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1. Background 

Concern about the effect of chloroflouromethanes on the stratospheric ozone layer began with the 
initial papers by Rowland and Molina (1974, 1975). The purpose of this document is to survey and 
evaluate the present state of knowledge about the possible environmental effects of changes in the 
ozone layer on humans, animals, and plants. This information may be useful in the future for envi- 
ronmental impact analyses due to human activity. 

It is by now well established that the basic problem with introducing chlorine (or bromine) atoms into 
the stratosphere is that the halogen atom undergoes a sequence of fast chemical reactions that result in 
recombination of ozone and atomic oxygen and regeneration of the halogen atom: 

Cl + 03 = CIO + 02 

CIO + O = Cl + 02 

Net:     03 + O = 202 

Several other reaction cycles of this type have been shown to be involved. For more details, see 
McElroy and Salawitch (1989). The halogen atoms may be lost by reactions such as: 

Cl + CH4 = HCI + CH3 

But they may also be returned to the cycle by reactions such as: 

HCI + OH = Cl + H20 

Thus, a chlorine atom will destroy the order of 10' ozone molecules before it ultimately diffuses back 
into the troposphere as HCI and rains out {Rowland and Molina, 1975). These reactions, by speeding 
up the loss of ozone, ultimately reduce ozone's steady-state concentration. 

It was recognized very early that the principal problem caused by a reduction in the amount of ozone 
in the stratosphere would be an increase in ultraviolet (UV) light at the Earth's surface. This effect 
was difficult to document initially (see next section), but evidence for an increase in UV light is now 
very clear, and large increases are seen in the Antarctic as a result of the "ozone hole" formed each 
Austral spring. 

Since UV light is readily absorbed by living tissue, and since light of this wavelength has a quantum 
energy strong enough to break chemical bonds, there was concern about its effects on living things. 



This report is a review of the literature on the possible effects of increased UV light on plants, ani- 
mals, and humans. At this time, it appears to be difficult to assign economic costs to the effects, but 
in some cases, risk factors may be assigned to some of the consequences. 



2. Solar Radiation and "Amplification Factors" 

By Convention, solar ultraviolet radiation is divided into three wavelength bands: UV-A, 400-320 
nm; UV-B, 320-290 nm, and UV-C, 290-190 nm. None of these wavelengths is visible to the human 
eye. The bands are, in fact, defined by the ozone layer itself. UV-A is not appreciably absorbed by 
ozone and reaches the Earth's surface attenuated only by light scattering. UV-B is just at the edge of 
the ozone layer's absorption and is, therefore, very sensitive to changes in the ozone column. UV-C 
is entirely absorbed by ozone and by oxygen, and does not reach the Earth's surface at all. It is found 
only in artificial light sources such as sterilizing lamps and electric welding arcs. For purposes of this 
report, the UV-A and UV-C radiation bands are of no concern because the amount of radiation in 
these bands will not change in response to changes in the amount of ozone. 

Quantifying the amount of UV-B that reaches the Earth's surface is difficult, because there are so 
many complicating factors. The amount of radiation depends, of course, on the time of day, the sea- 
son, and the cloudiness. Furthermore, the ozone column is comparatively less near the equator, and 
more at the poles, as shown in Figure 1. Recently, of course, "holes" in the ozone layer have 
appeared near the south pole, and some thinning has also been seen in the North as well. Figure 2 
gives an indication of the natural variations in the ozone column as a function of time. The data in 
Figure 2 are taken from Gleason, et al., and are one-week, area-weighted averages for 65°S to 65°N. 

Figure 3 shows some of the time variation on a daily scale (from CIAP, 1975). In addition to these 
complications, the amount of radiation falls very rapidly at shorter wavelengths, which is a combined 
effect of the falling black-body radiation of the sun and the absorption by the ozone itself. The 
amount of UV energy is, in fact, small compared to the total visible and IR radiation, but because of 
its short wavelength, this radiation is very chemically active. If in fact, we consider the total energy 
in the UV-B band (320-290 nm), this is not very sensitive to small changes in the amount of ozone in 
the stratosphere. The problem is that living things are increasingly sensitive to the shortest wave- 
lengths. Thus, a meaningful measure of the potential damage from UV-B must include a spectral 
weighting function to reflect the physiological impact of the radiation. The problem is illustrated in 
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Figure I.     Total ozone column global average as a function of latitude. From 
CIAP (1975). 
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Figure 2.     The annual average ozone amount for the latitude range 65°S to 65°N for I January 1979 
to 31 December 1992 shown as a continuous time series (solid line). Each data point is a 
1-week average. The annual, solar, and QBO cycles are clearly evident. In addition to the 
measured ozone time series, a statistical model is shown (dashed line) fitted to the 1979 to 
1991 time period and extrapolated to 1992. From Gleason, et al., (1993). 
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Figure 3.     The daily variations of Global Total Ozone, as compiled from 
~2X 10" satellite data points. From CIAP (1975). 



Figure 4, which shows both the spectrum of light reaching the Earth's surface, and a typical action 
spectrum. The net effect of the radiation will be the overlap between the two spectra, shown in Fig- 
ure 5. It can be seen that the overlap spectrum will be very sensitive to changes in the amount of 
ozone because both the radiation and the absorption are rapidly changing functions of wavelength. 

Solar Irradianca with 
50% Ozone Reduction 

Solar Irradianca 
with Standard Ozone 
(0.32 atm - cm) 

Schematic Action 
Spectrum 

Weighted Irradianca 
(50% Ozone Reduction) 
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Figure 4.   Semilog plot of a typical solar spectrum 
and a typical action spectrum, with the 
weighted overlap. Shown of normal and 
a 50% ozone reduction. From NAS 
(1979). 
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Figure 5.   Weighted overlap spectra from Figure 2, 
plotted on a linear scale. From NAS 
(1979). 



The irradiance overlap is dealt with by the idea of "radiation amplification factors" (RAFs). These 
appear in the literature in a number of forms, but the best defined appears to be the "two-part" RAF 
(see Smith and Baker, 1980 and NRC, 1979) given by: 

RAF = (BAF) (PAF), 

i.e., RAF = (biological amplification factor) (physical amplification factor) 

The BAF = %Eff/%DUV; or the percent change in a biological effect such as incidence rate of can- 
cer, per percent change in DUV, or "damaging ultraviolet." 

The PAF = %DUV/%03; or the percent change in DUV per percent change in the average thickness 
of the ozone layer (a minus sign is understood). Thus, 

RAF = %Eff/%03 

These relationships are valid only for small changes, the order of 10%. Larger changes require the 
use of a logarithmic representation (WMO, 1994). 

It will be appreciated that a great deal of averaging must go into the PAF for a global value to be 
meaningful since it depends on latitude, climate, season, time-of-day, and existing ozone levels. The 
World Meteorological Organization (1991) quotes a range of ±16% for an erythemal PAF (which 
they call RAF). Also note that "DUV" is not defined, but must be determined by the physiological 
weighting function chosen for the biological problem of interest. At first, it may seem unfortunate 
that biology must be factored into the PAF in this way. Why not just include the change in the total 
UV-B for a change in ozone? The answer is that without a weighting function, this is not a useful 
definition. The percent change in the total UV-B for a percent change in ozone is a very small num- 
ber, whereas the percent in damaging UV (DUV) may be 1-2 or more times the percent change in 
ozone. Thus, the biological definition, while more difficult to calculate, is much more meaningful. 
Figure 6 shows some typical weighting functions for the DUV. These are also called action spectra 
since they must be determined by absolute measurements of some physiological response as a func- 
tion of wavelength. Three examples shown are for sunburn (erythema), inhibition of photosynthesis, 
and the DNA absorption spectrum. It can be seen that the sunburn and DNA spectra are much steeper 
than the inhibition of photosynthesis spectrum. For this reason, the DNA spectrum has a much larger 
PAF—typically about 2. The DNA spectrum is believed to represent the action spectrum for skin 
cancer, although this cannot be known for certain in humans (NAS, 1982). Recent animal experi- 
ments suggest a somewhat lower PAF of 1.2 to 1.4 for non-melanoma skin cancer (UNEP, 1994). 
Averaging values for several recent surveys gives PAF = 2.0±0.7 (see Table 1); the photosynthesis 
inhibition PAF is less than 1 because it includes longer wavelengths. 
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Figure 6.     Some typical weighting spectra for biological damage. From NAS 
(1979). 

Table 1. Summary of Amplification Factors 

Factor Value Reference 

PAF (DNA) 

PAF (DNA) 

PAF (DNA) 

2.7 

2.0 

1.3 

Gerstl, etal. (1981) 

NRC(1982) 

UNEP(1994) 

BAF (NMSC) 

BAF (NMSC) 

BAF (NMSC) 

BAF (NMSC) (*) 

2.4 

2.0 

2.0 

1.6 

Averages 
PAF 

BAF 

RAF = PAF x BAF 

+0.7 
±0.3 

4.0+1.5 

NRC (1982) 

NRC(1983) 

Henrikson, et al. (1990) 

UNEP(1994) 

* Weighted value: 80% BCC = 1.4; 20% SCC = 2.5±one standard deviation. NMSC 
cell carcinoma, SCC = squamous cell carcinoma. 

= non-melanoma skin cancer; BCC = basal 



In this same area, we also show a curve marked "R-B" in Figure 6. This shows the instrumental sen- 
sitivity of the traditional Robertson-Berger (RB) UV meters. This curve is considerably broader than 
the DNA curve and, as a consequence, gives a smaller PAF. For example, the PAF at 40°N for the R- 
B curve is about 0.8, but for the DNA curve, it is about 2.3 (NRC, 1982). The instrument is, there- 
fore, less sensitive to small changes in stratospheric ozone, and it may be for this reason that the earli- 
est attempts to show an increase in ground-level DUV had negative results (Scotto, et al, 1988; see 
WMO, 1991). More recent studies have documented a DUV increase (Ken and McElroy, 1993; Kerr, 
1994; Kerr et al., 1994; Herman, etal., 1996), especially in Antarctica (Frederick and AIberts, 1991). 
There have been suggestions that increases in tropospheric ozone will tend to offset the decrease in 
stratospheric ozone (Bruhl and Crutze, 1989; Varotsos, 1994), but since 90% of the ozone column is 
in the stratosphere (Madronich, 1992), this effect cannot go on indefinitely. Similarly, the amelio- 
rating effects of aerosols are expected to level off in the future (Liu, et al., 1991; Lubin and Jensen, 
1995). 

The BAF is an additional biological factor to reflect the fact that there may be nonlinearities in the 
physiological response to DUV. Thus, for example, if the biological studies find a power law of the 
sort: Effect - (DUV)", then BAF = 3(%Eff)/3(%DUV) = n . 

This in fact appears to be the case for skin cancer, with "n" ranging from 2 to 4. (See below). The 
BAF may depend on factors such as skin pigmentation and the disease, but will not depend on lati- 
tude, season, time of day, or cloudiness. 



3. Effects on Humans 

We discuss effects on humans first, not only because of the potential importance, but also because 
these appear to be the best documented effects of UV radiation. In dealing with human effects, obvi- 
ous ethical problems prevent the use of controlled experiments. This means that we must appeal to 
other types of reasoning than those typically found in papers about the physical sciences. Epidemiol- 
ogy, which includes study of the geographical and life-style patterns of disease incidence, is the main 
tool at our disposal. While this is not as precise as controlled laboratory experiments, it can still be 
quite persuasive. 

Some of the recognized harmful effects of UV on humans include: 

1. Non-melanoma skin cancer. 

2. Melanoma skin cancer (may involve co-factors). 

3. Immune inhibition. 

4. Skin deterioration. 

5. Cataracts. 

There is also one well-known beneficial effect, which is the synthesis of Vitamin D3 (the synthetic 
form is called D2). This is presently adequately available in foods. 

In this section, we will focus only on the first two harmful effects. Immune inhibition has been dem- 
onstrated in mice, but the quantitative aspects are not clear. Immune inhibition may play a role in 
skin cancers, but there is no latitude dependence for cancers other than skin cancer. In any case, the 
epidemiological treatment of skin cancer inherently includes all effects of sunlight. Skin deterioration 
due to sunlight is well documented, but since it is not fatal, we will not discuss it further. There 
appears to be a controversy about cataracts. Some sources state that cataracts are caused by UV-A 
radiation, and therefore, changes in ozone will not affect cataracts (NRC, 1982). A more recent paper 
(Taylor and McCarty, 1996) states that UV-B does cause cataracts. Since this is never a fatal condi- 
tion (although it causes about 50% of all blindness) and since there is not much quantitative data, we 
will not treat it further. 

Non-melanoma skin cancer (which includes basal- and squamous-cell carcinomas) is the most com- 
mon form of all cancers, but has a low fatality rate. The epidemiological evidence for UV being a 
causative factor in non-melanoma skin cancers is as follows (NAS, 1976; WMO, 1994): 

1.   There is a striking increase with decreasing latitude. The incidence rate (race- 
corrected) is 4 times higher in Albuquerque than in Seattle, for example. 



2.   The cancers are most often found on areas of the body exposed to the sun. 

3. The incidence is higher in people with outdoor occupations, and historically 
higher in men than in women. 

4. The incidence increases with age. 

5. Supported by animal studies. 

In addition to these factors, there are the additional suggestive factors: 

1. Incidence has risen 16-fold since the 1930's (see Figure 7.) This is likely due to 
the increase in sunbathing since that time, although other factors cannot be ruled 
out (NAS, 1976; Urbach, 1984; Long, 1996). Urbach points out that there is a 
pronounced cohort effect in which younger generations have a higher incidence 
at the same age as older generations (Urbach, 1984). 

2. Incidence is inversely proportional to skin pigmentation. The incidence may vary 
from 10 to 70 times less than the maximum susceptibility as the skin pig- 
mentation increases, and this is linearly proportional to the UV-B absorption of 
the skin (NAS, 1982). Furthermore, when the skin is protective, the cancer is 
usually found on the less pigmented parts of the body.   Albino persons are espe- 
cially susceptible. These effects appear to be a direct result of shielding of the 
DNA by melanin pigment.(M4S, 1983) 
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For melanoma, the same factors apply except for the occupational factor and there are no animal 
studies. The differences between different peoples is less (Urbach, 1984). The occupational factor is 
an apparent paradox: indoor workers have the highest incidence. There is a rationale for this, which 
we shall call the "vacation theory" (Urbach, 1984). The theory is that the indoor workers are exposed 
to sunlight all at once in midsummer, when they have no initial protective tan. The intense UV on 
unprotected skin is thought to lead to melanoma. Efforts to test the vacation theory have been incon- 
clusive, but the theory is consistent with the idea that melanoma is a result of a short, intense expo- 
sure to sunlight, rather than long-term, chronic exposure. The evidence for this is that only 10% of 
melanoma cases show evidence of chronic sun damage, and the incidence may appear early in life. 
There may also be cofactors such as chemical exposure or genetic effects (Urbach, 1984). While 
these facts complicate the understanding of melanoma, they do not rule out the importance of UV-B. 

With regard to the relationship between UV-B and melanoma, I will quote the 1994 UNEP report: 

Cutaneous melanoma in humans may well have a multifactorial etiology. Although 
UV radiation is likely to play a dominant role (e.g., initiating precursor lesions dur- 
ing youth and suppressing immunity to the tumor cells as a result of a sunburn in the 
final stages of tumor development), other factors may affect the expression of the UV 
effect. 

Figure 8 shows the results of a study in Norway (Henriksen, etal. 1988, 1990) that is as close as one 
can get to an experiment on humans. The researchers divided the country of Norway into four hori- 
zontal bands of latitude, which have appreciably different amounts of UV insolation. The statistics for 
skin cancer incidence (both kinds) were then plotted as a function of DUV, as shown in Figure 8. 
Since Norway has a pretty uniform population make-up, and presumably similar life-styles, the results 
are quite believable. The Figure shows a clear non-linearity, which corresponds to a BAF of 2. 

Figure 8. 
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More latitude-dependent statistics are shown in Figure 9 (NRC, 1979). These are plotted as a function 
of latitude, but if we consult Figure 10 (ibid.), we see that the DUV is a roughly linear function of 
latitude for the range given (25°N to 45°N). Figure 11 shows a log-log re-plot of the incidence data 
as a function of DUV (for DNA spectra). The slopes of these lines gives the exponent in a power-law 
relationship for melanoma: 

Thus, these data suggest a BAF of 3.5+0.8 for melanoma, and higher numbers for non-melanoma. 
These numbers may be too high to the extent that "lifestyle" effects, i.e., increased exposure to the 
sun, increase the cancer incidence at lower latitudes; or too low to the extent that there may be possi- 
ble benefits from the increased non-UV solar radiation (light-assisted DNA repair) at lower latitudes 
(NRC, 1982). Although the correct average number is not clear at this time, we propose that reason- 
able numbers would be 2.0± 0.7 for the PAF and 2.0+0.3 for the BAF, giving an overall RAF for skin 
cancers of 4.0+1.5. These numbers are summarized in Table 1. 

The standard deviations in the PAF and BAF are based on the values given in Table 1. The standard 
deviation in the RAF is based on a standard root-mean-square propagation of errors treatment of the 
two components. 

In 1995, the average incidence for non-melanoma skin cancers in the United States was about 300 per 
105 people per year, and about 14 per 10 people per year for melanoma (Long, etal, 1996). The 
incidence is rising at about 3% per year. The long-term fatality rate from melanoma is about 30%, 
and the long-term fatality rate for non-melanoma skin cancer is about 1 % (NRC, 1982). Recent 
diagnosis estimates for the United States as a whole for the year 1995 are 800,000 cases of non- 
melanoma and 34,000 cases of melanoma, with 7,200 melanoma deaths and 2,100 non-melanoma 
deaths, for a total of 9,300 deaths (Long, etal. 1996). The annual number of fatalities is a smaller 
percentage of the annual incidence than the long-term fatality rate because the rate of incidence is 
increasing with time. Reported figures on the annual melanoma incidence rate have a standard 
deviation of about ±600 in recent years (ACS website, 1998). 

The world population is on average much less susceptible to skin cancer than the U. S. population. An 
estimate, correcting for the protective effects of melanin in the skin, of the world incidence of skin 
cancer deaths would be 5.5 times as many as the U.S. This is based on assuming the U.S. rate for the 
populations of Australia, Canada, Europe, Russia, and Ukraine; l/10,h that rate for the populations of 
Asia and South America; and 1/70"' that rate for the populations of Africa. This gives a total of about 
40,000 melanoma and 11,000 non-melanoma deaths. If we assume an RAF of 4.0±l .5 for both kinds 
of skin cancer, this suggests that a 1 % change in the ozone layer would cause a 4.0+1.5% change in 
the number of deaths, or 1,600+600 melanoma and 440+170 non-melanoma deaths. At this time, it is 
believed that the effect of UV-B on melanoma is not proven, but the effect on non-melanoma is well 
established (UNEP, 1994). 

Other estimates of the number of additional cancer deaths due to a possible decrease in the ozone 
layer appear in the 1976 NAS review and in the EPA document of 1987. The NAS estimate appears 
to be based on an RAF of 2, and the EPA estimate on a range of RAF of 4.8 to 7.6 for non-melanoma 
and an RAF of 1.0 to 2.0 for melanoma. The EPA fatality estimate is based on a 24% fatality rate for 
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melanoma, and a 2% fatality rate for non-melanoma, giving overall about a factor of 2 greater fatality 
rate than the estimate made in this report. 
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Figure 9.   Reported skin cancer rates among whites as a function of latitude. (Sources: melanoma 
mortality from Mason and McKay (1974), melanoma incidence from National Cancer 
Institute (1974), nonmelanoma skin cancer incidence (NCI) from Scotto, etal. (1974), 
nonmelanoma skin cancer incidence (Texas) from Mac Donald (1974) and prevalence of 
nonmelanoma skin cancer based on preliminary data from the Health and Nutrition Exami- 
nation Survey of the National Center for Health Statistics (McDowell, 1974). From NRC 
(1979). (Note: racial terms used in this and other references are those of the original 
authors.) 
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4. Effects on Land Organisms 

4.1 Cultivated Plants 
Cultivated plants account for most of the world's food supply, and, therefore, even a small perturba- 
tion from increased UV-B could be of great economic significance. When concern grew about a pos- 
sible increase in UV-B in the mid-1970's, a number of research studies were started on the effect of 
UV radiation on plants. In most of these studies, as in some earlier work, artificial radiation was used 
on plants in greenhouses. The early results were that roughly 20% of crop plants were sensitive to 
existing UV levels, 20% were insensitive to levels up to 4 times existing levels, and the remaining 
60% were intermediate. More recent reviews suggest that 30% to 50% of all species are deleteriously 
affected by UV-B (Teramura and Sullivan, 1994). It has been shown that greenhouse studies tend to 
overestimate the sensitivity of plants because the visible light levels are reduced in a greenhouse. 
Visible light apparently has the ability to activate repair mechanisms in the plant, so that plants grown 
in the field are considerably less sensitive to ultraviolet. Furthermore, it proved difficult to duplicate 
the expected changes in solar radiation with artificial light sources. Subsequent work showed that 
great attention needed to be paid to getting a realistic spectrum, which happens to be difficult and 
expensive. An example of the early mistakes was the use of mercury lamps (254 nm). This wave- 
length is not found in ground-level sunlight at all! Some elaborate solutions to this problem have 
been tried, including using ozone light filters with sunlight (Tevini, 1991). 

Plant studies are further complicated by a lack of reciprocity (Cullen and Neale, 1994), which means 
that studies must be done at close to the natural radiation intensities. 

In spite of these problems, field studies have shown some sensitivity of plants to UV radiation. There 
is great variability in response not only between species, but also between varieties of the same spe- 
cies (cultivars). The responses also vary greatly, and may include yield; but also may involve more 
subtle changes such as leaf size, photosynthesis rate, resistance to diseases and insects, etc. It is inter- 
esting to note that some plants actually grow better in greenhouses because the plants are not opti- 
mized for existing UV levels in sunlight. 

An example of the sensitivity of plants to UV light is the data shown in Figure 12, which is a plot of 
some tabulated data by Tevini (1993). This plot shows two measures of cucumber growth—leaf area 
and stem length—as a function of "effective latitude," which is a measure of UV content of the light. 
Cucumber is particularly sensitive to UV in both greenhouse and field studies. It can be seen that the 
growth is only about 50% to 60% as much at the equator as it is at 70°N. 

Studies of this kind show that sugar beets, tomatoes, mustard, and cucumbers are sensitive to UV-B, 
whereas peanuts, peas, potatoes, and sorghum are not sensitive (NRC, 1979). With rice, corn, squash, 
and soybeans, the response depends on the variety (Tevini, 1993). Many of the reports are contradic- 
tory about the sensitivity of individual species to UV-B. 
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Figure 12.   Effect of DUV changes on growth of cucumber seedlings, plotted as 
stem length and leaf area as a function of equivalent latitude. • = stem 
length; A = leaf area. Plotted from data tabulated by Tevini (1993). 

Reviews of the plant studies suggest that any environmental response of plants to a change in UV is 
likely to be complex. For example, small changes in leaf size may alter the ability of weeds to grow 
around the plants of interest. Small changes in resistance to insects or disease or in the length of the 
growing season could cause large changes in yield. Studies on UV and plant diseases show that fun- 
gal and viral diseases may be inhibited or stimulated by UV, depending on the system. As a rule, 
however, the host plants appear to be harmed more by UV than the pathogens are (Manning and 
Tiedemann, 1995). In the Manning and Tiedemann paper, the use of Mylar UV filters in all green- 
houses is suggested as a beneficial change. Because the different species vary widely in their 
response to UV—including a beneficial response in some case—the most likely thing to happen in the 
field is that there will be a change in the relative populations of the species (Caldwell and Flint, 
1994). Some studies have been performed on the competitive balance between cultivated species and 
"weeds." These studies have shown that sometimes the crop wins and sometimes the weeds win 
(Runeckles and Krupa, 1994). Studies have also been done on multiple stress factors such as heat, 
drought, or elevated local ozone (Teramura, 1990). The studies show that the stress factors are addi- 
tive, but not synergistic. Teramura concluded that factors such as heat or drought could easily mask 
the effects of elevated UV-B. On the other hand, rapid fluctuations in the UV caused by tropospheric 
weather could be additionally stressful for plants (Teramura and Sullivan, 1994). 

Because of all the complicating factors, and because managed agriculture may be able to compensate 
for changes in the environment, we conclude that it is not yet possible to assign a cost to potential 
crop loss from increased UV-B. Nevertheless, it should be kept in mind that the value of crops 
worldwide is extremely large, and even small perturbations could have large costs. Some estimates 
about economic damage appear in the book by Worrest (1986). World wheat, corn, and rice produc- 
tion are each roughly 500 billion tons a year, and U. S. exports of these products are over $10 billion 
a year (Johnson, 1997). 
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4.2 Wild Plants 
By "wild plants" we essentially mean forest trees, which account for 80% of the terrestrial productiv- 
ity and which have great economic value. Trees are long-lived and therefore will have to face any 
UV stress for many seasons. Also, we have less control over them than we do with cultivated annual 
crops. Studies with trees are also more difficult because of their size and longevity, although a num- 
ber of seedling studies have been carried out. 

One potential problem with trees, which we will also see with the phytoplankton (see below), is that 
they may produce a connection between the ozone layer problem and the greenhouse effect. A 
reduction in productivity—the fixing of carbon dioxide by plants—could increase C02 levels. Thus, 
the ozone problem could indirectly contribute to increasing surface temperatures. 

Teramura (1990, 1994) has reviewed the few studies on conifers. Of 15 species studied, 7 were 
harmed by UV, 5 were unharmed, and 3 improved. One of the most sensitive to harmful effects was 
the Loblolly pine, an economically important tree in the Southeast of the U.S. used in pulp produc- 
tion. This species showed a 40% mass loss under increased UV radiation (unspecified, but probably 
corresponding to a 25% ozone loss, the amount used in Teramura's previous studies). Since these 
were greenhouse studies, the effects may be exaggerated. Subsequent field studies on Loblolly 
showed that after three years, a 25% ozone loss equivalent caused a 17% to 19% loss of biomass in 
three out of four seed types. Similar results were seen for a 16% equivalent ozone reduction. 

A few studies on other natural plants such as shrubs, has shown that transplanting from low-UV 
regions such as the Arctic to high-UV regions such as the equator, or going from low elevation to 
high elevation is generally deleterious {Teramura, 1990). In another experiment, seeds from 132 
native and introduced plants were taken from various elevations in Hawaii and then grown under high 
UV (40% ozone reduction) in a greenhouse. Interestingly, only 8% of the species from 0 to 500 m 
elevation were able to tolerate the higher UV, but all species from over 2,000 m elevation were unaf- 
fected. Thus, by selection or adaptation, high-elevation species are more UV tolerant. 

As in the case of crop plants, the consequences of a small ozone change on the world's natural plants 
may be subtle and complex. It is difficult to assign an economic cost at this time. A significant inter- 
action with the greenhouse effect is possible. 

It is interesting to consider the special problems encountered with the design of research programs in 
the area of global ecological impacts. It appears that a hierarchy of experiments is necessary in order 
to understand the effects of changes in large systems. To illustrate, consider an experiment to under- 
stand the effect of light on a plant. A first step would be to use pure monochromatic light and shine it 
on the plant. The results of such an experiment could be very well defined, but would have little rele- 
vance for the environment. Plants use a range of wavelengths of radiation to do many things, includ- 
ing repair of radiation damage. Thus, experiments with something closer to the solar spectrum would 
be more relevant, if not as sharply defined. Suppose further that an experiment gives an exact under- 
standing of the effects of changes in solar radiation on the plant. This, it turns out, may have little 
bearing on the behavior of the plant in the environment. The UV radiation may alter the response of 
the plant to diseases or pests, or it may change the length of its growing season. The response in the 
environment may depend on the competition with other plants, i.e., on the differential effects of 
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radiation on its neighbors. Lastly, even a perfect understanding of the effects of UV radiation in the 
environment may be rendered useless if the radiation has other, global effects such as a change in 
cloud cover, precipitation patterns, temperatures, and so on. Thus, a hierarchy of experiments may be 
necessary to sort out what is happening. 

4.3 Animals 
The effects of increased UV radiation on wild and domesticated animals is not thought to be of great 
economic significance. The reason is twofold. First, most animals are protected from UV by fur or 
hair. Second, the few problems that are seen in cattle and sheep are eye and nose cancers that are 
infrequent or too late in life to have an economic impact (NRC, 1982). 
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5. Effects on Marine Organisms—Phytoplankton and Zooplankton 

"Plankton" refers to those creatures too small to swim any great distance, thus they are those that 
drift with the ocean currents. Most are microscopic, although the Zooplankton include the important 
larval stages of fish and shellfish. Adult fish are probably too deep to be at risk, but they depend on 
plankton for food. Phytoplankton are important because they are the base of a very short food chain: 

Phytoplankton => Krill => all higher species 

This chain is non-linear, with the fish production varying roughly as the phytoplankton production to 
the 1.5 power (Haeder, 1994). Since about 30% of all protein for human consumption is derived 
from the sea, our food supply is very dependent on the phytoplankton. 

Furthermore, phytoplankton account for roughly half of the primary productivity (the rate of carbon 
dioxide fixation) in the world (104 billion tons of carbon per year vs 100 billion tons for all the land 
plants) (Haeder, 1993). Thus, a 10% decrease in productivity of these plants would be equivalent to 
all of the fossil fuel burning per year (10 billion tons). 

When research began in this field, the researchers thought that it would simply be necessary to raise 
the UV intensity until deleterious effects were observed. To their astonishment, it was found that 
existing levels of UV are quite toxic. Indeed, it was soon discovered that since most previous experi- 
ments on phytoplankton were performed in glass containers, most such experiments had overesti- 
mated the productivity of such organisms in the open ocean (Worrest, 1982). In some cases, the pro- 
ductivity of phytoplankton is 2 to 4 times higher if natural UV-B and UV-A are excluded. (Haeder, 
1994). 

At this point, it should be mentioned that pure water is quite transparent to ultraviolet radiation. The 
main cause for attenuation is the presence of organics or light scattering material. Thus, the transmis- 
sion is highly variable, but penetration of UV-B into the upper few meters of the ocean is significant. 
Figure 13 (NRC, 1983) shows some typical attenuation coefficients for seawater as a function of 
wavelength. A characteristic value for the attenuation of UV-B is about 1 m   . A review by Haeder 
(1993) points out that phytoplankton in fact flourish about 1.5 m below the surface of the ocean, with 
the population at that depth being over 5 times that at the surface. The phytoplankton appear to have 
the ability to descend to lower depths during periods of high light intensity to improve their survival. 
However, they respond only to visible light, and not UV, so an increase in UV is not something they 
could adapt to readily (NRC, 1976). Haeder (1994) also points out that marine productivity dips in 
mid-summer, which could be due to the higher irradiation, but there may be other causes for this, 
such as a lack of nutrients. 



10.0 

UJ 

o o       1.0 

UJ 
O 

g 
< 

0.1 

< 
UJ 
CO 

0.01 

Armstrong and 

Boalch(1961a,b) 

Lenoble and Saint-Guilly(1955) 

and Lenoble (1956a,b) 

200 300 400 500 

WAVELENGTH (nm) 
Figure 13.   Typical absorption spectra of seawater. From NRC (1983). 

Figure 14 shows some data for the effect of UV-B on several species of phytoplankton (Worrest, 
1982). At first, the scatter appears to be quite bad, but further inspection of the figure shows that 
most of the scatter is due to variations between the different species. Note that the curve has no obvi- 
ous curvature; i.e., there is no safe level of UV for these organisms. The point for 10% loss in carbon 
fixation for the average curve in Figure 14 is at a weighted fluence of 65 J/m , which corresponds to 
about 2 h of normal sunlight at the equator at noon. It has been shown, however, that the action 
spectrum for phytoplankton damage is broader than that for cancer, so the RAF is less, and the sensi- 
tivity to ozone changes will be less (see, e.g., Cullen andNeale, 1994). A study of Zooplankton men- 
tioned in the same review (Worrest, 1982) shows a significant decline in the number of offspring of 
an irradiated generation of Acartia Clausii, a marine copepod. 
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Figure 14.   Effect of DUV on the photosynthesis rate (primary productivity) of 
seven species of phytoplankton.   From Worrest( 1982). 

Other studies have shown that shrimp and crab larvae, and anchovies are sensitive to UV-B (ibid.) 

Declines in primary productivity in the Antarctic due to the ozone hole have been documented (Smith, 
etai, 1992) 

It appears that the RAF for phytoplankton photosynthesis inhibition is less than 1; probably about 0.3 
(CullenandNeale, 1994). 

Haeder (1993) points out that in his estimate, a 16% loss of ozone would lead to a 5% loss in primary 
productivity (an implied RAF of 0.3), which in turn would lead to a 7% loss in fish production, or 
about 6 million tons of fish per year. 
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6. The Question of Adaptation 

There remains in the community some controversy about whether or not organisms could compensate 
for, or adapt to, a higher level of UV radiation. 

Studies have shown that both visible light-activated and dark repair mechanisms exist in plant and 
animal and human cells. Figure 15 shows the results of experiments on the UV-B survival rates for 
cultures of cells in which repair mechanisms have been genetically deleted (Geise, 1976). It can be 
seen that deletion of one repair mechanism (excision repair) increases mortality by a factor of 35; 
deletion of two repair mechanisms increases mortality by a factor of over 1000. It has been pointed 
out that without the known repair mechanisms, bacteria would be killed in only 10-20 s of ordinary 
sunlight (NRC, 1976). The significance of this is that repair mechanisms are already taking care of 
99% to 99.9% of UV damage, and the harmful effects we see are due to unavoidable failures of the 
repair. 
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7. Conclusions 

There are by now well-established connections between the introduction of chlorine-containing mole- 
cules into the stratosphere, a consequent decrease in the concentration of stratospheric ozone, and an 
increase in UV-B radiation at the surface of the Earth. An increase in UV-B on average would 
increase the incidence rate of non-melanoma skin cancer worldwide, with an unproved but likely 
increase in melanoma skin cancer. Other effects on humans could include cataracts and immune 
system inhibition, but these are less well established. The response of domestic and wild animal 
populations to UV-B is not thought to be a serious problem at this time, in part because they are pro- 
tected by fur. The response of plants is complex because plants exist in a highly competitive situation 
with other plants for water and light, and must survive in an environment of pests and diseases which 
may also be affected by UV-B. The oceanic phytoplankton are the basis of the ocean food chain and 
are responsible for half of the natural carbon dioxide fixation. Studies have indicated that the phyto- 
plankton are adversely affected by UV-B, and thus there is a potential for excess UV-B to affect 
fishing yields and the amount of carbon dioxide in the atmosphere. 
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