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The U.S. Army Research Laboratory (ARL) is developing an acoustic
target classifier using a backpropagation neural network (BPNN)
algorithm. Various techniques for extracting features have been
evaluated to improve the confidence level and probability of correct
identification (ID). Some techniques used in the past include simple
power spectral estimates (PSEs), split-window peak picking, harmonic
line association (HLA), principal component analysis (PCA), wavelet
packet analysis [1–4], and others. In addition, improved classification
results have been obtained when shape statistic features derived from
HLA feature sets or seismic PSE features have been incorporated in
BPNN training, testing, and cross-validation. The combined
acoustic/seismic data from collocated acoustic and seismic sensors are
gathered by a three-axis seismic sensor. This is configured as part of an
acoustic sensor array that ARL uses on typical field experiments.

The PSE, HLA, and shape statistic feature (SSF) data are extracted from
a set of vehicles and then split into a testing and training file. The
training file typically consists of 75 percent of the whole data set, and
the performance of the trained neural network is evaluated using the
remaining test data, and further cross-validation is performed with
vehicle data collected at different times of day and various operating
conditions. Results of the neural network from a few of the feature
extraction algorithms currently under evaluation and from the
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acoustic/seismic sensor fusion are presented in this report.
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1. Introduction
In this report, we discuss the ongoing work at the U.S. Army Research
Laboratory (ARL) in feature extraction and classification of ground
vehicles based on the fusion of collcated acoustic and seismic sensors.
One fundamental problem faced in the classification process is the selec-
tion of robust features that are stable and class-specific. Due to several
factors, acoustic and seismic signatures are nonstationary in nature [5].
This nonstationary nature greatly enhances the difficulty in the feature
selection process, but methods have been reported to somewhat alleviate
this difficulty [1,3]. Most notable to date is the use of the harmonic line
association (HLA) algorithm with shape statistics [6]. The HLA algorithm
takes advantage of spectral characteristics that are dominated by narrow-
band spectral peaks. In the past, the narrow-band spectral peaks have
been used for classification purposes, either in hierarchical clustering
schemes or as direct inputs into an artificial neural network (ANN). The
spectral peaks are typically band-limited between 1 and 400 Hz, but peak
components occur between 10 and 120 Hz. The majority of tracked and
wheeled vehicles of interest are diesel-powered and, thus, the engine
firing rate and track slap produce these spectral components. When
considering feature methods solely based on the acoustic spectrum, one
could often use the entire set of spectral peaks (the power spectral esti-
mate (PSE)) or one can be more clever and select specific frequency
components to improve the signal-to-noise ratio (SNR) by using split-
window peak picking and/or HLA, which have the added benefit of
appreciably reducing the feature space while maintaining class
separability.
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2. Harmonic Line Association
The HLA technique selects peaks that are harmonically related to create
harmonic line sets for each frame (frame = 1 s) of data samples. Split-
window peak picking is performed on the PSE feature set first; this takes
a fixed window length of 21 bins (~21 Hz bandwidth) and determines the
mean energy around the center three or five bins (the split) of the win-
dow. If the energy within the split exceeds the mean energy outside, a
peak has been detected and will be added to the set of peaks. Using this
result, the HLA algorithm finds the maximum peak P in the frequency set
and assumes that this peak is some kth harmonic line of the fundamental
frequency subject to the following soft constraint for fundamental fre-
quency range,

ffund ∈ {8,20} Hz  , (1)

and then calculates the total signal strength in this HLA set. The integer
value, k, that gives the maximum signal strength is assumed to be the
correct harmonic line number, and the harmonic lines of this particular
set are retained as a feature vector. This technique has two advantages:
(1) the feature vector is normalized and is solely based on the harmonic
line number and not a function of frequency and (2) the peak energy is
tracked frame to frame, thus producing a predominance pattern for the
acoustic energy source [3].
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3. Higher Order Shape Statistics

3.1 Background

In the past, the naval community has found shape statistics to be benefi-
cial in certain classification problems. Shape statistic features (SSFs) have
been used in evaluating the discrepancy between the correlated and
uncorrelated components of return energy in low frequency active target-
echo characterization [7]. Also, shape transition statistics have been used
in discriminating biologic from manmade sounds by exploiting minute
differences in broadband energy [7]. We are not completely unfamiliar
with shape statistics since most individuals in science and engineering
have had basic probability theory; for example, in defining the character-
istics of both discrete and continuous probability distribution functions,
one becomes well acquainted with mth-order statistics, which are analo-
gous to shape statistics. The defining relationships for shape statistics are
the following:

   µshape = 1
S

iC(i)Σ
i = 1

N
, (2)

   
θshape = 1

S
i – µshape

2Σ
i = 1

N
C (i) , (3)

   
skewnessshape = 1

S

i – µshape
θshape

3

Σ
i = 1

N
C (i) , (4)

and

   
kurtosisshape = 1

S

i – µshape
θshape

4

C (i) – 3Σ
i = 1

N
. (5)

Here, S is given by the following:

   
S = C (i)Σ

i = 1

N
, (6)

with C(i) the magnitude for the ith frequency or the harmonic line bin and
N the number of bins. In the above, equations (2) and (3) define the shape
mean and standard deviation, which are familiar statistical measures. In
equation (4), the third-order shape statistic commonly called skewness is
defined. Skewness is a measure of the asymmetry around the mean in the
distribution and takes on positive or negative values; for example, a
distribution with a large tail toward the positive direction would have a
positive value for skewness. A Gaussian distribution has zero skewness
since such a distribution can be described by the mean and variance
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alone. Kurtosis, a fourth-order statistic and defined in equation (5), is a
measure of the “peakishness” in a distribution with positive values for a
distribution that exhibits strong peaks or is sharper than a normal distri-
bution and negative for flat distributions.

We were motivated to test whether the shape statistics could be used as a
means to further reduce the HLA feature space by representing the HLA
space with a small set of SSFs. We hope that the multidimension reduc-
tion of the HLA space will not drastically reduce separability but will
improve BPNN training and reduce complexity. We also would like to
investigate the use of these same SSFs as a partially correlated input for
the BPNN. We hope that the SSFs may capture characteristics of the HLA
distribution in a compact representation that would have a positive
influence for the trained BPNN over trained BPNNs that used the HLA
features alone. We know that partially correlated features can often
enhance classification by neural networks [8].

3.2 Seismic Shape Statistics

The seismic signatures are, to a lesser degree than their acoustic counter-
parts, wide-band and nonstationary with far fewer narrow-band peaks
discernible in their power spectrums. Due to the attenuation of Rayleigh
waves, the useful bandwidth for seismic signals is between 10 and 60 Hz
[9], with frequencies below 10 Hz being attenuated by the geophone
response and frequencies above 60 Hz being mostly ambient and acousti-
cally coupled seismic noise. The use of raw seismic PSEs as a feature
vector is much more advantageous than for acoustic features, but we
would like to minimize the feature space for practicality. The use of shape
statistics for characterizing the energy distribution of seismic spectrums
of the different vehicle classes seemed to be prudent. Figures 1 and 2
show the distinctions in power spectrums for tracked versus wheeled
seismic signatures.

When one looks carefully at the spectrograms for the seismic data, it is
apparent that shape statistics could exploit some of the differences in
tracked versus wheeled spectrums and, perhaps, the small changes in the
spectral content of various tracked vehicles. Based on these findings, we
have investigated the use of the higher order shape statistics and intro-
duced a temporal shape transition statistic for classifying the seismic
feature sets. A useful temporal shape transition statistic is simply the
absolute change in the shape mean for each subsequent frame. This is
given by

∆meanshape(t) = abs(µshape(t) – µshape(t – 1)) , (7)

with an initial value set to zero. The absolute value was selected since it
appears to shift the centroid of this feature for tracked versus wheeled
targets, thus aiding class separability.

Typically, the predominant seismic energy in our data set falls in the
frequency range from 1 to 50 Hz. PSE seismic features simply consist of
these 50 frequency bins, and the shape statistics were derived from these
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frequency bins as well. Despite the attenuation of the seismic energy
below 10 Hz, we believe this region provides useful information for
classification purposes. The “raw” seismic PSE features will also be used
in the ANN for classification.

Figure 1. Spectrogram of vertical axis seismic
data derived from a tracked vehicle.

Figure 2. Spectrogram of vertical axis seismic
data derived from a wheeled vehicle.
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4. Artificial Neural Networks
For target identification (ID), ANNs can provide both a robust classifier
and a measure of your confidence in the classification decision. Such
networks derive their computational power from the parallel distributed
structure and the ability to learn and adapt. Typically, a BPNN is used for
the classification procedure. We are currently investigating the perfor-
mance of other classifier architectures, specifically, “fuzzy” ART maps [8],
genetic algorithms [10], and generalized potential neural networks and
the application of homogeneous and heterogeneous combinations of
classifiers. We will have more to say about their relative merits in future
reports. Briefly, these ANNs can give improved classification results in
some cases but their complexity is also much greater and becomes an
issue in implementation. Through k-means analysis, we have seen that
HLA data sets exhibit only a few clusters with minor overlap; in this case,
a boundary decision classifier like the BPNN should perform well. We
employ the BPNN with an adaptive learning rate that allows fine-grain
adjustments during training. Smoothing is also incorporated and allows
the control of weight adjustment based on the past values of gradient
descent and can prevent the training process from terminating in shallow
local minimum [8,11]. The general weight update expression when em-
ploying smoothing takes the following form:

∆w(n) = (1 – β)ηδ(n)y(n) + β∆w(n – 1) , (8)

with β the smoothing constant, η the learning rate, δ(n) the local gradient,
and y(n) the output value for a particular node. (See Haykin [8] for fur-
ther discussion.)

To qualify the neural network classification performance, a confusion
matrix is calculated that provides the percentage of correct identification
(CID) for each class of ground vehicles based on the following expression:

 
  

CID =
NPCID

K
, (9)

and the confidence levels for classification of each target are calculated by

   
Clevel = 1

K

PCIDi
– PFIDj

2 L – 1
Σ

j = 1

L
Σ

i = 1

Κ
, (10)

with K being the total number of observations and NPCID
 the number of

correct decisions. L in equation 10 is simply the total number of output
classes. The value PCIDi

 is the predicted value of the correct ID for class i,
and PFIDj is the predicted value of false ID for class j with respect to class
i. PCID is the output for the BPNN output node dedicated to a particular
class, and PFID is the output for the other output nodes.
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5. Procedure

5.1 Data Collection

Acoustic and seismic data from ground vehicles were gathered at Gray-
ling, Michigan, during the winter with a remote netted acoustic detection
system (RNADS) [2,12], which is a remote sensor array architecture. The
data set included three tracked and one wheeled vehicle, each powered
by a 12-cylinder diesel engine. The remote sensor consists of a triangular
array of five microphones with one three-axis geophone (see fig. 3). The
seismic sensor provides some unique features that complement the
acoustic features. In this report, only the vertical axis seismic data are
used for feature extraction.

The acoustic and seismic signals were preamplified with selectable gain
of 40 and 60 dB and passed to a ruggedized personal computer (PC) and
a digital audio tape recorder (DAT). The acoustic/seismic signatures were
then oversampled at a 12-kHz rate by the DAT. Within the PC, acoustic
signals are antialiased with a lowpass filter, fed to 16-bit A/D converters,
and further processed with a pair of commercially available digital signal
processing boards for real-time applications.

5.2 Feature Extraction

Before any feature extraction for classification was performed, the data
were filtered and down-sampled to 2 kHz, and high SNR regions of the
acoustic and seismic data sets were determined by those regions that gave
contiguous harmonic line sets. These are the regions where SNR is high
enough that we can detect at least m harmonically related peaks after
performing split-window peak picking and thresholding on the acoustic
spectrum. The choice of m is somewhat arbitrary but for this experiment
m = 4; thus, a harmonic line set is considered valid when this condition is
met. The observation regions so found were then used specifically for
PSE, HLA, HLA shape statistics, and seismic shape statistic processing
that would be used in the training, testing, and cross-validation of the
BPNN.

PSEs for each 1-s interval of high SNR data were generated using
Hanning-windowed short-time Fourier transforms according to the

Triangular
5-microphone array

3-axis
seismic

geophone

Pre-
amp

DAT
recorder

Processor

Battery
Processor
• CPU
• Antialias filter
• A/D converter
• Digital signal processor

Antenna

Figure 3. RNADS
field sensor and
processing
architecture.
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Welch method [13]. Only the first 200 frequency bins so derived were
used for classification purposes.

Seismic time-series data were processed using the same technique to
generate the PSEs, and the first 50 frequency bins were used either as
inputs to the classifier or were further processed to extract the seismic
shape statistics for classification.
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6. Results
The following results are the comparisons of the cross-validation using
the HLA or the shape statistic space derived from the HLA features. This
comparison was made to determine in an ad hoc manner whether the
shape statistic features could be beneficial as a multidimension reduction
technique, thereby simplifying the classifier design. Within the tables, the
value to the far left of the slashes indicates the HLA cross-validation
result, and the value to the immediate right is the corresponding result
using the shape statistics mean, standard deviation, and skewness alone.
Finally, the value to the far right is the cross-validation result using the
three shape statistics above with the inclusion of the kurtosis. These
results are representative of several trials for each case. The numbers
represent the percentage of correct identifications. The BPNN used had an
input layer with 3, 4, 11, or 14 input nodes, depending on the feature set,
and one hidden layer of 15 nodes and an output layer of 4 nodes.

For these preliminary trials, confidence levels were not calculated. Table 1
shows that the shape statistic features have some discriminatory power
but that they are not sufficient when considering their use as a
multidimension reduction procedure.

Tables 2 and 3 show the confusion matrix results for a representative trial
and they represent the combined cross-validation scores for the HLA
features, PSE features, and the addition of the seismic features and seis-
mic shape statistic features using the BPNN. Again, these results are
representative of several trials for each case. The numbers represent the
percentage of correct identifications. The BPNN used had an input layer
from 11 to 250 input nodes, depending on the feature set, and one hidden
layer of 15 nodes and an output layer of 3 nodes. Unfortunately, seismic
signatures for vehicle class 1 were not available.

Table 2 shows the combined confusion matrices for three target cross-
validations using HLA and HLA plus various seismic features. The
addition of the seismic skew, kurtosis, and delta mean has increased
classification performance. The overall confidence levels for the classifica-
tion increased from 74 percent for HLA alone to 81 percent for HLA with
shape statistics skew, kurtosis, and delta mean. The overall confidence
level is simply a weighted average for the individual confidence levels
that appear in the table.

HLA or HLA shape statistic cross-validations

Net output

Actual 0 1 2 3

0 90/41/15 5/18/35 2/0/0 2/40/48
1 6/9/6 67/65/56 26/0/0 0/25/36
2 0/5/6 6/13/11 93/51/52 0/30/30
3 14/33/11 18/14/14 14/0/7 51/51/66

Table 1. Harmonic
line and shape
statistic features.



10

The improvement in classification using the addition of the kurtosis in
HLA feature space is interesting. Figures 4, 5, and 6 are plots of the seis-
mic shape statistics skew and kurtosis from sample files used in training
for the three classes.

One can readily see that the seismic shape statistics for skew and kurtosis
are almost linearly separable; thus, a multilayer perceptron like the BPNN
classifier performance will improve with their addition [14,15]. These
results suggest that one may find it beneficial to develop a hierarchical
classifier using these shape statistics in the first stage of classification. A
simple linear discriminant classifier should prove to very powerful in this
case [14].

Table 3 shows the combined confusion matrices for three-target cross-
validation using the PSE and the PSE including the various seismic
features.

A few remarks are in order about the training and cross-validation sets
used in the experiment. For vehicle class 0 and 1, the training set was
fairly comprehensive and the cross-validation was done using a data file
from a different time of day and different aspect angle. The vehicle speed
and gearing of the data file for cross-validation were represented in the
training set. For vehicle class 2, the cross-validation was done with the
vehicle from a different time of day and the vehicle was also under load
with variable speed and gear, which were partially represented in the
training set. The class 3 cross-validation was the severest test, the data file

HLA and HLA with first 50 seismic frequency bins

Net output

Actual 0 2 3 Confidence level

0 88/88 0/2 11/8 80/77
2 1/4 80/92 18/3 75/85
3 5/7 2/2 92/89 55/85

HLA and HLA with seismic shape statistics skew and delta mean

Net output

Actual 0 2 3 Confidence level

0 88/88 0/3 11/7 80/76
2 1/4 80/90 18/5 75/83
3 5/31 2/0 92/68 55/32

HLA and HLA with seismic shape statistics
skew, kurtosis, and delta mean

Net output

Actual 0 2 3 Confidence level

0 88/96 0/0 11/4 80/79
2 1/4 80/90 18/6 75/83
3 5/5 2/0 92/95 55/74

Table 2. Harmonic
line and seismic
features.
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was from a different time of day, different aspect, and different speed and
gear than were represented in the training set. This partly accounts for the
poor classification scores in the PSE feature space.

The improvement in the overall confidence levels for classification was
greater for the PSE versus PSE plus seismic features as compared with the
HLA counterparts, but the maximum overall confidence level for any
particular PSE feature space including seismic features was only 70
percent. The maximum individual score increases in confidence for the
classification of the classes occurs using the raw seismic features, i.e., the
first 50 frequency bins of the seismic PSEs. These improvements are not
significantly better than the HLA with seismic shape statistic scores for
each class, and considering the reduced complexity of the ANN and the
training time and the HLA noise immunity, the HLA with seismic shape
statistics feature space appears the more robust.

PSE and PSE with first 50 seismic frequency bins

Net output

Actual 0 2 3 Confidence level

0 94/100 0/0 5/0 64/83
2 14/0 65/100 20/0 54/80
3 47/47 42/37 10/15  0/0

PSE and PSE with seismic shape statistics skew and delta mean

Net output

Actual 0 2 3 Confidence level

0 94/86 0/0 5/13 64/61
2 14/8 65/77 20/14 54/58
3 47/47 42/22 10/30  0/2

PSE and PSE with seismic shape statistics
skew, kurtosis, and delta mean

Net output

Actual 0 2 3 Confidence level

0 94/86 0/0 5/13 64/67
2 14/8 65/80 20/11 54/61
3 47/50 42/31 10/18  0/0

Table 3. Power
spectral estimates and
seismic features.
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Figure 6. Skewness
versus kurtosis for
vehicle class 2 and
class 3.
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7. Conclusions
The acoustic and seismic detection, tracking, and classification of ground
vehicles in a battlefield environment remain challenging problems. The
acoustic and seismic signatures of ground vehicles are nonstationary and
exhibit both wide-band and narrow-band characteristics. The combined
effects of source, terrain, atmospheric propagation, and geologic charac-
teristics can produce large signal variability over the entire range of
interest.

We have shown in this preliminary investigation that the inclusion of
shape statistics can improve target identification. In addition, the seismic
features can act as a powerful discriminant in both the classification of
tracked versus wheeled vehicles and increase the separability of tracked
vehicles alone. In fact, recent work using only seismic features has pro-
duced an average probability of correct ID as high as 86 percent. The
seismic shape statistic features look promising in light of the HLA plus
seismic shape feature results. The cross-validation scores suggest that this
space is far more robust than any features we have investigated to date
and it is unlikely that we can improve on the reported scores. These
particular three classes of vehicles have presented problems in the past
for classification, and we have seen through k-means analysis that there
can be significant overlap with some feature spaces. Often, class 3 is
classified as class 0 and to a lesser extent class 2 when only acoustic
features are considered [1,3]. This problem is alleviated with the incorpo-
ration of the seismic features.

In future work, we will look at using shape statistics derived from the
total spectrum as an additional feature vector combined with the HLA
feature space. Experiments will also be performed using only the skew-
ness and kurtosis as additional shape features derived from the original
spectrum or HLA feature set. Rank ordering of the shape statistics would
be beneficial as well. For the incorporation of seismic signatures, we plan
on expanding the number of classes, but further data collection will be
needed to validate the HLA plus seismic shape statistic feature space.
Obviously, there are a great number of variables to consider in the data
collection/validation process to further test classifier robustness. We also
plan to address the sensitivity of the shape statistics to outliers in the
classification process. Skewness and kurtosis can be quite sensitive to
outliers and, therefore, give erroneous results in these cases.
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