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INTRODUCTION 

Pyridostigmine has been used clinically for nearly 50 years for myasthenia gravis, yet 

recent work shows this drug can disrupt peripheral nerves, both functionally and 

morphologically. Pyridostigmine induces withdrawal of nerve terminal branches from rat 

diaphragm and causes structural alterations in mitochondria in these nerves (Hudson et ah, 

1986). Repeated administration of pyridostigmine over a period of 20 days decreased strength 

of rat skeletal muscle contraction, attributed to decreased neurotransmitter release (Anderson & 

Chamberlan, 1988). Thus, peripheral nerves are susceptable to damage by pyridostigmine. 

Because of its quaternary structure, pyridostigmine would not be expected to cross the 

blood brain barrier to act on the CNS (Birtley et ah, 1966). However, Loewenstein and 

Lichtenstein et ah (1995) suggested that pyridostigmine can enter the brain since they observed 

that an Israeli soldier experienced severe CNS-mediated symptoms following pyridostigmine 

treatment. Furthermore, Friedman et ah (1996) reported that in mice exposed to a stress 

protocol (forced swim) only 1/10001 of the usual dose of pyridostigmine was required to 

decrease brain acetylcholineesterase (AchE) activity by 50%. They also noted increased brain 

levels of c-fos oncogene and AchE mRNA in these stress conditions following pyridostigmine 

treatment. It appears that under select conditions, pyridostigmine can undergo distribution to 

the brain despite its charged chemical structure (Sapolsky, 1998). 

The present study was undertaken to evaluate the potential of pyridostigmine to produce 

apoptotic cell death in the rat brain following subacute exposure. Brain sections were 

examined 3 hrs after dosing (twice daily for 4 days), and at 5, 10, 20 and 30 days after the last 

pyridostigmine injection, to detect any continued neurotoxicity. 



BODY 

EXPERIMENTAL METHODS 

Animal treatment 

All experimental procedures were carried out under protocols approved by the Animal 

Care Committee of Purdue University and in accordance with the principles outlined in the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals. 

Male Sprague-Dawley rats, weighing 200-250g were used (Harlan Sprague Dawley, 

Indianapolis, IN). To evaluate the acute neurotoxicity, rats were treated with pyridostigmine 

bromide (Sigma Chemical Co., St. Louis, MO) at doses of 0.25, 0.5, 1.0, 1.5 or 1.85 mg/kg 

(ip), twice daily for 4 days (4 rats per treatment group). Rats of the control group were given 

an equal volume of saline (vehicle). Three hours after the last injection, rats were anesthetized 

with pentobarbital (50 mg/kg, ip) and 2 ml of blood was collected from the pulmonary vein. 

Transcardial perfusion with 50 ml of saline was followed by perfusion with 150 ml of freshly 

prepared fixative (for histological analysis with 4% paraformaldehyde in PBS; for EM analysis 

with TRUMPS solution: 2% paraformaldehyde, 2.5% glutaraldehyde in PBS). Brains were 

removed and immersed in fixative. To detect delayed toxicity, rats were given pyridostigmine 

(ip) 1.85 mg/kg twice daily for 4 days. At 5, 10, 20 and 30 days after the last injection of 

pyridostigmine, brains were harvested and fixed as described above. In other studies, rats 

were pretreated with atropine (25 mg/kg, ip), N-t-butyl-a-phenyl-nitrone (PBN, 32 mg/kg, ip) 

or Nco-nitro-D-arginine-methyl ester (L-NAME, 50 mg/kg, ip) before treatment with 

pyridostigmine. 

Measurement of serum cholinesterase (ChE) activity 
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Serum was separated by centrifugation and ChE activity was determined by the method 

of Ellman et ah (1961) in which butyrylthiocholine (BTC) was used as the substrate. ChE 

hydrolyzes BTC to yield thiocholine which in turn reacts with 5,5-dithiobis-2-nitrobenzoic acid 

to form 5-thio-2-nitrobenzoate which has an absorbance maximum at 405 nm. The rate of 

change in absorbance at 405 nm is directly proportional to ChE activity. 

Detection of DNA fragments by TUNEL staining 

The terminal deoxynucleotidyl transferase (TdT) mediated dUTP nick end-labeling 

(TUNEL) technique was performed on paraffin-embedded brain sections as previously 

described (Gavrieli et ah, 1992; Nitatori et ah, 1995) (Apotag in situ apoptosis detection kit; 

Oncor, Gaithersburg, MD). Briefly, after deparaffinizing by washing with xylene and ethanol 

followed by digesting protein by proteinase K (20 ng/ml) for 20 min at room temperature, 

brain sections were preincubated in equilibration buffer containing 0.1 M potassium cacodylate 

(pH 7.2), 2 mM CoCl2, and 0.2 mM dithiothreitol for 10 min at room temperature and then 

incubated in TUNEL reaction mixture (containing 200 mM postassium cacodylate (pH 7.2), 4 

mM MgCl2, 2 mM 2-mercaptoethanol, 30 (xM biotin-16-dUTP, and 300 U/ml TdT) in a 

humidified chamber at 37°C for 1 hr. After incubating in stop/wash buffer for 10 min, the 

elongated digoxigenin-labeled DNA fragments were visualized using anti-digoxigenin 

peroxidase antibody solution followed by staining with DAB/H202 (0.2 mg/ml 

diaminobenzidine tetrachloride and 0.005% H202 in PBS, pH 7.4). 

Detection of apoptosis using fluorescence 

For fluorescence immunohistochemical detection and quantitation of apoptosis, rat brain 

sections were made as before.  After deparaffinizing and hydrating the sections, a commercial 



kit for In Situ Cell Death Detection (Boehringer Mannheim) was used. Briefly, specimens 

were rinsed with PBS and covered with a reaction mixture containing terminal 

deoxynucleotidyl transferase A(TdT) and fluoresein-deoxyuridine triphosphate (dUTP). 

Sections were incubated in a humidified chamber for 1 hr at 37°C. Reactions were terminated 

by rinsing the sections with PBS and then sections were mounted with glass coverslips using 

permount and fluorescence was observed using a fluorescent microscope. Positive controls 

were obtained by pretreating brain sections with 10 ng/ml DNase at 37°C for 5 min. 

Electron microscopic (EM) analysis of apoptotic cells 

Brains were fixed and harvested as before and approximately 1 mm cubes were 

removed from cortex, striatum, hippocampus and substantia nigra. The cubes were postfixed 

in 2% Os04 overnight and then dehydrated in an ethanol series. Pieces were embedded in 

Epon 8-10, cut into 60-90 \im sections using a microtome and mounted on grids. Sections 

were stained for 30 min in 2% uranyl acetate and examined by transmission electron 

microscopy at a magnification of 6,500-10,000. Apoptotic cells were characterized by 

chromatin margination to nuclear membrane, chromatin clumping and shrinkage of cell 

cytoplasm. 

Electrophoretic detection of DNA fragmentation 

To confirm DNA fragmentation we used gel electrophoresis to detect DNA laddering. 

DNA was isolated from fresh rat brains (cortex, striatum and hippocampus) using the method 

described by Thomaidou et al. (1997). Briefly, the tissue was homogenized in extraction 

buffer (10 mM Tris-HCl, pH 8.0, 10 mM EDTA, and 0.5% SDS) containing 50 ng/ml RNase 

I. After incubation for 1 hr at 37°C, 100 |ig/ml proteinase K was added, and the samples were 



left at 50°C for 3 hr. The DNA was extracted with phenol/chloroform (24:1) and precipitated 

overnight in absolute alcohol containing 0.3 M sodium acetate at 20°C. After centrifugation, 

the pellet was washed in 70% ethanol and resuspended in buffer (0.1 M Tris-HCl, pH 8.0, and 

10 mM EDTA). DNA samples, about 2.5 |ig each, were separated electrophoretically on 

1.5% agarose gels containing ethidium bromide (0.4 ng/ml) and viewed with UV 

transillumination. 

RESULTS 

Effect of pyridostigmine on AChE 

Pyridostigmine (0.25-1.85 mg/kg ip twice daily for 4 days) significantly decreased 

serum AChE at all dose levels (Fig. 1). When the dosage of pyridostigmine was increased to 

1.85 mg/kg, the serum AChE activity was reduced to 62% of control. At time intervals after 

cessation of pyridostigmine administration (5, 10, 20 and 30 days) serum AChE activity was 

not different from control (data not shown). This demonstrates AChE activity returns to 

control levels before day 5 after pyridostigmine administration and pyridostigmine produces no 

residual inhibition of the enzyme. 

Induction of acute apoptosis by pyridostigmine 

TUNEL staining is a sensitive method which detects DNA fragmentation in situ and is 

used as a marker for cells undergoing apoptosis (Gavrieli et ah, 1992). Three hours after the 

last injection of pyridostigmine (1.85 mg/kg, ip twice daily for 4 days), 3 of 4 rats exhibited 

extensive apoptosis in the cortex, striatum and hippocampus (Fig. 2). When the rats received 

1.5 mg/kg twice daily for 4 days, 3 of 4 rats again exhibited apoptotic cell death only in cortex 

and striatum.   At 1.0 or 0.5 mg/kg (twice daily for 4 days) only 1 of 4 animals exhibited 



TUNEL staining that was limited to the cortex (Fig. 3).   The fluorescent TUNEL technique 

produced similar results (not shown). 

Prolonged pyridostigmine-induced apoptosis 

Rats were sacrificed 5, 10, 20 and 30 days after the last pyridostigmine treatment (4 

days of 1.85 mg/kg pyridostigmine) and the fluorescence-TUNEL procedure was used to 

detect apoptotic cell death. At each post-treatment time, cortical apoptosis was detected. This 

cell death was restricted to the cortex (Fig. 4 & 5). It appears that pyridostigmine initiates a 

programmed cell death process which continues in the cerebral cortex after cessation of 

treatment. It is important to note that the TUNEL technique only detects active apoptosis, 

since apoptotic cells are cleared rapidly from the tissue and are not detectable after a few hrs 

(Bursche al, 1990). 

Electron microscopy 

To confirm that apoptosis was induced by pyridostigmine, transmission electron 

microscopy was used. An increased incidence of ultrastructural changes characteristic of 

apoptosis (Fig. 6) (chromatin margination to the nuclear membrane, chromatin clumping and 

cytoplasmic condensation) was observed within 3 hrs after pyridostigmine treatment (1.85 

mg/kg, twice daily for 4 days) and at 5, 10, 20 and 30 days following treatment. 

The effect of atropine, PBN and L-NAME on pyridostigmine-induced apoptosis 

Atropine treatment (25 mg/kg) 30 min before each pyridostigmine dose, blocked the 

apoptotic response so that cortical and striatal sections did not display TUNEL staining (Fig. 

7D & F). These data were quantitated by counting the number of apoptotic figures in the 

tissue sections and are depicted in Fig. 8; the strong blockade of physostigmine-induced 

apoptosis by atropine is clearly seen. However, pretreatment of rats with PBN, an antioxidant 
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which can cross the blood brain barrier, and L-NAME, nitric oxide synthase inhibitor, did not 

alter the neurotoxic response to pyridostigmine (not shown) despite a report that cholinesterase 

inhibitors increase lipid peroxidation (Yang & Dettbarn, 1996). 

DNA laddering 

Electrophoresis of DNA taken from brains of pyridostigmine-treated rats did not show 

distinct nucleosome ladders typical of DNA fragmentation, possibly because the fragmentation 

of genomic DNA which did occur was below the detection limit of the agarose gel 

electrophoresis method. Piantadosi et al (1997) had similar difficulty in clearly demonstrating 

laddering in brains of rats treated with carbon monoxide even though apoptosis was easily 

demonstrated by TUNEL staining. 

DISCUSSION 

This study demonstrates that pyridostigmine can induce a dose-related apoptosis in 

which the cortex is the most sensitive brain area. At the higher dose (1.85 mg/kg) apoptotic 

cells were detected within striatum and hippocampus as well as in cortex. The distribution of 

apoptotic cells was not even and was more concentrated in certain areas within the cortex, 

striatum or hippocampus presumably associated with cholinergic innervation. It appears that 

the apoptotic response to pyridostigmine continues for up to 30 days after exposure to 

pyridostigmine, even though AChE activity returns to control levels when drug administration 

ceases. 

Atropine, an antagonist of muscarinic receptors, blocked the neurotoxicity of 

pyridostigmine, which confirms that accumulation of acetylcholine and excessive activation of 

muscarinic receptors in the brain is a key step in pyridostigmine-induced neuronal apoptosis. 

11 



PBN and L-NAME did not reduce neuronal apoptosis induced by pyridostigmine, which 

suggests that the neurotoxicity of pyridostigmine is not mediated by reactive oxygen species. 

In response to intense cholinergic stimulation, cell systems adjust genetically to 

compensate. Levels of cholinesterase increase and enzymes involved in acetylcholine synthesis 

decrease. In the short term, these genetic changes appear to be beneficial since they were 

associated with a quieting of electrical activity which was observed in mouse brain 

corticohippocampal slices following anticholinesterase treatment (Kaufer et al., 1998). In the 

long term, however, these genetic changes may cause continued apoptotic neurodegeneration 

(Been et al., 1995). 

Programmed cell death continued for 30 days in the rats after termination of 

pyridostigmine treatment in the present study. This was not due to slow removal of cells dying 

by apoptosis since such cells are generally removed in a few hours (Bursch et al., 1990). Thus 

pyridostigmine appears to initiate the cell death process which then continues on for an 

extended time after termination of pyridostigmine dosing. Most likely, pyridostigmine 

penetrates into the brain, blocks cholinesterase, to allow acetylcholine accumulation and the 

intense cholinergic stimulation leads to genetic changes in factors controlling acetylcholine 

synthesis and also to a delayed neuronal cell death. 

Many military personnel involved in the Persian Gulf War have complained of 

neurological symptoms of unknown etiology. The symptoms include headache, loss of 

memory, depression, anxiety, cognitive dysfunction and chronic fatigue (The Iowa Persian 

Gulf Study Group, 1997). Abou-Donia et al. (1996, 1996a) have suggested that the combined 

exposure to pyridostigmine (to protect against nerve gas), DEET (insect repellant) and 

permethrin (insecticide) or chlorpyrifos (insecticide) contributed to the Gulf War Syndrome. 

12 



Individually these agents reportedly showed little toxicity but together they were thought to 

overwhelm liver and plasma esterases leading to decreased breakdown and increased transport 

to nervous tissues. Present studies suggest that pyridostigmine alone may be responsible for 

some of the symptoms of the Gulf War Syndrome. 

It is possible that peripheral actions of pyridostigmine may contribute to the harmful 

effects on the brain. Muscle hyperactivity with lactate formation, ATP exhaustion centrally 

(Lea et ah, 1996; Richter et ah, 1996) and depletion of antioxidants may occur to exaggerate 

any direct action on brain neurons. Thus complex actions of pyridostigmine may be 

contributing factors in The Gulf War Syndrome. 

13 



CONCLUSIONS 

1) Despite its charged chemical structure which would be expected to prevent 

penetration into the brain, pyridostigmine causes apoptotic neural degeneration in 

rat brain cortex. Higher doses are needed to cause similar degeneration in rat 

brain striatum and hippocampus. 

2) The apoptotic neural damage caused by pyridostigmine in rat brain cortex 

is a continuing process which persists for at least 30 days after cessation of 

pyridostigmine administration. 

3) Atropine, a muscarinic receptor antagonist, blocks pyridostigmine-induced 

apoptotic brain injury showing that excessive stimulation of muscarinic receptors 

is essential to the apoptotic neural degeneration caused by pyridostigmine. 

4) Oxidative processes do not appear to play an important role in 

pyridostigmine-induced brain damage since the antioxidants "PBN" and "L- 

NAME" do not block the effect. 

5) It is possible that some of the symptoms of the Gulf War Syndrome are 

related to apoptotic brain injury caused by pyridostigmine taken by military 

personnel as a preventative against nerve gas intoxication. 

14 
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FIGURE LEGENDS 

Figure 1. Effect of pyridostigmine (0.25-1.85 mg/kg) twice daily for 4 days on AChE activity 

of rat blood.   Three hrs after the last injection of pyridostigmine, blood was collected and 

serum was separated for detecting AChE activity. 

Figure 2. TUNEL-stained paraffin-imbedded sections from brains of rats treated with a high 

dose of pyridostigmine. (A, C and E) Saline control of cortex, hippocampus and striatum 

respectively. (B, D and F) Pyridostigmine treated (1.85 mg/kg twice daily for 4 days) cortex, 

hippocampus and striatum. 

Figure 3. TUNEL-stained paraffin-imbedded sections from brains of rats treated with low 

doses of pyridostigmine. (A and B) pyridostigmine treated (1.0 and 1.5 mg/kg twice daily for 

4 days) cortex. (C) Pyridostigmine treated (1.5 mg/kg twice daily for 4 days); striatum. 

Arrows indicate apoptotic figures. 

Figure 4. Prolonged effect of pyridostigmine on in situ DNA fragmentation detected by 

TUNEL staining. (A) Normal cortical section (saline), cortical sections after treatment with 

pyridostigmine (1.85 mg/kg twice daily for 4 days) followed by a drug free period of 5 (B), 10 

(C), 20 (D) and 30 (E) days after the last pyridostigmine dose. F = positive control DNAse 

pretreatment. 

Figure 5. Electron micrographs of rat cerebral cortex after 4 days of pyridostigmine 

administration. (A) Normal cortical cell, (B) pyridostigmine treated (1.85 mg/kg twice daily 

for 4 days) cortex. Magnification is 6000. 
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Figure 6. Electron micrographs of rat cerebral cortex 30 days after pyridostigmine 

administration. (A) Normal cortical cell, (B) apoptotic cortical cell 30 days after last 

pyridostigmine treatment (1.85 mg/kg, twice daily for 4 days). 

Figure 7. Atropine blockade of pyridostigmine-induced apoptosis in rat brain fragmentation 

detected by TUNEL staining. (A) Normal brain (saline), (B) positive control brain section 

treated with DNase I, (C and E) the cortical and striatal sections from rats treated with 

pyridostigmine (1.85 mg/kg twice daily for 4 days), (D and F) cortical and striatal sections 

from rats pretreated with atropine (30 min pretreated with 25 mg/kg, ip) before pyridostigmine 

(1.85 mg/kg twice daily for 4 days). 

Figure 8. Effect of atropine (AT) on apoptosis in rat brain induced by pyridostigmine (PB). 

♦Indicates significant difference from pyridostigmine alone at the 0.001 level. 
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Figure 2 
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- .*   C '.Cft 

I : mv   i ü - ,  » 

ID 
s- 
cn 



""*;**? 

i*Ä& 

mi •V*".^**Ü.',::'^/..>. ^c- 
i<?l 

%% 
i&:vh 

to 

QJ 
S- 
3 

^ajflCävb 



Figure 7 
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