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PROPAGATION OF SHORT LASER PULSES IN PLASMA CHANNELS 

I.        Introduction 

Advances in laser technology have resulted in a new class of compact, ultrashort pulse 

lasers with extremely high intensities [1-3]. Intense pulses have numerous potential applications 

in areas such as advanced laser-driven accelerators [4-14], harmonic generators 

[15-19], x-ray lasers [20,21], other short wavelength radiation sources [22], and "fast ignitor" 

laser fusion [23-25]. Laser technology is now being pushed to such extremely short pulse 

lengths that the pulse is only a few optical cycles in duration. For example, at a wavelength of 

0.8 um, Baity [2] has produced pulses of 4 TW peak power with durations of 18 fs (~ 7 

wavelengths) with plans to extend these results to ~ 10 fs and > 100 TW. In this regime, finite 

pulse length effects may play an important role in the laser pulse propagation dynamics. 

The propagation dynamics of long laser pulses (long compared to the wavelength) is 

described by the well-known paraxial wave equation. In the paraxial wave equation 

approximation, lowest order diffraction effects associated with the laser beam are retained but 

finite pulse length and higher order diffraction effects are neglected. The solutions to the 

paraxial wave equation in vacuum are the well-known Laguerre-Gaussian functions that describe 

the dynamics of long laser beams [26]. When the laser pulse length becomes sufficiently short, 

i.e., less than ~ 10's of wavelengths, finite pulse length effects can play an important role [27]. 

An example of this is the propagation of short laser pulses in a guiding channel. Extended laser 

pulse propagation in a plasma channel [28-40] is important in a number of applications, 

including high gradient accelerators and x-ray lasers. 

In this paper a quasi paraxial approximation (QPA) is introduced which is an extension of 

the well-known paraxial approximation to the wave equation to include finite pulse length 

effects.   Employing the QPA, a pair of coupled envelope-power equations is derived for short 
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laser pulses propagating in vacuum, plasma and channels. The model includes atomic electron 

and relativistic effects. The results contained in this paper include: i) an analytical formulation 

of short laser pulses using the QPA, ii) a derivation of a pair of coupled laser envelope-power 

equations, iii) a laser envelope modulation which eventually damps due to frequency spread 

phase mixing, iv) demonstration of significant modification of nonlinear processes due to finite 

pulse length effects, and v) analysis of short pulse propagation dynamics in long plasma 

channels. These results represent new features and effects associated with short pulse lasers. 

Short laser pulse effects have been considered numerically or in one dimension by others [41- 

44], however, the major findings in this paper were not addressed. For example, due to finite 

pulse length effects, the trailing edge of an unmatched laser pulse propagating in a plasma 

channel is found to undergo an envelope oscillation, while the leading edge is damped. For a 

sufficiently short pulse the modulation will modify the main body of the pulse. The laser 

envelope modulation is shown to be due to the dependence of the pulse group velocity on the 

spot size through the pulse length. In addition, finite pulse length effects are shown to 

significantly increase nonlinear focusing processes. 

The organization of this paper is as follows. The general wave equation for the electric 

field of a finite length laser pulse propagating in vacuum, plasmas or channels, including 

nonlinear (atomic and relativistic) focusing effects, is presented and discussed in Sec. II. In Sec. 

III the propagation dynamics of a short pulse in vacuum or uniform plasma is derived.  In Sec. 

IV a general pair of coupled envelope-power equation is derived. These equations are used to 

analyze the propagation of a short laser pulse in a preformed plasma channel with nonlinear 

focusing effects. Various propagation limits are discussed and the laser envelope modulation is 

analyzed.   The laser envelope modulation is discussed in Sec. V.   Numerical illustrations arc 



presented in Sec. VI and a conclusion is given in Sec. VII. In the Appendix the range of validity 

of the QPA is obtained in two limiting cases. 

II.       Finite Pulse Length Model 

The propagation medium is a vacuum, plasma or preformed plasma channel consisting of 

free and bound electrons, i.e., partially stripped plasma. Nonlinear processes arising from 

relativistic and atomic polarization effects are included. The wave equation includes a plasma 

current consisting of free electrons and a polarization current arising from the bound atomic 

electrons and is given by [31,45,46], 

vi + i - c 

\ dz' dt< 
Anc 

tip   a2p 2n\ 
+ 

&       dt' 
(1) 

where V^ is the transverse Laplacian, E(r,t) is the electric field, Jp is the plasma current density 

associated with the free electrons and P is the polarization field associated with the bound 

electrons.      The   atomic   polarization   field   consists   of   a   linear   and   nonlinear   part, 

P = (l/47r)(?7o - 1 + 277o772/)E, where Tjo is the linear index, r|2 is the nonlinear refractive 

index and I = (c/4jr.)r|o (E • E) is the time averaged laser intensity.   In the present model, the 

origin of the nonlinear index r|2 is the anharmonic potential in which the bound electrons 

oscillate. Noting that 3J „ Idt = (47t)~lcop (r)E and setting rj0 = 1, the wave equation becomes 

vi + 
dz' c2 dt: 

(02
p{r) 

\ 

+ /3<E«E> E = 0, (2) 



where CD,, (r)= (47cq2np(r)/m)I/2 is the plasma frequency and n,,(r) is the plasma density. In Eq. (2) 

the coefficient of the nonlinear term ß = ß,, + ßa denotes relativistic free election effects as well 

as nonlinear atomic electron effects arising from rj2, 

h--2 
I «  ffay^2 

2 
ylllC     j 0) 

V ) 

(3a) 

ß»=0n2, Ob) 

where cop0 = (4Ttq2npQ Im)112, np0 is the density on axis (r = 0), and CO is the characteristic laser 

frequency. In Eq. (3), ßp results in a critical power for relativistic focusing [31,47-50] while the 

ßa results in a critical power for atomic electron focusing [31,51-53]. In a partially stripped 

plasma, atomic effects can occur on a time scale ~ 10"15 sec and can dominate free electron 

effects in the nonlinear term [32,45,46]. The nonlinear term, due to relativistic free electrons, is 

only significant when the laser pulse length is longer than a plasma period [54]. The critical 

powers for relativistic focusing in plasma and nonlinear focusing in a gas are, respectively, 

Pp=2c(q/re)
2(0)/cop)2, (4a) 

and 

Pa =X
2

I{2KT]2), (4b) 

where re is the classical electron radius. In general, when the laser power exceeds either of these 

critical powers, focusing occurs [31,45,46]. The total nonlinear focusing power consists of 

contributions from both Pp and Pa and is given by 



The preformed plasma density channel is taken to be a function of radial position in order 

to provide for guiding of the laser pulse. The radial dependence of the plasma frequency is given 

by 

(Op(r) = cop0 1 + 
An r 2\ 

1/2 

(5) 
t       np0 rc* ) 

where npo + An is the density at the edge of the plasma channel (r = rc). For guiding, the plasma 

density must increase as a function of r, i.e., An > 0. 

Laser induced plasma waves, wakefields [55,56], are neglected. This can be justified if 

the laser pulse length is less than a plasma period or if the laser intensity is sufficiently low. 

a)        Quasi Paraxial Approximation (QPA) to Wave Equation 

The laser electric field is of the form 

E = E0 exp(/(fe - 0)t))/2 + ex., (6) 

where E0(r,t) is the complex amplitude, k is the wavenumber and CO is the frequency. 

Substituting Eqs. (5) and (6) into Eq. (2) gives the wave equation for E0, 

Vt   +2/ 
dz     c2   & 9zz    cL dt 

9 9 

E0 = 0,    (7) 

where K« = (cOpo/c)(An/npo)1/2 is the focusing parameter associated with the plasma channel and 

= (<u2Ic1 - (0
2

PQIC
2
)    . Changing variables from (z, t) to (z£) where £ = z - 9        9 

we have set k = [(0  Ic   - copQ 

2x1/2 ripCt, and setting k = ripCü/c, where r|p = (1 - Cülp0 l(ß
Ly11 is the linear on-axis plasma refractive 

index, Eq. (7) becomes 



^ 

2 -)2 2 

3z r. 
E0=0.   (8) 

The second term on the left-hand side of Eq. (8) represents first order diffraction effects, the third 

term denotes first order finite pulse effects, the fourth and fifth terms denote higher order finite 

pulse and diffraction effects respectively while the last two represent guiding and nonlinear 

focusing, respectively. 

In the absence of channel guiding (Kc = 0) and nonlinear focusing (ß = 0) we can obtain 

an estimate for the order of magnitude of the various terms in Eq. (8). The second, third, fourth 

and fifth terms in Eq. (8) are approximately of order 

2T]p{(0lc)\dldz\ 
.2' 
r0 

a2 

dzdt; 
~ 

r i x) 
TO]p   £Q ^ r2' r0 

Ml 
si- 

CO, 3_  
2X   co 

U)2 

.2' 

(9a) 

(9b) 

(9c) 
r0 

a2 

dz2 

(   x   f 
2TO]prQ ^ ,2 ' 

(9d) 
ID 

respectively, where r0 and £Q are the spot size and pulse length.   In obtaining the estimates in 

Eq. (9) we used \d/d^\ ~ \/£Q and \d/dz\ ~ \/ZR,where ZR = AT) r0
2/l   is the Rayleigh 

length in the plasma and X is the vacuum wavelength.  The relative order of magnitudes of the 

first, second, third, fourth and fifth terms in Eq. (8) is 

1   :   1 
mip    iQ 

x_   .   i-nP zR x      _j x_ 
4itilp    (0 (0    '    Anup    ZK 

(10) 



The first two terms in the wave equation are comparable and lead to the paraxial wave equation 

approximation. In the paraxial approximation finite length effects and higher order diffraction 

are neglected, i.e., the third, fourth and fifth terms in Eq. (8) are neglected.  The paraxial wave 

equation assumes that X/£0 « 1, (1 - Vll)(.ZR /£0)X/£0 « 1, and X/ZR « 1 and is given by 

CO d\ 
Vi+H^p-f- E0=0. r  c oz J 

(11) 

Solutions of the paraxial wave equation are the well-known Laguerre-Gaussian functions [26]. 

When the Rayleigh length is large compared to the pulse length, ZR » £0, the higher 

order diffraction term can be neglected compared to the finite pulse length terms resulting in the 

following wave equation 

( 

Vi+2^ 
i   c   d 2   ^ 

— +(l-T]i)—- 
& P   d£2 

En=0. (12) 

Equation (12) contains first order diffraction and finite pulse length effects and reduces to the 

paraxial equation, Eq. (11), when the pulse length is much longer than the wavelength, £0 » X. 

b)        Finite Pulse Length Wave Equation 

Finite pulse length effects are represented by the terms d Idzdt; and 3 Idt; in Eq. 

(12). These terms under certain conditions can be simplified using the QPA, allowing for the 

analytical solution for the field. To analyze finite pulse length effects we assume that the general 

solution of Eq. (12) for the fundamental transverse Gaussian complex amplitude is given by 

E0 = bexp\i(p - (1 + ie)r2lr} Je±, (13) 



where b, (p, 6 and rs are real functions of z and ^ = z - riPct and e±_ is a unit transverse vector 

defining the polarization. In Eq. (13), b is the amplitude, cp is the phase, 9 is related to the 

wavefront curvature, and rs is the spot size of the laser pulse. The central assumption in the QPA is 

that the main contribution from the finite length term will come from the ^ dependence in the 

initial  amplitude.     Hence,  we  make  the  approximations   dE0/d£,   s (3f/j(60)/d£)Eo   and 

a2E0/3£2 = l$2£n(b0)/d!;2 + (Mn(b0)3£)
2
JE0, where b0g) = b(z = 0, £). In the Appendix 

the QPA will be shown to be well satisfied for a broad range of parameters. Employing the QPA, 

Eq. (12), including the guiding term and relativistic/atomic electron nonlinearities, becomes 

Vi +2itlp*(l + fe(£))|- -\r?p (\-V
2

p )g(0 ~ K? r2 /rc
2 + ßE0.E*0/2 En = 0, 

(14a) 

where 

4^L «&«)), (14b) 
cor] _     a^ 

and 

S(0 = —^:-£2- (14c) 
(OT]p   d% 

Finite pulse length effects are represented by the functions £.(£,) and g(£,).   If the laser pulse 

amplitude has an initial Gaussian longitudinal profile, ~ exp(-4<i;   /£Q), we find that 

fi«) = Jü4 = j!_M. (l5a) 

and 



g£) = 2 { l ) 
2 

fi    ^) 
'o ™\p*o t 

(15b) 

The functions £ and g have magnitudes much less than unity in the vicinity of the laser pulse, i.e., 

|£| < t0. TO estimate the order of magnitude for e and g we take X = 1 |im and £0 = 15 Jim (50 

fs pulse) and obtain e(£ = £0) = 8 x 10"2 and g(£ = £0) = - 6 x 10"3. 

The quasi-paraxial wave equation, Eq. (14a), indicates that finite pulse length effects can 

be important when £0 < (Xlr$Lt where L is the propagation length. This implies that finite 

pulse length effects are significant when L»ZR, as would be the case for a guided laser pulse. 

The laser field, which is described by Eq. (13), depends on the functions b, q>, 0, and rs. 

To obtain equations for b, 9, 0, and rs, we substitute Eq. (13) into the wave equation, Eq. (14a), 

containing finite pulse length effects, plasma channel guiding and nonlinear focusing. Equating 

like powers of r leads to coupled equations for b, (p, 0, and rs,[57] 

a 
ß + i(l + «e) 

dZ 
-£n(P/R2) + i(p 
2 

Q2 +i(l + ie)—Q-R„r - — 

+P/(2RJ-) -a =0, 

0, 

(16a) 

(16b) 

where Ö(Z,£) = -(l + id)/R2, R = rs/r0 is the normalized spot size, r0 is the initial spot size, 

Rm = rjro, rm = (2rc/Kc)1/2, «(£) = (ZR /r0)
2(l - T]2p)g^), ZR = 7]p(ör$ 12c = T]pKr$lX is the 

Rayleigh length, Z = z/ZR, P(Z£) = PL(Z£)/PC is the laser power normalized to the nonlinear 

focusing power, PL(Z£) = PPeak(&/^o)2 R2
 
is the laser Power< ^0 is the Peak amplitude at Z = 0, 

Ppeak is the peak laser power at Z = 0 and Pc is the nonlinear focusing power in Eq. (4c) which 

can be due to both relativistic and atomic electron effects. 



HI.      Short Pulse Propagation in Vacuum or Uniform Plasma 

a)        Fundamental Transverse Gaussian Pulse Solution 

In this section we obtain and discuss the finite pulse length solution to Eq. (14a) by 

solving Eqs. (16a,b) in the absence of guiding (R,n —> <*>) and nonlinear focusing effects (Pc -> 

°o). The solution of Eq. (16) in a uniform medium with refractive index r]p is 

-1, b(Z,Z) = b0(Z)R-l(Z,Z) l + £2(£) 
xl/2 

1 + £(£)(Z + £(£)) 

(p(Z,Z) = -tan-^Z + £(£)) + tan"1 (£(£)) 

0(Z,£) 

exp £(g)«(£)^ 

l + £2(0 
Z, 

(l+£(£)(Z + £(£)))' 

f   .      ,_        -,.,2    V/2 

R{Z£) 
1 + (Z + e&Y 

1 + £(£)(Z + £(£)) 

and the wavefront radius of curvature is 

RC(Z,£) = R2ZR /0(Z,£) = (ZR /Z)(l + (Z + £(Z,£))2). 

(17a) 

(17b) 

(17c) 

(17d) 

(17e) 

In the paraxial limit, e(^) —> 0, the functions b, (p, 6, R and Re in Eqs. (17) reduce to the 

conventional expressions for the fundamental transverse Gaussian beam [26] 

b(Z) = b0/R(Z) (18a) 

(p(Z) = - tan   ' Z 

0(Z)=-Z, 

R(Z) = (\+Z2)'2, 

RC(Z) = (ZR/Z)(\ + ZZ). 

(18b) 

(18c) 

(18d) 

(18c) • 
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For propagation in vacuum we set r|p = 1 in Eqs. (17) and (18). 

b)        Group Velocity 

To correctly obtain the group velocity it is necessary to use the quasi-paraxial wave 

equation in which finite pulse length effects are included. The paraxial wave equation in Eq. 

(11) does not contain finite pulse length effects; it is valid for infinitely long beams. Since Eq. 

(11) is independent of the variable £ which describes the pulse shape, finite pulse length effects 

can be included in an ad hoc manner by simply multiplying the paraxial solution by an arbitrary 

pulse envelope. In general, the group velocity is the velocity with which the peak of the pulse 

envelope travels, i.e., the velocity for which db(Z,t,)/dE, - 0. In the paraxial approximation the 

group velocity is found to be vg = cr\p = c(ck/a>) where we have taken the pulse amplitude to 

be b0(E,) - b0exp(-4£2 //Q ) and b0 is the peak amplitude. In this approximation the product of 

the group and phase velocities is c . 

In the quasi-paraxial approximation, which includes pulse length effects, from Eq. (17a) 

the pulse envelope can be written as 

b{Z^) = b^)\-e{^)ZI{\ + Z2)\, (19) 

where b0 is the amplitude in the paraxial approximation and the term proportional to e is the QPA 

correction due to finite pulse length effects. Equation (19) is correct to order e and is valid for 

eZ « 1. In the presence of finite pulse length effects the group velocity is found to be 

vg{t)~cr\t 1 — 
X i i-cV izl) 

,*VöJ (l + cV/z^)2 
^crip 

X 

nripr0 ^ 
(20) 

11 



where the second expression is valid for ct « ZR.    In obtaining Eq. (20) we evaluated 

t 
dbldt; =0 in Eq. (19) and set Z ~ctlZR and £ = \dt'vg{t')-cr\ t. When finite pulse length 

0 

effects are properly included, as in the QPA, to lowest order in e the group velocity is 

independent of the pulse length but depends on the spot size as given in Eq. (20). 

IV.      Coupled Envelope-Power Equations 

In this section we analyze the propagation of a finite length laser pulse in a preformed 

plasma channel including nonlinear focusing effects. In general, for propagation in a plasma 

channel there is no equilibrium solution for a finite length high power laser pulse. For a 

sufficiently low power, where nonlinear focusing effects can be neglected, an equilibrium 

solution for finite length pulses exists. However, the equilibrium undergoes an envelope 

modulation. The normalized envelope equation for a laser pulse in a plasma channel, to first 

order in e(^), is obtained from Eqs. (14a,b) 

d2R/dZ2 -(l-P)R'3 + R^R + eF(Z,£) = 0, (21a) 

where 

P = Po&exp 
z 

-£\G(Z',%)dZ' 
0 

(21b) 

is the normalized power, 

F(Z,%) = R~2p + (R/Rm)4 - P+ (RdR/dZ)2f)R/dZ, (21c) 

G(Z,%) = R~2[\ + (R/R„,)4 + (RdR/dZ)2\, (2 Id) 

• 

12 



and R = rs/r0, Z = z/ZR. In obtaining Eqs. (21) higher order finite length effects contained in a, 

which are of order e2, have been neglected. The coupled envelope-power equations for the 

guided pulse given by Eqs. (21) are nonlinear functions of spot size and contain finite pulse 

length effects. Several limiting cases, depending on the laser power and pulse duration will be 

discussed. In the following, low laser power refers to powers much less than the nonlinear 

focusing power, PL « Pc- 

a) Low power, Long pulse (P « 1,8 = 0), 

In the low power, long pulse limit, the envelope equation reduces to 

dz2     m 

The second term in Eq. (22) denotes plasma channel focusing while the last term represents 

diffraction. In this low power, long pulse limit, the beam has an equilibrium spot size R«, = Rm. 

b) Low power, Short pulse (P<< Le^O), 

In the low power, short pulse limit the equilibrium solution to Eqs. (16) is 

R«, = Rm, (23a) 

beq(Z,^) = b0(^)exp [- sZ I R2
m J (23b) 

6eq = 0, (23c) 

<Peq(Z)= 1-^ <23d) 

while the equilibrium power is given by 

Peq=P0exp[2£(peq(Z)), (23e) 

13 



and the pulse group velocity is given by the expression in Eq. (20).   The effect of finite pulse 

length (e ^ 0) is to make the peak of the pulse shift backward as the pulse propagates. 

c)        High power, Long pulse (P< 1, e = 0) 

In this limit, the equilibrium is given by 

ReqG) = Rm(l-PeqG)},\ (24a) 

6eq=°> (24b) 

<peqG,Z) = - (l-Peq/2)Z/R?q, (24c) 

where P^ = Po(£) = (Pmax/Pc)(&n(£)^o) 1S me initial normalized laser power as a function of ^. 

In this limit the laser power does not evolve with distance, i.e., Peq = Po(£) is independent of Z. 

For peak laser powers less than the critical power, Po(£) < 1, the equilibrium is stable. 

In this limit for a uniform plasma (no channel guiding, Rm = °°), a uniform laser beam 

i.e., independent of ^, will have a longer Rayleigh length longer than the vacuum Rayleigh 

length because of nonlinear focusing effects. The modified Rayleigh length is given by 

ZR = 0 - Peqy
mZRQ, (25) 

provided P«, < 1. For P^ > 1, the beam focuses in a distance 

Lf = (Peq - \)-
U2ZR0. (26) 

In Eqs. (25) and (26), ZRO is the Rayleigh length associated with low power lasers, i.e., powers 

much less than the nonlinear focusing power (Pcq « 1). 

14 



d)        High power, Short pulse (P< 1, e = 0) 

In this limit, the laser pulse does not have an equilibrium. The stability characteristics of 

laser pulses in plasma channels can be obtained by perturbing Eq. (21) about the spot size R«,^) 

= Rm(l - Po(£))'/4, where R = R«, + 8R and 18R| « R«,. The equation for 8R is 

d28R/dZ2 + 4V(1 -P0)SR + 4£RQ
2
{\-P0 /2)d8R/dZ = - R~3SP,    (27a) 

where 

5P = P( exp ■e(G0Z + \8GdT) 
o 

(27b) 

G0 = 2RQ
1
(1 -PQI2) and SG = - 2RQ

3P08 R. Since there is no equilibrium for high power, 

short pulses propagating in a plasma channel, both the laser power and spot size evolve with 

propagation distance. The spatial evolution of the power and spot size, among other factors, is 

given by exp(- 2e(l - PQ12)Z / R0 ) 

V.       Laser Envelope Modulation 

a)        Envelope Oscillation 

In the low power (P « 1), short pulse limit b) of the preceding section, the perturbed 

envelope equation is 

d2SR       AXD       .   d8R     ,c d26R 
+ 45R + Ae— 6——— = 0, 

dZ< dZ (0 d&Z 
(28a) 

with solution 

OR -S/?0exp(-2£Z-Z2/Z^)cos(2Z), (28b) 

15 



where 8R0 = 8R(Z = 0), dWdZ = 0 at Z = 0 and Z(/=<<,/( 2 V<5c) is the phase mixing length 

normalized to ZR. The damping term is obtained from an extension of the QPA to include phase 

mixing. In obtaining the solution in Eq. (28b) it was assumed that the envelope period 7TZR is 

small compared to the growth length ZR/(2lel) and the phase mixing length (7z/6l/2)(^o/A)ZR The 

modulation amplitude is proportional to 

exp[-8^Z/(/T77/„) - Z2IZ]\. (29) 

The modulation at the front of the pulse (£>0) is always damped while in the back (£<0) it 

initially grows but is eventually damped due to frequency spread phase mixing. Overall 

damping of the modulation occurs for Z > 2^|^|/(3^p/l). 

b)  Laser Modulation Mechanism 

The mechanism for the envelope modulation can be understood by noting the 

relationships between the group velocity, spot size and power of a pulse propagating in a plasma 

channel. The group velocity of a pulse in a plasma channel can be written as vg = Vgo + 5vg, 

where the mean group velocity vgo is given by Eq. (20), the perturbed group velocity is 8vg = 

c(A/7r,ro)2Ör/ro and 8r is the perturbed spot size. To lowest order, conservation of power implies 

8b = - bo8r/ro, where 8b and bo are the perturbed and unperturbed laser field amplitudes, 

respectively. Figure 1 (a,b) shows the amplitude and spot size of a finite pulse length laser in a 

reference frame moving with the mean group velocity vg0. The solid curve shows the 

equilibrium amplitude and spot size as a function of z - vg0t. If the spot size is uniformly 

increased (8r > 0) along the pulse, the group velocity increases by the amount 8vg. The 

amplitude in front of the unperturbed pulse increases (Sb > 0) while the amplitude in back of the 

unperturbed pulse decreases (8b < 0). Conservation of power indicates that the perturbed spot 
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size in back of the pulse is further increased since 8r = - r08b/b0 > 0 and decreased in front of the 

pulse since 8r = - r08b/b0 < 0. If, instead, initially the spot size were uniformly decreased, the 

spot size at the back would be further decreased while in the front it would increase. Hence, the 

perturbed spot size is damped in front of the pulse and is unstable in the back. Substituting £ = z 

- vgt = z - vg0t - 5vgt = ^o - 8vgt into b ~ b0exp(-4^2/^o). the rate of change of the perturbed 

amplitude is döb/dt « Sb0£06vg 11\. Using 8r = -(ro/b0)8b, we find 

dör/dt = -8c£0(A/;cr0)
2<5r/^o which agrees with the growth term in Eq. (29). Inherent to a 

finite laser pulse is a frequency spread given by SOD ~ d£0. Hence the envelope modulation 

frequency A =2c/ZR acquires a spread SQ-Oe öco/ü)~Q.e(X/27il0). This envelope frequency 

spread results in phase mixing of the modulation in a distance Zd (normalized to ZR). 

VI.      Numerical Illustrations 

Figure 2 is a plot of the normalized spot size R(Z£) in Eq. (17d) as a function of £ for 

various values of Z = 0, 1, 2, 3. In this figure the laser pulse propagates in vacuum and the pulse 

length is £0 = 6 X. In the absence of finite length effects the spot size would be independent of 

£. Figure 2 indicates that the tail of the pulse flares out more than the front of the pulse, leading 

to a "trumpet" pulse shape. 

In Figs. 3-6 the laser pulse parameters are X = 1 \im, cOp/co «1 £0 = 20 \im (67 fs) and 

the peak power is Ppeak = 0.56 Pc.  The total nonlinear focusing power, Pc, is given by Eq. (4c) 

and consists of contributions from free and atomic electrons.  In all the figures there is an initial 
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mismatch in (lie spot size compared to the equilibrium spot size, i.e., R() = R(0,0) = 1 and R„, = 

1.15. Figure 3(a) shows the spot size R(Z,£,) as a function of Z = z/ZR and t/X, with finite pulse 

length effects (e -t- 0) included. For comparison Fig. 3(b) shows the same plot except in the 

absence of finite length effects (e = 0). The laser envelope modulation is clearly seen in Fig. 3(a) 

where the spot size oscillations at the front of the pulse (£, > 0) are damped and in the back (£, < 

0) grow. Finite pulse effects not only result in an envelope modulation but also significantly 

enhance nonlinear focusing. This is shown in Fig. 4 where the spot size with finite pulse length 

effects (solid curve) approaches zero at IjX = -3 for Z = 15. The spot size without finite length 

effects (dotted curve) shows less than a 10% decrease at £, ~ 0 for Z = 15. Figures 5(a) and (b) 

show the laser pulse amplitude b(Z,^) as a function of Z and t/X with and without finite pulse 

length effects, respectively. As a result of the enhanced nonlinear focusing due to the finite pules 

length, Fig. 5(a) shows a significant increase in the pulse amplitude at Z = 15 compared to Fig. 

5(b). Figure 6 shows the pulse power as a function of t/X and radial coordinate r/ro at Z = 15. 

Finite length effects in Fig. 6(a) result in an increase in the peak power as well as a distortion of 

the pulse compared to Fig. 6(b), where finite length effects are absent. In Fig. 6(a), finite length 

effects reduce the pulse propagation velocity, i.e., peak of the pulse occurs at negative values of 

£. In Fig. 6(b), nonlinear focusing effects are included while finite pulse length effects are 

neglected, 8 = 0. For e = 0 the pulse velocity is c and nonlinear focusing is substantially reduced. 

• 

VII.     Conclusions 

The increasing use of ultra short laser pulses in many applications requires that the 

paraxial wave equation be extended to include finite pulse length effects. We present the quasi 
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paraxial approximation (QPA) to the wave equation. The QPA is an extension of the usual 

paraxial approximation and takes finite pulse length effects into account. A pair of coupled 

envelope-power equations is derived for short laser pulses propagating in vacuum, plasmas and 

preformed plasma channels. The model includes atomic electron and relativistic effects. We 

find that finite length effects can significantly modify the laser field. The new results include: i) 

an analytical formulation of short laser pulses, ii) a derivation of a pair of coupled laser 

envelope-power equations, iii) a laser envelope modulation, iv) demonstration of significant 

modification of nonlinear processes by finite pulse length effects, and v) analysis of short pulse 

propagation dynamics in long plasma channels. 
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Appendix: Validity of the Quasi Paraxial Approximation Jflfc 

The approximation, which leads to the simplified wave equation in Eq. (14a), requires 

that 

£ En » 
N, 

e + 
T]pCD d% 

Er (Al) 

where Eo and e are given by Eq. (13) and (14b). The short pulse approximation requires that Eq. 

(Al) be satisfied. 

a)        Approximation in Vacuum 

For pulse propagation in vacuum, T\P = 1, the inequality in Eq. (Al) can be rewritten and 

the approximation is shown to be valid if 

t\ » 
In 1 + i(Z + e) 

1 + 
(r/r0Y 

1 + i(Z + e) 
(A2) 

where we have assumed |e| «1. The finite pulse length approximation in vacuum, used to 

replace BEQ IB!; with - {aIC)E{^)EQ in Eq. (14a), is well satisfied everywhere except within a 

small function of a wavelength of the pulse's center. 

b)        Approximation in Guiding Channel 

To determine the validity of the short pulse approximation in a guiding channel we 

consider the low power, short pulse limit of Eq. (21), i.e., limit b) in Sec. IV. The field in Eq. 

(13) for the equilibrium solution given in Eqs. (23) is 

Eeq=bo(0^p[-£Z/Rl -ir2/(r0Rm)2\. (A3) 
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4fc Substituting Eeq for E0 in Eq. (Al) yields the condition for the QPA to be valid.    The 

approximation is valid provided  |e|  » (c/corjp) \dzld^\ziR}U,  which for a pulse having a 

Gaussian longitudinal profile is 

^»ii-^z. (A4, 

The QPA approximation is not valid for long propagation distances. 
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Figure Captions 

Fig. 1   Illustration of the physical mechanism for the laser envelope modulation. The amplitude 

is shown in (a) and the spot size in (b), as a function of £$ = z - Vgot, where vg0 is the 

mean group velocity. The solid curves correspond to the equilibrium. The dashed curves 

show the amplitude and spot size for the case with group velocity larger than vg0 (1) and 

the case with group velocity smaller than vg0 (2). 

Fig. 2 Plot of normalized spot size R(Z£) as a function of £ for a pulse of length £0=6X 

propagating in free space. The four curves correspond to normalized axial points Z = 0 

(lowest curve), 1,2, and 3. 

Fig. 3  Surface plots of spot size R as a function of B,IX and propagation distance Z = z/ZR 

with (a) finite pulse length effects (e * 0) and (b) finite pulse length effects neglected 

(e = 0). The parameters are X = l]im, J>0= 20/im, Ppeak = 0.56PC. 

Fig. 4  Plot of spot size Ras a function of %/X  after a propagation distance equal to 15 

Rayleigh lengths (Z = 15)    The solid (dotted) curve includes (neglects) finite pulse 

length effects. Parameters are the same as in Fig. 3. 

Fig. 5  Surface plots of laser pulse amplitude b as a function of E,lX and propagation distance 

Z = z/ZR with (a) finite pulse length effects (e * 0) and (b) finite pulse length effects 

neglected (e = 0). Parameters are the same as in Fig. 3. 

Fig. 6  Surface plots of laser pulse power P as a function of t/X and radial coordinate r/r0 after a 

propagation distance equal to 15 Rayleigh lengths (Z = 15).   In (a) finite pules length 

fl| effects are included and show enhanced focusing and decreased propagation velocity, i.e., 
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peak of the pulse occurs for negative values of £.   In (b) finite pulse length effects arc       J/tk 

neglected, i.e., e = 0 while nonlinear focusing effects arc included.   Parameters arc the 

same as in Fig. 3. 
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