

United States Military Academy West Point, New York 10996

Precision Strike

OPERATIONS RESEARCH CENTER TECHNICAL REPORT NO. FY 93-12

19990325 2

The Operations Research Center is supported by the Assistant Secretary of the Army for Financial Management.

REPORT DOCUMENTATION PAGE			F C	orm Approved DMB No. 0704-0188	
Public reporting burden for this collection of infor gathering and maintaining the data needed, and collection of information, including suggestions Davis Highway, Suite 1204, Arlington, VA 222	ormation is e completing for reducing 202-4302, a	estimated to average 1 hour per res and reviewing the collection of info this burden, to Washington Headqu nd to the Office of Management an	ponse, including the time for review rmation. Send comments regarding uarters Services, Directorate for Inf d Budget, Paperwork Reduction Pro	ving instruction this burden ormation Open oject (0704-0	ons, searching existing data sources, estimate or any other aspect of this erations and Reports, 1215 Jefferson 188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blar	nk) 2	. REPORT DATE 15 JUNE 1993	3. REPORT TYPE AND TECHNICAL REP	DATES C	COVERED
4. TITLE AND SUBTITLE				5. FUND	ING NUMBERS
SYSTEM DESIGN APPROACI	Н ТО РІ	RECISION STRIKE			
6. AUTHOR(S) LTC DAVID W. HUTCHISON MAJ JERRY V. WRIGHT	1				
7. PERFORMING ORGANIZATION N	NAME(S)	AND ADDRESS(ES)		8. PERFO	DRMING ORGANIZATION RT NUMBER
USMA OPERATIONS RESEAD WEST POINT, NEW YORK 1	RCH CE 10996-17	ENTER 79		TECH	RPT # FY93-12
9. SPONSORING / MONITORING AG	GENCY N	AME(S) AND ADDRESS(E	S)	10.SPOI AGEI	NSORING / MONITORING NCY REPORT NUMBER
11. SUPPLEMENTARY NOTES					
12a. DISTRIBUTION / AVAILABILIT	TY STATE	MENT	- norm - yn fran yn âl ôl	12b. DIS	
DISTRIBUTION STATEMENT APPROVED FOR PUBLIC RE	ΓΑ. ELEASE;	; DISTRIBUTION IS U	NLIMITED.		
13. ABSTRACT (Maximum 200 wo	ords)			1	
THE PROBLEM WITH ACQU PROVIDED A MEANS FOR C REAL WORLD PROBLEM. T AND THE PRELIMINARY DE DEFINITION, SYNTHESIS OF FEASIBILITY STUDY IS A LI PRELIMINARY DESIGN INCI SENSITIVITY ANALYSIS, CC OF PERFORMANCE. THE RI THE CLIENT'S NEEDS.	JIRING A CADETS CHE SYS ESIGN. F SOLU' IST OF H LUDES OMPATI ESULT	AND DESTROYING S TO APPLY THE SYS STEMS DESIGN PROC THE FEASIBILITY ST TIONS, AND FEASIBI FEASIBLE ALTERNA MODELING OF THE (BILITY ANALYSIS, C OF THE PRELIMINA)	CUD LAUNCHERS D TEMS DESIGN PROC ESS IS TWO-STAGEI FUDY INCLUDES TH LITY SCREENING. TIVES THAT MEET T CRITERIA, SELECTIO PTIMIZATION OF PA RY DESIGN IS THE	URING ESS LEA O WITH E NEED THE RES THE CLII ON OF A ARAME BEST" A	DESERT STORM ARNED IN SE 401 TO A A FEASIBILITY STUDY S ANALYSIS, PROBLEM SULT OF THE ENT'S NEEDS. THE ALTERNATIVES, TERS, AND PREDICTION LTERNATIVE TO MEET
14. SUBJECT TERMS		A		<u> </u>	15. NUMBER OF PAGES
SYSTEM DESIGN APPROACE	H TO PH	RECISION STRIKE			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECI OF T U	URITY CLASSIFICATION THIS PAGE INCLASSIFIED	19. SECURITY CLASSIFI OF ABSTRACT UNCLASSIFIE	CATION	20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

Systems Design Approach to Precision Strike

LTC David W. Hutchison MAJ Jerry V. Wright

A TECHNICAL REPORT OF THE OPERATIONS RESEARCH CENTER UNITED STATES MILITARY ACADEMY

Directed by Lieutenant Colonel James E. Armstrong, Jr. Ph.D. Director, Operations Research Center

> Approved by Colonel James L. Kays, Ph.D. Professor and Head Department of Systems Engineering

> > 15 June 1993

The Operations Research Center is supported by the Assistant Secretary of the Army for Financial Management.

The sponsor for this project is the U.S. Army TRADOC Analysis Command (TRAC).

Vitae

Lieutenant Colonel David W. Hutchison was born in Waterloo, Iowa in 1954. He graduated from the United States Military Academy in 1976 and received a commission as a Second Lieutenant in the Infantry. LTC Hutchison served in a variety of military assignments in Colorado, Georgia, and Italy. In 1983, he completed graduate school and received his Master of Science in Applied Math from the Massachusetts Institute of Technology. In 1992, LTC Hutchison began an assignment as an instructor on the faculty at the United States Military Academy. LTC Hutchison spent his first year on the faculty teaching courses in systems design. LTC Hutchison is currently the Group Manager for the Systems Design Group in the Department of Systems Engineering.

Major Jerry V. Wright was born in Wichita Falls, Texas in 1959. He graduated from the United States Military Academy in 1981 and received a commission as a Second Lieutenant in the Field Artillery. MAJ Wright served in a variety of military assignments in Oklahoma, California, and the Federal Republic of Germany until 1989. In 1991, he completed graduate school and received his Master of Science in Operations Research from the Naval Postgraduate School prior to beginning an assignment as an instructor on the faculty at the United States Military Academy. MAJ Wright spent his first year on the faculty teaching courses in systems design. For the past year, MAJ Wright was the course director for the final design course in the Systems Engineering sequence.

Acknowledgments

This course and this problem began with the efforts of MAJ Joseph Stallings and his association with the Directorate of Combat Developments for the Field Artillery School at Fort Sill, Oklahoma. This particular report was developed in response to the association with COL John Fricas, Director, Joint Precision Strike Demonstration Task Force. COL Fricas' work with the problem provided the basis for this report.

Table of Contents

4,

Executive Summary	v
Appendix A. Cadet Executive Summaries	1
Appendix B. Cadet Goals Tree	9
Appendix C. Cadet Functional Breakdowns and Synthesis of Solutions	11
Appendix D. Cadet Decision Tree/Weights of Criteria	16
Appendix E. Cadet Spreadsheet	18
Appendix F. Cadet Sensitivity Graphs	20
Appendix G. Cadet Example of Bounded Response Surface	25
Appendix H. Briefing Slides	27

Executive Summary

The problems with acquiring and destroying Scud launchers during Desert Storm provided a means for cadets to apply the systems design process learned in SE401 to a real world problem. The Systems Design process is two-staged with a Feasibility Study and the Preliminary Design. The Feasibility Study includes the Needs Analysis, Problem Definition, Synthesis of Solutions, and Feasibility Screening. The result of the Feasibility Study is a list of feasible alternatives that meet the client's needs. The Preliminary Design includes Modeling of the Criteria, Selection of Alternatives, Sensitivity Analysis, Compatibility Analysis, Optimization of Parameters, and Prediction of Performance. The result of the Preliminary Design is the "best" alternative to meet the client's needs.

The operational/primitive need given to cadets was:

It is perceived that a system is required to destroy the Mobile Scud Missile Launchers. The system, if warranted, must be fielded by August of 1995. Time and funding dictate that improvements to current systems or developmental systems may be pursued but new system concepts will not be considered for this interim solution. A separate directive will authorize development of new concepts for a long term solution. This interim design directive authorizes the design of a system which utilizes the following combat systems as required.

Using only research material from public sources and unclassified artificial data provided, the cadets took the operational need and performed a needs analysis and defined the problem. They were given the following resources for their problem:

JSTARS	Joint Surveillance Target Attack Radar System
GUARDRAIL Common Sensor	(An Emitter Sensor System)
National Resources	(Satellite Reconnaissance)
UAV	Unmanned Aerial Vehicles
GSM	Ground Station Module
MCS/CTT	Maneuver Control System/Commanders Tactical Terminal
ASAS	All Sources Analysis System
TACFIRE/AFATDS	Field Artillery Tactical Fire Direction System/Advanced Field
	Artillery Tactical Data System
M270 MLRS	Corps Deep Fire Delivery System
MLRS Family of Munitions	

Conducting a functional breakdown of each resource into subsystems enabled the cadets to use Zwicky's Morphological Box and synthesize many different alternative combinations. Each cadet design group then screened each subsystem against user, physical, legal, social, economic, and financial constraints. The constraints were either given to the cadets in the form of additional information, or developed from the research material. The result was a list of feasible alternatives to be forwarded into the Preliminary Design. To make the problem manageable, eight candidate alternatives were provided to the cadets in which they selected four to conduct the Preliminary Design. To keep the cadets focused in the right direction and for teaching purposes, seven criteria were provided. They were:

- 1. Time to identify and engage the target.
- 2. Probability of finding 1 Scud operating in the Corps AOI within 10 hours.
- 3. Range of the munition.
- 4. Probability of killing the Scud launcher given a detection has occurred.
- 5. Expected utilization of the munition.
- 6. Cost to search for 10 hours.
- 7. Cost per attack.

The cadet design groups modeled the criteria, applied the models and Multi-Attribute Utility Theory to their alternatives, and rank ordered their candidate systems. The spreadsheet Quattro Pro was used as the software package to conduct these steps. The cadets then applied sensitivity analysis to gain some confidence in their top selection.

Cadet design teams then conducted compatibility analysis on various parameters to identify the bounds of the parameters within the constraints of the system. The cadets were given a list of ten parameters in which they chose four to conduct the compatibility analysis. The ten parameters provided were:

- 1. Size of AOI (AOI)
- 2. Warhead Weight (WW)
- 3. Fuel Cost (FUELCOST)
- 4. Number of Scuds in the AOI (NSCUD)
- 5. Number of shooters in the AOI (NSHTR)
- 6. Cost of Current Motor
- 7. Cost of Extended Range Motor
- 8. Cost of Guidance System
- 9. Cost of Single APAM
- 10. Cost of one pound of HE

The cadets took the three parameters that caused the greatest change in the overall utility score (utility was used as a surrogate for overall systems performance) for the alternative and conducted an optimization on those parameters. The software package Quattro Pro was again used to optimize the overall utility score of the candidate system using the parameters as the variables.

Finally, a different scenario was provided to the cadets to predict how their system might perform in a completely different part of the world. A comparison between the original system, the optimized, system, and the predicted system was conducted. The scenario provided follows:

The X Corps has been deployed to South Korea to defend in sector along the North Korean/South Korean Border. The Corps has one Scud Find and Destroy System (which includes the appropriate acquisition system(s), one GSM, access to the ASAS, and one dedicated MLRS launcher with appropriate missile) attached. The Corps has been assigned a sector 200 kilometers wide. The Corps area of interest extends 300 kilometers deep into North Korean territory. Operational data on fuel consumption rates for this environment indicate that less fuel is used in North Eastern Asia (NEA) then in South West Asia (SWA). Fuel consumption rate are 10% lower, while the fuel used during takeoff and landing is 17% lower. Intelligence estimates place 18 Scud systems in the Corps sector. The Scuds can be expected to

operate in accordance with current Soviet doctrine. Expect 4 launches every 24 hours. 30% of the Corps AOI in the upper quadrant is not trafficable to wheeled vehicles. Current fuel costs is \$.94/gallon. Due to an abundance of excess ammunition left over from Desert Storm, the cost of HE will be 12% lower and the cost of APAM will be 15% lower than original estimates.

The final result from each design group was a system capable of meeting the client's needs with appropriate design specifications and expected performance data. This information would now go to the design engineers for prototyping, possible field testing, production, and fielding.

The goal was to provide the cadets with a real-world systems design experience. Because of the teaching environment, the limited time available, and the requirement to keep the problem unclassified, most of the data for the problem was artificially generated. As the cadet design groups completed a step of the process, a solution was provided to keep the design groups heading in the correct direction. The ideation, creativity, and individualism was maintained through the selection of candidate systems, research and selection of conflicting data, application of weights and utility curves, and the analysis of their results.

Some observations from cadets and instructors that may be important for a real Scud-Busting system are:

- UAVs are too slow to acquire targets.
- ATACMS may be out of range for some targets.
- Satellites are too slow for an acquisition resource.
- Other delivery options should include air-launched missiles.
- JSTARS cost is dependent upon fuel cost.

We think that the methodology demonstrated by the cadets is readily transferable to the actual problem of improving the current system that finds and kills transporter-erector-launchers prior to launch.

Attached are copies from cadet reports of sample work including executive summaries, spreadsheets, graphs, and briefing slides.

APPENDIX A:

ø.,

CADET EXECUTIVE SUMMARIES

٠.

EXECUTIVE SUMMARY

2

During the Gulf War against Iraqi Forces, the allied forces realized a serious lack in their ability to locate and destroy Scud missiles and their launchers. The Patriot antiballistic missile system was the most effective deterrent against Scuds already airborne. However, the Patriot could not ensure satisfactory destruction of Scuds. The Patriot system either failed to completely destroy the warhead, thus allowing severe collateral damage, as occurred with the Scuds aimed at Israel or the Patriot failed, in some instances, to detect the airborne Scud completely, as with the Scud that 'slipped' past the Patriot batteries around Dharhan and destroyed a marine barracks structure, causing severe casualties. The allies also attempted air strikes against the launchers, but these also proved ineffective, as the Iraqis would put dummies or other meaningless vehicles out as targets for Allied warplanes. We could not gather reliable intelligence on targets to locate them or to confirm any destruction. After these attempts to 'beat the Scud', the Allies decided that a system was needed to reliably acquire targets, confirm the location of them and destroy the Scuds 'before' launch. Our design team was called in to design such a system. However, due to lack of funds and support for new research and development, we have been limited to existing assets. We were further guided that this system must also be able to perform anywhere in the world and not just in the Iraqi desert. We have worked diligently over the past four months putting together a system that we find satisfactory to the Allied needs.

Our group has just completed the Preliminary Design Phase of this 'Scudbuster' design. The purpose of this design phase was to not only further narrow down the possible number of alternatives through modeling our systems, but to also find the best alternative through Multi-Attribute Utility analysis. We then stepped back and took a second look though sensitivity analysis to determine if our 'best alternative' would change

2

۰,

BKP 2

١,

if the decision-maker would change his criteria slightly or if the parameters changed slightly. After realizing no change in our selection, we then optimized our alternative by changing the parameters in order to develop our best case scenario. This would allow us to recommend to the decision-maker what parameters he should strive towards to realize the best possible system available. The final step accomplished in this phase was to predict the performance of the Scudbuster in "other-than-desert" environments. This was necessary to determine the usefulness in future confrontations. If it was not compatible, the decision-maker may decide to reject our solution.

å.

٩,

224

5

We found that, regardless of slight changes in parameters and criteria, Alternative 5 (JSTARS, GUARDRAIL, ATACMS, Current Motor, GPS guidance and ICM munitions) was the best alternative. It should be forwarded to the client for a decision as to whether the system should be fielded or not. We found, however, that our decision is very sensitive to the cost of fuel. In our Prediction of Performance Phase, we found that our system may be eliminated due to the high cost of fuel. Any major upward rise in fuel would cause the elimination of our alternative due to it being too expensive. We recommend that the client research the cost of fuel very seriously. We also recommend that the client research the possible battlefields more closely because the terrain may dictate the amount of fuel used and if too much fuel is used then our system may not be acceptable. Further research of obsolescence factors is also recommended.

EXECUTIVE SUMMARY

The Army tasked our team, from Scud Destroyers, Inc., to develop a system for destroying Scud Missile Launchers. In this, the Preliminary Design Phase, we began with the following four possibly feasible alternatives:

No.	Main Acq.	Confirm Acq.	<u>ASAS</u>	<u>Delivery</u>
1	JSTARS	Guardrail	Yes	ICM
2	JSTARS	UAV, Prop, TV	No	HE
3	JSTARS	Guardrail	No	ICM
4	Guardrail	UAV, Jet, MMW/IR	No	HE
-				

£ -

Our purpose in the Preliminary Design Phase was to choose the best from among those four alternatives and to confirm this choice; to determine its optimal parameter settings; and to predict its performance in a realistic environment.

	We first d	letermined the b	best o	of the four	alternative
syste	ems by usir	ng Multi-Attribu	ite Ut	ility Theo	ory. Our
summa	arized resu	ilts for our fou	ır sys	stems are a	s follows:
No.	<u>Main Acq.</u>	<u>Confirm Acq.</u>	<u>ASAS</u>	<u>Delivery</u>	Utility
1	JSTARS	Guardrail	Yes	ICM	37.313
2	JSTARS	UAV, Prop, TV	No	HE	(infeasible)
3	JSTARS	Guardrail	No	ICM	37.472
4	Guardrail	UAV, Jet, MMW/IR	No	HE	68.384

It is clear that the fourth alternative¹ was the best. Our next step was to confirm the soundness of our results through sensitivity analysis. Varying the relative criteria

4

¹ Note: this alternative is #8, according to the SE402 Preliminary Design Candidate Systems Handout. Alternatives 1,2, and 3 correspond to alternatives 1,2, and 5, respectively, on the handout.

weights did not change our rank order amongst the top two systems (3 and 4) except in one case. #3 became the better alternative if we made the following adjustments to our weights:²

<u>Criteria</u> <u>C</u>	ld Weight	<u>New Weight</u>
Cost to Search Cost per Attack	0.5	0.897065 0.102935

É.

Since this is a substantial change, we can state with confidence that #4 is our best alternative.

Our next task was to optimize this alternative relative to our client's wishes. We accomplished this by varying certain parameters. Our results were as follows:

Initial System Optimized System

IItility	68.384	75.308
WarheadWt	350 lb	168.62 lb
# Scuds	35	14
# Shooters	6	12

Our final task was to predict the performance of our system in a Northeast Asian (Korean) environment. We found that our system performed nearly as well in the Korean environment as in our optimized (Middle East) environment: total utility slipped only from 75.308 to 73.309. We also looked at various situations which might cause our system to become obsolete. We found that, observing the development of Scud technology, its pace should be slow enough to allow our system to be usable into the 21st century. Three possible detriments to our system are increased Scud missile $\frac{2}{2}$ This is actually one adjustment, as the two weights are negatively related: $w_1 + w_2 = 1$.

range, improvements to the survivability of the Scud launcher, and effective counterattacks against our Scud destroyer system. Though our system is only a temporary one, serving for only 10 years until a replacement is found, we feel that the system might become obsolete due to increased Scud missile range.

÷.

We recommend that alternative #4, as listed above, be sent forward into detailed design for eventual production and implementation.

6

EXECUTIVE SUMMARY

£

Printed at Government expense for x35143d3 05110/93 15:15

4

War is not a stagnant entity; its nature, tactics, and weapons continually change due to psychological and technological advances. In order to be effective armies need to keep abreast of and responsive to these changes. In response to the events of the Persian Gulf, the United States Army had to change its weapons systems to accommodate a new threat: the SCUD mobile missile launcher. During the Persian Gulf war SCUD missiles threatened the safety of US Armed Forces personnel and the people of Israel, Saudi Arabia, and Kuwait. The SCUD mobile missile launchers have nuclear warhead capability and a maximum range of 70 kilometers, placing most Middle East Cities within its range.¹ Currently the United States Army does not have a weapon system that can effectively destroy the mobile Thus the Army needs an effective and missile launcher. efficient system to destroy SCUD missiles. Based on the Army's need, it is our goal to design an accurate, cost effective, and lethal system of detecting and destroying SCUD mobile missile launchers and their accompanying missiles, before they launch their missile.

In trying to meet our goal we utilized the engineering design process. The Preliminary Design phase is needed to identify the candidate system that best meets the client's needs from the set of defined alternatives.² The performance of the best system must not only meet the

clients set of design criteria, but must also better than the other candidate systems. The Preliminary Design phase's four steps (Selection of Alternative, Optimization, Prediction of Performance, and Prediction of Obsolescence) helped the design group determine the best candidate system.

÷

Printed at Government expense for x35143d3 05110/93 15:15

5

In order to determine the best candidate system we will apply techniques such as, mathematical models of reality, Multi-Attribute Utility theory, use utility curves, and conduct mathematical optimization, to measure the best system in terms of performance. These methods will be applied in succession so as to narrow the field of possible alternatives down to an optimal system.

After much interpretation and analysis from the various Preliminary Design Steps, the design team found that Candidate System C (Initial target location by JSTARS with information sent through the optimal Command and Control network and target confirmation and destruction by a jetpropelled lethal UAV with a MMW/IR seeker with an HE warhead) best met the client's design criteria, was least sensitive to change, and operated effectively in future scenarios, than the four other selections given by the client. Therefore, the design team recommends the client forward Candidate System C, with an optimal utility value of 91.5556 to the Detailed Design Phase for construction and fielding.

APPENDIX B:

۶.

CADET GOALS TREE

APPENDIX C:

CADET FUNCTIONAL BREAKDOWN AND SYNTHESIS OF SOLUTIONS

ACQUISITION ALTERNATIVES

:

1.

GUARDRAIL

SATELLITES ORBITS IMAGERY 1. 150-250M INFRARED 2. 400 MI RADAR JSTARS RADAR OPTIONS 1. MTI 2. SAR 3. MTI/SAR			1
ORBITS IMAGERY 1. 150-250M INFRARED 2. 400 MI RADAR JSTARS RADAR OPTIONS 1. MTI 2. SAR 3. MTI/SAR	SATELLITE	ES	
1. 150-250M INFRARED 2. 400 MI RADAR JSTARS RADAR OPTIONS 1. MTI 2. SAR 3. MTI/SAR	ORBITS	IMAGERY	
2. 400 MI RADAR JSTARS RADAR OPTIONS 1. MTI 2. SAR 3. MTI/SAR	1. 150-250M	INFRARED	
JSTARS RADAR OPTIONS 1. MTI 2. SAR 3. MTI/SAR	2. 400 MI	RADAR	
JSTARS RADAR OPTIONS 1. MTI 2. SAR 3. MTI/SAR			
RADAR OPTIONS 1. MTI 2. SAR 3. MTI/SAR	JSTARS		
1. MTI 2. SAR 3. MTI/SAR	RADAR OPTIO	NS	
2. SAR 3. MTI/SAR	1. MTI		
3. MTI/SAR	2. SAR		
	3. MTI/SAR		

UAV		
PROPULSIONS	LOCAT. SYS	SEEKERS
1. FIXED WING JET	GPS-TV	MMW/IR
2. ROTARY WING	GPS-MMW/IR	TV

DELIVERY SYSTEMS

SEEKERS PROPULSIONS WA 1. ARH 1. AIR 2. GLTR 2. GROUND	ARHEADS 1. BLAST 2. FRAGMENTATIO 3. SMART 4. ANTI-ARMOR
--	---

ATACMS GUIDANCE WA	ARHEADS MOT	TOR	
1. INERTIAL PATH 2. GPS	1. 1300LB APAM 2. 350LB 3. 775LB	1. SRM 2. SS w/ARCADENE 361	
	4. ANTI-ARMOR		

MLRS	
WARHEADS	
1. ATACMS BLOCK I	
2. ATACMS BLOCK II	
3. STANDARD MLRS	
4. GROUND LAUNCHED TACIT RAINBO)

THE ACQUISITION SYSTEMS

Unmanned Aerial Vehicles **SUBSYSTEM 1:** Propulsion Propeller Subsystems: Turbo Jet Gyro Location System GPS Television Seeker MMW/IR **TOTAL: 8** Combinations SUBSYSTEM 2 : Satellite Orbit Geosynchronous Subsystems: Low Altitude Orbit IR Imagery Photographic TOTAL: 4 Combinations **JSTARS SUBSYSTEM 3**: MTI Subsystems; Radar SAR Both MTI and SAR **TOTAL: 3 Combinations GUARDRAIL** Common Sensor **SUBSYSTEM 4:** TOTAL: 1 Combination Ground Station Module with 1 Asset CONCEPT 1: 8 Combinations UAV Subsystems: **4** Combinations Satellite **3** Combinations **JSTARS** GUARDRAIL 1 Combination TOTAL 16 Combinations Ground Station Module with 2 Assets **CONCEPT 2:** 32 Combinations UAV and Satellite 24 Combinations **UAV** and JSTARS UAV and GUARDRAIL 8 Combinations 12 Combinations Satellite/JSTARS 4 Combinations Satellite/GUARDRAIL 3 Combinations JSTARS/GUARDRAIL **TOTAL 83 Combinations** Ground Station Module with 3 Assets **CONCEPT 3: 96** Combinations UAV/Satellite/JSTARS 32 Combinations UAV/Satellite/GUARDRAIL 24 Combinations UAV/JSTARS/GUARDRAIL 12 Combinations Satellite/JSTARS/GUARDRAIL

TOTAL 164 Combinations

TOTAL FOR ACQUISITION SYSTEMS: 16+83+164 = 263 Combinations

THE COMMAND AND CONTROL SUBSYSTEM

CONCEPT 1: Quick Fire Channel

s.

Alternatives: 1. GSM located with dedicated Firing Battery. Solution prepared. Notification sent to Corps FSE. Wait for Approval.

- 2. GSM located with Battalion. Solution prepared and sent to battery. Notification sent to Corps FSE. Wait for Approval.
- 3. GSM located with Brigade. Solution prepared and sent to Battalion. Notification sent to Corps FSE. Wait for Approval.

CONCEPT 2: Normal Intel/Targeting Channel

Alternatives: 1. GSM located at the Corps FSE. FSE polls ASAS. FSE approves target and sends mission to FA Brigade. Brigade solution sent to Battalion. Battalion solution sent to <u>Battery for action.</u> TOTAL: 4 Alternatives

Use ASAS? YES, NO 2 Alternatives

Communication network between headquarters (Corps-Bde, Bde-Bn, Bn-Btry): CTT/MCS or TACFIRE/AFATDS: 2x2x2=8 Combinations

TOTAL FOR COMMAND AND CONTROL: 4x2x8= 64 Combinations

THE DELIVERY SUBSYSTEM

Lethal UAV (Ground Launched TACIT RAINBOW) Seeker MMW/IR Television Propulsion Propeller Jet Warhead High Explosive ICM BAT Nuclear TOTAL: 16 Combinations

CONCEPT 2: MLRS

CONCEPT 1:

Subsystems:

Subsystems: Warhead High Explosive ICM BAT <u>Nuclear</u> TOTAL: 4 Combinations

CONCEPT 3: ATACMS Guidance Explicit GPS Warhead High Explosive ICM BAT Nuclear Motor Extended <u>Original</u> TOTAL: 16 Combinations

TOTAL FOR DELIVERY MEANS: 16+4+16 = 36 Combinations

TOTAL COMBINATIONS:

Acquisition Combinations: 16+83+164=263 Command & Control Combinations: 4x2x8=64 Delivery Combinations: 16+4+16=36

TOTAL: 263x64x36=605,952 Combinations

ن:

APPENDIX D:

CADET DECISION TREE/ WEIGHTS OF CRITERIA

NOTE: Numbers in Parenthesis are Subweights

APPENDIX E:

CADET SPREADSHEET

SYSTEM 1 2 3 4	TIME TO IDENTIFY (sec) 1810.54 6215.54 3610.54 3515.54	P(FIND SCUD IN 10 HRS) 0.914417278 0.807339081 0.914417376 0.807341025	RANGE MUNITIC (km 350.007 350.007 307.970 307.970	OF O P(K/D) 7 0.51028 7 0 6 0.67895 6 0.56483	REL.TAF IDEN 0.993 0.953 0.9996 0.989	AG EXP. T. MUNI B2 0. 36 0. 56 0. 92 0.	UTIL PF TION II 6625 1. 6398 8. 7734 1. 6133 8.	ROCOS SEAF N FY95 IN 1 (\$) 1E+08 5898 7E+07 5496 1E+08 5898 7E+07 5496	RCHCO (0 HRS / (\$) 395.83 356.04 398.11 556.04	COST PE ATTACK (\$) 608004 465504 658404 515904
		4	500	1	1	1	7.3E+08	600000	625000	
UPPER	900	0.4	250	06	0.6	0.6	1.7E+07	20000	200000	
LOWER	3500	0.4	250	0.4	0.4	0.4	7.1E+08	580000	425000	
RANGE	2700	0.0	200	-				_	-	
e I BWGH	9	7	7	8	10	10	6	6	8	
SUBMAN	02143	0.1591	0.1591	0.1860	0.2439	0.2439	0.4286	0.4285	0.6657	
	1.1.1				:					
								0.33		
WEIGHT			0.67					0.00		
PROPORT	10N 0.24935	0 85736213	0.40003	0.02569	0.983	0.15625	0.13455	0.982579	0.96001	
	0.24000	0.678898468	0.40003	0	0.884	0.0995	0.09373	3 0.9132001	0.62472	
	0.91501	0 857362293	0.23191	0.19738	0.99915	0.4335	0.1346	5 0.982583	1	
	0.87983	0.678901708	0.23191	0	0.973	0.03325	0.09853	3 0.9132001	0.7433	
				- -	~~ ~~~~	0 44440605	91 F9	4 8 8032613	14,4933	1
UTILITY	65.1666	85.736213	40.0027	0.411/9	90.0209	0 00025	93 953	2 23.073402	55.5413	
	0	67.88984679	40.0027	0 76016	25.1400	18,792225	91.6BB	5 8.8020674	c)
	2.47751	85.73622929	23.1906	B.70910 3	94 6729	0.11055625	93,965	8 23.073402	44.2233)
·	4,16578	67.8301708	23.1900	Ŭ		-,				
SUBTOTA	13.9643	13,63985207	6.36406	0.07661	23.56802	0.59546494	39.297	4 6.36406	9.66222	2 F
002.0	0	10.60065744	6.36406	0	19.0599	0.24146951	40.265	6.36406	37.027:	5 n
	0.53089	13.63985465	3.68941	1.63147	24.3488	4.58346951	39.295	0 0 0004007	20 492	2
	0.89267	10.80070899	3.68941	0 :	23.09095	0.02695494	40.27	3.5894097	23.4024	2
SYSTEM	SCORE							18.256823		
1	57.2564		38.9996	÷				27.606891		
2	52.0392		24.4323					14.184876		
3	45.6289		02.999 05 7055					24.23607		
4	50.0315		20.1900							

*•.**·

 $(\mathbf{\hat{f}})$

•

ી

APPENDIX F:

CADET SENSITIVITY GRAPHS

Sensitivity Analysis of Cost of Munitions

2

APPENDIX G:

CADET EXAMPLE OF BOUNDED RESPONSE SURFACE

APPENDIX H:

۰.

BRIEFING SLIDES

.

SYSTIBMS DESIGN APPROACE TO PRECISION STRATE

MC DRWH W. HWOHISON MAN JERY V. WHEIR

firing their ballistic missiles A system is required to find and destroy scud missile launchers prior to them

detect, identify, and locate enemy send firing data to attack systems destroy enemy launchers before target location into firing data, targets, analyze and translate Develop a system which can in real time, and ultimately missile launch.

- Operate in any terrain against any enemy.
- System fielded by August 1995.
- Comply with Geneva Conventions.
- Complete mission cycle in real time (10-60 min).

Sevine for of Alternatives

N 氏 氏 D S

 Improved method to **More effective** destroy scuds:

Less costly

Less collateral damage

- Fielded by 1995
- Uses "off-the-shelf" components
- Falls within budget
- constraints

- EVIDENCE
- 28 missiles for 5 scuds Data from a single attack on Tel Aviv: \$3.56M per scud
 - 96 injured by debris
- **Commander's Guidance**
- Commander's Guidance
- Congressional Guidance
- Commander's Guidance Uses existing doctrine

Pomulation of Alternatives Value System Designe Goals Tree

Ponnietton of Altennatives

Pormulation of Alternatives

Pormulation of Alternatives

- GUARDRAIL, UAV, SATELLITE Acquisition Systems - JSTARS,
- Data Analysis GSM, ASAS
- Command & Control CTT, TACFIRE
- Delivery Systems MLRS, ATACMS, GLTR

.

-

REALERATION OF A REALERANCE Dediction Maithies Analysis

)

- UAVs are not efficient as acquisition resources.
- Satellites are not responsive as acquisition resources.
- Effectiveness of ATACMS is limited by range.
- Air-delivered weapons may overcome problems in range, timeliness, and collateral damage.
- Destroying launchers on the ground is not the complete solution.