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Aeroservoelastic design with distributed smart actuation system 
for high performance aircraft 

Hayrani Öz1 

2036 Neil Ave., Bolz Hall, 328, Columbus, Ohio 43210 
Aerospace Engineering, The Ohio State University 

SUMMARY 

This report describes the work done by the author to study the feasibility of shaping lifting surfaces via 
distributed smart actuation systems to achieve high performance flight configurations. In this report, the 
focus is on first obtaining and identifying optimal distributed-parameter-control equivalent actuation 
profiles for desired flight maneuvers by a modal synthesis approach. Subsequently, this distributed- 
parameter equivalent aeroservoelastic solution is to be implemented via a multitude of spatially-discrete 
actuators distributed throughout the domain of the lifting surface. The selection of the number and 
distribution of discrete actuators is to be based on optimal approximation solutions which use the optimal 
distributed-parameter-control equivalent solution as a guiding design. The insight to solutions are sought 
by considering the aeroservoelastic interactions among aerodynamics, structural flexibility and control 
actuators from the perspective of work-energy, control power, and control loading requirements. 

The Aeroelastic modal formulation is presented in terms of real modal matrices and modal-state variables. 
Real bi-orthonormality relationships for aeroelastic modes are given with respect to structural matrices. 
The solution for distributed-parameter-control of an aeroelastic system is developed by modal synthesis 
from modal-state-space control inputs. In particular, the globally power optimal Independent Modal-Space 
Control (IMSC) technique is used for maneuver (set-point) control of an aeroelastic system by a modal- 
performance-output synthesis approach. Control power functionals for an aeroelastic system are defined for 
any actuation profile and control design. The known solution for the synthesized distributed-parameter 
closed-loop aeroelastic system is optimally approximated via a gain distribution error minimization 
technique integrating the ttansient and power performance characteristics of the system for implementation 
by distributed, spatially-discrete actuation profiles. For the same purpose, a Galerkin approximation is 
also given. Work-energy requirements for aerodynamic, structural and control elements are presented; 
specifically, whenever a rigid-body coordinate exists the work-energy requirements are identified with 
respect to rigid-body and flexible coordinates, respectively. A modal performance-output allocation 
optimization problem is also defined, which minimizes a hybrid measure of control power and elastic strain 
energy of the structure during aeroelastic control. 

The modal synthesis approach for aeroservoelastic maneuvering is illustrated by two examples. The first 
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example is for a composite-plate simulating a wing, to twist the wing tip to a prescribed angle of attack by 
using different distributed actuation profiles. We present both the distributed-parameter-control solution 
and its optimal approximations via spatially-discrete distributed actuators . The required warped wing 
shapes can be affected by the approach by synthesizing through different selections of aeroelastic modes for 
control design resulting in different control power requirements. We illustrate the warped wing shape for 
the maneuver studied. The second example illustrates the method for a wing design for which the data was 
provided by the AFRL/VASD at the WPAFB in Dayton, Ohio. A maneuver to achieve a 90 deg/sec roll- 
rate in a Mach 2 flight condition at altitude was considered and achieved with satisfactory settling-time. The 
distributed-parameter-comrol equivalent solution for the maneuver is presented. The control power, control 
load, and work-energy requirements are calculated for this solution. The preliminary results indicate that 
such a roll-rate maneuver can be accomplished through feasible levels of control power, work-energy and 
control loadings. However, due to the nature of the data provided, the illustration provides the generalized- 
control loads requirements instead of the distributed-parameter-control loading distribution; for the same 
reason, only the structural modal coordinates' displacements are given for the steady-state flight 
configuration achieved for the maneuver (therefore the resulting wing shapes were not simulated in this 
report). For the given wing data, we were also provided a set of 40 discrete actuators imbedded in the wing 
ribs by which one could attempt to duplicate the performance of the distributed-parameter-control solution. 
The preliminary results indicate that the given spatially-discrete distributed actuator configuration would 
require unreasonably high levels of control power, energy and control forces, and further studies would be 
required to identify alternate actuator configurations and even aerodynamic parameters    via an 
interdisciplinary approach that can accomplish the maneuver within physically realizable control power, 
control gains, energy and control forces comparable to the feasible levels of the distributed-parameter- 
control solution. 

Key words: Aeroelasticity, aeroservoelasticity, IMSC, modal control, distributed-parameter-control,'Control 
power, optimal gain approximation, wing shaping, distributed actuation control, non-self-adjoint system 
control 

1. INTRODUCTION 

Aeroelastic systems are represented by operators/matrices that do not have any symmetry and sign- 
definiteness properties, they represent non-self-adjoint systems. The associated eigenvalue problem is 
generally complex and their modal descriptions are traditionally dealt with in terms of complex quantities. 
The biorthonormality relationships, if they are needed, for such problems are given with respect to a state- 
space dynamic matrix which has an arbitrary structure and is an odd mixture of all system matrices. Yet, 
there is always a common tendency in the literature to study these systems in a manner akin to the study 
of self-adjoint structural systems. Often, orthonormal structural modes are used to transform an aeroelastic 
system with the admission that the invoked structural modal representation loses its orthonormality 
properties within the aeroelastic system. On the other hand, identification of orthonormal modes is always 
important from the control perspective, for the truncation of such orthogonal modes still assures that the 
properties imparted to the retained modal subspace by the control design remain unaltered after model 
truncation. For non-orthogonal representations, this assurance does not exist. Hence, aeroservoelastic 
systems are treated in the literature with the acceptance of the curse associated with a non-orthonormal 
representation albeit in terms of orthonormal modes of the structure alone. 



In this report, we remedy this deficiency in the literature, and recast the aeroservoelastic problem anew in 
a unique form, and introduce an orthonormal modal representation for the aeroelastic system in terms of 
real conjugate modal quantities. These aeroelastic system modes have the unique property that they satisfy 
bi-orthonormality relationships simultaneously both with respect to the aeroelastic system matrices and the 
structural matrices. Thereon, the aeroservoelastic problem can be dealt with in terms of the orthonormal 
aeroelastic system modes, and specifically the Independent Modal Space Control (IMSC) technique l can 
be applied to design an optimal distributed- parameter-control for the aeroelastic system to accomplish the 
control objectives by a modal synthesis approach. We refer to this solution as the distributed-parameter- 
closed-loop IMSC (DPCL-IMSC) solution. 

A DPCL-IMSC solution can be implemented by a variety of distributed, spatially-discrete actuation (and 
sensing) profiles by using an optimal gain distribution approximation or a Galerkin approximation with a 
perspective on the control power expenditure and transient behavior 2"6. We extend these concepts to an 
aeroelastic system with a comprehensive, but concise exposition, and illustrate the approach for twisting 
of a wing tip to a prescribed angle of attack by distributed actuation profiles, and roll-rate maneuvering of 
a high speed wing-body configuration. 

2. AEROELASTIC SYSTEM AND ITS MODAL REPRESENTATION 

An aeroelastic system constitutes an integro-differential distributed-parameter-system (DPS). Regardless 
of whether the DPS description is explicitly available or not, the equations of motion (EOM) of an 
aeroelastic system with or without unsteady aerodynamic effects can always be written and explicitly 
developed in the following spatially-discrete configuration-state-space variable form: 

Mx + Gx = X '       (1) 

In Eq.(l) the n s -dimensional state variable vector x includes aerodynamic lag state variables if unsteady 
aerodynamic effects are taken into account, otherwise it consists of only structural state variables. We refer 
to M as the generalized state-space mass matrix, which is always symmetric and positive-definite. The 
G matrix is referred to as the generalized aero-elastic-state matrix; it includes all of the structural and 
aerodynamic mass, damping, gyroscopic (if any), stiffness, and aerodynamic circulatory (Duhamel's integral 
related) matrices, and therefore is completely arbitrary and sign-indefinite. 

Introducing the general solution form x = v r e V into the homogeneous EOM, we pose the following right 
(R) and left (L) conjugate aeroelastic eigenvalue problems: 

[XrM + G]vRr = 0 [XrM
T + GT]vLr = 0 (2) 

The aeroelastic eigenvalue problem, in general, has real and/or complex eigenvalues and real and/or 
complex eigenvectors as, for example, in the case of maneuvering dynamics of a flexible aircraft. The 
right and left eigenvectors are bi-orthogonal with respect to the M and G matrices. Once the complex 



general conjugate eigenvalue problems are solved, one no longer needs to deal with complex quantities and 
the problem can be dealt with in terms of real modal matrices and real modal-state variables. To this end, 
from the eigensolutions, we form the following real aeroelastic conjugate modal matrices and define the 
conjugate real modal-state variables as: 

VR = [I yRl  Z«l I - ' yRr *Rr I •- I yRn Zjte U VL = t ' yL 1 ~ZL\ ' - ' yLr -Z-Lr I •- I y* ~ZUt ' 1 

x(t) = VRw(t)       w = [w{w2 wr wf    wr = [Er(0   tir(Of (3) 

where w is the n s = 2n vector of modal-states and £ r and r| r (r=l,2 n) are a conjugate pair of r-th real 
modal-states. The notation I y r z r I denotes a pair of columns formed from the real and imaginary parts, 
respectively, of the complex eigenvector corresponding to the r-th eigenvalue X r = a r + i w r. On the other 
hand, if an eigenvalue X r is real, then the notation I y r z r I for V R denotes a single column for that 
eigenvalue formed as the summation {real (y r) + imaginary (z r) } from the real and imaginary parts of 
the corresponding eigenvector; and the notation I y r - z r I for V L denotes a single column for that 
eigenvalue formed as the difference {real (y r) - imaginary (zr) } from the real and imaginary parts of the 
corresponding eigenvector. Consequently there will be a single real modal-state variable £ r or r\ r for that 
eigenvector. Next, we normalize the bi-orthogonal real modal matrices (formed as described) with respect 
to the state-space mass matrix which yields 

V[MVR = \ V
L 

GV
R = block-diag [Ar] 

[AJ = 
a ,    a) r\ r 

-to    a rl 

(4) 

ar\.l=ReK\0. Wr = /mArl,2 

where r, 2 denotes the r-th pair of eigenvalues; if complex, they are complex conjugates and real parts are 
equal a r = a rI = a n, if the pair is real then a rl and a ^, in general are different and o> r = 0. If the total 
number of real eigenvalues is not even (for example, due to truncation), then the single remaining excess 
eigenvalue after pairing all of the real eigenvalues simply forms a 1X1 diagonal modal-state equation. Note 
that the modal equations corresponding to all real eigenvalues will indeed be diagonal, but without loss of 
generality each 2X2 block corresponding to any pair of them can be regarded as a degenerate case for a 
complex conjugate eigenvalue pair in which the pair has branched into two simple real eigenvalues as in 
an overdamped oscillator. The general aeroelastic system of Eq.(l) can be transformed via Eqs. (3,4) into 
a set of uncoupled genuine aeroelastic modal dynamics in terms of a set of conjugate pairs of real modal- 
states described by: 



w 
M, 

vr = Arwr+fr (r) fr   (0 = 
A 

Jzr 

v[rx = 
yr x r=l,2,....n (5) 

where f r 
M are a pair of r-th conjugate modal inputs for the r-th conjugate modal-states. In this modal 

formulation process, contrary to the common notion, we identified real aeroelastic system modes which are 
bi-oithonormal with respect to the generalized state-space mass matrix. Bi-orthonormalization can also be 
accomplished simultaneously with respect to both the structural mass and structural stiffness matrices by 
also including the structural stiffness matrix alongside the structural mass matrix, in the identity equations 
in the formation of the M matrix in Eq. (1), in which case M may be termed as the structural matrix (see also 
Eq. (7) in Sec. 5). To keep M > 0, however, one should eliminate any singularity in the structural stiffness 
matrix. We define the M matrix to consist of structural mass matrix alone, for this results in a better 
numerical balancing of the M matrix. We also point out that the complex eigenvectors which result from 
the solutions of the conjugate complex eigenvalue problems as given by Eq.(2) may not necessarily appear 
as complex conjugates depending on the software package used for solution; but they are indeed complex 
conjugates pairs. 

The aeroelastic modal state-space equations obtained can now be used for aeroelastic control purposes. In 
particular, we are interested in formulating a distributed-parameter-control solution based on a modal 
synthesis approach in which each mode is controlled independently of the other modes. This will be 
followed by the description of two optimal approximation methods for implementing the distributed- 
parameter-control solution by an arbitrary number of spatially-discrete distributed control actuators 
integrating the transient behavior and control power considerations. 

3. INDEPENDENT MODAL-SPACE CONTROL (IMSC) OF AN AEROELASTIC SYSTEM 

In order to keep the focus on the features of the IMSC design approach and not shadow it by the peripheral 
formulational/computational manipulations, we consider a bare minimum aeroelastic system representation. 
We assume that the aerodynamic lag dynamics is negligible and the aerodynamic inertia term, if it exists 
through an aerodynamic mass matrix and structural acceleration vector, is eliminated by substitution of the 
solution for the acceleration vector as an output equation in terms of the displacement and velocity vectors 
(the state x) by utilizing the EOM in the sttuctural configuration-space. The ultimate result is that only the 
generalized structural mass maüix appears and should appear in the inertia term in any formulation with the 
redefinition of the remaining arbitrary matrices via the necessary algebraic manipulations. Hence, without 
loss of generality, we consider the following aeroelastic system dynamics in the structural configuration- 
space. 

Msq + CSAq+KSAq = Q Q = DF(t) Ms=Ms>0 (6) 

where q is the n-dimensional generalized coordinates vector which may have both rigid and flexible degrees 



of freedom. Typically, Eq.( 6), as the starting point, may be the result of a finite-element model of the 
system in which the flexible coordinates may or may not be the flexible component modal coordinates in 
vacuo for the flexible domain corresponding to an associated problem. The Ms, CSA, KSA and D represent 
the generalized structural dynamic mass matrix, aeroelastic damping and/or aeroelastic gyroscopic matrix, 
aeroelastic stiffness matrix, and D is the transformation matrix from the physical control signal/input 
variables F(t) to the generalized loads Q (t) in the configuration-space. Whatever its nature, we view 
Eq.(6) as the evaluation model for the aeroelastic system. 

In the sequel, it will be assumed that the D matrix is generated by a number of actuators distributed on 
and/or embedded in the structural domain. It implicitly inherits all of the information and specifics 
regarding the associated actuator technology and actuation profile design including orientation of actuation 
directions, actuator distribution, actuator coverage area or shapes, if any, piezoelectric material properties 
and polarization profiles. Theoretically speaking, any specified D matrix can be assumed to be realized 
through tailoring of the actuators utilizing all of the features of the particular actuation technology used. 
Therefore, we refer to D as the actuation profile matrix. We must also note that the D matrix is relevant 
for a whole spectrum of control input field distributions, from spatially-discrete point or patched 
disüibutions to spatially continuously-distributed (distributed-parameter) input fields. In this study, we do 
not tailor the actuation profile matrix other than changing the number and locations of the control actuators, 
since all other issues of a particular actuation technology are theoretically independent of the control design 
problem beyond the deliverance of a particular- assumed- D matrix. 

We write the corresponding state-space equations for Eq.(6) as: 

,   Mx + Gx = X    ,   M = MT>0 <■      (7) 
Ms    0 q ^SA     ^SA <? Q 

0    Ms A -M,    0 M. 0 

Note the special form of M in terms of the sttuctural mass matrix. In Eq. (7) one can also use the structural 
stiffness matrix K s in the bottom half identity equations as discussed in Sec. 2 provided that any singularity 
in it, is eliminated to keep M> 0. Consequently, aeroelastic bi-orthonormality with respect to M will 
simultaneously satisfy bi-orthonormality with respect to the structural matrices. By following the steps 
described in Sec.2, we obtain the set of aeroelastic modal dynamics corresponding to Eq.(7): 

w(t) = Aw(t)+fM(t)      A = block-diag[Ar]     r=l,2,. 

rM M, rM, 
/i"(0 = [/,(0.../P(0 ..../re)] / 

M _ yTx 
(8) 

with the associated measurement and controlled performance-output variables described by: 
n n 

      y{t) = Y/crwr(t) = Cw(t) z(?) = £/irwr(0
=#vv(0 (9) 

r  1 r  1 



where C and H are identifiable modal transformation matrices. For simplicity, we assume no disturbances. 
For a desired system performance, our interest is in designing the modal inputs vector f M (t) first, as 
opposed to designing directly a physical input vector in the physical-space (which is an alternative and the 
traditional approach to the control problem in which the modal inputs are not the designed but derived 
quantities). The approach we take, therefore, constitutes a genuine modal-space control design. If the modal 
inputs f M (t) are designed for desired modal dynamic behavior by any method of one's choice, then one 
encounters the issue of realizing the designed modal controls by a physical input distribution f (p,t) for 
implementation purpose, where p denotes the distributed-parameter domain. This necessitates a modal- 
synthesis procedure for the f (p,t) from the designed modal controls f M (t). 

3.1 Modal synthesis for control 

Referring to the Eqs.(4 and 8 ) the modal-synthesis equation for X appears straightforward: 

X = [QT0T]T = MVRf
M(t) (10) 

However, for a general arbitrary system, if the modal controls are designed first, Eq (10) imposes a design 
constraint on the modal control inputs, because whatever the modal inputs are, their synthesis according to 
Eq.( 10) must yield the lower half of the X vector to be zero corresponding to the configuration-state-space 
identity equations. Hence there must be n synthesis-constraints in the design of the 2n modal control inputs 
f M (t). The simplest and physically most meaningful way of imposing n such design constraints on the 
modal vector f M is to require that for each pair of the modal-state equations only one of the two 
corresponding modal inputs fM y r and f M z r be designed arbitrarily and the other one be computed so as 
to satisfy the synthesis-constraints to assure that the lower half of X is identically zero. In total, then, one 
must design only n modal control inputs f Z

M or f y
M. In symmetric structural systems, the synthesis- 

consüaint equations are satisfied identically, and one has freedom to design only one of the modal controls 
while the other one has to be zero. In gyroscopic systems or arbitrary systems such as an aeroelastic system, 
the consttaints are not satisfied identically and one has to enforce them in the modal-space design approach. 
Returning to Eq. (10 ), noting that M is always nonsingular, we observe that the constraint equations are: 

VRirf? + V*izf? = 0 fyM = -yRl
lyVRlzfz 00 

where the subscript 1 denotes the lower partition of the right modal matrix VR corresponding to the identity 
equations in the configuration-state-space formulation and f M Y and fM z are the n-component vectors of the 
respective f and f 2r modal inputs. By construct and the nature of the system, the required inverse will 
always exist In the first of Eq. (11), one can choose to design f M

Y or fM z or a mixture of them and write 
the constraint equation for the remainder; we choose fM z as the design vector and all f MY are constrained 
on this choice. In the sequel, one may regard all of the 2n- dimensional modal control inputs f M (t) as the 
design vector provided that the synthesis-constraints are understood to be implicit in the equations. Hence, 
the generalized loads Q can be synthesized in the form: 



Q=MsVRUf
M Q = MsvRUCfz

M 

-1 (12) 
VRUC ~ ~ VRUY VRIYVRIZ

+
 *RUZ 

where subscripts U,Y,Z refer to the upper partition corresponding to the mass matrix , and the y r and z r 

columns of the matrices, respectively. Using the modal transformation, the modal-state-space equations 
realized by the synthesized generalized loads Q become: 

w(t)=AW(t)+BMfz%) BM = VT
WMSVRUC= -[VRl\VRlzY (13) 

where the matrix with an asterisk is obtained by inserting a row of zeros, except for the r-th element which 
is set to unity corresponding to the r-th input f Mzr, after each row of the matrix product in the brackets. We 
note that each odd row of B M is generally full and therefore indicates external coupling of the modes 
through the modal inputs realized after synthesis. 

Associated with Eq. (13), for a particular pair of r-th conjugate modal-states, by disregarding the coupling 
terms with the other modal inputs, we consider the following form of the uncoupled r-th modal-state 
equations as the control design model 

wr = Arwr + BMrfz
M

r(t) r=U2 n (14) 

where B Mr is the 2X1 matrix formed from the pair of elements of the r-th column of B M corresponding 
to the r-th modal-state dynamics. One can now perform the modal control design independently for each 
pair of r-th conjugate modal-states by using their corresponding single modal input f M zr as feedback 
function of the r-th modal-states only. This is the approach known as the Independent Modal Space Control 
(IMSC)'. Certainly one is now free to use his favorite control theory or tool to design the single modal 
control input for each uncoupled pair of modal-state dynamics of Eq. (14). The generalized control loads 
Q can then be synthesized from the designed modal inputs f M zr for any number of modes according to Eq. 
(12). It must be kept in mind that although the modal inputs are designed based on Eqs (14), the physically 
realized modal dynamics with any synthesized inputs is given by Eq.(13). The aforementioned external 
coupling terms arising through the constraint equations in synthesizing the generalized load Q are in general 
very weak and therefore have virtually a null effect on the system, and the dynamics of the realized coupled 
modal system of Eq. (13) becomes practically identical to the dynamics of the system obtained through the 
set of independent-modal-space control design equations (14), as will be demonstrated by the illustrative 
examples. Therefore, the modes can be regarded virtually uncoupled for the design process justifying the 
use of Eq. (14). If the external coupling terms are not weak, the modal synthesis procedure may need to be 
revisited and alternate synthesis methods be formulated. We do not consider this in this report since the 
synthesis procedure that is presented above works almost flawlessly. 



4. MANEUVERING CONTROL BY MODAL SYNTHESIS 

4.1 Control with compensators 

One of the features of high performance aeroelastic systems will be their ability to reach desired 
configurations rapidly by active shaping of aerodynamic surfaces, such as to achieve a high roll-rate by 
warping of flexible wings. Such target maneuver states can be attained by requiring that a prescribed portion 
of the desired performance output be achieved by each mode independently of the performances of other 
modes, which we refer to as the modal- performance-output requirement, such that the synthesis of 
performances of selected modes yields the desired performance for the system. The performance-output 
can be written as 

n n 

z(t)=Hw(t) = y£zr(t)        z,{t) = hrwJLt) z*(0 = Ezr(0 (15) 
r \ r \ 

where an asterisk denotes a desired single performance-output. To achieve the desired performance-output, 
we consider an r-th independent modal-space controller with its associated modal-compensator dynamics: 

wr -1\ wr + BM rfz r r-th modal-state dynamics 

r-th modal compensator 

r-th modal compensator output 

r-th modal control input 

(16) 
r-th modal measurement 

r-th modal performance output 

r-th modal-performanceerror 

Each set of these modal dynamics constitute an independent- modal-space-controller in which g r and g cr 

are the control gains to be designed by any suitable approach. The prescribed form of the modal 
compensators is general enough to allow state or output feedback as well as to invoke the internal modeling 
principle for command and disturbance control. If the chosen modal-compensator dynamics are prescribed 
as an integrator(s) zero steady-state error can be assured in the closed-loop system, a case of design interest 
for maneuver control. Note that each modal-compensator is a single input system whereas it may or may 
not be a first-order dynamics. The modal-space controller dynamics for each mode in the open-loop and 
closed-loop form can be compacted in the form: 

M ♦ 

K = \Xl
+Brfzr+BzrZr (17) 

"cr = acrWcr + b   e er    r 

ycr 
= CcrWcr + k   e er   r 

Jzr = 8ryr 
+ 

Ocr ycr 

yr 
= Crwr 

7      = hrwr 

%~ 7     ~ Z 



K = 
K o " BMr 0 " 

KK acr 
tir = 

0 
By       = Zr .V 

For example, by taking k cr = 0 and c cr =1 for a single compensator output and c r = 1 as the 2X2 modal 
measurement matrix, one can now design f M zr as the modal-state feedback input by using eigenvalue- 
allocation (EVA) or lineai- quadratic regulator (LQR) design for each modal controller independently. We 
assume that the modal-states are available for feedback which can be obtained by modal filters '. With this 
choice, each modal controller constitutes a third-order dynamics. Furthermore, by choosing b cr = 1 and 
acr near zero, each modal-compensator behaves as a single integrator resulting in a type-0 control system. 
Thus, zero steady-state error can be assured for each mode for a step-command input z *r , once the 
stabilizing gains are computed. We illustrate such a design for set-point control in Sec. 8. Note that the 
command-input z *r for each mode can be user specified arbitrarily according to Eq. (15) as long as their 
sum equals the total desired system performance output z *. Any set-point control of the system can be 
accomplished in a variety of combinations of such assigned modal dynamic behaviors. However, command- 
input z *r for each mode for each mode can also be allocated via an optimization procedure as presented in 
Sec. 10. In this optimum allocation of modal performance outputs, the objective is to minimize a weighted 
combination of control power and elastic potential energy at the end of the settling-time for the desired 
maneuver state. 

We should note that the modal compensators can also be designed as second order lead-lag minimum or 
non-minimum phase compensators for each mode depending on the degree and nature of interaction of the 
modes in the synthesized solution. That is, should the external coupling of the modes prove significant so 
as to alter the stability characteristics of the independent design modes in the synthesized form, the 
interactions which are otherwise detrimental on the dynamics of the synthesized sytem can be affected by 
higher-order compensators to preserve stability and performance characteristics of the synthesis solution. 

It is convenient to represent the system of modal controller equations (16) in an aggregate form 

x = Ax + BF(t)+BzZ'(t) = (A+BG)x + BzZ'(t)=ACLx+BzZ'(t)       F(t) = Gx(t) (ig) 

in which Z * includes all of the modal command references z *r, G denotes a generic control gain matrix 
and A CL is the closed-loop dynamic matrix for the system. In Eq.(18), F (t) should be viewed as a generic 
symbol for control signals and may be associated with the modal control signals or the physical control 
signals, which will be evident from the context of discussion. Note that the form of Eq.(18 ) holds true for 
any control design approach. If maneuvering control is a design objective, then Eq.(18) can be transformed 
into a system of error dynamics equations in terms of error-states. If the steady-state quantities are denoted 
by an overbar, the aggregate error-state equations become 
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xe = A xe T B Fe(t) = (A TBG)xe = ACLxe      Fe(t) = Gxe    xe0=-x 

xe = x-x      Fe = F-F x=-Ac
l

LBzZ\t) (19) 

F = Gz.Z'(t)      Gz. = -GAclBz 

where the subscript 0 denotes the initial error-state assuming that x 0 = 0. It is clear now that the controls 
can be designed for the error-state dynamics alone as a regulation problem, and any stabilizing G will yield 
the desired performance output with zero steady-state error provided that the modal-compensators assure 
the required type for the control system such as type-0,1,2 for step, ramp and parabolic commands. 

4.2 Control without modal compensators 

For the sake of simplicity, control without using compensators is often of interest to study the feasibility of 
a control task, such as in the case of a desired end-state for the system. The formulation given above can be 
modified accordingly by deleting the compensator dynamics and states from the above exposition. It must, 
however, be understood that, without the compensators, zero steady-state errors are not guaranteed in the 
presence of parameter errors in the system. 

In the case of control design without compensators, we denote the modal control input variables fM
zr on 

the modal state-space model of the vehicle by an overbar, and carry out the control design according to the 
following: 

A n       7M 

Wr = ArWr + BMrfzr 

fM=fM + k z' fM = g W (20) ■>zr    Jzr « **r Jzr     °r     r v      ' 

wr = A, wr + BMrf" + BZrzr BZr = BMrka 

ka = z*2l{HAc[BzZ') ACL = A+BMGMZ 

in which f Mzr is now the portion of the modal input that we design as state-feedback; hence, gr is the modal 
control design gain, and the scalar k a is an amplifier gain on all of the modal command reference inputs 
z r*, which is determined (adjusted) after the modal design control gains are obtained, to render the steady- 
state total performance output z equal to the desired value z*. The third equation in Eq.(20) is the 
counterpart of Eqs.(16 ), without modal compensator dynamics and GMZ, A c L, and B M are the total 
modal design gain matrix , closed-loop dynamic matrix and input influence matrix etc. for the aggregate 
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modal system. For a desired z * , z r* are assigned according to Eq. (15) either manually or according to 
an optimization problem as discussed in Sec. ( 10). Note that once the k a is computed according to the last 
equation in Eqs. (20 ), the modal performance outputs z r* are essentially scaled by it, such that in the 
sequel, if the controls are designed without modal compensators, the required modal performance outputs 
must be understood to be z r*^^ = ka z* . Hence, the following discussions now apply to the system both 
with or without the modal compensators. 

With the modal control inputs designed via the IMSC approach as described, the generalized control load 
Q can be synthesized as per Eq.(12) and the modal dynamics realized after modal synthesis can be 
simulated via Eq. (13). However, for a DPS, it still remains to synthesize the physical distributed- 
parameter- control input field f (p,t) from the modal-controls, which is ultimately the control input to be 
implemented on the aeroelastic system. 

5. MODAL SYNTHESIS OF THE DISTRIBUTED-PARAMETER-CONTROL 

The aeroelastic system that is represented by Eq. (1) or (7 ) has a distributed-parameter displacement field 
u (p,t) which can be expanded in terms of assumed admissible shape functions N r (p) (r=l ,...,n) in the form 

n 

u(pj) = y£Nr(p)cir(t) = N(p)q(t) Ms=   fm(p)NT(p)N(p)dD(p) (21) 

i) 
where M s is the n-dimensional structural mass matrix as appears in Eq.(7) and D (p) is the distributed 
domain of the problem. The controls that are to be physically implemented on the aeroelastic system can 
also be represented as a distributed-parameter-control input field f (p,t) which yields the n-component 
generalized control load Q as 

Q = J N(p)Tf(pj)dD Q = MsVRUf
M 

Dip) 
(22) 

in which the second expression for Q is given by Eq.(12) as synthesized from the designed modal control 
inputs. Comparing these two expressions and noting the definition of the generalized structural mass matrix, 
it follows that the distributed-parameter-control field can be synthesized from the modal controls in the 
form: 

fipjt) = m(p) N(p) VRU fM(t) = m(p) N(p) VRUC f?(t) ^ 

which constitutes a spatially continuously distributed control input field since the shape functions are 
spatially continuous. The synthesized f (p,t) is of the form 
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In 

fipjt) = £ mip) (p»/>) <p» = tf(p) VRUs (24) 

in which cj> s is the effective s-th aeroelastic eigenfunction and V RUs is the s-th column of the right modal 
matrix. Referring to Eq.(22), for the modal synthesized distributed-parameter-control field the corresponding 
actuation profile matrix D and the physical control actuation signals F (t) are identified as 

D = MSVRUC F(t)=f?(t) Q=DF (25) 

which compares with Eq. (12) and the modal controls are identified as the physical actuation signals. Next, 
we consider the control powers expended on the aeroelastic system by any control design as per the 
definitions given in Refs.(2,3) 

6. CONTROL POWERS FOR THE AEROELASTIC SYSTEM 

The real (control) power expended by any distributed-parameter (control) input field is defined as 

SR=ff mipY 72 (p,t) dD{p) dt = [Q TMS ' Q(t) dt = (F T(t) D TMS 
l D F(f) dt (26) 

I  Dip) t t 

These expressions are identical to the ones given in Refs. (2,3) and valid regardless of how the "(control) 
input field is generated/designed. Next, we define the modal (control) power expended on the aeroelastic 
system by any distributed-parameter-control input field by introducing into Eq.(26) the expansion, Eqs.(24), 
for the f (p,t) in terms of the modal inputs. 

SM = \fmVR
TuMsVRUf

Mdt (27) 

i 

this expression is valid for any control design and the f M would be the modal controls generated by the 
particular control method. By using the bioithonormality relations, it is easy to see that if the modal controls 
f M include all of the modes of the distributed-parameter system or its surrogate evaluation model as in 
Eqs.(U) then SR = SM . If SM is computed by using only a subset of the modal inputs such as those of a 
reduced-order control design model, then S R > S MC where the subscript C denotes the modal power for the 
reduced-order control design model (CDM). The difference between S R and S Mc corresponds to control 
power spillover into the uncontrolled modes, hence the control power efficiency for a reduced-order control 
design model is easily calculated as the ratio of the modal control power to the real control power. In terms 
of the physical control input signals F (t), the modal control power functional S M c for a reduced-order 
control design model takes the form 
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SMC = fQ(t)T VC
W V% Ms VR% VSQ(t)dt = JFT(t)D T V^ V% Ms VR

C
V V%D F{t)dt (28) 

in which the superscript C denotes the set of controlled modes and the subscript U denotes the upper 
partitions of the modal matrices corresponding to the generalized loads Q. The control powers for the 
maneuver problem are obtained in the form 

'/ 
SR = SRD^SRD,+SRs.=x^PRXe0 + 2fFTRRFedt + fFTRRFdt 

o o 

SMC = SMD*SMD^SMS, = x^PMxe0+2fFTRMFedt + [FTRMFdt 

(29) 
ACLPR

+
PRACL 

+
 QR = Q ACLPM+PMACL + QM = 0 

RR=DTMs
lD QR = GTRRG 

S RD and S MD correspond to transient dynamics powers computable through the solution of Lyapunov 
power equations as given; S RD. and S MD. represent transient command powers due to coupling between 
steady-state and error-state controls and will vanish after the zero steady-state error is attained. S Rs, and 
S Ms. are the steady-state command powers required to achieve and sustain the maneuver. The command 
powers are ultimately functions of the reference command z* (t) and can be computed once it is specified. 
P R and P M denote the transient real and modal Lyapunov power matrices due to error dynamics in the 
reaching phase to the maneuver set-point, t s denotes the zero steady-state error settling-time for the 
maneuver, t f is the maneuver termination time. The subscripts D and S on the control powers denote the 
transient dynamics control power and steady-state command control power requirements, respectively, for 
achieving the maneuver. For future reference, it will be convenient to write the modal power functional 
explicitly in terms of the effective modal control gain matrix in the form 

'/ 

Su = =
S

MD 
+
 SMD. 

+ SMS* = [fMTRMf
Tdt = x*PMXe0 +2 ff^R^dt - f?"RjMdt 

^CL PM + PM
A

CL 
+ GT

MRM GM = 0        ACL=A+GM       RM= V^ Ms V^ 

fM = GMx        fe
M = GMxe       f

M =-GMAclBzZ*(t) 
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In concluding, we should note that the control power functionals presented are uniquely defined, 
dimensionally consistent, genuine control powers; they are not the kind of "control powers" loosely 
identified in the control literature with a typical quadratic control cost term in an LQR design setting with 
arbitrarily chosen weighting matrices. The control powers defined herein are not used to design the control 
inputs; but are used to evaluate the power performance of controls designed by any method whatsoever x 

3. We also note that the modal control powers introduced in this paper for aeroelastic (or arbitrary systems) 
differ from the ones introduced in Refs (2,3) where self-adjoint systems were considered. Certainly, the 
definition given in Refs. (2,3) is a special case of the form given here when the conjugate eigenvalue 
problems are identical. 

The definitions given here for control powers apply for any control approach with any kind of control 
actuation profile distribution, and therefore are not specific to the IMSC approach discussed in the previous 
section. However, for any desired control performance, the control powers corresponding to the distributed- 
parameter-comrol input profile synthesized via the IMSC approach as discussed in Sec. 5 are the globally 
minimum control powers among all dynamically similar designs, that is, all designs haying the same closed- 
loop eigenvalue spectrum. We refer to the DPS, in its explicit or implicit form, which is controlled by the 
disüibuted-parameter- control input field synthesized from the IMSC designs according to Eq. (22) as the 
distributed-parameter-closed-loop-IMSC (DPCL-IMSC) system. 

In addition to its computational advantages, the globally power optimal feature of a DPCL-IMSC solution 
makes it an ideal control approach for distributed-parameter-smart structure applications where spatially 
continuously distributed actuation and sensing can be affected with modal actuators and modal sensors 1-4- 

5. However, for practical applications, it is often more desirable to implement the control design by using 
a multitude of spatially-discrete locally distributed actuators (and sensors). Hence, we now'seek to 
implement and duplicate the dynamic, controlled-output and power performance of the DPCL-IMSC 
solution for the aeroelastic system by employing a finite but large number of distributed, locally actuated 
control actuators. To this end, we use the approach presented in Ref. (6) and design optimal approximations 
to a DPCL- IMSC solution, which is obtained apriori as the ideal design for the control task. For brevity, 
we refer the reader to Ref. (6) on the development of the approach and include only the design equations 
as they apply to an aeroelastic system with a more concise perspective and notation. 

7. OPTIMAL APPROXIMATIONS TO THE DPCL-IMSC SYSTEM 

We assume that a DPCL-IMSC solution has already been obtained for the DPS with its design modal 
control gains prior to synthesis given in the form 

fM\t)=BMf?{t) = G'x'     G<=B^G„Z fz-G^x'     B^ = bbck-diag[BMr]       (31) 

where an asterisk on the matrices indicates the IMSC design quantities, hence G * is the effective IMSC 
modal gain matrix and G*,^ is the designed modal gain matrix for the modal controls f Mz. It should be 
noted that the coupling terms with all other modes are ignored in the B*M matrix as defined since their net 
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effect is expected to be insignificant or null. Hence with this caveat, we compute the transient Lyapunov 
modal power matrix of this system by  Eq. (30). 

A£pm+P'Aa + Q'=0 A'CL=[A + G'] Q'=G'TRMG' (32) 

where P* is the uansient dynamics modal power matrix . We refer to the system represented by Eqs. (31 
, 32) as the design-IMSC. The synthesized distributed-parameter-control field which is also the physically 
realized control corresponding to this design is given by Eq.(23) and has virtually the same dynamic and 
power performance as the design-IMSC. Instead of implementing the synthesized distributed-parameter- 
conüol in the form given by Eq.(23), we opt to synthesize the controls approximately by using a spatially- 
discrete distribution of local control actuators while requiring that the transients and the control powers of 
the approximation be as near those of the distributed-parameter-control IMSC design as possible. Hence, 
we consider an approximation physical control distribution in the form of localized control shape functions 
or control loading influence functions multiplied by physical control coordinates or signals F (t): 

fa fa) = £ "*(/>) vEk(p) F*C) = £ Y» *"*(') = *(/>) *"(') (33) 
kl k-l 

where TE k is the local control support /shape function and *Fk is the local control loading influence function 
for the k-th actuator and ni denotes the number of actuators, F k (t) is the physical control signal strength 
for the k-th actuator. In anticipation of electroelastic actuation, we used superscript E on the control shape 
functions which are to be realized by the particular actuation technology chosen. We do not consider the 
details of realization of the control shape or control loading influence functions in this paper and refer the 
reader to Ref. (1) for specific derivations. Here, we assume the forms of these functions for illustration 
purposes and that they can be realized for implementation. Furthermore, to preserve generality, it is 
assumed that the respective control loading influence functions are identified as dimensionless quantities 
thus rendering the control coordinates/signals F k (t) to be dimensionally the same as the distributed- 
parameter input field f (p,t) relevant to the problem. Thus, for the aeroservoelastic control of a lifting 
surface F k (t) will conveniently have the units of (control) pressure. Further, in case of piezoelecuic 
actuation as an example of the particular actuation technology used, dividing F k by a corresponding 
characteristic polarization (charge/area) or a characteristic charge density (charge/volume) will convert/ scale 
a control signal strength into electric field strength or voltage potential difference to be applied to the 
particular actuator. We are to design the signals F k (t) (which may be precisely referred to as the control 
coordinates or control degrees of freedom) to approximate the DPCL-IMSC solution by f a (p,t). 

For approximating the DPCL-IMSC solution for control implementation, we consider the conüol 
coordinates in the form 

In 

F = Gx        F=[FlF2  Fnif        Fk(?) = Y,8bXs      k=l&...#i (34) 
.i l 

where G is the niX2n dimensional physical control gain matrix of unknown gain parameters g te. Note that, 
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if a reduced-order control design is considered, one only needs to sum over the set of controlled modes. 

The synthesized globally optimal distributed-parameter-control IMSC solution and its approximation as 
represented in the form of Eq. (33) can be written in the form 

/"(p,t) = m{p) <p(p) GSYNx*(t)=g 'T(p)x'(0 GSYN = BMGMZ 

(35) 
faM = V(p)Gx(t) = gj(p) x(t) 

where g *T (p) and g a 
T (p) denote the row vectors of globally optimal distributed-parameter-control gain 

distribution functions and the locally distributed control gain functions of the approximation, respectively. 
While the functions g * (p) are known, the functions g, (p) are unknown by virtue of the unknown gain 
parameters g ^ . Following the developments presented in Ref. (6), we define the total quadratic control 
gain distribution error functional for the domain of the problem as: 

Sge= f lg'U>)-ga(p,gb)]T[8'(p)-gt,(p,8b)]dDip) 

Dip) 

T        . . (36) 
=   j   8E^GMZ^ks)gE^GMZ^ks)dD^P) 

D(p) 

in which g ^ are the design parameters and g E (p) is the control gain error distribution functions vector. 
However, one usually has a spatially-discrete description of the DPS such as a finite-element-model, rather 
than an explicit distributed-parameter-system formulation, that is, the EOM of the form of Eq.' (7) are 
generally the starting point in the configuration-space in terms of generalized coordinates. Hence, 
alternately and more practically, we can define a generalized quadratic control gain error norm by 
considering the projection of the control gain error distribution vector onto the configuration- space. 

SE% = II EG
e llF £G

e = | NT(p)glWu,gjdDip) (37) 
D(p) 

in which SQ E G and EQ Cl are the configuration-space gain error norm and the configuration-space gain 
disüibution error matrix, respectively, and F denotes matrix Frobenius norm( F-norm).It can be shown that 
SQ EG can be computed in the form: 

S/^IIE^II^^^IIM.V^G^-DGII,, D= j  NT*(p)dD(p) (38) 
D(p) 
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We now pose the following optimal approximation (OPAX) problem: 

minimize    S     V   SEG 

constraint    ql (2p') - e £ 0 
(39) 

<7=IIÖM 
+
 Y

+
Y^*IIF <? = llo(£)llF = ll£ + ollF 

p'=\\P"\\F E=ACL-A'CL      E = EG + Ep = BG-G' +Ep 

This is a convex optimization problem with a single inequality constraint describing a stability requirement 
for the closed-loop approximation system. E is the total error matrix in the modal-state-space between the 
closed-loop dynamic matrices of the approximation system and the design-IMSC. E is due to a modal- 
space control gain error matrix EG and may include a parameter error matrix E . pHence, parameter 
uncertainties can also be dealt with by the optimization problem posed here. We also point out that although 
the approximation gain matrix G appears as the state gain matrix, output feedback approximations can also 
be accommodated by this approach since G, in this case, can be regarded as the product of unknown output 
feedback gains with the measurement/output matrix. The development of the optimization problem is given 
in Ref. (6). The apriori designed globally optimal-IMSC solution drives the optimal approximation 
problem. All this simply means that whether distributed actuation and/or presence of parameter 
uncertainties, the approximation system is to mimic the behavior of an ideal design, the DPCL-IMSC 
solution. In expressions (39) the matrices y Y p a are positive semi-definite diagonal weighting matrices 
chosen to tailor the response and the control power performance of the approximate system about the 
globally optimal IMSC design. In general larger values for a improve stability; but the larger values of 
Y and Y P improve the power performance while degrading stability. Hence, these optimization weighting 
parameters provide a trade-off between stability and control power performance of the optimum 
approximation with respect to the DPCL-IMSC design. The optimal approximation approach is applicable 
for any number of actuators regardless of the order of the control design model. 

Galerkin approximation (GALAX): A second approximation technique that has been traditionally used 
to implement an IMSC design is based on eliminating completely the modal-space gain error E G between 
the approximation solution and the DPCL-IMSC solution. Consequently, the design solution and the 
approximation have exactly the same eigenvalue spectrum This procedure truly constitutes a Galerkin 
approximation (GALAX) in which gain error projections onto the subspace of controlled-modal-states are 
forced to vanish. The approximation gain solution is readily available by setting the modal gain error E G 

SYN  for the synthesized solution equal to zero and solving for G: 

E
GSYN = BG ~ GSYN = 0 G = B~l GSYN GSYN = BM Gm (40) 

in which B M is given by Eq.(13) for the synthesized-IMSC solution. The Galerkin approximation requires 
that for exact solution the number of localized actuation signals should be greater than or equal to the 
dimension of the synthesized modal gain matrix G *SYN , that is the size of the controlled modal subspace. 
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The required matrix inversion can be performed via the singular value decomposition of B and constitutes 
a minimum norm solution for the columns of G. The Galerkin approximation solution has been the popularly 
known method of implementing an IMSC solution. Although this approach did put a severe restriction on 
the number of actuators by the measures of the state of the art a decade or so ago, it no longer poses a severe 
restriction for many electroelastic applications where large number of actuators can be made available 
exceeding the size of the controlled subspace. Indeed, under such circumstances, given the uncoupled nature 
and the computational advantages of the IMSC approach, the use of coupled-control! techniques and their 
inherent computational intricacies for control design should induce some reservation. 

8. WORK-ENERGY QUANTITIES 

Active shaping of a flexible lifting surface for a maneuver performance brings the interplay among the 
inertial loads, elastic loads, control loads and the aerodynamic loads. It is therefore necessary that one 
consider the work-energy terms that result from each one of these loads during the maneuver. For example, 
the question arises whether all of the energy needed for a maneuver should be provided through the control 
actuators or might it be possible to extract some or all of the energy from the air stream by proper flexing 
of the lifting surface, thus preserving control power. Hence, it is expedient to evaluate the respective work- 
energy terms to better understand these aeroservoelastic interactions. We shall assume that for a 
maneuvering flight, the generalized coordinates (configuration) vector consists of a single rigid-body 
rotational coordinate (the first generalized coordinate) and the rest of the coordinates are generalized flexible 
coordinates. The flexible coordinates can be structural modal coordinates, but will not be modal 
coordinates of the hybrid flight system. Thus, we consider the work-energy terms in terms of generalized 
coordinates separately as the kinetic energy (due to inertia loads), elastic energy (due to internal elastic 
loads- elastic potential energy), work done by the control actuators, work done by the external aerodynamic 
loads proportional to generalized velocities (loosely referred to as the aerodynamic damping work), and the 
external work done by the aerodynamic loads proportional to generalized displacements (referred to as the 
aerodynamic stiffness work). 

The work-energy equation is obtained by taking the scalar product of the vector form of the EOM, Eq. (6) 
with the incremental generalized coordinate displacement vector dq(t) and integrating between any arbitrary 
time interval during the maneuver. Thus denoting by WK,N, WFLx, W A R D, WA R s, WA c T the resulting work 
terms due to inertia loads, elastic loads, aerodynamic damping and aerodynamic stiffness loads, and actuator 
loads, respectively, we have: 
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1 1 

WK,N = fF?qdt F,=M4        WFUC = fFFDc4dt FFIX=Ksq 

W 'ARD=fFIRD4dt F^C.q WARS = [F^qdt F^K^ (41) 

'/ 
WACr = [Q Tqdt WKIN+WFUC+WARD+WARS = WACr 

The kinetic work (kinetic energy) and the elastic work (strain energy) terms are conservative so that they 
can be represented in terms of initial and final states only. The aerodynamic and actuator work terms are 
non-conservative, so they have to be calculated via formal integration. Furthermore, note that just like the 
external actuator work, the aerodynamic work terms are also external to the flight vehicle, so they more 
appropriately belong to the RHS in the work - energy equation. According to the way the work terms are 
defined above, however, a positive actuator mechanical work term implies that actuators do work on the 
system (this work is thermodynamically negative from the system s perspective; energy is added to the 
vehicle); whereas positive aerodynamic work terms will imply that the system does work on its surrounding 
(this is also positive work from the system s perspective; energy is lost to the airstream), conversely a 
negative aerodynamic work term implies that work is done by the aerodynamic forces on the vehicle. Hence, 
we write the work-energy equation in the form: 

T+UsTR+WARD+WARS=WACr 

T=WKlN= \/2qT(tf)Msq(tf) -M2qT{tQ)Msq{tQ) 

WFU( = USTR=mqT(tf)Ksq(tf)-l/2qT{tQ)Ksq(t0) 

in which the initial states would typically be null, such as at the initiation of the maneuver. Because the 
energy-work equation pertains to the actual physical system, the energy balance will always be assured if 
quantities are computed for the evaluation model (EVM) of the controlled system in terms of the 
configuration-space generalized coordinates serving as the surrogate physical system. On the other hand, 
if the work terms above are computed based on the reduced-order control design model (CDM) response 
of the system such as represented by the truncation of aeroelastic modes, they will not necessarily balance 
according to the above equation due to model truncation. 

Another view of the energy-work quantities for the aeroservoelastic system is relevant from the perspective 
of dynamics and actuator configuration. We consider contributions to the (generalized) work terms, if it 
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exists, due to the generalized rigid- body rotational coordinate displacement (denoted as the 1st generalized 
coordinate) and the generalized flexible coordinates displacements. When the system reaches a static 
equilibrium configuration such as in a steady-state maneuvering rate configuration, the total work done 
through the rigid-body coordinate displacement by all of its compatible generalized loads in in the static 
configuration must vanish. Accordingly, the total work done through the flexible coordinates 
displacements by all of their generalized loads in the static equilibrium configuration must also vanish. 
In reporting the computer simulation results, we refer to the respective calculations as rigid-body-work 
and flexible-work terms. 

It should be noted that when a static maneuvering state is achieved in t s seconds (maneuver settling-time), 
the vehicle will have deformed into a new non-trivial static flexible configuration, and the kinetic energy 
will be due to its steady-state rigid-body rotational rate only, with no contribution from the flexible 
dynamics due to vanishing of generalized flexible coordinates velocities in the deformed static 
configuration. Hence, subsequent to the maneuver settling time t s, the only energy-work exchange will be 
between the aerodynamic load terms and the actuator load term since there will be no change in the kinetic 
and elastic strain energies in the static post- maneuver settling period. The actuators will have to do work 
on the system to sustain the maneuver up until the termination time t f of the steady maneuver state; but all 
of this work has to be transferred out from the system (net positive aerodynamic work) to the airstream. 

Furthermore, certain actuator configurations such as distributed piezoelectric actuators, due to their nature 
cannot by themselves yield a generalized control load for the rigid-body coordinate displacement. Therefore, 
the rigid-body work through such an actuator system must always be equal to zero; the maneuver will be 
accomplished and sustained indirectly through the aerodynamic loads due to flexing of the surface by the 
non-trivial generalized flexible loads created by the control actuators. These results provide a Jool for 
checking the accuracy of and gaining insight to the implementation of the aeroservoelastic solution. 

9. OPTIMAL MODAL PERFORMANCE OUTPUT ALLOCATION 

There are two quantities that are of importance in the control of elastic systems with distributed controls. 
From the control point of view, the control power required is of utmost importance and the least studied in 
the literature. The other quantity is the required strain energy from the structural point of view. Excessive 
control power expenditure and strain loading of the structure are not desirable. Both the control power and 
strain energy are positive definite and positive semi-definite quantities, respectively. They are also 
functions of the desired final state which is ultimately a synthesis of the modal states and the modal output 
performance that will be assigned to the modal controllers discussed above to achieve the maneuver. An 
important objective for the maneuver, therefore, would be to minimize a measure of control power and the 
strain energy required for the structure . To this end, we use a hybrid modal performance output allocation 
measure  defined as: 

POM=aSD+VUsrR (43) 

where POM is the modal performance output measure metric, Kand 2 are positive semi-definite scalar 
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weightings and S D is the transient modal or real control power, and U STR is the elastic strain energy. Both 
of these quantities are ultimately functions of the assigned modal performance outputs z*r for the control 
design model. One can assign the elements z*r by posing the following modal performance output 
allocation optimization problem: 

MinimizePOM=aSD(zr*) + ß U^.R(z*) 

Constraint: (45) 

£%;=*' V z(tf)=-HAc
l

LBzZ'=z' 

where 

2SD=Z'TB*Ac
T

LPAclBzZ* W^R=Z^BIAC
T

LKSAC
X

LBZZ' P = PMyPR (46) 

z * denotes the specified constraint value, that is, the desired maneuver output. The second form of the 
constraint in the above optimization problem can be posed in terms of the actual maneuver performance 
output z (t,) realized rather than the individual modal performance outputs z*r. This will insure that the 
desired output performance will be realized regardless of the approximations that may be inherent in the 
formulation and solution of the control problem and modal synthesis. One can even calculate the constraint 
for the evaluation model by using ACL.EVMandBz.EVMin Eqs. (45, 46 ) for the evaluation model, and 
realize the desired maneuver performance level even in the presence of residual mode effects provided that 
the residual modes are stable; that is, A CL.EVM is stable, which will have to be the case in order to realize 
the maneuver under any circumstances . The above poses a convex optimization problem for the unknowns 
z*r. Thus, having provided a rationale for also determining how to allocate the required modal performance 
outputs for the modal controllers, we close the solution of the aeroelastic maneuver problem and illustrate 
the approach. 

10. ILLUSTRATION I: SHAPING OF A LIFTING SURFACE 

We consider a cantilevered composite material plate model in an airstream which was studied both 
analytically and experimentally for aeroelastic and aeroservoelastic design purposes in the literature7"9. In 
regards to the latter purpose, the advantages of integrated aeroelastic structure-control design were 
demonstrated by simultaneous optimization of structural and control design parameters for maximizing the 
critical flight speed of the lifting surface. Full unsteady-aerodynamic effects were considered in Refs. (7,8). 
The plate has length 1 = 0.305 m , chord c = 0.076 m, and a thickness of 0.000804 m with a mass density 
of 1520 kg/m3; other relevant data not presented in this report for brevity can be found in Refs. (7,8). The 
plate is dynamically modeled by a Ritz procedure using five assumed-mode shapes of uncoupled beam 
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bending and twist modes: 1st, 2nd bending (B), 1st, 2nd twist (T) and a parabolic chord-wise bending (CB) 
mode with associated coordinates as the generalized coordinates for the aeroelastic sytem. Since the plate 
is cantilevered no rigid-body coordinate exists and all coordinates represent flexible degrees of freedom. The 
particular plate configuration we consider here was the optimal configuration for the integrated design 
which had a maximum critical flight speed of 112.69 m/s (divergence) with an optimal active control 
system engaged with minimum control authority. To illustrate the approach presented in this report, the data 
for the above structure generated for a flight speed of 98.96 m/s at sea-level (corresponding to a 5784 
N/m 2 = 0.84 psi dynamic pressure) was considered with the unsteady aerodynamics and aerodynamic 
inertia effects ignored. Structural damping of 0.15 was also added to each of the assumed modes. The 
undamped structural natural frequencies without aerodynamic effects were 61.13 (1 B), 320.02 (1 T), 407.3 
(1 T & 2 B), 1214.10 (2T), 2993.7 (CB) rad/s. The aeroelastic system has 10 modal-space-states with 5 
pairs of complex conjugate eigenvalues with an unstable first aeroelastic mode. The aeroelastic eigenvalues 
are obtained as 2.3 ±61.3 i, -31.4 ±320.6 i, -1.5 ±405.1 i, -35.4 ±1213.7 i, -4.7 ±2993.3 i rad/s. 

The maneuvering (set-point) objective is to twist the tip edge of the lifting surface by a slope which has a 
1/4 chord length rise from the trailing edge to the leading edge, that is about a 14 degree twist of the wing- 
tip. The control system will warp the whole lifting surface to achieve this objective. 

We consider a 4th order reduced-control design model which includes the first two aeroelastic system 
modes to achieve the maneuver, the first aeroelastic mode is unstable. Of the 0.25 slope that is to be 
achieved at the wing tip, we assign (without seeking optimum allocation) that z ,* = 0.03 of this twist be 
achieved by warping the wing in its first aeroelastic mode and z 2* = 0.22 of it be achieved by warping it 
in its second aeroelastic mode. These tasks are performed by independent modal controllers for the first and 
second aeroelastic modes, each employing a first- order modal compensator, essentially an integrator, on 
the modal-performance-output error feedback. The modal gains are computed for each modal-controller 
independently via eigenvalue allocation with uniform damping factors and the uncontrolled damped 
frequencies are not changed. The closed-loop eigenvalues were specified as: -30.0, -100.0 ±61.3 i, and 
-30.0, -100.0 ±320.6 i, for each modal controller including a first-order modal-compensator. As per 
Eq. (16) for both of the modal compensators, the following parameters were chosen a cr = 0.0001, b cr = 
1, k c r = 0 and c c r = 1, r = 1,2. The modal measurement matrices C r were 2X2 identity matrices (r = 1,2) 
resulting in a state-feedback design, and the modal-performance-output matrices are h, = [-0.86 4.49 ] 
and h2 = [ -21.46 -12.30]. The response of the synthesized DPCL-IMSC , which uses a spatially 
continuously distributed control field, is shown in Fig.(I-1) together with the response of the design-IMSC 
which ignores the modal coupling terms due to modal synthesis procedure. The wing tip achieves an angle- 
of-attack of 14 degrees at the end of about 0.2 sec of settling-time (t s=0.2s). The warped steady-state wing 
shape is shown in Fig. (1-2) for this maneuver. Next, we attempt to duplicate this performance by a finite 
number of distributed local actuators. 

We assume that a multitude of rectangular actuation domains are available for distributed actuation, each 
of which is size 0.1 1 X 0.25 c ( 1 = span, c = chord ) in the span-wise and chord-wise directions, 
respectively. The local control loading influence function associated with each actuator is normalized to non- 
dimensional unity, that is, i|; k(p) = 1. k=l,2,...,40. The maneuver can be accomplished by a host of actuation 
profiles differing in number and locations, in particular 40 such actuators would cover the whole lifting 
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surface providing a 40 D.O.F's for control design, if desired. Certainly, any number of actuators can be 
utilized to partially cover the surface to achieve the maneuver. The particular perspective we use is 
essentially reminiscent of a finite-element-method for approximating a distributed-parameter-closed-loop 
control solution. The first actuation profile we demonstrate uses 6 actuators located on the edges of the 
surface starting at span-wise stations 0.5 1, 0.7 1 and 0.9 1. The second actuation profile uses 20 actuators 
entirely covering the Vi of the surface outboard of the mid-span. The approximation solutions are obtained 
for both profiles via optimal approximation (OPAX) and Galerkin approximation (GALAX). The weighting 
parameters for the optimization in Eq.(39) were chosen as o = 0, y = y P =1. Table 1 summarizes the 
resulting eigenvalues, power performances, F-norms of the modal gains G M and the signal gains G, and the 
maximum and minimum steady-state control inputs required for the maneuver. The MATLAB optimization 
software was used to solve the optimization problem having 36 and 120 control gains as design variables 
for both actuation profiles. GALAX solution required mere SVD inversion. Note that for 6 actuators (ni = 
6) the OP AX and GALAX solutions have some control-spillover and therefore power-spillover to the 
uncontrolled modes. No appreciable spillover response is generated by such amount of spillover into 
uncontrolled high frequency modes, however, power is wasted. The 20-actuator solutions are practically 
identical to the DPCL-IMSC solution with almost no spillover. The DPCL-IMSC solution does not have 
any spillover by its nature. The maneuver responses, warped wing shapes of the approximations are 
essentially the same as those of the DPCL-IMSC as given in Figs. 1-1 and 1-2, and therefore are not shown. 
Note that the given signal strengths and gain figures are in natural pressure units for this problem and can 
be further converted to gains and signal strenghts in other units relevant for a chosen actuator technology. 
No matter what that choice is, however, each actuator ultimately will have to provide the control action 
expressed by the units of this illustrative example. 

11. ILLUSTRATION II: AEROSERVOELASTIC ROLL RATE -MANEUVERING 
OF A HIGH-SPEED AIR VEHICLE 

The second illustrative example demonstrates roll-rate maneuvering of a high-speed (Mach 2) air vehicle 
for which a Finite Element Model (FEM) was developed at the AFRL/VASD Division. The original full 
set of mass, aerodynamic damping, aerodynamic stiffness and the structural stiffness matrices are available 
in terms of 1080 nodal degrees-of freedom of the FEM. The FEM is free to roll. However, for the particular 
illustration given here, we were provided the system matrices in terms 16 structural modal coordinates. 
Thus, the starting configuration-space EOM, Eq. (6) consists of 16 generalized coordinates which are these 
particular structural modal coordinates. The corresponding system matrices, therefore, are representations 
in terms of the particular structural (modal) configuration-space. Because the structural system is free to 
roll, the first generalized (structural modal) coordinate is the rigid body roll angle of the vehicle fixed 
reference frame and the remaining coordinates are the anti-symmetric flexible modal coordinates of the wing 
structure (a rigid fuselage was also assumed). We treat the resulting EOM in terms of the structural modal 
coordinates as the physical system and the evaluation model. The details of formulations of these matrices 
are given in Ref. (10) for a similar flight configuration. The system used here is for a different flight 
condition at a higher speed with modified structural parameters. No structural damping is included in the 
model, and we assume that for the given aerodynamic matrices a steady or quasi-steady aerodynamic model 
is permissible: It should be noted that the formulations we present in this report will remain valid even if 
more sophisticated unsteady aerodynamic models are to be used. However, in this case, additional algebraic 
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manipulations of the EOM would be needed together with aerodynamic state equations in order to cast the 
EOM into the form of Eqs. (6,7). Such details are beyond the intended scope of the work, and our purpose 
here is to demonstrate the feasibility of the proposed modal synthesis approach to the maneuvering problem. 

Aeroelastic Model: The flight dynamic pressure is 18.92 psi (130453.4 N/m2, lpsi=6895 N/m2) at a flight 
speed of 24888 in/sec (2275.76 km/hr). There are 32 aeroelastic states corresponding to 16 DOF in the 
configuration-space, which consists of 16 structural modal coordinates. The solution of the aeroelastic 
eigenvalue problem is given in Appendix A, which is a computer generated output based on Matlab 
software. The first two aeroelastic eigenvalues are real and unstable with values of 0 and 2036.28 rad/sec; 
the first eigenvalue corresponds to a pure rigid-body displacement mode, the second eigenvalue corresponds 
to a hybrid velocity mode that includes rigid-body roll-rate and elastic velocities; however, it is dominated 
by the roll-rate. The remaining aeroelastic state-space modes are complex conjugate pairs with the conjugate 
pairs of aeroelastic modes 4,6,12,16 being unstable. The rest of the 16 aeroelastic modes (32 state-space 
modes) are oscillatory and stable. Hence, all of these unstable modes must be controlled in order to achieve 
a desired roll-rate maneuver. 

Aeroservoelastic solution: Since the rigid-body roll angle is not of interest, we do not control the first real 
simple mode corresponding to the first eigenvalue of "0"; however, we retain it as part of the first state-space 
modal dynamics in the control design and insure that no control input is generated on the corresponding 
modal equation. We accomplish this by assigning a zero weighting parameter for the corresponding modal 
state of the 0 eigenvalue simple mode in the quadratic modal-state weighting term of the LQR solution. 
If eigenvalue allocation (EVA) is used, we simply do not move the 0 eigenvalue. In computer simulation 
results, once the controls are designed, we move the uncontrolled "0" eigenvalue mode into the set of 
uncontrolled dynamics in the evaluation model as the first residual mode. Hence, the CDM has 6 modes, 
(modes 1,2,4,6,12,16), 5 of which are conjugate pairs in the state-space, and the first mode consists of 
two simple unstable state-space modes (hence, also a pair); four pairs of the conjugate modes (1,4, 6, 12, 
16) are unstable in the uncontrolled configuration. Aeroelastic mode 2 is originally stable, since it is the 
lowest frequency mode in the set, it is included in the CDM to be a dominant performance mode which 
would require the least amount of effort to achieve the maneuver. With a first-order modal compensator 
augmented to each pair of state-space modes, the corresponding state-space for the CDM has 18 states. 
Without modal compensators, the CDM has 12 states. For simulation purposes, since the" 0" eigenvalue 
simple mode is moved to the EVM set, the CDM has 17 and 11 states, respectively. The maneuver 
objective is to achieve a roll-rate of 1.57 rad/sec. The control design was done by using the LQR approach 
for each mode of the CDM independently and the generalized control loads for the DPCL-IMSC solution 
were synthesized from the design modal control inputs according to Eq. (12). Subsequently, a GALAX 
approximation of the DPCL solution was obtained for a chosen set of 14 actuators embedded in the wing 
structure. Appendix A presents the computer simulation results, and various control and system parameters 
used, most of which should be self-explanatory. We summarize the important results and observations 
below. 

Distributed-parameter-control IMSC (DPCL-IMSC) solution: Although we design stabilizing controls 
for 6 modes, for this illustration, we allocate that the desired performance output of 1.57 rad/sec roll-rate 
be realized by the 2nd mode alone, that is, z*= z r*=1.57 rad/sec, while eliciting zero contribution in the 
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steady-state to the roll-rate from all other controlled modes. Furthermore, we hope that no performance 
degradation will occur due to residual modes. Figure(H-l) shows the simulation of the roll-rate for both the 
CDM and the EVMsimultaneously; the responses are identical. The maneuver is accomplished for the CDM 
and the EVM, that is there is no performance degradation even in the presence of full-order 32 state-space 
model of the 16 generalized coordinates. We note that in about 1.5 seconds, the roll-rate of 1.57 is achieved 
for the first generalized coordinate velocity, while the generalized velocities corresponding to all of the 
remaining elastic DOF practically vanish in the evaluation model (in a slightly longer simulation time all 
of the generalized flexible coordinate velocities become less than le-04). 

The maximum steady-state modal control input required for the maneuver is (-747.65) on the 2nd aeroelastic 
mode, and the maximum steady-state generalized load is (- 4862.52 lbs or in-lbs) corresponding to the 
second generalized coordinate, which is the second structural mode of the FEM. Figure (II-2) shows the 
generalized loads required for the maneuver. The uncertainty of the units of this generalized load is due to 
lack of information we have on the units of the FEM data provided to us. Whatever the units are the level 
of required generalized load represents a realizable level. The generalized loads reported in Appendix A can 
be transformed to physical nodal loadings of the FEM according to the following expression 

Ö] NODAL    ™FEM Em 0 (47) 

where MFEM is the FEM mass matrix and and Ens is the structural modal matrix of the FEM corresponding 
to the ns structural modes taken as the generalized coordinates of the aeroelastic system. Because we did 
not have access to the FEM mass and sü-uctural modal matrices at this time, we could not generate the nodal 
control loads. However, if this step is carried out, one will generate control loads along every nodal DOF 
of the FEM; hence, the control solution is surrogate to a distributed-parameter-control solution exactly in 
the same sense that the FEM is the surrogate model of the distributed-parameter-structural system. 
Therefore, we refer to this solution as the distributed-parameter-closed-loop IMSC (DPCL-IMSC) solution. 

The transient control power expended by the DPCL-IMSC is computed by solving the associated 
Lyapunov equation and is S D= 156.68KWatts =210 Horsepower (hp) = 1.39e+6 in-lbs/sec. The total real 
control power through t f =1.5 sees of maneuvering is computed via integration as S = 1586.59KWatts = 
2127hp =14.05 e+6 in-lbs/sec. The Frobenius-norm (F-norm) of the power matrix P of the transient control 
power S D is 5.12e+10; and the F-norm of the modal gain matrix of the synthesized-IMSC solution is 
1.12e+4. These values should be compared below with the values for the GALAX approximation of this 
solution by a finite number of spatially-discrete axial load actuators imbedded in the rib elements of the wing 
structure. 

Work-energy terms of the DPCL-IMSC solution are given with reference to the EVM, since there is no 
guarantee that these terms will balance for a CDM (unless all residual energy in the residual modes balance 
out). The total actuator energy that will be expended by the distributed-parameter-control (simulating a full 
nodal loading vector in the FEM as discussed above) is computed via integration to be 0.41WH (Watt- 
Hour) (1.31e44 in-lbs) which is balanced by the work of all other effects computed as: 0.6WH (1.91e+4 
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in-lbs) for the elastic loads (energy is stored into the structure), 3.87e-5WH (1.23 in-lbs) for the kinetic 
energy which is almost exactly the rotational kinetic energy of the vehicle at the roll-rate of 1.57 rad/sec, 
- 0.25WH (-7.97e+3 in-lbs) for the aerodynamic damping work (energy is added to the structure by the 

aerodynamic rate terms), and 5.88e-2 WH (1.87e+3 in-lbs) for the aerodynamic stiffness work (energy is 
lost to the airstream from the structure). We should note the very low levels of work-energy terms associated 
with the DPCL-IMSC solution. Also we note that in this illustration, the aerodynamic damping term works 
with the actuators to add as much energy as (2.5/4.1= 61%) of the actuator energy to shape the wings storing 
1/3 of the required elastic energy to the wings. However, with the exception of elastic and kinetic energies, 
energy quantities are sign-variant and can be misleading from the control perspective ; therefore they do 
not indicate the intensity of control activity demanded of the actuators, which is more realistically expressed 
by the positive-definite control power terms. For this particular illustration, the steady-state configuration 
is achieved in about less than ts = 2 seconds. Subsequent to this, there will be no more changes in the elastic 
and kinetic energy levels hence all work-energy exchange will occur between the actuators and the 
aerodynamic terms to nullify each other, whatever the actuators put in will be shed into the air stream, due 
to the achieved wing shape, through the aerodynamic stiffness work. This observation has been verified 
through computer simulations. 

Inspection of the work-energy terms decomposed as rigid-body and flexible motion terms reveals more 
information. The kinetic energy is imparted to the vehicle totally by the actuators, and the aerodynamic 
damping and stiffness work terms nullify each other through the rigid-body roll motion. On the other hand, 
no kinetic energy is generated through the flexible motion, and all of the elastic energy stored into the wings 
is provided by the actuators and the aerodynamic damping and stiffness terms. The aerodynamic stiffness 
term due to elastic deformation creates a net opposing roll moment and extracts energy from the vehicle 
through the rigid-body motion (it extracts part of the actuator energy added and all of the energy added by 
the aerodynamic damping term); whereas the generalized elastic loads generated by this term add"energy 
to the structure through elastic displacements. In comparison, the aerodynamic damping loads due to roll- 
rate add energy to the vehicle through the rigid-body motion (all of which is extracted by the aerodynamic 
stiffness work), and to the elastic structure through flexible deformations. We must note that these 
observations via simulations are based on the aerodynamic data (which was generated at the AFRL/VASD 
by using the ASTROS software package) that we were provided for this illustration. Whether these 
observations are consistent with the realistic observable aerodynamic phenomena or whether the 
aerodynamic models employed are of high-fidelity is another matter. Such issues would not have any 
consequences for the control design method that is proposed in this report, albeit numbers and observations 
may be altered with different aeroelastic models. 

GALAX approximation to the DPCL-IMSC solution: the DPCL-IMSC aeroservoelastic solution 
presented and discussed above is attempted for implementation by a finite-number of multitude of axial load 
actuators imbedded in the elements of the ribs stationed along the wing span. For illustration purposes we 
considered 14 such actuators on each wing (actuators 13-22, and 37- 40) the first ten of which are 
nominally located in the wing ribs near the mid-span, the last 4 of which are located at the wing tip. The 
simulation results are again given in Appendix A under the headings of "GALAX" wherever appropriate. 
Because the given actuator set represents an internal loading set (action-reaction in the axial-force rib 
members), no net external roll- moment can be generated directly by these actuators. This is in contrast to 
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the DPCL-IMSC solution which yields a necessary control load distribution, and therefore does not preclude 
generation of roll- moments or external out-of-plane loads on the flexible structure. Hence , the chosen 
actuator set is constrained from the beginning relative to the DPCL-IMSC solution; nevertheless we attempt 
to have these actuators mimic the DPCL-IMSC solution as best as they can by using the approximation 
techniques presented in Sec. 7. 

The given actuators realize exactly the response of the DPCL-IMSC solution in the CDM and accomplish 
the roll-rate of 1.57 rad/sec as presented in Fig. (II-1). The CDM of the GALAX solution has the same 
eigenvalue spectrum as the DPCL- IMSC solution. In the EVM simulation shown in Fig. (II-3), we note that 
there does not appear to be significant degradation of the desired maneuver rate with the exception of the 
oscillatory ripples superposed on the desired roll-rate behavior. The ripples are due to residual mode 
excitation in the EVM. Although the response appears to be satisfactory, the power, work-energy and control 
gains and control loads required to obtain this maneuver profile tell a different story. We note that in the 
GALAX solution we obtain the physical control loads since we were provided the complete actuator profile, 
theD matrix, by the AFRL/VASD. 

The maximum steady-state modal control load is (-3919.37) on the 10th aeroelastic mode (12th mode in the 
modes rearranged for control), and the maximum steady-state generalized control load is (119,151.42 lbs 
or in-lbs) on the 11* generalized coordinate (the DPCL solution yields a load of 6.06 for the same 
coordinate). The generalized loads for the GALAX actuator set shown in Fig. (II-4) are in general 3 or 4 
orders of magnitude higher than the DPCL loads for the same generalized coordinates. The maximum 
physical actuator load is (9.16e+6 lbs) and occurs at actuator number 16 (4* in the computer output), all 
other actuators require similar order of magnitude of physical control loads as shown in Fig. (II-5). These 
control load levels are clearly infeasible. For the DPCL solution, we could not generate the physical control 
loads at the nodes of the FEM due to lack of the necessary FEM data. However, one can surmise by 
comparison that the DPCL nodal loads (which can be considered as discrete-physical loads) would similarly 
be 3 or 4 orders of magnitude lower than the GALAX solution, well within realizable limits. 

The transient modal control power levels of the GALAX solution, obtained for the CDM, by definition, 
are almost identical to the real control power levels of the DPCL solution ( for the DPCL-IMSC solution 
real and modal control powers are identical and there is no control power spillover by the nature of the 
solution). This is to be, since the performance of the CDM of the GALAX solution is designed to have an 
eigenvalue spectrum identical to the CDM of the DPCL -IMSC solution. However, the real control powers 
of the GALAX solution are S R = 1.89e+6KW = 2.53e+6hp, and S RD = 1.85e+5 = 2.48e+5 hp for the total 
and transient powers, respectively. These are three orders of magnitude higher than those of the DPCL 
solution and again represent infeasible control power levels. The F-norm of the modal power matrix PM of 
the transient modal control power S MD is 5.12e+10; and the F-norm of the modal gain matrix GM of the 
GALAX solution is 1.12e44 which are identical to those of the DPCL solution. But the F-norm of the real 
power matrix PR of the transient real control power S ^ is 9.08e+13, and the F-norm of the real control gain 
matrix G is 6.82e+9. These figures reflect that there is unreasonably high-levels of control power spillover 
in the GALAX actuator set which is the price one may pay for discretizing a control actuation profile if not 
done properly. The fact that there is not a significant response degradation in the EVM simulation of the 
GALAX solution in Fig. (II-3) is no point of comfort, but a point of distress indeed. This is in keeping with 
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our long-held observation that there is more to it than meets the eye in the simulation of control of flexible 
systems; the chosen actuator profile simply wastes enormous amount of control power and needs to be 
reconsidered for power efficient control. We note that at the end of final time of maneuver the elastic 
generalized velocities do not vanish in the GALAX EVM indicating the effects of control-spillover. 

As for the work-energy terms of the GALAX solution, we make the following brief observations from 
the EVM results. Again the work-energy balance is verified by the 4.85WH (1.55e+5 in-lbs) of actuator 
work on the right-hand side and the same amount of total work on the left-hand-side due to 5.38WH 
(1.72e+5 in -lbs) of elastic energy, 9.85e-4 WH (31.36 in-lbs) of kinetic energy, - 0.29WH (- 9.14e+3 in-lbs) 
of aerodynamic damping work, and - 0.25 WH (-7.90 e+3 in-lbs) of aerodynamic stiffness work. In 
comparison to the DPCL solution, we note that in the GALAX solution the actuators do about 10 times more 
work and about 10 times more elastic energy is stored due to residual mode excitation. For the same reason, 
the kinetic energy includes elastic kinetic energy due to residual mode rates. We note that the elastic energy 
is provided by the actuators and both of the aerodynamic work terms. Since the actuators are internal axial 
elements, the given actuator set does no work through the rigid-body vehicle motion as was conjectured 
previously. The kinetic energy is about 1.23 in-lbs, which is due to the rigid-body roll -rate, and the 
aerodynamic work terms nullify each other to within (-1.23 in-lbs) which leaves the desired roll-rate kinetic 
energy (damping term adds, stiffness term extracts energy) through the rigid-body displacement. In fact, 
since the given actuator set cannot generate a rigid-body generalized load (a rolling-moment), aerodynamic 
load terms are the only mechanism by which the desired maneuver can be accomplished; the given actuator 
set deforms the wing to alter the aerodynamics to produce a rolling- moment on the rigid-body coordinate. 
All of the actuator work is done through flexible displacements, and likewise both aerodynamic terms add 
energy to the system resulting in elastic energy storage (along with the actuators) and an increase in the 
kinetic energy through residual elastic displacements. 

From the above results and comparison of the GALAX and DPCL solutions we conclude that the given 
actuator profile constitutes a poor set although we have not tried very hard to identify the best actuator 
configuration for the given data. Based on a several other simulations, we believe that the results would not 
change significantly. Whereas the DPCL-IMSC solution indicates that the desired maneuver can be 
performed by means of feasible levels of control power, gain, energy and load; the problem of finding 
discrete actuator sets that perform with comparable level of figures presents itself as another task. For the 
same reason, we do not present results to demonstrate an OP AX solution to this problem. Furthermore, our 
initial attempts for an OP AX solution proved to be beyond the limits of the Matlab optimization software 
which we had successfully used for the composite-plate illustration above. The failure of the Matlab 
software also stems from the numerical conditioning of the actuator profile matrix which does not appear 
to be a "wholesome" set based on our experience with the GALAX solution. 

Finally, in concluding this illustration, we report in Appendix B the computer results for the same problem 
in which the performance output allocation to the modal controllers is optimized by selecting three of the 
CDM modes to be the performance modes, namely, modes 1, 2, and 6. In the performance mode 
optimization problem, we minimize a hybrid measure of the transient control-power and the elastic strain 
energy stored in the structure. We leave it to the reader to interpret these results much in the same fashion 
as we have done above. 
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12. CONCLUSION 

A number of new features for the modal study of aeroelastic systems are introduced in this work. A unique 
modal formulation of the aeroelastic system is given in terms of real conjugate modal matrices and modal- 
states. Bi-orthonormality relationships are established both with respect to the aeroelastic system matrices 
and the structural matrices. Distributed actuation control of the aeroelastic system via the IMSC technique 
is  introduced,  specifically  for maneuver set-point control,  and the  globally optimal  distributed- 
parameter-closed-loop-control (DPCL-IMSC) is    formulated by modal synthesis.    Control power 
expressions for the non-self-adjoint aeroelastic system are given as extensions of previous definitions for 
a self-adjoint elastic system.   Implementation of the DPCL-IMSC solution by means of distributed, 
spatially-discrete actuation profiles is  addressed through an  optimal gain distribution approximation 
problem which   incorporates   transient response and power expenditure trade-off.    A   Galerkin 
approximation is also given for the same purpose. The optimal approximation approach has no restriction 
on the number of actuators, whereas the Galerkin approximation has a minimum number requirement.  The 
work-energy terms due to elastic, kinetic, aerodynamic and actuator loads are given for an aeroelastic 
system. A modal performance output allocation optimization problem is also defined, which minimizes a 
hybrid measure of transient control power and elastic strain energy of the structure during the maneuver. 
The modal synthesis approach is first illustrated for shaping a lifting surface simulated by a composite plate 
by using distributed actuation to achieve a maneuver set-point, a prescribed angle of attack for the wing 
tip. The approach is also illustrated for a realistic wing configuration at Mach 2 for a specified roll-rate 
maneuver, and the distributed-parameter-control equivalent control power, generalized control loads, 
control gains and the work-energy requirements are studied. The results indicate that the requirement levels 
are and may be feasible for an effectively distributed-parameter-control equivalent actuator profile. 
However, the results also indicate that an unsatisfactory configuration of spatially-discrete actuators would 
require infeasible levels of control loads, control gains, and control-power to mimic the distributed- 
parameter-control equivalent maneuver response.  In this case, the residual mode interactions through poor 
actuator configurations for the control task play an important role in driving the requirement levels to 
infeasible values. Further studies would be required to identify discrete actuator configurations and even 
aerodynamic parameters, in conjunction with a known distributed-parameter-control actuation profile 
solution, via an interdisciplinary approach that can accomplish the maneuver within physically realizable 
control power, conttol gains, energy and control forces comparable to the feasible levels of the distributed- 
parameter-control solution. 
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TABLE: 1 PROPERTIES OF DPCL-IMSC AND ITS OPAX AND GALAX APPROXIMATIONS 
VIA DISTRIBUTED ACTUATION FOR THE COMPOSITE-PLATE LIFTING SURFACE 

DPCL-IMSC OPAX 
6 actuators 

OPAX 
20 actuators 

GALAX 
6 actuators 

GALAX 
20 actuators 

Closed-loop 
Eigenvalues 

-100.0 ±  61.3 i 
-100.0 ± 320.6 i 

-30.0, -30.0 

-100.08 ± 61.15 i 
-99.99 ± 320.63 i 
-30.01+0.10 i 

-100.08 ± 61.15 i 
-99.92 ± 320.68 i 

-30.02 ± 0.00 i 

-100.08 ± 61.15 i 
-99.92 ± 320.68 i 

-30.01 ± 0.24 i 

-100.08± 61.15 i 
-99.92 ±320.68 i 

-30.01 ± 0.24 i 

sR 202.18W 208.02W 208.02W 324.46W 209.25W 

s„ 202.18W 203.27W 203.27 W 208.02W 208.02W 

S RD 24.47W 25.04W 25.04W 37.29W 25.19W 

^ MD 24.47W 24.47W 24.47W 25.04W 25.04W 

Max / Min 
steady-state 

control signal 

fM
z2 = -2.48 

fM
zl=-0.05 
(m/s2) 

F4= 11876.82 
F, = -3940 
(N /m 2) 

F2= 1214.51 
F10=   34.85 

(N /m 2) 

F2 = 4048.54 
F 3 = - 839.47 

(N/m2) 

F9= -1164.39 
F15 = -21.37 

(N/m2 ) 

Modal GMF 

Signal G F 

1587.94 
439.18 

1589.66 
1.07 e+7 

1589.66 
9.52 e+5 

1589.64 
2.35 e+6 

1589.64 
9.5 e+5 
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FIG.I-1: DESIGN-IMSC(-) AND DPCL-IMSC(-). PERFORMANCE OUTPUT 
0.25 

0.1 
TIME (sec) 

FIG.I-2 DPCL-IMSC DEFORMED WING SURFACE (mm) 

-0.0 

SPAN (m) 
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FIG.II-1: DPCL (CDM and EVM) AND GALAX-IMSC (CDM) PERFORMANCE OUTPUT 
(Rad/Sec) 

1.6 

05        TIME (sec) 1 1.5 

FIG.II- 2: DPCL-IMSC GENERALIZED CONTROL LOADS (lbs or in-lbs) - 
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FIG.II-3: DPCL AND GALAX-IMSC(ripples), EVM PERFORMANCE OUTPUT 
(Rad/Sec) 

05       TIME (sec)        1 1.5 
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APPENDIX A : DPCL-IMSC AND GALAX-IMSC COMPUTER RESULTS FOR HIGH-SPEED WING 

################################################################ 
MATLAB PROGRAM FOR AEROSERVOELASTIC MANEUVER VIA MODAL SYNTHESIS 
################################################################ 

AEROELASTIC MODAL ANALYSIS AND DISTRIBUTED-PARAMETER MODAL CONTROL VIA IMSC 

The units are {inches, pound-force and seconds} unless noted otherwise 

Air density (slug/ftA3) : 0.001267 
Flight Speed : 24888  in/sec  2275.7587  km/hr 
DYNAMIC PRESSURE (psi):  18.9235 

Aeroelastic Eigenva lues (rad/sec or 1/sec) 

Real Part Imaginary Part 

3.85581e-012 -9.16743e-016 
2.03628e+003 8.77400e-014 
-6.66482e-003 3.02105e+001 
-6.66482e-003 -3.02105e+001 
-8.69003e+000 8.63252e+001 
-8.69003e+000 -8.63252e+001 
7.65623e+000 8.65307e+001 
7.65623e+000 -8.65307e+001 

-1.04895e-003 1.23540e+002 
-1.04895e-003 -1.23540e+002 
5.11588e+000 1.50083e+002 
5.11588e+000 -1.50083e+002 

-5.24335e+000 1.50347e+002 
-5.24335e+000 -1.50347e+002 
-2.61625e-002 2.32295e+002 
-2.61625e-002 -2.32295e+002 
-1.76546e-002 2.80759e+002 
-1.76546e-002 -2.80759e+002 
-6.65399e-004 2.86147e+002 
-6.65399e-004 -2.86147e+002 
-5.03253e-002 3.18735e+002 
-5.03253e-002 -3.18735e+002 
5.12004e-003 3.43830e+002 
5.12004e-003 -3.43830e+002 

-3.16203e-002 4.26258e+002 
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3. ,16203e- -002 -4. ,26258e+002 
1. .96150e- -003 4. . 62506e+002 
1. . 96150e- -003 -4. . 62506e+002 
3. ,28350e- -001 4, .76166e+002 

■3. .28350e- -001 -4, .76166e+002 
3. .31144e- -001 4, .94864e+002 
3, .31144e- -001 -4. . 94864e+002 

Modes Selected (modsel) for Control-Design-Model (wrt the order above) 

1    2    4    6   12   16 

Modal Control-Design Methods (selections below are wrt the modsel): 

. .. LQR(Linear Quadratic Regulator) Design is used ... 

The LQR weighting matrices for Modal Controllers 

State Weightings I Compensator State Weightings | Control Weightings 

1.00000e+000 
1.00000e+000 
1.00000e+000 
1.00000e+000 
1.00000e+000 
1.00000e+000 

00000e+002 
00000e+002 
,00000e+002 
.00000e+002 
.00000e+002 
.00000e+002 

OOOOOe-004 
OOOOOe-004 
OOOOOe-004 
.00000e-004 
, 00000e-004 
.OOOOOe-004 

!!!Modal Compensators ARE implemented! 

Compensator matrices for Modal Controllers 

ac      | 

-1.OOOOOe-004 1 
-1.OOOOOe-004 1 
-1.OOOOOe-004 1 
-1.OOOOOe-004 1 
-1.OOOOOe-004 1 

be 

,00000e+000 
.00000e+000 
.00000e+000 
.00000e+000 
.00000e+000 

-1.OOOOOe-004  1.00000e+000 

gc 

1.00000e+000 
1.00000e+000 
1.00000e+000 
1.00000e+000 
1.00000e+000 
1.00000e+000 

kc 

0.00000e+000 
0.00000e+000 
0.00000e+000 
0.00000e+000 
0.00000e+000 
0.00000e+000 

NON-PISAS means composite compensator and modal dynamics, 
All gains are designed by either LQR or EVA 
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NON-PISAS Modes:  12  3  4  5  6 

Method for Modal Synthesis of the Distributed-Parameter Control is: METH0D=1 

Aeroservoelastic Closed-Loop Eigenvalues of the Control-Design-Model 

********* DESIGN-IMSC ************************ SYNTHESIZED-IMSC *********** 

Re al Part Irr laginary Par 

-2. 04980e+003 0. 00000e+000 
-1. 14638e+000 0. 00000e+000 
-8. 71524e+000 3. 16349e+001 
-8. 71524e+000 -3. 16349e+001 
-4. 92715e+000 0. 00000e+000 
-1 82064e+001 8 53780e+001 
-1 82064e+001 -8 53780e+001 
-1 32155e+000 0 00000e+000 
-7 36541e+000 1 49992e+002 
-7 36541e+000 -1 49992e+002 
-6 .82840e-002 0 .00000e+000 
-5 .24078e+000 3 .43867e+002 
-5 .24078e+000 -3 .43867e+002 
-2 .99871e-001 0 .00000e+000 
-1 .07584e+001 4 .94965e+002 
-1 .07584e+001 -4 .94965e+002 
-4 .19365e-001 0 .00000e+000 

(rad/sec or 1/sec): 
Real Part 

-2.04980e+003 
-1.07584e+001 
-1.07584e+001 
-5.24078e+000 
-5.24078e+000 
-7.36541e+000 
-7.36541e+000 
-1.82064e+001 
-1.82064e+001 
-8.71524e+000 
-8.71524e+000 
-4.92714e+000 
-1.14638e+000 
-1.32156e+000 
-6.82796e-002 
-4.19364e-001 
-2.99874e-001 

Imaginary Part 

00000e+000 
94965e+002 
94965e+002 
43867e+002 
43867e+002 
49992e+002 
49992e+002 

8.53780e+001 
8.53780e+001 
3.16349e+001 
3.16349e+001 
0.00000e+000 
0.00000e+000 
0.00000e+000 
0.00000e+000 
0.00000e+000 
0.00000e+000 

IMSC Apparent Transient Modal Power and Gain Norms 

Design-IMSC: 

Fro(Power) 
1.45479e+008 

Trace(Power) 
1.67784e+008 

Fro(Modal Gain) 
1.12372e+004 

Synthesized-IMSC: 

Fro(Power) 
1.45479e+008 

Trace(Power) 
1.67786e+008 

Fro(Modal Gain) 
1.12385e+004 
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IMSC True Transient Modal Power Norms 

Synthesized-IMSC 

Fro(Power) Trace(Power) 
5.11708e+010        5.88578e+010 

Alternate calculation 
5.11708e+010        5.88578e+010 

Design-IMSC 

Fro(Power) 
5.12000e+010 

Trace(Power) 
5.76813e+010 

OPTIMUM APPROXIMATIONS TO THE DISTRIBUTED-PARAMETER IMSC CONTROL (DPCL-IMSC) 
BY USING SPATIALLY-DISCRETE DISTRIBUTED CONTROL PROFILES 

GALERKIN APPROXIMATION 

NUMBER OF MODES CONTROLLED: 6   NUMBER OF INPUTS: 14 

Selected actuator Configuration: 

Columns 1 through 12 

13    14    15    16 

Columns 13 through 14 

39    40 

17 19    20 21 22 37 38 

Aeroservoelastic Closed-Loop Eigenvalues of the Control-Design-Model 
via Galerkin Approximation 

+ + + ** + BASED ON DESIGN-IMSC **************** BASED ON SYNTHESIZED-IMSC ****** 

Real Part 
rad/sec or 1/sec): 

Imaginary Part       Real Part Imaginary Part 

-2.04980e+003 
-1.07584e+001 
-1.07584e+001 
-5.24078e+000 

0.00000e+000 
4.94965e+002 
-4.94965e+002 
3.43867e+002 

-2.04980e+003 
-1.07584e+001 
-1.07584e+001 
-5.24078e+000 

0.00000e+000 
4.94965e+002 
-4.94965e+002 
3.43867e+002 
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24078e+000 
36541e+000 
36541e+000 
82064e+001 
82064e+001 

8.71524e+000 
8.71524e+000 
1.14638e+000 
4.92715e+000 
1.32155e+000 
6.82840e-002 
4.19365e-001 
2.99871e-001 

■3.43867e+002 
1.49992e+002 
-1.49992e+002 
8.53780e+001 
-8.53780e+001 
3.16349e+001 
-3.16349e+001 
O.OOOOOe+000 
O.OOOOOe+000 
O.OOOOOe+000 
O.OOOOOe+000 
O.OOOOOe+000 
O.OOOOOe+000 

-5.24078e+000 
-7.36541e+000 
-7.36541e+000 
-1.82064e+001 
-1.82064e+001 
-8.71524e+000 
-8.71524e+000 
-4.92714e+000 
-1.14638e+000 
-1.32156e+000 
-6.82796e-002 
-4.19364e-001 
-2.99874e-001 

-3.43867e+002 
1.49992e+002 

-1.49992e+002 
8.53780e+001 
-8.53780e+001 
3.16349e+001 

-3.16349e+001 
O.OOOOOe+OOO 
O.OOOOOe+000 
O.OOOOOe+OOO 
O.OOOOOe+OOO 
O.OOOOOe+OOO 
O.OOOOOe+OOO 

GALAX-IMSC Transient Power and Gain Norms 

Design-IMSC (stated for reference) 

Fro(Power) 
1.45479e+008 

Trace(Power) 
1.67784e+008 

Fro(Modal Gain) 
1.12372e+004 

Galax based on Design-IMSC: 

Fro(ModalPower) 
5.12000e+010 
Fro(RealPower) 
9.08225e+013 

Trace(ModalPower) 
5.76813e+010 

Trace(RealPower) 
9.58044e+013 

Fro(ModalGain) 
1.12372e+004 

Fro(RealGain) 
6.81913e+009 

Galax based on Synthesized-IMSC: 

Fro(ModalPower) 
5.12006e+010 
Fro(RealPower) 
7.87001e+013 

Trace(ModalPower) 
5.76832e+010 

Trace(RealPower) 
8.36496e+013 

Fro(ModalGain) 
1.12385e+004 

Fro(RealGain) 
6.73475e+009 

###################################################### 
SIMULATIONS, CONTROL POWER AND ENERGY-WORK QUANTITIES: 
###################################################### 

Output Performance Allocation: Do you want to optimize? 

Enter 1 to optimize, enter 0 for user assignment : 0 

Desired Maneuver Rate (rad/sec):  1.57 

enter number of performance modes 
(must not exceed the number of controlled modes):  1 
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Select the performance modes (wrt the order in modsel) 
[row vector(include the brackets as shown)] : [2] 
Output Performance ratio in % for mode : 2    100 % left 
enter performance ratio in % for the mode : 100 

Commanded Reference is:  1.57 

Specified Commanded Reference Allocation for Modal Controllers: 

0.00000    1.57000    0.00000     0.00000    0.00000     0.00000 

Allocation sum (must be equal to Commanded Reference):  1.57 

Specified % Output Performance Allocation for Modal Controllers: 

0.00000   100.00000    0.00000     0.00000    0.00000     0.00000 

Allocation sum (must be equal to 100%):  100 

Do you want Control Model Simulation? 
enter l(yes) or 0 (no))  :1 

Final Output Value (Maneuver Rate) for Control-Design-Model 

Design-IMSC: 1.57 Synthesized DPCL-IMSC: 1.57 

Final Values of Control Inputs: 

Design-IMSC(modal) | Syn. DPCL-IMSC(modal) | Syn. DPCL-IMSC(generalized) 

0.000000000e+000 -3.111166375e-015 7.214485475e-001 
-7.476525407e+002 -7.476526637e+002 -4.862517590e+003 
-2.700895852e+002 -2.700892496e+002 1.185228946e+002 
0.000000000e+000 2.845134060e-001 -3.083120450e+002 
0.000000000e+000 -8.487943504e-001 -5.658394602e+000 
0.000000000e+000 -2.074230215e+000 4.466912997e+001 
0.000000000e+000 -3.593678804e+000 9.868231204e+001 
0.000000000e+000 7.858741267e-004 2.947969290e-001 
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O.OOOOOOOOOe+000 
O.OOOOOOOOOe+000 
O.OOOOOOOOOe+000 
O.OOOOOOOOOe+000 
O.OOOOOOOOOe+000 
O.OOOOOOOOOe+000 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+000 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 

-1.185607200e-002 
2.989456948e-003 
6.513289653e-002 
1.571523718e+000 

-5.115261467e-001 
2.986622915e-010 
3.740487740e-002 
5.683090319e-012 

-4.084354739e+000 
2.769462474e-010 
6.967366641e-002 

-4.092277208e-011 
-3.929098561e-002 
1.475268025e-010 
4.491718222e-002 

-2.859209150e-010 
-4.399418004e-001 
-6.660185453e-011 
-1.248584462e-002 
9.767218631e-011 
4.339406960e-003 

-2.644692370e-010 
-2.570921866e-002 
4.252527638e-010 

-3.091698676e+000 
1.329872047e+001 
6.060742534e+000 

-5.073508719e+000 
7.256734231e+000 
8.434519916e-001 
5.479784590e+000 
6.830620640e+000 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 
O.OOOOOOOOOe+OOO 

ENERGY-WORK FOR IMSC-SYNTHESIZED DISTRIBUTED-PARAMETER CONTROL 
(CDM = Control-Design-Model) 

Final Generalized Velocities Final Generalized Displacements 

1. 5690 
-0. 0203 
0. 0228 
0 0515 
0 0033 
0 0269 

-0 0229 
-0 0009 
0 0008 

-0 0009 
-0 0098 
-0 0005 
-0 .0011 
-0 .0002 
-0 .0025 
-0 .0009 

0.0003 
-5.3373 
0.1311 

-0.3291 
-0.0052 
0.0134 
0.0642 
0.0007 

-0.0021 
0.0123 
0.0132 

-0.0056 
0.0083 
0.0009 
0.0071 
0.0068 

TOTAL (Rigid+flexible displacements) WORK-ENERGY TERMS 

WattHours in-lbs 
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Elastic Energy: 
Kinetic Energy: 
Aerodynamic Damping work: 
Aerodynamic Stifness work: 
Actuator work: 

6.009836e-001 
3.871332e-005 
-2.477911e-001 
6.439095e-002 
4.082117e-001 

1.914692e+004 
1.233380e+000 

-7.894454e+003 
2.051451e+003 
1.300534e+004 

TOTAL WORK-ENERGY BALANCE CHECK 

LHS 
1.330515e+004 

This may not balance for the Control-Design-Model 
But must balance for the Evaluation Model 
(to within integration accuracy for work terms) 

RHS 
1.300534e+004 

Work-Energy Terms through RIGID BODY displacement 

WattHours in-lbs 

Elastic Energy: 
Kinetic Energy: 
Aerodynamic Damping work: 
Aerodynamic Stifness work: 
Actuator work: 

0.000000e+000 
3.863577e-005 
-1.863621e-001 
1.863476e-001 
4.139624e-005 

0.000000e+000 
1.230909e+000 
-5.937366e+003 
5.936907e+003 
1.318856e+000 

RIGID-BODY MOTION WORK-ENERGY BALANCE CHECK 

LHS 
7.717235e-001 

RHS 
1.318856e+000 

This will not balance for the CDM unless the work due to the 
rigid-elastic KE coupling term, which is not computed in the LHS above, 
vanishes.The coupling term always vanishes in the EVM, therefore it must 
balance for the EVM! 

Work-Energy Terms through FLEXIBLE displacements 

WattHours in-lbs 

Elastic Energy: 
Kinetic Energy: 
Aerodynamic Damping work: 
Aerodynamic Stifness work: 
Actuator work: 

6.009836e-001 
7.755646e-008 
-6.142907e-002 
-1.219567e-001 
4.081703e-001 

1.914692e+004 
2.470895e-003 
-1.957088e+003 
-3.885456e+003 
1.300402e+004 

ELASTIC MOTION WORK-ENERGY BALANCE CHECK 

LHS 
1.330438e+004 

RHS 
1.300402e+004 

This will not balance in the CDM unless the work due to the 
rigid-elastic KE coupling term, which is not computed in the LHS above, 
vanishes. The coupling term always vanishes in the EVM, therefore it must 
balance for the EVM! 
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TOTAL WORK-ENERGY BALANCE CHECK AGAIN 

LHS 
1.330515e+004 

This may not balance for the Control-Design-Model 
But must balance for the Evaluation Model 
(to within integration accuracy for work terms) 

RHS 
1.300534e+004 

Final Output Value (Maneuver Rate) for Control-Design-Model 

GALAX-IMSC: 1.57 

Final Values of Control Inputs: 

GALAX-IMSC(modal) I GALAX-IMSC(generalized) 

1.616484724e-013 
-7.476526637e+002 
-2.700892496e+002 
2.845134045e-001 
-8.487943460e-001 
-2.074230199e+000 
-3.593678776e+000 
7.858741267e-004 
-1.185607202e-002 
2.989456908e-003 
6.513289563e-002 
1.572490235e+000 

-5.535256582e-001 
4.266172342e-002 
8.050180883e+000 
-6.912366131e+000 
-3.949162041e+000 
3.672323859e-001 
1.487922429e+003 

-7.693182233e+002 
-3.222837215e+003 
-1.310386518e+003 
-3.919368654e+003 
1.778663325e+003 
6.198124680e+003 
2.702375601e+003 
4.633490701e+002 
3.079380000e+002 

0. 000000000e+000 
-4. 078996466e+003 
-1. 874301228e+003 
2. 353470681e+004 
6. 698051514e+002 
5. 015824569e+003 

-1. 568564148e+004 
4. 265529426e+004 
7. 079831511e+004 
6. ,260184144e+004 
1. ,191514186e+005 
7. ,210945426e+003 
1. .792879923e+004 

-4. .353475087e+004 
1. .236593848e+004 
5. . 923082176e+003 
0, .000000000e+000 
0. .000000000e+000 
0. .000000000e+000 
0 .000000000e+000 
0 .000000000e+000 
0 .000000000e+000 
0 .000000000e+000 
0 .000000000e+000 
0 .000000000e+000 
0 .000000000e+000 
0 .000000000e+000 
0 .000000000e+000 
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-4.402487588e+002 
2.015381542e+003 
5.263106810e-001 

-6.116635423e+000 

GALAX-IMSC(real) 

2.570960447e+005 
-3.143222886e+006 
2.509995410e+006 
9.163781506e+006 

-6.162849039e+006 
-6.476191581e+006 
2.562765623e+006 
-7.309058765e+006 
-5.190073685e+006 
-1.044222389e+005 
1.568842689e+006 
1.641079810e+006 
2.347820141e+006 
2.311818562e+006 

O.OOOOOOOOOe+000 
O.OOOOOOOOOe+000 
O.OOOOOOOOOe+000 
O.OOOOOOOOOe+000 

ENERGY-WORK FOR GALAX-IMSC DESIGN (Control-Design-Model) 

Final Generalized Velocities Final Generalized Displacements 

1.5690 
-0.0203 
0.0228 
0.0515 
0.0033 
0.0269 

-0.0229 
-0.0009 
0.0008 
-0.0009 
-0.0098 
-0.0005 
-0.0011 
-0.0002 
-0.0025 
-0.0009 

0. 
-5. 

.0003 
3373 

0.1311 
-0.3291 
-0.0052 
0.0134 
0.0642 
0.0007 

-0.0021 
0.0123 
0.0132 

-0.0056 
0.0083 
0.0009 
0.0071 
0.0068 

TOTAL (Rigid+flexible displacements) WORK-ENERGY TERMS 

WattHours in-lbs 

Elastic Energy: 
Kinetic Energy: 
Aerodynamic Damping work: 
Aerodynamic Stifness work: 

6.009836e-001 
3.871332e-005 
-2.477911e-001 
6.439095e-002 

1.914692e+004 
1.233380e+000 
-7.894454e+003 
2.051451e+003 
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Actuator work: 2.650354e-001 8.443845e+003 

TOTAL WORK-ENERGY BALANCE CHECK 

LHS 
1.330515e+004 

RHS 
8.443845e+003 

This may not balance for the Control-Design-Model 
But must balance for the Evaluation Model 
(to within integration accuracy for work terms) 

Work-Energy Terms through RIGID BODY displacement 

WattHours in-lbs 

Elastic Energy: 
Kinetic Energy: 
Aerodynamic Damping work: 
Aerodynamic Stifness work: 
Actuator work: 

0.000000e+000 0.000000e+000 
3.863577e-005 1.230909e+000 
-1.863621e-001 -5.937366e+003 
1.863476e-001 5.936907e+003 
O.OOOOOOe+000 0.000000e+000 

RIGID-BODY MOTION WORK-ENERGY BALANCE CHECK 

LHS 
7.717235e-001 

RHS 
0.000000e+000 

This will not balance for the CDM unless the work due to the 
rigid-elastic KE coupling term, which is not computed in the LHS above, 
vanishes.The coupling term always vanishes in the EVM, therefore it must 
balance for the EVM! 

Work-Energy Terms through FLEXIBLE displacements?; 

WattHours in-lbs 

Elastic Energy: 6.009836e-001 
Kinetic Energy: 7.755646e-008 
Aerodynamic Damping work: -6.142907e-002 
Aerodynamic Stifness work: -1.219567e-001 
Actuator work: 2.650354e-001 

,914692e+004 
,470895e-003 
,957088e+003 
,885456e+003 
.443845e+003 

ELASTIC MOTION WORK-ENERGY BALANCE CHECK 

LHS 
1.330438e+004 

RHS 
8.443845e+003 

This will not balance in the CDM unless the work due to the 
rigid-elastic KE coupling term, which is not computed in the LHS above, 
vanishes. The coupling term always vanishes in the EVM, therefore it must 
balance for the EVM! 
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TOTAL WORK-ENERGY BALANCE CHECK AGAIN 

LHS RHS 
1.330515e+004 8.443845e+003 

This may not balance for the Control-Design-Model 
But must balance for the Evaluation Model 
(to within integration accuracy for work terms) 

DPCL-IMSC POWER 

Distributed-Parameter IMSC total power (via integration upto t-final) 

1.586586e+003  KWatts 1.404058815442e+007  in-lbs/sec 

Distributed-Parameter IMSC transient power(via Lyapunov): 

1.566835e+002  KWatts 1.386579682028e+006  in-lbs/sec 

GALAX-IMSC POWER 

GALAX-IMSC modal power (via integration upto t-final): 

1.589623e+003  KWatts   1.406745770633e+007  in-lbs/sec 

GALAX-IMSC real power (via integration upto t-final): 

1.885100e+006  KWatts   1.668230432452e+010  in-lbs/sec 

GALAX-IMSC modal transient power (via Lyapunov): 

1.566001e + 002  KWatts   1.385841749253e+006  in-lbs/sec 

GALAX-IMSC real transient power(via Lyapunov): 

1.853676e+005  KWatts   1.640421508048e+009  in-lbs/sec 
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Do you want Evaluation Model Simulation? 
(enter l(yes) or 0 (no))  :1 

Final Output Value(Maneuver Rate)for Evaluation Model 

Design-IMSC: 1.57    Synthesized DPCL-IMSC: 1.5715 

For OPAX/GALAX-IMSC: 1.5725 

************** RvaT.naTTnN NinnFT ************* EVALUATION MODEL 

ENERGY-WORK FOR IMSC-SYNTHESIZED DISTRIBUTED-PARAMETER CONTROL 
(EVM = Evaluation Model) 

Final Generalized Velocities    Final Generalized Displacements 

1.5701 2.0138 
-0.0174 -5.3370 
0.0009 0.1304 

-0.0011 -0.3290 
-0.0002 -0.0052 
0.0001 0.0135 
0.0003 0.0643 
0.0001 0.0007 
0.0000 -0.0021 
0.0000 0.0123 
0.0002 0.0132 
0.0000 -0.0056 
0.0000 0.0083 
0.0000 0.0009 
0.0001 0.0071 
0.0000 0.0068 

TOTAL (Rigid+flexible displacements) WORK-ENERGY TERMS 

WattHours in-lbs 

Elastic Energy: 6.008971e-001 1.914417e+004 
Kinetic Energy: 3.869166e-005 1.232690e+000 
Aerodynamic Damping work:    -2.500632e-001 -7.966842e+003 
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Aerodynamic Stifness work: 
Actuator work: 

5.878614e-002 
4.096587e-001 

1.872886e+003 
1.305144e+004 

TOTAL WORK-ENERGY BALANCE CHECK 

LHS 
1.305144e+004 

This may not balance for the Control-Design-Model 
But must balance for the Evaluation Model 
(to within integration accuracy for work terms) 

RHS 
1.305144e+004 

Work-Energy Terms through RIGID BODY displacement 

WattHours in-lbs 

Elastic Energy: 
Kinetic Energy: 
Aerodynamic Damping work: 
Aerodynamic Stifness work: 
Actuator work: 

0.000000e+000 0.000000e+000 
868685e-005 
866849e-001 
866877e-001 
143211e-005 

,232536e+000 
,947653e+003 
,947741e+003 
,319998e+000 

RIGID-BODY MOTION WORK-ENERGY BALANCE CHECK 

LHS 
1.320001e+000 

RHS 
1.319998e+000 

This will not balance for the CDM unless the work due to the 
rigid-elastic KE coupling term, which is not computed in the LHS above, 
vanishes. The coupling term always vanishes in the EVM, therefore it must 
balance for the EVM! 

Work-Energy Terms through FLEXIBLE displacements 

WattHours in-lbs 

Elastic Energy: 
Kinetic Energy: 
Aerodynamic Damping work: 
Aerodynamic Stifness work: 
Actuator work: 

6.008971e-001 
4.812188e-009 
-6.337828e-002 
-1.279015e-001 
4.096173e-001 

1.914417e+004 
1.533130e-004 

-2.019188e+003 
-4.074855e+003 
1.305012e+004 

ELASTIC MOTION WORK-ENERGY BALANCE CHECK 

LHS 
1.305012e+004 

RHS 
1.305012e+004 

This will not balance in the CDM unless the work due to the 
rigid-elastic KE coupling term, which is not computed in the LHS above, 
vanishes. 
The coupling term always vanishes in the EVM, therefore it must balance for the 
EVM! 
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TOTAL WORK-ENERGY BALANCE CHECK AGAIN 

LHS 
1.305144e+004 

RHS 
1.305144e+004 

This may not balance for the Control-Design-Model 
But must balance for the Evaluation Model 
(to within integration accuracy for work terms) 

ENERGY-WORK FOR GALAX DESIGN (Evaluation Model) 

Final Generalized Velocities Final Generalized Displacements 

1.5677 
-0.1535 
-0.1371 
-1.3050 
-0.0817 
-0.2234 

,3374 
.5571 
.6409 
.1896 
.2735 

-0.1809 
-0.2892 
-1.0959 
-0.6936 
-0.3284 

1. 
1. 
2. 

-4. 
-5. 

2. 
-5. 

.0151 
,3234 

0.1087 
-0.1045 
-0.0056 
0.0752 

-0.0805 
0.6702 
0.8340 
0.7879 
1.1794 
0.0694 
0.1327 

-0.1981 
0.1250 
0.0669 

TOTAL (Rigid+flexible displacements) WORK-ENERGY TERMS 

WattHours in-lbs 

Elastic Energy: 
Kinetic Energy: 
Aerodynamic Damping work: 
Aerodynamic Stifness work: 
Actuator work: 

5.383159e+000 
9.842534e-004 

-2.869731e-001 
-2.481116e-001 
4.849834e+000 

1.715037e+005 
3.135763e+001 
-9.142763e+003 
-7.904663e+003 
1.545124e+005 

TOTAL WORK-ENERGY BALANCE CHECK 

LHS 
1.544876e+005 

This may not balance for the Control-Design-Model 
But must balance for the Evaluation Model 
(to within integration accuracy for work terms) 

RHS 
1.545124e+005 
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Work-Energy Terms through RIGID BODY displacement 

WattHours in-lbs 

Elastic Energy: 
Kinetic Energy: 
Aerodynamic Damping work: 
Aerodynamic Stifness work: 
Actuator work: 

0.000000e+000 
3.856915e-005 
-1.869376e-001 
1.868990e-001 
0.000000e+000 

0.000000e+000 
1.228786e+000 

-5.955703e+003 
5.954474e+003 
0.000000e+000 

RIGID-BODY MOTION WORK-ENERGY BALANCE CHECK 

LHS 
-4.862057e-005 

RHS 
0.000000e+000 

This will not balance for the CDM unless the work due to the 
rigid-elastic KE coupling term, which is not computed in the LHS above, 
vanishes. The coupling term always vanishes in the EVM, therefore it must 
balance for the EVM! 

Work-Energy Terms through FLEXIBLE displacements 

WattHours in-lbs 

Elastic Energy: 
Kinetic Energy: 
Aerodynamic Damping work: 
Aerodynamic Stifness work: 
Actuator work: 

5.383159e+000 
9.456842e-004 
-1.000354e-001 
-4.350106e-001 
4.849834e+000 

1.715037e+005 
012885e+001 
187060e+003 
385914e+004 
545124e+005 

ELASTIC MOTION WORK-ENERGY BALANCE CHECK 

LHS 
1.544876e+005 

RHS 
1.545124e+005 

This will not balance in the CDM unless the work due to the 
rigid-elastic KE coupling term, which is not computed in the LHS above, 
vanishes. The coupling term always vanishes in the EVM, therefore it must 
balance for the EVM! 

TOTAL WORK-ENERGY BALANCE CHECK AGAIN 

LHS 
1.544876e+005 

RHS 
1.545124e+005 

This may not balance for the Control-Design-Model 
But must balance for the Evaluation Model 
(to within integration accuracy for work terms) 
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APPENDIX B : DPCL-IMSC COMPUTER RESULTS FOR HIGH-SPEED WING 
VIA OPTIMUM MODAL PERFORMANCE OUTPUT ALLOCATION FOR MODES 1,2,6 

################################################################ 
MATLAB PROGRAM FOR AEROSERVOELASTIC MANEUVER VIA MODAL SYNTHESIS 
################################################################ 

AEROELASTIC MODAL ANALYSIS AND DISTRIBUTED-PARAMETER MODAL CONTROL VIA IMSC 
*************************************************************************** 

The units are {inches, pound-force and seconds} unless noted otherwise 

Air density (slug/ft^) : 0.001267 
Flight Speed : 24888  in/sec  2275.7587  km/hr 
DYNAMIC PRESSURE (psi):  18.9235 

Aeroelastic Eigenvalues (rad/sec or 1/sec) 

Real Part Imaginary Part 

3.85581e-012 -9.16743e-016 
2.03628e+003 8.77400e-014 
-6.66482e-003      3.02105e+001 
-6.66482e-003      -3.02105e+001 
-8.69003e+000      8.63252e+001 
-8.69003e+000      -8.63252e+001 
7.65623e+000 8.65307e+001 
7.65623e+000 -8.65307e+001 
-1.04895e-003 1.23540e+002 
-1.04895e-003      -1.23540e+002 
5.11588e+000 1.50083e+002 
5.11588e+000 -1.50083e+002 
-5.24335e+000       1.50347e+002 
-5.24335e+000      -1.50347e+002 
-2.61625e-002      2.32295e+002 
-2.61625e-002      -2.32295e+002 
-1.76546e-002      2.80759e+002 
-1.76546e-002      -2.80759e+002 
-6.65399e-004       2.86147e+002 
-6.65399e-004       -2.86147e+002 
-5.03253e-002       3.18735e+002 
-5.03253e-002      -3.18735e+002 
5.12004e-003 3.43830e+002 
5.12004e-003 -3.43830e+002 
-3.16203e-002      4.26258e+002 
-3.16203e-002      -4.26258e+002 
-1.96150e-003      4.62506e+002 
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-1.96150e-003 
-3.28350e-001 
-3.28350e-001 
3.31144e-001 
3.31144e-001 

-4.62506e+002 
4.76166e+002 
-4.76166e+002 
4.94864e+002 
-4.94864e+002 

Modes Selected (modsel) for Control-Design-Model (wrt the order above) 

1    2    4    6   12   16 

Modal Control-Design Methods (selections below are wrt the modsel): 

... LQR(Linear Quadratic Regulator) Design is used ... 

The LQR weighting matrices for Modal Controllers 

State Weightings I Compensator State Weightings I Control Weightings 

1.00000e+000 
1.00000e+000 
1.00000e+000 
1.00000e+000 
1.00000e+000 
1.00000e+000 

1.00000e+002 
1.00000e+002 
1.00000e+002 
1.00000e+002 
1.00000e+002 
1.00000e+002 

1.00000e-004 
1.00000e-004 
1.00000e-004 
1.00000e-004 
1.00000e-004 
1.00000e-004 

!!!Modal Compensators ARE implemented!!! 

Compensator matrices for Modal Controllers 

ac      I 

-1.00000e-004 1. 
-1.00000e-004 1. 
-1.00000e-004 1, 
-1.00000e-004 1. 

be 

00000e+000 
00000e+000 
00000e+000 
00000e+000 

-1.00000e-004  1.00000e+000 
-1.00000e-004  1.00000e+000 

gc 

00000e+000 
,00000e+000 
.00000e+000 
.00000e+000 
.00000e+000 
.00000e+000 

kc 

0.00000e+000 
0.00000e+000 
0.00000e+000 
0.00000e+000 
O.OOOOOe+000 
0.00000e+000 

NON-PISAS means composite compensator and modal dynamics, 
All gains are designed by either LQR or EVA 

NON-PISAS Modes:  12  3  4  5  6 
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Method for Modal Synthesis of the Distributed-Parameter Control is: METH0D=1 

Aeroservoelastic Closed-Loop Eigenvalues of the Control-Design-Model 

********* DESIGN-IMSC ************************   SYNTHESIZED-IMSC *********** 

Real Part 

2 04980e+003 
1 14638e+000 
8 71524e+000 
8 71524e+000 
4 92715e+000 
1 82064e+001 
1 82064e+001 
1 32155e+000 
7 36541e+000 
7 36541e+000 
6 82840e-002 
5 24078e+000 
5 24078e+000 
2 99871e-001 
1 .07584e+001 
1 .07584e+001 
4 .19365e-001 

(rad/sec or 1/sec): 
Imaginary Part       Real Part 

0.00000e+000 
0.00000e+000 
3.16349e+001 
-3.16349e+001 
0.00000e+000 
8.53780e+001 
-8.53780e+001 
0.00000e+000 
1.49992e+002 
-1.49992e+002 
0.00000e+000 
3.43867e+002 
-3.43867e+002 
0.00000e+000 
4.94965e+002 
-4.94965e+002 
0.00000e+000 

-2.04980e+003 
-1.07584e+001 
-1.07584e+001 
-5.24078e+000 

-5.24078e+000 
-7.36541e+000 
-7.36541e+000 
-1.82064e+001 
-1.82064e+001 
-8.71524e+000 

-8.71524e+000 
-4.92714e+000 
-1.14638e+000 
-1.32156e+000 
-6.82796e-002 
-4.19364e-001 

-2.99874e-001 

Imaginary Part 

0.00000e+000 
4.94965e+002 
-4.94965e+002 
3.43867e+002 

-3.43867e+002 
1.49992e+002 
-1.49992e+002 
8.53780e+001 
-8.53780e+001 
3.16349e+001 

-3.16349e+001 
0.00000e+000 
0.00000e+000 
0.00000e+000 
0.00000e+000 
0.00000e+000 

0.00000e+000 

IMSC Apparent Transient Modal Power and Gain Norms 

Design-IMSC: 

Fro(Power) 
1 r45479e + 008 

Trace(Power) 
1.67784e+008 

Fro(Modal Gain) 
1.12372e+004 

Synthesized-IMSC: 

Fro(Power) 
1.45479e+008 

Trace(Power) 
1.67786e+008 

Fro(Modal Gain) 
1.12385e+004 
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IMSC True Transient Modal Power Norms 

Synthesized-IMSC Design-IMSC 

Fro(Power) Trace(Power)     Fro(Power)          Trace(Power) 
5.11708e+010 5.88578e+010     5.12000e+010        5.76813e+010 

Alternate calculation 
5.11708e+010 5.88578e+010 

###################################################### 
SIMULATIONS, CONTROL POWER AND ENERGY-WORK QUANTITIES: 
###################################################### 

Output Performance Allocation: Do you want to optimize? 

Enter 1 to optimize, enter 0 for user assignment : 1 

COMMANDED OUTPUT ALLOCATION OPTIMIZATION 

Real Control Power Weighting:  le-010 
Strain Energy Weighting:  le-005 

Desired Maneuver Rate (rad/sec):  1.57 

Enter number of output Performance modes:3 
(must be less than the number of controlled modes) 

Select the performance modes [row vector] : [12 4] 

Optimum Output Performance Objective Function:  0.00038326 
Optimum Constraint value (Tolerance e-04):      2.8866e-015 

Commanded Reference is:  1.57 

Optimum Commanded Reference Allocation for Modal Controllers: 

1.56049    0.00334    0.00618 

Allocation sum (must be equal to Commanded Reference):  1.57 
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Optimum % Output Performance Allocation for Modal Controllers: 

99.39406    0.21261    0.00000     0.39333    0.00000     0.00000 

Allocation sum (must be equal to 100%):  100 

Do you want Control Model Simulation? 
enter l(yes) or 0 (no))  :1 

Final Output Value (Maneuver Rate) for Control-Design-Model 

Design-IMSC: 1.5699 Synthesized DPCL-IMSC: 1.5699 

Final Values of Control Inputs: 

Design-IMSC(modal) | Syn. DPCL-IMSC(modal) Syn. DPCL-IMSC(generalized) 

-1.352137365e+003 
-1.589607471e+000 
-5.742459218e-001 
0.000000000e+000 
0.000000000e+000 
-4.104144265e+001 
-9.030002436e+001 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
1.529378330e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 

-1.352137365e+003 
-1.468770044e+000 
-9.038938195e-001 

-3.813897619e+000 
1.137807458e+001 
6.924172141e+000 
-7.197863418e+000 

-9.465165393e-002 
1.427960008e+000 
-7.299864747e-001 
-1.590460554e+001 
1.573207685e+000 
-1.628932089e+000 
9.695128691e-011 
-5.916993052e-001 
-9.136239227e-012 
-5.829472478e+000 
-6.939380750e-011 
-3.790357260e+000 
1.328740664e-010 
3.156902248e+000 
-5.920811899e-011 
-3.749020207e+000 
-4.397959640e-011 
4.561786634e+001 
-2.287478657e-010 
2.290590637e+000 
-1.319175845e-011 
-9.314512499e-001 
-6.410163698e-011 
5.833539938e+000 

-3.181257117e+003 
7.712363822e+002 
-2.501587394e+002 
6.854499964e+002 

5.875050130e+001 
1.957808885e+002 
9.761577699e+002 

-3.520386071e+002 
1.798106900e+002 
1.848150349e+002 
-1.212447447e+003 
8.119482010e+001 
-1.742210184e+002 

-9.842519072e+001 
-8.294003685e+002 
1.164815842e+003 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 

0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 
O.OOOOOOOOOe+000 
0.000000000e+000 
0.000000000e+000 
0.000000000e+000 

0.000000000e+000 

56 



O.OOOOOOOOOe+000   3.775641962e-010      O.OOOOOOOOOe+000 

ENERGY-WORK FOR IMSC-SYNTHESIZED DISTRIBUTED-PARAMETER CONTROL 
(CDM = Control-Design-Model) 

Final Generalized Velocities    Final Generalized Displacements 

1.5510 0.0003 
-0.0734 -0.0064 
-0.0055 -0.0115 
0.3154 -0.0039 

-0.0223 -0.0001 
0.1695 -0.0030 

-0.2241 0.0031 
0.1771 -0.0001 

-0.0450 -0.0001 
-0.0533 0.0004 
0.9268 0.0007 
0.0345 0.0008 
0.1174 0.0000 
0.0452 0.0000 
0.3528 0.0002 
0.0844 0.0007 

TOTAL (Rigid+flexible displacements) WORK-ENERGY TERMS 

WattHours in-lbs 

Elastic Energy: 3.046371e-005 9.705528e-001 
Kinetic Energy: 5.702869e-005 1.816895e+000 
Aerodynamic Damping work: -6.205414e-001 -1.977002e+004 
Aerodynamic Stifness work: -3.089463e-003 -9.842817e+001 
Actuator work: -5.532794e-001 -1.762710e+004 

TOTAL WORK-ENERGY BALANCE CHECK 

LHS RHS 
-1.986566e+004 -1.762710e+004 

This may not balance for the Control-Design-Model 
But must balance for the Evaluation Model 
(to within integration accuracy for work terms) 

Work-Energy Terms through RIGID BODY displacement 

WattHours in-lbs 

Elastic Energy: 0.000000e+000 0.000000e+000 
Kinetic Energy: 3.775460e-005 1.202835e+000 
Aerodynamic Damping work:    -4.222619e-001 -1.345297e+004 
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Aerodynamic Stifness work:   -2.257744e-004 
Actuator work: -4.227049e-001 

-7.193017e+000 
-1.346709e+004 

RIGID-BODY MOTION WORK-ENERGY BALANCE CHECK 

LHS 
-1.345896e+004 

RHS 
-1.346709e+004 

This will not balance for the CDM unless the work due to the 
rigid-elastic KE coupling term, which is not computed in the LHS above, 
vanishes. 
The coupling term always vanishes in the EVM, therefore it must balance for the 
EVM! 

Work-Energy Terms through FLEXIBLE displacements 

Elastic Energy: 
Kinetic Energy: 
Aerodynamic Damping work: 
Aerodynamic Stifness work: 
Actuator work: 

WattHours in-lbs 

3.046371e-005 
1.927410e-005 

-1.982796e-001 
-2.863689e-003 
-1.305745e-001 

9.705528e-001 
6.140594e-001 

-6.317051e+003 
-9.123515e+001 
-4.160013e+003 

ELASTIC MOTION WORK-ENERGY BALANCE CHECK 

LHS 
-6.406702e+003 

RHS 
-4.160013e+003 

This will not balance in the CDM unless the work due to the 
rigid-elastic KE coupling term, which is not computed in the LHS above, 
vanishes. 
The coupling term always vanishes in the EVM, therefore it must balance for the 
EVM! 

TOTAL WORK-ENERGY BALANCE CHECK AGAIN 

LHS 
-1.986566e+004 

RHS 
-1.762710e+004 

This may not balance for the Control-Design-Model 
But must balance for the Evaluation Model 
(to within integration accuracy for work terms) 

DPCL-IMSC POWER 

Distributed-Parameter IMSC total power (via integration upto t-final ): 4  sees 
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3.113367e+003  KWatts  2.755192371664e+007  in-lbs/sec 

Distributed-Parameter IMSC transient power(via Lyapunov) 

4.214844e+002  KWatts  3.729950471472e+006  in-lbs/sec 

Do you want Evaluation Model Simulation? 
(enter l(yes) or 0 (no))  :1 

Final Output Value(Maneuver Rate)for Evaluation Model 

Design-IMSC: 1.5699    Synthesized DPCL-IMSC: 1.5732 

+**•*+++++*++* EVALUATION MODEL ************* 

ENERGY-WORK FOR IMSC-SYNTHESIZED DISTRIBUTED-PARAMETER CONTROL 
(EVM = Evaluation Model) 

Final Generalized Velocities    Final Generalized Displacements 

1.5531 4.8939 
0.0005 -0.0059 

-0.0008 -0.0128 
-0.0013 -0.0024 
0.0004 0.0003 
0.0000 -0.0024 
0.0009 0.0030 

-0.0003 -0.0007 
-0.0011 0.0010 
-0.0003 0.0001 
-0.0065 0.0078 
-0.0004 0.0010 
-0.0001 0.0006 
0.0000 0.0000 

-0.0006 0.0009 
-0.0007 0.0010 
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TOTAL (Rigid+flexible displacements) WORK-ENERGY TERMS 

Elastic Energy: 
Kinetic Energy: 
Aerodynamic Damping work: 
Aerodynamic Stifness work: 
Actuator work: 

WattHours 

1.424030e-004 
3.785864e-005 

-4.220500e-001 
-6.752648e-004 
-4.225450e-001 

in-lbs 

4.536860e+000 
1.206150e+000 

-1.344622e+004 
-2.151347e+001 
-1.346199e+004 

TOTAL WORK-ENERGY BALANCE CHECK 

LHS 
-1.346199e+004 

This may not balance for the Control-Design-Model 
But must balance for the Evaluation Model 
(to within integration accuracy for work terms) 

RHS 
-1.346199e+004 

Work-Energy Terms through RIGID BODY displacement 

WattHours in-lbs 

Elastic Energy: 
Kinetic Energy: 
Aerodynamic Damping work: 
Aerodynamic Stifness work: 
Actuator work: 

0.000000e+000 
3.785789e-005 
-4.218981e-001 
-6.599688e-004 
-4.225202e-001 

0.000000e+000 
1.206126e+000 
-1.344138e+004 
-2.102615e+001 
-1.346120e+004 

RIGID-BODY MOTION WORK-ENERGY BALANCE CHECK 

LHS 
-1.346120e+004 

RHS 
-1.346120e+004 

This will not balance for the CDM unless the work due to the 
rigid-elastic KE coupling term, which is not computed in the LHS above, 
vanishes. 
The coupling term always vanishes in the EVM, therefore it must balance for 
EVM! 

Work-Energy Terms through FLEXIBLE displacements 

Elastic Energy: 
Kinetic Energy: 
Aerodynamic Damping work: 
Aerodynamic Stifness work: 
Actuator work: 

WattHours 

1.424030e-004 
7.505271e-010 

-1.519494e-004 
-1.529601e-005 
-2.484396e-005 

in-lbs 

536860e+000 
391128e-005 
841003e+000 
873202e-001 

-7.915113e-001 
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ELASTIC MOTION WORK-ENERGY BALANCE CHECK 

LHS RHS 
-7.914387e-001 -7.915113e-001 

This will not balance in the CDM unless the work due to the 
rigid-elastic KE coupling term, which is not computed in the LHS above, 
vanishes. 
The coupling term always vanishes in the EVM, therefore it must balance for the 
EVM! 

TOTAL WORK-ENERGY BALANCE CHECK AGAIN 

LHS RHS 
-1.346199e+004 -1.346199e+004 

This may not balance for the Control-Design-Model 
But must balance for the Evaluation Model 
(to within integration accuracy for work terms) 
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