 it is the
case that, for all i,j, 1 < i,j < n,

(Xi,Xj) is dynamically consistent in the partition machine M' ='

(X", Xj) is dynamically consistent in the partition machine MI'.

We also have the following theorem under the same hypotheses as Theorem 3.2.

Theorem 3.3 Let 7r = {X 1,X 2 ,.. -,X.} be an HIBC partition of the set D,
and let F be any p.a. deformation of the partition boundary of ir such that the
induced deformed partition tr' = {X', X ,...., X' } is a small deformation and
is HIBC. Then there exists e, 6 > 0, such that whenever 11lr - ir'll _< E it is the
case that, for all i,j, 1 < i,j < n, a block trajectory from Xi to Xj exists in the
partition machine MI if and only if a block trajectory from X, to,X. exists in

the partition machine Mr'.

0

Theorems 3.2 and 3.3 are illustrated in Figure 1 for a two dimensional system
M; this system appears in [8] as a continuous system which has the partition
machine M'. (M' itself illustrates the general result of [8] that any finite state
machine may be obtained as the partition machine of some continuous base
system.) Following the general construction specified in [8], a continuous control
system with the vector field displayed in Figure 1 is

S= r(z) 2G(z,u) + H(z)w,

where:
Z - (x,y)T; U = (U1,U 2)T €/U 2 ; W = (Wl,W2)T 6 U 2 .
e - (1,O)T; e2 = (--1; /3/ 2)T e = (1; _V•/ 2)T.

r(z) = VFixj2 y2
3 3

H(z) = Zlla•(z), where, for any z e Xi, i = 1,2,3, ai(z) = 0 and aj(z),
j=1 j=1

243

j = 1,2,3, j 5 i, is the projection of z on ej in the direction parallel to ek,
k = 1,2,3, k 5 i,j. In other words, aj,, aj2 , jlJ2 c {1,2,3}, ii : i, j2 0 i, are
the coordinates of the point z in the basis < ej,, ej2 >.
G(z, u) is a continuous extension on the whole space D = R2 of the function
g(z, u) defined on Oir in the following way

2 2-u 1 e 3 - U2 e2 , if z 6 el;

g(z,U) = -u22el, if z 6 e2 ;
-u 1 e2 - u2el, if z 6 e3.

Observe that the function H(z) vanishes on the boundary of any given cell eXi,
i = 1, 2, 3, leaving the function G(z) to determine the controlled vector field
there. Further, for any interior point z 6 R2 - 67r, a control vector w can be
chosen in such a way that it compensates the effect of the the first term in the
differential equation and hence guarantees the local controllability at the point
Z.

For example, in X 3 the system M is defined by

(X +Y) 0)(_2 _ 23 2(x2 + y)[(1 - 22(-u lea -. e2) - TV ,•el] +

(X + 1 Y2(2 2W(=+--3y) (-•3y) 2 w,

where po, so e [0; -2-], is the angle between the Ox axis and Oz.
We observe that Figure 1 shows the converse to Theorem 3.2 to be false.

4 Hybrid Control of a Double Pendulum

4.1 Acrobot System

The Acrobot system (see [10],[111) consists of a two-link rigid pendulum system
with one actuator at the the second joint (elbow) and a pinned first joint (shoul-
der) (see Figure 2); it is termed an underactuated system since it is a mechanical
system with fewer actuators than degrees of freedom. The. particular swing up
problem addressed in [10], [11] is to change the position of the Acrobot from the
downward (down-down) position to the inverted (up-up) position and balance it
there.

The equations of motion of the system are ([11]):

d11 •1 + d1242 + hi + 01 = 0

d2l 1 + d 2 2 s "- + h 2 + 02 =

where

dm= m~ll + M2 1 c2 + 2111,2 cos(q2)) + Il + 12
d12 = m2(1c2 + 114t2 cos(q2)) + 12

244

it HEBC it HIBC

Y y

4 4

Fi.11 *utato fTerm 3. /n .

e22

X3X

1 3 1 3

2 2

Fig. 1: Illustration of Theorems 3.2 and 3.3

d22 = m2d1 2 + I2

hl= -m 2111c2 sin(q2)422 - 2m2111,2 sin(q2)4241
h 2 = m 211l 2 sin(q2)1

¢1 = (m1l41 + m211)gcos(ql) + m2lc 2gcos(q1 + q2)

=2 = m2lc2g cos(ql + q2)-

The control laws for the Acrobot in [11], and the references therein, may be
analyzed in terms of the hierarchical hybrid control theory of this paper. This is
because the design philosophy of [11] may be described, in general terms, to be
to steer the state of the system from one set of states (for instance, a set in a
neighbourhood of a particular equilibrium state) to a state in a neighbourhood
of another specified equilibrium state. This is to be carried out by invoking a
control law L 1 in a given feedback class which is switched to a member L 2 of
some other class when the system state enters a specified set.

245

It has been shown ([11]) that, by using (exact) partial feedback linearization,
the first joint (which is not directly actuated) can be driven by the coupling
forces arising from the motion of the second joint to trace any given reference
trajectory qd. Moreover, subject to such a control, the surface {ql = qd; q1 = 0}
may be shown by use of the Centre Manifold Theorem to define an invariant
manifold in the state space which is globally attractive.

The central joint torque i- is chosen so that angle q, converges exponentially
to a value corresponding to the upright position, while the second pendulum
arm (and its corresponding angle) performs a periodic oscillation with respect
to the first until the state enters a neighbourhood for the saddle point equilibrium
{ql = 7r/2; q1 = 0}. Subject to certain bounds on the initial energy of the system,
this set of states is a (controlled) basin of attraction to the up-up position. So
when the system when the system enters this set the overall control law may be
changed from L1 to L2 which consequently stabilizes the Acrobot in the up-up
position.

The state space for this problem is

D = [0; 27r) x [0; 27r) x R x R.

Let -r = {X 1, X 2 , ..., Xn} be a partition (not necessary HIBC) of the set D. We
shall call any block Xi, 1 < i < m < n which is a neighbourhood of a specified
state xi an in block controllable to xi (or IBC(xi)) block whenever any state in

M2,1I2

12

1 C2 . .q2 .""

1c

X

Fig. 2: Acrobot

246

Xi can be steered (in finite time) into any given neighbourhood of xi along a
trajectory which does not leave the block.

Let Xi be an IBC(xe) block containing an arbitrary equilibrium state Xe; such
blocks may be shown to exist at any of the equilibrium points of the Acrobot
system since it may be shown by a linearization analysis that we may apply an
LQR controller at such a point for all sufficiently small angular velocities (whose
magnitudes must be used to define each Xi). The IBC(xe) property of these
blocks is indicated in Figure 3 by the self loop bearing the index I.

T DD is in-block controllable to the equilibrium point

S---- UU is in-block controllable to the equilibrium point

E is a tubular neighborhood of paths DD-> x,

S is a tubular neighborhood of paths UU-> xd

-1

Xu is the friction-control-inverse (fci) of UU

Xl is the fci of the block DD
DD

XI is the fci of the block E
E

XV is the fci of the block S
S

Fig. 3: A Partition Machine for the Acrobot System

Consider the two equilibrium points

x"U = (7r/2; 0; 0; 0) and x dd = (--7r/2; 0; 0; 0),

247

which correspond to the unstable inverted and stable downward positions re-
spectively. Let UU and DD denote IBC(xu) and IBC(xad) blocks, respectively.
It is then possible to specify two f.a. blocks of transition states, E and S, in such
a way that

<UU,S>,<S,DD>,<DD,E>,<E,UU> areDCpairs.

The blocks E and S in the complement of UU and DD are defined to be tubular
neighborhoods (consisting of piece-wise analytic paths) surrounding two selected
paths, which we shall call controlled umbilical paths. These umbilical paths goeu xn ,d respectively,
from the neighborhoods DD and UU to the points xe and dr

and hence to the blocks UU and DD, respectively, under the partial feedback
linearization control law. Necessarily, the tubular boundaries of E and S are
control invariant sets under the piece-wise analytic controls which define them.
Hence E and S are indeed f.a. partition blocks, which we note are not in general
HIBC.

Now it may be shown that by applying a friction ufri = -42, -Y > 0, an
open set of states D can be driven into the open neighborhood DD of the stable
down-down position. Using this observation we can partition a part of the space
D

D - (E U (UU) U (DD) U S)

in the following way.
Define the set Xu-1 to be the inverse image of the block UU under the control

ufri, i.e.
Zv-1 = {x; D T o(x, T, ufri) e UU and

V t (0 < t < T) ýp(x, t, ufri) e (UU TDO u T u 9)c n D1}.

We can assume without loss of generality that Xu-1 is connected. (Otherwise we
shrink the UU set until all connected components of the inverse image are joined
by trajectories in the open set difference between the old and the closure of the
new UU sets.) Hence X-r satisfies the hypotheses for a f.a. partition block.et X 1 X -1

Let XDD, XE 1 , X1 be analogously defined as the f.a. inverse images of the
blocks DD, E, S, respectively. Then, by construction, DC connections can be
established for all the following pairs:

<- XUU >,< X-1,DD >,< XE1,E >,< X"1S > .

Note, that by the uniqueness of the trajectory for a given control function, the
inverse images of the blocks UU, DD, E, S are disjoint. Further, the closure of
the union of all the disjoint sets defined here constitute a closed subset D* of
the entire state space D. Thus

-r = {UU, DD,E,S, X-1, X-D, X-1, X 1

is a partition of the set D*.

248

As a result of the analysis above, the partition machine M' of the Acrobot
is (partly) represented in the Figure 3. This figure gives a high level description
of a set of (hierarchical hybrid) controlled behaviours of the Acrobat.

4.2 Fully Actuated Robot

A closely related application to the analysis above of the Acrobot is that of the
fully actuated Acrobot, i.e. the fully actuated double pendulum system. The only
difference between this system and the Acrobot system is clearly the presence
of an input torque to the first equation

dui~l + d12ý2 + hi + 01 7-1

d 2 1 q1 + d 2 2 qj2 + h2 + ¢2 72.

where d/j, hi, 0j, i,j = 1, 2, are defined in the same way as in the underactuated
case. The difference between this system and the Acrobot system is the presence
of an input torque to the first equation.

Assume that the term d12 is nonzero for all values of q2. Under this condition,
which is called strong inertial coupling in [11],

q2= -- (di1 di+ h + 1- -Ti)

and
did, + hi + 01 = -2 -- d22/dl2,

where
di= d21 - d22 d11/d 1 2 ,

hi = h 2 - d 22 hi/d 1 2 ,

01 = 02 - d22 1/d12.

A feedback linearizing controller can therefore be defined according to

1ri = hi + 01 + d11vi + d12v2 ,

72 = dl V1 ± hl + 01 '• 1 d 2 2 /d1 2 ,

where v1 , V2 are additional outer loop control inputs. Using this forced lineariza-
tion, the system can be represented by the four differential equations

Xl = X2 &2 V1,

X3 = X4 4 = V2,

where xi = qj, x2 = 41, x3 = q2, X4 = 42.

249

For this problem the state space D will be taken to be a specified compact
subset of IR4, where the states are identified (in the projection into [-ir; 7r) x R x
[--r; ir) x R) whenever they have identical coordinates except for differences of
multiples of 2ir in either the first or the third or both of these coordinates.

Let R!, R, 0 < i < n, 0_ j < m, for some strictly positive integers n and
m, be any two sequences of real values such that

(i) P= 0 = Ro'; R. = r = RRj;

(ii) R 1 <Ri, for anyi, <1 i<n;

(iii) RII. < RII, for any j, 1 < j <nm.

Consider a collection of sets

-r={Xij; o<i<n,o<j<m}, I-7r rInm,

where each Xij is defined in the following way

xi = I{(xlXý-,x,x 4); R 1I < X2 + X 2 < Rf; RI < x±2 +XR2

Each set Xij is non-empty, path-connected (since any two points a, b 6 Xij
lie on the surface of a torus which is a path-connected subset of Xij) and open.
Further, the boundary of each such set is a finite union of connected analytic
manifolds. Any two sets of the collection 7r are disjoint by the definition. The
union of all Xij constitute the whole state space D. Hence, by Definition 2.1, ir
is a finite analytic partition of D.

R I'

Fig. 4: The direct product of two annular blocks

Note that each block in the collection 7r is equal to the direct product of two
annular blocks, see Figure 4.

250

Using the analogy with the annular partition for the double integrator system
([5]), it can be verified that 7r is an HIBC partition of D, i.e. each block Xij is
controllable.

Any two adjacent blocks Xij,, Xi2i 2 , i.e. such that Xiljl n Xi2j. i 0, are
mutually dynamically consistent since motions arbitrarily close to radial motions
are possible within and between blocks.

Let X, Y be two adjacent blocks of a f.a. partition or(D). Consider a piece-
wise analytic deformation o,' of a such that

(i) X' U = X U ;

(ii) X C X' and Y' C Y;

(iii) for any block Z e a, such that Z 0 X, Y, Z' = Z.

We shall call such a deformation a basic deformation.

Let o' be a basic deformation of a f.a. partition a and let o' be such that,
for a given differential control system S satisfying the standard conditions, the
distinguished blocks X, Y satisfy

(i) for any state y e Y - y, there exists a controlled path of S passing from
a state in X to y and from y into X which does not meet the deformed
boundary;

(ii) for any two distinct states in Y' which are connected by a controlled path of
S meeting the deformed boundary there exists a controlled path connecting
these states which lies in Y'.

We shall call such a deformation a control paths dependent deformation.

One can now prove that any control paths dependent deformation o' (D) of
an HIBC partition ci(D) is an HIBC partition of the state space D. Moreover, if
control paths dependent deformations have been applied to a a finite number of
times, then the resulting deformation stays within the class of HIBC partitions
of D.

In the particular case of the fully actuated Acrobot it may be verified that
such control paths dependent deformations Vr exist for the toroidal partition
7r described above. This follows from the existence of control paths dependent
deformations for the annular partition for the double integrator system and from
the fact that each block Xij E -ir can be represented as the direct product of two
annular blocks. But any two adjacent blocks of 7r are dynamically consistent
and so we can conclude from an application of Theorem 3.3 that the same holds
for any partition 7r* obtained after a finite number of control paths dependent
deformations.

251

5 Conditions Ensuring the HIBC Property of a
Partition

Given a differential control system S satisfying the standard conditions (with
q = 1), we define a (continuous) positive fountain to be a state such that (i) there
exits a neighborhood of x such that all open ball neighborhoods of x which it
contains are such that the accessibility set (for all finite times) from x relative to
each neighborhood (i.e. via system trajectories contained in each neighborhood)
is open when the state x is deleted, and (ii) the radius of the largest open ball
neighborhood of x for which (i) holds is continuous in x.

A (continuous) negative fountain is a state which satisfies the analogous prop-
erty to that above with coaccessibility replacing accessibility. Finally, a (contin-
uous) fountain is state which is both a positive and a negative (continuous)
fountain. Henceforth the adjective continuous will be dropped from the term
fountain, in other words all fountains will be assumed to be continuous.

It is proved in [2] that if the open connected state space X of a differential
control system is such that (i) every state is a fountain, and (ii) for every state
x e X there exists a control function u, such that x lies in the positive omega
set of itself (i.e. x lies in the closure of the forward trajectory from x under ux),
then the state space X is controllable. A special case of this result is that where
every state lies on some nontrivial controlled closed orbit in X.

We see that by an application of this result a finite analytic partition where
each block satisfies the conditions (i) and (ii) is a HIBC partition.

Consider next Hamiltonian systems of the form

-= OH/t9p,

S= -OH/Oq + u,

where H is twice continuously differentiable. Define an energy slice for such a
system as a connected subset of the state space for which the values of the
Hamiltonian range over a specified open interval of the real line. Then it is
shown in [2] that a Hamiltonian system where (i) all equilibria of the system
under u = 0 are isolated, and (ii) all states are fountains, is such that any
energy slice with compact closure is controllable.

An application of this result to the fully actuated Acrobot problem permits
the construction of HIBC partitions, however the utility of blocks specified as
energy slices is yet to be evaluated.

Acknowledgements The authors gratefully acknowledge conversations with
Robert Hermann concerning parts of this work.

252

References

[1] M. Broucke. A geometric theory of bisimulation of hybrid systems. Technical
report, University of California at Berkeley, CA, October, 1997.

[2] P.E. Caines and E. Lemch. Fountains, orbits and the global controllability
of non-linear systems. Technical report, McGill University, Montreal, PQ,
Canada, in preparation, 1998.

[3] P.E. Caines and Y-J. Wei. On dynamically consistent hybrid systems. In
P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors, 1994 Cornell
University Workshop on Hybrid Systems & Autonomous Control, Hybrid
Systems II, LCNS 999, pages 257-263. Springer Verlag, NYC, 1995.

[4] P.E. Caines and Y-J Wei. Hierarchical hybrid control systems. In S. Morse,
editor, Control Using Logic-Based Switching, Volume 222, LNCIS, pages
1-12. Springer-Verlag, 1996.

[5] P.E. Caines and Y-J. Wei. Hierarchical hybrid control systems: A lattice
theoretic approach. IEEE Transactions on Automatic Control. To appear,
1998.

[6] P.E. Caines and Y-J. Wei. The hierarchical lattices of a finite machine.
Systems and Control Letters, 25:257-263, 95.

[7] G. Lafferriere, G. J. Pappas, and S. Sastry. Subanalytic stratifications and
bisimulations. Technical report, University of California at Berkeley, CA,
January, 1998.

[8] E. Lemch and P. E. Caines. On the existence of hybrid models for finite
state machines. Submitted to Systems and Control Letters, 1997.

[9] E. Lemch and P. E. Caines. Partition deformations of hierarchical hy-
brid control systems. Technical report, McGill University, Montreal, PQ,
Canada, 1998.

[10] M. W. Spong. Partial feedback linearization of underactuated mechanical
systems. In Proceedings, IROS'94, pages 314-321, Munich, Germany, 1994.

[11] M. W. Spong. The swing up control problem for the acrobot. IEEE Control
Systems, 15(1):49-55, February, 1995.

Formal Verification of Safety-Critical
Hybrid Systems*

Carolos Livadas and Nancy A. Lynch

Laboratory for Computer Science
Massachusetts Institute of Technology

{clivadas,lynch} theory.lcs.mit.edu

Abstract. This paper investigates how formal techniques can be used
for the analysis and verification of hybrid systems [1,5, 7,16] - systems
involving both discrete and continuous behavior. The motivation behind
such research lies in the inherent similarity of the hierarchical and decen-
tralized control strategies of hybrid systems and the communication and
operation protocols used for distributed systems in computer science.
This paper focuses on the use of hybrid I/O automata [11, 12] to model,
analyze, and verify safety-critical hybrid systems that use emergency
control subsystems to prevent the violation of their safety requirements.
The paper is split into two parts. First, we develop an abstract model of
a protector - an emergency control component that guarantees that the
physical plant at hand adheres to a particular safety requirement. The
abstract protector model specialized to a particular physical plant and a
particular safety requirement constitutes the specification of a protector
that enforces the particular safety property for the particular physical
plant. The correctness proof of the abstract protector model leads to
simple correctness proofs of the implementations of particular protec-
tors. In addition, the composition of independent protectors, and even
dependent protectors under mild conditions, guarantees the conjunction
of the safety properties guaranteed by the individual protectors being
composed. Second, as a case study, we specialize the aforementioned ab-
stract protector model to simplified versions of the personal rapid transit
system (PRT 2 0 0 0 TM) under development at Raytheon Corporation and
verify the correctness of overspeed and collision avoidance protectors.
Such correctness proofs are repeated for track topologies ranging from a
single track to a directed graph of tracks involving Y-shaped merges and
diverges.

* This research was performed at the Theory of Distributed Systems Group of the Lab-

oratory for Computer Science of the Massachusetts Institute of Technology. The re-
search was supported by NSF Grant 9225124-CCR, U.S. Department of Transporta-
tion Contract DTRS95G-0001-YR.8, AFOSR-ONR Contracts F49620-94-1-0199 and
F49620-97-1-0337, and ARPA Contracts N00014-92-J-4033 and F19628-95-C-0118.

254

1 Introduction

The recent trend of system integration and automation has encouraged the study
of hybrid systems - systems that combine continuous and discrete behavior. Al-
though the individual problems of continuous and discrete behavior have been
extensively analyzed by control theory and formal analysis, respectively, their
combination has recently been aggressively studied. In particular, the automa-
tion in various safety-critical systems, such as automated transportation systems,
has indicated the need for formal approaches to system analysis, design, and veri-
fication. Automated highway systems [2,8], personal rapid transit systems [6,17],
and air traffic control systems [9,15] have served as benchmark problems for the
development of techniques to analyze, design, and verify hybrid systems.

Many of the safety-critical systems in use today abide by the engineering
paradigm of using an emergency control, or protection, subsystem to prevent
the violation of the system's safety requirements. In this paper we present a
formal framework for the analysis of systems that adhere to this engineering
paradigm. The framework is used to prove the correctness of such protection
subsystems in an effort to provide indisputable system safety guarantees. The
formal approach to the analysis of such systems has several advantages. Formal
analysis yields a precise specification of the system and its safety requirements,
provides insight as to the location of possible design errors, and minimizes the
duplication of verification effort when such errors are corrected. The technique
of system validation through exhaustive testing lacks the insightful feedback and
requires full-fledged regression testing when design errors are detected.

In this paper, we use hybrid I/O automata [11, 12] - an extension of timed
I/0 automata [4,14] - to define an abstract model of a protector - a subsystem
that guarantees that the physical plant adheres to a particular safety require-
ment. The abstract protector model is parameterized in terms of the physical
plant, the safety requirement, and several other quantities. The instantiation of
the abstract protector, obtained by specifying the abstract protector's param-
eters, constitutes the specification of a protector that guarantees a particular
safety property for a particular physical plant model. The proof of correctness
of the abstract protector model minimizes the effort in verifying the correct
operation of a particular protector implementation. In fact, such correctness
proofs get reduced to simple simulations from the protector implementations to
the particular instantiation of the abstract protector model. As a case study,
we apply the formal framework developed towards the verification of overspeed
and collision protection subsystems for simplified models of the personal rapid
transit system (PRT 2 0 0 0 "M) under development at Raytheon Corporation. The
case studies presented in this paper extend the work of Weinberg, Lynch, and
Delisle [17] by introducing a powerful formal framework that allows more com-
plete system models to be used. The actual PRT 2 0 0 0 TM system is comprised
of 4-passenger vehicles that travel on an elevated guideway of tracks involving
Y-shaped merges and diverges and provide point-to-point passenger transporta-
tion. In this treatment, we verify the correct operation of overspeed and collision
avoidance protectors for track topologies ranging from a single track to a directed

255

graph of tracks involving Y-shaped merges and diverges. A detailed treatment
of the work presented in this paper can be found in Ref. 6.

2 Hybrid I/O Automata

A hybrid I/O automaton A is a (possibly) infinite state model of a system involv-
ing both discrete and continuous behavior. The automaton A = (U, X, Y, Zin,
zint , zout, e, D, w) consists of three disjoint sets U, X, and Y of variables (in-
put, internal, and output variables, respectively), three disjoint sets Zin, zinl,
and o'ut of actions (input, internal, and output actions, respectively), a non-
empty set e of initial states, a set D of discrete transitions and a set W) of
trajectories over V, where Z = Zin U Zt U Zout and V = U U X U Y. The
initial states, the discrete transitions, and the trajectories of any HIOA A must
however satisfy several technical conditions which are omitted here. For a de-
tailed presentation of the HIOA model, the reader is referred to Refs. 11 and
12.

Variables in the set V are typed; that is, each variable v E V ranges over
the set of values type(v). A valuation of V, also referred to as a state of A, is
a function that associates to each variable v of V a value in type(v). The set of
all valuations of V, or equivalently the set of all states of A, is denoted by V,
or equivalently states(A). Letting v C V and Sv C type(v), we use the notation
v :E Sv to denote the assignment of an arbitrary element of the set Sv to the
variable v. Similarly, letting Sy C V, we use the notation V :E SV to denote
the assignment of an element of the set type(v) to the variable v, for each v in
V, such that the resulting valuation of V is an arbitrary element of the set Sy.
Letting s be a state of A, i.e., s E V, and V' C V, we define the restriction
of s to V', denoted by s FV', to be the valuation s' of the variables of V' in
s. Letting X C V, we say that X is V'-determinable if for all x E X and
s E V, such that xFV' = s[V', it is the case that s E X. The continuous time
evolution of the valuations of the variables in V is described by a trajectory w
over V; that is, a function T, -+ V, where T, is a left-closed interval of IRŽo
with left endpoint equal to 0. The limit time of w, denoted by w.ltime, is defined
to be the supremum of the domain of w, dom(w). We define the first state of a
trajectory w, denoted by w.fstate, to be the state w(O). Moreover, if the domain
of a trajectory w is right-closed, then we define the last state of w, denoted by
w.lstate, to be the state w(w.ltime).

A hybrid execution fragment a of A is a finite or infinite alternating sequence
wo al wia 2 w2 ... , where wi E W, ai E Z, and if wi is not the last trajectory of a
then wi is right-closed and the discrete transition (wi.lstate, ai+,, wi+1 .fstate) is
in D, or equivalently wi.lstate ± wLA wi+1.fstate. If wo.fstate E e then a is a
hybrid execution of A. A hybrid execution a of A is finite if it is a finite sequence
and the domain of its final trajectory is a right-closed interval and admissible
if a.ltime = oc. If R C states(A) and s, s' E R, then s' is R-reachable from s
provided that there is a hybrid execution fragment of A that starts in s, ends in
s', and all of whose states are in the set R.

256

The hybrid trace of a hybrid execution fragment a of A, denoted by h-trace(a),
is the sequence obtained by projecting a onto the external variables of A and
subsequently removing all inert internal and environment actions. The set of
hybrid traces of A, denoted by h-traces(A), is the set of hybrid traces that arise
from all the finite and admissible hybrid executions of A.

A superdense time in an execution fragment a of A is a pair (i, t), where
t < wi.itime. We totally order superdense times in the execution fragment a
lexicographically. An occurrence of a state s in an execution fragment a of A
is a triple (i, t, s) such that (i, t) is a superdense time in a and s = wi(t). State
occurrences in a are ordered according to their superdense times. If S is a set
of states of A and a is an execution fragment of A, then past(S, a) is the set of
state occurrences (i, t, s) in a such that either s E S or there is a previous state
occurrence (i', t', s') in a with s' E S.

Two HIOA A1 and A2 are compatible if XiNVj = YiNYj = ZifnNj = Zi°utN
ziout = 0J, for i,j E {1, 2},i 5 j. If A1 and A 2 are compatible then their compo-
sition A1 x A2 is defined to be the tuple A = (U, X, y, _in, Zint, Zout, e, E), W)
given by U = (U1 U U2) - (y1 U Y2), X X 1 U X 2 , Y = Y1 U y2, Z'in =

(_pin U _pin) - (_Tout U zout) zint = Zint U Z , lot oZutZut,=s

V I sFVi e ,1 A s V2 Ee2} and sets of discrete transitions D and trajecto-
ries W each of whose elements projects to discrete transitions and trajectories,
respectively, of A1 and A2 .

Two HIOA A1 and A2 are comparable if they have the same external interface,
i.e., U1 = U2 , Y1 = Y2, Zin = ELn, and Zot = Z'ut. If A1 and A2 are
comparable, then A, < A2 is defined to denote that the hybrid traces of A,
are included in those of A2 ; that is, A, < A2 4 h-traces(A1) g h-traces(A 2). If
A, < A 2 , then we say that A, implements A2 .

3 Protected Plant Systems

A protected plant system is modeled abstractly as a physical plant interacting
with a protection system. The protection system is modeled as the composition
of a set of protectors each of which is supposed to enforce a particular safety
requirement of the physical plant. Our model is abstract in the sense that it does
not specify any of the details or safety requirements of the physical plant.

The physical plant and each of the protectors are modeled as HIOA. The
physical plant PP is an automaton that is assumed to be interacting with the
protectors through the set J of communication channels, which are referred to
as ports. The input action set Zn,, the output action set Z", and the input
variable set Upp are partitioned into subsets Z , Z• t, and Upp,, respectively,
one for each port j. We use the letter p to denote a state of PP and P to denote
a set of states of PP. A protector A for the physical plant PP and the port set
K C J is an automaton that is compatible with PP and whose output actions are
exactly the input actions of PP on ports in K, whose output variables are exactly
the input variables of PP on ports in K, and all of whose input actions and input

257

variables are outputs of PP. It can easily be shown that the composition of two
distinct protectors is itself a protector.

Letting S, R, and G be particular sets of states of PP, a protector automa-
ton A for PP and ports K guarantees G in PP from S given R provided that
every finite execution of the composition PP x A starting in a state in S that
only involves states in R ends in a state in G regardless of the inputs that ar-
rive at PP on ports other that those in K. Two protectors are dependent, if the
correct operation of one relies on the correct operation of the other, and inde-
pendent, otherwise. The following theorems express the substitutivity condition
- the condition under which the implementation of a protector is correct with
respect to its specification - and the compositional conditions- conditions
under which the composition of independent or dependent protectors guaran-
tees the conjunction of the safety properties guaranteed by the protectors being
composed.

Theorem 1 (Substitutivity). Let A, and A2 be two protector automata for
the same port set K of a physical plant automaton PP, and suppose that A1 <
A 2. If A2 guarantees G in PP from S given R, then A1 guarantees G in PP from
S given R.

Theorem 2 (Independent Protector Composition). Suppose that A,, A2 ,
• .. , Ak are protector automata for a physical plant automaton PP, with respec-
tive port sets K1 , K 2 , ... , Kk, where Ki nKi, = 0, for all i, i' E {1,. . . , k}, i i i'.
Suppose that each of the protectors Ai, for all i E {1,... , k}, guarantees Gi from
Si given Ri. If the protectors A1 , A 2 ,... , Ak are compatible, then their composi-
tion H- i Ef {1....k} Ai is a protector for PP that guarantees fi E {f ,... k} Gi from

fi E•l{1.... kJ Si given ifl{ 1 . .k} Ri.

Theorem 3 (Dependent Protector Composition). Suppose that A1 , A2 ,
• .. , Ak are protector automata for a physical plant automaton PP, with respec-
tive port sets K 1 ,K 2 ,... ,Kk, where Ki fKi, = 0, for all i, i' E {1,... , k},i Vi'.
Suppose that each of the protector automata Ai, for all i E {1, . . . , k}, guarantees

G, from S given Rfn (n, E G.... } , ,)
Assume that a is any finite execution of the system PP x H {1 . } Ai

starting from a state inni E {1 k} Si and all of whose states are in the set

ni E f{1.... k} Ri. Then, one of the following holds:

1. Every state in a is inni E l 1,. ,k} Gi.
2. The finite execution a can be written as al - a2, where

(a) all state occurrences in a1 , except possibly the last, are in the set of states

fiJ{1_..k1 Gil
(b) if the last state occurrence in a1 is in U-I, for some i E {1, ... , k}, then

there exists i' E {1,... , k},i' i i, such that the last state occurrence in
a1 is in Gi,, and

(c) all state occurrences in a2 , except possibly the first, are in the set of
statesni E I past(Gi, a), for some I C f{1,... , k}, where III> 2.

258

In loose terms, Theorem 3 states that the composition of dependent protectors
guarantees the conjunction of the safety properties guaranteed by the protectors
being composed provided a single action or trajectory of the composed system
can cause the violation of at most one of the safety properties guaranteed by the
protectors being composed.

4 An Abstract Protector

The abstract protector automaton is parameterized in terms of the automaton
PP, the subsets R, G, and S of the states of PP, the port index j, and the positive
real-valued sampling period d. The PP automaton represents the physical plant
being modeled. The set R, also referred to as the set of reliance, is the set of states
to which we restrict the states of the PP automaton while considering a particular
protector. This set is usually comprised of states satisfying a particular property
of the physical plant that is required by the protector under consideration. The
set G, also referred to as the set of guarantee, is the set of states to which the
protector is designed to constrain the PP automaton. The set S is a set of states
from which the protector under consideration is said to guarantee G given R;
that is, given that the states of the PP automaton are restricted to the set R,
the protector guarantees that every finite execution starting from an initial state
in S ends in a state in G. The port index j and the sampling period d denote the
port and the sampling period with which the abstract protector interacts with
the PP automaton. Thus, an instantiation of the abstract protector automaton
Abs(PP, S, R, G, j, d) is obtained by specifying the parameters PP, etc.

To begin, we define several functions and sets that are useful in the definition
of the abstract protector Abs(PP, S, R, G, j, d). Although, formal definitions of
these functions and sets are presented in Table 1, their informal interpretations
follow. First, we define a function, futurepp,R,j, that yields the set of states of
PP that are R-reachable from the given subset of R within an amount of time
in the given subset of V!>0 , under the constraint that no input actions arrive on
port j of the PP automaton. We define a function, no-opPP, ,j, which yields, for
a given state in R, the set of input actions on port j of the PP automaton that
do not affect the state of the PP automaton, provided they are executed prior to
either time-passage, or other input actions on port j. For any state p in R, the
input actions in the set no-opPP,RJ (p) are referred to as no-op input actions on
port j of PP for the state p. We define a set, very-safeppR,GJ, which is comprised
of the states of PP that satisfy R and from which all R-reachable states of PP
with no input actions on port j are in G. The set very-safepp,R,GJ may be
interpreted as the set consisting of the states from which the PP automaton is
bound to remain within the set G provided that it remains within the set R and
the protector on port j does not retract or issue additional protective actions.
We define a set, safeppR,G J, which is comprised of the states of PP that satisfy
R and from which the protector on port j has a "winning protective strategy";
that is, for any state p in Safepp,R,G,j there exists an input action on port j
of the PP automaton whose immediate execution - its execution prior to any

259

Table 1 Terminology for the abstract protector Abs(PP, S, R, G, j, d).

futUrePP, R,j : P(R) x P (R-Ž°) -+ P (R), defined by:
p E futurepp,R~j(P,T), where P C R and T C R20, if and only if p is R-reachable
from some p' E P via a finite execution fragment a of PP with no input actions
on port j and with a.ltime E T.

no-Oppp,R,j : R -- rk PM, defined by:
7r E no-oPPP,R,j (p) if and only if 7r is an input action on port j of PP such that for
all p',p" E R satisfying p' E futurepp,Rj(p, 0) and p' --4,, J", it is the case that

I, Pp" =p'.
very-s afepp,R,G,j C R, defined by:

p E very-safePP,R,G,j if and only if futurePP,R,j (p, R>O) 9 G.
SafePP,R,G,j C R, defined by:

p E safePP,R,GJ if and only if both of the following hold:
1. futurepp,R,j (p, 0) C G.

2. There exists an input action 7r on port j, such that for every p',p" E R
satisfying p' E futurepp,Rj(p,O) and p'--5-4,p", it is the case that p" E
very-safePP,R,Gj

: in
safePP,R,GJ :PPj -4 P(R), defined by:

p E safePPR,G,j (7) if and only if both of the following hold:
1. futurepp,R,j (, 0) C G.
2. For every p',p" E R such that p' E futurepp,R,j (p, 0) and p' -z-*p p", it is the

case that p" E very-safepp,R,GJ.

delay-safepp,R,GJ : R>° -+ P(R), defined by:
p E delay-safepp,R,Gj (t) if and only if both of the following hold:

1. futurePP,R,j.(p, [0,t]) C G.
2. futurePP,R,j (A, t) C safeppRGj.

time-passage with the possibility that its execution follows an arbitrary number
of discrete actions other than input actions on port j - guarantees that all
subsequent R-reachable states of PP with no input actions on port j are in G;
that is, the state following the execution of the particular input action of PP
on port j is in the set very-safepP,R,Gj. We overload the notation SafePP,R,G,j
by defining a function, safePP,R,G,j, which yields the states of PP that satisfy R
and for which the immediate execution of the given input action on port j - its
execution prior to any time-passage with the possibility that its execution follows
an arbitrary number of discrete actions other than input actions on port j -
guarantees that all subsequent R-reachable states of PP with no input actions
on port j are in G; that is, the state following the execution of the given input
action on port j is in the set very-safePP,R,Gj. Finally, we define a function,
delay-safepp,R,Gj, which yields the set of states of PP that satisfy R and for
which all states R-reachable within the given amount of time and with no input
actions on port j are in G, and all states R-reachable in exactly the given amount
of time and with no input actions on port j are in safepp,R,G,j.

We proceed by stating the various assumptions made about the physical
plant PP and the abstract protector Abs(PP, S, R, G, j, d). We assume that the

260

Fig. 1 Sensor(PP, S, R, G, j, d) automaton definition.

Actions: Input: e, the environment action
Output: snapshot (y)j, for each valuation y of Ypp

Variables: Input: u E type(u), for all u E YpP,
initially u E type(u), for each u E Ypp

Internal: nowj E RŽ:O, initially 0

Discrete Transitions: next-snap, E Rý, initially 0

e snapshot(y)j
Eff: Ypp :E Ypp Pre: next-snapj = nowj

y is current valuation of Ypp
Eff: Ypp :E Ypp

next-snapj := nowj + d

Trajectories:
for all u E Ypp

u assumes arbitrary values in type(u) throughout w
nedt-snapj is constant throughout w
for all t E T,

w(t).nows = w (O).nowj + t
w(t).nowj <_ w(t).next-snapj

PP automaton has no input variables on port j, for all j E J; that is, the
protectors control the state of the physical plant only through input actions.
A consequence of this assumption is that the environment action of the PP
automaton is stuttering. Moreover, we assume that the PP automaton has no
output actions on port j, for all j E J. The physical plant is modeled as a passive
system in the sense that the protectors observe the state of the plant only through
output variables. We assume that there exist no-op input actions on port j for
every state of the PP automaton in the set R. We assume that membership of a
state of the PP automaton in the set safepp,R,Gj is determinable from the output
variables of the PP automaton, i.e., the set safePP,R,CJ is Ypp-determinable.
Moreover, we assume that for any state in the set safePP,R,GJ, an appropriate
action to guarantee safety can be determined from the output variables of the
PP automaton, i.e., the variables in Ypp. For any valuation y of the output
variables Ypp of the PP automaton, we use the notation y E safepp,R,G,j to
denote the existence of a state p E safePP,R,GJ such that prYpp = y. We assume
that the state information provided by the output variables of the PP automaton
is sufficient to determine membership of any state of the PP automaton in the
sets R and G, i.e., the sets R and G are Ypp-determinable. Moreover, we assume
that the set of start states S is a subset of the set safePp,R,Gj.

The protector is defined as the composition of a sensor automaton (Figure 1)
and a discrete controller automaton (Figure 2). Both the sensor and the discrete
controller are described abstractly in terms of PP, S, R, G, j, and d and are
respectively denoted Sensor(PP, S, R, G, j, d) and DC(PP, S, R, G, j, d). At in-
tervals of d time units, the sensor automaton samples the output variables of
the PP automaton. The discrete controller automaton is rather nondeterminis-

261

Fig. 2 DC(PP, S, R, G, j, d) automaton definition.

Actions: Input: e, the environment action (stuttering)
snapshot (y)j, for each valuation y of Ypp

Output: 7r, for all 7r E Eppj
Variables: Internal: sendj E ZP. U {null}, initially null
Discrete Transitions:

e snapshot(y)j
Eff: None Eff: if y E safepp,R,o,j then

sendj :E {4 E Zp 1 I
7r VVp,p',p" E R such that

Pre: sendj = 7r pfYpp = y, p' E futureppRj(p, 0),
Eff: sendj := null and p'--4_ p",

it is the case that
p" E delay-safepp,R,G,j(d)}

else Zin

sendj :E •pp

Trajectories:
w.sendj =_ null

tic. Based on the output state information of the PP automaton sampled by the
sensor automaton, the discrete controller automaton issues protective actions so
as to guarantee that (i) the PP automaton remains within the set G up to the
next sampling point, and (ii) the state of the PP automaton at the next sam-
pling point is in the set Safepp,R,G,j. The nondeterminism in the description of
the DC(PP, S, R, G, j, d) automaton allows the freedom to choose any response
that satisfies the given conditions - however, in a discrete controller automaton
implementation, a response that least restricts the future states of the physical
plant automaton PP would be preferred because it would represent a weaker
protective action.

Theorem 4. Abs(PP, S, R, G, j, d) guarantees G in PP from S given R.

The correctness proof of a particular protector implementation involves defin-
ing the particular protector's specification as the instantiation of the abstract
protector for particular definitions of PP, etc. and showing that the particular
protector implementation is correct with respect to the particular instantiation
of the abstract protector. The first -step simply involves specifying the parame-
ters PP, etc. The second step is simplified by choosing the protector implemen-
tation to be the composition of the sensor automaton Sensor(PP, S, R, G, j, d)
and a discrete automaton that is chosen so as to guarantee the effect clause of
the snapshot(y)j action in DC(PP, S, R, G, j, d). Thus, the correctness proof of
the implementation is reduced to a simulation from the implementation of the
discrete controller automaton to its specification.

262

5 Modeling the PRT 2000TM

In this section, we present a model for a simplified version of the PRT 2 0 0 0 TM

whose track topology involves a single track. The model, VEHICLES, which is
presented in Figure 3, is a HIOA that conforms to the restrictions and assump-
tions made about the PP automaton in Sections 3 and 4. It involves n vehicles
of identical dimensions and acceleration/deceleration capabilities traveling on
a single track. Its state variables include the position xi, the velocity ±i, and
the acceleration &j of each vehicle i in the set of vehicles I and several other
variables that record whether each vehicle has collided into each other vehicle
(collided(i, i'), for i' E I, i' 5 i), whether each vehicle is braking (brake(i), for
i E I), and whether each protector j in the set of protectors J is requesting
each particular vehicle to brake (brake-req(ij), for i E I and j E J). Several
properties of the physical plant are enforced by restricting the states of the VE-
HICLES automaton to the set VALID (Appendix A). In particular, we assume
that the vehicles occupy non-overlapping sections of the track, the vehicles are
only allowed to move forward on the track, the non-malfunctioning vehicle accel-
eration/deceleration capabilities to be within the interval [imin, Crax], and the
non-malfunctioning braking deceleration to be given by •brake, if the vehicle is
moving forward, and 0, otherwise.

The formal definitions of the derived variables and sets of the VEHICLES au-
tomaton are shown in Appendix A. For brevity, we only give informal definitions
of the key derived variables. Each of the variables Ej, for i E I, denotes the ex-
tent of the vehicle i; that is, the section of the track occupied by the vehicle i.
It is defined as the section of track ranging from the position of the rear of the
vehicle i to the point on the track that is a distance of cuen downstream of the
rear of the vehicle i - a distance that specifies the minimum allowable separa-
tion between vehicles, i.e., Ej = [xi, xi + clen], for i E I. Each of the variables
O, for i G I, denotes the section of the track that the vehicle i owns; that is, the
range extending from the current position of the rear of the vehicle i to the point
on the track that the vehicle can reach even if it is braked immediately. Each
of the variables Ci(t), for i E I and t E]RŽO, denotes the section of the track
that the vehicle i claims within t time units; that is, the range extending from
the current position of the rear of the vehicle i to the point on the track that
the vehicle i can reach if it is braked after t time units and assuming worst-case
vehicle behavior up to the point in time when it is braked. Moreover, each of the
variables collided(*, i, *), for i E I, denotes whether the vehicle i has ever been
involved in a collision. Some auxiliary sets for the vehicles automaton that will
be used in the following sections are defined in Appendix B.

The input actions of the VEHICLES automaton are the environment action e
and the actions brake(i)j and unbrake(i)j, for i E I and j E J. Since the VEHI-

CLES automaton has no input variables, the environment action e is stuttering.
Each of the actions brake(i)j and unbrake(i)j, for i E I and j E J, correspond
to actions performed by the protector j instructing the vehicle i to apply or re-
lease its "emergency" brake, respectively. Each brick-wall(i) action, for i E I,
models the instantaneous stopping of the vehicle i - as if it hit a brick wall.

263

Fig. 3 The VEHICLES automaton.

Actions: Variables
Input: Internal:

e, the environment action (stuttering) ii E R, for all i E 1, initially :i E R
brake(i)j, for all i E 1,j E J brake(i) E Bool,
unbrake(i)j, for all i E I,j E J for all i E I, initially False

brake-req(i, j) E Bool,
for all i E Ij E J,

initially False
Internal: Output:

colliding-pair(i, i'), xi E R, for all i E I, initially xi E R
for all i, i' E I, i' 0 i :ii E R, for all i E I, initially ii E R

collision-effects(i), for all i E I collided(i, i') E Bool,
brick-wall(i), for all i E I for all i,i' E I,i' # i,

initially False
subject to VALID

Discrete Transitions:
e colliding-pair(i, i')

Eff: None Pre: -icollided(i, i')
brake (i) A(Ei n E, $ 0)^A(x < min(Ei n Es,))

Eff: brake-req(i, j) := True Eff: collided(i, i') := True
if -ýbrake(i) then

brake(i) := True collision-effects(i)
if ri = 0 then ii := 0 Pre: collided(*, i, *)

else xi := cb,-k Eff: •i :E R>o
unbrake(i)j ,i :E R

Eff: brake-req(i, j) :=False
if brake(i) brick-wall(i)

A(-• Vk E i brake-req(i, k)) Pre: True

then Eff: ii := 0

brake(i) := False if brake(i) then

Jii :E [ý.in7,m. xl 7i := 0
else

ii :E [0, Ea.=]
Trajectories:

for all i, i' E I, i $ i', collided(i, i') is constant throughout w
for all i E I and j E J, brake(i) and brake-req(i, j) are constant throughout w
for all i, i' E I, i $i'

the function w.i is integrable
for all t E T,

w(t).i = w(O).i + ft w(s).i ds
w(t).Xi = w(O).xi + f0 w(s).., ds
if -iw. collided(i, i')

^(w(t).Ei n w(t).Ei, 0)
^(w(t).xi < min(w(t).Ei n w(t).Ei,))

then
t = w.ltime

subject to VALID

264

Thereafter however, the vehicle i is allowed to reinitiate forward motion. Each
colliding-pair(i, i') action, for i, i' E I, i 0 i', records the fact that the vehi-
cle i has collided into the vehicle i'. Since the trailing vehicle is the only vehicle
that can prevent the collision through braking, a collision is recorded only by
the trailing vehicle as if the trailing vehicle were the only vehicle liable for the
particular collision. Each collision-effects(i) action, for i E I, models the
adverse effects of a collision involving the vehicle i and may be executed, even
repeatedly, at any instant of time following the first collision involving the vehi-
cle i. Thus, the malfunctioning apparatus of any vehicle i, for i E I, is modeled
by succeeding each of the discrete actions with a collision-effects(i) action
for the malfunctioning vehicle.

The trajectories of the VEHICLES automaton model the continuous evolution
of the state of the VEHICLES automaton. If during a trajectory a vehicle i collides
into a vehicle i' for the first time, the trajectory is stopped so that the collision
can be recorded.

6 Example Overspeed and Collision Avoidance Protectors

6.1 Example 1: Overspeed Protection System

In this section, we present a protector, called OS-PROT, that prevents the ve-
hicles of the VEHICLES automaton from exceeding a prespecified global speed
limit •maz, provided that they do not collide among themselves. The protec-
tor OS-PROT is defined to be the composition of n separate copies of another
protector called OS-PROT-SOLOi, one copy for each vehicle i E I. Each of the
OS-PROT-SOLOi protectors, for i E I, guarantees that the vehicle i, does not ex-
ceed the speed limit , provided that no collisions among any of the vehicles
occur. The braking strategy of the OS-PROT-SOLOi protector is to instruct the
vehicle i to brake if it is capable of exceeding the speed limit erax within the
time until the next sampling point.

Let PP, be the VEHICLES automaton of Figure 3, the port ji and the sam-
pling period di be the port and sampling period with which the protector
OS-PROT-SOLOi communicates with the VEHICLES automaton, the set Ri be the
set of states in which none of the vehicles have ever collided, i.e., Ri = Pno-t collided

(Appendix B), the set Gi be the set of states in which the vehicle i is at or below
the speed limit, i.e., Gi = VALID-Poverspeed(i) (Appendix B), and the set Si be
the set Safepp,,R,,GJ, - We define the OS-PROT-SOLOi automaton to be the com-
position of Sensor(PPi, Si, Ri, Gi, ji, di) and the discrete controller automaton
of Figure 4.

Lemma 1. The protector OS-PROT-SOLOi guarantees Gi in VEHICLES starting
from Si given Ri.

Corollary 1. The protector OS-PROT = f-Ii I OS-PROT-SOLOi for the VEHI-
CLES automaton guarantees ni a I Gi in the VEHICLES automaton starting from

R E I Si given Pnot-collided.

Corollary 1 follows directly from Lemma 1 and Theorem 2.

265

Fig. 4 Discrete controller automaton for the protector OS-PROT-SOLOi.

Actions: Input: e, the environment action (stuttering)
snapshot (y)j, for each valuation y of YVEHICLES

Output: brake(i)j
unbrake(i)j

Variables: Internal: sendj E {brake, unbrake, null}, initially null

Discrete Transitions:

e brake(i)j
Eff: None Pre: sendj = brake

Eff: sendj : null
snapshot(y)j

Eff: if (Y. <ima - damax) then unbrake(i)j
sendj := unbrake Pre: sendj = unbrake

else Eff: sendj := null
sendj := brake

Trajectories:
w.sendj - null

6.2 Example 2: Collision Avoidance on a Single Track

In this section, we present a protector, called CL-PROT, that prevents the vehicles
of the VEHICLES automaton from colliding among themselves, provided that they
are all abiding by the speed limit amar. The protector CL-PROT is defined to be
the composition of n separate copies of another protector called CL-PROT-SOLOi,
one copy for each vehicle i E I. Each of the OS-PROT-SOLOi protectors, for i E I,
guarantees that the vehicle i does not collide into any of the vehicles it trails,
provided that all the vehicles in the VEHICLES automaton are abiding by the
speed limit and that all other vehicles i' E I, i' 5 i, do not collide into any of
the vehicles they respectively trail. The braking strategy of the CL-PROT-SOLOi
protector is to instruct the vehicle i to brake if it has a di time unit claim overlap
with any of the vehicles it trails. The rationale behind this braking strategy is
that a collision between two vehicles in the VEHICLES automaton can only be
prevented by instructing the trailing vehicle to brake.

Let PPj be the VEHICLES automaton of Figure 3, the port ji and the sam-
pling period di be the port and sampling period with which the protector
CL-PROT-SOLOi communicates with the VEHICLES automaton, and the set Gi
be the set of states in which the vehicle i has not collided into any of the other
vehicles, i.e., G = VALID - Pcollided(i) (Appendix B). Moreover, let the set Ri
be the set of states in which all of the vehicles are abiding by the speed limit
and in which each of the other vehicles has never collided into any other vehicle,

i.e., Ri = Pnot-overspeedn (ni' E l i Gi') (Appendix B), and the set Si be the

set Safepp,,R,,Gj,Ji. We define the CL-PROT-SOLOi automaton to be the compo-
sition of Sensor(PPi, Si, Ri, Gi, ji, di) and the discrete controller automaton of
Figure 5.

266

Fig. 5 Discrete controller automaton for the protector CL-PROT-SOLOi.

Actions: Input: e, the environment action (stuttering)
snapshot (y)j, for each valuation y of YVEHICLES

Output: brake(i)j
unbrake (i)j

Variables: Internal: sendj E {brake, unbrake, null, initially null

Discrete Transitions:

e brake(i)j
Eff: None Pre: sendj = brake

Eff: sendj := null
snapshot (y)j

Eff: if 3 i' E I, i' : i such that unbrake(i)j
y V disjoint-claimed-tracks(i, iV, d) Pre: sendj = unbrake
A(y.xi < y.xi,) Eff: sendj :- null

then
sendj := brake

else
sendj :- unbrake

Trajectories:
w.sendj =_ null

Lemma 2. The protector CL-PROT-SOLOi guarantees Gi in VEHICLES starting
from Si given Ri.

Lemma 3. The protector CL-PROT - l- E I CL-PROT-SOLOi for the VEHICLES

automaton guarantees ni EGi in the VEHICLES automaton starting from
ni.I Si given Pnot-overspeed.

Lemma 3 is shown by combining Lemma 2 and Theorem 3 and realizing that
the second condition of Theorem 3 does not hold.

6.3 Example 3: Collision Avoidance on Merging Tracks

In this section, we present a protector, called MERGE-PROT, that guarantees
that none of the n vehicles that are traveling on a track involving a Y-shaped
merge collide, provided that they are all abiding by the speed limit Cmax. The
MERGE-PROT protector is defined as the composition of n(n-1)/2 separate copies
of another protector called MERGE-PROT-PAIR{i,i,}, one copy for each unordered
pair of vehicles {i, i'}, where i, i' E I, i 5 i'. Each of these MERGE-PROT-PAIR{i,i,I

protectors, for i, i' E I, i 5 i', guarantees that the vehicles i and i' do not collide
into each other, provided that all the vehicles are abiding by the speed limit and
the vehicles of all other vehicle pairs do not collide between themselves.

We augment the VEHICLES automaton to involve a track topology consisting
of a Y-shaped merge. This is done by replacing the position component of a ve-
hicle's state with a location component - a component that specifies the track

267

on which the vehicle is traveling and the vehicle's position with respect to the
merge point - and update the definitions of the discrete steps and the trajecto-
ries of the VEHICLES automaton to handle the location variables. Furthermore,
we replace the brake and unbrake input actions of the VEHICLES automaton
with protect input actions which allow single protectors to instruct sets of ve-
hicles to apply their "emergency" brakes. Finally, we augment the definitions
of the discrete actions pertaining to vehicle collisions such that the blame for a
particular collision is assigned to either only the trailing vehicle, if one vehicle
collides into the other vehicle from behind, or both vehicles, if the vehicles collide
sideways while merging. The resulting physical plant automaton is henceforth
referred to as MERGE-VEHICLES.

Let PP{i,i,} be the MERGE-VEHICLES automaton. Let the port J{i,i,} and
the sampling period d}i,i, be the port and sampling period with which the
protector MERGE-PROT-PAIR{i,i,} communicates with the MERGE-VEHICLES au-
tomaton. Let G{i,i,} be the set of states in which the vehicles i and i' have not
collided into each other, i.e., G{i,i,} = VALID- Pcotided(i,i,) - Pcollided(i,,i) (Ap-
pendix B). Let R{i,i,l be the set of states of the MERGE-VEHICLES automaton
in which all the vehicles are abiding by the speed limit and in which the vehi-
cles of all other vehicle pairs have not collided into each other, i.e., Ri,i,} =

Pnot-overspeedn (ni",i"' Eii,, ,'" i ' G ",'}) (Appendix B). Finally,

let S~i,i, be the set safepp , ,,G{ ,

We define the protector MERGE-PROT-PAIR{i,i,} to be the composition of
Sensor(PP{i,i, }, S{i,i,}, R{i,i, }, G{i,i}, J{,i,i,}, di,i,}) and a discrete controller au-
tomaton whose braking strategy is as follows. The discrete controller automaton
is allowed to brake the vehicles i and i' only if the sections of the track they
claim in time d{i,i,} overlap. Given that the vehicles i and i' are indeed involved
in such a claim overlap, there are two possible scenarios depending on whether
the locations of the vehicles i and i' are comparable, or not. If their locations
are comparable, then the vehicle i is instructed to brake if it trails the vehicle i';
otherwise, the vehicle i' is instructed to brake. On the other hand, if the vehicle
locations are not comparable, the vehicle i is instructed to brake either if only
the vehicle i' owns the merge point, or if both or neither vehicles own the merge
point and the vehicle i is traveling on the left branch of the merge; otherwise,
the vehicle i' is instructed to brake. In the latter case, we choose to brake the ve-
hicle traveling on the left branch for no particular reason. In fact, it is plausible
to brake either or both of the vehicles involved in the claim overlap.

Lemma 4. The protector MERGE-PROT-PAIR{i,i} guarantees that the MERGE-

VEHICLES automaton remains within G{i,i,} starting from S{i,i,} given R{i,i, 1 .

Lemma 5. The protector MERGE-PROT = rfi i,E Ii~i, MERGE-PROT-PAIR{i,i/}

for the MERGE-VEHICLES automaton guarantees i ,i, ' ,i~i, {i,i,} in MERGE-
VEHICLES starting from fi,i' E I,iAi' SYI, given Pnot-overspeed.

Lemma 5 is shown by combining Lemma 4 and Theorem 3 and realizing that
the second condition of Theorem 3 does not hold.

268

6.4 Example 4: Collision Avoidance on a General Graph of Tracks

In this section, we present a protector, called GRAPH-PROT, that guarantees
that none of the n vehicles traveling on a directed graph of tracks comprised
of Y-shaped merges and diverges collide, provided that they are all abiding by
the speed limit Cma=- As in Section 6.3, the GRAPH-PROT protector is defined
as the composition of n(n - 1)/2 separate copies of another protector called
GRAPH-PROT-PAIR{i,ii', one copy for each unordered pair of vehicles {i,i'},
where i, iV E I, i 0 iV. Each of the GRAPH-PROT-PAIR{fi,i} protectors, for i, iV E
I, i 0 i', guarantees that the vehicles i and iV do not collide into each other,
provided that all the vehicles are abiding by the speed limit and the vehicles of
all other vehicle pairs do not collide between themselves.

We augment the MERGE-VEHICLES automaton to involve a general track
topology consisting of a directed graph G of Y-shaped merges and diverges.
All the edges of the graph G are assumed to be of sufficient length to rule out
collisions among vehicles that are neither on identical, nor on contiguous edges
and all cycles of the graph G are assumed to have at least three edges. Moreover,
in order to brake the topological symmetry in merge situations, we associate with
each edge of the track topology a unique and totally ordered priority index. The
resultingphysical plant automaton is henceforth referred to as GRAPH-VEHICLES.

Letting PP{i,i' , S i,i, , R{i,i,,, 1 7 G J{ii', and dfi,i,I be as defined in Sec-
tion 6.3, we define the GRAPH-PROT-PAIR{i,i,} automaton to be the composition
of Sensor(PP{i,i,}, S{fi,i,},R{i,i,, Gi,i, ,ji,i,ld{i,i,}) and a discrete controller
automaton whose braking strategy is as follows. The discrete controller automa-
ton is allowed to brake the vehicles i and iV only if the sections of the track they
claim in d{i,i,l time units overlap. Given that the vehicles i and i' are indeed
involved in such a claim overlap, there are two possible scenarios depending on
whether the vehicles i and iV are traveling in succession, or on adjacent tracks. If
the vehicles are traveling in succession, then the vehicle i is instructed to brake
if it trails the vehicle i'; otherwise, the vehicle iV is instructed to brake. On the
other hand, if the vehicles i and iV are traveling on adjacent edges, the vehicle i
is instructed to brake either if only the vehicle iV owns the merge point, or if
both or neither vehicles own the merge point and the vehicle iV is traveling on
the edge of greater priority; otherwise, the vehicle iV is instructed to brake.

Lemma 6. The protector GRAPH-PROT-PAIR{i , i}j guarantees that the GRAPH-

VEHICLES automaton remains within G{i,i,I starting from S{i,i,I given Rfi'i, .

Lemma 7. The protector GRAPH-PROT = rii' E I i~i' GRAPH-PROT-PAIR{i,i,}

for the GRAPH-VEHICLES automaton guarantees fiXE Ii,4i, Gfi,i, in GRAPH-
VEHICLES starting from Ei 1,i' S{i,i, I given Pnot-overspeed.

Lemma 7 is shown by combining Lemma 6 and Theorem 3 and realizing that
the second condition of Theorem 3 does not hold.

6.5 Composing the Overspeed and Collision Protectors

In the previous sections, we presented example protectors whose correct oper-
ation required that the physical plant automaton at hand satisfied particular

269

properties. For example, in the case of the VEHICLES automaton of Section 5,
the overspeed protector OS-PROT of Section 6.1 assumes that none of the vehicles
collide among themselves and the collision protector CL-PROT of Section 6.2 as-
sumes that none of the vehicles exceed the speed limit. Using Theorem 3 it can be
shown that the composition OS-PROT X CL-PROT is a protector for the VEHICLES
automaton that guarantees that the vehicles in the VEHICLES automaton nei-
ther exceed the speed limit, nor collide among themselves. In fact, realizing that
the OS-PROT protector extends, virtually unchanged, to the MERGE-VEHICLES

and GRAPH-VEHICLES automata, such composition results extend to the MERGE-

VEHICLES and GRAPH-VEHICLES automata by composing the OS-PROT protector
with the MERGE-PROT and GRAPH-PROT protectors, respectively.

7 Conclusions

In this paper, we demonstrate how formal analysis techniques using the hybrid
I/O automaton model can be applied to the specification and verification of hy-
brid systems whose structure adheres to the protection subsystem paradigm. We
propose a parameterized abstract protector model which allows simple specifi-
cation of an abstract protector for any hybrid system of this form. Such spec-
ification is obtained by defining the physical system, the start states, the sets
of guarantee and reliance, and the port and sampling period with which the
protector communicates with the physical plant. The proof of correctness of the
abstract model leads to simple correctness proofs of the protector implemen-
tations for particular instantiations of the abstract model. Finally, the compo-
sition of independent, and even dependent protectors under mild conditions,
guarantees the conjunction of the safety properties guaranteed by the individual
protectors. The examples presented in this paper show that the proposed for-
mal framework provides a precise and succinct protector specification, involves
simple and straight forward proof methodology, and scales to complex hybrid
systems through abstraction and modular decomposition.

Acknowledgments

We would hereby like to thank Dr. Steven L. Spielman of Raytheon Corporation
and Norman M. Delisle formerly of Raytheon Corporation for helpful discussions
regarding the PRT 2000TM. We are grateful for having the opportunity to develop
our formal modeling framework on the basis of a real application. We would
also like to thank the submission's reviewers for their helpful suggestions and
constructive comments.

References

1. Michael S. Branicky. Studies in Hybrid Systems: Modeling, Analysis, and Control.
Doctor of Science Thesis, Dept. of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, Massachusetts, June 1995.

270

2. Ekaterina Dolginova and Nancy A. Lynch. Safety Verification for Automated Pla-

toon Maneuvers: A Case Study. In Oded Maler, editor, Proc. International Work-
shop on Hybrid and Real-Time Systems (HART'97), volume 1201 of Lecture Notes

in Computer Science, pages 154-170. Springer-Verlag, 1997. The International
Workshop on Hybrid and Real-Time Systems took place in Grenoble, France, in
March 1997.

3. Rainer Gawlick, Roberto Segala, Jorgen Sogaard-Andersen, and Nancy A. Lynch.
Liveness in Timed and Untimed Systems. Technical Report MIT/LCS/TR-587,

Laboratory for Computer Science, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, December 1993.

4. Rainer Gawlick, Roberto Segala, Jorgen Sogaard-Andersen, and Nancy A. Lynch.

Liveness in Timed and Untimed Systems. In Serge Abiteboul and Eli Shamir,
editors, Proc. 21st International Colloquium on Automata, Languages and Pro-
gramming (ICALP'94), volume 820 of Lecture Notes in Computer Science, pages
166-177. Springer-Verlag, 1994. The 21st International Colloquium on Automata,
Languages and Programming (ICALP'94) took place in Jerusalem, Israel, in July

1994. Full version appeared as Ref. 3.
5. Robert L. Grossman, Anil Nerode, Anders P. Ravn, and Hans Rischel, editors. Hy-

brid Systems, volume 736 of Lecture Notes in Computer Science. Springer-Verlag,
1993. This volume of LNCS was inspired by a workshop on the Theory of Hybrid

Systems, held on Oct. 19-21, 1992 at the Technical University, Lyngby, Denmark,
and by a prior Hybrid Systems Workshop, held on June 10-12, 1991 at the Math-
ematical Sciences Institute, Cornell University.

6. Carolos Livadas. Formal Verification of Safety-Critical Hybrid Systems. Master of
Engineering Thesis, Dept. of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, September 1997.

7. John Lygeros. Hierarchical, Hybrid Control of Large Scale Systems. Doctor of Phi-
losophy Thesis, Dept. of Electrical Engineering and Computer Sciences, University

of California, Berkeley, May 1996.
8. John Lygeros, Datta N. Godbole, and Shankar Sastry. A Verified Hybrid Con-

troller for Automated Vehicles. In 35th IEEE Conference on Decision and Control
(CDC'96), pages 2289-2294, Kobe, Japan, December 1996.

9. John Lygeros and Nancy Lynch. On the Formal Verification of the TCAS Con-

flict Resolution Algorithm. In 36th IEEE Conference on Decision and Control
(CDC'97), San Diego, CA, December 1997. To appear.

10. Nancy Lynch, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hybrid I/O
Automata. Technical Memo MIT/LCS/TM-544, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, Massachusetts, December 1995.

11. Nancy Lynch, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hybrid
I/O Automata. In R. Alur, T. Henzinger, and E. Sontag, editors, Proc. DI-

MA CS/SYCON Workshop on Verification and Control of Hybrid Systems, Hybrid
Systems III: Verification and Control, volume 1066 of Lecture Notes in Computer
Science, pages 496-510. Springer-Verlag, 1996. The DIMACS/SYCON Workshop
on Verification and Control of Hybrid Systems took place in New Brunswick, New

Jersey, in October 1995.
12. Nancy Lynch, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hybrid I/O

Automata. Preprint/Work in Progress. Preliminary versions appeared as Refs. 10

and 11, June 1997.
13. Nancy Lynch and Frits Vaandrager. Forward and Backward Simulations -

Part II: Timing-Based Systems. Technical Memo MIT/LCS/TM-487.c, Labora-

271

tory for Computer Science, Massachusetts Institute of Technology, Cambridge,
Massachusetts, April 1995.

14. Nancy Lynch and Frits Vaandrager. Forward and Backward Simulations - Part II:
Timing-Based Systems. Information and Computation, 128(1):1-25, July 1996.
Preliminary version appeared as Ref. 13.

15. George J. Pappas, Claire Tomlin, and Shankar Sastry. Conflict Resolution in
Multi-Agent Hybrid Systems. In 35th IEEE Conference on Decision and Control
(CDC'96), Kobe, Japan, December 1996.

16. Amir Pnueli and Joseph Sifakis, editors. Special Issue on Hybrid Systems, volume
138, part 1 of Theoretical Computer Science. Elsevier Science Publishers, February
1995.

17. H. B. Weinberg, Nancy Lynch, and Norman Delisle. Verification of Automated
Vehicle Protection Systems. In R. Alur, T. Henzinger, and E. Sontag, editors,
Hybrid Systems III: Verification and Control, volume 1066 of Lecture Notes in
Computer Science, pages 101-113. Springer-Verlag, 1996.

A Derived Variables and Sets of the VEHICLES Automaton

Ei E P(R), defined by Ej = [xi, xi + cien].

collided(i, *) E Bool, for i E I, defined by collided(i, *) = I, i collided(i, i').

collided(*, i) E Bool, for i E I, defined by collided(*, i) = Vi, E Iii collided(i' , i).

collided(*, i, *) E Bool, for i E I, defined by collided(*, i, *) = collided(*, i)Vcollided(i, *).

VALID C states(VEHICLES), defined by

VALID ={p E states(VEHICLES) I
1. ý i, i' E I, i 0 i' such that the set p.Ej fp.Ei, is a positive length

closed interval of R.
2. p.±, > 0, for all i E I.
3. If -ip.collided(*, i, *) then p.Eii E [,min, 6.ax], for all i E I.
4. If -ýp.collided(*, i, *) A p.brake(i) then if p.Li = 0 then p.i, = 0

else p.3i = Zbrak,, for all i E I. }

stop-distj E R>O, for all i E I, defined by

stop-distj -
2
Cbak

max-rangei(t) E R>O, for all i E I and t E R>°, defined by

:I At + 3nmýa At2 + 6,ma(t - At),

where At = mrin (t' if xi _ .. and

max-rangei(t) = At2 + (6m.t -
xbiAt + 16brake At ' ~a(t -A)

where At = min m t, 6 otherwise.

max-velii(t) E R>°, for all i E I and t E R>-o, defined by

r min(6r.ax, ýi +tamax) if ii < ..ma., and
max-veli(t) +lmax(cm.... 'i + t•brak) otherwise.

272

O C_ R, for all i E I, defined by

O = [xi,xi + stop-distj + clen]

Ci(t) C R, for all i E I and t E R>O, defined by

C,(t) = [xi, xi + max-range (t) - max-ve4-(t) 2 /(2mb•,) + cln]

B Auxiliary Sets for the VEHICLES Automaton

Po.er.ped(i) C VALID, for i E I, defined by

Poverspeed(i) = {p E VALID I p.*, > Cmax}

Pov.,.peed C VALID, defined by Po.e..peed = Ei E I Po..vpd(i).

Pnot.o.erpeed C VALID, defined by P ot...erspeed = VALID - Po.e.. eed.

Pcollided(i,i') C VALID, for i, i' E I, i 0 iV, defined by

Pcoluidd(i,i,) = {p E VALID I p.collided(i, i') = True}

Pcollided(i) C VALID, defined by Pcolided(i) = Ui, E I,i,$i Pcollided(i,i').

Pcolfldd C VALID, defined by P~ollid~d = Ui Ei Pcollided(i) = Uii, E I,ii, Pcollided(i,i,).

Pollt-iolded C VALID, defined by Pot-collidd = VALID- Peollidod.

disjoint-extents(i, i') C VALID, for i, i' E I, i V i', defined by

disjoint-extents(i, i') = {p E VALID I p.Ej flp.E, =0}

PE C VALID, defined by

PE = n disjoint-extents(i, i')
iXi' E I,i~i'

disjoint-owned-tracks(i, i') C VALID, for i, iV E I, i 0 i', defined by

disjoint-owned-tracks(i, i') = {p E VALID I p.Oi n p.Ot, = 0}

Po C VALID, defined by

Po = n disjoint-owned-tracks(i, i')
iiE 1,i4i'

disjoint-claimed-tracks(i, i', t) C VALID, for i, i' E I, i 0 i', and t E R•_O, defined by

disjoint-claimed-tracks(i, i', t) = {p E VALID I p.C2 (t) n p.Cj, (t) = 0}

Pc(t) 9 VALID, for t E R-ŽO, defined by

Pc(t) = n disjoint-claimed-tracks(i, i', t)
iXi E. I,ighit

PB.. C VALID, defined by

PBj, = {p E VALID I p.brake-req(i,j) = True}

Strings of Vehicles: Modeling and Safety Conditions*

John Lygerost and Nancy Lynchl

tDepartment of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1770
lygeroscOeecs.berkeley.edu

I Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139
lynchglcs.mit.edu

Abstract. Motivated by our work on Automated Highway Systems
(AHS), we consider a physical system, the string of vehicles and con-
struct a natural model for it in the Hybrid Input/Output Automaton
formalism. We describe a special maneuver that may have to be exe-
cuted by the system, the emergency deceleration maneuver, and derive
necessary and sufficient conditions on the system parameters under which
this maneuver can be executed in safety. We conclude by giving a brief
discussion of the implications of our results for the design of an AHS
that allows the formation of platoons of vehicles.

1 Introduction

Hybrid systems have attracted the attention of both computer theorists and
control engineers. Our work ultimately aims at a rapprochement of these two
perspectives. Here we use a combination of techniques from the two areas to
address a specific problem in transportation. This is the problem of the safety of
a collection of vehicles traveling one behind the other in a single lane; we refer
to such a collection as a string of vehicles. The problem is hybrid as it involves
both continuous vehicle motion and (possibly) collisions, which in our setting
are treated as discrete velocity changes. We try to establish conditions under
which a string of vehicles will be safe while executing a particular maneuver.

We start by developing a detailed model for the system in the Hybrid In-
put/Output Automaton modeling framework (Section 2). Modest extensions of
the original framework of [1] are needed to capture all the phenomena of interest
for this problem. Then, in Section 3 we introduce the emergency deceleration

* Research supported by California PATH under MOU-238 and MOU 288, ARPA

contract F19628-95-C-0118, AFOSR contract F49620-97-1-0337, AFOSR contract
F49620-94-1-0199 and the U.S. Department of Transportation DTRS95G-0001.

274

maneuver, whose safety analysis is the primary focus of this paper. We give some
necessary and some sufficient conditions under which the safety of the maneu-
ver can be guaranteed. Finally, in Section 4, we discuss the implications of our
results in the context of platooning of vehicles.

We believe our work is potentially of both theoretical and practical impor-
tance. On the theoretical side we hope that the results presented here will be
extended to a general methodology for dealing with hybrid systems, one where
continuous and discrete techniques are combined in a coherent framework. The
practical implications of our work are more immediate. Our results indicate that
the design of specialized emergency maneuvers may be crucial to the success of
an automated highway system that allows for the formation of platoons.

2 Vehicle String Model

2.1 Overview of the Modeling Formalism

Based on the work of [1], we consider a hybrid automaton, A, as a dynami-
cal system that describes the evolution of a finite collection of variables, VA.
Variables are typed; for each v E VA let type(v) denote the type of v. For each
Z C VA, a valuation of Z is a function that to each v E Z assigns a value in
type(v). Let Z denote the set of valuations of Z; we refer to s E VA as a system
state. In this paper we assume that the evolution of the variables is over the set
T>O = {t E Ilt > 0}. The evolution of the variables involves both continuous
and discrete dynamics. Continuous dynamics are encoded in terms of trajectories
over VA, that is functions that map intervals of T>° to VA. Discrete dynamics
are encoded by actions. Upon the occurrence of an action the system state in-
stantaneously "jumps" to a new value. We use ZA to denote the set of actions
that affect the evolution of A.

More formally, a hybrid automaton, A is a collection (UA, XA, YA, Zn, Z~it,
ZA• , e Z A, WA) consisting of:

- Three disjoint sets UA, XA, and YA of variables, called input, internal, and
output variables, respectively. We set VA = UA U XA U YA.

- Three disjoint sets Z~n, Z~nt, and Z•• of actions, called input, internal, and
output actions, respectively. We set ZA = Z.n U Znt U Zut.

- A non-empty set eA C VA of initial states.
- A set DA C VA X ZA X VA of discrete transitions.
- A set WA of trajectories over VA.

Some technical axioms are imposed on the above sets to guarantee that the
definitions are consistent. The axioms introduced in [1] are too restrictive for
the application considered here; fortunately the extensions needed are fairly
straightforward.

An execution, a, of A is an alternating sequence a = woalwia 2w2 .. , finite
or infinite, where for all i, ai E ZA, wi E WA defined over a left closed time
interval and fstate(wo) E eA. In addition, if a is a finite sequence then it ends

275

with a trajectory and if wi is not the last trajectory its domain is right-closed
and (lstate(wi),ai+i,fstate(wi+i)) E DA. Here fstate(w) and Istate(w) denote
the initial and final states of a trajectory w. An execution is called finite if it is
a finite sequence and the domain of its final trajectory is a right-closed interval.
A state s E VA is called reachable if it is the last state of a finite execution.

Hybrid automata "communicate" through shared variables and shared ac-
tions. Consider two automata A and B with XA fl VB = XB n VA = YB fl YA = 0
and Znt n f A = ZLnf n ZB = ZLuOt nf ZOt = 0. Under some mild techni-
cal assumptions, the composition, A x B, of A and B can be defined as a new
hybrid automaton with UAxB = (UA U UB) \ (YA U YB), XAxB = XA U XB,
YAxB = YA U YB and similarly for the actions. 9AxB, DA xAB and WAAxB are

such that the executions of A x B are also executions of each automaton when
restricted to the corresponding variables and actions.

A derived variable of A is a function on VA. Derived variables will be used
to simplify the system description, but also to facilitate the analysis. A property
of A is a boolean derived variable. A property is stable if whenever it is true at
some state it is also true at all states reachable from that state. A property is
invariant if it is true at all reachable states. Typically properties will be shown
to be stable or invariant by an induction argument on the length of an execution.
It is easy to show that:

Lemma 1 Assume that for all reachable states s of A, P true at s implies P true
at s' for all s' such that either there exists w E WA with right closed domain and
fstate(w) = s and lstate(w) = s', or, there exists a E ZA with (s,a, s') E DA.
Then P is a stable property. If further P is true at all s E 19A, then P is an
invariant property.

In some places differential equations will be used to simplify the description
of the set WA. In such cases WA is assumed to be populated by all trajec-
tories generated by the differential equation in the usual way. To simplify the
description of DA, we will assign a precondition and an effect to each action. The
precondition is a predicate on VA while the effect is a predicate on VA x VA-
The action can take place only from states that satisfy the precondition; more-
over, the states before and after the transition should be such that the effect is
satisfied. When no confusion can arise we use v' to denote the value of variable
v after an action.

2.2 String Model

Consider a string of N vehicles (Figure 1) moving one behind the other in a single
lane, with vehicle 0 coming first. The overall model will be the composition
of a number of automata (Figure 2). The plant will be a hybrid automaton
containing the dynamics of all the vehicles in the string. Each vehicle is equipped
with sensors and controllers. The sensor automaton Si reads the values of the
plant output variables as inputs and produces real valued output variables. The
controller automaton, Ci, reads the corresponding sensor output variables and

276

Ax,

O i-i 1j VN-1

V 0 Vi. Vi N-

Fig. 1. A string of vehicles

uses them to generate the input variables of the plant. The Si and Ci may
have internal variables and actions. In this paper we assume that the sensor
and controller automata are simple input/output maps and concentrate on the
development of a realistic plant model.

The plant is modeled by an automaton P = (Up, Xp, Yp, L'n, Zp,, Z•,u,
ep, EDp, Wp). P has no input and no output actions, hence ZP = ZOUt= 0.
Here we are only interested in answering questions of "safety", encoded in terms
of possible collisions among the vehicles of the string. The answers to these ques-
tions will depend on the relative spacing and the velocities of the vehicles, but
not their absolute position on the road. Let Axi denote the spacing between
vehicle i and i - 1, vi the speed of vehicle i, acci its acceleration and ui its com-
manded acceleration 2 and define xi = [Axi vi] E V 2 , x = [xo ... XN-1] E R2 N

and u = [uo ... uN-1] E RN. Also consider a collection of boolean variables
Touching = { Touching1,... TouchingNg }; the evolution of these variables (Sec-
tion 2.2) will be such that Touchingi is true whenever vehicle i is touching vehicle
i - 1. Define the internal and input variables as Xp = {x, acc, Touching} and
Up = {u} respectively. Physical limitations constrain the valuations of the input
variables to lie in a rectangular compact set, i.e. ui(t) E [a~i, agnax] for all i
and for all t. The values of aran and a•=ax are determined by the vehicle char-
acteristics (engine, brakes, tires, etc.). To ensure that the model is realistic we
impose the following assumption on ep and the input constraints.

Assumption 1 For all i, dxi(O) Ž 0, vi(O) Ž 0, Touchingi(O) = False and
ai < 0 < aTax

Discrete Dynamics The continuous system evolution can be interrupted by
three classes of internal actions: collisions, vehicles touching with zero relative
velocity (and subsequently "pushing" against one another) and vehicles moving
apart (after having touched). We assume that the continuous evolution stops
as soon as the precondition of an action becomes true, to allow the action to
take place. All variables not explicitly mentioned in the effect are assumed to be
unaffected by the action.

2 As discussed in Section 2.2, the commanded and actual acceleration may differ when

vehicles are touching and pushing each other.

277

.. Plant Y

,, YLFý

FCN-. YN-1 S

Fig. 2. System modules

Consider first the case of collisions. Let Collisioni be an internal action that
takes place whenever vehicle i collides with vehicle i - 1. The precondition for
Collisioni is:

(Axi = 0) A (vi > vi-1) ()

To determine the effect of the action we use a simple collision model. To deter-
mine vi and vi- 1 after the collision we solve a pair of equations:

Mivz + Mi-ivi_1 I Mv + mi-ivi-1 (2)
zi1 -vý (vi - vi-,)ai (3)

where Mi is the mass of vehicle i and ai is the coefficient of restitution, a
measure of the energy lost in the collision. Equation (2) is the conservation of
momentum equation while Equation (3) is referred to as the restitution equation.
By appropriate choice of a (possibly as a function of the speeds) this collision
model can capture a wide range of collision scenarios. To maintain a certain
level of generality in the subsequent discussion we will typically assume that the
coefficient of restitution is a function of the relative velocity vi- 1 - vi at impact
and will denote it by ai(.).To ensure that the model is realistic we impose the
following assumption:

Assumption 2 For all i, M2 > 0 and ai(v) E [0, 1] for all v > 0.

Note that in general vehicles may end up going backwards as a result of collisions
if, for example, a light vehicle elastically hits a slowly moving heavy vehicle (i.e.
Mi < MS- 1 , aoi ; 1 and vi- 1 ..t 0).

Multiple instantaneous collisions are also possible in this setting. These are
situations where there exist N, and N2 with 0 < N1 < N 2 < N such that
AXN 1 : 0, AxN2+1 5 0 (if any) and for all i with N 1 < i < N 2 , Axi = 0
and vi > vi- 1 . The value, x', of the state after the collision again satisfies
Axý = Axi for all i and vi = vi for all i < N1 or i > N2 . To determine the
values of vi for N1 < i < N2 we resolve the multiple collision as a sequence of

278

pairwise collisions, according to equations (2) and (3). The pairwise resolutions
will keep taking place as long as there exists a j with N 1 < j < N2 such that
vj > vj-1. When this condition is violated we will say that the multiple collision
has been resolved. It turns out that, if the masses of the vehicles are unequal or
the restitution coefficients ai are not identically equal to 1, one can construct
scenarios where the velocities of the vehicles after the multiple collision has been
resolved depend on the order in which the pairwise resolutions were executed.
To circumvent this problem we state our theorems and proofs in a way that the
results hold for all possible orderings of the pairwise resolutions.

Next, let Touchi be an internal action that takes place whenever vehicle i
touches vehicle i - 1 with zero relative velocity. The precondition for Touchi is:

(Touchingi = False) A (zAxi = 0) A (vi = vi- 1) A (acci > acci-1) (4)

The effect of Touchi is to declare the two vehicles as touching, i.e. Touchingj =

True.
Finally, consider what happens when vehicles that are touching start moving

away from one another. Let Separatei be an internal action that takes place
whenever vehicle i is already touching vehicle i - 1 and starts to move away. The
precondition for Separatei is:

(Touchingi = True) A [(acci < acci-_) V (vi < vi-1)] (5)

The effect of Separatei is to declare the two vehicles as no longer touching, i.e.
Touchingi = False.

Continuous Dynamics The set of trajectories Wp will be generated by a
dynamical system. Assume there are no vehicles ahead of the string and set
Ax 0 =- oo. Then, for i = 1,. .. , N - 1 the laws of motion imply that:

ZXi (t) = vi-i (t) - vi(t)

i~i(t) = acci(t)

The value of the actual acceleration, acci, of vehicle i depends on the acceleration
commanded by the controller of that vehicle, ui, and on whether the vehicle
is touching vehicle i - 1 or vehicle i + 1. In the case when the vehicles are
not touching we simply set the actual acceleration equal to the commanded
acceleration. The case where vehicles are touching is more complicated. The
reason is that when vehicles are pushing against one another, there are forces
exerted from one vehicle to the other. Therefore, the actual acceleration of a
vehicle depends not only on the acceleration commanded by its own controller,
but also on the accelerations commanded by the controllers of the neighboring
vehicles that are pushing against it.

To resolve this issue we first introduce some abstract definitions. Consider
a nonempty finite subset of the natural numbers S C N. S is a segment if it
consists of consecutive numbers. A subsegment of a segment S is any subset of
S that is also a segment. For segments S and S2 with min(S 2) = max(SI) + 1

279

we define their concatenation (denoted by S1 S2) as the segment S U S2 . A
weighted average function on S is any function a : 2S -+ R such that for all L, R
subsegments of S:

min{a(L), a(R)} < a(LR) •_ max{a(L), a(R)} (6)

whenever the concatenation LR is defined. A segment S with a weighted average
function a is unsplitable if:

S = LR =• a(L) • a(R)

A partition of S is a finite collection S1, ... , S,, where S = U' 1 Sk and for all
k, Sk is a segment and Sk n S, = 0 for I : k. Without loss of generality assume
that min(S) = min(S 1) and for all 1 < k < n, min(Sk) = max(Sk-l) + 1 and
write S = 51S2 ... Sn. A partition of S1 ... Sn of S is called a maximal partition
if for all k = 1,..., n, Sk is unsplitable and either n = 1 or for all k = 2,..., n,
a(Sk-1) > a(Sk).

Theorem 1 For every segment, S, and every weighted average function, a, on
S there exists a unique maximal partition.

Though interesting, the proof of Theorem 1 is omitted here as it is not necessary
for the safety results. An algorithm to construct the maximal partition has also
been developed.

Intuitively (returning to the vehicle example) a maximal partition is such
that vehicles in an element of the partition are pushing against one another
while vehicles in different elements of the partition are moving away from one
another. Assume there exist ij with 0 < i < j < N such that vehicles i to j
are touching each other. Define the segment S = {i,... ,j} and for every subset
S' C S consider the function:

a(S') - ZkES' MkUk (7)
ZkES' Mk

One can show that a is a weighted average function on S. To determine the
acceleration of the vehicles in this collection at a given instant, let S ... S be
the maximal partition of S at that instant and for all k = 1,.. . , n set:

accl = a(Sk) for all I G Sk (8)

If one assumes that the force exerted on a vehicle by the road depends only
on the commanded acceleration of that vehicle (and not on whether the vehi-
cle is touching other vehicles), then this choice is what one would expect from
physical intuition. The total force commanded by all the vehicles determines the
acceleration of their combined mass.

280

2.3 Output Evolution

The output evolution is determined as a function of the evolution of the inputs
and states. We assume that in principle all the internal variables can be made
available to the controllers. Limitations imposed by current sensing and com-
munication technology should be incorporated in the sensor automata. There-
fore the information made available by vehicle i is yV(t) = [x (t) acci(t)]. Let
yP - [Y=P Y. 1]. E R3N and define the output variables as Yp = {yP}.

2.4 Model Consistency & Safety Requirements

The following lemma suggests the proposed plant model agrees with basic phys-
ical intuition:

Lemma 2 The plant automaton is such that:

1. If E and E' are the kinetic energy before and after Collisioni, then E' < E.

2. Aj=i 1 [Ax0 _ 0] is an invariant property of the plant.
3. AN= 1 [(Touchingi = True) =• (Axi = 0)] is an invariant property of the plant.

The kinetic energy of the string is defined as:

N-I

E = EMiv
i=O

The first property shows that (as expected) no energy is generated as a result of
the collisions. The second property shows that the model does not allow vehicles
to run over one another (a physical impossibility). The last property shows that
vehicles are declared as touching by the model only when they are physically
touching.

We are interested in defining the system performance in terms of the severity
of the collisions experienced by the vehicles. Following [2], we assume that a
collision is safe if the relative velocity at impact is below a certain threshold, VA.

A commonly cited threshold is VA = 3ms- 1 [2].

Definition 1 A string is safe if Ai=1 [(Ax = 0) => (vi <5v i- 1 + VA)] is an in-
variant property.

The main limitation of our model is that is does not account for the lateral
motion of the vehicles. We assume that all vehicles effectively move along a
straight line. This assumption may be unrealistic, especially in the presence
of collisions when large forces and moments can be exerted from one vehicle to
another. The situation will be even worse when the vehicles move along a curved
road.

281

3 Safety Conditions for Emergency Deceleration

3.1 Background

The emergency deceleration maneuver is a situation where the first vehicle in the
string applies maximum deceleration until it comes to a stop, thus endangering
the remaining vehicles of the string. It is assumed that the emergency deceler-
ation of vehicle 0 is caused by some abnormal condition, such as a mechanical
malfunction or an obstacle. We would like to determine the conditions under
which the remaining vehicles can maintain their safety despite this "malicious"
behavior of the leader.

The safety of general strings of vehicles has been analyzed using a number of
techniques. Most results in the literature start by partly characterizing the string
by determining "automata" for the sensors and controllers and then trying to
establish the range of initial conditions and parameters for which the string is
safe. This type of analysis has led to conditions under which pairs of vehicles are
guaranteed not to collide [3, 4] or experience safe collisions [4, 5]. In some cases
the conditions have also been extended to longer or even infinite strings [6, 7].

Perhaps the most challenging problem in this area has been the design of
controllers for platoons of vehicles. A platoon is a string of very tightly spaced
vehicles. Typically intra-platoon spacings are of the order of 1-2 meters. The
safety of the intra-platoon controllers [6] relies on the assumption that the be-
havior of the first vehicle is in some sense "reasonable". This means that the
controller Co takes into account the limitations of the rest of the vehicles in the
string when calculating u0 . This requirement is clearly violated in the case of
the emergency deceleration maneuver. It is conjectured however that the platoon
is going to be safe even in this case [8]. The justification is that collisions are
going to take place in rapid succession, because the vehicles are all close to one
another. Therefore, if the speeds of all vehicles are initially the same, the relative
velocity at the time of collision is going to be small. We attempt to establish
conditions under which this conjecture is true.

The safety of the string under an emergency deceleration maneuver depends
on the response of the remaining vehicles of the string to the deceleration of the
leader. Here we consider a very simple default deceleration strategy. Assume that
at time t = 0 the leading vehicle applies maximum deceleration, a"n', until it
stops at which point its commanded acceleration becomes 0. After a delay di
vehicle i also applies arin until it comes to a stop. This scenario can be easily
encoded in the model discussed above by simple sensor and controller automata.
The results discussed here refer to the case di = 0; some of them directly extend
to the more general case.

3.2 Safety Conditions For Strings of Length N=2

We first develop conditions for a string of two vehicles to be safe under the default
deceleration strategy. These conditions will form the basis of safety results for
longer strings. We refer to a two vehicle string as a pair. One can easily show
that:

282

Proposition 1 (v0 _> 0) and (vi <_ 0) are stable properties for a pair. If (vi <_ 0)
the pair is safe (in particular Collision1 cannot occur).

To derive more meaningful safety properties consider the derived variables:
C1 (Axl,vi,vo) = (an + ain)V' - 2a inVOV1 - 2(am") 2 AX (

amm

C2 (AX 1 , vO, v) = VO _vI (10)
a0 z

p 0,VOV1) = (v0- Va)2 _ 2(a-n _ 2

2 amin

P2(XVo, V) = V2a'Ax (12)
a0

To simplify the notation we will explicitly mention the function arguments only
when necessary. We also introduce a derived boolean variable C given by the
expression:

C [(Ci :< 0) A (a' <_ a"'n)] V [(02 _< 0) A (a'in > amin)] V [(vo = 0)] (13)

P1, P2 and C are used to construct safety invariants. A collision can take place
either while both vehicles are moving or while vehicle 1 is moving and vehicle 0
has stopped (by Proposition 1 collisions cannot take place once vehicle 1 stops).
The property (P1 < 0) will encode conditions that guarantee safety if a collision
takes place while both vehicles are still moving. (P2 !< 0) will encode conditions
that guarantee that either no collision takes place or a safe collision takes place
after vehicle 0 has stopped. The predicate C will be used to distinguish the two
cases.

Lemma 3 (P1 _< 0) V (vl •< 0) is a stable property of the pair.

Proof. (P1 < 0) V (vi _< 0) is preserved by Touch1 and Separate1 , as both these
actions leave Axl, v0 and v, unaffected. Assume (P1 < 0) V (vi < 0) is true
when Collision 1 occurs. By Proposition 1 (vl < 0) can not be true in this case.
Therefore (P 1 < 0) is true, i.e. P(Azxl,vo,v1) = PI(0, vo,v1) 0 0. Hence, by
the restitution equation (3), (v• - v•) 2 = (vO -_v 1) 2a2 < (vO -v 1)2 < v2, as
a, E [0, 1] by Assumption 2. Therefore, Pl(Ax',v',v'I) Pi(0,v',v'l) <0 and
(P1 < 0) V (vi < 0) is again true after Collision,.

Assume at some state, s, (P1 •< 0) V (vi _< 0) is true and consider all trajec-
tories that start at s. If (vl < 0) is true at s it will also be true at the last state
of the trajectory by Proposition 1. If (P1 < 0) A (vi > 0) is true at s, consider
the variation of P1 along a trajectory:

-•P .2(vo - vi)(acco - accl) 2(a' -- a1 in)

0 if (v0 > 0) A (v1 > 0) A - Touching,
= 2aminv1 if (vo = 0) A (vi > 0) A -,Touching1

-2(aOin - an)(vo - vi) if Touching1

283

In the cases where Touching1 = False, P1 _• 0, therefore (P1 < 0) will be true
at least until (vl < 0) becomes true. If Touching1 = True and v0 < vi (resp.
vO > v1) action Collision1 (resp. Separate1) occurs and the trajectory stops. If
Touching1 = True and v0 = vi, then P1 = 0. Overall, (P1 < 0) V (vi •_ 0) will
be true at the last state of the trajectory.

Lemma 4 If (P1 < 0) V (vl < 0) is true then the pair is safe.

Proof. If (vi < 0) is true the pair is safe by Proposition 1. If (P1 < 0), at the time
when Ax1 = 0, P1 (Axi,vo,v 1) = Pi(0, vo,vi) < 0, therefore (v0 -v 1)2 < v2.

Hence, vi < Vo + VA and the pair is safe. 0

The conditions of Lemma 4 can be relaxed by introducing P2. Consider:

I = [Pl :5 0] V [C A (P 2 _• 0)] (14)

Lemma 5 I V (vl < 0) is a stable property of the pair.

Proof. If (P1 < 0) V [C A (P2 < 0)] V (vl < 0) is true at the pre-state of Touch,
or Separate1 it will also be true at the post-state as both actions leave Axl, v0
and v, unaffected. Assume (P 1 < 0) V [C A (P2 < 0)] V (vl < 0) is true when
Collision 1 occurs. If (P1 < 0)V(vl < 0) is true, it will also be true after Collision1
by Lemma 3. Assume Collision1 occurs while CA(P 2 < 0) is true. We distinguish
the following cases:
Case 1: (vo = 0) A (P2 • 0) is true. Then, at Ax, =0, v2 -_ v < 0, therefore
V1 = V1 - V0 < VA.

Case 2: (C1 0) A (a in < amin) A (P 2 < 0) is true. Then, 0 < a +aT'7 <1

and at Ax, = 0, a- + 0 > v1 . Therefore, vo > v, and hence (C1 < 0) A

(amin <_ ain) A (P2 < 0) cannot be true when Collision, occurs.

Case 3:(C 2 < •0) A (agi• _> a'n) A (P 2 •< 0) is true. This implies that > >1,

Vo v and, at Ax =0, V2 _ •= 2 _- v2 < 0. These three inequalities

imply that (v0 - v1)2 - v2 < 0.
In all cases where Collision, is possible, 0 < vi - vo :_ VA. Therefore (v 0 -

v1) 2 < v2 and hence (v' - v')2 < v2 (by equation (3) and Assumption 2).
Therefore, if Collision, occurs while C A (P 2 _< 0) is true, (P 1 < 0) will be true
after the collision. Overall, if (P1 _< 0) V [C A (P2 _< 0)] V (vl _ 0) is true when
Collision1 occurs it will also be true afterwards.

Assume at some state, s, (P1 < 0) V [C A (P2 !5 0)] V (vl _ 0) is true and
consider the trajectories that start at this state. If (P1 < 0) V (vl _< 0) is true
at s it will also be true at the last state of the trajectory, by Lemma 3. If
C A (P2 _• 0) A (vi > 0) is true at s, consider the derivatives of the functions
C 1, C 2 and P 2 along the trajectory:

d
_- 1 = 2(amin + a~in)vo acco - 2a'in accov1 - 2aminvo acc, - 2(am") 2 (vo - vi)

284

0 if (v0 > 0) A -,Touching1
= 2(ai~n) 2Vl if (vo = 0) A -,Touching1S2(aonv0 - aminvi)acco - 2(ari,) 2(Vo - Vl) if Touching1

2 -acacco - accV

0

0 if (vo > 0) A -Touching 1

= -aif (v 0 = 0) A - Touching1

a(,,- 1) acco if Touching1

d arain
- P 2 = 2v acc - 2 _ vo acco + 2amin (vo - Vl)
dai

0 if -, Touching1
a0 -vi-aT vo acco + 2amin(vo _- v) if Touching1

Consider first the variation of P2 . If Touching1 = False and as long as vl > 0,
P2 = 0. Therefore, if (P 2 :_ 0) is true at s, (P 2 _< 0) V (vl !5 0) will be true at the
last state of the trajectory. If Touching1 = True and vl : vo the trajectory stops
(as the precondition of either Collision, or Separate1 is satisfied). If Touching1
True and v, = vo then P2 = 2(amn'n - a in)voacco/am' . If am" > ai the
trajectory stops and action Separate1 occurs. Otherwise, P2 • 0, therefore (P 2 <
0) will be true at the last state of the trajectory.

Now consider the variation of C. Recall that C A (vl > 0) is assumed to be
true at s. Distinguish two cases:
Case A: (C1 < 0) A (a~ _ a~m.1) is true at s. If Touching1 = False and
as long as v, > 0 and v0 > 0, C1 = 0. If Touching1 = True and vi $ Vo
the trajectory stops (as the precondition of either Collision 1 or Separate1 is
satisfied). If Touching1 = True and v, = vo then C 1 = 2(alin - a~in)vo acco < 0
as a"' <_ am•. Overall, [(C1 <_ 0) A (amin < amn)] V (vO = 0) V (vi _< 0) will

be true at the final state of the trajectory.
Case B: (C 2 < 0) A (a"• > a m ') is true at s. If Touching1 = False and
as long as v, > 0 and vo > 0, C1 = 0. If Touching1 = True and vi : vo the
trajectory stops (as the precondition of either Collision, or Separate1 is satisfied).
If Touching1 = True and vi = vo then C2 = in - a _ , as

aW'• > am"'. Therefore, [(C 2 < 0) A (a•tmi > a, n)] V (vo = 0) V (vi < 0) will be
true at the final state of the trajectory.

Overall, if (P1 < 0) V [C A (P 2 <_ 0)] V (vl < 0) is true at the first state of a
trajectory, it will also be true at the last state. 0

Theorem 2 (Sufficient Condition for Pair Safety) If I is initially true the
pair is safe.

Proof. I initially true and Lemma 5 imply [P1 _• 0] V [C A (P 2 • 0)] V (v1 _ 0)
is an invariant property of the pair. If (P 1 :5 0) V (vi _< 0) is true safety is
guaranteed by Lemma 4. If C A (P 2 < 0) is true, the proof of Lemma 5 indicates
that at Ax 1 = 0, V1 - vo < VA, which again implies safety.

285

Conditions under which the string is unsafe can be obtained in a similar way.
Consider a derived boolean variable Collided which is initially false and becomes
true when the actions Collision 1 occurs. Let:

C' = (C1 < 0) (15)

I' = [-C' A (Pi > 0)] V [(C'V (vo = 0)) A (P2 > 0)] (16)

Theorem 3 (Necessary Condition for Pair Safety) f I' A (vI > 0) A
-,Collided is true initially then the pair is unsafe.

The proof involves an argument similar to the one used for Theorem 2. The proof
of Theorem 2 indicates that if the first collision is safe, all subsequent collisions
will also be safe. The condition of Theorem 3 is therefore such that the first
collision between the two vehicles is unsafe. More unsafe collisions may follow.

3.3 Safety Conditions for Strings of Length N > 2

Next, we derive a very simple sufficient condition for a string of arbitrary length
to be safe. Even though the condition is conservative, interesting conclusions
about the safety of platoons of vehicles can be derived from it (see Section 4). A
string is near uniform mass if ai(v) - a and aMk-l < Mk • Mk-1/a. The near
uniform mass condition allows us to put some bounds on the change of speed
that a collision can induce. For example, it can be shown that:

Proposition 2 A No1 (Vi Ž 0) is an invariant property of a near uniform mass
string.

Recall that in general vehicles may end up going backwards due to a collision.
We construct invariant properties that allow us to characterize the safety ofk an &ma =MXk< min and for

such a string. Let &min = mino<k<N amji and amax max0_k<N an

0 < i < j N - 1 define Axij = -i+ AXk. For any pair of vehicles i < j,
consider the function:

^amax

P(,AXij, Vi, vj) = vj - -a----Vi - VA (17)
amin

Theorem 4 (Sufficient Condition for String Safety) A near uniform mass
string of N vehicles is safe if initially P(Axij,vi, vj) • 0 for all i, j with 0 <
i <j < N-1.

The proof is again by induction. Note that the conditions of Theorem 4 involve
all pairs in the string and not just adjacent vehicles.

Finally, we establish conditions such that any string formed by a collection
of vehicles satisfying:

arain E [a,d], Mi E [MM], ai(v) - 1 (18)

is guaranteed to be safe. Assume that all vehicles in the string are initially
moving with velocity v.

286

E

FT 57-1 T j

.A- ý-~ -~Vi Vi+1 Vi+2 Vj- 1 I

Fig. 3. Final configuration for theorem proof

Theorem 5 (Necessary Condition for String Safety) All strings of N ve-
hicles satisfying (18) are safe under the default deceleration strategy only if ini-
tially (P1 (Axjj,v,v) •_ O) V (P 2 (Axij,v,v) :_ 0) is true for all i,j with 0 < i <
j•<N - 1 and for all ain [a,E .

Theorem 5 effectively states that a string may be unsafe if any two vehicles in it
are unsafe. The proof is constructive: we show that, if two vehicles i and j violate
the conditions of the theorem, one can chose the deceleration capabilities, aainI
and the masses, Mk, of vehicles k = i + 1,... ,j - 1 so that the string exhibits
unsafe collisions. The idea of the construction is to bring the vehicles from their
initial arrangement to the final arrangement of Figure 3, without any collisions
taking place. The construction will be such that after resolving the multiple
collision between vehicles i + 1,...,j the velocity of vehicle i + 1 will be the
same as the velocity of vehicle j before the collision. For E small enough, the
next collision will be between vehicles i + 1 and i and the relative velocity will
be e close to the relative velocity with which vehicles j and i would have collided
if vehicles i + 1,... ,j - 1 were not there.

4 Implications for Platooning

We establish bounds on the system parameters (in particular the difference in
deceleration capability between the vehicles) for a string to be safe. We start with
the sufficient condition of Section 3.3. Consider a near uniform mass string and
let i - a = c. Then, all strings whose vehicles satisfy (18) are guaranteed to be

safe under the default deceleration strategy if (i - V-VA <0or",) - A !ý0 o equivalently:

E < -- v-A (19)- v

Substituting "typical" values of a = -9ms- 2 and VA = 3ms- 1 leads to e < 1.08
for v = 25ms- 1 and c < 0.9 for v = 30ms-1.

For the necessary conditions of Section 3.3, note that:
&M-6--- = -2Axij <5 0 -OPý - LA x - > 0
a!i - - aoi- -

a = a.- QP 2•I?-- < 0 -- + 22Axij > 0

ea- (ain)2 *-z a'" -a 6 -

287

fN e (MS-) __ _ _ _

v = 25ms-', F =lm v = 30ms 1 , F = lm v = 25ms-, F = 2m
2 4.5 4.5 2.25
3 2.25 2.25 1.125
4 1.5 1.5 1.125
5 1.125 1.125 1.125

> 6 1.125 0.9 1.125

Table 1. Maximum allowable difference in deceleration capability

Therefore, the condition (P1 (Axij, v, v) • 0) V (P 2 (Axij, v, v) •< 0) for all amin
and aT" E [a,•] is equivalent to (P1(Axij, v, v) < 0) V (P2 (Axij,v,v) < 0) for
aT2 = a and ajn' = U. To further simplify the calculation assume that initially
the string is uniformly spaced, i.e. Axi =F for all i. Then the necessary condition
for string safety requires that for all i < j:

(2
V2 2(j - i)a 2F - }v

f:< max 2(jAi)F' V2 -2(j-i)gF

Table 1 shows the necessary condition for e. The numbers indicate that the
sufficient condition is conservative for small strings but approaches the necessary
condition as the string size increases (the number for N = 2 in Table 1 is both
necessary and sufficient).

If the string represents a platoon and based on the characteristics of vehi-
cles on current highways, the bound on e is reasonable for N = 2 but rather
restrictive for higher platoon sizes (even under perfect road conditions). Note
also that the calculation saturates after the first few vehicles; a similar observa-
tion was made in [6] about the increase in deceleration effort required along a
platoon for "string stability". Overall, The above calculations indicate that the
safety of the platooning system under emergency braking can only be guaran-
teed under rather limited conditions, in particular for small platoons consisting
of vehicles of similar deceleration capabilities. This observation is in agreement
with the numerical study of [9]. One can improve the situation by modifying the
system parameters, by arranging the vehicles in a platoon in a particular order
(e.g. in the order of increasing deceleration capability) and by designing better
deceleration controllers. All these alternatives are the topic of current research.

5 Concluding Remarks

The string system introduced here is an interesting example for trying out dif-
ferent hybrid systems techniques. The system is simple enough to approach an-
alytically, yet it can produce executions with very complex continuous-discrete
interaction, even for string sizes as small as N = 3. Here we used induction

288

arguments to answer safety questions; induction proofs are ideally suited to the
structure imposed by the HIOA modeling formalism used to encode the system.

We are currently working on extending the results discussed here to account
for phenomena like sensing and actuation uncertainties and delays. These ex-
tensions are likely to involve the use of simulation relations and abstraction
mappings (similar analysis was carried out in [5] for a simpler system). We are
also trying to investigate the effect of different deceleration strategies. Allowing
different deceleration strategies makes the problem much more challenging; for
example more sophisticated analysis techniques may be needed to ensure that
the proposed controllers do not resort to "Zeno" executions to ensure the safety
of the system3 . The ultimate goal is of course to construct an optimal deceler-
ation strategy for a each string; powerful optimal control tools are likely to be
needed for this purpose. Hopefully solution to these problems will suggest ways
in which control theory and computer science techniques can be used in tandem
to address complicated questions in hybrid systems.

References

1. N. Lynch, R. Segala, F. Vaandrager, and H. Weinberg, "Hybrid I/O automata," in
Hybrid Systems III, no. 1066 in LNCS, pp. 496-510, Springer Verlag, 1996.

2. A. Hitchcock, "Casualties in accidents occuring during split and merge maneuvers,"
tech. rep., PATH Technical Memo 93-9, Institute of Transportation Studies, Uni-
versity of California, Berkeley, 1993.

3. J. Lygeros, D. N. Godbole, and S. Sastry, "A game theoretic approach to hybrid
system design," in Hybrid Systems III, no. 1066 in LNCS, pp. 1-12, Springer Verlag,
1996.

4. P. Li, L. Alvarez, R. Horowitz, P.-Y. Chen, and J. Carbaugh, "Safe velocity tracking
controller for AHS platoon leader," in IEEE Conference on Decision and Control,
pp. 2283-2288, 1996.

5. E. Dolginova and N. Lynch, "Safety verification for automated platoon maneuvers: a
case study," in Proceedings of HART97 (0. Maler, ed.), no. 1201 in LNCS, pp. 154-
170, Berlin: Springer Verlag, 1997.

6. D. Swaroop, String Stability of Interconnected systems: an application to platooning
in automated highway systems. PhD thesis, Department of Mechanical Engineering,
University of California, Berkeley, 1994.

7. J. Lygeros, D. N. Godbole, and S. Sastry, "A verified hybrid controller for auto-
mated vehicles," Tech. Rep. UCB-ITS-PRR-97-9, Institute of Transportation Stud-
ies, University of California, Berkeley, 1997. (to appear in the Special Issue on
Hybrid Systems of the IEEE Transactions on Automatic Control).

8. S. Shladover, "Operation of automated guideway transit vehicles in dynamically re-
configured trains and platoons," Tech. Rep. UMTA-MA-0085-79-3, U.S.Deprtement
of Transportation, 1979.

9. D. N. Godbole and J. Lygeros, "Tools for safety and throughput analysis of auto-
mated highway systems," in American Control Conference, pp. 2031-2035, 1997.

3 This is not an issue for the default deceleration strategy considered here, as it is easy
to show that all vehicles come to a stop in finite time and after a finite number of
collisions.

An Approach to the Verification of the
Center-TRACON Automation System*

John Lygeros, George J. Pappas and Shankar Sastry

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

Berkeley CA 94720
lygeros,gpappas,sastry~eecs.berkeley.edu

Abstract. The Center-TRACON Automation System (CTAS) is a col-
lection of planning and control software functions that generate landing
schedules and advisories to assist air traffic controllers in handling traffic
in the en-route and terminal areas. In this paper, we propose a formal
safety analysis methodology to determine the correctness of CTAS with
respect to safety. Four large classes of safety notions are identified for the
CTAS problem: nominal, robust, structural and degraded. For nominal
safety questions we seek conditions under which the system is guaranteed
to be nominally safe.

1 Introduction

The increasing demand for air travel has spurred the development of tools to
increase airspace utilization, smooth air traffic flow and reduce fuel consumption,
time delays and controller workload. In an effort to meet these objectives, NASA
has developed the Center-TRACON Automation System (CTAS) [1]. CTAS is a
collection of planning and control functions which generate advisories to assist,
but not replace, the controllers in handling traffic in the Center and TRACON
areas.

The structure and functionality of CTAS are briefly discussed in Section 2.
CTAS is a large scale, safety critical software system, that should ideally be
validated before it is deployed. The validation process is complicated by the
fact that the overall system is hybrid, as the (primarily) discrete dynamics of
the algorithm are coupled with the continuous dynamics of the aircraft and the
human operators. We present a formal approach to the safety analysis of the
CTAS system. We view our work as a first step towards the development of a
general methodology for the analysis of large scale, hybrid software systems2 .
Our methodology proceeds in the following steps:

* Research supported by the FAA and NASA under Research Contract DTFA03-97-

D-0004 and Grant 96-C-001 and by the Army Research Office under Grant DAAH
04-95-1-0588.

2 For another example of such a system in air traffic control see [2].

290

- System Modeling: The CTAS system is modeled in the Hybrid Input-
Output Automata formalism (Section 3).

- Safety Specification: We identify notions of safety and determine the de-
sired system specification. We consider four classes of safety measures: nom-
inal, robust, structural and degraded safety (Section 4).

- Safety Analysis: Given the CTAS model in the hybrid input-output au-
tomata formalism and the nominal safety specification, deductive techniques
will be used to determine conditions under which the system satisfies the
specification. To tackle the complexity of the analysis, high level specifica-
tions (at the level of CTAS) are partitioned to sub specifications for the lower
level components. The components are analyzed individually to determine
whether they meet the corresponding specifications. The proof for the over-
all CTAS system is composed from the component proofs using abstraction
relations.

2 CTAS Overview

The Air Traffic Control system consists of three types of control facilities: Air
Route Traffic Control Centers (Centers) which control en-route flights, Termi-
nal Radar and Approach Control facilities (TRACON) which control arriving
and departing flights within 30 nautical miles of airports and Airport Control
Towers which control traffic in the immediate vicinity of the airport and on the
ground. In the United States there are 20 Centers and over 400 TRACONs.
The Center-TRACON Automation System provides advisories for the air traf-
fic controllers, in an attempt to increase airspace utilization, reduce delays, fuel
consumption and controller workload and improve safety. CTAS consists of three
main components:

- Traffic Management Advisor (TMA)
- Descent Advisor (DA)
- Final Approach Spacing Tool (FAST)

TMA [3] and DA [4] coexist and operate in Center airspace whereas FAST [5]
operates as a stand alone in TRACON airspace. Even though currently CTAS
deals only with arrival traffic, future versions will incorporate the User Preferred
Routing tool (UPR) [6] for en route traffic to support Free Flight [7] and the
Expedited Departure Path tool (EDP) for departure traffic. UPR and EDP will
coexist with TMA and DA in the Center Airspace whereas FAST will be in
charge of all terminal area traffic. Currently, stand alone versions of TMA and
FAST are being field tested at Dallas-Fort Worth whereas DA is being field
tested at Denver.

2.1 CTAS Architecture

The architecture of CTAS is shown in Figure 1. CTAS is a human centered
control system. It receives information from the aircraft and computes schedules

291

and advisories, which are then transmitted to the aircraft by the controllers.
The feedback nature of the architecture makes CTAS reactive. If aircraft do not
follow the advisories or controllers manually change the landing schedule, CTAS
will readjust and produce new advisories in the next computation cycle. Thought
of as a large input-output system, CTAS receives input from:

- Controllers: The Traffic Management Coordinator (TMC), who resides in a
Center, sets the capacity and acceptance rates for various runways, airports
and the TRACON and can alter the landing sequence or schedule. The Cen-
ter and TRACON controllers may select particular routes or runways for
particular aircraft and impose constraints on the landing sequence or rout-
ing. Controller preferences are inputed through graphical user interfaces: the
TMA Graphical User Interface (TGUI), which is used by the TMC, and the
Plainview Graphical User Interface (PGUI), which is used by all Center and
TRACON controllers.

- Radar Daemon: The radar daemon periodically receives aircraft state in-
formation regarding position, altitude, speed, aircraft type and flight plan.

- Weather Daemon: The weather daemon receives weather information from
the National Weather Service. Currently the weather reports include wind,
temperature and pressure profiles in the form of a three dimensional grid
whose edge length is 50 miles. The weather reports are updated every hour
and contain forecasts for the next three hours.

Internally, CTAS utilizes detailed databases which include aircraft, aerodynamic
and engine models for all aircraft types. These models are used to perform accu-
rate trajectory prediction for each aircraft. Other databases contain information
on the local airspace structure in terms of way-points and routes, site adapta-
tion data such as TRACON, airport and runway configurations and site specific
constraints. A Communication Manager supports the internal communication of
data between the various processes. After all internal calculations are performed,
the main outputs of CTAS are:

- Landing Schedules: CTAS performs runway allocation for all arriving
aircraft and produces a time-line schedule and sequence for each runway.
Scheduling is initially performed in the Center Area by the TMA and the
output is graphically displayed on the TGUI which is used by the TMC.
Once in the TRACON area, FAST recomputes and overrides the previous
schedule. The new schedule is then displayed on the PGUI.

- Advisories: CTAS also computes heading, altitude and speed advisories.
DA provides the advisories in Center airspace whereas FAST provides ad-
visories in the terminal area. The advisories are displayed on the GUIs and
are then transmitted by voice from the controllers to the aircraft.

292

Wtate

SCENTER
CONTROLLER

Advisories :: .

S Schedule : :::::::::::: ::
i•••i •DeoWeather

TAVS Daemon

Schedule
1.ASA T

n h s i devi sories
TRACON

CONTROLLER

l State

Fig. 1. CTAS Architecture

3 Hybrid Input-Output Automata

In this section we give a brief overview of a model for the CTAS system. In

Section 3.1 we outline the modeling formalism (a formal discussion can be found
in [8]) and discuss the features that make it ideal for modeling the CTAS system.
In Section 3.2 we show how models can be constructed in this framework for one
of the CTAS components, the FAST algorithm.

3.1 Overview of the Modeling Framework

Based on the work of [8], we consider a hybrid automaton, A, as a dynami-
cal system that describes the evolution of a finite collection of variables, VA.
Variables are typed; for each v E VA let type(v) denote the type of v. For each
Z C VA, a valuation of Z is a function that to each v E Z assigns a value in
type(v). Let Z denote the set of valuations of Z; we refer to s E VA as a system

293

state. In this paper we assume that the evolution of the variables is over the set
TŽO = {t E RIt > 0}. The evolution of the variables involves both continuous
and discrete dynamics. Continuous dynamics are encoded in terms of trajectories
over VA, that is functions that map intervals of the time axis to VA. Discrete
dynamics are encoded by actions. Upon the occurrence of an action the system
state instantaneously "jumps" to a new value. We use ZA to denote the set of
actions that affect the evolution of A.

Formally, a hybrid automaton, A = (UA, XA, YA, Zn, Zin', LZ'A, eA, DA,W A),

is a collection of:

- Three disjoint sets UA, XA, and YA of variables, called input, internal, and
output variables, respectively. We set VA = UA U XA U YA.

-- Three disjoint sets Ln, Z~•, and Zou' of actions, called input, internal, and
output actions, respectively. We set ZA =- Z U 'nt U 4 ut.

- A non-empty set eA 9 VA of initial states.
- A set DA C VA X ZA X VA of discrete transitions.
- A set WA of trajectories over VA.

Some technical axioms are imposed on the above sets to guarantee that the
definitions are consistent.

An execution, a, of the hybrid automaton A is a finite or infinite alternating
sequence a = wOalwla 2 w2 ... , where for all i, ai E ZA, wi E WA defined over a
left closed time interval, fstate(wo) E (9A, if a is a finite sequence then it ends
with a trajectory and if wi is not the last trajectory its domain is right-closed
and (lstate(wi), ai+i,fstate(wi+i)) E DA. Here fstate(w) and lstate(w) denote
the initial and final states of a trajectory w. An execution is called finite if it is
a finite sequence and the domain of its final trajectory is a right-closed interval.
A state s E VA is called reachable if it is the last state of a finite execution.

To capture the evolution of an HIOA from the point of view of the "out-
side world" the notion of a trace is introduced. Roughly speaking a trace is an
execution projected to the external (input and output) variables and actions.
Two automata A and B are called comparable if they have the same external
interface. If A and B are comparable, then we say that A implements B if the
hybrid traces of A are a subset of those of B. Typically one thinks of B as a
specification and A as an implementation of the specification. A specification is
usually a more abstract description that imposes weaker restrictions on the sys-
tem behavior. Proving that one hybrid automaton implements another can be a
complicated task. Usually it is broken up in a series of steps, where the abstract
specification is progressively refined. At each step implementation is proved us-
ing simulation relations. A simulation from A to B is a relation R C_ VA X VB

such that (roughly speaking) two states, r of A and s of B, are related through
R if from state s B can reproduce any move that A makes from r (discrete or
continuous) by a hybrid execution which is indistinguishable from the move of
A from the point of view of the outside world. The final states of the two moves
should again be related by R.

Hybrid automata "communicate" through shared variables and shared ac-
tions. Consider two automata A and B with XA n VB = XB n VA = YB n YA = 0

294

and n• n EZA = ZA nlB = zAUt fl n ut = 0. Under some mild techni-
cal assumptions, the composition, A x B, of A and B can be defined as a new
hybrid automaton with UA×B = (UA U UB) \ (YA U YB), XA×B = XA U XB,
YAxB = YA U YB (similarly for the actions). eAxB, DAXB and WA xB are such
that the executions of A x B are also executions of each automaton when re-
stricted to its variables and actions. It can be shown that composition respects
implementation.

A derived variable of A is a function on VA. Derived variables will be used
to simplify the system description, but also to facilitate the analysis. A property
of A is a boolean derived variable. A property is stable if whenever it is true at
some state it is also true at all states reachable from that state. A property is
invariant if it is true at all reachable states. Typically properties will be shown
to be stable or invariant by an induction argument on the length of an execution.

In some places differential equations will be used to simplify the description
of the set WA. In such cases)/VA is assumed to be populated by all trajec-
tories generated by the differential equation in the usual way. To simplify the
description of DA, we will assign a precondition and an effect to each action. The
precondition is a predicate on VA while the effect is a predicate on VA X VA.
The action can take place only from states that satisfy the precondition; more-
over, the states before and after the transition should be such that the effect is
satisfied.

The following properties of the HIOA formalism are especially useful for
CTAS modeling:

1. Descriptive Power: The modeling formalism provides a uniform frame-
work in which one can describe the evolution of general classes of variables,
ranging from real and integer numbers (with their associated mathematical
structure) to abstract high level data types typically found in a computer
program.

2. Hybrid Dynamics: The formalism allows us to capture continuous and
discrete dynamics and the interaction between the two.

3. Compositionality: The modeling formalism allows us to build up the de-
scription of the complicated CTAS system by combining simpler entities.

4. Abstraction: The notion of specification and implementation allows us to
describe the system at various levels of abstraction. This provides a way of
showing that the CTAS code satisfies a specification through a sequence of
progressive refinement. Abstraction also allows us to structure proofs hierar-
chically, with simulation relations connecting the levels of the proof hierarchy.

3.2 Formal CTAS Model

The CTAS system will be modeled as an interconnection of a number of compo-
nents (Figure 2). In this section we will show how the input-output interaction
between these components can be captured by appropriate hybrid automata.
The models given here will be "high level"; in a number of places we will use

295

Environmentl Weatheraeo

Aircraft Radar -

] Comm. Air

Pilots - Channel TrafficController

Fig. 2. CTAS Feedback Loop

derived variables to represent parts of the algorithm, the air traffic controller be-
havior, etc. for which we can not provide explicit expressions at this stage. The
model can be refined until it contains sufficient details to carry out meaningful
safety analysis. The refinement primarily involves providing explicit expressions
for these derived variables. Here we will briefly discuss the operation of all the
components shown in Figure 2. For the time being we restrict our attention to
FAST; the remaining CTAS components can be similarly modeled. Examples of
HIOA pseudo-code for FAST can be found in the appendix; for more examples
see [9].

Aircraft Model: The system we consider consists of N aircraft, labeled 1,..., N.
Each aircraft, i, is modeled by a hybrid automaton, Ai = (UA , XA,, YA,, Zi,

Aint zut eAi, DAi, •A). At this stage we assume that the aircraft evolution is
not affected by any actions, input, output or internal (ZAi = in. U Z'nt U -Au 'ot.

0 and hence DAi = 0). At a later stage appropriate actions can be added to model
discrete changes in the physical system, such as malfunctions.

Each aircraft is identified by its type, for example, TurboJet, 747, etc. This
information is stored in an internal variable Typei. The physical movement of
the aircraft is summarized by the trajectories of its position and velocity. Let
pi= (xi,yi, zi) E R3 , vi (v?, vy vf i) E R3 be the position and velocity of the
aircraft with respect to some fixed reference frame on the ground. The motion
of the aircraft is influenced by the commands of the pilot and the environmental
conditions. Let ai represent the pilot commands (for the engine, control surfaces,
flaps, etc.) and wi the environmental conditions at the current position of aircraft
i (wind and temperature for example). We assume that all trajectories in WA,

296

satisfy the differential equation:

Sj(t)] = [f(Type ,v (t), (t),W (t))(d

We set YA, = {Typej, pi, vi}, UA, = {aj, wi} and XAj = 0. The function f returns
the acceleration of the aircraft, which will in general depend on the aircraft type,
the aircraft velocity, the commands of the pilot and the weather conditions.

The aircraft automaton is only partly specified at this stage. We still need
to provide an expression for the derived variable f. This expression is likely to
be very complicated. For the preliminary safety analysis we start with simple
formulas (such as f = aj); more accurate expressions can be obtained from the
aircraft model database used by CTAS.
Environment Model: We assume that the motion of each aircraft is influenced
by the wind and temperature at its current position. To encode this information
we introduce a hybrid automaton E = (UE, XE, YE, Zi, Z•i, ZE.ut, eE,

DE, WE). The environment automaton has no internal, input or output actions
(ZE = 0) and no internal variables (XE = 0). Its inputs are the positions of
all aircraft, (UE = {pj} 1) and its outputs (denoted by wi E 1R4) are the wind
magnitude and direction and the temperature at each one of these positions
(YE = j{wj}i). The environmental conditions are encoded by a function W:
]R+ x Rl3 --+ 4 , that returns the wind and temperature at the current time and
the given location.

The environment model is only partly specified at this stage. To complete
the description we need to provide an expression for the derived variable W. We
propose to start with very simple expressions (e.g. W constant as a function of
time) and refine them at a later stage, as the description of the automata that
make use of the weather information n (the aircraft and the weather daemon
soon to be specified) becomes more detailed.
Radar Automaton: CTAS obtains information about the state of each aircraft
through radar. We model the radar by a hybrid automaton R = (UR, XR, YR,
_rn, ZRV Zu', R R, DR, WR). The input variables of R are the positions

and velocities of all aircraft (UR {p, V,}N 1) while the output variables of R
are estimates of these quantities, denoted by Pi and Oi (YR = {^i, ^}' 1) At
this stage the radar automaton is assumed to have no input or internal actions

(Zn= 'Z,2i = 0).

The information that the radar provides about the aircraft is quantized spa-
tially and sampled temporally. We assume that the output variables of the radar
automaton fall within an interval centered at the "correct" values dictated by
the actual state of the system. Let np E R3 and nv E R3 denote the width
of the intervals for 5ij and f3j respectively. At this stage we assume np and nv
are constant; these quantities may become internal variables later on, to model
variations of the accuracy of sensing with position and environmental conditions,
for example. The output variables of the radar are updated every T, seconds,
upon the occurrence of an output action Sampler. We set ZO'Ut = {Sampler}.
An internal variable Tr E IR keeps track of the time that has elapsed since the

297

last sample. T, is typically of the order of a few seconds. Once values for np, nV
and t, are available the radar automaton will be completely specified.

Weather Daemon: CTAS also obtains information about the environmental
conditions in the vicinity of each aircraft. This information is provided by a
hybrid automaton D = (UD, XD, YD, ZD, Dn*, '2u',)D, DD, WD). D is
very similar to the radar automaton R. D has no input or internal actions
(Zp = ZLj = l). Its input variables are the weather conditions at the location
of each aircraft (UR {wi}f'L) and its output variables are estimates of these
quantities denoted by &i (YR &{wi}il). wi are quantized to within n, E I4

of the real environmental conditions and sampled every T. time units, upon the
occurrence of an output action Sample,.

The FAST Automaton: The FAST algorithm itself will be encoded by a hy-
brid automaton FAST= (UFAST, XFAST, YFAST, ZLAST, EFAST, -FAST,
(9FAST, DFAST, WFAST). The input variables of FAST are the output vari-
ables of the radar and weather daemon automata and type information from
the aircraft automata. Overall, UFAST = YR U YD U { Typei}gl. FAST pro-
vides advisories to the air traffic controllers for all aircraft, YFAST = {advi}Nl.
An internal variable, FAST.AC C {1,...,N}, is used to store the labels of
all aircraft currently in the TRACON. It is assumed that for aircraft not cur-
rently in the TRACON (i ý FAST-AC) a default advisory advi = I (unde-
fined) is issued. For aircraft in the TRACON, the nature of the advisory de-
pends on the version of FAST. This information is stored in an internal variable
Version E {Active, Passive}. If Version = Passive, the advisory for each aircraft
consists of a runway assignment and a landing sequence. If Version = Active,
FAST also provides heading, altitude or speed commands. At this stage we model
these commands as a position in the x - y plane, P, and a number, V, that en-
codes a desired heading altitude or speed; the interpretation is that the pilot is
asked to guide the aircraft to P and achieve V by the time it gets there. The ad-
visory calculations involve the degrees of freedom available to each aircraft and
are restricted by sequencing constraints imposed by the air traffic controllers.
This information is stored in internal variables dofi and Constraints. Overall,
XFAST = {FASTAC, Constraints, Version} U { dofi} gYi.

The evolution of the FAST automaton is disrupted by input actions. After
each action the advisories for all aircraft currently in the TRACON are recal-
culated. The calculation is encoded by a derived variable Calculate-Advisory.
Input actions Sampler and Sample, are the output actions of the radar and
weather daemon automata respectively. Their role is to recalculate the advi-
sories whenever new data becomes available. Input action CenterHandoff(i)
occurs when aircraft i enters the TRACON. It represents the hand-off of air-
craft from the Center to the TRACON air traffic controllers and is assumed to
be the output of a hybrid automaton modeling the air traffic controllers. The
effect of Centerllandoff(i) is to add aircraft i to the list of aircraft currently
in the TRACON, initialize its possible degrees of freedom and recalculate the
advisories for all aircraft. The degrees of freedom are initialized according to
a derived variable DefaulLdof(i), whose "output" will typically depend on the

298

aircraft type, the point of entry into the TRACON, the weather, etc.
The TRACON air traffic controller influences the evolution of FAST through

three input actions. Using action Constrain Order(i, j), the controller can force
FAST to schedule aircraft i before aircraft j. The effect of this action is to add
(ij) to the list of sequencing constraints maintained by FAST and recalculate
the advisories. Constrain.dof(i, dof) allows the controller to reduce the degrees
of freedom that FAST considers for aircraft i. Upon occurrence of the action
FAST removes the specified degree of freedom from the list dofi and recalculates
the advisories. Finally, the action Tower-Handoff(i) occurs when aircraft i lands
and is handed-off to the tower controllers. The effect of the action is to remove i
from the list of aircraft currently in the TRACON, together with all sequencing
constraints involving i on the remaining aircraft. The advisories for the remaining
aircraft are recalculated.

To complete the description of the FAST automaton we need to provide
expressions for the derived variables Default-dof(i) and Calculate-Advisory. The
expressions need to be extracted from the FAST documentation.
Air Traffic Controller Model: The air traffic controllers are modeled by
a hybrid automaton, ATC = (UATC, XATC, YATC, L'ATC, nATC' °ATC,

eATC, 'DATC, WATC). The inputs to ATC are the advisories from FAST
as well as all the information available for each aircraft. Overall UATC =
{advi, TypejPi, 0j, ivj}gl. As at this stage we are only concerned with the FAST
operation, ATC will primarily model the TRACON air traffic controllers. The
only function of the Center air traffic controllers in this setting is to feed air-
craft into the TRACON, by executing action CenterHandoff(i). We assume
that the Center contains a number of aircraft, whose labels are stored in an
internal variable Center-AC. An aircraft gets removed from this list and is
handed off to the TRACON controller upon the occurrence of output action
CenterlHandoff(i). The precondition of the action is a boolean derived variable
CenterHandoffCondition(i).

The TRACON controller may choose not to follow a particular advisory or
to follow it after some delay. This information is stored in the boolean internal
variables Followi and the real internal variables di. We assume that the controller
keeps track of the previous advisory issued by CTAS for aircraft i in an inter-
nal variable OldAdvisoryi. OldAdvisoryi is used to trigger an internal action
NewAdvisoryi. Upon occurrence of the action the controller decides whether
the new advisory will be followed and selects a delay. If the controller chooses
to follow the advisory, the speed, altitude or heading command is transmitted
to the pilot of aircraft i after a delay di, upon the occurrence of an output ac-
tion Sendi. If the controller chooses not to follow the advisory or if FAST is
"passive" the transmitted command is assumed to be determined by a derived
variable Independent-Choice(i). Our model also allows controllers to issue inde-
pendent commands in between the FAST advisories, whenever a boolean derived
variable IndependentChoiceCondition(i) becomes true.

The controller can influence FAST through actions Constrain- Order(i, j) and
Constrain-dof(i, dof). The preconditions for these actions are encoded by boolean

299

internal variables Order-Condition(i, j) and DOF.Condition(i, dof). We assume
that the controller keeps track of the constraints it has previously issued. This
will allow us to make the controller model more realistic later on (for example,
require that the controller does not issue contradictory constraints). Finally, the
TRACON controller decides when the aircraft has landed and hands it off to the
tower controllers. This "action" is encoded by Tower.Handoff. The precondition
for this action is a boolean derived variable TowerHandoff-Condition(i).

The controller model requires expressions for CenterHandoffCondition(i),
Order-Condition(i, j), DOFCondition(i, dof), IndependenLChoice-Condition(i),
IndependenLChoice(i) and Tower-HandoffCondition(i). Obtaining expressions
for these variables is likely to be a major challenge, as it involves understanding
the complicated decision making process of the human air traffic controllers.
To start the safety analysis we will assume that FAST is active, the controller
always follows the proposed advisories, never imposes additional constraints and
hands off the aircraft to the tower at the runway threshold.
Communication Channel: Communicating commands to the pilots is achieved
through communication channel automata, Ci. Each automaton has an input ac-
tion Sendi (command), whose effect is to store the command together with a time
stamp in an internal multi-set. The message is delivered (and removed from the
multi set) upon occurrence of the output action Receivei (command). Delivery is
guaranteed by at most d& time units from the time the message was sent.
Pilot Model: Finally, the pilot is modeled by a hybrid automaton Pi. Pi accepts
input information about the aircraft and the air traffic controller commands
(obtained through the input action Receivei(command)) and produces input ai
for the aircraft automaton. Similar to the air traffic controllers, a pilot is given the
freedom to ignore an ATC command. His/her decision is stored in an internal
variable Followv'. If the pilot chooses to follow a particular command he/she
responds after some delay (encoded by input variable dPi). In this case, ai is
chosen according to a derived variable Comply. Otherwise, ai is chosen according
to a derived variable NoLComply. Expressions for these derived variables are
needed to complete the description of the pilot automaton. These expressions
may again be hard to obtain as they involve modeling the response of the human
pilots and/or the autopilots.

4 Safety Notions

The performance evaluation of large scale systems like CTAS is a very complex
process. Various metrics quantitatively measure system performance and allow
comparisons between different designs. The three most prominent performance
areas for CTAS are:

- Safety, which receives top priority
- Economic considerations, such as minimizing fuel and operating costs as

well as time delays. Other considerations, such as passenger comfort can also
be included in this category.

300

- Reduction of controller workload and, more generally, increasing situa-
tional awareness of controllers.

Even though all three aspects of the system performance are important, and
the interaction between them is very interesting, here we will concentrate on
questions of safety. We classify of safety questions into:

- Nominal Safety: considers safety under nominal conditions
- Robust Safety: questions the robustness of the nominal safety claims,
- Structural Safety: questions of safety under structural changes in CTAS
- Degraded Safety: considers safety questions in degraded operation.

The above classes of safety measures will be used to determine not whether
CTAS is safe but whether CTAS is safer than the current system. The outcome
may also depend on the metric used. For example, CTAS may be safer than the
current system under nominal operation but not as safe in degraded operation.

For the time being we restrict our attentions to safety questions when the
system operation is nominal (in a sense "perfect"). We assume that operation is
nominal if:

- Nominal CTAS: We start with fixed and reliable version of the CTAS
algorithms.

- Faultless Operation: There are no hardware malfunctions, no emergency
situations (such as aircraft low on fuel), and the environmental conditions
are benign.

- Accurate Models: The models used by CTAS can accurately predict air-
craft movement. This includes the aircraft dynamical models and the weather
models. In addition there is no uncertainty in sensors or parameters. For
nominal analysis both controllers and pilots can be modeled by a variable
delay that nondeterministically takes values in a bounded interval.

Under nominal conditions we can ask the following very precise safety questions
which can be thought of as the CTAS nominal safety specification:

- Completeness: Will CTAS issue an advisory in every situation?
- Consistency: Will CTAS issue the same advisory in identical situations?

Consistency is related to controller workload since system predictability in-
creases situational awareness.

- Stability: Are the CTAS outputs stable? This is also related to controller
workload since advisory changes reduce situational awareness.

- Separation Requirements: Loss of separation could be catastrophic and
cannot be tolerated.

- Implementability: Are the CTAS advisories implementable? Do CTAS
advisories satisfy constraints imposed by aircraft dynamics (e.g. stall condi-
tions)?

- Delay: What is the effect of delay (in the radar, weather daemon, controller
and pilot responses) in the system?

301

- Capacity Limits: What is the maximum possible TRACON capacity or
runway acceptance rate for which CTAS can maintain safety? This is related
to cost/benefit analysis.

The above list of high level CTAS specifications is refined to the lower levels
of the hierarchical structure shown in Figure 3, to derive nominal safety speci-
fications for the CTAS subsystems. Specifications at the level of TMA, DA and
FAST can be further decomposed into specifications for lower subsystems and
functions (the Route Analyzer (RA), Trajectory Synthesizer (TS), Profile Se-
lector (PFS), Dynamic Planner (DP), etc.) resulting in a set of nominal safety
specifications for each component.

Fig. 3. CTAS Hierarchical Specification Refinement

Whether CTAS satisfies the specifications will depend on the initial configu-
ration and the system parameters. Our safety analysis methodology for nominal
safety will determine the range of configurations and parameter values for which
the CTAS advisories are safe. For example, this will involve determining the
rate at which FAST can accept and safely land aircraft that enter through the
TRACON gates, for a given runway configuration. As the flow of aircraft to
the TRACON gates is determined by the Center TMA, the TMA must in turn
guarantee that this flow constraint is not violated. Nominal safety notions try to
determine conditions under which the nominal system meets the desired spec-
ification. In general the more relaxed the conditions are, the safer the nominal
system is. For example, if CTAS can safely handle a flow rate of 60 aircraft an
hour in the TRACON under nominal conditions, then it is likely to be more
robust than a similar system that can safely handle 50 aircraft an hour.

Given the nominal safety specifications for the various CTAS systems, the
next three classes of safety notions try to measure the effect of uncertainty,
structural changes and failures to the nominal safety issues.

302

5 Conclusions

In this paper, a framework for the modeling, specification and safety analysis of
the Center-TRACON Automation System (CTAS) is proposed. We believe that
this "system theoretic" perspective can prove very fruitful not only for the CTAS
problem, but also more generally for the verification of complex, hybrid software
systems (see for example [2] for the application of this methodology to the Traffic
Alert and Collision Avoidance System (TCAS)). The discussion presented in this
paper is only a first step in the verification process of CTAS. Some of the safety
questions we formulate are challenging and may require extending the state-of-
the-art analysis and verification techniques.

Acknowledgments: The authors would like to thank Darren Cofer and Rosa We-
ber from Honeywell Technology Center and Nancy Lynch from the Laboratory
for Computer Science at MIT for their contributions at various phases of this
project.

References

1. H. Erzberger, T.J. Davis, and S. Green. Design of center-TRACON automation sys-
tem. In Proceedings of the AGARD Guidance and Control Symposium on Machine
Intelligence in Air Traffic Management, Berlin, Germany, May 1993.

2. John Lygeros and Nancy Lynch. Towards the formal verification of the TCAS
conflict resolution algorithms. In IEEE Control and Decision Conference, pages
1829-1834, 1997.

3. W. Nedell and H. Erzberger. The traffic management advisor. In American Control
Conference, San Diego, CA, December 1990.

4. Steven M. Green, Robert A. Vivona, and Beverly Sanford. Descent advisor pre-
liminary field test. In Proceedings of the AIAA Guidance, Navigation and Control
Conference, Baltimore, MD, August 1995.

5. T.J. Davis, K.J. Krzeczowski, and C. Bergh. The final approach spacing tool. In
Proceedings of the 13th IFAC Symposium on Automatic Control in Aerospace, Palo
Alto, CA, September 1994.

6. S. Green, T. Goka, and D.H. Williams. Enabling user preferences through data ex-
change. In Proceedings of the AIAA Guidance, Navigation and Control Conference,
New Orleans, LA, August 1997.

7. Radio Technical Commission for Aeronautics. Final report of RTCA Task Force 3:
Free Flight Implementation. Technical report, RTCA, Washington, DC, October
1995.

8. Nancy Lynch, Roberto Segala, Frits Vaandrager, and H.B. Weinberg. Hybrid I/O
automata. In Hybrid Systems III, number 1066 in LNCS, pages 496-510. Springer
Verlag, 1996.

9. George Pappas, John Lygeros, Shankar Sastry, and Nancy Lynch. Modeling, speci-
fication and safety analysis of CTAS. Technical Report NEXTOR Research Report
RR-97-5, University of California at Berkeley, Berkeley, CA, September 1997.

303

A FAST Automaton Pseudo-Code

Data Types:
Runways = {17L, 17R, ...
Types = {TurboJet, 747, DC - 10,....
Aircraft = {1, ... , N} C N
Commands = {(P, V, K)} with P E R12 , V E 2, K E {Heading, Speed, Altitude}
Commands1 = Commands U {I}
Advisories = {(r,s,c)} with r E Runways, s e {1,... ,N}, c E Commands 1
Advisories 1 = Advisories U f±}
Weather = {(Wind, Temperature)} C R'

Variables:
Input:

wb E Weather for all i E Aircraft
Pi E IR for all i E Aircraft
Oi E R3 for all i E Aircraft
Typej E Types for all i E Aircraft

Internal:
FASTAC C Aircraft, initially 0
dofi C DOF, initially 0
Constraints C Aircraft x Aircraft, initially 0
Version E {Active, Pasive}, initially arbitrary

Output:
advi E Advisories1 for all i E Aircraft, initially I

Derived:
Default-dof(i) C DOF, for all i E Aircraft
Calculate-Advisory E Bool

Actions:
Input:

e, the environment action
CenterHandoff(i), i E Aircraft
ConstrainOrder(i, j), ij E Aircraft
Constrain-dof(i, dof), i E Aircraft, dof E DOF
TowerHandoff(i), i E Aircraft
Sample,
Sample,,

Discrete Transitions:
e:

Effect: arbitrarily reset the input variables
CenterHandoff(i):

Effect:

304

FASTAC:= FASTACi U {i}
dofi := Default-dof(i)
for j E FAST_.AC, choose advj so that Calculate-Advisory becomes true

ConstrainOrder(i, j):
Effect:

Constraints := Constraints U {(i, J)}
for j E FASTAC, choose advj so that Calculate-Advisory becomes true

Constrain-dof(i, dof):
Effect:

dof, := dof, \ f{dofJ
for j E FAST-AC, choose advj so that Calculate-Advisory becomes true

Tower.Handojff i):
Effect:

FASTAC:= FAST.AC\ {i}
dof := 0
Constraints := Constraints \ u4=1 ({(i,j)} u {(j,i)})
for j E FAST.AC, choose advj so that Calculate-Advisory becomes true

Sample, and Sample,:
Effect:

for j E FASTAC, choose advj so that CalculateAdvisory becomes true

Trajectories:
Input variables follow arbitrary trajectories
Output variables remain constant
Trajectories stop once the precondition of Towerl-andoff(i) becomes true

Deductive Verification of Hybrid Systems Using
STeP *

Zohar Manna and Henny B. Sipma
manna! sipma~cs.stanford.edu

Computer Science Department, Stanford University
Stanford, CA 94305

Abstract. We investigate the feasibility of computer-aided deductive
verification of hybrid systems. Hybrid systems are modeled by phase
transition systems, in which activities specify the bounds on the deriva-
tives of the continuous variables. We present a method for invariant gen-
eration based on static analysis of the phase transition system. The in-
variants produced can be used as auxiliary properties in the verification
of temporal properties. We show that in some cases the invariants thus
produced suffice to prove the main safety property.

1 Introduction

Deductive approaches to the verification of hybrid systems have been studied
extensively. However this work has been mostly theoretical; few implementations
exist to test the feasibility of these approaches on practical problems. Some
exceptions are [26] and [6] where PVS is used to verify (part of) the steamboiler
challenge problem [1].

On the other hand, algorithmic verification methods for hybrid systems,
based on hybrid automata [2, 16], and implemented in the tool HyTech [18]
have been successfully applied to many, relatively large practical examples, for
example [20, 21]. However, HyTech is applicable only to rectangular hybrid au-
tomata, that is, systems with a finite control structure, in which the derivative
of all continuous variables either is constant or lies in an interval bounded by
constants. Although several ways have been identified to construct conservative
rectangular approximations of systems that cannot be described by rectangu-
lar automata [17, 19], these steps may be informally justified and thus error
prone. Although HyTech is able to do parametric analysis, due to the limita-
tions of current polyhedra technology, it is usually restricted to systems with a
few parameters unspecified; it expects fixed, explicit values for the rest of the
parameters.

* This research was supported in part by the National Science Foundation under

grant CCR-95-27927, the Defense Advanced Research Projects Agency under NASA
grant NAG2-892, ARO under grant DAAH04-95-1-0317, ARO under MURI grant
DAAH04-96-1-0341, and by Army contract DABT63-96-C-0096 (DARPA).

306

In general, algorithmic methods are preferable whenever they are applicable,
because they are fully automatic. However, deductive methods are applicable
to a larger class of systems, and, in general can handle systems with symbolic
constants, parameterized systems, and nonlinear systems. The price of the gen-
erality of the deductive approach is the need for intermediate assertions and
invariants and possibly interactive theorem proving.

In this paper we investigate the practical aspects of the deductive verification
of hybrid systems by presenting a prototype implementation of a tool to assist in
such verification. It is applicable to systems with infinite control structure and is
not limited to rectangular hybrid systems. Our approach to the deductive verifi-
cation of hybrid systems is based on the formalism of phase transition systems,
introduced by Manna and Pnueli [22] as a model to describe hybrid systems.
Phase transition systems are an extension of fair transition systems: activities
are used to describe how continuous variables evolve over time, and a progress
condition imposes constraints on the progress of time under various conditions.

Our tool is implemented as part of the STeP (Stanford Temporal Prover)
verification system, an integrated toolset for verifying linear-time temporal prop-
erties of reactive systems. STeP's deductive methods include verification rules
and verification diagrams. In [22] it is shown that phase transition systems de-
fine an associated transition system that has the same set of behaviours. In
the associated transition system activities are translated into regular transitions
parameterized by their duration. This correspondence makes STeP's deductive
methods, originally developed for discrete systems, immediately applicable to
hybrid systems.

STeP also provides tools for the automatic generation of invariants. STeP's
invariant generation methods for discrete systems are described in [10], while [11]
presents a method applicable to real-time systems. Here we adapt the method
for real-time systems and propose an additional method that takes advantage of
some properties of activities. We show that for some systems the invariants thus
generated are sufficient to prove the properties of interest.

2 Preliminaries

2.1 Computational Model: Transition Systems

As the underlying computational model for verification we use transition systems
[23]. A transition system 0 = (V, e, 7) consists of

- V: A finite set of typed system variables. A state is a type-consistent in-
terpretation of the system variables. The set of all states is called the state
space, and is designated by Z. WVe say that a state s is a p-state if s satisfies
p, written s k p.

- e: The initial condition, a satisfiable assertion characterizing the initial
states.

- T: A finite set of transitions. Each transition r E "T is a function

mapping each state s E Z into a (possibly empty) set of r-successor states,

7(s) C Z. Each transition - is defined by a transition relation p-.(V, V'),

307

a first-order formula in which the unprimed variables refer to the values in
the current state s, and the primed variables refer to the values in the next
state s'. Transitions may be parameterized, thus simulating an infinite set
of similar transitions.

Computations A computation of a transition system 0 = (V, e, T) is an
infinite sequence of states 0- : SO, S, S2,, such that

- Initiation: so is initial, that is, so i e.
- Consecution: For each j = 0, 1,..., sj+l is a r-successor of sj, that is, sj+1 E

r(sj) for some r E T.

A computation prefix is a finite sequence of states that satisfies Initiation and
Consecution.

2.2 System Description: Phase Transition Systems

Transition systems are not a very convenient formalisms to describe hybrid sys-
tems, because of the discrete nature of the transitions: transitions update the
value of the variables in a discrete manner, rather than let the values of variables
vary continuously over time. Therefore we use phase transition systems [22] to
describe hybrid systems. The phase transition system presented here extends the
one presented in [22] with differential inclusions.

A phase transition system (PTS) T1 = (V, 9, T, A, 1) has the same compo-
nents as a transition system plus two additional components that allow us to
describe how continuous variables evolve over time. First, a PTS imposes some
additional constraints on V, 9, and T:

- V: The set of system variables is partitioned into a set D of discrete variables,
which can be of any type, a set C of clock variables, and a set Z of continuous
variables (also known as integrators). All variables in C and _ must be of
type real. We assume that the set of clock variables includes a variable T,
called the masterclock. The masterclock records the progress of global time.

- 9: The initial condition must satisfy e -+ T = 0.
- T: The transitions in T are considered discrete and are assumed to happen

instantaneously; therefore we require that no transition modify the master
clock, that is, for every transition - E 7- we require:

pT(V, V') -- T' T.

The new components in a PTS are

- A: A finite set of activities. Each activity a E A is described by an activity
relation:

Pa : p. --+ fdc = F" (V) A ýfbc E [Fj0(V), F.O(V)]

where pa, called the activation condition, is a predicate over V, and dU16' =

1, the set of integrators. Id' is the set of variables for which the derivative is
fully specified in a, while the derivatives of the variables in I' are specified
by differential inclusions.

308

Activity a is said to be active in state s if its activation condition p" holds
on s. The formula d'• = F'(V) stands for

.i = Fi'(V), fori= ,...m

and the formula 2b'f E [Fla(V), F.*(V)] stands for the differential inclusion

ii E [Fi',I(V), Fi•,(V)], for i = mn + 1,....n

where { x1 ,..., x,} = 1. The functions Fi* specify how the continuous vari-

ables change over time while the system is in a pa-state; the functions
Fc, (V), Fic, %(V) are a lower and upper bound on the derivative of xi. Each
activity must specify an evolution constraint on each continuous variable.
We assume that the integral of each F" is well-defined and we require that
Fc does not depend on variables specified by a differential inclusion.
Activities should be time-invariant, that is, F,* cannot explicitly refer to
time elapsed since the start of the activity. This condition does not reduce
the expressiveness, but may require the introduction of additional variables.
For example, to specify that a variable x varies according to the square
root of time in some activity, we cannot say d = Vt-, but we have to say
S= v/y-, ý = 1. The reason for this condition is to make sure that the effects
of two consecutive Ta steps are the same as the effects of one single Ta step
with duration the sum of the two steps.
To ensure that the phase transition system is time-deterministic we require
that the activities' activation conditions are mutually exclusive and exhaus-
tive, that is Pai -+ -'Pa for a 1 0 a 2, and VaEAPap must hold on the
reachable states.

- I-: The time-progress condition. An assertion over V used to specify a global
restriction over the progress of time.

Associated Transition System With each activity a E A we associate a
parameterized transition r[A], which represents an infinite set of transitions,
one for each possible interval duration A. We refer to these transitions as time-
step transitions: these are the only transitions that can advance global time. If
a has activity relation

pa --+ YdO = Fa(V) A 2b E [FEa(V), Fa(V)]

the transition relation of Ta[zA] is given by

A >0 A Pa A D'=D A Ct=C-+-,A
AIdo' = Ido' + Gc(,A)
A

p7.oA]: ^0+Gc(A) I1' A
A(6 I+ G-(J)•!E A E<Z + Gc(9)

VE E -2 VS E (0 A]. --+
17r(, C + J,2d + G"(J): E) /

309

where

Ga(J)= F-dt, G-(S)= Fj-dt, Ga(S)= F,-dt

and 1(D, C, I,I 1) is the progress condition.
In words, each time-step transition ra[.,] is a transition that is enabled if it

has a positive time duration A, its activity condition p,, holds, and the progress
condition holds throughout the interval (0, A] for all values of the derivatives
of the variables in X?". It is assumed that during this interval all continuous
variables evolve according to the derivatives specified in the activity relation, all
clocks increase uniformly with time, and all discrete variables stay the same. If
the transition is taken, the values of the variables in the successor state(s) are
constrained by the primed expressions in the transition relation.

The progress condition is similar to the tcp predicate introduced in [24]: it
constrains the time that the system can reside in a particular configuration.

The phase transition system T = (V, e, T, A, 1T) defines the associated tran-
sition system 0 = (V, e, TH), where

TH=TUT A, where TA={ra[A]61eA,A+E }

Computations A computation of a PTS T/ is an infinite sequence of states
a SO, s1, s2 ,.-., such that

- o is a computation of 0, where i is the associated transition system defined
by T1, and

- Time Divergence: the value of the masterclock T grows beyond any bound,
that is, the sequence so [T], s, [7], . . . grows beyond any bound.

A hybrid system is called non-Zeno if every finite sequence of states that is
a computation prefix of the associated transition system can be extended into a
computation. In this paper we restrict ourselves to non-Zeno systems.

2.3 Verification of safety properties

A safety property is a property expressible by a formula of the form [I p, for a
past temporal formula p (see [23] for definitions of past formula and the semantics
of E). This includes invariances, where p is an assertion. In this case the formula
states that p should be true in every accessible state of the system.

Because of the possibility to associate a transition system with a phase tran-
sition system, many verification rules presented in [23] can be reused for the
verification of phase transition systems. In this paper we will use the invariance
rule INV, shown in Figure 1, to prove some properties of hybrid systems. These
rules reduce the system validity of a temporal formula to the general validity of
a set of first-order verification conditions. In the rules {fo} r {7} stands for the
formula

(,p(V) A p,(V, V')) -+ ?(V') , VA. (ý(V) A,-[,A](V, V')) -+(V'))

for a regular and a parameterized transition r, respectively.

310

For PTS T, and assertions 0, p,

Ii. ý -+ p
12. e -+ ;
13. {J,} r {} for each r E T%

T Fp

Fig. 1. Invariance rule Div

We say that an assertion p is inductive for a hybrid system system T1 if Q-p
can be proved using rule INV with sp equal to p (that is, p holds initially and
is preserved by every transition). If these verification conditions can be proved
assuming a set of properties S, we say that p is inductive relative to S.

3 STeP

The Stanford Temporal Prover, STeP, is a tool for the deductive and algorithmic
verification of reactive systems [8, 9, ll].

STeP implements verification rules and verification diagrams for deductive
verification. A collection of decision procedures for built-in theories, including
integers, reals, datatypes and equality is combined with propositional and first-
order reasoning to simplify verification conditions, proving many of them au-
tomatically. For those that cannot be established automatically, an interactive
Gentzen-style theorem prover is available. Features such as parameterization
and transitions originating from activities introduce quantifiers in verification
conditions. Fortunately, the required quantifier instantiations are often "obvi-
ous" in that they use instances that can be provided by the decision procedures
themselves. Accordingly, an integration of first-order reasoning and decision pro-
cedures was developed that can automatically discharge many verification con-
ditions that would otherwise require the use of the interactive prover [12].

To enable symbolic manipulation of first-order formulas in the theory of real
closed fields, we are planning to integrate STeP with REDLOG [13], a package
that forms a front-end to the computer algebra system REDUCE [14]. Some of
the verification conditions generated by the case studies reported in this paper
were proved automatically by a version of REDLOG made available on the web.

4 Generation of Invariants

STeP provides tools for automatic generation of invariants based on static anal-
ysis of transition systems for reactive systems [10] and real-time systems [11].
These invariants are invaluable as auxiliary properties in deductive verification.
We will describe two techniques for automatically generating invariants for hy-
brid systems.

For a PTS T1 = (V, -D,.A, 1-), and associated transition system 0 =

(V, e, TH), define

POstD(X) =V post(7.X), POStA(X) = V post(r,-X)
E7D rE TE -H- TD

311

where

post(r,X) = 3V°. X(V°) A p(V°, V)

and for a parameterized transition 7[A]

post(7Q, X) = 3,, Vy . X(Vy) A p, [A](V°, V)

Thus, POStD (X) characterizes all the states that can be reached from a state
satisfying X by a discrete transition, and POStA (X) characterizes all the states
that can be reached from a state satisfying X by a time-step transition.

Invariant 1 The first invariant is similar to that described in [11] for real-time
systems.

Inv, : e v POStD(true) V POStA(true)

Inv, characterizes the set of states that is either an initial state or can be reached
by either a discrete transition or a time-step transition, starting from anywhere
in the state space. It is not hard to see that Inv, is an invariant of T1.

As we may want to apply an invariant to every verification condition, it is de-
sirable to minimize the number of quantifiers it contains. In STeP the existential
quantifiers generated for the discrete transitions are used with universal force
when appearing in assumptions and are mostly eliminated by STeP's simplifier.
Similar to [11] we can approximate POStA(true) by the progress condition H7,
since

post(r,, true) = 3z, Do, Co, Z . p. [,-A] (V°, V)

is equivalent to

A>0
*A

lZo 0 + Go'(6) •Z-lb' A 1,'ý1"0 + G-(
paA bA 0Zg Yba -- GOa (8) < EAE < C• +G' (

VE , J E (0, A] -

(17(D, C + 6 - AE < + GI(+) - Gc(A), E))

by taking D' = V, CO = C - A and 2'd = Id' - Ga(A), which in turn implies

p. A H(V,C, Id,Z)

by taking 6 = A and E = lb, and thus we have

POStA -+ 1-(D7,C,Z•,d)

as required.
In [7] and [25] a similar method is used for the generation of invariants for

untimed programs and hardware respectively.

312

Invariant 2 The second invariant takes advantage of the time-invariance prop-
erty of activities. Time invariance ensures that the possible effects of taking two
successive r,, transitions of duration ,A1 and A2 are the same as taking one r,
transition of duration A 1 + A2 , that is

Pr, [- 1] - P-.o [-1] = Pr. [Al + A2]

Based on this property we can claim

Claim 1 Given a phase transition system 0 = (V, e, T, A, 1Y), the following is
an invariant of &:

InV2 : eV PoStD(true) V POStA(POstD(true) V e)
Justification: Assume, by contradiction, that there is some state s that is

accessible in a computation of T1, but does not satisfy Inv2 . Clearly s cannot be
an initial state or the result of a discrete transition, so it must be the final state
of a time-step transition, ra[A]. Let so be the state from which Ta was taken.
Clearly so cannot be the result of a discrete transition, or an initial state, so it
must, like s, be the final state of a time-step transition, -r,,. However, rl, where
a, A a cannot be followed immediately by ra, by the requirement that p', Apa
be unsatisfiable, that the activation conditions only depend on discrete variables,
and that a time-step transition cannot modify any discrete variables; two distinct
time-step transitions always have to be separated by a discrete transition. Thus
so must be the final state of another time-step transition Ta[Ai]. However, by
time invariance, the effect of -a [Al1] followed by 7a,[A] is the same as taking
the single time-step transition ra[lA, + A]; repeating the'same argument for the
starting state of r,,[A61] we can conclude, by induction, that r7[A] cannot be
preceded by another r,, time-step transition.

In the following section we will see that this invariant is strong enough to
prove the safety property of the water-level monitor.

5 Example

We verified several (symbolic versions) of the case studies reported in
the HyTech literature. Translation from a hybrid automaton [16] to a
phase transition system is straightforward. Given a hybrid automaton WL =
(X, (V, E), init, inv, flow, jump) where X is a set of variables, (V, E) a set of
nodes and edges, init a mapping from nodes to assertions denoting the initial
condition, inv a mapping from nodes to assertions denoting node invariants,
flow a mapping from nodes to relations over X U X specifying the derivatives
of the continuous variables, and jump a mapping from edges to relations over
X U X' denoting the discrete transitions, the corresponding phase transition
system is T = (X U {s}, e, T, A7 1H), where s is a new (discrete) variable with
domain V,

9 = V (s = v A init(v)),
vEV

7- = f p.-p = jump(e) A e E E},

313

A = a I = (S = v -+ flow(v)) AV E V},

17=A s = v -+ inv(v)
vEV

5.1 Water-level monitor

To illustrate our methods we will describe the verification of the water-level
monitor system shown in Figure 2, taken from [3]; its description as a hybrid

-f max
pump high

y
low

level m loin
controller ,

Fig. 2. Water-level monitor system

automaton is shown in Figure 3, and its description as a phase transition system,
as entered in STeP is shown in Figure 4. The system consists of a watertank

-- 1 =ratei, 1, •1 = ratei.
y:5_ highy x = < delay

x= delay x-:= 0 x = delay x:= 0

F 3 Wat y >l lowm

Fig. 3. Water level monitor - hybrid automaton

314

Hybrid Transition System Waterlevel Controller

type valveStates = {on, switching-off,off,switching-on}

in min-y, max.y : real where min-y <= max-y
in low-y: real where low-y >= min-y
in high-y: real where high-y <= max.y /\ high-y > low-y
in delay: real where delay > 0
in rate-in,rate.out: real where rate-in > 0 /\ rate-out < 0

local s : valveStates where s = on
clock x where x = 0
continuous y where y = low-y

Progress
(s = on -- > y <= high-y) /\
(s = switching-off -- > x <= delay) /\
(s = off -- > y >= low-y) /\
(s = switching-on -- > x <= delay)

Transition switch-off:
enable s = on /\ y = high4y

assign s := switching-off, x := 0

Transition isoff:
enable s = switching-off /\ x - delay
assign s := off, x := 0

Transition switch-on:
enable s = off /\ y = low-y

assign s := switching-on, x := 0

Transition ison:
enable s = switching-on /\ x = delay
assign s : on, x := 0

Activity Aon:
enable s = on V s = switching-off
assign Deriv(y) := rate-in

Activity Aoff :
enable s = off \/ s = switching-on
assign Deriv(y) := rate-out

Fig. 4. The Waterlevel Controller phase transition system

315

that supplies water to a customer at a constant rate. The level, y, in the tank
is controlled by a controller, which observes the level via a level sensor. When
the level drops below lowy, the controller starts a pump to refill the tank, and
when the level rises above highy the pump is turned off again. When the pump
is on, the level rises with rate ratei, when the pump is off, the level drops with
rate rate0 ,t. However, there is a time delay of delay seconds between the time
the controller sends the signal to the pump and the time the flow is established
or the pump is stopped

The property we want to prove about this system is that the level stays
between a lower and upper limit, expressed by the linear-time temporal logic
formula

safe: E](miny :_ y A y _ mazy)

assuming there is sufficient margin between mazy and high!, and between mriny
and low,, expressed by the axioms

mazy > highy + ratein * delay

miny < lowy + rateot * delay

Not surprisingly, the property safe is not inductive, that is, after application
of rule INV, taking ýp = p, all first-order verification conditions simplify to true
automatically except those for Aon and Aoff, which in fact are not valid. Rather
than trying to strengthen the property to make it inductive, we generate the
invariants described in Section 4.

We first generate POStD (true), which results (after simplification) in

s =on V s =off
VI

PostD(true) : x = 0 A low y A= s =.switching-on(V
highy = y A s = switching-off

and we use this to generate POStA(POStD V e), resulting in

x>0
A

(s = off-+ lowy <_ y)
A

(s = on -+ y < highy)
A

PoStA(POStDVe): ((s = switching-onV s = switching-off) -x < delay)
A

s ff V s = onK= switching-on A y = lowy + rateot x
V

s=switching-off A y = highy + ratein x

316

Taking the disjunction, we obtain the invariants we need to make the property
safe inductive:

s = switching-on -+ y = lowy + rateout x A x < delay

s = switching-off-+ y = highy + ratei,• x A x < delay

X>O

With these invariants the two remaining verification conditions simplify to true,
where some of the non-linear clauses were proved by REDLOG [13].

Note that the system verified here cannot be verified by the current version
of HyTech due to the use of symbolic constants for rate constants which results
in non-linear terms.

5.2 Other Systems Verified

Other systems verified using STeP include the temperature controller [2], the
railroad crossing, the three versions of the nuclear reactor (clock translation, lin-
ear approximation, and rectangular approximation) [5], and the cat and mouse
example [22]. In most of these systems the automatic invariant generator gen-
erated some of the required invariants, but the user had to supply additional
invariants to make the main safety property inductive. Verification of the above
systems with symbolic constants instantiated with numbers were mostly au-
tomatic, apart from providing some invariants not provided by the automatic
invariant generator. Verification of these systems with symbolic constants gen-
erally required some, usually trivial, user guidance in the interactive theorem
prover. More examples of hybrid systems verified with STeP will appear on the
STeP webpage: http //rodin. stanford. edu/.

6 Conclusion

We demonstrated the feasibility of computer-aided deductive verification of hy-
brid systems. We verified with STeP symbolic versions of (admittedly small)
examples previously verified by HyTech. The verification of the symbolic ver-
sions usually required some user interaction, the verification of the instantiated
systems (that is, the systems verified by HyTech) was mostly automatic (apart
from providing some invariants). Currently the main limitation is the lack of
decision procedures for real arithmetic, which makes it necessary to prove some,
mathematically trivial, first-order verification conditions interactively, which is
tedious. Hopefully this problem will be ameliorated with the integration of RED-
LOG.

Considering that the current implementation is still rather limited, our pre-
liminary results suggest a high potential for deductive methods for the verifica-
tion of hybrid systems.

Acknowledgements: We thank Nikolaj Bjorner and Tomrs Uribe for their
feedback and comments.

317

References

1. ABRIAL, J. R., B6RGER, E., AND LANGMAACK, H., Eds. Formal Methods for
Industrial Applications, vol. 1165 of LNCS. Springer-Verlag, 1996.

2. ALUR, R., COLRCOUBETIS, C., HALBWACHS, N., HENZINGER, T. A., Ho, P.-
H., NICOLLIN, X., OLIVERO, A., SIFAKIS, J., AND YOVLNE, S. The algorithmic
analysis of hybrid systems. Theoretical Computer Science 138, 1 (1995), 3-34.

3. ALLRu, R., COLRCOUBETIS, C., HENZINGER, T. A., AND Ho, P.-H. Hybrid au-
tomata: An algorithmic approach to the specification and analysis of hybrid sys-
tems. In Grossman et al. [15], pp. 209-229.

4. ALUR, R., AND HENZINGER, T. A., Eds. Proc. 8 th Intl. Conference on Computer
Aided Verification (July 1996), vol. 1102 of LNCS, Springer-Verlag.

5. ALUR, R., HENZINGER, T. A., AND Ho, P. Automatic symbolic verification of
embedded systems. IEEE Trans. Software Engin. 22, 3 (Mar. 1996), 181-201.

6. ARCHER, M., AND HEITMEYER, C. Verifying hybrid systems modeled as timed
automata: A case study. In Proc. 1st Intl. Workshop Hybrid and Real-time Systems
(HART) (1997), 0. Maler, Ed., vol. 1201 of LNCS, Springer-Verlag.

7. BENSALEM, S., LAKHNECH, Y., AND SA]DI, H. Powerful Techniques for the Auto-
matic Generation of Invariants. In Alur and Henzinger [4], pp. 323-335.

8. BJORINER, N. S., BROWNE, A., CHANG, E. S., COL6N, M., KAPUR, A., MANNA,
Z., SIPMA, H. B., AND URINE, T. E. STeP: Deductive-algorithmic verification of
reactive and real-time systems. In Alur and Henzinger [4], pp. 415-418.

9. BJORNER, N. S., BROWNE, A., CHANG, E. S., COL6N, M., KAPUR, A., MANNA,
Z., SIPMA, H. B., AND URInE, T. E. STeP: The Stanford Temporal Prover, User's
Manual. Tech. Rep. STAN-CS-TR-95-1562, Computer Science Department, Stan-
ford University, Nov. 1995.

10. BJORNER, N. S., BROWNE, A., AND MANNA, Z. Automatic generation of invari-
ants and intermediate assertions. Theoretical Computer Science 173, 1 (Feb. 1997),
49-87. Preliminary version appeared in 1" Intl. Conf. on Principles and Practice
of Constraint Programming, vol. 976 of LNCS, pp. 589-623, Springer-Verlag, 1995.

11. BJORNER, N. S., MANNA, Z., SIPMA, H. B., AND URIBE, T. E. Deductive verifica-
tion of real-time systems using STeP. In 4th Intl. AMAST Workshop on Real-Time
Systems (May 1997), vol. 1231 of LNCS, Springer-Verlag, pp. 22-43.

12. BJORNER, N. S., STICKEL, M. E., AND URIBE, T. E. A practical integration of
first-order reasoning and decision procedures. In Proc. of the 1 4 "h Intl. Conference
on Automated Deduction (July 1997), vol. 1249 of LNCS, Springer-Verlag, pp. 101-
115.

13. DOLZMANN, A., AND STUB.M, T. REDLOG: Computer algebra meets computer
logic. ACM SIGSAM Bulletin 31, 2 (June 1997), 2-9.

14. FUR INFORWATIONSTECHNiK BERLDI, K. Z. Z. REDUCE symbolic math system.
http ://vww.zib.de/Symbolik/reduce/, 1995.

15. GROSSMAN, R. L., NERODE, A., RAVN, A. P., AND RIsCHEL, H., Eds. Hybrid
Systems (1993), vol. 736 of LNCS, Springer-Verlag.

16. HENZINGER, T. A. The theory of hybrid automata. In Proc. 11th IEEE Symp.
Logic in Comp. Sci. (1996), IEEE Computer Society Press, pp. 278-292.

17. HENZINGER, T. A., AND Ho, P. Algorithmic analysis of nonlinear hybrid systems.
In Wolper [27], pp. 225-238.

18. HENZD,;GER, T. A., Ho, P., AND WONG-Tol, H. A user guide to HYTECH. In
TACAS 95: First Intl. Workshop on Tools and Algorithms for the Construction and
Analysis of Systems (1995), E. Brinksma. W. Cleaveland, K. Larsen, T. Margaria,
and B. Steffen, Eds., vol. 1019 of LNCS, Springer-Verlag, pp. 41-71.

318

19. HENZINGER, T. A., AND WONG-ToI, H. Linear phase-portrait approximations for
nonlinear hybrid systems. In Hybrid Systems III (1996), R. Alur, T. A. Henzinger,
and E. D. Sontag, Eds., vol. 1066 of LNCS, Springer-Verlag, pp. 377-388.

20. HENZINGER, T. A., AND WONG-Toi, H. Using HYTECH to synthesize control
parameters for a steam boiler. In Abrial et al. [1].

21. Ho, P.-H., AND WONG-Toi, H. Automated analysis of an audio control protocol.
In Wolper [27], pp. 381-394.

22. MANNA, Z., AND PNUELI, A. Clocked transition systems. In Proc. of the Intl.

Logic and Software Engineering Workshop (Aug. 1995). Beijing, China.
23. MANNA, Z., AND PNUELI, A. Temporal Verification of Reactive Systems: Safety.

Springer-Verlag, New York, 1995.
24. NICOLLIN, X., OLrvERO, A., SIFAKIS, J., AND YOViNE, S. An approach to the

description and analysis of hybrid systems. In Grossman et al. [15], pp. 149-178.
25. Su, J. X., DILL, D. L., ANm BARRETT, C. W. Automatic generation of invariants

for processor verification. In 1st Intl. Conf. on Formal Methods in Computer-Aided
Design (Nov. 1996), vol. 1166 of LNCS, Springer-Verlag, pp. 377-388.

26. Vrrr, J., AND HOOMAN, J. Assertional specification and verification using PVS
of the steam boiler control system. In Abrial et al. [1], pp. 453-472.

27. WOLPER, P., Ed. Proc. 7 th Intl. Conference on Computer Aided Verification (July
1995), vol. 939 of LNCS.

Reduction and Decomposition of Differential Automata:
Theory and Applications

Alexey S. Matveev and Andrey V. Savkin

Department of Electrical and Electronic Engineering,
The University of Western Australia,
Nedlands, Perth, WA 6009, Australia

e-mail: savkindee.uwa.edu.au, fax: +618 93801065; phone: +618 93801621

Abstract. The paper considers an important class of hybrid dynamical
systems called differential automata. A differential automaton is said to
be reducible if its dynamics can be described by some discrete automaton
with a finite number of states. Our main results show that, under certain
general assumptions, any differential automaton is reducible. Further-
more, we prove that any reducible differential automaton can be repre-
sented as a union of a finite number of differential automata with simple
cyclic dynamics. Moreover, we show that the differential automaton has
a periodic trajectory corresponding to each of this cyclic automata.
For planar differential automata, we derive an analog of the classic Poincar&-
Bendixon theorem.

1 Introduction

Hybrid dynamical systems (HDS) have attracted considerable attention in re-
cent years (see, e.g., [1, 2, 3]). In general, HDS are those that combine continuous
and discrete behavior and involve, thereby, both continuous and discrete state
variables. In many cases (but not always), such systems operate as follows. While
the discrete state remains constant, the continuous one obeys a definite dynami-
cal law. 'Tansition to another discrete state implies a change of this law. In its
turn, the discrete state evolves as soon as a certain event occurs with both the
evolution and the event depending on the continuous state.

A typical hybrid system is a logical discrete-event decision-making system
interacting with a continuous time process. A simple example is a home climate-
control system. Due to its on-off nature, the thermostat is modelled as a discrete-
event system, whereas the furnace or air-conditioner are modelled as continuous-
time systems. Some other examples concern vehicle transmission systems and
stepper motors, computer disk drivers, robotics systems, higher-level flexible
manufacturing systems, intelligent vehicle/highway systems, sea/air traffic ma-
nagement systems as well as various systems with relays, switches, and hysteresis
(see, e.g., [1-9]).

Numerous attempts have been made recently to develop a general approach
to analysis and design of hybrid control systems. (See, e.g., [1, 2, 3] and the
literature therein.) One of the ideas employed was that of algebraic reduction to

320

a finite-state automaton [4, 11, 12]. It proceeds from the fact that the relevant
dynamics of certain discrete events associated with the system can be, in some
cases, described with such an automaton. Roughly speaking, this means that
the discrete component of the dynamics can be studied independently of the
continuous one. In its turn, this is a key to the analysis of the dynamics in
full. The above approach was so far justified for and most fruitfully applied to
relatively simple HDS called timed automata [11, 12] as well as special flow
models of manufacturing systems (see, e.g., the switched server system example
in [10]).

In this paper, the problem of the algebraic reducibility is considered for a
quite general model of HDS called a differential automaton (DA). This model
was introduced in [13] to describe various control systems with hysteresis. Under
more general assumptions, it covers a fairly larger variety of HDS including those
with sliding-mode phenomena [15, 16]. DA is studied in a bounded connected
invariant domain. The main goal of the paper is to demonstrate that the algebraic
reducibility follows directly from several general dynamical properties of the
system such as well-posedness, absence of singular points on the surfaces where
the discrete states changes and some other ones. More precisely, whenever these
properties hold, the discrete state untimed behavior is governed by a finite state
automaton.

The algebraic reducibility not only means that the dynamical behavior of
the discrete state is quite simple but also often constitutes a breakthrough to
analysis of the dynamics in full. To illustrate this, it is shown in Section 4 that,
under an additional assumption, the above invariant domain necessarily contains
a trajectory, which is periodic in both the continuous and the discrete states.
Another example is given in Section 5 where an analog of the classic Poincar6-
Bendixon theorem [22, p.295] is established for planar DA. Though the focus on
two dimensional HDS is a severe restriction, they have attracted considerable
attention recently. A very special example of such system (i.e., the so-called
three buffer switched arrival/server system) was investigated in [10, 17, 18, 19].
The emphasis was to distinguish between the cases when the dynamics is chaotic
and, respectively, when any trajectory converges to a limit cycle. In [20], an affine
HDS was investigated. Such system consists of a partition of the Euclidian space
into a finite set of polyhedral regions. Within each region, the dynamics is defined
by a constant vector field. Discrete transitions occur only on the boundaries
between regions. Certain reachibility problem was studied with the main result
being a decision procedure for two-dimensional systems. In [21], a generic class
of planar HDS was considered. It was shown how the complexity of such system
can be reduced to a one-dimensional transformation by inducing the system onto
a set of curves and certain properties of the induced system was investigated. In
Section 5, we establish an analog of the Poincar&-Bendixon theorem for a quite
general model of a discontinuous planar HDS. More precisely, it is shown that
some general dynamical properties of the system imply that the dynamics is
nonchaotic.

The body of the paper is organized as follows. Section 2 contains basic as-

321

sumptions and definitions. A necessary and sufficient criterion for DA to be
well-posed is also given here. In Section 3, we present the main results. In par-
ticular, we show that DA can be decomposed into a finite number of DA such
that, for any of them, the dynamics of the discrete state is governed by a simple
finite state automaton. In Section 4, we establish existence of periodic trajecto-
ries. Section 5 contains an analog of the classic Poincar6-Bendixon theorem.

The following notations are adopted throughout the paper. {pi, .- -. ,Ps } is
the set consisting of the elements listed. R' n is equipped with the Euclidean

norm denoted as I-1. Let K C R and E C K be given. The symbol e

stands for the relative closure of E in K, i.e., EK is the set of all points a E K
that can be approached a = limi_• ai by a sequence {ai} C E. Likewise,
intKE if the relative interior of E in K, i.e., intKE consists of all points a E E
such that, along with a, the set E contains all neighboring points a' E K :
a' E K&•a' - at < E #. a' E E for some E > 0. The symbol OKE denotes

the relative boundary of E in K, i.e., the collection of all points from P' that
do not belong to intKE. If K = R', the index K is dropped in the notations

intKE, EK, OKE.

2 Basic assumptions and definitions

Consider the following model of HDS called a differential automaton [13]

q-(t) = f [x(t), q(t)], (2.1)

q(t + 0) = ýp [x(t), q(t)] . (2.2)

Here x(t) E Rn and q(t) E Q are, respectively, the continuous-valued and the
discrete states, Q is a finite set of discrete states, and f(-) : R n x Q -+]R , V :
R•I' x Q -+ Q are given functions. Assume that this system satisfies the following
assumptions A.1)-A.5).

A.1) For each p E Q, the function f(.,p) :IRn -R R n is continuously differ-
entiable. Any solution x(.) of the equation i(t) = f [x(t),p],t > 0 can
be extended on the interval [0, +oc) and Ix(t)I -+ cc as t -+ oc. For any
p, q E Q,p $ q, the set Tp-+q := {X : Vp(x,p) = q} is closed.

This, in particular, implies that the set

Hp := {x : c(xp) = P} = {x E Rn : x U TP-+q (2.3)

is open for all p E Q. It also means that the dynamics within a given discrete
state is simple. (We assume this for the sake of simplicity.) The next assump-
tion resembles the nonsingularity one from the theory of differential equations
with discontinuous righthand sides [14]. This assumption stipulates that the vec-
tor fields are not tangent to the surfaces of discontinuity points. So far as the

322

boundary &Tp-,q is not required to be smooth now, we need a more complicated
formulation.

For any a,h E R ,r, 7) > 0, denote by kH (a,h) the cone with the vertex a
andthe axis hdefined as kO?(a,h) := {x E R' :x==a+t(h+ A) forsome0 <

t < 7, IAI < r} and say that, at the point a, the vector h looks at a set G C IR if
kr0(a, h) C G for some 77, r > 0. By this definition, the vector h does so whenever
a is an interior point of G.

A.2) For any p, q E Q,p $ q, and a E 8 Tp_+q, the vector f(a,p) looks at Tp_+q
whenever it does not look at Hp.

If the boundary &Tpq is a Cl-surface, this assumption merely means that the
vector f(a,p) is not tangent to &Tp+q at the point a.

There are several definitions of the solution of the system (2.1), (2.2) in
the literature (see, e.g, [13, 15, 16]). The natural definition [13] by which the
solution is a pair of functions [x(.), q(.)] satisfying (2.1) and (2.2) serves the
simplest case when cp[a, 'P(a,p)] = 'P(a,p) (i.e., a E Hw(a,p)) Va, p. In general, the
map p -+ (Pa(P) := V(a,p) can exhibit a whole chain of possible instantaneous
transitions of the discrete state for given a = x(t) and p = q(t)

P =: Pi P2 4 P3 ... 4 Ps. (2.4)

(The chain is interrupted at the largest index s such that pi $ pjVi / j, i, j <_ s.)
Associated with this case are alternative definitions [15, 16]. They, in particular,
take into account that, if there exist cyclic points, i.e., points a E]RI for which,
in (2.4), s > 2 and VP2(Ps) = Pl, sliding-mode effects may occur [16]. Further, we
shall study the system (2.1), (2.2) in a domain K C R' and restrict ourselves
to the case when

A.3) there are no cyclic points in K.

fhis, in particular, excludes sliding-mode phenomena and ensures that, in (2.4),
V.a(Ps) = Ps Va E K,p E Q. Furthermore, we assume that the system must not
perform all the chain (2.4) of instantaneous transitions but may leave it after
any transition. So (2.2) is to be replaced by

q(t + 0) E 45 [x(t), q(t)] where

, (a,p) := {p' EQ : p' = V(k)(p) for some k = 1,2,...} (2.5)

and WMa) := 'a 0 ... 0 Wa is the k-th iteration of the map W,,. As a result, we

k times
arrive at the following

Definition1. A pair of functions [x(.), q(-)] ,x(-) : A -+ IR ,q(.) : A - Q
(where A is an interval) is called the trajectory of the system (2.1), (2.2) if the
function x(.) is absolutely continuous, the function q(-) is piece-wise constant
and left-continuous, equation (2.1) is true for almost all t E A, and (2.5) is valid
for all t E A, t $ sup{0 : 0 E A}.

323

A.4) The set K is bounded, closed, connected, and invariant, i.e., any trajectory
[x(-), q(.)] with x(O) E K remains in K for t > 0.

The last assumption will be well-posedness, which means that a small pertur-
bation of the initial data causes only a small perturbation of the trajectory on
any bounded time interval. We introduce two definitions of well-posedness. The
first one focuses on the continuous state and formally permits the discrete state
to be perturbed arbitrarily. The second one forbids this.

Definition 2. The system (2.1), (2.2) is said to be x-well posed (well posed) on
K if, for each trajectory [x(.),q(.)], 0 < t < T- with x(0) E K and any e > 0,
there exists 5 > 0 such that any trajectory [y(-),p(-)] starting in p(O) = q(O)
and y(O) E K with ly(O) - x(O)I < 6 can be defined on [0,-r] and remains in the
E-neighborhood of the original continuous state Iy(t) - x(t)l < - Vt E [0, 7] (as
well as mes {t : p(t) 0 q(t)} < E in the case of well posedness).

Here and throughout, the symbol mesE stands for the Lebesque measure of
the set E.

Lemma3. Suppose that Assumptions A.1) - A.4) hold and, for any p,r E
Q,p $ r, the differential equations k = f(x,p),ic = f(x,r) have no common
integral curves intersecting K. Then the system (2.1), (2.2) is x-well posed on
K if and only if it is well posed on K.

A.5) The system (2.1), (2.2) is well posed on K.

This ensures that this system is deterministic on K, i.e., any initial data x(O) E
K, q(0) E Q gives rise to an unique trajectory. We close the section with a cri-
terion for Assumption A.5) to be fulfilled. Recall that the symbol OKE denotes
the relative boundary of a set E C K in K.

Theorem 4. Suppose that Assumptions A.1) - A.4) hold. Then the following
statements A) and B) are equivalent.

A) The system (2.1), (2.2) is well posed on K.
B) For any p,q Q,p54q, andaEaK [Tpq n K],

B.1) the vector f(a,p) looks at Tpq at the point a
provided p E a (Q); otherwise,

B.2) for any - > 0, there exists J > 0 such that the solution z(-) = zp(.ta') of
the Cauchy problem i = f(z,p),z(O) = a' starting in a' E K n Hp with
lat - al < 6 reaches Tp_+q no later than at the time instant t = E.

Remark. B.1) #ý B.2). If zp(tla) E K Vt E [0,77] for some r > 0, then
B.1) <* B.2).

The property A.5) is fairly co-related with A.3) so far as a cyclic point
may cause a chaos on a bounded time interval. To elucidate this, employ the
three buffer switched arrival system example from [10]. In other words, con-
sider DA (2.1), (2.2) with x = (xI,x 2 ,x3), Q {1, 2,3}, f(x,i) := fi where

324

f1 := (2/3, -1/3, -1/3), f2 := (-1/3,2/3,-1/3), 13 := (-1/3, -1/3, 2/3), and
W(x, i) 0) : -- 2 if x_- > 0 and x-- < 0, oth-

erwise, p(x,i) := i. Here j := j for j > 1,0- 3, and -1 2. In cor-
respondence with [10], let us focus attention on the planar invariant domain
K : xi 0 ,x 1 +x 2 +X3 = 1} (see fig.1).

a 2 (z2 =1) a 2
C2

Cl

f2 X,
CO1¢

g
S

a, (x= 1) X2 a 3 (X= 1) o

Fig.1 Fi.2
Within the discrete state i, the vector x E K evolves with tie velocity fi. As
soon as it touches the edge Xj (j 5 i) of the triangle K, the state i switches to
j. This rule is deterministic except for the vertices of K where a cyclic change
of discrete states is offered (e.g., 3 -+ 2 -+ 1 -* 2 at the vertex a3). In [10], a tra-
jectory was assumed to terminate whenever it arrives at a vertex. Fig.2 depicts
an infinite family of trajectories starting in q(0) = 2, x(O) = bk, k = 0, 1. The
part of the trajectory until the fall on the edge X1 is depicted with a dotted
line. Then every trajectory runs along a part of a common path depicted with a
broken line. Choose a point p on the perpendicular a2 , o. Let k -+ co. Then the
points bk and Ck approach h and the vertex a2 , respectively, and x(T) (where
T := (Ia 2 - hi + 21a2 - Pl)/lf21) converges to the point g of the intersection of
the above path with the perpendicular S to a2 , o. Obviously, any point g' G S
can be supplied with a sequence of initial states {b } C B such that b' -+ h and
x(T) -+ g' as k -+ cc. Then the initial states bk and b' are arbitrarily close to h
and to each other provided k is large enough while the corresponding states at
t = T are not. This means that, on the bounded time interval [0, T], the behavior
of the system is chaotic in the sense that the trajectory is infinitely sensitive to
the perturbation of the initial data in the vicinity of h. In view of this, it does not
come as a surprise that the behavior of the system on the infinite time interval
is also chaotic as shown in [10]. Certainly, not any cyclic point gives rise to a
chaos. A criterion to distinguish between those exhibiting and not exhibiting a
chaos may be a topic for a separate research. In this paper, we omit this and do
not deal, thereby, with cyclic points at all.

3 Decomposition of hybrid dynamical systems

In this section, the interest is focused on decomposition to DA for which the only
possible behavior of the discrete state is to repeat a fixed chain of transitions
pi -+ p2 -. 'ps p-* Pi,Pi 5 pj Vi 5 j,i,j < s. It is convenient to identify

325

such chain with any its cyclic shift in the index. After this, it can be given by
a pair [C,77(.)] where C = {p',...,ps} and the map 77(.) : C -+ C indicates
what state follows any p E C, i.e., 77(pi) = pi+l,i = 1,...,s - 1,27(Ps) = P1.
Taking into account an obvious property of the map 7(.) results in the following
definition.

Definition5. A pair [C,7(.)] is called a cycle in Q if C c Q,C i 0,77(-)
C -+ C, and, for each p E C**, the sequence p,?7(p), ... ,t7(k-1)(p) ranges over
all elements in C and 77(k) (p) = p. Here k is the number of elements in C and
77(i) (.) is the j-th iteration of the map 77(-).

Definition 6. A differential automaton is said to be d-autonomous if either
ýo(x,p) = p or W(x, p) = 77(p) Vx E R n,p E Q where 77(-) : Q -+ Q is a map.

Definition 7. DA is said to be cyclic if it is d-autonomous and [Q, 71(.)] is a
cycle.

For a d-autonomous DA and any its trajectory, the discrete state transitions

Po -+ P1 -+ P2 -ý ... (Pj 0 Pj+i) (3.6)

are independent of the continuous state*** and form an 77(.)-orbit, i.e., Pi+l =
77(pi). If the system is cyclic, the discrete state q first runs over Q in accordance
with the map 7)(.), then returns to po, and, further, merely repeats the above
chain of transitions. Underscore, that whole pieces Pk -+ "'" •+ Pm of the chain
(3.6) may be run through instantaneously and this chain may be finite in general.
Let we be given several DA

d i(t) = fi [xi (t), qi (t)] , qi (t + 0) = Wi [xi (t), qi (t)] (3.7)

(i = 1, . . . , 1) with the common continuous state space IR and diverse discrete
state ones qi(t) E Qi.

Definition8. The system (2.1), (2.2) is called the union of DA (3.7) on the
domain K C R' if Q = Q1, U... uQi, the sets Qi do not overlap Q iQj = 0, i 5 j,
the domain K is invariant for both DA (2.1), (2.2) and any system (3.7), and,
in (2.1), (2.2),

f(x,p)= fi(x,p), Vo(x,p)=Woi(x,p) VxEK, pEQi,i=l,...,1. (3.8)

If the system (2.1), (2.2) is the union of DA (3.7), the set J of all the trajectories
[x(.),q(.)] of the system (2.1), (2.2) starting with x(O) E K is splitted into I
pairwise disjoint groups J = J1 U ... U J, where Ji is the analogous set for DA
(3.7).

** It suffices to verify this property only for some p E C.
which affects only the time instants of transitions

326

Definition 9. Let only two DA (3.7) be given (i.e., i = 1, 2 in (3.7)). The second
of them (corresponding to i = 2) is said to convert on K into the first one in
course of time if Q, C Q2, any trajectory of the first DA is a trajectory of
the second DA, and, conversely, there exists an instant T > 0 such that any
trajectory of the second DA starting with x(0) E K is a trajectory of the first
one in the time domain t > T.

This means that, if one considers all trajectories [x(-), q(.)], t > 0 starting with
x(0) E K and restricts any of them on the time interval [T, +co), the resultant
set of restricted trajectories is common for the both DA whereas the first of
them is a "subautomaton" of the second one.

The following theorem is the main result of the section.

Theorem 10. Suppose that Assumptions A.1) - A.5) hold. On the domain K,
DA (2.1),(2.2) can be represented as a union of a finite number old-autonomous
DA each converting on K into a cyclic DA (3.7) (where i = 1,..., l) in course
of time. The number 1 of these cyclic DA as well as the cycle ci -= [Ci",•.]
related to any of them are determined uniquely (up to re-arranging in the index
i). All the above auxiliary DA can be chosen so that they satisfy Assumptions
A.1) - A.5).

Definition 11. Any of the above cycles ci is said to be fundamental for the
invariant connected domain K.

It follows from this theorem that, for any trajectory D = [x(-), q(.)], x(O) E K
of the original system (2.1), (2.2), the discrete state q evolves periodically since
some time instant. To explain this in more details, consider such trajectory. The
full record (3.6) of all the transitions experienced by the discrete state is called
the discrete path of the trajectoryt. To proceed, we need several properties of
trajectories. They are revealed by the following lemma.

Lemma 12. Suppose that Assumptions A.1) - A.5) hold. For any a E K and
p E Q, the trajectory of the system (2.1), (2.2) starting in x(O) = a, q(O) = p can
be defined on [0, +oc) and is unique. Furthermore, its discrete path is infinite,
i.e., the discrete state makes infinitely many transitions on the infinite time
interval [0, +oo). At the same time, it makes only a finite number of transitions
on any finite time interval.

Revert now to the foregoing trajectory D). By Theorem 10, there exists an
instant T > 0 such that - is a trajectory of some cyclic DA (3.7) in the time
domain t > T. Choose any transition Pk -A Pk+i from (3.6) that occurs at an
instant t > T. Then the chain Pk ý-+ Pk+1 - ... evidently obeys the cycle ci =
[Ci, 71i(-)] related to the above cyclic DA (3.7), i.e., pj E Ci,pj+l = 77(pj) Vj Ž k.
This yields that the discrete path (3.6) does become periodic.

t If the states a := x(t) and p := q(t) give rise to a whole chain (2.4) of instantaneous
transitions at a moment t, all the transitions from (2.4) that occur in fact must be
included in (3.6).

327

By Theorem 10, analysis of the dynamical behavior of DA (2.1), (2.2) in
the invariant domain K can be reduced to that concerning several cyclic DA.
In its turn, any of them can be studied via reduction to discrete-time systems
Yi+1 g(yi), i = 1, 2,... Indeed, let [Q, 77(-)] be the cycle associated with this
cyclic DA. Choose and fix a discrete state P0 E Q and, for any y E K, put
g(y) := x(tily,po) where Db,r = [x('Jb,r),q('Ib,r)] is the trajectory starting
in x(OIb,r) = b,q(Ojb,r) = r and ti is the least instant t > 0 such that po 0
q(tly,po) $ q(t + Oy,po) and the chain (2.4) generated by p := q(tly,po) and
a := x(tjy,po) contains po- The set E := {t > 0 : Po 5 q(tly,po) 5 q(t + 01y,po)
and the chain (2.4) generated by p := q(tly,po) and a := x(tly,po) contains po}
is countable and has no accumulation points due to Lemma 12, A.3), A.4), and
the definition of cyclic DA. So E = {tj}l= 1 where tj < tj+m and tj -+ oo as

j --+ o. Since the system is deterministic on K, we have Yj+1 = g(yj) where
yj :=X(tj),j = 1,2,... So the behavior of trajectories D a,po as t -+ oo is fairly
co-related with that of trajectories {yj} of the system Yj+l = g(yj) as j -+ oo.

Analysis of this system necessarily employs certain properties of the function
g(.). The following theorem yields easily that, under the circumstances, this
function is at least continuous. It also demonstrates that well-posedness in the
sense of Definition 2 implies well-posedness in a far stronger sense.

Theorem 13. Suppose that Assumptions A.1) - A.5) are valid and p E Q is
given.

The discrete path {pj}1=0 of the trajectory D0a,p [x(.Ja,p),q('la,p)] is in-

dependent of a E K. Given a E K and j = 1,2,..., denote by -rj(a) the time
instant when the system starting in x(O) = a, q(O) = p makes the transition
p3 -1 F-+ pj. Then the functions rj (.) K -+ [0, -oo), j = 1, 2,... are continuous
and

q(tla,p) = pj Vt E (-rj(a),,-j+1(a)], a E K, j =O0, 1.... (7-o(a) -- 0), (3.9)

maxtE[o,x,] jx(tja',p) - x(tla,p)j -+ 0
as a'--+a,a' EK for allA >OaEK. (3.10)

4 Existence of periodic trajectories

As an example of employing the above reduction, we establish existence of peri-
odic trajectories for the system (2.1), (2.2). On contrary to Section 3, now we are
interested in trajectories that are periodic in not only the discrete but also the
continuous state. It will be shown that such trajectories exist. Moreover, among
them, there necessarily are those with relatively simple structure. To this end,
we start with an insight on the structure of periodic trajectories.

Assume that Assumptions A.1) - A.5) are fulfilled. Let - = [x(-), q(.)] be

a periodic trajectory with x(0) E K and T be its least period, i.e., T := inf {T :

T > 0,x(t+T) = x(t),q(t+T) = q(t) Vt > 0}. (Here T > 0, because, otherwise,
q(.) _ p = const and the periodic function x(.) would satisfy the equation

328

± f(x,p) in violation of A.1).) The discrete path P0 -+ P1 - ... i + Ps
of this trajectory on the interval 0 < t < T is finite by Lemma 12. Due to
Theorem 10, it obeys some fundamental cycle [C, 77(.)] of the domain K, i.e.,

pi E C Vi,pi+l = 7(pi),i = 0,... ,s- 1. Periodicity and A.1) imply that the
above path is composed of k > 1 complete runs through that cycle. The periodic
trajectory is said to be elementary (for the invariant domain K) if k = 1 for it.
For such trajectory, the least period of the discrete state alone evidently equals
the above period T. So is the least period of the continuous state if, for any
p, r E Q,p 5 r, the equations i = f(x,p),= f(x, r) have no common integral
curves intersecting K.

Theorem 14. Suppose that Assumptions A.1) - A.5) hold and the domain K
is homeomorphic (see [22, p.18 8] for the definition) to a closed ball. Then the
domain K contains an elementary (for K) periodic trajectory D = [x(-), q(-)],

x(t) E K Vt > 0. Moreover, for any fundamental cycle c = [C,7(-)] of the
domain K, there exists an elementary periodic trajectory D that lies in K, i.e.,
x(t) E K Vt > 0, and obeys this cycle, i.e., pj E C, pj+l = 71(pj),Jj = 0, 1,...
where {pj} is the discrete path of D.

5 An analog of the Poincar&-Bendixon theorem

In this section, we consider the planar system (2.1), (2.2), i.e., x(t) E 1R2 in
(2.1), (2.2). Suppose that the system satisfies Assumption A.2) in the following
strengthened form A.6) and the following additional assumption A.7) is also
valid. Recall that the symbol OKE stands for the relative boundary of a set
ECK in K.

A.6) Forp, r E Q, p A r, and a E OK (TprfnK), one of the vectors f (a, p), - f (a, p)
looks at Hp := {x: ý(x,p) = p} with the other looking at Tv 7 at the point
a.

A.7) The domain K is closed. Given p,r E Q,p 0 r, the set T__T: {x

W(x, p) = r} is closed. Its relative boundary OK (Tp-• nK) can be partitioned
into a finite set 6 P-+r of compact segments of C' -smooth non-selfcrossing
curves so that no more than two segments have a common point and any
two segments either do not intersect or have a common end-point and are
transversal. Any two segments corresponding to different pairs (p, r) and
(p, r') are either disjoint or transversal at any common point or lie on a
common C' -smooth curve.

The main result of the section is a necessary and sufficient criterion for the
system (2.1), (2.2) to exhibit a simple dynamics on the invariant domain K.
Roughly speaking, the simple dynamics is a nonchaotic dynamics like that de-
scribed in the classic Poincar6-Bendixon theorem [22, p. 2 95]. However, unlike
this theorem, stationary points are impossible under the circumstances. (They
are impossible within a given discrete state because of A.1) and within a sliding
mode since it cannot occur due to A.3), see [16] for details.) In the absence of

329

stationary points, the Poincar&-Bendixon theorem states that any trajectory of
a stationary ordinary differential equation either 1) is periodic or 2) converges
to one of no more than countably many limit cycles. (Recall, that, in general,
periodic trajectories may fill certain domains.) For the system (2.1), (2.2) the
phenomenon 1) can appear in more general fashion. A trajectory can be nonpe-
riodic but become periodic since some time instant (so far as the system is not
deterministic with respect to the backward direction of time in general). Fur-
thermore, the simplicity of the dynamics is supposed to mean that, for periodic
trajectories, the variety of possible discrete state behaviors is finite. This con-
cerns trajectories that are periodic both precisely and approximately. To precise
details, introduce the following definition.

Definition 15. Let D = [x(-), q(-)] be a trajectory defined on an interval A.
The sequence {pi} of values taken by the discrete state q = q(t) while t runs
increasingly through A is called the symbolic range of the trajectory D.

Unlike the notion of the discrete path, the discrete states through which q(.)
runs instantaneously are not taken into account now.

The symbolic range of a periodic trajectory D on (0, +co) results from pe-
riodic repetition of its symbolic range ad = (Po,... ,Pk) on (0,T] where T > 0
is the least positive period. The property in question means that the variety of
symbolic ranges ad of periodic trajectories is finite.

In the Poincar6-Bendixon theorem, the limit cycle is treated geometrically as
a curve in R2. Correspondingly, the convergence to it means that the distance
to the curve converges to the zero. Because of the discrete state, it is convenient
now not to employ geometrical treatment but to define the convergence to a limit
cycle in terms of the periodic trajectory related to it. In doing so, it must be
taken into account that the converging and, respectively, limit trajectories must
not become synchronous as t -+ co. Let D) = [x(.), q(.)] be a periodic trajectory
with the period T > 0. We say that a trajectory [y(.),p(.)],t r [0, oo) converges
to D) as t -+ co if there exists a sequence {ri} C (0, +oc) such that •-i+1 - i -+ T
as i -+ co and

maxtE[oX] y(t + Ti) - x(t)j -+ 0,

mes{t E [0, A] : p(t + 7 $)5 q(t)} -+ 0

Here and throughout, mes E stands for the Lebesque measure of a set E. Note
also that, under the circumstances, the trajectory starting with x(0) E K can
be defined on [0, +co) and is unique.

Definition 16. The system (2.1),(2.2) is said to exhibit a simple periodic dy-

namics on K if

i) there exists no more than a countable set q3 of periodic trajectories lying
in K such that any trajectory 0 starting in K either is periodic for t > Td
(where the time Td may depend on - in general) or converges to some
trajectory from T and never becomes periodic itself;

330

ii) there exists a time T. > 0 such that, for any trajectory lying in K, its

symbolic range {pj } on the time interval [T., oo) is periodic (in the index j)

and all such trajectories in total give rise to a finite number of ranges {pj}.

Let c = [C, 77(')] be a fundamental cycle of K. The set

S { := f(a,p) :p E C,a E OK (Tp,v(p) n K)}. (5.12)

is called the c-skeleton of the domain K.
Restructuring points. Given p E C, put

S) := OK (Tp-,,(p) n K), S(i+1) : S(W) n Ti (p)_,,+, (p) (5.13)

where i = 1,2,... and 27(.) is the i-th iteration 71() o ... o 71(.) of the map 27().

In terms of the chain

PO := P •-+ Pi := V. (Po) •+ "••Pn := Va (Pn--Ot (5.14)

of instantaneous transitions generated by a and p, (5.13) shapes into

) := {a e S(1): the chain (5.14) begins with

the sequencep -+ ?7(p) i "")-+

By A.4), S(i) = 0 Vi > k where k is the number of elements in C.

Lemmal7. Any nonempty set S(i)(p E C,i = 1,2,...) is a union of a finite

number of points and pair-wise disjoint topological segments (i.e., sets homeo-
morphic§ to an interval [to,tl],to < t1).

As a result, the relative boundary Op of c('+') in Spi) is a finite set. Any point

(a,p) E S, such that a E Op for some i = 1, 2,... is called the restructuring point
on the c-skeleton.

Regular and singular points. For (a,p) E Sc, (5.12) #- a E OK(Tp.-+,(p) nl K)
and, by A.7), a belongs to one s or two s', s" segments from 6pv(p). In the

first case, the line tangent to s at a is said to be tangent to OK (TP_+,1 (p) nl K)
at a. In the second case, the angle formed by the rays tangent to s' and s" is
said to be tangent to OK (TP+_,(p) n K) at a. Consider the last term pn in the
chain (5.14). The pair (a,p) E Sc is said to be regular if the line spanned by a
and a + f(a, pn) intersects the both open domains into which the line or angle
tangent to K (Tp-o(p) n K) at a splits the plane 1R2 . A pair (a,p) E Sc, which
is not regular, is said to be singular.

Backstepping mapping in the c-skeleton. Let zr(.Ia) (where r E Q and a E
R 2) stand for the solution z(.) of the boundary problem i = f(z, r), z(O) = a
extended on the maximal interval. Given w = (b, r) E Sc, put

E, := {O < o: zr(tlb) EHr Vt E [0,0)}, (5.15)

t The chain is interrupted at the largest index n such that pi 0 pj Vi 0 j, i, j < n.
§ See [22, p.188] for the definition

331

W(w) {(a,p) E S,: (a,p) = w orp, = r in (5.14) and

a = z,(0lb) for some 0 E E&}.

The multivalued function (b, r) E S, -+ W(b, r) C S. is called the backstepping
mapping in the c-skeleton. The following lemma illustrates this notion.

Lemmal8. Let (a,p) E Sc,(b,r) E Sc,(a,p) 5 (b,r). Then (a,p) E W(b,r)
if and only if there exists a trajectory [x(-), q(-)], t > 0 lying in K x C and
two consequent discontinuity points 0 < t, < t 2 of the function q(-) such that
(a,p) = [x(ti), q(ti)] and (b,r) = [x(t2), q(t 2)].

Forw E So, denote W'(w) := W(w),W'+l(w) := {w' : w' E W(w.) for some w. E
W (w) }, i = 1, 2,.... The set 0- (w) := U= 1 W

2 (w) is called the backward c-orbit
of the point w.

Our last assumption is as follows.

A.8) For each fundamental cycle c of the invariant domain K, the set of the
singular points on the c-skeleton is finite and the backward c-orbit of any
such point is also finite.

The following theorem is the main result of the section.

Theorem 19. Let x(t) E 1R2 in (2.1), (2.2) and Assumptions A.1)-A.8) hold.
Then the following two statements are equivalent.

(i) The system (2.1),(2.2) exhibits a simple periodic dynamics on K.
(ii) For each fundamental cycle c of the invariant domain K, the backward c-

orbit of any restructuring point on the c-skeleton is finite.

Assumption A.8) is evidently fulfilled if there are no singular points on the
c-skeleton for any c. This is the case if, for example, each set 6 p-r either
consists of pair-wise disjoint straight segments or is empty and any vector-field
f (-,p), p E Q is constant and transversal to all of the above segments.

In the remainder of the section, (i) of Theorem 19 and Assumptions A.1)-
A.8) are assumed to be true.

Remark 1. Let, for each fundamental cycle c = [C, ir&)] of K, any segment
s E 6P_-+(p) lie on an analytical curve and the vector fields f(.,p),p E C be
analytical. Then, in i) of Definition 16, the set T3 can be chosen finite.

Remark 2. In i) of Definition 16, the time Td can be chosen independent
of Z3.

Let D be a trajectory lying in K. Recall that the full record P0 - Po -+ pi. of
all the transitions experienced by the discrete state is called the discrete path of
D. Under the circumstances, his path is evidently composed of successive gearing
chains P7, 7'2,...

?2

PO .. Pk I+ R (5.17)

P1i P3

332

(where 1 _< ki < k2 < ...) each encompassing all the transitions that occur at
a certain time instant. It easily follows from Theorem 10 that the path {pj} is
eventually periodic. In view of A.3), Theorem 19 ensures via justifying ii) of
Definition 16 that the distribution (5.17) also becomes eventually (namely, for

t > T,) periodic, i.e., Pj-,k = Pi Vj ; c0.
Acknowledgement This work was supported by the Australian Research

Council.

References

1. "Hybrid systems I. Verification and control", ed. Grossman, R.L., Nerode, A.,
Ravn, A.P., and Rishel, H. Lecture Notes in Computer Sciences, vol.736, Springer,
1993.

2. "Hybrid systems I. Verification and control", ed. Antsaklis, P., Kohn, W., Nerode,
A., and Sastry, Sh. Lecture Notes in Computer Sciences, vol.999, Springer, 1995.

3. "Hybrid systems III. Verification and control", ed. Alur, R., Henzinger, T.A., and
Zontag, E.D. Lecture Notes in Computer Sciences,vol.1066, Springer, 1996.

4. Antsaklis, P., Stiver, J., and Lemmon, M., "Hybrid systems modelling and au-
tonomous control systems", in [1], pp. 3 66- 3 92 .

5. Brockett, R.W., "Hybrid models for motor control systems". In Trentelman, H.L
and Willems, J.C., editors, "Essays in Control", Birkhauser, Boston, 1993.

6. Gollu, A. and Varaiya, P., "Hybrid dynamical systems", In Proc. of the 28th IEEE
Conf. On Decision and Control. Tampa. 1989.

7. Savkin, A. V., Petersen, I. R., Skafidas, E., and Evans, R.J., "Hybrid dynamical
systems: robust control synthesis problems", Systems & Control Letters, vol.29,
pp.81-90, 1996.

8. Savkin, A. V., Evans, R.J., and Petersen, I. R., "A new approach to robust control
of hybrid dynamical systems", in [3], pp. 553 -5 62 .

9. Varaiya, P., "Smart cars on smart roads. Problems of control", IEEE Trans. on
Autom. Control, vol.38, no.2, pp.195-207, 1993.

10. Chase, C., Serrano, J., and Ramadge, P., "Periodicity and chaos from switched
flow systems: contrasting examples of discretely controlled continuous systems",
IEEE Trans. on Autom. Control, vol.38, no.1, pp.70-83, 1993.

11. Alur, R., Couroubetis, C., Henzinger, T., and Ho, P., "Hybrid automata: An al-
gorithmic approach to the specifying and verification of hybrid system", in [1],
pp.209-229.

12. Gennaro, S., Horn., C., Kulkarni, S., and Ramadge, P., "Reduction of timed hybrid
systems". Proc. IEEE Conf. on Decision and Control, pp.4215-4220, FL, 1994.

13. Tavernini, L., "Differential Automata and their Discrete Simulators", Nonlinear
Analysis. Theory. Methods & Applications, vol. 11, no.6, pp.665-683, 1987.

14. Filippov, A.F., "Differential Equations with Discontinuous Righthand Sides",
Kluwer Academic Publishers, 1988.

15. Doguel, M. and Ozgiiner, U., "Modelling and stability issues in hybrid systems"
in [2], pp.14 8-16 5 .

16. Drakunov, S., "Sliding modes in hybrid systems - a semigroup approach", Proc. of
the 33rd Conference on Decision and Control, Florida, 1994, pp.42 3 5-4 240 .

17. Ushio, T., Ueda, H., and Hiral, K, " Controlling chaos in a switched arrival system",
Systems & Control Letters, vol.26, pp.335-339, 1995.

333

18. Horn, C. and Ramadge, P.J., "Dynamics of switched arrival system with thresh-
olds", Proc. of the 32nd CDC, San Antonio, Texas, 1996, pp.2 88- 2 93 .

19. Horn, C. and Ramadge, P.J., "A topological analysis of a family of dynamical
systems with non-standard chaotic and periodic behavior", International Journal
of Control, vol.67, No.6, pp.979-1020, 1997.

20. Asarin, E., Maler, 0., and Pnueli, A., "Reachibility analisys of dynamical systems
having piecewise-constant derivatives", Theoretical Computer Sciences, vol.138,
pp.35-65, 1995.

21. Guckenheimer, J., "Planar hybrid systems", in [2], pp. 20 2-2 2 5.
22. Petrovski, I.G., "Ordinary differential equations". Pover Publications Inc., N.Y.,

1966.

Optimization of Generalized Solutions of
Nonlinear Hybrid (Discrete-Continuous) Systems*

Boris M. Miller

Institute for Information Transmission Problems,
Russian Academy of Sciences

19 B. Karetny per., Moscow, GSP-4, 101447, Russia,
E-mail:bmiller~ippi. ac.msk .su.

Abstract. The optimal control problem for hybrid (discrete-continuouis)
system is considered in the case when the continuous behavior can be
controled and discontinuities arise when the system achives the bound-
ary of some set. We suppose that discontinuities can be considered as
a result of some impulsive inputs, which can be represented in feedback
form as the intermediated conditions. Meanwhile, variuos types of irreg-
ulariries such as: nonextandability of solution or sliding mode can arise.
However, if the jumps of solution are described by some shift operator,
as for hybrid system satisfying the robustness condition, one can reduce
this problem to the standard problem of nonsmooth optimization and
the representation of solution by differential equation with a measure
and the existence theorem for optimal solution can be obtained.

1 Introduction

In recent years there has been a significant increase in modelling and con-
trol of hybrid systems, which are frequently can be treated as systems
charaterized by continuos and discrete behaviour. The motion of such
systems can be divided into regular and singular parts, i.e. continous
and jumping, respectively. These systems are very typical for various

mechanical applications, where the discrete-continuos modes of motions
could arise because of shocks and friction. There has been a significant
progress in this area, including the development of the rigorous mathe-
matical framework for the description of these systems and preliminary
formulations of the procedures for synthesis of contorl laws for them.
However, the common mathematical feature of these class of systems is
the presence of singularites, which manifest themselfs in: discontinuities

* This work was supported in part by National Science Foundation of USA grant

CMS 94-1447s and International Association for the Promotion of Cooperation
with Scientists from the Independent States of the Former Soviet Union (INTAS)
grants 94-697 and 93-2622.

335

and nonsmoothness in system motion, jumps in system dimension, the
lack of the continuous dependence on initial conditions and nonuniqiue-
ness of solution of equations of motion (see, for example, [1], [3]).
Traditionally the control of such systems has been exerted either during
the nonsingular phase of the system motion or during the singularity
phase, which was induced by the control action itself and did not exist
in the system naturally [5], [6], [101, [13]. Modem theory of impulsive
control provides the appropriate framework for the synthesis of the im-
pulsive control actions in the open loop form. The proper tool for the
description and optimization of such systems is the discontinuous time
transformation method, developed for nonlinear systems in [5], [6]. How-
ever, this approach cannot be directly applied to general hybrid systems,
where impulsive actions can arise as feedback ones, when the system
under control achieves the appropriate state or the set of states.
This paper focuses on the novel idea of considering a jump as a result of
some "ficticious motion" along the paths of some auxiliary system, which
provides a model of "fast motion" and describes the jump, arising in the
motion of hybrid system, in terms of some shift operator. This approach
bases on the representation of robust hybrid system, which was obtained
in [8], where hybrid systems are treated as systems with impulsive inputs.
However, if we consider these systems as ones with impulsive actions in
feedback form, it becomes necessary to find a more general mathematical
framework, than for standard problems with impuse contorls.
Thus, the goals of this paper are:

- to develop the mathematical framework for the description of con-
trollable hybrid systems with impulsive actions in feedback form;

- to derive the appropriate equations for the description of motion;
- on the basis of this framework to develop procedures for the design

of control in these systems to satisfy specific control objectives.

2 Problem statement

Consider the evolution of discrete-continuous dynamical system, whose
behaviour be described on some interval [0, T] by variable X(t) E R',
which satisfies the differential equation

k(t) = F(X(t), u(t)),()

with given initial condition X(O) = xo E R'h and following intermediate
conditions

336

X(ri) = X(r 2 -) + P(X(ri-)), (2)

which are given for some sequence of instants {rf, i = 0,..., N}, N < oo,
satisfying the reccurence conditions

="o 0

Sinf f 7_- < t < T: G(X(t-) = 0}, (3)

-2i =

0o, if the appropriate set is empty.

In equation (2) X(r 1-) - limr X(t), and ri is the sequence of instants

when the system states change discontinuously.
So, the state of system changes continuously in halfintervals [0, ri),
[7i-,, ri), ... [rv, T], and undergoes a sudden change at every instant 7j,
whose value, due to equation (2), depends on the state preceeding the
jump.

We suppose that control variable in (1)

uEU C R m , (4)

where U is some compact set, and funciton F(X, u) be continuous with
respect to all variables and continuously differentiable with respect to X.
To be sure that solution of (1) is continuable to the right we need some
additional assumptions concerning the functions TI(X) and G(X). So we
suppose that X(ri) = X(ri-) + II(X(ri-)) is the result of the action of
shift operator along the paths of differential equation

ý(s) = B(y(s)), s E [0, oo) (5)

with initial condition y(O) = X(7i-).

Therefore, if O(x, s) is the general solution of (5) with initial condition
y(O) = x, then

X(ri) = X(ri-) + W(X(ri-)) = P(X(ri-), s*(X(ri-)), (6)

where
s*(X(7i) = inf {s > 0: G(O(X(-i-), s) = 0}, (7)

and on the interval (0, s*(X(T,)) we have the relation G(O(X(ri-), s) >
0.
We assume also that B(y) be continuously differentiable with respect to

y.

337

Remark 1. All these conditions are not sufficient to prove the continua-
bility of solution for arbitrary initial condition xo, and some measurable
control u(-), however, if there exists some bounded solution X(t) with
finite number of jumps one can establish its uniqueness and continuous
dependence from initial conditions.

The optimization problem to be considered is the minimization of per-
formance ctiterion

J[X(.), u)] = o(X(T)) (8)

with some continuously differentiable function 0.

Remark 2. In spite of all our assumptions concerning regularity of func-
tions involved into the problem statement, this problem belongs to a class
of extremely irregular ones due to the possibility of nonextandability of
solution (if the set of points s in (7) is empty or infimum equal to in-
firity). The first case leads to a so-called "sliding mode" along the set
G(x) = 0, like in systems with discontinuos right-hand-side [11], the sec-
ond one corresponds the case of nonextandability of solution bejong the
some point of jump. However, in the case when the jump behavior is de-
scribed by some shift type operator one possible to reduce this problem
to the more regular one by using the discontinuous time transformation
as in impulsive control problems [5].

Remark 3. The decsription of jump by some shift operator looks like
rather artificial, however, all discrete-continuous systems that are stable
(or robust) with respect to an approximation procedure of impulsive
input admit such jump representation [6], [10], [13].

Before further consideration it would be useful to present a simple ex-
ample of hybrid system which is rather typical one and simultaneously
has all specifical features of the systems described above.

Example. Dynamic of point with elasic shocks.[9] Consider a mo-
tion of the unit mass point with generalized coordinates {Xl,X2} (state
and velocity, respectively), which moves along the straight line till the
elastic obstacle at the point x, = 0. Suppose that initial state xr(0) < 0,
and the force depends on the state, velocity and some control u, that is
in the area x, < 0, the motion equations are

•i(t) = X2(0)

(9)
i 2 (t) = F(xr(t),X2 (t),,U(t)).

338

The elastic shock at instant {r I: (r) = 0} causes the sudden change of
veloscity sign, i.e.

X22(r) = X2(-),

and the instant evolution can be desribed by the appropriate shift oper-
ator along the paths of the system of differential equations

ý1(S) = y2(S)

Y(S) = -y1(S)

with initial conditions

y1(0) = x1(--), Y2(0) = 2:(7--).

Indeed, the solution of above system is

yi (s) = X2 (7-) sin($), Y2 (S) = 2:2(r-) cos(s),

hence, we have yi (s) > 0 on the interval (0, 7r) and

Yl(70) = 0, Y2(7-) = -Y2(0) = -- x2(7-).

Therefore, the shift operator along the paths of system (10) describes
the jump behaviour in proper way.

3 Description of solution via discontinuous time
transformation

Suppose for some control u(.) we have any solution of (1) defined on
the interval [0, T], and suppose also, that this solution, namely X(t), has
a finite number of jumps at points {f,, i = 1, ... , N}. It means that for
every i N 1, ... , N be defined the set of s4 = s*(X(ri-)) < oo, such that

X(r,) = !(X(-r -), S*(X(-,))

Consider the time interval [0, Ti], where

N
Ti = T + 'Si,

in 1

and define on [03, T1] function

339

1, if se[ri,±+Es,ri±+Es!)
c (S) = <i k<i (12)

0, otherwise.

Define on the interval [0, T,1] the auxiliary system

ý(s)= a(s)F(y(s), u(r7(s))) + (1 - a(s))B(y(s)),
(13)

) a(s)

with initial conditions

y(O) = xO, 17(0) = 0.

Then the following correspondence exists between auxiliary and original
system (1).

Theorem 1. For any solution X(t) of (1) define function 77(s) by rela-
tion (12) and the inverse one by relation

F(t) = inf{s: Y(s) > t},

with F(T) = T1 by definition.
If {y(.), 77(-)} be the solution of (13), then

X(t) = y(F(t))

is the solution of system (1).

The proof follows from result, which have beed obtained for discontinuous
time transformation in robust discrete-continuous systems [6].
Notice that by definition a(s) = 1 if G(y(s)) < 0 and a(s) = 0 if
G(y(s)) > 0. This observation will be a basis for further transforma-
tion of original optimization problem. Moreover, we could consider the
system (13) as a system, which in some sense is equivalent to (1), with
new variable r7(s) for the rescaled time and with the variable a as an
additional control, which satisfies the constraint

1 if G(y(s))<0,
a(s) = (14)

0 if G(y(s)) > 0.

340

However, (14) does not define a on the boundary of constraint, namely
on the set {G(y(s) = 0}, but here we can admit the relaxation of the
problem, putting a(s) E [0, 1]. This relaxation corresponds to a standard
method of convexification of right-hand-side to guarantee the existence-
of the optimization problem solution [4].
Moreover, one can present the constraint (14) in the integral form, i.e.

Ti
f a(s)G+(y(s))ds = 0,
0

(15)

f (1 - a(s))G-(y(s))ds = 0,
0

where

G+ (y) = min{G(y), 0}, G- (y) = min{-G(y), 0}.

Using this relaxation one can obtain the following result, which general-
izes Theorem 1.

Theorem 2. Let {y(.), r/(.)} be any solution of system (13), with some
Lebesgue measurable controls {a(-), ul (-)}, satisfying constraints

a(s) E [0,1], ui(s) E U a. e. on [0,T,], (16)

and such that y(-) satisfies (15) and rq(TI) = T. Define monotonically
increaisng '(t) by relation

r'(t) = inf{s : q(s) > t}, r(T) = T1 , (17)

then for X(t) = y(F(t)) there exist:
1. Lebesgue measurable control u(.) : u(t) E U almost everywhere on

[0,71,
2. nonnegative regular measure p(dt), localized on the set {t: G(X(t)) =

0} and having the Lebesgue decomposition

/P((0, t]) = PTO' T]) + E

where Mc(dt) is continuous component of measure, and p({r}) is a
discrete one, localized at point 7;

such that X(t) is the unique right continuous solution of equation with a
measure

341

dX(t) = F(X(t), u(t))dt + B(X(t))dpC(dt) + 13 TP(X(r-), P({r})),

(18)
satisfying the constraint

G(X(t)) < 0, for any t E [o, T]. (19)

Proof. Define 1](.) by relation (17). Then I' be monotocically increasing
and right continuous [6]. Therefore, X(t) = y(r(t)) is right continuous
and satifies the equation

r(t)
X(t) = xo + f c(s)F(y(s), u.(s))ds+

0
(20)

r(t)
f (1 - cv(s))B(y(s))ds.
0

Define the distribution function of p(dt) by relation

r(t)

4(0]) 11 - a(s))ds,

0

then
r(t)

Pc((0, t]) = J I{s: Y7(s)iDr}(1 - c(s))ds,

0

p({r}) = 17(r) - *-), if r E Dv,

where Dr is the set of jump points of F and symbol I{A} stands for the
indicator function of the set A.
Assuming u(t) = ui (F(t)), we obtain it to be Lebesgue measurable (see
[7] Thin. 4.1), and applying the same arguments of time substitution as
in [6] we yeild that X(t) satisfies the equation

t

X(t) = X0 + f F(X(s), u(s))ds+
0

t r(,-) (1

f B(X(s))dp'(s) + f f B(y(s))ds,
0 rEDrfn{r<t}r(r-)

342

where
r(7)

f B(y(s))ds = T1(y(r(r-)), r(r) - r(r-)) = T(X(7-),p({r}))

r(--)

due to relations (5) and (6).
Since (21) is the integral representation of (18), we have proved that X(t)
satisfies the above equation. Uniqueness of solution follows in standard
way from differentiability of F and B.
Now by applying the time substitution to relations (15), we obtain

T, T
f a(s)G+(y(s))ds = f G+(X(s))ds = 0,
o 0

T, T
f (1 - a(s))G-(y(s))ds = f G-(X(s))dp(s) = 0,
o 0

and, therefore,
G(X(t)) < 0 a.e. on [0,2],

but due to the continuity of G and right continuity of X, this inequality
will be valid for any t E [0, T].
As follows from second relation nonnegative measure p(dt) be localized
on the set {t: G- (X(t)) = 01, however, due to the previous conclusion
this set coincides with the set {t: G(X(t)) = 01.

Remark 4. This theorem gives a representation of generalized solution of
hybrid system (1), which corresponds to cases when the number of jumps
could be equal to infinity and/or the sliding mode along the boundary
G(x) = 0 could arise. Both cases are determined by the properties of
measure p(dt), i.e., the case ,c([0, T]) > 0 corresponds to the case of the
sliding mode existence, and the case of inflfnite number of the atomic
points of P(dt) corresponds to the case of the infifnite number of jumps.

Remark 5. The problem of correspondence between ordinary and gen-
eralized (relaxed) solution in presence either the sliding modes or the
infinite number of jumps is non trivial. Generally it is not possible to
approximate the generalized solution by a sequence of ordinary ones
without constraints violation. However, it is possible to guarantee that
this violation will be informly small and goes to zero, while the approx-
imation sequence converges to generalized solution uniformly [7].

343

4 Existence of the optimal solution

So we come to the concept of generalized solution of hybrid system, which
can be defined as a right continuos function X(-), such that G(X(t)) < 0,
and satisfying the equation (18) with some admissible control u and
nonnegative measure p(dt), localized on the set {G(X(t) = 0}.
As follows from previous results it make sense to search the solution of
the original optimization problem in the class of generalized solutions.
From Theorem 2 one can obtain the equivalence of the original opti-
mization problem, which contains measures, to some auxiliary problem
of nonsmooth optimization.

Auxiliary Problem. Consider the optimal control problem for system (13)
with controls {a, ui }, satisfying (16), and such that the integral con-
straints (15) are valid. We will consider this problem on nonfixed time
interval [0, Ti], such that T, < oo : r(Ti) = T with performance criterion

J'{fy(),a(-),()}U = 0o(y(Tj)) -+ mi,

where Oo is the same as in (8).

Theorem 3. Suppose that the set F(X, U) be convex for any X E R',
the set of admissible controls of auxiliary problem is non empty, and the
set of admissible T1, such that 27(Ti) = T is uniformly bounded. Then
the auxiliary problem has the optimal solution and the optimal gener-
alized solution of the original problem satisfies the equation (18) with
appropriate control u(.) and measure p(dt).

Proof. For any control u(.) and measure p(dt), which give some gen-
eralized solution, one can define the appropriate controls {a(s), uj(s),
which are admissible in auxiliary problem. Indeed, if

r(t) = t + /.((0, t),
and

(s) = inf {t : r(t) > s},

then the appropriate admissible controls {a(s), ui (s)}, can be defined by
relations

a(s) = (s), U(S) = ((s)),
and

JX(-), u(-0]= J'{y(-), a(-), ui(-)}

344

since X(T) = y(Ti). Therefore,

inf J > inf J .uC.') - {"('),&1 (')}

Due to the convexity assumptions and boundedness of T1 the set of
admissible paths of auxiliary problems be compact (see [4]), therefore
the optimal control exists and the infl-num in the right-hand side of
above relation can be achived on some controls {a°, u°}.
To prove the existence of optimal solution for original problem it is suffi-
cient to apply Theorem 2. Indeed, if {yo, ao, uo} be the optimal solution
of the auxiliary problem, then one can define {X 0 ,u°., P}, such that
X 0 (t) = y°(,-(t)) and by virtue of conditions (15) we have

T T,

f G+(X°(t))dt = f a 0 (s)G+(y0 (s))ds = 0,
0 0

T T,

f G-(X0 (t))dp0 (t) = f(1 - a°(s))G-(y°(s))ds = 0,
0 0

therefore, G(X 0(t)) < 0 almost everywhere on [0, T] and measure p0 (dt)
be localized on the set {t: G(X°(t)) = 0}. However, X°(.) be a right
continuous function, thus the constraint G(X 0 (t)) < 0 be valid for all
t E [0,T].
Since X°(T) = y0(Ti),

J[X0 (.), uo(.)] = J {'y(.), a0(.), uo(.)} = inf J,

and the triple {X', u', p•o} be the optimal solution of the original problem
in the class of generalized solutions.
Remark 6. The auxiliary problem belongs to a class of nonsmooth op-
timization problems due to the nondifferentiability of functions G+ and
G-. However, by applying the methods recently obtained for nonsmooth
problems (see, for example [2]), it becomes possible to derive necessary
optimality conditions in the maximum principle form and design the
computational algorithms.

References

1. B. Brogliato, Nonsmooth Impact Mechanics. Models, Dynamics and
Control, Lecture Notes in Control and Information Sciences, No
220. Springer-Verlag (1996).

2. F. H. Clarke, Optimization and Nonsmooth Analysis, Jonh Wi-
ley & Sons, -New York, Chichester, Brisbane, Toronto, Singapore
(1983).

345

3. M. Jean and J. J. Moreau, Dynamics of elastic or rigid bodies with
frictional contact: numerical methods Publications of Laboratory
oif Mechanics and Acoustics, Marseille, April, No 124, (1991).

4. E. B. Lee and L. Markus, Foundations of Optimal Control Theory
John Wiley and Sons, Inc., New York, London, Sydney (1967).

5. B. M. Miller, "Method of Discontinuous Time Change in Problems
of Control for Impulse and Discrete-Continuous Systems," Autom.
Rem. Control, 54 (1993) 1727-1750.

6. B. M. Miller., "The generalized solutions of nonlinear optimization
problems with impulse controls," SIAM J. Control Optim., 34, No.
4, 1420-1440 (1996).

7. B. M. Miller., "The generalized solutions of ordinary differential
equations in the impulse control problems," Journal of Mathemat-
ical Systems, Estimation, and Control, 6, No 4, 415-435, (1996).

8. B. M. Miller, "Representation of robust and non-robust solutions
of nonlinear discrete-continuous systems" in Proccedings of Inter-
national Workshop on Hybrid and Real-Time Systems (HART'97),
Grenoble, France, March 26-28, (1997).

9. J. J. Moreau, "Unilateral contacts and dry friction in finite free-
dom dynamics", in Nonsmooth Mechanics and Applications, CIMS
Course and Lectures, No 302, Springer-Verlag, Wien. New York,
pp; 1-82, (1988).

10. Yu. V. Orlov, Theory of Optimal Systems with Generalized Con-
trols. [in Russian], Nauka, Moscow (1988).

11. A. Ph. Phillipov, Differential Equations with Discontinuous Right-
Hand-Side. [in Russian], Nayka, Moscow (1985).

12. L. C. Young, Lectures on Variational Calculus and the Theory of
Optimal Control, W. B. Saunders Company, Philadelphia, Londod,
Toronto, 1969.

13. S. T. Zavalishchin and A. N. Sesekin, Impulsive Processes. Models
and Applications fin Russian], Nauka, Moscow (1991).

Information-Based Optimization Approaches to
Dynamical System Safety Verification

Todd W. Neller*

Knowledge Systems Laboratory, Stanford University
e-mail: nellerOksl.stanford.edu

Abstract. Given a heuristic estimate of the relative safety of a hybrid
dynamical system trajectory, we transform the initial safety problem for
dynamical systems into a global optimization problem. We introduce
MLLO-IQ and MLLO-RIQ, two new information-based optimization algo-
rithms. After demonstrating their strengths and weaknesses, we describe
the class of problems for which different optimization methods are best-
suited.
The transformation of an initial safety problem for dynamical systems
into a global optimization problem is accomplished through construction
of a heuristic function which simulates a system trajectory and returns
a heuristic evaluation of the relative safety of that trajectory. Since each
heuristic function evaluation may be computationally expensive, it be-
comes desirable to invest more computational effort in intelligent use of
function evaluation information to reduce the average number of eval-
uations needed. To this end, we've developed MLLO-IQ and MLLO-RIQ,
information-based methods which approximate optimal optimization de-
cision procedures.

* This work was supported by the Defense Advanced Research Projects Agency and

the National Institute of Standards and Technology under Cooperative Agreement
70NANB6HOO75, "Model-Based Support of Distributed Collaborative Design". Au-
thor's address: Knowledge Systems Laboratory, Gates Building 2A, Stanford Uni-
versity, Stanford CA 94305-9020.

347

1 Introduction

Given a simulated hybrid dynamical system S, a set of possible initial states I,
and a set of "unsafe" states U, we wish to verify nonexistence of an S-trajectory
from I to U within tmax time units. We call this the initial safety problem. Sup-
pose we are given an approximate measure of the relative safety of a trajectory.
More specifically, let f be a function taking an initial state i as input, and eval-
uating the S trajectory from i such that f(i) = 0 if and only if the S-trajectory
from i enters U within tmax time units, and f(i) > 0 otherwise. Then verifica-
tion of the initial safety problem can be transformed into the global optimization
(GO) problem:

min (f (i)) >0
iEl

GO methods may therefore terminate when i is found such that f(i) = 0.
Given that f does not generally have an analytic form, we do not assume the
availability of derivatives. Since each evaluation of f may require a computation-
ally expensive simulation, we are particularly interested in GO methods which
perform relatively few evaluations of f. In this context, we introduce two new
information-based optimization methods which use function evaluation informa-
tion approximately optimally in choosing the next best point for evaluation. We
demonstrate that these algorithms generally match or exceed the performance
of the best methods from our previous comparative study [1], describe the class
of functions for which they are best suited, and finally turn our attention to
the trade-off between brute-force function evaluation and intelligent, selective
function evaluation.

2 Motivation

Our research was largely motivated by the following safety verification task:
Given bounds on the system parameters of a stepper motor (e.g. viscous fric-
tion, inertial load), bounds on initial conditions (e.g. angular displacement and
velocity), and an open-loop motor acceleration control, verify that no scenario
exists in which the motor stalls. We model the motor's continuous dynamics
using ODEs given in [2]:

S(-iaNb sin(NO) + ibNb cos(NO) - D sin(4NO) - Fvw - Fcsign(w) - Fg)

(P + Jm)
ta = (Va - iaR + wNb sin(NO))/L

1ý = (Vb - ibR - wNb cos(NO))/L

where 0 and w are motor shaft angular displacement and velocity, ia and ib are
coil A and B current, Va and Vb are coil A and B voltage, R and L are coil
resistance and inductance, N is the number of rotor teeth, Nb is the maximum

348

motor torque per amp, D is the maximum detent torque, Fv is the viscous
friction, F, is the Coulomb friction, Fg is the gravitational torque load, and J1

and Jm are load and motor shaft inertia. For this system we classify a stall as
deviation of -& or more radians from the current desired 0 equilibrium.N

The motor is stepped by reversing polarity of the coil voltages in alternation
(see Figure 1). Changes to coil voltages occur on such a small time scale that their
continuous simulation is judged unnecessary for modeling dynamics relevant to
the verification task. Voltage changes were therefore approximated as discrete
events. Our acceleration control is open-loop: At fixed intervals the motor is
stepped according to an acceleration table. We can express such a system as a
nonlinear hybrid automaton as shown in Figure 2.

1.2. :=13.23. I•4.
S NNS

S NK SN

N S.S

Fig. 1. Simple Stepper Motor Stepping

T=O T=tl T t2
V, :13.2 T<t1 T <t2 000

Vb: 13.2 V:V b=V

T =t

000

Va V

Fig. 2. Stepper Motor Nonlinear Hybrid Automaton

First, we note that there is no apparent "geometrically linear hybrid system"1

approximation with which we could apply the tools of computational geometry,
but simulation is feasible. Next, we note that our verification is concerned with

1 i.e. restricted to constant first derivatives; "geometrically" as opposed to "alge-

braically"

349

a fixed initial time interval (i.e. during acceleration) and is therefore an initial
safety problem. Finally, we note that we can compute minimum angular dis-
placement from a stall state over all simulation states as a simple heuristic to
numerically rate the relative safety of safe trajectories. We can now ask, "For
all possible system parameters and initial states, are all simulation trajectories
rated safe?" Put another way, "Is the minimum heuristic evaluation of all possi-
ble simulations greater than zero?" If we can answer this optimization question
positively, we have verified safety of our hybrid system.

One could argue that such optimization is not verification, that one cannot
exhaustively simulate all possibilities and can therefore have no guarantees. One
can only use such optimization for refutation. To this, we offer two responses:
First, if one has additional knowledge of characteristics of one's heuristic evalu-
ation function, then an intelligent optimization approach can utilize such char-
acteristics to guarantee a strictly positive minimum (i.e. safety) with enough
testing. For example, if one is seeking a zero minimum of a heuristic function
which has Lipschitz conditions, and there is no possibility for a zero to occur
between previously evaluated points without violating such conditions, one can
terminate the optimization having verified safety. Second, if one has no such
knowledge about the heuristic (as is the case for our stepper motor problem),
the absence of verification techniques well-suited to non-trivial dynamics leaves
good global optimization as the best assurance. As has been demonstrated with
several NP-hard satisfiability problems [3], refutation through a well-chosen op-
timization technique, while not complete, can open the door to solving larger
classes of problems reliably.

This said, we have endeavored to develop innovative information-based global
optimization methods which, under certain assumptions and constraints, make
approximately optimal use of information gained in the course of optimization.
We next introduce some of these methods.

3 Information-Based Global Optimization

From the previous comparative study [1], we noted that most global optimization
methods throw away most of the information gained in the course of optimiza-
tion. For our purposes, each evaluation of f requires a simulation which may be
computationally expensive, so we are particularly motivated to make good use
of such information in order to reduce the function evaluations needed.

One approach is to characterize properties of the set of functions one wishes to
optimize and to use such information to construct an optimal decision procedure
for optimization. In the course of optimization, we use our current set of function
evaluations to decide on the next best point to evaluate with respect to our
function set. Such is the strategy of Bayesian or information approaches to
global optimization [4-7], which have optimal average case behavior over the set
of functions for which each is designed. Previous information-based methods have
largely been limited to global optimization in one dimension. In this section, we

350

introduce two new information-based optimization methods for multidimensional
problems.

We first introduce the decision procedure used by these methods, thus expli-
cating the class of functions for which the decision procedure is biased. Next we
discuss the use of multi-level local optimization for speeding convergence. Finally,
we introduce the information-based optimization algorithms themselves.

3.1 Decision Procedure

At each iteration i of our algorithm, we wish to evaluate our heuristic function
f at the location xi for which f(xi) = 0 is most likely to occur. We base our
notion of likelihood on characteristics of a class of functions to which f belongs.
Our decision procedure is then based on some decision ranking function gi which
computes a ranking corresponding to the relative likelihood of a zero occurring
at an unevaluated point xi given previous f-evaluations at x1 , X2,... xi-:

gi(xi) f g(x 1 , x2,.... Xi-1, Xi)

So for each iteration i, we could globally optimize gi to choose the next x for
which f is evaluated. However, a reliable global optimization of g for each iter-
ation of a global optimization of f is not only computationally prohibitive, but
increasingly very difficult as well. We instead desire to approximate an optimal
decision with respect to our assumptions about f, and we do so by uniformly, ran-
domly sampling g, returning the optimum of the samples. We call this DECISION1
(see Function 1). The computational complexity of this decision procedure grows
as the computational complexity of evaluating gi (which we will see is 0(i 2)).

Function 1 Sampling information-based optimization decision function
DECISION1(L,lbound,ubound):
%. Input: L, a list of [x,f(x)] pairs
%, ibound, lower bounding corner of search space

% ubound, upper bounding corner of search space

mingx infinity
for i i to maxpts

x = uniformly random vector in space bounded by ibound and ubound
gx g(L,x)
if gx < mingx then

mingx : gx
minx : x

end
end for
return minx

In order to construct g, we must make some assumptions over f's class of
functions with regard to where we would most expect to find zeros. One assump-

351

tion we make is that f is continuous 2. Another assumption concerns flatness and
smoothness preferences: Given a set of points and their f-evaluations, a zero is
more likely to occur where it demands less slope between itself and previous
points.

A first attempt at constructing gi might be to create a function which returns

i-I f(X.)
gi(X) = maxj=1 1lXj - X11

That is, we could rank the likelihood of f(x) = 0 by computing the maximum
slope between the hypothetical zero at x and other points we've already evalu-
ated. The lesser the g-value, the more likely a zero f-value. The global minimum
of g would then be the optimal point at which to next evaluate f given previous
f evaluations.

Consider Figure 3(a). Suppose we've evaluated the curve at points a, b, and
c and are using such a g as our decision ranking function. Intuitively, we would
want g to return point d as the next best point to evaluate. However, the slope
between a and d will make d a less preferable decision point than one to the right
of d for which a zero would have equal slopes to a and c for this simple function.
We would like instead for point b to "shadow" point d from point a. Our simple
attempt to do so is shown as Function 2. A point a is "shadowed" by point b for
function g if IId-biI < HId-alI and Jg(a)-g(b)1/1 a-blI > Ig(a)-g(d)1/I a-dl1.
That is, a is shadowed by b if b is closer to d than a, and the slope between a
and b on g is greater than the slope between a and d on g.

3.2 Multi-Level Local Optimization

One might then construct the simple information-based global optimization pro-
cedure given in Program 1. However, we note that one ramification of random
sampling in our decision procedure is that we do not achieve efficient conver-
gence. This is illustrated in Figure 3(b). From the initial random point in the
lower left corner, the procedure then checks points in the upper right, lower right,
upper left, and just left of the global minimum at the center. The cluster of 25
points that follows gradually expands towards the center from the fifth point. In
practice, where failures do not occur in miniscule regions, this behavior is not
a problem. However, we also note that our decision procedure will have to deal
with the computational burden of small dense clusters of points which are not
very informative globally. We may wish instead to apply a rapidly convergent
local optimization procedure and pay attention only to the first and last points
of such an optimization.

In our previous comparative study [1], we note that this is a common ap-
proach among the most successful methods of the study. A global search phase

2 This is not a trivial assumption for our general application, of course. Our stepper

motor system trajectories are continuous in the initial condition. Such continuity is
preserved in our choice of f.

352

100

a
80

60

40

20

-20

-40

b C -60

d? -8C
-,60 +

0 100 -00 0 so 100

(a) (b)

Fig. 3. (a) Shadowing example, (b) Information-based global optimization of 2-D
paraboloid

makes use of a local optimization subroutine so that the global phase is, in ef-

fect, searching f'(xl) ef f(x 2) where [X2, fmin] = LO(f, xi) where Lo is a local
optimization procedure. In SALO [8] (simulated annealing atop local optimiza-
tion), for each point evaluation in the global phase, a local optimization takes
place and the function value of the local minimum is associated with the original
point. The effect can be roughly described as a "flattening" of a search space
into many plateaux (with plateaux corresponding to local minimum values). This
search paradigm may be generalized to arbitrary levels where each level performs
some optimizing transformation of its search landscape to create a "simpler" one
for the level above. Obviously, the work done to simplify should be more than
compensated by the reduced search effort for the level above. The top level
performs a global optimization, and all lower levels perform local optimization.
We call this paradigm Multi-Level Local Optimization (MLLO). We assert that
information-based optimization is particularly well-suited to optimizing coarsely
plateaued search landscapes. Now let us consider two information-based appli-
cations of MLLO.

3.3 MLLO-IQ and MLLO-RIQ

MLLO-IQ (Program 2) is a 2-level MLLO with a simple information-based ap-
proach (Program 1) atop quasi-Newton local optimization. With each iteration,
MLLO-IQ chooses a point x1 , locally optimizes f from x, to x2 , and associates
f(X 2) with both x, and X2 in order to "plateau" the space. In doing so, we
limit the number of function values involved in decision making. Still, we may
wish to further limit such growth in computational complexity. By limiting our

353

Function 2 g, the decision procedure function to be optimized
g(L,x):
% Input: L, a list of [x,f(x)] pairs
%. x, current decision point being evaluated

for i := 1 to length(L)
dx(i) := Ilx-first(L(i))I

end for
sort dx in ascending order and permute L accordingly
maxslope := 0
for i := 1 to length(L)

slope := second(L(i))/dx(i)
if slope > maxslope then

newmaxslope := 1
for j := 1 to i-i

otherslope := Isecond(L(i))-second(L(j)) I
/I first (L(i))-first(L(j)) I

, Note: This otherslope information may be cached.
if otherslope > slope then

newmaxslope := 0; break from for loop Qj)
end for
if newmaxslope then maxslope := slope

end if
end for
return maxslope

information-based search to a hypersphere containing a maximum limit of pre-
viously evaluated points, we limit the complexity to a constant. Such is the
approach taken in MLLO-RIQ.

MLLO-RIQ (see Program 3) begins with a locally minimized random point
and a maximum search radius. Together these define our initial hypersphere.
With each iteration, a decision procedure (DECISION2) finds an approximately
optimal next point to locally optimize within this hypersphere. If the new point
has a lesser function value than the center, it becomes the new center and the
distance between the two points becomes the new hypersphere radius. If too
many points are being considered in DECISION2, a lesser amount of points closest
to center are retained and the search radius is adjusted. This information-based
local optimization terminates when the number of times the center minimum is
found by local optimization exceeds a threshold. Then the process repeats with
a new random point. Thus we perform a random search of information-based
local optimizations of quasi-Newton local optimizations.

354

Program 1 Simple information-based global optimization
H = [I;
newx := random point in search space

fx := f(newx)
if fx = 0 then terminate with signal UNSAFE
H := append(H,[newx,fx])
loop forever

newx := DECISIONI(H,lbound,ubound)

fx := f(newx)

if fx = 0 then terminate with signal UNSAFE

H := append(H,Enewx,fxl)
end loop

Program 2 MLLO-IQ
H = [I;
newxl := random point in search space
[newx2,fx] := LO(f,newxl)
if fx = 0 then terminate with signal UNSAFE
H := concatenate(H, [Enewxl,fx] , [newx2,fxj])
loop forever

newxl := DECISION1(H,lbound,ubound)

Enewx2,fx] := LO(f,newxl)
if fx = 0 then terminate with signal UNSAFE
H := concatenate(H, [Enewxl,fxl , [newx2,fx]])

end loop

4 Experimental Results

We now compare our information-based approaches to those considered in our
previous comparative study. See [1] for details and references. Our first tests
all made use of the same quasi-Newton local optimization method where appli-
cable. 100 optimization trials were performed for each objective function with
a maximum of 10000 function evaluations permitted per trial. Each objective
function was offset (if necessary) to have a global minimum value of 0. A suc-
cessful trial was one in which the optimization procedure found a point with
function value less than .001 within 10000 function evaluations. This simulates
situations where one is seeking a rare failure case in f. Each entry in the ta-
ble of results (Figure 4) shows the number of successful trials (upper left) and
the average number of function evaluations for such trials (lower right) for each
optimization procedure (rows) and objective function (columns).

Both MLLO-IQ and MLLO-RIQ perform very well in general. What is most in-
structive from these results are the cases where the strengths and weaknesses of
these methods are most prominently displayed. Let us first consider RAST, the
Rastrigin function. RAST is a 2-D, sinusoidally-modulated, shallow paraboloid

355

Program 3 MLLO-RIQ
H = D; radius := maxradius
loop forever

x := random point in search space
[center,centerval] := LO(f,x)
if centerval = 0 then terminate with signal UNSAFE
H := concatenate(H, E[x,centerval] , [center,centerval]])
sort pairs in H in ascending order of lifirst(pair)-centerlI
H' := up to first (minpts) pairs of H
centerhits := 0
while centerhits > maxcenterhits

recenter := false
newxl := DECISION2(H' ,center,radius)
[newx2,fx] := LO(f,newxl)
if fx = 0 then terminate with signal UNSAFE
if llnewx2-centerll < tolerancel then

centerhits centerhits + 1
if centerval - fx > tolerance2 then

radius min(maxradius, llnewx2-centerlil)
center newx2; centerval := fx; centerhits 0; recenter true

H concatenate(H, [[newxl,fx] , [newx2,fxl])
H' concatenate(H, E[newxl,fxl , [newx2,fx]])
if length(H') > maxpts then

recenter := true
if recenter then

sort pairs in H in ascending order of I first(pair)-centerli
H' := up to first (minpts) pairs of H

end while
end loop

with 49 local minima within the search bounds. The quasi-Newton local op-
timization layer of MLLO-IQ and MLLO-RIQ effectively transforms this objective
function f into a shallow paraboloid of plateaux f'. MLLO-IQ's global information-
based search of f' finds the lowest plateau very quickly, and the local information-
based search of MLLO-RIQ does a focussed descent which leads it to the global
minimum with even greater efficiency. This suggests that these searches are par-
ticularly well-suited to global optimization of functions with a moderate number
of local minima. For functions with fewer local minima (HUMP, G-P, and GW1),
there is little to be gained by such extra computation. Random local optimization
(RANDLO) will suffice.

Now let us consider the weaknesses of these methods shown in failed cases
with GW100. Indeed the performance of these methods is worse than random local
optimization. Why? GW100 is a 6-D, sinusoidally-modulated, shallow paraboloid
with about 4 x 107 local minima. For this function, our quasi-Newton local
optimization exhibits interesting and unexpected behavior: In all but the lowest
points of the surface, local optimization most often leads to local minima that

356

RAST HUMP G-P GW1 GW100 SWISS
AMEBSA 16 100 90 100 0 100

39 40 222 86 N/A 1340
ASA 100 100 100 100 2 100

404 225 1042 197 6003 903

SALO 100 100 100 100 95 100
585 65 97 85 4501 163

LMLSL 100 100 100 100 50 100
847 105 118 96 4508 187

RANDLO 100 100 100 100 58 100
706 70 96 85 4008 146

MLLO-IQ 100 100 100 100 57 100
286 71 97 83 4493 157

MLLO-RIQ 100 100 100 100 46 100
161 57 92 83 45361 148

Fig. 4. Successful trials and average function evaluations for each global optimization
procedure and test function

are far from those nearby the initial point. In this example, we're reminded that
"local" in "local optimization" refers to properties of the optimum itself and
not the "nearness" of the optimum location. Without such nearness, the search
landscape is not simply transformed into a landscape of plateaux. Our quasi-

Newton local optimization didn't optimize to near minima, and so created a
landscape which was not suited for information-based global optimization.

MLLO-RIQ also has difficulty with GW100, but for different reasons. After
quickly finding the region containing the global minimum, the method spends
much of the remainder of its search effort first searching many points mutually

far apart near the boundary of the 6-D hypersphere. Perhaps randomly sam-
pling f or f' within the search hypersphere might encourage convergence. SALO
remains our best option for functions with a large number of local minima.

While these functions may give a general indication of the relative strengths
of these methods (without tuning), the functions share a common property un-

desirable for our purposes: The unconstrained global minimum is never located
at or beyond the bounds of the search space. Therefore, our optimization meth-
ods need not perform well along the bounds of our search space. It is for this

reason that unconstrained quasi-Newton local optimization was suitable for use

with such global optimizations. We used this as an opportunity to try two con-
strained LO procedures CONSTR and YURETMIN for the 2-D stepper motor test
problems STEP1 and STEP2 [1] (see Figure 5). STEP1 takes as input two param-

eters (viscous friction and load inertia) of the stepper motor model, simulates
acceleration of the motor, and performs a simple heuristic evaluation of the tra-
jectory by computing the minimum distance to a stall state (0 if stalled). One

could incorporate more sophisticated understanding of a problem domain into

one's heuristic function, but computing the minimum distance to an undesirable

state is simple and effective for our purposes. STEP2 is STEP1 logarithmically

357

scaled so as to focus on the unsafe region of the parameter space. These test
functions were chosen for their difficulty. For this testing, we performed 10 trials
to find a function value of 0 with a maximum of 1000 function evaluations per
trial. The results appear in the tables of figure 6.

04 0.01 •O -

0, 0,4

•o 4 .2.

_Wlrti 0 0 L -o -12 2.s5 -12 usf on

(a) STEP1 (b) STEP2

Fig. 5. Stepper Motor Test Functions

These results were very pleasing. MLLO-IQ is the first technique we've ob-
served that has succeeded in every STEP1 and STEP2 trial. It does so with excel-
lent efficiency as well. Since the decision procedure computation time was also
dominated by simulation time, it was also easily the fastest algorithm for these
trials. MLLO-RIQ did surprisingly well considering that most of the search space
of these functions slopes downward and away from the corner of the space where
the rare failure cases occur.

5 Conclusions

A powerful approach to initial safety verification is to transform the problem
into an optimization problem and leverage the power of efficient optimization
methods. This transformation is accomplished through a heuristic evaluation
function f which takes an initial state as input, simulates the corresponding
trajectory, and evaluates the trajectory, returning zero if the trajectory is unsafe,
or a strictly positive ranking of the relative safety of the trajectory otherwise.
Initial safety verification is then a matter of whether or not the global minimum
of f for all possible initial states is strictly positive. Our simple heuristic function
computes the minimum distance from a trajectory to an unsafe state, but deeper
understanding of the problem domain may be incorporated as well.

Although we have not investigated the applicability of optimization to non-
deterministic hybrid systems, we believe such techniques are applicable to a

358

STEP1 STEP2 STEP1 STEP2

ASA 0 2 ASA 0 2
N/A 497 N/A 497

SALO 10 5 SALO 7 9
80 202 387 198

LMLSL 10 10 LMLSL 3 10
163 137 389 169

RANDLO 10 10 RANDLO 9 10
_____ 78 359 _____ 501 172

MONTE 0 6 MONTE 0 16

N/A 469 N/A 469
MLLO-IQ 10 10 MLLO-IQ 10 10

46 219 108 109
MLLO-RIQ 10 8 MLLO-RIQ 8 9

60 330 301 239

(a) CONSTR (b) YURETMIN

Fig. 6. Results for STEP1 and STEP2

broader class of deterministic hybrid systems than we have demonstrated. Use
of problem domain knowledge to construct a heuristic function and choose global
and local optimization techniques should expand the frontier of solvable hybrid
system problems. Optimization techniques which are robust with respect to dis-
continuities should be used for most hybrid system initial safety problems.

From the previous comparative study [1], we noted that most global op-
timization methods throw away most of the information gained in the course
of optimization. For our purposes, each evaluation of f requires a simulation
which may be computationally expensive, so we are particularly motivated to
make good use of such information in order to reduce the function evaluations
needed. To this end, we have introduced two new information-based global op-
timization methods MLLO-IQ and MLLO-RIQ which, under certain assumptions
and constraints, make approximately optimal use of information gained in the
course of optimization. Our decision procedure is biased towards approximately
optimal average-case behavior for a subclass of continuous heuristic functions.

While no global optimization procedure in our studies was generally dom-
inant, we note that random local optimization seems best suited for heuristic
functions with few minima, SALO [8] seems best suited for heuristic functions
with very many local minima, and MLLO-IQ and MLLO-RIQ seem best suited
for low-dimensional heuristic functions with a moderate number of local min-
ima. MLLO-IQ and MLLO-RIQ appear better suited for problems where the global
minima are expected to occur at and within the bounds of the search space
respectively.

Finally, we note that the computational effort invested toward efficient op-
timization should be compensated by reduced overall runtime. For our prob-

359

lem, the computational expense of our simulation justified such effort. But what
of initial safety problems for which simulation requires less runtime? Setting
maxpts = 0 for Function 1 yields random decisions. As maxpts -+ oc, our de-
cisions approach optimality and the decision-making effort exceeds the search
effort it saves. Where is the happy medium in this tradeoff? In future research,
we hope to investigate means of dynamically adjusting the level of strategic ef-
fort of such information-based algorithms in order to address a larger class of
problems efficiently.

References

1. Todd W. Neller. Heuristic optimization and dynamical system safety verification.
In M. Lemmon, editor, Proceedings of Hybrid Systems V (HS '97), pages 51-59,
South Bend, IN, USA, 1997. Center for Continuing Education, University of Notre
Dame. (available at URL http://www.ksl.stanford.edu/people/neller/pubs.html).

2. Albert C. Leenhouts. Step Motor System Design Handbook. Litchfield Engineering,
Kingman, Arizona, USA, 1991.

3. Bart Selman, Hector Levesque, and David Mitchell. A new method for solving hard
satisfiability problems. In Proceedings of the Tenth National Conference on Artificial
Intelligence (AAAI-92), pages 440-446, Menlo Park, CA, USA, 1992. AAAI Press.

4. Jonas Mockus. Bayesian Approach to Global Optimization: theory and applications.
Kluwer Academic, Dordrecht, The Netherlands, 1989.

5. Jonas Mockus. Application of bayesian approach to numerical methods of global
and stochastic optimization. J. Global Optimization, 4:347-365, 1994.

6. Yaroslav D. Sergeyev. An information global optimization algorithm with local
tuning. SIAM J. Optimization, 5(4):858-870, 1995.

7. Roman G. Strongin. The information approach to multiextremal optimization prob-
lems. Stochastics and Stochastics Reports, 27:65-82, 1989.

8. Rutvik Desai and Rajendra Patil. SALO: combining simulated annealing and local
optimization for efficient global optimization. In J.H. Stewman, editor, Proceed-
ings of the 9th Florida AI Research Symposium (FLAIRS-'96), pages 233-237, St.
Petersburg, FL, USA, 1996. Eckerd Coll.

Synthesizing Controllers for Nonlinear Hybrid
Systems*

Claire Tomlin, John Lygeros, and Shankar Sastry

Department of Electrical Engineering and Computer Sciences
University of California,

Berkeley CA 94720
clairet, lygeros, sastry~eecs.berkeley.edu

Abstract. Motivated by an example from aircraft conflict resolution
we seek a methodology for synthesizing controllers for nonlinear hybrid
automata. We first show how game theoretic methodologies developed
for this purpose for finite automata and continuous systems can be cast
in a unified framework. We then present a conceptual algorithm for ex-
tending them to the hybrid setting. We conclude with a discussion of
computational issues.

1 Introduction

In the first part of this paper we present a motivating example: we describe an
iteration process to calculate the maximal set of safe initial conditions for a two-
aircraft maneuver. In the second part we show that verification of the safety of
continuous nonlinear systems using the Hamilton-Jacobi-Bellman equation may
be considered as the continuous analog of infinite games on finite automata.
In the third part we present a conceptual algorithm for calculating maximal
controlled invariant sets for nonlinear hybrid systems, and we conclude with a
brief discussion of computational issues.

The idea of posing the controller synthesis problem as a discrete game be-
tween the system and its environment is attributed to Church [1], who was
studying solutions to digital circuits. The solution to this problem using a ver-
sion of the von Neumann-Morgenstern discrete game [2] is due to Biichi and
Landweber [3] and Rabin [4]. [5] also discusses games on automata. A compre-
hensive modern survey of infinite discrete games on automata is presented in [6]
and [7]. Controller synthesis on timed automata was first developed in [8] and
[9]. An algorithm for controller synthesis on linear hybrid automata is presented
in [10]. The notion of control invariance for continuous systems is described in
[11], and control invariance for hybrid systems is discussed in [12].

The study of differential equations in game theory was first motivated by
military problems in the U.S. Air Force (aircraft dog fights, target missiles) and
was initially developed by Isaacs in the 1940's and 50's [13]. An excellent modern

* Research supported by NASA under grant NAG 2-1039, by the California PATH

program under MOU-238 and MOU-288, and by a Zonta Postgraduate Fellowship.

361

reference is [14]. Our motivation for this work arose out of attempting to verify
the safety of a class of conflict resolution maneuvers for aircraft, in [15]. Similar
previous work is that of [16], in which game theoretic methods were used to
prove safety of a set of maneuvers for Automated Highway Systems.

Let us first introduce some basic notation. Let PC' denote the space of piece-
wise continuous functions over IR and PC 1 the space of piecewise differentiable
functions over R

Entity Discrete Continuous
State Space Q _ _ _ _

Input Sets Zox Z U x D
Input Space Z714 x Z, U X V C PC° X PC"
Transition Relation 6: Q x Z 17 x Z, -- 2Q f:Rn xUxD--*Rn:

IV-r, ±(-r) =- .f (x(r), u('r), d(-))

System Trajectory (7, so, si) E QW x Zw x ZEw: (x(-), u(-), d(-)) E PC1 x U x T:
[i + 1] E(-y[i],so[i],s1 [i]) Vr,±(-)=f(x(r),u(r),d(r))

Acceptance Conditions OF; *G Vr, x(r) E F; 37, x(r) E G

2 Motivating Example

Consider a variation of the two aircraft collision avoidance problem of [15], in
which there are two modes of operation: a cruise maneuver in which both aircraft
follow a straight path, and an avoid maneuver in which both aircraft follow a
circular arc path. The protocol of the maneuver is that as soon as the aircraft are
within a distance a of each other, each aircraft turns 90' to its right and follows
a half circle. Once the half circle is complete, each aircraft returns to its original
heading and continues on its straight path (Figure 1). Safety is defined in terms
of the relative distance between the two aircraft: throughout the maneuver the
aircraft must remain at least 5 miles apart. In this section, we calculate the
largest set of initial conditions of the system which render this maneuver safe,
implicitly determining the parameter a• in the process.

In each mode, the nonlinear dynamics may be expressed in terms of the
relative motion of the two aircraft (equivalent to fixing the origin of the relative
frame on aircraft 0 and studying the motion of aircraft 1 with respect to aircraft
0):

: = -vO + v, cos 0, + woy,

Y.= v, sin C,.- wox, (1)

=W1 - W

in which (x,, y,, 0,) is the relative position and orientation of aircraft 1 with
respect to aircraft 0, and vi and wi are the linear and angular velocities of each
aircraft. In mode 1, wi = 0 for i = 0, 1 and in mode 2, wi = 1 for i = 0, 1. The
control input is defined to be the linear velocity of aircraft 0, u = v0 E U, and the

362

Mode 1 Mode 2

01200

(p 1200

Fig. 1. Two aircraft in two modes of operation: in mode 1 the aircraft follow a straight
course and in mode 2 the aircraft follow a half circle. The initial relative heading (1200)
is preserved throughout.

disturbance input as that of aircraft 1, d = vi E D, where U and D are called the
control and disturbance sets and denote the range of possible linear velocities of
each aircraft. Such a situation could arise, for example, in an airborne collision
avoidance algorithm in which the flight management system of aircraft 0 wishes
to compute the parameters v0 and a of its avoidance maneuver and can only
predict the velocity of aircraft 1 to within some uncertainty.

We define the region at which "loss of separation" occurs as a 5-mile-radius
cylinder around the origin in the (x,, yV, 0,) space:

2(2)
y(X,r) E El20 1. -71, 7r) I Xr 2+-Yr 2-- 5 2 (2)

This region is referred to in the pursuit-evasion game literature as the capture
set.

We now describe pictorially the calculation of the largest set of initial con-
ditions (x,(0), y,(0)) E R2 which render the maneuver safe. Consider the four
consecutive plots of Figure 2. Aircraft 0 is at the origin of the relative axis, and
G is the capture set. Since in both mode 1 and mode 2 the relative orientation
between the two aircraft is constant (¢r = 0), the value of 0, acts as a parameter.
We therefore consider the maneuver in the (x,, yr) plane.

In the first plot, the set Vi* denotes the winning states for aircraft 1 in mode
1: those states from which for all possible actions of aircraft 0, aircraft 1 has an
action which can drive it into G:

V? = {(xr(0), yr(0)) I 3T E [0, 00), (X,(r), yr(T)) E G} (3)

where x(r) evolves according to the dynamics in mode 1.
Plot 2 illustrates V21, the winning states for aircraft 1 in mode 2 with the

stipulation that the aircraft remain in mode 2 for exactly 7r seconds (to complete

363

the half circle):

V'= {(x,(O),y,(O)) 1r E [0,7r],(x, (),y(r)) E G} (4)

where x(r) evolves according to the dynamics in mode 2.
Plot 3 illustrates the set V1* transformed into the relative frame for mode

2 (this reset map rl(') rotates every state in mode 1 by 900, corresponding to
aircraft 0 at the origin of the relative frame rotating by -90' when switching
from mode 1 to mode 2). The intersection ri(V•) n V2,, shown as the darker
shaded area of plot 3, represents those states which are potentially unsafe, since
outside of this intersection, the aircraft may always switch modes to achieve
safety. Plot 4 displays V*, the minimal unsafe set. Note that the set of states
ri(V7) fV 2 \V* has been removed from the unsafe set of states at this step
of the iteration by flowing the dynamics of mode 1 forward in time, and then
switching from mode 1 to mode 2 before the system enters G.

In the calculation of the minimal unsafe set of Figure 2, the control and
disturbance sets U and D are singletons: both u = v0 and d = v, are given.
Thus in this example the action refers only to a, the minimum relative distance
at which the aircraft must switch to mode 2, since we have fixed the velocities
of the two aircraft at known values. In the remainder of the paper, we formalize
this calculation for arbitrary control and disturbance sets, arbitrary nonlinear
equations describing the continuous dynamics, and arbitrary invariant conditions
for the discrete modes.

3 Verifying safety in continuous systems: a comparison
with discrete E- and *-games

3.1 Infinite Games on Finite Automata

We summarize a class of two-player games on finite automata, in which the goal
of Player 0 is to force the system to remain inside a certain "good" subset of
the state space, and the goal of Player 1 is to force the system to leave this
same subset. We describe the iteration process for calculating the set of states
from which Player 0 can always win, and the set of states from which Player 1
can always win. We then show how this iteration process can be written as a
difference equation for a value function, similar to the Hamilton-Jacobi-Bellman
equation for differential games on continuous systems.

System Definition and Winning Condition We consider two players P0
and P 1 , playing over a game automaton of the form:

(Q, Z,6 , Q0, 12) (5)

where Q is a finite set of states, Z is a finite set of actions, 6 : Q x Z -4 2Q is a
partial transition relation, Qo g Q is a set of initial states, and £2 is a trajectory
acceptance condition. The set of actions is the product of two sets Z = Z0 x Z,

364

Yr 2

3 4

Fig. 2. Showing the successive calculation of the minimal unsafe set.

where Z• contains the action of Pi, so that each transition between states depends
on a joint action (o0, a,) of P0 and P1. In what follows, Zo will be the set of
actions of the controller, and Z, will be the set of actions of the environment
(or disturbance).

A system trajectory is an infinite sequence of states and actions, (-y, so, si) E
QW x N• x Zr, which satisfies:

-y[O] E Qo and -y[i + 1] E 6('y[i],so[i],si[i]) (6)

We will consider two kinds of trajectory acceptance conditions: Q2 = (OlF)
(meaning that Vi,-y[i] E F), and its dual 2 = (c>G) (meaning that 3i, -/[i] E G),

365

where F and G are subsets of Q. P0 wins the game if the trajectory satisfies OF,
otherwise P1 wins. To illustrate the duality between the two kinds of acceptance
conditions we assume that Pi wins the game Q = (c'G) if the trajectory satisfies
oG.

State Space Partition Consider the acceptance condition 1? = (OF). The
winning states for P 0 are those states W* C F from which P0 can force the
system to stay in F. The set W* can be calculated as the fixed point of the
following iteration (using a negative index i E Z- to indicate that each step is a
predecessor operation):

W° = F(7

Wi-= Wi {q EQ I uo E Zo Vul E Z i 6(q, (oo,oi)) Wi} (7)

The iteration terminates when W = Wi-i W*. At each step of the iteration,
the set W' contains those states for which P 0 has a sequence of actions which
will ensure that the system remains in F for at least i steps, for all possible
actions of P1.

Now consider the acceptance condition 17 = (c>G). The winning states for Pi
are those states V* D G from which Pi can force the system to visit G. It can
be calculated iteratively by:

V° =G
Vil=yViU{qEQI3io EZi Vo0 EZo6(q,(o0 ,aia)) _Vi} (8)

terminating when V' = V- 1 A- V*. Here, V' contains those states for which
Pi has a sequence of actions which will ensure that the system touches G in at
most i steps, for all possible actions of Po.

The Value Function For the acceptance condition -- = (OF), we inductively
define a value function:

J(q,i): Q x Z- - {O,1} (9)

by:
Jq) 1 qEW' 10

0 q E (Wi)c (10)

In other words, W' = {q E Q I J(q, i) = 1}. Recall that P 0 is trying to keep the
system in F while P1 is trying to force the system to leave F. Therefore,

maxrmin Min J(q',i) =11 if 3orO that Vai,6(q,co,oi) g Wi ()
Uo 01 q'E6(q,oo,ai) 0 otherwise

The minqE6(q,oo,a1) in the above compensates for the nondeterminism in 6, and
the notation maxo0 min,, means that P0 plays first, trying to maximize the

366

minimum value of J(.). P1 has the advantage in this case, since it has "prior"
knowledge of Po's action when making its own choice. Therefore, in general,

max min min J(.) < min max min J(.) (12)
CO 01 q'E6(q,oo,aI) 0- l U0 q'E6(q,oo,ia)

with equality occurring when the action (oU0, o-) is a saddle solution, or a no
regret solution for each player. Here we do not need to assume the existence of
a saddle solution, rather we always give advantage to P1 , the player doing its
worst to drive the system out of F.

The iteration process (7) may be summarized by the difference equation:

J(q,i - 1) - J(q,i) = min{0,maxmin[min J(q',i) - J(q,i)]} (13)
0-0 am q'E6(q,ao,oi)

which describes the relationship between the change in J(-) due to one step of the
iteration and the change in J(.) due to one state transition. The first "min" in
equation (13) prevents states outside W' that can be forced by P0 to transition
into Wi from appearing in W-1.

To calculate the set of winning states W* for P0 we iterate equation (13) until
a fixed point is reached, i.e. until for all q E Q, J(q,i - 1) = J(q,i) ! J*(q).

Proposition 1 (Winning States for Po) A fixed point J*(q) of (13) is reached
in a finite number of iterations. The set of winning states for Po is W* = {q E
QjJ*(q) = 1}.

Definition 1 (Zo-controlled invariant set) A subset W C Q is called Zo-
controlled invariant if Vs, E Z', 3so E Zow such that for the system trajectory
(so, si) E QW x x Z', -y remains in W.

Proposition 2 (Characterization of W*) W* is the largest Zo-controlled in-
variant subset of F.

A feedback controller for o-O that renders W* invariant can now be con-
structed. For all q E W* the controller allows only the a0 E Zo for which:

min min J*(ql) = 1
71 q'ES(q,ao,aI)

Existence of such 0o for all q E W* is guaranteed by construction. This control
scheme is in fact "least restrictive".

An algorithm for calculating V* can be constructed similarly. If G = F', the
second game (f2 = (K>G)) is the dual of the first game (f? = (OF)) in the sense
that if the sequence of actions (so, si) E Zo' x Z1w of the first game is a saddle
or no regret solution, then V* = (W*)c.

367

3.2 Dynamic Games on Nonlinear Continuous Systems

Consider now the dynamic counterpart of the above class of discrete games:
two-player zero-sum dynamic games on nonlinear continuous-time systems. The
acceptance conditions considered here correspond to a class of dynamics games
known as pursuit-evasion games. Player 0 wins if it can keep the system from
entering a "bad" subset of the state space, called the capture set. Player 1 wins
if it can drive the state into the bad set (if it can capture Player 0). As in
the previous section, we describe the calculation of the set of states from which
Player 0 can always win.

System Definition and Winning Condition As in the discrete case, we
consider two players P0 and P 1, but now over nonlinear systems of the form

-ý(t) = f (x(t), u(t), d(t)) (14)

where x E R• is the finite-dimensional state space, u E U C Ru is the control
input which models the actions of P0, d E D C Rd is the disturbance input
which models the actions of P1 , and f is a smooth vector field over R]. The
input set U x D is the analog of the partition ZO x Z1 of the discrete game.
The space of acceptable control and disturbance trajectories are denoted by
U = {u(.) E PC' I u(i-) E U VT E IR}, D = {d(-) E PC° I d(r) E D Vr E R}.

A system trajectory over an interval I C R is a map:

(x(.), u(.), d(-)) : I --+ R7 x U x D (15)

such that u(.) E U, d(.) E D, x(-) is continuous and Vr E I where u(-) and
d(.) are continuous, +(T-) = f(x(,r),u(r),d(T-)). We assume that the function
f is globally Lipschitz in x and continuous in u and d. Then, by the existence
and uniqueness theorem of solutions for ordinary differential equations, given an
interval I, the value of x(t) for some t E I and input and disturbance trajectories
u(7), d(T) over I there exists a unique solution x(.), u(.), d(.))) to (14).

We define the capture set as a region G by G = {x E Rn ll(x) < 0} with
boundary OG = {x E R]n 1 (x) = 0} where 1 : Rn --+ R is a differentiable function
of x and Dl(x) # 0 on 8G. Defining F = GI, we say Po wins the game if for all
-r E R, x(r) E F.

State Space Partition The winning states for P0 are those states W* C R'
from which P0 can force the system to stay in F = G'. Define the outward
pointing normal to G as:

v = Dl(x) (16)

The states on OG which can be forced into G infinitesimally constitute the usable
part (UP) of OG[14]. They are the states for which the disturbance can force the
vector field to point inside G:

UP = {x E OG I Vu3d VTf(x, u, d) < 0} (17)

Figure 3 displays a simple example, with the UP of OG shown in bold.

368

Y

]uVd vTf(xu,d)>O Vu Id vTf(x,u,d) < O

3u [Vd vTf(x,u,d)yO A 3d vTf(xu,d)=O]

Fig. 3. The capture set G, its outward pointing normal v,, and the cones of vector field
directions at points on OG.

The Value Function and Hamilton-Jacobi-Bellman equation Consider
the system (14) over the time interval [t, 0], where t < 0. The value function of
the game is defined by:

J(x, u(.), d(.), t) : R7 x U x Dx I_ --+ R (18)

such that J(x, u(.), d(.), t) = l(x(O)). This value function may be interpreted as
the cost of a trajectory x(-) which starts at x at time t < 0, evolves according to
(14) with input (u(.), d(-)), and ends at the final state x(O). Note that the value
function depends only on the final state: there is no running cost, or Lagrangian.
This encodes the fact that we are only interested in whether or not the system
trajectory ends in G and are not concerned with intermediate states. The game
is won by Pi if the terminal state x(0) belongs inside G (i.e. J < 0), and is won
by P0 otherwise.

Let:
u* = arg max min J(x, u(.), d(.), t) (19)

uEU dED)

J* (x, t) = max min J(x, u(.), d(.), t) (20)
uEU dED

Thus, the set {x : J*(x,t) > 0} contains the states for which the system will
stay in F = Gc for at least I t I seconds, regardless of the disturbance d. The
continuous-time analog to (7), the iterative method of calculating the winning
states for P0 is therefore:

WO = Gc
(21)Wt = fxlJ*(X,t) >! O}(1

369

This "iteration" terminates if there exists a t* < 0 such that for all t < t*,
wt=wt.

We compute J* (x, t) using standard results in optimal control theory. First,
define the Hamiltonian of the system as:

H(x, p, u, d) = pTf(x, U, d) (22)

where p is a vector in 1Rn called the costate and is equal to v at the boundary of
G. The optimal Hamiltonian is given by:

H* (x, p) = max min H(x, p, u, d) (23)
uEU dED

If J*(x, t) is a smooth function of x and t, then it may be calculated for all x

and t using the following partial differential equation, known as the Hamilton-
Jacobi-Bellman equation:

OJ* (x,t) a9J* (x,t)
(at -min{0, H*(x, ax (24)

with boundary condition J* (x, 0) = I(x). The derivation of equation (24) may be
found in most textbooks on optimal control, for example, see [17]. We added the
"min" to the right hand side of (24) for the same reason as in the discrete case: we
want to ensure that only the UP of a9G is propagated backwards, so that states
which are once unsafe cannot become safe. Equation (24) is the continuous analog
to equation (13) of the preceding discrete game, and describes the relationship
between the time and state evolution of J*(x, t).

Proposition 3 (Winning States for Po) If (21) reaches a fixed point at time
t*, then the set of winning states for Po is W* = {xJJ*(x, t*) Ž_ 0}. Otherwise,
W* = {xIJ*(x,-oo) > 0}. In both cases, J*(x,t) is the solution of equation
(24).

Definition 2 (U-controlled invariant set) A subset W C Rn is called U-
controlled invariant if 3u(.) E U such that Vd(.) E D, x(.) remains in W for the
trajectory (x(.), u(.), d(.)).

Proposition 4 (Characterization of W*) W* is the largest U-controlled in-
variant set contained in F = GC.

A feedback controller for u that renders W* invariant can now be constructed.
The controller should be such that on OW* only the u for which:

min (aJ*(x,--00) Tf(x,u,d) > 0

are applied. In the interior of W* u is free to take on any value in U. Existence
of such u's for x E W* is guaranteed by construction. This scheme is in fact

least restrictive.

370

4 Controller synthesis for nonlinear hybrid systems

Nonlinear Hybrid Automata A hybrid automaton is a tuple: H = ((Q x
X), (U x D), (Lo x Zi), f, 6, Inv, (Qo x Xo), S2) where Q is a finite set of locations,
X= Rn,UC RuD CRd Z-=57o x571 afiniteset of actions, f:QxXx
U x D --4 Y, 6: Q x X x -o x ZL ---> 2 QxX, Inv C Q x X, Qo x Xo Q x X is
a subset of initial states, and Q2 is an acceptance condition (here(2 = (OF) or
Q = (OG) for FG C Q ×xX).

The variables of the hybrid automaton evolve continuously as well as in
discrete jumps. A hybrid time trajectory, 7-, is a finite or infinite sequence of
intervals 7- = {Ii} satisfying:

- Ii is closed unless r is finite and Ii is the last interval in the sequence, in
which case 1i can be right open.

- Let I = [ri, 7j'j]. Then To = 0 and for all i, T- = Tri-, Ti <T r.

We denote by T the set of all hybrid time trajectories.
A system trajectory is a collection (r, (-y(), x(.)), (u(.), d(.)), (so, si)) where

T E T, -y : -T -+ Q, x(-) : 7 -- X, u(.) : -r - U, d(.) : -r -* D, so E Z7' and
s, E Z"' and:

- Initial Condition: ('y(ro), x(ro)) E Qo x Xo
- Discrete Evolution: for all i, (y(-ri+1), x(ri+i)) E S((y(Tr), X(r-), (so [i], Si [i])).

- Continuous Evolution if Ti > ri, then for all t E [Trwr l, y(t) = 'Y(Ti),
±(t) = f((-y(t), x(t)), (u(t), d(t))) and (-y(t), x(t)) E Inv.

To ensure that the laws for continuous evolution are meaningful we impose the
same assumption on f as in the previous section.

Calculating the Maximal Safe Set Consider the acceptance condition(2 =
(OJF). We again seek to construct the largest set of states for which the control
(in this case both u and o-0) can guarantee that the acceptance condition Q2 is
met despite the action of the disturbance (in this case d and a-1). For any set
K C Q x X define the controllable and uncontrollable predecessors of K by:

Preo(K) = {(q,x) E Q x XI3o0 E L0 V-1 E ,1 6((q,x), (o-0, a,)) C K} n K
Pre,(K) = {(q, x) E Q X XJVao E Zo 3o,1 E ,1 6((q, x), (co, o-1)) n K' 0 0} u Kc

(25)
In other words, the controllable predecessor of K, Preo(K), contains all states
in K for which the controllable actions can force the state to remain in K for
at least one step in the discrete evolution. The uncontrollable predecessor, on
the other hand, contains all states in KC as well as all states from which the
uncontrollable actions may be able to force the state outside K. Clearly:

Proposition 5 Preo(K) n Pre, (K) = 0.

371

Consider the algorithm:
Initialization: WV = F, W` = 0, i = 0.
While W 0 W'-' do

W'-= W' \ {(q,x) E Q x XIVu E U3t > O,d E D such that

(-y(t), x(t)) E Pre,(Wi) and (-y(7-), x(T)) ý Preo(Wt)}
i=i-1

end
Here (-y(7-), x(T)) for r E [0, tJ represents the continuous trajectory starting

at (q,x) under inputs (u,d), i.e. (-y(0),x(0)) = (q,x) and for all r, y(r) = q,
Nr(T) = f((y[(r), x(T)), (u(7), d(r))), and (-(r), x(r)) E Inv.

The most challenging part of each step of the algorithm is the computation
of the set of states that can be driven by d to Pre, (Wi) without first entering
Preo(Wi). This computation can be carried out by appropriately modifying the
Hamilton-Jacobi-Bellman construction of Section 3.2.

5 Computational Issues

In practice, the usefulness of the proposed synthesis algorithm depends on our
ability to efficiently compute solutions the Hamilton-Jacobi-Bellman equation.
We conclude this paper with a brief discussion of some of the computational
issues which we are currently investigating.

Numerical methods for computing solutions to the Hamilton-Jacobi-Bellman
PDE have been studied extensively: a survey paper [18] presents a set of com-
putation schemes based on a level set method for propagating curves, which
uses numerical techniques derived from conservation laws. The approach re-
quires gridding the state space, so while these techniques have been shown to
be efficient in two- or three-dimensions, they may become cumbersome in higher
dimensions. Also, it is essential that a bound on the error due to approximation
be known at each step of the algorithm, in order to guarantee that the computed
surface is a conservative approximation to the actual surface.

Numerical solutions are potentially complicated by the fact that the right
hand side of equation (24) is non-smooth. This is possibly also the case for the
optimal Hamiltonian H*(x,p). Moreover, as t evolves the solution J*(x,t) to
the Hamilton-Jacobi-Bellman equation can develop discontinuities (known as
shocks) as a function of x. Finally, it is unreasonable to assume that the capture
set is always described by a level set of a single differentiable function I(x):
more generally, we should assume that there exists a collection of differentiable
functions li(x) where i = 1... m such that the capture set is described by G
n,=lf{x E R' I li(x) <_ 0}. Computing solutions with discontinuous Hamiltonian
functions is dealt with in [18] using an evolution function which varies across the
grid space. Methods to compute solutions in the presence of shocks are presented
in [19], and a "viscosity" method to avoid shocks is presented in [20].

372

References

1. A. Church, "Logic, arithmetic, and automata," in Proceedings of the International

Congress of Mathematicians, pp. 23-35, 1962.
2. J. von Neumann and 0. Morgenstern, Theory of games and economic behavior.

Princeton university press, 1947.

3. J. R. Biichi and L. H. Landweber, "Solving sequential conditions by finite-state
operators," in Proceedings of the American Mathematical Society, pp. 295-311,
1969.

4. M. 0. Rabin, "Automata on infinite objects and Church's problem," in Regional

Conference Series in Mathematics, 1972.
5. A. Puri, Theory of Hybrid Systems and Discrete Event Systems. PhD thesis, De-

partment of Electrical Engineering, University of California, Berkeley, California,
1995.

6. W. Thomas, "Automata on infinite objects," in Formal Models and Semantics,
volume B of Handbook of Theoretical Computer Science, Elsevier Science, 1990.

7. W. Thomas, "On the synthesis of strategies in infinite games," in Proceedings of
STACS 95, Volume 900 of LNCS (E. W. Mayr and C. Puech, eds.), pp. 1-13,
Munich: Springer Verlag, 1995.

8. 0. Maler, A. Pnueli, and J. Sifakis, "On the synthesis of discrete controllers for
timed systems," in STACS 95: Theoretical Aspects of Computer Science (E. W.
Mayr and C. Puech, eds.), Lecture Notes in Computer Science 900, pp. 229-242,
Munich: Springer Verlag, 1995.

9. E. Asarin, 0. Maler, and A. Pnueli, "Symbolic controller synthesis for discrete
and timed systems," in Proceedings of Hybrid Systems II, Volume 999 of LNCS
(P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, eds.), Cambridge: Springer Ver-

lag, 1995.
10. H. Wong-Toi, "The synthesis of controllers for linear hybrid automata," in Pro-

ceedings of the IEEE Conference on Decision and Control, (San Diego, CA), 1997.
11. W. M. Wonham, Linear Multivariable Control: a geometric approach. Springer

Verlag, 1979.
12. A. Deshpande and P. Varaiya, "Viable control of hybrid systems," in Hybrid Sys-

tems II (P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, eds.), Lecture Notes in
Computer Science 999, pp. 128-147, Berlin: Springer Verlag, 1995.

13. R. Isaacs, Differential Games. John Wiley, 1967.
14. T. Ba~ar and G. J. Olsder, Dynamic Non-cooperative Game Theory. Academic

Press, second ed., 1995.
15. C. Tomlin, G. Pappas, and S. Sastry, "Conflict resolution for air traffic manage-

ment: A case study in multi-agent hybrid systems," tech. rep., UCB/ERL M97/33,
Electronics Research Laboratory, University of California, Berkeley, 1997. To ap-
pear in the IEEE Transactions on Automatic Control.

16. J. Lygeros, D. N. Godbole, and S. Sastry, "A verified hybrid controller for auto-
mated vehicles," Tech. Rep. UCB-ITS-PRR-97-9, Institute of Transportation Stud-
ies, University of California, Berkeley, 1997. To appear in the IEEE Transactions
on Automatic Control, Special Issue on Hybrid Systems, April 1998.

17. A. E. Bryson and Y.-C. Ho, Applied Optimal Control. Waltham: Blaisdell Pub-
lishing Company, 1969.

18. J. A. Sethian, "Theory, algorithms, and applications of level set methods for prop-
agating interfaces," tech. rep., Center for Pure and Applied Mathematics (PAM-

651), University of California, Berkeley, 1995.

373

19. J. M. Berg, A. Yezzi, and A. R. Tannenbaum, "Phase transitions, curve evolution,
and the control of semiconductor manufacturing processes," in Proceedings of the
IEEE Conference on Decision and Control, (Kobe), pp. 3376-3381, 1996.

20. P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations. London:
Pittman, 1982.

A Sufficient Condition for Controllability of a Class of
Hybrid Systems

Jan H. van Schuppen

CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

J.H.van.Schuppen@cwi.nl
also affiliated with

Department of Mathematics and Computing Science
Eindhoven University of Technology

Control of engineering systems by computers is formulated as a control synthe-
sis problem for hybrid control systems. An input-output hybrid control system
is used as a control-theoretic model for this problem. A sufficient condition for
controllability of a hybrid system is formulated that separates into a sufficient
condition at the discrete and at the continuous level of a hybrid system.

Keywords and Phrases: Hybrid system, control, discrete-event system, control-
lability.

1 Introduction

The purpose of this paper is to present results on control synthesis for a particular
class of hybrid control systems.

In this paper attention is focused on control problems for hybrid systems
in which the discrete-events are subject to control and in which there are no
discrete-events generated by the environment. Control problems of this type
arise in control of mechanical systems, say robots, and in control of chemical
plants. The main characteristic of such problems is that the control is supplied by
discrete-input-events and by the continuous input to the system. It differs from
control problems in which the environment of the system exclusively supplies
the events.

A hybrid control system is a control theoretic model for a computer controlled
engineering system. For the purposes of this paper the definition of a hybrid con-
trol system in [13] is restricted to an input-output hybrid control system stated
below. The definition is inspired by those of [1, 2]. The general control problem
for hybrid systems leads to a problem of controllability of such systems. Because
of its generality this problem is unlikely to be solvable analytically. Therefore a
sufficient condition for controllability is formulated and proven to achieve suf-
ficiency. The sufficient condition separates controllability at the discrete-event
level and at the level of the continuous systems. An advantage of this approach
is that it is comparatively easier to check the sufficient condition than it is to
check general controllability. For controllability of the control systems at the

375

continuous level results are available, although for nonlinear systems such con-
ditions may be difficult to verify. Controllability conditions for an input-output
automaton are in principle straightforward to check although the complexity of
this problem may be high. The sufficient condition for controllability of a hy-
brid control system is not necessary in general. Experience with examples will
have to establish whether or not the envisioned advantages are useful in control
problems.

Control synthesis for hybrid control systems is discussed in several papers and
theses. The publications most closely related to this paper are briefly mentioned.
M. Branicky has proposed to use optimal control theory for control synthesis, see
[2, 3, 41. The existence of a controller then follows from the existence of a solution
to a set of Bellman-Hamilton-Jacobi equations. Conditions for the existence
are not discussed and if formulated may be restrictive or difficult to check. In
contrast with that paper, the approach of this paper has explicit conditions for
the existence of an input sequence. A. Deshpande and P. Varaiya have a theory
on viable control of hybrid control systems, see [5, 6]. The approach of those
papers is close to the approach of this paper, the latter paper presenting more
explicit controllability conditions. Other references on controller synthesis are
[7, 8, 9, 10]. For concepts and results on control theory the reader is referred to
the book [121 and on automata and computation referred to the book [11].

A summary of the paper follows. Section 2 contains a definition of an input-
output hybrid control system and the problem formulation. Controllability is
treated in Section 3. Concluding remarks are stated in Section 4.

2 Problem Formulation and Preliminaries

Remarks on notation follow. Denote the set of the integers by Z = {1, 2,...} and
the natural numbers by N = {0, 1,2, }. For n E Z denote Z = {1,2,... ,n}.

Denote the set of the real numbers by R and the positive real numbers by
R+ = [0, oo).

A continuous-time hybrid control system is a tuple

T,Q, Zin, int, Zcd, Zout,U,Y, Uc, Uex,

5, r, {Xq, TXq, Gq, fq, hq, Vq E Q}, (qo, xa0,o)f' (1)

where

T = R+, said to be the time index set,
Q is a finite set, the discrete state set,
Zin is a finite set, the set of input events,
Zint is a finite set, the set of internal events,
Zcd is a finite set, the set of events generated by the continuous dynamics,

Z = Lm, U cint U o nsd,
U C R', the continuous input space,
Y C RP the continuous output space,
Uc C { u :T -+ U}, set of continuous input functions,

376

Ue, C (T x Z)* U (T x Z)w the set of external timed-event sequences,
J : T x Q x X x Z -+ Q, the discrete transition function,
a, possibly partial, function,
r : T x Q x Q x X x Z -+ X, the reset map, a, possibly partial, function,
for all q E Q,
Xq C R'q, the continuous state space at discrete state q E Q, X = UqEQXq,
TXq(x) g R'9 the tangent space at x E Xq,
Gq : Zcd -+ Pclosed(Xq), the guard at q E Q, a, possibly partial, function,
Pciosed(Xq) denotes the closed subsets of Xq,
fq: T x Xq x U--+ TXq, hq: T x Xq x U-+Y,
are functions that determine a differential equation and a read-out map,

(qo, Xqo,O) E Q X Xqo the initial state.

The dynamics of the hybrid control system is described by the discrete transition
function, the reset map, the differential equation, and the output map, according
to

q+ = 6(t, q-, xq-, u), q0, (2)

x+q+= r(t, q-, q+, x-_, o), (3)

iq(t) = fq(t,Xq(t),u(t)), xq(O) =X+, (4)

y(t) = hq(t, xq(t), u(t)). (5)

The operation of the hybrid control system is described below. At t = 0 the
initial state is (qo, Xqo,O) E Q x Xq0 . Assume no immediate transition takes
place at t = 0. At the discrete state q = qo the continuous dynamics proceeds
according to the differential equation (4). It will be assumed that for all u E U,
this differential equation has an unique solution on R+. The solution will be
followed till the next event. The time interval till the next event will be denoted
by [to, ti) for t1 E R+ and for subsequent intervals by [ta, t,+,) for n E Z+.

At any time t G T an event may occur that results in a change of the discrete
state. The possible events at discrete state q E Q and at time t E T are:

- an input event a E Zin occurs if such an event is supplied on the input
channel;

- an event generated by the continuous dynamics a E Zcd occurs immediately
when Xq (t-) E Gq (a), thus if the state of the system hits a guard. (Here the
notation xq(t-) = limsTt Xq(S) is used.)

If the timed-event (t, a,) occurs then the transition is described by the discrete
transition function and the reset map (2,3). It may be the case that the new
state (q+, x++) E Q x Xq+ is such that x++ E Gq+ (o2). In this case the event
a2 E Zcd takes place at the same time. ft will be assumed that only a finite
number of events can occur at any time (non-Zenoness). After the last event of
the sequence of events occuring at moment t, the new state is (qf, x+) where
x+ is the initial condition of the differential equation in the discrete state qf.qf

377

A hybrid control system is said to be time-invariant if the functions J, r, fq, hq
do not depend explicitly on the time index set. In this paper attention is re-
stricted to time-invariant hybrid control systems.

In this paper attention is focused on a control problem for hybrid control
systems, 'as in path planning for robotics. This problems leads to controllability
conditions for hybrid systems that may be useful for other control problems.

Problem 1. Consider a time-invariant hybrid control system. For any initial and
terminal state, do there exist a timed-event sequence and a sequence of input
trajectories

{ (ti,oi) E T x Zi., i = 1,...,m8 }, {ui [ti,ti+1) -+ U, i = 1,..

such that, when the system is supplied with these inputs, the system is trans-
ferred from the pre-specified initial state to the terminal state?

The input trajectories should preferably be generated by a control law in the
form of a controller. The controller itself should also be hybrid, it may be taken to
be a hybrid control system. In this paper attention is restricted to the existence
of input sequences, not on the construction of the controller.

3 A Sufficient Condition for Controllability

Definition 2. A hybrid control system is said to be controllable if for any pair
of states (qo, Xqo ,0), (qf, xqj,f) E Q x X there exists a timed-event sequence and
a continuous-input sequence such that the system evolves from the initial state
(qo, xqo,o) to the final state (qf, xqf,f).

In control theory, controllability of a control system is a sufficient condition for
the existence of a controller.

What are necessary and sufficient conditions for a hybrid control system to be
controllable? First a general sufficiency condition is presented in terms of arrival
sets. Subsequently it is shown how to construct these sets.

Proposition 3. Consider a hybrid control system. Assume there exists a collec-
tion of sets, called arrival sets,

AR(q) ={AR(q,i) C Xq,Vi E Zq}, AR = {AR(q),Vq E Q},

such that

1. for any (q, xq,o) E Q x X there exists a continuous input u E Uc on the
interval [t0 , ti), a timed-event (t1 , ul), possibly further timed-events at t1,
and (ql, AR(ql, i)), such that the system is transferred from state (q, Xq,o) to
a state (ql,xqi) E Q x AR(ql,i);

2. for any (qo,Xqo) E Q x AR(qo,i), qf E Q, and AR(qf,j) G AR(qj) there
exists a finite sequence of timed-events and a finite sequence of continuous
input signals

{(tioi) E T x Zin, i = 1,... ,m 8 }, {ui: [ti,ti+i) -+ U, i = 1,...,ms}

378

such that the system is transferred from state (q, xq,o) to a state (qf, xq1) E
Q x AR(qf,j);

3. for any (qf,xqff) E QXXqf there exists an arrival set AR(qf,j) and for any
state xqf,o E AR(qf,j), a continuous input u E Uc such that the system is
transferred from state (qf, xqj,o) E Q x AR(qf,j) to state (qf, Xqf,f) without
leaving the state space Xqj.

Then the hybrid control system is controllable.

Proof Consider (qo, xqo,o) E Q x X and (qf, Xqf,f) E Q x X. By condition 1 there
exists a continuous input, a timed-event, and a pair (ql, AR(qI, i)), such that the
system is transferred from state (qo, Xqo) to a state (ql, xq,,1) E Q x AR(qm,i).
From Condition 3 then follows that there exists a AR(qf,j) and for any state
Xqf,0 E AR(qf, j) a continuous input such that the system is transferred from
state (qf, Xqf ,) E Q x AR(qf,j) to the state (qf, xqf,f). From Condition 2 then
follows that there exists a finite timed-event sequence and a finite sequence
of continuous-input signals such that the system is transferred from any state
(qi,xql,i) E Q x AR(ql,i) to a state (qf,xqf,o) E Q x AR(qf,m). The three
conditions together imply that the system can be transferred from the initial
state to the terminal state. 13

The construction of the arrival sets requires the introduction of a few definitions.

Definition 4. Consider a time-invariant hybrid control system. The continuous-
controllability set at state (q, xq,i) E Q x X is defined to be the set

C - Conq({Xqi})

((q, xqo) E Q X Xqjeither Xq,O = Xq,1

or 3 to,t, E R+, to < ti, u E Uc,such that
xq(to) = Xq,O,Xq(tl) = Xq,1, and Vt e [t0 ,ti), xq(t) E Xq

In words, C - Conq({Xqi}) is the subset of the state space {q} x Xq from
which one can start and by application of a continuous input arrive at the state
(q, xq,i) without ever leaving the state space Xq in the interval [to, ti). Note that
the definition explicitly excludes the possibility that the state trajectory hits a
guard because if it did so then the system would move to another discrete state
and thus leave the state space Xq.

Let for Sq C Xq the continuous-controllability set of Sq be defined by

C - Conq(Sq) = U-,i SqC - COnq({xq,i}).

Then for a E Zcd

C - Conqq(Gq(U))

r (q, Xq,O) E Q x XIeither Xq,o E Gq(a)
= or I to, ti E R+, to < ti, u E U,, such that5

xq(to) = xq,o,xq(ti-) E Gq(a), and V t E [to,ti), xq(t) E Xq

Definition 5. Consider a time-invariant hybrid control system.

379

a. For qi, qj E Q and a E Zi,, define the departure set D(qi,a,qj A+) and the
collection of departure sets D(qi) as

qA+ {xq E Xqj3 xqj E A+ such that
D ,qj,) qj = J(qi,xqj,a) and Xq, = r(qi,qj,xq ,a) f

D(qi) = {D(qi, a, qj,A+), Vqj E Q, Va E Zin, VA+ CXq }.

In words, D(qio, qj,A+) consists of those states in Xq, at which, when
the input event occurs at the time the continuous state is in this subset of
the state space, the system is transferred to the discrete state qj and to a
continuous state in A+. Note that in the definition of D(qi, a, qj, A+) both
qj and a are required. Because an input event can occur at any time it follows
that for qi E Q and a E Zin the set

{D(qi, a, qjiXqj) C Xq,,qj E Q},

forms a partition of the state space Xqj. Let for qi, qj E Q and U E Zin

C - Conq, (D(qi, a, qj, Xqj))

be the continuous-controllability set of D(qi,a, qj, Xq,). In words, this set
consists of all states in Xq. from which one can transfer the system by a
continuous input to a state in D(qi, ao, qj,Xq,) at which the input event
a E Zin can be applied and as a consequence the system moves to the new
discrete state qj.

b. For qi, qj E Q and a E Zin U Zcd define the arrival set as

Ax+ E Xqj 13 x- E Xq, such thatAR(qi, uqj) = Xq

qj = 6(qi, xa) and x+ = r(qi, qj, x.,a)S

In words, AR(qi, a, qj) consists of those states in Xq, at which one arrives in
set Xqj from the discrete state qi by an event a E Zin U Zed. Denote

AR = {AR(qi, u, qj) _ Xqj, Vqi, qj E Q, a E Zin U EcdI.

Terminology of discrete-event systems is introduced. A discrete-event system is
defined to be a generator consisting of the objects (Q, Z, 3, qo), where Q is a
finite set called the state set, Z is a finite set called the alphabet, J : Q x Z -+ Q
is a function called the transition function (it may be a partial function), and
qo E Q is the initial state of the system. Denote by Z* the set of all finite strings
with events in Z and the empty string e ý Z. Extend the transition function to
J : Q x L* -+ Q by defining it for sequences.

The discrete-event system is said to be reachable if for any qi E Q there exists
a s E Z* such that q, = J(qo, s).

Definition 6. Consider a time-invariant hybrid control system. Define the as-
sociated arrival discrete-event system (arrival DES; actually, it is a generator)

380
as

(AR, ZEm U Zed, 3 AR, ARqo),

AR = {AR(qj, u, qj) _ Xqj, Vqj, qj E Q, a E Zi U Zcd},

AR(qj, ul, qj) = JAR(AR(qk, uo, qj), ol)

if I either AR(qk, no, qi) g C - Conq, (Gq, (al))

or AR(qk, co, qi) C C - Conq, (D(qi, al, qj, Xqj)),

else not defined,

ARq0 = AR(qj, a, qo) if Xqo,O E AR(qj, a, qo) EAR.

In words, the transition takes place if the arrival set AR(qk, 00, qi) is fully con-
tained in one of the indicated continuous-controllability sets. In this case it is
possible to start in any state of the arrival set and to transfer the system to
either, a guard or to a departure set at which state an event occurs or can be
supplied to the system respectively.

Note that the conditions in the definitions of the transition function 5AR are
restrictions, it may be the case that AR(qk, 0o, qj) is not fully contained in one set
but intersects with two or more continuous-controllability sets. Thus, a particular
arrival set may not be related by a transition to any of the other arrival sets in
the arrival DES.

Proposition 7. Consider a time-invariant hybrid control system. If

1. the associated arrival DES (AR, ZiE U Zcd, JAR, ARqo) is reachable;
2.

V(qf,xqf,f) E Q x X, 3 qi E Q,a E Zin U Zcd such that

AR(qj, a, qf) C C - Conqf ({xqf,f});

in words, any final state can be reached from any state in an arrival set
in Xqf associated with either an input event or an event generated by the
continuous dynamics;

then the hybrid control system is controllable.

Proof This follows from Proposition 3 and the Definitions 4, 5, and 6. 0

The main difficulty in the application of the above result is to determine the
controllability sets. The control system at a particular discrete state will in
general be nonlinear and may have a geometrically structured input space. In
specific cases the controllability set can be approximated. Note that because
Proposition 7 only describes a sufficient condition for controllability it is possible
to take smaller subsets than C - Conq(Gq(a)) and C - Conq(D(qi, a, qj, Xq))

in the definition of the AR system.
As remarked above, the condition imposed in Definition 6 is restrictive because

the complete arrival set has to be contained in either the controllability set of a

381

guard or in the destination set of an input event. Below a different approach is
described.

Consider the finite collection

A = {A(qi, k) C Xqk=1,..., nq,, q E Q}.

Assume that there exists a AO = A(qo, r) E A such that Xqo,0 E A(qo, r). Define
for a hybrid control system, qi,qj E Q, U E Zin U Zcd, and A C Xqj,

DT(qa,qA) =xq E Xq, IADT~qi, a, qj, A = qJ -(qi, Xqi,o,) and r(qj, qj, xqj, u) E A "

The definition of the set DT is a minor extension of that of D. Note that for
oU E Zýd,

Gq, (0) C Uq 3EQDT(qi, a, qj, Xq).

Define the generator

(A, Zin U ZEd, JA, Ao),

A(qj, m) = 6A (A(q,, k), o),

if A(qi, k) C C - Conq, (DT(qi, o, qj, A(qj, m))).

The generator is meaningful because the subset inclusion allows for any state in
the set A(qi, k) the existence of a continuous input that moves the state of the
system to the set DT from which an event will transfer the system to a state in
the set A(qj, m).

Theorem 8. Consider a time-invariant hybrid control system. If there exists a
collection of sets

A = {A(qi, k) C Xqj, k E Znq,, qi E Q}.

such that

1. for all qi, qj E Q and a E Zin U Zcd there holds

AR(qj, U, qj) = UkEI(qi,o-,qj)A(qi, k),

for an index set I(qj, u, qj) C Znq ;

2. the generator (A, (Zin U Zcd), 6 A, Ao) is reachable;
3. for any (qf,xqfj) E Q X Xqf there exists a set A(q 1,i) E A and for any

state (qf, xqfo) E A(q1 , i) a continuous input u E Uc such that the system is
transferred from state (q1 , xqf,o) E Q x A(qf, i) to state (qf, xqf,f) without
leaving the state space Xqf ;

then the hybrid control system is controllable.

382

The proof follows along the lines of that of Proposition 3.

A dynamic programming-like procedure can be formulated for the construction
of the collection of the A sets. Suppose specified a terminal state (qf, Xqf) E
Q x Xqf. Construct successively by a backward recursion the collections of sets
A 0 , A 1, A2 , ... as follows. Let

Ao(qf, r(qk, a)) = AR(qk, u, qi) n C - Conq ({xqf }),

Vqk E Q, o E Zi. U Zcd,

Ao(qj, r(qk, O)) = AR(qk, 0, qi), if qj 0 qf, Vqk E Q, o E Zi. U ,cd.

For k = 0, 1, ... , qj, qj E Q, rl, r2 E Z+, oa E Zi. U EUcd, let

Ak+1 (qi, (rl, r2, S, U1, 92, qj))

= Ak (qj, rj) n AR(qs, al, qj) n C - Conq, (DT(qi, a2 , qj, Ak (qj, r 2))).

The range of r, is the index set for which Ak(qj, .) is defined and similarly the
range of r 2 is associated with Ak(qj, .). After the sets Ak+ (qj, (...)) have all
been determined they should be relabeled r = 1, 2, ... , nr. In general there is
no condition that implies that the procedure will terminate after a finite number
of steps. However, if it terminates then it still has to be checked whether the
conditions of Theorem 8 hold. The procedure formulated above is analogous to
but different from a procedure formulated in [5].

The sufficient conditions for controllability were developed with a particular
hybrid system in mind. The example has been omitted from the paper because
it requires a large amount of space for tables and notation. The reader is referred
to the report [13] for a hybrid system of a model of conveyor belts and to [7] for
a hybrid system of a model of a chemical plant.

4 Conclusion

Several sufficient conditions for controllability of hybrid control systems have
been formulated and proven. Further research is required to test the usefulness
of the conditions on examples.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3-34, 1995.

2. M.S. Branicky. Studies in hybrid systems: Modeling, analysis, and control. PhD
thesis, M.I.T., Cambridge, MA, 1995.

3. M.S. Branicky. On-line, reflexive constraint satisfaction for hybrid systems: First
Steps. In 0. Maler, editor, Hybrid and real-time systems - Proceedings of Inter-
national Workshop HART97, number 1201 in Lecture Notes in Computer Science,
pages 93-107, Berlin, 1997. Springer.

383

4. M.S. Branicky, V.S. Borkar, and S.K. Mitter. A unified framework for hybrid
control: Background, model, and theory. Report LIDS-P-2239, Laboratory for
Information and Decision Systems, M.I.T., Cambridge, MA, 1994.

5. A. Deshpande and P. Varaiya. Information structures for control and verification
of hybrid systems. In Proceedings American Control Conference, pages 2642-2647.
American Control Council, 1995.

6. A. Deshpande and P. Varaiya. Viable control of hybrid systems. In P. Antsaklis,
W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid systems II, volume 999 of
Lecure Notes in Computer Science, pages 128-147, Berlin, 1995. Springer.

7. J.J.H. Fey. Control and verification of industrial hybrid systems using models
specified with the formalism X. Note BS-N9601, CWI, Amsterdam, 1996.

8. M. Heymann, Feng Lin, and G. Meyer. Control synthesis for a class of hybrid
systems subject to configuration-based safety constraints. In 0. Maler, editor,
Hybrid and real-time systems - Proceedings of International Workshop HART97,
number 1201 in Lecture Notes in Computer Science, pages 376-390, Berlin, 1997.
Springer.

9. J. Lygeros. Hierarchical, hybrid control of large scale systems. PhD thesis, Uni-
versity of California, Berkeley, 1996.

10. J. Lygeros, C. Tomlin, and S. Sastry. Multiobjective hybrid controller synthesis.
In 0. Maler, editor, Hybrid and real-time systems - Proceedings of International
Workshop HART97, number 1201 in Lecture Notes in Computer Science, pages
109-123, Berlin, 1997. Springer.

11. M. Sipser. Introduction to the theory of computation. PWS Publishing Company,
Boston, 1997.

12. E.D. Sontag. Mathematical control theory: Deterministic finite dimensional sys-
tems. Springer-Verlag, New York, 1990.

13. J.H. van Schuppen. Control for a class of hybrid systems. Report PNA-R9716,
CWI, Amsterdam, 1997.

Hybrid Regular Expressions*

Li Xuandong, Zheng Tao, Hou Jianmin, Zhao Jianhua, and Zheng Guoliang

State Key Laboratory of Novel Software Technology
Department of Computer Science and Technology

Nanjing University, Nanjing
Jiangsu, P.R.China 210093

E-Mail: lxd~nju.edu.cn

Abstract. In this paper, we consider the problem verifying hybrid sys-
tems modelled by linear hybrid automata. We extend the traditional
regular expressions with time constraints and use them as a language
to describe the behaviour of a class of linear hybrid automata. The ex-
tended notation is called Hybrid Regular Expression (HRE). Based on
linear programming, we show that for the class of linear hybrid automata
whose behaviour can be represented by HREs, two class of reachability
problems and the satisfaction problem for linear duration invariants are
decidable.

1 Introduction

The formalism of hybrid automata [1] have become a standard model for real-
time and hybrid systems. A class of hybrid systems can be modelled by linear
hybrid automata. Informally, a linear hybrid automaton is a conventional au-
tomaton extended with a set of variables, which are used to model the state of
the continuous component of hybrid systems and are assumed to be piecewise
linear functions of time. The states of the automaton called locations are as-
signed with a change rate for each variable, such as & = w (x is a variable, w is a
real number), and the transitions of the automaton are labelled with constraints
on the variables such as a < x < b and /or with reset actions such as x := c
(x is a variable, a, b, and c are real numbers). Each location is also assigned
with an invariant condition that must hold when the system resides at the lo-
cation. The automaton starts at one of the initial locations with all variables
initialised to their initial values. As time progresses, the values of all variables
change continuously according to the rate associated with the current location.
At any time, the system can change its current location from s to s' provided
that there is a transition p from s to s' whose labelling conditions are satisfied
by the current value of the variables. With a location change by a transition
p, all the variables are reset to the new value accordingly by the reset actions
labelled on p. Transitions are assumed to be instantaneous.

* This work is supported by the National Natural Science Foundation of China and

International Institute for Software Technology, The United Nations University
(UNU/IIST).

385

Let us consider an example of a water-level monitor in [2]. The water level
in a tank is controlled through a monitor, which continuously senses the water
level and turns a pump on and off. The water level changes as a piecewise-linear
function of time. When the pump is off, the water level falls by two inches per
second; when the pump is on, the water level rises by one inch per second.
Suppose that initially the water level is one inch and the pump is on. There is
a delay of two seconds from the time that the monitor signals to change the
status of the pump to the time that the change becomes effective. The system
is modelled by the hybrid automaton depicted in Figure 1. The automaton has
four locations. In the locations s1 and S2, the pump is on; in the locations S3
and s4, the pump is off. The variable y is used to model the water-level, and x is
used to specify the delays: whenever the control is in location S2 or s 3 , the value
of x indicates how long the signal to switch the pump off or on has been sent.

y=l y=O? k=j

x:=O

x<20 x<2y
y=5?

X: =0

Fig. 1. A hybrid automaton modelling a water-level monitor

In this paper, we use timed sequences to express the behaviour of real-time
and hybrid systems. A timed sequence (si, t)^(s2 , t 2)^ ... ^(s,,, tin) represents
a behaviour of a system that the system starts at the state sj, stays there for t1

time units, then changes to S2 and stays in 82 for t 2 time units, and so on. The
values t1, t2 , ... , m have to satisfy some time constraints enforced by the system.
For example, (S1, 9) ^(82, 2) ^(S4, 3.5)^ (S3, 2) ^(s, 8) expresses a behaviour of the
hybrid automaton in Fig.l.

Since the number of timed sequences to express the behaviour of a system
may be infinite, we have to find a notion as a finite representation of behaviour
of systems. A traditional way to express the behaviour of an automaton is to use
regular expressions. In this paper, we extend the traditional regular expressions
with time constraints and use them as a language to describe the behaviour
of real-time and hybrid systems. The extended notation will be called Hybrid
Regular Expression (HRE). HREs can express the behaviour of a class of linear
hybrid automata. We show that for the class of linear hybrid automata whose
behaviour can be expressed by HREs, two class of reachability problems and the

386

satisfaction problem for linear duration invariants are decidable.
The paper is organised as follows. In the next section, we introduce the

notion of Hybrid Regular Expression. Section 3 shows that two class of reacha-
bility problems for the class of linear hybrid automata whose behaviour can be
expressed by HREs are decidable. The satisfaction problem of linear druation
invariants for this class of linear hybrid automata is resolved in Section 4. The
last section is the conclusion of the paper.

2 Hybrid Regular Expressions

While a regular expression over a set of states (alphabet) is a finite representation
of a (infinite) set of sequences of states, an HRE will be a finite representation
of a set of timed sequences of states.

Let V be a finite set, R+ be the set of nonnegative real numbers. Each element
of V is called a location or state. A finite sequence (SI, t1)^(s 2 , t2) ... • (Sm, tin)

of elements in V x R+ is called a timed sequence over V. In this paper, we use ^ to
denote the concatenation of the sequences. The occurrence time r(U) of a timed
sequence a = (s1, t)^(s2, t 2)^ ... ^(SMI, tm) over V is defined by r(a) = Em 1 ti.

A timed sequence (si, t1) ^ (S2, t2) ̂ ... ^(Sm, tin) represents a behaviour of a
system that the system starts at the state Si, stays there for tj time units,
then changes to S2 and stays in 82 for t 2 time units, and so on. The values
t1, t 2 ,...., tm have to satisfy some time constraints enforced by the system. These
time constraints must be incorporated into the finite representation of the system
behaviours. By incorporating time constraints into regular expressions, we get
Hybrid Regular Expressions.

Definition 1. An HRE)Z and the language £(RT) represented by R? over a
finite set V of states are defined recursively as follows:

1. - is an HRE, and £(e) = {e}.

2. If v E V, then v is an HRE, and £(v) = {(v,t) It E R+}.
3. If RI and RZ2 are HREs, then TZC ̂Z2 is an HRE, and

(R1 ̂R2) = {a1^a 2 1 U1 £(EC), a 2 E(R2)}

4. If R, and RZ2 are HREs, then R, ED R2 is an HRE, and

£(RI (RZ2) = £C(l) U £(7Z2).

5. If 1Z is an HRE, then R* is an HRE, and

m

LC(7*) ,{^ ... ^a,, I m > 0 and A (ai E C(R))},
i=1

where a,~.. when m = 0.

387

6. If R 1, R 2 , ... ,Rm be HREs, then

((Rl, Al) ^ (R2, A2).. ^(R., A.m), 'A)

is an HRE, where A be a set of linear inequalities on A1, A2 , .. ,A.m of the
form a < ciAI + c 2A2 + ... + cmA.m < b (a,b, and ci (1 < i < m) are real
numbers) and for any 1Zi (1 < i < m) in which there is an occurrence of the
combinator *, for any a _< c 1A + c2A2 +... + CmAm <•b E A, if ci : 0, then
any cj Ž 0 (1 <j < m); and

L(((R, A,) ^ N2,A2) ^...^ im,)Am),A)) =r each ai (1 <i < m) belongs to L£(n) such that
lU2 ... ^ for all a• < cjAi b E A, a < Zcir(ai) < b

i=1 i=1

When A = {a _< Eiml Ai : bl, ((Zl, A,) ^ (R2, A2)^...(7m, Am), A) is
taken to be (R1 ̂ R2 ̂ ... ^iRm, [a, b]). 0

Although the traditional regular expressions are powerful enough to describe
the behaviour of finite automata, it is not the case for HREs to describe the be-
haviour of all linear hybrid automata. Nevertheless, HRE is simple and powerful
enough to express the real-time behaviour of many real-time hybrid systems
encountered in practice.

For example, the behaviour of the linear hybrid automaton (Fig. 1) modelling
the water level monitor in the introduction can be represented by the following
HRE 7R,:

7 = E) (sl, [0, 9]) @ (sl, [9,9])^(s2, [0,2]) fl RlOR2 ^R3 ^ ((S3, [0, 2]) e R4 (D R5 T R6)

where

'1 = ((s8,A1)^(S 2 ,A 2)^(S 4 ,A3),{JAI = 9, A2 = 2, 2A3 -A 2 _ 5})

R2 = ((si, A,)^(82, A2)^(S 4 , A3), {AI = 9, A2 = 2, 2A3 - A 2 =5})
RZ3 = (03,)A1)^ (s1, A2) ^(S2, AO ^(S4, A4),

{A1 = 2, A2 - 2A1 = 5, A3 = 2, 2A4 - A3 = 5})
R4 = ((8 3 ,A,)1^(si, A 2), {IAl = 2, A2 - 2A1 < 5})
R5 = ((3 ,A,)1^(si, A 2)^(8 2 , A3),{fA, = 2, A2 - 2A1 = 5, 0 < A3 __ 2})
R•6 = (083,A) 1^ (S1, A`2) ^ (S2, AO ^ (S4, A4),

{AI1 2, A2 - 2A1 = 5, A3 = 2, -5 < A3 - 2A4 }).

Since HREs form a very simple formalism to model real-time and hybrid
systems, hopefully many problems are decidable for the class of real-time and
hybrid systems defined by HREs. In next two sections, we show that for the class
of linear hybrid automata whose behaviour can be represented by HREs, two
class of reachability problems and the satisfaction problem for linear duration
invariants are decidable. In the rest of this section, we introduce some concepts
concerning HREs that will be used in next two sections.

For an HRE RZ, if £(R) = 0, then 1? is said to be empty.

388

Definition 2. For an HRE 7Z, its sub-expressions are defined recursively by:

1. 7R is a sub-expression of 1R.
2. If 7R = RZ1 ^7Z2 or 1Z = lZ, E 1Z2, where lZ, and 7Z2 are HREs, then all the

sub-expressions of 7R, and 1Z2 are sub-expressions of 7Z.
3. If 7R = 7Z or 1Z = (7i, [a, b]), where 7Ri is an HRE, then all the sub-

expressions of R-, are sub-expressions of RZ.
4. If R = ((7Z1,Al)^()Z 2 , 2) ^ ... ^7(R , Am),A), where each 1?i (1 < i < m) is

an HRE, then all the sub-expressions of 7Ri are sub-expressions of 7Z. 51

A simple HRE is an HRE in which there is no occurrence of the combinators
* (repetition) and @ (union). From Definition 1, any simple HRE 7Z can be
rewritten as a simple HRE 7V' of the form ((vi,A A)^(v 2 , A2)^ .. ^'(V., Am),A)
such that £(RZ) = £(1Z'), where for each i (1 < i < m), vi C V. Therefore, from
now on, we assume that any simple HRE is of the form

((vi, A)-(V2, A2) v., A.), A

where A is a finite set of linear inequalities of the form a -<Y Ml ciAi _ b.
For any simple HRE 7? = ((vi, A)^(v2 , A2)^ ... ^(Vm,Am),A), let MT(7Z)

(mr(7z)) denote the supremum (infimum) of the set {T(a) 1 01 £(7Z)}. M,(7R)
(mr (7R)) can be calculated by finding the maximal (minimal) value of the linear
objective function A, + A2 + ... + Am subject to the group of linear inequalities
in A, which is a classical linear programming problem. If mr(7?) = 0, 7Z is said
to be a zero-simple HRE; otherwise 7Z is said to be a nonzero-simple HRE.

By a normal form we mean an HRE of the form 7Z, (R 7 2 E (9 7nm, where
)Zis are simple HREs.

Let 1Z be an HRE, and 7Z, be a sub-expression of 7Z. Replacing an occurrence
of 7R, in 7? with a letter X, we obtain a context of X. Any context C(X) of X, is
associated with two real numbers W(C(X)) and w(C(X)), which specify a lower
bound and a upper bound of the constraints on the occurrence time enforced by
the context on the variable X. If the context does not enforce any time constraint
on X then (C(X)) = 0 and w(C(X)) = 0o.

Definition3. A context C(X) of X, o(C(X)) and w(C(X)) are defined recur-
sively as:

1. X is a context of X, and o(X) = 0 and w(X) = oo (no additional constraint).
2. If CI(X) is a context of X and 7Z is an HRE, then C(X) = C1(X)^7Z and

C(X) = 7^C1 (X) are contexts of X, and

w(C(X)) = W(CM(X)) , w(C(x)) = w(CM(X))

(no additional constraint).
3. If C1(X) is a context of X and 7Z is an HRE, then C(X) = C1(X) D 7Z and

C(X) = 7? e CI (X) are contexts of X, and

w(C(X)) = M(CM(X)), w(C(X)) = W(Cl(X))

(no additional constraint).

389

4. If C1(X) is a context of X, then C(X) = Ci(X)* is a context of X, and

W(C(X)) = V(Cl(X)) , w(C(X)) = w(Cl(X))

(no additional constraint).
5. If C1(X) is a context of X and R ,... ,R.m are HREs, then

C()=((Cl M, Ak)Z:,Ak1 .. ^(RA) A)

is a context of X (1 < k < in). Let a be the maximal value of the set
{a/ck I a <• clAl +c 2 A2 +...+CkAk+... +cmAm < b E A and Ck $ 0},

and b be the maximal value of the linear function Ak subject to all the linear
inequalities in A respectively. Then

(o(C(X)) = max(o(Ci(X)), a), w(C(X)) = min(w(Cl (X)), b)

(additional constraint enforced by A). D

For any context C(X), replacing X in C(X) with an HRE, say RZ, we obtain
an HRE, denoted by C()).

3 Checking Linear Hybrid Automata for Reachability

The reachability problem is central to the verification of hybrid systems. In
general, the reachability problem for linear hybrid systems is undecidable [2,5,71.
But the following two class of reachability problem is decidable for the class of
linear hybrid automata whose hebaviour can be expressed by HREs.

The one is a typical reachability problem studied in [5]: Given a final location
s, is there a behaviour of the automaton terminating at location s. Suppose 1R
is an HRE representing the behaviour of the automaton terminating at location
s. The reachabiliy problem can be solved by checking the emptiness of RZ.

The other is called time-bounded reachability problem in [6]: Given a final
location s and a time interval [a, b], is there a behaviour of the automaton ter-
minating at location s such that the total elapsed time of the behaviour is in
the time interval [a, b]. Let 1Z is an HRE representing the behaviour of the au-
tomaton terminating at location s. The reachabiliy problem is equivalent to the
problem of checking the emptiness of (7R, [a, b]).

In the following, we solve the problem checking the emptiness of an HRE.
By Definition 1 and 2, it is not difficult to prove the following two theorems.

Theorem 1. For an empty HRE 7R and for an HRE R1I,

L(zRi1Z) = L(R. ^R) = 0,
L(IZ ÷E l.) = L(7 nED) = C(RZ),
L(TR*) = E{}, and £(1, [a,b]) = 0.

For an HRE 7 which has the form ((R.I, Al) ^ (R2 , A2) ̂ ... ^ (7m, Am), A), if the
group of inequalities has no solution or there is li (1 < i < m) such that
£(Ri) = 0, then L(1) =0. 0

390

Theorem 2. Let R? be an HRE and 7R, be a sub-expression of R?. Let R' be
an HRE such that £(7R) = L(R?1). Suppose VI is constructed from replacing
an occurrence of R,1 in 7R with 7R. Then, L(7.) = £(7?'). 0

By Theorem 1 and 2, for any HRE 7R, we can find out an HRE VI such that

"* L(7?) = £(7Z'), and
"* 7?' has no sub-expression which is of the form

((7Z,, A,)^ (R2, A2) ^... ^(ý A,,), A).

where the group of inequalities in A has no solution.

Hence, for simplicity, from now on, unless otherwise stated, we assume that all
HREs under consideration have no sub-expression which is of the form

where the group of inequalities in A has no solution.
First, let us consider the problem checking if a simple HRE is empty. Let 1T

be a simple HRE 7R = ((vi, A,)^(v 2 ,A2)' ... ^(Vm, Am),,A). From the definition
of HREs, every a C L(7?) is of the form (vi,tl)^(v2 ,t 2)^... ^(Vm,tm), where
t1,t 2 ,...,tm satisfy the group of linear inequalities represented by A. Hence,
the problem checking the emptiness of a simple HRE can be solved by checking
if the group of linear inequalities in A has no solution, which can be solved by
linear programming.

Let A(= 7R (@ R2 D... D 7Zm be a normal form. Hence, each I.i (1 < i < m)
is a simple HRE. Since L(AK) = 0 <=> Ai2 1 Oz(T) = 0, the problem of checking if
AK is empty can be solved by solving m linear programming problems checking
if Ri is empty, i = 1,2,...,m.

Therefore, for a general HRE 7?, if we can effectively find a normal form AK
such that 1(7?) = 0 if and only if L(Af) = 0, then we can check if R? is empty
effectively.

For an HRE 7?, we attempt to find a normal form AK such that 1(7?) = 0 if
and only if 1(KV) = 0 by the following procedure:

Step 0. Let VI := 7R.
Step 1. For VI, distributing ^ over D, and [a, b] over E, we obtain Q. If Q is a

normal form, then we are done.
Step 2. For a sub-expression Qs of Q which is of the form Qs = QI*, replacing

an occurrence of Qs in Q with X, we obtain a context CQ(X) such that
R, = CQ(Qs).

Step 3. Finding an HRE Qs in which there is no occurrence of combinator *
such that CQ(Qs) = 0 if and only if CQ(Q') = 0. Let VI := CQ(Qs), and go
to Step 1. 0

Obviously the procedure is correct. The problem is how to find Q' in Step
3. The following lemmas and theorems will help to solve that problem.

391

Let C(X) be a context. For a real number x, let [xJ denote the floor of x.
For an HRE RZ, let 7V denote the j-repetition of 7?

Lemma 1. Let R? and 7R' be HREs. If for any a E £(7)Z), there is a' E L(7')
such that r(a) = T(o'), then £(C(7R')) = 0 implies £(C(7?)) = 0. El

Lemma 2. Suoopse w(C(X)) = oo, and R be a nonzero-simple HRE 7?. Then
for any real number a, for any a E £(C(T?*)) such that 7T(a) > a, there is a' E
£(C(EP=oTj)) such that T(a') > a, where p = ([max(p(C(X), a)/m,(7?)J + 1).

El

Lemma 3. Let 7? be a nonzero-simple HRE. Then £(C(_P=oTj)) D L(C(7?*)),
where p = lw(C(X))/m,(1)J + 1. 11

These lemmas can be proved by induction on the structure of context. Their
detailed proofs are omitted because of space considerations. From these lemmas,
we can prove the following theorems.

Theorem 3. Let R,. and 7R2 be HREs. Then

C(C((7)I. (R?2)*)) = 0 iff L(C((7l*)^(7? 2*))) = 0.

Proof. By Definition 1, £((71*)^(72*)) 9 £((7. ED ?2)*). From Lemma 1, the
half of the claim follows, i.e.

£(C((7? 1 E I?2)*)) = 0 implies £(C((7Z,*)^(7 *))) = 0.

The other half can be proved as follows. Since any a E L(C((7R1 e 7?2)*) can be
permuted into a' E £(C((7.*)^(7 2*))), from lemma 1, the result follows. rl

Theorem 4. Let 7? = ((vi, A 1) ̂ (v 2 , A2)^... ^(Vm, A), A) be a zero-simple HRE.
Let A' be the set

m rn

{o< Ec iAi] 0 < E ciAj <b E A A 3j . (1 <j < mA cj <0)},
i=1 i=1

and 7?' = ((V1, A1)^(v 2 , A2) ̂ ... ^(vm, A), A'). Then

£(C(?*)) = 0 if £(C(7')) = 0.

Proof. Before the proof, we should note that by the definition of zero-simple
HREs, T(7IZ) = 0 implies that for any inequality a < clA1 +c 2A2 +.. .+ c7 Am < b
inA, a<0andb>0.

The half of the claim that L(C(7Z')) = 0 implies £(C(7?*)) = 0, is explained
as follows. By Definition 1, any a E £(7?*) is of the form al ^a2 ^... ^0,, where

i=(VItil) ̂ (V2,ti2)^...^(vm,tim) E L(7) (i=l,2,...,n).

392

For any j (1 < j < m), let tj = t1 + t2j +... + t, and let

0' = (v1,t) ^(v 2 ,t2) ^ (Vm, t').

Since for any i (1 < i < n), til,ti2 ,... ,tim satisfy A, tg 2....) ,tm satisfy A' as
well. It follows that a' E £(7Z'). Since r(a) = r(a'), the first half of the claim
follows from Lemma 1.

The other half of the claim, i.e. 1(C(7R*)) = 0 implies £(C(R')) = 0, can
be proved as follows. For any a' = (v1, t1) ' (v2 , t2) ̂ ... '(vm,tm) E C(7V'), since
t1,t 2 ,.. ,tm satisfy A', for any 0 < Y.L c)•i < b E A, we have Jmlj citi > 0.
Because for each inequality a < c1Aj + c2 A2 +... + cmAm < b in A, a < 0 and
b > 0, and because A is a finite set, we can choose a natural number p such that
for any inequality a < clA1 + c2 A2 + ... + cm, m < b E A,

Cltl+ + C2t2+ -•..- +Cmtma< <b.
P

For each i (1 < i < in), let bi = ti/p, and let Ub = (vi, bi)^(v 2 , b2) ... "(Vm, bin).
Obviously, a E L(7-). Let

U =b UOb *... ^9b

p

It follows that a E L(74*). Since T(a) = T(a'), by Lemma 1, L(C(74*)) = 0
implies C(C(7R')) =0. 0

Theorem 5. Suppose w(C(X)) = oo, and 7? be a nonzero-simple HRE. Then

C(C(74")) = 0 iff L(C(E)=o0 74.)) = 0,

where p = ([Q(C(X))/m,(7?)J + 1).

Proof. By Definition 1, £(7-*) QD £(E)O 0=74) holds, which by Lemma 1 implies
a half of the claim, i.e. £(C(7R*)) = 0 implies L(C(@. 04Rj)) = 0. The other half
is straightforward from Lemma 2. 0

Theorem 6. Suppose w(C(X)) 5 oo, and 7? be a nonzero-simple HRE. Then

12(C(7*)) = 0 iff 1(C(ED.=o0 j)) =0,

where p = (Lw(C(X))/Imr(7)J + 1).

Proof. By Definition 1, L(7?*) QD L(E'=o_0) holds, which by Lemma 1 implies
a half of the claim, i.e. £(C(7R*)) = 0 implies £(C(EP=07j)) = 0. The other half
is straightforward from Lemma 3. 0

Based on the above theorems, the algorithm to check an HRE 7? for emptiness
is now described as follows.

Step 0. Let 7R' := 7R.

393

Step 1. For R', distributing ^ over E, and [a, b] over E, we obtain Q.
Step 2. Finding a sub-expression Qs of Q which has one of the following three

forms:

1. Qs = (RI (D R2 E... (R7k)* (k > 2), where every Ri (1 < i < m) is a
simple HRE.

2. Qs = TZ, where Ri is a nonzero-simple HRE.
3. Qs = R4, where R1 is a zero-simple HRE.

If such Qs could not be found, goto Step 6 (note that it is not difficult to
prove that if we can not find out such a Qs, then Q is a normal form);
otherwise replacing the occurrence of Qs in Q with X, we get a context
CQ(X) such that Q = CQ(Qs). Then, if Qs has the first form, goto Step 3;
if Qs has the second form, goto Step 4; if Qs has the third form, goto Step
5.

Step 3. By Theorem 3, we transform Q into Q' = CQ((RZl)* ^(IZ2)*^... ^(7Zm)*).

Then, let R' := Q', and goto Step 1.
Step 4. We first calculate w(CQ(X)). If w(CQ(X)) $ oo, then by Theorem 6, we

transform Q into Q' CQ((DOR=0T), where p = (Lw(CQ(X))Im,(RT)J + 1).
Let VI := Q', and goto Step 1.
Otherwise, w(CQ(X)) = oo. By Theorem 5, we transform Q into Q' =

CQ(E)?oRI), where p (L[(CQ(X))/mr(Rq)J + 1). Let R' := Q', and
goto Step 1.

Step 5. By Theorem 4, we transform Q into Q' = CQ (R'), where V, is the
simple HRE defined from R, in Theorem 4. Let R' := Q', and goto Step 1.

Step 6. Since Q is a normal form now, we check the emptiness of Q by linear
programming. If Q is empty, then R. is empty; otherwise R is not empty.

0

4 Checking Linear Hybrid Automata for Linear Duration
Invariants

In this section, the problem we are concerned can be described as follows: Given
a hybrid automaton A, given a linear duration invariant D, decide efficiently
whether A satisfy D.

4.1 Linear Duration Invariants

Linear duration invariants [4] are constructed from linear inequalities of inte-
grated durations of system states. They form an important class of Duration
Calculus (DC) [3] formulas. In DC, states are modelled as Boolean functions
from reals (representing continuous time) to {0, 1}, where 1 denotes state pres-
ence, and 0 denotes state absence. For a state S, the interval variable f S of
DC is a function from bounded and closed intervals to reals which stands for
the accumulated presence time (duration) of state S over the intervals, and is

394

defined formally by fS[a, b]_fb S(t)dt, where [a, b] (b > a) is a bounded interval
of time. A linear duration invariant D in DC is of the form

k n

Tf1>tAE A(ZcijfSi<_Mj),
j=1 i=1

where T, t, cij, Mi are real numbers (T may be oo).
The meaning of a linear duration invariant 2D is that: if the system is observed

for an interval of time satisfying the premise of D, then the duration of the
system states must satisfy the consequence of D. It turns out that many real-
time properties can be written as a linear duration invariant.

For example, the requirement of the water-level monitor in Fig.1, which is
that the monitor must keeps the water level in between 1 and 12 inches, can be
expressed by linear duration invariants as well. We know that when the control is
in locations s, or S2, the water level rises 1 inch per second, and when the control
is in locations S3 or S4, the water level falls by 2 inch per second. Furthermore,
for an interval [0, t], the accumulated time that the system stays in s1 or S2
is f sl + f s2, and the accumulated time that the system stays in S3 or S4 is

f S3 + f 54. Therefore, the water level at time t, given that at the beginning the
water level is one inch, is 1 + f s8 + f 82 - 2(f S3 + f 84). Hence, the requirement
for the water-level monitor can be described by the following linear duration
invariants

0o< f 1 •< 00 1 + f s1 + f S2 - 2(f S3 + f 84) < 12;
0o< f 1 <_ o0 1 + f s1 + f S2 - 2(f 83 + f s4) > 1.

For a location v - V, for a predicate S over V, let v #. S denote that S holds
during the system stays at v. A timed sequence o = (v1, t1) ^(V2 , t 2) ^... ^((Vm, tin)• k , E n 1 C j (. , t) : j

over V satisfies a linear duration invariant 2 iff A•j=l(-= 1 ci=(Z , tu) _ Mj)

when T > E',_L tu >_ t, where aj-'{u I (1 < u < m) A (vu =€ Si)}. A hybrid
automaton satisfies a linear duration invariant if and only if every behaviour
of the automaton satisfies the linear duration invariant. An HRE R? satisfies a
linear duration invariant D, denoted by R? = 29, iff any timed sequences a E £(RT)
satisfies 29.

4.2 Checking HREs for Linear Duration Invariants

Now, we consider the problem checking an HRE R? for linear duration invariant
2D. Without loss of generality, throughout this section, let 29 be

t < fl < T #. E cjfSi • M,
i=1

and for any a = (vl,tl)^(v2,t2)^... ^(Vm,t.,) E L(RZ), let 0(a,2D) be the value
of E ci f Si evaluated over a,

(o D)= E c(E .
i=1 uEai

395

where ai = {u 1(1 < u < m) A (vu =* Si)}.
For simplicity, we assume that all HREs under consideration are not empty

and do not have any empty sub-expression.
For any nonzero-simple HRE R? = ((vi,))^(v2 ,A 2)^ ... (vm, Am), A), let

Mo(R) denote the supremum of the set {O(a,D)Iu E £(7Z)}. M7 (R), Mo(1)
can be calculated effectively by finding the maximal value of the linear objective
function "i=1 ci(-E, A,,) subject to the group of linear inequalities in A.

Let R? be a simple HRE 7? = ((vi,A,)^(v 2 , A 2) ... (Vm,Am), A). From the
definition of HREs, every a E £(R?) is of the form

(vi,t,)"(V2 ,t2)^ ... ^ (Vm,tm)

where t1, t2 ,... ,tm satisfy the group of linear inequalities represented by A.
Denoting this group of linear inequalities by C1 , the problem of checking 7 1= D
is then equivalent to the problem of finding the maximum value of the linear
function En , c ij(EC, t') subject to the linear constraints C1 and C2 and
checking whether it is not greater than Mj for all j = 1, ... , k, where C2 denotes
the inequality

t < t1 + t2 ... tm T.

The latters are linear programming problems.
Let Kr = R1 ED R 2 E... (D Rm be a normal form. Hence, each Ri (1 < i < m)

is a simple HRE. Since, by Definition 3,

m

AK [D A 7R. ýD,
i=1

the problem of checking AV for D can be solved by solving m linear programming
problems Ri [-- D, i = 1, 2,.. ., m.

Therefore, for a general HRE 7R, for a linear duration invariant D, if we can
effectively find a normal form K such that 7R ý= D if and only if M 1= D, then
we can check 7R k- D effectively.

for an HRE 7? and a linear duration invariant D, we attempt to find a normal
form K/ such that C(R) k D if and only if C(Ar) 1= D by the following procedure:

Step 0. Let V?. := 7R.
Step 1. For 7?., distributing ^ over (D, and [a, b] over 6), we obtain Q. If Q is a

normal form, then we are done.
Step 2. For a sub-expression Qs of Q which is of the form Qs = Qi*, replacing

an occurrence of Qs in Q with X, we obtain a context CQ(X) such that
IV' = CQ(Qs).

Step 3. Finding an HRE Q' in which there is no occurrence of combinator *

such that CQ(Qs) k D if and only if CQ(Qs) [= D. Let R?' := CQ(Q!), and
go to Step 1. 0

Obviously the procedure is correct. The problem is how to find Qs in Step
3. The following lemmas and theorems will help to solve that problem.

Let C(X) be a context.

396

Lemma 4. Let 7Z and V?' be HREs. If for any a E £(1Z), there is a' E £(VZ')
such that r(a) = r(a') and 0(a,D) _< O(a',D), then C(V') I= /9 implies
C(R.) ý=9. 0

Lemma 5. Suppose w(C(X)) = cc, and 7? be a nonzero-simple HRE 7R such
that M6 (7Z) < 0. Then for any real number Nt, for any a E £(C(TR*)) such that
T(a) > Nt, there is a' E £(C(@,P=07V) such that

Tr(a') >_ Nt and O(a, D) <_ O(a',9D)

where p = (Lh/m,((7.)J + 1), and h = max(Q(C(X),Nt). El

Lemma 6. Suppose w(C(X)) = oo, and 7R be a nonzero-simple HRE such that
M6 (7R) > 0. Then for any nonnegative real numbers Nt and M3, there is
a E £(C(7Z*)) such that 7(a) Ž Nt and O(a,D9) > M4. 11

Lemma 7. Suppose 7? be a nonzero-simple HRE, and Nt be a nonnegative real
number. Then for any a E £(C(R*)), r(a) :_ Nt implies a E £(C(DP=07Zj)),
where p = [Nt/m,(TZ)J + 1. 0

Lemma 8. Let 7Z be a nonzero-simple HRE. Then £(C(,P=o7Zj)) 2_£(C(R*)),
where p = Lw(C(X))/mr(7Z)J + 1. 0

These lemmas can be proved by induction on the structure of context. Their
detailed proofs are omitted because of space consideration. From these lemmas,
we can prove the following theorems.

Theorem 7. Let 7IZ and 7R2 be HREs. Then

C((Z 1 E) 7Z2)*) = D9 iff C((7Z*)^(7 2 ")) (2 9.

Proof. By Definition 1, £((7Ti*)^O(Z2*)) C £((7Z1 G 7Z2)*). From Lemma 4, the
half of the claim follows, i.e. C((7T, (TZ2)*) [D9 implies C((T, 1*)^(R 2 *)) k D.
The other half can be proved as follows. For any al £(EC7Z) and a2 E £(7Z2),
since 7(90= a2) rl)+ T(02) and 9(a 1 ^02 , D) = 9(aiD)+ +(a 2, D), we have
7-(al^a 2) = T(a2^ l) and 0(a9^a 2 ,D) = 0(a 2 ^a1,D). Therefore, any
a E £(C((TI (D TZ2)*) can be permuted into a' E £(C((7. 1 *)^(R?2 *))). Hence,
from Lemma 4, the result follows. El

Theorem 8. Let R? = ((vi, Al)^ (V2 , A2) ... ^(vm, A), A) be a zero-simple HRE.
Let A' be the set

m m
{0 < E cjAj] 0 < E cjAj <b E A A 3j . (1 < j <mAcj <0)},

a=1 i=1

and 7?' = ((V 1,A 1)^(v 2,A 2)^ ... "(Vm,A),A•'). Then C(7?.*) 1=29 iff C(T.') •/9

397

Proof. Before the proof, we should note that by the definition of zero-simple
HREs, r((R) = 0 implies that for any inequality a < clAl +c 2A2 +... +CmAm < b
in A, a < 0 and b> 0.

The half of the claim that C(V,') ý= D implies C(7Z*) [- D, is explained as

follows. By Definition 1, any a E £(R*) is of the form ol^ a2^ ... ^an, where

ai = (v1,til)^(v 2 ,ti 2)^...^(vm,tim) E L(A) (i =1,2,..,n).

For any j (1 < j <_ m), let tý = t1 + t 2 +... + tnj, and let

0 = (VIt) V, t2)A ... tm').

Since for any i (1 < i < n), til,t4 2 ,. .• ,tim satisfy A, t2, t,. . ., tm satisfy A' as
well. It follows that a' E L(1Z'). Since 0(a, D) = 0(a', D) and T(a) = -(a'), the
first half of the claim follows from Lemma 4.

The other half of the claim, i.e. C(1Z*) [- D implies C(7Z') H= D, can be
proved as follows. For any a' = (vI,t1)^(v 2 ,t 2) - ... ^(Vm,tm) E L(V.'), since

tl, t 2 ,..., tm satisfy A', for any 0 < E-i cjAj < b E A, we have •7 1 citi Ž 0.
Because for each inequality a < c1 A1 + c2 A2 + ... + CmAm < b in A, a < 0 and
b > 0, and becaupe A is a finite set, we can choose a natural number p such that

for any inequality a < clA1 + c2 A2 + ... + cmrAm < b E A,

< clti + c 2t 2 + -±- ..- +Cmtm < b.
- p

For each i (1 < i < m), let bi = ti/p, and let ab = (vi, bi)^ (v2 , b2)' ... ,(vi, bin).
Obviously, a E L(7R). Let

" =ab a7b ... O'b •

P

It follows that a E L(IZ*). Since 0(a,D)) = O(a',D) and r(a) = r(a'), by
Lemma 4, C(RZ*) = -D implies C(V') j -. 0.

Theorem 9. Suppose w(C(X)) = co, T = co, and 1Z be a nonzero-simple HRE
such that Mo(RZ) > 0. Then C(1Z*) - D.

Proof. The theorem follows immediately from Lemma 6. ,

Theorem 10. Suppose w(C(X)) = co, T co, and 1. be a nonzero-simple
HRE such that Mo(1Z) < 0. Then C(Rn*) = D iff C(E&P_=oT) J= D, where
p = (Lh/m,(7Z)j + 1), h = max(ýo(C(X), t).

Proof. By Definition 1, L(7Z*) _D £(@'=o0 7Z) holds, which by Lemma 4 implies

a half of the claim, i.e. C(1Z*) [D implies C(E_ 0=oR•) D V. The other half is
straightforward from Lemma 5. 0

Theorem 11. Suppose w(C(X)) i co or T 5 co, and R? be a nonzero-simple
HRE. Then C(IZ*) 1= D iff C(@P=oT7j) [- D, where p = (Lh/m,(IZ)J + 1),
h = min(w(C(X), T).

398

Proof. One half of the claim, i.e. C(QR*) j= D implies C(EP=0TV) j= D is exactly
the same as the proof of Theorem 10. The other half of the claim is a direct
consequence of Lemmas 7 and 8. 0

Based on the above theorems, the algorithm to check an HRE 7Z for a linear
duration invariant D is now described as follows.

Step 0. Let V' := 71.
Step 1. For 7V', distributing ^ over E, and [a, b] over E, we obtain Q.
Step 2. Finding a sub-expression Qs of Q which has one of the following three

forms:
1. Qs = (.i1 (R,2 D... E)7?k)* (k > 2), where every 7Zi (1 < i < m) is a

simple HRE.
2. Qs = 7Z*, where 7Z, is a nonzero-simple HRE.
3. Qs = 7Z., where 7Z, is a zero-simple HRE.

If such Qs could not be found, goto Step 6 (note that it is not difficult to
prove that if we can not find out such a Qs, then Q is a normal form);
otherwise replacing the occurrence of Qs in Q with X, we get a context
CQ(X) such that Q = CQ(Qs). Then, if Qs has the first form, goto Step 3;
if Qs has second form, goto Step 4; if Qs has the third form, goto Step 5.

Step 3. By Theorem 7, we transform Q into Q' = CQ((7•?I)*^(7?2)* ... ^(?.m)*).

Thus, let 7R' := Q', and goto Step 1.
Step 4. We first calculate w(CQ(X)) and Mo(RT1). If w(CQ(X)) 5 cc or T 5 cc,

then by Theorem 11, we transform Q into Q' = CQ(P 07Z.j), where
p = ([h/m,(Tj)J + 1), and h = min(w(CQ(X),T). Therefore, let 7V' :=
and goto Step 1.
Otherwise, w(CQ(X)) = cc and T = cc. If Mo(7Zi) > 0, then by Theo-
rem 9, we conclude CQ(R*) : D and exit. Otherwise, by Theorem 10, we
transform Q into Q' = CQ(DP_ 0R.), where p = (Lh/m,(7ZT)J + 1), and
h = max(p(CQ(X),t). Let 7?' := Q', and goto Step 1.

Step 5. By Theorem 8, we transform Q into Q' = CQ(74), where 7Z' is the
simple HRE defined from 7Zi in Theorem 2. Let 7V' := Q', and goto Step 1.

Step 6. Since Q is a normal form now, we check Q =- D by linear programming.
If Q = D, then 7Z 1= D; otherwise 7R K D.

5 Conclusion

In this paper, we introduce Hybrid Regular Expression to define a class of linear
hybrid automata for which two class of reachability problems and the satisfaction
problem for linear duration invariants are decidable. We use linear programming
techniques for checking this class of linear hybrid automata. The idea comes from
[4] in which the satisfaction problem of linear duration invariants for a simple
class of real-time automata is solved by linear programming techniques, which
is well established. In [5] the problem for timed automata has been solved by

399

mixed integer/linear programming techniques. Because of the advantages of the
approach of [4] in comparison to the others, in [9] we have generalised it to a
subclass of timed automata. In [10], by developing the techniques in [4,9], we
show that by linear programming technique the problem can be solved totally
for a class of linear hybrid automata. In this paper, we use similar techniques
to define a larger decidable class of linear hybrid automata which includes the
class of linear hybrid automata defined in [10].

We note the work in [8] in which timed regular expression of the same expres-
sive power as timed automata is introduced. We are inspired by it and attempt
to extend Hybrid Regular Expression such that it has the same expressive power
as linear hybrid automata in the future.

References

1. Thomas A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th

Annual IEEE Symposium on Logic in Computer Science (LICS 1996), pp. 278-292.
2. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H.Ho, X. Nicollin,

A. Olivero, J. Sifakis, S. Yovine. The algorithmic analysis of hybrid systems. In
Theoretical Computer Science, 138(1995), pp.3-3 4 .

3. Zhou Chaochen, C.A.R. Hoare, A.P. Ravn. A Calculus of Durations. In Information
Processing Letter, 40, 5, 1991, pp. 26 9- 276 .

4. Zhou Chaochen, Zhang Jingzhong, Yang Lu and Li Xiaoshan. Linear Duration
Invariants. In Formal Techniques in Real-Time and Fault-Tolerant Systems, LNCS

863, pp.8 8-1 09 .
5. Y. Kesten, A. Pnueli, J. Sifakis, S. Yovine. Integration Graphs: A Class of Decidable

Hybrid Systems. In Hybrid System, LNCS 736, pp. 17 9- 20 8 .
6. Rajeev Alur, Costas Courcoudetis, and Thomas A. Henzinger. Computing Accu-

mulated Delays in Real-time Systems. In Proc. CAV'93, LNCS 818, pp.18 1-19 3 .
7. Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What's

Decidable About Hybrid Automata? In Proc. of the 27th Annual ACM Symposium
on Theorey of Computing (STOC), 1995, pp.3 73- 38 2 .

8. Eugene Asarin, Paul Caspi, Oded Maler. A Kleene Theorem for Timed Automata.
In Proceedings of Logic in Computer Science, IEEE Comp. Soc., 1997.

9. Li Xuandong, Dang Van Hung. Checking Linear Duration Invariants by Linear
Programming. In Concurrence and Parallelism, Programming, Networking, and
Security, LNCS 1179, pp.321-332.

10. Li Xuandong, Dang Van Hung, and Zheng Tao. Checking Hybrid Automata for
Linear Duration Invariants. In Advance in Computing Science - ASIAN'97, LNCS
1345, pp. 166 -18 0 .

Stabilization of Systems with Changing Dynamics

Milo§ Zefran and Joel W. Burdick

Department of Mechanical Engineering, MC 104-44
California Institute of Technology, Pasadena, CA 91125

Abstract. We present a framework for designing stable control schemes
for systems whose dynamic equations change as they evolve on the state
space. It is usually difficult or even impossible to design a single controller
that would stabilize such a system. An appealing alternative are switch-
ing control schemes, where a different controller is employed on each of
the regions defined by different dynamic characteristics and the stability
of the overall system is ensured through appropriate switching scheme.
We derive sufficient conditions for the stability of a switching control
scheme in a form that can be used for controller design. An important
feature of the proposed framework is that although the overall hierarchy
can be very complicated, the stability depends only on the immediate
relation of each controller to its neighbors. This makes the application of
our results particularly straight forward. The methodology is applied to
stabilization of a shimmying wheel, where changes in the dynamics are
due to switches between sliding and rolling.

1 Introduction

The design of controllers for hybrid systems is a difficult problem that is still
not satisfactorily solved. Most existing design methodologies assume that the
underlying dynamics are continuous and that the hybrid behavior arises be-
cause the system must perform several functions. The control synthesis task is
then to design controllers that achieve each of the functions and a coordination
scheme that guarantees that properties like safety and liveness are satisfied at
all times. This work addresses a different problem. We study dynamical systems
that change their dynamic behavior as they evolve in the state space. The hybrid
nature is thus inherent in the dynamics of the system and does not come from
the controller specification. In this paper we study the problem of stabilization
of such systems. The goal is to design a controller that stabilizes an equilibrium
set in one of the regions, moving through other regions if necessary. We achieve
this by designing a controller on each of the regions and a scheme for switching
between these controllers. We show that the stability of the overall system can
be guaranteed by imposing conditions on controllers that operate on adjacent re-
gions. This leads to modularity of the design process and considerably simplifies
the synthesis problem. The stability analysis is based on Lyapunov functions.

A starting point for controller design is a choice of a formalism for description
of a hybrid system. In the literature we can find several alternatives. Alur et al.
[1] and Nicollin at al. [2] defined the notion of hybrid automaton, building their

401

work on the automata theory. Brockett [3] devised his model using the theory
of dynamical systems. Other works in this category are [4] and [5]. Branicky
gives an overview of such models and relates them to his own model [6]. We use
models in this second group for our work.

Prior work on hybrid controller design has often been limited to specific
applications. Lygeros et al. [7] proposed a game-theoretic framework for design
of controllers for intelligent highway systems and air traffic control systems.
Purn [8] and Deshpande [9] developed methods for controller design using a
simplified version of hybrid automata. Kohn et al. developed a methodology for
coordination of multiple agents [10]. Branicky & Mitter [11] and Zefran et al. [12]
employed optimal control for synthesis of open-loop trajectories. Goodwine &
Burdick [13] developed a controllability test and a planning method for a class of
hybrid systems called stratified systems. An important step in controller design
is verification. The approaches in [7]-[9] include verification as an integral part
of the design process. Some other works that address the verification are [14],
[15], and [16].

A number of authors considered stability of hybrid controllers. Branicky [17]
devised sufficient conditions for stability of a system that switches between differ-
ent controllers thatstabilize an equilibrium point. Based on this work, Malmborg
et al. [18] proposed a strategy for choosing a controller among several avail-
able controllers so that the overall system is stable. Both papers allow dynamic
equations to change, but they are primarily concerned with the case when the
equilibrium point is the same for each controller so there is no need to actively
drive the system into some designated region, as we do in the present paper. An
earlier work on stability of switching controllers is also [19].

The idea of driving the system through a sequence of equilibrium points until
a desired equilibrium point is reached was employed in [20]. In this work, the
switch between different controllers always occurs at an equilibrium point. The
authors also assume that the region of attraction of each controller is known so
there is no need for Lyapunov functions to prove the stability.

The paper is organized as follows. We start with a motivating example and
introduce some notions for stability analysis on manifolds. We next formulate
three propositions that give sufficient conditions for the stability of a switching
controller. The propositions are progressively less abstract and lead to a practical
synthesis methodology. We then apply the methodology to solve the problem of
stabilization for the classical shimmying wheel. We demonstrate the behavior of
the controller with some simulation results and conclude the paper with a brief
discussion.

2 Preliminaries

To motivate the theoretical development we start with an example. The system
that we study is the classical shimmying wheel [21, 22]. A schematic of the
shimmying wheel is shown in Fig. 1. A rigid link with a wheel is attached to a
hinge joint, which is in turn connected to a rigid object through a sliding joint

402

between two springs (Fig. 1). The control input is the torque at the hinge joint.
The object moves with a constant velocity v in the direction perpendicular to
the axis of the sliding joint. The shimmying wheel can be seen as a simplified
model of an aircraft nose wheel or a motorcycle front wheel, with the springs
modeling the compliance of the wheel and the wheel attachment [22]. It can also
serve as a model of a vehicle towing a trailer, with the springs abstracting the
compliance in the kingpin.

k/2

m 2• r y Body v

Fig. 1. A top view and a side view of a shimmying wheel.

The goal of control is to stabilize the wheel so that the bar is aligned with
the direction of v (perpendicular to the sliding axis) and the slider is in the
neutral position between the two springs (the forces of the springs are equal in
magnitude and of the opposite sign). This task is complicated by the fact that
the system can operate in two regimes: the wheel can either roll without sliding
or it can slip. The slipping regime is undesirable, but often unavoidable. The
system will switch between rolling and sliding depending on the magnitude of
the contact force between the wheel and the ground: the wheel will slip if the
force in rolling would be greater than the friction force. If we assume a feedback
control law for the torque about the hinge joint, the contact force is completely
determined by the state of the system and the state space gets divided into two
regions separated by a switching surface on which the contact force equals the
friction force. In each of the regions the equations of motion are different. It is
therefore unlikely that a single controller could stabilize the system and even if
one exists it is not clear how to design it.

A controller that is designed without taking the hybrid nature of the dy-
namics into account can produce undesired results. It is for example possible to
design a stable controller that linearizes the shimmying wheel dynamics if the
wheel is rolling. Figure 2(a) shows that this controller efficiently stabilizes the

403

system. However, if the same controller is used while the wheel is sliding, it can
destabilize the system, as can be seen in Fig. 2(b). This example shows that a
more comprehensive approach to design of controllers for systems with hybrid
dynamics is needed.

0.10
thta----

0.05 theta

-0.05

-0.1

0 2 4 6 8 10
Time

1.2 .•o .".,"%

0.8 7.
0.4

-0.4
-0.8-1 .2 t h e t a .-- ---

0 0.1 0.2 0.3 0.4
Time

Fig. 2. A linearizing controller applied in rolling (a) and sliding (b).

2.1 Stability theory on manifolds

We are interested in stabilizing submanifolds (possibly unbounded). Conven-
tional Lyapunov theory can not be directly applied to this setting, so we need
to introduce some additional concepts (see [23]).

Definition 1. A distance between a point x and a set E C IRn is defined by:

p(x, E) = inf d(x, y) (1)
yEE

A ball with radius R around E is the set B(E, R) {x I p(x, E) < R}.

Definition 2. A smooth manifold E C M is locally stable if for any R > 0 there
exist r > 0 such that if p(x(to),E) < r then p(x(t),E) < R for every t > to. If,
in addition, limt-, p(x(t), E) = 0, then we say that E is locally asymptotically
stable.

404

Definition 3. A submanifold E C M is locally attractive if there exists R > 0
such that if p(x(to), E) < R then limt-, p(x(t), E) = 0. We also say that
trajectories starting inside B(E, R) converge to E.

Theorem 4 [24, 25]. If for a control system Z there exists a C' function V
M -+ IR, such that:

(1) V(x) > 0 and V(x) = 0 # x E E"
(2) there exists a monotonically increasing function a : IR+ -- IR+, a(0) = 0,

such that o!(p(x, E)) < V(x);
(3) there exists a monotonically increasing function 0: IR+ IR+, 03(0) - 0,

such that V(x) < 3(p(x, E));
(4) V(x) < 0, where V is the derivative of V along the trajectories of Z;

then the manifold E is locally stable. If in addition:

(5) there exists a monotonically increasing function -y : iR+ --+ IR+, -y(0) = 0,
such that V(x) • -- y(p(x, E)) < 0,

then E is locally asymptotically stable.

2.2 Modeling

In this section we describe the setting which will be used to formally describe
systems whose dynamics change. Suppose we have a dynamical system Z and
a collection of (differentiable, connected) manifolds M = {MI, M 2, .. . , M}.
The manifolds need not be disjoint, they can be a subset of each other and
in some cases it it will be even convenient to take some of them to be equal.
This collection of manifolds must reflect the changing dynamics, but additional
manifolds can be defined for the purposes of a particular application. An example
of a collection of manifolds is shown in Fig. 3(a). On each manifold, the system
is described with a set of equations:

S= A (xiuit), (2)

where xi is the state of the system and ui is the vector of inputs for the system
evolving on the submanifold Mi. In general, fi's can be different to reflect changes
in the dynamics of the system. Also the dimensions of the manifolds might be
different. For example, in the case of the shimmying wheel, the manifolds M,
and M2 would correspond to sliding and rolling, respectively, where M, is the
whole space and M2 is the subspace on which the rolling constraint is satisfied.

We will assume that on each manifold Mi we design a controller gi:

ui = gi (xi, t), (3)

The reason of allowing some manifolds in the collection M to be the same is
that we may wish to define different controllers on the same physical space. Let
En g Mn be a manifold to which we wish to steer the system Z. The problem
that we address in this paper is how to design the controllers gi and a rule for

405

_ _ _ _ _ _ _ _ _ _ _ _ _ _7_ M i

M2I

M E4 M2 ",M3

z4 M,

Fig. 3. (a) A sequence of embedded manifolds; (b) the corresponding graph.

switching among them (a switching scheme) that stabilizes the system to E,' (if
possible globally). This task is complicated by the fact that, in general, we do
not know the sequence of the manifolds that the dynamical system will traverse.
Take for example the shimmying wheel. If the system is rolling, the controller
action might cause the wheel to slip, but it is conceivable that within a certain
region such switching does not happen. And it is of course always possible that
a disturbance (for example a slippery patch) causes the rolling wheel to slip.

The topology of a system evolving on a collection of manifolds can be de-
scribed with a graph. The vertices of the graph correspond to different manifolds.
There will be an edge from a manifold Mi to a manifold Mi if it is possible to
switch from Mi to Mj (there exists a trajectory that passes from Mi to Mi). For
example, if we assume that a nonempty intersection of two manifolds implies
that it is possible to pass between the manifolds, the graph for the system in
Fig. 3(a) would be Fig. 3(b).

3 Sufficient conditions for stability

Take a control system Z evolving on the collection of manifolds M. Assume
that on each manifold Mi, we have a controller gi (i.e., ui = gj(x, t)). Let the
controller g, stabilize the manifold En (i.e., the target manifold). Assume we
can construct a Lyapunov function V, which satisfies the conditions (1)-(5) of
Theorem 4. Let

S:Inx{1..n--{,..n

(X, r/) -+ ,S(X, 77) (4)

denote the switching scheme. In other words, the function S selects the controller
to be used, depending on the state x, and the controller that is currently used, 77.
Clearly, S(x, 7)) = i implies x E Mi, since gi is only defined on Mi. The following
proposition gives sufficient conditions for En to be globally attractive:

Proposition 5. Let the switching scheme S satisfy the following conditions:

406

1. There exists L > 0 such that S(x, n) = n for every x E B(E•, L) n Mn.
2. For any trajectory x(t) there exists a A > 0 and an infinite sequence {ti}

whose elements satisfy:
(a) for every t E [ti, ti + A], S(x(t), 7j(t)) = n;
(b) V(ti +,A) > V(t+,+).

Then the submanifold E, is globally attractive.

V

A A A A A

t' t2 t3 t4

Fig. 4. Values of the Lyapunov function and a sequence satisfying condition 2(b)
of Proposition 5.

Remark: Condition (1) guarantees that there is a region around En in which
it is not possible to switch from g7, to some other controller gi. That is, we
assume that the controller g, can capture and stabilize Z in some region around
E,. Condition (2) states that regardless of the current state, the system will
eventually come under the control of gn, and stay under the control of g,, for
at least time A. Furthermore, we can find a sequence of time subintervals of
length at least A so that the Lyapunov function restricted to the union of these
intervals is monotonically decreasing.

Proof. Let {tk} be a sequence given by condition (2). Since the Lyapunov func-
tion V is monotonically decreasing when the system evolves on M", condition
2(b) implies that ti+1 - ti _> A. Now take In = UkclN[tk,tk + A] and con-
sider the system evolving on I,,. By assumption, V satisfies the conditions of
Theorem 4, so we can find monotonically increasing functions a, '3 and -Y such
that a(p(x,En)) < V(x) < 03(p(x,E,)) and V(x) < -- y(p(x,En)) < 0. Let
r = p(x(to), E.) and let e be an arbitrary number such that 0 < c < r. Then we
can find 6 > 0 such that 03(6) < a(e). Let K be an integer such that K > '3(r)A7(3)

407

and take T = tK + A. Suppose that p(x(t), E,) > e for every t E I,,n [to,T].
Then we have:

0< a(e) • V(x(r)) = V(x(tK)) + 'Kj V(x(t)) dt

'K ft'K+A
•5 V(x(tK)) - -y(p(x(t), E.)) dt <_ V(X(tK)) - -y(6) dt

JIK t.;

= V(X(tK)) - A-Y6) < V(x(tK-1)) - AY(6) <...

_ V(x(to)) - KA-y(6) < O3(r) - KA-y(J) < 0 (5)

This is a contradiction, implying that there exists rT E I,, n [to, r] such that
p(x(T-'),En) < 6. But then for every t E I, such that t > r':

a (p (x(t), E.)) <5 V(x (t)) < V (x(-T')) <_ 0 (J) < a (e)

which implies:
p(x(t), E.) < e Vt > -r, t E 1.

This shows that p(x(t), En) converges to 0 on In.
Since p(x(t), En) converges to 0 on I,,,, there exists T > 0 such that for all

t > T, t E I., p(x(t), E.) < L. But by assumption, for x E B(EI, L) n M, the
system can not switch from Mn to some Mj, j 5 i, which means that the system
will stay under the control of gn for all t > T and therefore converge to E,.

While the lemma provides sufficient conditions for convergence of the sys-
tem trajectories to E,, these conditions are difficult to check and therefore not
suitable for controller design. It is particularly difficult to check condition (2).
We therefore provide two additional tests that are less general, but are easier to
apply.

Take M 1, M2 ,..., M., the collection of manifolds on which a dynamical sys-
tem evolves, and let A = {1, 2,. . ., n} be the index set. The switching scheme S
defines a relation Switch(A), if we put Switch(i, j) when it is possible to switch
from the manifold Mi (controller gi) to the manifold Mj (controller gj). More
formally:

Switch(A) = {(i,j) I Bx E Mi s.t. S(x,i) =j} (6)
Note that the graph representing this relation is precisely the graph described
in Section 2.2. We can then show:

Proposition 6. Let -< be a partial order within the transitive closure of the
relation Switch(A) which has the smallest element, and let this smallest element
be n. Assume that the switching scheme S has the following properties:

1. There exists L > 0 such that S(x,n) = n for every x E B(En,L) n M,'.
2. If x(t) is a trajectory of Z and Mi, i $ n is a manifold on which x(t) evolves

for an infinite amount of time, then there exists A > 0 such that for every
T we can find - > T such that S(x(t), 77(t)) -< i for every t E [-T, 7 +A].

3. If a system switched from gn to some other controller at time toff and if ton
is the time when the system next switches again to gn, then V(toff) _ V(ton).

Then the submanifold En is globally attractive.

408

Remark: The first condition is the same as in Proposition 5, while conditions
(2) and (3) together replace condition (2) there. Condition (2) says that for any
manifold Mi on which a trajectory stays for an infinite amount of time, we can
find a switch at an arbitrary large time to a manifold that lies lower in the
hierarchy implied by -< and that after such switch the system evolves on the
manifolds that are below Mi for at least A.

Proof. We will show that conditions (2) and (3) imply condition (2) of Propo-
sition 5. Let x(t) be a trajectory of Z' and let Mi be a manifold on which x(t)
evolves for an infinite amount of time. Since we have a finite number of mani-
folds, there will be at least one such i. The condition (2) guarantees that there
will be an infinite number of instances when the system evolves for at least A on
manifolds that are below Mi in the hierarchy defined by -<. But this implies that
x(t) will evolve on these manifolds for an infinite amount of time and since there
are only finitely many manifolds below Mi, there must exist a manifold Mj with
j -< i on which x(t) evolves for an infinite amount of time. By proceeding recur-
sively and because n is the smallest element for -<, we conclude that the system
must evolve on Mn for an infinite amount of time and in instances that last for at
least A. Condition (3) guarantees that each time the system switches to gn, the
value of the Lyapunov function is smaller than when the system last switched
off M,. The existence of the sequence {ti} in condition (2) of Proposition 5 is
therefore guaranteed.

Using Proposition 6 we can design a stable switching scheme by choosing a
partial order, developing controllers on each Mi that guarantee a switch to a
lower level with respect to this partial order, and enforcing decreasing of V at
switches to Mn. However, developing controllers that guarantee a switch to a
lower level is still not an easy task. One possible strategy is to make each con-
troller stabilize a certain manifold within a region from which the system switches
to manifolds lower in the hierarchy. This special case is important enough that
we state a separate proposition.

Proposition 7. Assume a partial order -< on A that has the smallest element
which is equal to n. Let each controller gi asymptotically stabilize a manifold Ei
and assume we can find a Lyapunov function Vi for gi. Let the switching scheme
S satisfy the following conditions:

1. For each i, there exists Li > 0 such that S(x, i) -< i for every x E B(Ei, Li) n
Mi (for i = n we require S(x, n) = n).

2. There exists A > 0, such that if a system switches from gi to some gj, j -< i
at time T, then S(x(t), 77(t)) -< i for each t E [T, T + A].

3. If the system switches from gi to some gj, i -< j, at time toff and after that
switches again to gi at time ton and if S(x(t), 77(t)) $ i for all t E [toff, ton],

then Vi(toff) Ž Vi(ton).

Then the submanifold En is globally attractive.

409

Remark: For i = n conditions (1) and (3) above clearly become the same as
conditions (1) and (3) in Proposition 6. Note that the Proposition suggests that
we can examine the stability of the system by simply examining relations between
neighbors defined by the switching scheme. This has important implications for
the synthesis problem and can be explored to obtain modularity of the design
process.

Proof. We will show that the above conditions imply conditions of the Proposi-
tion 6. Assume that a trajectory x(t) evolves on a manifold Mi for an infinite
amount of time, but after some time T it never switches to any manifold Mj
such that j -< i. Let Ii = {t > T I S(x(t), q(t)) = i}, the union of the intervals
beyond T during which the system evolves on Mi. By condition (3), Vi will be
monotonically decreasing on Ii and by condition (2), we can find an infinite se-
quence of (disjoint) intervals of length A that lie in Ii. By the same reasoning
that we used in the proof of Proposition 5 to show convergence to E., we can
show that x(t) converges to Ei. By condition (1) this implies that the system
will switch to some Mj, j -< i, which is a contradiction. This and condition (2)
above therefore imply condition (2) of Proposition 6.

The last proposition is a convenient tool for designing stable switching control
schemes. The algorithm for controller design can be roughly described as:

- Choose a partial order on A (decide on the hierarchy among Mi's).
- Design a controller on each Mi that stabilizes a manifold Ei.
- Choose a neighborhood Ui of Ei and define a switching scheme so that for

xE Ui, S(x, i) -< i.

Clearly, this basic algorithm has to be refined to guarantee that the conditions
(2) and (3) above are satisfied.

There is an important case in which condition (2) can be satisfied fairly easily.
Suppose we want to switch from Mi to Mj, j -< i. If fj(x,gj(x)) in Eq. (2) is
bounded for all x E U C Mj, where U is a neighborhood that contains the region
to which the system switches, then all we need to do is make the system switch
in such a way that after the switch to Mj we are some (fixed) finite distance
away from any point x in U for which j -< S(x, j). Because of the bounded rate
of change of the state, this implies that the switch will occur after some finite
time interval.

It is difficult to directly design controllers that would satisfy condition (3).
An alternative is to combine several controllers, each of which partly satisfies
the condition, into a single controller. Suppose we would like to allow switches
from Mi to Mj, j -< i. To satisfy condition (3), we need to have a controller gi
that is able to decrease the Lyapunov function Vj. Controller gi stabilizes Ei,
and we also know that the controller gj decreases the Lyapunov function Vj. If
Ei is the equilibrium manifold for the system controlled by gi, we can construct
a new controller, §i that behaves as gi away from Ei and as gj close to Ei. A
possible expression for §i would be:

= (1- cle-2dCxE1))gi(X) + ciet2d(xE1)gj(X) (7)

410

where cl and c2 are appropriate constants.
Propositions 5-7 provide sufficient conditions for E, to be attractive, not

to be stable. To prove the stability we have to show that trajectories starting
outside M, "nicely" converge to M,,. One possible way of stating this is:

Corollary 8. The manifold En will be stable if in addition to the conditions of
Proposition 5:

(3) For any R > 0 and every i, there exists r > 0 such that if x(to) E (Mi\ Mn)n
B(E, r) then under the control of gi, x(t) E B (E, R) for every t > to.

Proof. The Lyapunov function V guarantees that for any R2 > 0, there ex-
ists r 2 > 0 such that x(to) E Mn n B(E2 ,r 2) implies x(t) E B(En,R 2) as
long as x(t) stays in M,. Take R 2 = min{R, L} and find the corresponding r 2.
Take R1 = min{R, r 2}. By assumption, there exists r, such that x(t) stays in
B(En, R1) for any trajectory starting in B(En, rl) \ M,, and evolving in Mi. By
condition (1) of Proposition 5 and by the choice of R1 , x(t) will intersect M,
inside B(En, r 2) nMn. But a trajectory on Mn that comes inside B(En, r2) NMn
will stay inside B (E,, L) n Mn and thus remain under the control of g, (and
stay inside B(E,, R)) for all later times.

We note that this proof is similar to the proof of Theorem 4 in [17].

Remark If we assume the scenario of Proposition 7 and for every i, Ei C En,
the condition of the Corollary will be trivially true.

4 Example

The above results provide a framework for designing hybrid control schemes. In
this section we apply the methodology to stabilization of the shimmying wheel
(Fig. 1). Dynamic equations of the system are of the form:

H~o] + [LY±mi +2n 2)6
2 sin] A0+ 8

where H is the inertia matrix, F = {F•, Fv}T is the reaction force of the ground
on the wheel, and A is the matrix that relates the relative velocity vr between
the wheel and the ground at the contact point to the rate of change of the
generalized coordinates. The system has 6 states: 3 generalized coordinates and
3 generalized velocities.

When the wheel is sliding, we have the following expression for the reaction
force F = F,:

Fs = -P-d (g (9)
I Iv- 2I

411

where P'd is the coefficient of (dynamic) friction and g is the gravity constant.
When the wheel is rolling, we have an additional constraint:

v, = 0 (10)

In this case, the force F = F, is the constraint force that prevents slippage of
the wheel and it can be eliminated from Eq. (8) using Eq. (10) [21, 22]. Equation
(10) represents two constraint equations, so the dimension of the system in pure
rolling drops to 4. The analysis of the system can be simplified by observing that
0 does not occur in the dynamic equations. It is therefore a cyclic variable and
we can limit our study to the dynamics of y and 9. In the formalism of Section
2, the reduced system thus evolves on manifolds M1 and M2 of dimension 4 and
3, respectively, where M1 = IR4 and M 2 is defined by Eq. (10) [21, 22].

The goal of the control is to stabilize the wheel to the state y = 0, 0 = 0. To
this end, we introduce an additional region, M3 , but we put M3 = M 2 . In other
words, we use two different controllers in the rolling regime. Note that nothing
in the developed theory prohibits the submanifolds to be equal. Stabilization is
therefore achieved with three controllers: a controller gl for the system in sliding
regime (defined on M1) and controllers 92 and g3 for the system in the rolling
mode (defined on M2). The idea is to steer the system with the controllers 91 and
g2 to a state 0 = 0, y 5 0, from which we can stabilize the system to a desired
point with the controller g3. Note that the wheel might start sliding again once
under the control of 93.

To design a controller for the system evolving on M1 i, we linearize the dynamic
response for 9. It can be shown that with this controller the dynamics for y and

are also (asymptotically) stable. The controller stabilizes the line segment:

El = (y, 0, 0, 0) yl < ,Id(ml + 2m 2)g
-- 2k

The controller 92 (only defined on M2, when the wheel is rolling) can be designed
similarly to gi after the constraint force is eliminated from dynamic equations
using Eq. (10). The attractive manifold for this controller is a line:

E2 = (y,0, ,,O) = (y,0,0,0)

The controller g3 can be derived by observing that instead of the dynamics for
9, we can linearize the dynamics for y. Further analysis shows that with this
controller, the dynamics for 9 and 0 are stable, so the system converges to the
desired point, E3 = (0, 0, 0, 0). It is also not difficult to construct the Lyapunov
functions V2 and V3 for the controllers 92 and g3.

Next, we have to define a partial order and design the switching schemes.
We first observe that there is a natural partial order already defined on M =
{M 1, M2, M3 } and it is given by inclusion: M1 D M2 ;D M 3 . The partial order
in this case thus becomes a total order and the application of Proposition 7 is
therefore particularly straight forward.

412

The switching scheme S1 is quite simple:

2 x E M 2 A 1F,11 :_ I(ml + 2M2)g
) 1 otherwise

The controller 92 has a singularity at 0 = ±E, but on these two hyperplanes2'
the constraint force is unbounded and they do not intersect (the closure of) M 2 .
The switching scheme S2 is defined in the following way:

r3 7 = 2 A x E B(E 3 ,Rin) A 33(x) • V3-2
A JJFcjj :5 1 (mi + 2m 2)g

S2 (X, ?n) =4
3, = 3 A x E B(E 3 ,Rout)
2 otherwise

where Rin < Rout < ! (this guarantees that B (E 3 , Rout) does not intersect the
hyperplanes 3 = ±2), and V3- 2 is the value of 1V3 when the system last switched
from the controller 93 to the controller 92. Again, we avoid the hyperplanes
0 = ±L because g3 becomes singular there. Observe that the switching scheme
explicitly encodes condition (3) of Proposition 7.

The next step would be to check that the conditions of the Proposition 7
are satisfied. Since we have a total order on M, it suffices to show that g, and
92 stabilize E 2, and that 92 and 93 stabilize E 3 . In the interest of keeping the
presentation short the proofs will be omitted, but we refer the interested reader to
[26] for details. We only mention that in order to guarantee that the controller
92 can arbitrarily decrease the Lyapunov function V3 so that the system can
switch to 93, we use the technique described in Eq. (7).

4.1 Simulation results

A typical simulation run of the system controlled with the derived controllers
is shown in Fig. 5. The system starts in the sliding regime with the controller
g1 active. At 0.9s the wheel stops sliding and the controller 92 takes over. At
1.14s the system switches again, this time to the controller g3 that stabilizes
the system to the desired state. The switches between different controllers cause
discontinuities of the input, as Fig. 5(b). shows. It can be seen in Fig. 5(a) that
while the controllers g, and 92 are active, 0 is the controlled variable and it
decreases to 0. When the controller g3 becomes active, the controlled variable
becomes y (so it decreases to 0) and 101 initially increases. After y becomes small,
101 also decreases to 0.

The next figure illustrates that the modified controller g2 decreases the Lya-
punov function 1V3. Variables y and 0 are shown in Fig. 6(a), while the Lyapunov
functions V2 and V3 are shown in Fig. 6(b). The system starts in the rolling
regime with the controller g3 active, however during the first U.1s it switches
first to the controller 92 and then to the sliding regime and the controller g9
(these switches are not shown). At the switch from 93 to 92 the value of the Lya-
punov function 1/3 is 263.4. To show that the controller can arbitrary decrease

413

0.6 -,,, II

0.5 % y

0.50

-0.1 -". ,, ° "

-0.2 -t "-

0 1 2 3 4 5
Time

3.5 -
S~ Input -

2.5 - •

1.5-

0.5

-0.5 - t
0 1 2 3 4 5

Time

Fig. 5. A typical simulation run.

V3, we modified the switching scheme S2 so that the value of the Lyapunov func-
tion V3 at the switch from 92 to 93 has to be half the value of the function at
the switch from g3 to 92. In our case, the function V3 therefore has to decrease
to 131.7 in order to switch to the controller g3. At the time 0.38s, the system
switches from sliding to rolling and to the controller 92. The controller decreases
the Lyapunov function until it reaches the desired value at the time 1.30s when
the system switches to the controller g3 and the system is stabilized. Figure 6(a)
also shows that the controller 92 does not drive 0 to 0 but to some offset value
that guarantees the decreasing of V3 .

5 Conclusion

We investigated the problem of stabilizing a system with changing dynamics
with a sequence of controllers. We studied the case when the system evolves
on a sequence of embedded manifolds and derived sufficient conditions under
which the switching scheme employing different controllers can be guaranteed
to stabilize the system to the desired manifold. These sufficient conditions give
direct guidance for the design of appropriate controllers. The results were applied
to the stabilization of the shimmying wheel. We were able to design a switching
scheme that provably stabilizes this system.

The described work can be extended in several directions. We plan to consider
more general stabilization problems such as control of a walking robot. In this
case, the system has to be stabilized to a periodic orbit that traverses different

414

0.2
0.1 - thetay --

-0.2

-0.3
-0.4
-0.5 I I

0 1 2 3 4 5
Time

1000 . ,, I

800
V•3...

600 7

400

200

0
0 1 2 3 4 5

Time

Fig. 6. A modified controller guarantees decreasing of V3 .

regions rather than an equilibrium manifold within a single region. An important
question is also how to design the individual controllers. For mechanical systems,
the energy-momentum method offers some interesting possibilities.

References

1. R. Alur, C. Courcoubetis, T. Henzinger, and P. H. Ho, "Hybrid automata: an algo-
rithmic approach to the specification and verification of hybrid systems," in LNCS
736, pp. 209-229, Springer-Verlag, 1993.

2. X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, "An approach to the description
and analysis of hybrid systems," in LNCS 736, pp. 149-178, Springer-Verlag, 1993.

3. R. W. Brockett, "Hybrid models for motion control systems," in Essays in Control:
Perspectives in the Theory and its Applications, pp. 29-53, Boston: Birkhiiuser,
1993.

4. A. Nerode and W. Kohn, "Models for hybrid systems: Automata, topologies, sta-
bility," in LNCS 736, pp. 317-356, Springer-Verlag, 1993.

5. A. Back, J. Guckenheimer, and M. Myers, "A dynamical simulation facility for
hybrid systems," in LNCS 736, pp. 255-267, Springer-Verlag, 1993.

6. M. S. Branicky, V. S. Borkar, and S. K. Mitter, "A unified framework for hybrid
control," in Proceedings of the 33rd IEEE Conference on Decision and Control,
(Lake Buena Vista, FL), pp. 4228-4234, 1994.

7. J. Lygeros, D. N. Godbole, and S. S. Sastry, "A game theoretic approach to hybrid
system design," in LNCS 1066, pp. 1-12, Springer-Verlag, 1996.

8. A. Puri, Theory of hybrid systems and discrete event systems. PhD thesis, U. C.
Berkeley, 1995.

415

9. A. Deshpande and P. Varaiya, "Viable control of hybrid systems," in LNCS 999,
pp. 128-147, Springer-Verlag, 1995.

10. W. Kohn, A. Nerode, J. B. Remmel, and X. Ge, "Multiple agent hybrid control:
carrier manifolds and chattering approximations to optimal control," in Proceedings
of the 33rd IEEE Conference on Decision and Control, (Lake Buena Vista, FL),
pp. 4221-4227, 1994.

11. M. S. Branicky and S. K. Mitter, "Algorithms for optimal hybrid control," in Pro-
ceedings of the 34th IEEE Conference on Decision and Control, (New Orleans,
LA), pp. 2661-2666, 1995.

12. M. Zefran, I. Desai, and V. Kumar, "Continuous motion plans for robotic systems
with changing dynamic behavior," in Robotic motion and manipulation, pp. 113-
128, Wellesley, MA: A K Peters, 1997.

13. B. Goodwine and J. W. Burdick, "A general method for motion planning for quasi-
static legged robotic locomotion." Preprint, 1997.

14. T. Henzinger, Z. Manna, and A. Pnueli, "Temporal proof methodologies for timed
transition systems," Inf. and Comp., vol. 112, no. 2, pp. 273-337, 1994.

15. T. Henzinger, P. Kopke, A. Puri, and P. Varaiya, "What's decidable about hybrid
automata," in 27th Ann. ACM Symp. on the Theory of Computing, 1995.

16. N. Lynch, "Modelling and verification of automated transit systems, using timed
automata, invariants and simulations," in LNCS 1066, pp. 449-463, Springer-
Verlag, 1996.

17. M. S. Branicky, "Stability of switched and hybrid systems," in Proceedings of the
33rd IEEE Conference on Decision and Control, (Lake Buena Vista, FL), pp. 3498-
3503, 1994.

18. J. Malmborg, B. M. Bernhardsson, and K. J. Astrim, "A stabilizing switching
scheme for multi-controller systems," in 13th IFAC World Congress, (San Fran-
cisco, CA), 1996.

19. P. Peleties and R. DeCarlo, "Asymptotic stability of m-switched systems using
Lyapunov-like functions," in American Control Conf., (Boston), pp. 1679-1684,
1991.

20. R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, "Sequential composition of
dynamically dexterous robot behaviors." Preprint, 1996.

21. G. Stepin, "Chaotic motion of wheels," Vehicle System Dynamics, vol. 20,
pp. 341-351, 1991.

22. B. Goodwine and G. Stepin, "Controlling unstable rolling phenomena." To appear
in the Journal of Vibration and Control, 1997.

23. W. Hahn, Stability of motion. Springer-Verlag, 1967.
24. N. Rouche, P. Habets, and M. LaLoy, Stability theory by Liapunov's direct method.

New York: Springer-Verlag, 1977.
25. A. Vannelli and M. Vidyasagar, "Theory of partial stability theorems, converse

theorems, and maximal Lyapunov functions," in Proc. Annu. Southeast Symp.
Syst. Theory, (Piscataway, NJ), pp. 16-20, 1980.

26. M. 7efran and J. W. Burdick, "Switching control on embedded manifolds," tech.
rep., Caltech, 1997.

List of Authors

E . A sarin 1 0 . M aler 96
Z. M anna 305

A . Balluchi 13 A .S. M atveev 319
0 . Beldim an 64 B.M . M iller 334

A . B eydoun 33 I. M itchell 159
S. Bornot 49
JW . Burdick 400 R. Naumann 221

L. Bushnell 64 T .W . Neller 346

P.E. Caines 237 G.J. Pappas 205, 289

B . C arlson 80 C . Pinello 13

T . D ang 96 R . R asche 221
M . Di Benedetto 13 C. Rossi 13

C . R ust 221

A . Fehnker 110 V . R usu 190
E.D. Ferreira................... 126
V. Friesen 143 A. Sangiovanni-Vincentelli 13

S. Sastry 205, 289, 360
M R. Greenstreet 159 A.V. Savkin 319
V. Gupta 80 J.H. van Schuppen 374

K .X . H e 175 J. Sifakis 49

T.A. Henzinger 190 H.B. Sipm a 305
S. Sivashankar 33

J. Hou 384...................33

B.H. Krogh 126n 221

G. Lafferriere 205 C. Tomlin 360

G .. Wa lshL. 2
E.S. Lerrch 237 0. W a gl 4. 3 3

M.D. Lemmon 175
X. 384 M. efran............... 400

C . Livadas 253 . Zhao 384

J. Lygeros 273, 289, 360 G. Zheng 384

N .A . Lynch 253, 273 T. Zheng 384

Springer
and the

environment
At Springer we firmly believe that an

international science publisher has a

special obligation to the environment,

and our corporate policies consistently

reflect this conviction.

We also expect our business partners -

paper mills, printers, packaging

manufacturers, etc. - to commit

themselves to using materials and

production processes that do not harm

the environment. The paper in this

book is made from low- or no-chlorine

pulp and is acid free, in conformance

with international standards for paper

permanency.

A Springer

Lecture Notes in Computer Science

For information about Vols. 1-1308

please contact your bookseller or Springet:Verlag

Vol. 1309: R. Steinmetz, L.C. Wolf (Eds.), Interactive Vol. 1327: W. Gerstner, A. Germond, M. Hasler, J.-D.

Distributed Multimedia Systems and Telecommunication Nicoud (Eds.), Artificial Neural Networks - ICANN '97.

Services. Proceedings, 1997. XIII, 466 pages. 1997. Proceedings, 1997. XIX, 1274 pages. 1997.

Vol. 1310: A. Del Bimbo (Ed.), Image Analysis and Vol. 1328: C. Retord (Ed.), Logical Aspects of Computa-

Processing. Proceedings, 1997. Volume I. XXII, 722 tional Linguistics. Proceedings, 1996. VIII, 435 pages.

pages. 1997. 1997. (Subseries LNAI).

Vol. 1311: A. Del Bimbo (Ed.), Image Analysis and Vol. 1329: S.C. Hirtle, A.U. Frank (Eds.), Spatial Infor-

Processing. Proceedings, 1997. Volume II. XXII, 794 mation Theory. Proceedings, 1997. XIV, 511 pages. 1997.

pages. 1997. Vol. 1330: G. Smolka (Ed.), Principles and Practice of

Vol. 1312: A. Geppert, M. Berndtsson (Eds.), Rules in Constraint Programming-CP97. Proceedings, 1997. XII,

Database Systems. Proceedings, 1997. VII, 214 pages. 563 pages. 1997.
1997. Vol. 1331: D. W. Embley, R. C. Goldstein (Eds.), Con-

Vol. 1313: J. Fitzgerald, C.B. Jones, P. Lucas (Eds.), FME ceptual Modeling - ER '97. Proceedings, 1997. XV, 479
'97: Industrial Applications and Strengthened Foundations pages. 1997.
of Formal Methods. Proceedings, 1997. XIII, 685 pages. Vol. 1332: M. Bubak, J. Dongarra, J. Wagniewski (Eds.),
1997. Recent Advances in Parallel Virtual Machine and Mes-

Vol. 1314: S. Muggleton (Ed.), Inductive Logic Program- sage Passing Interface. Proceedings, 1997. XV, 518 pages.
ming. Proceedings, 1996. VIII, 397 pages. 1997. 1997.
(Subseries LNAI). Vol. 1333: F. Pichler. R.Moreno-Diaz (Eds.), Computer

Vol. 1315: G. Sommer, J.J. Koenderink (Eds.), Algebraic Aided Systems Theory - EUROCAST'97. Proceedings,
Frames for the Perception-Action Cycle. Proceedings, 1997. XII, 626 pages. 1997.
1997. VIII, 395 pages. 1997. Vol. 1334: Y. Han, T. Okamoto, S. Qing (Eds.), Informa-

Vol. 1316: M. Li, A. Maruoka (Eds.), Algorithmic Learn- tion and Communications Security. Proceedings, 1997.
ing Theory. Proceedings, 1997. XI, 461 pages. 1997. X, 484 pages. 1997.
(Subseries LNAI). Vol. 1335: R.H. M6hring (Ed.), Graph-Theoretic Concepts

Vol. 1317: M. Leman (Ed.), Music, Gestalt, and Comput- in Computer Science. Proceedings, 1997. X, 376 pages.
ing. IX, 524 pages. 1997. (Subseries LNAI). 1997.

Vol. 1318: R. Hirschfeld (Ed.), Financial Cryptography. Vol. 1336: C. Polychronopoulos, K. Joe, K. Araki, M.

Proceedings, 1997. XI, 409 pages. 1997. Amamiya (Eds.), High Performance Computing. Proceed-

Vol. 1319: E. Plaza, R. Benjamins (Eds.), Knowledge ings, 1997. XII, 416 pages. 1997.

Acquisition, Modeling and Management. Proceedings, Vol. 1337: C. Freksa, M. Jantzen, R. Valk (Eds.), Foun-
1997. XI, 389 pages. 1997. (Subseries LNAI). dations of Computer Science. XII, 515 pages. 1997.

Vol. 1320: M. Mavronicolas, P. Tsigas (Eds.), Distrib- Vol. 1338: F. Plfgil, K.G. Jeffery (Eds.), SOFSEM'97:
uted Algorithms. Proceedings, 1997. X, 333 pages. 1997. Theory and Practice of Informatics. Proceedings, 1997.

Vol. 1321: M. Lenzerini (Ed.), AI*IA 97: Advances in XIV, 571 pages. 1997.

Artificial Intelligence. Proceedings, 1997. XII, 459 pages. Vol. 1339: N.A. Murshed, F. Bortolozzi (Eds.), Advances
1997. (Subseries LNAI). in Document Image Analysis. Proceedings, 1997. IX, 345

Vol. 1322: H. HuBmann, Formal Foundations for Soft- pages. 1997.

ware Engineering Methods. X, 286 pages. 1997. Vol. 1340: M. van Kreveld, J. Nievergelt, T. Roos, P.

Vol. 1323: E. Costa, A. Cardoso (Eds.), Progress in Arti- Widmayer (Eds.), Algorithmic Foundations of Geographic

ficial Intelligence. Proceedings, 1997. XIV, 393 pages. Information Systems. XIV, 287 pages. 1997.

1997. (Subseries LNAI). Vol. 1341: F. Bry, R. Ramakrishnan, K. Ramamohanarao

Vol. 1324: C. Peters, C. Thanos (Eds.), Research and Ad- (Eds.), Deductive and Object-Oriented Databases. Pro-

vanced Technology for Digital Libraries. Proceedings, ceedings, 1997. XIV, 430 pages. 1997.

1997. X, 423 pages. 1997. Vol. 1342: A. Sattar (Ed.), Advanced Topics in Artificial

Vol. 1325: Z.W. Rag, A. Skowron (Eds.), Foundations of Intelligence. Proceedings, 1997. XVI, 516 pages. 1997.

Intelligent Systems. Proceedings, 1997. XI, 630 pages. (Subseries LNAI).

1997. (Subseries LNAI). Vol. 1343: Y. Ishikawa, R.R. Oldehoeft, J.V.W. Reynders,

Vol. 1326: C. Nicholas, J. Mayfield (Eds.), Intelligent M. Tholburn (Eds.), Scientific Computing in Object-Ori-

Hypertext. XIV, 182 pages. 1997. ented Parallel Environments. Proceedings, 1997. XI, 295
pages. 1997.

Vol. 1344: C. Ausnit-Hood, K.A. Johnson, R.G. Pettit, Vol. 1367: E.W. Mayr, H.J. Promel, A. Steger (Eds.),
IV, S.B. Opdahl (Eds.), Ada 95 - Quality and Style. XV, Lectures on Proof Verification and Approximation Algo-
292 pages. 1997. rithms. XII, 344 pages. 1998.

Vol. 1345: R.K. Shyamasundar, K. Ueda (Eds.), Advances Vol. 1368: Y. Masunaga, T. Katayama, M. Tsukamoto
in Computing Science - ASIAN'97. Proceedings, 1997. (Eds.), Worldwide Computing and Its Applications -
XIII, 387 pages. 1997. WWCA'98. Proceedings, 1998. XIV, 473 pages. 1998.

Vol. 1346: S. Ramesh, G. Sivakumar (Eds.), Foundations Vol. 1370: N.A. Streitz, S. Konomi, H.-J. Burkhardt
of Software Technology and Theoretical Computer Sci- (Eds.), Cooperative Buildings. Proceedings, 1998. XI, 267
ence. Proceedings, 1997. XI, 343 pages. 1997. pages. 1998.

Vol. 1347: E. Ahronovitz, C. Fiorio (Eds.), Discrete Geo- Vol. 1372: S. Vaudenay (Ed.), Fast Software Encryption.
metry for Computer Imagery. Proceedings, 1997. X, 255 Proceedings, 1998. VIII, 297 pages. 1998.
pages. 1997. Vol. 1373: M. Morvan, C. Meinel, D. Krob (Eds.), STACS

Vol. 1348: S. Steel, R. Alami (Eds.), Recent Advances in 98. Proceedings, 1998. XV, 630 pages. 1998.
Al Planning. Proceedings, 1997. IX, 454 pages. 1997. Vol. 1374: H. Bunt, R.-J. Beun, T. Borghuis (Eds.),
(Subseries LNAI). Multimodal Human-Computer Communication. VIII, 345

Vol. 1349: M. Johnson (Ed.), Algebraic Methodology and pages. 1998. (Subseries LNAI).
Software Technology. Proceedings, 1997. X, 594 pages. Vol. 1375: R. D. Hersch, J. Andre, H. Brown (Eds.), Elec-
1997. tronic Publishing, Artistic Imaging, and Digital Typog-

Vol. 1350: H.W. Leong, H. Imai, S. Jain (Eds.), Algo- raphy. Proceedings, 1998. XIII, 575 pages. 1998.
rithms and Computation. Proceedings, 1997. XV, 426 Vol. 1376: F. Parisi Presicce (Ed.), Recent Trends in Al-
pages. 1997. gebraic Development Techniques. Proceedings, 1997.

Vol. 1351: R. Chin, T.-C. Pong (Eds.), Computer Vision VIII, 435 pages. 1998.
- ACCV'98. Proceedings Vol. I, 1998. XXIV, 761 pages. Vol. 1377: H.-J. Schek, F. Saltor, I. Ramos, G. Alonso
1997. (Eds.), Advances in Database Technology - EDBT'98.

Vol. 1352: R. Chin, T.-C. Pong (Eds.), Computer Vision Proceedings, 1998. XII, 515 pages. 1998.
- ACCV'98. Proceedings Vol. II, 1998. XXIV, 757 pages. Vol. 1378: M. Nivat (Ed.), Foundations of Software Sci-
1997. ence and Computation Structures. Proceedings, 1998. X,

Vol. 1353: G. BiBattista (Ed.), Graph Drawing. Proceed- 289 pages. 1998.
ings, 1997. XII, 448 pages. 1997. Vol. 1379: T. Nipkow (Ed.), Rewriting Techniques and

Vol. 1354: 0. Burkart, Automatic Verification of Sequen- Applications. Proceedings, 1998. X, 343 pages. 1998.
tial Infinite-State Processes. X, 163 pages. 1997. Vol. 1380: C.L. Lucchesi, A.V. Moura (Eds.), LATIN'98:

Vol. 1355: M. Darnell (Ed.), Cryptography and Coding. Theoretical Informatics. Proceedings, 1998. XI, 391
Proceedings, 1997. IX, 335 pages. 1997. pages. 1998.

Vol. 1356: A. Danthine, Ch. Diot (Eds.), From Multime- Vol. 1381: C. Hankin (Ed.), Programming Languages and
dia Services to Network Services. Proceedings, 1997. XII, Systems. Proceedings, 1998. X, 283 pages. 1998.
180 pages. 1997. Vol. 1382: E. Astesiano (Ed.), Fundamental Approaches

Vol. 1357: J. Bosch, S. Mitchell (Eds.), Object-Oriented to Software Engineering. Proceedings, 1998. XII, 331
Technology. Proceedings, 1997. XIV, 555 pages. 1998. pages. 1998.

Vol. 1358: B. Thalheim, L. Libkin (Eds.), Semantics in Vol. 1383: K. Koskimies (Ed.), Compiler Construction.
Databases. XI, 265 pages. 1998. Proceedings, 1998. X, 309 pages. 1998.

Vol. 1360: D. Wang (Ed.), Automated Deduction in Ge- Vol. 1384: B. Steffen (Ed.), Tools and Algorithms for the
ometry. Proceedings, 1996. VII, 235 pages. 1998. Construction and Analysis of Systems. Proceedings, 1998.
(Subseries LNAI). XIII, 457 pages. 1998.

Vol. 1361: B. Christianson, B. Crispo, M. Lomas, M. Roe Vol. 1385: T. Margaria, B. Steffen, R. Rfickert, J. Posegga
(Eds.), Security Protocols. Proceedings, 1997. VIII, 217 (Eds.), Services and Visualization. Proceedings, 1997/
pages. 1998. 1998. XII, 323 pages. 1998.

Vol. 1362: D.K. Panda, C.B. Stunkel (Eds.), Network- Vol. 1386: T.A. Henzinger, S. Sastry (Eds.), Hybrid Sys-
Based Parallel Computing. Proceedings, 1998. X, 247 tems: Computation and Control. Proceedings, 1998. VIII,
pages. 1998. 417 pages. 1998.

Vol. 1363: J.-K. Han, E. Lutton, E. Ronald, M. Vol. 1387:C. LeeGiles, M. Gori(Eds.),AdaptiveProcess-
Schoenauer, D. Snyers (Eds.), Artificial Evolution. XI, ing of Sequences and Data Structures. Proceedings, 1997.
349 pages. 1998. XII, 434 pages. 1998. (Subseries LNAI).

Vol. 1364: W. Conen, G. Neumann (Eds.), Coordination Vol. 1388: J. Rolim (Ed.), Parallel and Distributed
Technology for Collaborative Applications. VIII, 282 Processing. Proceedings, 1998. XVII, 1168 pages. 1998.
pages. 1998. Vol. 1389: K. Tombre, A.K. Chhabra (Eds.), Graphics

Vol. 1365: M.P. Singh, A. Rao, M.J. Wooldridge (Eds.), Recognition. Proceedings, 1997. XII, 421 pages. 1998.
Intelligent Agents IV. Proceedings, 1997. XII, 351 pages. Vol. 1391: W. Banzhaf, R. Poli, M. Schoenauer, T.C.
1998. (Subseries LNAI). Fogarty (Eds.), Genetic Programming. Proceedings, 1998.

X, 232 pages. 1998.

Lecture Notes in Computer Science

This series reports new developments in computer science research and
teaching, quickly, informally, and at a high level. The timeliness of a manu-
script is more important than its form, which may be unfinished or tentative.
The type of material considered for publication includes

- drafts of original papers or monographs,

- technical reports of high quality and broad interest,

- advanced-ievel lectures,

- reports of meetings, provided they are of exceptional interest and focused
on a single topic.

Publication of Lecture Notes is intended as a service to the computer science
community in that the publisher Springer-Verlag offers global distribution of
documents which would otherwise have a restricted readership. Once pub-
lished and copyrighted they can be cited in the scientific literature.

Manuscripts

Lecture Notes are printed by photo-offset from the master copy delivered in
camera-ready form. Manuscripts should consist of no fewer than 100
and preferably no more than 500 pages of text. Authors of monographs and
editors of proceedings volumes receive 50 free copies of their book.
Manuscripts should be printed with a laser or other high-resolution printer
onto white paper of reasonable quality. To ensure that the final photo-
reduced pages are easily readable, please use one of the following formats:

Front size Printing area Final size
(points) (cm) (inches) %

10 12.2 x 19.3 4.8 x 7.6 100
12 15.3 x 24.2 6.0 x 9.5 80

On request the publisher will supply a leaflet with more detailed technical
instructions or a TEX macro package for the preparation of manuscripts.

Manuscripts should be sent to one of the series editors or directly to:

Springer-Verlag, Computer Science Editorial III, Tiergartenstr. 17,
D-69121 Heidelberg, Germany

ISSN 0302-9743

http://www.springer. de

