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FOREWORD

The Air Force Office of Scientific Research (AFOSR) sponsored two contractor
‘meetings on the "Mechanics of Materials" and "Structural Dynamics" at the Holiday
Inn in Fairborn, Ohio during the week of 7 October 1991. The meetings were hosted
by Mr. Robert M. Bader, Chief of the Structures Division, Flight Dynamics
Directorate, Wright Laboratory at Wright-Patterson Air Force Base. The technical
sessions were organized and coordinated by Dr. Spencer Wu, AFOSR Program
Manager for Aerospace Sciences. A panel discussion on Smart Structures/Materials
was conducted in conjunction with these meetings on Wednesday, 9 October. The
session was chaired by Mr. Tony Gerardi of the Structural Integrity Branch, Structures
Division, Flight Dynamics Directorate, Wright Laboratory at Wright-Patterson Air

Force Base.

This report includes a summary of the panel discussion and the six technical
presentations that were part of the program. A paper presenting the Wright Laboratory
position on the technology needs for research in Aeronautical Structural Mechanics is

also included in this report.

The administrative arrangements for the AFOSR meetings and panel
discussions were conducted by the Aerospace Structures Information and Analysis
Center (ASIAC), which is operated for the Flight Dynamics Directorate, Wright
Laboratory by CSA Engineering, Inc. The efforts of Mr. Gordon R. Negaard, ASIAC
Technical Manager, and all the ASIAC staff for coordinating and arranging the
meeting details are greatly acknowledged.
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SECTIONT

SMART STRUCTURES PANEL
DISCUSSION SUMMARY

Mr. Tony Gerardi

Principal Scientist

Structural Integrity Branch
Structures Division
Flight Dynamics Directorate
Wright Laboratory
United States Air Force
Wright-Patterson Air Force Base, Ohio




PANEL DISCUSSION SUMMARY

Dr Wu preceded the panel discussion with an introduction and an overview of
the panel’s purpose. This overview was followed by five exccllent technical

presentations. Onec paper from each of the panelists as follows:

Dr. Edward F. Crawley (MIT) "Progress in Intelligent Structures”

Dr. Eric Cross (Penn State) "Piczoelectric Ceramics "

Dr. Dan Inman (Univ. at Buffalo, SUNY) "Panel Discussion on Smart
Structures/Materials”

Dr. Craig Rogers (VPI) " Characterization and Modcling of PZT"

Dr. Terrance Weisshaar (Purdue) "Active Composite Structures”

A copy of each presentation is contained in Section ]I of this report. Mr. Tony
Gerardi of the Structures Division of Wright Laboratory gave a brief overview of Air
Force needs in the area of air vehicle structures and Mr. Monte Smith presented a
review of the ongoing programs at Phillips Laboratory. The meeting was then opened
for discussion. Mr Gerardi served as panel moderator and each of the panel members

answered questions from the floor.

The mecting was successful in relating state of the art technology in several
specific arcas in the broad Smart Materials/Structures field. In addition, the
stimulating discussion involving experts in their respective ficlds identified several
specific areas where "gaps" are beginning to appear. One is "integration”. The term
integration surfaced several times during the discussion. Typically little integration
can occur until a well defined goal is established. Mr Gerardi commented that now
may be the appropriate time to begin thinking about an agreed upon goal and an
agency to manage it. One goal could be a Smart Vehicle Technology Demonstrator
(SVTD) designed to provide a platform for tieing the various technologies together

and operationally testing them as a system. Another possibility could be a multi-
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~agency "Smart Laboratory" designed for the same purpose. Once the desired

capabilities of our goal are well defined, integration can occur.

As one of the primary purposes of the panel discussion was to provide
direction for 6.1 future efforts in the Smart Structurcs/Materials area for acrospace
vehicles, a paper by Dr. James Olsen, chief scientist of the Flight Dynamics
Directorate, of Wright Laboratory is also included as Section III of this report. This
paper was prepared to summarize the technology needs for research in aeronautical
structural mechanics. The document cuts across the 6.1, 6.2, and 6.3 pockets of
research and contains explanations of problems; unknowns and science issues in
aeronautical structures. Most of the issues identified are related, either directly or
indirectly, to "smart" technology. Hopefully, this document, in conjunction with the

panel discussion, will be useful in providing the guidance needed for future 6.1

" research. Finally, AFOSR will have an FY 93 initiative on Smart Structures/Materials

addressing the development of smart skins for air vehicles. The purpose of the
initiative is to create methods that will control air turbulence and produce favorable

loading conditions on an aircraft.



SECTION 11
PANEL DISCUSSION
ON
SMART STRUCTURES/MATERIALS

TECHNICAL PRESENTATIONS

Dr. Spencer T. Wu
Program Manager, Aerospace Sciences
Air Force Office of Scientific Research
Bolling Air Force Base
"Introduction and Overview"

Dr. Edward F. Crawley
Space Engineering Research Center
Massachusetts Institute of Technology
"Progress in Intelligent Structures”

Dr. Eric Cross
Pennsylvania State University
"Pietzoelectric Ceramics”

Dr. Dan Inman
University at Buffalo
State University of New York

"Panel Discussion on Smart Structures/Materials”

Dr. Craig Rogers

Virginia Polytechnic Institute and State University

Characterization and Modeling of PZT

Dr. Terrance Weisshaar
Purdue University
"Active Composite Structures”



TECHNICAL PRESENTATION

"Introduction and Overview''

BY
Dr. Spencer T. Wu
Program Manager, Aerospace Sciences
Air Force Office of Scientific Research

Bolling Air Force Base
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TECHNICAL PRESENTATION

"Piezoelectric Ceramics"

BY
Dr. Eric Cross

Pennsylvania State University
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+112(P12 0,2+ 0,0+ P,2 (9,2 + 032 + P32(0,2 4. 0,7) |

+ Y44 [P P10,0, + P,P30,05 + P3P 638)]

- L2810 2+ Xp2+ X3) - S 12 X X+ XpXa+ X3X )]

- 1/2 844 [X42+ Xg2+ X621 - Q1 [X|P12 + X;P2? + X3P32)

- Q12 X (PZZ + P32) + X7 (Pl2 + P32) + X3 (Pl2 + Pzz)]

- Q44 (X4 PoPy + X5 PPy + Xg P Pyl - Zy) [Xp 2 + Xp)? + X3p32)

= Z12 X (2% + 237 + X (912 + p3 ) + X5 (py 2 + py2)

= Z44[X4pop3 + X5p1p3 + X P12l - Ry | [X(8)2 + X30,2 + X485

- Ry2 [X] (8274 832)+ X5 (8)2 +032) + X3 (8,2 + 6,2)]

- Rgq [X4 0203 + X5 8,65 + X 0,0,] ()

The coefficients of this energy function are defined in Table I. The energy function includes

all possible ferroelectric and antiferroelectric polarization terms up to the sixth order, tilt angle

terms up to the first fourth order term, and only the first order coupling terms.
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TABLED

Cocllicients of the P21 Energy Function

(L} L Y
U PR T

ferroclectie diclectsie stitlness ut constint stiess

antitennocleetrie diclectic stitfness at constant stiess
coupling between the fenoelectiic and antifenioclectiic polmizations

octahedial torsion cocllicicnts

coupling between the lenoclectiie polwization and Lilt angle

clstic complianves at constam polaization

cleettostiictive coupling hetween the ferocleenie polarization and stress
clectiostrictive conpling hetween the antifenoclechic polmization and shiess
potastrictive conpling hetween the 1 angle amd stress

IV, SOLUTTONS TO THE ENERGY FUNCTION

Considering zeto stiess conditions the following solutions o the cnergy function
(Equation 1) we of interestin the PZT systeny:

Paraclectric Cubic (1)

’)| - l’z — I»" = ),

mo=py=py=0,

Ferrovcleenic Teaagonal (14))

P = P, =

0 I,

o= Py oy el

Ferroclecwic Ortharlimmnbic (1)

,’l = “,

Ferroelectic High-temperature Rhomboliedial (Fyg0))
o= 5 - A0,
Fervoclectric Low-temperatine Rhombohedral (Fyyy )

PP Py Y,

P3P0 sy =y = 0,
M=y ==

PPy = e W

Antiferroclecnic Orthorhombic (Ay))

Py=1y= Py o=,

f

po=00 0 pi=pid,

U,

0,

0,

0,

0,

0,

0y

0,

0,

1§

Y

0

0

2)

Q)

Q)

)

)

Q)

Al of these solations, except for the lertoclecttic orthohombice solution, are stable
in the P20 system. The ferroelectiic orthothombic solution was also included here,
heeause the coclticients necessary (o caleulate the enerpy of this phase can be
determined. Anindependent ehieck of the eateulited cocflicients can then be made
Uy conlitming that this phase is metastable across the PZT systen.
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LOWER LEVEL MODIFIERS (O to 10 MOLE %)

'Donor' Additives '"Acceptor' Additives

Nb205 or I’bNb206
ra205 or PbTa206
H03

Bi,0,
Sb,0%

La203

V.0

Other Low Level Additives:

Na20, KZO’ Ga203, ln203, lr02. ThO2

’

Fe203
/\1203
Cr203
MnO2
Mg0

NiO
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ELECTROSTRICTIVE ACTURTORS

Direct Electrical Control of shape (strain) in an insulating solid.

Electrostriction.
My = Mijir Eikj

o - 2
-t =Min g

to

L"kl = Gijki PiPo

M uvanlues widely scallered in different insulators.

Q values - much more limited range. Systematic change with elastic
behavior,

Controlling dithensions in an electrostrictive requires control of

pelgrization.
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COMPOSITE ELECTROCERAMICS

KEY ELEMENTS IN DESIGN OIF COMPOSITES.

r CONNECTIVITY. - mvch s\ready occowplched

Mode of sclf interconnection for the individual phases:
controls, fluxes, and fields in the composite.

* SYMMETRY OF THE ARRANGEMENT. -~ +e¢ )k {iTore
Curie Group macro-symmetries can modify property
tensors in highly desirable ways.

* SCALE. - V‘fj GG\:‘VQ 0-‘- ?f-“‘w‘.

Mode of averaging depends on wavelength of excitation
_ vs. scale of composite. Unusual resonances can occur when
A and d are comparable.
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TENSOR ENGINEERING IN ACTIVE COMPOSITES

NAVY HYDROPHONE

Up to 1975 Materlal lead zirconate titanate plezoelectric ceramic PZT
Power figure of merlt dj, 9y,
Product of hydrostatic voltage x hydrostatic charge

(dga3 + 2d3¢9)?
€33

" dugy, ~ 100 + 10~ 15 M2/Newton &

dj,g;, in tensor form —

PROBLEM d333 = -2dgqq €33 very large
COMPOSITE SOLUTION
A

TRANSVERSE REINFORCEMENT
(1-2-3-0)

733

.“\\\\\\\\\‘é\\}\.\w
\“‘4 9 % ' Z

| «—T22

- :
T11 0 ¢ Taken up on transverse reinforcement -
0 0 -Tg3 | — Ent .nced on PZT

Polyimer acts like a tent

€33 much reduced by the polymer
Composite 10 v/o PZT 90% rubber

, dygy, = 150,000 « 10~ 15 M2/8 swion l é:l
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TECHNICAL PRESENTATION

"Progress in

Intelligent Structures”

or

"Here’s the Beef, Dan"

BY
Dr. Edward F. Crawley

Space Engineering Research Center
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ACTIVE DAMPING OF CANTILEVER BEAM
USING SELF-SENSING AUTUATOR
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TECHNICAL PRESENTATION

""Characterization and
Modeling of PZT"

BY
| Dr. Craig Rogers
Center for Intelligent Material Systems and Structures

Virginia Polytechnic Institute and State University
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TECHNICAL PRESENTATION

"Active Composite Structures'

BY
Dr. Terrance Weisshaar
School of Aeronautics and Astronautics
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/ Active composite structures - \ |
~ Aeroservo/control/structure
tailoring issues
Terrence A. Weisshaar
| Steven M. Ehlers
School of Aeronautics and Astronautics
Purdue University
West Lafayette, Indiana

Active aeroelasticity _j

Evolution of Aeroservoelastic Design:

Conventional Advanced Composites
isotropic Materials
. ‘ Weight savings
Inexpensive Tailoring
Adaptive Structures |.
‘ Self actuating structure
(Wing warping)
Mechanical "Smart” Wing Skins or Panels:
Actuators
Augment control surfaces (trim)
Divergence avoidance .

Flutter suppression :
Panel fiutter alleviation
\ Active aeroelasticity _/
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Thesis |
Active materials can be integrate

“design performance.

- materials in flight vehicle
stuctures. ldentify scientific
- issues.

\ Active aeroelasticity J

~ into lifting surfaces to improve

Result - Establish a role for active

d

s

Integratidn issues - "abilities™
0 material suitability |
Q availability
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4 * )
Iniegration issues - structures
stiffness orientation exploitation
actuator location
size
strength

k Active aeroelasticity _/

f Integration issues - controls

Q formulation - classical - modern
0 sensor/control location

Q size

O optimization
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Actuation / performance issues |

Macroactuation - deforming a
large surface to change lift.
How large? How much?

Microactuation - deforming a

- small, localized area to
produce local flow changes.
Where? Why?

K Active aeroelasticity _/
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Measures of performance
Lift
Dfag
Stability -
local - global - static - dynamic
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Actuation / performance issues

Macroactuation - deforming a
large surface to change lift.
How large? How much?

Microactuation - deforming a
small, localized area to
produce local flow changes.

Where? Why? |
Active aeroelasticity _/

g

Examples
Static wing lift effectiveness
Panel flutter suppression

Transonic drag reduction
Shock oscillation control

Active aeroelasticity ,/
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Static Asroelasticity
Divergence Suppression §
Lift Effectiveness Control |
Control Effectiveness f

Dynamic Aeroelasticity
Flutter Suppression
Gust Load Alleviation
Transient Behavior

[ Aerodynamic Shape Control |
Laminar Flow Control
Shock Wave Positioning

Stability and Control
Control Surface Augmentation

; Flexible Vehicle Stability
icrotrim

/" Controlled aircraft wing N\

Voltage Galn * Piezoelectric materials generate
Kp strains under applied electric fields.
' °"s°' *» Feedback system senses wing root

joads and applies a constant electric
field to the piezoceramic material-
actuator.

¢ Actuation causes change in wing
stiffness and static aeroelastic

characteristics.
DIVERGENCE LIFT EFFECTIVENESS
I
decreasing / // Unstable
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Pressure Pressure
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Non-Adaptive Wing
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ADAPTIVE WING STATIC AEROELASTICITY \

DISTURBANCE
Fy ADAPTIVE STRUCTURE
+ F '8
+ STRUCTURE -
+ + '
F f.
CONTROL
SYSTEM

AERODYNAM(CS t—————]

N

- Determine nondimensional parameters that
Assess available active material capabilities to

Suggest goals for new active materials

S(v)- C(v)- A(@Vv)=Qq¢ : J

Objectives

influence aeroelastic performance

change aeroelastic performance
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Elastic behavior of the materlal is "slaved” to an external stimulus

Material | Stimulus
Piezoelectric | | Electric Field
Electrostrictor Electric Field
Magnetostrictor Magnetic Field
Shape Memory Effect Temperature
Electrorheological Fluids Electric Field

- Thermoelastic Materials Temperature

. Optical Fibers . j

K Voltage induced strain \

':’| ’:. '
4 -t d 7
s v
"'" ’,’ 32
L i (-]
L %

m Electrode
D Piezoelectric
r-

L. _1 Strained Shape
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LIFT EFFECTIVENESS CONTROL
Pure Torsional Deformation
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Lift EHfectiveness Control
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Wing Loading vs. Actuator Strength
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Conclusions - static wing control

Q Actuator effectiveness is
restricted by vehicle size (W/S)

O Actuator effectiveness can be
increased by combining
laminate tailoring with effective
materials (P factor)
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/ Microservoelastic actuation \
Panel flutter

y
57
Voltage - 20V/in ’

15in

. 110
T s Active aeroelasticity J




Microservoelastic actuation
transonic airfoils
drag reduction
- shock wave attenuation
dynamic stability |

\_ " : Active aeroelasticity ‘)

General conclusions

Distributed actuators for

- macroactuation can provide
"stiffness on demand" for some
practical aeroelastic uses.

Microactuation has not been
examined to any large extent.
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1. Introduction

This paper is an interim progress report for a study by the author of the needs for
inhouse research within the Structures Division of the Flight Dynamics Directorate of the
Air Force’s Wright Laboratory. It draws upon the author’s experience of over 25 years in
structures, structural dynamics and unsteady acrodynamics as well as the opportunities he
has had to bbtain a broader view by serving as Chief Scientist of the Directorate for the

last three years.

The following sections arc excerpts from a larger report that lays out an interim

‘summary of some of the requirements in the areas:

¢ Structural Data, Criteria and Models

» External Loads (Ground-Induced)

« External Loads (Flight Loads and Aeroe]asﬁcity)
 Turbulence, Noise and Vibration

* Structural Optimization

« "Smart"/Adaptive Structures

* Hypersonics

» Integration of Structural Analyses and Tests

» Computational Tools and Multidisciplinary Integration

2. Structural Data, Criteria and ''Models

2.1 Materials Data Bases - The development of new materials, new structural
concepts, new fabrication methods and new aircraft missions rcquires the orderly
development, maintenance and expansion of a data base of materials and structural
properties of coupons, elements, panels, components and airframes. However, new
materials and fabrication methods are developing faster than our ability to develop an

orderly data base. In addition to the usual characteristics related to density, thermal
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properties, strength and stiffness, the data base needs to include features such as initial
flaws and defects, and statistical representations of sizes of damage zones near flaws,
notches and crack tips - as "virgin" materials and as modified by fabrication processes. Of
particular intcrest is the statistical nature of initial quality and the development and
application of standardized methods to assess the growth of damage under combined
thermal-mechanical loading and in the presence of Hydrogen or other coolants, The data

base also should include the properties under high frequency and random loadings.

2.2 Measured Flight Loads, Flight Load Statistics; Flight Test Dynamics Data
Base -Substantial amounts of money and manhours are employed throughout the Air
Force to gather statistics on flight loads and mancuver conditions and accelerations. Yet
little effort is expended to correlate those statistics (assumed to be correct, but fraught
with uncertaintics) with flight loads from predictions, wind tunnel test and flight tests. An
additional difficulty encountered with operational aircraft is that many were designed to
dynamic loads and environments that are insufficient for their current operations. Much of
the "design" spectrum is empirical, derived from flight test data from older aircraft such
as the F-4 and the F-111. The result is a continuing problem of long-term, high cost
maintenance actions, particularly for secondary structures and equipment. Indeed, nearly
every inhouse project in the Division to support fleet problems begins with flight tests to
measure the "real” environments of dynamic loads and vibrations, as opposed to the
"design" environments. The F-15 alone has undergone separate flight tests at different
times for the outer wing pancls, vertical tails, horizontal tails and under-fuselagé
environments. One need is to resume a program of routine flight testing of operational
aircraft to measure the detailed dynamic loads, vibrations, acoustics, temperatures, . . . and
to prepare criteria for the maintenance and upgrade of those systems as well as for future
systems. This will also require an cffort to consolidate the data that has been developed
for individual weapon system projects, but is not gencrally known or available outside of

the airframe contractor or the government’s System Program Office (SPO).
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2.3 Full vs Partial Structural Modeling - One of the research issues in Structural
Mechanics is the need for efficient (and timely) methods to model aerodynamics, controls
and structures for the symmetric, antisymmetric, and asymmetric conditions of flight in
enough detail to provide accurate solutions - yet with mathematic‘al modcls that arc
compact enough to be used in a fast-paced design process. The mathematical models must
be consistent for all phases of design, analysis, operations and trouble-shootikng. They need
to represent the simplicity of EI, GJ "stick” models at the earliest stages of design and
progress systematically to exhaustive finite element models (FEMSs) at the later stages.
The ideal process would keep the same analytical methods, revolving about a centralized
data base, but continually would refine the data as the design progresses. They also must
be adaptive to represent the constraints of ground operations and wind tunnel tests as well
as the unrestrained conditions of trimmed and maneuvering tlight. The nced is for a self-
consistent set of mathematical models, all of which reflect the necessary overall properties
(material properties, inertias, bending stiftness, torsional stiffness, lower vibration ,
frequencies and mode shapes . . . ). There is a need for methods 10 interpret actual inertias
and stiffnesses of flight vehicles into mathematical models that reflect the true

"non-optimum" properties.

2.4 Uncertain Structural Masses and Inertias - In the carliest stages of design,
the designer/analyst creates mathematical models [frequently finite element models
(FEMs)] of the (still uncertain) geometry, stiffness, incrtia and control system properties
of the aircraft under development. The development of those FEMs is a compromise
among the known and desired physical properties of the vehicle, the allowed complexity
for timely and affordable design and the "art” and skill of the designer/analyst. A major
issue results from the need to account for the fact that the FEM may amount to less than
half of the mass of the actual vehicle, yet the designer/analyst necds precise estimates ()f '
the mass distribution to arrive at accurate inertial forces to predict dynamic response and
stability. There is a need for methods to interpret actual inertias and stiffnesses of flight |
vehicles into mathematical models that reflect the truc "non-optimum” properties.
Conversely, there is a need for methods to convert the results of optimized mathematical

models into actual drawings and propertics of flight hardware.
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3. External Loads (Ground-Induced Loads)

3.1 Dynamic Response to Damaged and Repaired Runways - While equations
and methods exist to calculate the dynamic response of aircraft taxiing on rough and/or
damaged runways, there is a significant gap in the conversion of those analytical
capabilities into casily understood guidelines and criteria to guide operations for aircraft
and airficld operators. The need is for a document to summarize the "Rough Ficld

“Capability" of all USAF combat and transport aircraft, as functions of weight, combat
loading, speed, acceleration/deceleration vs some standard measures of "roughness” or

"softness”.

3.2 New Concepts for Landing Gear and Tires - The compilation of the "Rough
Field Capability" of all USAF combat and transport aircraft will undoubtedly lead to
demands for improvements, and there is some indication (F-15 STOL Demo Program) that
significant improvements may be possible with minor changes in landing gear |
characteristics. Perhaps even greater improvements in rough field operations are possible

by reinvigorating basic rescarch in landing gear and tires.

3.3 Skijump Operations - The usc of skijumps to reduce takeoff ground -roll by
USAF fighters is still an idea with untapped potential and possible complications. The
theoretical problem is to organize and solve the flight-trajectory and ground-trajectory
equations in a clever, nondimensional way in order derive "optimum" skijumps for each
aircraft and "standard" skijumps that would offer some benefit all relevant aircraft. The
development problem is to assess the new loads on the airframes and landing gears and
their effects on durability and structural integrity. The operational problem is to find

options for landing as well as takeofT.

4. External Loads (Flight Loads and Aeroelasticity)

4.1 High Incidences and Rates - when the aircraft design envelope calls for high
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angles of attack or sideslip, when the pilot can over-ride "g-limiters" in the flight control
systém to obtain momentarily higher accelerations or when the aircraft gencrates
‘substantial amount of local turbulence - the accurate prediction of flight loads becomes
problemmatical. Recent aircraft developments, expansions and upgrades have encountered
the under-prediction of flight loads at high angles of attack and/or sideslip. The causcs 5
could be in the steady and unsteady aerodynamics, nonlinearities in the structure or
control system or merely inadequate modeling in any of the contributing elements.
Eventually we need to couple time-accurate CFD methods with the structure and the flight

control system.

4.2 Active Controls - The additional complexity of active controls requires
research into the time-domain and frequency-domain modeling of sensors, analog and
digitai processors and control actuators. It also requires the integration of the
aeroservoelastic control system into the overall system of vehicle management for robust,
multi-variable systems. In today’s design of control systems, the structure usually is |
considered to be a "given" so that the field of simultancous design of the structure and the
control system is essentially untouched. The whole question of active-suppression of
vibrations and flutter neéds to be re-opened, duc to the recent developments in rapid
identification of dynamic systems, control systems and actuation systcms.

These conclusions need to be verified by coupling the structural and acrodynamic
equatiéns to the flight control laws and piloted simulations. It’s possible that aircraft with
control systems that provide "care-free” mancuvers will change the statistics of the ground
‘loads and flight loads encounters to a larger percentage of loads just beneath the load
limits, resulting in aggravation of any potential fatigue problems. Recent aircraft projects
(for instance, the European EFA program) have rationalized the use of lower "factors of
safety" on calculated flight loads due to advances in flight control systems which are to

provide "carc-free" mancuvering and automatically preclude excessive accelerations.

4.3 Unsteady Inviscid Flows - The unstcady acrodynamics of oscillating surfaces
-has been a historically daunting problem for designer/analysts. For many years the "best”

modeling that could be achicved was that for non-viscous, small disturbance, linearized,
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flow. The solution of those equations required many mathematical difficulties to be
worked out, but cventually led to "kernel function” (assumed series) and "panel” nethods-
by the late 70s. Today those methods generally are considered to be production
engineering tools (in the hands of an expert) for purcly subsonic or purcly supersonic
flows over thin, harmonically oscillating surfaces. In the 70s and 80s, thosc linearized
methods were extended (with modest success) to computational fluid dynamic (CFD)
finite-difference methods to non-viscous, small disturbance, (but still) nonlinear, ‘transonic,
flows over simple surfaces. However, the promise of CFD has remained frustratingly
unfulfilled for realistic unsteady flows of engincering intercst to the aircraft
designer/analyst. Within the realm of inviscid flows, some of the research issues
remaining arc: the lack of lincarized solution techniques for transient (decaying) hlotions,
the difficulty in modeling (accurately) control surfaces or other discontinuities within a
larger lifting surface, uncertainty in the nccessary amount of geometric resolution, the
affordability of solutions for large-scale problems, the "artfulness” required of the user and
the lack of a data basc from a well disciplined program of carcful, systcmatic experiments.
~ Probably the most pressing problem is the affordability of (even) reasonably accurate the

computations for physically realistic flow problems.

4.4 Unsteady viscous flows - All of the above leaves aside those flow problems
‘which are dominated by viscous cffects, such as the steady and unsteady aerodynamic
derivatives for oscillating control surfaces or to predict the acroclastic effects on stability
and control (or the mancuver effects on flutter). The "CFD community" and the '
"acroclastic community" need to work out the physical, mathematical and computational.
difficultics of unsteady viscous flows (in a body-fitted coordinate system) over a flexible
vehicle with is accelerating along and about any axis. The major issues are the lack of
. validated turbulence maodels, the development of the (moving) grid systems, the
affordability of physically realistic computations, specification of far-ficld boundary
conditions and the lack of a data basc from a well disciplincd program of careful,
systematic experiments. An early study nceds to be made to determine guidelines by
which enormous finite-difference meshes for viscous flows can be simplified. Since higher

. harmonics tend to be integrated out (over successive periods of time) of the "generalized
g
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forcing" functions, there is a possibility that reduced meshes can produce adequate

generalized forces for aeroelastic purposes under some conditions.

4.5 Integration of CFD - While extensive research studies of computational fluid
dynamics (CFD) are conducted throughout the developed world, very little progress has
been achicved in developing CFD methods that are reasonably accurate, yet efficient
enough for routine use in conceptual and preliminary design. The usual statement of "wait
for bigger computers” probably is not the answer - what is needed is a whole new family
of computational solution methods which incorporate the dominant effects on loads,
shears, bending moments . . . etc without the need to resolve the flow field into its
smallest components. An important (but seemingly trivial) need is for validated, consistent
methods to transfer experimental and CFD-predicted pressures and shears from an
aerodynamics grid to a structures grid'for loads, dynamics or stress analysis - under
constraints of self-consistent pressure distributions, shears, overall loads, bending moments

and higher "generalized forces". These methods will have to be applicable to the couple(i

“problem of aircraft-pylon-store interaction during carriage, cjection and release

5. Turbulence, Noise and Vibration

5.1 Structural and Acoustic Modeling - One of the major research issues in
Acoustics and Sonic Fatigue is the need for efficient (and timely) methods to model the
details‘of the impivngino turbulent flow and the multi-mode dynamic response of flight in
enough detail to provide accurate solutions - yet with mathematical models that are :
compact enough to be used in a fast-paced design process. The mathematical models must
be consistent for all phases of design, analysis, operations and trouble-shooting.

5.2 Boundary LayerIStability and Transition - Hypersonic vehicles need precise
information and control of the stability of the initially laminar boundary layer and its
eventual transition to turbulence. The location of transition has drastic effects on local

heat transfer as well as drag and the other overall acrodynamic forces and moments. There
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is need for cooperative programs with thcoretical and experimental acrothermodynamicists
to make substantial improvements in the prediction of boundary layer transition on

realistic configurations in hypersonic flight.

5.3 Local Production of Turbulence - This aspect of flight loads may not require
methods which apply over the whole aircraft at onc time, rather the local production of
turbulence from leading edges, inlets, . . . and its effect on downstream structures can be
amenable to exhaustive local treatment. Perhaps the greatest need is for improved,
experimentally validated CFD "turbulence models” and their applications to the prediction
of vortex breakdown for flight loads problems. A related problem that nceds additional
attention is the extremely turbulent flow in weapon bays, accounting for the effects of
stores, suspension equipment, open or closed doors, the state of the upstream boundary

layer and overall aircraft attitude.

6. Structural Optimization

6.1 Optimal Geometry - While the subject of much academic rescarch, there does
~not seem to have much progress in directly optimizing the basic structural geometry of
" numbers, locations and directions of ribs and spars. Aeroelastic tailoring sizes the wing

covers, with an assumed definition of the substructure.

6.2 Flutter Optimization - While the subject of more than a few computer
programs, the automated design of realistic aircraft to prevent acroelastic instabilities is

still an "art" and nceds to be a topic for much research.

6.3 Dynamically-scaled models - In the later stages of design, the lack of rcliable
methods to predict transonic effects or viscous cffects causes the designer/analyst to use
dynamically scaled acroclastic models in the wind tunncl. Thosec models are very
expensive to design and fabricate, and the necessary "art" resides only in a small (and

aging) community of model builders. A fascinating possibility is the potential use of
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"Structural Optimization” methods to create the scicnce base that is necessary 10 design
those sub-scale models to simulate the required stiffness and inertia properties of the !

aircraft, yet with minimum cost and time.

64 Algorithms to Reconfigure a Structure and Control System - Having
detected and interpreted flaws, damage, new types of weapons/stores or a decrease in
overall structural integrity - there is a need for algorithms to determine the required
changes in the applied loads, the resulting "reconfiguration” of the airframe and the flight
control system and to alert the pilot to changes in performance or flying qualities of the

aircraft.

6.5 Transient or Random Loads - Typically, structural optimization is done with
external loads that are static or oscillating sinusoidally. When the oscillation is a growing
or decaying one, or if the airloads or thermal loads are transient or random, then the |
structural optimization process becomes one of trial and error, not necessarily leading to
the "best" optimum solution. Recent studies to ". . . increase the fatigue life of a generic
vertical tail. . . " required a decision-tree that was external to the formal optimization ;
process and was an “. . . iﬁeffective way to improve fatigue life. " The recommendétion
was that their was a need to develop methods to include buffet responses and fatigue life

directly in the formal optimization process.

6.6 Artificial Intelligence . . . - Typical applications of structural optimization by
the Air Force (ASOP, FASTOP, ASTROS . . . ) rely on the expertise and éxperience ‘of a
collection of engineers, each specializing in loads, strength or aeroelasticity. There is a
~ need for the inclusion of artificial intelligence, expert systems, . . . to reduce the |

requirements for individually trained experts in cach of the disciplines.

' 6.7 Design Applications - There is a host of problems in aeronautical structures
which require the application of structural optimization methods in conceptual and
preliminary design. These include: the demonstration (on realistic, large-scale structures)

of the optimum mix of materials properties; the definition of the best geometries of ?;;
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substructures and skins; the definition of required new propertics of "tailorable materials";
the definition of best structures in concert with overall aircraft performance,
mancuverability, agility, vulnerability and stability and control and the applications to

reduce the cost and complexity of manufacturing and maintenance.

7.0 "SMART"/Adaptive Structures

7.1 Propagation of Acoustic and Optical Disturbances In Complex Structure -
Propagation of signals from inherent flaws and progressive cracking is easily understood
with respect to single disturbances in simple, isotropic structures with simple edge
conditions. However, when there arc multiple sources in "noisy”, complex heterogeneous
structure with numerous fasteners and variable edge conditions - algorithms are not yet
available which allow the consistent detection, identification and interpretation of the
resulting signals. New algorithms nced development and cvaluation against a serics of

increasingly difficult problems.

7.2 New Generation of Advanced Sensors - . . . Integration of Sensors in
Structures -The integration of sensors and communications in load-bcaring structures
needs to be understood, particularly with respect to any potential detrimental effect on the

structure itself.

7.3 Real-time Identification of Local Structural Flaws - . . . Real-time
Identification of Global Structural Deficiencies - . . . Actuation Devices - Arc required
that arc miniature in size and weight, yet have the stiffness, stroke and power to transmit

actuation forces to significant structure.

7.4 Real-World Environment - The development of "smart" structures and
"smart" vchicles will have to be done within the context of the "real world" of aircraft
factories, operating bases, combat, long-term life and repair depots. An assessment is

required to determine the potential vulncrability of "smart” structures to the wear and tear
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of daily Air Force operations and maintenance. That will need to include development of
concepts to design and fabricate those structures to minimize their vulnerability and to

evaluate the tradeoffs between cost and complexity.

8. Hypersonics

8.1 Design for Thermal Effects - In the re-emerging ficld of hypersonic flight,
conceptual difficulties remain with respect the design process itself for the design of a
structure to transient (and uncertain) thermal conditions, including active-cooling,
insulation and the thermal properties of the structure itself. In some cases the skin panel
design must come before the design of the primary structural members. There are many
possible combinations of insulators and of cooling fluids/gases with structural materials
and configurations that could provide safe, efficient, long-life, affordable structures for
hypersonic vehicles. Rapid progress is being made in materials developments and
fabrication methods under NASP. These need to be expanded to a more general
development of feasible concepts for a wide range of follow-on aircraft. It may be feasine
to evaluate these concepts in affordable experimental facilities such as Lhe "laser :

simulator” at the Structures Division. This needs to be done in coordination with a careful
predictive program to be assured that the limitations of the experimental methods AND
the structural concepts are properly evaluated. Perhaps needless to say, there are no useful
methods available to automate the interdisciplinary design process. Fuel slosh effects are
beginning to be an important unknown for dynamic loads and stability. Another ' 'surprise”
is that it is mathematically impossible to create a dynamically scaled wind tunnel model
for dynamic aerothermoelastic effects at any scale other than 100%. The results of highly
innovative research will be necessary to even predict the aerothermoelastic stability of |
hypersonic vehicles (such as the National Aerospace Plane), yet alone to "clear” the
vehicles for flight in the conventional sense.

8.2 New concepts to exj)loit phase change, ablation, transpiration and active-

cooling in conjunction with new materials - Major advancements in the capability to ':‘
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transfer and store heat energy are on the horizon due to new advanced materials and
fabrication methods. NASP is supporting many of those concepts, but a systematic
program is necessary Lo design, fabricate and (est representative structural components

under realistic temperatures and mechanical and acrodynamic loads.

8.3 Creep under Combined Thermo-mechanical Loading - There is a need to
predict the deformation of inlets, combustors and nozzles due o transient and repeated
thermal and loading environments. Slight changes in the location of the inlet "lip" due to
distortion of the inlet or extension of the fuselage could have a deleterious effect on

propulsive power and cfficiency.

8.4 Devices to Generate Experimental Heating Levels - Infra-rcd heaters have
their temperature limits, and graphite radiant heaters are under development, but still need
improvements in cost and durability. Flame-impingement methods, using gases like
propanc, arc under investigation but so far have not shown the desired predictability, cost

and cffectiveness.

8.5 High Temperature Instrumentation - Attempts arc being made to develop
strain gages, accelerometers, microphones and pressure transducers (and their attachment
methods) that will operate at temperatures up to 2000-3000F. Some results are promising,
but perhaps most promising are laser vibrometers which have the potential o replace
acceleromelters at room and elevated temperatures.

8.6 Sub-scale and/or Early Experimental Simulation - Sincc fundamental
structural materials and configuration for a hypersonic vehicle will depend on the heat
transfer capability of the system, there is a need for methods to simulate the effects of
cryogenic liquids on storage vessels and airframe structure, without resorting o the cost
and risk of using liquid hydrogen at remote test sites. Helium and Nitrogen are among the
candidate substitutes fluids, but additional data is nccessary Lo evaluate them as simulants

for development purposes.
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8.7 Non-intrusive Methods for Applied Heating, Loads and Gathering Data -
Even if instrumentation is developed which is adequate at high temperatures, a structures
test must still find ways (o load a large structure (through the heat sources) in tension and

compression.

9. Methods to Integrate Structural Analyses and Tests

9.1 Test.data to "update' analytical models - As the aircraft design matures
from paper to hardware, or if problems occur in operations, the designer/analyst uses
load-deflection tests and ground-vibration tests to verify his estimates of stiffness and
inertia. However, the methods to perform those "updates” and to account for the
differences between ground-restraints and free-flight are not yet well established or
lvcrificd by careful experiments. There is a need for a well-controlled

theoretical/experimental program to develop and validate a set of "update” mcthods.

9.2 Rapid Identification of Nonlinear Structures - In the arcas of Vibrations
and Aeroelasticity there is a nced expressed for the rapid modal identification of
nonlinear and linear stfucturcs; that need is compounded in this arca. Because of the
nonlincar and highly damped behavior of tires and landing gear, the coupled response of
the aireraft structure (especially the rigid-body modes) to ground disturbances will be
nonlincar and highly damped. The need is to be able to identify the mode shapes,
frequencics and dampings of those modes from very short time-histories. The problem is!
compounded hy the fact that the dynamic excitation of a landing gear, over any sustained
length of time, changes the stiftness and damping of the landing gear. Hence constant

amplitude sinusoidal testing is out of the question.

9.3 Integrated Analysis, Design, Test and Reporting - The entire process of
structural design, analysis, test and reporting needs 1o be casier to accomplish. Attention is
necded to assigning overall responsibility and authorily to one person, in accordance with

the assignment of key personnel in the relevant disciplines. It is possible Lo develop
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methods to routinely: construct the mathematical models of the test structure and the test
loads and heating; calculate the stresses, strains and deflections for the test conditions;
compare the analytical with the experimental results and automate (as much as possible)

the process of documentation, reporting and publication.

10. Computational Tools and Multidisciplinary Integration

10.1 Computer Programs - Within the Air Force community there is definite
requirement to have (along with the hicrarchy of appropriate finite-clement models and
supporting data) working versions of the well-known "integrated' computer programs
NASTRAN, FACES, FASTOP, FASTEX, ADAM, ASTROS, TSO and VAASEL along
with supporting data and finite-clement models of selected aircraft and components. These
computer programs should function independent of the current local computing
environment. They should be supported by graphics tools that allow the user to interrogate
the intermediate results at all significant points. In addition to the "integrated” versions,
each of the programs should be broken into its separate functions, oriented around a data-
basc and a data-basc management system that will allow the user to "pick and choose" the

appropriatc mathematical models and methods for his engineering problem,

10.2 Multidisciplinary integration - Even assuming all of the issucs can be
resolved with respect the structural, dynamic and acrodynamic modeling of a vehicle in
any speed range, a major hurdle to be overcome is the integration of the multi-disciplinary
cquations, boundary conditions, data and initial conditions in the time-domain and in the
frequency domain. Usually (but not always) the dominant nonlincarities are in the
aerodynamics, so that a major issuc of affordability is improvement of the speed of CFD
mcthods the prediction of structural performance, vibrations and stability or instability

from short time historics of the coupled structural-controls-acrodynamics cquations,

10.3 Multidisciplinary Teams/Tools - The Division also needs to approach multi-

disciplinary problems with multi-disciplinary tcams of experts. There may be a need for
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one master validated computer program (as similar as possible to NASTRAN, ASTROS,

cte) and consistent data to provide design predictions of dynamic loads on flexible,

actively controlled aircraft - with inputs as diverse as asymmetric landing impact,
rough/soft runways, pilot inputs, skijumps, jump-struts, jet-assisted takeoft (JATO),
rocket-assisted takeoff (RATO), arrestment, barriers and STOL and V/STOL operations.
There is a need for a method to predict flight loads in symmetric, antisymmetric and
asymmetric maneuvers - consistent with the related equations and data for

aeroservoelasticity and aircraft stability and control.

10.4 Multidisciplinary Approach to Hypersonics - It has to be demonstrated that
we can assemble all of the clements of material properties, heat transfer, external and
internal loads, stresses, deflections and structural dynamics to safely predict and certify the

structural integrity of the airframe of a hypersonic, acronautical vehicle.

10.5 Multidisciplinary Approach to Aeroservoelasticity - The modeling of the
interference and viscous effects for external stores is still an issue, as is their timely
clearance for flight (it now takes several months and is usually relegated in
problemmatical cases to flight test). Mancuver effects on flutter stability remain an
important unknown and usually produce acroclastic "surprises™ as in the effects of
symmetric pullups on the flutter of the F-16 and the effects of sideslip on the flutter of the
vertical tails of the F-117. The acroclastic effects on mancuvers and agility are essential]y
untouched. Further, while the subject of more than a few computer programs, the |
automated design of realistic aircraft to prevent acroelastic instabilities is still an "art” an‘;d
needs to be a topic for much rescarch. Usually (but not always) the dominant |
nonlinearities arc in the acrodynamics, so that a major issuc of affordability is the
prediction of acoustic, vibration and fatigue ol primary and secondary structures.
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