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1.   Introduction 

The purpose of this effort was to research, develop, and demonstrate an improved 

computational vision model to simulate human performance in image analysis tasks. The 

continued development and improvement of the National Automotive Center-Visual Performance 

Model (NAC-VPM) on this program represents the culmination of more than five years of 

biologically-inspired CVM-related research sponsored by the U.S. Army Tank-Automotive 

Research, Development and Engineering Center. OptiMetrics gratefully acknowledges the 

support and contributions of Drs. Grant R. Gerhart and Thomas Meitzler at TARDEC, and of Mr. 

Dennis Wend at the NAC. 

1.1 Visual Target Acquisition 

The NAC-VPM is a model of observer performance as defined in terms of the ability of a 

soldier to visually acquire a target, either by observing the target directly or by viewing the target 

on a display resulting from the collection of a scene by an electronic sensor. Visual performance 

is measured in terms of the degree to which the target object is distinguishable, in some military 

sense, from its surroundings. In military applications, target acquisition is described by several 

discrete tasks: Detection, Identification and Recognition, each of which have particular definitions 

in terms of the classes of objects between and within which distinction is made in the observation 

process. 

These military measures of performance also have application in other areas. The best 

example, for the purposes of this effort, is in driving. The quantification of the ability of a driver to 

distinguish an oncoming vehicle in a fixed observational situation represents a problem which can 

be profitably addressed using military target acquisition models. This property of an object to be 

observed has been called its 'conspicuity'. Some other obvious 'conspicuity' applications are the 

visual prominence of: 

• a particular object in a display ad. 

• a warning sign or other attention-getting device. 

• an object of a particular brightness and color against a particular natural background. 

1.2 Prediction of Target Acquisition 

The predictions of observer performance, dependent on the appearance of the target and 

its surrounding background, are important to the military for the purposes of surveillance, 

camouflage and targeting. These predictions are generally based on computational analysis of 

target/background images.   However, because of the complexity and unknown nature of the 
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operations occurring within the human visual system and the inability to incorporate any cognitive 

information into these image-based calculations, such performance models have been only 

moderately successful taken over a full population of scenarios and situations and can be quite 

unsuccessful for particularly difficult targets. 

1.3     Scope of the Present Modeling Effort 

The NAC-VPM is based on the latest models of early vision processes in the human visual 

system. It is a multi-channel model based on three color opponent channels and two temporal 

channels. Each channel is further subdivided into a set of multi-resolution channels. 

Computations are based on contrast ratio images, one per channel, wherein the normalizing 

luminance is computed locally to each point in the image. Local energy values for these 

dimensionless contrast images are computed and normalized by the sum of a modeled value for 

the vision system's 'dark noise' and a locally modeled clutter value. The detectability metric is 

then computed as a weighted sum of these normalized channel energies. Reference 1 describes 

the NAC-VPM model in moderate detail. It inherits many of its details from its predecessor, TVM, 

and much the detail of NAC-VPM is described in the TVM Analyst's Manual (Reference 2). 

This model has been applied to several problems. First, the model has been applied to the 

problem of detecting cars approaching intersections. Observer tests were run to measure the 

ability of an observer to detect vehicles at an intersection, as a function of distance, crossing 

speed and lighting conditions. NAC-VPM was able to predict the outcome of the observer tests to 

a correlation value of about 0.89 (Reference 1). 

Second, the model was applied to the detection of mobile ground targets in imagery taken 

from an airborne first generation FLIR system. Good correlation between the VPM 

detectability/recognizability predictions and the human operator results were obtained. Correlation 

r-values in the high 70% range were achieved. These studies are reported in Reference 3. In the 

future, we hope to evaluate NAC-VPM's utility for modeling detectability of camouflaged targets in 

3rd generation FLIR imagery. 

Section 2 of this report contains an overview of image metrics for computational vision 

directed toward a more complete understanding of how the human visual system makes its 

detection decisions. In addition, two investigations were conducted into alternative methods of 

modeling target detection. 

First, Section 3 describes an alternative view of imagery as three-dimensional solid objects 

and describes detection efforts in terms of differential geometries on the surface of these solids. 

This approach was applied to early measurements of the luminance contrast sensitivity of the 
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human eye. While the approach was successful, it appears that the conclusions to be made from 

this interpretation are no more insightful than those obtained by traditional methods. 

Second, Section 4 describes an investigation of using extended Gabor filters as 

representations of the filtering done by the human visual system. While this direction seems to 

show some promise, the small number of applications we have made of these filters preclude any 

useful conclusions about them. 

Finally, in Section 5, the philosophy behind NAC-VPM and TVM is revisited in hindsight, 

particularly in light of the successfulness of NAC-VPM. Based on this hindsight, we recommend 

in Section 6 some modifications to the approach taken to target detection modeling. 
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2.   Receptive Field Organization and Its Implications 
for Visual Detection Metrics 

2.1     Overview 

Over the last seven to nine years an evolutionary step has occurred in the thinking 

concerning the human visual system's computational architecture. This has been driven 

predominantly by fundamental neurophysiological experiments on primates (References 4 and 5). 

The visual systems of the primate and human have proven to have a great number of similarities. 

Two major classes of retinal ganglion cells have concentrically organized receptive fields. 

Classically, the receptive field (RF) is defined as the area of visual space within which one can 

influence the discharge of a neuron. The RF is a central construct in the conceptual and 

analytical framework used by neuro-physiologists to study the function of visually responsive 

neurons, because it characterizes the transformation between the visual image and neuronal 

activity. 

In recent years, the development of RF mapping techniques has facilitated characterization 

of RF's for neurons in the geniculo-cortical processing stream (Reference 6). Results obtained 

using this approach have resolved some long-standing questions concerning the origin of 

neuronal response properties, such as direction selectivity. These studies have revealed new 

aspects of RF structure posing new challenges for understanding and modeling the neural 

circuitry of the early visual pathways. 

Beyond the low level vision pathways, into the inferior temporal cortex, a better understanding 

of the nature of the transformation and processing of low-level visual information for recognition 

decision making is now available. This understanding is illustrated in Figure 1. In the next 

section, we summarize some of these results and their impact on the developments within the 

present program. 
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Figure 1. Sub-cortical and cortical pathways in the Macaque monkey (Reference 7). 

2.2     The Lateral Geniculate Nucleus (LGN) System 

Two primary classes of ganglion cells have concentrically organized receptive fields. 

These are widely known as the P- and the M-cells because of their different projections to the 

parvocellular (P) and magnocellular (M) laminae of the LGN. As the P and M cells penetrate the 

LGN they remain on distant, parallel pathways. Because the connection between the two classes 

of ganglion cell and their counterparts in the LGN is very well established, and the neurons in the 

LGN seem to have properties almost indistinguishable from those of the ganglion cell that drive 

them, the bulk of our understanding of early vision processing is based upon studies in the LGN. 

The centers and surrounds of RF's of P-cells can be represented by Gaussian functions 

with a color-opponent organization superimposed on the spatial organization: center and 
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surround have different spectral sensitivities. There are two distinct subgroups of P-cells: those 

that have a 'red-green' color opponency and those that have a 'yellow-blue' chromatic opponency. 

Near the fovea RF's of P-cells are very small, and single cones probably drive centers. With 

small cell bodies, P-cells account for 80% or more of retinal ganglion cells. The upshot of this 

arrangement is that P-cells (particularly the red-green opponent cells) respond well to achromatic 

spatial contrast except at low spatial frequencies; when the spatial frequency is low they respond 

well to temporally modulated chromatic patterns. 

M-cells have the same center-surround arrangement as P-cells, although the center of the 

receptive field has a diameter 2-3 times larger and the chromatic opponency is weak at best. 

Within the range of spatial frequencies to which both P- and M-cells respond, M-cells are much 

more sensitive to achromatic contrasts. This advantage is more pronounced at higher temporal 

frequencies. M-cells, with their larger cell bodies, account for approximately 10% of the ganglion 

cell population. 

2.3    Organization in Cortical Signal Pathways 

In the monkey (and presumably in humans), the principal projections of the P- and M- 

pathways are to area V1 of the visual cortex. Within V1, M-cells project from the LGN into layer 

4Cß while P-cells project into layer 4Ca. 

In V2, there seems to be three separate visual maps (Reference 8). Within the thick 

stripes, there is a visual orientation map; within the thin stripes there is a color map; and within the 

interstripes a disparity map. Adjacent stripes are responsive to the same region of the visual field. 

So there are three interleaved visual maps in V2, each representing a different aspect of the 

visual stimulus. As shown in Figure 1 above, the M pathway projects from layer 4B of V1 to the 

thick stripes of V2. The pathway projects from the blobs of V1 to the thin stripes of V2 and from 

the interblob region to the interstripes of V2. 

The representation of the visual field that projects into V1 is retinotopic, i.e., near neighbor 

relationships in the visual field are preserved in the sublayers of V1. Several stages later in the 

visual system, at the inferior temporal cortex (IT), the receptive fields are relatively independent of 

retinal location, and neurons can be activated by a specific stimulus, such as a face, over a wide 

range of retinal locations. So, along the visual system pathways, the pattern of excitation that 

reaches the eye must be transposed from a retinotopic coordinate system to a coordinate system 

centered on the object itself. At the same time that coordinates become object centered, the 

system becomes independent of the precise metric regarding the object itself within its own 
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coordinate system. Thus the visual system remains responsive to an object despite changes in 

its size, orientation, texture and completeness. Single-cell studies in monkeys suggest that for 

faces processing these transformations occur in the IT (see Figure 1 above). 

2.4    Global Effect of Local Contrast 

Brightness perception in complex, stationary scenes has played a key role in development 

of our hypothesis concerning a new, somewhat geometric, approach to the human visual system's 

computational architecture. Before describing this approach (Section 3, below), a brief overview 

of what is currently accepted concerning the influence of local contrasts on global or area 

brightness perception is provided. 

There are several factors which, together, help to determine how humans perceive 

brightness of an enclosed area. 

(I) For an enclosed area, brightness perception is determined primarily by the average local 
contrast at the boundary or edge of the area. 

(II) The boundary between two regions of differing contrast influences their brightness 
perception, but the strength of the boundary's contribution decreases with increasing 
distance. 

(III) Local luminance modulation, which simulates an edge, can generate area contrast. 

(IV) Small luminance gradients from one spatial region to another are not particularly effective 
in determining local brightness. 

These gradual changes are mostly filtered out by the visual system. It is still an open question as 

to how local contrast at edges may help produce brightness contrast over large stimulus areas. 

To date, no neurophysiological correlate of area contrast, either in the retina or in the LGN, has 

been identified. 

It has been observed in cortical receptive field studies that individual neurons provide no 

simple answer, since neurons whose receptive fields fall within a homogenous area are not active 

at all (Reference 9). Thus, one could argue that area contrast is produced because oriented 

neurons code the direction of contrast gradients at each border and that this information is 

somehow propagated from one border to another across space. Thus, the brightness of an area 

of homogenous luminance would be extrapolated from the directions of the contrast gradients at 

the border. 

But where is neuronal activity bound to perception of light and dark? If boundaries 

(orientation and high frequency channels) are key, the P-cellular pathway must play a significant 

role providing the needed information to an area contrast perceptual mechanism (see Figure 1 
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above). However the P-pathway does not provide the high contrast sensitivity associated with 

strong edges or boundaries. This high contrast sensitivity, propagated via the M-pathway, is 

merged with P-pathway signals only in the upper layers of V1 and within V2. 

Thus any perception of brightness and darkness may be carried out in multiple layers of 

the visual cortex (at least layers V1 and V2) by processes which become more and more selective 

and which involve fewer and fewer (but increasingly selective) neurons. And hence the perception 

of area brightness is likely taking place well along the cortical pathways, perhaps into V4 and the 

inferior temporal cortex where higher level cognitive processes (recognition) are thought to 

operate. 

In Section 3 below, a computational methodology is presented which incorporates the 

transition to more object centered information, while retaining certain retinotopic data; at the same 

time, a synthesis is being performed to yield a geometric object which appears to be fundamental 

in higher level discrimination. As evidence of the role that fundamental geometry may play in 

perception (higher-level discrimination tasks), the proposed methodology is utilized to provide a 

prediction of Blackwell's historic perception test results (Reference 10). 
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3.   Riemannian Manifolds and Visual Perception 

3.1 Background 

The machine vision boom of the 1980's stimulated substantial efforts directed at 

understanding two and three-dimensional images from a purely geometric perspective. Shape 

from shading and image invariance are two examples of fundamental work born out of this era 

which have provided insights into a promising new direction for understanding visual perception in 

humans. In the following, discussions of shape from shading and the concept of image invariants 

are provided. Briefly mentioned are insights gleaned from these individual approaches to 

machine understanding of images, which may have potential to enhance our understanding of 

human visual perception. This section concludes with a description of a promising approach to 

human visual perception that integrates these insights, based upon two-dimensional, intrinsic, 

surface geometry. Extension from static to dynamic imagery is natural and will only be briefly 

described. 

3.2 Shape from Shading 

Since brightness variation is an important component of the information our visual system 

utilizes for decision making, a portion of the present effort was devoted to understanding the 

shape from shading approach for deriving surface data from brightness variations. 

Shape from shading brings together several simplifying assumptions concerning the 

relation of radiation incident on a surface to the reflectance map of that surface. Very simply, what 

is captured by shape from shading analysis is surface normal behavior from brightness changes 

over the surface. Additionally, under certain conditions, surface height can also be determined. 

Shape from shading has proven to be an insightful means of exploiting these brightness variations 

for deriving surface contour information. A very good description of this specialized area, its 

assumptions and some applications, is given in Horn (Reference 11). Fundamental to this 

approach is the relationship 

L(x,y) = R(p,q)-E(x,y) (1) 

of image radiance, L(x,y), to the reflectance map, R(p,q), through the irradiance (illumination), 

E(x,y), where the gradient of the surface z(x,y) at the point (x,y) is (p,q): 

.     .     dz(x,y) 
p(x'y)=   &T (2) 
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q(x,y) = MM) (3) 
<3y 

The basic dependence of surface brightness upon surface orientation is contained in 

solutions to Equation 1, a two-dimensional, first order nonlinear partial differential equation. 

Shape from shading exploits these variations in brightness (shading) to obtain estimates of 

surface orientation. With estimates of p(x,y) and q(x,y) for each pixel in an image, the surface 

height above some reference point z( x0, y0) can be obtained from the path integral 

z(x,y) = z(x0,y0)+  j"(pdx + qdy) (4) 
xo »yo 

In this expression for surface height, closed paths may be used which would allow 

conversion of the path integral, via Stokes Theorem, to a surface integral. This surface integral 

vanishes for integrable surfaces (dy p(x,y) = ax q(x,y)), i.e., this integral around any path is 

independent of the choice of the path. However, this behavior is a coordinate-dependent result. 

Because the human visual system is able to estimate rather complicated (integrable) shapes, i.e., 

facial contours, from a single picture, photograph, etc., it would seem shape from shading would 

be of very limited utility in the perception of surfaces by our visual system. On the other hand, the 

most basic information available to the visual system consists of these brightness variations in 

every image it encounters. 

In an attempt to augment shape from shading and perhaps gain some insight into the 

robust behavior of our visual system, our effort focused on image information as purely geometric 

data. With no assumptions about the behavior of the surface reflectance, this would allow the 

visual system to thus be 'fooled' by manipulation of surface geometry and surface reflectance 

characteristics. While this is clearly undesirable from a machine vision perspective (reverse 

engineering of brightness data to obtain surface shape), it appears to be a reasonable visual 

system performance model which is compatible with the current understanding of primate visual 

system processing. As a coordinate independent description, it relies on elementary differential 

geometry and thus preserves local (brightness) metric relationships while allowing for 

determination of large area contrasts. This geometric approach to visual system performance is 

described below, followed by a comparison of predicted detection probability curves for uniform 

disks with Blackwell's performance data. 

3.3    Geometry of Brightness Images 

It is envisioned in the proposed geometric approach to visual perception that following the 
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early visual system processing, each output image plane, labeled by temporal, color opponent, 

orientation, and spatial frequency indices, would be treated as a two dimensional surface in three 

dimensional space, 

z = f(x,y), (5) 

with indices omitted. The usual Euclidean line element, in Cartesian coordinates, 

ds2 = dx2 + dy2 + dz2 (6) 

induces a (non-Euclidean) metric in the surface, f(x,y), which, with a trivial change of variables 

(x,y) <- (u^), yields the line element in the surface as 

(7) 

(8) 

ds2 = gy dui duj 

with, repeated indices summed, and 

gij = 
.A/2  i+y;2 

where 

i, = 8f(^,u2). 

The right hand side of Equation 7, above, is the first fundamental quadratic form of the 

surface (Equation 5) with which the arc length of any curve embedded in f(u1,u2) may be 

determined. If the vision system were dependent solely on the information in g^, surfaces where 

the brightness map yields the same g^ would be ambiguous. For example, surfaces which could 

not be distinguished are those that can be cut and placed flat without stretching, compressing or 

tearing, e.g., cylinders, cones, etc. 

To eliminate this ambiguity, a second fundamental quadratic form is introduced, dy 

(Reference 12). Utilizing these image-based geometric quantities, it is hypothesized that the 

human visual system is able to make detection/recognition decisions by comparing components 

of a vector over regions of an image surface for which the Riemann curvature tensor, R12i2, is 

non-zero. This comparison process is known as parallel transport. L. D. Landau and E. M. 

Lipshitz (Reference 13) describe this process, along with the definition of R12i2. Comparing a 

vector to itself at points over an image surface measures the change in direction of the vector due 

to shaping of the image surface. This change is given by 

AA^Jr^Aidu1 (9) 
c 
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where C is any closed contour in the image surface, fa are the Christoffel symbols of the second 

kind constructed from the g^; and Ai, i= 1,2, are the components of a two dimensional vector, 

A^.Ua) whose orientation change, AAk , is hypothesized to correlate with discrimination 

performance. Any region of the image plane f, with non-zero curvature ( R12i2 * 0), induces a 

change in the orientation of the vector A when A is parallel transported around the path C 

enclosing the region. Figure 2 shows the input-output data flow for Equation 9. In this figure, the 

vector A is fed to the mid-level visual processor from a high-level, long-term visual data archive. 

The mid-level processor receives input of regions of interest and their associated boundaries 

along with the Christoffel symbols for the designated image plane. With the high- and low-level 

inputs, the visual processor provides the necessary multiplications and adds to yield the AAk. The 

contour integral in Equation 9 and Figure 2 is probably implemented, via Stokes' Theorem, as a 

surface integral. In this case, mid-level processing amounts to the components of A, weighted by 

the curvature tensor, summed over the area enclosed by curve C. That this is reasonable will be 

seen below in the application of Equation 9 to Blackwell's performance data. There it will be 

shown that Equation 9 reduces to Ricco's Law. 

Visual System 
Data Archive High-Level Visual Cortex 

Mid-Level Visual        . 
Processing ~S 

Low-Level Visual 
Processing 

v   AAk, k = 1,2 

Image Planes 

Figure 2. Input-output data flow involved in computation of image curvature induced orientation 
changes. 

Note the similarity of Equations 4 and 9; they both have the form 

J{P(u,,u2)du, +Q(u,,u2)du2} (10) 
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which is a path integral over a curve C. By relying on the intrinsic geometry of an image regarded 

as a two dimensional geometric surface embedded in a three dimensional space, Equation 9 is 

non-zero independent of the integrabiiity condition ((dy p(x,y) = dx q(x,y)). 

3.4    Application to 1946 Blackwell Perception Tests 

In 1946 Blackwell published a landmark paper in human perception testing (Reference 10). 

In these experiments, a spot (disk) of light was projected onto a white screen located 

approximately sixty feet from a group of observers who reported whether the spot had been seen. 

Spots of varying size were used against various background brightness levels. In this section, an 

analytic result for comparison with BlackwelPs contrast threshold versus spot size will be 

presented for varying levels of background brightness. 

To apply the results of Section 3.3, a synthetic image of a disk in a uniform background was 

generated by convolving a radially symmetric step function with a Gaussian of width t. The result, 

in polar coordinates (Ui,u2), is very closely approximated by the following expression, 

h    P 
z(Mi>»2) = TcrJexp ("i-7?) 

2\ 

11 
At 

dT] (11) 

where, as shown in Figure 3, h is the disk height, p its radius and ut is the radial coordinate. With 

this as the image, the required Christoffel symbols are 

r1 -     u'    r1 -    z'z" MO\ 122 -    "        ^'X II - --        3" (1^) 
1 + Z 1 + Zl 

where the superscript prime denotes a derivative with respect to uv For the vector A_(Equation 9), 

a simple choice is made: a constant vector in the u^ direction of magnitude A0 is used: 

A(ui,u2) = {A0)0}. (13) 
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B„ 

Figure 3. Smoothed disk of radius p and contrast h in uniform background, B0. 

The integration path, C, in Equation 6 was taken to be a circular path of radius equal to 

the disk radius and centered on the disk. With these choices, the change in orientation of the 

constant vector A upon parallel transport around the disk perimeter was found to be 

AA, = 0, 

A  A U AA, = — 2     2 
{h] 
lBo, 

2 

A   r2 . <Bo> 

2 

+ 87rt 

2 
V 
{ h] 
vBo, 

2             A 

+ 47tt 

) 

(14) 

up to an overall scale factor. In this last expression, h has been scaled by the background 

brightness for ease of comparison with Blackwell's Figure 16. In Figure 4, level curves of the 

magnitude of AA2 are plotted as a function of log(p/B0) vs. log (h/ B0). In this plot, A0 was taken 

to be the square root of h and t has the value 0.004. As in Blackwell's plot, approximately three 

orders of magnitude in disk size and more than six orders of magnitude in contrast are 

represented in Figure 4. The level curves represent contours of constant B0. Figure 4 could be 

directly compared to Blackwell's Figure 16, if it were calibrated against contrast threshold 

predictions at 50% probability. This would seem to be an interesting task for future effort. 
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Figure 4. Level curves of |AA2| plotted as a functionof In (p/B0) vs. In (h/B0). For this plot, t = 
0.004, A0=VÄ . 

There are several interesting features worth noting concerning the prediction above. The 

linear portion of each level curve represents the fact that the product of area and brightness is a 

constant. Any stimulus on the linear portion of the curve is effectively a 'point source'. The point 

at which a level curve departs from linearity corresponds, according to Blackwell, to a fundamental 

property of the human eye. In this vein it is interesting that, from the expression above, as the 

degree of blurring, governed by the parameter t (Gaussian width), decreases, the onset of upward 

curvature shifts to left in Figure 4.   This appears to be at least consistent with Blackwell's 
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observation that the onset of curvature in Figure 4 is a characteristic of the human eye. To the 

extent that greater blurring can be ascribed to the aging eye, one could predict the decrease in the 

linear portion of Figure 4 for the aging eye by increasing the Gaussian width, t. 

Thus this geometric approach to imaging does appear to shed light on the form of the 

contrast sensitivity of the human vision system. 
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4.   Extended Gabor Filters and a True Metric 

4.1     Gabor Filters as Harmonic Oscillator Functions 

In an attempt to identify meaningful new approaches to visual discrimination, the basic 

filtering process of the low-level visual system was examined with the idea of attempting to 

quantify its information content. This is, in effect, what the current VPM metric attempts to 

accomplish through a weighted pooling of filter channel outputs. As a starting point for this effort, 

Gabor's original work on communication theory was reviewed (Reference 14). In this pioneering 

paper, Gabor points out the utility, for his analysis, of the products of complex exponentials and 

Gaussians which have come to carry his name, 'Gabor filters'. He also points out that these 

functions are members of a larger class of functions, i.e., harmonic oscillator (HO) wave 

functions. HO wavefunctions are solutions to the one dimensional, linear harmonic oscillator 

Schrödinger equation and are of the form 

¥n,a(z) = N(n,a)exp 
2a2 HJrl (15) 

where Hn (z/a) are Hermite polynomials of degree n and N(n,a) is a parameter dependent 

normalization constant. These functions are normalized, orthogonal and make up the (separable) 

solution to the two dimensional HO equation. These two dimensional solutions are of the form 

^n„a„n2,c2 (x,y) = ^n„0, (x)^ (y) (16) 

Berry pointed out in 1984 that there is an additional degree of freedom in Schrödinger 

equations which introduces a fundamental change in Equations 15 and 16 above (Reference 15). 

What Berry points out is that as the parameters of a Schrödinger equation change, its solutions 

acquire what he termed a geometric phase. This phase has been referred to in the literature as 

'Berry Phase' (Reference 16). It is of the form 

eia(x^ (17) 

where the functional, a(x,y), is given by 

a(x,y) = jB(Q)-dQ, (18) 
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with the four dimensional parameter vector Q_having the components 

Q_ = {ni, ai, n2, o2}. (19) 

The vector quantity, B, termed the Berry vector potential or Berry connection is given as 

Bsi<,a1,n2>a2(x,y)-ViI-VJ/n|j0],n2,C2(x,y) (20) 

where the gradient in this last equation is four-dimensional and is taken with respect to the 

parameters. The path of integration, y, in Equation 18 is in parameter space and may be a closed 

path. In the case of closed paths, Equation 18 may be converted to a surface integral for 

evaluation which is a convenience in many instances. With Berry phase, Equation 16 would 

acquire the multiplicative phase factor in Equation 17, creating an 'extended' two-dimensional 

Gabor filter. Thus taking into account Berry phase, one may create 'extended' Gabor Filters which 

bring additional parameters, rij 0=1.2), one for each of the two spatial dimensions and add, in a 

highly non-linear fashion, the geometric characteristics of the parameter space to the visual 

filtering process. This filter would have the form 

*..„«„,„«, (*,y) = ¥„„„, (x)^ (y) • eia^. (21) 

Use of 'extended' Gabor filters offers a new and potentially fruitful path for further 

investigations of the computational architecture of low level visual processing, but falls short in 

providing insight into meaningful new metrics. Following Berry's fundamental paper, there have 

been new investigations into the broader geometric aspects of Berry's discovery which do provide 

a metric, a true metric, applicable to the parameter space of 'extended' Gabor filters. Page 

describes several new geometric structures and their relationship to Berry's original arguments 

(Reference 17). Included in this discussion is a metric, the Fubini-Study metric, which acts on the 

parameter space investigated by Berry. Applied to the four dimensional parameter space of 

'extended' Gabor filters, this metric is a symmetric, second rank tensor, gij, with the form 

8iJ® = JJ&-«»y-aiY;ii0iillj^(x,y)5j'FlliiBiill2i0i(x,y) 

-JJdx.dy.ö^,^^ 

(22) 

where i and j index the components of Q .   From its structure, g^ can never give a negative 
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distance: it is a positive semidefinite metric. With this metric, the natural distance between any 

two points QA and QB in parameter space is given by 

"B      

sAB = J^giij(Q).d£Vdnj . (23) 

While this direction of investigation appears to hold promise, any further investigation must be 

delayed to a follow-on program. 
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5.   NAC-VPM Revisited » Potential Improvements in 
Linear Modeling of Target Detection 

Despite our best efforts, the performance of NAC-VPM and its predecessors does not 

appear robust over the wide range of targets, backgrounds, and scenarios encountered in the real 

world. Though the model's performance can be tuned or calibrated to statistically mimic human 

detection performance for a limited and controlled set of target/background/viewing conditions, the 

calibration seems scene-dependent. This lack of robustness is shared by all computational vision 

models of which we are aware. To better understand the source of the problem and to suggest a 

better way forward in the future, we have analyzed the assumptions on which NAC-VPM is based. 

The results of that analysis presented here suggest certain changes in the overall approach to this 

problem; we believe that implementing these changes will lead in turn to improved model 

performance. 

5.1     Domains of vision 

The eye is basically an imaging sensor. Sensible inputs to the retina consist of image 

spectral radiance values, integrated over the solid angle subtended by the eye's pupil and over the 

spectral responses of the sensing elements present in the retina. Sensible inputs are collected as 

a function of direction, over the angular field observed by the eye. The spatial resolution of the 

eye varies greatly with position in the field and with illumination level. The eye's greatest contrast 

sensitivity occurs at a spatial frequency of 3 to 5 cycles/degree, but it possesses significant 

contrast sensitivity out to spatial frequencies as high as 70 cycles/degree. This would indicate 

that the eye has some ability to resolve objects as small as 1/140 of a degree, although transfer 

function measurements indicate that the eye mostly integrates signals for sources smaller than 

0.1 degree. Similarly, the eye is capable of distinguishing signals as a function of time. 

Depending on brightness, the eye integrates visual stimuli over about 0.1 second, and is capable 

of resolving temporal signals longer than about 0.1 second. 

It is known that the human visual system is capable only of observing colors in terms of the 

rules of mixing of three so-called primary colors. This both indicates, and is a result of the fact 

that the human eye has sensors having only three different spectral sensitivities. Thus, although 

the image viewed by the human eye can contain spectral content of arbitrary complexity, since its 

sensors have only three different spectral responses, all perception of color must be 

representable in terms of three values. The rules of color mixing can be cast in terms of a 

number of different sets of three spectral sensitivities. The most commonly used, primarily for 

convenience in making colorimetric calculations, are called the tri-stimulus functions, called X, Y 
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and Z. Any brightness value expressed in this, or any other equivalent set of tri-stimulus functions 

encompasses all of the ability of the eye to perceive brightness and color. Thus the human eye 

can be said to be sensitive to three colors or integrations over the visual spectral region, 

extending from about 430 to 700 nm. 

Thus, any continuous encoding of the tri-stimulus values over the full visual field, capable of 

representing spatial variations out to something less than 70 cycles/degree, and temporal events 

longer than 0.1 second should contain all information which the eye is capable of sensing. These 

encodings serve as sufficient input to any visual performance model. For this reason, tri-stimulus 

images (in the form of RGB images) at appropriate spatial and temporal resolution should serve 

as adequate input to any visual performance model. 

5.2     Historical attempts to model detection 

Models for the sensitivity of the eye, based on visual perception experiments, are indeed 

visual performance models, in that they describe the threshold of visibility for certain idealized 

target shapes. Blackwell's classic data measured the ability of observers to detect discs of 

different sizes, as a function of both the size of the disc and its luminance difference with its 

surrounding (Reference 10). More recent studies have developed a whole model for the contrast 

sensitivity of the human visual system in both spatial and temporal domains (Reference 9). While 

such a model yields a beginning understanding of the sensitivity of the eye, it is not useful for 

detection prediction because it applies only for idealized uniform targets having some fixed 

contrast with the background (such as uniform discs or grating patterns). The problem of military 

importance involves complex targets of varying luminance and color, and which may be matched 

to their surroundings in either in luminance, color or texture or a mixture of the three. Such 

targets have no simply defined average contrast or size to which a contrast sensitivity model can 

be applied. 

More complex models have been developed based on more complex, but still predefined 

targets (Reference 18). The four-bar pattern of Ratches and others has been heavily used to 

model target acquisition through displayed images from an auxiliary imaging sensor such as a 

FLIR or image intensifier (Reference 18). These models blend linear system theory (to treat the 

sensor processes) with linear system models of human vision (to treat the observation of the 

displayed images). A pattern of four equidistant parallel bars of 7 to 1 aspect ratio, separated by 

spaces equal to the bar width, results in a square target region which has been used as a 

surrogate for complex military targets. A large amount of experimental and analytical effort has 

been expended to relate an observer's ability to detect this bar pattern to the observer's ability to 
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perform detection and recognition tasks against complex target/background scenes. However 

this target pattern still requires the existence of an overall contrast between the target and its 

background. This requirement for a contrast makes the bar target unusable for the modeling of 

visual target detection, since many visual targets are detected merely by their texture contrast with 

their background. 

5.3     Computational Vision Approaches 

Computational vision approaches to the modeling of target acquisition generally attempt to 

simulate the chain of processes leading to visual understanding, from the collection of light, 

through sensing it, and continuing through all those processes which we feel certain are part of 

the visual process. The simulation is stopped at that point in the vision system beyond which 

precise operation is not known. The output(s) resulting from this 'knowable' simulation are then 

cast in terms of a signal power vector, and a corresponding noise process is associated with each 

element of the vector. The resulting vector of power signal-to-noise ratios then becomes the 

metric against which actual detection experiments are correlated. The result is a relationship 

between probabilities of making correct decisions and this metric vector. 

While much is made of the non-linearity of the human visual system, most of the low-level 

characteristics of the eye demonstrate a linear system behavior in dimensionless contrast, or 

contrast ratio. Computational vision approaches to vision modeling build on these linear 

relationships. 

For this discussion, we can define simple luminance contrast as simply the difference 

between two luminance values, a local luminance and a local average luminance. It thus has the 

units of luminance. Thus, 

Luminance Contrast = Local Luminance - Local Average Luminance (24) 

The contrast ratio is the ratio between the luminance contrast and a normalizing luminance. 
Thus, 

Contrast Ratio =    Luminance Contrast    = Local Luminance - Local Average Luminance     /25) 
Normalizing Luminance Normalizing Luminance 

If the target is very small, the normalizing luminance should be the average luminance of the 

background. In general, the normalizing luminance appropriate to a particular point in the scene 

will also be some local average of the luminance about that point, and indeed may be identical to 
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the Local Average Luminance used to compute a luminance contrast. The maximum value of 

contrast ratio is determined by the maximum neural firing rate of neural pathways in the human 

visual system. While TVM, NAC-VPM's predecessor, used contrast ratio only indirectly, the 

current version of NAC-VPM is built solely on contrast ratio images. 

As an example of the linear behavior of the eye, the fact that the eye's luminance 

sensitivity can be modeled in terms of a contrast threshold function, with dependence on 

luminance level, color and field size, is itself an argument for human vision as a linear process. 

The description of contrast sensitivity in terms of a minimum perceptible value for the 

dimensionless contrast, valid for a range of luminance values, implies linear behavior in 

dimensionless contrast, at least over that range of luminance values, and at least for small 

contrast changes. As an even more convincing example, the generally accepted ability to 

describe the eye's threshold luminance contrast as a reproducible function of either target disc 

size or gray scale spatial frequency implies linear behavior. The eye's contrast sensitivity can be 

adequately described in terms of a linear imaging sensor of contrast ratio, having spatial 

resolution described by a spatial impulse response, with a finite 'minimum detectable contrast' 

value, and with a maximum field size. The presence of a spatial impulse response implies spatial 

integration over objects smaller than the width of that impulse response, and the specification of 

contrast ratio sensitivity as a function of spatial frequency (a contrast ratio MTF). 

Blackwell's original liminal contrast data as shown in Figure 5 can be explained in terms 

of a constant liminal contrast ratio for large stimuli (see Figure 5a) and in terms of a contrast ratio- 

area product for small size visual stimuli (see Figure 5b), at any luminance adaptation level. In 

Figure 5, the liminal contrast for small size stimuli is proportional to product of contrast ratio and 

size, (demonstrated by a log-log slope of -2) while for large size stimuli, the liminal contrast ratio 

approaches a constant value as the size of the stimulus increases. This indicates that, for the full 

range of Blackwell's measurements, the eye can be represented as a linear sensor in contrast 

ratio. Much of the earlier literature has attempted to rationalize these linear representations in 

contrast ratio with the photon detection processes and subsequent luminance adaptation 

processes occurring in the human visual system (References 19 and 20). However, for purposes 

of modeling target detection, the details of how contrast sensitivity is achieved by the human 

visual system is irrelevant. We need only build a linear model based on contrast ratio, and apply it 

to contrast ratio images. NAC-VPM is an example of such a model. 
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Figure 5a. Contrast threshold vs. stimulus size parameterized by background luminance (re- 
plotted from data in Reference 10). 
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Figure 5b. Luminous intensity threshold vs. stimulus size parameterized by background 
luminance (re-plotted from data in Reference 10). 
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Figure 6 shows a combined spatio-temporal contrast sensitivity function derived by Kelly, 

and reproduced in various places (References 2 and 9). This function can be viewed as an 

effective spatio-temporal MTF for the eye and its peak noise-equivalent contrast, at one 

illumination level. Note however, that the spatial MTF is based on measurements of linear (one- 

dimensional) spatial gratings, so that the true two-dimensional spatial MTF is a circularly 

symmetric function, whose radial profile is described by the spatial function of Figure 6. In theory 

at least, this combined spatio-temporal MTF function can be thought of as arising from a single 

spatio-temporal impulse response function describing the eye's complete response to contrast 

ratio. While many previous models have attempted to build such a comprehensive single channel 

model, such a model can never be credible, for a series of reasons to be discussed below. 

However, it is instructive to discuss the steps to be taken in the development of a single channel 

model, to provide a rationale for the development of the channels making up NAC-VPM. 
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Figure 6. A perspective view of a typical spatiotemporal threshold surface for drifting gratings 
(left). Each curve represents the spatial frequency response at a fixed temporal frequency. The 
neighboring curves are separated by a constant increment of about 0.10 log temporal frequency. 
The hidden part of the surface was not suppressed. A contour map of the same surface (right), 

the contours are labeled by the contrast thresholds to which they correspond 
(from Reference 29). 

5.3.1     The Attractions of a Linear System Model for Target Detection 

Models for human contrast sensitivity based on contrast ratio and functions describing 

contrast sensitivity have been very successful. The success of these models indicates that, at 

least for small signals, the eye acts as a linear system. While much has been made of non- 

linearities in the human visual system, the non-linearities found in the human visual system are 

primarily those associated with signal detection, such as absolute value functions and 
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operations such as squaring and raising to a power. The descriptions of pooling are very good 

examples of signal detection processes (Reference 21). In every sensing system, a non-linear 

detection process terminates the linear portions of the system. The human visual system appears 

to be no different than other sensing systems in this respect. 

Given the success of linear system theory in modeling the liminal sensitivity of the eye to 

contrast ratio, one would expect that linear system theory would shed light on the performance of 

the human visual system in more complex detection processes as well. On the other hand, one 

might, expect that a linear system model might over- or under-predict visual system performance 

under some conditions. For example, if detection involves a great deal of learning what real 

targets look like, linear system models might under-predict actual detectabilities. Alternatively, if 

the eye is not well evolved for certain types of detection, linear system theory might over-predict 

detectability. We believe, however, that NAC-VPM does not currently optimally predict 

detectability in a linear system sense. 

5.3.2    Possibilities for a Single Channel Linear Model 

The simplest computational vision model for target acquisition would be a linear single 

channel model of dimensionless contrast in terms of total (over the target) contrast ratio signal-to- 

noise. Such a model would be able to demonstrate all of the features of the eye's luminance 

contrast sensitivity in both space and time. This model would estimate the eye's ability to detect a 

complex target in terms of a traditional power signal-to-noise ratio. Many attempts to model 

detection performance can be viewed as single channel linear models. Metrics such as PSS, four 

bar pattern models, and models based solely on size and contrast can be viewed as single 

channel linear system models. Yet there are great disadvantages to such single channel models. 

Primarily, they fail to account for any ability of the eye to partition the spatio-temporal-color space 

based on optimum signal-to-noise values. They agglomerate all signal and all noise together into 

a single channel. Thus they preclude the model from treating any of the advantages associated 

with selective spatial and temporal frequency filtering and tuning, and from treating any of the 

advantages that could be gained using the techniques of matched filtering. Thus, one would not 

expect great success from single channel linear models. However, an outline of the steps to be 

taken will serve to describe the development of a linear model for any channel whatever, not just a 

single, all-encompassing channel. 
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A single-channel signal-to-noise model would be built as follows. The 'signal' would 

consist of the integral of the square of the perceptible contrast ratio image over the target. This 

perceptible contrast ratio image can be computed in the following steps: 

(1) A luminance adaptation level must be computed for each point in the image, based 
on a local integral of the scene luminance. 

(2) The contrast ratio must now be computed at each point in the image. 

(3) If temporal response is to be included, the single image must be replaced by a 
sequence of images, spanning the time of interest, and extending over twice the 
duration of the eye's temporal impulse response. Each image in the sequence must 
be converted into a contrast ratio image. 

(4) Now, by convolution, the eye's impulse response function, in both space and time, is 
applied to each point in the contrast ratio image sequence. The result is a single 
perceived contrast ratio image. It incorporates both spatial and temporal effects. 

(5) The integral of the square of this image must now be taken over the whole of the 
target-containing region. This becomes the 'signal power' of the channel. The 
squaring process simulates the 'detection process' necessary in any linear sensing 
system. 

The 'noise power' must now be computed. The simplest model for the 'noise power' 

contributed by the human eye would simply be the square of the contrast ratio threshold, at the 

average illumination level associated with the target region, summed over all independent visual 

spatial resolution elements encompassing the target region. This simple noise model would 

account for the eye noise generated in a target-sized region. 

5.3.3    Background Noise Power in a Single Channel Model 

Now the problem of the background comparison must be dealt with. Is the eye actually 

comparing the target with its associated background, or is the eye viewing the target in isolation, 

absent from the interfering effects of the background? In the former case, the background is a 

comparison object with which one is comparing the target, rather than a realization of a random 

noise process. The background is not a contributor to the noise power in the denominator. In 

contrast, in the latter case, the background is a noise process, part of the noise against which one 

tries to detect the target. In the target detection problem, either role can be assigned to the 

background, but both roles cannot be invoked at once. 

Note, however, that while the first choice is almost instinctively chosen, the second choice 

in the question above is actually the more philosophically appealing. Since there can be more 

than one. realization of a given background against which the eye can be making its comparison, it 
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is more stochastically reasonable to treat the background as one realization of a confusing 

process, and so treat it as part of the noise. 

In NAC-VPM, the background is assigned a noise-producing role. The signal is that of 

the target standing alone, and the background is nothing other than a single realization of a 

confusing noise, within which the target must be sensed. Accordingly, the signal is the square of 

the dimensionless contrast image of the target itself, without comparison with the surrounding 

background. The expected value of the square of the signal of the surrounding background (the 

clutter) becomes a noise component, to be squared and added to the dimensionless contrast 

threshold noise appearing in the 'noise power' denominator. 

Because of the peculiarities associated with multi-resolution spatial filtering, NAC-VPM 

uses a special image to isolate the target completely from its background. This is the so-called 

'bias image'. It is discussed in detail in Reference 1. However, it is not a realization of the 

background with which the target is compared, it is specially constructed to isolate the target from 

its background in the multi-resolution images. 

If the first alternative is chosen, i.e. the role of the background is taken to be an object 

with which the target is to be compared, then the signal must be constructed in terms of this 

comparison. In this case, the actual signal should be the difference between the dimensionless 

contrast image of the target and an equivalent image of the background to which it is being 

compared, and the 'signal power' becomes the square of this difference. In this case, the 'noise 

power' in the denominator contains only the eye noise term. Although this is a valid alternative 

role for the background, it is not the role used in NAC-VPM. 

5.3.4    The Realization of a Single Channel Linear Model 

We have now discussed both the signal and noise models for a single channel linear 

system model for target detection. But there are difficulties in realizing some elements of such a 

model. 

5.3.4.1 The Incorporation of Color 

The first, and simplest, difficulty is the incorporation of color into a combined contrast ratio 

measure. There are several options by which this can be accomplished. It could be done most 

simply using one of the unified lightness/chromaticity scales used by CIE (Reference 22). The 

best of these is the L*, U*, V* system defined in Reference 23. Such an extension would 
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replace the dimensionless luminance contrast ratio based on Equation 2 above with a combined 

luminance/color contrast ratio based on the L*, U*, V* combined color/lightness scale. This scale 

was developed based on subjective observer tests relating luminance contrast with color contrast 

in reflected light, and has been used widely to relate small changes in color to small changes in 

luminance. It has been heavily used in the printing industry to model the combined perception of 

brightness and color. It results in a three-element contrast vector AL*, AU*, AV*. This 3-D 

contrast vector can be combined into a single unified, consistent, contrast value representing both 

color and luminance differences. It is based on the CIE XYZ color channels. 

An alternative approach would make use of the color-opponent chromaticity space of 

Derrington-Krauskopf-Lennie (DKL) as discussed in References 24 and 25. The DKL space is 

also a three-element contrast vector, describing contrast in terms of a luminance coordinate, and 

two color coordinates (the L&M and S coordinates, separated in terms of the three cone spectral 

sensitivities). While Reference 24 provides substantial discussion about a combined distance 

measure, no comprehensive, consistent distance measure for this space is described. However, 

when projected onto the standard CIE chromaticity diagram, the axes of the DKL space are very 

similar to axes of the L*, U*, V* space. We would thus expect the DKL space to perform similarly 

to the L*, U*, V* space. 

A means to combine luminance and color metrics into a single contrast metric is 

important to a detection model, since observation of a given target/background image results in a 

single detection decision (target or no-target), not multiple detections in each of multiple colors. 

NAC-VPM skirts this issue. It uses independent metrics for both luminance and color channels. 

The combination of color and luminance effects is controlled both by the relationship between the 

contrast sensitivity functions for color and for luminance and by the user as he assigns weights to 

the individual channel metrics. The default weights for all color channels are unity in NAC-VPM, 

so that the luminance and color channels are always weighted according to their respective 

contrast sensitivities. 

5.3.4.2 The Determination of the Overall System Impulse Response Function 

There is a second, much more serious problem with the development of a single channel 

linear model for detection. It can immediately be realized by noting that the contrast sensitivity 

(CSF) functions used so commonly to measure the eye's contrast sensitivity are only system 

response functions. That is, they describe the amplitude of the response to a sine wave input as 

a function of spatial and temporal frequency. As such, they are inadequate to specify the actual 

impulse response of the human visual system. Any attempt to build impulse response functions 
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must immediately address the ambiguity between the impulse response and the system function. 

Any number of impulse response functions can yield the same system function. One could 

attempt to resolve this issue by choosing a single even and a single odd function to represent two 

independent single channels describing the eye's overall sensitivity. However, this immediately 

breaks what was a single channel into two independent channels with the same system function. 

The eye's overall system function (represented by the contrast sensitivity function typified by 

Figure 6) may indeed be the result of the combined action of many independent channels, which 

are combined in some unknown way to yield an overall detection decision. 

The eye's measured system function (the contrast sensitivity function and its variations 

with color and spatial and temporal frequency) could indeed be the result of a multiplicity of 

channels, rather than one or a few channels. This realization immediately raises the question of 

channel selection. Would we not expect the eye to be capitalizing on the variations in signal-to- 

noise in the spatial-temporal-color domain in which it works? The eye might even dynamically call 

upon, or construct channels based on the target detection task at hand. We should thus abandon 

single channel models as being inadequate to model the ability of the eye to recognize objects in 

images. 

5.3.4.3 The Choice of Multiple Channels 

If we accept the presence of multiple channels in the human visual system, the problem 

of modeling detection becomes much more complex. It is no longer possible to envision a single 

signal-to-noise expression as being capable of modeling target detection. Rather, it becomes 

necessary to determine a signal-to-noise expression for each of these channels, and then to 

model the mechanism whereby these multiple channels are combined into a single decision. 

How then should these channels be chosen? There is little concrete guidance toward an 

answer. De Valois and de Valois describe the variety of spatial channels found in primate visual 

systems in great detail (Reference 9). From their discussion it is clear that a great variety of 

spatial, temporal and color channels indeed exist in the human visual system. The spatial 

channels tend to be 'bandpass' channels, i.e. they cover a limited range of spatial frequencies, not 

extending down to DC, and may or may not extend to the spatial frequency limits of the human 

visual system. From the discussions in Reference 9, a variety of spatial frequency bandwidths are 

found, and no particular ordering of the spatial filters is readily apparent in any given visual 

system. Furthermore, the observed spatial size of the receptive fields may be unrelated to the 

observed size of their central lobes. The lack of any fixed relationship between receptive field size 

and central lobe size, and the lack of observed order in the receptive fields, are both strong 

indications of the presence of a great variety of receptive fields. They may have many different 
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(and probably unrelated) central frequencies and spectral resolutions (the ratio of bandwidth to 

central frequency). 

A similar situation exists for temporal channels. While the overall temporal contrast 

sensitivity function extends from DC to perhaps 30Hz, observed temporal channels show much 

narrower bandwidths, indicating that the temporal response is the summed response of several 

temporal channels. 

5.3.4.4 NAC-VPM/TVM Channel Choices 

The approach used to define multiple channels in NAC-VPM has been inherited 

completely from the older code, TVM. 

For the details of these channels, the reader is referred to the NAC-VPM report and the 

TVM Analyst's Manual (References 1 and 2). The choices made for these two codes were made 

based on the best estimates of vision channelization available at the time TVM was written. 

The temporal channels in TVM, and hence in its successor, NAC-VPM, are based on the 

work of Kelly (Reference 21). Kelly describes a temporal contrast sensitivity function in detail, 

reproduced here as Figure 7. For the TVM effort (and inherited by NAC-VPM) we divided this 

contrast sensitivity function arbitrarily into three channels, one a temporal lowpass channel and 

the other two temporal bandpass channels. The system functions of these three channels are 

such that their sum duplicates that of Kelly. (See Figure 7.) When implemented in the TVM/NAC- 

VPM temporal preprocessor, the system functions of these three filters were taken to be real and 

symmetric about the frequency origin. This means that their impulse response functions have 

been chosen to be even functions. Thus there are three temporal channels in TVM/NAC-VPM, 

which sum to match the contrast sensitivity function of Kelly. Their impulse responses are all 

even. Note, however, that we could as easily have chosen odd functions, or any mixed set of 

even-odd functions that satisfied Kelly's contrast sensitivity function. 
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Figure 7. NAC-VPM's temporal contrast sensitivity model (curves) and relevant data points at five 
luminance levels (Reference 26). 

NAC-VPM/TVM develops both lowpass and bandpass temporal channels for the 

luminance image sequence only, and develop only a lowpass temporal channel for the color 

opponent image sequences -thus the codes assume that the human vision system has no color 

vision in the temporal bandpass channels. 

Each of the three luminance temporal channels and the two color opponent channels are 

divided into a number of spatial channels. This division into spatial channels has been based on 

the hierarchical pyramidal representation schemes of Burt and Adelson (Reference 27). In this 

approach, each image is subdivided into a pyramid of images, each of lower spatial resolution 

than the one above it in the pyramid. The frequency range covered by each image in the pyramid 

spans the outer one octave wide ring of spatial frequency space, for that image, as shown in 

Figure 8. Thus, through the use of the Burt and Adelson pyramid, the full spatial frequency space 

of the original image is covered with channels about one octave in bandwidth. 
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Figure 8. Partitioning of spatial frequency space by NAC-VPM's directional spatial frequency 
pyramid. Partitioning is shown for two outermost rings of frequency space. Each successive 

ring is partitioned similarly. 
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Finally, the color separation is based on luminance and two color opponent channels 

described by Boynton (Reference 28). 

Thus, the channels chosen for NAC-VPM can be summarized as follows: The temporal 

channels are based on the temporal contrast sensitivity of Kelly. The spatial channels are chosen 

based on the hierarchical decomposition of Burt and Adelson. Color separation is according to 

luminance and Boynton's two color opponent channels. Color, spatial and temporal 

channelizations are all assumed to be independent. Note that none of the channel choices are 

based explicitly on any observed channels in the human visual system. Indeed, given the variety 

of channels observed and discussed in Reference 9, it would be difficult to pick any particular 

channels based on observed receptive fields. 

These choices have lead to several unfortunate outcomes. First, the spatial 

channelization is fairly coarse, each channel being an octave wide, even though as many as 7 

octaves of spatial frequency space is spanned. Furthermore, the channelization is based not on 

any characteristics of the target or human visual system, but on the pixelization of the image itself. 

This is particularly unfortunate, since there is no guarantee that the target's spatially important 

information is isolated into one or more particular channels for consideration by the visual system. 

The channels are very wide and very sparsely chosen. The only virtue associated with this spatial 

choice is that all of the spatial frequency space is covered. 

A second outcome is that, because of the scheme used to implement the hierarchical 

decomposition, all of the channels' impulse response functions are 'even' functions in both spatial 

dimensions. This is unfortunate since such a set of filters cannot preserve phase information. 

Preservation of phase is known to require channels having both 'even' and 'odd' impulse 

responses. Yet the preservation of phase is known to be critical for object recognition. Thus, the 

pyramidal representation as implemented cannot preserve phase information associated with the 

bandpass filters. The temporal filters are also limited to even functions, although this may not be 

a problem since there is little evidence that temporal phase is important for moving target 

detection. 
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In summary, the channel selections made during the design of TVM, as inherited by NAC- 

VPM, are somewhat arbitrary, based on a technique designed for image compression (the Burt 

and Adelson hierarchical pyramid), and on the overall temporal contrast transfer function. In 

particular, they make no pretense of being chosen based on either an actual visual channelization, 

nor on actual target spatial frequency content. Based on these observations, the imperfect 

correlation of results from these models with real observer performance may not be unexpected. 

5.3.4.5 How Should Channels be Chosen? 

Now that NAC-VPM is complete, the channel choices can be critiqued in hindsight. When 

channels were chosen, the features leading to the criticisms above were considered to be virtues. 

Thus the use of the temporal contrast sensitivity function as the basis for the selection of three 

temporal channels was considered as valid. At the time, little consideration was given to the 

difference between a system function (a representation of amplitude response) and the actual 

impulse response for a channel. 

Furthermore, the spanning of all spatial frequency space, and the ability to reconstruct the 

image from the pyramid was valued above the preservation of phase information, and little 

consideration was given to the details of the channel choices. These choices have almost 

certainly compromised the ability of NAC-VPM/TVM to successfully model target detection 

problems. We can conceive of better ways to choose channels. 

We could postulate a human visual system (HVS) which works approximately as follows: 

the HVS could be blessed with a great variety of spatial, temporal and color channels which serve 

as programmable tools for its higher level cognitive processes. Each task given to the human 

visual system, whether it be a complex target detection task, or a simple liminal contrast 

perception task, may be handled at the cognitive level. The cognitive level of the visual system 

then calls upon its repertoire of channels to analyze the perceived image, resulting in a decision. 

The ultimate capability of such a system would still be describable in terms of a complex contrast 

sensitivity function, describing the ultimate capabilities of its low level sensors. Nevertheless, its 

actual complex detection capabilities would be measurable only in the characteristics of its 

cognitive processes. 

The investigations described in Section 3 give some support to this method of operation. 

The physiological studies described there show the existence of a great variety of receptive fields, 

organized in several ways. But no structures supporting particular high level tasks, such as 

brightness matching, can be found. Further evidence can be gained from descriptions of a variety 

of spatio-temporal-color channels in Reference 9, combined with no real evidence for the 
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existence of processes that analyze brightness levels or which are specific to particular textures. 

Perhaps all decisions are handled at a very high level based on the considered results from a 

large repertoire of perhaps even programmable spatio-temporal-color channels. This is in 

contrast to NAC-VPM and its predecessor, TVM, in which the channels are fixed, small in number, 

and chosen based on scene pixelization rather than on the target. 

It is possible to choose channels based on the postulation described above. First of all, 

NAC-VPM could have a much richer choice of channels. A large repertoire of channels could be 

available, including various selections of relative bandwidth, and central frequencies matched to 

particular feature sizes. Both even and odd impulse responses should be available for each 

channel. Selections from this repertoire can then be made at the time of metric calculation, based 

on characteristics of the target such as its size, its range, its texture or lack thereof, and its 

probable relationship to its background. Linear system signal-to-noise metrics would be 

computed for every channel selected from the repertoire. The contrast sensitivity functions would 

still be used as a source of eye noise values for all channels. Then, rather than simply combining 

the signal-to-noise metric from all selected channels into one decision-level metric, the channel 

signal-to-noise ratios would be sorted by value, and the overall detection metric then computed as 

a combination of metrics from those few channels with the largest signal-to-noise ratios. 

If we were to postulate, in addition, that the human visual system can actually implement 

the spatio-temporal filters required to detect any realistic target, we can then build a detection 

metric which is even more efficient. We can perform an eigenvalue-eigenvector analysis of the 

target region and find those spatio-temporal filters which contain the most target energy. We can 

then postulate the existence of those channels and compute signal-to-noise metrics for them. 

These metrics can then form the basis of a detection model. 

These schemes for choosing channels for consideration have much more appeal than the 

fixed set of channels presently used in NAC-VPM. Thus, to the extent that effort in visual 

detection modeling is continued, primary attention should be given to selection of visual channels. 
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6.   Conclusions and Recommendations 

The primary results of this program consist of (1) the completion and delivery of the NAC- 

VPM software, (2) the validation of the software against a 'conspicuity' experiment involving the 

identification of oncoming traffic by a visual observer. This validation effort was moderately 

successful, in that the NAC-VPM model yielded correlation of about 0.8 with actual observer tests. 

In addition, several additional efforts were undertaken directed toward more complete 

understanding of the visual detection problem. The results of these efforts were somewhat 

inconclusive. While interesting transformations of image data were developed, much more 

investigation remains to be done before any substantive conclusions about them can be reached. 

Finally, a critique was made of the philosophy behind linear detection models, of which 

NAC-VPM is a prime example. This critique demonstrated that the channel selections made in 

the development of NAC-VPM are not optimum for the detection of the targets being investigated. 

Future efforts should be directed toward the development of techniques, which select visual 

channels appropriate to the detection task at hand. 
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A. Appendix A 

During the pas« year, severe, probes witb NAO-VPM were noted and repaired. These 

tepaJ^::edeenincJdedinthe,as,disMMionofNAC-VPM and are descnbed below. 

Problem with Bias Image Computation 

Problem Description 

WW,e running some tes, cases ,, became apparent that ££££%£ 

expected. »early - tbe ~—^"Ä .' caldiated, tbe 

1 the tarfle, removed and tbe — i, I— ~ Contain le same 
„coupled by the target.   Upon .nspection, the Biaslmage«' and thus 

problematic characteristics. The source o. errors ,n taT«*«"?*T „ he input and 

L metric resute were traced to an error in the computed Brasimage. Examples 

of the erroneous intermediate images are shown below. 

Input Image 
Biended Background Image RFTargetDetectability Image 

\ 

Figure A.1. Example images. 
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Problem Solution 

The key calculations that create the Biaslmage are defined in the file, omiBlendOut2.map. 

This map implements much of the processing described in pages 17-27 in Reference 1. As an 

initial step in the processing, an offset (actually called a bias constant) is added to the image. 

Later in the processing that offset is removed. Halfway through the processing in omiBlendOut2, 

an intermediate image, called Imagel below, is created which improperly includes the offset. 

There is also blending function, NonStationaryLowpasslnverse, (NLSI below). The last lines of 

omiBlendOut2 produce the following calculations: 

NSLI{Threshold(lmage1) * Imagel} - Offset 

As shown, the NSLI process is applied before the offset is removed. That results in 

extrapolation of erroneously large background components into the target area of the image. 

When the offset is later subtracted it results in an outline of the target area. 

To correct this problem, the processing was modified to execute as follows: 

NSLI{Threshold(lmage1) * Imagel - Offset} 

In this case, the offset is first subtracted and then the non-linear blending operation is performed. 

This modified operation is incorporated in a modified version of the omiBlendOut3.map 

file. Examples of the RFTargetDetectability and Biaslmage images created with the modified 

processing are shown below. Both have the expected character, with the Biaslmage showing a 

smooth blending from the background into the target region and the RFTargetDetectability image 

showing a mixture of edge and internal features. 
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Bias Image RFTargetDetectability Image 

Figure A.2. Example images after processing correction. 

Errors in Color Transformation 

Problem Description 

When NAC-VPM was used to model detectability in black and white images, spurious color 

opponent channels appeared. Furthermore, color images were improperly transformed. 

Problem Solution 

The problem was traced to an inappropriate RGB to XYZ transformation matrix, and its 

corresponding gamma correction parameters. This transformation data is part of the default data 

provided with NAC-VPM. To prevent the problem from occurring with standard RGB images, the 

default transformation was replaced with a more appropriate transformation. Before NAC-VPM 

can give accurate outputs, this transformation must be replaced with the actual transformation 

between the RGB image in use and the luminance in XYZ space at the observer. 

There are constraints to this transformation in that it must not introduce color when no 

color is indeed present. Furthermore, it must account for the white point of the display and for the 

colors of the phosphors. To reproduce the white of a CIE standard C illuminant, the sums of the 

three columns of the matrix should be in the ratio (0.981, 1, 1.1836). Furthermore, the 

chromaticities of each row should match the chromaticity points of the three phosphors. The 

matrix below meets all these constraints. It simulates a linear RGB display with a maximum 

brightness of 255 cd/m2, and whose RGB channels match the standard R, G, B phosphor 

chromaticities of (0.62, 0.34), (0.28, 0.59) and (0.15, 0.07), respectively. The sum of the center 

column is unity, so that, to give a simple calibration, it can be multiplied by a constant equal to the 
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luminance of a gray image of value 1 (i.e. R = G = B = 1). 

X Y Z 

R   0.480 0.263 0.031 

G   0.307 0.646 0.142 

B   0.194 0.091 1.010 

This transformation is located in the file COAInputData, and appears as the RGBtoXYZ matrix in 

this file, along with default bias and exponent values. 

The Addition of Spatial Weights 

Description of Problem 

During evaluation of certain images, it became apparent that the highest frequency channels often 

consist of nothing but white noise. Yet, because of their large variance, they dominated the signal 

content. 

Problem solution 

To allow the user control over situations of this type, provision was added to assign a user-defined 

weight to each spatial channel in each of the five color planes. This was implemented in the form 

of an additional set of data files named TLBW/TLRG/TLYB/TMBW/THBWSpatialWeights. These 

files are in the same format as all other data files. The metric processors now properly recognize 

these files and use the weights contained in them. The default files having these names all have 

all the weights set to unity. 
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