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ABSTRACT 

The performance of a Direct Sequence Spread Spectrum system utilizing Differential 

Phase Shift-Keying modulation over a fading channel in the presence of pulse noise 

interference and additive white Gaussian noise is considered. Time and spatial diversity 

receivers utilizing various normalization schemes and post-detection selection combining 

are employed to overcome performance limitations inherent in certain adverse 

environments. Numerical results are presented over a range of environmental conditions 

demonstrating the efficacy of such receivers. The performance analysis'is extended through 

the utilization of convolutional coding and soft decision Viterbi decoding. The 

performance of the maximum likelihood decoding operation is expressed in terms of an 

equivalent uncoded system for both the Rayleigh and Rician fading channel with 

interference effects. Numerical results are then presented demonstrating the efficacy of 

such a receiver. 
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I. INTRODUCTION 

The field of wireless communications including the areas of mobile cellular and Personal 

Communications Services (PCS) has experienced rapid and expansive growth in recent years. The 

high demand to communicate in a mobile environment is pushing the need for wireless providers 

to upgrade existing systems. Traditional analog systems are being supplanted by digital systems to 

improve performance and increase capacity. The performance of a mobile radio communications 

link is governed by several factors. One of the most detrimental effects to a mobile radio channel 

is that of multipath fading [1,2]. Fading is caused when several replicas of the transmitted signal 

are accepted by the receiver where they may constructively and destructively add to each other. 

The result is that the signal-to-noise ratio may take large swings in magnitude greatly effecting the 

reliability of the link. The effects are most detrimental when there is no line sight (LOS) path 

between the transmitter and receiver. This type of channel is termed the Rayleigh channel. Another 

element that limits the performance of the mobile radio channel is that of the ubiquitous additive 

white Gaussian noise (AWGN). In a military setting, in addition to the previous mentioned factors, 

the channel may experience pulse noise interference. Pulse noise interference occurs when a source 

outside the normal communications channel transmits electromagnetic energy into the channel in 

short bursts with the goal of disrupting effective communication between the end users. For a 

digital communications link, short bursts of this sort can be extremely deleterious to maintaining 

a reliable communications link. Ideally one would like to eliminate the effects of the pulse noise 

jammer while maintaining signal integrity. Several digital techniques, such as direct sequence 

spread spectrum and forward error correction (FEC) coding, have been shown to be effective in the 

mitigation of pulse noise interference [10]. If the jammer is smart however, significant degradation 

to the communications link may still occur. In worst case jamming scenarios, the use of spread 

spectrum and FEC may not be enough to restore a reliable communications link. 

In this dissertation, maximum-likelihood (ML) solutions which minimize the probability of 

bit error are sought. The performance of coded Direct Sequence Differential Phase Shift-Keying 

(DS-DPSK) over a Rayleigh fading channel in the presence of pulse noise interference and AWGN 

has been considered [29]. Here to combat the effects of pulse noise interference, a non-maximum 

likelihood (ML) soft-hmiter receiver with a non-adaptive threshold in tandem with a combination 



of antenna diversity and spread spectrum diversity are utilized. ML receivers with an adaptive 

threshold, such as the self-normalized and noise-normalized receivers, have been shown to be 

extremely effective in combatting partial band interference in Fast-Frequency Hopped Frequency 

Shift-Keying (FSK) systems [14-18]. Part of the work in this dissertation will be to apply the 

techniques of self-normalization and noise-normalization to a DS-DPSK system to mitigate the 

effects of pulse noise interference. Up until now, no such attempt has been made to do so. The next 

two chapters investigate these topics. In chapter IV, a new technique is introduced where the 

receiver employs spatial diversity and selects the maximum from a set of multiple antenna post- 

detected outputs. The resulting technique is termed First Order Post-Detection Selection 

Combining (PDSC1). This receiver type has the attribute of path independent performance which 

provides an extra measure of reliability to the system. In a military setting, this extra measure of 

reliability is highly desirable. In chapter V, the performance of the PDSC1 receiver employing both 

spatial and time diversity is investigated. In chapter VI, convolutional coding is employed and 

receiver performances using the Viterbi decoding algorithm is analyzed. In addition the 

performance of the linear receiver will be analyzed. The linear receiver utilizes diversity 

combining without any limiting device. The performance of this receiver has been shown to be 

extremely effective in improving performance in signal fading environments provided a sufficient 

signal-to-noise ratio is maintained at the receiver [5]. The performance of the linear receiver will 

be used here as a benchmark for which to compare the other non-linear receivers. 

The main results of this dissertation will show that the noise-normalized and self- 

normalized receivers are most effective in mitigating the effects of pulse noise interference and 

signal fading. The additional noncoherent combining losses incurred by the linear receiver in the 

combined pulse-jammed, multipath fading channel prove to be too significant to overcome and 

performance subsequently degrades. The linear receiver performance degrades further when 

convolutional coding is employed. Performance improvement of the noise-normalized and self- 

normalized receivers with convolutional coding is significant in comparison to the uncoded 

systems. The combined use of time diversity with convolutional coding produces the best results 

for these receivers. The performance of the PDSC1 receiver is shown to be inferior to either the 

self-normalized or noise-normalized receivers. The PDSC1 receiver performance degrades with 

the addition of time diversity as a result of noncoherent combining losses. 



Throughout this dissertation, a constant information bit rate is assumed. A power-limited 

environment is therefore assumed and additional bandwidth is available to help improve system 

performance. While it may not be always realistic to assume unlimited bandwidth, the work here 

could be extended to bandlimited cases through some system modifications. Pulse shaping could 

be employed to reduce the amount of intersymbol interference (ISI). In cases where ISI cannot be 

avoided, spread spectrum diversity utilizing a Rake receiver and/or channel equalization 

techniques [5, 29] may be included in the system. 





II. DS-DPSK WITH SELF-NORMALIZATION AND L- 
FOLD DIVERSITY IN A FADING CHANNEL 

In this chapter, the performance of a DS-DPSK spread spectrum system over a Rician 

frequency nonselective, slowly fading channel in the presence of pulsed noise interference and 

AWGN is considered. The system employs L-fold time diversity with i of L channels, i = 1,2,... L 

experiencing interference at any given point in time. A model block diagram of the system 

transmitter/channel/receiver is shown in Figure 2.1. In the interleaving frame at the transmitter, N 

data bits are consecutively repeated L times for a total of M = LN transmission bits. The M bits are 

then interleaved in such a fashion so that adjacent repeated bits are separated by a time greater than 

the coherence time of the channel. This allows for independent reception of each of the L diversity 

transmissions [5]. The data is then differentially encoded via the DPSK modulator prior to 

"spreading" by the Direct Sequence Spread Spectrum (DSSS) spreader. At the receiver, the data is 

"despread", demodulated via a DPSK receiver, deinterleaved and combined. The performance of 

a self-normalized receiver utilizing soft decision equal gain combining is considered. To begin the 

discussion, the optimum receiver for detection of a DPSK signal in AWGN over a frequency 

nonselective slowly fading Rician channel is considered. A brief overview of Direct Sequence 

Spread Spectrum is then provided followed by a description of the pulsed noise interference model. 

The bit error probability of the self-normalized receiver is then derived. 

A.    OPTIMUM DETECTION OF DPSK IN AWGN OVER A FREQUENCY 

NONSELECTIVE SLOWLY FADING RICIAN CHANNEL 

The general form of a DPSK signal may be written as 

s(t) = J^lA[c0pT(t) + c1pT(t-T)]cos(Oct (2.1) 

for 0< t< IT, with c0c1 = 1 representing bit 0 and cQc^ =-1 representing bit 1. The function 

pT{t) represents a rectangular pulse of unit amplitude on the bit interval 0 < t < T . The carrier 

frequency is denoted by coc. Note that the signals representing bit 0 and bit 1 are orthogonal to each 

other over, the 2-bit interval, 2T. 



input 
data L-fold diversity DPSK DS 

spreader and interleaving modulator 

DS 
despreader *~~O--CL \^ Rician 

fading 
channel 

r— "* 

AWGN      Pulse noise 
interference 

DPSK 
demodulator Self-normalization 

\ 

deinterleaver 

+ 
Equal gain 
combining 

i L  output 
'    data 

Figure 2.1: Transmitter/channel/receiver model of DS-DPSK over fading channel and in the 
presence of pulse noise interference and AWGN. 

The received signal over a Rician channel has the general form 

r(t) 4T 

r-    N 

a(t)d(t)cos(act + 0) + /| ]£ A,.(0^(0cos(coc/ + 6 + (J)((0) + n(t) 
i= 1 

(2.2) 

where d(t) = [cQpT(t) + c1pT(t -T)] represents the data and n(t) is AWGN (thermal noise) 

with power spectral density. (PSD) NQ/2. The first term in the expression for r(t) represents the 



direct path component of the received signal with amplitude a(t) and phase offset 0. The second 

term represents the diffuse component due to the presence of multipath whose amplitude fluctuates 

due to the time-varying amplitude function At(t) and phase function ty{(t). This phase function is 

equal to cocx(- with xi representing the time delay of the i multipath component of the received 

signal. If the carrier frequency is large, relatively small time delays can cause large phase shifts in 

the $,■(*) (modulo 2TC). The result is that the received signal paths may add constructively when 

the received paths are in phase, producing large signal amplitudes; or add destructively when the 

paths are out of phase, producing very weak signal returns. If it is assumed that At(t) and a(t) are 

constant over the 2-bit signaling interval, At(t) may be replaced with Ai and a(t) with a. If it 

is further assumed that the phase function tyfo) varies slowly over the 2-bit interval then tyfo) may 

be replaced by fy. Both assumptions are equivalent to saying the 2-bit signal duration is much less 

than the coherence time of the channel. A channel of this sort is said to be slowly fading. The 

received signal can now be rewritten as 

r r N 

r(t) =   llad(t)cos((Oct + B) + Jl^Aid(t)cos((Oct + e + $i)+n(t) 
i = i 

(2.3) 

A channel is said to be frequency nonselective when the bandwidth of the transmitted 

signal is less than the coherence bandwidth of the channel. This occurs when the time duration of 

the signal is greater than the time duration of the impulse response of the channel. In this situation, 

intersymbol interference (ISI) is not present. 

The optimum receiver for noncoherent detection of orthogonal signals in AWGN according 

to the Bayes criterion is shown in Figure 2.2 [4,5]. The signals h^t) and h2(t) are replicas of the 

transmitted signal representing bits 0 and 1 respectively. A square law detector receiver with 

identical detection performance is shown in Figure 2.3. In this figure the upper branch corresponds 

to the bit 1 detector while the lower corresponds to the bit 0 detector. 
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Figure 2.2: Matched filter receiver for noncoherent detection of DPSK in AWGN. 

An important figure of merit for any digital communications system is the probability of 

bit error. In a binary system such as DPSK, the probability of bit error is 

Pb = Pr[bit 1 detectedlbit 0 sent]Pr[bit 0 sent] + Pr[bit 0 detectedlbit 1 sent]Pr[bit 1 sent]. A binary 

symmetric channel is assumed, therefore Pr[bit 1 detectedlbit 0 sent] = Pr[bit 0 detectedlbit 1 sent]. 

If is further assumed each bit is equally likely to be sent, then the expression reduces to 

Pb = Pr[bit 1 detectedlbit 0 sent] = Pr[bit 0 detectedlbit 1 sent]. The case of either bit 1 or 0 being 

sent may therefore be considered in determining the overall probability of bit error. 

If it is assumed bit 0 is sent, the outputs of the detector branches before the squaring 

operation are given by 

Ylc = +2occose+ 5^2AJ.cos(6 + (|>i) + iV1< 

i = l 

(2.4a) 

Yu = ±2asin6± ^2Aism(B + ^i) + Nu 

i= 1 

Y2c = *2c 

Yls = *2s 

(2.4b) 

(2.4c) 

(2.4d) 

where 
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N2C = NUO-N1CT (2.5b) 

Nu = ^u0 + Nur (2.5c) 

N2S = NUO-NUT (2.5d) 

and 

rT 
NUo =   lljn(t)cos(öctdt (2.6a) 

o 

.IT 

NUT =   /| J n(t)cos(üctdt (2.6b) 

iVlio = ^n(t)sin(Octdt (2.6c) 

o 

.2r 
NUT = Jjn(f)sinCDc^ (2.6d) 

The quantities Nlc ,Nlc , Nu , Nls  are uncorrelated, Gaussian random variables and therefore 

are independent. In addition they are identically distributed with zero mean and variance 

oj = NQ/2. N1C, NU, N2C, N2S are also independent, identically distributed (iid) Gaussian 

2 2 
random variables with zero mean and variance on = 2a0 = N0. 

Referring again to equations 2.4a and 2.4b, the phases, §{, are modeled as independent 

uniform random variables over the range [0,2rc] since no prior knowledge of their values is 

assumed. In the limit as the number of paths N becomes large, by the Central Limit Theorem the 

first and second terms of equations 2.4a and 2.4b together can be modeled as non-zero mean 

Gaussian random variables. Therefore, Ylc and Yls are Gaussian random variables with mean 

10 



2 2 
±2acos9 and ±2asin9 respectively, and with common variance equal to (an + 4aa). In 

addition, due to the orthogonality of the sine and cosine functions, Ylc and Yls are independent 

Gaussian random variables whose joint distribution is 

1 
/7le.7lf(yic.yi,|0) = 

27t(4a2 + c2) 
x 

exp 
I   2(4<J2 + O*) 

[(ylcT2acos6)2 + (yl5T2asin8)2] 
\ 

(2.7) 
J 

The decision statistic V1 is now the sum of two squared non-zero mean Gaussian random 

variables and is a noncentral Chi-squared random variable with 2 degrees of freedom [8]. Its 

distribution is 

fvSvi\°) = 
1 

 2 2"eXP 
2(4<£ + o£) 

(            1 ,   i\ (   lafi   ^  2"(Vl+4a ) I0 

2(4a' + <) / V(4G2 + G2)J 
uivj 

(2.8) 

where I0(x) is the modified Bessel function of the first kind of zero order and u(x) is the unit step 

function. In a similar fashion, the decision statistic V2 is the sum of two squared zero mean 

Gaussian random variables and is therefore a central Chi-squared random variable with 2 degrees 

of freedom. Its distribution is 

/v2(
v2|°) = — exP 

2c„ 

v^ 

2a 
"(v2) (2.9) 

since there is no signal component on this branch. Due to the orthogonality of the 2 branches, V1 

and V2 are also independent random variables. Equations 2.4a and 2.4b can also be expressed in 

the following equivalent forms 

Yu = Rcosy + Nlc (2.10a) 

Yls = Rsmy + Nls (2.10b) 

where R = *Jx + Y , \|/ = arc tan -   and 

11 



X = 2acos0 + ]T 2A,.cos(G + <|>,) (2.11a) 
i= 1 

n 

Y = 2asine + £ 2Afsin(6 + $,.) (2.11b) 
» = i 

Ä may then be identified as a Rician random variable. The average signal energy over this 2-bit 

interval, which is the second moment of R, is 4a2 + 8aa . The average signal energy over a 1-bit 

2 2 
interval, denoted by Eb> is a + 2aa [5]. 

If either a noise-normalizer or self-normalizer were not employed, then the optimum 

decision logic at this point according to the Bayes criterion would be to pick the detector branch 

corresponding to the larger of Vl and V2. Before introducing the normalizing schemes, the model 

and underlying assumptions of the pulsed noised interference is described in detail. Before this 

however, the general underlying principles of Direct Sequence Spread Spectrum (DSSS) are 

described. 

B.     DIRECT SEQUENCE SPREAD SPECTRUM 

The purpose of a DSSS system is two-fold. First the signal is spread to mitigate the 

possibility of detection of the information signal by unwanted users. Systems of this sort are termed 

Low Probability of Detection (LPD) systems. Secondly, if an unwanted user can detect the DSSS 

signal, then the DSSS system should minimize the possibility that the unwanted user can decipher 

the encoded message. Systems of this nature are called Low Probability of Interception (LPI) 

systems. 

To produce a DSSS signal, a rectangular pulse shaped bipolar binary wave representing 

the information signal with bit duration Tb, bit rate Rb = 1/Tb and noise equivalent bandwidth B = 

Rb, is multiplied ideally by a random bipolar binary wave called the chipping sequence of bit rate 

Rc = kRb where k »1. The resulting sequence forms the DSSS signal. It has a Power Spectral 

Density (PSD) whose maximum magnitude is k times smaller than the maximum magnitude of the 

PSD of the information signal and whose noise equivalent bandwidth is k times larger than that of 

the information signal. Truly random binary waves cannot be generated in practice however and 

12 



Signals called pseudorandom sequences are employed to modulate the information signal. These 

pseudorandom sequences are deterministic signals with ideally many of the same properties of a 

truly random binary wave. Demodulation of the DSSS signal occurs when the same sequence that 

was used to generate the modulated signal is used to multiply the signal at the receiver to recover 

the resulting information signal. This requires the codes at the transmitter and receiver to be in bit 

and code synchronization. For this dissertation, bit and code synchronization between transmitter 

and receiver is assumed to exist. More information about spread spectrum systems can be found in 

[10]. 

C.    PULSE NOISE INTERFERENCE MODEL 

The pulse noise interference model will now be described. The wideband pulse noise 

interference model to be described is based upon the assumption that the jammer bandwidth is at 

least as wide as the bandwidth of the transmitted DSSS signal, allowing the jammer to avoid 

detection at the receiver. It is assumed that an interferer jams a fraction p of the information bits 

(0 < p < 1). The fraction of bits not jammed is equal to thus (1-p). Pulse noise jamming is 

explicitly defined for the case of p < 1. The interfering signal is modeled as white Gaussian noise 

whose PSD is Nj/2p when the jammer is on and 0 when the jammer is off. The total average PSD 

is then equal to Nj/2. Allowing for the possibility that either 2 consecutive bits, 1 bit, or no bits of 

the DPSK signal may be jammed, the following event space for these three cases is defined: 

Ij- Event that either the first bit contains interference and the second bit does not, or that 

the second bit contains interference and the first bit does not ({I, NI} u {NI, 1}). 

12- Event that the first bit and the second bit both contain interference {1,1}. 

13- Event that neither the first bit nor the second bit contain interference {NI,NI}. 

The probabilities of the three events are defined as Pr(l!) = p1,Pr(I2)= p2 andPr(I3) = (l-p1-p2) 

where 0< pl5 p2< 1 .It is assumed that the jammer noise component is present equally in branches 

V1 and V2 ■ The jammer noise variances at the receiver branches just prior to the squaring 

22 2 
operation for the three cases are Gl  = Nj/2p, CTj  = Nj/p, and cT  = 0. The total conditional 

222 
noise variance is defined as o ■ = tfn + ar for j = 1,2,3. The total conditional variance for branch 

•* 3 
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1 of our receiver is <5\ = (4aa + a •) and for branch 2, a2. = a,- for; = 1,2,3. The densities for 

V1, (equation 2.8) and V2, (equation 2.9) conditioned on the 3 jammer cases can be reexpressed 

respectively as 

.   /v^il0'1/) = —exP 
2a 2aT 

■(vj +4a ) 

i,      V    -i,. 

/va(v2|0,ip = ~TexP 
2a0 

(2aJVx 

V   oi.  J 

w(Vj) 

r      v, ^ 
2d 

u(v2) 

(2.12) 

(2.13) 
V     ^u2/ 

The relationships between the parameters p, px and p2 are now derived. Consider an 

interleaved frame of M bits shown with K jammed bursts per frame each consisting of H bits, as 

shown in Figure 2.4. 
Hbits K bursts 

• • • • 

Mbits 

Figure 2.4: Interleaved frame of M bits 

From this figure the following is ascertained. First, there are a total of n = KH jammed bits 

per frame and therefore p = n/M. The variable nj is defined to be the number of type Ij bits in the 

frame. Since there are 2 edges for each burst, there are a total of n: = 2K type Ix bits in the frame. 

This gives p l = nj/M. The variable n2 is defined to be the number of type I2 bits in the frame. There 

are a total of (H-l) type I2 bits in a burst for a total of n2 = K(H-1) type I2 bits in the frame. This 

gives p2 = n2/M. Now nj+n2 = 2K+K(H-1) = K+KH = K+n. Therefore n = n]+n2-K. Further since 

p = n/M = (n1+n2-K)/M =p1 +p2-(K/M) = p1 +p2-(n1/2M), it follows that 

Pi 
P = y + P2 

(2.14) 
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D.     SELF-NORMALIZED RECEIVER 

It has been shown that the use of the self-normalized receiver shown in Figure 2.5 

V. 2k 

V Ik 

+ 

+ 
(•)' 

-1 

Figure 2.5: Self-Normalized receiver 

can improve the worst case performances of a frequency-hopped BFSK signal under partial band 

jamming interference over a Rician channel [14]. In an analogous way, it is sought to improve the 

performance of a DPSK system employing time diversity under pulse noise interference over a 

Rician channel. 

For the L-fold diversity receiver shown, a constant bit rate system is assumed. The duration 

of a bit for each diversity transmission is TL = Tj/L for a bit rate of RL = RbL and average energy 

EL = Eb/L. Therefore as L increases with Rb fixed, RL increases and EL decreases. The inputs to 

the self-normalized receiver for the klh diversity reception are Vlk and V2lc. The density functions 

for Vlk and V2k are the same as derived for V1 and V2 before, with the exception that Eb is now 

replaced with EL. The random variables Zlk and Z2k are defined as 

ik 
Zl* ~ v    +V vlk+ v2k 

lk = y^y^k 

(2.15a) 

(2.15b) 
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and 

Zlk + Z2k= 1 (2.15c) 

Summing both sides of equation 2.15c over L and rearranging terms yields 

Z2 = L-Z] (2.16) 

The maximum value of either Zlk or Z2k is 1 and either Z1 or Z2 is L. Herein lies the 

motivation for the use of the self-normalized receiver. If the jammer decides on a strategy of 

pulsing on an intermittent basis (p « 1), the instantaneous power (proportional to 1/p) will be 

large allowing that jammed reception to possibly dominate the decision variable at the output of 

the diversity combiner. Giving each diversity reception a weight of no more than 1 out of L 

effectively limits the capability of any single reception from dominating the receiver. 

The optimum decision logic at the output of the combiners according to the Bayes criteria 

is to choose the larger of the two branches. The probability of bit error as a function of the diversity 

L is then 

Pb(L)=Pr(Z1<Z2|0,I;.;L) (2.17) 

Substituting equation 2.16 into 2.17 yields 

Pb(L)=Pr(Z1<L/2|0,I7;L) (2.18) 

Implicit in this statement is that each of the L diversity bits may be either case lh I2 or I3 

bits as previously defined. Since this set of events is complete, L = ij + i2 + i3, where ih i2 and i3 

represent the number of case I1( I2 or I3 bits respectively. L is therefore a function of ilt i2 and i3 

and equation 2.18 is explicitly written as 

Pb(L,i!,i2) = Pr(Zj < L/2|0, Iy;L, iv i2) (2.19) 

where i3 has been deliberately excluded since it is just a function of L, ij and i2. 

The derivation of the density function of the random variable Zlk is now described. If an 

auxiliary random variable W = Vlk + V2!c is defined, then the following relationships may also 

be written: 

16 
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Zik — h» Vu 

y. _i i_ M 
r _, - 

Vik _ W 0 ■Z« 

y™. rW 1 [w_ 

(2.21a) 

(2.21b) 

The joint density function for Zlk and W is 

fzw wbw W)  = fvlk, vjvlk = wZlk> v2k = w( 1 - *«) )   J(ZW W) (2-22> 

where J(Zlk, W) is the Jacobian of the transformation. Substituting equations 2.12 and 2.13 in 

equation 2.22 gives 

/zu,w(zi*'wl<Uy) = 
w 

A    2     2 
1J *•) 

exp 
w(l-zu)^j     (   wzu + 4a2\ (^a,/^^ 

2a, 
exp 

2a 
i,     y 

x 

'h    ' %    J 

u(wzlk)u(w(l-zlk)) (2.23) 

Since 0 < w < °° and 0 < ^ ^ < 1, the arguments of the unit step functions in equation 2.23 are both 

non-negative quantities and may be replaced by zlk and w respectively. 

The marginal density for Zlk is then given by 

/zu(*u|°> I;) = jfz;t,w(zww\0>Ij*dw 

The explicit form of equation 2.24 is derived in Appendix A and has the form 

(2.24) 

/z14(*l*|0, Iy) = 
r[((y + i)rL)3 + 2((Y + i)rL)2(i+(i-zu)) + 4(Y + i)rL(i-zu)] 

2. N [2yzlfc((Y+l)rLn 

[(Y+l)rL + 2(l-zljfc)]- 
x exp - 

[(Y + l)rL + 2(l-zlt)] 

2yd-zlk) 
(Y+l)rL + 2(l-zu) feu) 

+ 

(2.25) 
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2 
where    y = —    is   the   ratio   of   direct   signal   power   to   diffuse   signal   power, 

2°2 

rL = 
/E v1    fE V1    /E \ 
|_Jr I   + —        f— I is the average signal energy to thermal noise density ratio and 

2 
is the average signal energy-to-interference noise power ratio (SIR) for case lj,j = 1,2,3- The 

SIR is equal to SIR = -^, SIR = -^, SIR = °°, for cases lh I2, and I3 respectively. 

The L diversity receptions are modeled as independent events. The conditional density for 

Zj may thus be obtained by convolution of the L conditional probability density functions of Zlk. 

This may be done equivalently with greater numerical efficiency in the Laplace domain, the 

expression for which is 

fZi(Zl\0,1;-;L, ilf i2) = L'^MfzJz^O, l,))]1 x [L(fZn(zlk\0, l2))]hx 

[MfzJz^O,!^-^) (2.26) 

where L and L~ denote the forward and inverse Laplace transforms. Since each of the L 

diversity receptions are modeled as independent events, the probability distribution for (L, ih i2) 

is derived from a multinomial distribution and is given by 

^■■'•'^i.ML-i.-i^'^'-P'-^ <2'27) 

The density function for Zx conditioned on bit 0 being sent may be obtained by averaging the 

conditional density for Zx in equation 2.26 over the probability distribution in equation 2.27. The 

expression is 

L   L-i2 

fzS*i\<»=  1 Y fzMA^'h'hW^h'h) (2-28) 
i2 = Oi, = o 

Finally the expression for probability of bit error follows from equation 2.19 and is 
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Pb=J0     /z.fellO)*! 

This last expression must be evaluated numerically. 

(2.29) 

E.     NUMERICAL RESULTS 

The probability of bit error, Pb as a function of y with no pulse noise jamming, a signal 

energy to thermal noise density ratio of Eb/N0 = 15 dB, and with diversity as a parameter is shown 

in Figure 2.6. 

Figure 2.6: Probability of bit error as a function of y with no pulse noise jamming, Eb/N0 = 15 dB 
and with diversity as a parameter. 

For Y > 100, noncoherent combining losses dominate the performance. Noncoherent combining 

loss is defined to be the additional amount of signal-to-noise ratio required by a diversity system 

19 



to attain the same level of performance as a system with no diversity. This type of loss is prevalent 

in the Gaussian channel where there is no signal fading. Noncoherent combining losses increase 

for increasing levels of diversity and are inversely proportional to the signal-to-noise ratio [5]. For 

y < 100, gains against signal fading are achieved as diversity order is increased. For y < 1, 

receiver performance is relatively unchanged for each diversity order as the ratio of direct to 

diffuse signal power approaches the Rayleigh limit (y = 0). In this dissertation, the performance 

for fading parameters which are common to the mobile radio channel, typically 0 < y < 5, are 

investigated. 

In the following analysis, receiver worst case performance is determined. Worst case 

performance represents a composite performance by obtaining the value of the jamming fraction 

p that produced the highest probability of bit error as a function of the signal energy to interference 

noise density ratio, EJ/NI. Worst case performance implies that the jammer can determine the 

current value of Eb/Nj and reallocate the resources in an adaptive fashion. Worst case performance 

was. determined by numerical search since no analytical solution could be produced. In 

determining worst case performance, a large range of combinations of case Ij and I2 events were 

considered. There were two scenarios which produced identical worst case performance results for 

any particular value of Eb/Nj. They are 

p2 = 0,p = ^ (2.30) 

p1=0,p = p2 (2.31) 

where the non-zero values of P! and p2 are equal. A simple illustration would best explain this 

result. Figure 2.7 plots the instantaneous jammer power levels (normalized to unity) as a function 

of time for the worst case scenarios described in equations 2.30 and 2.31 (case I and case II shown). 

It is seen that although the values of p will be different in the two scenarios, the jammer noise 

variances as previously defined will be the same over any 2-bit interval. Equation 2.14 may be 

rewritten as 

p = p2(1+i) (2-32) 
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where  ß = p!/p2- It is evident that ß = °°  corresponds to equation 2.30 while ß = 0 

corresponds to equation 2.31. It is also of interest to determine for a fixed p, the worst case ß. 

Figure 2.8 shows the performance curves for the probability of bit error as a function of Eb/Nj with 

Eb/N0 = 15 dB, a diversity of L = 4, y = 0 and p = 0.05 with ß as a parameter. Of the curves 

shown, the case of ß = °° produced the worst performance over the entire range of Eb/Nj. The 

performance difference between the two extreme cases (ß = 0 and ß = °o) is significant for Eb/ 

Nj below 10 dB. A similar result was observed for Eb/N0 = 15 dB, a diversity of L = 4, y = 0 and 

p = 0.5, shown in Figure 2.9. 

Instantaneous Jammer Power 
(normalized to unity) 

i 

1 

\ CASE I 

• • • • • • • • 
^ 

i 
1 r         2 ,T time 

■i k CASE II 

OS • • • • • • • • 
-^ 

1 r         2 ,T time 

Figure 2.7: Schematic representation of worst case jamming scenarios with instantaneous jammer 
power (normalized to unity) plotted as a function of time. 

These experiments were repeated for moderate fading (y = 5) for the same values of E^J 

N0, diversity, and p. These results are shown in Figures 2.10 and 2.11. Similar performance trends 

are observed for these cases. These results suggest that when the jammer's peak power is fixed and 

where strong or moderate fading occur, the optimum jamming strategy (from the jammer's point 

of view) is to jam isolated bits rather than adjacent bits, especially for low Eb/Nj. Figures 2.12 and 

2.13 show the performance curves with EJ/NQ = 15 dB, a diversity of L = 4, y = 1000 (a very 

strong direct signal) and p = 0.05,0.5 respectively. Although a very strong signal may not be a 

realistic scenario for the mobile radio channel, it is shown here for completeness. In each case, it 
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is seen that there is a distinct crossover in the performance curves for ß = 0 and ß = °°. In the 

case of the former, it occurs at about E^ = 17 dB and in the case of the latter at Et/Nj = 9 dB. 

Such curves are also beneficial because if the jammer cannot adapt its strategy and has a fixed p, 

it tells the jammer which of the two jamming strategies produces worse performance for a 

particular fading condition. 

Figure 2.8: Performance of self-normalized receiver for EJ/NQ = 15 dB, a diversity of L = 4, y = 0 
and p = 0.05 with ß as a parameter. 

22 



Figure 2.9: Performance of self-normalized receiver for Eb/N0= 15 dB, a diversity ofL = 4, y = 0 
and p = 0.5 with ß as a parameter. 

L=4 7==5 p=0.05 

-©       p=o 
-*        ß=0.5 
-+        ß=1 
-o        ß=2 

15 20 

Figure 2.10: Performance of self-normalized receiver for E^/N0 = 15 dB, a diversity of L = 4, 
Y = 5 and p = 0.05 with ß as a parameter. 
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Figure 2.11: Performance of self-normalized receiver for Eb/N0 = 15 dB, a diversity of L = 4, 
Y = 5 and p = 0.5 with ß as a parameter. 

0-3 < L 0 0 0 0 0 o 

L=4 7=1000 p=0.05 p=o 
P=0.5 
ß=1 
ß=2 
ß=oo 

Figure 2.12: Performance of self-normalized receiver for Eb/N0 = 15 dB, a diversity of L = 4, 
y = 1000 and p = 0.05 with ß as a parameter. 
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•y=1000 p=0.5 
ß=0 

-*        ß=0.5 
-+        ß=1 
-o        ß=2 
-0        ß=~ 

Figure 2.13: Performance of self-normalized receiver for Eb/N0 = 15 dB, a diversity of L = 4, 
y = 1000 and p = 0.5 with ß as a parameter. 

The performance of the self-normalized receiver under the conditions of worst case 

jamming as a function of the parameter p are now analyzed. The values of p corresponding to 

equation 2.31 (ß = 0) have been arbitrarily selected since both jamming scenarios result in the 

same performance. Performance curves of the self-normalized receiver for diversity orders L = 

1,3,4 and jammer fractions p = 0.01,0.1,0.25,1, Eb/N0 = 15 dB and y = 0 are shown in Figures 

2.14-2.16. For either case of diversity, it is seen that the self-normalized receiver has completely 

negated the effects of pulse noise jamming since the worst case performance curve coincides with 

the continuous jamming curve (p = 1). A comparison of worst case performance curves for 

diversities of order 1 through 4 is given in Figure 2.17. It can be seen from that figure that there are 

significant gains achieved against signal fading for Eb/Nj greater than approximately 15 dB. Below 

Eb/Nj=10 dB, noncoherent combining losses become significant. For error probabilities on the 

order shown, some sort of error correction coding would be necessary to ensure reliable 

communications. 

Performance curves of the self-normalized receiver for diversity orders L = 1,3,4 and 

jammer fractions p = 0.01,0.1,0.25,1, Eb/N0=15 dB and y = 5 are shown in Figures 2.18-2.20. 
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For a diversity of order L = 1, it is seen that pulse noise jamming results in a significant 

performance reduction for EJ/NJ in the range of approximately 10-20 dB. Notice also for this curve 

that the optimum value of p decreases as Efc/Nj increases. As the diversity is increased to L = 4 

however, the self-normalized receiver virtually eliminates the effectiveness of the pulse noise 

jammer. A comparison of worst case performance curves for diversities of order 1 through 4 is 

shown in Figure 2.21. Significant gains are again achieved above Et/Nj = 15 dB while noncoherent 

combining losses become a factor below Eb/Nj = 10 dB. 

L=1 7=0 

<irtrtrtrtrirtrtftA/>A   ft  0  Q  Q <> 

worst case 
p=1 
p=0.25 
p=0.1 
p=0.01 

15 20 

Figure 2.14: Performance of self-normalized receiver for pulse jamming fractions p = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 1, E^Q = 15 dB and y = 0. 
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* »       p=1 

-+        p=0.25 
-a       p=0.1 
-0       p=0.01 

10 

Figure 2.15: Performance of self-normalized receiver for pulse jamming fractionsp = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 3, Eb/N0 = 15 dB and y = 0. 

10 

10" 

ooooooooooooooooooooooo^ 

worst case 
p=1 
p=0.25 
p=0.1 
p=0.01 

10 15 20 25 
Eb/N, (dB) 

30 35 40 

Figure 2.16: Performance of self-normalized receiver for pulse jamming fractions p = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 4, Eb/N0 = 15 dB and y = 0. 

27 



y= 0 
■» L=1 
+ L=2 
Q L=3 
O L=4 

»»•»»»»«»»»ttu 

+   ' Ill 

OOOOdODDOl ] 

-ooooooooo <> 

10 20 

Figure 2.17: Worst case performance of self-normalized receiver in presence of pulse noise 
interference for diversity orders L = 1,2,3,4, EJ/NQ = 15 dB and y = 0. 

Figure 2.18: Performance of self-normalized receiver for pulse jamming fractions p = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 1, Et/No = 15 dB and y = 5. 
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Figure 2.19: Performance of self-normalized receiver for pulse jamming fractions p = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 3, Ef/No = 15 dB and y = 5. 

Eb/N0=1SdB L=4 Y=5 -o worst case 
-* p=1 
-+ p=0.25 
-a p=0.1 

<■ OOOOOOOOOOOOOQoo^ 

25 

Figure 2.20: Performance of self -normalized receiver for pulse jamming fractions p = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 4, E^/NQ = 15 dB and y = 5. 
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Figure 2.21: Worst case performance of self-normalized receiver in presence of pulse noise 
interference for diversity orders L = 1,2,3,4, E^Q = 15 dB and y = 5. 

Another indicator of the effectiveness of the self-normalized receiver is that for increasing 

diversity order and fixed value of E^/N^ the optimum value of p increases. This result is seen in 

Figure 2.22 where the optimum value of p is plotted as a function of diversity order with Eb/N0 = 

15 dB, Y = 5 and Et/Nj as a parameter. The increasing value of p for increasing diversity order 

at a given Eb/Nj is an indicator that the self-normalized receiver has forced the jammer to adopt a 

more continuous form of jamming. It is observed that pulse noise jamming is most effective at 

higher values of Eb/Nj where higher levels of diversity are required to render the pulse noise 

jammer ineffective. An intuitive way to explain why pulse noise jamming is more effective at 

higher values of E^/N! is to compare its effects to that of a fading channel. It has been observed 

that as the average jammer noise power decreases (or Eb/Nj increases), the most efficient use of 

this power is to jam in a less frequent fashion (smaller p) with stronger bursts of energy 

(instantaneous jammer power - 1 /p). In this way, some bits experience very low signal-to-noise 

ratio while others experience relatively very high signal-to-noise ratio. This is analogous to a 

fading channel which produces the same type of fluctuations in signal-to-noise ratio which is very 

deleterious to the effective performance of a digital communications link. 
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Figures 2.23 and 2.24 shows the optimum value of p as a function of y with diversity order 

as a parameter and with Eb/N0 = 15 dB for Eb/Nj equal to 20 dB and 30 dB respectively. It is 

observed that the overall trend results in the optimum value of p decreases for increasing y. From 

these plots, it is seen that there appears to be a lower limit as to the effectiveness of pulse noise 

jamming. For example, for a diversity order of L = 4, pulse noise jamming is no longer effective 

below y = 2. For y greater than 3, higher order diversities would be required to render the pulse 

noise jammer completely ineffective. It is therefore concluded that pulse noise jamming 

effectiveness increases for increasing y. 
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Figure 2.22: Optimum value of p as a function of diversity order with Eb/N0 = 15 dB, y = 5 and 
Et/Ni as a parameter. 
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Figure 2.23: Optimum value of p as a function of y with diversity order as a parameter for Eb/N0 

= 15dBandEb/NI = 20dB. 
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Figure 2.24: Optimum value of p as a function of y with diversity order as a parameter for E^/No 
= 15dBandEb/NT = 30dB. 
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F.     CHAPTER CONCLUSIONS 

The performance of a DS-DPSK spread spectrum system with self-normalized receiver 

over a Rician frequency nonselective, slowly fading channel in the presence of pulsed noise 

interference and AWGN has been considered. The receiver employs L-fold time diversity and soft 

decision equal gain combining. A multinomial probability distribution was used to characterize the 

distribution of pulsed noise interference events. The events included the possibility that either 1,2 

consecutive or none of the signal bits were jammed. A analytical solution to the probability of bit 

error was not available. In the numerical analysis, for fixed values of the jamming fraction p, worst 

case performance was determined as a function of the signal energy-to-interference noise density 

ratio, Eb/Nj and ß, the ratio of fraction of 1-bit jammed events to 2-bit jammed events. It was seen 

for severe and moderate fading, the best strategy for the jammer is to jam alternating bits rather 

than adjacent bits. The worst case performance of the self-normalized receiver as a function of the 

parameter p under conditions of severe and moderate fading was analyzed. It was determined that 

the self-normalized receiver was effective in mitigating the effects of pulse noise jamming for both 

fading conditions. For the moderate fading condition, the optimum value of p to produce worst 

case performance was observed as a function of diversity with Eb/Nj as a parameter. It was 

determined that pulse noise jamming is most effective at higher values of Eb/Nj and that increasing 

the diversity order forces the jammer to a more continuous form of jamming. The optimum value 

of p to produce worst case performance was observed as a function of y with diversity as a 

parameter. It was concluded that pulse noise jamming effectiveness increased for increasing y and 

decreased for increasing diversity order. This was observed for values of y between 0 and 10. 
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III. DS-DPSK WITH NOISE-NORMALIZATION AND L- 
FOLD DIVERSITY IN A FADING CHANNEL 

In this chapter, the performance of a noise-normalized DS-DPSK spread spectrum system 

over a Rician frequency-nonselective, slowly fading channel in the presence of pulsed noise 

interference and AWGN is considered. Where the self-normalized receiver normalizes the detector 

outputs by a combination of signal and noise, the noise-normalized receiver normalizes by a factor 

equal to the noise power which includes both AWGN and the pulsed noise interference. In this 

sense, the noise-normalized receiver is an idealization of the self-normalized receiver. The noise- 

normalized receiver assumes accurate measurement of the noise present at the receiver whereas the 

self-normalized receiver assumes no knowledge of the noise power. One may view the noise- 

normalized receiver as a limiting case of ideal performance of the self-normalized receiver. The 

self-normalized receiver however would be much simpler to implement in practice. The same 

jammer model used in the analysis for the self-normalized receiver is assumed here. Therefore the 

inputs to the noise-normalized receiver are identical to that of the self-normalized receiver. A block 

diagram of the noise-normalized receiver is shown in Figure 3.1. 

Ik 

r(t) Noise 
Measurement 

Ik 

2 

(•)' 

Figure 3.1: Noise normalized receiver structure. 
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Here r(t) is the received signal and a] for; = 1,2,3 is the total conditional noise variance as 

before. The equations for the determination of the probability of bit error are now derived. 

A.    BIT ERROR PROBABILITY 

Since the inputs Vlk and V2k to the noise-normalized receiver are identical to the inputs 

of the self-normalized receiver, the probability density functions of these statistics assuming a bit 

0 is sent, are respectively 

1 ( \ 

/vu(vi*|o,iy) = -rexP " rr(vi* + 4a } ro 
2a 

and 

2a, 

1 

^*Fü \ 
K(VU) 

»1.-  > 

(3.1) 

2a0 

(     O u(vlk) 2 r^2k) 
2a2.; 

(3-2) 

The conditional density for the random variable Z{ can be expressed from equation 2.26 as 

fzfap.Ij-L.i^) = L-\[L(f2^0,10 *S]x[£(/Zu(zlit|0,I2) ®l2)]x 

iMfzu(zik\0-h) 
>(L-ii-i2) 

)]) (3.3) 

where    <S> i • represents i ■ fold self-convolution. The density function for the random variable 

Zik = Vik/<s) is 

(3.4) fzJtuP'lj) = fvj*ik= ^ 0,lj) J(Zlk) 

where/(Zlfe) = aj is the Jacobian of the transformation. By substituting equation 3.1, the density 

function for the random variable Zlk is found to be 

( C) f 1    / 2.2, 
(. "r [2a^uo5 

/ 

2^ 

V M, 

u(zlk)       (3.5) 

) 
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2 
since w(zi;fc) = u(zlko •). The density function for Z2jk may be determined from equation 3.5 by 

2 2 
setting a = 0, Zlk = Z2k and recalling that c2. = a; • The result is 

1        (    z2k\ 
fzjz2k\0,lj) = -exp(- YJw(z2jfc) (3.6) 

Note that the density function for the non-signal branch is not a function of the signal or the noise. 

The Laplace transform of the density function for Zlk is shown to be (Appendix B, section B.l), 

FZij(,|0,I,) = 

2 

2o, 
r     ~Aexp 
f      aj \ 
s + —4 

(    2a2^ exp 
v     <*\,J 

2   2 
a Gj 

f      J-\ 
s + 

GJ 
(3.7) 

The expression for fz (^ljfc|0,1)     ' is then given as 

/zu(*u|O,I,0 •i' = X"I([FZl^|0,I;)]iO 

which is shown to be (Appendix B, section B.2) 

f    (     ini^ 9i* - (     (T+1)rL     ^     r   4yiJ. + (y+l)rLzlfc 
Jz^u^'h)        - U(2 + (Y+l)rL)JeXpr    2(2 + (Y+l)rL) 

(3.8) 

i,-l 

zi*Cr+i)rLy 2 ;
T      /4Y(y+i)rLzlfci; 

4yi; 

a2 /^iA where y = —2 and TL = ^-J 

V1 u(zljfc) (3-9) 

ETvi    ("ELV
1 

2 

(2 + (y+l)rLr 

. Assuming the same jammer model as before, the 

density function for the random variable Zx is 

L   L-i2 

/Zl(*i|0)=   E   S/z1(^i|0,I/^ii,i2)Pr(Ui1,i2) 
i2 = Oii = 0 

where 

-r^      /-r • •      •, L! il       i,.. x(L-i,-i2) 

(3.10) 

(3.11) 
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is the multinomial probability distribution. Equation 3.10 must be evaluated numerically. The 

density function for the random variable Z2 may be written as 

fz2(^) = fzjz2k\0,lj) ®L (3.12) 

since Z2 is independent of the three jamming events. Equation 3.12 is a special case of equation 

B.24 of Appendix B and is given as 

exP " JM 

2     ' 2L(L-1)! 

which is recognizable as a Chi-squared probability density function with 2L degrees of freedom 

[4, 5]. The probability of bit error is given by 

Pb = Pr(Z1<Z2|0) (3.14) 

Expressing this in terms of the density functions for the random variables Zx and Z2 yields 

00Z2 

Pb =  jJ*/Zl,Z2(^2|0)^2 <3-15) 
00 

The joint density function for the random variables Zx and Z2 in equation 3.15 is the product of 

the two marginal density functions /^(z^O) and fz2(z2\0) since Z1 and Z2 are independent 

random variables. Equation 3.15 must also be evaluated numerically. 

B.     NUMERICAL RESULTS 

The probability of bit error, Pb as a function of y with no pulse noise jamming, a bit energy 

to thermal noise density ratio of E^/NQ = 15 dB, and with diversity as a parameter is shown in 

Figure 3.2. If the performance of the noise-normalized receiver is compared to that of the self- 

normalized receiver (Figure 2.6) for a diversity of L = 4 and severe Rayleigh fading (approximately 

Y < 3), it is seen that there is almost an order of magnitude better performance in probability of bit 

error for the noise-normalized receiver than the self-normalized receiver. 

For the noise-normalized receiver, worst case performance was produced under the 

conditions outlined in equations 2.30 and 2.31; this was also the case for the self-normalized 

receiver. 
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Figure 3.2: Probability of bit error for the noise-normalized receiver as a function of y with no 
pulse noise jamming, Eb/N0 = 15 dB and with diversity as a parameter. 
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Figure 3.3: Performance of noise-normalized receiver for E^Q = 15 dB, a diversity of L = 4, 
y = 0 and p = 0.05 with ß as a parameter. 
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Figure 3.3 shows the performance curves for the probability of bit error as a function of Eb/Nj with 

Eb/N0 = 15 dB, a diversity of L = 4, y = 0 and p = 0.05 with ß as a parameter. It is seen that 

the case of ß = °° produces the worst performance over the entire range of Eb/Nj. Below 

approximately 15 dB, there is marked jammer advantage by jamming individual bits (case ß = °°) 

compared to jamming consecutive bits (case ß = 0). Figure 3.4 shows the performance curves 

for the probability of bit error as a function of Eb/Nj with Eb/N0 = 15 dB, a diversity of L = 4, 

Y = 0 and p = 0.5 with ß as a parameter. Below approximately Eb/Nj = 15 db, a significant 

performance degradation for all cases of ß is observed. This is much more than the degradation 

observed in the case of p = 0.05. Similar results were observed in the case of moderate signal 

fading (y = 5), shown in Figures 3.5 and 3.6 for p = 0.05,0.5 respectively. These results are 

similar to what was observed for the self-normalized receiver. Figures 3.7 and 3.8 show the 

performance curves for the probability of bit error as a function of E^! with Eb/N0 = 15 dB, a 

diversity of L = 4, y = 1000 (a very strong direct signal), with ß as a parameter and 

p = 0.05,0.5 respectively. As observed with the self-normalized receiver, there are distinct 

crossover points where the worst performance curve shifts from the case of ß = °° to ß = 0 . 

This occurs at approximately Eb/Nl = 20 dB for p = 0.05 and Eb/Nj = 10 dB for p = 0.5 . 
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Figure 3.4: Performance of noise-normalized receiver for Ej/No = 15 dB, a diversity of L = 4, 
Y = 0 and p = 0.5 with ß as a parameter. 
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Figure 3.5: Performance of noise-normalized receiver for Eb/N0 = 15 dB, a diversity of L = 4, 
y = 5 and p = 0.05 with ß as a parameter. 
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Figure 3.6: Performance of noise-normalized receiver for Efc/No = 15 dB, a diversity of L = 4, 
Y = 5 and p = 0.5 with ß as a parameter. 
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Figure 3.7: Performance of noise-normalized receiver for Eb/N0 = 15 dB, a diversity of L = 4, 
Y = 1000 and p = 0.05 with ß as a parameter. 
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Figure 3.8: Performance of noise-normalized receiver for EJ/NQ 
= 15 °®'a diversity of L = 4, 

y = 1000 and p = 0.5 with ß as a parameter. 

The performance of the noise-normalized receiver under the conditions of worst case 

jamming is now analyzed. The values of p corresponding to equation 2.31 have been selected to 

be consistent with the values of p selected for the self-normalized receiver. Performance curves of 

the noise-normalized receiver for diversity orders L = 1,3,4 and jammer fractions p = 0.01, 0.1, 

0.25,1 and worst case, Eb/N0 = 15 dB and y = 0 are shown in Figures 3.9-3.11. As in the case of 

the self-normalized receiver, it is seen for either diversity value that the noise-normalized receiver 

has completely negated the effects of pulse noise jamming. That is, the worst case performance 

curve coincides with the continuous jamming curve (p = 1). By comparing the performance of 

the noise-normalized receiver with no diversity (L = 1) with the self-normalized receiver (Figure 

2.14), it is seen that their performances are identical. This is not surprising since the SNR at the 

outputs of both receivers are the same. A comparison of worst case performance curves for 

diversities of order 1 through 4 is shown in Figure 3.12. It is seen that a diversity of order L = 2 is 

sufficient to dramatically improve receiver performance, Below Eb/Nj = 5 dB, noncoherent 

combining losses occur but are rather small. Figure 3.13 shows a worst case performance 
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comparison between the noise-normalized and self-normalized receivers in the presence of pulse 

noise interference for diversity orders L = 1,4, Eb/N0 = 15 dB and y = 0. In shifting from no 

diversity to a diversity of order L = 4, it is observed that the noise-normalized receiver provides 

superior performance to the self-normalized receiver. There is a significant performance difference 

for Eb/Nj greater than approximately 10 dB. Below this point, the performance difference is small. 

Noncoherent combining losses occur over a smaller range (Et/Nj < 5 dB) with smaller magnitude 

for the noise-normalized receiver compared to the self-normalized receiver (Eb/Nj < lOdB). 

Performance curves of the noise-normalized receiver for diversity orders L = 1,3,4 and 

jammer fractions p = 0.01, 0.1, 0.25, 1 and worst case, Eb/N0 = 15 dB and y = 5 are shown in 

Figures 3.14 - 3.16. With no diversity, it is seen that pulse noise jamming results in a significant 

performance reduction in the range 10 dB < Eb/Nj < 25 dB. As the diversity order is increased to 

L = 4 however, the noise-normalized receiver has virtually eliminated the effectiveness of the pulse 

noise jammer. A comparison of worst case performance curves for diversities of order 1 through 4 

is shown in Figure 3.17. A diversity of order L = 2 is seen to be sufficient to achieve more than an 

order of magnitude performance improvement for E^fNi > 20 dB. Non-coherent combining losses, 

although still rather small, are noticed for EJ/NI < 7 dB and are larger in magnitude than for the 

severe fading case (y = 0). Figure 3.18 shows a performance comparison between the noise- 

normalized and self-normalized receivers in the presence of pulse noise interference for diversity 

orders L = 1,4, Eb/N0 = 15 dB and y = 5. The noise-normalized receiver once again demonstrates 

superior performance compared to the self-normalized receiver. At approximately BbfNi > 30 dB, 

there is an order of magnitude improved performance for the noise-normalized receiver when 

compared to the self-normalized receiver. The difference in receiver performance over this range 

of signal-to-interference ratios is more than what was observed for the severe fading case. 

Noncoherent combining losses are more noticeable for both receivers than was the case for severe 

fading. 
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Figure 3.9: Performance of noise-normalized receiver for pulse jamming fractions p = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 1, Ej/No = 15 dB and y = 0. 
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Figure 3.10: Performance of noise-normalized receiver for pulse jamming fractions p = 1,0.25, 
0.1,0.01 and worst case for diversity order L = 3, Eb/N0 = 15 dB and y = 0. 
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Figure 3.11: Performance of noise-normalized receiver for pulse jamming fractions p = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 4, Eb/N0 = 15 dB and y = 0. 
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Figure 3.12: Worst case performance of noise-normalized receiver in presence of pulse noise 
interference for diversity orders L = 1,2,3,4, Efc/No = 15 dB and y = 0. 
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Figure 3.13: Worst case performance comparison between noise-normalized and self-normalized 
receivers in presence of pulse noise interference for diversity orders L = 1,4, Eb/N0 = 15 dB and y = 0. 

Figure 3.14: Performance of noise-normalized receiverfor pulse jamming fractions p = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 1, Eb/N0 = 15 dB and y = 5. 
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Figure 3.15: Performance of noise-normalized receiver for pulse jamming fractions p = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 3, Eb/N0 = 15 dB and y = 5. 
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Figure 3.16: Performance of noise-normalized receiver for pulse jamming fractions p = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 4, E^/N0 = 15 dB and y = 5. 
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Figure 3.17: Worst case performance of noise-normalized receiver in presence of pulse noise 
interference for diversity orders L = 1,2,3,4, Eb/N0 = 15 dB and y = 5. 
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Figure 3.18: Worst case performance comparison between noise-normalized and self-normalized 
receivers in presence of pulse noise interference for diversity orders L = 1,4, E^/N0 = 15 dB and y = 5. 
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Figure 3.19 shows the optimum value of p as a function of diversity order with a Eb/N0 = 

15 dB, Y = 5 and Eb/Nj as a parameter. As in the case for the self-normalized receiver, it is seen 

that the optimum value of p decreases as Eb/Nj increases and increases for increasing diversity 

order for a given Eb/Nr Comparing to Figure 2.22, it is observed that for a given Eb/N! and 

diversity order (L > 2), the value of p is higher for the noise-normalized receiver than the self- 

normalized receiver. This indicates that the noise-normalized receiver has forced the jammer to a 

more continuous jamming strategy compared to the self normalized receiver, making it a more 

effective countermeasure. 
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Figure 3.19: Optimum value of p as a function of diversity order with E^o = 15 dB, y 
Eb/Nj as a parameter. 

= 5 and 

Figures 3.20 and 3.34 shows the optimum value of p as a function of y with diversity order 

as a parameter and with Eb/N0 = 15 dB for E^ equal to 20 and 30 dB respectively. As was the 

case for the self-normalized receiver, it is observed that the optimum value of p decreases for 

increasing y. Comparing to the values of p in Figures 2.23 and 2.24, it is seen that over most of 

the range of y, p is higher for the noise-normalized receiver than the self-normalized 
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Figure 3.20: Optimum value of p as a function of y with diversity order as a parameter for Eb/N0 

= 15 dB and E^ = 20 dB. 

Figure 3.21: Optimum value of p as a function of y with diversity order as a parameter for Et/No 
= 15dBandEb/NT = 30dB. 
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receiver. This is another indicator that the noise-normalized receiver is more effective against pulse 

noise jamming than the self-normalized receiver. 

C.    PERFORMANCE OF DS-DPSK WITH NON-IDEAL NOISE NORMALIZATION 

While the system of Figure 3.1 is extremely effective in pulse noise mitigation as has been 

seen, it is as such not practically realizable. In this section, noise estimation errors are introduced 

and the performance of such a system is considered. A block diagram of the noise-normalized 

receiver with non-ideal noise normalization is depicted in Figure 3.22. The structure is seen to be 

the same as that of the noise-normalized receiver with ideal noise normalization with the exception 

0 1 
that the symbol a • represents an estimate of a;-, the true value of the measured noise. For the three 

interference cases Il512 and I3, <5j is given as 

A. 

2 2 T on + Oj,   case Ij 

^ = ic„2
+^,   casel2 <3>«> 

an, case I3 

Here it is assumed that the thermal noise can be measured accurately and that measurement errors 

are caused by the interference components only. It is further assumed that on average the 

2 
measurement errors for cases Ijand I2 will be the same. For this analysis, c ■ is modeled as a 

random variable and also as a fixed parameter. In the former case, no knowledge of the estimation 

error is assumed a priori and as such a • is modeled as a uniform random variable. As a fixed 

rt 

parameter, a • represents some fixed bias introduced by the measurement circuitry. In the next 

section, the probability of bit error of this system will be derived. This will be followed by 

numerical results in the following subsection. 
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Figure 3.22: Noise-normalized receiver with non-ideal noise normalization. 

1.   Bit Error Probability 

With Gj modeled as a random variable, the conditional density for the random variable Zl can 

be expressed from equation 3.3 as 

8 h\-i 
fz[*i\°- h 4L' h- h) = X_1([X[/Zu(zu|0, Il5 af)    l!J] x [X(/Zu(zljt|0f I2, 

K/z^i°'i3'^)0(L_11"l2))]) 

X 

(3.17) 

The density function for the random variable Zlk = Vlk/Gj follows directly from equation 3.5 

2 

fzlk{zlk\o,ij,<yfj = -^txV 
v    2CJ 

1/v 

— (zlkGj +4a ) 

>\ 

/ 

2\ 2a 

V        1J     J 

u{zAk) 

(3.18) 

The Laplace transform of the density function for Zlk is shown to be (Appendix B, section B.3) 
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FZU(,|0,I,,G;) 
( *2\ 

exp 
<    2oc2^ exp 

2of s + 
2 of 

■1/ 

2   2 a a • 

f 
5 + 

a7 

2o; 

(3.19) 

The expression for /z Uu|0, Iy-, CM        is then given as 

which is shown to be (Appendix B, section B.4) 

(3.20) 

2> 
/7~2/~2\/-. ,  nr\        / 

f(o-/o-)zlfc(Y+nrLy.2; 

4yiy 

(o;/op(T + i)rL 

2(2 + (y+l)rL) 
exp 

4yiy+ (o2/o2) (y + l)r^u
N 

2(2 + (Y+l)rL) 

L i,-i 
' l4(o-/o2)Y(Y+l)rLZui^ 

(2 + (Y + i)rL)2 
«(zu)      (3.21) 

From equation 3.10, the density function for the random variable Zx is 

L   L-i2 

/Zl(^i|0) =   X   X/z1(*i|°»I^ii^>Pr(L'ii'i2> (3.22) 

i2 = 0i, = o 

where 

/Zi(z1|0,I/,L,i1,i2)=    J  /z^lO.I^oJiUiLiaJ/^oJ) (3.23) 

oJ-6 

2N   . 
Pr(L, iv i2) is as defined in equation 3.11, /~2(o;) is the probability density function for the 

random variable o2 and 8 is the maximum deviation of the estimated noise power from the actual 

noise power. Modeled as a uniform random variable, oy- has mean oy- and variance 8 /3. 
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The conditional density for the random variable Z2 can be expressed from equation 3.17 by 

letting Zx -» Z2 and Zlk -> Z2k 

/Zi^2|0,i/J^i1,i2) = £-^L[f22k{z2t\o,ipcfj   ")]x[£(/Za(z2t|0,i2,öf)   *)] X 

(3.24) 

The density function for Z2k is now given as 

f 
<*jZ2k 

V        J ) 

u(z2k) (3.25) 

The expression for fz   z2k\0, I/> Gj *s derived from a Chi-squaredprobability density function 

with 2ij degrees of freedom [4, 5] and is given as 

Ä 1 ■ 
/    2 ,   2. ■> (c/ap exp 

/zJ*2*|<Uj^ 

(     ^    \ 

z2k 

■u(z2k) (3.26) 
2'(i,-l)! 

The density function for the random variable Z2 is derived from equations 3.22 and 3.23 by letting 

Z,->Z« 

L   L-i2 

/z2N0)=   X  £/z2(«2|0,Iya-,ii,i2)Pr(Uii,i2) 
i2 = 0i1=0 

(3.27) 

where 

2      o 
CT;+5 

/2a(z2|0,I^i1,i2)=    J  /z.^p.I/.Oy^ii.^)/^«?) (3-28) 

The probability of bit error may now be obtained directly through the numerical evaluation of equation 

2 2 
3.15. As a check for the analytical work here, substituting a■ - a- for the case of ideal noise- 
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normalization, equations 3.21 and 3.26 reduce to equations 3.9 and 3.13 which define the density 

functions for the random variables Z1 and Z2 under ideal noise-normalization. 

2.   Numerical Results 

For the noise-normalized receiver with non-ideal noise-normalization, worst case 

performance was produced under the conditions outlined in equations 2.30 and 2.31. The values of 

p corresponding to equation 2.31 have been selected to be consistent with the values of p selected 

for the other receivers. Worst case performance curves for the noise-normalized receiver with non- 

ideal noise-normalization for a diversity order of L = 4, E|/N0 = 15 dB, y = 0 and y = 5 are 

2 
shown in Figures 3.23 and 3.24 respectively. The uniform curve represents Cj modeled as a 

uniform random variable with mean c;- and maximum error deviation 8 = 0.5 Cj. The (-50%) 

curve represents the case where the noise is underestimated by 50% and the (+50%) curve 

represents the case where the noise is overestimated by 50%. Also shown are the cases of ideal 

noise-normalization and the self-normalized receiver. It is seen that for either case of fading, 

performance degrades the most in comparison to the ideal case when the noise is underestimated. 

A less severe degradation occurs when the noise is overestimated. For either case however, the 

overall amount of degradation is not extremely significant and the overall performances are clearly 

superior to the performance of the self-normalized receiver. For the case of Rayleigh fading, 

having little knowledge of the estimation error (uniform curve) provides almost no change in 

performance compared to the ideal case over the entire range of signal-to-interference ratio. For 

moderate fading, the performance difference increases only slightly. It is therefore concluded that 

if one is willing to accept a slight degradation in performance, relatively crude measurement 

techniques may be utilized. This makes the noise-normalized receiver a practical and effective 

receiver in pulse-jammed environments. Throughout the rest of the dissertation, however, receiver 

comparisons will be based under the assumption of ideal noise-normalization. 
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Figure 3.23: Worst case performance curves for the noise-normalized receiver with non-ideal 
noise-normalization for a diversity order L = 4, Eb/N0 = 15 dB and y = 0. 
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Figure 3.24: Worst case performance curves for the noise-normalized receiver with non-ideal 
noise-normalization for a diversity order L = 4, Eb/N0 = 15 dB and y = 5. 
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Before concluding this chapter, the performance of the linear receiver depicted in Figure 

3.25 is investigated. With the linear receiver, it is seen that there is no attempt to mitigate the effects 

of the pulse noise jammer. The linear, self-normalized and noise-normalized receivers are called 

equal gain combining receivers since each diversity reception is given equal weight in the 

V2k 

Vik 

Figure 3.25: Linear receiver structure. 

output decision statistic. The probability of bit error for the linear receiver is now derived and is 

followed by a performance comparison to the self-normalized and noise-normalized receivers. 

D.    PERFORMANCE COMPARISON OF SELF-NORMALIZED, NOISE 

NORMALIZED AND LINEAR RECEIVERS 

1.   Linear Receiver Bit Error Probability 

Referring to Figure 3.25, the probability density functions for the random variables Vlk 

and V2k given bit 0 is transmitted are given in equations 3.1 and 3.2 respectively. The conditional 

density for the random variable Vr can be expressed as 

/V!(v,|0,I;a-,ii,i2) = ^_i([^(/vu(vu|0,I,) *ll)]x[Mfvu(vik\0'h) ^^x 

[£(/vu(vlfe|0,I3) ^(L-il"i2))]) 0.29) 
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The Laplace transform of the density function for Vlk is shown to be (Appendix B, section B.5), 

f \ 

2 

*V14('I<U,) = 
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f 
2& s + 

1 ^ 
exp 

2alj 
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2a 
~~2 

exp 
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s + 
1 > 

V    v 2G
I/; 

(3.30) 

W 1- 
The expression for fv (vljfc|0,1)     J is given as 

/vu(vi*|0, lj) *i'=i)'1([FVll(J|0II;)]
ii) 

which is shown to be (Appendix B, section B.6) 

(3.31) 

/vlt(
viJfc|°» I?)     1; = — exP 

f   v1t + 4a 

2o, 

'i* \r vu ^ 

I; i,-l 
(2aJ^j 

\   ^i.   y 

v       2<yf. V4a2i,y 

m 
X 

"(vlfc) (3.32) 

The probability distribution of the random variable Vl conditioned on a bit 0 transmission is given 

by 

L   L-i2 

fvSvi\W=   S   S/v^VilOJ^iL^PrCUiLij) 
i2 = Oij = 0 

(3.33) 

where Pr(L, iv i2) is given in equation 3.11. Equation 3.33 must be evaluated numerically. 

The conditional density function for the random variable V2 is given as 

fyPtp.ljiL.i^iJ = L~1([UfvJv2k\0,l1)^
il)]x[L(fvJv2k\0,I2) ®i2)]x 

l£(fvjv2k\0,l3) 
>(L-i,-i2) 

)]) (3.34) 

where expression for fv (v2J0, I-)      ' is given as 

/^»[O, I,)      ' = —-T«P 
r v,^ 

(24)lj 
2ifc 

v   2a2yy 

'2* 
(iTrT)T"(v2,) (3.35) 
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which is recognizable as a Chi-squared probability density function with 2i;- degrees of freedom 

[4, 5]. The probability distribution of the random variable V2 conditioned on a bit 0 transmission 

is given as 

L   L-i2 

/va(v2|0).=   X   S/^IOJ/Ui^i^PrCL,^,^) (3.36) 
i2 = Oij = 0 

where Pr(L, iv i2) is given in equation 3.11. Equation 3.36 must also be evaluated numerically. 

The probability of bit error is given by 

Pb = pr(y1<y2|0) (3.37) 

Expressing this in terms of the density functions for the random variables Vl and V2 yields 

pb = Jj/v,,v2(vi,v2|0)JVv2 (3.38) 
0 0 

The joint density function for the random variables Zx and Z2 in equation 3.38 is the product of 

the two marginal density functions /^(v^O) and /y2(v2|0) since Vx and V2 are independent 

random variables. This last expression must also be evaluated numerically. 

2.   Performance Comparison between Self-Normalized, Noise-Normalized and 

Linear Receivers 

The probability of bit error as a function of y with no pulse noise jamming, a bit energy to 

thermal noise density ratio of Et/N0 = 15 dB and with diversity as a parameter is shown in Figure 

3.2. It is seen that the linear receiver performance is identical to that of the noise-normalized 

receiver. It is noted that the best achievable performance for either receiver for a diversity of order 

L = 4 is Pb = 3 x 10"3 for Y = 0 and Pb = 2 x 10~6 for y = 5. Worst case performance curves for 

the self-normalized, noise-normalized and linear receivers in the presence of pulse noise 

interference for diversity orders L = 1,4, Eb/N0 = 15 dB and y = 0,5 are shown in Figures 3.26 and 

3.27 respectively. For no diversity (L = 1), the performances are identical for all receivers. For y 

= 0, it is seen that the linear receiver performance is inferior to the noise-normalized receiver. The 

performance difference is most significant in the region 10 dB < Eb/Nj < 30 dB where there is 
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as much as a 10 dB advantage for the noise-normalized receiver. The noise-normalized receiver 

has virtually rendered the pulse noise jammer ineffective at approximately Eb/Nj = 25 dB as it 

_3 
begins to approach its asymptotic limit of Pb = 3 x 10 . The linear receiver does not begin to 

approach this limit until approximately E^/Nj = 40 dB. The linear receiver is seen to be inferior 

to the self-normalized receiver over the range of approximately 8 dB < Eb/Nj < 25 dB . The 

maximum performance difference over this range however is on the order of 3 dB, much less than 

that observed for the noise-normalized receiver. For Eb/Nj > 25 dB , the linear receiver actually 

performs better than the self-normalized receiver. It is thus concluded that in this region the pulse 

noise jammer is less effective since the self-normalized receiver has lost any advantage it had over 

the linear receiver. The fact that the linear receiver performs better in this region is probably due 

to the fact that it does not limit the signal amplitude in any way as does the self-normalized 

receiver. This gives better overall combative qualities against signal fading. 
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noise—normalized receiver, L=4 
linear receiver, L=4 

* 
' 
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Figure 3.26: Worst case performance comparison between self-normalized, noise-normalized and 
linear receivers in the presence of pulse noise interference for diversity orders L = 1,4, Eb/No = 15 
dB and y = 0. 

61 



For Y = 5, both noise-normalized and self-normalized receivers are superior to the linear 

receiver over the full range of signal-to-interference ratio. This difference is less notable for 

Eb/Nj < 10 dB but quite significant for larger values with the performance difference being as 

much as 20 dB for Pb = 5 x 10~5 for the self-normalized receiver and 25 dB for Pb = 5 x 10" for 

the noise-normalized receiver. The linear receiver is seen not to have even begun to approach its 

asymptotic performance limit of Pb = 2 x 10~6 at Eb/Nx = 40 dB. It is thus concluded that for 

moderate fading, the pulse noise jammer is extremely effective against the linear receiver at even 

very high signal-to-interference ratios. 

Figure 3.27: Worst case performance comparison between self-normalized, noise-normalized and 
linear receivers in the presence of pulse noise interference for diversity orders L = 1,4, Eb/N0 = 15 

dB and y = 5. 

E.     CHAPTER CONCLUSIONS 

The performance of a DS-DPSK spread spectrum system with noise-normalized receiver 

over a Rician frequency nonselective, slowly fading channel in the presence of pulsed noise 

interference and AWGN has been considered. The receiver employs L-fold time diversity and soft 
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decision equal gain combining. The same jammer model used for the self-normalized receiver 

analysis was employed here. As was concluded for the self-normalized receiver for severe and 

moderate fading, the best strategy for the jammer when p was fixed was to jam alternating bits 

rather than adjacent bits. The worst case performance of the noise-normalized receiver as a 

function of the parameter p under conditions of severe and moderate fading was analyzed. It was 

determined that the noise-normalized receiver was effective in mitigating the effects of pulse noise 

jamming for both fading conditions. For the moderate fading condition, the optimum value of p 

to produce worst case performance was obser/ed as a function of diversity with Eb/Nj as a 

parameter. It was determined that pulse noise jamming is most effective at higher values of Eb/Nj 

and that increasing the diversity order forces the jammer to a more continuous form of jamming. 

It was noticed that higher diversity orders than those considered would be required to render the 

pulse noise jammer ineffective for less severe fading conditions. This was observed for values of 

y between 0 and 10. The noise and self-normalized receivers were compared for their performance 

in conditions of severe and moderate fading. For severe fading, it was found that there was a 

marked difference in performance; the noise-normalized receiver is superior to the self-normalized 

over the full range of signal-to-interference ratio. For moderate fading, this difference grew for 

higher signal-to-interference ratios. Noncoherent combining losses were lesser in magnitude and 

occurred over a smaller range of signal-to-interference ratios for the noise-normalized receiver 

compared to the self-normalized receiver for both cases of severe and moderate fading. 

The performance of the noise-normalized receiver with non-ideal noise-normalization was 

analyzed. It was seen that if one is willing to accept a slight degradation in performance, relatively 

crude measurement techniques may be utilized. This makes the noise-normalized receiver a 

practical as well as effective receiver in pulse-jammed environments. The worst case performance 

of the noise-normalized and self-normalized receivers were compared to the linear receiver. It was 

determined that the performance of the noise-normalized receiver was superior to that of the linear 

receiver for severe and moderate fading. The superiority was quite significant in the case of 

moderate fading with performance differences as much as 25 dB observed. The performance of the 

self-normalized receiver was seen to perform better than the linear receiver for severe fading for a 

limited range of signal-to-interference ratios. The performance difference was significantly less 

than that observed for the noise-normalized receiver. For moderate fading, the self-normalized 
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receiver demonstrated superior performance to that of the linear receiver over the full range of 

signal-to-interference ratios considered. The performance difference was less than that observed 

for the noise-normalized receiver. 
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IV. DS-DPSK WITH FIRST ORDER POST-DETECTION 
SELECTION COMBINING IN A FADING CHANNEL 

In this chapter, the performance of DS-DPSK with first order post-detection selection 

combining (PDSC) in a Rician fading channel in the presence of pulsed noise interference and 

additive white Gaussian noise (AWGN) is considered. Consider the receiver structure of Figure 4.1 

where M attenuated and delayed replicas of the DS-DPSK transmitted signal, denoted rk(t), 

k=l,2,...M, are received over M antennas. It is assumed that the antennas are spaced sufficiently 

far apart such that the resolvable multipath components in the signal have significantly different 

propagation delays at the antennas, providing M independently fading replicas of the DS-DPSK 

signal. Usually a separation of at least 10 signal wavelengths is required between two antennas in 

order to obtain signals that fade independently. This type of diversity is termed spatial diversity. 

rAt) DS-DPSK 
RECEIVER #1 

rM) DS-DPSK 
RECEIVER #2 

rM (t) DS-DPSK 
RECEIVER #M 

Max(-) 

1=1,  signal branch 

1 = 2,  non-signal branch 

Figure 4.1: First order PDSC receiver. 
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With PDSC, the N largest outputs (N<M) are weighted equally and summed to produce the 

output decision variable Zx. The receiver of Figure 4.1 is a first order combiner since it sets N = 1 

(PDSC1). Equal gain combining (EGC) receivers, such as the self-normalized, noise-normalized 

and linear receivers, set N = M. It is assumed that the average received signal energy at the ft* 

antenna, denoted EM, is identical at each of the M antennas. The output of a PDSC1 receiver then 

represents (1/M)* of the total recoverable signal energy (EM = E^/M) while the output of an EGC 

receiver represents the total recoverable signal energy. 

Although PDSC receivers recover only a fraction of the total signal energy, they have 

several advantages over EGC receivers. First, PDSC receiver performance is path independent. To 

illustrate this, consider a scenario where one or more of the receive antennas are rendered 

inoperable. The corresponding receivers then contribute noise only to both the signal and non- 

signal branches. With EGC receivers, these noise branches contribute to the decision process 

where PDSC receivers would typically ignore these branches since they choose only the branches 

with the largest magnitudes. In such cases, the PDSC receiver would experience a more graceful 

performance degradation in comparison to the EGC receiver. Even with all antennas operable, the 

EGC receiver assumes that the spacing in between antennas is on the order of the delay between 

resolvable multipath components. Such may not be the case in reality since the terrain features of 

a particular geolocation dictate antenna spacing and the time delay between multipath arrivals may 

change over time. The result is that PDSC receivers suffer less deleterious effects due to 

noncoherent combining losses than do EGC receivers. In the case of N = 1, noncoherent combining 

losses do not exist at all. In addition to performance degradation due to noncoherent combining 

losses, EGC receiver complexity is path dependent since the number of receiver branches is 

assumed to be equal to the number of resolvable multipath components. The number of resolvable 

multipath components may vary with time and depends on geolocation. PDSC receiver complexity 

is the same regardless of time or location. 

For the analysis undertaken here, the receiver performance of Figure 4.1 (PDSC1) over a 

Rician fading channel in the presence of pulse noise interference and AWGN is considered. The 

same jammer model is assumed as before except that since the diversity is now spatial instead of 

time. Assuming each of the M antennas experience the same level of jammer energy at any given 
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point in time, the probability density function for the pulse noise interference now has the 

following form: 

case L 

Pr(Iy.) = < 

Pi» 

P2» 

Ll 

case L (4.1) 

case L [(I-P1-P2), 

The rest of this chapter is structured as follows. The PDSC1 receiver performance over a 

Rayleigh fading channel is first considered since it provides an analytical solution for the 

conditional probability of bit error. The performance over a Rician fading channel is then 

considered in the sequel. 

A.    PERFORMANCE ANALYSIS OF DS-DPSK WITH FIRST ORDER POST- 

DETECTION SELECTION COMBINING OVER A RAYLEIGH FADING CHANNEL 

1.   Bit Error Probability for Rayleigh Fading Channel 

The distribution for the random variable Zl are now considered. The probability density 

function for the random variable Zl can be determined from the following relation, 

Pr(z, < Zl <Zl + dz{) = fZlizl)dzl (4.2) 

Expanding in terms of Vlk, k = 1,2,....M gives 

M 

n 
i-2 

r M        1 Pr[Zl<Zx<Zl + dZl] = Pr^z,< Vn <zt + dzt) Pi Vu<z,J \j 

Pr 
M 

(z^V^zj + dzt) n vu<Zl 
1 = 1 

iV2 

M-l [1V1 — 1 -1 

(Zl<vM<Zl + dZl) n vu<Zlj 

(4.3) 

Since the random variables Vlk, k = 1,2,....M, are assumed independent and identically distributed 

(iid), equation 4.3 becomes 
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PrU/<Z/<^ + dz/) = M Pr 

which can be expressed as 

M 
(ztZV^zt + dzjnVuKZi 

i = 1 

M 

(4.4) 

Vriz^Z^Zt + dzt) = MfyJzddnHFyfa) (4.5) 
i = 1 

i*k 

where Fv (z,) is the cumulative distribution function for the random variable VH. The iid 
v li      * 

assumption further lets us simplify equation 4.5 to 

Pr(zz<Zz<zz + Jz;) = M/^(zz)^F(^_1)(zz) (4.6) 

Comparing with equation 4.2, the probability density function for the random variable Zl is 

(4.7) 

The general form for the probability density function of Zz for the Nth largest of M receiver outputs 

is 

M! 

fzfa) = Wvlk(zi)F{™~l)(zi) 

W = (N-DKM-N)!^^"1^^1-^^"^ (4.8) 

Equations of this form provide the N,A order statistic for the random variable Zz. A derivation of 

equation 4.8 may be found in [22]. 

The signal branch (/ = 1) conditional probability density function may be obtained for the 

case of Rayleigh fading by setting a = 0 and vn = zx in equation 3.1; the result is: 

1 
(     O 

/v,^i|0,I;) = —yexp  M(ZI) 
2a 

(4.9) 
V    2ai7 

The conditional cumulative density function for the signal branch is given as 

FVik(Zl\0,Ij) = jfVu(X\0,lj)dK (4.10) 
o 

Substituting equation 4.9 into 4.10 and carrying out the integration yields 
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FvlS
zi\°'1ß = 1_exP 

( 7      \ 

\     2chy 
(4.11) 

Substituting equations 4.9 and 4.11 into equation 4.7 produces the conditional probability density 

function for the random variable Zx, 

M-l 
M 

fzMi\°>lj) = — exP 
2a, 

(   V 
v   2ai.y 

1 - exp 
(     zx\ 

v   2<Ji/ 
"(*i) (4-12) 

The conditional probability density function for the non-signal branch (Z = 2) may be determined 

2 2 
from equation 4.12 by setting Cj   = c2 

an^ ^i = zi '■> ^& result is: 

M 
/z^l0'1;) = —TexP 

2 Co V     2<^2/ 
1 - exp 

(    z2 MM"1 

V     2o2/ 
M(z2) (4.13) 

The conditional probability of bit error equal to Pr(z1 < z2\0,1.) is derived in Appendix C, section 

C.l and is given as 

M-1M-1 

Pb(r„|o,.,.)= nH)'''^,^,, 
p=Or=0 

X 

1 

where TM = (^Y + 

1 + 

2 

(l+r)(2 + rM) 
a+p)T- M     J 

The probability of bit error is then given by 

3 

Pb = S Pb(rM|o, I;)Pr(Iy) 
7=1 

This last expression must be evaluated numerically. 

(4.14) 

(4.15) 
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2.   Numerical Results for Rayleigh Fading Channel 

In this section, the numerical results for the performance of the PDSC1 receiver over a 

Rayleigh fading channel when the jammer has a fixed peak power specification (fixed p) and for 

worst case jamming are presented. Figure 4.2 shows the performance curves of the PDSC1 receiver 

for Eb/N0 = 15 dB, a diversity of M = 4 and p = 0.05 with ß as a parameter. Note 

Figure 4.2: Performance of PDSC1 receiver for Eb/N0 = 15 dB, a diversity of M = 4, y = 0 and 
p = 0.05 with ß as a parameter. 

that for Eb/Ni < 17 dB, ß = «> produces the worst performance. Above this value, ß = 0 

produces the worst performance. This is in contrast to the self-normalized and noise-normalized 

receivers where ß = °° produces the worst performance for the full range of Eb/Nj. Figure 4.3 

shows the performance curves of the PDSC1 receiver for Eb/N0 = 15 dB, a diversity of M = 4 and 

p = 0.5 with ß as a parameter. In this case ß = °° produces the worst performance only for 

Eb/Nr < 6 dB with ß = 0 producing the worst performance above this value. For low signal-to- 

interference ratios (Eb/Nj < 10 dB), the performance difference between the ß = 0 and ß = °° 

cases is at most 5 dB. This difference is substantially greater for the case of p = 0.05. 
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Figure 4.3: Performance of PDSC1 receiver for Eb/N0 = 15 dB, a diversity of M = 4, y = 0 and 
p = 0.5 with ß as a parameter. 

The worst case performance of the PDSC1 receiver over a Rayleigh channel is now 

considered. Worst case performance was determined through numerical search where it was 

determined that the worst case values of p for a particular value of Eb/Nj followed according to 

equations 2.30 and 2.31. The value of ß = 0 has been selected for ease of comparison to the other 

receivers. Figures 4.4-4.6 show the performance curves of the PDSC1 receiver for diversity orders 

M = 1,3,4, p = 0.01, 0.1, 0.25,1 and worst case performance and Eb/N0 = 15 dB respectively. If 

Figure 4.4 (M = 1) is compared to Figures 2.14 and 3.9 (L = 1), it can be seen that the PDSC1 

receiver produces identical performance to that of both the self-normalized and noise-normalized 

receivers. Again this is not surprising since the SNR at the outputs of all receivers is the same. It 

is also seen that for one antenna/no diversity (M = 1), pulse noise jamming is not effective since 

the worst case performance curve coincides with the continuous jamming curve. For M = 3 and M 

= 4, performance degradation due to pulse noise jamming is evident since the worst case 

performance curve is above the continuous jamming curve. The pulse noise jammer is seen to be 
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most effective in the range 10 dB < Eb/N: < 30 dB. Figure 4.7 shows the worst case performance 

curves of the PDSC1 receiver in the presence of pulse noise interference for diversity orders M = 

1 - 6, Eb/N0 = 15 dB and y = 0. It is seen that for relatively high signal-to-interference ratios (Eb/ 

Nj > 25 dB), there is performance improvement for any increase in diversity order. For diversity 

orders higher than M = 3, the performance improvement is not as substantial and decreases for 

increasing diversity order. For E^ < 15 dB, increasing diversity order above M = 3 leads to a 

slight performance degradation. Below Et/Hl = 5 dB, slight performance degradation occurs for 

any increase of diversity order. Figure 4.8 shows a worst case performance comparison between 

the self-normalized, noise-normalized, linear receivers (employing time diversity) and the PDSC1 

receiver in the presence of pulse noise interference for diversity orders L = 1,4, M=l,4 (PDSC1), 

Eb/N0 = 15 dB and y = 0. It is seen that the PDSC1 receiver performance is comparable to (and 

slightly better than) the performance of the linear receiver for Eb/Nr < 25 dB. Above this value 

where the pulse noise jammer is less effective, the linear receiver outperforms the PDSC1 receiver. 

It is observed that the self-normalized receiver provides better performance against pulse noise 

jamming in the range 10 dB < Eb/Nj < 25 dB. It is seen that in the Rayleigh limit of high signal-to- 

interference ratio, the PDSC1 receiver performs better than the self-normalized receiver. The 

performance of all receivers at very low signal-to-interference ratios is very similar. For Eb/Nj > 5 

dB, the noise-normalized receiver clearly is superior to all other receivers. Figure 4.9 plots the 

optimum value of p as a function of diversity order with Efc/No = 15 dB, y = 0 and Eb/Nr as a 

parameter. It is seen that increasing diversity order higher than M = 2 for a fixed value of EJ/NJ 

does not force the jammer to a more continuous strategy, since the optimum value of p remains 

constant. 
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Figure 4.4: Performance of PDSC1 receiver for pulse jamming fractions p = 1,0.25,0.1,0.01 and 
worst case for diversity order M = 1, EJ/NQ = 15 dB and y = 0. 
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Figure 4.5: Performance of PDSC1 receiver for pulse jamming fractions p = 1,0.25,0.1,0.01 and 
worst case for diversity order M = 3, Eb/N0 = 15 dB and y = 0. 
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Figure 4.6: Performance of PDSC1 receiver for pulse jamming fractions p = 1,0.25,0.1,0.01 and 
worst case for diversity order M = 4, E^o = 15 dB and y = 0. 
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Figure 4.7: Worst case performance of PDSC1 receiver in presence of pulse noise interference for 
diversity orders M = 1-6, E^/NQ = 15 dB and y = 0. 
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Figure 4.8: Worst case performance comparison between self-normalized, noise-normalized, 
linear and PDSC1 receivers in the presence of pulse noise interference for diversity orders L = 1,4, 

M=l,4 (PDSC1), Eb/N0 = 15 dB and Y = 0. 
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Figure 4.9: Optimum value of p as a function of diversity order with Eb/N0 = 15 dB, y = 0 and 
Eb/Nj as a parameter. 
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The performance of the PDSC1 receiver for the more general case of the Rician channel is 

now investigated. In the next section, the expression for the probability of bit error is derived 

followed by numerical results presented in the sequel. 

B.     PERFORMANCE ANALYSIS OF DS-DPSK WITH FIRST ORDER POST- 

DETECTION SELECTION COMBINING OVER A RICIAN FADING CHANNEL 

1.   Bit Error Probability for Rician Fading Channel 

The form of the probability density function for random variable Zx is given is equation 

4.8 with 1=1. The signal branch conditional probability density function for the Rician channel 

may be obtained by setting vlk = zx in equation 3.1 and written as 

1 ( 

/vu(zi|<U/) = -^exP 
2c, 

1 

2c; 
(zi+4a ) 

V    ^\ I <Ji. ; 
u{zx) 

The conditional cumulative density function for the signal branch is given as 

(4.16) 

*Vu(*l|<Uy) = jfylkmO,Ij)dk 
0 

Substituting equation 4.16 into 4.17 and carrying out the integration yields 

A2a Jz? 
*VU(*I|O,I,) = i-ß 

ai, ai, 

(4.17) 

(4.18) 

where Q(a, b) is Marcum's Q-function. A derivation of equation 4.18 is given in 

Appendix C, section C.2. Substituting equations 4.16 and 4.18 into equation 4.8 for I = 1 gives 

the conditional probability density function for the random variable Zx, 

M 
fz,(zA0,lj) = — exp 

1 2Cj 

( 1 

V    2c . 
j 

•(zj+4a ) Ir 
(laj^ 

\  °i,  J 
x 

1-Ö 
'2a Jz? 

M-l 

"(Zl) (4.19) 
V   1J     liJA 

From equation 4.13, the conditional probability density function for the random variable Z2 is 
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M 
/z^l0'1;) = — exP 

2 a, V     2o,) - 
1-exp (       Z2 "llM_1 

V     20w 
U(Z2) (4.20) 

The conditional probability of bit error equal to Pr(z1 < z2\0, lj) is derived in Appendix C, section 

C.3 and is given by 

2y 

r = 0 

M" 2L (2 + (y + i)rM) JJ H 

2 + (Y + i)rM 

4(Y+ l)ju 

f(2 + (Y+i)rMr; 

L1" Ö(A/
2 + (Y + DrM' V2 +"(Y + i)rMJ]    ^ 

(4.21) 

Equation 4.21 must be solved numerically. The recursive algorithm described in [23] can be used 

for the computation of Marcum's Q-function. The probability of bit error is then given by 

3 

Pb =  XPb(«|0,I,.)'Pr(I7.) (4.22) 
7 = 1 

This last expression must also be evaluated numerically. 

2.   Numerical Results for Rician Fading Channel 

In this section, numerical results for the performance of the PDSC1 receiver over a Rician 

fading channel when the jammer has a fixed value of p and for worst case jamming are presented. 

Figure 4.10 shows the performance curves of the PDSC1 receiver for EJ/MQ = 15 dB, y = 5, a 

diversity of M = 4 and p = 0.05 with ß as a parameter. Notice that for Eb/Nj < 15 dB, ß = 00 

produces the worst performance. Above this value, ß = 0 produces the worst performance. 

Figure 4.11 shows the performance curves of the PDSC1 receiver for Ej/NTo •= 15 dB, 
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Figure 4.10: Performance of PDSC1 receiver for Eb/N0 = 15 dB, a diversity of M = 4, y = 5 and 
p = 0.05 with ß as a parameter. 

Figure 4.11: Performance of PDSC1 receiver for Et/No = 15 dB, a diversity of M = 4, y = 5 and 
p = 0.5  with ß as a parameter. 
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Y = 5, a diversity of M = 4 and p = 0.5 with ß as a parameter. In this case ß = «> produces the 

worst performance only for Eb/Nj< 6 dB with ß = 0 producing the worst performance above this 

value. These results are similar to that observed for Rayleigh fading channel. 

The worst case performance of the PDSC1 receiver is now considered. Worst case 

performance was determined through numerical search where it was determined that the worst case 

values of p for a particular value of Eb/Nj followed according to equations 2.30 and 2.31. The 

value of ß = 0 has again been selected for ease of comparison to the other receivers. Figures 4.12- 

4.14 show the performance curves of the PDSC1 receiver for diversity ordersM = 1,3,4, p =0.01, 

0.1, 0.25, 1 and worst case performance, y = 5 and EJ/NQ = 15 dB respectively. It is seen that 

there is significant performance degradation due to pulse noise jamming for all diversity cases 

considered. The degradation due to pulse jamming appears to increase for increasing diversity 

order since the separation between the worst case jamming curve and continuous jamming curve 

grows for higher diversity order. For example, the difference between the continuous and worst 

case performance curves in terms of BER for M = 1 and Eb/Nj = 20 dB is nearly half of an order 

of magnitude. For M = 4 and Eb/Nj = 20 dB, the difference is nearly 2 orders of magnitude, a 4 fold 

increase in performance degradation. In contrast, for the self-normalized and noise-normalized 

receivers, it was seen that performance degradation due to pulse noise jamming was diminished as 

diversity order was increased. 
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Figure 4.12: Performance of PDSG1 receiver for pulse jamming fractions p = 1,0.25,0.1,0.01 and 
worst case for diversity order M = 1, E^/NQ = 15 dB and y = 5. 

Figure 4.15 shows the worst case performance curves of the PDSC1 receiver in the presence of 

pulse noise interference for diversity orders M = 1-6, Eb/N0 = 15 dB and y = 5. It is seen that for 

Eb/Ni > 25 dB, there is a significant performance improvement when moving from no diversity to 

a diversity of M = 2. Higher diversity order increases produce minimal change in performance. For 

Eb/N! < 20 dB, increasing diversity order leads to a performance degradation. Figure 4.16 plots the 

worst case performance curves of the self-normalized, noise-normalized, linear receivers 

(employing time diversity) and the PDSC1 receiver in the presence of pulse noise interference for 

diversity orders L = 1,4, M=l,4 (PDSC1), Eb/N0 = 15 dB and y = 5. It is seen that the PDSC1 

receiver has nearly identical performance to that of the linear receiver over the full range of signal- 

to-interference ratio. It is obvious that the PDSC1 receiver has some inherent advantages against 

degradation due to pulse noise jamming over the linear receiver since it produces the same 

performance utilizing one-fourth the signal energy available to the linear receiver. It is also seen 

that the self-normalized receiver performs better than the PDSC1 receiver over the full range of 

signal-to-interference ratios. This is in contrast to what was observed over the Rayleigh channel. 

The performance of the PDSC1 receiver for low signal-to-interference ratios is either the same or 
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slightly worse than that of the other receivers. Any improvements achieved against noncoherent 

combining losses in comparison to the other receivers at these low signal-to-interference ratios is 

not reflected in the performance curves. 

Figure 4.13: Performance of PDSC1 receiver for pulse jamming fractions p= 1,0.25,0.1,0.01 and 
worst case for diversity order M = 3, E^/NQ - 15 dB and y = 5. 
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Figure 4.14: Performance of PDSC1 receiver for pulse jamming fractions p = 1,0.25,0.1,0.01 and 
worst case for diversity order M = 4, Et/No = 15 dB and y = 5. 

Figure 4.15: Worst case performance of PDSC1 receiver in presence of pulse noise interference for 
diversity orders M = 1-6, Eb/N0 = 15 dB and y = 5. 
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Figure 4.16: Worst case performance comparison between self-normalized, noise-normalized, 
linear and PDSC1 receivers in. the presence of pulse noise interference for diversity orders L = 1,4, 

M=l,4 (PDSC1), Eb/N0 = 15 dB and y = 5. 

Figure 4.17 plots the optimum value of p as a function of diversity order with Eb/No =15 

dB, Y = 5 and EJ/NJ as a parameter. In contrast to the Rayleigh channel, the PDSC1 receiver does 

in this measure reduce the effectiveness of the pulse noise jammer since the jammer is moved 

towards a more continuous jamming strategy as diversity order is increased. The overall effect 

however is not as dramatic as that observed for the self-normalized and noise-normalized receivers 

where diversity order increases produced larger increases in p (compare to Figures 2.22 and 3.19). 
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Figure 4.17: Optimum value of p as a function of diversity order with E^/No = 15 dB, y = 5 and 
Eb/Nj as a parameter. 

Figures 4.18 and 4.19 show the optimum value of p as a function of y with diversity order 

as a parameter with E^0 = 15 dB for E^ equal to 20 dB and 30 dB respectively. It is seen in 

both cases that for a fixed y (y > 3), increasing diversity order through M = 5 moves the optimum 

value of p higher. Increasing diversity order from M = 5 to M = 6 has no further effect on the 
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Figure 4.18: Optimum value of p as a function of y with diversity order as a parameter for EJ/NQ 
= 15 dB and Eb/Nr = 20 dB. 
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Figure 4.19: Optimum value of p as a function of y with diversity order as a parameter for Eb/N0 

= 15dBandEb/NI = 30dB. 
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optimum value of p. This is in contrast to both the self-normalized and noise-normalized receivers 

where it was observed that the optimum value of p increased for all diversity order increases with 

Y>3. 

C.    CHAPTER CONCLUSIONS 

In this chapter, the performance of Direct Sequence Differential Phase Shift Keying (DS- 

DPSK) with first order post-detection selection combining (PDSC) in a Rician fading channel in 

the presence of pulsed noise interference and additive white Gaussian noise (AWGN) has been 

considered. The performance over a Rayleigh fading channel was considered separately since it 

provided an analytical solution for the conditional probability of bit error. In the case of the 

Rayleigh channel, for a very high peak power specification (p small), jamming alternating bits 

proved to be a more effective strategy than jamming adjacent bits for lower values of signal-to- 

interference ratios (EJ/NJ < 17 dB). For higher values of signal-to-interference ratio, jamming 

adjacent bits was shown to be most effective. For a lower peak power specification, jamming 

alternating bits proved to be the most effective jamming strategy but only over a smaller range of 

low signal-to-interference ratio. Similar results were observed for the case of moderate fading 

(Y = 5). For either the severe or moderate fading condition, it was observed that the PDSC1 

receiver was not efficacious in mitigating pulse noise jamming. It was observed that the worst case 

performance curve did not move closer to the continuous jamming curve for increasing diversity 

order. In addition, the value of p remained constant for increasing diversity order over the 

Rayleigh channel and only increased slightly per increasing diversity order for the moderate fading 

condition. In general, the efficacy of the PDSC1 receiver against pulse noise jamming improved 

as the fading condition improved (higher y). 

For the Rayleigh channel it was observed that the worst case performance of the PDSC1 

receiver was improved by increasing diversity order at higher values of signal-to-interference ratio. 

The amount of performance improvement between diversity orders was seen to decrease as 

diversity order was increased. The PDSC1 receiver demonstrated a slight performance degradation 

by increasing diversity order at lower values of signal-to-interference ratio. At the moderate fading 

level, performance improvement at high signal-to-interference ratio was significant between M = 

1 and M = 2 with very little change for higher diversity orders. For the Rayleigh channel, it was 
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observed that where the pulse noise jammer was most effective, the performance of the PDSC1 

receiver for M = 4 was comparable (and slightly better) to that of the linear receiver for L = 4. In 

the case of moderate fading, this result held true over the entire range of signal-to-interference 

ratios considered. It was also noticed that in the Rayleigh limit, the PDSC1 receiver outperformed 

the serf-normalized receiver. In terms of noncoherent combining losses, any performance 

improvement in comparison to the other receivers was not apparent for both the severe and 

moderate fading cases. 
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V. DS-DPSK WITH FIRST ORDER POST-DETECTION 
SELECTION COMBINING AND L-FOLD TIME 

DIVERSITY IN A FADING CHANNEL 

In this chapter, the performance of DS-DPSK with first order post-detection selection 

combining (PDSC1) and L-fold time diversity in a Rician fading channel in the presence of pulsed 

noise interference and additive white Gaussian noise (AWGN) is considered. Consider the receiver 

structure of Figure 5.1 where M attenuated and delayed replicas of the DS-DPSK transmitted 

signal, denoted rkh(t), £=1,2,....M, h= 1,2,....L are received over M antennas. The variables k and 

h represent the spatial and time indices respectively. The random variables Vlh and V2h represent 

the PDSC1 receiver outputs for the signal and non-signal branch respectively. These random 

variables are then equally weighted and summed over the time index to produce the receiver 

outputs Z2 and Z2. It is noted that for a constant bit rate system, the received replicas rkh(t) 

represent (l/ML)th of the total recoverable signal energy (ELM = Eb/LM) while the random 

variable Z1 represents (1/M)^ of the total recoverable signal energy. It is also noted that the special 

case of L = 1 produces the PDSC1 receiver while the case of M = 1 represents the linear receiver. 

It is also clear that this type of receiver has the same type of path independence as does the PDSC1 

receiver since only 1 of M antennas are selected at any given point in time. In the next section, the 

expressions for the probability of bit error are derived. 
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A.    BIT ERROR PROBABILITY 

Considering the signal branch of Figure 5.1, the conditional probability density function for 

the random variable Vlh can be obtained from equation 4.19 by setting z2 equal to vlh 

M 
/vu(v1A|0,Iy.) = -Texp 

2a, 

1-Ö 

(      1   t        A 0 
—(viÄ + 4<*) 

I   f2o^; 
X 

2a V^u 
nM-l 

V^l,    *1 j y 

"(
V

IA) (5.1) 

The probability density function of the random variable Vlh conditioned on a bit 0 transmission 

is given as 

/vu(vi*|0)=  I/vu(vlfc|0,I,.)Pr(ip (5.2) 

where 

Pi» 

Pr(Iy) = \        P2> 

case Ij 

case Ir. (5.3) 

(1 — Pj -p2X case I3 

The conditional probability density function for the random variable Z1 is given as 

—l..r..      .        L. 
/Zl(z!|0) = L~ ([L(fVih(vlh\o))} ) (5.4) 

An analytical solution for Equation 5.4 does not exist and it must be evaluated numerically. 

Considering the non-signal branch, the conditional probability density function for the 

random variable V2h can be obtained from equation 4.20 by setting z2 equal to v2h and is given by 

M f 
fv2h(

v2h\°>lj)  =  — eXP 
2 On 

"2A 
V 

2a2.yi_ 
1 - exp 

V   2a2J_ 

M-l 

u(v2h) (5.5) 

The probability density function of the random variable V2h conditioned on a bit 0 transmission 

is given as 
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3 

fvjv2h\0)=  £/Va4(v2Ä|0,I;)Pr(I,) (5.6) 

The conditional probability density function for Z2 is given as 

fZ2(z2\0) = L~\[L(fvJv2h\0))]L) (5.7) 

which must also be evaluated numerically .The probability of bit error now becomes 

jj[fzSz2\0)dz2]fZi(z1\0)dzl (5.8) 
0Zl 

and must also be evaluated numerically. 

B.     NUMERICAL RESULTS 

In Figure 5.2, the probability of bit error curves of the PDSC1 receiver with L-fold time 

diversity (M = 4, L = 4), the noise-normalized and linear receivers (M = 1, L = 4) and the self- 

normalized receiver (M = 1, L = 4), are plotted as a function of y with no pulse noise jamming and 

a bit energy to thermal noise density ratio of Eb/N0 = 15 dB. It is first noted that the performance 

of the PDSC1 receiver with time diversity is relatively invariant to the fading condition being 

considered. The performance difference between the most severe and benign fading conditions in 

terms of the BER is approximately half an order of magnitude. This is in comparison to the other 

receivers where there is several orders of magnitude difference between the two extreme cases. In 

addition, it is noticed that the PDSC1 receiver approaches its Gaussian limit at approximately 

y = 10 where the other receivers approach their Gaussian limit at approximately y = 1000. It is 

seen that for cases of severe fading (y<3), the PDSC1 receiver with time diversity provides 

superior performance to the other receivers. In the Gaussian limit of all channels however where 

the signal amplitude is relatively unchanged, the performance of the PDSC1 receiver with time 

diversity is vastly inferior to the noise-normalized, linear and self-normalized receivers. 

Figures 5.3 and 5.4 show the probability of bit error curves for the PDSC1 receiver with L- 

fold time diversity (M = 4, L = 4) and linear receiver (M = 1, L = 4) with no pulse noise jamming 

as a function of Eb/N0 for y = Oandy = 5 respectively. It is seen that for the severe fading case, 

92 



10 

10 

10 

10 

10" 

10 

I       III 

Eu/N =15 dB 
b     0 

■ n  D Di 

»  * munioioimn 

M=4, L=4 
M=1, L=4 
self-normalized receiver, L=4 

*  in muriicmw» »n» n.*mm *  * xmwmm 

10 ' 10 

Figure 5.2: Probability of bit error for the PDSC1 receiver with L-fold time diversity (M = 4, L = 
4), the noise-normalized and linear receivers (M = 1, L = 4) and the self-normalized receiver, (L = 
4), as a function of y with no pulse noise jamming and a bit energy to thermal noise density ratio 

of £^ = 15 dB. 

the PDSC1 receiver with time diversity provides performance superior to the linear receiver for bit 

error rates less than 10 (Ep/No > 13 dB). Above this value of BER, the linear receiver provides 

a slightly better performance. It is seen that for the case of moderate fading, the range over which 

the PDSC1 receiver provides better performance in comparison to the linear receiver is reduced. 

_7 
In this case the enhanced performance region is valid for bit error rates on the order of 10 or 

lower and Ej/No > 16 dB. It is thus seen that the PDSC1 receiver with time diversity requires a 

minimum signal energy to thermal noise density ratio to provide improved performance over the 

linear receiver. 
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Figure 5.3: Probability of bit error for the PDSC1 receiver with L-fold time diversity (M = 4, L = 
4) and linear receiver (M = 1, L = 4) as a function of Eb/N0, y = 0 with no pulse noise jamming. 

Figure 5.4: Probability of bit error for the PDSC1 receiver with L-fold time diversity (M = 4, L = 
4) and linear receiver (M = 1, L = 4) as a function of Eb/N0, y = 5 with no pulse noise jamming. 
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Numerical results for the performance of the PDSC1 receiver with time diversity for a fixed 

jammer peak power specification (fixed p) and for worst case jamming are now presented. Figures 

5.5 and 5.6 show the performance curves of the PDSC1 receiver for Eb/No = 15 dB, a diversity of 

L = 4, M = 4 and p = 0.05 with ß as a parameter for y = 0 and y = 5 respectively. 

Figure 5.5: Performance of PDSC1 receiver with time diversity for E^/NQ = 15 dB, a diversity of 
L = 4, M = 4, y = 0 and p = 0.05 with ß as a parameter. 

It is observed that for both fading conditions for fixed p, jamming alternating bits (ß = °°) 

produces the worst performance for the lower values of signal-to-interference ratios (Et/Nj < 13 

dB), while jamming consecutive bits (ß = 0) produces the worst performance at the higher 

values. These results are similar to that observed for the PDSC1 receiver with no time diversity. 

The worst case performance of the PDSC1 receiver with time diversity is now considered. 

Worst case performance was determined through numerical search where it was determined that 

the worst case values of p for a particular value of EJ/NJ followed according to equations 2.30 and 

2.31. The value of ß = 0 has been selected for ease of comparison to the other receivers. Figures 

5.7-5.9 show the performance curves of the PDSC1 receiver with time diversity for p = 0.01,0.1, 
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0.25,1 and worst case performance, y = 0 and Eb/N0 = 15 dB for diversity orders M = 4, L = 1,3,4 

respectively. It is seen that there is significant performance degradation due to pulse noise jamming 

for all cases considered. The degradation due to pulse jamming increases dramatically from L = 1 

(no time diversity) to L = 3. It is seen that there is little performance difference between the L = 3 

and L = 4 curves. Figure 5.10 shows the worst case performance curves of the PDSC1 receiver with 

time diversity in the presence of pulse noise interference for diversity orders L = 1-6, M = 4, Eb/ 

N0 = 15 dB and y = 0. It is seen that at signal-to-interference ratios below 25 dB, increasing the 

time diversity order leads to a gradual performance decrease. At higher values of signal-to- 

interference ratio (Eb/N! > 33 dB), any order of time diversity leads to a performance improvement 

compared to the case of no time diversity. It the range shown, a time diversity order of L = 2 or 3 

provides the best performance improvement. 

Figure 5.6: Performance of PDSC1 receiver with time diversity for Efc/No = 15 dB, a diversity of 
L = 4, M = 4, Y = 5 and p = 0.05 with ß as a parameter. 

Figure 5.11 plots the optimum value of p as a function of time diversity order with M = 4, Eb/N0 

= 15 dB, Y = 0 and Eb/Ni as a parameter. As time diversity order is increased from L = 1-3, it is 

seen that the optimum value of p decreases. Above a time diversity order of L = 3, the optimum 
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p remains mostly constant over the range of Eb/Nj. Figures 5.12 and 5.13 show the performance 

curves of the PDSC1 receiver with time diversity for p = 0.01, 0.1, 0.25, 1 and worst case 

performance, y = 0 and Eb/N0 = 15 dB for diversity orders L = 4, M = 1,3 respectively. It is again 

seen that there is significant performance degradation due to pulse noise jamming for all cases 

considered. The degradation due to pulse jamming increases dramatically from M = 1 (no spatial 

diversity) to M = 3. It is seen that there is little performance difference between the M = 3 curve 

and M = 4 curve (Figure 5.9). Figure 5.14 shows the worst case performance curves of the PDSC1 

receiver with time diversity in the presence of pulse noise interference for diversity orders M = 1- 

6, L = 4, Eb/N0 = 15 dB and y = 0. It is seen that at signal 

Figure 5.7: Performance of PDSC1 receiver with time diversity for pulse jamming fractions p = 1, 
0.25,0.1,0.01 and worst case for diversity order L = 1, M = 4, Eb/N0 - 15 dB and y = 0. 

to interference ratios below 30 dB, increasing the spatial diversity order leads to a gradual 

performance decrease. For Eb/Nj higher than this, a spatial diversity order of M = 2 provides the 

best performance improvement. Figure 5.15 plots the optimum value of p as a function of spatial 

diversity order with L = 4, E^/No = 15 dB, y = 0 and Eb/Nj as a parameter. As spatial diversity 

order is increased, it is seen that the optimum value of p increases over the full range of signal-to- 
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interference ratio, effectively forcing the jammer to a more continuous jamming strategy. Figure 

5.16 plots the worst case performance curves of the self-normalized, noise-normalized, linear 

receivers (L = 4) and PDSC1 receiver without time diversity (L = 1, M = 4) and with time diversity 

(L = 4, M = 4) in the presence of pulse noise interference with Eb/N0 = 15 dB and y = 0. It is seen 

that the PDSC1 receiver with time diversity is inferior to the other diversity receivers for EJ/NJ < 

28 dB. As signal-to-interference ratio is increased higher and the Rayleigh limit of the channel is 

approached, the PDSC1 receiver with time diversity provides superior performance compared to 

any of the other receivers. It is also noted that the PDSC1 receiver with time diversity of L = 4 only 

begins to approach its Rayleigh limit of Pb = 5.5 x 10" where the others have nearly converged 

to their Rayleigh limits. For low values of signal-to-interference ratio (Ejj/Nj < 10 dB), losses in 

comparison to the PDSC1 receiver without time diversity are likely attributable to noncoherent 

combining losses. 

Figure 5.8: Performance of PDSC1 receiver with time diversity for pulse jamming fractions p = 1, 
0.25,0.1, 0.01 and worst case for diversity order L = 3, M = 4, Eb/N0 = 15 dB and y = 0. 
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Figure 5.9: Performance of PDSC1 receiver with time diversity for pulse jamming fractions p 
1,0.25,0.1, 0.01 and worst case for diversity order L = 4, M = 4, Efc/No = 15 dB and y = 0. 

Figure 5.10: Worst case performance of PDSC1 receiver with time diversity in the presence of 
pulse noise interference for diversity orders L = 1-6, M = 4, Eb/No = 15 dB and y = 0. 
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Figure 5.11: Optimum value of p as a function of time diversity order with M = 4, Eb/N0 = 15 dB, 
Y = 0 and EJ/NJ as a parameter. 
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Figure 5.12: Performance of PDSC1 receiver with time diversity for pulse jamming fractions p 
1,0.25, 0.1,0.01 and worst case for diversity order L = 4, M = 1, EJ/NQ = 15 dB and y = 0. 
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Figure 5.13: Performance of PDSC1 receiver with time diversity for pulse jamming fractions p; 
1, 0.25,0.1, 0.01 and worst case for diversity order L = 4, M = 3, Eb/N0 = 15 dB and y = 0. 

Figure 5.14: Worst case performance of PDSC1 receiver with time diversity in the presence of 
pulse noise interference for diversity orders L = 4, M = 1-6, Eb/N0 = 15 dB and y = 0. 
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Figure 5.15: Optimum value of p as a function of spatial diversity order with L = 4, Eb/N0 = 15 
dB, Y = 0 and Eb/Nj as a parameter. 
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Figure 5.16: Worst case performance comparison between self-normalized, noise-normalized, 
linear receivers (L = 4) and PDSC1 receiver without time diversity (L = 1, M = 4) and with time 
diversity (L = 4, M = 4) in the presence of pulse noise interference with Eb/N0 = 15 dB and y = 0. 
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Figures 5.17 - 5.19 show the performance curves of the PDSC1 receiver with time diversity 

for p = 0.01, 0.1, 0.25, 1 and worst case performance, y = 5 and E^/NQ = 15 dB for diversity 

orders M = 4, L = 1,3,4 respectively. It is seen that there is significant performance degradation 

due to pulse noise jamming for all cases considered. It is also noted that the worst case performance 

degrades for increasing time diversity order. This is also seen in Figure 5.20 where the worst case 

performance curves of the PDSC1 receiver with time diversity in the presence of pulse noise 

interference for diversity orders L = 1-6, M = 4, Eb/N0 = 15 dB and y = 5 are shown. Here any 

increase in time diversity order leads to a performance degradation over the full range of signal-to- 

interference ratio. 

Figure 5.17: Performance of PDSC1 receiver with time diversity for pulse jamming fractions p = 
1,0.25,0.1, 0.01 and worst case for diversity order L = 1, M = 4, Eb/N0 = 15 dB and y = 5. 

Figure 5.21 plots the optimum value of p as a function of time diversity order with M = 4, Eb/N0 

= 15 dB, y = 5 and Eb/Nj as a parameter. It is seen that seen that the optimum value of p 

decreases for increasing time diversity order. Figures 5.22 and 5.23 show the performance curves 

of the PDSC1 receiver with time diversity for p = 0.01, 0.1, 0.25,1 and worst case performance, 

Y = 5 and E^/N0 = 15 dB for diversity orders L = 4, M = 1,3 respectively. It is again seen that 
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there is severe performance degradation due to pulse noise jamming. When comparing to the case 

of diversity order L = 4, M = 4 (Figure (5.9), it is noticed that performance worsens as the spatial 

order is increased. This is also depicted in Figure 5.24 which shows the worst case performance 

curves of the PDSC1 receiver with time diversity in the presence of pulse noise interference for 

diversity orders L = 4, M = 1-6, E^Q = 15 dB and y = 5. It is seen that any increase in spatial 

diversity order leads to performance degradation over the full range of signal-to-interference ratio. 

Figure 5.25 plots the optimum value of p as a function of spatial diversity order with L = 4, Eb/N0 

= 15 dB, Y = 5 and Et/Nj as a parameter. As spatial diversity order is increased, it is seen that the 

optimum value of p increases over the full range of signal-to-interference ratio. This result is 

similar to that which was observed for the Rayleigh fading channel. Again it is seen that although 

performance worsens as the spatial order is increased, the jammer has been forced to a more 

continuous jamming strategy. Figure 5.26 plots the worst case performance curves of the self- 

normalized, noise-normalized, linear receivers (L = 4) and PDSC1 receiver without time diversity 

(L = 1, M = 4) and with time diversity (L = 4, M = 4) in the presence of pulse noise interference 

with Eb/N0 = 15 dB and Y = 5. It is seen that the PDSC1 receiver with time diversity is inferior to 

all other diversity receivers over the full range of signal-to-interference ratio. 
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Figure 5.18: Performance of PDSC1 receiver with time diversity for pulse jamming fractions p 
1,0.25,0.1,0.01 and worst case for diversity order L = 3, M = 4, Eb/N0 = 15 dB and y = 5. 
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Figure 5.19: Performance of PDSC1 receiver with time diversity for pulse jamming fractions p: 
1, 0.25, 0.1, 0.01 and worst case for diversity order L = 4, M = 4, EJ/NQ 

= ^ dB SD^ 7=5. 

Figure 5.20: Worst case performance of PDSC1 receiver with time diversity in the presence of 
pulse noise interference for diversity orders L = 1-6, M = 4, EJ/NQ = 15 dB and 7=5. 
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Figure 5.21: Optimum value of p as a function of time diversity order with M = 4, Eb/N0 = 15 dB, 
Y = 5 and Eb/Nj as a parameter. 
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Figure 5.22: Performance of PDSC1 receiver with time diversity for pulse jamming fractions p 
1, 0.25,0.1,0.01 and worst case for diversity order L = 4, M = 1, E^/NQ = 15 dB and y = 5. 
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Figure 5.23: Performance of PDSC1 receiver with time diversity for pulse jamming fractions p = 
1,0.25,0.1,0.01 and worst case for diversity order L = 4, M = 3, Ej/N0 = 15 dB and y = 5. 

Figure 5.24: Worst case performance of PDSC1 receiver with time diversity in the presence of 
pulse noise interference for diversity orders L = 4, M = 1-6, E^/NQ = 15 dB and y = 5. 
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Figure 5.25: Optimum value of p as a function of spatial diversity order with L = 4, Eb/N0 =15 
dB, Y = 5 and Eb/Nj as a parameter. 

Figure 5.26: Worst case performance comparison between self-normalized, noise-normalized, 
linear receivers (L = 4) and PDSC1 receiver without time diversity (L =1, M =4) and with time 

diversity (L = 4, M= 4) in the presence of pulse noise interference with Eb/N0 = 15 dB and y = 5. 
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Figure 5.27 is a plot of the optimum value of p as a function of y with time diversity order 

as a parameter for M = 4, Eb/N0 = 15 dB and Eb/Nj = 10 dB. It is observed that the optimum value 

of p decreases for increasing time diversity order over the full range of y. Figure 5.28 shows the 

optimum value of p as a function of y with spatial diversity order as a parameter for L = 4, Eb/N0 

= 15 dB and Eb/Nj = 10 dB. Here it is observed that the optimum value of p increases for 

increasing spatial diversity order over the full range of y. Similar results are observed at a higher 

value of signal-to-interference ratio (Eb/Nj = 30 dB) in Figure 5.29 in the case of increasing time 

diversity order with M = 4 and Figure 5.30 in the case of increasing spatial diversity order with L 

= 4. These results are consistent with what was observed for the Rayleigh channel and moderate 

fading channel (y = 5). 
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Figure 5.27: Optimum value of p as a function of y with time diversity order as a parameter for 
M = 4, Eb/N0 = 15 dB and EbfNl = .10 dB. 
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Figure 5.28: Optimum value of p as a function of y with spatial diversity order as a parameter for 
L = 4, EI/NQ = 15 dB and Eb/Nr = 10 dB. 
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Figure 5.29: Optimum value of p as a function of y with time diversity order as a parameter for 
M = 4, Et/No = 15 dB md Eb/Nl = 30 dB- 
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Figure 5.30: Optimum value of p as a function of y with spatial diversity order as a parameter for 
L = 4, Eb/N0 = 15 dB and Eb/N: = 30 dB. 

C.    CHAPTER CONCLUSIONS 

In this chapter, the performance of Direct Sequence Differential Phase Shift Keying (DS- 

DPSK) with first order post-detection selection combining (PDSC1) and L-fold time diversity in a 

Rician fading channel in the presence of pulsed noise interference and additive white Gaussian 

noise (AWGN) has been considered. Closed form solutions for the probability of bit error were not 

available for either the Rayleigh or Rician channels so numerical solution was required. The 

performance of the PDSC1 receiver with time diversity in a fading environment with no pulse 

noise jamming was investigated. It was determined that the performance of the PDSC1 receiver 

with time diversity was relatively insensitive to the fading condition in comparison to the self- 

normalized, noise-normalized and linear receivers. Given a sufficient signal energy to thermal 

noise density ratio, the PDSC1 receiver was shown to perform better than the other receivers under 

severe and moderate fading conditions. The performance of the PDSC1 receiver with time 

diversity for a fixed jammer peak power specification under severe and moderate fading conditions 

was analyzed. It was determined that for both fading conditions, jamming alternating bits produced 

the worst performance for the lower values of signal-to-interference ratios, while jamming 
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consecutive bits produces the worst performance at the higher values. These results are similar to 

those observed for the PDSC1 receiver with no time diversity. 

The worst case performance of the PDSC1 receiver with time diversity was also 

investigated. For either the severe or moderate fading condition, it was observed that the PDSC1 

receiver with time diversity was not effective in mitigating pulse noise jamming. It was observed 

that the worst case performance curve did not move closer to the continuous jamming curve for 

increasing spatial diversity order with fixed time diversity order (L = 4) or for increasing time 

diversity order with fixed spatial diversity order (M = 4). For either the Rayleigh channel or the 

moderate fading condition, the optimum value of p was seen to decrease slightly for increasing 

time diversity order with M = 4. A slight increase in p was observed per increasing spatial 

diversity order with L = 4. This observation also held for other values of y between 0 and 10. For 

the Rayleigh channel, it was seen that for signal-to-interference ratios below 25 dB, increasing the 

time diversity order for a fixed spatial diversity order of M = 4 led to a gradual performance 

decrease. Above this value of signal-to-interference ratio, a time diversity order of L = 2 or 3 

produced a modest performance improvement. Similar results were observed when the spatial 

order was varied as the time diversity order remain fixed. For moderate fading, any increase in time 

or spatial diversity order led to a performance degradation. For severe and moderate fading, it was 

observed that the optimum value of p decreased as time diversity order was increased for a fixed 

spatial diversity order and increased as spatial diversity order was increased for a fixed time 

diversity order. In the latter case, it is seen that the jammer is forced to a more continuous form of 

jamming strategy. These results also hold true for 0 < y < 10. The worst case performance of the 

PDSC1 receiver with time diversity was compared with the worst case performance of the self- 

normalized, noise-normalized, linear and PDSC1 receivers under severe and moderate fading 

conditions. For the Rayleigh fading channel, it was seen that the PDSC1 receiver with time 

diversity is inferior to the other receivers for Efc/Nj < 28 dB. As signal-to-interference ratio is 

increased above this in the Rayleigh limit of the channel, the PDSC1 receiver with time diversity 

provides superior performance in comparison to that of any of the other receivers. For the moderate 

fading channel, it was seen that the PDSC1 receiver with time diversity was inferior to the other 

receivers over the full range of signal-to-interference ratio. 
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VI. DS-DPSK WITH CONVOLUTIONAL CODING AND 
SOFT DECISION VITERBI DECODING 

In this chapter, the performance of Direct Sequence Differential Phase Shift Keying (DS- 

DPSK) with convolutional coding and soft decision Viterbi decoding in a Rician fading channel in 

the presence of pulsed noise interference and additive white Gaussian noise (AWGN) is 

considered. The transmitter of the coded DS-DPSK system is shown in Figure 6.1. 

input /n n    " s        _ Convolutional 81   % 
L-fold diversity Sik 

data {°'1} encoder and interleaving 

channel DS 
• spreader 

DPSK 
modulator 

Figure 6.1: Transmitter model of DS-DPSK with convolutional coding and L-fold time diversity. 

Here a sequence of binary information bits {us, s = 1,2...kB} of length kB is input to the 

convolutional encoder producing a coded binary data sequence {gl} I = l,2...nB] of length nB. 

For every k information bits taken at the information bit rate, Rb, n output coded bits are produced 

at the coded bit rate, Rc. The time required to transmit n coded bits must be equal to the time 

required to transmit k uncoded information bits. The resultant is that the coded bit rate Rc = R.\Jrc 

and the energy per each coded bit, denoted Ec = rcEb, where rc = k/n (rc < 1) is the code rate. 

The parameter B is an integer that is determined by the length of a particular code word. 

A general convolutional encoder may be implemented with k shift registers and n modulo- 

2 adders. At each clock interval, k information bits are multiplexed into the first stages of the k 

shift registers, and the previous information bits are shifted one shift register stage to the right. In 

a convolutional encoder, each set of n coded bits is determined by the k data bits and between v - 1 

and k(v - 1) of the preceding data bits. The parameter v is termed the constraint length of the 

convolutional code and is defined as the maximum number of shifts over which a single 

information bit can effect the encoder output. 

113 



Although convolutional codes are not necessarily finite in length, the performance analysis 

initially assumes a fixed length code and is then generalized to an infinite length code. In general 

coding theory, the Hamming distance represents the number of bits for which 2 code words are 

different. The Hamming weight is the number of nonzero components in a code word. The 

Hamming distance between 2 code words may be determined as the Hamming weight of the 

modulo-2 addition of the 2 code words. In notational form, the distance between the p   code word 

sequence  {g\p), I = \,2...nB}   and the qh  code word sequence  {g\q), I = 1, 2...nB}   is 

expressed as d(gf\gf\l= l,2...n) = w(g\p)+g\q\l = l,2...n). Convolutional codes are 

linear. A linear code is one where the modulo-2 addition of any 2 code words results in another 

code word. It is therefore seen that the set of Hamming distances between any one code word and 

the rest of the code words is the same for all code words. Any one code word may then be selected 

in considering the performance of the convolutional code then without loss of generality. The 

ability of a convolutional code to perform error correction is strongly related to its minimum free 

distance, dfree defined to be the minimum Hamming distance between any 2 possible code words. 

Convolutional codes can be characterized by a transfer function relating the input to the output 

from which the minimum free distance may be ascertained. A more detailed treatment of 

convolutional codes and their properties may be found in [25]. Referring again to Figure 6.1, each 

bit at the output of the convolutional encoder is repeated L times producing the new binary 

sequence for the pth code word {g\$.\ I = 1,2...nB;k = 1, 2...L}. This sequence is interleaved 

and fed to the DPSK modulator for carrier modulation. The modulator output is then fed to the 

Direct Sequence Spread Spectrum module for "spreading" before transmission over the channel. 
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A block diagram of the linear receiver for the DS-DPSK coded system is shown in Figure 

6.2. The sequence of events prior to decoding are seen to be exactly the same as that for the 

r(t) DS 
despreader 

DPSK 
demodulator deinterleaver 

us **— Decoder 
Equal gain 
combining 

Figure 6.2: Block diagram of the linear receiver for the coded DS-DPSK system. 

uncoded system. The only fundamental difference is that the system now operates at the coded bit 

rate rather than the information bit rate. 

In this analysis, a maximum likelihood estimate is sought. The Viterbi decoder is a 

maximum likelihood decoder which utilizes a decoding trellis to maximize a set of path metrics. 

The trellis is an efficient representation of all possible code words generated by the encoder where 

each code word is represented as a path through the trellis. Path metrics are formed as a sum of 

branch metrics, which are produced as the sum of bit metrics. In this analysis, it is assumed the 

code word path is of length nB bits, where B is the number of branches along any one path and n 

is the number of bits per branch. At the B    branch node, path metrics are compared and the path 

with the highest metric is selected as the correct path through the trellis. The equal gain combining 

structure between the demodulator output and the input to the decoder in Figure 6.2 is shown in 

Figure 6.3. The random variables forming the sequence 

{Vllmk, 1= l,2...n;m = l,2...B;k= 1,2...L} represent the deinterleaved, demodulator 

outputs representing bit 0. The random variables forming the sequence 

{ V2imk, I = l,2...n;m= l,2...B;k = 1,2...L} represent the deinterleaved, demodulator 

outputs representing bit 1. The random variables forming the sequences 

{Vllm, 1= l,2...n;m = 1,2...JB} and {V2lm,l = l,2...n;m = 1,2...B} serve as inputs to the 

decoder. 
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Figure 6.3: Equal gain combining structure for the linear receiver. 

th 
A maximum likelihood estimate of the path metric for the p    path may be produced by 

considering the log-likelihood function 

B      n 

PM{P) =   X  ll°S<<fvUm,vJVum>V2lm\g\PJ)) (6.1) 
m = ll= 1 

In  [5], it was  shown that maximizing  log(/v    v   (VUm, V2lm\gl
p

m))   is equivalent to 
1 Jwi* 2(771 I 

maximizing a pair of correlation metrics obtained through cross-correlation of the received signal 

with the transmitted signals representing bit 0 and bit 1. Since the coupled operation of the receiver 

of Figure 2.3 and combiner of Figure 6.3 producing the random variables VUm and V2lm may be 

represented as a cross-correlation between the received signal and the transmitted signals 

representing bit 0 and bit 1, a suitable correlation metric for the I   bit of the m   branch of the p 

path is 

CM$ = (U-gfJWum + g^VuJ (6-2) 

This metric aligns the signal representing bit 0 with detector branch 1 and the signal branch 

representing bit 1 with detector branch 2. Maximizing this metric at each bit interval over the entire 

coded word sequence is performed by receivers employing hard decision decoding. In soft decision 

receivers, individual bit metrics are summed over the entire the code word path before a decision 
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is made. Using the correlation metric of equation 6.2 in place of log(/v    v2lm(Viim> ^iim\Sim )) 

in equation 6.1, the path metric for the /?    path may now be reexpressed as 

B      n 

PM{P) =   2  I CM™ (6.3) 
m = l/ = l 

Defining the branch metric for the m   branch of the p    path to be 

n 

BM™ = X CM™ (6.4) 
i = i 

the path metric for the p   path may be expressed as 

B 

PM™ =   X BM™ (6.5) 
w = l 

In the error analysis, the performance of a convolutional code will be derived from the 

probability of first error event. A first error event is defined as the probability that another path that 

merges with the all-zero path for the first time at branch node B has a larger path metric than that 

of the all-zero code word. From equations 6.2 and 6.3, the path metric for the all-zero code word is 

PM{1) =   £  X Viim (6-6) 
m = ll= 1 

since for the all-zero code word  g/£  = 0, V(Z, m). By substituting the known relation 

L 

Viim -  X ^Umk' equation 6.6 can be written as 
jfc= l 

PMW =   X  E E Viimk       ■ (6-7) 
m = ll=llc= 1 

Denoting the code word path length N = nB bits, equation 6.7 may now be expressed as 

N     L 

PM{1) = X X vm (6-8) 
£ = 1 jfc = 1 
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where i is an index that runs over all bits along the path. A decoder error occurs when the path 

metric for the p    path at branch node B is greater than the path metric for the all-zero path 

PMip)>PM{l) (6.9) 

Assuming the code word for the p    path has weight d, its path metric is 

PM^ = XXW   X    lvm <6-10) 
j = lJfc=l i = rf+lJfc=l 

Rewriting equation 6.8 as 

PM
{1)

= lXvU£+ x S^i« (6-n> 
i = 1 Jfc = 1 i = d + \k=l 

and substituting equations 6.10 and 6.11 into equation 6.9, it is seen that a decoding error occurs 

when 

f=lifc=l i=l*=l 

More generally, since the code is linear, the probability of decoder error between any 2 code words 

with Hamming distance d is 

/ d     L d      L \ 

Vi = u = i i = iifc=i       / 

t h 
It is seen through this relation that the coded system with L   order time diversity is equivalent to 

the uncoded system with dh order time diversity. This statement is general and therefore applies 

to any condition of fading or pulse noise jamming. In addition, since the use of the correlation 

metric of equation 6.2 is applicable to the other receivers analyzed in this work, the result of 

equation 6.13 extends to these other receivers. The coded noise-normalized and self-normalized 

systems with Lf   order time diversity are equivalent to the respective uncoded systems with dh 

order time diversity. The coded PDSC1 system with M    order spatial diversity is equivalent to 

the uncoded system with M    order spatial diversity and d    order time diversity. The coded 
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PDSC1 system with M    order spatial diversity and L    order time diversity is equivalent to the 

uncoded system with M    order spatial diversity with dL   order time diversity. 

Since there may be many possible pairs of code words with distance d, it is more general 

to consider the probability of an error event over all pairs of code words with distance d, Pe(d). 

Pe(d) is then a union of all error events over all possible pairs of code words with distance d. 

When considering the all-zero code word, this is equivalent to stating that Pe(d) is a union over 

all possible error events between the all-zero code word and code words of weight d. If there are 

a total of Ad possible code words with weight d, the probability of an error event is upper-bounded 

in the following way 

Pe(d)<AdP2(d) (6.14) 

Since individual paths may overlap over certain portions of the code, the events forming the union 

are not in general disjoint. The result is that the bound of equation 6.14 may not be very tight. This 

is especially true at low values of signal-to-noise ratio. 

If the total information weight of all code words of weight d is Bd, the probability of bit 

error for all code words of weight d is upper-bounded by 

Pb(d)<\BdP2{d) (6.15) 

Here BdP2(d) represents the average number of bits in error and k is used as a normalization for 

the total number of information bits along the path. Extending to the case of an infinite length code, 

the upper bound on the unconditional probability of bit error is obtained by summing over all 

possible Hamming distances, the expression for which is 

pb<\   £   BdPi(d) (6-16) 
d = dfrt< 

The values of Ad and Bd are parameters of the transfer function of a particular code and 

are available by table look-up. The best convolutional codes in terms of their distance properties 

have been determined through numerical search. In the next sections, the performance of the noise- 

normalized, self-normalized, PDSC1 and linear receivers is considered. Due to the numerical 

complexity, the numerical analysis is not extended to the PDSC1 receiver with time diversity. 
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A.    PERFORMANCE ANALYSIS FOR NOISE-NORMALIZED RECEIVER AND SOFT 

DECISION VITERBI DECODING 

A block diagram of the DS-DPSK coded receiver system with noise-normalization is 

shown in Figure 6.4. The sequence of events prior to decoding are seen to be exactly the same as 

that for the uncoded system. 

r{t) DS 
despreader 

Decoder 

DPSK 
demodulator 

Equal gain 
combining 

Noise-normalization 

deinterleaver 

Figure 6.4: Block diagram of the DS-DPSK coded receiver system with noise-normalization. 

1.   Numerical Results 

In this section, the performance of the coded noise-normalized receiver system in a pulse 

noise jamming environment is analyzed. In the numerical analysis, the worst case performance was 

produced by those conditions outlined in equations 2.30 and 2.31 as was previously the case for 

the uncoded system. To keep this analysis consistent with the analysis done for the uncoded 

system, equation 2.31 (p! = 0, p = p2) is selected to represent worst case performance. 

Performance curves for the noise-normalized receiver for diversity orders L = 1 and 4 and jammer 

fractions p = 0.01,0.1,0.25,1 and worst case, Eb/N0 = 15 dB, y = 0, v = 3 and rc = 0.5 are 

shown in Figures 6.5 and 6.6 respectively. It is seen that pulse noise jamming is not effective for 

either diversity case since the continuous jamming curves correspond to the worst case 

performance curves. It is seen for very high signal-to-interference ratio (Eb/Nr > 30 dB), that there 

is significant performance improvement when moving from no diversity to a diversity order of L 

= 4. This is clearly seen in Figure 6.7 where the worst case performance curves for the coded and 
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uncoded systems are shown for L = 1 and 4, Eb/N0 = 15 dB, y = 0,v = 3 and rc - 0.5. It is 

also seen that the net performance improvement between uncoded and coded systems is 

significantly greater for a diversity order of L = 4 compared to the case of no diversity for EJ/NJ > 

20 dB. Figure 6.8 compares the worst case performance curves for the coded and uncoded systems 

for L = 1 and 4, Et/No = 15 dB, y = 0,v = 5 and rc = 0.75. By comparing these to Figure 6.7, 

it is seen that the performance improvement afforded by the code rate of rc = 0.75 with constraint 

length of v = 5 is not as great as the improvement given by the code rate rc = 0.5, constraint 

length v = 3 system for any diversity case considered. 

O_-°10 

Figure 6.5: Performance of noise-normalized receiver for pulse jamming fractions p = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 1, Eb/N0 = 15 dB, y = 0, v = 3 and rc = 0.5. 
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Figure 6.6: Performance of noise-normalized receiver for pulse jamming fractions p = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 4, Eb/N0 = 15 dB, y = 0, v = 3 and rc = 0.5. 

Figure 6.7: Worst case performance comparison of coded and uncoded system for noise- 
normalized receiver for diversity orders L = 1 and 4, Ej/No = 15 dB, y = 0, v = 3 and rc = 0.5 
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Figure 6.8: Worst case performance comparison of coded and uncoded system for noise- 
normalized receiver for diversity orders L = 1 and 4, E^/NQ = 15 dB, y = 0, v = 5 and rc = 0.75. 

Performance curves for the noise-normalized receiver for diversity orders L = 1 and 4 and 

jammer fractions p = 0.01, 0.1, 0.25, 1 and worst case, E^Q = 10 dB, y = 0, v = 5 and 

rc = 0.5 are shown in Figures 6.9 and 6.10 respectively. Again it is seen that pulse noise jamming 

is not effective for either diversity case. Figure 6.11 shows the worst case performance curves for 

the coded and uncoded systems for L = 1 and 4, Eb/N0 = 10 dB, y = 0, v = 5 and rc = 0.5. For 

very high signal-to-interference ratio, it is again seen that the performance improvement between 

uncoded and coded systems is significant with the diversity order L = 4 demonstrating the larger 

net performance improvement. The amount of improvement however is not as great as was 

demonstrated at E^Q = 15 dB and rc = 0.5. Figure 6.12 shows the worst case performance 

curves for the coded and uncoded systems for L = 1 and 4, EJ/NQ 
= 10 dB, y = 0, v = 7 and 

rc = 0.75. It is seen that there is very little performance difference between the coded and 

uncoded systems when no diversity is employed. When diversity is utilized however, the 

difference between the coded and uncoded systems is substantial. This result differs from the case 
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of higher signal to thermal noise ratio and code rate (EJJ/NQ = 15 dB and rc = 0.75) and lower 

constraint length (v = 5) illustrated in Figure 6.8 where the difference between coded and 

uncoded systems was significant for both cases of diversity (L = 4) and no diversity (L = 1). 

Performance curves for the noise-normalized receiver for diversity orders L = 1 and 4 and 

jammer fractions p = 0.01, 0.1, 0.25, 1 and worst case, Eb/N0 = 15 dB, y = 5, v = 3 and 

rc = 0.5 are shown in Figures 6.13 and 6.14 respectively. For the case of no diversity, it is seen 

that pulse noise jamming is effective in the range 10 dB < Eb/Nj < 30 dB. At EJ/NJ = 20 dB; it is 

seen that the difference between the continuous jamming curve and the worst case performance 

curve is approximately 3 dB. For the case of diversity L = 4, jammer effectiveness has been 

negated. The worst case performance curves for the coded and uncoded systems are shown for L 

= 1 and 4, Et/N0 = 15 dB, y = 5, v = 3 and rc = 0.5 in Figure 6.15. The performance 

improvement between the uncoded and coded systems for both diversity cases is significant with 

the L = 4 diversity case again showing the larger net improvement. These observations also apply 

to the higher code rate system worst case performance curves shown in Figure 6.16 for L = 1 and 

4, Eb/N0 = 15dB,y = 5,v = 5 andrc = 0.75. These observations are similar to those made 

under the Rayleigh fading analysis. Performance curves for the noise-normalized receiver for 

diversity orders L = 1 and 4 and jammer fractions p = 0.01, 0.1, 0.25,1 and worst case, Eb/N0 = 

10 dB, y = 5, v = 5 and rc = 0.5 are shown in Figures 6.17 and 6.18 respectively. It is seen 

that pulse noise jamming is not effective at either diversity order. It is recalled that the pulse noise 

jammer was effective at E^Q = 15 dB and L = 1 for y = 5, rc = 0.5 and v = 5. The lack of 

jammer effectiveness at Eb/N0 = 10 dB is most likely attributable to the fact that the overall signal- 

to-noise (thermal noise plus interference noise) ratio is lower. Continuous jamming is generally 

more effective for this condition. Figure 6.19 shows the worst case performance curves for the 

coded and uncoded systems for diversity orders L = 1 and 4, Et/N0 = 10dB,y = 5,v = 5 and 

rc = 0.5. The performance improvement between the uncoded and coded systems for each 

diversity order is significant with again the case of L = 4 having the larger net improvement. These 

observations also apply to the higher code rate system where in Figure 6.20 the worst case 
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performance curves for the coded and uncoded systems are shown for L = 1 and 4, Eb/N0 = 10 dB, 

Y = 5, v = 7 and rc = 0.75. In the case of no diversity, this differs from that observed for the 

Rayleigh channel in Figure 6.12 where the difference between the uncoded and coded systems for 

Eb/N0 = 10 dB, v = 7 and rc = 0.75 was rather small. 
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Figure 6.9: Performance of noise-normalized receiver for pulse jamming fractions p = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 1, E^/NQ = 10 dB, y = 0, v = 5 and rc = 0.5. 
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Figure 6.10: Performance of noise-normalized receiver for pulse jamming fractions p = 1,0.25, 
0.1, 0.01 and worst case for diversity order L = 4, E^Q = 10 dB, y = 0, v = 5 and rc = 0.5. 

Figure 6.11: Worst case performance comparison of coded and uncoded system for noise- 
normalized receiver for diversity orders L = 1 and 4, EJ/NQ = 10 dB, y = 0, v = 5 and rc = 0.5. 
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Figure 6.12: Worst case performance comparison of coded and uncoded system for noise- 
normalized receiver for diversity orders L = 1 and 4, Eb/N0 = 10 dB, y = 0, v = 7 and rc = 0.75. 
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Figure 6.13: Performance of noise-normalized receiver for pulse jamming fractions p = 1, 0.25, 
0.1,0.01 and worst case for diversity order L = 1, Eb/N0 = 15 dB, y = 5, v = 3 and r   - 0.5. 
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Figure 6.14: Performance of noise-normalized receiver for pulse jamming fractions p = 1,0.25, 
0.1,0.01 and worst case for diversity order L = 4, FyN0 = 15 dB, y = 5, v = 3 and rc = 0.5. 
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Figure 6.15: Worst case performance comparison of coded and uncoded system for noise- 
normalized receiver for diversity orders L = 1 and 4, Et/N0 = 15 dB, y = 5, v = 3 and rc - 0.5 
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Figure 6.16: Worst case performance comparison of coded and uncoded system for noise- 
normalized receiver for diversity orders L = 1 and 4, Eb/N0 = 15 dB, y = 5, v = 5 and rc = 0.75. 
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Figure 6.17: Performance of noise-normalized receiver for pulse jamming fractions p = 1, 0.25, 
0.1,0.01 and worst case for diversity order L = 1, EJ/NQ = 10 dB, y = 5, v = 5 and rc = ' 0.5. 
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Figure 6.18: Performance of noise-normalized receiver for pulse jamming fractions p = 1,0.25, 
0.1,0.01 and worst case for diversity order L = 4, Et/N0 = 10 dB, y = 5, v = 5 and rc = 0.5. 

10 

Eb/N0=10dB       v=S       T^S        r=O.S 

OOOOOOOOOOOOOOOOOOOOT) 

-**—*—X—X—X—X—K—X—M—X—X—X—X—X—X—X—X—X—): 

■o-o- 
-o-o-o-e- e e ©-©-©-©- 

—©  uncoded, L=1 
-©— coded, L=1 

—x  uncoded, L=4 
-K — coded, L=4 

"* -K -X -K -*—X—X—X— X— X- X-  ): 

_1_ 
10 15 25 30 35 40 

Figure 6.19: Worst case performance comparison of coded and uncoded system for noise- 
normalized receiver for diversity orders L = 1 and 4, EJ/NQ = 10 dB, y = 5, V = 5 and rc = 0.5 
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Figure 6.20: Worst case performance comparison of coded and uncoded system for noise- 
normalized receiver for diversity orders L= 1 and 4, Ej/IN^ 10 dB, y =5, v = 7 and rc = 0.75. 

B.    PERFORMANCE ANALYSIS FOR THE PDSC1 RECEIVER AND SOFT DECISION 

VITERBI DECODING FOR A RAYLEIGH FADING CHANNEL 

A block diagram of the DS-DPSK/PDSC1 receiver coded system is shown in Figure 6.21. 

Prior to deinterleaving, it is seen that the overall receiver structure is exactly the same as the 

uncoded PDSC1 receiver system. Due to the computational complexity involved in the numerical 

analysis of the performance of the coded PDSC1 system, only a few cases were able to be analyzed. 

The performance of the coded PDSC1 system will be compared to the coded noise-normalized, 

self-normalized and linear receiver systems towards the end of the chapter. 
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Figure 6.21: Block diagram of the DS-DPSK/PDSC1 receiver coded system. 

C.    PERFORMANCE ANALYSIS FOR THE SELF-NORMALIZED RECEIVER AND 

SOFT DECISION VITERBI DECODING 

A block diagram of the DS-DPSK/self-normalized receiver coded system is shown in 

Figure 6.22. It is seen that the receiver structure is exactly the same as the coded noise-normalized 

receiver system with the noted exception of the type of normalization. 
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Figure 6.22: Block diagram of the DS-DPSK receiver coded system with self-normalization. 
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1.   Numerical Results 

In this section, the performance of the coded self-normalized receiver system in a pulse 

noise jamming environment is analyzed. As in the case of the coded noise-normalized system, the 

worst case performance for the coded self-normalized receiver system was produced by those 

conditions outlined in equations 2.30 and 2.31. To keep this analysis consistent with the analysis 

of the uncoded self-normalized receiver system, equation 2.31 (p1 = 0, p = p2) is selected to 

represent worst case performance. Performance curves for the self-normalized receiver for 

diversity orders L = 1 and 4 and jammer fractions p = 0.01, 0.1, 0.25,1 and worst case, E^/NQ = 

15 dB, Y = 0, v = 3 and rc = 0.5 are shown in Figures 6.23 and 6.24 respectively. It is seen 

that pulse noise jamming is not effective for either diversity case since the continuous jamming 

curves correspond to the worst case performance curves. It is seen for most of the range of Eb/Nj 

there is significant performance improvement when moving from no diversity to a diversity order 

of L = 4. This is clearly seen in Figure 6.25 where the worst case performance curves for the coded 

and uncoded systems are shown for L = 1 and 4, Eb/N0 = 15 dB, y = 0, v = 3 and rc - 0.5. In 

addition, the performance improvement between the uncoded and coded systems is significant with 

the case of L = 4 demonstrating the larger net performance increase. This is similar to what was 

observed for the noise-normalized receiver. Figure 6.26 compares the worst case performance 

curves for the coded and uncoded systems for L = 1 and 4, EJ/NQ = 15 dB, y = 0,v = 5 and 

rc = 0.75. It is seen that there is little difference between the uncoded and coded performance 

curves for no diversity. In contrast, there is a significant performance improvement in favor of the 

coded system over the uncoded system for L = 4. Comparing to Figure 6.25, it is seen that the 

performance improvement afforded by the code rate of rc = 0.75 with constraint length of v = 5 

is not as great as that for the code rate rc = 0.5, constraint length v = 3 system for any diversity 

case considered. This is similar to what was observed for the noise-normalized receiver. 
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Figure 6.23: Performance of self-normalized receiver for pulse jamming fractions p = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 1, Ef/No - 15 dB, y = 0, v = 3 and rc = 0.5. 
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Figure 6.24: Performance of self-normalized receiver for pulse jamming fractions p = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 4, Eb/N0 = 15 dB, y = 0, v = 3 and rc = 0.5. 
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Figure 6.25: Worst case performance comparison of coded and uncoded system for self- 
normalized receiver for diversity orders L = 1 and 4, Eb/N0 = 15 dB, y = 0, v = 3 and rc = 0.5. 
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Figure 6.26: Worst case performance comparison of coded and uncoded system for self- 
normalized receiver for diversity orders L = 1 and 4, Eb/N0 = 15 dB, y = 0, v = 5 and rc = 0.75. 
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Performance curves for the self-normalized receiver for diversity orders L = 1 and 4 and 

jammer fractions p = 0.01, 0.1, 0.25, 1 and worst case, Eb/N0 = 10 dB, y = 0, v = 5 and 

rc = 0.5 are shown in Figures 6.27 and 6.28 respectively. It is seen that pulse noise jamming is 

ineffective for both diversity cases. Figure 6.29 shows the worst case performance curves for the 

coded and uncoded systems for L = 1 and 4, Eb/N0 = 10 dB, y = 0, v = 5 and rc = 0.5. It is 

seen that for Et/Nj > 15 dB, the coded system performs better than the uncoded system for both 

diversity orders with the L = 4 diversity case showing a slightly larger net performance 

improvement. In comparison to the case of same code rate and higher signal-to-thermal noise ratio 

(Figure 6.25), the performance improvement between uncoded and coded systems is substantially 

less. 

Performance curves for the self-normalized receiver for diversity orders L = 1 and 4 and 

jammer fractions p = 0.01, 0.1, 0.25, 1 and worst case, Eb/N0 = 15 dB, y = 5, v = 3 and 

rc = 0.5 are shown in Figures 6.30 and 6.31 respectively. For the case of no diversity, it is seen 

that pulse noise jamming is effective in the range 10 dB < Eb/N: < 30 dB. At Eb/Nj = 20 dB; it is 

also seen that the difference between the continuous jamming curve and the worst case 

performance curve is approximately 3 dB. This is the same observation that was made for the 

noise-normalized receiver. For the case of diversity L = 4, it is seen that jammer effectiveness has 

been negated. The worst case performance curves for the coded and uncoded systems are shown 

for L = 1 and 4, Eb/N0 = 15 dB, y = 5, v = 3 and rc = 0.5 in Figure 6.32. The performance 

improvement between the uncoded and coded systems for both diversity cases is significant with 

the diversity order L = 4 showing a slightly larger net improvement. Figure 6.33 shows the worst 

case performance curves for the coded and uncoded systems for L = 1 and 4, Eb/N0 = 15 dB, 

Y = 5, v = 5 and rc = 0.75. It is observed that there is significant performance improvement 

between the uncoded and coded systems for both diversity cases. For the case of L = 1, this differs 

from what was observed for the Rayleigh channel (Figure 6.26) where relatively little performance 

improvement was obtained when comparing uncoded and coded systems. 

Performance curves for the self-normalized receiver for diversity orders L = 1 and 4 and 

jammer fractions p = 0.01, 0.1, 0.25, 1 and worst case, Ej/No = 10 dB, y = 5, v = '5 and 
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rc = 0.5 are shown in Figures 6.34 and 6.35 respectively. It is seen that pulse noise jamming is 

not effective at either diversity order. This is similar to what was observed for the noise-normalized 

receiver. Figure 6.36 shows the worst case performance curves for the coded and uncoded systems 

for diversity orders L = 1 and 4, Eb/N0 = 10 dB, y = 5, v = 5 and rc = 0.5 . The performance 

improvement between the uncoded and coded systems for each diversity order is significant. Note 

however, that the coded system with no diversity actually outperforms the coded system with 

diversity. For the same code rate, this is opposite to what was observed at the higher signal to 

thermal noise ratio (EJ/NQ = 15 dB) and lower constraint length (v = 3, Figure 6.32), where the 

coded system with diversity outperformed the coded system with no diversity. These results may 

be explained by the additional noncoherent combining losses incurred at the lower signal-to-noise 

ratio. In addition, the higher constraint length code has larger values of d, contributing more to 

noncoherent combining loss. Figure 6.37 shows the worst case performance curves for the coded 

and uncoded systems for L = 1 and 4, Eb/N0 = 10 dB, y = 5,v = 7 and rc = 0.75. In contrast 

to the previous case, it is seen that coded system with diversity now outperforms the coded system 

without diversity. This can be explained by the fact that the higher code rate system suffers less 

from noncoherent combining losses. 

137 



10" 

10 

10-2< ^000000000   0   » 

worst case 
p=1 
p=0.25 
p=0.1 
p=0.01 

20 25 30 35 

Figure 6.27: Performance of self-normalized receiver for pulse jamming fractions p = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 1, Eb/N0 = 10 dB, y = 0, v = 5 and rc = 0.5. 
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Figure 6.28: Performance of self-normalized receiver for pulse jamming fractions p = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 4, E^Q = 10 dB, y = 0, V = 5 and rc = 0.5. 
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Figure 6.29: Worst case performance comparison of coded and uncoded system for self- 
normalized receiver for diversity orders L = 1 and 4, E^/NQ = 10 dB, y = 0, v = 5 and rc = 0.5. 
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Figure 6.30: Performance of self-normalized receiver for pulse jamming fractions p = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 1, E^Q 

= ^ dB, y = 5, v = 3 and r   = 0.5. 
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Figure 6.31: Performance of self-normalized receiver for pulse jamming fractions p = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 4, Et/No = 15 dB, y = 5, v = 3 and rc = 0.5. 
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Figure 6.32: Worst case performance comparison of coded and uncoded system for self- 
normalized receiver for diversity orders L = 1 and 4, Eb/No = 15dB,y=5,v = 3 and rc = 0.5. 
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Figure 6.33: Worst case performance comparison of coded and uncoded system for self- 
. normalized receiver for diversity orders L = 1 and 4, Eb/N0 = 15 dB, y = 5, v = 5 and rc = 0.75. 

Figure 6.34: Performance of self-normalized receiver for pulse jamming fractions p = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 1, Eb/No =10dB,y=5,v = 5 and rc = 0.5. 
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Figure 6.35: Performance of self-normalized receiver for pulse jamming fractions p = 1,0.25,0.1, 
0.01 and worst case for diversity order L = 4, EJ/NQ 

= 10 dB, y = 5, v = 5 and rc = 0.5. 

Figure 6.36: Worst case performance comparison of coded and uncoded system for self- 
normalized receiver for diversity orders L = 1 and 4, EJ/NQ = 10 dB, y = 5, v = 5 and rc = 0.5 
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Figure 6.37: Worst case performance comparison of coded and uncoded system for self- 
normalized receiver for diversity orders L = 1 and 4, EJ/NQ = 10 dB, y = 5, v = 7 and rc = 0.75. 

D. PERFORMANCE COMPARISON BETWEEN NOISE-NORMALIZED, SELF- 

NORMALIZED, LINEAR AND PDSC1 RECEIVERS FOR A RAYLEIGH FADING 

CHANNEL 

In this section, a worst case performance comparison of the coded systems between the 

noise-normalized, self-normalized, linear and PDSC1 receivers over a Rayleigh fading channel in 

the presence of pulse noise jamming and AWGN is presented. Figure 6.38 shows the comparison 

for the parameters E^Q = 15 dB, V = 3, rd = 0.5 with a time diversity of L = 4 for the noise- 

normalized, self-normalized and linear receivers and a spatial diversity of M = 4 for the PDSC1 

receiver. It is seen that the performance of the linear and PDSC1 receivers is inferior to that of 

either the self-normalized or noise-normalized receivers with the noise-normalized receiver 

demonstrating the better performance. It is seen that pulse noise jamming is extremely effective 

against the linear receiver over the full range of Eb/Nj since the performance curve for the linear 

receiver has not yet converged to the performance for the Rayleigh limit of the channel. In the limit 

of very high signal-to-interference ratio where the pulse noise jammer is no longer effective, it is 

known from previous results that the performance of the linear receiver should equal that of the 
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noise-normalized receiver. At Eb/Nj = 40 dB, it is seen that performance curve for the linear 

receiver in terms of its probability of bit error is still several orders of magnitude higher than that 

of the noise-normalized receiver. 

Figure 6.38: Worst case performance comparison between the noise-normalized, self-normalized, 
linear and PDSC1 receivers for Eb/N0 = 15 dB, y = 0, v = 3 and rc = 0.5. 

Figure 6.39 shows the comparison for the parameters EJ/NQ = 10 dB, v = 5, rc = 0.5 

with a time diversity of L = 4 for the noise-normalized, self-normalized and linear receivers and a 

spatial diversity of M = 4 for the PDSC1 receiver. It is seen that the performance of the noise- 

normalized receiver is clearly superior to all other receivers. It is also seen that for EJ/NI > 38 dB, 

the linear and PDSC1 receivers outperform the self-normalized receiver. At a relatively strong 

signal-to-interference ratio of Eb/Nj = 20 dB however the self-normalized receiver clearly 

performs better than the linear or PDSC1 receivers. 
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Figure 6.39: Worst case performance comparison between the noise-normalized, self-normalized, 
linear and PDSC1 receivers for Eb/N0 = 10 dB, y = 0, v = 5 and rc = 0.5. 

E.     CHAPTER CONCLUSIONS 

In this chapter, the performance of Direct Sequence Differential Phase Shift Keying (DS- 

DPSK) with convolutional coding and soft decision Viterbi decoding in a Rician fading channel in 

the presence of pulsed noise interference and additive white Gaussian noise (AWGN) has been 

considered. Upper bounds on the probability of decoder error and bit error were derived. It was 

shown that the operation of the coded noise-normalized, self-normalized and linear DS-DPSK 

systems with L   order time diversity was equivalent to the respective uncoded DS-DPSK systems 

with dhth order time diversity. The coded PDSC1 system with Mr   order spatial diversity was 

shown to be equivalent to the uncoded system with M    order spatial diversity and d    order time 

diversity. The coded PDSC1 system with M   order spatial diversity and L    order time diversity 

was shown to be equivalent to the uncoded system with M order spatial diversity and dL order 

time diversity. These results were shown to be independent of the condition of fading or pulse noise 

jamming. 
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In the numerical analysis of the noise-normalized receiver for the Rayleigh channel, for 

Eb/N0 = 10 dB or 15 dB with or without diversity, it was seen that the effects of pulse noise 

jamming had been completely negated. For moderate fading (y = 5), for EJ/NQ = 15 dB and no 

diversity, pulse noise jamming was effective. The effects of pulse noise jamming had been negated 

with a diversity order of L = 4. Pulse noise jamming was seen not to be effective at the lower signal 

to thermal noise ratio considered (E^/NQ = 10 dB) for either case of diversity. The lack of jammer 

effectiveness was attributed to the fact that the overall signal-to-noise ratio (thermal noise plus 

interference ratio) was smaller, generally a better condition for continuous jamming. For both 

fading conditions considered, it was seen that the net performance improvement between uncoded 

and coded systems was significantly greater when diversity was employed. In addition, the net 

performance improvement was greater at higher signal to thermal noise ratio. For the Rayleigh 

channel at the higher code rate, Ej/No = 10 dB and no diversity, it was seen that there was little 

difference in performance between the uncoded and coded system. At the moderate fading 

condition, this difference grew substantially. 

In the numerical analysis of the self-normalized receiver for the Rayleigh channel, for Eb/ 

N0 = 10 dB or 15 dB with or without diversity, it was seen that the effects of pulse noise jamming 

had been completely negated. For moderate fading, E^/NQ = 15 dB and no diversity, pulse noise 

jamming was seen to be effective. These effects were negated when diversity was employed. Pulse 

noise jamming was not effective at the lower signal to thermal noise ratio considered for either 

diversity case considered. In contrast to what was observed for the noise-normalized receiver, the 

coded self-normalized system did not always benefit from the combined use of diversity and 

coding. For the Rayleigh channel, the coded system with diversity always outperformed the coded 

system without diversity. For the moderate fading condition considered, it was seen that with E^ 

N0 = 10 dB, v = 5, and rc = 0.5, the coded system without diversity outperformed the coded 

system with diversity. This was best explained by the additional noncoherent combining losses that 

could occur at the moderate fading condition with the proper combination of signal-to-noise ratio, 

code rate, constraint length and diversity. 

The worst case performance of the coded noise-normalized, self-normalized, linear and 

PDSC1 systems over a Rayleigh fading channel in the presence of pulse noise jamming and 

AWGN were compared for a diversity of L = 4 and M = 4 (PDSC1). At Eb/N0 = 15 dB, it was seen 
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that the performance of the linear and PDSC1 receivers was inferior to that of either the self- 

normalized or noise-normalized receivers with the noise-normalized receiver demonstrating the 

better performance. At Eb/N0 = 10 dB, the noise-normalized receiver remained superior to all other 

receivers. At very high signal-to-interference ratio, the PDSC1 and linear receivers performed 

slightly better than the self-normalized receiver. At lower signal-to-interference ratios, the self- 

normalized receiver performed better than either the PDSC1 or the linear receiver. 
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VII. CONCLUSIONS 

A.    SUMMARY OF WORK 

The performance of a Direct Sequence Differential Phase Shift-Keying (DS-DPSK) spread 

spectrum system over a Rician frequency-nonselective, slowly fading channel in the presence of 

pulsed noise interference and AWGN has been considered. The performance of several receiver 

configurations, that of the self-normalized, noise-normalized, linear, PDSC1 and PDSC1 with time 

diversity receivers has been analyzed. In addition, the performance of the coded self-normalized, 

noise-normalized, linear and PDSC1 receiver systems utilizing soft decision Viterbi decoding has 

been analyzed. A wideband pulse noise interference model was employed which allowed the 

possibility that either 1,2 consecutive or no bits were jammed over the 2-bit signaling interval. For 

all receiver configurations, the worst case performance as a function of the parameter p, the 

fraction of time or bits the pulse noise jammer is in the "on" state was analyzed. For all receivers, 

the value of p was determined through numerical search for each value of signal-to-interference 

ratio. It was determined that two values of p produced identical worst case performance, but that 

the variances over any 2-bit signaling interval were the same for both cases. For the uncoded 

systems, the worst case performance for a fixed value of p as a function of signal-to-interference 

ratio and of the parameter ß, the ratio of fraction of 1-bit jammed events to 2-bit jammed events, 

was also analyzed. Several measures of efficacy with respect to mitigating the effects of pulse noise 

jamming for each receiver configuration were considered. The probability of bit error as a function 

of signal-to-interference ratio with diversity level as a parameter was first analyzed. A particular 

receiver configuration was considered effective in pulse noise mitigation if the worst case 

performance curve moved closer to the continuous jamming curve as diversity level was increased. 

For the uncoded systems, another measure of efficacy was determined by observing the optimum 

value of p as a function of diversity and y, the direct-to-diffuse signal energy ratio. Here, a 

particular receiver configuration was considered efficient in pulse noise jamming mitigation if the 

value of p increased for increasing diversity level. For all receiver configurations, it was 

determined that pulse noise jamming became more effective as the signal-to-interference ratio and/ 
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or the value of y increased. The worst case performance of the receivers was compared for both 

the uncoded and coded systems. 

For the uncoded self-normalized receiver system, a closed form expression for the 

conditional probability density function of the random variable at the output of the normalizer prior 

to combining was available. A closed form solution for the probability of bit error however was 

not available and the probability of bit error had to be determined through numerical analysis. In 

the numerical analysis, for fixed values of the jamming fraction p, worst case performance as a 

function of the signal-to-interference ratio and ß demonstrated that for severe and moderate 

fading, the best strategy for the jammer was to jam alternating bits rather than adjacent bits. In the 

worst case performance analysis of the self-normalized receiver as a function of the parameter p, 

it was determined that the self-normalized receiver was effective in mitigating the effects of pulse 

noise jamming for both severe and moderate fading conditions. For moderate fading conditions, 

the optimum value of p to produce worst case performance was observed as a function of diversity. 

It was seen that increasing the diversity order forced the jammer to a more continuous form of 

jamming. The optimum value of p to produce worst case performance was observed as a function 

of y with diversity as a parameter. It was concluded that pulse noise jamming effectiveness 

increased with increasing y and decreased with increasing diversity order. This was observed for 

values of y between 0 and 10. 

The noise-normalized receiver was described to be an idealization of the self-normalized 

receiver since the normalization variable contained noise only components. For the uncoded noise- 

normalized receiver system, a closed form expression for the joint probability density function for 

the random variables at the output of the normalizer was available. For the signal branch, the 

marginal conditional probability density function for the random variable at the output of the 

combiner was not available. A closed form solution to the probability of bit error was also not 

available and the probability of bit error had to be determined through numerical analysis. The 

numerical burden was alleviated to some degree through determination of the signal branch 

marginal probability density function at the output of the combiner conditioned on homogeneous 

jamming events. As was the case for the self-normalized receiver with fixed p , the best strategy 

for the jammer was to jam alternating bits rather than adjacent bits for severe and moderate fading. 
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In the worst case performance analysis as a function of p, the noise-normalized receiver was also 

seen to be effective in mitigating pulse noise jamming. For the moderate fading condition as 

diversity order was increased, the worst case performance curve moved closer to the continuous 

jamming curve. The value of p also increased for increasing diversity order. Pulse noise jamming 

was also seen to be more effective at higher values of y. The performance of the noise-normalized 

receiver with non-ideal noise-normalization was analyzed. It was seen that if one is willing to 

accept a slight degradation in performance, relatively crude measurement techniques may be 

utilized. This makes the noise-normalized receiver a practical as well as effective receiver in pulse- 

jammed environments. 

Where the self-normalized and noise-normalized receivers utilized time diversity, the set 

of PDSC1 receivers utilized spatial diversity. PDSC receivers are premised on the fact that not all 

multipath components of the received signal may arrive at the same antenna. Their performance is 

said to be path independent since only the antenna with the largest output is selected. PDSC1 

receivers have the advantage that they do not suffer noncoherent combining losses as do EGC 

receivers. For the PDSC1 receiver, a closed form solution for the conditional probability of bit 

error over a Rayleigh fading channel was available. A closed form solution for the conditional 

probability of bit error over a Rician fading channel was not available and required numerical 

solution. In the case of the Rayleigh channel, for a very high peak power specification (p small), 

jamming alternating bits proved to be a more effective jamming strategy than jamming adjacent 

bits for lower values of signal-to-interference ratios (Ej/Nj < 17 dB). For higher values of signal- 

to-interference ratio, jamming adjacent bits was shown to be most effective. For a lower peak 

power specification, jamming alternating bits proved to be the most effective jamming strategy but 

only over a smaller range of low signal-to-interference ratio. Similar results were observed for the 

case of moderate fading (y = 5). 

For either the severe or moderate fading condition, it was observed that the PDSC1 receiver 

was not effective in mitigating pulse noise jamming. It was observed that the worst case 

performance curve did not move closer to the continuous jamming curve for increasing diversity 

order. For the Rayleigh channel, the optimum value of p remained constant as diversity order was 

increased. For the moderate fading condition, it was observed that p increased slightly as diversity 

order was increased. The amount of increase was not as great as that observed for either the self- 
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normalized or noise-normalized receivers however. In general, the efficacy of the PDSC1 receiver 

against pulse noise jamming improved as the fading condition improved (higher y). For the 

Rayleigh channel, it was observed that the worst case performance of the PDSC1 receiver was 

improved by increasing diversity order at higher values of signal-to-interference ratio. The amount 

of performance improvement between diversity orders was seen to decrease as diversity order was 

increased. Also for the Rayleigh channel, the PDSC1 receiver demonstrated a slight performance 

degradation by increasing diversity order at lower values of signal-to-interference ratio. At the 

moderate fading level, the performance improvement at high signal-to-interference ratio was 

significant between M = 1 and M = 2 with very little change for higher diversity orders. 

For the PDSC1 receiver with time diversity, closed form solutions for the probability of bit 

error were not available for either the Rayleigh or Rician channels and required numerical solution. 

The performance of the PDSC1 receiver with time diversity for a fixed jammer peak power 

specification under severe and moderate fading conditions was analyzed. It was determined that 

for both fading conditions, jamming alternating bits produced the worst performance for the lower 

values of signal-to-interference ratios, while jamming consecutive bits produces the worst 

performance at the higher values. These results are similar to that observed for the PDSC1 receiver 

with no time diversity. For either the severe or moderate fading condition, it was observed that the 

PDSC1 receiver with time diversity was not effective in mitigating pulse noise jamming. It was 

observed that the worst case performance curve did not move closer to the continuous jamming 

curve for increasing spatial diversity order with fixed time diversity order (L = 4) or for increasing 

time diversity order with fixed spatial diversity order (M = 4). For either the Rayleigh channel or 

the moderate fading condition, the optimum value of p was seen to decrease slightly for increasing 

time diversity order with M = 4. A slight increase in p was observed per increasing spatial 

diversity order with L = 4. This observation also held for other values of y between 0 and 10. For 

the Rayleigh channel, it was seen that for signal-to-interference ratios below 25 dB, increasing the 

time diversity order for a fixed spatial diversity order of M = 4 led to a gradual performance 

decrease. Above this value of signal-to-interference ratio, a time diversity order of L = 2 or 3 

produced a modest performance improvement. Similar results were observed when the spatial 

order was varied as the time diversity order remain fixed. For moderate fading, any increase in time 
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or spatial diversity order led to a performance degradation over the full range of signal-to- 

interference ratio. 

The worst case performance of the uncoded self-normalized, noise-normalized, linear, 

PDSC1 and PDSC1 with time diversity receiver systems under severe and moderate fading 

conditions were compared. For the Rayleigh fading channel, it was seen that the PDSC1 receiver 

with time diversity was inferior to the other receivers for Et/Nj < 28 dB. As the signal-to- 

interference ratio was increased above EJ/NJ = 35 dB in the Rayleigh limit of the channel, the 

PDSC1 receiver with time diversity was seen to provide the best performance of all receivers. Over 

most of the range of signal-to-interference ratio considered however, the noise-normalized receiver 

provided superior performance to all other receivers. The self-normalized receiver provided the 

next best performance below Eb/Nj = 25 dB and was inferior to all other receivers above EJ/NJ = 

30 dB in the Rayleigh limit of the channel. The performances of the PDSC1 and linear receivers 

were similar over the full range of signal-to-interference ratios considered. For the moderate fading 

channel, it was seen that the PDSC1 receiver with time diversity was inferior to the other receivers 

over the full range of signal-to-interference ratio. In this case, the noise-normalized receiver 

provided superior performance to all other receivers with the self-normalized receiver attaining the 

next best performance. The linear and PDSC1 receivers exhibited similar performances again. 

In the last chapter, the performance of DS-DPSK with convolutional coding and soft 

decision Viterbi decoding in a fading channel in the presence of pulsed noise interference and 

additive white Gaussian noise (AWGN) was considered. Upper bounds on the probability of 

decoder error and bit error were derived. It was shown that the operation of the coded noise- 

normalized, self-normalized and linear DS-DPSK systems with L    order time diversity was 

th 
equivalent to the respective uncoded DS-DPSK systems with dL   order time diversity. The coded 

PDSC1 system with M   order spatial diversity was shown to be equivalent to the uncoded system 

with M    order spatial diversity and d   order time diversity. The coded PDSC1 system with M 

order spatial diversity and L    order time diversity was shown to be equivalent to the uncoded 

system with M order spatial diversity with dL order time diversity. These results were shown 

to be independent of the condition of fading or pulse noise jamming. 
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In the numerical analysis of the coded noise-normalized receiver, it was seen that pulse 

noise jamming was effective for the moderate fading condition at EJ/NQ = 15 dB and without 

diversity. It was seen that the effects of pulse noise jamming had been negated with a diversity 

order of L = 4. For both severe and moderate fading, it was seen that the net performance 

improvement between the uncoded and coded systems was significantly greater when diversity 

was employed. In addition, the net performance improvement was greater at higher signal-to- 

thermal noise ratio. 

In the numerical analysis of the coded self-normalized receiver, it was seen that pulse noise 

jamming was effective for the moderate fading condition at Eb/N0 = 15 dB and without diversity. 

It was seen that the effects of pulse noise jamming had been negated with a diversity order of L = 

4. In contrast to what was observed for the noise-normalized receiver, the coded self-normalized 

system did not always benefit from the combined use of diversity and coding. For the Rayleigh 

channel, the coded system with diversity always outperformed the coded system without diversity. 

For the moderate fading condition considered, it was seen that with Et/N0 = 10 dB, v = 5, and 

rc = 0.5, the coded system without diversity outperformed the coded system with diversity. This 

was best explained by the additional noncoherent combining losses that could occur at the 

moderate fading condition with the proper combination of lower signal-to-noise ratio, code rate, 

constraint length and diversity. 

The worst case performance of the coded noise-normalized, self-normalized, linear and 

PDSC1 systems over a Rayleigh fading channel in the presence of pulse noise jamming and 

AWGN were compared for a diversity of L = 4 and M = 4 (PDSC1). At E^Q = 15 dB, it was seen 

that the performance of the linear and PDSC1 receivers was inferior to that of either the self- 

normalized or noise-normalized receivers with the noise-normalized receiver demonstrating the 

better performance. At the lower signal-to-thermal noise ratio, the noise-normalized receiver 

remained superior to all other receivers. At very high signal-to-interference ratio, the PDSC1 and 

linear receivers performed slightly better than the self-normalized receiver. At lower signal-to- 

interference ratios, the self-normalized receiver performed better than either the PDSC1 or linear 

receiver. 

This main contributions of this work are now summarized. First a novel implementation of 

a DPSK detector was successfully employed in several receiver configurations to mitigate the 
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combined effects of pulse noise interference and signal fading. A full analytical development and 

numerical analyses was provided for all receiver types. As part of the modeling effort, a pulse noise 

interference model was adopted which allowed for the possibility that one, two or none of the 

modulated bits experienced interference. The coded operation of the nonlinear systems were 

derived in terms of an equivalent uncoded operation. This led to a straightforward approach for 

which to evaluate coded system performances. 

B.    SUGGESTIONS FOR FUTURE WORK 

In the analysis of DS-DPSK over a Rician fading channel in the presence of pulse noise 

interference and AWGN, the performance of several receiver types has been considered. It has 

been seen that the noise-normalized and self-normalized receivers were very efficient in mitigating 

the effects of pulse noise jamming. The performance of the set of PDSC1 receivers suffered where 

pulse noise jamming was most effective. The most probable cause of this outcome is the fact that 

the set of M antenna outputs which form the decision statistic, experience the same level of 

interference at any point in time. Therefore some output decisions will be heavily biased from the 

effects of pulse noise jamming, while others will experience little or no effect. One way to make 

the decision process fairer would be to distribute the effects of pulse jamming out more equitably 

amongst the bits in time. One might accomplish this by utilizing L-fold time diversity with 

interleaving coupled with M-fold spatial diversity and picking the largest output over a(LxM) 

sample grid. Such a configuration would also preserve the desirable quality of path independence 

inherit in the PDSC1 receiver. One also might consider the use of the PDSC1 receiver in tandem 

with either the self-normalized receiver or noise-normalized receiver. 

It has been seen that closed form expressions for the probability of bit error were not always 

available throughout this work. A simpler distribution for the effects of fading in terms of its 

mathematical description such as the Nakagami-m distribution [30] might lead to closed form 

solutions. This would also relieve some of the numerical burden encountered with the relatively 

complex mathematical description of the Rician distribution. In addition, the Nakagami-m 

distribution is considered a more general description of the fading phenomenon than the Rician 

distribution. One of the reasons the Rician distribution is commonly used in the literature is its 

intuitive appeal where the direct path signal energy and the diffuse signal energy are identified as 

separate parameters of the distribution. 
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APPENDIX A 

The conditional density function for the random variable Zlk is derived here. From 

Chapter n, recall the following relations: 

w 
fzlk,w(zik>w\°>lP = TTTexP 

(   w(l~zik))„_J   wz\k + 4a\(2a<fi>*i? 
A    2    2 4c-, a. 2 a 

exp 

h    J 

-Xk_ 

2a 
I, 

h    J 
2 

\      <3\.    ■ ) 

X 

u(w)u(zu) (A.!) 

fzn(zlk\0,lj) = jfZik>w(zlk,w\0,lj)dw (A.2) 

w If a substitution x = — is made in equation A. 1, equation A.2 may be reexpressed as 

fzlk(zu\0,lj) = 
exp(-2a2/Oi.)ai.°!        (   X{G\.{\ -zlk) + c2

2.zlk)') 
-—-pexp 

4a, o        V 2 a, 
x 

I, 
'2ajxz~[k 

V      1
J    J 

u(zlk)dx 

With the application of the following relation 

ln(z) = fnJn(iz) 

(see equation 8.406.3, page 961 of [19]), equation A.3 can be rewritten as 

,    ,     .nxx      exp(-2a2/aj)a^!        (   x{a\(\-zxd + <s\z^\ 

4a2; 0 V 2a2, 

X 

i2a^ ri2a jxzlk u(zlk)dx 

(A.3) 

(A.4) 

(A.5) 

where i = *J-i .With the application of the following relation 
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oo 1 O 

jX
n + 2"exp(-Qx)]v(2Xjc)dx = #i!X,vexpf- ^Q"B_v".1L;(X2/ß)       (A.6) 

o 

(see equation 6.643.4, page 741 of [19]), A.5 can be expressed as 

exp(-2a2/a2 )a2    exp(-A2/Q)L?(A2/Q) 
fzu(*ik\o> V = , 2  
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where     Ln(m)     is    the    Laguerre    polynomial     of    order    n,     A = —-—,     and 
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With the application of the following relation 

I 
<ji-m)m\ 

m = 0 

(see equation 8.970.1, page 1061 of [19]), equation A.7 may be reexpressed as 
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2 2 Now recall from Chapter II that the average signal energy per bit, Eb equals a + 2ca. Letting y 

2 
equal —-, the ratio of direct to diffuse signal power, then the diffuse signal power, 2aa, may be 

2°2 

CTL 2 2        2 2 2 
equivalently expressed as -; —. Recall also that a1  = (4crfl + cy)  and G2. = Oj where 

0 0 0 
CT . = Gn + Gl for j = 1,2,3 is the total conditional noise variance, represent the total conditional 

variances for branches 1 and 2 respectively. With the use of these relations and some algebraic 

simplifications, equation A.9 can be reexpressed as 
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where rL = (-J   + 
/"Er VI    /E 

2 
KalJ 

— j is the average bit energy to thermal noise density ratio and 

2 is the average bit energy to jammer noise power ratio for case L,j = 1,2,3. 
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APPENDIX B 

B.l   DERIVATION OF LAPLACE TRANSFORM OF fZu(zlk\0,1;) 

The Laplace transform of /Zu(zlfc|0,1;) is given by 

CO 

Fzu('l<U/) = J/z^ulO'VeapC^i*)^* (B.ll) 

Substituting in the expression for fZlk(z1!c\0,1;) (equation 3.5) into equation B.ll yields 
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By defining a new variable * = Jz^k, equation B.12 can be rewritten as 
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With the application of the following relation 

I„(z) = i"nJn(iz) 

(see equation 8.406.3, page 961 of [19]), equation B.13 may be rewritten as 
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where i = //-l. With the application of the following relation 

00 V 2 

J/ + 1exp(-Q/)Jv(ßA:)^ =       ßv + 1exp(- jL) (B.16) 

(see equation 6.6314 on page 738 of [19]), equation B.15 may be expressed as 
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B.2  DERIVATION OF fz {zlk\0,l{)     J 

I» 1. 
The function fz (zjJO, I2)      ; may be derived as the inverse Laplace transform of 

[FzJs\0,lj)]lj, defined to be 
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Substituting equation B.17 into B.21, 
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Applying the known relation £/{cxp(-bz)f(z)} = Fz(s + b), where jß denotes the forward 

Laplace transform, equation B.14 and the following relation 

£{a-W2zv/\(2j^z)} = -^exp(- ^   v>-l (B.23) 

(see equation 30 on page 185 of [20]), equation B.22 can be expressed as 
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It is now desired to express this equation in terms of the signal to thermal noise density ratio (Ej/ 

2 2 N0) and the signal to noise interference ratio (Eb/ar), where Gj is the conditional noise variance 

2 2        2 for the jammer as before. Recalling that a • = an + ax is the total conditional noise variance and 

2 2        2 ar = (4aa + a) is the total conditional variance for branch 1 of our receiver, the following 

relations hold, 
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a 

a where   y = —-    is   the   ratio   of  direct   signal   power   to   diffuse   signal   power   and 
2a: 

^<W^V Substituting equation B.26a and B.26b into equation B.25 gives 
v«i/ 
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B.3  DERIVATION OF LAPLACE TRANSFORM OF fz\zlk\0,1;, tfj 

The Laplace transforai of fz [zlk\0,1 -, c •) is given by 

FzJs|0,1;, a)) = J/Zl4(z1Jfc|0, lj, tytxV(-szlk)dzlk (B.31) 

Substituting in the expression for fz [z1!c\0,1, a ■ I (equation 3.18) into equation B.31 
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By defining a new variable * = .^z^, equation B.32 can be rewritten as 
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Upon applying equation B.14, equation B.33 may be rewritten as 
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With the application of equation B. 16, equation B.34 may be expressed as 
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B.4 DERIVATION OF /z lzu|0,1;-, aj 

The function fz   Zj JO,1 •, a- may be derived as the inverse Laplace transform of 

FZu(^|0,I;-,aJ)    , defined to be 
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Substituting equation B.35 into B.41 yields 
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Applying the relation L{&xp(-bz)f(z)} = -FzO + b), equations B.14 and B.23, equation B.42 

can be expressed as 
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It is again desired to express these equations in terms of the signal to thermal noise density ratio 

(Eb/N0) and the signal to noise interference ratio (Eb/aL). Applying the following relationships: 

2 ,    2 a] _ (qJ/qJXv+ l)rL 

2       2 + (y + i)rL 
(B.45a) 

a 
a2    2 + (Y+i)rL 

(B.45b) 

2 ,   2, qj = (a;/q;)(Y + l)rL 

2 Y 
(B.45c) 

a 

equation B.44 may be rewritten as 

>h _ f(qy
2/q;

2)(y+l)rV|     (   4Yi, + (a"/aJ
z)(Y+l)rLz1^ 

fzlk\zlk\0,lj,Cj 2(2 + (Y+l)rL) 
exp 2(2 + (Y+l)rL) 

x 

(iizl)       f r-T  
'(g;

2/qj)zu(Y+l)rLV 2 ^ 4(q2/q2)Y(Y + 1)1 
4^" J H^       (2 + (Y+l)rL 

^ 

u(zu)      (B.46) 
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B.5  DERIVATION OF LAPLACE TRANSFORM OF fVlt(vlk\0,1;) 

The Laplace transform of /yu(v1Jfc|0, I;) is given by 

FVik(s\0,Ij) = jfVli(vlk\0,Ij)exp(svlk)dvlk (B.51) 

Substituting in the expression for fvlk(
vik\®> I;) (equation 3.1) into equation B.51 yields 

/ 2Y* 1 /       i«.M. 
FVik(s\0,lj) = — exp 

2o 

2a Jexp \-\ 
r      ! U f2«^ 

ljfc 

l,-     v   "i.y0 

s + 
2Ci 

Ir 
v    ^«i .yy 

2 
rfvljfc     (B.52) 

By defining a new variable x = Jv^., equation B.52 can be rewritten as 

FVn(s\0,Ij) = — exp 
2a   ' 

i,    v   <v<> 
jjcexp 

(   J \\ 

-x s + 
^2ou^ 

2 
c£c (B.53) 

With the application of equation B.14, equation B.53 may be rewritten as 

(   *»  2N r or 
-X ,y + 

1 Y\ (: 

o 
i2ax 

2 
Fvlt(*|o»y = 4exP - ^r PexP 

ai,-     v   ai;/o       v    v    2^.;; 

Now by applying equation B.16, equation B.54 may be expressed as 

FVa{s\0,lj) = —j 
1 •exp <    2a^ 

2c, S + ' 
V     2o1( 

exp 
v  »l.; 

a 

5 + 

v   v   2ai/; 

(B.54) 

(B.55) 

B.6  DERIVATION OF /yu(vu|0,1,)      J' 

® i- 
The function fv (vlk\Q, Ix)      J may be derived as the inverse Laplace transform of 

[Fv (S\Q, I.-)]1', defined to be 

oo 

/Vu(vlt|0,iy) ®ij = j[FVik(s\0,Ij)]ijcxV(Svlk)dS (B.61) 
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Substituting equation B.55 into B.61 yields 

/vu(Vu|0,Iy) 
( 1 Vi 

i  _ 
f    2a2iA 

exp 
■    2      . 

v   <*i7. y0v 

/ Vv 
5 + 

2o 
x 

V 

exp 

A 

2. 
a i • 

5 + 
V     2GhJJ 

exp(svlk)ds (B.62) 

By applying the relation L{ exp (-fo)/(z)} = Fz(s + b) and equations B.14 and B.23, equation 

B.62 can be expressed as 

j_Y/a2i,.Y^ 
/vu(vit|0,I;)     

1J
 = 

v^i.y 

exp 
vi*  ___!    2aV f    v..\ 

V    2^.7 
exp - — X 

li,-l 
vu    "(vu) 

v    <V   y 

/vu(vi*|0,V 
>i,_    1 

2a 
exp 

'    vu + 4a2i;Y v1Jk ' 

V-i 

l,      v 

2 

K-     J 

M(VU)   - 

v4a2iy 

W 
x 

(B.63) 

(B.64) 
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APPENDIX C 

C.l  DERIVATION OF THE CONDITIONAL PROBABILITY OF BIT ERROR FOR 

PDSC1 RECEIVER OVER RAYLEIGH FADING CHANNEL 

The conditional probability of bit error Pr(zj < z2|0,1;) may be expressed as 

»z2 

Pb(zl5z2|0,Iy) = JJ/z^i'^IO'1;)^!^ (C.15) 
00 

Since Zl and Z2 are independent random variables, equation C.15 can be written as 

rz2 

Pb(*i.*2|<Uy) = J J/z.fcilO.fy&i- /z2(^2|0' Ip*2 (C.16) 

With the use of equation 4.12, the inner integral of equation C.16 becomes 

M 
lfZl(zi\0,Ij)dZl = J—^exp 

o2^. 

( ■ V 
V     20WL 

1 - exp 
' 7      ^ M-l 

&!        (C.17) 

Then by applying the binomial theorem 

-Pi,? (C.18) 
p = 0 

equation C.17 can be expressed as 

Z2 Z2 
'       Z, 

\M-1 

0 

_ K-lfexp J/^Uilo,!;)&! = jrr^p--r I 
2o? 

>\ 
&! (C.19) 

V     ^1/ 

Rearranging terms then gives 

Z2 M-l 

j/Zi(Zl|o, I,)*, = £ s (M; ^(-i/ JexP(- z-^)&,    (cno) 

Carrying out the integration yields 
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22 M-l 

J/z.Uiio.y&i =.MX 
M-nc-i) 

/>   Al+P) 
1 - exp 

(   z2(l+p)) 

0 p = o 

Substituting equation C. 111 into equation C. 16 yields 

2a i,   y-i 

(C.lll) 

M-l 

nfe<N = jMX(V)(^ 
o    p = o P) 

( 
1 - exp 

z2(l+p) \l 

2a i,   /J 

fZ2(z2\0,Ij)dz2 

(C.112) 

Substituting equation 4.13 into equation C.112 gives 

Pb(z2, <slf a2. 

M-l 

O,I,) = JMX M-n(-i) 

M 

2a: 
•exp 

o    P = O 

V 

P   Xl+P) 
1 - exp 

(   z2(l+p)^ 
x 

2a l,-   /J 

1 - exp 
2a2J 

_f2_ 

2 a? V      ^"2VJ 

M-l 

dz0 (C.113) 

Again applying the binomial theorem (C.18) and rearranging terms yields 

Pb^2'al;'
a2; 

/To/To 2a*.(l+/>)^   P   A   r   J 
x 

oL 

1 - exp 
z2(l+/^ 

2a 
1;      JA 

exp 
z2(l+r) 

2a? 

After evaluating the integral, equation C.110 may be expressed as 

0 
r,   /    2        2 
Pb(^1^2 lV.ri's=i»--^-^ 

p=0r=0 
(l+/?)(l + r)V   /> 

(C.110) 

1 + 

1 

(l+p)q2 

(l+r)<yJ.J 

(C.lll) 
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Further simplifying the leading terms yields 

M-1M-1 

p^K) = i s (-o^X+i 
p=0r=0 

1-- 

X 

1 

(l+p)a2 
1 + 

(C.112) 

Expressing equation C.l 12 in terms of the signal to thermal noise and signal to interference ratio 

yields 

M-1M-1 

rb<r„|o,i,) = E I (-^"(AX," 
p=0r=0 

X 

1 

1 + 
H+P)T M 

(l+r)(2 + rM)J 

or 

M-1M-1 

Pb(r„|0,.y.)= IlH),""(p
,;ip, 

p=0r=0 

1 

X 

where TM = 

1 + 

EMV
1
    f^V1 

>v    Ux2; 

(l+r)(2 + rM) 

d+p)T: M     J 

C.2 DERIVATION OF EQUATION 4.18 

Substituting equation 4.16 into 4.17 yields 

FyJLz^Ij) = J^expf- J^(X + 4a2)\l^^\k 
o2cyi, V   2ox lOiJ 

(C.l 13) 

(C.l 14) 

(C21) 
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With the application of the known relation 

y 

J
Q2G \S J 

1 fuH»-2V4 

exp 
(     2     A 5 +u 

2a2 ^-i^-l)^ (Q22) 

(see equation (2-1-121) of [5]) and equation (2-1-124) of [5] 

Fy(y) = l-Q(i,4 a  a 
(C.23) 

equation C.21 can be expressed as 

*Vu(*l|<Uy) = 1-Ö 
2a Jz\ (C.24) 

C.3  DERIVATION OF THE CONDITIONAL PROBABILITY OF BIT ERROR FOR 

PDSC1 RECEIVER OVER RICIAN FADING CHANNEL 

The conditional probability of bit error equal to Pr(zj < z2|0, I,) may be expressed as 

Ph(zvz2\0,lj) = j \fz2(z2\0,lj)dz2 fzSziW*! (C31) 

oU, -I 

Applying equation C.18 to equation 4.20, the inner integral of equation C.31 may be evaluated to 

be 

M-1->n(_l)'-       (   z.d+r)) 
K^OJ^^Mj^-^^Lexp 
7. r=0 V 2a2.   j 

(C.32) 

Substituting equations 4.19 and C.32 into C.31 and simplifying the factorial terms gives 

Pb(*l|<Uy) 
M 

M-l 

2a IG+>)-»'H 
1, r = 0 

Sid+r)"! 

o       V 2a 
x 

h   J 

exp 
(        1 l\ • —T(z1+4a ) I0 

v   2<*i. J m-m M-l 

dzx (C.33) 

Combining the exponential terms yields 
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M-l 

2c, r = n
v       y V    er, Jn ljr = 0 v    <Vo 

f2a^' 
2 

^ <*i. A 

Y      r. 
i-ß 

2a fix 
„M-l 

ö?Zi 

z,(l+r)Oj +a2 
 j 

2    2 
2^i.^2.       ; 

(C.34) 

x 

It is desired to put equation C.34 in terms of y = —- and rM =   — I   + 
2a! 

'EiA-i 

Nf 

Vf1 

2 
. This can be 

done in several steps. Recalling that aj   = (4oa + N0 + Oj.) anda2. = (NQ + ffj.), the following 

relations hold: 

O Eli 

°i  = 
-M 

i     (Y+l) 

2 a 

(2 + (Y + .l)rM) 

Y 
a2      2 + (Y+l)r, M 

°h _ 2 + (Y +i)r M 
(Y + i)r 

(C.35a) 

(C.35b) 

(C.35c) 

With these relations, equation C.34 may be reexpressed as 

M-l 

7      /     *!  r2(l + r) + (2 + r)(Y+l)rM-|N   f j      4(Y+1)YZ,       "| 
M" 2KiL WJd? 

1-Ö 

2 + (Y + i)rM 

Zi(Y+l)        1 /   .    4Y /       z^Y + D )1 
J2 + (Y + Dry ^EM(2 + (Y + i)rM)JJ 

M(2 + (Y + i)rMr; 

M-l 

dz1 (C.36) 

Letting u = —, equation C.36 may be expressed as 
"M 
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M-l 

7      L ur2(1+r) + (2 + r)(T+1)rMl\ ( 1    A(y+\)yu 
expl"2L      (2 + (Y + i)rM)      J>J(2 + (Y + i)n 

X 

VN(2 + (Y + i)rMr 

M-l 

L1  nV2 + (Y+i)rM'^2 + (Y+i)rMil (C.37) 
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