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Introduction 

The 38th Annual Sanibel Symposium, orga- 
nized by the faculty, students, and staff of 

the Quantum Theory Project of the University of 
Florida, was held on February 21-27, 1998. Again, 
the Ponce de Leon Conference Center in St. Augus- 
tine, Florida, was the site of the gathering of more 
than 300 scientists. 

The symposium followed the established format 
with plenary and poster sessions. A compact 7-day 
integrated program of quantum biology, quantum 
chemistry, and condensed matter physics provided 
for intense and lively cross-disciplinary interac- 
tions. The topics of the sessions covered by these 
proceedings included Density Functional Theory 
(DFT) and Applications, Time-Dependent DFT, 
Femtosecond Dynamics, Dynamics of Electroni- 
cally Excited States, Molecular Properties, Proton 
Transfer Dynamics, Methodological Developments 
in Quantum Chemistry, Relativistic Quantum Me- 
chanics, Condensed Phase Chemistry, Hydrogen 
Bonding, and Molecular Properties in High Mag- 
netic Fields. 

The articles have been subjected to the ordinary 
refereeing procedures of the International Journal of 
Quantum Chemistry. The articles presented in the 
sessions on quantum biology and associated poster 
sessions are published in a separate volume of the 
International Journal of Quantum Chemistry. 

The organizers acknowledge the following 
sponsors for their support of the 1998 Sanibel Sym- 
posium: 

tained in this report are those of the author(s) 
and should not be construed as an official 
Department of the Army position, policy, or 
decision, unless so designated by other doc- 
umentation." 

■ The Office of Naval Research through Grant 
# N00014-98-1-0215 
"This work relates to Department of the 
Navy Grant # N00014-98-1-0215 issued by 
the Office of Naval Research. The United 
States Government has the royalty-free li- 
cense throughout the world in all copy- 
rightable material contained herein." 

■ IBM Corporation 

■ HyperCube, Inc. 

■ Q-Chem, Inc. 

■ The University of Florida 

Very special thanks go to the staff of the Quantum 
Theory Project of the University of Florida for 
handling the numerous administrative, clerical, 
and practical details. The organizers are proud to 
recognize the contributions of Mrs. Judy Parker, 
Mrs. Coralu Clements, Ms. Sandra Weakland, Dr. 
Greg Pearl, and Mr. Cristiän Cardenas. All the 
graduate students of the Quantum Theory Project 
who served as "gofers" are gratefully recognized 
for their contributions to the 1998 Sanibel Sympo- 
sium. 

Army Research Office Grant # DAAG55-98- 
1-0117 
"The views, opinions, and/or findings con- 

N. Y. Ohrn 
J. R. Sabin 

M. C. Zerner 
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3,5-Contracted Schrödinger Equation: 
Determining Quantum Energies and 
Reduced Density Matrices Without 
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ABSTRACT: Through the 3,5-contracted Schrödinger equation (3,5-CSchE) quantum 
energies and 3-particle reduced density matrices (3-RDMs) are determined directly 
without wave functions. Since the 3,5-CSchE involves the 5-RDM, its solution is 
indeterminate without N-representability conditions. However, the indeterminacy of the 
3,5-CSchE may be removed through a reconstruction strategy for building the 4- and 
5-RDMs from the 3-RDM. We present a systematic procedure for obtaining corrections 
for Valdemoro's reconstruction functionals from two complementary approaches, the 
particle-hole duality and the theory of cumulants. With the cumulants we are able to 
demonstrate that we have obtained all terms in the reconstruction functionals which may 
be written as antisymmetric products of the lower rdms. The cumulants allow us to 
understand the reconstruction functionals in terms of a renormalized many-body 
perturbation theory. The reconstruction functionals also lead to a natural generalization 
of Wick's theorem for evaluating expectation values of fermionic annihilation and 
creation operators with respect to correlated reference states. Previous work [Phys. Rev. 
A 57, 4219 (1998)] has explored the determination of correlation energy and 2-RDMs 
through the 2,4-CSchE, also known as the density equation. Because the reconstruction 
functionals employed with the 3,5-CSchE depend only on the antisymmetric products of 
lower RDMs in constrast to those used with the 2,4-CSchE, the 3,5-CSchE method 
presented here does not require the solution of systems of linear equations during 
reconstruction or the storage of the reconstructed RDMs. Application of the 3,5-CSchE 
technique to a quasi-spin model generates ground-state energies and 2-RDMs similar in 
accuracy to single-double configuration interaction (SDCI). We employ a simple iterative 
procedure for the solution of the 3,5-CSchE without traditional diagonalization. The 
CSchE techniques offer an approximate solution of the N-representability problem and a 
new approach to electron correlation.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 
557-570, 1998 
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Introduction 

For atoms and molecules with any number N 
of electrons the repulsions between electrons 

are treated pairwise within the Hamiltonian. A 
consequence of this is that the energy and other 
properties of molecular systems may be calculated 
with only a knowledge of the 2-particle reduced 
density matrix (2-RDM). This result suggests a 
simplification for the many-body problem for pair- 
wise-interacting particles in which calculation of 
the N-particle wave function is circumvented 
through a direct determination of the 2-RDM. 
Many attempts to obtain the 2-RDM variationally 
have not succeeded because simple yet complete 
conditions for ensuring that the 2-RDM corre- 
sponds to a realistic N-particle system have not 
been found (N-representability problem) [1, 2]. Re- 
cently, however, we have presented an accurate 
technique for determining directly the 2-RDM 
through the 2,4-contracted Schrödinger equation 
(2,4-CSchE) [3]. 

In 1976 both Cohen and Frishberg [4] and 
Nakatsuji [5] derived the (p,p + 2)-CSchE as an 
integro-differential equation where p > 1. Matrix 
formulations were later developed by Harriman 
[6] and Valdemoro [7]. However, the (p,p + 2)- 
CSchE alone cannot be employed to determine the 
p-RDM because it also requires a knowledge of the 
(p + 2)-RDM. In 1993 Valdemoro offered a practi- 
cal solution for the indeterminacy of the 2,4-CSchE 
by deriving functionals for reconstructing the 3- 
and 4-RDMS approximately from a knowledge of 
the 2-RDM [8-12]. Yasuda and Nakatsuji have 
employed Valdemoro's formulas for the 3- and 
4-RDMs with corrections to solve the 2,4-CSchE for 
closed-shell molecules with as many as 14 active 
electrons [13,14]. We have recently derived correc- 
tions for Valdemoro's 3- and 4-RDM reconstruc- 
tion functionals through the particle-hole duality 
[3]. Our correction for the 4-RDM functional from 
the particle-hole perspective agees with the term 
proposed by Yasuda and Nakatsuji from the the- 
ory of Green's functions, but our approach for 
correcting the 3-RDM is different. We have also 
proposed a new reconstruction strategy without 
functionals, known as the ensemble representabil- 

ity method (ERM), in which contraction and posi- 
tive semidefinite conditions are imposed on the 3- 
and 4-RDMs. The functional and ERM reconstruc- 
tions were separately employed with the 2,4-CSchE 
to solve a quasi-spin model with the number of 
particles between 4 and 40. For both methods we 
obtained ground-state energies as accurate as sin- 
gle-double configuration interaction (SDCI) and 
2-RDMs which were about an order of magnitude 
better than SDCI. 

In the present work we explore the possibility of 
obtaining accurate energies and 2-RDMs through 
the solution of the 3,5-CSchE. By contracting the 
Schrödinger equation through the use of test func- 
tions, we provide a clear derivation of the 3,5- 
CSchE in second quantization. Two different ap- 
proaches for deriving a correction to Valdemoro's 
functional for the 5-RDM in terms of lower RDMs 
are explored: (i) the particle-hole duality and (ii) 
the theory of cumulants. We show how these two 
perspectives interrelate and complement each 
other. Furthermore, through the cumulant expan- 
sion we demonstrate how to obtain all of the terms 
for the p-RDM functional which may be written as 
antisymmetrized products of the lower RDMs. This 
leads us to a natural division of the RDM function- 
als into an unconnected part which may be ex- 
pressed as a product of lower RDMs and a con- 
nected remainder. The notion of connected will 
allow us to elucidate the relationship between the 
reconstruction functionals and many-body pertur- 
bation theory (MBPT) [15-17] for RDMs. Recon- 
struction for two different RDMs (the p + 1- and 
p + 2-RDMs) must be employed to remove the 
indeterminacy of the (p,p + 2)-CSchE. Ideally, we 
would like these functionals to be accurate through 
the same order of MBPT, that is scheme consistent 
[18, 19]. While the 4-RDM, constructed from the 
lower RDMs, may be shown to be exact through 
second order, the 3-RDM functional, we will indi- 
cate, cannot be made consistent through second 
order without a correction to the connected por- 
tion. In contrast, both the 4- and 5-RDMs, correct 
through second order of MBPT, may be built from 
products of the 3-RDM and lower RDMs. This 
suggests a possible advantage for solving systems 
with pairwise interactions through the 3,5-CSchE. 

Solution of the 3,5-CSchE with the reconstruc- 
tion functionals for the 4- and 5-RDMs is explored 
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through calculations of a quasi-spin system with 
as many as 50 particles. The spin model, employed 
in a previous study to illustrate the 2,4-CSchE, was 
originally used by Lipkin [20] as a benchmark 
to test various many-body methods for solving 
fermionic systems. The results are compared with 
those of the 2,4-CSchE as well as more traditional 
approaches to electron correlation like MBPT and 
SDCI. As mentioned above, the second-order cor- 
rection for the 3-RDM in the 2,4-CSchE requires 
the solution of a system of equations in Nakatsuji 
and Yasuda's approach as well as our own, but the 
equivalent corrections for the 4- and 5-RDMs in 
the 3,5-CSchE may be written as explicit function- 
als of the 3-RDM and lower RDMs. For this reason 
the 3,5-CSchE may be solved iteratively without 
storing the 4- or 5-RDMs. 

Derivation 

To generate the 3,5-contracted Schrödinger 
equation, we begin with the N-particle Schrödi- 
nger equation 

H|</'> = E|<A> (1) 

where the wave function i/f may represent any 
state of the system and the Hamiltonian is defined 
in second quantization as 

H=-     £     2KM»fl]fltfl a (2) 
o        '—' h' h   li   !5   h  h 

H> h- h, h 

Index labeling begins with 4 since we wish to 
reserve the lower integers for later use. The 2-par- 
ticle reduced Hamiltonian matrix 2K has elements 
defined by 

1 
—-(e,   , 8:   ,  + e, , 8:   , )   (3) K<4,<5 = y 14,15 + _ 

h-te hih J\J 

in which e and V represent the one- and two-par- 
ticle contributions, respectively. For an atomic sys- 
tem with nuclear charge Z these terms are given 
explicitly by 

H<)i <£,. 2 4>L (4) 

and 

tn]5 ^:5 = WD<M2) 
'12 

A (DA (2)  ,     (5) 

Multiplying the Schrödinger equation on the 
right by the function (if/\, we obtain the expression 
for exact energy E as a linear function of the 
2-particle density matrix 2D (2-RDM): 

E=      E     2KJ:;% 2DU;ii = Tr(2K 2D),    (6) 
h-hiinh 

where we define the 2-RDM in second quantiza- 
tion as 

It* h -<0|<«U5«/>>- (7) 

The normalization of the 2-RDM is (N(N - l))/2 
in this notation. As discussed in the introduction, 
direct determination of the ground-state 2-RDM 
through variational minimization of the energy is 
not yet a practical alternative to traditional ap- 
proaches for the many-body problem because sim- 
ple conditions for keeping the 2-RDM ensemble 
N-representable have not been discovered. 

Relationships more general than Eq. (6), how- 
ever, may be obtained by testing the Schrödinger 
equation with a set of functions {<4>,|} rather than 
just the wave function < ip \. Let us consider the set 
of one-, two-, and three-particle excitations by 
defining the test functions 

<<D/i<{2';3| = <^|fljfltfltfl « « |. (8) 
lnh'h ^     h   h   h   h   h   h 

Multiplying Eq. (1) by these test functions pro- 
duces the equations 

'KM'RM-f'f'*? = 12E  jD/i'i"!.',   (9) It-Is    In lit h' la h h'h'h' 
Hi's'lah 

where 

with </>, denoting the one-electron spin orbitals. 

(10) 

By rearranging the creation and annihilation oper- 
ators in the expression for R, we can write the 
elements of R as linear combinations of 3-, 4-, and 
5-RDMs. Use of a graphical rule not only facilitates 
the rearrangement of the operators but produces a 
result which is independent of whether the N 
particles under consideration obey boson or fermi- 
on statistics [21]. We obtain the following expres- 
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sion for the elements of R in terms of RDMs: 

\     h'liih'h   h h'h'h'l*  h 

+4DM2/H5S/4 +4D;>'^;'"!'IS/= 

+4DH2'K5S/4 +4DH2,M4S/5) li- h' h' Is   h h'h'h'li   h 1 

+ 3!(3D;„j2,j3/s/4S,5 + Sit8i5\ 
\     h'U' h \   h   h h   h I 

+3D;>'K'(6/4S/5 + 8/4s/5) 
h'h'h \   h   h h   li I 

+ 3D/"H3(S/4S/5 + S/4S/5)) h' h' h\   h   h h    h I) (ID 

in which the p-RDMs are given by the general 
second-quantized definition 

1 
h.h'---'i,,      p\ x^    'i '2       'P /,> ;,.-i 

(12) 

The p-RDMs are normalized to N\/(p\(N - p)\). 
Collectively, the equations in (9) with the expres- 
sion for elements of R in Eq. (11) compose the 
3,5-CSchE. Other CSchEs may be gnerated by us- 
ing different test functions {<!>,■} in Eq. (8). The 
1,3-CSchE requires a set of single excitations while 
the 2,4-CSchE requires both single and double ex- 
citations. 

When the RDMs in the 3,5-CSchE are restricted 
to the set of pure N-representable matrices, they 
will constitute a solution of the 3,5-CSchE if and 
only if they may be formed from the contraction of 
an N-particle pure density matrix D(i/>) whose 
associated wave function ip satisfies the Schrödi- 
nger equation (SE). This result, known as Nakat- 
suji's theorem, was demonstrated by Nakatsuji in 
1976 for an integro-differential version of the CSchE 
[5]. We recently presented the first formal proof of 
the theorem for the second-quantized 2,4-CSchE 
[3]. Proof that a i// satisfying the SE contracts to 
RDMs, which solve the 3,5-CSchE, follows directly 
from the above derivation of the 3,5-CSchE from 
the SE. We may demonstrate the other direction of 
the proof by showing that within a pure N-repre- 
sentable space the 3,5-CSchE implies the following 
dispersion condition: 

<iMH2|l//>-<.AlH|l//>
2 = 0, (13) 

which is true if and only if the SE is satisfied. 
Hence, solution of the 3,5-CSchE implies solution 

of the SE. Details of the derivation mirror those 
given for the 2,4-CSchE. Since the Hamiltonian in 
Eq. (13) is defined in second quantization by Eq. 
(2), the resulting theorem is valid for both com- 
plete and incomplete basis sets. This proof does 
not work for the 1,3-CSchE which may have pure 
N-representable solutions which do not corre- 
spond to the wave function solution of the SE. In 
any correlated system the Hartree-Fock RDMs as 
well as the correlated 1-, 2-, and 3-RDMs will 
satisfy the 1,3-CSchE. 

Reconstruction 

While Nakatsuji's theorem guarantees that the 
3,5-CSchE may be solved directly for the correct 3-, 
4-, and 5-RDMs within a pure N-representable 
space, simple necessary-and-sufficient conditions 
for keeping these RDMs N-representable are not 
known. The framework of the 3,5-CSchE, however, 
allows us to recast N-representability as a recon- 
struction problem. If we knew how to build from 
the 3-RDM to the 5-RDM, the 3,5-CSchE in Eq. (9) 
furnishes us with enough equations to solve itera- 
tively for the 3-RDM. Two approaches for recon- 
struction have been explored in a previous study 
[3] on the 2,4-CSchE: (i) the explicit representation 
of higher RDMs as functionals of lower RDMs and 
(ii) the construction of a family of higher RDMs 
from lower RDMs by imposing ensemble repre- 
sentability conditions. In the following two sec- 
tions we will develop the functional approach for 
the 3,5-CSchE from two different perspectives, the 
particle-hole duality and the theory of cumulants. 

PARTICLE-HOLE; DUALITY 

Many-body problems in quantum mechanics are 
usually described by the number of particles N in 
the system and the probabilities of finding those 
particles at different locations in space. If the rank 
of the one-particle basis is a finite number r, an 
equally valid description of the system may be 
given by specifying the number of holes r — N in 
the system and the probabilities of finding these 
holes at different locations in space. This possibil- 
ity for an equivalent representation of the system 
by particles or holes is known as the particle-hole 
duality. By using the fermion anticommutation 
relation to rearrange the creation and annihilation 
operators in  the  definition equation (2) of the 
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Hamiltonian such that all of the annihilators ap- 
pear to the left of the creators, we generate a hole 
representation of the Hamiltonian H whose expec- 
tation_value with the (r - N)-hole density matrix 
(r_N)D produces the energy E: 

Tr(H(r-N)D) 

Tr(2K2D). 

(14) 

(15) 

As shown in the second line, like the expression 
for the energy E as a function of the 2-RDM, the 
energy E may also be expressed as a linear func- 
tional of the 2-hole reduced density matrix 2D 
(2-HRDM) and the 2-hole reduced Hamiltonian 
2K. Direct minimization of the energy to determine 
the 2-HRDM would require (r - N)-representabil- 
ity conditions. The definition for the p-hole re- 
duced density matrices in second quantization is 
given by 

•h = 
1 

<4>Whah a, a] a] a\\*). 

(16) 

Normalization of the p-HRDM in second quantiza- 
tion is (r - N)\/(p\(r - N - p)!). 

Because the hole and particle perspectives offer 
equivalent physical descriptions, the p-RDMs and 
p-HRDMs are related by a linear mapping [22, 23]. 
Thus, if one of them is known, the other one is 
easily determined. The same linear mapping re- 
lates the p-particle and_ p-hole reduced Hamilto- 
nian matrices (2K and 2K). An explicit form for the 
mapping may be readily determined by using the 
fermion anticommutation relation to convert the 
p-HRDM in Eq. (16) to the corresponding p- 
HRDM. For p = 1 the result is simply 

1D/=1S/'-
1D/, (17) 

which is equivalent to taking the expectation of the 
fermion anticommutation relation. Similarly, for 
p = 2 we obtain the relation 

2D/i</2 = (8/15/2 - 8/*8/i)/2 
'i/'2        V   h   h h   h }' 

-
1
D^ +

1
D;>5/^ +

2
DH% (is) h   h h  h h'h' 

which contains a sum of three different kinds of 
terms that have: (i) one 2-RDM, (ii) one 1-RDM 
multiplying one 8, and (iii) two S's. This expres- 
sion represents the commutation relation for a 
composite particle consisting of two fermions. By 

anticommuting the creation and annihilation oper- 
ators, we can generate analogous expressions for 
composite particles consisting of more than two 
fermions. 

Before introducing the general expression, we 
express Eq. (18) more concisely through the anti- 
symmetric wedge product A from Grassmann 
algebra [24]. The wedge product between two ma- 
trices PD and 'D involving p and q particles 
produces an antisymmetric matrix involving p + q 
particles defined by 

PD AqD AN
vD®qDAN, (19) 

where the AN is the N-particle antisymmetriza- 
tion operator and ® is the tensor product. More 
details about evaluating wedge products may be 
found in Appendix A of [3]. For the 2-HRDM as a 
functional of RDMs we obtain 

2D/i-/2 = 2I/i'/* - 21D/i A ^h + 2DM2    (20) 
'\ih h'h h h h'h 

where I is the identity matrix 

and 

'I/' = 5/1 
h h 

2Jh'h = 1Jh   A  
1J'2 

h'h h h " 

(21) 

(22) 

In general, the linear relation between the p-HDRM 
and p-RDM may be expressed as 

VD = V1+  £ (-D'fj'DA^'l+t-l^D. 

(23) 

Indices for the RDMs are not shown for notational 
clarity. The p-RDM as a functional of the p-HRDM 
may be easily obtained by switching PD and PD in 
the above equation. 

Valdemoro [8] realized that these particle-hole 
relations could be written in the following form: 

vD + (-l)p+lvD=f(! ̂-1D) + (-l)p+1f(p-1D), 
(24) 

where f(p 1D) is a functional of the ( p - D-HRDM 
and lower HRDMs and f(p~1D) has the same 
functional form as f{p~lD) with the HRDMs re- 
placed with the corresponding RDMs. With the 
appropriate / functional for each p the relation in 
Eq. (24) is exact and equivalent to Eq. (23). 
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Valdemoro then obtains functional for the p- 
RDM and p-HRDM by assuming that 

"D^"DWM=fr"D) 

and 

'D»PD Vald =/r m 

(25) 

(26) 

These formulas are approximate because some of 
the terms for the particle and hole RDMs cancel in 
relation (24). Rearranging Eq. (23) for each p as 
originally described by Valdemoro will produce 
the functionals /. We have found an easier method 
for extracting the functionals / which, however, 
does not show the equivalence between Eqs. (23) 
and (24). Since Valdemoro's method appears in the 
literature [8], we explain our technique which gen- 
erates / from Eq. (23) through the following two 
substitutions: (i) replace 1I with lD, which is 
equivalent to assuming that *D = 0 in Eq. (17), and 
(ii) set PD = 0. The technique works because it 
assumes a separatien of particles and holes by 
setting all of the hole matrices in the expression to 
zero to produce /. For p from 2 to 5 the resulting 
RDM functionals are represented by the portions 
of the functionals in Table I that are not under- 
lined. The underlined corrections will be deter- 
mined below through an extension of the 
particle-hole arguments and later through cumu- 
lant expansions. 

Corrections for the 4-RDM and 5-RDM function- 
als may be obtained by searching for some terms 
involving the wedge products of lower RDMs 
which cancel with the corresponding corrections 
for the HRDM functionals. Consider the matrices 
2A and 3A describing the errors in Valdemoro's 
reconstruction functionals for the 2- and 3-RDMs 
as well as the matrices 2A and ^ describing the 
errors in Valdemoro's reconstruction functionals 

for the 2- and 3-HRDMs: 

2A = 2D 

= 2D 

= 2Ä 

lD Vald 

lD Vald 

and 

3A = 3D >D Vald 

-(3D-3DVald) 

-3Ä. 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

An appropriate correction for the 4-RDM and 4- 
HRDM functionals is 

4Dcorr = /c4
2A A 2A 

= kA
21 A 2A~ 

= 4D 

(33) 

(34) 

(35) 

because this term has the same functional form for 
particles and holes and yet, since they are equal, 
they cancel in the commutation relation (24). The 
proportionality factor k4 is equal to the number of 
distinct ways of distributing the four particles in 
two groups of two particles. The possibilities are 
{12K34}, {13}{24}, and {14}{23}; hence, jt4 = 3. The 
5-RDM and 5-HRDM functionals have the follow- 
ing corrections: 

5Dcorr = fc5
3AA2A 

= -(ä^A'A) 

3D 

(36) 

(37) 

(38) 

Again this term has the same functional form for 
particles and holes. Note that for odd p the correc- 
tions must have opposite signs to cancel in the 
anticommutation relation (24). As with k4, the 
proportionality factor k5 is equal to the number of 
distinct ways of distributing the five particles be- 

TABLE I  
Approximate reconstruction functionals for the p-RDMs in terms of lower RDMs where corrections to 
Valdemoro's functionals are underlined. 

5D ~5D 

3D = 3D, 
u uVa\ä _  u 

,Vald = 1D3 + 3(2D-1D2)A1D 
4D - 4DVald + corr = 1D4 + 4(3D - 1D3) A 1D - 6(2D - 1D2) A 1D2 + 3 2A A 2A 

Vald + corr = 1D5 + 10(2D-1D2) A1D3- 10(3D-1D3) A 1D2 + 5(4D - 1D4) A1D + 103A A 2A 
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tween a group of three particles and a group of 
two particles; thus, k5 = 10. 

Cumulants 

The reconstruction functionals, derived in the 
previous section through the particle-hole duality, 
may also be produced through the theory of cumu- 
lants [25-28]. We begin by constructing a func- 
tional whose derivatives with respect to probe 
variables generate the reduced density matrices in 
second quantization. Because we require that addi- 
tional derivatives increase the number of second- 
quantization operators, we are led to the following 
exponential form: 

G(/) = <<AlO exp(£j*4 + /*«,) W>,   (39) 

where the }k and its conjugate /* are Schwinger 
probe variables. For fermions these Schwinger 
probes have the property that they anticommute, 
{]k, /;} = 0. Differentiation of G(/) with respect to 
the probes leads to the accumulation of creation 
and annihilation operators before the exponential. 
Because the annihilation and creation operators do 
not commute, we need to impose a specific order- 
ing for these operators which appear before the 
exponential after differentiation. Since we wish to 
form functionals for RDMs, we define that the 
creation operators should always appear to the left 
of the annihilation operators independent of the 
order in which we differentiate with respect to the 
probes. If we wished to produce the corresponding 
HRDM functionals, we would order the annihila- 
tors to the left of the creators. We represent this 
ordering convention through the ordering operator 
O in the definition of G(/). This ordering process 
is analogous to the time ordering of the creation 
and annihilation operators which appears in the 
theory of Green's functions [29]. 

The general relation between the differentiation 
of G(/) with respect to the Schwinger probes and 
the RDMs may be characterized as 

pDh-h 
h-h- 

1 d*G 

(40) 

= ^K< p h ip 
flyJ^X (41) 

The coefficients of the multivariable Taylor series 
expansion of G(/) about the point where the 
Schwinger probes vanish are elements of the 
RDMs. Thus, G(/) is known as the generating func- 
tional for RDMs. Mathematically, the RDMs of the 
functional G(/) are known as the moments. The 
moment-generating functional G(/) may be used 
to define another functional W(/), known as the 
cumulant-generating functional, by the relation 

GO) = exp(W(/)). (42) 

Just as the moments are formed from G(/) as in 
Eq. (41), the cumulants PA are produced from W(J) 
by 

PA'»-'?" 
h-h- 

d?W 

™p! <?/,— dji2d]hdj* d]f    dj* 

(43) 

and the cumulants are defined as the coefficients 
of the multivariable Taylor series expansion of 
W(/) about the point where the Schwinger probes 
vanish. The introduction of another generating 
functional W(/) in Eq. (42) may seem unnecessary. 
The set of cumulants PA for p ranging from 1 to a 
contains the same information as the set of mo- 
ments PD for the same range of p, but the informa- 
tion is distributed differently. This different distri- 
bution of information will allow us to determine 
the reconstruction functionals for building higher 
RDMs from lower RDMs. 

As explained by Kubo [25], cumulants have the 
special property that they vanish if and only if one 
of their particles is statistically independent of the 
rest. Thus, for a mean field approximation (Har- 
tree-Fock) where each of the N particles is treated 
independently all cumulants except 1A vanish. An- 
other way of interpreting this property of cumu- 
lants is to say that the p-particle cumulant PA 
represents the part of the p-RDM which cannot be 
written as a simple wedge product of lower RDMs. 
The formula for 3DVald from Table I accounts for 
situations where two of the particles are close 
enough to interact while the remaining particle is 
sufficiently separated in space for us to assume 
that it is statistically independent of the others. 
Therefore, approximating the 3-RDM as a func- 
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tional of the lower RDMs is equivalent to assum- 
ing that 3A vanishes. Similarly, the remaining func- 
tionals in Table I which express the given p-RDM 
as a functional of lower RDMs do not accurately 
represent configurations in which all p particles 
are close enough to be simultaneously influenced 
by pairwise interactions. They assume that ''A van- 
ishes. By analogy with the convention for Green's 
functions in quantum field theory [29], we define 
the p-particle unconnected RDM (p-URDM) as the 
part of the p-RDM which can be written as wedge 
products of lower RDMs while the p-particle con- 
nected RDM (p-CRDM) is the remaining portion of 
the RDM which cannot be expressed as antisym- 
metrized products of lower RDMs. Hence, the con- 
nected RDMs are just the cumulants. 

We may express the p-RDM in terms of the 
g-CRDMS for q between 1 and p by differentiating 
Eq. (42) with respect to the Schwinger probes as in 
Eq. (40) and taking the limit as the probes ap- 
proach zero. The derivatives of the generating 
functional G(J) produce the p-RDM while differ- 
entiation of exp(W) on the right side produces 
products of elements from the CRDMs according 
to Eq. (43). Because the formula for an element of 
the p-RDM must treat the permutation of the 
upper and lower indices antisymmetrically, the 
products between elements of CRDMs may bo 
replaced with wedge products. As before, this al- 
lows us to write the formulas concisely through 
the wedge products of Grassmann algebra. The 
results for the p-RDMs through p = 6 are summa- 
rized in Table II. These functionals for the p-RDMs 
are exact, but they include the p-CRDM. An ap- 
proximation for the p-RDM in terms of lower 
RDMs may be achieved by setting the connected 
portion PA to zero. In this way we recover the 
functionals for the p-RDMs in Table I with correc- 
tions. Thus, through the particle-hole duality we 

were able to generate the unconnected portion of 
the p-RDM exactly. Again the terms missing in 
Valdemoro's approximation are denoted by an un- 
derline. In general any terms involving only 'A 
where q > 1 will cancel with the corresponding 
p-HRDM correction and not appear in Valdemoro's 
approximation. 

The reconstruction functionals may be under- 
stood as substantially renormalized many-body 
perturbation expansions. When exact lower RDMs 
are employed in the functionals, contributions from 
all orders of perturbation theory are contained in 
the reconstructed RDMs. As mentioned previ- 
ously, the reconstruction exactly accounts for con- 
figurations in which at least one particle is statisti- 
cally isolated from the others. Since we know the 
unconnected p-RDM exactly, all of the error arises 
from our imprecise knowledge of the p-CRDM. 
The connected nature of the p-CRDM will allow 
us to estimate the size of its error. For a Hamilto- 
nian with no more than 2-particle interactions the 
p-CRDM will have its first nonvanishing term in 
the (p - 1) order of the MBPT with a Hartree-Fock 
reference. This assertion may be understood by 
noticing that the minimum number of pairwise 
potentials V required to connect p particles com- 
pletely is (p - 1). It follows from this that as the 
number of particles p in the reconstructed RDM 
increases, the accuracy of the functional approxi- 
mation improves. The reconstruction formula in 
Table I for the 2-RDM is equivalent to the 
Hartree-Fock approximation since it assumes that 
the two particles are statistically independent. Cor- 
relation corrections first appear in the 3-RDM 
functional which is correct through first order of 
MBPT, and the 4-RDM functional is correct through 
second order of MBPT. 

The iterative solution of the 2,4-CSchE requires 
the reconstruction of both the 3- and 4-RDMs from 

TABLE II  
Reconstruction functionals for the p-RDMs in terms of the p-CRDM and lower CRDMs where corrections 
beyond Valdemoro's approximation are underlined. 

1D=^A 
2D = 1A A 1A + *A 

3D=1A3 + 32A A \+3_& 
4D = V + 62A A 1A2 + 43A A 1A~+32A2 + 4A 

5D =1A5 + 102A A 1A3 + 103A A 1A2 + 152A2 A 1A + 54A A 1A + 103A A 2A+ 5A 
6D = 1A6 + 152A A V + 203A A 1A3 + 452A2 A 1A2 + 154A A 1A2 + 603A A 2A A 1A 

+65A A 1A + 152A3 + 154A A 2A + 103A2 + 6A 
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the 2-RDM. Since the 3-RDM formula is missing 
some second-order corrections while the 4-RDM 
functional is exact through second order, the re- 
sulting 4-RDM will only be accurate to first order 
when we build from the 2-RDM with a functional 
of unconnected RDMs. We would like to achieve 
scheme consistency for the 3- and 4-RDM recon- 
structions such that they both are correct through 
second order [19]. In a previous study [3] we 
introduced a technique for building a 3-RDM 
which includes the second-order correction of the 
4-RDM. This is achieved by contracting the 4-RDM 
functional in Table I to the 3-RDM: 

jD 
lmpr N _ 3 

4(1D4 + 43A(3Dimpr)A
1D 

+ 6
2
AAV + 3

2
AA

2
A),   (44) 

where L\ is the contraction operator which repre- 
sents the necessary summation to obtain the 3- 
RDM from a 4-RDM. Because the 3-RDM appears 
in the 4-RDM formula, this process generates a 
system of equations whose solution yields an im- 
proved 3-RDM 3Dimpr. The contraction mapping 
from the 4-RDM to the 3-RDM maps each order of 
the perturbative expansion of the 4-RDM to the 
same order in the 3-RDM. Therefore, when we 
only neglect 4A in our approximation for the 4- 
RDM, we have a 4-RDM which is correct through 
second order; after contraction this translates into 
a system of equations for the 3-RDM which is 
correct through second order. Using the connection 
between RDMs and Green's functions, Yasuda and 
Nakatsuji have employed Feynman-Dyson pertur- 
bation theory to estimate the second-order correc- 
tion for the 3-CRDM [14]. In the present study we 
explore a third approach for achieving a 3-RDM 
which is correct to second order with the 3,5-CSchE. 
To remove the indeterminacy of the 3,5-CSchE, we 
need to build both the 4- and 5-RDMs from the 
3-RDM. Reconstruction of the 5-RDM from the 
4-RDM is correct through third order while build- 
ing the 4-RDM from the 3-RDM is correct through 
second order. While not scheme consistent, this 
method is already accurate through second order. 
However, we can also achieve scheme consistency 
by using Valdemoro's formula for the 5-RDM 
without the term 10 3A A A since this term is the 
third-order correction. Unlike the available ap- 
proaches for solving the 2,4-CSchE through second 
order, the solution of the 3,5-CSchE allows us to 

perform all reconstructions through the wedge 
products of lower RDMs without solving large 
systems of linear equations. 

Application 

To explore the accuracy of solving many-body 
systems with the 3,5-CSchE and the derived recon- 
struction functional, we solve for the ground-state 
energies and 2-particle density matrices of a 
quasi-spin model which we previously employed 
to compare solutions of the 2,4-CSchE with tradi- 
tional wave function techniques for electronic 
structure. The model was originally used by Lip- 
kin as a benchmark to investigate fermionic corre- 
lation phenomena [20, 30]. The Lipkin model con- 
sists of N degenerate states with an energy of 
-e/2 and another N degenerate states with an 
energy of + e/2. For each state there is a unique 
pair of quantum numbers m and p. The quantum 
number m indicates whether the state is a member 
of the upper (m = +1) or lower (m = — 1) energy 
level, and the quantum number p, ranging from 1 
to N, specifies the position of the state in a given 
level. These energy levels are filled with N 
fermions where at most only one fermion can 
occupy a given state. For noninteracting fermions, 
the configuration of lowest energy —Ne/2 is 
achieved when each of the N fermions occupies 
one of the N states in the lower energy level 
— e/2. We add an interaction to the noninteracting 
system according to the Hamiltonian 

H= - £ ma\liVamv 
in, p 

+ V      E      al,p/m,p2
a-m,p2a-m,Pl,     (45) 

pup2,m 

where V is the interaction strength. By the nature 
of the V interaction term, the noninteracting 
ground-state configuration only mixes with config- 
urations in which each fermion has a different p 
quantum number. Hence, for a nonzero value of 
the V parameter a total of 2N configurations may 
contribute to the correlated ground state of the 
system. Because of the model's symmetry, how- 
ever, we can group the configurations into N + 1 
classes. This reduction in basis size and additional 
computational details may be found elsewhere [3]. 
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The 3,5-CSchE in Eq. (9) is solved iteratively. 
The following scheme resembles the one employed 
by Valdemoro: 

■ Choose a trial 3-RDM and reconstruct the 4- 
and 5-RDMs. 

■ Use these 3-, 4- and 5-RDMs to build the 
corresponding R matrix through Eq. (11). 

■ Evaluate the left-hand side of the 3,5-CSchE 
in Eq. (9) with R. 

• Divide the resulting matrix from the previ- 
ous step by the energy of the original trial 
3-RDM to generate a new trial 3-RDM. 

■ Antisymmetrize and normalize the new trial 
3-RDM. 

■ Repeat all steps with the new trial 3-RDM 
until suitable convergence is achieved. 

This procedure is equivalent to the power method 
for an uncontracted eigenvalue equation [3]. A 
similar scheme is employed for the 2,4-CSchE ex- 
cept for the obvious difference that we iterate and 
reconstruct with the 2-RDM. To accelerate conver- 
gence, we use polynomial extrapolation [31] of the 
trial 3-RDMs after every three iterations to achieve 
a better estimate for the next trial 3-RDM. The 
three consecutive 3-RDMs are assigned to the first 
three values in the integer series for 1/n (1, \, and 

j), and then we extrapolate to zero which gives us 
a guess for the result after an infinite number of 
iterations. 

The energies from solving the Lipkin model 
with the 3,5-CSchE are summarized in Table III for 
the number of fermions N ranging from 5 to 50. 
The error in the correlation energy is also reported 
as a percentage where the sign indicates the direc- 
tion of the energy error. The energies in Table III 
are dimensionless because we perform calculations 
with the scaled Hamiltonian obtained by dividing 
the H in Eq. (45) by e. The dimensionless interac- 
tion strength V(= V/e) is chosen for each N to 
make the ratio of correlation energy to total energy 
in the Lipkin model consistent with the values 
reported in the literature for atoms with the corre- 
sponding number N of electrons [32, 33]. In Table 
IV we report the errors in the calculated 2-RDMs 
which were measured by the square norm of the 
difference between the exact and approximate 
RDMs. Two different 3,5-CSchE calculations are 
given Table III and IV: (V) where the 5-RDM is 
constructed using Valdemoro's formula and (U) 
where the 5-RDM is built with Valdemoro's for- 
mula plus the additional underlined correction in 
Table I. Both methods employ Valdemoro's func- 
tional for the 4-RDM with the unconnected correc- 
tion. Since the reconstruction from the 3-RDM to 
the 4-RDM neglects the 4-CRDM which contains 

TABLE III 
Ground-state energies from the CSchE methods are compared to the values from traditional wave 
approaches for a range of N within the Lipkin model. 

function 

CSchE methods Wave function methods 

3,5 (V)             3,5 (U)                2,4             HF            RS2 RS3                SDCI FCI 

N 

V 

Energy 

Error in correlation energy as a percentage 

5 -2.512467 -2.512478 -2.512396 -2.5 -2.512554 -2.512522 -2.512476 -2.512546 
0.050108 0.62 0.53 1.19 100 -0.06 0.18 0.55 0 

10 -5.015357 -5.014338 -5.015778 -5 -5.015761 -5.016192 -5.015639 -5.015869 
0.026467 3.22 9.65 0.57 100 0.68 -2.03 1.45 0 

20 -10.011923 -10.011820 -10.012600 -10 -10.012483 -10.012924 -10.012406 -10.012595 
0.015438 5.33 6.15 -0.03 100 0.88 -2.61 1.49 0 

30 -15.013404 -15.013613 -15.014257 -15 -15.014062 -15.014698 -15.013965 -15.014225 
0.011463 5.76 4.29 -0.22 100 1.13 -3.32 1.82 0 

40 -20.012436 -20.012598 -20.012983 -20 -20.012804 -20.013363 -20.012723 -20.012947 
0.009170 3.94 2.69 -0.27 100 1.10 -3.21 1.72 0 

50 -25.012525 -25.012721 -25.013016 -25 -25.012828 -25.013408 -25.012746 -25.012976 
0.008040 3.47 1.96 -0.30 100 1.14 -3.32 1.76 0 
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TABLE IV 
Errors in the 2-RDMs from the CSchE methods are compared to the errors from traditional wave function 
approaches for a range of N within the Lipkin model.3 

CSchE methods Wave function methods 

3,5 (V) 3,5 (U) 2,4 HF                   RS2 RS3 SDCI FCI 

N 2-RDM error 

5     6.10X10-5 
10    1.43 X10"4 

20    1.02 X 10-" 
30    9.46X10-5 
40   9.61 X lO-5 

50    1.03X10"" 

6.50 X lO"5 

3.17 X 10"" 
1.26 X 10-" 
1.22 X 10-" 
1.17 X 10-" 
1.15 X 10-" 

1.92 X 10-" 
8.50 X lO"5 

2.35 X lO"6 

2.19 X lO"5 

2.17 X lO"5 

2.33 X lO"5 

2.70x10-2     4.35X10-5 
1.49X10-2     2.09X10"" 
6.48X10-2     1.20X10-" 
4.61 X lO"2     1.10 X 10"" 
3.27X10-2     7.56X10-5 
2.62X10-2     6.28X10-5 

2.13 X lO"5 

5.62 X lO"5 

3.21 X lO"5 

3.19 X lO"5 

2.13 X lO-5 

1.78 X lO"5 

3.03 X 10" 
4.48 X 10" 
2.02 X 10" 
1.76 X 10" 
1.18 X 10" 
9.68 X 10" 

-4 

-4 

-4 

-4 

-4 

-5 

0 
0 
0 
0 
0 
0 

3 The errors are measured by computing the square norm of the difference between an approximate 2-RDM and the exact 2-RDM. 

third-order terms, the addition of the third-order 
correction to the 5-RDM in method (U) should not 
improve the reconstruction. Indeed the resulting 
energies and 2-RDMs are similar in accuracy 
throughout the range of N. 

For comparison the solutions of the 2,4-CSchE 
are also given as well as the results from more 
traditional wave function approaches such as 
Hartree-Fock (HF), second- and third-order 
Rayleigh-Schrödinger perturbation theory (RS2 
and RS3) for the 2-RDM, single-double configura- 

tion interaction (SDCI), and full configuration in- 
teraction (FCI). The 2,4-CSchE is solved with the 
correction for the 3-RDM in Eq. (44) and Valde- 
moro's functional for the 4-RDM with corrections. 
Attempts to solve the 2,4-CSchE with only the 
unconnected reconstruction functionals in Table I 
led to the divergence of the 2-RDMs after a few 
iterations. Similar divergence was reported by 
Nakatsuji and Yasuda [13, 14]. Comparisons of the 
energies and 2-RDMs are easily visualized in Fig- 
ures 1 and 2 which plot the 3,5-CSchE (V), the 

20        25 30 35 
Number of Fermions (N) 

40 45 50 

FIGURE 1. Difference between the approximate energy and the FCI energy is presented as a function of N for the 2,4 
and 3,5-CSchE methods as well as three wave function methods, second- and third-order RS perturbation theory for the 
2-RDMs and SDCI. 
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-3.2 

-4.8 

-*- 3,5 (V) -*- RS3 

-•- 2,4 -*- SDCI 

-*- RS2 

10 15 20 25 30 35 
Number of Fermions (N) 

40 45 50 

FIGURE 2. Logarithmic errors in the approximate 2-RDMs, generated by the 2,4 and 3,5-CSchE methods as well as 
SDCI and second- and third-order RS perturbation theory for 2-RDMs, are shown for a range of N. We measure the 
error in an approximate 2-RDM by taking the square norm of its deviation from the exact 2-RDM. 

2,4-CSchE, and the wave function methods. The 
3,5-CSchE produces energies that are similar in 
accuracy to those from RS3 and 2-RDMs similar to 
those from RS2 but slightly better than those from 
SDCI. While the reconstruction formulas employed 
to solve both the 2,4-CSchE and the 3,5-CSchE are 
exact through second order of MBPT for the RDMs, 
the 2,4-CSchE gives energies and 2-RDMs which 
are an order of magnitude better than those from 
the 3,5-CSchE. Unlike the 2,4 solution, however, 
the 3,5-CSchE employs only reconstruction with 
unconnected terms. 

Discussion 

Solution of the 2,4 or 3,5-CSchE depends on the 
reconstruction of higher RDMs from lower RDMs. 
The importance of the reconstruction represents a 
similarity between the CSchE formalism and den- 
sity functional theory (DFT). The universal energy 
functional within DFT may be considered as a 
reconstruction strategy from the 1-density to the 
2-RDM since the energy may be written explicitly 
as the expectation value of the 2-RDM with the 
2-particle reduced Hamiltonian 2K. Within the 
CSchE techniques the higher RDMs are built from 
either the 2- or 3-RDMs. Yet the reconstruction 
methods for DFT and the CSchE have an impor- 

tant difference. While the theorem of Hohenberg- 
Kohn (HK) states that the 1-density and the parti- 
cle number N uniquely determine the ground-state 
energy and wave function for an electronic system, 
it requires that information about the Hamiltoni- 
an's kinetic and electron-electron repulsion terms 
be conveyed through the unknown functional. The 
reconstruction functionals which we have pre- 
sented, however, do not explicitly contain any 
information about the Hamiltonian. They may cor- 
respond to electronic, quasi-spin, and many other 
systems. Either the 1-density or the 1-RDM alone 
is insufficient for reconstructing the N-particle 
wave function (preimage) of a correlated system 
without more specific information concerning the 
Hamiltonian. From a recent result by Coleman [34] 
it follows that every 1-RDM, deriving from a 
Hamiltonian which is invariant under time-rever- 
sal [35], may be obtained from the contraction of 
some pure N-particle density matrix correspond- 
ing to an antisymmetrized geminal power (AGP) 
wave function even if the preimage of interest is 
not an AGP function. In contrast to the 1-RDM, 
without any specific information about the Hamil- 
tonian other than that it contain no more than 
pairwise interactions, a ground-state 2-RDM con- 
tains enough information to determine its preim- 
age exactly (Rosina's theorem) [3, 36]. Therefore, 
Rosina's theorem, rather than the HK theorem, 
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provides the foundation for reconstruction from 
the 2- and 3-RDMs within the CSchE methods. 

The reconstruction functionals were derived by 
two different paths, the particle-hole duality and 
the theory of cumulants. From the particle-hole 
perspective the functional for the p-RDM reflects 
the complexity of the commutation (if p even) or 
anticommutation (if p odd) relation for a compos- 
ite particle containing p fermions. The resulting 
functionals, which we call Valdemoro's function- 
als, are approximate because some terms which 
are equal in the particle and hole functionals can- 
cel with each other in the particle-hole relations. 
We are able to infer some of these missing terms 
from the lower relations. The statistical theory of 
cumulants [25, 28] provides us with a systematic 
procedure for obtaining all of the terms for the 
p-RDM functional which may be expressed as sim- 
ple wedge products of lower RDMs, the uncon- 
nected terms. The functionals from the cumulant 
approach agree with those obtained through the 
particle-hole duality with inferred corrections. As- 
suming that the connected portion of the p-RDM 
vanishes is equivalent to accounting correctly for 
configurations where at least one particle may be 
assumed to be statistically independent of the re- 
maining p — 1 particles. However, correlated sys- 
tems will always have configurations in which all 
p fermions are close enough to interact pairwise 
even though these configurations may be less im- 
portant than the others. Thus, while the p-CRDM 
may be small, we would not expect the p-CRDM 
to vanish completely in a real system of correlated 
particles. Related to this idea is a theorem which 
proves that the vanishing of the p-CRDMs for all 
p > q where q > 3 would violate the necessary 
positivity of the moment generating functional 
G(/) [37-39]. Note that this is only for p > 3. In 
systems of independent particles, as in Hartree- 
Fock models, all of the higher RDMs may be 
expressed exactly as unconnected wedge products 
of the 1-RDM with itself because the p-CRDMs for 
p > 2 vanish. 

The notion of connected allows us to forge rela- 
tionships between the reconstruction functionals 
and renormalization of MBPT. Since the recon- 
struction functionals depend on the exact lower 
RDMs, they contain contributions from all orders 
of perturbation theory. Furthermore, we were able 
to demonstrate that the neglected p-CRDM has its 
first nonvanishing contribution from the p - 1 
term of the MBPT expansion of the RDM. The 
p-RDM functional is thus exact through the first 

p — 2 perturbative corrections beyond Hartree- 
Fock. For a noninteracting system the p-RDM re- 
construction formulas in Table I become equal to 
the 1-RDM wedged with itself p times. These 
simplified formulas 1DP may be interpreted as a 
statement of Wick's theorem [29]. Recall that the 
time-independent Wick's theorem states that the 
expectation value of creation and annihilation op- 
erators with a noninteracting wave function may 
be evaluated by the sum of all complete contrac- 
tions. Applying this rule to the p-RDM generates 
the wedge products of the 1-RDM with itself. Since 
any expression of creation and annihilation opera- 
tors may be rearranged by the anticommutation 
relation so that all creation operators appear to the 
left of the annihilation operators as in the defini- 
tion for the p-RDM, we can use this formula for 
the p-RDM, which is equivalent to Wick's theo- 
rem, to evaluate the expectation value of fermion 
operators in any order with respect to a nonin- 
teracting reference. Furthermore, the complete re- 
construction functionals in Table II represent a 
generalization of Wick's theorem for interacting 
particles. We can utilize these functionals to ex- 
press the expectation values of annihilation and 
creation operators with correlated references in 
terms of CRDMs. Expectation values, accurate to 
the (p - 1) order of MBPT, may be formed by 
neglecting the p-CRDM and higher CRDMs. This 
may be useful for multireference coupled cluster 
and MBPT schemes. A related extension of Wick's 
theorem has recently been reported [40]. 

Two techniques currently exist for making the 
3- and 4-RDM reconstruction functionals scheme 
consistent in the 2,4-CSchE. The relation between 
renormalized MBPT and the functionals indicates 
that building the 3-RDM from unconnected lower 
RDMs is accurate through first order while recon- 
struction of the 4-RDM from lower RDMs is cor- 
rect through second order. To make these two 
schemes consistent through second order, we must 
add a connected correction to the 3-RDM. Yasuda 
and Nakatsuji have estimated the second-order 
correction through arguments involving Green's 
functions [14]. We have obtained a different cor- 
rection by contracting the functional for the 4-RDM 
to the 3-RDM and then solving the resulting sys- 
tem of equations for an improved 3-RDM as indi- 
cated in Eq. (44) [3]. In this study we have pre- 
sented a new approach based on the 3,5-CSchE for 
achieving a renormalized scheme for the 3-RDM 
that is correct through second order. We may think 
of the reconstruction of the 3-RDM as being per- 
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formed by the 3,5-CSchE with which we solve for 
the 3-RDM at each step of the algorithm. Although 
the size of the 5-RDM may seem prohibitive, the 
unconnected and hence explicit dependence of the 
4- and 5-RDM functional on the 3-RDM allows us 
for large systems and basis sets to solve the 3,5- 
CSchE iteratively without storing either the 4- or 
5-RDMs. The ability to reach second-order accu- 
racy without any connected corrections may repre- 
sent an important advantage for the 3,5-CSchE 
approach. Comparison of the 3,5-CSchE with the 
2,4-CSchE as well with traditional methods like 
MBPT for RDMs and SDCI gives promising re- 
sults. By determining the 2-RDM directly, the 3,5 
as well as the 2,4-CSchEs offer an approximate 
solution to the N-representability problem and a 
fresh approach for electron correlation. 
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Introduction 

Perturbation theory, with a variety of its for- 
malisms [1], has been a powerful tool for 

taking small interactions into account. In some 
cases the splitting of the total Hamiltonian comes 
up naturally, being motivated by the physics of 
the problem (cf. molecules in external fields), while 
in other situations the partitioning is ambiguous 
and can only be governed by mathematical and 
numerical considerations. An example for this lat- 
ter case is represented by many-body perturbation 
theory (MBPT) as applied to the calculation of 
electronic energies in molecules. Here the parti- 
tioning of the total electronic Hamiltonian is moti- 
vated by selecting a zeroth order which is easily 
soluble—a practical rather than unambiguous fac- 
tor. 

In the most widely used partitioning of this 
type one chooses the the Hartree-Fock (HF) level 
to define the zeroth order. This choice still allows 
for various possibilities. The most straightforward 
idea is to consider the diagonal elements of the 
configuration interjection (CI) matrix as zero-order 
levels, while the off-diagonals represent the per- 
turbation (Epstein-Nesbet, EN, partitioning [2, 3]). 
Much better numerical results are obtained from 
the Moller-Plesset (MP) partitioning [4], where 
one chooses the Fockian as zeroth-order operator. 
Though the nth order (MP«) corrections do not 
offer an upper bound to the energy, general expe- 
rience tells us that they usually underestimate the 
correlation energy for small n. 

Standard MPn corrections with a simple 
closed-shell reference state are applicable only if 
the restricted HF determinant is an acceptable ap- 
proximation. Dissociation curves or other quasi- 
degenerate situations require a multireference ap- 
proach [5-14], special damping techniques [15-17], 
or a repartitioning of the Hamiltonian by a suitable 
level shift [10,18-20] to remove quasidegeneracies 
from the zeroth-order spectrum. A different sort of 
repartitioning has been applied by Kapuy et al. 
[21-23] in their MBPT with localized molecular 
orbitals (LMOs): They select the diagonal elements 
of the Fockian in LMO basis as zero-order energies 
and treat the off-diagonals as one-electron pertur- 
bations. 

In approximating the exact energy, it is not 
necessary to start at the HF level. One may quote 

the old idea of the PCILO method [24] where 
approximate, strictly localized MOs are used at the 
zeroth order. Correlation and delocalization effects 
are treated by PT on an equal footing, thus the 
zeroth-order approximation in PCILO is weaker 
than HF. Oppositely, one may use a zeroth order 
which is better than HF (cf. the multireference PT 
approaches [5-10] or attempts to improve geminal 
approximations perturbatively [25-30]). 

In this study we shall investigate two kinds of 
repartitioning in MBPT. In the following section, 
level shifts will be introduced within the frame- 
work of closed-shell MP theory, while in the third 
section the use of the antisymmetrized product of 
strongly orthogonal geminals (APSG) reference 
state will be discussed. A small number of prelimi- 
nary test calculations will be reported in both 
cases. 

Repartitioning by Level Shifts 

REAL SHIFTS 

In MP theory, one considers the partitioning 

H =!>,«>, + W, (1) 

where H is the total many-body electronic Hamil- 
tonian, et's are the canonical Hartree-Fock orbital 
energies, while «,+ and a, are creation and annihi- 
lation operators for molecular spin-orbitals. 

Applying a shift A, to level / corresponds to the 
repartitioning 

where 

H= Ee,<?>, + W', 

6, = Ej + A,. 

(2) 

(3) 

are the shifted one-particle energies. 
Using Eq. (2), the second-order correction be- 

comes 

AEPI=-1 E      lpqllrs]  (4) 

with usual notations, p, q referring to occupied, 
r, s to virtual levels. The third-order correction 
undergoes a similar modification and, due to the 
diagonal perturbation represented by the level shift 
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operators, it is augmented by the term 

[rs\\pq] 

p<?. rs (er + es 

-j(A, + As - kp V" 
(5) 

Such level shifts have been discussed previ- 
ously by several authors [10, 18-20]. Recently [31], 
we started to investigate the idea of replacing st 

with correlation-corrected ionization potentials or 
electron affinities e, obtained from the second- 
order inverse Dyson equation: 

e, = st + 
[ir\\pcj] 

^ pqr ei "*" er        £p        eq 

UpWrs] 

Z prs €i "■" £p        Sr        ss 
(6) 

This formula originates from the theory of one- 
particle Green's functions [32-35] by truncating 
the self-energy at second order. Although it is not 
a good approximation to obtain accurate ionization 
potentials and electron affinities, it shifts the Koop- 
mans values in a way to reduce energy gaps [e.g., 
highest occupied molecular orbital and lowest 
unoccupied molecular orbital (HOMO-LUMO) 
differences] in most cases. This feature of Eq. 
(6) is utilized in solid-state theory to compute 
correlation-corrected band structures [36, 37]. The 
slightly smaller energy denominators, received by 
substituting the Koopmans values s{ by the 
Dyson-corrected ones e„ yield slightly larger MP2 
corrections, thus a larger fraction of the correlation 
energy. 

The nonlinear equations (6) for et have to be 
solved iteratively. This is straightforward* if the 
root of the equation is far from all singularities 
(poles). In the general case, however, one has to 
introduce a complex damping of strength 17 

1 
ei = si + x £ 

[ir\\pqf 

2 pqr ei + er ~ ep - sc, ~ h 

4E 
prs 

\ip\\rs] 

2 „„ e, + ep — er — ss + ir\' 
(7) 

where r\ tends to zero. Separating the real and 
imaginary parts of this equation one may arrive at 

* 50% damping is usually sufficient to ensure convergence 
of the standard iterative series. 

the following damped expression: 

1       [ir\\pq] (e, + er - e  - e) 
e; = e; + - }_ ■ 

pqr 2 "   (e,. + er- s  - ef + rf 

1 v UpWrs] (e,- + sp - er - ss) 
T *- ~/ ^2 7 >    ^°> 
*■ prs    U, + E    - Sr - Ss)    +17 

which can be successfully used to avoid false roots 
and to ensure convergence. An example for the use 
of Eq. (8) is shown in Figure 1. 

An even simpler, iteration-free, correction to the 
Koopmans values is obtained by standard MP2 

0.4 " 

'■          / 

- 

0.2 

0 - < 

ljk 1^- 
-0.2 | i Py - 

-0.4 

1 1          /              i        1                1 1 

energy (a.u.) 

(a) 

-0.1 0 0.1 
energy (a.u.) 

(b) 

FIGURE 1. Solution of the second-order Dyson 
equation e = f(e) with (dashed line) and without (solid 
line) damping. The straight dashed line is the left-hand 
side while the curves are plots of f(e) at the right-hand 
side, (a) H2 molecule 3-21G** basis, HOMO; (b) N2 

molecule 6-3111G** basis, MO No.21. 
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theory to ionization energies 

1 „ [ ZT-1| pa] 
,MP2 =      ,  _ y     "^J  

' 'l^S' + e-e-e *■ pqr bi ~ br        bp        bq 

4E [ip\\rs] 

^ prs Ei        Sf        S*        EQ 

(9) 

Clearly, this corresponds to the first iteration of 
Eq. (6). This formula has also been used to correct 
band structures in periodic systems [38-40]. 

IMAGINARY LEVEL SHIFTS 

Similarly to the damping of Dyson equation, cf. 
Eq. (7), one can introduce an imaginary level shift 
in the energy denominator of the MP2 formula 

^'-'complex L~i   p       p     i   ,'F 
k    ^k        E0 "f llk 

(10) 

While in the case of Dyson equation the actual 
value of rj is immaterial as, after achieving conver- 
gence to the correct root, the 17 -> 0 limit has to be 
considered, in the case of Eq. (10) a suitable choice 
for T has to be made, in order to make Eq. (10) 
valid in quasi-degenerate (QD) situations. Another 
question is how to extract a real number from 
AEP0lmplex of Eq. (10). In Ref. [16], we took the 
term-by-term absolute value of this expression and 
determined T by requiring the resulting formula 
to be exact for a fully degenerate two-level system 
[16] (Tk = Wok), or by fitting T to the relevant term 
of the fourth-order expression [41, 42] (Tk = 2W0k). 
In a recent study, Forsberg and Malmqvist [43] 
took the real component of Eq. (10), just like Eq. 
(8). This has the advantage that it can also be 

applied for excited states (negative excitation ener- 
gies), but has the disadvantage that it kills a fully 
degenerate term completely, thus it is inadequate, 
e.g., for a degenerate two-level system. Forsberg 
and Malmqvist do not aim to prescribe the value 
of T but check the results for several values. 

Taking the absolute value of each term in Eq. 
(10), preserving the overall negative sign and us- 
ing Tk = 2W0k, we get the formula 

AEQD2=   _£ IW, 0k> 

r ^(E,-E0)
2 + 4|W0,| 

(11) 

This was found to work properly in quasi-degener- 
ate situations which can otherwise be handled by 
the substantially more complicated quasi-degener- 
ate PT formalism [11]. We note that another type 
of straightforward modification of the MP2 for- 
mula was proposed by Assfeld et al. [44], who 
applied the unexpanded square root which occurs 
in the exact formula of the corresponding 2-by-2 
problem for each state. As this expression does not 
contain energy denominators, it may also be useful 
in quasi-degenerate situations. 

NUMERICAL EXAMPLES 

The efficiency of the above ideas has been tested 
calculating a few examples which are to be consid- 
ered as forming a preliminary rather than repre- 
sentative set. Table I presents correlation energies 
for He and Ne atoms, the LiH molecule, and a 
cluster of 8 hydrogen atoms arranged in a linear 
chain with an equidistant ("metallic") geometry of 
R = 1 A. Second-and third-order (MPn) energies 
are evaluated with standard partitioning (denoted 
by MP/z-Koopmans in Table I), with the imaginary 

TABLE 1 
Second- and third-order correlation energies (a.u. .) in various partitionings as compared to CISD and QCISD(T). 

Method He(TZ2P) Ne(TZP) LiH (6-31G**) H8(6-31G**) 

MP2-KOOPMANS -0.029972 -0.227947 -0.035922 -0.132450 
QD2 -0.029937 -0.227865 -0.035897 -0.132324 
MP2-MP2 -0.030496 -0.243533 -0.037183 -0.145077 
MP2-DYSON2 -0.030476 -0.242371 -0.037054 -0.142052 
MP3-KOOPMANS -0.035344 -0.227353 -0.037054 -0.157396 
MP3-MP2 -0.035524 -0.225853 -0.043847 -0.161541 
MP3-DYSON2 -0.035518 -0.226016 -0.043813 -0.160911 
CISD -0.036487 -0.224202 -0.045674 -0.158255 
QCISD(T) -0.231893 -0.168463 
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level shift introduced in Ref. [16] [QD2 of Eq. (11)], 
with real level shifts obtained both by MP2 [Eq. 
(9)] and by second-order Dyson correction [Eq. (6)] 
to the one-particle energies (MPn-MP2 and MPn- 
Dyson, respectively). Variational configuration in- 
teraction with singles and doubles (CISD) values 
are given for comparison, and for Ne and H8 the 
QCISEKT) (T stands for triples) estimates are also 
indicated. We see that the small imaginary level 
shifts do not affect correlation energies apprecia- 
bly, systems in Table I not being (quasi)degener- 
ate. The applied real shifts are much larger. Values 
presented for He, Ne, and LiH give one a feeling 
that a pretty good improvement may be achieved 
by this repartitioning, although at the second-order 
standard MP-Koopmans values appear to be more 
balanced. This can be seen from the example of Ne 
where the MP2-Dyson and especially the MP2-MP2 
repartitionings apparently exhibit an overcorrec- 
tion. At third order, however, the improvement 
toward the variational values is remarkable in 
each case. The performance of the correction is 
especially advantageous for the H chain for which 
the gap-closing effect of the Dyson equation is well 
established. 

It may be of interest to check not only absolute 
values but also chemical energy differences. In 
Table II we report the inversion barrier for ammo- 
nia where the effect of repartitioning is very small 
but mostly steps in the good direction. The im- 
provement of the second- and third-order total 
energies is substantial. The second-order barrier in 
the Epstein-Nesbet (EN2) partitioning is also in- 
cluded in the table, and it seems to be the best 
among second-order results. This is not the case in 
general, however, upon checking the eis and trans 
barrier of peroxide, Dyson-corrected values proved 
to be rather bad and EN2 results were simply 

TABLE II  
Second- and third-order total energies and inversion 
barrier (a.u.) of the NH3 molecule in 6-311G** 
basis set. 

Pyramidal Planar Barrier 

SCF -56.210397 -56.200814 0.009583 
MP2 -56.427497 -56.417689 0.009808 
QD2 -56.427428 -56.417598 0.009830 
EN2 -56.480479 -56.470515 0.009964 
DY2 -56.443469 -56.433693 0.009776 
MP3 -56.439803 -56.429630 0.010173 
DY3 -56.440335 -56.430095 0.010240 
QCISDCT) -56.447435 -56.437057 0.010378 
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FIGURE 2. Potential curve of H2 molecule in 6-311G** 
basis set, obtained with imaginary (QD) and real level 
shift (DY2, DY3) technique. Closed-shell HF SCF and MP 
curves are shown for comparison. 

pathological. The occasionally catastrophic behav- 
ior of the EN2 partitioning was also reported by 
other authors [45], though in other cases it was 
used successfully with multiconfigurational refer- 
ence states [45-47]. 

Potential curves of H2, F2, and N2 are presented 
in Figures 2-4 including large interatomic dis- 
tances for which the single-reference MPn correc- 
tions fail. We computed the curves also by 
second-order imaginary level shift technique [16] 
(denoted by QD2) which is designed for quasi-de- 
generate problems using Fk = 2W0k as the damp- 
ing constant. As reported in previous studies [16, 
17, 42], the dissociation is described in a qualita- 
tively correct manner by the QD2 approach in each 
case. It was interesting to us to realize that the 
Dyson-corrected level shifts may also result in 
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FIGURE 3. The same as Fig. 2, for the F2 molecule. 
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FIGURE 4. Potential curve of N2 molecule in 6-311G** 
basis set, using RHF-based perturbation theory with 
different partitionings; DY2 and DY3 indicates real 
denominator shift. 

potential curves with a roughly acceptable dissoci- 
ation behavior (DY2 and DY3 in Figs. 2-4) within 
the investigated range. The reason for this is that 
for large interatomic distances the second-order 
Dyson equation [Eq. (6)] does not tend to close the 
HOMO-LUMO gaps as it usually does at around 
equilibrium geometries, but conversely, it tends to 
remove quasi-degeneracies. This is equally seen 
for each case studied including N2 with multiple- 
bond dissociation. We do not claim, however, that 
this latter level shift technique can be used as a 
general and automatic tool for dissociation studies. 

APSG Reference State 

GROUND STATE 

The use of Dyson- or MP2-corrected one- 
electron energies involves that, in some way, cor- 
relation effects are included already at the zeroth 
order. This can be done, however in a more sys- 
tematic manner. Various attempts to use multiref- 
erence (MR) PT [5-10] or MR coupled-cluster 
[12-14] approaches reflect the importance of this 
issue. Here we discuss the idea of using strongly 
orthogonal geminals to construct the zeroth order 
and evaluating perturbation corrections to this ref- 
erence state. Such an approach has been initiated a 
long time ago [25, 26] and has been discussed 
recently for approximate geminals [27-30]. 

We define the ground-state wave function for a 
system of N (even) electrons as 

%APSG = ^+<//2
+ ...^/2|vac>. (12) 

The  strongly  orthogonal  geminals   t//,+    are  ex- 
panded as 

«> N 
tf= Ec;„«,    « = i,2,...-, (13) 

where the superscript (r) on the summation indi- 
cates that only those indices /JL and v are consid- 
ered which belong to the subspace assigned to 
geminal i. In Eq. (13) operators a*( /x e i) create 
electrons on orbitals spanning the ;th subspace. 
The subspaces / can be built up by mutually 
exclusive sets of orthogonal one-electron functions 
which maintain strong orthogonality [48-50]. The 
expansion coefficients Cl can be optimized varia- 
tionally by solving a set of coupled local 2-electron 
Schrödinger equations [27, 30, 51] for each sub- 
space. Optimization of the subspaces themselves 
leads to the so-called APSG wave function [48-50] 
which represents the variational minimum within 
the wave function class specified by Eq. (12). The 
APSG method is size-consistent and, being triv- 
ially exact for a two-electron system, it describes 
properly the single-bond dissociation. It does not 
give, however, a sufficiently large fraction of corre- 
lation energy which motivated the development of 
extended geminal schemes [52-56]. Here we dis- 
cuss the possibility of using the APSG wave func- 
tion as a reference state in MBPT. 

Dealing with geminals in a many-body theory is 
easier if we study their algebraic properties. The 
commutators between creation/annihilation oper- 
ators for the composite quasi-particles can be writ- 
ten as 

[<//,+, </^+] = u>r,</v] = o,       (i4) 
[,//,-, ^] = S,,,Q;, (15) 

where the quasiparticle commutator has the form 
[27, 30, 51, 57, 58] 

(i) 

Q, = i- EJ5,»,, (16) 

with P'  being the first-order density matrix for 
geminal i, for which, using the convention C'ßX = 

■C for /i > A, we get [30, 51, 57, 59]: 

PL = <</'», 
(i) 

fr,-> = Ec;Ac;;A. 
A 

(17) 
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Relation (15), which is a consequence of the strong 
orthogonality of the geminals [57], is extremely 
important as it tells us that the quasi-particle cre- 
ation and annihilation operators commute for dif- 
ferent geminals. This permits us to use an analo- 
gous algebra in the evaluation of matrix elements 
as if we had a single-reference function. 

The above equations are valid only if one con- 
siders a single geminal within each subspace. This 
is normally the ground-state solution of each two- 
electron problem. For the treatment of excited 
states and PT corrections one needs locally excited 
geminals as well: 

(0 

fj,< V 

(18) 

where a labels the excited state of the z'th geminal. 
The algebraic properties are defined by the follow- 
ing quasi-particle commutator: 

i^ja'^ibl  = 8,jQab> 

(0 
Qab ~ "ab        i-i^aßaaaß- 

aß 

(19) 

(20) 

(For the transition density matrix Pmb, see below.) 
While the optimization of the expansion coeffi- 

cients is a trivial and fast algorithm, finding the 
proper one-electron functions which span the sub- 
spaces is difficult and can be quite demanding 
computationally. This can be done by successive 
orbital rotations governed by the appropriate gra- 
dients g^„ used also for optimizing multiconfigu- 
ration self-consistent field (MCSCF) orbitals [60]: 

> [IV ^     \LV FJ (21) 

for the rotation of the geminal pair JJL, V, where F is 
the generalized Fock matrix which, for geminals 
reads: 

(0 (0 
h-o = IXA PA» + E [o-Ak/i,]r^wA 

A <JK\ 

tt) (;') 
+ E £ Zi^W^Lx       (22) 

A   ;O0 KIT 

i/x e k,v e i,k # i) in terms of spatial orbitals; 
T^vaX is the element of the second-order density 
matrix where K, V, a, and A belong to the z'th 
geminal. It takes the particularly simple form 

If K belongs to the ;'th subspace and v to the z'th, 
we get the following expression for the second- 
order density matrix: 

r;<    = p; vi 

KVfTX (TK      Xv 
-P)     P! 

(24) 

Note that the intrageminal contribution (23) fac- 
torizes to the product of geminal coefficients, while 
the intergeminal contribution (24) has the structure 
of the second-order density matrix of HF theory, 
thus using matrix T requires neither extra compu- 
tations nor extra storage. The k ¥= i restriction in 
Eq. (22) reflects that intrageminal orbital pairs need 
not be rotated during optimization as the two- 
electron problems are exactly solved within each 
subspace. 

The convergence of such an optimization proce- 
dure may nevertheless be slow, so the selection of 
initial orbitals is of extreme importance. An exam- 
ple is provided by Table III where the total energy 
of the LiH molecule is shown at different levels. 
Although the basis is very small (minimal STO-6G), 
the subspace optimization is not trivial as shown 
by the second row of Table III. The corresponding 
energy was thought to be optimized if Ref. [61], 
but using Boys LMOs as initial guess one gets a 
better energy without any optimization. Varying 
the Boys orbitals one still gets an energy lowering 
of 0.05 mH. (The acronym SLG in Table III and 
below means strictly localized geminals, express- 
ing that the geminals are not fully optimized but 
are expanded in arbitrarily selected orthogonal 
subspaces.) 

The fact that Boys LMOs represent an appropri- 
ate initial guess can also be inferred from Figure 5. 
We plot there the variation of the total energy of 
some molecules as a function of a single selected 
orbital rotation parameter. The scale is chosen so 
that the Boys LMOs correspond to 0°. It is apparent 
that in two of the cases the variational minimum is 

TABLE III  
Test calculations for LiH in STO-6G basis for 
comparison to another optimized APSG 
method (a.u.). 

Method Energy 

At-Ki>^aX- (23) 

HF 
Optimized in Ref. 
SLG-Boys 
Opt.-APSG 

[61] 
-7.96663 
-7.97981 
-7.98085 
-7.98090 
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H4 3-21G basis 
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-5.58  -\ / - 
-5.585  -     \ / 

m 
c 
(0 
X 

-5.59  -          \ / 

ä -5.595  -               \ / 
o 
c 

LU -5.6  -                    \ / 

-5.605  -                          \ / 

-5.61   -                                    \-__ I 
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-84.33 
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Angle of rotation [Degree] 

(a) 

Water 3-21G basis 
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Angle of rotation [Degree] 

(b) 

HF 3-21G basis 

-20 0 20 
Angle of rotation [Degree] 

(C) 

FIGURE 5. Variation of total energies as function of 
orbital rotation parameters near to SLG-Boys wave 
function (3-21G basis), (a) H4, mixing the occupied 
bonding LMOs of the H2 molecules; (b) H20, mixing the 
lowest occupied bonding LMO of the O—H bonds; (c) 
HF, mixing the lowest occupied bonding LMO of the 
H—F bond and the lowest nonbonding LMO of F. 

almost at 0°, while for the hydrogen fluoride it is 
at around 20°, but it is still closer to the Boys limit 
than, say, to the canonical MOs. 

Having obtained the reference state, it may be 
useful for a subsequent perturbation treatment. 
The relevant second-order formulas have already 
been published in Refs. [27-29]. Among these, 
delocalization-type corrections due to single-elec- 
tron transfers vanish if the orbitals are fully opti- 
mized, while one still can evaluate the second- 
order intergeminal dispersion energy: 

AE(disp) 

_E
(M£0)l[/0g/„/j-K/o'ol't;Jl 

j<l       ab £,b + Ef E,° V 
1    y   y, l[ yd/AH 
A   L-1  t-1   ~pb J-  V> —  F" _  p0 4 ;</ ab   Ll   + £/        M c/ 

(25) 

where the prime means the restriction Ma
s
,b = 

± 1, Ml! + Mg = 0, ;'„ is the nth excited state of the 
;th geminal, and the transformed integrals over 
geminal labels can be expanded as 

(p (/) 
(26) 

The first-order transition density matrix element 
between the ground and ath state of the ;'th gemi- 
nal reads as: 

pi0" = T (c>0C!a + ri0ci"\ 
A 

(27) 

Though the APSG wave function represents a 
highly correlated multiconfiguration reference 
state, derivation of this result is straightforward 
due to the simple algebraic rules of the composite- 
particle geminal operators [Eqs. (14)-(15)]. To 
arrive at Eq. (25), one defines the zero-order 
Hamiltonian in terms of ground- and excited-state 
geminals as 

Hn 

(0 

EE £>,>,-„, (28) 

which has the property that the ground-state APSG 
wave function of Eq. (12) as well as similar wave 
functions in which one or more seminal is excited, 
are eigenfunctions of H0. The pairwise interaction 
of two such local excitations results in Eq. (25) by 
standard second-order Rayleigh-Schrödinger PT. 
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TABLE IV  
Energies of model systems (a.u.). 

PARTITIONING OF MANY-BODY HAMILTONIAN 

Basis Method H,0 HF 

STO-3G 

3-21G 

HF -1.652457 -74.964107 -98.572412 
SLG-Boys -1.695297 -75.003767 -98.593229 
Opt.-APSG -1.695760 -75.010899 -98.597985 
Opt.-APSG + disp2 -1.698419 -75.015881 -98.597985 
MP2 -1.686618 -75.004157 -98.590632 
CISD -1.715532 -75.019737 -98.599827 
HF -1.827905 -75.582739 -99.460219 
SLG-Boys -1.873473 -75.613209 -99.488554 
Opt.-APSG -1.875250 -75.648392 -99.515423 
Opt.-APSG + disp2 -1.879222 -75.688531 -99.572902 
MP2 -1.869325 -75.707172 -99.581585 
CISD -1.889984 -75.710692 -99.582181 

In Tables IV and V, a few numbers are given 
illustrating the effect of orbital optimization in 
very small basis sets. (We do not have yet num- 
bers for larger molecules and/or larger bases.) The 
bond length of HF was optimized at the HF/3-21G 
level, while for the water molecule we used r(OH) 
= 1.01 A and a(HOH) = 104°. The H4 cluster was 
constructed in a distorted arrangement: r12 = r34 

= 0.74 A, r23 = 1.0 Ä, a(123) = 80°, a(234) = 70°, 
and the (1234) dihedral angle was 20°. 

One can observe that in minimal basis the Boys 
localized orbitals represent a rather good initial 
guess to fully optimized ones, while in split-shell 
basis the optimization is more essential. It is also 
important that, with the exception of the H4 sys- 
tem, the dispersion energies, collected separately 
in Table V, are quite sensitive to the optimization. 

To judge the amount of correlation energy which 
can be described by the APSG + PT approach, one 
will need to see calculations in larger basis sets, at 
least of double £ polarized (DZP) quality. The 
small basis results of Table IV already indicate that 
the dispersive correction alone is not sufficient to 
reach the MP2 or CISD quality. At the APSG + 

disp level, all local excitations have been ac- 
counted for, as well as the intrageminal single 
electron transfers which vanish upon optimization. 
However, delocalization of the geminals involving 
two electron transfers are missing from this ap- 
proximation and may become important in larger 
systems and/or larger basis sets. 

EXCITED STATES 

The APSG wave function may be a useful refer- 
ence state for the calculation of electronically ex- 
cited states, too [62]. In the Tamm-Dankoff ap- 
proach (TDA) [63], essentially equivalent to the 
equation-of-motion (EOM) technique [60], one de- 
fines the excitation operator 0+ for the nth ex- 
cited state \n) 

Ö;|0> = \n) 

and expands it as 

0„ - LiX£AK. 
K 

(29) 

(30) 

TABLE V  
Dispersion contributions to the energy of model systems (a.u.). 

Basis Method H. H20 HF 

STO-3G SLG-Boys 
Opt.-APSG 

3-21G SLG-Boys 
Opt.-APSG 

-0.002661 
-0.002659 
-0.003917 
-0.003972 

0.005452 -0.000000 
0.004982 -0.000000 
0.008690 -0.020686 
0.040139 -0.057479 
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For the expansion coefficients X£ the general TDA 
equations are written as 

L^LK^ = CO„J:S-LKX^ (31) 

where  wn = E„ - E0  are the excitation energies 
and the TDA matrices are defined as 

^LK = <O|[AL-,[H,^]]|O> 

= <0|/Lr(H-E0)i+|0> (32) 

and 

^LK = <0|[^L~,A + ]|0>. (33) 

We recall that the general TDA equations (31) 
are exact as far as the state |0> is the true ground 
state and the operator expansion of Eq. (30) is 
complete. Substituting |0> with the Hartree-Fock 
state and limiting the expansion to single excita- 
tions, one arrives at the CI with singles (CIS) 
scheme, a simple, popular but not very accurate 
approximation to the general TDA equations. 

An important consistency requirement of the 
TDA equations is expressed by 

O„-|0> = 0 (34) 

(the ground state cannot be deexcited). The CIS 
equations satisfy this requirement, but their im- 
provement within TDA is not trivial as better 
reference states or larger operator manifolds may 
easily violate Eq. (34). 

It may be interesting to investigate whether an 
APSG reference state could be useful for this goal. 
Formally, the answer is positive. Taking Eq. (12) as 
the approximation for the ground state, and defin- 
ing the excitation operator manifold as 

A+
K=>I>;AI 0' (35) 

where </^ annihilates a ground-state geminal and 
i//pa creates one in the ath excited state, Eq. (34) 
remains valid and the APSG-TDA matrices be- 
come 

•*LJC =  <%APSG|^ofcH^fel%APSG> 

(36) 

and 

It is to be mentioned that geminal-type wave 
functions may be useful not only in connection 
with TDA but also with the random-phase approx- 
imation (RPA). In particular, Ohrn and Linderberg 
have shown that the so-called antisymmetrized 
geminal power (APG) wave function, where each 
geminal is identical, serves as an appropriate refer- 
ence state for RPA calculations [64, 65]. 

Evaluation of matrix elements in Eqs. (36) and 
(37) is lengthy but straightforward by the algebraic 
rules given earlier. For example, matrix S? is ob- 
tained as 

™LK ~  "ij   PI (8,q8ah + (l-Siq)(Ql)), 

a,b*0,L = [jqa},K = {ipb}. (38) 

^LK = (%AVSC\^0^;b^0\%
Arsc). (37) 

The excitation space represented by Eq. (35) de- 
scribes several types of single and double excita- 
tions (in terms of electrons); thus it may be more 
adequate to describe electronic excitations than the 
CIS scheme. However, intergeminal charge-trans- 
fer-type single-electron excitations are missing 
from Eq. (35)—they should be accounted for by a 
suitable perturbation of the TDA equations. We do 
not have yet any numerical results for excitation 
energies obtained by this scheme; work in both 
lines is now in progress. 
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ABSTRACT: Recently, we used Helmholtz's theorem to construct an unambiguous 
exchange-correlation energy density for use in density functional theory. This energy 
density requires only knowledge of the density dependence of the exchange-correlation 
energy functional, Exc, for its calculation. We calculate this energy density for Hooke's 
atom in three different regimes: the high-density (or weakly correlated) limit; a moderate 
density, comparable to that of the He atom; and a low density, in which the system is 
strongly correlated. We compare the exact unambiguous energy density with approximate 
energy densities found from approximate energy functionals. The exchange-correlation 
energy can be deduced directly from the density in the highly correlated limit and a new 
formula for the high-density limit of the correlation energy is given.    © 1998 John Wiley & 
Sons, Inc. Int J Quant Chem 70: 583-589, 1998 

Introduction 

A principal aim of quantum chemistry is the 
calculation of ground-state electronic proper- 

ties in an accurate and reliable fashion [1]. Tradi- 
tional approaches based on the wave function have 
recently been complimented by those of density 
functional theory [2]. Density functional calcula- 
tions are typically much less expensive computa- 
tionally and so become the method of choice for 
larger systems [3]. This advance has been made 
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possible by the increase in accuracy of generalized 
gradient approximations (GGAs) [4-9] (and hy- 
brids of GGAs with exact exchange [10-14]) over 
the local density approximation (LDA). 

The only quantity which must be approximated 
in a Kohn-Sham spin-density functional calcula- 
tion [15] is the exchange-correlation energy as a 
functional of the spin densities, Exc[ pa, pß], since 
its functional derivative, vXC(r(r) = 8Exc/8pa(r), is 
the only unknown in the Kohn-Sham equations. 
There are several popular approximations to Exc, 
including LDA, GGA, and hybrids. These approxi- 
mations can be tested by calculation of the proper- 
ties of the system, such as total energies, ionization 
potentials, binding energies, bond lengths, vibra- 
tional frequencies, and transition-state barriers and 
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by comparing them either with more accurate cal- 
culations or with experiment [16, 17]. However, all 
these properties are determined entirely by Exc, 
evaluated on different densities, which is a quan- 
tity integrated over the system. To better under- 
stand how these approximate functionals work, 
one would like to examine quantities other than 
just Exc. If your energy in a given calculation 
comes out poorly, where will you look to find out 
why? 

A simple choice might be to study the spin 
densities themselves. However, many approximate 
calculations (Hartree-Fock, LDA, GGA, etc.) yield 
very similar spin densities [18], so it is not easy to 
study an approximate density to determine the 
error in the corresponding energy functional ap- 
proximation. Furthermore, for stretched H2, some 
approximate functionals can have quite incorrect 
spin densities, while still yielding accurate total 
energies [19, 20]. Thus, the relation between the 
self-consistent spin densities and the total energy 
may be too subtle to easily learn about one from 
the other. 

Another feature which has been studied is the 
exchange-correlation hole surrounding an electron 
in the system [4, 6, 21-24]. One can consider the 
LDA and GGA energy functionals as models for 
the exact system-averaged exchange correlation 
hole. Certain aspects of the exact hole are well 
approximated in LDA [25], because the LDA en- 
ergy functional replaces the hole by that of another 
system: the uniform electron gas. Thus, various 
sum-rules and nonpositivity conditions are shared 
by the exact hole and its local approximation [26]. 
This reasoning was extended by Perdew and 
coworkers to construct a sequence of GGAs (PW86 
[4, 5], PW91 [6], and PBE [7]) in which the gradient 
expansion for the hole was corrected to include 
these good features. However, only the system 
and spherical average of these holes is accurately 
reproduced [24, 26] and, even then, the complica- 
tions of calculating these approximate holes mean 
that few systems have been tested. (On the other 
hand, the potential in LDA arises from an unspher- 
ical charge distribution [27].) Similar remarks are 
true for the LYP correlation functional [9], which is 
based on the Colle-Salvetti approximations to the 
pair correlation function [28, 29]. 

Such comparisons as mentioned in the previous 
paragraph suffer from the need for detailed knowl- 
edge of the construction of a given approximation. 
But an approximation might not carry with it a 
derivation which suggests such a comparison. For 

a practical calculation, all one really needs is an 
approximate spin-density functional for Exc. This 
naturally suggests study of vXCa(r) itself. For the 
exact case, one needs only a highly accurate den- 
sity, as several methods now exist for then solving 
for the Kohn-Sham potential and orbitals [30-34] 
and so deducing the exchange-correlation contri- 
bution to the potential. Thus, comparison of ap- 
proximate and exact potentials could be hoped to 
yield insight into how approximate functionals 
work. 

Unfortunately [18, 35, 36], potentials corre- 
sponding to accurate functionals do not look much 
like the exact potentials. Thus, the study of poten- 
tials appears to provide little guidance for the 
construction of approximate energy functionals. 
There are several ways to rationalize how these 
potentials can look so poor: 

First, focusing on correlation alone ignores a 
wealth of experience in functional approximations, 
in which the exchange and correlation errors can- 
cel. This can be understood simply in terms of the 
specific effects which occur for pure exchange [12], 
which are not captured by LDA and GGA, but 
which wash out when the Coulomb interaction 
between electrons is included. 

Next, as discussed above, system-averaging is 
important in studying the behavior of density 
functionals [37]. Many properties of approximate 
functionals are incorrect in, for example, the 
asymptotic limit far from a finite system [38], 
but these have little effect on the total energy or 
even on energy differences involving only valence 
electrons. 

Furthermore, approximate functionals which in- 
corporate only the density and its gradient cannot 
have any derivative discontinuities with respect to 
particle number, which are known to occur in the 
exact functional [39-42]. These discontinuities lead 
to constants in the potential which are missed by 
approximate functionals and so can make the cor- 
responding potentials look poorer. 

An alternative to studying the exchange-corre- 
lation potential might be provided by the ex- 
change-correlation energy density, that is, a func- 
tion of r which, when integrated over all space, 
yields the exchange-correlation energy. Unfortu- 
nately, such a requirement does not uniquely spec- 
ify which among an infinite number of choices, as 
the addition of any function whose integral over 
all space vanishes will produce another energy 
density. In fact, several choices have been sug- 
gested in the past. A popular one, especially for 
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chemical purposes, is that of Baerends and Grit- 
senko [43], who defined their energy density in 
terms of the potential contribution to the ex- 
change-correlation hole, plus the difference of the 
kinetic energy density from the interacting and 
noninteracting density matrices. While this energy 
density can be extracted from an accurate wave- 
function calculation, there is no reason why any of 
the conventional approximate energy densities, 
used to define the integrated energy, should look 
much like this one. Indeed, the LYP functional [9] 
has been integrated by parts in order to remove 
inconvenient Laplacian terms [44]. Similar argu- 
ments apply to the definition in terms of the cou- 
pling-constant integrated exchange-correlation 
hole [26]. 

Similarly, the work of Harbola and Sahni [45, 
46] and others [47] has led to an energy density in 
terms of potential and kinetic exchange-correla- 
tion fields. But the construction of, for example, 
the potential fields, is based on the exchange-cor- 
relation hole (at full coupling strength), which is 
modeled only in some GGAs. Comparisons of these 
energy densities with exact ones can only be made 
with those GGAs which provide a model for this 
hole [46]. 

The remainder of this article is devoted to the 
construction of an unambiguous exchange-corre- 
lation energy density, that is, one which is solely 
determined by the density dependence of Exc. 
The full details of the construction are given else- 
where [49], but a pedagogical derivation is given 
here. Results on the Hooke's atom (two electrons 
in an external oscillator potential) are presented for 
three cases: moderate correlation, strong correla- 
tion, and weak correlation. Atomic units (e2 = h = 
me = 1) are used throughout. 

where T is the kinetic energy; V, the ground-state 
many-body wave function; N, the number of elec- 
trons; and V, the potential energy. This may easily 
be derived by uniformly scaling the coordinates of 
the wave function [51]. We apply this theorem to 
both the physical system and the noninteracting 
Kohn-Sham system. In the former case, V = Vee + 
Vext, where Vee is the electron-electron Coulomb 
repulsion and Vext is the external potential. This 
yields 

XT = - Vee + f d3r p(r)r • Vuext(r),        (2) 

since Vee is homogeneous of degree -1 in the 
coordinates. Similarly, for the noninteracting 
Kohn-Sham system, 

2Ts = |d3rp(r)r-Vüs(r) 

= f d3r p(r)r • V(?ext(r) + vxc(r)) - U,   (3) 

where vs(x) is the Kohn-Sham potential and U is 
the Hartree energy. Subtraction of Eq. (3) from Eq. 
(2) yields 

2(T - Ts) + Vee - U = - / d3r p(r)r • Voxc(r). 

(4) 

The second term on the left can be identified as the 
potential contribution to Exc, so that the addition 
of one factor of Tc = T - Ts, the kinetic contribu- 
tion, yields Exc. Thus, 

^xc + *c -Jd3rp(r)r-Vüxc(r). (5) 

Construction of Unambiguous 
Energy Density 

In this section, we review the construction of 
the unambiguous energy density. For simplicity, 
we restrict ourselves to density functionals, but all 
results are easily generalized to spin-density func- 
tionals. 

We begin with the virial theorem [50]: 

N 

2T=<^l2>,-V,.V(r1,...,r„)|^>, (1) 
i=i 

This powerful result was proven for the exact 
functional by Levy and Perdew [51]. 

The integrand of Eq. (5) is an energy density 
which is unambiguously determined by the den- 
sity dependence of the exchange-correlation en- 
ergy functional, via the potential, its derivative. 
Unfortunately, 

1. It is an energy density not for exchange-cor- 
relation, but for exchange-correlation plus 
kinetic-correlation. 

2. Its value depends on the choice of origin. If 
the origin is shifted, the energy density 
changes (see Fig. 8 of [52]). 
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3. This energy density does not reduce to the 
familiar ex™f(p(r)), the energy density of a 
uniform gas, when vx®A is inserted on the 
right. 

The first of these shortcomings was easily 
solved, using the adiabatic connection formula of 
density functional theory [53]. A coupling-constant 
A is introduced to multiply the electron-electron 
repulsion and is varied while keeping the density 
fixed. All quantities can then be considered func- 
tions of A. In particular, Bass' relation [54] relates 

via Tc to E£, 

TC
A Ei-A 

dE£ 

dk 
(6) 

Using this on the generalization of Eq. (5) to arbi- 
trary A, we found [49] a virial for the exchange- 
correlation energy itself: 

£Xc = -jd3rp(r)r- V5xc(r), 

where 

»xc(') = ( 

>dk 
Jxc (r) 

(7) 

(8) 

is called the exchange-hypercorrelated potential, 
as it includes contributions from A > 1, at which 
the system is more strongly correlated than at 
A = 1. This potential can also be written as [55] 

dy 
vxcl p](r) = /  — vxc[ pY](r/y), 

J0    7 

where 

Pyix) = y3p(yr) 

(9) 

(10) 

is a uniformly scaled density. Thus, the integrand 
on the right of Eq. (7) forms an unambiguous 
exchange-correlation energy density, as it is com- 
pletely determined by the density dependence of 
Exc itself, via its potential, evaluated on scaled 
densities. In particular, it is very straightforward 
to modify any approximate functional to calculate 
vxc(t) instead of vxc(r) simply by scaling the den- 
sity arguments, according to Eq. (9). 

To overcome the second two difficulties, we 
generalized an argument of Levy and Perdew [51], 
which they used to show that the virial theorem 
was satisfied by LDA for a slowly varying electron 
gas. This generalization amounts to making the 

following exact identification: 

3p(r)Vüxc(r) = Vexc(r) + V X axc(r).   (11) 

Insertion of Eq. (11) into Eq. (7), followed by an 
integration by parts, shows that the axc term does 
not contribute to the energy, while the exc term is 
our unambiguous energy density. By use of the 
Helmholtz theorem of vector calculus, we can write 
an integral form for exc: 

*xc(r') = ^/d3rp(r)V5xc(r)-V—!—.   (12) 
47r-^ [r — r | 

This is an exact energy density that depends solely 
on the density dependence of the exchange-corre- 
lation energy functional. Thus, unambiguous com- 
parisons of exact and approximate results can be 
made. Furthermore, if EX°A is used on the right, 
exc (p(r)) comes out on the left. Thus, all plots of 
excf( pW) can be interpreted as approximate plots 
of the exact unambiguous exc(i). 

The right-hand side of Eq. (12) contains the 
exchange-hypercorrelated potential, that is, the 
potential integrated over coupling constants 
greater than 1, as defined in Eq. (8). This is neces- 
sary to produce the exchange-correlation energy 
density on the left. Alternatively, if vxc = u^1 is 
inserted on the right, an energy density exc(r) + 
£c(r) emerges on the left, as can be seen from Eq. 
(5). For any approximate functional, it is straight- 
forward to calculate either quantity. However, for 
the exact functional, we only have vxc(r) for a few 
model systems, where the exact density was eval- 
uated by a highly accurate wave-function calcula- 
tion and vxc calculated from it. Thus, for purposes 
of comparison, it is more convenient to study 
exc + tc. Ongoing studies of the adiabatic connec- 
tion should allow construction of vxc in the fu- 
ture. We anticipate little difference in the qualita- 
tive features of the comparison, as the hypercorre- 
lated potential is a smooth distortion of the corre- 
lated potential (see Fig. 6 of [56]). 

Results 

To illustrate this energy density, we calculate it 
for several values of the spring constant in Hooke's 
atom, which consists of two electrons in an exter- 
nal oscillator potential [57, 58]. This model has 
been used to study many density functional prop- 
erties [36, 59, 60]. 
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MODERATE CORRELATION 

We begin with a moderately correlated exam- 
ple, w = 1/2, in which Ec/Ex ~ 7% and TC/|EC| 
~ 75%. In Figure 1, we plot the radial unambigu- 
ous exchange-correlation plus kinetic-correlation 
energy density, both exactly and within several 
functional approximations. We see that, indeed, 
the LDA curve underestimates the exact one al- 
most everywhere, while the GGA curves reduce 
the maximum error significantly. The best GGA 
curve in this case is BLYP (but see real atoms in 
[49]). Note that the decay of this energy density at 
large distances is given in [49] and depends on the 
ionization potential and is not captured by any 
present-day approximate functionals. 

STRONG CORRELATION 

Next, we consider the highly correlated (or low- 
density) limit. We choose o> = 10"4, at which value 
the density is very close to semiclassical, that is, a 
Gaussian centered on the classical electrostatic 
equilibrium position [58]. At the maximum, p ~ 
10"8 or rs ~ 270. Values for the components of the 
energy are given in Table I, from which we see 
that Ec/Ex ~ 40% and TC/\EC\ ~ 4%. Thus, corre- 
lation has become comparable to exchange and is 
almost entirely static. In this extreme regime, we 
do not expect too much from our approximate 
functionals, and Figure 2 shows that the GGA 
corrections to the LSD energy density do not show 

TABLE I  
Energy components in milliHartrees for two extreme 
values of w, evaluated on the exact densities. 

Component       Exact LSD PBE        BLYP 

w=1Cr4 

Ex -3.00 -2.90 -3.40 -3.54 

Ec 
-1.24 -2.29 -1.67 -0.55 

Tc 0.05 0.20 0.17 0.003 
Ec + Tc -1.19 -2.09 -1.50 -0.55 

a) = 100 

£x -7,923 -6,773 -7585 -7717 

Ec 
-49 -221 -77 -29 

Tc 48 164 72 33 

Ec + Tc 
-0.9 -57 -4 5 

Values for o> - = 1 /2 and 0.00189 are in [56]. 

a pointwise improvement. In fact, in this regime, 
the exact energy density appears more similar to 
LSD than above. 

An important question was raised by Morrison 
and Parr [48], which can be stated as follows: 
Given the exact density of some N > 1 electronic 
problem, can you find the exact ground-state en- 
ergy without solving an N > 1 problem? Recently, 
we pointed out that the answer is yes when N = 2 
for spin-unpolarized systems [56], since the 
asymptotic decay of the density determines the 
ionization potential, so that one is left with a 
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FIGURE 1. Radial unambiguous exchange-correlation 
plus kinetic-correlation energy density for « = 1 / 2 
Hooke's atom (atomic units). 

FIGURE 2. Radial unambiguous exchange-correlation 
plus kinetic-correlation energy density for w = 10 "4 

Hooke's atom (atomic units). 
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one-electron problem to solve. Here, we point out 
that it is also true in the extreme high-correlation 
(or low-density) limit, since Tc -» 0, so that the 
virial of the exchange-correlation potential yields 
the exchange-correlation energy. 

WEAK CORRELATION 

Finally, we consider the weakly correlated (or 
high-density) limit, by studying co = 100. Now, 
Ec/Ex ~ 0.5%, while TC/\EC\ ~ 98%. In this limit, 
it becomes appropriate to separate correlation from 
exchange, since Görling-Levy perturbation theory 
applies [61]. In Figure 3, we plot the radial unam- 
biguous correlation plus kinetic correlation energy 
densities and their functional approximations. We 
now see a true limitation of LDA, in that its energy 
density does not change sign, so that there is no 
cancellation in the integral. The exact curve inte- 
grates to zero in the a> -» °° limit. The GGAs do 
better, and this is reflected in their energies, al- 
though the BLYP curve does not follow the shape 
of the exact curve. Figure 3 also highlights an 
undesirable feature of the new energy density. The 
integrated quantity vanishes, so should not the 
integrand vanish also? It would be preferable if the 
energy density never changed sign (as, indeed, the 
uniform gas energy density does not), since then 
the allocation of energy densities throughout the 
system would be cumulative, and one could more 

«a. 

o 
+ 
o 

easily define averages over the distribution. Since 
the prescription described here does not uniquely 
specify the choice of energy density, the question 
of whether such a variation can be found remains 
open. 

The high-density limit also raises a slight co- 
nundrum: Using Levy scaling [62], one finds v£ ~ 
\2v^\ in the high-density limit, where u£2) is the 
finite correlation potential when the density is 
scaled to the high-density limit, that is, V

(
Q\I) = 

limy^Kuc[ py](yr). Insertion of this A-dependence 
directly into Eq. (12) would cause the hypercorre- 
lated potential to diverge everywhere. In reality, 
this does not happen, because Ec -> -constant, 
even in the low-density limit. This implies that 
VQ ~ 0(A) as A -» oo, and this change in behavior 
always occurs for some A ~ 0(rs) for any real 
system, making the integral converge. Thus, the 
high-density limit cannot be taken before the cou- 
pling-constant integration. 

This raises an interesting point about Eq. (12) in 
the high-density limit, since it yields the correla- 
tion energy in terms of an integral which stretches 
down to the low-density (highly correlated) limit. 
For two-electron systems, one may show that the 
virial theorem becomes 

r(2) CC 

1  t   , rxdX   SV* 
(13) 

0    0.05 0.1   0.15 0.2 0.25 0.3 0.35  0.4 

where Ve* is the expectation value of the interelec- 
tronic Coulomb repulsion evaluated on the wave 
function at coupling-constant A, and E£2) = 
limy_3CEc[ py]. One may, of course, apply the 
Helmholtz construction to this expression also to 
yield an origin-independent energy density as in 
Eq. (12). 

Conclusions 

To summarize, we have presented a new tool 
for the exploration of density functionals. The un- 
ambiguous energy density provides several inter- 
esting advantages over earlier constructions, and 
preliminary calculations of this energy density are 
promising [49]. 

FIGURE 3. Radial unambiguous exchange-correlation 
plus kinetic-correlation energy density for w = 100 
Hooke's atom (atomic units). 
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ABSTRACT: A new model for the exchange potential in the framework of DFT is 
proposed. The potential is defined as 2a.xex

vpr, where ex
vvr is the exchange-energy 

density and a,, is not a constant but a functional ax[ p] to be determined iteratively. The 
exact Fock expression and the LDA, GEA, and Becke88 approximations were used as 
e£PPr. We provide results for atoms showing that this model potential yields total and 
exchange energies and other atomic properties that are in good agreement with 
Hartree-Fock values. In addition, total energies obtained by adding to the ax[ p] 
approach correlation energy corrections computed via the WL and LYP functionals are in 
close accord with experimental values.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 
591-600, 1998 

Introduction 

The one-particle equations appearing in the 
context of the independent particle model of 

electronic structure are, in general, coupled partial 
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integrodifferential equations for which it is not 
possible, due to their complexity, to obtain analyti- 
cal solutions. For this reason, they are treated 
approximately by means of a self-consistent-field 
(SCF) iterative procedure. In the Hartree approxi- 
mation [1], the "field" or effective potential in 
which a particle moves is an explicit functional of 
the one-particle density p(r) and comprises the 
external potential and the Coulomb potential ex- 
erted by the charge distribution. In the Hartree- 
Fock approximation [2], an additional exchange 
potential arises from the antisymmetry condition 
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on the N-particle wave function. In general, how- 
ever, this additional term is not a simple func- 
tional of the one-particle density. 

In 1951, Slater [3] introduced an approximation 
to the exchange potential corresponding to a 
weighted mean of the average exchange charges. 
The advantage of such an approximation was that 
it led to a single potential field for all electrons. 
When this averaged exchange charge was replaced 
by the free electron-gas expression, an exchange 
potential depending on just the one-particle den- 
sity p(r)1/3 was obtained. In this way, a natural 
connection between the local-density approxima- 
tion (LDA) [4, 5] and the SCF method was estab- 
lished. 

This approach was further extended by Gäspär 
[6] and Kohn and Sham [7] and was basic to the 
formulation of the Xa method by Slater and John- 
son [8]. However, these methods did not provide a 
satisfactory description of exchange and, in conse- 
quence, density functional calculations based gen- 
erally on the LDA approximation lead to substan- 
tial error. Moreover, exchange potentials derived 
from these functionals do not show the correct 
asymptotic behavior at large distances. 

To correct these shortcomings of LDA, the use 
of gradient-corrected density functionals has been 
advocated. In this direction, for example, Becke 
proposed a semiempirical exchange density func- 
tional [9] that produces more accurate exchange 
energies and better exchange potentials. Becke's 
semiempirical functional was reparametrized by 
Lee and Zhou [10]. But these exchange functionals 
fail to reproduce the correct asymptotic behavior 
of vx. 

Recently, Lembarki et al. [11] introduced gradi- 
ent-corrected exchange potentials with the correct 
asymptotic behavior. They built two model ex- 
change potentials with one and four parameters. 
The parameters were determined by fitting them 
to the values of the highest occupied molecular 
orbital (HOMO) energies of three atoms. In addi- 
tion, the virial relation of Levy and Perdew [12] 
was employed to reproduce the exchange energy. 
In a different context [13, 14] (namely, that of the 
local-scaling transformation version of density 
functional theory), exchange functionals with the 
correct asymptotic behavior were constructed for 
closed- and open-shell atoms. 

In the present article, based on Slater's [3] initial 
formulation of a weighted mean of the average 
exchange charges, we advance a new model where 

the approximate exchange potential is of the form 

va/pr([ p];r) = 2aA.([ p]k7'"X[ p];r).     (1) 

Here, ax([ p]) is a functional and e"'''"X[ p];r) is 
some given approximation to the exchange energy 
density. 

The reason why aA.([ p]) was selected to be a 
functional is that in this way one can devise a 
parameter-free method which retains, neverthe- 
less, the formal simplicity of the Xa method. One 
must bear in mind, however, that in our present 
model, the determination of ax([ p]) must proceed 
through a self-consistent-field approach. 

In the next section, we describe the particular 
form that we have adopted for the functional 
ax([ p]). In the third section, we carry out calcula- 
tions involving the SCF determination of the func- 
tional ax([ p]) for various choices of the exchange 
energy density e"ppr([ p];r) and present results 
some selected atoms. In particular, we discuss the 
case where e"/pr{[ p]; r) is the exact weighted mean 
of the average exchange charges and report, in 
addition, results that include correlation effects 
calculated using the Wilson-Levy (WL) [15] and 
the Lee-Yang-Parr (LYP) [16] functionals. These 
results are compared with those of Becke-Lee- 
Yang-Parr (BLYP) as well as with those based on 
the orbital-dependent potentials of Grabo and 
Gross [17]. 

The Model Exchange Potential 

The exchange energy component of the ex- 
change-only energy density functional in DFT is 
defined by 

Ex[p] = fd\ p(ti)ex([p]^i). (2) 

The exchange-only potential of DFT arises from 
the variation of the functional Ex[ p] of Eq. (2) 
with respect to the density p(r): 

8ev([p];r) 
z;t([p];r) = ex([p];r) + p(r)     A

g ; '     .   (3) 
Spit) 

Assuming that the Kohn-Sham determinant is 
formed from the spin-orbital set {i//,-(r, s) = 
cf>jit)vm is)}jiu then we have that the weighted 
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mean of the averaged exchange charges ex([ p];r) 
is given by 

I       N 
€x([p];t)=--r-   £  S(mSi,m U*(r)<£;(r) 

pit) iij=l 

x       \> i—dr' J       r - r 
(4) 

where the orbitals {4>i(r)}jt1 are the solutions to the 
exchange-only Kohn-Sham equations: 

(-|V2 + v(r) + vH([ p];r) + vx([ p];r))^(r) 

= g^.-(r). (5) 

For the case of the two-electron system, the first 
and second terms on the rhs of Eq. (3) are the same 
and, hence, we can write the exact expression 
vx([ pi, r) = 2ex([ p];r). Of course, in general, this 
is not true, but it may be assumed that for systems 
having more than two electrons a good approxi- 
mation for vx is still given by vx([ p]; r) = 
2ex([ p];r). In fact, Slater's [3] initial replacement 
of the Hartree-Fock (HF) exchange potential vx by 
the weighted mean of the average exchange 
charges, given by Eq. (4), is precisely based on this 
assumption. 

The connection with DFT appears when 
ex([ p];r) is approximated by the free-electron ex- 
pression. Due to the nonuniqueness of this approx- 
imation, one obtains the Slater term e^([ p];r) and 
the Gäspär-Kohn-Sham term efKS([ p];r), which 
are related by ex = 2/3efKS. Moreover, the repre- 
sentation of the exchange potential by means of 

iIMp];i) = 2aI£I
s([p];r); (6) 

where ax is a parameter, has been an interesting 
and widely exploited alternative in quantum- 
chemical and solid-state calculations. 

Owing to the linear dependence of the exchange 
potential Eq. (6) on ax, there does not exist a 
minimum principle associated with the total en- 
ergy of the system which may be applied for the 
variational determination of an optimum parame- 
ter ax. For this reason, there has been much debate 
in the context of the Xa method [8] concerning the 
best manner to determine this parameter. One such 
possible way [18] is to compute ax by requiring 
that the total Xa energy be equal to the precise 
HF energy. This way of fixing ax, nevertheless, 
limits the application of the model potential given 
by Eq. (6) to many-electron systems for which total 

HF energies are known. Another way [19, 21] is to 
minimize the total HF energy for the single-de- 
terminantal wave function constructed from the 
Xa orbitals. 

DEFINITION OFa, 

In the present work, we assume that ax[ p] is 
the functional 

ax[ p] = 
fd3rp(r)ex([p];r) 

-2/d3rp(r)r-Ve7f"-([p];r) 
(7) 

The rationale for selecting the above functional 
comes from the requirement that the exchange 
energy Ex[ p] computed through Eq. (2) be equal 
to the Levy-Perdew virial expression: 

EX[P] = -j>rp(r)r-Vi^f([p];r).     (8) 

Clearly, when we introduce in Eq. (8) the potential 
va/pr([ p]; r) given by Eq. (1), one obtains Eq. (7). In 
addition, the following exchange-only Kohn-Sham 
equation ensues: 

(-fV2 + v(r) + vH([ p];r) + 2ax([ p];r) 

X6a/<>r([ p];r))0,-(r) = g*>,(r). (9) 

The above procedure can be implemented by 
computing ax([ p];r) through Eq. (7) at each itera- 
tion until the value 

ax       ~ ctarL Ponfl (10) 

is attained for the optimal density popt computed 
from the orbital set {</>,(»} formed by the con- 
verged solutions to the Kohn-Sham equations (9). 
As can be seen from Eq. (7) and Eq. (1), the choice 
of some approximate form for the exchange energy 
density ex

vpr([ p]; r) is needed in order to evaluate 
ax[ p] and the exchange potential va/pr. Notice 
that ex([ p]; r) appearing in the numerator of Eq. 
(7) is given by Eq. (4) where the orbitals {</>,(r)} are 
the solutions to the Kohn-Sham equations at each 
iterative step of the SCF procedure. 

VARIATIONAL ASPECTS 

Consider the following approximate exchange 
energy functional: 

Ex
pn p] = fd3tp(t)ea/pr([ p];r),      (11) 
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where, of course, we assume a known (although 
not necessarily very accurate) ex

ppr([ p];r). This 
definition is to be contrasted with that of the 
exchange energy given by Eq. (2), where ex([ p]; r) 
[as given by Eq. (4)] is defined in terms of an 
orbital set which must be determined through the 
self-consistent solution of the Kohn-Sham equa- 
tions. A compromise between these two exchange 
functional can be reached by introducing the fol- 
lowing functional: 

Ex[p]=a[p]Ex
pp'[p], (12) 

where a[ p] is given by Eq. (7). 
We define the exchange potential va

x
vv' as the 

functional derivative of Ex[ p] with respect to p: 

,appr _ 8oix[ p] 

8p 

8ax[ p] 

SP 

E7>'r[ p] + a[ p] 
8Ea/i'r[ p] 

E"/np]+a[p] 

X   e7'"([p];r) + p(r) 
8ea

x
ppr([p];x) 

8p 

(13) 

It is seen from this equation that the exact varia- 
tional potential for the present ansatz contains 
terms which are not easily manageable. For this 
reason, we advance the conjecture (to be war- 
ranted by numerical results) that 

(8ax[p]/8p)Ex
ppr[p] +a[p]p(r) 

X(8e°x
ppr([ p];r)/8p) = a[ p]ea

x
ppr{[ p];r). 

Thus, we are led to the approximate variational 
potential given by Eq. (1). 

PROPERTIES OF y»ppr 

Clearly, the properties of the exchange potential 
vx

ppr([p];r) are going to be dictated by the ap- 
proximation used for ex

ppr([ p];r). For the particu- 
lar case when ea

x
ppr([ p];i) = ex([ p];r) (this alter- 

native can be implemented by the SCF procedure 
discussed above), we observe that vx

ppr([ p];r) has 
the following properties: 

■   It has the correct scaling behavior. This fol- 
lows from the fact that 

<'''"([ pA];r) = A^'''"([p]; Ar),   (14) 

where pA(r) = A3p(Ar). 

It has a reasonable behavior at infinity. Since 
vx

ppr([ pj;r) -* -a[ p]/r for r -> » we see 
that this behavior is very close to the correct 
one, -1/r, because a[ p] = 1. 

It is finite at the nucleus. This follows from 
the fact that va

x
ppr([ pj;r) = constant for |r| 

= 0. In this respect, it behaves like the opti- 
mized Kohn-Sham x-only potential [22]. 

Results and Discussion 

The numerical results are presented for selected 
closed- and open-shell atoms. The converged val- 
ues of as

x
CF are listed in Table I. These values are 

calculated assuming that ex
ppr([ p];r) appearing in 

Eq. (7) is given by Eq. (4). The values ax
cst also 

listed in this table are obtained by requiring that 
the total energy be equal to the corresponding HF 
(SCF) one. The differences between <xsx

CF and ax
csl 

lie in the range 0.001-0.002 for all atoms discussed 
here. It should be emphasized that the total ener- 
gies are quite sensitive to the o, values. 

The ground-state energies are calculated as the 
expectation values of the HF Hamiltonian with 
respect to a single Slater determinant constructed 
from the Kohn-Sham orbitals. This Slater determi- 
nant corresponds to one of the degenerate mi- 
crostates of the ground-state spectroscopic term. 
The actual evaluation was carried out numerically 
using a modified version of Froese Fischer's atomic 
program [23]. 

TABLE I  
Values of the parameter ax for the ground 
states of selected neutral atoms (see notation 
in text). 

Atom „Besf I „SCF 
/«; 

594 

He 1.00000 1.00000 1.00000 
Be 0.87587 0.87784 1.00225 
B 0.84684 0.84913 1.00270 
C 0.82907 0.83120 1.00257 
N 0.81978 0.82173 1.00238 
O 0.80407 0.80565 1.00197 
F 0.79576 0.79716 1.00176 
Ne 0.79247 0.79376 1.00163 
Mg 0.76947 0.77060 1.00147 
Ar 0.75094 0.75169 1.00100 
Kr 0.71508 0.71548 1.00056 
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With respect to the exchange energy, however, 
it is worthwhile to notice that due to the definition 
of the model potential given by Eqs. (1) and (7) it 
follows that Ex[ p] may be equivalently calculated 
by the expression 

Ex[p] = -2aI/d
3rp(r)r-Vef'"'([p];r)   (15) 

or by the HF expression obtained from Eqs. (2) and 
(4). 

Table II shows the ground-state energies for the 
atoms considered in this work for the case when 
ax = ax

CF (clearly, when ax = ax
est, the HF ener- 

gies are reproduced). For convenience, we intro- 
duce the notation SC-F for the exchange potential 
2ax€x

v,pr, for the case when a, is obtained self- 
consistently, that is, a,. = as

x
CF, and ex

vvr = ex is 
given by the Fock expression [Eq. (4)]. For com- 
pleteness, we compare these results with the ex- 
change-only results of Lembarki et al. [11] and 
Harbola and Sahni (HS) [25] and also with the 
OEP values of Talman [26] and Krieger, Li, and 
Iafrate (KLI) [27]. In the x-only calculations of 
Lembarki et al. [11], two gradient-corrected ex- 
change potentials having the proper asymptotic 
behavior are used. The first one is characterized by 
a single parameter and the second by four parame- 

ters (cases a and b in Table II, respectively). The 
mean deviations (A) and the maximum deviations 
(AMAX) from the HF values are given for all the 
cases considered in the two last rows of Table II. 
One may infer from these results that the exchange 
potential SC-F is more accurate than is the Lem- 
barki et al. [11] one-parameter case (a) and has the 
same accuracy as the four-parameter case (b). 

It should be mentioned that the exchange poten- 
tial SC-F leads to total energies which are slightly 
higher than the corresponding HF values. This 
follows from the variational principle as the total 
energy is computed as the expectation value of the 
Hamiltonian with respect to the single Slater deter- 
minant formed by the solution to the approximate 
Kohn-Sham x-only equations. The equivalence of 
the exchange-energy expressions given by Eqs. (2) 
and (8) guarantees that this variational property is 
maintained when the exchange energy is calcu- 
lated by using Eq. (2). 

The values of the exchange energy for several 
x-only SCF calculations are listed in Table III. Re- 
sults for ax = as

x
CF (SC-F) and ax = afst are com- 

pared with those of cases (a) and (b) of Lembarki 
et al. [11]. For completeness, we have also in- 
cluded values corresponding to the exchange po- 
tential of Becke taken from [28], and values from 
OEP, KLI, and HS calculations. The two last rows 
show A and AMAX deviations from the HF values. 

TABLE II   
Total energies of selected first- and second-row atoms for several self-consistent x-only calculations 
(in Hartrees, negative). 

Atom SC-F L1a L2b OEP KLI HS 

c HF values from [24]. 
d Mean deviation from the HF results for the column (%). 
e Maximum deviation from the HF results for the column (%). 

HF° 

He 2.86168 2.851 2.864 2.86167 2.862 2.86168 

Be 14.5670 14.531 14.575 14.5725 14.5723 14.571 14.5730 

B 24.5188 24.541 24.532 24.5278 24.5281 24.526 24.5291 

C 37.6756 37.675 37.683 37.6865 37.68865 37.685 37.6886 

N 54.3853 54.386 54.416 54.3980 54.4030 54.396 54.4009 

0 74.7933 74.822 74.805 74.8075 74.8117 74.805 74.8094 

F 99.3918 99.387 99.440 99.4075 99.4088 99.405 99.4093 

Ne 128.5276 128.573 128.563 128.5455 128.5448 128.542 128.5471 

Mq 199.5912 199.694 199.630 199.6115 199.6107 199.606 199.6146 

Ar 526.7874 526.838 526.820 526.81 526.8105 526.804 526.8175 

Kr 2752.003 2752.04 2752.0398 2752.030 2752.055 

Äd 0.020 0.087 0.021 0.003 0.002 0.007 

AMAX
e                0.042 0.37 0.081 0.006 0.005 0.014 

a, D Lembarki et al.'s SCF calculations with e xchange-only Dotential: aEq. (7) and bEq. (8) of [11]. 
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TABLE 
Absolute values of ground-state exchange energies from self-consistent x-only calculations for selected 
neutral atoms (in hartrees). 

Atom aSCF Best L1a L2b Beckec OEPd KLIe HS* HF9 

He 1.0258 1.0258 1.010 1.110 1.0273 1.026 1.026 1.0258 1.0258 
Be 2.6706 2.6714 2.625 2.672 2.6692 2.666 2.667 2.6665 2.6669 
B 3.7430 3.7442 3.694 3.732 3.7679 3.7429 3.7587 
C 5.0321 5.0334 5.021 5.040 5.0765 5.0428 5.0647 
N 6.5671 6.5687 6.567 6.560 6.6080 6.604 6.603 6.5947 6.5968 
0 8.1415 8.1430 8.105 8.157 8.2345 8.1806 8.2020 
F 9.9581 9.9596 10.010 10.005 10.0811 10.0135 10.0340 
Ne 12.0456 12.0472 12.166 12.125 12.1619 12.105 12.099 12.1218 12.1080 
Mg 15.9787 15.9803 15.977 16.072 16.0334 15.988 15.983 16.0034 15.9950 
Ar 30.1393 30.1407 30.187 30.155 30.1845 30.175 30.174 30.1888 30.1780 
Kr 93.7685 93.7702 93.892 93.876 93.8270 93.833 93.8635 93.8100 

Äf1 0.36 0.35 0.75 1.1 0.23 0.04 0.05 0.15 
^■MAX 0.76 0.74 1.72 8.21 0.40 0.11 0.09 0.43 

'Eq. (7) and bEq. (8) of [11]. a'  Lembarki et al.'s SCF calculation with exchange-only potential, 
cBecke's values are taken from Ref. [28]. 
d Exact OEP data from [29], 
eKLI data from [17]. 
fThe HS results are obtained by using a modified version of Froese-Fischer's [23] program. 
9 HF values from [28]. 
h Mean deviation from the HF results for the column (%). 
'Maximum deviation from the HF results for the column (%). 

In Table IV, we present the energies - eH0M0 of 
the highest occupied orbitals for the atoms consid- 
ered in this work. Again, we compare them to 
values obtained by Lembarki et al. [11] and to the 
HF values. It can be seen from this table that 
the orbital energies -eH0M0[as

x
CFex] as well as 

eH0M0[a^''s'ei.] calculated by the present method 
lie consistently (by almost the same factor) above 
the HF ones. Let us recall that free parameters of 
the exchange potentials of Lembarki et al. were 
determined through a fit on the OEP HOMO ener- 
gies of three atoms and, hence, these exchange 
potentials yield quite accurate eH0M0 energies. 

The exchange potentials 2<xsx
CTex plotted in Fig- 

ures 1 and 2 for the carbon and neon atoms, 
respectively, are in good accord with the "exact" 
KS x-only potentials. The latter were calculated in 
the present work by the local scaling transforma- 
tion (LST) method [30] employing even-tempered 
orbitals (8-term for s-states and 6-term for p-states). 
The potentials 2a:Jc'e;c differ from the "exact" ones 
in the intermediate region by about 10%. For com- 
parison, we reproduce GEA and LDA exchange 
potentials, which decay more rapidly for large 
values of r and which differ from the "exact" ones 

(also in the intermediate region) by about 30%. 
Note that the GEA exchange potential diverges 
near the origin. 

In the first and second columns of Table V, we 
list total energies obtained by combining the ex- 
change potential, computed via SC-F, with the 
correlation potential obtained from the Wilson- 
Levy (WL) [15] and the Lee-Yang-Parr (LYP) [16] 
functionals, respectively. For comparison pur- 
poses, we also include the total energy values 
reported by Grabo and Gross [17], the energies 
obtained by using the BLYP functional, the CI 
values, and the "exact" results. As it may be 
inferred from this table, the combinations SC-F& 
WL and SC-F & LYP yield excellent approxima- 
tions to the total energy. In fact, in both cases, the 
mean deviation is smaller than the corresponding 
one for the BLYP functional. In Table VI, we fur- 
ther analyze the present approach based on the 
SC-F&WL and SC-F & LYP functionals and com- 
pare the ionization potentials (obtained from the 
6
HOMO energies) with the experimental values. For 

completeness, we also present the values calcu- 
lated both by Grabo and Gross [17] and those 
resulting from the BLYP functional. By and large, 
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TABLE IV  
eHOMO energies for atoms (in Hartrees, negative); notation as in Table III. 

Atom 

He 
Be 
B 
C 
N 
O 
F 
Ne 
Mg 
Ar 
Kr 

„SCF 

0.918 
0.283 
0.247 
0.339 
0.442 
0.512 
0.600 
0.704 
0.213 
0.472 
0.400 

0.918 
0.283 
0.248 
0.340 
0.443 
0.513 
0.602 
0.705 
0.214 
0.472 
0.400 

L1a 

0.924 
0.334 
0.335 
0.432 
0.550 
0.552 
0.713 
0.840 
0.317 
0.601 

a,bSCF calculations with exchange-only potential, aEq. (7) and bEq. (8) from [11]. 
c HF values from [24]. 

L2b HFC 

0.910 0.918 
0.313 0.309 
0.319 0.310 
0.426 0.433 
0.548 0.568 
0.487 0.632 
0.655 0.730 
0.830 0.850 
0.278 0.253 
0.592 0.591 
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FIGURE 1. "Exact" and approximated exchange 
potentials for the C atom. 
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FIGURE 2. "Exact" and approximated exchange 
potentials for the Ne atom. 

we observe an improvement of the ionization po- 
tentials computed via the SC-F&WL and SC-F& 
LYP functional as compared with those coming 
from SC-F alone. We see that the former are in 
closer agreement with the experimental values than 
are those obtained from the BLYP functional. 

As the possibility of using different types of 
approximations for e"ppr([ p];r) is open, we per- 
formed calculations  for the total energy using 

appr _     LDA      GEA      Becke88. 
^x ^X I  fcX '      X 

AXP1/3 

_GEA = A V/3 1 + 
a 

22/3A, 

BeckeSS . 

where 

A,P1/31- 
ß 

21/3AX 1 + 6ßxsmh-\x)}' 

(16) 

Ax = -3/4(3/7r)1/3,    Cx = -7/(4327r(3772)1/3), 

ß = 0.0042,   and    x = 21/3|Vp|/p4/3. 

Results of these calculations are presented in Table 
VII (noted as SC-LDA, SC-GEA, and SC-B88), 
where we have also included the values obtained 
directly from the LDA, GEA, and Becke88 func- 
tionals and energies calculated employing LDA, 
GEA, and Becke88 orbitals and the exact exchange 
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TABLE V 
Total ground-state energies from various SCF calculations (in Hartrees, negative). 

Atom SC-F&WL SC-F&LYP Grabo-Grossa BLYPa Cla Exact3 

He 2.9039 2.9055 2.9033 2.9071 2.9037 
Be 14.6649 14.6618 14.6651 14.6615 14.6657 14.6674 
B 24.6546 24.6516 24.6564 24.6458 24.6515 24.6539 
C 37.8549 37.8522 37.8490 37.8430 37.8421 37.8450 
N 54.6124 54.6100 54.5905 54.5932 54.5854 54.5893 
0 75.0693 75.0684 75.0717 75.0786 75.0613 75.067 
F 99.7203 99.7201 99.7302 99.7581 99.7268 99.734 
Ne 128.9118 128.9113 128.9202 128.9730 128.9277 128.939 
Mg 200.0364 200.0514 200.062 200.093 200.059 
Ar 527.5791 527.5385 527.553 527.551 527.604 
Kr 2753.905 2753.7523 

5* 0.016 0.022 0.009 0.030 0.009 
A       c 

0.042 0.062 0.016 0.12 0.012 

a Values taken from [17]. 
b Mean deviation from the "exact" results for the column (%). 
c Maximum deviation from the "exact" results for the column (%). 

TABLE VI 
lonization potential from the HOMO energies of few neutral atoms (in Hartrees). 

Atom SC-F&WL SC-F & LYP Grabo-Gross3 BLYP3 Expt.3 

He 0.949 0.950 0.945 0.585 0.903 
Be 0.321 0.303 0.329 0.201 0.343 
B 0.281 0.271 0.328 0.143 0.305 
C 0.376 0.367 0.448 0.218 0.414 
N 0.482 0.473 0.579 0.297 0.534 
O 0.553 0.546 0.559 0.266 0.500 
F 0.643 0.636 0.714 0.376 0.640 
Ne 0.748 0.742 0.884 0.491 0.792 
Mg 0.243 0.233 0.273 0.168 0.281 
Ar 0.521 0.504 0.619 0.373 0.579 
Kr 0.446 0.430 0.514b 

a Values taken from [17]. 
b Value from [31] 

energy expression Eq. (2). It is interesting to note 
that the present approach leads to a substantial 
improvement for the LDA and GEA cases. For 
example, the mean deviation A goes from 1.56 to 
0.011 for LDA and SC-LDA, respectively. Simi- 
larly, we observe an improvement from 0.33 for 
GEA to 0.044 for SC-GEA. This effect is less pro- 
nounced, albeit present, for the Becke functional. 
The energies EHF[$LDA] and EHF[(i>GEA] are closer 
to the HF values than those of LDA and GEA (i.e., 
calculated with the original LDA and GEA ex- 
change energy expressions). The mean deviation A 

for EHF[$>GEA] has the same value as for SC-LDA 
(0.011) and is smaller than A for SC-GEA (0.044). 

We should note that a virial relation holds (up 
to three or more decimals) for all methods em- 
ployed. However, for the LDA and GEA function- 
al, the virial relation holds only if we calculate the 
exchange energy with the original LDA or GEA 
exchange-energy expressions. 

More detailed results of SCF calculations with 
-avv .LDA (or ea

x 
appr _     S e. eLDA ) are given in 

Table VIII. The modified LDA results presented in 
Table VIII are surprisingly accurate. Let us remark 

598 VOL.70, NO. 4/5 



SCF WITH DENSITY-DEPENDENT LOCAL-EXCHANGE POTENTIAL 

TABLE VII ^_^_  
Comparison of total energies of spherically symmetric first- and second-row atoms from SCF x-only calculations 
with different e*ppf = €L

X
DA, e^EA, e!ec,te, and LDA, GEA, and Becke88 results.3 

Method/Atom He Be Ne Mg Ar Kr Ab XMAX 

SC-LDA 2.8609 14.5707 128.5332 199.6007 526.7981 2752.015 0.011 0.027 

LDA 2.7236 14.2233 127.4907 198.2488 524.5174 2746.866 1.56 4.83 

EHF[*
LDA] 2.8578 14.5681 128.5275 199.5973 526.7950 2752.011 0.033 0.14 

SC-GEA 2.8563 14.5679 128.5164 199.5959 526.7862 2752.002 0.044 0.19 

GEA 2.8423 14.4871 128.2215 199.1364 525.9354 2749.877 0.33 0.68 

EHF[<S>GEA] 2.8606 14.5712 128.5371 199.6050 526.8060 2752.026 0.011 0.038 

SC-B88 2.8608 14.5706 128.5330 199.6006 526.7978 2752.015 0.012 0.031 

B88 2.8634 14.5664 128.5901 199.6320 526.7998 2752.101 0.025 0.060 

HF 2.86168 14.5730 128.5471 199.6146 526.8175 2752.055 

a All values were obtained by means of a modified version of the program described in [23]. 
b Mean deviation from the HF results for the column (%). 
c Maximum deviation from the HF results for the column (%). 

TABLE VIII  
Orbital, exchange, and total energies computed 
for selected closed- and open-shell atoms using 
SC-LDA and comparison of total energy with 
HF results 

TABLE IX  
Calculations for selected atoms using SC-LDA for 
exchange plus the WL functional for 
electron correlation. 

Atom 
Atom tHOMO 

eHOMO 

£ exacts 
Total 

He 0.611 1.0226 2.9032 2.9037 

He 0.582 1.0175 2.8609 2.86168 Be 0.232 2.6736 14.6697 14.6674 

Be 0.195 2.6633 14.5707 14.5730 B 0.155 3.7514 24.6615 24.6539 

B 0.125 3.7355 24.5252 24.5291 C 0.223 5.0453 37.8623 37.8450 

C 0.190 5.0253 37.6824 37.6886 N 0.297 6.5832 54.6189 54.5893 

N 0.261 6.5592 54.3911 54.4009 O 0.367 8.1719 75.0764 75.067 

O 0.330 8.1468 74.8000 74.8094 F 0.443 9.9998 99.7272 99.734 

F 0.404 9.9728 99.3983 99.4093 Ne 0.526 12.0948 128.9178 128.939 

Ne 0.485 12.0654 128.5332 128.5471 Mg 0.186 15.9961 200.0465 200.059 

Mq 0.155 15.9739 199.6007 199.6146 Ar 0.407 30.2106 527.5904 527.604 

Ar 0.360 30.1653 526.7981 526.8175 Kr 0.361 93.8509 2753.9173 

Kr 0.316 93.7936 2752.0147 2752.055 
All values are in Hartrees, ne gative. For comparison, the 

All values are in Hartrees, negative. 'exact" values of total energy are listed. 
1 Values taken from [17]. 

for clarity that since in the present approach as
x
CF 

is calculated self-consistently it is not—as in the 
case of the original LDA or HF-Slater methods—a 
parameter that we can adjust to fit some given 
result. It is for this reason that we regard the 
present approach as a parameter-free method. 

In Table IX, we present results obtained by 
solving the Kohn-Sham equations where in addi- 
tion to the exchange potential generated from SC- 
LDA we have added the WL correlation potential. 
Again, we observe that the results are quite accu- 
rate. 

While this article was under review, there ap- 
peared an article by Cortona [32] where he pre- 

sented a method quite similar to the one advanced 
here. In fact, Cortona's approach corresponds to 
the particular instance where e"ppr = e^DA. His 
results are in complete agreement with ours (up to 
all decimals reported in [32]) for closed-shell atoms. 
For open-shell atoms, his results differ from ours 
due to the fact that he used a spin-unrestricted 
approach. 
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Introduction 

The importance of higher excitations in the 
description of dynamic electron correlation 

effects has been well understood for several years. 
In the absence of a multiconfiguration reference, 
for example, it has been shown that up to hextuply 
excited determinants must be included in the cor- 
related wave function in order to obtain even 
qualitatively correct predictions of bond-breaking 
processes, particularly in multiply bonded systems 
[1]. For regions of the potential energy surface near 
the equilibrium structure, however, the outlook is 
not quite so bleak. In systems for which a single- 
determinant reference wave function provides a 
reasonable zeroth-order approximation, only sin- 
gle, double, and triple excitations may be neces- 
sary in order to obtain quantitatively accurate pre- 
dictions of molecular properties. 

In the coupled-cluster (CC) model of electron 
correlation [2-5], the inclusion of all triply excited 
determinants (CCSDT) [6-8] is, in general, too 
computationally intensive to apply to all but the 
smallest molecular systems, and much effort has 
been devoted to the construction of reliable ap- 
proximations. Both iterative [9-11] and nonitera- 
tive [10, 12, 13] approaches have been examined, 
and the so-called CCSD(T) method, which includes 
all singles and doubles [14, 15] as well as a pertur- 
bational estimate of connected triple excitations 
[12, 13, 16-19], provides perhaps the best balance 
between accuracy and affordability of any single- 
reference approach [5, 20-23]. 

Recently, it has been shown [24] that equation- 
of-motion coupled-cluster theory (EOM-CC) 
[25-30] provides a unique perspective on the 
CCSD(T) method. Instead of taking the 
Hartree-Fock determinant as the zeroth-order 
wave function and subsequently decomposing the 
CCSD equations in terms of the many-body per- 
turbation expansion, as is usually done, the CCSD 
wave function is taken as zeroth-order and the 
energy viewed as the lowest eigenvalue of an 
effective Hamiltonian with associated left and right 
eigenvectors. By substituting converged CCSD 
cluster amplitudes in place of the left eigenvector 
in the lowest-order energy correction, the usual (T) 
energy expression is obtained. In this work, we 
examine the alternative correction obtained by 
avoiding this final substitution and preserving the 

left eigenvector in the equation. [This approach 
was used previously [31] to develop a closely 
related triple-excitation correction for the equa- 
tion-of-motion coupled-cluster method for ionized 
states (EOMIP-CC). Footnote 19 of Ref. [31] com- 
pares this to the triples correction investigated in 
this work.] The resulting formula is more expen- 
sive to calculate than the (T) correction. In the 
following section, we outline the theoretical basis 
for the energy expression and discuss its efficient 
implementation. In the third section we apply the 
method to selected systems for which triple excita- 
tions are particularly important. 

Theory and Implementation 

In EOM-CC theory,^ the normal-ordered elec- 
tronic Hamiltonian (H) undergoes a similarity 
transformation of the form 

H = e-fHef, (1) 

where the cluster operator (f) that parametrizes 
the transformation may be taken from a related, 
ground-state coupled-cluster wave function. The 
resulting operator (H) is then diagonalized within 
a selected space of determinants [usually chosen to 
be the reference (|0>) and all excitations generated 
from it by T]. The lowest eigenvalue is the 
ground-state CC energy, Ecc, which, due to the 
non-Hermiticity of H, has distinct biorthogonal 
right and left eigenvectors, 

H|0> = Err|0> 

and 

<0|J#H = <0L#E, cc 

(2) 

(3) 

respectively. If the diagonalization space is defined 
to include all possible excitations from |0>, the 
similarity transformed Hamiltonian has an eigen- 
value spectrum identical to that of the nontrans- 
formed (full configuration interaction) Hamilto- 
nian. However, this space is usually truncated to 
produce only singly and doubly excited determi- 
nants, defining the so-called EOM-CCSD approxi- 
mation. 

We may partition the complete determinant 
space |h> into the reference |0>, |g> (all singly and 
doubly excited determinants generated from |0) by 
the truncated T) and |q> (all remaining determi- 
nants). By defining  |p> = |0> U |g), the effective 
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Hamiltonian may be written as 

H (4) 

We may use Löwdin's partitioning approach [32] 
to solve for an eigenvalue of the complete Hamil- 
tonian in terms of the projections of the left (J?) 
and right (^0 eigenvectors onto the |p> space to 
give 

£       =J? H   <k '-"exact P     PP     P 

+4Hpq(£exacllqq-Hqq)"
1Hqp4.   (5) 

The second term on the right-hand side of Eq. (5) 
may be considered as the exact correction to an 
approximate eigenvalue obtained by diagonalizing 
H within the |p> space. By first choosing a parti- 
tioning of H and subsequently expanding the in- 
verse in Eq. (5) in a power series [32], one may 
obtain a variety of iterative approaches for calcu- 
lating the eigenvalue Eexact. (If the operator used in 
Eq. (5) is the bare electronic Hamiltonian H in- 
stead of its similarity-transformed counterpart H, 
a power series expansion provides the usual 
Rayleigh-Schödinger or Brillouin-Wigner pertur- 
bation theories, as discussed by Löwdin [32].) 

A many-body perturbation theory partitioning 
of the (nontransformed) electronic Hamiltonian 
into zeroth- and first-order components, viz. 

H = H[0! + H[1], (6) 

leads to an order-by-order expansion of the simi- 
larity-transformed Hamiltonian [33]: 

H = HW + HW+HW + ..., (7) 

and an analogous expansion of the energy 

Eexact = £[01 + E[11  + E[21+£[3)  + ---- (8) 

If we further define the |p> space projection of H to 
be zeroth-order (along with its corresponding left 
and right eigenvectors), order-by-order corrections 
toward the exact energy may be obtained which 
depend strictly on the partitioning of the bare 
electronic Hamiltonian used in Eq. (6). Here we 
choose the Moller-Plesset partitioning [34] such 
that the Fock operator (F) is used as H[0]. Since 
c^p = 1 (i.e., the CCSD equations have been solved), 
it can be shown that the lowest order correction to 

the CCSD energy appears in third order as [24] 

AEPl = <0|^|S><S|Ht1l|T>D3<T|H[2]|0> 

+ <0|^|D><D|Hmrr>D3<T|Hra|0>,   (9) 

where the notation J^js intended to imply only 
the left eigenvector of Hpp rather than the p-space 
projection of the exact left eigenvector, |S>, |D>, 
and |T> denote singly, doubly, and triply excited 
determinants relative to |0), respectively, and D3 

is a shorthand notation for the usual energy de- 
nominator, KTIH^IT)]-1. 

As pointed out previously [24], the form of Eq. 
(9) is identical to the conventional (T) correction if 
the adjoint of the cluster operator TT is used in 
place of the left eigenvector J?. The first term on 
the right-hand side of Eq. (9) is therefore analo- 
gous to the fifth-order EST component of the (T) 
correction, while the second corresponds to the 
fourth-order EDT component [18]. The difference 
in perturbational order between these terms is due 
to the fact that the earliest contribution of T2 in 
Moller-Plesset theory is to the first-order wave 
function, while that of T1 is to the second-order 
wave function. Both terms contribute to the third- 
order correction in the present framework, where 
J? is retained in Eq. (9), because both single- and 
double-excitation components of the left-hand 
eigenvector are zeroth order. 

In the more conventional (T) approach, the en- 
ergy expression has a more symmetric form due to 
the presence of cluster operators on both sides of 
each term in the equation. As a result, only oneyf7 

term (namely H[1]T2 -* T3) must be evaluated. In 
the current theory, however, the energy expression 
contains components of the left eigenvector on one 
side and cluster operators on the other. Thus, two 

JV7 expressions must be evaluated: the same T2 

containing term as in the (T) correction, as well as 
an analogous term involving J?. In addition, the 
number of JVb steps which must be evaluated is 
doubled for the present theory since the ground- 
state left eigenvector must be constructed as well. 
(The so-called A equations, which were developed 
within the framework of coupled-cluster gradient 
theory [35-38] must be solved via an JV6 proce- 
dure in order to obtain the left eigenvector from 
the relation J?= 1 + A.) Hence, the proposed 
asymmetric triple-excitation correction, which we 
will hereafter refer to as a-CCSEXT), is approxi- 
mately a factor of 2 more expensive to evaluate 
than that defined by CCSEHT). This triples correc- 
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tion has also been independently examined re- 
cently by Kucharski and Bartlett [39] who com- 
pared this approach to a series of similar methods 
obtained using several different coupled-cluster 
energy functionals. We have implemented the a- 
CCSEKT) method in a local version of the ACESII 
program system [40]. 

Test Applications 

POTENTIAL ENERGY CURVE OF H20 

Due in part to the availability of full configura- 
tion interaction (FCI) data [41-44], a popular test 
of approximate electron correlation approaches has 
been computation of single-point energies of H20 
at equilibrium and stretched r(0—H) bond lengths 
[6, 9, 13, 44-46]. Using the geometries reported 
previously by Saxe and co-workers (Re) [41], Har- 
rison and Handy (1.5RC and 2.0Re) [42], and Olsen 
and co-workers (2.5RC and 3.0Re) [44], as well as 
additional structures at 1.25Re, 1.75R(„ and 2.25Re 

summarized in Table I, we have computed a- 
CCSrXT) energies using the cc-pVDZ basis set of 
Dunning [47]. For comparison to the FCI and 
CCSDT results reported by Olsen and co-workers 
[44], no orbitals were frozen in the correlated cal- 
culations. It should also be noted that the spin-re- 
stricted Hartree-Fock (RHF) reference determi- 
nants used at the longer bond lengths (specifically 
2.5Re and 3.0Re) are those which correlate back to 
the lowest-energy RHF wave function at the equi- 
librium structure, but are not energetically opti- 
mum. 

Table II summarizes the total energies at the 
RHF, CCSD, CCSTXT), a-CCSD(T), CCSDT, and 
FCI levels of theory, as well as differences from the 
FCI and CCSDT energies for each method. In addi- 
tion, Figure 1 provides a plot of the FCI data 
points reported in Ref. 44 and the potential energy 
curve for each of the coupled-cluster methods. The 
FCI data points show the expected asymptotic 
behavior near -79.911 E,, while a characteristic 
nonvariational "collapse" of each coupled cluster 
potential energy curve can be observed as the 
bonds are stretched. This gradual failure of the 
approximate methods is a consequence of the in- 
creasing inadequacy of the single-determinant RHF 
reference wave function. The infinite-order CCSD 
and CCSDT methods show resistance to this col- 
lapse even as far out on the potential curve as 
3.0R.. The CCSD(T) method, on the other hand, 

TABLE 1 
Nonzero components 
ofthe1.25fie, 1.75Re, 
used in this work.8 

of the Cartesian coordinates 
and 2.25fle H20 geometries 

xRe                 Oz Hy Hz 

1.25 -0.14687455 
1.75 -0.20562438 
2.25       -0.26437420 

1.89407696 
2.65170774 
3.40933853 

1.16550258 
1.63170361 
2.09790464 

aOther geometries are the same as those used in Ref. 44. 
CZv symmetry is assumed with the C2 axis coincident with 
the z axis and the molecule lying in the yz plane. 

fails much sooner and shows a strong decrease in 
curvature as early as 2.25R,,, while the a-CCSD(T) 
introduced here begins to collapse further out (near 
2.75R,). As the O—H bonds are stretched, the 
a-CCSD(T) energy remains somewhat closer to FCI 
than does CCSD(T). Most important, however, the 
a-CCSD(T) potential energy curve follows the full 
CCSDT curve very closely from above across the 
entire range of geometries and finally crosses it 
only once the longest bond lengths are reached. 

HARMONIC VIBRATIONAL FREQUENCIES 
OF 03 

One of the most challenging problems for state- 
of-the-art correlated methods is the prediction of 
the harmonic vibrational spectrum of ozone. Nu- 
merous studies have appeared in recent years 
which make direct comparisons between experi- 
mentally derived harmonic frequencies [48, 49] 
and those obtained using configuration interaction 
[50-52] or coupled-cluster methods [12, 53-60]. In 
order to compare the performance of a-CCSEKT), 
CCSD(T), and CCSDT, we have computed opti- 
mized geometries and harmonic vibrational fre- 
quencies for ozone using DZP [61] and cc-pVTZ 
[47] basis sets. The core electrons were not corre- 
lated with either basis set, and the three 
highest-lying virtual orbitals were deleted for all 
calculations carried out with the smaller DZP ba- 
sis. These results are summarized in Table III. 

With both basis sets, the a-CCSD(T) prediction 
of the equilibrium geometry lies slightly further 
away from the CCSDT prediction than CCSD(T), 
though the differences are small. For the problem- 
atic asymmetric stretching frequency (w3), how- 
ever, the a-CCSEKT) method provides considerably 
better agreement with CCSDT than does CCSEXT). 
With the DZP basis set, the a-CCSEKT) frequency 
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TABLE II  
Total energies (in Eh + 75), energy differences (in mEh) from the FCI energy (in parentheses) and from the 
CCSDT energy (in brackets) for restricted Hartree - Fock and a number of approximate coupled-cluster 
methods for H20 at equilibrium and stretched geometries using a cc-pVDZ basis set.a 

Method 1.25R. 1.5fl„ 1.75RC 2.0fl„ 2.25fl„ 2.5fl„ 3.0flo 

RHF -1.024039 -0.930811 -0.802387 -0.685657 -0.587711 -0.506904 -0.441244 -0.344392 
(217.821) — (269.961) — (363.954) — (476.747) (567.554) 
[217.328] [238.455] [268.538] [310.294] [365.359] [433.431] [501.499] [607.680] 

CCSD    , -1.238116 -1.164159 -1.062305 -0.981683 -0.929633 -0.904385 -0.897684 -0.901097 
(3.744) — (10.043) — (22.032) — (20.307) (10.849) 
[3.251] [5.107] [8.620] [14.268] [23.437] [35.950] [45.059] [50.975] 

CCSD(T) -1.241202 -1.169006 -1.070717 -0.996436 -0.955485 -0.946101 -0.960555 -1.002458 
(0.658) — (1.631) — (-3.820) — (-42.564) (-90.512) 
[0.165] [0.260] [0.208] [-0.485] [-2.415] [-5.766] [-17.812] [-50.386] 

a-CCSD(T) -1.241162 -1.168878 -1.070217 -0.994754 -0.950967 -0.936454 -0.939937 -0.953788 
(0.698) — (2.131) — (0.698) — (-21.946) (-41.842) 
[0.205] [0.388] [0.708] [1.197] [2.103] [3.881] [2.806] [-1.716] 

CCSDT -1.241367 -1.169266 -1.070925 -0.995951 -0.953070 -0.940335 -0.942743 -0.952072 
(0.493) — (1.423) — (-1.405) — (-24.752) (-40.126) 
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

FCI -1.241860 — -1.072348 — -0.951665 — -0.917991 -0.911946 
(0.000) — (0.000) — (0.000) — (0.000) (0.000) 

[-0.493] — [-1.423] — [1.405] — [24.752] [40.126] 

aFCI and CCSDT results at Rp, 1.5fip , 2.0flp,2.5fte, and 3.0ftP were taken from Ref. 44. 

-75.85 

-75.9 

-75.95 

-76 

tu-        -76.05 
LU 

-76.1 

-76.15 

-76.2 

-76.25 

FCI 
CCSD 

CCSD(T) 
a-CCSD(T) 

CCSDT 

FIGURE 1. FCI and coupled-cluster potential energy curves (in Eh) for H20 at equilibrium and stretched geometries 
using a cc-pVDZ basis set. 
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TABLE III 
Coupled-cluster predictions of the equilibrium geometry and harmonic vibrational frequencies of ozone. 

DZP basis cc-pVTZ basis 

CCSD CCSD(T) a-CCSD(T) CCSDTa CCSD CCSD(T) a-CCSD(T) CCSDTb Expt.c 

1.26291 
117.369 

1.28690 
116.798 

1.28293 
116.939 

1.286 
116.7 

1.24993 
117.584 

1.27550 
116.948 

1.27143 
117.084 

1.274 
116.8 

1.272 
116.8 

0)3 

1255.79 
747.91 

1237.42 

1129.84 
702.82 
977.12 

1156.55 
710.97 

1059.02 

1141 
705 

1077 

1277.66 
762.97 

1265.94 

1153.10 
715.69 

1054.32 

1179.17 
724.05 

1130.51 

1163 
717 

1117 

1135 
716 

1089 

aRef. 58. 
bRef. 60. 
°Refs. 48 and 49. 

of 1059 cm-1 lies only 18 cm-1 below the full 
CCSDT result, while CCSD(T) gives a value that is 
100 cm-1 too small. As the one-electron basis is 
improved to cc-pVTZ, the CCSD(T) prediction for 
o)3 still lies about 63 cm"1 below the CCSDT value 
of 1117 cm"1 recently reported by Watts and 
Bartlett [60], while the a-CCSEKT) prediction moves 
even closer to only 13 cm-1 above the CCSDT 
result. Although there has recently been' some 
speculation as to the adequacy of correlated meth- 
ods which do not include the effects of connected 
quadruple excitations for the ozone problem [60], 
the a-CCSD(T) method clearly provides results 
which closely approximate those of the substan- 
tially more expensive CCSDT approach. 

EQUILIBRIUM BOND LENGTH OF N2 

In recent work examining the basis-set conver- 
gence of the CCSDT method, Halkier and co- 
workers [62] determined equilibrium geometries 
for a number of closed-shell molecules using the 
series of correlation-consistent basis sets devel- 
oped by Dunning [45]. Of particular interest in 
their work was the comparison between CCSD(T) 
and CCSDT predictions using the large cc-pVQZ 
basis set. For nearly all of the molecules they 
examined, the differences between the two meth- 

o 

ods were less than 0.0001 A. The only exception 
was for the equilibrium bond length of N2 where a 
difference of 0.0006 A was noted. As a third test of 
the a-CCSD(T) method, we have optimized the 
geometry of N2 within the cc-pVQZ basis set for 
comparison to the results reported by Halkier and 
co-workers [62]. These data are summarized in 
Table IV. The CCSD(T) method predicts an equi- 

librium bond distance of 1.09780 A, a difference of 
only 0.0003 A from the CCSDT result. The a- 
CCSD(T) method therefore represents a significant 
improvement over the CCSD(T) (relative to 
CCSDT) in this example. 

Conclusions 

A noniterative triple-excitation correction for the 
CCSD energy has been studied. This approach, 
denoted a-CCSD(T), is obtained by using the left 
and (trivial) right eigenvectors of the similarity- 
transformed Hamiltonian corresponding to the 
CCSD energy as zeroth-order wave functions in a 
perturbation expansion of the exact energy. The 
conventional (T) correction, which is approxi- 
mately a factor of 2 less expensive to compute than 
a-CCSD(T), may be considered an approximation 
to the present approach obtained by substituting 
cluster amplitudes (T) in place of the components 
of the left eigenvector in the energy expression. 

We have shown that the a-CCSD(T) method 
provides predictions of molecular properties that 
compare closely to those of the very expensive 
CCSDT method, including difficult cases such as 

TABLE IV 
Equilibrium bond length (in A) of N2 determined 
within the cc-pVQZ basis set of Dunning [47] using 
a number of coupled-cluster methods.8 

CCSD CCSD(T)        a-CCSD(T)      CCSDT 

1.09089 1.09809 1.09780 1.09746 
aFull CCSDT results have been taken from Ref. 62. 

606 VOL.70, NO. 4/5 



ASYMMETRIC TRIPLE-EXCITATION CORRECTION 

the harmonic vibrational spectrum of ozone and 
the equilibrium bond length of N2. [We have also 
computed single-point energies for 10 molecules 
studied previously [63]. Using the geometries and 
basis sets given in Ref. [63] for CH4, H20, HF, N2, 
F2, NO\ 03, C2/ BeO, and CN\ the a-CCSD(T) 
method gives an average absolute error (relative to 
CCSDT) of 711 iiEh compared to 762 mE,, for 
CCSDCD, 14296 fiEh for CCSD, 2418 /u,Eft for 
CCSDT-la [9], 1914 fiEh for CCSDT-lb [10, 11] 
1037 fiEh for CCSDT-2 [10, 11], 1236 fiEh for 
CCSDT-3 [10, 11], and 1257 pEh for CCSDT-4 [6].] 

Although additional comparisons are clearly 
needed before any conclusion regarding the rela- 
tive accuracies of the a-CCSD(T) and CCSEXT) 
methods can be drawn, the present results are 
encouraging. Due to its higher computational ex- 
pense, it is, however, most unlikely that a-CCSD(T) 
will ever achieve the popularity of the CCSD(T) 
method. 

Appendix A: Analytic Gradient Theory 
for the a-CCSD(T) Method 

This appendix provides the outline for an effi- 
cient method to calculate derivatives of the a- 
CCSD(T) energy analytically and a brief discussion 
of how the computational requirements differ from 
those associated with CCSD(T) energy derivative 
evaluation. In a-CCSD(T), the triples energy cor- 
rection depends on two sets of wave function 
parameters: the cluster amplitudes T obtained by 
solving the CCSD equations and the 3 amplitudes 
that account for the response of the T amplitudes 
to external perturbations. Although the energy is 
stationary with respect to neither the T nor 3? 
amplitudes, the 2n + 1 rule of perturbation theory 
guarantees that the energy derivative can be ex- 
pressed entirely in terms of the unperturbed wave 
function parameters. Developing such an expres- 
sion for a-CCSD(T) requires some care, and this 
aspect of the derivation is stressed in what follows. 

The triples energy correction AET = AE[3] of 
a-CCSD(T) can be represented compactly as 

with respect to the generic perturbation x yields 

dAET      .   dS? 
= <0|—W|T)<T|T3|0> 

dx dx 
,dW 

+ (0\3— |T><T|T3|0> 
dX 

A * dT-, 
+ <0L2W|T><T|—-|0>,      (A2) 

dx 

where 

<T|f3|0> = D3<T|WT2|0>. 

It is easily shown that 

(A3) 

<T|^|0> = D3 
dX 

dW <?T, 
<T| T2|0> + <T|W—-K)> 

dX dx 

dF 
■<T|—- |T><T|T3|0> 

dX 
(A4) 

where F represents the zeroth-order electronic 
Hamiltonian that comprises the occupied-oc- 
cupied and virtual-virtual projections of the Fock 
operator. Substituting this result into Eq. (A2) al- 
lows the derivative of the triples energy to be 
expressed as: 

—-^ = <0|—W|T>D3<T|Wr2|0> 
dX dx 

,dW 
+ (0\3—-|T>D3<T|WT2|0> 

dX 

dW A 
+ <0|^W|T>D3<T| T2|0> 

dX 

+ <0|-#W|T>D3<T|W—-\0) 
dX 

dF 
- <0|JW|T>D3<T|—|T>D3<T|WT2|0>. 

dX 
(A5) 

AET = <0|JWD3WT2|0>, (Al) 

where W is the part of H[1] that comprises the 
two-electron integrals and 3, T2, and D3 are de- 
fined earlier. Straightforward differentiation of A ET 

In the gradient expression given above, the first 
and fourth terms contain contributions from the 
perturbed wave function parameters. It is widely 
appreciated in quantum chemistry that such terms 
are undesirable from a computational point of 
view and that they may always be eliminated by a 
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procedure known as either the "Z-vector" [64] or 
"Dalgarno-Stewart interchange" [65] method. Ac- 
complishing this for a-CCSD(T) is relatively 
straightforward although somewhat more tedious 
than for CCSD(T). To this end, first consider the 
equations that govern the unperturbed T and 3 
amplitudes: 

<g|H|0> = 0, 

(0\3H\g) = 0. 

(A6) 

(A7) 

Differentiating both sides of Eqs. (A6) and (A7) 
provides explicit equations for the first-order T 
and 3 amplitudes, viz. 

n rT"T 

<g|—10>= -[<g|H|g>]_1<g|H'|0># (A8) 

33 BH      r       _       _] 
<0| —|g> = -{OmgXgl — |g> <g|H|g>] 

dx dX      L 

(A9) 

where the shorthand notation 

8H 
Hx = e~T t 

dX 
(A10) 

hasjpeen introduced. By expanding the derivative 
of H that appears in the expression for the deriva- 
tive 3 operator, one can show that Eq. (A9) is 
equivalent to 

<0Ä>= -   <0|J?|gXg|H*|g> 
dX \ 

I    riT 
+ <0|J#|g><g|JF7—|g> 

dX 
KglH lg>]~ ,    (All) 

where terms involving H{df/dx) products in the 
second term enclosed by braces are restricted to 
those that have a connected diagrammatic repre- 
sentation. 

Armed with the identities provided by Eqs. 
(A8) and (All), let us return to the energy deriva- 
tive contributions that depend on the perturbed 
wave function parameters. The second of these 

involves flt2/dx and can hence be rewritten as: 

, ST7 
<0|J?W|T>D3<T|W—-|0> 

<>X 

-<0|^W|T>D3<T|W|D><D|g>[<g|H|g>]    <g|H*|0>, 

(A12) 

in which the explicit dependence on the 8T2/dx 
amplitudes has been eliminated. 

The term involving d3/dx, 

<?A ET d3 
 L^<0|—W|T)D3<T|WT2|0>,   (A13) 

dx dx 

requires a somewhat more involved analysis. Us- 
ing Eq. (All), one immediately obtains 

-   <0|ilg><g|H*|g> + <0|J?|g><g|H^-|g> 

x[<g|H|g>]"1<g|WT3|0>,    (A14) 

which succeeds in removing the perturbed 3 am- 
plitudes but reintroduces the perturbed T ampli- 
tudes. To address this difficulty, we define a new 
excitation operator T by 

<g|f |0> s [<g|H|g>]_1<g|wf3|0>,    (A15) 

thereby allowing Eq. (A14) to be recast as: 

|     •\rr 

-<0mg)<g|H^f|0> - <0|^|gXg|H— f|0>. 
dx 

(A16) 

Since both T and T are excitation operators, they 
commute and their order can be interchanged in 
the second term of the expression above. Doing 

this, and substituting Eq. (A8) for the perturbed T 
amplitudes leads to 

-<0|J?1gXg|H*t|0> 

-<OMgXg|Hf|g>[<g|H|g>]",<g|H^|0>. 
(A17) 

This is a desirable expression in the sense that only 
the unperturbed wave function parameters appear. 
The contraction line appearing in the preceding 
equation means that at least one quasiparticle an- 
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nihilation line attached to H must not be con- 
tracted with T, thereby maintaining consistency 
with Eq. (A16). It is further convenient to define 
the triple deexcitation operator =S?3 by 

<0|J#3|T> = <0L#W|T>D3, (A18) 

so that Eq. (A12) becomes 

-<0|4w|D><D|g>[<g|H|g>]"1<g|H^|0>.   (A19) 

Combining Eq. (A19) and the second term of Eq. 
(Al 7) permits the identification of a deexcitation 
operator Jl defined on the space of g determinants 
as the solution to the system of inhomogeneous 
linear equations: 

<0|J1|S> 

<0|A|D> 

r i 
<0|5HT|S> 

<0|=gfJT|D> + (OI^WID) 

X 
<S|H|S> 

<D|H|S> 

—      i-i 
<S|H|D> 

<D|H|D> 
(A20) 

The total correlation energy in the a-CCSEXT) 
approximation is given by the usual CCSD energy 
(ECCSD) plus AET. Accordingly, the first derivative 
of the correlation energy is obtained by simply 
adding the CCSD energy gradient expression 
[35-38] 

<?E CCSD 

dX 
= <0|^H*|0> (A21) 

to dAET/dx, i.e., 

BE. -■a-CCSD(T) 

~x 
><?w. 

= <0|^—— T3|0> + <0|^3 
°x 

- <0|^3—T3|0> 
dX 

^X 

+ <0|C2!,+ JI)H*|0>-<0L2'H*T|0>, 
(A22) 

where the first three terms differ only in notation 
from the second, third, and fifth terms of Eq. (A5). 
Contributions involving the T and Jl operators are 
those that account for the nonstationary nature of 
A ET with respect to variation of 3? and T, respec- 
tively. 

In CCSD(T) gradient theory, an operator with 
the same form as Jl appears, but it is handled in a 

particularly efficient way. Specifically, the inhomo- 
geneous term associated with this operator is sim- 
ply combined with that of the CCSD 2 equation, 
and the resulting composite operator is obtained 
by solving a system of linear equations. This, of 
course, is not possible in a-CCSD(T) since both of 
the individual operators 2 and Jl are needed, and 
not just their sum. Hence, additional computa- 
tional steps are necessary in a-CCSD(T) gradients 
to evaluate both Jl and T [which has no counter- 
part in CCSD(T) gradient theory]. Both of these are 
defined on the space of the g determinants and 
their amplitudes are obtained by solving a system 
of linear equations. The computational scaling as- 
sociated with both is precisely the same as that for 
the unperturbed 2 equations, as all involve itera- 
tive steps that scale with the sixth power of the 
basis set size (/f6). In terms of iterative steps, 
a-CCSD(T) gradient calculations require four dis- 
tinct JV6 procedures to solve for the amplitudes of 
T, 2, T, and Jl, while CCSD(T) gradients require 
only T and the composite operator alluded to 
above. Once all of these are available, gradient 
evaluation can proceed in the usual way where 
terms are recast as contractions between an effec- 
tive one- and two-particle density and matrix ele- 
ments of the differentiated electronic Hamiltonian. 

In methods involving triple excitation effects, 
the noniterative N7 steps involving formation of 
three-particle operators or contraction of these with 
other quantities can often dominate the cost of 
calculation. The a-CCSD(T) method is again twice 
as expensive as CCSEKT) since two sets of Jf7 

contractions are needed to form contributions to 
i—i 

the effective two-particle density matrix (2 f3 

and 23 T2 are required), while only one such set of 
contractions is needed in CCSD(T). Hence, both 
the number of iterative Jfb and noniterative JV7 

steps required in a-CCSD(T) energy (as discussed 
in the body of the text) and gradient calculations 
(additional steps discussed above) are twice those 
associated with CCSD(T), as might well be ex- 
pected since the former is an inherently asymmet- 
ric theory while the latter is based on the approxi- 
mation 2 = Tt. 
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ABSTRACT: We present the formalism for the treatment of several states of the same 
symmetry in basis-set reduction (BSR), a form of second-order Brillouin-Wigner 
multireference perturbation theory, which incorporates the first-order correction of the 
primary-space wave function with respect to its orthogonal complement. We benchmark 
this method for some valence and some Rydberg excitations of four small molecules (02, 
CO, ethene, and ozone). In direct comparison with the underlying MR-SDCI benchmark 
results, we find an average accuracy of 0.2 eV or better for the excitation energies of the 
molecules considered and demonstrate the stability of the method with increasing size of 
the basis set and primary space. We argue that the configuration-based approach in BSR 
allows an accurate description of dynamical correlation effects with minimal primary 
space wave functions, containing far fewer configurations than are required for a 
CASSCF-based perturbative treatment of the molecules.    © 1998 John Wiley & Sons, Inc. Int 
J Quant Chem 70: 613-622, 1998 

Key Words: excitation energies; dynamic correlation effects; perturbation theory; 
MBPT; multireference perturbation theory 

Introduction 

In recent years, second-order multireference 
perturbation theory has been established as 

one of the most effective and accurate tools for the 
computation of vertical excitation energies in a 
wide variety of systems. The application of various 
diagrammatic formulations [1-8] of this method, 
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International Journal of Quantum Chemistry, Vol. 70, 613-622 (1998) 
© 1998 John Wiley & Sons, Inc. 

most notably that of CASPT2 [9-11], has demon- 
strated an astonishing accuracy for many molecules 
with a significantly reduced computational effort 
in comparison to accurate benchmark techniques, 
such as MRCI and generalized coupled-cluster ap- 
proaches. The computational efficiency has al- 
lowed the treatment of comparatively large 
molecules and motivated this investigation into an 
alternate nondiagrammatic approach to second- 
order perturbation theory, basis-set reduction 
(BSR), which is based on a Brillouin-Wigner (BW) 
perturbation expansion [12, 13]. The results of our 
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initial investigations into this method [14-16] 
demonstrated that accurate results for some 
low-lying (adiabatic) excitations of small, but diffi- 
cult to treat, organic molecules and radicals could 
be obtained. 

Our approach was motivated by a number of 
useful features that BW perturbation theory offers 
in comparison to its diagrammatic cousins: (i) By 
using a fully correlated energy in the denominator 
of the perturbation expansion, the BW approach 
generates a rapidly converging perturbation series 
that avoids the level crossing problem of diagram- 
matic perturbation theory (PT). (ii) Through use of 
an implicit summation technique, our formulation 
treats near degeneracies between active space con- 
figurations and secondary space configurations 
particularly well—since a fully dressed energy ap- 
pears in the denominator of the perturbation ex- 
pansion, a BW approach is free of level crossing 
problems almost by definition. Reexpanded in a 
diagrammatic context, second-order BW-PT corre- 
sponds to the summation of an entire class of 
diagrams, (iii) While using an orbital-based parti- 
tioning scheme to define the primary space, the 
overall Hilbert space of BSR is defined as the 
MR-SDCI space for a given, preselected set of 
reference configurations. Thus, a change in the size 
of the primary space does not affect the size of the 
overall Hilbert space, which results in only modest 
increases in the computational cost with an in- 
creasing size of the primary partition, (iv) The 
relaxation of the primary space wave function with 
respect to its orthogonal complement in the pri- 
mary space allows the application of this method 
in cases where the eigenfunctions of the bare zero- 
order Hamiltonian are a poor starting point for the 
perturbation expansion. 

The overall aim of this approach was to reduce 
the size of the primary space, which ultimately 
determines the cost of calculation, to the absolute 
minimum required for the description of the target 
states. The major, as of yet uncorrected, drawbacks 
of the BW approach are the lack of orbital invari- 
ance and the lack of extensivity, which both 
severely affect the accuracy of energy differences 
between different points of the potential energy 
surface (PES). Regarding the calculation of vertical 
excitation energies, however, both deficiencies are 
less important. We have demonstrated previously 
that while the absolute BSR energies can depend 
strongly on the choice of the secondary-space Or- 
bitals, energy differences depend little on the con- 

sistent adaptation of some particular choice. The 
two primary goals of this article were (i) the pre- 
sentation of the formalism in which excited states 
of the same symmetry can be computed in the BSR 
framework (second section) and (ii) the demon- 
stration that vertical excitations energies for some 
"canonical" benchmark molecules are reproduced 
to within 0.1-0.3 eV even for very small primary 
spaces (third section). In comparison to published 
data of various other approaches to MRPT, we 
present results for 02, CO, ethene, and ozone. We 
explicitly demonstrate the convergence of the re- 
sults with increasing basis-set size and increasing 
size of the primary space in direct comparison to 
the underlying MRCI benchmark calculations, 
which are approximated by the BSR method. 

Methodology 

In BSR, the many-body wave function 

l<P> = EcM>, (1) 

where |<£,> labels an individual configuration, is 
partitioned according to its orbital occupation [12] 
into 

IV = P|^>   and 

IV = Ql*> 

=   E cq\4>q). 

(2) 

(3) 

the primary- and the secondary-space wave func- 
tions, respectively. Using an orbital-based parti- 
tioning scheme, the primary space wave function 
is defined to contain only configurations compris- 
ing a set of primary-space orbitals. Throughout 
this article, we denote primary (secondary)-space 
quantities with subscripts p (q), respectively. 

We obtain an initial estimate of the primary 
wave function for state kWjty) and the many-body 
energy E£0) by diagonalizing PHP, where P desig- 
nates the many-body projection operator onto 
the primary space. We then compute an approx- 
imation of the secondary-space wave function 
IV') through the diagonalization of each two- 
dimensional subspace spanned by the primary 
many-body wave function and each individual sec- 
ondary-space configuration [14, 16]. For each sec- 
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ondary-space configuration | <f> >, we solve the sec- 
ular equation: 

£f> <^|H|^>' nv 

<&|H|<P$>      (^HU) 'kq 

(E^ + 8Eq) 
'kq 

(4) 

where we have assumed <^0)|^0)> = 1 without 
loss of generality. 

To facilitate the relaxation of the primary-space 
wave function in the presence of Q^kq, we com- 
pute and store the components of | x) = PHQ\^kq) 
during the evaluation of Eq. (4). We then obtain an 
improved approximation l^1') for the primary- 
space wave function, minimizing the functional: 

(%\H\Vp) + ((Vp\H\VV) + h.c.) +Eg) 

_ (Vp\H\Vp) + (<%\xm) + h.c.) + Eg) 

(5) 

(%\%) + N«1» 

under the constraint that all pairs of states |%> and 
\%) remain mutually orthogonal: 

{%\%) = 8„. (6) 

The secondary-space contributions to energy and 
norm in Eq. (5) arise as 

EkQ =   E <0*,l#I<£*«,>cjt,   and 

Kko =   E cf 
(7) 

7^Q 
fcg • 

The enforcement of the orthogonality constraint in 
Eq. (6) complicates the primary-space relaxation 
both conceptionally and numerically. Since the cal- 
culation of the secondary-space coefficients in Eq. 
(4) is strongly nonlinear, the external components 
of the various states are not allowed to mix in the 
primary-space relaxation step. We have thus modi- 
fied the Davidson procedure to accommodate this 
constraint. Given a set of converged states {^|0 < 
k < N} and a set of primary-space trial states {</>JO 
< m < M} and a fixed secondary-space wave 
function ^N(? for the N-th state, we determine an 

optimal ^ = 'Lma.mcj)m + ^irNcj by minimizing 

<^|H|^> 
(8) 

with respect to the coefficients am. To this end, we 
consider a basis consisting of the N given states 
(including their secondary-space component), a 
single artificial state consisting ^N , and the set of 
primary-space trial wave functions cf>m. We com- 
pute the (N + K + 1) X (K + 1) overlap matrix S 
between the basis and the K + 1 trial states, using 
secondary-secondary overlaps computed in the 
previous perturbative step. We embed this matrix 
in an (N + K + 1) X (N + K + 1) matrix S, filling 
the columns with zeros. The nullspace {a,|0 < i < 
K} of S, which is determined in a singular value 
decomposition, defines a basis 

<t>\ = E%^jt (9) 

that automatically satisfies the orthogonality con- 
straints. Note that this basis could be constructed 
without the evaluation of any secondary-space 
overlap matrix elements during the relaxation step. 
In our numerical experience, the subsequent solu- 
tion of the eigenvalue problem in this basis can be 
numerically instable, when all trial states become 
near-collinear. Such instabilities are avoided by the 
explicit construction of a further nondegenerate, 
orthogonal auxiliary basis <fi'k' by singular value 
decomposition of the overlap matrix in </>'k, such 
that all vectors associated with singular values less 
than e ~ 10 ~8 are ignored. 

Application 

For all molecules considered here, we followed 
the same computational strategy for the determi- 
nation of the vertical excitation energies. First, we 
determined the minimal reference space to account 
for the individual target states in each symmetry, 
selecting the one to four most important configura- 
tions for each state. Given this set of references, we 
iteratively determined BSR-approximate natural 
orbitals from the state-average density matrices for 
all states of a given symmetry [16, 17]. As a check, 
we performed a separate calculation for the ground 
state alone and verified that the ground-state ener- 
gies in the two different approximate natural or- 
bital basis sets did not differ by more than 0.1 eV. 
All excitation energies that we report here refer to 
the difference with respect to the ground-state 
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energy in state-averaged approximate natural Or- 
bitals. Since BSR directly approximates an 
MR-SDCI calculation with the same reference set 
in the chosen basis, we also preformed the under- 
lying MR-SDCI calculations to provide a basis for 
comparison for the excitation energies here. This 
comparison eliminates the influence of basis set 
and reference choice from the comparison. 

TWO REPRESENTATIVE FIRST-ROW DI1V1ERS 

As a first test, we computed the vertical excita- 
tion energies of 02 and CO as simple representa- 
tive examples for which data for other diagram- 
matic approaches are available. Both molecules 
have been subject to numerous studies [22-25] 
and Tables I and II summarize our results for two 
primary spaces in comparison to a small subset of 
other available data. In the smaller 2s/2p primary 
space, labeled BSR-1, we selected the relevant ref- 
erence configurations, which determine the overall 
size of the Hilbert space. This primary space was 
chosen to coincide with that of the other methods 
to facilitate the comparison of the results. The 
larger primary space, labeled BSR-2, additionally 
includes the six most important secondary-space 
orbitals based on their approximate NO occupa- 

tion and corresponds to a different partitioning of 
the same Hilbert space as the previous set of 
calculations. Since the cost of the BSR calculation is 
primarily determined by the number of reference 
configurations, which is the same in both calcula- 
tions, the choice of these somewhat large primary 
spaces is easily affordable. To demonstrate basis-set 
convergence and gauge the inherent errors at the 
level of the MR-SDCI benchmark, we performed 
calculations in the cc-pVDZ and cc-pVTZ basis [26, 
27] sets, respectively. As can be expected for the 
states under consideration, the cc-pVDZ basis set 
performs adequately at the MR-SDCI level and 
the cc-pVDZ excitation energies differ by no more 
than 0.1 eV from the corresponding cc-pVTZ ener- 
gies for all states considered. For both basis sets, 
we find that the excitations energies for the 
low-lying states are well reproduced even for the 
smaller primary space but find a (still tolerable) 
increase of the absolute errors for the higher exci- 
tations. As expected, an increase of the primary 
space significantly reduces these errors to within 
0.1 (0.15) eV of the MR-SDCI values for the cc- 
pVDZ (cc-pVTZ) basis sets, respectively. These ex- 
citation energies are also reproduced very well in 
the third-order effective valence-shell Hamiltonian 
method [28, 29]. However, since this method is 

TABLE I .  
BSR vertical excitation energies of 02 in the cc-pVDZ and cc-pVTZ basis sets at R = 2.28 au for two 
different primary spaces in comparison to MR - SDCI results for the same reference set and in 
comparison to the third-order effective valence shell Hamiltonian method (for a double-zeta basis 
at R = 2.30 au). 

State MR-SDCI BSR-1 Error BSR-2 Error EVSH(3) 

cc-pVDZ 

X 1.08 1.03 (-0.05) 1.04 (-0.04) 1.08 
14 1.73 1.82 (+0.09) 1.73 (+0.00) 1.77 14 6.08 6.39 (+0.21) 6.14 (+0.06) 6.15 
3A 6.34 6.66 (+0.32) 6.41 (+0.07) 6.37 

X+ 6.49 6.80 (+0.31) 6.56 (+0.07) 6.51 
3 2- 8.19 8.03 (-0.16) 8.15 (-0.04) 9.47 

cc-pVTZ 

\ 0.99 0.96 (-0.03) 0.96 (-0.03) 
12o 1.68 1.75 (+0.07) 1.75 (+0.07) 
,s- 5.99 6.32 (+0.33) 6.10 (+0.11) 

< 6.23 6.58 (+0.35) 6.38 (+0.15) 

X+ 6.37 6.72 (+0.35) 6.52 (+0.15) 
3£- 8.20 8.04 (-0.16) 8.18 (-0.02) 

The primary spaces labeled BSR-1 refers to a (2s /2p) CAS primary space; in BSR-2, the primary space of BSR-1 was additionally 

augmented by the six most important orbitals of the secondary space in the BSR-1 calculation. 
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based on a quasidegenerate treatment of the pri- 
mary space, third-order quasidegenerate perturba- 
tion theory is required to reach the accuracy a BW 
approach obtains already in second order. 

The results for CO in Table II are similarly 
encouraging. The MR-SDCI results compare fa- 
vorably with benchmark calculations, MR-CC [19] 
and EOM-CCSD [20], as well as with "experimen- 
tal" results [21]. As for the oxygen molecule, the 
BSR results in the small primary space are ade- 
quate. Increasing the size of the primary space, we 
find only a very slight improvement of the ener- 
gies to within about 0.1 eV of the MR-SDCI re- 
sults, indicating that at this level of theory the 
residual error of the BSR approximation has been 
reached and that a substantial (and computation- 
ally prohibitive) increase in the primary space is 
required to significantly improve the results. It is 
interesting to compare these results with those of 
the third-order quasidegenerate Hilbert-space 
MRPT method of Kaldor [5, 6] and its further 
extension by Kucharski and Bartlett [7], which are 
summarized under the heading MR-MBPT(3) [8, 
18] in the table. The accuracy of this method corre- 
sponds roughly to that of BSR-1 and Meissner and 
Bartlett [30] speculated that fourth-order 
MR-MBPT may be required to obtain benchmark 
accuracy, which for this simple molecule is already 
attained in second-order with either of these two 
valence spaces in BSR. Again, the quasidegeneracy 
assumption for the primary space is likely one 
significant contributing factor to the comparatively 
slow convergence of the MR-MBPT perturbation 
expansion. One must stress, however, that the 

MR-MBPT formulation is an explicitly extensive 
formulation, which is not possible in the BW ap- 
proach pursued here. 

ETHYLENE 

The understanding of excited states of short 
polyenes has long been a subject of intense interest 
in quantum chemistry. As its simplest example, 
the ethylene molecule has long served as one of 
the standard benchmarks for vertical excitation 
energies for a variety of methods [31, 32-35]. Its 
spectrum is dominated by an intense TT-TT* transi- 
tion (N-V) at approximately 7.66 eV, which corre- 
sponds not to a vertical transition, but to a slightly 
distorted geometry of the molecule. The accurate 
reproduction of its vertical excitation energy has 
been the subject of numerous studies because of 
the challenge to account both for the dynamical 
correlation effects and significant valence-Ryd- 
berg mixing at the same time. To compare with 
one of the more recent studies [32], we performed 
the calculations in the augmented ANO-type basis 
set used in the CASPT2 calculation [32], consisting 
of 4s3p2d functions for carbon and 3s2p for hy- 
drogen, which were augmented by sets of diffuse 
2s2pld functions on carbon (for the exponents of 
the diffuse functions, see [32]). All calculations 
were performed in D2h symmetry with R(CC) = 
1.339 A, R(HC) = 1.086 A, and y(HCC) = 117.6°. 

Our results are summarized in Table III. The 
primary space was chosen to coincide with that of 
the CASPT2 study with (a: 3aglb3ulb2ulblgir: 
2blu2b2glb3g) active orbitals and two active elec- 

TARI F  II 
BSR vertical excitation energies for CO (at R = 2.132 au) in comparison to MR - SDCI , MR-MBPT(3) [18], 
MRCC [19], and EOM-CCSD [20] and experiment [21] in a cc-pVDZ basis. 

MR EOM 

MRCI BSR-1 Error BSR-2 Error MBPT(3) MRCC CCSD Exp. 

V               6.47 6.42 (-0.05) 6.43 (-0.04) 6.20 6.32 6.34 6.32 
32+             8.46 8.52 (-0.06) 8.40 (-0.06) 8.83 8.26 8.36 8.51 

V                8.98 8.92 (-0.06) 9.06 (+0.08) 8.51 8.79 8.64 8.51 
3A               9.80 10.09 (+0.29) 9.98 (+0.18) 9.75 9.18 9.33 9.36 
32"            9.36 9.37 (+0.01) 9.27 (-0.09) 10.35 9.92 9.85 9.88 
12"           10.02 9.88 (-0.14) 10.04 (+0.02) 10.52 9.92 10.05 9.88 
1A              10.35 10.56 (-0.21) 10.42 (+0.07) 10.71 10.10 10.26 10.23 

The primary space in BSR-1 consists of the (2s /2p) orbitals, the 1s orbitals are frozen in all calculations. The primary space in 
BSR-2 includes one additional natural orbital per symmetry channel. The errors of the BSR energies have been computed with 
respect to the MRCI energies that they approximate. 
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TABLE III 
Excitation energies of ethene in an augmented ANO-type basis for a (3221|2210) primary space with 
two active electrons. 

BSR MRCI CIS 
CASPT2 

PTD PTF Exp. 

11ß3ü 
7.04 (+0.15) 6.91 (-0.20) 7.10 6.62 7.17 7.11 

1ß19 
7.72 (+0.13) 7.59 (-0.21) 7.68 7.27 7.85 7.80 

1ß29 
7.62 (-0.09) 7.71 (-0.19) 7.83 7.37 7.95 7.90 

1ßlu 8.00 (+0.00) 8.00 (0.00) 7.78 7.97 8.40 8.00 
2\ 8.22 (+0.08) 8.14 (-0.14) 8.10 8.05 8.40 8.28 
2ß3ü 8.45 (+0.12) 8.33 (-0.29) 8.71 8.11 8.66 8.62 
2Siu 

8.75 (-0.31) 9.06 (-0.27) 8.88 9.31 9.33 
1ß2u 

8.87 (+0.06) 8.81 (-0.24) 8.88 8.73 9.18 9.05 
3\ 8.74 (+0.01) 8.73 8.83 8.44 8.94 

1\ 4.05 (-0.22) 4.27 (-0.09) 3.54 3.97 4.39 4.36 
1ß3ü 

6.94 (+0.13) 6.81 (-0.17) 6.87 6.49 7.05 6.98 
1S19 

7.65 (+0.09) 7.56 (-0.23) 7.59 7.25 7.80 7.79 
1ß29 

7.75 (+0.07) 7.67 (-0.12) 7.71 7.31 7.90 7.79 
1!^B 

8.00 (-0.22) 8.22 (+0.07) 7.75 7.84 8.26 8.15 
1%, 8.94 (+0.21) 8.73 
13ß2u 8.72 (-0.02) 8.74 8.66 9.09 

All energies are in eV; the errors for the MRCI column were computed with respect to the experimental results and those of the BSR 
column with respect to the MRCI calculations that they approximated. The CIS results are from [31 ] and CASPT2 and experimental 
results (mostly adiabatic energies) quoted from [32]. 

trons. We selected one to three configurations for 
each desired state according to their primary-space 
occupation and computed state-averaged approxi- 
mate natural orbitals for each spin and symmetry 
segment. We first note that virtually all MR-SDCI 
energies are somewhat low by the same amount 
(~ 0.2 eV) in comparison to their experimental 
counterparts, pointing to a somewhat inadequate 
description of the ground-state correlations. Since 
more elaborate MR-SDCI studies [34] yield better 
agreement, this indicates that our minimal choice 
of a single-reference configuration for the ground 
state proved to be a somewhat drastic approxima- 
tion compared to the more elaborate treatment of 
the other states. On the other hand, we recover the 
excitation energy of the 1BUl V-state to 8.00 eV, 
which is in good agreement with other recent 
MR-SCDI calculations [35]. 

To obtain an unbiased measure of these errors 
of BSR for a given reference set and basis, we 
compute the errors of the BSR calculations with 
respect to the underlying MRCI results, even 
though the agreement between experiment and 
BSR is often better than that between experiment 
and MRCI. With the exception of the 21BlH state 
(error -0.31 eV), the errors of BSR are small (RMS 

error 0.14 eV) and compare well with CASPT2. The 
agreement for the V-state is particularly striking, 
although its only accidental that its numerical ac- 
curacy is so much better than the average 0.15 eV. 
We note that the CASSCF energy is closer to the 
expected value than that of CASPT2F, a fact at- 
tributed by Serrano-Andres et al. [32] to the diffi- 
culty to reproduce the partial Rydberg character of 
the 77* orbital. By designing a separate orbital 
optimization scheme, which forces some Rydberg 
character into this orbital, an improved, if not 
perfect, value for this excitation energy could be 
obtained in CASPT2F. In contrast to CASPT2, the 
orbitals used in the correlation calculation here are 
computed in the approximate BSR-NO scheme 
employed throughout this study. These orbitals 
are constructed from an approximate density ma- 
trix computed from the entire (primary and per- 
turbative secondary) wave function, which in- 
cludes some correlation effects not present in the 
CAS-SCF calculations. In a number of examples 
[16], we could show that the MR-SDCI energies in 
the approximate NOs reproduce those of standard 
NOs. For this reason, the Rydberg-valence mixing 
of the IT* orbital of ethylene is likely to be taken 
into account in the optimization of this orbital 
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under the BSR-NO scheme, which explains the 
superior behavior of this method with respect to 
this state. 

OZONE 

As a more complicated example, we present 
data on the vertical excitation energies of ozone 
[36], which have been obtained with the same 
computational strategy. Again, we selected the 
most important configurations for the description 

of the various states based on their occupation in a 
CASSCF wave function. Using these fixed refer- 
ence sets, we conducted MR-SDCI calculations in 
the cc-pVDZ, cc-pVDZ, and cc-pVQZ basis sets. 
The calculations in the largest basis set, which 
comprise up to 4 X 106 configurations, were car- 
ried out on four nodes of an IBM-SP2 using a 
parallel MR-SDCI program [37]. Comparing the 
excitation energies in the columns labeled MRCI in 
Table IV, these calculations demonstrate that the 
excitation energies under consideration are well 

TABLE IV 
Vertical excitation energies of ozone in the cc-pVDZ, cc -pVTZ, and cc-pVQZ basis sets for a 
(2s/2p) primary partition. 

PRIM BSR MRCI 

A£ 

MRD-CI 

A£ Error A£ Error AE 

Basis: cc-pVDZ 
3e2 0.81                  ( -0.63) 1.46 (+0.01) 1.45 
3s 1.38                  ( -0.42) 1.85 (+0.05) 1.80 34 1.35                   ( -0.56) 1.98 (+0.07) 1.91 

% 1.45                   ( -0.68) 2.20 (+0.07) 2.13 
1B 1.58                   ( -0.64) 2.25 (+0.03) 2.22 
3s2 2.68                   ( -1.25) 3.80 (-0.13) 3.93 

*, 3.01                   ( -1.16) 4.48 (+0.31) 3.95 
1B! 7.14 (+0.88) 7.06 (+0.80) 6.26 
°A2 6.46                   ( -0.02) 6.53 (+0.05) 6.48 

% 8.15                   ( -0.05) 8.01 (-0.19) 8.20 

Basis: cc-pVTZ 
3ß2 0.79                   ( -0.59) 1.53 (+0.16) 1.38 1.69 
3B 1.38                   ( -0.43) 2.03 (+0.18) 1.81 1.85 
*A2 1.38                   ( -0.51) 2.03 (+0.03) 1.89 2.00 

V*a 1.45                   ( -0.65) 2.19 (+0.03) 2.10 2.16 
1ß1 

1.59                   ( -0.61) 2.26 (+0.16) 2.20 2.10 
3e2 2.56                   ( -1.30) 3.70 (-0.17) 3.86 3.87 

V 2.96                   ( -1.20) 4.40 (-0.09) 4.16 4.49 
1e2 7.21 (+0.84) 7.35 (+0.98) 6.37 
°A2 6.48                   ( -0.16) 6.91 (+0.27) 6.64 6.01 

% 8.10                   ( -0.04) 8.34 (+0.20) 8.14 

Basis: cc-pVQZ 
3e2 0.79 -0.61) 1.34 (-0.06) 1.40 

% 1.47 -0.34) 1.88 (+0.06) 1.82 
3A2 1.44 -0.45) 1.86 (-0.04) 1.90 

% 1.47 -0.64) 2.15 (+0.03) 2.12 

% 1.61 -0.52) 2.20 (-0.07) 2.13 
3e2 2.56 -1.41) 3.47 (-0.42) 3.90 

X 3.05 -1.01) 4.27 (+0.21) 4.06 
% 7.16 (+0.76) 7.60 (+1.21) 6.39 
3A2 6.53 -0.15) 6.80 (+0.12) 6.68 

% 8.09 (+0.28) 8.01 (+0.20) 7.81 

All calculations were carried out in C2v symmetry at R = 2.413 au and y= 116.8°. All energies in eV. The errors of the BSR 
calculations are computed with respect to the corresponding MR-SDCI results. 
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converged in the cc-pVTZ basis and, furthermore, 
furnish a rough estimate of the overall accuracy of 
these numbers, approximately 0.1 eV, which can 
be compared with the errors of the perturbative 
approach. Our cc-pVTZ results also agree well 
with the MRD-CI [36] results for a triple-zeta 
quality basis with bond-center functions. Under 
the heading PRIM, Tables IV and V show the 
excitation energies computed in the primary space, 
which differ from BSR by more than about 0.6 (0.3) 
eV for the small (larger) primary space, respec- 

tively, and indicate that substantial differential 
correlation effects must be incorporated in the per- 
turbative treatment to obtain quantitatively ac- 
ceptable results. For the BSR-1 calculations, this is 
accomplished with the exception of the ]B2 state, 
which shows an altogether unacceptable error. The 
BSR-2 calculation shows more satisfactory results 
for all states and basis sets, reducing the RMS 
error for the cc-pVQZ basis to 0.17 eV, where the 
majority of the errors arise for states with excita- 
tion energies larger than 4 eV, for which such 

TABLE V 
Vertical excitation energies of ozone in the cc -pVDZ, cc-pVTZ, and cc-pVQZ basis sets for a(2s/2p) 
primary partition augmented with the most im portant NO in each symmetry < channel. 

PRIM BSR MRCI 

AE Error AE Error AE 

Basis: cc-pVDZ 

> 
1.02 (-0.43) 1.42 (-0.03) 1.45 

01 1.12 (-0.68) 1.77 (-0.03) 1.80 

?2 1.27 (-0.63) 1.92 (+0.01) 1.91 
V»8 1.49 (-0.63) 2.13 (+0.00) 2.13 

> 
1.54 (-0.67) 2.20 (-0.02) 2.22 

e2 2.99 (-0.93) 3.83 -0.10) 3.93 
41 3.54 (-0.62) 4.53 (+0.36) 3.95 
ß2 5.51 (-0.75) 6.25 (+0.01) 6.26 

lA> 5.71 (-0.76) 6.21 -0.27) 6.48 
% 7.70 (-0.49) 8.07 -0.13) 8.20 

Basis: cc-pVTZ 

> 
1.47 (+0.09) 1.33 -0.05) 1.38 

01 1.63 (-0.18) 1.73 -0.07) 1.81 
*A2 1.77 (-0.11) 1.80 -0.09) 1.89 x 1.79 (-0.21) 2.05 -0.10) 2.10 
Sl 1.89 (-0.21) 2.10 -0.10) 2.20 
B2 3.39 (-0.47) 3.59 -0.27) 3.86 

^ 
3.83 (-0.33) 4.18 (+0.02) 4.16 

ß* 
5.95 (-0.42) 5.81 -0.55) 6.37 

lA* 6.18 (-0.46) 6.23 -0.40) 6.64 
% 8.12 (-0.02) 8.12 -0.02) 8.14 

Basis: cc-pVQZ 

lB> 1.47 (+0.07) 1.37 -0.03) 1.40 
ßl 1.64 (-0.18) 1.71 -0.11) 1.82 

*AZ 1.78 (-0.12) 1.81 -0.09) 1.90 x 1.77 (-0.34) 2.06 -0.06) 2.12 
ßl 1.88 (-0.24) 2.15 (+0.02) 2.13 
ß2 3.38 (-0.52) 3.70 -0.20) 3.90 

"' 
3.84 (-0.21) 4.24 (+0.18) 4.06 

02 6.03 (-0.36) 6.10 -0.20) 6.39 

lA* 6.15 (-0.53) 16.42 -0.26) 6.68 
% 8.11 (-0.30) 8.05 (+0.24) 7.81 

All calculations were carried out in C2v symmetry at R = 2.413 au and 7=116.8° The BSR calc jlations were performed in 
approximate NO basis sets optimized using the larger primary space, while the MR -SDCI calculations are the same as in Table IV. 
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deviations can be more easily tolerated, particu- 
larly if one takes into account that the BSR-2 (BSR- 
1) calculations are a factor of 2000 (12,000) more 
efficient than the underlying MR-SDCI calcula- 
tions (based on the number of nonzero symmetry- 
allowed matrix elements). 

Discussion 

The understanding and accurate description of 
excitation states is one of the central challenges of 
quantum chemistry and recent years have seen 
tremendous progress in this regard. In particular, 
through the application of diagrammatic or many- 
body based, multireference perturbation theory, it 
became possible to investigate many molecules 
that are still inaccessible to benchmark methods. 
Many of the prevalent prescriptions for multirefer- 
ence perturbation theory  rely  on  a  zero-order 
CASSCF wave function as a starting point. The 
number of active electrons which can be treated 
efficiently within this framework has emerged as 
one of the crucial bottlenecks in this approach. 
While the use of a contracted primary-space wave 
functions   allows   the   treatment   of  very   large 
CASSCF spaces, it complicates the relaxation of the 
primary-space wave function with respect to its 
orthogonal complement. In this investigation, we 
thus explored an alternate approach, which sought 
to facilitate such a relaxation of the primary space 
at least in lowest order. Since we must deal with 
the individual configurations of the primary space, 
their number must be kept at an absolute mini- 
mum to ensure the computational viability of the 
resulting method. This, in turn, necessitates the 
use of a perturbation expansion, which will con- 
verge very quickly even for such a minimalistic 
zero-order description of the problem. The results 
presented here for both valence and Rydberg exci- 
tations in some simple organic molecules demon- 
strate that a BW-based approach offers a promis- 
ing avenue toward this goal. The key difference 
between the BW perturbation expansion and dia- 
grammatic   many-body   techniques   lies   in   the 
different origin of the energy gap between the 
primary and the secondary space. While the nu- 
merators of the different expansions are closely 
related, BWPT features a fully correlated energy in 
its denominator, which ensures a comparatively 
large difference between the reference energy and 
that of the perturbatively treated configurations. 

In this study, we were able to reproduce the 
excitation energies to an accuracy of on average 
0.2 eV for some 77-77-* and cr-77 transitions and 
some Rydberg states of the four molecules stud- 
ied, which indicates a balanced performance of the 
method. It is desirable, but more difficult than in 
CASSCF-based methods, to develop the methodol- 
ogy for the computation of transition moments. 
Such a development is presently under way, but is 
complicated by the lack of orthogonality of the 
primary-space orbitals for different symmetry seg- 
ments. Motivated by the results reported here, we 
are presently extending our study to larger 
polyenes, azabenzenes, and some transition-metal 
compounds. To make the methodology presented 
in this work applicable to a wider range of prob- 
lems, we are presently investigating extensions, 
which enforce the orbital invariance of energies 
and render it at least approximately extensive. 
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ABSTRACT: The leaky aquifer function W(x, y) is an incomplete Bessel function 
which has had application in hydrology and more recently in electronic-structure 
calculations. This article presents an expansion which improves the efficiency of the 
calculation of W in the only part of its range not treated adequately by previously 
published methods, namely, the regime where x and y are both larger than unity but 
one is much larger than the other.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 
623-626, 1998 

Introduction 

In an article published recently in this journal 
[1], we introduced an expansion which im- 

proved the efficiency of the calculation of the in- 
complete Bessel function known to hydrologists as 
the leaky aquifer function, defined as follows: 

W(x 
>e-x^^'dt 

(1) 

for some purposes, it is convenient to restate Eq. 
(Das 

-u(t + l/t)dt 

W(x,y) = L(u,v) = j ,     (2) 

where u = (xy)1/2 and v = (x/y)1/2. Previous 
work by others [2-7] had established convenient 
methods for the calculation of W when either x or 
y was small (less than unity), and our recent 
article [1] provided an expansion which was opti- 
mum when the ratio x/y was near unity, with no 
requirement that either be small. While proper 
choices among all these methods enabled at least 
moderate efficiency for all values of x and y, it 
remained desirable to find a method that would 
become optimum when x and y were both large, 
but at ratios far from unity. Unfortunately, we had 
no solution to this problem when we wrote our 
previous article. 

We have now found an additional expansion 
that is efficient in the range previously causing 
problems and which can be regarded, at least 
asymptotically, as an expansion in powers of y/{ x 
+ y). We present here the new expansion and, to 
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make this communication reasonably self-con- 
tained, the other formulas constituting a complete 
set of evaluation algorithms. Readers desiring a 
more detailed survey of the relevant previous work 
and its use in electronic-structure calculations are 
referred to our earlier article [1] and the work of 
Delhalle et al. [8, 9]. 

This article also includes some data illustrative 
of the convergence rate of the new expansion. 
Interested readers may make further calculations 
by using our computer program, written in Maple 
V [10], which is available at the author's World 
Wide Web site [11]. 

Previously Derived Formulas 

An expansion which converges rapidly for small 
y is [4] 

W(x,y)=   £ (-y)' 
tlt + -l(x), (3) 

» = o 

If  x is small but  y is not, their roles can be 
interchanged by invoking the formula [5] 

mx,y) = 2K0{2yftj)-my,x),       (5) 

where  K0   is a modified Bessel function of the 
second kind (cf. Abramowitz and Stegun [12]). 

If neither x nor y is small, but their ratio is near 
unity, rapid convergence can be achieved from one 
of the expansions [1] 

L(u,v) = K0(2u) + e~2" £ C„(u)(v - 1)" 
» = i 

(v < 1),    (6) 

Uu,v) = K0(2u) - e~2" £ C„(u)(v-] - 1)" 
n = i 

(v > 1),    (7) 

where the C„ are the polynomials listed in Table I. 

where E„ is a generalized exponential integral of 
definition New Formula 

,, — .11 
r™ e 

dt. (4) 
To obtain a formula that is efficient when both 

x and y are large and their ratio is far from unity, 

TABLE I  
Expansion coefficients Cn(u) occurring in Eqs. (6) and (7). 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

C„(u) 

-1 
1/2 

(u- 1)/3 
(-2u+ 1)/4 

{~u2 + 6u - 2)/10 
(3u2 - 8u + 2)/12 

\u3 - 18u2 + 30u - 6)/42 
-2u3 + 15u2 - 18u + 3)/24 

180u2+ 168u - 24)/216 
(5u4 - 80u3 + 252u2 - 192u + 24) / 240 

(u5 - 75u4 + 700u3 - 1680u2 + 1080u - 120)/1320 
(-6u5 + 175u4 - 1120u3 + 2160u2 - 1200u + 120)/1440 

(-u6 + 126u5 - 2100u4 + 10080u3 - 16200u2 + 7920u - 720)/9360 
(7ue - 336u5 + 3780u4 - 14400u3 + 19800t/2 - 8640u + 720) /10080 
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rearrange Eq. (1) to the form 

W(x,y) 
^-(x + yXgyfi-l/O 

k                      t 
-   Dn(x + y)y" 

n = 0              n- 

instance, 

dt 

where 

re~zt I       1\' 
dt. 

(8) 

(9) 

Equation (8) will be shown to be efficient when 
y < x; if y > x, their roles should be interchanged 
using Eq. (5) before applying Eq. (8). 

One way to evaluate the  D„(z) involves the 
explicit introduction of their derivatives: 

D;!(2) =-/><(;—) dt-, (10) 

using partial integrations, we can establish the 
recurrence formulas 

D„(z) = -D^Cz) 
1 

+ -[zD„_1(z) -2(n-l)D„_2(z)] 
n 

(« > 1),   (11) 

D;(z) = -[2D;_j(z) + D„(z)]        (n > 0).   (12) 
z 

These formulas can be used for upward recursion 
in n, starting from 

D0(z) = E^z), 

e~z 

z 
D'(z) 

Da(z) = -D'0(z)-E2(z). 

(13) 

(14) 

(15) 

To understand the formal convergence proper- 
ties of Eq. (8), it is useful to note that in the limit of 
large n (for fixed z) 

D„(z) 
(n - 1)! 

(16) 

so that the nth term of Eq. (8) approaches 
n~1yn/(x + y)n. We thus have formal conver- 
gence for all relevant values of x and y. However, 
as a practical matter, we are also interested in the 
behavior of  D„(z) when  n/z  is small; in this 

D„(z) « 
2nn\e~ 

(17) 

causing the nth term of Eq. (8) to be approximately 
(2i/)"e_(I+y)/(:r + y)"+1- For large x + y,we thus 
see that successive initial terms will decrease 
rapidly only if y/x is significantly less than unity. 
The generation of the D„ by upward recurrence, 
using Eqs. (11) and (12), is numerically unstable, 
but causes no practical difficulties at the parameter 
values for which Eq. (8) is recommended. 

Numerical 

Calculations using the new formula were car- 
ried out to supplement those reported previously. 
As before, we used Maple V [10], with the preci- 
sion set to 14 decimal digits and with results 
reported here to 10. The generalized exponential 
integrals needed for the recurrence formulas were 
generated as in previous work [1]. All the pro- 
grams used in these calculations are available to 
any interested reader [11]. 

Figure 1 shows the number of terms needed to 
achieve convergence to an absolute accuracy of 
1 X 10"10 in W(x, y) as a function of x and y for 
the new formula, Eq. (8). We used absolute (rather 
then relative) accuracy because that is likely to be 
a more relevant criterion in electronic-structure 
studies. These expansion lengths may be com- 
pared with those found previously where calcula- 
tions were carried out using Eqs. (3) and (7) of the 
present article. While the expansion length may be 
an imperfect measure of the computational effort, 
it is surely qualitatively informative; we find a 
significant range of x and y for which the new 
expansion is better than those previously reported. 
The x, y values for which the new expansion is 
best are marked in Figure 1 by asterisks. Values of 
x, y lying above the asterisked points are best 
computed using Eq. (7), and those falling below 
the asterisked points are optimally reached using 
Eq. (3). 

Our overall conclusion is that, when the new 
expansion is included as an option, satisfactorily 
convergent methods are available for the computa- 
tion of W( x, y) for all positive values of x and y 
to the accuracy needed in electronic structure cal- 
culations. 
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FIGURE 1. Numbers of terms in the expansion of Eq. (8) needed to attain an absolute accuracy of ±1 x 10 "10 in 
W(x, y), shown for integer values of x and y. Asterisked entries identify (x, y) pairs for which this expansion converges 
more rapidly than any of the previously reported expansions. 
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ABSTRACT: An implicit split-operator FFT algorithm for the numerical solution of 
the time-dependent Schrödinger equation is implemented for the electronic structure of 
Hj and and H2. The covalent versus separated-atoms behavior is described by two 
distinct steady states to which the imaginary-time Schrödinger solution evolves for small 
or large intemuclear distances, respectively.    © 1998 John Wiley & Sons, Inc. Int J Quant 
Chem 70: 627-635, 1998 

Introduction 

The exponentiated split operator (esop) fast 
Fourier transform (FFT) method of Feit and 

coworkers [1] has been used extensively in optical 
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and chemical physics; however, it has not found 
use in electronic structure or scattering problems 
because the explicit form of the temporal advance- 
ment algorithm does not conserve energy except 
for unpractically small time steps. The method of 
choice which overcomes this difficulty is the 
Peaceman-Rachford alternating direction impicit 
(ADI) algorithm used extensively by Kulander [2] 
and others; however, this method is limited to 2D 
applications and is difficult to implement because 
the use of three-point spatial differences to repre- 
sent a component of the Laplacian requires a tridi- 
agonal matrix inversion at each time step and at 
each spatial grid point of the other component of 
the Laplacian, with this set of operations carried 
out twice over a single temporal interval. In this 
article, we implement an algorithm appropriate for 
3D applications which is implicit and thus over- 
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comes the nonconservation of energy difficulty. 
Furthermore, it uses the FFT algorithm to advance 
the Laplacian and thus avoids the labor of spatial 
differencing methods since the solution of an im- 
plicit advancement equation in transform space 
requires only a single scalar operation. 

Implicit Split-Operator Algorithm 

The implicit split-operator (isop) FFT method, 
with applications to the hydrogen atom, was pre- 
sented earlier by Ritchie and Riley [3], and another 
version appropriate for radiation transfer through 
optically thick media was presented by Ritchie and 
coworkers [4]. We are solving the time-dependent 
Schrödinger equation. For the case of one particle 
in a potential V (e.g., H2), the time-dependent 
Schrödinger equation may be written, in atomic 
units, as 

net algorithm 

dt dt 
1 + —V2 V 

4/ 2/ 
^ 

dt dt 
1 V2 + —V 

4/ 2/ 
% + 0(dty).   (4) 

Equation (4) has the form of the Crank-Nicolson 
algorithm, which, of course, is implicit and sec- 
ond-order accurate. The first and third equations 
of Eq. (3) are evaluated in transform space and the 
middle equation is evaluated in real space. As we 
pointed out earlier, the evaluation of the equations 
containing the Laplacian in transform space averts 
the use of spatial differences and the need to 
invert matrices to find the advanced solution. 
Please note that we are showing the equations in 
terms of the real time t. The actual solution is 
accomplished using imaginary time T such that 
t = - ir. 

H(rnr(r,t) = i — V(r,t) (1) 
dt 

where H is the time-independent Hamiltonian op- 
erator 

H(r) = -iV2 + V(r). (2) 

For completeness, however, we present the isop 
algorithm again [applied to Eq. (1)], in slightly 
different form from that of [3]: 

dt 
1 + —V2 

8; 
\1/          = M/3 

dt 
1 V2 

8/ 
1 r 

[       dt    1 
1 V 

4i ^2/3 
r     dt   l 
1 + — V 

4l M/3 (3) 

r     dt 
1 + —V 

8/ 
2 

I(7 

dt 
1 V2 

8/ 
•Vlf T2/3' 

where the subscripts, r, 1/3, 2/3, and a refer to 
the known solution at a previous time step t, to 
intermediate solutions within the interval, and to 
the advanced solution at t + dt. The net advance- 
ment algorithm is derived by operating succes- 
sively from the left on the third equation by the 
left-handed operators of the second and first equa- 
tions and using the results given by the second 
and the first equations respectively. The symmetry 
of the equations is such that we can write for the 

Hartree Approximation 

For the case of two interacting electrons, as is 
the case for the hydrogen molecule, H2, the time- 
dependent Schrödinger equation is 

d 
H(rur2)ty(ru r2, t) = i-*(r„ r2, t),    (5) 

at 

where the Hamiltonian has the form 

H(rlfr2) = -iVj2 - iV2
2 + V(rur2).     (6) 

The solution to Eq. (5) is a function of six spatial 
dimensions and one time dimension. To set a more 
computationally tractable problem, we make a 
Hartree anstaz for the wave function 

V(ri,r2,t) = F(rut)xG(r2,t), (7) 

where F and G are complex functions. We would 
like to derive a pair of coupled equations for F and 
G which involve three spatial dimensions and one 
time dimension for each function. We could use an 
action principal, in the manner of Kermin and 
Koonin [5] with the Hartree ansatz [Eq. (7)] instead 
of an Hartree-Fock one as they do, and arrive 
easily at the equations 

iF(l) = <G(2)|H(l,2)|G(2)>2F(l) 

/G(2) = <F(1)|H(1,2)|F(1)>]G(2), 
(8) 
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where the dot over F and G means a time deriva- 
tive and we have suppressed the explicit time 
dependence in F and G. The subscript on the kets 
in Eq. (8) indicates the spatial integration vari- 
ables. In arriving at Eq. (8), normalization of F and 
G at t = 0 is all that is required since the isop 
preserves the norm. It is not necessary to require 
orthogonality «F I G> = 0). A key point in the use 
of the action principal is the independent variation 
of F and G. 

Alternatively, we may use a projection proce- 
dure. Use the Hartree ansatz [Eq. (7)] in Eq. (5) and 
first multiply from the left by G*(2) and integrate 
over r2. Then, multiply Eq. (5) [again using Eq. (7)] 
by F*(l) and integrate over rv Using normality 
conservation for F and G then results in 

ff(l) + ff(l)<G(2) I G(2)>2 

= <G(2)|H(1,2)|G(2)>2F(1) 

»G(2) + iG(2)<F(l)|F(l)>i 

= <F(1)|H(1,2)|F(1)>1G(2). 

(9) 

The difference between Eqs. (8) and (9) is the 
presence of the overlaps with the time derivatives 
in the integrand. If we define the following trans- 
formation: 

f(l) =y(l)e-/'rf''<G(2)IG(2)>2 

G(2)=g(2)«r'1'»'<F<1>IJi<1»i, 

then we obtain the same form as in Eqs. (8): 

t/(l) = <g(2)|H(l,2)|g(2)>2/(l) 

ig(2) = </(l)|H(l/2)|/(l)>1g(2). 

(10) 

(11) 

Note again that we are suppressing the time de- 
pendence of F and G in the notation. The physics 
is not changed by the phase transformation de- 
fined in Eqs. (10). 

To facilitate the use of the isop algorithm, we 
use Eq. (6) in Eq. (11): 

if(D=-fv2/(i) 
+ <g(2)|-|V2

2 + V(l,2)|g(2)>2/(1) 

^(2)=-fV2
2g(2) 

+ </(l)|-iV2 + y(l,2)|/(l)>1g(2) 

(12) 

Realizing that the particle labels are "dummy" in 
Eq. (12) because V(l, 2) = V(2,1), we may define 

the matrix equation, using i|i = [ £], as 

i>= -iv2iji + Yij>, (13) 

where V represents a diagonal potential matrix 
with diagonal elements defined by 

Vn(l) = <g(2)| - |V2
2 + V(lr2)\g(2))2 

V22(l) = </(2)| - ±V2
2 + V(l,2)|/(2)>2. 

(14) 

Thus, the isop algorithm, in matrix form, may be 
applied to Eq. (13). 

In any numerical treatment of the Coulomb 
potential, it is necessary to sample the potential at 
small enough radius to represent the ground state 
accurately. This is achieved for a given numerical 
grid using the smoothing procedure given earlier 
[3], for which the radial cut off is r0 = [(2dxdydz)/ 
(9-n-)]1/3. In the two-electron problem, the Hartree 
potential is evaluated by solving Poisson's equa- 
tion for a density given by the squared modulus of 
the wave function. This equation is also solved in 
transform space, where it is necessary to cut off 
the Coulomb potential, which goes as 1/k2. Using 
similar smoothing arguments, the cutoff [6] in the 
radial k variable is k0 = 1/ ]/3[(3dkxdkvdkz)/ 
(477-)]1/3. This cutoff has been tested against 
Coulomb integrals evaluated analytically in real 
space and found to give results of acceptable accu- 
racy [6]. 

Results and Discussion 

Our results are shown in Figures 1-13. The 
Schrödinger equation is integrated in imaginary 
time to evolve an assumed initial Gaussian wave 
function into the ground-state wave function. First, 
we solve the H2 problem. In Figure 1 we show 
snapshots of the initial Gaussian electronic density 
centered about a proton fixed at 1 au on the posi- 
tive z axis and then the evolved wave wave-func- 
tion density after 20 au of elapsed time, centered 
symmetrically about the molecular midpoint with 
peaks centered about the proton positions. This 
picture is a slice along the z axis for x = y = 0. 
The convergence to the molecular covalent state 
can be followed in time by observing the orbital 
dipole moment (Fig. 2), which begins at 1 au, as 
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given by the initial Gaussian, and ends at zero as 
the orbital evolves into a covalent orbital with a 
center of inversion. Finally, Figure 3 gives the 
expectation value of the Hamiltonian, which com- 
pares favorably with the exact energy of -1.1026 
[7]. This calculation for the energy (Fig. 3) uses a 
spatial grid of 64 X 64 X 64 points for a box of 
dimension 16 X 16 X 16 au and a temporal grid of 
1601 points for a maximum of 20 au of time. A less 
accurate but numerically stable result is obtained 
for 401 temporal points for the same duration 
(Figs. 1 and 2), in which case the energy is graphi- 
cally found to be about -1.118 au; thus, the en- 
ergy does not converge from above in these nu- 
merical solutions. The less accurate calculation 
takes about 19 min of CPU time on a Livermore 
Cray YMP machine. 

Figures 4-13 show the results for the Hartree 
model of H2. Figures 4-12 show calculations which 
are performed on the same spatial grid of Figures 
1-3, but with a sufficient number of temporal 
points such that dt = 0.05 au. Figure 13 shows our 
results with dt = 0.02 au for the H2 potential en- 
ergy curve, compared with three time-indepen- 

FIGURE 1. Time-dependent Schrödinger calculation of 
electronic density versus Cartesian coordinate z for H2, 
where two protons are fixed at plus or minus z/2. (A) 
Initial Gaussian orbital centered on the proton at z/2. 
(B) The orbital after 20 au of time. In the evolution of the 
motion, the initial orbital goes awash over the 
neighboring nucleus such that eventually it reaches a 
covalent state with a center of inversion about the 
molecular midpoint (covalent steady state). 

Time (a.u.) 

FIGURE 2. (A) Orbital dipole moment versus time for 
the evolution to the covalent state shown in Figure 1. 

dent calculations. Figure 4 shows snapshots of two 
Gaussian orbital densities, initially centered over 
the protons, and the evolved densities after the 
elapse of 40 au of time. Each initial Gaussian has 
gone awash over its neighboring proton, but has 
remained primarily centered about its own proton, 
as Figure 5, which shows orbital dipoles which 
converge to steady-state equal and opposite val- 
ues, confirms. On the other hand, at smaller inter- 

Tlrno (a u.) 

FIGURE 3. (A) Orbital energy versus time for the 
evolution to the covalent state shown in Figure 1. 
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FIGURE 4. Time-dependent Schrödinger calculation of 
electronic density versus Cartesian coordinate z for H2, 
where two protons are fixed at plus or minus z / 2. (A, B) 
Initial Gaussian orbitals centered on the protons. (C, D) 
Orbitals after 40 au of time. The motion reaches a steady 
state in which the two orbitals remain centered primarily 
about their originally assigned nuclei with leakage of 
density about the neighboring nuclei (separated-atoms 
steady state). 

n   m—<&/,X_- ^-0Ä>-C^6-_ pn        r-a    a 

0.00 

z (a.u.) 

FIGURE 6. Time-dependent Schrödinger calculation of 
electronic density versus Cartesian coordinate z for H2, 
where two protons are fixed at plus or minus z / 2. (A, B) 
Initial Gaussian orbitals centered on the protons. (C, D) 
The orbitals after 30 au of time. In the evolution of the 
motion, the initial orbits go awash over the neighboring 
nuclei such that, eventually, the two orbitals become 
identical and each has a center of inversion about the 
molecular midpoint (covalent steady state). 
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FIGURE 5. Orbital dipole moments versus time. (A, B) 
The orbitals of Figure 4. The equal and opposite dipole 
moments are characteristic of the separated-atoms 
steady state. 

10.00       20.00 30.00       40.00       50.00 

Time (a.u.) 

FIGURE 7. Orbital dipole moments versus time. (A, B) 
The orbital dipole moments for the orbitals of Figure 6. 
Each orbital dipole moment now individually goes very 
slowly to zero as the two orbitals awash over the nuclei 
in Figure 6 become identical. 
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FIGURE 8. Time-dependent Schrödinger calculation of 
electronic density versus Cartesian coordinate z for H2, 
where two protons are fixed at plus or minus z/2. (A, B) 
Initial Gaussian orbitals centered on the protons. (C, D) 
The orbitals after 40 au of time. In the evolution of the 
motion, the initial orbitals go awash over the neighboring 
nuclei such that, eventually, the two orbitals become 
identical and each has a center of inversion about the 
molecular midpoint (covalent steady state). 

ra   Fn    ^peTJ*^ 

\\ 

1 

0.00 

z(au.) 

FIGURE 10. Time-dependent Schrödinger calculation 
of electronic density versus Cartesian coordinate z for 
H2, where two protons are fixed at plus or minus z/2. 
(A, B) Initial Gaussian orbitals centered on the protons. 
(C, D) The orbitals after 20 au of time. In the evolution of 
the motion, the initial orbitals go awash over the 
neighboring nuclei such that the two orbitals have 
become identical and each has a center of inversion 
about the molecular midpoint (covalent steady state). 

FIGURE 9. Orbital dipole moments versus time. (A, B) 
The orbital dipole moments for the orbitals of Figure 8. 
Each orbital dipole moment now individually goes to 
zero as the two orbitals awash over the nuclei in Figure 
6 become identical. 

FIGURE 11. Orbital dipole moments versus time. (A, 
B) The orbital dipole moments for the orbitals of Figure 
10. Each orbital dipole moment now individually goes to 
zero as the two orbitals awash over the nuclei in Figure 
10 become identical. 
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FIGURE 12. (A, B) Orbital energies versus time and 
(C) total energy versus time. Accounting for the binding 
energy (total energy - separated atoms energy + 
internuclear Coulomb energy) gives close to 80% of the 
accurately known binding energy of the hydrogen 
molecule, consistent with the interelectronic interaction 
model used here. 

2 3 
Internuclear Separation {au) 

FIGURE 13. H2 potential energy curves in atomic units: 
( ) time-independent 40-term variational calculation 
of [8]; (•••) present time-dependent Hartree calculation; 
(—} unrestricted time-independent Hartree-Fock [11]; 
(—) restricted time-independent Hartree-Fock [11]. 

nuclear distances, Figures 6 and 7 show densities 
and orbital dipoles which appear to be converging 
to a covalent rather than to a separated-atoms 
steady-state limit. This is clear from Figure 7, where 
the equal and opposite orbital dipoles are far from 
converged after the elapse of 80 au of time, but 
whose small-magnitude temporal slopes are posi- 
tive and negative for dipoles which are rising and 
declining toward the z axis, respectively; thus, 
with sufficient time, unless the slopes converge to 
zero for finite equal and opposite dipoles, we 
would expect an eventual evolution into two iden- 
tical covalent orbitals with zero dipole moment, as 
in Figures 1 and 2. Figures 8-11 support this 
conclusion: In Figures 8 and 9 for the smaller 
internuclear distance for H2, the orbitals have al- 
most converged to identical, zero-dipole orbitals 
after the elapse of 40 au of time, and in Figures 10 
and 11, which are at the equilibrium internuclear 
distance for H2, the orbitals have indeed con- 
verged to identical, zero-dipole orbitals after the 
elapse of 20 au of time. 

The convergence to identical covalent orbitals, 
even though the initial orbitals form an unsym- 
metrized product centered about each nucleus, can 
be understood from the work of Riley et al. [8], 
which shows that the Pauli principle is satisfied 
starting from an unsymmetrized product, if the 
symmetry of the Hamiltonian with respect to in- 
terchange of the two electrons is represented in a 
converged perturbation-theoretic calculation. In 
our calculation, at small enough internuclear dis- 
tances, the initially nuclei-centered orbitals can mi- 
grate to neighboring nuclei such that, with suffi- 
cient time, the interchange symmetry of the 
Hamiltonian is properly represented after the two 
orbitals have become identical, in analogy to the 
calculation of Riley et al., after many orders of 
perturbation theory. Thus, for small enough inter- 
nuclear distances, the Pauli principle is automati- 
cally satisfied finally, even though it is not satis- 
fied initially. We have convinced ourselves of this 
conclusion by repeating the calculations of Figures 
8-11, starting with two identical initial Gaussian 
orbitals centered on the midpoint between the two 
nuclei, in which case these orbitals remain identi- 
cal and converge (with different rates of conver- 
gence from those of Figs. 8-11) to the same results 
as those of Figures 8-11. On the other hand, when 
identical Gaussians are centered at the midpoint 
for the larger internuclear distances of Figures 4-7, 
the calculations converge to identical orbitals hav- 
ing a covalent form, but whose orbital energies are 
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significantly larger than those of the separated 
atoms (unlike the orbital energies of Figs. 4-7, 
which are always below the separated-atoms ener- 
gies). We reject these results as unphysical since it 
is clear that at large enough internuclear distances 
one must obtain the separated-atoms result, and, 
indeed, the results of Figures 4-7, in which the 
initial Gaussians are nuclei-centered, exhibit the 
appropriate separated-atoms behavior. This point 
emphasizes a characteristic which we have noticed 
in other calculations, namely, that a poor choice 
for the initial Gaussian can lead to a numerically 
converged result which is unphysical; clearly, 
Gaussians centered initially at the molecular mid- 
point will not migrate properly to the nuclear 
positions at large internuclear distances unless they 
have greater widths than those used here. 

Thus, Figures 6 and 7 show results near a criti- 
cal internuclear distance separating two distinct 
steady states: a separated-atoms state at larger and 
a covalent state at smaller internuclear distances. 
To our knowledge, this is the first description of 
molecular covalency as a unique steady state of 
the time-dependent Schrödinger equation whose 
onset occurs at internuclear distances smaller than 
a certain critical internuclear distance (Figs. 6 
and 7). 

Figure 12 shows the orbital energies and total 
energy versus time corresponding to Figures 10 
and 11. The total energy is about -1.857 au, which 
corresponds to a binding energy of 3.88 eV, which 
is slightly better than the elliptical-coordinate 
nine-term variational Hartree-Fock energy of 
3.6360 eV obtained by Kolos and Roothaan [9]. 
This is approximately 81.7% of the binding energy 
of H2 (4.75 eV [7]) and is much better than what 
one would expect for the present Hartree model 
based on our knowledge of the variational 
LCAO-MO Hartree model, whose binding energy 
is only 2.65 eV [10]. The present binding energy 
compares favorably with that of the Heitler- 
London model with an optimized exponent [10], 
namely, 3.76 eV. We repeated the calculation us- 
ing dt = 0.02 au temporal points and found that 
our results change slightly. At this time step, we 
got a total energy of -1.858 au, giving a binding 
energy of 3.91 eV. This is 82.3% of the essentially 
exact value of 4.75 eV from [7]. Our result was 
converged to the significant figures shown for the 
dt = 0.02 au time step. 

Finally, Figure 13 shows our potential energy 
curve for H2 at a time step of dt = 0.02 eV, com- 
pared with the time-independent 40-term varia- 

tional calculation of [8] and restricted Hartree-Fock 
and unrestricted Hartree-Fock calculations using 
Gaussian94 [11]. It is clear from Figure 13 that our 
present time-dependent Hartree results are closer 
to the exact values for all internuclear calculations 
than either the restricted or unrestricted time-inde- 
pendent Hartree-Fock results. At large internu- 
clear separations, our results are even slightly bet- 
ter than the best theory from [8]. At R = 4.5 Bohr, 
we obtain a binding energy of 0.11 eV. 

Conclusion 

The utility of the time-dependent description of 
molecular electronic structure, in our opinion, lies 
in the capability of the theory to predict covalent 
versus separated-atoms states. This is why the 
simple product of states for H2 leads to a superior 
result than that for the LCAO-MO Hartree result, 
which is based on writing a trial wave function 
which has equal weighting for components de- 
scribing the dissociation of the molecule into the 
ions H+ and H^ and for components describing 
the dissociation into the neutral atoms H and H. 
Clearly, a physically compelling weighting must 
favor dissociation in the neutral atoms. This exam- 
ple illustrates the difficulty of time-independent 
variational calculations in which one does not 
know the steady-state wave function and, hence, 
must construct it using a trial wave function whose 
basis-set selection is judgmental. On the other 
hand, the time-dependent calculation evolves the 
wave function naturally, depending on the inter- 
nuclear distance, into states which predict covalent 
or noncovalent binding. Thus, to use a variational 
analogy, the time-dependent calculation selects 
the basis set appropriate for a given internuclear 
distance. 

We would expect the binding energy to show 
considerable improvement if we based our time- 
dependent equations on a symmetrized product of 
orbitals appropriate for singlet-state symmetry. 
Here, we would expect the two orbitals not to be 
identical in the covalent steady state. This calcula- 
tion is at a higher level of difficulty owing to the 
coupling of the two-orbital equations through ex- 
change and overlap terms and will be forthcoming 
in future work. 

Finally, we comment briefly that time-depen- 
dent Hartree-Fock (TDHF) theory [5] appears not 
to have achieved a high level of regard for useful- 
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ness in structure and other problems. However, 
we believe that this is in large part due to its 
restrictive nature, namely, that the equations be 
derived from a variational ansatz for a set of 
orthonormal orbitals. Clearly, this is a too restric- 
tive mathematical environment to describe even 
the simple H2 model that we have considered 
here, in which the two nonorthogonal orbitals are 
propagated in imaginary time until they evolve 
either into predominantly atomic orbitals with 
small leakage of density about another nucleus 
(Figs. 4 and 5) or into covalent molecular orbitals 
(Figs. 6-11) which contain a much larger fraction 
of the binding energy than that based on the well- 
known LCAO-MO variational ansatz. Thus, al- 
though we have called our calculation the Hartree 
model for H2, it is not the TDHF model in the 
usual sense, and we believe that the full model 
based on the symmetrized product of orbitals holds 
much promise in the description of electronic 
structure and scattering problems. 
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Introduction 

The description of electronically excited states 
presents significant problems in quantum 

chemistry. Unquestionably the presently most ac- 
curate approaches for smaller systems involve the 
initial multiconfiguration self-consistent field (MC- 
SCF) optimization of the reference function(s) prior 
to a configuration interaction (CI) step, or alterna- 
tively a perturbational step, to take proper account 
of dynamical correlation effects. A useful introduc- 
tion, in the context of the complete active space 
self-consistent field (CASSCF) method, is the series 
of articles by Roos and co-workers [1-3]. At pres- 
ent, modern valence bond theory [4] cannot com- 
pete with the most accurate results that may be 
achieved by such methods, but it may instead play 
an important role in the visualization of the elec- 
tronic structure. This is the aim of the current 
work. 

Modern valence bond descriptions of excited 
states have used two main strategies. Perhaps the 
most straightforward approach is to follow an or- 
bital optimization procedure by a nonorthogonal 
CI treatment [5]. This last places particular de- 
mands on the quality of the orbital representation, 
especially if all the orbitals are obtained from a 
treatment of the lowest state. In the most com- 
monly employed procedure based on a spin-cou- 
pled wave function, all of the "virtual" orbitals 
are generated by diagonalizing generalized Fock 
operators [6]: 

f(^(M> = fi(/O0(#O (1) 

This procedure yields a series of "stacks" of or- 
bitals. Each occupied orbital in the reference func- 
tion leads to an eigenvalue equation of the form 
shown in Eq. (1) and may be identified as one of 
its solutions. Excitation into the low-lying virtuals 
in each stack may then provide excellent approxi- 
mations to excited states, and accurate results may 
be obtained with CI expansions of very moderate 
size. The overcompleteness of the orbital basis 
thus defined does not lead to significant problems, 
provided a critical selection of excitations is car- 
ried out. One example of this procedure is an 
application to the notoriously difficult excited 
states of benzene [7]. Alternative choices for spin- 

coupled virtual orbitals have been investigated 
recently by Clarke, Sironi, and co-workers [8, 9]. 

In an alternative to the standard spin-coupled 
approach, the Fock operators of Eq. (1) may be 
diagonalized in an iterative procedure until self- 
consistency is reached. Although such an approach 
has been applied to the optimization of ground- 
state wave functions [6], it is not likely to compare 
favorably with a fully second-order optimization 
scheme [10, 11] in terms of either computational 
efficiency or convergence characteristics. The main 
advantage of this type of approach is instead its 
straightforward extension to the description of ex- 
cited states, which may be achieved simply by 
choosing higher-lying solutions to the Fock eigen- 
value problems. Such a procedure has been ap- 
plied to some smaller systems by Doggett et al. 
[12-14], using an approach formulated as a super- 
CI scheme. Their results seem very promising, but 
an open question is the application to excited states 
that are not well described as a single excitation 
from the ground state. 

While the optimization of modern valence bond 
wave functions for ground states has come very 
far, there is little doubt that there is still some 
scope for development in the case of excited states. 
Our newly developed method for optimization of 
general types of valence bond wave functions, 
CASVB [15-22], possesses some important advan- 
tages in this respect, and we consider its extension 
to the treatment of excited states in the following 
sections. Main features include the very flexible 
forms for the wave function and the natural con- 
nection to molecular-orbital-based procedures. 
Fully variational optimization of the wave func- 
tion is possible, which may provide benchmarks 
for other valence bond strategies. Our CASVB pro- 
gram is now available as part of the quantum 
chemistry package MOLPRO [23], in which it is 
interfaced to a sophisticated CASSCF program [24]. 
We foresee a much wider distribution in the near 
future. 

CASVB Approach 

Prior to considering the optimization of excited 
states within the CASVB framework, we review 
briefly some of the main characteristics of the 
method [15-22]. 

The cornerstone of the CASVB approach is the 
efficient transformation of CASSCF spaces. The 
structures defining such spaces may be either Slater 
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determinants or configuration state functions 
(CSFs), and the subsequent expressions remain 
equally valid for both, but there are many advan- 
tages associated with a determinant approach, not 
least being that of computational simplicity [17]. 

The CASSCF wave function may in general in- 
corporate a core term, Ocore, which is common to 
all structures <]>,: 

Oj=^($core X Ojact). (2) 

In practice, Ocore is normally based on l/2Ncore 

doubly occupied orbitals. The active parts of the 
structures, <&fct, are then constructed as an N in m 
full CI expansion compatible with a total spin of S. 
It is well known that a full CI is invariant to 
nonsingular transformations of the defining or- 
bitals, and this observation forms the basis for the 
CASVB strategy: 

{^'} = {tf>}0 => {$'} = {<&}T(0). (3) 

Here { } denotes a row-vector of either the active 
orbitals, </>, or many-electron functions, <E>. A very 
efficient algorithm for obtaining T(O) is based on 
rewriting the orbital transformation, O, as a prod- 
uct of m2 updates of the form 

O^(A): 4>v^<l>v+ A<^, (4) 

for which the corresponding full CI transforma- 
tions are trivial to evaluate [15,17,25]. 

The modern valence bond (VB) wave function 
that we consider in this context takes the form of a 
single spatial configuration of N singly occupied 
orbitals (i.e., a spin-coupled wave function [4]): 

*VB=^(<Dmre^B^B---^Be,N 
"N   ^SM ),        (5) 

or limited multiconfiguration variants thereof. As 
usual [4], &gM is an appropriate fully optimized 
N-electron spin function. Assuming that ^VB can 
be expressed as a linear combination of (nonor- 
thogonal) "N-in-m" CASSCF structures, we can 
transform to a representation based on orthogonal 
CSFs, according to: 

\Jr, VB - Lc7^($core x d>7B) = £C7({<I.}T(O
VB

))I. 
I I 

(6) 

Here OVB
 defines the transformation from CASSCF 

molecular orbitals (MOs) to valence bond orbitals, 
as in Eq. (3). Optimization of ^VB will normally be 
carried out both with respect to the linear struc- 

ture coefficients; cu and to the nonlinear orbital 
parameters which define the matrix OVB

. 
For the case of a ground-state CASSCF wave 

function, we have in previous work considered 
two basic criteria for optimizing W^: 

\^CAS I   *Vß) 

or 

maximize ^VB 
<*VB I *VB>V2 

minimize ^VB 

<^VB|H|^VB> 

<^VBI^VB>  ' 

(7) 

(8) 

Each quantity is optimized with respect to the 
valence bond parameters considered above. As a 
powerful extension, optimization according to Eq. 
(8) may be combined with the core-active, core- 
virtual, and active-virtual (orthogonal) orbital rota- 
tions inherent in a CASSCF procedure, such that a 
fully variational modern valence bond solution is 
obtained. 

It is worth emphasizing the special difficulties 
associated with optimization of a valence bond 
wave function of this form. First, the optimization 
problem is nonlinear, necessitating an exact 
second-order optimization procedure with trust re- 
gion control for reliable convergence. We have 
opted for the method by Fletcher [26,27], in which 
an equation of the form 

8 = -(G -al)~ Il8||</z (9) 

is solved for the update, 8. Second, as a non- 
orthogonal orbital optimization, it may not 
always be possible to avoid linear dependency 
problems. One may need to invoke some form of 
constraints on some of the wave function parame- 
ters and we have adopted a simple elimination 
scheme for this purpose [21]. Alternatively, when 
appropriate, facilities for symmetry adaptation 
may be used [18], possibly in combination with 
other constraints. 

Excited-State Optimization 

The extension of the criteria in Eqs. (7) and (8) 
to excited states that are lowest within a given 
symmetry is trivial, since such optimizations can 
be carried out by simply symmetry adapting the 
wave function [18]. In the following, we consider 
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instead the optimization of states that are second 
or higher within a particular symmetry. 

Perhaps most straightforward is the use of the 
overlap-based criterion since, given a set of 
CASSCF solutions for each electronic state, 
{^CAS' ^CAS' •••}> one can simply maximize 

^VB — 
<^'L i *&> 

<*$ i ^>1/2 
(10) 

to get the z'th VB solution, ^^. A fairly standard 
optimization of an appropriate CASSCF wave 
function may therefore pave the way for a modern 
valence bond description of a given excited state. 

Generalization of the energy-based criterion is 
somewhat less straightforward. Two natural re- 
quirements for consistent representations of differ- 
ent states in a given symmetry are 

(■qrO) | ijr(/)) = §..   and    <^(,'|H|^(')> = E(%. 

(11) 

However, neither of these requirements will in 
general be satisfied within MCSCF procedures, a 
fact that must have some bearing on calculated 
excitation energies and transition properties. While 
the errors involved may in the majority of cases be 
relatively small [1], more rigorous procedures that 
avoid these problems are clearly to be recom- 
mended. A natural choice is the CASSCF state 
interaction approach (CASSI) [28] in which the 
solutions obtained in preliminary MCSCF opti- 
mizations are used to form a secular problem that 
leads to more accurate representations of the re- 
quired states. 

A significant amount of attention has been paid 
to the proper definition of excited-state representa- 
tions in nonlinear optimization procedures. We 
believe that a very natural approach is to consider 
the space generated by first-order variations in the 
variational parameters: 

^sci=    ¥(x0),—¥(x0),—¥(x0),...   , dx dX-, 

for a wave function, "fy, which depends parametri- 
cally on the set of variables x. For ^(x0) to be a 
representation of the z'th state, it must occur as the 
z'th root in the secular equations formed from this 

super-CI space. While it is possible to implement 
this condition directly in an iterative super-CI opti- 
mization procedure, such strategies generally show 
very poor convergence characteristics. 

Perhaps the most widely used approach is 
therefore to take as a starting point the stationary 
point for which the second derivative matrix has 
i — 1 negative eigenvalues; this can be shown to 
be closely related to the super-CI requirement out- 
lined above. In the context of MCSCF optimiza- 
tion, this problem has been considered extensively 
by Olsen et al. [29, 30]. 

A particularly useful account of various possi- 
ble second-order optimization schemes has been 
presented by Helgaker [31]. Two main families of 
strategies exist: the stabilized Newton-Raphson 
scheme (see, e.g., Ref. [27]), and the so-called aug- 
mented Hessian method (see, e.g., Refs. [32, 33]). A 
main advantage of the Newton-Raphson-type 
schemes is their natural and efficient trust region 
control. We believe the most natural generalization 
of such approaches to saddle-point optimization to 
be the "trust region image minimization" (or 
TRIM) algorithm proposed by Helgaker [34]. De- 
tails of our implementation of this procedure for 
excited-state optimization are given in an 
appendix. In the next section, we describe applica- 
tions of our procedures to the 2M, state of trans- 
1,3-butadiene, the clAj state of methylene, and the 
first excited singlet state of benzene. 

Problems associated with multiple stationary 
points for nonlinear optimization procedures are 
well known [35] and these are likely to be signifi- 
cantly more pronounced for excited-state opti- 
mization. Compared with the more straight- 
forward ground-state optimization, special 
techniques may therefore be required to obtain 
convergence onto a particular solution. An attrac- 
tive option is likely to be in the form of a partition- 
ing of the optimization problem. By employing a 
two-step (or, in general, «-step) optimization pro- 
cedure, convergence onto stationary points corre- 
sponding to particular types of orbital excitations 
may be obtained. Using such a strategy, we have 
obtained a similar functionality to the procedure 
described by Doggett et al. [12-14] and, as such, 
we have been able to reproduce their results. Olsen 
et al. [29] have stressed the importance of taking 
the coupling between optimization problems into 
account for two-step optimization procedures, and 
we foresee a need to address this question for 
treatments of more complicated systems. 
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Results 

SECOND XA   STATE OF 
TRANS-1,3-BUTADIENE 

Polyenes possess low-lying valence excited 
states with the same lA symmetry as the ground 
state [3], but it is well known that only a relatively 
small part of the 2lA wave function can be as- 
cribed to single excitations from the ground state. 
In a recent study, Serrano-Andres et al. [3] at- 
tributed a figure of 58% to such single excitations. 

A ground-state geometry determined by elec- 
tron diffraction spectroscopy [36] was adopted in 
all of the present calculations and we used Dun- 
ning's pVTZ basis sets [37], consisting of 
(10s5p2d/5s2p) Cartesian Gaussians contracted 
to [4s3p2d/3s2p] for C/H. Energies from 4-in-4 
CASSCF calculations for the ground and 2lA 
states are given in Table I. In order to assess the 
suitability of 4-in-4 treatments of these states, we 
examined also the corresponding 4-in-6 calcula- 
tions. Energy lowerings of just 4.9 and 5.5 milli- 
hartree, respectively, for the ground and excited 
state suggest that the 4-in-4 spaces are quite rea- 
sonable. A further consideration, in our case, is the 
nature of the subsequent CASVB interpretations; 

TABLE I 

TABLE II 

Energies for various calculations on butadiene.3 

State Calculation £, hartree 

VAg SCF -154.969332 
2\ 4-in-4 CAS (MOs from VAg) -154.735740 
2\ 4-in-4 CASSCF -154.776292 
2"Ag 4-in-6 CASSCF -154.781744 
1\ 4-in-4 CAS (MOs from 2^Ag) -155.007687 
YAg 4-in-4 CASSCF -155.023870 
VAg 4-in-6 CASSCF -155.028809 

Values of Svb and £vb for butadiene, 
calculated with various sets of orbitals. 

VB (CAS) Svb ^vb 

VA3 ovg 
2V\3 (2vg 
2\ ovg 

0.999889 
0.999982 
0.999930 

-155.023628 
-154.776258 
-154.735622 

* Further details are given in the text. 

multiconfiguration VB wave functions would be 
required to recover the additional correlation taken 
into account by the larger CASSCF models. 

The results of valence bond representations of 
the 4-in-4 CASSCF solutions are summarized in 
Tables II-IV and illustrated in Figures 1 and 2. The 
overlap-based optimizations are in all cases 
achieved simply by maximizing the overlap (SVB) 
between a modern VB wave function of spin-cou- 
pled form and the appropriate CASSCF function. 
The energy-based results were obtained either by 
minimization onto the ground state or by saddle- 
point optimization to obtain descriptions of the 
excited state. 

The values of SVB and EVB listed in Table II 
show that the CASSCF wave functions are repre- 
sented with great accuracy by the corresponding 
VB solutions. This is to be expected for active 
spaces of this size. What is noticeable in this con- 
text, however, is the ability of the saddle-point 
EVB optimization to reproduce the max(SVB) re- 
sults. The trust region image minimization algo- 
rithm therefore seems very viable for use in 
MCSCF-type optimization problems. 

Compared to the ground state, the excited state 
may to a good approximation thought of as an 
"excitation" in the spin space (cf. Table IV). As 
such, the orbitals remain qualitatively the same, 
although a significant increase of the <c62 I t/>3> 
overlap, as well as a general "expansion" of the 
orbitals, may be detected. These simple observa- 

TABLE III  
Symmetry-unique overlap integrals for butadiene solutions. 

Solution <</>!   I  4>2> <</>2 I  ^3) <*1   I  *3> <<£l   I  4>4> 

11A8 (SVB) 
11^g (EVB) 
2\ (SVB) 
2\ (£VB) 
2\ (SVB, 11A8) 
2\ (£VB, ivg 

0.65086 0.29400 0.07759 0.03223 
0.65048 0.29547 0.07984 0.03685 
0.70369 0.56370 0.21140 0.01383 
0.70154 0.56416 0.21081 0.01358 
0.73781 0.49884 0.15976 -0.00943 
0.73311 0.50420 0.16257 -0.00878 
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TABLE IV  
Weights wpp = (cpp)2 of the perfectly paired 
spin function, expressed as percentages of the 
total spin function in the Kotani or Serber bases. 

VB (CAS) WpP (Svb) wr pp (EJ 

VAg ovg 
21A0 (21/U 
21/L (VAg) 

99.22 
2.79 
1.60 

98.15 
2.83 
1.66 

tions may go a long way to explaining the proper- 
ties of the 2}A state in this and longer polyenes, 
as well as, of course, why no such state is found 
for ethene. 

The effect of orbital relaxation on the descrip- 
tions of the two states may be gauged, for exam- 
ple, by basing the excited-state description on the 
ground-state CASSCF MOs, giving an energy some 
40 millihartree higher than that of the fully opti- 
mized excited state (see Table I). Relaxation is thus 
a very substantial effect, which underlines the apt- 
ness of a CASSI [28], or similar, approach for 
ensuring consistent treatments of the two states. 
Examination of the VB representations suggests 
that a major factor in the orbital relaxation is the 
aforementioned increased diffuseness of the partic- 
ipating orbitals. 

FIGURE 1. CASVB orbitals for butadiene: 
overlap-based representation of the V\1g ground-state 
CASSCF wave function. Orbitals are plotted 1 bohr above 
the molecular plane and (projected) positions of the 
nuclei are marked by their chemical symbols. 

01 

c 

H 

02 

03 

H 

C 
H 

//IIP' \X\H 

H 
H 

FIGURE 2. CASVB orbitals for butadiene: 
overlap-based representation of the 21/\1g excited state 
CASSCF wave function, plotted as in Figure 1. 

THE e'/l, STATE OF METHYLENE 

Low-lying electronic states of CH2 have been 
subject to much attention, especially the problem 
of describing accurately the splitting between the 
3B, ground state and the first excited state (olAj). 
The spin-coupled descriptions of these two states 
have been reported previously in several publica- 
tions [38-40]. Furthermore, the CASVB representa- 
tion of the a[Al state has been found to resemble 
closely the spin-coupled results [15,16] and the 
same is true for the CASVB description of the 
triplet ground state. 

For our calculations on the clA, state, we em- 
ployed the same pVTZ basis sets as for butadiene 
and used an ab initio geometry of rCH = 1.064 Ä 
and 0(HCH) = 171.6° [41]. As a starting point for 
the CASVB representations, an all-valence CASSCF 
calculation was performed keeping Is2 as an opti- 
mized core, so that the active MOs can then be 
classified as 2au lb2, 3av lb,, 2b2, and 4o, in C2„ 
symmetry. The CASSCF solution of interest can be 
identified at convergence as the second CI eigen- 
vector of M, symmetry. The energies obtained in 
the SCF and CASSCF calculations are collected in 
Table V. 

Initial investigations of the CASVB solutions 
were carried out using the simple overlap-based 
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TABLE V  
Energies for various calculations on CH2.a 

Calculation E, hartree 

SCF (äVg 
CASSCF cM, 
CAS 3% (MOsfromcV^) 
CASSCF ä\ 

-38.837861 
-38.855187 
-38.891603 
-38.893050 

a Further details are given in the text. 

criterion, because this is computationally the least 
expensive. We shall endeavor to describe the series 
of calculations in sufficient detail to illustrate the 
way in which a degree of common sense must 
necessarily be employed to obtain reasonable re- 
sults for the c^A-y state. It seemed natural first to 
investigate a solution based on an orbital descrip- 
tion analogous to that of the lower älAx state. 
However, an energy difference of 29 millihartrees 
from the CASSCF wave function seems to indicate 
that such a model of the c1A1 state, which we label 
la in Table VI, is not very realistic: Corresponding 

TABLE VI  
Values of Svb and £vb for singlet methylene, 
calculated with various models, 
as described in the text. 

Model ^vb       ^CAS 

1a 
1to 
1c 
1d 

0.991724 -38.826331 0.028856 
0.993414 -38.838868 0.016319 
0.993412 -38.838872 0.016315 
0.994545 -38.865023 -0.009836 

values for ground-state calculations are typically 
10 millihartrees. Furthermore, as is shown in Fig- 
ure 3, the forms of the optimized orbitals are 
rather unphysical. Indeed, the near-linear depen- 
dence, due to high orbital overlaps < fa I fa) and 
(fa I fa) (see Table VII), also gave rise to some 
convergence problems. 

The shortened bond lengths for this state rela- 
tive to the lowest lAx state (1.064 versus 1.117 A 
[42]) do not suggest any partial breaking of the 

0, 03 
  

f i fe:" 'Mä} 
\\:;-~ y'} 

)      H 

05 

, ^ 

H    ( QMir^   ,-H'i ! 
^^'i'X   y y/ i 

i {-   ,''' y / 

*, *< 

','--\ 

0e 

V 

FIGURE 3. CASVB orbitals for singlet methylene: model 1a with fa- 
the perpendicular mirror plane. 

<j)6 shown in the molecular plane and fa -fa, in 
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TABLE VII  
Overlap matrices for models 1a - 1d, obtained by 
maximizing SVB. 

Solution 1a 

01 92 93 94 05         06 

01 1 

9? 0.997 1 

9* 0.641 0.641 1 

9t, 0.057 0.057 0.771 1 

9, 0.641 0.641 -0.177 -0.698 1 

06 0.057 0.057 -0.698 -0.990 0.771     1 

Solution 1b 

01 <t>2 03 04 05         06 

01 1 

9? -0.646 1 

9* 0.132 0.132 1 

04 0.053 0.053 0.791 1 

9, 0.132 0.132 0.601 0.248 1 

96 0.053 0.053 0.248 -0.074 0.791     1 

Solution 1c 
9, 02 03 04 96         06 

9, 1 

9? 0.004 1 

9a 0.221 0.221 1 

94 0.092 0.092 0.792 1 

9, 0.221 0.221 0.600 0.249 1 

06 0.092 0.092 0.249 -0.072 0.792     1 

Solution 1d 

01 92 03 4>4 9S         06 

*i 1 
02 0.897 1 

9* 0.243 -0.054 1 

04 0.052 -0.036 0.785 1 

9, 0.243 -0.054 0.625 0.263 1 

4>6 0.052 -0.036 0.263 -0.087 0.785    1 

C—H bonds, and a very natural way of improving 
the solution la is therefore to add configurations 
in which the nonbonding orbitals become doubly 
occupied: 

%b =,s/((lsf X {c1010203040506© 

+ C2( 01 01 03^4 05 06 

+ 020203040506)0OO©OO}). (12) 

This represents a significant improvement, such 
that the energy difference from the CASSCF is 
reduced to 16 millihartree, and the bond-forming 
orbitals (see Fig. 4) now conform to the description 
found for C—H bonds in a wide variety of sys- 

tems. The spin-coupling coefficients also seem 
much more realistic (see Table VIII). We noticed 
that the ionic configurations are dominant in the 
lb model and so we repeated the calculations 
leaving out the covalent part: 

%c =.c/((ls)2 X (<MJ«M4<M6 

+ <f>2 $2 $3 </>4 0506)&oo0oo ) •      (13) 

The associated decrease in quality is not noticeable 
(see model 1c in Table VI and Fig. 5), so one must 
prefer this wave function on grounds of simplicity. 
Based on these various results, we conclude that 
excitations 0, ~> 02 ar<d 02 ~^ 0u relative to the 
äMJ state, provide a very acceptable description of 
the electronic structure of the cxAx state. Examin- 
ing the full CASSCF CI vector transformed accord- 
ing to the orbitals of Eq. (13), we find that 98.7% of 
the CASSCF wave function is of the form shown in 
Eq. (13) (cf. Table VI) and that most of the 1.3% 
not accounted for (1.1%) is made up of configura- 
tions in which 4>l and 02 

are botli doubly occu- 
pied. 

Even within this active space, it is possible to 
improve slightly the description of the nonbonding 
electrons by incorporating a degree of radial corre- 
lation. Even if 0j ar>d 02 are not related by sym- 
metry, correct overall symmetry can be ensured by 
use of a projection operator [18]. Formally this is 
equivalent to a wave function of the form 

%d =.C/((ls)2  X  (0]0203 04 0506 

+ (a!,01)((r!,02)03040506)0o\,©oo),    (14) 

and the orbitals resulting from such a calculation 
(1 d) are shown in Figure 6. Obtaining the descrip- 
tion of the excited state by maximization of the 
overlap with the CASSCF wave function is not 
variational in the energy. The fact that the expecta- 
tion value of the energy for model Id is slightly 
lower than that from a CASSCF calculation for the 
same state and with the same active space must 
indicate some overlap of the VB wave function 
with the corresponding CASSCF solution for the 
lower state of this symmetry. 

The nonbonding orbitals for the cMj state adopt 
far greater 2 p character (Figs. 3-6) than do those 
for the lower $AX state [38-40], for which a domi- 
nant 2s component is observed. When the spin- 
coupled covalent configuration is excluded, as in 
lc, the angle between the 2p-type orbitals ap- 
proaches 90° (Fig. 5) and their overlap becomes 
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TABLE VIII  
Weights wpp = (cpp)2 of the perfectly paired 
spin function, expressed as percentages of the 
total spin function in the Kotani or Serber bases. 

Model w, 
pp 

1a 
1ö 
1c 
1cf 

75.00 
100 
100 

99.67 

small (Table VII). As a consequence, the bond- 
forming orbitals can adopt significantly greater s 
character, an observation which is consistent both 
with the increased bond angle (102.4° to 171.6°) as 
well as the diminished bond lengths relative to the 
älA-y state. 

S, STATE OF BENZENE 

The first excited singlet state (St) of benzene is 
the lowest one of 1B2„ symmetry but, rather than 
simply symmetry adapting the wave function and 

using the standard "ground-state" approaches, we 
decided to use this system as a further test of our 
"excited-state" procedures. Invoking CT/TT separa- 
tion, 6-in-6 CASSCF calculations were performed 
in D2h symmetry using the same geometry and 
basis set as in a previous CASVB study [22] of the 
Alg ground state (S0). Explicitly, the basis set is 
the same as used above for butadiene and methyl- 
ene, except that the two d functions on carbon and 
the two p functions on hydrogen were replaced by 
functions with exponents dc = 0.8 and pH = 1.0. 
We number the carbon atoms consecutively around 
the ring. The CASSCF excitation energy of 4.96 eV 
compares rather well with the experimental value 
of 4.90 eV quoted in Ref. [7] and taken from 
Lassetre et al [43]. 

For our modern VB descriptions, we adopted a 
spin-coupled (SC) model of the form: 

* =jjrt<E»»re X <M2<M4<M6®oo)       (15) 

and started by maximizing SVB for the S1 state. 
This resulted in six pw-like functions, each associ- 
ated with a particular carbon atom and resembling 

0. 

M 

<t>; 

O ! >     ! 
Bc--V  / 

fc 

H 

0s 

H 
/    ^--'       / 

0, 

H 

0e 

H 

FIGURE 4. CASVB orbitals for singlet methylene: model 1b, plotted as in Figure 3. 

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 645 



THORSTEINSSON AND COOPER 
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FIGURE 5. CASVB Orbitals for singlet methylene: model 1c, plotted as in Figure 3. 

fairly closely those from a fully variational treat- 
ment of the ground state [22]. However, as was 
also the case for the corresponding unconstrained 
max(SVB) representation of the S0 CASSCF func- 
tion [18], we observed some symmetry breaking. 
For all subsequent calculations, we constrained the 
orbitals $\~$b to be related to one another by 
successive C6 rotations, and it is convenient to 
number them according to the carbon atoms with 
which they are associated. Use of the overlap crite- 
rion to obtain a modern VB representation of the 
S1 state then resulted in a very creditable SVB = 
0.99874 and a corresponding energy that is only ca. 
2 millihartree inferior to that from the CASSCF 
calculation (see Table IX). This energy difference is 
reduced only very slightly on choosing instead to 
minimize £VB, and the further change on perform- 
ing a fully variational SC optimization is almost 
negligible. Plots of the orbitals from the three dif- 
ferent procedures were exceedingly difficult to dis- 
tinguish by eye, and so we present here only a 
symmetry-unique orbital from the fully variational 
SC calculation (see Fig. 7, which illustrates the 

similarity to the corresponding picture for the 
ground state [22]). The various orbital overlaps 
(see Table IX) are larger than in the case of the 
ground state (cf. the earlier results for butadiene). 
Expressing the spin function in the traditional 
Rumer basis, we find, of course, that all three 
modern VB descriptions of the Sj state correspond 
exactly to the out-of-phase combination of two 
Kekule-like structures, as was anticipated in the 
extensive spin-coupled valence bond studies re- 
ported in Ref. [7]. 

Conclusions 

The molecular excited states considered here 
may all, to a very good approximation, be rational- 
ized in terms of single orbital excitations or a 
recoupling of the electron spins, relative to the 
ground-state descriptions. In general, of course, 
low-lying excited states are likely to be derived 
from first-order variations in the wave function 
parameters, but secondary effects may become very 
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FIGURE 6. CASVB orbitals for singlet methylene: model Id, plotted as in Figure 3. 

important even for these cases. Such secondary 
effects include the relaxation of active and core 
orbital spaces, and possibly also induced changes 
in the geometry. An observation for both cases of 
spin recoupling considered here, trans-1,3- 
butadiene and benzene, was an associated signifi- 
cant expansion of the spin-coupled orbitals. Par- 
ticularly for gaining an understanding of such 
secondary changes in electronic structure, it may 
be important to allow free optimization of orbitals 

and structure coefficients in each excited state. An 
additional consideration in this context is the re- 
quirement of a balanced treatment of the various 
molecular states, for which separate optimization 
of each state would ultimately seem unavoidable. 

It is useful to consider separately orbital excita- 
tions within the valence space and those going into 
the virtual orbital space, because the nature of the 
consequent valence bond descriptions will be 
somewhat different. Assuming that the ground- 

TABLE IX  
Energies and (where appropriate) orbital overlaps from calculations on benzene. 

State Calculation E, hartree (4>i I #2> <4>1   I  *3> <*1   I  04 > 

So 6-in-6 CASSCF -230.836822 — — — 
So Fully variational SC -230.829332 0.5238 0.0294 -0.1570 
S^ 6-in-6 CASSCF -230.654383 — — — 
Si Fully variational SC -230.652205 0.5962 0.2893 0.2787 
Si min(EVB) -230.652197 0.5961 0.2881 0.2768 
Si max(SVB) -230.652162 0.5721 0.1705 0.0621 
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S, 

FIGURE 7. Contours of spin-coupled orbital for the ST 

and S0 states of benzene, with projected positions of the 
nuclei marked x. (Left) In the plane 1 bohr above the 
molecular plane. (Right) In a vertical mirror plane. 

state VB picture is based on a spin-coupled wave 
function consisting of relatively well separated Or- 
bitals, a valence excitation will lead to a configura- 
tion with "ionic" character. As seen in the case of 
the c[Al state of CH2, a standard spin-coupled 
covalent structure may then be unsuitable, and 
could lead to linear dependency problems. How- 
ever, applying common sense in selecting the form 
of modern VB wave function is likely to resolve 
any such difficulties. 

The need for a full optimization of states de- 
rived by excitations out of the valence space (in- 
cluding those leading to Rydberg states) may be 
less pronounced than for the valence excited states. 
In this context, a nonorthogonal CI treatment cer- 
tainly has the unquestionable advantage of gener- 
ating representations of a large number of states in 
one single step. However, the application of our 
CASVB methodology to such cases presents no 
formal difficulties and, since there are unlikely to 
be any problems associated with linear depen- 
dence, such optimizations may very well be signif- 
icantly simpler than the corresponding optimiza- 
tions for valence excited states. Early tests of our 
strategy involved reproducing a series of results 
for Rydberg-type excited states [12-14]. Although 
no significant difficulties were encountered, the 

advantages of invoking a two-step procedure to 
converge onto particular states soon became clear. 

We believe that the CASVB strategy offers a 
number of advantages for the modern VB descrip- 
tion of excited states. In addition to the simultane- 
ous optimization of VB orbitals and structure coef- 
ficients, the possibility of simple "max(SVR)" 
optimization for any given CASSCF solution is a 
major strength. The requirement for saddle-point 
optimization in the case of an energy-based opti- 
mization is a complication relative to this, but it is 
likely that our implementation of the TRIM algo- 
rithm [34] will deal with this in an efficient man- 
ner in most realistic cases. It is reassuring to see 
that the close harmony between corresponding 
overlap-based and energy-based results, previ- 
ously found for ground-state calculations, also 
holds for applications to excited states. 

Appendix: Second-Order Optimization 
of Excited States 

We have had very positive experience with the 
restricted-step Newton-Raphson approach [26, 27] 
for the straightforward optimization of simple 
maxima or minima. Restricted step optimization of 
excited states is implemented in several MCSCF 
programs. It seemed reasonable, therefore, to look 
for a generalization of our ground state scheme to 
include excited-state optimization. The most natu- 
ral such generalization, we believe, is the "trust- 
region image minimization" (TRIM) method de- 
veloped by Helgaker [34] in the context of 
transition-state optimization. TRIM represents a 
further development of the "image function opti- 
mization" method proposed by Smith [44]. We 
review here the main features of the strategy, 
together with the particular considerations that we 
found to apply to excited-state optimizations. 

It is convenient to transform the optimization 
problem (i.e., the Hessian matrix, gradient, and 
update vectors) to the basis of Hessian eigenvec- 
tors. The update, 8, can then be expressed as: 

S,= 
~Si 

i = l,...,Hncg (16) 

and 

5,- = 
Si 

G,,   +   a 
i = ?7ncE + 1,...,N      ,   (17) 
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in which g, and Gu are the gradient and Hessian 
elements, respectively, and nneg signifies the num- 
ber of Hessian negative eigenvalues required at 
convergence, as determined by the order of saddle 
point sought. Hessian eigenvalues are assumed to 
be in ascending order, and the parameter a is 
chosen larger than min(G„   „   ,~G„   +1„   +1,0). 

Comparing to the standard stabilized Newton- 

Raphson procedure, Eq. (9), one can see this as a 
maximization in the space of the first n Hessian 
eigenvectors, equally weighted with minimization 
within the complementary space. The importance 
of using a modified Hessian that has the correct 
number of positive and negative eigenvalues has 
been pointed out also by other researchers [29]. As 
in our standard procedure, a is further optimized 
to achieve an update on, or within, the trust sphere: 

II8II < h. (18) 

The trust sphere radius, ft, is varied according to 
the quality of the second-order method, which 
may be gauged by the ratio r between the actual 
(A/) and the predicted changes to the function /: 

r = 
A/ 

5Tg + 1/28TG8 
(19) 

We believe that a number of the important points 
in the simple stabilized Newton-Raphson proce- 
dure are preserved in this approach: 

1. The first n components of 8 seek to maxi- 
mize /, and the last N m - nneg to mini- 
mize /, on, or within, the trust sphere. 

2. Close to convergence, the method reduces to 
the pure Newton-Raphson approach, as the 
constant a is set to zero. 

3. For small updates, the method approaches a 
steepest ascent procedure in the first nneg 

variables and steepest descent in the last 
K parm neg- 

The main difference from the simple extremum 
optimization is that updates for which A/ has the 
"wrong sign" can no longer necessarily be re- 
jected. The most straightforward way of overcom- 
ing this difficulty is to ensure a relatively strict 
adherence to trust sphere sizes for which the sec- 
ond-order model is valid. In particular, it seems 
likely that somewhat more "rejections" may be 
required. The following is an outline of the trust 

sphere control scheme as used in our present pro- 
gram: 

1. If r < 0.25 or r > 4, the update is rejected 
and ft is reset to 0.5 X ft. 

2. If 0.75 < r < 1.33, the update is accepted and 
ft is reset to 2 X ft. 

3. For all other values of r, the update is ac- 
cepted and ft is reset to 1.2 X ft. 

Compared with our standard optimization proce- 
dure, this new approach may require more itera- 
tions to reach convergence (typically just 1 or 2), 
but in none of the cases studied so far have the 
convergence characteristics been severely affected. 
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ABSTRACT: Vertical electron detachment energies of F~ and OH~ have presented 
difficulties for perturbative electron propagator methods. A recently derived, 
nondiagonal, renormalized approximation and two additional improvements are studied 
here. These improvements are replacement of the Hartree-Fock reference determinant by 
a determinant of approximate Brueckner orbitals generated by a coupled-cluster doubles 
calculation and retention of correlation terms in the 2hp-2hp block of the superoperator 
Hamiltonian matrix. Agreement with experiment is significantly better with these 
methods. When Hartree-Fock orbitals are used, electron detachment energies are 
underestimated, but approximate Brueckner orbitals lead to overestimates.    © 1998 John 
Wiley & Sons, Inc. Int J Quant Chem 70: 651-658, 1998 

Key words: electron propagator; propagator theory; Brueckner orbitals; anions 

Introduction 

Electron propagator theory [1-8] is a versatile 
vehicle for the study of unusual molecular 

anions. Electron detachment energies of carbon 
cluster anions [9-13], dianions [14,15]; and quad- 
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ranions [16] have been calculated with propagator 
methods. Multiply charged, anionic complexes of 
transition metals that are stable in the gas phase 
have been identified with the aid of electron prop- 
agator techniques [17]. Double Rydberg anions [18] 
and bound, excited states of organic anions [19] 
have been studied as well. 

Several perturbative, electron propagator ap- 
proximations [20,21] have been subjected to sys- 
tematic tests of accuracy in the calculation of verti- 
cal electron detachment energies of small, closed- 
shell anions [22]. Average, absolute errors are ap- 
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proximately equal to 0.2 eV for the partial third- 
order (P3) approximation [23], a method that is 
easily applied to larger anions. 

Two anions, however, continue to challenge 
perturbative approaches. Calculations on F' and 
OH" with a variety of low-order and renormal- 
ized methods consistently produce vertical elec- 
tron detachment energies that are in serious dis- 
agreement with accurate experiments [22]. Some of 
these results are summarized in Tables I and II for 
Koopmans's theorem, as well as for second-order, 
third-order [24], outer valence Green's function [8], 
and P3 [23] diagonal self-energy approximations. 
These difficulties are not due to basis sets, for 
additional improvements are likely to favor the 
anionic reference state over the neutral final state, 
leading to larger errors. While the P3 method per- 
forms better than its predecessors of equal or 
greater computational difficulty, its errors are still 
unacceptable large: approximately 0.7 eV for F" 
and OH" with a triple £ basis augmented with 
diffuse and polarization functions. Nondiagonal, 
renormalized self-energy approximations based on 
perturbative improvements to reference state den- 
sity matrices, such as 3 + [10,20], do not fare 
much better. The inability of currently imple- 
mented methods to describe F" and OH" impedes 
study of the many anion-molecule clusters and 
metal-ligand complexes where these anions occur. 
More powerful techniques therefore must be con- 
sidered. 

Two improvements on a nondiagonal, renor- 
malized method that has appeared recently [25] 
are considered here. The first is employment of 

TABLE I  
F " electron detachment energies (eV). 

Basis KT 3     OVGF   P3    3+   Expt. 

6-311 + G(2df) 4.83 1.23 5.69 4.39 3.72 4.34 
aug-cc-pVDZ 4.93 1.03 6.61 5.05 3.79 4.84 
aug-cc-pVTZ    4.92  1.21   6.75    5.00   4.15 4.78 3.40 

operator manifolds based on approximate Brueck- 
ner orbitals [26] instead of Hartree-Fock orbitals. 
For cases where ground-state correlation is qualita- 
tively important, such as anions, radicals or transi- 
tion-metal complexes, this option may be generally 
useful. The second concerns treatment of superop- 
erator matrix elements between shakeup opera- 
tors. (These operators annihilate two electrons in a 
reference determinant while creating an electron in 
a virtual spin-orbital.) This improvement is cou- 
pled to the first, for rotations between occupied 
and virtual orbitals may require equivalent treat- 
ment of simple annihilation operators and shakeup 
operators. 

After a review of previously derived methods, 
the present modifications are defined in a common 
notation. Test calculations on these two improve- 
ments are performed independently and in combi- 
nation. The best basis set of the previous study on 
anions [22] is used initially so that comparisons 
between new and old methods may be made. Basis 
saturation is demonstrated by additional augmen- 
tations. Conclusions on the utility of Brueckner 
orbitals and higher order treatments of shakeup 
operators are reached. 

Theory 

PHYSICAL INTERPRETATION 

In its spectral form, the  r,  s element of the 
electron propagator matrix is 

GJE) 

-<<fl!;«s» 

f      (N\al\N-l,n)(N-l,n\as\N) 

~ i™ \ V    E + E„(N - 1) - £0(N) - it? 

(N\as\N + l,m)(N + l,mWr\N)\ 
+ t     E - EJN + 1) + E0(N) + ir,    }' 

(1) 

TABLE II 
OH   electron detachment energies (eV). 

Basis KT 2 3 OVGF P3 3 + Expt. 

6-311 + + G(2df,2pd) 
aug-cc-p VDZ 
aug-cc-p VTZ 

2.88 
2.95 
2.97 

-0.01 
-0.17 
-0.02 

3.59 
4.22 
4.43 

2.38 
2.86 
2.86 

2.12 
2.11 
2.48 

2.45 
2.84 
2.82 1.83 
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The propagator matrix is energy-dependent; poles 
occur when E equals a electron detachment en- 
ergy, E0(N) - En(N - 1), or an electron attach- 
ment energy, — E0(N) + Em(N + 1). Correspond- 
ing residues, such as (N\a\\N ~ 1, n)(N - 
1, n\as\N) or (N\as\N + 1, m)(N + 1, m\l\N), are 
related to the Feynman-Dyson amplitudes (FDAs), 
where 

or 

li„ = <N-l,nK|N> 

Utin = {N+l,n\a\\-N). 

(2) 

(3) 

FDAs suffice for constructing Dyson orbitals (DOs) 
for electron detachments and attachments, where 

<^sonU) = £ <M*)ur,„. (4) 

In the former case, the DO is related to initial and 
final-state wave functions via 

^son(x1) = /^N(x1,x2,x3,...,xN) 

X   TJJ_ i7 „V ^2' x3' xi' • • •' XN ^X2 UX3 

Xdx4 ■■■ dxN, (5) 

while for the latter case, 

'rn \x\) ~   I ^N^x2' x3' xAi---r XN+1' 

X^N+l,«' *1' X2' X3' • • ■ i XN+l) 

Xdx2 dx3 dx4 ■■■ dxN+1. (6) 

The pole strength, Pn, for final state n is given by 

P„ = f\<t>?SOR(x1)\2dx1. (7) 

DIAGONAL APPROXIMATIONS 

Approximate electron propagator methods 
are often classified by their treatment of the self- 
energy matrix that occurs in the Dyson equation. 
A computationally convenient form of this equa- 
tion is 

G"1(E) = Gö1(£)-L(E). (8) 

The inverse of the zeroth-order, propagator matrix 
that recovers the Koopmans approximation for 
electron binding energies has a simple form in the 
canonical orbital basis, 

where er is the rth orbital energy. Relaxation and 
correlation corrections reside in the self-energy 
matrix, E(E). Poles of the propagator matrix are 
values of E that satisfy 

det{G_1(E)} =0. (10) 

This requirement is satisfied by searching for E 
such that G_1(E) has a zero eigenvalue. The ac- 
companying eigenvectors provide the Feynman- 
Dyson amplitudes. For valence electron detach- 
ment energies, these eigenvectors are usually close 
to unit vectors. Correlation corrections to these 
electron binding energies are found chiefly in di- 
agonal elements of E(E). 

Diagonal approximations in the self-energy ma- 
trix therefore have been employed widely. Here, 
one needs only search for E such that 

6p   +   Lpp\ b). (11) 

[Gö1(E)]rs = (E-er)örs, (9) 

Three iterations generally suffice for convergence 
to 10 ~5 a.u. when a Newton procedure is used. 
Diagonal approximations also generate a simple 
picture of electron detachment where electrons as- 
signed to unperturbed canonical orbitals are sub- 
ject to a relaxation-correlation potential repre- 
sented by the diagonal elements of E(E). 

Diagonal and nondiagonal expressions for E(E) 
in second and third order of the fluctuation poten- 
tial have been characterized in detail [24]. Second- 
order results generally overestimate corrections to 
the canonical orbital energy for valence ionization 
energies of molecules, and third-order results dis- 
play the opposite trend. Several recipes for scaling 
third-order terms depend on ratios of second-order 
and third-order self-energy diagrams; they have 
been used widely in the diagonal approximation. 
These three procedures are known collectively as 
the outer valence Green's function (OVGF) and 
numerical criteria for choosing the best result have 
been prepared [8,27]. 

The recently derived P3 self-energy [23] pos- 
sesses several advantages of efficiency and accu- 
racy over its predecessors. It produced an average 
absolute error of less than 0.2 eV in calculations on 
the ionization energies of typical, closed-shell 
molecules. This method eliminated contractions 
with OVA dependence on the number of occupied 
(O) and virtual (V) orbitals that are the arithmetic 
bottlenecks in third-order (and therefore OVGF) 
calculations. P3's most difficult steps scale as 
02V3. Calculations on the electron binding ener- 
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gies of closed-shell molecules with over 300 basis 
functions are now routine on relatively modest 
workstations [28-30]. 

NONDIAGONAL, RENORMALIZED 
APPROXIMATIONS 

There are inherent limitations in diagonal ap- 
proximations. Dyson orbitals must remain equal to 
canonical orbitals, and final states with major re- 
laxation effects therefore may be poorly described. 
Diagonal approximations are inappropriate for 
states with small pole strengths, such as those 
occurring in inner-valence photoelectron spectra 
[31]. 

Nondiagonal approximations with infinite order 
corrections, or renormalizations, can be expressed 
succinctly in terms of the superoperator Hamilto- 
nian matrix. The propagator matrix may be written 
as 

G(E) = = [1 o] 

X l' 
.or 

£1 - (a I Ha) 

-(f I Ha) 

-(a|Hf) 

El - (f I Hf) 

-l 

(12) 

where the primary operator space of simple field 
operators, a, is partitioned from the orthogonal, 
secondary space of product field operators, f. In 
this notation [32], 

(/i| v) = (N\[fi\v] + \N}l (13) 

and elements of the superoperator Hamiltonian 
matrix are given by 

(li\Hp) = (N\[fi\[v,H]] + \N).      (14) 

Poles and FDAs thus correspond to eigenvalues 
and to primary space eigenvector components, re- 
spectively, of the superoperator Hamiltonian 
matrix. 

Each of the blocks of H may be evaluated in 
various orders of the fluctuation potential. For 
example, the primary operator block evaluated 
through order n has constituents in each order 
according to 

(a | Ha/"' = (a I Ha)o + (a I Ha)i + (a I Ha)2 

+ (a|Ha)3 + ••• +(a|Ha)„.   (15) 

For this block, the first- and second-order terms 
vanish for closed-shell reference states; f 3 is the 
vector  of  two-particle,  one-hole  and   two-hole, 

one-particle (2ph and 2hp, respectively) operators 
defined with respect to a reference configuration. 
For the (a I Hf 3) and (f 3 I Ha) blocks, only ^the 
zeroth-order term vanishes, while the (f3 I Hf3) 
block has nonzero contributions in all orders. 

Several approximate propagators can be defined 
in terms of superoperator Hamiltonian matrix ele- 
ments. For example, poles corresponding to the 
nondiagonal, second-order self-energy approxima- 
tion are recovered by setting 

H 

AO) \0) (a I Har      (a I Hf3) 
, » s(l) , A .(0) 

(f3 I Ha)       (f3 I Hf3) 
(16) 

The minimal choice needed to recover all third- 
order terms in the self-energy is 

H = 
(a I Ha) 

(3) 
(a | Hf3) 

(2) 

(f3|Haf    (f3|Hf3)
0) 

(17) 

The latter approximation also generates other terms 
in all orders and is henceforth denoted by 3 + 
[10,20]. Self-consistent treatments of the (a I Ha) 
block may provide further refinements. Procedures 
of this kind are employed in the extended 2ph 
Tamm-Dancoft approximation (TDA), or third or- 
der algebraic diagrammatic construction (ADC) (3), 
methods [8,20]. 

A recently developed, nondiagonal, renormal- 
ized method (NR2) may be explained in similar 
terms by separating the p and h subsets of a and 
the 2hp and 2ph subsets of f3. Diagonalization of 
the NR2 superoperator Hamiltonian matrix, de- 
fined by 

H 

(18) 

is equivalent to solving the Dyson equation with a 
nondiagonal, renormalized self-energy that is com- 
plete in second order, but not third order, in the 
fluctuation potential. All terms present in the P3 
approximation are recovered in the NR2 method. 

To take advantage of programs used for tradi- 
tional configuration interaction calculations, eigen- 
values of the symmetrized matrices, |{H + Hf}, 

nh,p 
HO) nh,2hp 

Hd) nh,2ph 

H<0) H(0) H(1) n
p,2p/! 

H(2) n
2hp,h H(1> n2hp, p 

HO n2hp,2lip n2/ip,2p/ 

n2ph,h n2p/l, p n2ph,2hp n2ph,2pl 
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are computed. Errors in the self-energy matrix 
introduced by this procedure occur initially in 
fourth order. 

IMPROVED REFERENCE STATES 
AND OPERATORS 

Two extensions of the NR2 approximation are 
considered here. This method may not be properly 
balanced in its treatment of final states with appre- 
ciable shakeup (2/ip) character. It retains terms 
through second order in the Hhi2hp and Hhih 

blocks, but only first-order terms in the VL2hp,2hp 
block are kept. (In the canonical orbital basis, first- 
and second-order terms in the Hh h block vanish.) 
Therefore, second-order terms in the H2ftpi2h block 
are added to restore balance to the treatment of h 
and 2hp operators. 

A second extension of the NR2 method consid- 
ers replacement of canonical orbitals by approxi- 
mate Brueckner orbitals. Exact Brueckner orbitals 
form a reference determinant such that single exci- 
tation coefficients vanish in the full configuration 
interaction wave function [26]. Approximate 
Brueckner orbitals may be obtained from limited 
configuration interaction wave functions by requir- 
ing single excitation coefficients to be zero [33]. 
Coupled-cluster wave functions may employ a ref- 
erence determinant, |Brueckner >, defined in a sim- 
ilar manner [34]. In the so-called Brueckner dou- 
bles (BD) [35] approximation, 

|BD> = eTM Brueckner), (19) 

where orbitals and double replacement coefficients 
occurring in T2 are simultaneously optimized. In 
this study, the double replacement coefficients, 
t, of 

£ £ ttyAwj 
ij     ab 

(20) 

replace their counterparts from the first-order wave 
function of many-body perturbation theory [36]. 
Superoperator matrix elements are evaluated with 
the following metric: 

(fjb | v) = (Brueckner|[ //, v] + e
Tl|Brueckner>. 

(21) 

This choice produces nonhermitian superoperator 
matrices and is motivated by the following consid- 
erations. Employment of this metric in combina- 
tion with a complete operator manifold (u) for the 

propagator final states has implications for 
ground-state properties. Insertion of a propagator 
defined thus in the contour integral expression for 
total energies [37], 

1     r 
(N\H\N) = Tr / {h(1) + £1}G(E) dE,   (22) 

4-77-Z ■>£ 

where h(1) is the matrix of the one-electron part of 
the Hamiltonian and C encloses only the ioniza- 
tion energy poles, yields the BD ground-state en- 
ergy. Specification of a well-defined reference state 
total energy is useful in the evaluation of final 
state energies and properties [9,38]. The choice of 
Eq. (21) forces only one major modification in 
programs written for canonical orbitals. In the 
Brueckner orbital basis, elements of the Hft block 
of the superoperator Hamiltonian matrix no longer 
vanish. The HÄ/h and Hp blocks may be diago- 
nalized without altering the BD ansatz. 

Computational Methods 

Calculations were performed with augmented, 
correlation-consistent basis sets and the 6-311 + + 
G(2df,2pd) [39] basis. These sets contain many 
polarization and diffuse functions [40]. Because of 
the inability of current propagator-based programs 
to accept integrals over g functions, these contri- 
butions have been omitted from the aug-cc-pVQZ 
basis. For the sake of balance, / functions on 
hydrogen have been omitted as well. The resultant 
(6s,5p,4d,3//5s,4p,3rf) basis is subsequently sup- 
plemented by additional diffuse functions whose 
exponents are obtained by multiplying the previ- 
ously smallest exponent of each angular momen- 
tum type by 0.3. This (7s,6p,5d,4//6s,5p,4d) basis 
is the largest used here. 

The OH bond length is 0.98 A; Is orbitals on F 
and O are omitted from propagator calculations. 
Calculations are performed with modified versions 
of Gaussian 95 [41]. 

Results and Discussion 

Tables I and II demonstrate the difficulties en- 
countered by previously derived methods in de- 
scribing the vertical electron detachment energies 
of F~ and OH". Errors with respect to experiment 
[42] obtained with Koopmans's theorem (KT) are 
between 1  and 2 eV and are not unusual for 
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closed-shell molecules and anions. In the columns 
labeled 2, 3, OVGF, and P3, results of diagonal 
approximations are listed. Corrections to canonical 
orbital energies are overestimated with the 
second-order self-energy and have the wrong sign 
when the third-order self-energy is used. OVGF 
predictions, as usual, lie between these two ex- 
tremes, but still exhibit major discrepancies with 
experiment. The P3 self-energy produces the best 
results in the diagonal approximation, for the er- 
rors with the aug-cc-p VTZ basis are less than 1 eV. 
The nondiagonal 3 + self-energy contains all 
third-order terms and many higher order terms; it 
is therefore considered a generalization of the 
third-order and OVGF diagonal approximations. 
Agreement between 3 + and OVGF results is often 
observed and differences between these two ap- 
proximations are less than 0.22 eV in Tables I and 
II. Unfortunately, 3 + results remain in serious 
disagreement with experiment. Additional im- 
provements in basis sets are unlikely to provide a 
remedy for the failures of these approximate self- 
energies, for all results, with the exception of sec- 
ond order, are too large. Second-order errors in the 
limit of basis set saturation are likely to exceed 
1 eV. 

Results that employ four alternative approxima- 
tions are shown in Tables III and IV. The first, a 
nondiagonal, renormalized generalization of the 
P3 self-energy, is the previously derived NR2 
method [25]. The original form of NR2 used 
Hartree-Fock orbitals and reference states. Here, 
this method is labeled NR2-HF. Substitution of 
approximate Brueckner orbitals in this treatment 
of the superoperator Hamiltonian matrix defines 
the NR2-BD method. Retention of second-order 
terms in the H 

TABLE IV 

2hp,2hp block of the superoperator 
Hamiltonian matrix may be called a second-order 
description of shakeup states and is therefore la- 
beled SH2. This choice can be made with Hartree- 
Fock or approximate Brueckner orbitals, thus lead- 
ing to the SH2-HF and SH2-BD columns of Ta- 
bles III and IV. 

TABLE 
F    electron detachment energies (eV). 

Basis 
NR2- 
HF 

NR2- 
BD 

SH2- 
HF 

SH2- 
BD Expt. 

aug-cc-p VTZ 
6s,5p,4d,3f 
7sfip,5d,4f 

2.99 
3.16 
3.12 

3.55 
3.55 
3.56 

3.02 
3.16 
3.16 

3.60 
3.61 
3.62 3.40 

OH   electron detachment energies (eV). 

Basis 
NR2-   NR2- 
HF      BD 

SH2- 
HF 

SH2- 
BD Expt. 

aug-cc-p VTZ 
6s,5p,4d,3f/5s,4p,3d 
7s,6p,5d,4f/6s,5p,4d 

1.54    1.85 
1.60 1.85 
1.61 1.89 

1.58 
1.64 
1.65 

1.92 
1.94 
1.97 1.83 

Comparison of NR2-HF and P3 results with the 
aug-cc-p VTZ basis reveals major discrepancies. For 
ionization energies of closed-shell molecules, the 
two methods are usually in close agreement [25]. 
NR2-HF, unlike P3, underestimates both vertical 
electron detachment energies. As additional basis 
functions are added, the predictions of this column 
rise by less than 0.15 eV. Pole strengths are ap- 
proximately 0.9 for all three basis sets and contri- 
butions from canonical, virtual orbitals to the 
Dyson orbitals are negligible. It is therefore likely 
that the source of NR2-HF's superiority is the 
renormalization that derives from the nondiaeo- 
nal, first-order H2/ 2/,,, block of the superoperator 
Hamiltonian matrix. 

When second-order terms in this block are 
added, the SH2-HF model results. Some modest 
improvements are realized. Basis set augmenta- 
tions beyond 7s,6p,5dAf/6s,5p,4d will lead to 
slightly better agreement with experiment. The 
behavior of pole strengths and Dyson orbitals is 
similar to the NR2-HF results. Because generation 
of second-order H2,,^2,,;, terms is not computation- 
ally difficult, this approximation may be useful for 
other anions. Remaining errors are near 0.2 eV. 

The NR2 method also may be improved by 
replacement of Hartree-Fock orbitals by approxi- 
mate Brueckner orbitals. Substantial improve- 
ments over the NR2-HF method are displayed in 
the NR2-BD columns. Pole strengths are 0.89 for 
F~ and 0.88 for OH-. One orbital in the Brueckner 
determinant dominates the normalized Dyson or- 
bital with a coefficient in excess of 0.99 for all basis 
sets. For F~, coefficients near 0.1 for a\pa\pa4p 

shakeup operators appear in the eigenvectors of 
the superoperator Hamiltonian matrix. While the 
propagator calculation is no more difficult with 
the new orbital choice, a substantial investment 
must be made in obtaining the BD reference state. 

From a computational perspective, the addi- 
tional work required by the H2/ 2/ terms that 
depend on the coupled-cluster wave function am- 
plitudes is minor. Somewhat larger increases in the 
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vertical electron detachment energies accompany 
the inclusion of these terms when approximate 
Brueckner orbitals are used. Pole strengths, Dyson 
orbitals, and shakeup operator participation are 
approximately the same. With the largest basis, the 
SH2-BD model overestimates vertical electron de- 
tachment energies by 0.22 eV for F" and by 0.14 
eV for OPT. 

The SH2-BD model is perhaps the most satis- 
factory considered here, for the next set of im- 
provements must include 3h2p operators. These 
contributions probably improve the description of 
the electron-detached final state, but their influ- 
ence on the initial state (through triple and 
quadruple excitations achieved by coupling to the 
p and 2ph operators) is likely to be relatively 
minor. These effects will decrease electron detach- 
ment energies. A slight overestimate may be ex- 
pected with the present set of operators. 

Conclusions 

Previously derived diagonal approximations in 
the self-energy matrix and the nondiagonal, renor- 
malized generalization represented by the 3 + 
method fail to produce satisfactory predictions for 
the vertical electron detachment energies of F~ 
and OH. Saturation of basis sets provides no 
remedy for this conclusion. The best of these meth- 
ods is the partial third-order, diagonal approxima- 
tion. 

The recently derived, nondiagonal, renormal- 
ized generalization of the latter method, known as 
NR2, produces much smaller errors, approxi- 
mately 0.2 eV. Small improvements are realized 
when second-order terms in the H2/ip/2ftp block of 
the superoperator Hamiltonian matrix are added. 
Both of these methods underestimate the electron 
detachment energies. 

Replacement of Hartree-Fock orbitals in the ref- 
erence determinant by approximate Brueckner or- 
bitals generated in a Brueckner doubles, coupled- 
cluster calculation produces values that overesti- 
mate   experiment,  but  the   absolute   errors  are 
smaller. When H 2hp,2hp terms that depend on clus- 
ter amplitudes are added, agreement with experi- 
ment grows slightly worse. 

The new approximations tested here are signifi- 
cant improvements over the older techniques and 
are a promising foundation for additional method- 

ological developments and applications to anion 
chemistry. 
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ABSTRACT: A procedure for the calculation of molecular properties in the full 
quantum mechanical treatment is presented. We formulate the non-Bom-Oppenheimer 
density functional theory and propose its numerical scheme. We numerically calculate 
the energy, particle densities, interparticle distance, and (hyper)polarizability of the 
hydrogen molecule and its isotopes using this method and discuss isotope effects on the 
physical properties.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 659-669, 1998 

Introduction 

The Born-Oppenheimer approximation (BOA) 
[1], which allows one to separate electronic 

and nuclear motions, is often used to calculate 
physical properties of a molecular system in 
molecular physics and quantum chemistry. Within 
the BOA, solutions of the electronic Hamiltonian 
describe electronic energies depending parametri- 
cally upon nuclear coordinates. The solutions give 
a very effective and practical concept of the poten- 
tial energy surface (PES). There are many advan- 

Correspondence to: Y. Shigeta. 

tages of the PES concept, for example, the equilib- 
rium interatomic distance of the lowest point of 
the PES, the excitation among electronic and rovi- 
brational states, and the transition states. They 
give crucial information on chemical reactions and 
spectroscopic data. 

In chemical physics, there is, however, a wealth 
of problems where quantum effects of nuclei are 
essential. It is difficult to describe these nuclear 
quantum phenomena within the BOA. The near 
(avoid) crossing such as the Jahn-Teller effect 
manifests that the separation is not accurate. For 
an old problem, we can find a phase transition of 
solid molecular hydrogen under a pressure at a 
low temperature due to the quantum effect of the 
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protons. We also know that proton tunneling plays 
an important role in phase transitions between 
various phases of water. In small systems such as 
a hydrogen molecule and hydrogen molecular ion, 
solving the Schrödinger equation without the BOA 
has been tried by employing the specialized trial 
function [2-5]. 

There are many ideas and methods grounded 
on the non-Born-Oppenheimer (NBO) treatments 
for molecular systems in both static [6-12] and 
dynamic [13-15] cases. Recently, we developed 
the NBO Hartree-Fock method based upon the 
generator coordinate method (GCM) [11, 12] and 
calculated molecular vibrational spectra and 
molecular wave functions directly. The NBO den- 
sity functional theory (NBO-DFT) was formulated 
by Capitani et al. in 1982 [9]. DFT [16-18] is one of 
many useful and simple methods for calculating 
electronic properties and structural informations 
for molecular systems. One of recent topics in this 
field is molecular dynamics (MD) based upon the 
DFT, which was initiated by Car and Parrinello in 
1985 [19]. Some algorithms and computational 
codes based upon the real-space grid (RSG) method 
have been proposed for for years [20-26]. 

Capitani et al. introduced a chemical potential 
for both the electron and nucleus by solving the 
Euler equation for each particle and discussed the 
meanings of the chemical potentials from the 
viewpoint of a chemical reaction. They also showed 
a relationship between the NBO-DFT and the 
NBO-HF methods and pointed out its equality. 
Although Capitani et al. formulated the NBO-DFT 
method, realistic exchange-correlation potentials 
were not expressed and a concrete numerical cal- 
culation for molecular systems was not also exam- 
ined. 

In this article, we present a general NBO-DFT 
calculation technique based upon the RSG. Our 
aim in this work was to show the possibilities of 
this method and a strategy of improvement in 
calculations for realistic systems. In the second 
section, we review details of the NBO-DFT for- 
malism. We also remark on a calculation scheme 
using the RSG method. We used the Fast Fourier 
Transform (FFT) method and the local spin density 
(LSD) approximation through this work for a first 
approximation. The third section is concerned with 
numerical calculation examples of some physical 
properties of the hydrogen molecule and its iso- 
topomers. In the fourth section, we briefly outline 
the program for future theoretical and numerical 

developments to the NBO-DFT. The fifth section 
contains a summary and concluding remarks. 

Theory and Technique 

NON-BORNOPPENHEIIV1ER DENSITY 
FUNCTIONAL THEORY 

The full Hamiltonian H for a molecular system 
consisting of N electrons and M nuclei is given as 
(atomic units are used throughout in this text) 

IN Ml 1    N 1 
H=XEV,

2
+£—V; + -£-  

2    ,- a    lma 2 i + ] |r, - tj\ 

1 ^    z„zb 
+ ;E 

a*b '    a 

N   M 7 
TV       ' r,   (1) 

where r, and Ra are the coordinate for i-th electron 
and for a-th nucleus, respectively. Z„ and ma de- 
note the atomic number of fl-th nucleus and its 
mass. One defines a particle density for an electron 
with a spin: 

p;(r1) = /rfrl^(r,,(r„Rfl,/fl)|
2, (2) 

and an a-type nucleus with Ja spin: 

Pi°(Rai) = /^'l^(r,,(7„R„,/(,)|
2,        (3) 

where dr (dr1) denotes the product form of all 
spin-space volume elements except for dal dxx 

(dlat dR ). Note that the index of a specifies the 
kinds of the nuclei, for example, proton, deuteron, 
and so on, whereas the index of a in Eq. (1) 
denotes an order corresponding to one nucleus. 

We now define a ground-state energy density 
functional for the NBO as 

E[{p?}Apl-)] = ™n<%"M^ltf !%;'),(,>,!<■>>• 
(4) 

E searches all wave functions in the domain of the 
full Hamiltonian H of Eq. (1) of appropriate sym- 
metries and statistics of particles. We can now 
construct the well-known Kohn-Sham equation 
for each particle using sets of one-particle wave 
functions for both  electrons {</>,'r(r)}  and  nuclei 

F/^"(r) = eft? (r), 

F0'-*/»(R) = e/<x'«(R), (5) 
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where Fe
a and Fj« mean the Kohn-Sham operators 

defined in the usual manner [16-18]. Explicit forms 
of these operators for calculations are stated in the 
next subsection. 

Next, let us consider a molecular system inter- 
acting with a static external electronic field charac- 
terized by the scalar potential (f>. The total Hamil- 
tonian H' for such a system is 

N M 

H' = H+ £ *(r,.) - £ Z^(R„), 
i=l i = a 

(6) 

where H is defined in Eq. (1). Similarly, we yield 
the ground-state energy functional including the 
scalar potential 4> which is a unique functional of 
set of particle densities, {pf} and {p1^}: 

E[{pfUpaM] 

EfU-UPa«}] + l/drp*(r)0(r) 

M 

- £za/dRPi«(R)<KR).      (7) 

For the </>-representable densities, E[{ p[}, {p^}] 
coincides with the functional of Eq. (4). 

NUMERICAL TECHNIQUE 

We mention here a detail of a calculation scheme 
using the RSG. We adopt the higher-order expan- 
sions for the kinetic operator in Eq. (1) by using a 
uniform grid. We approximate Vr

2^e(x„ y;, zk) as 

V(t>,a(xl,yj,zk) 

nx= -Nh 

+     E    C^iXf.yf + riyKz,,) 
n¥= -Nh 

+     E    CnzW(xuyj,zk + nzh),   (8) 
nz=+N„ 

where h is a grid spacing; C,, constants in the 
differential method; and Nh, a positive integer 
describing the accuracy of this approximation. The 
accuracy is ordered as 0(h2Nh+2). The nuclear ki- 
netic terms are also represented in analogical forms. 
Other approximations for the kinetic operator are 
referred to in [22, 26]. With these kinetic operators 

in Eq. (8) and the local spin density approximation 
(LSD), we can construct a one-particle Schrödinger 
equation over the grid. We then yield the Kohn- 
Sham equation from Eq. (5) as 

t^{xi,y]lzk) 

= [fe + Vf(xit Vjr zk)](t>r(x„ yjr zk) 

Fl-xHXitY},Zk) 

= [t + ya'.(xj/Y1,zt)j^(x,j),zl) 

= e/^,MX;,Yj,Zfc), (9) 

where fe (fa), Ve
a(x) (Vj°(R)), and e," (e/0 are the 

one-particle kinetic operator, the external poten- 
tial, and the orbital energy of the z'-th state for an 
electron (for an a-type nucleus), respectively. 

These external potentials are defined as 

V'ix,, yjf zk) = Vc(xt, yjf zk) + Ü?(xit yjt zk) 
(10) 

and 

V<°(Xi,Yj,Zk) = -ZaVc(Xt,Yj,Zk) 

+ U1
0L<Xi,Yj,Zk),   (11) 

where Vc is a classical Coulomb potential and U° 
(üj«) is a exchange-correlation potential for the 
electron with spin a (for the a-type nucleus with 
spin Ia). The classical Coulomb potential, which 
does not depend upon the spins of two particles, is 
given as 

Vc(s) = /ds' 
pf(s') 

(12) 

where p' means a generalized total density of the 
molecular system defined as 

Pf(s)=-EEzapi°(s) + Epf(s).  <13) 

a     Ia <T 

For isolated systems, we can yield Vc by the FFT 
in forcing the supercell periodicity, which is com- 
monly used in the calculations of the band struc- 
tures. Other treatments to obtain the Vc are the 
multigrid method solving the Poisson equation 
[23, 26] and the direct summation method [21]. 
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On the other hand, the exchange-correlation 
potentials, which depend on the spins of particles, 
consist of three parts, which are the exchange part, 
the correlation with identical particles, and correla- 
tion with other particles. The exchange-correlation 
potential in Eqs. (10) and (11) can be represented 
as 

Ul- = fi ■„ + Ü « + Ü « 

(14) 

(15) 

Because practical forms of the exchange-correla- 
tion potentials are not known yet, then we con- 
sider a bold approximation for the potentials. In 
this work, we chose an exchange-correlation po- 
tential for an electron as the Xa potential (a = 0.7 
for an electron in the hydrogen atom). The nu- 
clear-nuclear correlation and electron-nuclear cor- 
relation terms, which are the second term in Eq. 
(15) and the third terms in Eqs. (14) and (15), are 
ignored for a first-order approximation as v°n = 
Uc    = Ucn = 0. 

We can obtain the ground state by using the 
reduction technique [14], which is available from 
the Taylor expansion of an imaginary time evolu- 
tion operator, 

tf(t + dt) = N^tfU) - dtFfiOWit)) 

+ Oidt1), 

xl'U + dt) = N;(XHO - dtF-(t)XiHt)) 

+ 0(dt2)r   (16) 

where N, and N,' are normalization constants, and 
Fe

a(t) and Fa'°(f) are generated by means of the set 
of the wave functions {(f>°(t), *„J°(0} at time t. 

Numerical Result and Discussion 

In this section, we present numerical results of 
the physical properties of the hydrogen molecule 
and its isotopomers using the NBO-DFT. 

PARAMETERS 

Table I summarizes various parameters of the 
initial conditions adapted in numerical calcula- 
tions. We assume that the range of molecular spac- 
ing is Lmax = 44.61 (au), and we divide Lmax into 
128 grids (N = 128). The grid interval h is, there- 
fore, about 0.3512 au. The corresponding cuttoff 
energies for wave functions in the FFT is about 40 
au. For an initial single-particle wave function for 
the H2 molecule, we set Gaussian functions with 
an exponent of 21.95 located at (X1,V1,Z1) = 
(62,64,64) for the up-spin proton and (X2, Y2, Z2) 
= (66,64,64) for the down-spin proton. These ex- 
ponents for nuclei are determined by the full vari- 
ational molecular orbital (FVMO) method pro- 
posed by Tachikawa et al. [27]. Parameters for the 
HD and D2 are also listed in Table I. On the other 
hand, initial electronic wave functions are set at 
(X],Yj, Zj) and (X2,Y2, Z2), and the exponent 
0.271 is used for all isotopomers. Note that the 
initial wave function for the electrons is put at the 
same grid point of nuclei and that exponents of the 
wave function are different from those of nuclei. 

TABLE I 
Calculation of initial constants (au). 

'-max h 
Initial 

location 
Initial 

exponent 
Initial 
mass Spin 

H2 electron 1 
H2 electron 2 
H2 nucleus 1 
H2 nucleus 2 
HD nucleus 1 
HD nucleus 2 
D2 nucleus 1 
D2 nucleus 2 

44.61 
44.61 
44.61 
44.61 
44.61 
44.61 
44.61 
44.61 

0.351 
0.351 
0.351 
0.351 
0.351 
0.351 
0.351 
0.351 

r, = (62, 64, 64) 
r2 = (66, 64, 64) 
fl, = (62,64,64) 
flg = (66,64, 64) 
fl, = (62, 64, 64) 
flg = (66, 64, 64) 
fl, = (62, 64, 64) 
flg = (66, 64, 64) 

0.271 
0.271 

21.95 
21.95 
21.88 
33.13 
32.43 
32.43 

1.0 
1.0 

1836.0 
1836.0 
1836.0 
3672.0 
3672.0 
3672.0 

T 
i 
T 
i 
T 
1 
T 
I 
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The intermolecular distance for initial location is 
almost 1.4 au. We set Nh = 4 in Eq. (8). 

TOTAL ENERGY AND 
INTERPARTICLE DISTANCE 

The total energies of the hydrogen molecule and 
its isotopomers are listed in Table II. The total 
energies yielded by the BO Xa method and HF in 
the Gaussian 94 package [28] and the NBO-HF 
method [11] are also shown in Table II. Note that 
the energies obtained from the NBO procedure 
include the so-called the zero-point vibration en- 
ergy. Our results are comparable to the NBO-HF 
method. From Table II, we find that the tendency 
of the increment for the total energy of the iso- 
topomers agrees with the results obtained from 
other methods [4, 11], qualitatively. Note that the 
results obtained from the present NBO-DFT 
scheme do not include the nuclear-nuclear and 
electron-nuclear correlation terms. 

The average interparticle distance between elec- 
tron and electron (e-e), electron and nucleus (e-n), 
and nucleus and nucleus (n-n) is indicated in 
Table III. All the tendencies of the interparticle 
distances are H2 > HD > D2. We should note that 
the n-n distance does not mean the equilibrium 
distance Re which is available from the BOA, but 
corresponds to the average distance (R) over a 
nuclear and electronic ground state. We can ex- 
plain a relationship between Re and (R) by using 
the PES concept shown in Figure 1. Re is the 
lowest point of the PES. On the other hand, < R) is 
the expectation value averaged over a vibrational 
ground state. 

TABLE II  
Total energy of hydrogen molecule (au). 

H, HD 

NBO-DFT -1.052804 -1.059503 -1.065855 
NBO-HF -1.048296 -1.060542 -1.072764 
BO-DFT(Xja -1.066319 — — 
BO-HFa -1.126755 — — 

a Obtained from Gaussian 94 using the 6-31G basis at 1.4 
au. 

nucleus moves differ in each case. The protonic 
density in H2 is slightly different from that in HD 
[see Fig. 3(a) and (b)]. The electronic density of HD 
is not symmetric due to the nuclear density. 

In Eqs. (10) and (11), each potential is deter- 
mined from the densities of the other particles. The 
density of each particle, therefore, also depends 
upon the densities of the other particles through 
the coupled Kohn-Sham equations of Eq. (5). The 
electronic properties depend not only on the atomic 
number of nuclei but also on its mass because of 
the behavior of the nuclear density. We conclude 
that all electronic properties are diversified by a 

TABLE III 
Interparticle distance of hydrogen molecule (au). 

e-e n-e n-n 

H2               2.115571 
HD               2.086376 
D2                2.085256 

1.795880 
1.771450 
1.770079 

1.406685 
1.405375 
1.405226 

DENSITY 

We define here the densities for the electron and 
nucleus as 

Pe(xi)= I,Tlp?<.xi,y},zk)h3
f 

<r   /, k 

^(x,-) = E L EPHX,^,^3.    (17) 
a    /„   ;', k 

The densities for the electron and nucleus are 
shown in Figures 2 and 3, respectively. Comparing 
Figure 3(a) with (b) and (c), we can find the iso- 
tope effect on the densities explicitly. The highest 
amplitudes of the proton and the deuteron in each 
molecule indicate that the average range where a 

Re<R> 
Inter atomic distance (a.u.) 

FIGURE 1. A relationship between the equilibrium 
interatomic distance and average nuclear distance of the 
vibrational ground state using the PES. 
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FIGURE 2. Electronic density of (a) H2, (b) HD, and (c) D2 (au) using converged wave functions. The range of the 
figures are from / = 48 to 80 (from x48 = -5.62 to x80 = 5.62). 
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FIGURE 2. (Continued) 

circumstance by which electrons move around, for 
example, the nuclear motions and kinds of nuclei 
of which molecular systems consist. 

POLARIZABILITY AND 
HYPERPOLARIZABILITY 

We calculated the linear and nonlinear optical 
properties of these systems. In Eqs. (6) and (7), we 
extended the NBO-DFT to molecular systems in a 
static external field of <f>(s). The static (hyper-) 
polarizabilities are defined as 

a''(0Hä^ 
) /F^O 

A,i(o) = 
d3E 

''>k \ dFt dV: dFk i 
\        '        1        K I F-+0 

(18) 

(19) 

where 

E(F) = E(0) - ^0F 

1 

2! 
<F2 

1 1 
— jßF3 yF4 - •• (20) 

E(F) is the molecular total energy in the presence 
of a static electric field <£(s). 4>(s) is approximated 
as F • s in Eq. (7), where F is a field amplitude and 
s represents a coordinate. We can obtain (hyper) 

polarizabilities by solving Eqs. (18) and (19) nu- 
merically by using the finite-field method. Table 
IV indicates the (hyper)polarizability axx and ßxxx 

of the hydrogen molecules and isotopomers by the 
BO and by the NBO-DFT. The axx values ob- 
tained form the NBO-DFT increases in the order 
of the nuclear mass, that is, H2 < HD < D2. From 
Table IV, the ßxxx value of the HD molecule has a 
nonzero value, but that of the other symmetric 
molecules are equal to zero, due to the unsymmet- 
ric system shown as Figures 2(b) and 3(b). Within 
the conventional BO procedure, it is difficult to 
obtain the ßxxx value of the HD because the 
nuclear mass effect on the electronic properties is 
omitted. 

Future Program 

In this section, problems which need to be im- 
proved on are mentioned briefly. 

EXCITED STATES AND 
REAL-TIME DYNAMICS 

For dynamic cases, we presented the molecular 
wave packet (MWP) method to investigate the 
isotope effect on the (hyper)polarizability of the 
one-dimensional hydrogen molecule and its iso- 
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FIGURE 3. Nuclear density of (a) H2, (b) HD, and (c) D2 (au) using converged wave functions. The range of figures 
are from / = 48-80. H and D represent the proton and deuteron, respectively. The numbers in a parentheses denote the 
maximum density. 

topomers [14]. It is, however, actually difficult to 
extend this method into three-dimensional many- 
particle systems, because the method is computa- 
tionally demanding. To reduce the computational 
efforts, it is necessary to introduce an approxima- 
tion as a possible retaining accuracy. 

Although the present NBO-DFT method also 
enables one to extend a real-time evolution scheme 
straightaway once the exact ground state is deter- 
mined, the method deals only with the ground 
state. To tackle the realistic cases where the BOA 
breaks down, this method must be reconstructed 
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FIGURE 3. (Continued) 

in order to treat the excited states. Several exten- 
sions of the ground-state DFT have been contrived 
to cope with excited states. They are based either 
on the Reyleigh-Ritz principle for the lowest 
eigenstate of each symmetry class [29, 30] or on the 
variational principle for ensembles [31, 32]. The 
crucial problem is how to determine the ex- 
change-correlation energy functionals for excited 
states. Recently, Görling suggested a computa- 
tional scheme for the treatment of excited states 
within the DFT [33] and the time-dependent 
Kohn-Sham formalism which is generalization of 
the DFT perturbation [34]. Gross et al. also derived 
another time-dependent DFT with excited states 
[35]. At the next stage, making use of these meth- 
ods may enable us to treat the time-dependent 

TABLE IV 
(Hyper)polarizability of hydrogen molecule (au). 

A 

H2 6.3020 0.0 
HD 6.3025 4.10 xe"4 

D2 6.3029 0.0 
H2(BO-DFT)a 6.6436 0.0 

a Obtained from Gaussian 94 by using 6-31G basis at 1.4 
au. 

molecular dynamics including both ground and 
excited states using the DFT. 

EXCHANGE AND CORRELATION ENERGY 
FUNCTIONAL FOR ELECTRON AND NUCLEI 

Quite independent of the problems connected 
with the exchange-correlation energy functionals 
for the excited states, there are some questions of 
how to uniquely choose the functionals for both 
the fermion and boson nuclei and for electron-nu- 
clear coupling. At this stage, we have neglected 
such effects in Eqs. (14) and (15). Here, we will 
make some remarks about it briefly. 

For the fermion nucleus, due to the anticommu- 
tation relation or Hund's rule, the identical nu- 
clear-nuclear exchange-correlation terms may be 
represented as the same form for the electronic- 
electronic ones. On the other hand, the boson nu- 
clei satisfy the commutation relation. For the bo- 
son nucleus, the Kohn-Sham equation may be 
represented as only one differential equation with 
a density. The identical exchange-correlation terms 
may be obtained from the imperfect Bose gas 
model, taking all these considerations into account. 
Electron-nucleus correlation terms which are the 
third terms on the right-hand side of Eqs. (14) and 
(15) and different nuclear-nuclear correlation 
terms are indispensable for describing the nonadi- 
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abatic effects. We can never neglect these coupling 
terms. There are many cases for calculating such 
terms, for example, a correlation between the elec- 
tron and fermion or boson nucleus and between 
fermion and boson nuclei. Although the last terms 
are very small in comparison with the other terms, 
when one investigates a deuteron in metallic hy- 
drogen and a mixture system of 3He and 4He, the 
last terms seem to be very significant. Much 
progress is exceedingly expected to search them. 

We now prepare for a construction of the exact 
functional beyond the LSD using the GW approxi- 
mation [36, 37] and the generalized gradient ap- 
proximation [38] methods, taking advantage of the 
scaling low generated by the virial theorem [39]. 

Concluding Remarks 

An NBO-DFT calculation scheme based upon 
the real-space grid method was presented to apply 
to molecular systems. A numerical calculation for 
a simple system such as the hydrogen molecule 
was attempted. We evaluated total energies, densi- 
ties, interparticle distances, and (hyper)polarizabil- 
ities of the hydrogen molecule. Calculations of the 
(hyper)polarizability axx and ßxxx were also per- 
formed using the finite-field method. The unsym- 
metry of the HD molecule is affected by the ßxxx, 
which is difficult to obtain by the BO procedures. 
We pointed out that all electronic and nuclear 
properties depend upon the charges and masses of 
particles of which a system consists, because the 
densities of particles are determined from the cou- 
pled Kohn-Sham equation of Eq. (5). We showed 
that it is possible to discuss isotope effects among 
the hydrogen molecule and its isotopomers at least 
qualitatively, although only a poor correlation term 
is used. Many works are needed to implement the 
NBO-DFT method, but the nuclear kinetic effects 
on the quantum chemistry and molecular physics 
seem to be well understood. 
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ABSTRACT: In this article, we derive the analytical asymptotic structure in the 
classically forbidden region of atoms of the Kohn-Sham (KS) theory exchange-correlation 
potential defined as the functional derivative vxc(i) = SE^C

S[ p]/8p(t), where E*/[ p] is 
the KS exchange-correlation energy functional of the density p(r). The derivation is via 
the exact description of KS theory in terms of the Schrödinger wave function. As such, we 
derive the explicit contribution to the asymptotic structure of the separate correlations 
due to the Pauli exclusion principle and Coulomb repulsion, and of correlation-kinetic 
effects which are the source of the difference between the kinetic energy of the Schrödinger 
and KS systems. We first determine the asymptotic expansion of the wave function, 
single-particle density matrix, density, and pair-correlation density up to terms of order 
involving the quadrupole moment. For atoms in which the N- and (N — l)-electron 
systems are orbitally nondegenerate, the structure of the potential is derived to be 
vxc(r) ~    — 1/r — ot/2r4 + 8/c0 x/5r5, where a is the polarizability; x> an expectation 

r-><*> 
value of the (N — l)-electron ion; and KQ/2, the- ionization potential. The derivation 
shows the leading and second terms to arise directly from the KS Fermi and Coulomb 
hole charges, respectively, and the last to be a correlation-kinetic contribution. For atoms 
in which the N-electron system is orbitally degenerate, there are additional contributions 
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of 0(l/r3) and 0(l/r5) due to Pauli correlations. We show further that there is no 
0(l/r5) contribution due to Coulomb correlations.    © 1998 John Wiley & Sons, Inc. Int J 
Quant Chem 70: 671-680, 1998 

Key words: density-functional theory; exchange-correlation potential 

Introduction 

In this article, we derive for atoms in the classi- 
cally forbidden region the analytical asymp- 

totic structure of the Kohn-Sham [1] (KS) density 
functional theory [2] exchange-correlation poten- 
tial vxc{r). This potential is defined as the func- 
tional derivative <5Ef/[ p]/8p{r), where Exc

s[ p] is 
the KS exchange-correlation energy functional of 
the density p(r). The energy functional, and thus 
its derivative, incorporate electron correlations due 
to the Pauli exclusion principle, Coulomb repul- 
sion, and correlation-kinetic effects which are the 
source of the difference between the interacting 
Schrödinger and noninteracting KS system kinetic 
energies. Our derivation is within the framework 
of the exact interpretation [3-6] of KS theory in 
terms of the Schrödinger wave function ^. A prin- 
cipal advantage of this interpretation is that it 
delineates the contribution of each type of correla- 
tion to both the energy and potential. In this man- 
ner it is then possible to derive the explicit contri- 
bution to the asymptotic structure of vxc(r) due to 
Pauli and Coulomb correlations and correlation- 
kinetic effects. This understanding not only pro- 
vides insights into the theory, but also allows for 
the meaningful construction of approximate ex- 
change-correlation energy functionals and poten- 
tials, which is one major focus of research in den- 
sity functional theory. (We note that correlations 
due to the Pauli exclusion principle are usually 
referred to as exchange effects. However, in KS 
theory, the "exchange" potential contains correla- 
tions resulting from the Pauli principle as well as 
those due to part of the correlation-kinetic effects. 
In the present work, we refer to correlations aris- 
ing from the Pauli principle as Pauli correlations, 
and those due to Coulomb repulsion, as Coulomb 
correlations.) 

The systems that we consider are those for which 
the N-electron atom may be orbitally degenerate, 
but the (N - l)-electron ion is always orbitally 
nondegenerate except for the twofold spin degen- 

eracy for example, B and Mg atoms and their ions. 
For the case when both the N- and (N - l)-electron 
systems are nondegenerate, we obtain the asymp- 
totic structure of ^(r) to be 

vxc(r)  ~ 
1 a 8K0X 

2 A        5 5 (1) 

where a is the polarizability; x> an expectation 
value of the (N - l)-electron ion; and KQ/2, the 
ionization potential. The (-1/r) term is shown to 
arise directly from the KS Fermi hole charge, and 
the (-a/2r4), from the KS Coulomb hole. Neither 
Pauli nor Coulomb correlations contribute to 
0(l/r5). The last term is further shown [7] to be a 
correlation-kinetic contribution. For these assigna- 
tions to 0(l/r5), the wave function is expanded in 
the classically forbidden region to include terms 
involving the quadrupole moment tensor. For the 
case when the N-electron atom is orbitally degen- 
erate, we obtain 

vxc(r) 
Q 

2r' 

8K0X 

5r5 

R 

(2) 

where the additional 0(l/r3) and 0(l/r5) terms 
are Pauli-correlation contributions, and Q and R, 
multipole moments of the density. The physics of 
the other terms remains unchanged. 

Prior to proceeding with our derivation, we 
briefly discuss the previous work of others. The 
first two terms of the structure of Eq. (1) have also 
been obtained quantum mechanically by Alm- 
bladh and von Barth [8]. These authors first de- 
rived the differential equation for the quasiparticle 
amplitudes which are the interacting system coun- 
terparts of the single-particle orbitals of the nonin- 
teracting system. Then, on comparison with the KS 
equation, they determine vxc(r) to 0(l/r4) to be 

vxc{r) = C-])(r) - „„(r) - -^ Z?Jp*«ß>   <3> 
LX     aß 

where vH{x) = jdr'P(t')/\r - r'| and v^^Kr) are 
the Hartree potentials for the  N- and (N - 1)- 
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electron systems, aaß is the polarizability tensor of 
the (N — l)-electron ion, subscripts a and ß rep- 
resent Cartesian coordinates, and fa is a com- 
ponent of the unit vector r. For the case when 
both the N- and (N - l)-electron systems are 
nondegenerate, asymptotically, the potentials 
4N_1)(r) ~ (N- l)/r and vH(i) ~ N/r to ex- 

r->oo r-»co 
ponential accuracy and aa/3 = a8aß. The leading 
- 1/r term of Eq. (1) arises as the difference be- 
tween two Hartree potentials. The authors, how- 
ever, ascribe this term to the Fermi hole which has 
a total charge of (negative) unity and, thus, to 
Pauli correlations. But the KS Fermi hole charge 
does not appear in the derivation so that the basis 
for the assignation is unclear. The (-a/2r4) term 
is attributed to Coulomb correlations. However, 
this assignation is based on a comparison with a 
classical calculation of an ion and an asymptotic 
test charge. Once again, there is no direct relation- 
ship between this term and the KS Coulomb hole 
charge or other equivalent representation of 
Coulomb correlations within KS theory. Of course, 
in the classical calculation, even the — 1/r term is 
due to Coulomb correlations. It is interesting to 
note that, classically, higher-order contributions [9] 
are of 0(l/r6,1/r8), etc., and thus of even order. 
There are no terms of 0(l/r5) in the classical 
calculation. Such terms are strictly a consequence 
of quantum effects and KS theory. 

The leading (-1/r) term of vxc{x) was also 
derived by Sham [10]. In the asymptotic limit, the 
integral equation relating vxc(r) to the nonlocal 
exchange-correlation component 2xc(r, r'; w) of the 
self-energy £(r, r'; a>) reduces to 

v„(r) = ^y/dr'Sxc(r,r'; p)4>,(r') 

+ 2^(r)/rfr'2"(r'r';M)</>f(r')' 
(4) 

where <£,(r) are the KS orbitals, p, is the chemical 
potential, and the electron is in the highest occu- 
pied orbital. By considering the leading exchange 
term in a diagramatical analysis, the ( — 1/r) term 
is obtained, and, thus, this structure can be at- 
tributed to Pauli correlations. 

Finally, according to Harbola and Sahni [5], the 
asymptotic structure of vxc(t) is given by W/S(r), 
which is the work done to move an electron in the 
field of the KS Fermi hole. The (-1/r) structure is 

then obtained because the total charge of the Fermi 
hole is unity and the fact that it becomes an 
essentially static charge in the limit of asymptotic 
positions of the electron. The KS Coulomb hole 
does not contribute asymptotically to this order 
since its total charge is zero, and the field due to it 
vanishes in this region faster than 0(l/r2). 

We begin in the next section by defining the KS 
exchange—correlation potential in terms of its 
components as described by the quantum mechan- 
ical interpretation. We first determine the asymp- 
totic structure of the wave function, single-particle 
density matrix, and pair-correlation density up to 
terms including the quadrupole contribution in the 
third section. In the fourth section, we then derive 
the asymptotic structure of the quantum mechani- 
cal Pauli-Coulomb component of the KS ex- 
change-correlation potential and separately that of 
the Pauli and Coulomb correlation parts. In the 
fifth section, we derive the structure of the correla- 
tion-kinetic component. In the concluding section, 
we summarize what has been understood and 
discuss future work. We also discuss how the 
present derivation helps explain the accuracy of 
previous results on the ionization potential of 
atoms. 

Definitions 

The KS theory exchange-correlation energy and 
potential can be described exactly in terms of the 
Schrödinger wave function W. For proofs of this 
description, we refer the reader to the original 
literature [3, 6]. Here, we provide those definitions 
relevant to the present work. 

The KS electron-interaction energy functional 

E«s[ P] = Effl P] + E« [ pi where EH[ p] is the 
Coulomb self-energy. The corresponding local po- 
tential representative of all the electron correla- 
tions is then vee(t) = 8Efe

s[ p]/Sp(r) = vH(i) + 
vxc(r). This functional derivative is the work done 
to move an electron in a conservative field &{r): 

v„(r)= -f&x')-d\'. 
"'no 

(5) 

The work done is path-independent since V X &(i) 
= 0. The field &{t) is the sum of an electron-inter- 
action See{\) and correlation-kinetic Z((r) compo- 
nent. 
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The field %ec(t) is determined by Coulomb's law 
from the pair-correlation density g(r, r'), so that 

, g(r,r')(r - r') 
,w = /  : ^ äx', J r - r' 

(6) 

and 

W, (x) = -fzt(x')-dV, 

and each work done is path-independent. 

(11) 

where g(x, r') = P(x, x')/p(x), and P(x, r') is the 
probability of simultaneously finding electrons at r 
and r': 

P(r,r') = N(N - 1) £ f ¥*(rtr,r'o-',x3, - xN) 

XV(i<r,T'a',x,,-xN)dN-2x.    (7) 

(Here, x = xa, jdx = taj dx, jd"~2x = (dx3 ■■■ 
dxN, and a is the spin index.) 

The field Z. (r) is the difference of two fields z(r) 
and zs(r), which are derived from the kinetic en- 
ergy-density tensors taß(x) and ts aß(x) for the 
interacting Schrödinger and noninteracting KS sys- 
tems, respectively. Thus, 

Z,(r) = —-[zs(r;[yj -z(r;[y])],       (8) 
pyx) 

where the component of the field z(r) is za(x) = 
2Zß{d/drß)taß{x;[y}), taß(x;[y]) = (l/4)(d2/ 
dr'adrl + d2/dr'ßdOy(x',x")\t. = r« = t, and y(r,r')is 
the spinless single-particle density matrix 

y(r,i')=NE/fV,X;,-xN) 
a 

XV(x'a,x2,"-xN)dN-1x.    (9) 

The field zs(r) is similarly obtained from the idem- 
potent Dirac density matrix ys(r, r') = Y.a E, (f>* 
(xcr)4>j(x'a) constructed from the KS orbitals <£,(x). 
The density p(r) is the diagonal matrix element 
y(r, r). 

For spherically symmetric atoms, or nonspheri- 
cally symmetric atoms in the central field approxi- 
mation, etc., the curl of the fields £?ee(i) and Z,(r) 
separately vanish. For such systems then, vee(x) = 
Wjx) + W, (r), where 

W„ Xr)= - f %cc(x') ■ d\', 

Asymptotic Structure of Wave 
Function, Single-Particle Density 
Matrix, and Pair-Correlation Density 

In this section, we derive the asymptotic struc- 
ture of the wave function ty, of the single-particle 
density matrix y(r, r') and, hence, of the density 
p(x) and the pair-correlation density g(r, r'). 

WAVE FUNCTION 

The ground-state Schrödinger equation for a 
system of N-electrons in a local external potential 
described by the operator V = E, v{xt) is H^ = 
E0V, where H = -(1/2)E,V,2 + E, v(r,) + 
(1/2)E',; l/|r, - r-|, and ^ and E0 are the wave 
function and the energy, respectively. The com- 
plete set of eigenfunctions and eigenenergies of the 
(N - l)-electron system are defined by the equa- 
tion  H(w-i)^(N-i) = E(N-i,^(W-i)_ We first ex_ 

pand the wave function ty in terms of the eigen- 
functions ^S

(A,_1>: 

V(xa,x2,-xN) = Y,Csa(x)^N-V(x2,-xN), 

(12) 

and rewrite the N-electron Schrödinger equation 
as 

'     1    , £      1 
-~V2 + v(x)+  £ 

,'=2'r-r,'l 2, = 2 

N 1 1 

+ E"(r,)+-   £ 
1 = 2 2 i¥,j±i  \Xj        Xj\ j    s 

i = 2 

£CS(r(r)^
w"1> 

£oECwWfj (N-l) (13) 

For asymptotic positions of the electron, we have 
by Taylor expansion 

(10) 
1      r,.-r      1 

a, p dradrß r 
-,   (14) 
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so that Eq. (13) may be rewritten as 

1 N-l 
-V2 + Kr) +   
2 r 

Here, Pss. is the dipole moment, and (Qss-)a/3, the 
quadrupole moment tensor of the (N-l) electron 
system. With the definitions 

D„,(r) = r-p; (20) 

N 

+ E 
i=2 

3      +   9   L, riari/: 
a,ß dradrß r 

and 

s s 

»EoEC.X"-1), (15) 

Qss-(?> = 7 E (3raf, - Sa,)(Qss,)a„   (21) 

Eq. (17) becomes 

1 

which reduces further to 

1 N- 1 
 V2 + v(r) +   

2 r 

N- 1 
 V2 + v(x) +   

2 r 
C.„(r) 

+ 
Ec^W"1) 

^ED„.(f) + ^EQss^) 
s' s' 

X CsV(r) = esCS(r(r), (22) 

N 

+ E 
j = 2 

r, ■ r       1 <?2     1 

2(r/,a'i"^^^ +   n   L riarit 
where es = E0 - ES

(N_1). This is the same equation 
as derived by Almbladh and von Barth for the 
quasiparticle amplitudes, but it is derived here via 
the wavefunction and carried to 0(1/r3). The 

s asymptotic structure of the coefficients Cso.(r) for 
E [ E0 - ES

(N_1)] Cs<r(r)^s
(N_1).      (16)        s # 0 is then obtained from Eq. (22) as 

xECw(r)f; 
.(N-l) 

Multiplying Eq. (16) from the left by ty1*-1? and 
using the orthonormality condition (M/^-1* I 
^r(N-D) = gss,/Wehave 

C,„(r) = - 
1 1 
-jDs0(r) + -jQs0 

C0,(r) 

wc 
,   (23) 

1 N- 1 
-V2 + v(r) +  
2 r 

1 <?2     1 
+ - E ^ 2 „D <?r„<?r„ r 'T, 

Cs.(r)+3-EQv(r)PS! 

EcsvW(QSS')af 

[Eo-E^-^C^W, 

where ws = e0 - es = E^"1* - E^"1' is an exci- 
tation of the (N - l)-electron system. Thus, the 
asymptotic structure of the wave function to 
0(l/r3) is derived. 

SINGLE-PARTICLE DENSITY MATRIX 

On substituting Eq. (12) for ^ into Eq. (9) and 
(17)        using the orthonormality condition of the '*'S

(N~1), 
we obtain the asymptotic structure of y(r, r') as 

where 

P...-  E/*s
(N-lf(x2,-xN)r! 

; = 2 

X^-^-x^rf^x   (18) 

and 

N 

(QSS')a/3=  E fvlN-ly,(x2,-xN)riariß 
i = 2J 

X*<,N-1>(x2,-xN)dAf-1x.    (19) 

y(r,r') = N£Ea(r)Cs<r(r') 
<J     s 

= NEC*,(r)C0ff(r') 

Df0(f) Djn 
x(i+ E'— r2 r'2 

+ 
D.*0(r) Qs0(r')       Q%(f) Ds0(f) 

r2 r>3 + j.3 j,/2 

Q*0(?) &„(?') 
(24) 
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(Here, E's = Es#0.) The dipole-quadrupole cross 
terms in Eq. (24) can be shown to vanish by rewrit- 
ing each term as 

1   Ds0(f) Q%(f) 
'-'    -.2        „2 „>3 io:    r 

l     l       A( A( 

T2   '   7^3    ^  ra ^ rA r      r aß\ 

xlylN-i) 
1 -P 

<7a£ 

[H-Er-1»] 
2 "A 

\Ir(N-l) 
*0 

(25) 

where d = / rSp(r) dx, qaß = { rarßSp(t) dx, 8p(x) 
= p(r) - W^lpCr)!^"1'), p = E,. 5(r - x,\ 
and P = |^<N-1))<^N-1)| is the projector onto 
the (N - l)-electron ground state. [Note that the 
dipole d and quadrupole qaß moment operators 
are the same as in Eqs. (18) and (19) since the 
second term of the operator 5p(r) does not con- 
tribute on account of the fact that the (N - 1)- 
electron system is spherically symmetric] Now, 
the operators P, H, and qaß are invariant under 
the inversion operator I, while dK changes sign. 
Thus, the dipole-quadrupole term vanishes. The 
density matrix is then 

y(r,r')     ~    N£C*r(r)C0,7(r') 

x{i+ £' — 
D*(r) Djf) 

QUO Qso(f') 
(26) 

The asymptotic structure of the density p(r) is 
given by the diagonal matrix element y(r, r) so 
that to 0(l/r6) 

p(r)  ~  NE|C0CT(r)|2 

|DS0(^)|2   (   lQs0(r)l 
(27) 

For the systems considered, the leading term of 
y(x, r') as r, r' -* °° is from Eqs. (26) and (27): 

y(r,r')    ~    Jpjx) JpJ?), (28) 
ri r' ->=c 

which is a well-known result [2, 11, 12]. 

PAIR-CORRELATION DENSITY 

On substituting Eq. (12) for ^F into the defini- 
tion of P(r, r') in Eq. (7), we have 

P(r,r') =N(N - 1) 

X £./ a(r)^N-,)i(rV',x3,-xw) 

+ E'Cs*ff(r)^s
(N-1>*(r'0-',x3,-xN) 

S 

C0a(r)V<N-Hr'<r',x3,-xN) 

+ E'CsV(r)f-"(r'<T',x3,-xN) 
s' 

NEflCo.WlV^^r') 

+ E'c0*„(r)Csl7(r)p^-1>(r') 

+ E'a(r)C0„(r)p<0
N-1V) 

S 

+ E'cs*ff(r)Cs.<r(r)ps^-1>(r'), 

dN-2x 

(29) 

where 

ft^-^d') = (N - l)E/^N"lf(rV',x3,-xN) 

x^-'W^jr-x^^^x.    (30) 

Thus, the asymptotic structure of the pair-correla- 
tion density g(x, r'), on substituting for CS(r(x) from 
Eq. (23), is to 0(l/>6) 

£(r,r')   ~   4r^|Co-(r)|2(p(N"1)(r,) r
^x pw a 

2PeE 
s 

,   1 

, 1 

+ E 

Pso(f) Qso(r) 
2 3 r r 

D*(r)Ds,0(r) 

P^V) 

Q?0(?)QS.0(?) pir'V) . (31) 
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For the systems considered, the leading term of 
g(r, r') in the asymptotic limit is p(N_1)(r'), which 
is also a well-known result [11-13]. Here, we have 
provided the higher-order contributions. 

Asymptotic Structure of the 
Electron-interaction Potential and Its 
Pauli and Coulomb Correlation 
Components 

We begin this section by determining the 
asymptotic structure of the quantum mechanical 
electron-interaction component Wee(t) of the KS 
electron-interaction potential vee(r). Substituting 
Eq. (31) for the pair-correlation density g(r, r') 
into Eq. (6) for the electron-interaction field Wee{t), 
we obtain 

«"„to ~   -v 
y—> oo 

N- 1 , D*(f)Ds()(f)  1 

(32) 

to the accuracy of 0(l/r6). Thus, asymptotically, 
the work done in this field is 

W„(r)  ~ 
N - 1 

7T-4' (33) 

where 

2E 
, D*(f)Dsa(f) (34) 

is the ground-state polarizability of the (N - 1)- 
electron system. Note that the result for Wee(r) is to 
the accuracy of 0(l/r5). In other words, there are 
no 0(l/r5) contributions to vee(t) due to Pauli and 
Coulomb correlations. The results of Eqs. (32) and 
(33) are valid for when the N-electron system is 
either orbitally degenerate or nondegenerate. 

We next determine the separate KS Pauli and 
Coulomb correlation contributions to the asymp- 
totic structure of Wee(x). The pair-correlation den- 
sity may also be expressed [3] as g(r, r') = p(r') + 
pxc(i, T'), where pxc(t, r') is the quantum mechani- 
cal Fermi-Coulomb hole charge. In turn, pxc(t, r') 
can be written [3] as pxc(r, r') = px 

s(r, r') + 
pc

KS(r,r'), where px
s(t,t') and p/s(r,r') are KS 

Fermi and Coulomb holes, respectively. The Fermi 
hole is expressed in terms of the KS orbitals <£,-(x) 
as   px

KS(r,r')= -\ys(t,t')\
2/2p(t).   Thus   [3],   the 

electron-interaction   potential   Wee(t) = vH(t) + 
W/S(r) + Wc

KS(r), where 

Wx
KS(t) = - fV/S(r') • dV and 

X Wc
KS(r)= - f Zc

KS(x') ■ dV, 
•'nn 

(35) 

with 

\KS(t) = / 
p*s(r,r')(r-r') 

At' and 

.KS 

r - r 

(r) = / 
pfs(r,r')(r-r') 

At'    (36) 
r - t 

being the Pauli and Coulomb correlation fields, 
respectively. It is evident that the N/r term of 
Wee(t) of Eq. (33) of the KS potential vee(x) is due to 
the Hartree potential vH(i). 

Since in KS theory only the highest occupied 
orbital <pN(x) contributes to the asymptotic struc- 
ture,  we  have  to  exponential  accuracy  %(r, r') 

~  E„. <£$(rcr)$N(r'o-). Thus, asymptotically, 

arx
KS(r)  ~   -^--l^irtflv-) f \<l>N(t')\2 At' 

r^o= 2p(r) \    r ]J 

~    - 4r,    (37) 

so that 

Wr
KS(r)  ~ (38) 

to exponential accuracy. Thus, the ( —1/r) asymp- 
totic structure of the KS electron-interaction poten- 
tial vee(t) is due entirely to Pauli correlations. As a 
consequence [and from Eqs. (33) and (38)], we 
have 

Wr
KS(t) 

2r4' 
(39) 

so that the term of 0(l/r4) in vee(t) is strictly due 
to Coulomb correlations, arising from the KS 
Coulomb hole charge. 

The Hartree vH(t) and Pauli W/S(r) potentials 
will have higher-order contributions for the case 
when the N-electron system is orbitally degenerate 
since the density p(r) is no longer spherically sym- 
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metric. Expanding l/|r - r'| in Legendre polyno- 
mials Pn(x), we have 

N       Q       R 
vH(r) + — + — + 

r-»o= r       r        r 
(40) 

and 

g*/s(r) 
r        3r 5r 

r-»oc       r 
3 5Q- — R + ••• ,   (41) 

so that 

Wr
KS(r) 

r^™      r      r 
1      Q      R 
 3-I5+-'     W2) 

where 

Q = /p(r')r'2P2(cos0')rfr', (43) 

R = /p(r')r'4P4(cos 6') dx'. (44) 

Note that the terms of 0(l/r3) and OQ/r5) in 
vH(x) and W/S(r) cancel out. Thus, for both the 
orbitally degenerate and nondegenerate N-electron 
systems, the asymptotic structure of Wc

KS(t) is the 
same to 0(l/r5) and is given by Eq. (39). 

Asymptotic Structure of the 
Correlation-Kinetic Potential W. (r) 

In this section, we determine the asymptotic 
structure of the correlation-kinetic field Z,(r) and 
potential W, (r). These results have been previously 
derived by us [7], employing quasiparticle ampli- 
tudes, and the physics and details of the calcula- 
tions are the same. Primarily, the asymptotic struc- 
ture of the density p(r) and idempotent density 
matrix ys(r, r') are governed by the highest occu- 
pied KS orbital <pN(\). Since the densities of the 
interacting and noninteracting systems are the 
same, the asymptotic structure of </>N(r) is obtained 
from Eq. (27) as [8, 11, 13] 

<Mr) = VNElC0(r(r)| 

«\i2 
|Ds0(r)|z       l_Qs0(?)| 

1/2 

.    (45) 

The asymptotic structure of %(r, r') is thus known. 
With that of y(r, r') given by Eq. (26), the asymp- 

totic structure of the field Z,(r) of Eq. (8) is de- 
rived to be 

Z,(r) 
8*0 X* 

(46) 

where Kg/2 = E{ 
(N-1) 
0 E0 is the ionization poten- 

tial and x is an expectation of the spherically 
symmetric (N - l)-electron system defined by xap 
= XKB> where 

Xaß =   (*<»-» 
1  -P 

[H-E^-^y 
ty(N-l) 

(47) 

and where the operator d and P are defined in the 
Single-particle Density Matrix section. Thus, the 
correlation-kinetic component of the KS potential 
vcc(x) decays asymptotically as 

W|(r) 
8*0* 

5r5   ' 
(48) 

Conclusions 

There are two facets to this article: First, we 
have derived the asymptotic structure of the wave 
function, single-particle density matrix, the den- 
sity, and pair-correlation density in the classically 
forbidden region of atoms. The results are specific 
to those atoms for which the N-electron system 
maybe orbitally degenerate, but the (N - 1)- 
electron system is orbitally nondegenerate. The 
derivation differs from as well as goes beyond that 
of previous work in that higher-order quadrupole 
moment terms are included. In the second part of 
the article, we employed these expressions within 
the exact description of KS theory in terms of the 
wave function "V to derive the analytical asymp- 
totic structure of the KS exchange-correlation po- 
tential to terms of 0(l/r5). Although terms of 
0(l/r4) have been obtained previously, the pres- 
ent derivation provides an independent confirma- 
tion of these results. However, the derivation via 
this interpretation provides the understanding that 
the 0(l/r) term is due to Pauli correlations; that 
of 0(l/r4), to Coulomb correlations; and that of 
0(l/r5), to correlation-kinetic effects. For systems 
for which the N-electron atom is orbitally degener- 
ate, Pauli correlations also contribute terms of 
0(l/r3) and 0(l/r5). There are no quantum me- 
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chanical Coulomb correlation contributions to 
0(1/r5). For these rigorous assignations to be 
made, it was necessary to expand the wave func- 
tion, density matrix, etc., to include terms up to 
the quadrupole moment. We note that the asymp- 
totic structure derived is valid for the Coulomb 
external potential. For external potentials that are 
not Coulombic, such as in the Hooke's atom model 
[4], the asymptotic structure is different. The pres- 
ent procedure can be extended to systems where 
the (N - l)-electron system is degenerate, in which 
case the asymptotic structure will have an angular 
dependence [12]. We expect to extend our calcula- 
tions to such systems in the future. 

The KS exchange-correlation potential vxc(t) is 
also conventionally written as a sum of its ex- 
change vx(x) and correlation vc(r) potentials, where 
vx(x) = 8E*s[ P]/8p(r) and vc = 8E?S[ p]/8p(t), 
and Ex

s[ p] and EC
KS[ p] are the KS exchange and 

correlation energy functionals, respectively. Re- 
cently, it has been shown [14] that 

^(r) = W/S(r) - W/1'«, (49) 

where W,(1)(r) is the work done in the field Z^Kr) lc Lc 

= z(r;[y1
c])/p(r), with y[c\x,r') being the first- 

order correction to the KS density matrix %(r, r') as 
obtained via adiabatic connection perturbation the- 
ory by an expansion of the system wave function 
in terms of the electron-interaction coupling con- 
stant at fixed electron density. The sum of the 
work [Wx

KS(i) - W,(1)(r)] is path-independent. 
Thus, vc{x) = WC

KS
(T) + WfjCr) + Wt

(1)(r). Solomatin 
and Sahni [15] studied the field ZyKr) and poten- 
tial Wt

(1)(r) in atoms numerically and showed them 
to be of much shorter range than Wx

KS(t) and 
Wx

KS(r), vanishing within the last occupied shell. 
However, for the nonuniform electron gas at a 
metal surface, these authors determined [15-18] 
the potentials i>x(r\ Wx

KS(r), and WtfKx) analyti- 
cally and showed that Wt

(1)(r) is long-ranged both 
in the classically forbidden vacuum region as well 
as in the metal bulk. We are presently working on 
determining the analytical asymptotic structure of 
W(

(1)(r) and that of the higher-order contributions 
to vc(x) in atoms. 

Finally, the results derived help explain the 
accuracy of the results [3, 19] for the ionization 
potential of atoms as obtained by the highest occu- 
pied eigenvalue of the Work-Hartree-Fock ap- 
proximation [19, 20]. In the Work-Hartree-Fock 

approximation, the KS exchange-correlation po- 
tential vxc(r) is replaced by the work Wx(t) done in 
the field JT^r) of the Fermi hole generated by the 
corresponding differential equation. The highest 
occupied eigenvalue of the KS equation is [8, 13, 
21] (minus) the ionization potential. Further, this 
eigenvalue is governed principally by the asymp- 
totic structure of vxc(t). Now, since Coulomb corre- 
lation and correlation-kinetic effects are of 0(1/r4) 
and 0(l/r5), respectively, the asymptotic struc- 
ture  of   vxc{t) ~ W/S(r).  Thus,  the  asymptotic 

structure of vxc{r) is determined exactly by solving 
the Work-Hartree-Fock differential equation. This 
then explains why the highest occupied eigenvalue 
of this differential equation closely approximates 
the experimental [19] ionization potential. For a 
comparison of the highest occupied Work- 
Hartree-Fock eigenvalues to those of exact KS 
theory, see [3]. 
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ABSTRACT: Density functional theory for a single excited state is presented using 
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1 Introduction 

Density functional theory was originally devel- 
oped for the ground state [1]. It has been general- 
ized for the lowest energy state in each symmetry 
class [2, 3]. To calculate excitation energies Slater 
[4] introduced the so-called transition-state 
method. The density functional theory was first 
rigorously generalized for excited states by 
Theophilou [5]. Formalisms for excited states have 
also been provided by Fritsche [6] and English et 
al. [7]. A more general treatment was given by 
Gross et al. [8]. Several calculations have been 
done with this method [9-15]. The relativistic gen- 
eralization of this formalism has also been done 
[16]. The optimized potential method has recently 

Contract grant sponsor: Hungarian Ministry of Culture and 
Education. 

Contract grant numbers: OTKA No. T 16623; FKFP 
0314/1997. 

been generalized for ensembles of excited states 
[17]. The ensemble theory has the disadvantage 
that one has to calculate all the ensemble energies 
lying under the given ensemble energy to obtain 
the desired excitation energy. It is especially incon- 
venient to use it if one is interested in highly 
excited states. 

An alternative theory, worth mentioning, is 
time-dependent density functional theory (TD 
DFT) [18, 19] in which transition energies are ob- 
tained from the poles of dynamic linear response 
properties. While TD DFT cannot obtain the ener- 
gies and properties of excited states directly, it is 
complementary to the ensemble method and the 
approach to excited states presented here. 

The work formalism proposed by Sahni and 
co-workers [20] has also been applied in excited- 
state density functional calculations [21]. 

Recently, Görling [22] presented a new density 
functional formalism for excited states generaliz- 
ing a recent perturbation theory [23]. 
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It is also possible, however, to treat a single 
excited state in the density functional theory. This 
approach is based on Kato's theorem [24] and is 
valid for Coulomb external potential (i.e., atoms, 
molecules, and solids). 

The outline of this study is as follows: In Section 
2 the ensemble theory of excited states is summa- 
rized. In Section 3 Görling's theory for excited 
states via adiabatic connection and perturbation 
theory is outlined. Section 4 introduces a new 
method treating a single excited state. Section 4.1 
presents this new approach of density functional 
theory of excited states utilizing Kato's theorem 
and the concept of the adiabatic connection. In 
Section 4.2 important expressions for the 
coupling-constant-dependent energies and poten- 
tials are derived. Section 4.3 addresses the problem 
of degenerate states. The optimized potential 
method is presented in Section 4.4. A generalized 
Krieger, Li, and Iafrate (KLI) potential is derived 
in Section 4.5. Section 4.6 presents several illustra- 
tive examples. Some important points of the differ- 
ent approaches described in this work are dis- 
cussed in Section 5. 

2 Review of Ensemble Density 
Functional Theory for Excited States 

First, the ensemble theory of Gross, Oliveira, 
and Kohn [8] is summarized. The eigenvalue prob- 
lem of the Hamiltonian H is given by 

and 

where 

H% = Ek%,       0 = 1,...,M), (1) 

E1 < E2 < ••■ (2) 

are the energy eigenvalues. The generalized 
Rayleigh-Ritz variational principle [8] can be ap- 
plied to the ensemble energy 

M 

k=1 

(3) 

where   wx > w2 > ■■■ > wM > 0.   The  weighting 
factors ws are chosen as 

!»,   = W-, =   ■■•   =1», 
1 - Wg 

(4) 

WM-g+\ WM-g + 2 

0 < TV < 

M~s      M-g' 

■■■ =wM = w,      (5) 

1 

M' 
(6) 

1 < g<M- 1. (7) 

The limit w = 0 corresponds to the eigenensemble 
of M - g states (w, = •■• = ivM_g = 1/(M - g) 
and wM_ +] = •■• = wM = 0). The case w = 1/M 
leads to the eigenensemble of M states (w^ = w2 

= ••• = wM = 1/M). The generalized Hohen- 
berg-Kohn theorems read as follows: 

1. The external potential v{r) is determined 
within a trivial additive constant, by the en- 
semble density n defined as 

M 

" =  E wknk. 
k=\ 

(8) 

2. For a trial ensemble density n'ix) such that 

M'(r) > 0 (9) 

and 

jri(r)dr = N, (10) 

r[w] <r[«']. (11) 

The ensemble functional & takes its minimum at 
the correct ensemble density n. Using the variation 
principle, the Euler equation can be obtained: 

Sn 
= ft. (12) 

Kohn-Sham equations for the ensemble can also 
be derived: 

[-|V2 + üKS]U,(r) = e,.M,.(r). (13) 

The ensemble Kohn-Sham potential 

r  M;<Xr) 
uKS(r; «„,) = v(r) + J     _      dx + vxc(r; w, nw) 

(14) 

is a functional of the ensemble density 

1 - wg, M^- 
n „(r) = 

M 
E   EAmi.|W;(r)|2 

1-1      m = \    j 

M, 

+ ™       E        EAm;|M;(r)|2,    (15) 
m = M,.S/+l    j 
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where g{ is the degeneracy of the Ith multiplet. 

M,= Zgi 
i=\ 

is the multiplicity of the ensemble and 

0 < w < 1/Mj. 

(16) 

(17) 

A • are the occupation numbers. The ensemble 
exchange-correlation potential vxc is the func- 
tional derivative of the ensemble exchange-corre- 
lation energy functional Exc 

vxc(i;w, n) = 
SExc[n,w] 

Sn(r) 
(18) 

Using the Hellmann-Feynmann theorem for the 
ensemble [12], the adiabatic connection formula 
for the ensemble exchange-correlation energy can 
be derived [12]. 

3 Review of Adiabatic Connection and 
Perturbation Density Functional 
Theory for Excited States 

Recently, Görling [22] has shown that the den- 
sity functional theory can be extended to excited 
states via the adiabatic connection and making use 
of perturbation theory [23]. The adiabatic connec- 
tion characterized by the Schrödinger equation 

Ha|^a> = E£\V?), 

Ha = T + aVao + V 

(19) 

(20) 

represents a continuous connection between a non- 
interacting system and the real system. Here not 
only the ground-state but also the fcth eigenstate 
tyk

a of the coupling constant Hamiltonian is con- 
sidered. The additional assumption here is that the 
energetic order of eigenstates ^¥k of Ha of the 
same symmetry is preserved along the adiabatic 
connection. So the coupling constant path estab- 
lishes a continuous connection between the fcth 
eigenstates of the noninteracting and interacting 
Hamiltonians. The energy of the kth eigenstate 

E£ = <**[ n0]\f\Qk[n0]) + Jk[n0] + EXik[n0] 

+ Elk[n0] + f va(r)n°k(t) dt   (21) 

is a functional of the ground-state density n0 which 
is kept fixed in the coupling-constant path. 

In order to treat excited states in the Kohn-Sham 
formalism, first, the ground-state Kohn-Sham 
equations have to be solved, i.e., the ground-state 
one-electron energies and orbitals have to be deter- 
mined. To obtain the excited-state exchange and 
correlation energy functionals, Ex k[n0] and E"k 

[n0], the density functional perturbation theory 
can be applied. It has already been shown by 
several authors (see, e.g., [19]) that the ground-state 
one-electron energies are not just auxiliary quanti- 
ties without physical meaning. Görling [22] pointed 
out that their difference provides zeroth-order ap- 
proximation to excitation energies. 

Table I presents excitation energies in this ze- 
roth-order approximation for a couple of atoms. 
Calculations were performed using a method of 
the author for determining the potential if the 
density is available [25]. Hartree-Fock densities 
[26] were applied. For comparison Hartree-Fock 
values are also presented. Recently, excitation en- 
ergies for certain atoms and ions have been calcu- 
lated in first-order coupling-constant perturbation 
theory [27]. 

4 Density Functional Theory for a 
Single Excited State 

The ground-state density functional theory 
states that a knowledge of the ground-state elec- 
tron density is sufficient in principle to determine 
all molecular properties. This can be simply under- 
stood following Bright Wilson's [28] argument: A 
well-known theorem of quantum mechanics, Kato's 
theorem [24] states that 

dn{r) 

2n(r)     dr 
(22) 

where the partial derivatives are taken at the nu- 
clei ß. So the cusps of the density tell us where the 
nuclei are (Rß) and what the atomic numbers Zß 

are. On the other hand, the integral of the density 

TABLE I  
Hartree - Fock and exchange-only density 
functional excitation energies (in Ry). 

HF DF 

Li(2s1 -> 2p1) 0.1353 0.1342 
Na(3s1 -> 3p1) 0.1450 0.1462 
K(4s1 -* 4p1) 0.1033 0.1024 
K(4s1 -> 3d1) 0.1782 0.1785 
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gives us the number of electrons: 

N = f n(i) dr. (23) 

Thus from the density the Hamiltonian can be 
readily obtained from which every property can be 
determined. Of course, the Bright Wilson's argu- 
ment does not apply to, e.g., a molecule in a 
uniform electric field, since the field itself is not 
identified by a cusp in the density. 

Kato's theorem is valid not only for the ground 
state but also for the excited states. In the follow- 
ing we use it to obtain a density functional theory 
for a single excited state. 

4.1 DENSITY FUNCTIONAL THEORY FOR A 
SINGLE EXCITED STATE USING KATO'S 
THEOREM AND THE CONCEPT OF 
ADIABATIC CONNECTION 

As Kato's theorem holds also for excited states, 
if the density «,• of the z'th electron states is known, 
the Hamiltonian H is also in principle known and 
its eigenvalue problem 

H% = Ek%,       U = 1,...,/,...)      (24) 

can be solved. 
The adiabatic connection [2, 29] is a key concept 

in the density functional theory. This will be now 
applied for a single excited state. It is not only 
supposed that the electron density is the same 
for both the interacting and noninteracting sys- 
tems, but there exists a continuous path between 
them. A coupling-constant path is defined by the 
Schrödinger equation 

where 

H,01^" = E?%a, 

H? = T + aV„ + V:a. 

(25) 

(26) 

The subscript i denotes that the density of the 
given excited state is supposed to be the same for 
any value of the coupling constant a; a = 1 corre- 
sponds to the fully interacting case, while a = 0 
gives the Kohn-Sham system: 

H,°^° = E^k°. (27) 

For a = 1 the Hamiltonian H° is independent of 
i. For any other values of a the "adiabatic" Hamil- 
tonian depends on i, we have different Hamiltoni- 

ans for different excited states. Thus even the 
Kohn-Sham Hamiltonian, the one corresponding 
to the noninteracting (a = 0) case is different for 
different excited states. 

In the ground-state density functional theory 
the first Hohenherg-Kohn theorem [1] states that 
the external potential v(r) is determined within a 
trivial additive constant by the knowledge of the 
electron density n(r). As we have seen, the present 
theory also provides the external potential v(r) if 
the density n,(r) of the /th excited state is known. 
Through the adiabatic connection the Kohn-Sham 
equations and the Kohn-Sham potential are also 
constructed. 

4.2 EXPRESSIONS FOR THE 
COUPLING-CONSTANT-DEPENDEIW 
ENERGIES AND POTENTIALS 

Following the ground-state definitions [23, 30], 
the correlation energy is defined: 

£«[«,] = [(%a\f \%a) - <*,0|f>,°>] 

+ a[<¥,.■"|VJ*,.") - <*,°IKJ^0>].    (28) 

It can also be written as 

E°[«,-] = F"[«,-] - F°[«j] " aO/tn,-] + Er[«,-]), 
(29) 

where the functional F"[»,] is defined: 

F°[ nj = T(%a\f + aVj^"). (30) 

The classical Coulomb and the exchange energies 
are given by 

1 , H,-(rj)/?;(r2) 
U[nt] = -j dr,dr2       (31) 

2 J rn 

and 

Ex[n,] = (<^0lKJ^n>-L/[«,]),       (32) 

respectively. The energy Ea[»,-] can be expressed 
in the following way: 

Ea[n,] = <^,a|Ha|^«> = (%a\f + aVj¥}a> 

+ /»?(r)w/(r)dr.    (33) 
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Equations (30) and (33) lead to the Hamiltonian: 

Hf = f+ at 
MFHnJ-F-tn,.])' N 

+ E 
k=\ 

v(rv) + 
5n(rk) 

= T + aVac 

N 

+ E p(rk) + (1 - a)(o;(rk) + v'x(rk)) 

+ 
<5n(rk) Sn(rk) 

= f + at +  E *"('k), 

where 

p?(r) = o,.0(r) - a(p|(r) + vl
x(i)) 

SEr'in,]       8E?[n,] 

(34) 

8 n(i) 8 nix) 
(35) 

üp and v'x are the classical Coulomb and the ex- 
change potentials 

»Kr) = / -J—r dr' 
7  r - r 

and 

<(r) = 
g£Jn,] 

Sn(r) 

(36) 

(37) 

respectively, vf is the Kohn-Sham potential of the 
noninteracting system corresponding to the excited 
state considered. 

4.3 DEGENERATE EXCITED STATE 

All stated above in this section is valid for both 
degenerate and nondegenerate excited state. For a 
degenerate excited state starting out from a den- 
sity nir we can determine the Hamiltonian H, and 
we find out that there are several eigenfunctions 
with energy E,. But, the densities corresponding to 
these eigenfunctions are different. The concept of 
adiabatic connection can be applied as for the 
nondegenerate state. 

However, concerning the approximations one 
inevitably should apply in actual calculations, a 
slightly different approach may be more useful. 
This approach that has been already proposed for 

the ground state [31] is based on using density 
matrices instead of the density. 

Consider the solutions of the symmetry T of the 
Schrödinger equation: 

H|^> = E'|^>,       (y=l,2,...,gi),   (38) 

where gt is the degeneracy. Instead of treating one 
wave function ^, the density matrix defined in 
subspace S' 

D'=  Ewd^X^I, (39) 
y=l 

is  introduced, where  the weighting factors  w^ 
should satisfy the conditions 

and 

i= E^ 
y=l 

w;>o. 

(40) 

(41) 

In principle, any set of weighting factors ioJ satis- 
fying conditions (40) and (41) can be used. The 
subspace density is defined as 

ör 

nl =  E w;f\^;\2 ds1dx2,...,dxNr (42) 
7=1 

where x stands for both the coordinates and the 
spin. The superscript i in nl and the subspace 
density matrix denotes that they are constructed 
from wave functions that belong to the subspace 
S'. One is free to select the values of the weighting 
factors w'y; they only should satisfy the conditions 
(40) and (41). If the weighting factors w^ are all 
equal, the density has the property of transforming 
according to the totally symmetric irreducible rep- 
resentation. So, for instance, for atoms the density 
will be spherically symmetric. But it is possible to 
select other values for the weighting factors w^. 

This approach has the advantage that with equal 
weighting factors the density has the symmetry of 
the external potential. 

The concept of adiabatic connection can also be 
applied for the subspace density n\ It is supposed 
that the subspace density is the same in the cou- 
pling-constant path. Now, the Schrödinger equa- 
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tion has the form 

H/
al^'a> = E'''al^'°>,       (y= 1,2,...,g,), 

where 

H? = T + aVec + Vt
a. 

(43) 

(44) 

The subscript i denotes that the subspace density 
n' is supposed to be the same for any value of the 
coupling constant a; a = 1 corresponds to the 
fully interacting case, while a = 0 gives the 
Kohn-Sham system: 

H,°|^°> = E''°|^°),       (y = 1,2,..., g,).   (45) 

For a = 1 the Hamiltonian H° is independent of 
i. For any other values of a the adiabatic Hamilto- 
nian depends on i. Thus the Kohn-Sham Hamilto- 
nian is different for different degenerate excited 
states. 

4.4 OPTIMIZED POTENTIAL METHOD 

In order to perform calculations, one needs ex- 
plicit expressions for the functionals. In the 
ground-state theory, exchange can be treated ex- 
actly via the optimized potential method [32]. Now, 
this method is generalized for a single excited 
state. 

In the optimized potential method the following 
problem is solved: Find the potential such that 
when it is given a small variation, the energy of 
the system remains stationary. It can also be writ- 
ten as 

SE 

Jv 0. (46) 

Now, we show that from the fact that the en- 
ergy is stationary at the true wave function it 
follows that the energy is stationary at the true 
potential. It is well-known that considering the 
energy as a functional of the wave function El^], 
the eigenvalues of the Hamiltonian are stationary 
points of £: 

SE 
= 0,       (* = !,...,/,...), (47) 

and only the eigenvalues are stationary points. 
From our arguments above from the density of 

a given excited state n,, one can obtain the Hamil- 

tonian, the eigenvalues, and eigenfunctions and 
through adiabatic connection the Kohn-Sham po- 
tential V,a=0, and certainly the solution of the 
Kohn-Sham equations leads to the density «,: 

n,■ -» H -» Ek,% (k = 1,...,/,...) -» V,.° -» «... 

(48) 

Thus, we can consider the total energy as a func- 
tional of the Kohn-Sham potential: 

E[%] =E[%[V,0]]. 

Making use of Eq. (47) we obtain 

SE 

~8V~° J  8% 

SE       8V: 

, 8V» 
+ c.c.= 0. 

(49) 

(50) 

Thus, from the fact the energy is stationary at the 
true wave function follows that the energy is sta- 
tionary at the true potential. 

The fact, however, that the energy is only sta- 
tionary and not minimum at the true density makes 
it more difficult to find adequate approximations. 
The Kohn-Sham wave function should be orthog- 
onal to the exact Kohn-Sham wave function(s) of 
the lower state(s). Since the exact Kohn-Sham 
wave functions are not known, one is satisfied if 
approximate orthogonality with respect to the ap- 
proximate lower Kohn-Sham wave function(s) is 
assured. 

In the ground-state theory exchange can be 
treated exactly via the optimized potential method 
[32]. Now, this method is generalized for excited 
states. Following the usual method [32] deriving 
the optimal potential, the well-known integral 
equation for the effective exchange potential Vx 

can be obtained. 
The total energy E, is considered as a functional 

of the one-electron orbitals «', which are eigen- 
functions of the local effective potential V,°: 

£,-"/= (-5v2 + Vi°)ui
j = ejui

l. (51) 

From Eq. (50) we obtain 

8E:       _  ,      SE,     Sufit') 

SV, 

(52) 

The functional derivative of the one-electron or- 
bitals H: with respect to the local effective poten- 
tial V,-0 can be calculated with the help of Green's 
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function: 

8uf(x') 
1±^--Gj^tx)u)(xX (53) 

(ft,. - e/)G/(r',r) = 8(r - r') - uj(r)H}*(r').   (54) 

Using Eqs. (51)-(54) an integral equation for the 
effective exchange-correlation potential v'xc fol- 
lows: 

JL){t,x')vlc(t')dt' = Qi{t)f (55) 

L'(r, r') = £ uf (r)G'(r, r')uj(r'),       (56) 

Q''(r)= E/rfr'Mf(r)G;(r,r')^c,;(r')w;(r').   (57) 
/ 

The orbital dependent potential v'XCr ■ is given by 

pxc,(r)=    ,v    gV,V (58) xc,; MJ(r)S«y*(r) 

Turning to the degenerate case the total sub- 
space energy can be written as [33]: 

E* = E1V + £C;B/, (59) 

where E'av is the average energy of the configura- 
tion considered; C' and B- are quantities charac- 
teristic to the multiplet i. For instance, if we con- 
sider spherically symmetric systems (atoms or 
atomic ions) in the case nsmp2, the energies of the 
multiplets have the form [34]: 

EK'P) = E'av - if
2( pp) - \G\sp), (60) 

EK2P) = E[v - ±F2( pp) + \GKsp), (61) 

Ei(2D) = Eiv + l5F
2(pp), (62) 

EK2S) = El + §F2(pp). (63) 

F2(pp) and G1(sp) are the Slater integrals: 

F2(pp) = j f Rl^Rl/r/-^ drx dr2   (64) 

and 

GHsp) = ff R„s(r1)Rmp(r2)RMp(r1)RBS(r2) 

r < 
X — drj drz,   (65) 

where R„s and Rmp are the radial wave function 
of the ns and mp electrons. r< means r^ if it is 
smaller than r2 and r2 if it is smaller than rv 

In the degenerate case beyond the orbital-de- 
pendent exchange potential v'xc ■ there is an extra 
orbital-dependent exchange potential: 

v,      l  dBl 
(66) 

where Pj = rR'j. 
To find the optimized potential is very tedious 

even in the ground-state. However, Krieger, Li, 
and Iafrate [35] introduced a very accurate approx- 
imation that can be used here, too. Recently, an 
alternative derivation of the KLI approximation to 
the optimized potential method has been pre- 
sented [36]. This method can be readily general- 
ized to excited states. 

4.5 APPROXIMATE POTENTIAL 

Let us first treat the nondegenerate case. We 
start from the Hartree-Fock equations for the ex- 
cited state under consideration: 

- -Vfy/Cr) + (o(r) + p;(r))0/(r) 

- f dt' wKt, r')^(r') = e/ty''(r),    (67) 

where v is the external potential and o] is the 
classical Coulomb potential: 

dt'n,(r>) 
(68) 

The total electron density n{ can be expressed with 
the Hartree-Fock spin-orbitals \pj: 

«,-« = El*/(r)l2, (69) 

while the exchange kernel w'(x, r') takes the form 

W'(T,T')=T,—1 %—■ (70) ■       |r - r'| 

Now, we introduce the functions  Kj   with the 
following definition: 

0/ = n\/2K). (71) 
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Substituting Eq. (71) into (67), multiplying with 
K'j, summing for all orbitals and making use of the 
relation 

i = ElK/l2, (72) 

then adding the complex conjugate we arrive at 
the following equation: 

ST„, 

8n 
+ -rL\VKi

j\
2 + v + v' + v's 

= Es/IK/I2;   (73) 
i 

where v's is the Slater potential. 

EK;*(r')K!(r) 

v's(r)=-Udt'n,(r>)    ;   (74) 

Now, we compare the Hartree-Fock and 
Kohn-Sham type equations (73) and (80). We treat 
the case when both equations provide the same 
(Hartree-Fock) density nt, i.e., the Hartree-Fock 
method is posed as a density functional theory. 
From Eqs. (73) and (80) then follows: 

-^E[lV/r;|2-|VK/|2].    (81) 

In earlier studies [22, 25, 37] it was found that in 
the ground state the Hartree-Fock wave functions 
are very close to the orbitals satisfying the 
Kohn-Sham equations (80) with the Hartree-Fock 
density. Supposing the same for the ith excited 
state, we obtain the following approximate ex- 
change potential: 

and STw/8n is the functional derivative of the full 
Weizsäcker kinetic energy functional: 

v' = v, 'i+E(e/-*/)i*;i2. (82) 

1  ,     (V«)2 

(75) 

with respect to the density n. 
Let us consider now the Kohn-Sham equations 

iv2
M; + ^s„; = e;M; (76) 

leading  to  the  same  electron  density   nt.  The 
Kohn-Sham potential has the form 

7KS V + Vj + v'x, 

where v'x is the exchange potential. Introducing 
new functions k\ with the definition 

u) = nx,2k), (78) 

substituting into Eq. (76), multiplying with   k'-, 
summing for all orbitals, and using the relation 
between k\ 

i = EI^;I2, (79) 

As shown, this expression is equivalent to the KLI 
potential for the ground state. It can also be writ- 
ten as 

,/|2 

W = ^ + E-M^-^F), (83) 

where v'x- and vx-' are the expectation values of 
the exchange potential Vx (83) and the Hartree- 

(77) Fock exchange potentials v™ defined in the usual 
way with respect to orbital u'j. 

Turning to the degenerate case, only spherically 
symmetric systems are considered. The weighting 
factors in Eq. (39) are selected to be equal. Then 
the Hartree-Fock-like radial equations can be ob- 
tained from Eq. (59): 

i d2     /;(/; +1) .     . 

2 dr2 r2 ■'I  ^  vx,j T  U'j 

X P/ = ejPJ.    (84) 

and adding the complex conjugate of the equation 
obtained we arrive at the following equation: 

ST,n 

8n 
+ ^Eiv/c;i2 + ^s= Ee;>;i2. (so) 

Now starting out from Eq. (84) instead of Eq. (67) 
and repeating the whole derivation above, we ar- 
rive at the Kohn-Sham potential having the form 

v'K9] = v + v', + v'x + w', (85) 
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where v'x is the exchange potential 

*i = r>!+E(6/-*/)|*j| 

and 

1  dB] 
w 

i     PI dPi 

(86) 

= E«H-E«)MW^ (87) 

is the potential which is responsible for the multi- 
plet separation. 

4.6 ILLUSTRATIVE APPLICATIONS 

To illustrate the present method, total energies 
are calculated for a couple of ground and excited 

states for first-row atoms using the generalized 
KLI approximation. In a recent work [38], nonde- 
generate systems have been considered. Here, de- 
generate states are studied. 

Table II presents total energies for atoms from 
Be to Ne. In a couple of cases exact orthogonality 
is assured by the fact that these excited states have 
different symmetries than the ground states. Total 
energies are also presented for states that are not 
the lowest of a symmetry species. Here, only an 
approximate orthogonality is ensured through the 
orbital representation of the functionals. For com- 
parison Hartree-Fock values [39] are also shown. 
Result of the generalized KLI calculations are very 
close to the Hartree-Fock values. The accuracy of 
the generalized KLI results is about the same as 

TABLE II  
Total energies of ground and excited states of several atoms (in Ry). 

Atom 

Be 

Ne 

Configuration 

[He]2s2 

[He]2s12p1 

[He]2s22p1 

[He]2s12p2 

[He]2s22p2 

[He]2s12p3 

[He]2s22p3 

[He]2s12p4 

[He]2s22p4 

State 

1S 
3p 
1P 
2P 
4P 
2D 
2S 
2P 
3P 
1D 
1S 

JD 

nD 

'D 

1D 
1S 

[He]2s12p5 3P 
1P 

[He]2s22p6 1S 
[He]2s2sp53s1 3P 

1P 

Total energy Total energy 

HF DF 

29.1460464 29.1445640 
29.0230038 29.0180909 
28.7894708 28.7518996 
49.0581214 49.0551763 
48.9013152 48.8884686 
48.6237378 48.6215037 
48.4961812 48.4893193 
48.3580864 48.3519425 
75.3772380 75.3707497 

75.2626626 75.2603155 
75.0992218 75.0946642 
75.1984292 75.1722258 
74.7887394 74.7828623 
74.6754332 74.6717829 
74.3392354 74.3373082 
74.2842284 74.2811503 
74.2315796 74.2262289 
108.801868 108.788938 
108.592339 108.588113 
108.456204 108.454229 
107.976570 107.963937 
107.567282 107.564494 
107.366819 107.363890 
107.167882 107.166816 
149.618797 149.612502 
149.458529 149.455621 
149.222041 149.220299 
148.367817 148.360439 
147.744071 147.744346 
257.094196 257.089024 
255.984628 255.975597 
255.972424 255.968182 
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that of the original KLI for the ground state [35]. 
There is only one exception (the 5S state of the C 
atom) probably because of the high spin. It has 
been shown that the HF total energy is lower than 
the KLI one [22, 35, 37]. It is true for the present 
results, too. 

5 Discussion 

In this section the present approach is compared 
with the theories of excited states proposed by 
Theophilou [5] and Gross, Oliveira, and Kohn [8] 
and by Görling [22]. 

In the ensemble theory one has to calculate all 
the ensemble energies lying under the given en- 
semble energy in order to obtain the desired exci- 
tation energy. A disadvantage is that one has to do 
several self-consistent calculations in order to ob- 
tain the excitation energy of a single state. It is 
especially inconvenient to use it if one is interested 
in highly excited states. The present approach, on 
the other hand, can be applied to a single excited 
state. 

In the theory proposed by Görling, the adiabatic 
connection is applied in the usual way, i.e., the 
ground-state density is kept fixed. (In the present 
approach the density of the excited state consid- 
ered remains unchanged in the adiabatic connec- 
tion.) The coupling-constant path establishes a con- 
tinuous connection between the kth eigenstate of 
noninteracting and the interacting Hamiltonian. 
This statement is true in both approaches. How- 
ever, the noninteracting Hamiltonian is different in 
the two methods, as the Kohn-Sham potentials are 
different. The reason for it is the following: In 
Görling's method, the Kohn-Sham potential en- 
sures that the noninteracting ground-state density 
be equal to the interacting ground-state density. In 
the present approach, on the other hand, the 
Kohn-Sham potential ensures that the noninteract- 
ing excited-state density under consideration be 
equal to the corresponding interacting excited-state 
density. 
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ABSTRACT: Small nickel clusters up to the tetramer are investigated within the 
framework of the local spin density functional theory. Several competitive states are 
studied for the dimer. Both the geometry and the spin state are optimized for several 
starting symmetries in the case of the trimer and the tetramer. Moreover, all those 
calculations are followed by a vibrational analysis in order to discriminate between real 
minima and saddle points on the potential energy surface. It is found that Jahn-Teller 
deformations play an important role in determining transition-metal cluster geometries. 
Equilibrium geometries, electronic configurations, binding energies, magnetic moments, 
and harmonic frequencies are reported in this work.    © 1998 John Wiley & Sons, Inc. Int J 
Quant Chem 70: 693-701, 1998 

Introduction 

Clusters are useful as models for surfaces, and 
as such, they have been used in the analysis 

of surface processes from a theoretical point of 
view [1]. The cluster approach focuses on the prop- 
erties of a variety of surface sites, taking into 
account their local geometries and enabling the 
use of accurate quantum mechanical methods. 

The rapid development of experimental tech- 
niques in recent years has made it possible both to 
obtain size-controlled transition-metal clusters and 
to study their reactivity against chemisorption pro- 
cesses [2, 3]. Although, in principle, metal clusters 

Correspondence to: A. H. Jubert. 

and metal surfaces seem to behave in a very simi- 
lar way against chemisorbed species, small transi- 
tion-metal clusters show highly size-dependent 
properties such as their geometries and magnetic 
moments [4]. This intriguing behavior can be at- 
tributed to the fact that transition metals have 
unfilled valence d orbitals characterized by their 
localization and high density of states. As a conse- 
quence of this, a variety of geometries and elec- 
tronic states are available for a given cluster com- 
position. Let us say, for example, that the nickel 
dimer presents almost 30 electronic states located 
in an energy range of only 0.75 eV [5]. 

Because of their important catalytic and mag- 
netic properties and the just-mentioned complexity 
of the electronic structure of low-lying excited 
states, nickel clusters seem to be a challenge for 
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any ab initio calculation. A description of the 
ground-state electronic and magnetic properties of 
small nickel clusters was offered by Bash et al. [6] 
by means of effective core potential Hartree-Fock 
and configuration interaction calculations. Tomon- 
ari and coworkers [7] also investigated small nickel 
clusters using an all-electron basis set at both Har- 
tree-Fock and configuration interaction levels of 
theory assuming bulk nickel interatomic distances 
for bond lengths. Mlynarski and Salahub [8] stud- 
ied Ni4 and Ni5 using an all-electron basis within 
the local and nonlocal density functional for- 
malisms. Reuse and Khanna [9] performed a sys- 
tematic study of the geometry, electronic structure, 
and magnetic properties of small nickel clusters. 
Their calculations were carried out using norm- 
conserving, nonlocal pseudopotentials within the 
local density functional framework. Surprisingly, 
none of these authors reported any vibrational 
analysis to confirm that their findings correspond 
to true minima and not to saddle points in the 
potential energy surface of a given conformer. On 
the other hand, Castro et al. [10] performed all- 
electron local and nonlocal density functional cal- 
culations on nickel clusters up to the pentamer. 
These authors report not only structural and mag- 
netic properties but they also properly characterize 
the clusters using the calculation of vibrational 
frequencies. Finally, Berces [11] reported the vibra- 
tional frequencies of several optimized geometries 
for Ni3 calculated using the nonlocal density func- 
tional formalism. It is important to remark that 
other recent works based on empirical molecular 
dynamics calculations on nickel clusters exist [12] 
but we prefer to restrict our comparison and dis- 
cussion to first-principles results only. 

As mentioned above, only Reuse and Khanna 
[9] and Castro et al. [10] made a systematic study 
on small nickel clusters. However, their results are 
rather different, especially for Ni4. In [10, p. 140], 
Castro et al. also states that "the precise source(s) of 
these discrepancies is not currently understood. Further 
work, with the use of different DFT codes and in 
different laboratories, on these small nickel clusters will 
be required to understand the shortcomings or limita- 
tions that the available DFT techniques possess in the 
description of transition metal cluster." 

It was the aim of the present work to contribute 
to that very interesting, challenging, and actual 
topic. To this end, a systematic study of the geom- 
etry, electronic structure, and magnetic and vibra- 
tional properties of small nickel clusters up to the 
tetramer is presented. 

Computational Details 

Density functional calculations within the local 
spin density approximation (LSDA) [13] were per- 
formed on small nickel clusters up to the tetramer 
using the ADF package [14]. This code is based on 
Slater-type orbitals (STO) instead of the usual 
Gaussian-type functions. Furthermore, a set of 
auxiliary STOs are available to fit the electronic 
density in order to get a faster evaluation of the 
Coulomb potential. 

The local correlation functional due to Vosko, 
Wilk, and Nussair [15] was used. The triple-zeta 
basis set of STOs available as set IV in the package 
was also used. That basis set does not include 
polarization functions. The frozen-core approxima- 
tion up to the 3p orbital (included) was utilized. 

The geometries and spin multiplicities of the 
Ni2, Ni3, and Ni4 clusters were optimized with 
the default convergence thresholds, that is, 10~3 

au for the energy, 10"2 au for the gradients, and 
10 "6 for the self-consistent cycle. The integration 
accuracy parameter was also set to its default 
value of 4.0 (see [14b] for details about the numeri- 
cal integration technique). Several symmetries were 
considered for the trimer and the tetramer (see the 
next section for details). The optimizations were 
symmetry-constrained in all cases. Several differ- 
ent starting geometries were considered for each 
symmetry. 

The frequency calculations were carried out us- 
ing the default convergence and accuracy thresh- 
olds, that is, 10~3 au for the energy, 10"2 au for 
the gradients, 10"6 for the self-consistent cycle, 
and 6.0 for the integration accuracy parameter. It is 
a well known fact that transition-metal cluster 
calculations are very difficult to converge [9, 16]. 
The electron smearing technique is a very useful 
trick that can help to solve that problem. It creates 
an energy window around the Fermi level and all 
the molecular orbitals inside that window are al- 
lowed to have fractional occupation numbers. 
Thus, when some of our calculations revealed con- 
vergence problems, the program's smearq key- 
word was activated. When this was the case, sev- 
eral subsequent calculations were carried out by 
letting the smearq parameter to tend gradually to 
zero. This must be performed because the true 
self-consistency is only achieved when the energy 
window width is set to zero, that is, when all the 
occupation numbers become integers. 
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Results and Discussion 

Atomic calculations using the basis set men- 
tioned in the last section indicate that the 3D (dV) 
state is the ground state at the present LSDA level 
of theory. The binding energies reported in this 
work are then calculated using that value as the 
reference atomic energy. The 3F (dss2) and *S (dw) 
states were also calculated. Our results are in qual- 
itative agreement with /-averaged experimental 
results [17] and show the same trends that other 
LSDA calculations (see [8]). Table I shows our 
atomic calculations results and the experimental 
values [17]. 

Ni2 

The ground state of the nickel dimer is found to 
be 3X~ according to our LSDA calculations. The 
binding energies of the ground state and the 
low-lying excited states of Ni2 are reported in 
Table II. The two unpaired electrons in the ground 
state are located on a Trg molecular orbital (MO) as 
can be seen from the electronic configuration 

l0-/K42(7/lS?
4l7rg

2(T)lo-1,
2l<5„4. 

Due to the near degeneracy found among the 
\TTg, lcru, and 18u MOs, all of them around the 
Fermi level, other configurations were studied to 
obtain a deeper understanding on the variety of 
electronic states of Ni2 near the ground state. The 
detail of the configurations studied as well as their 
bond lengths and binding energies are presented 
in Table III for comparison. It can be seen that 
minor modifications take place when one goes 
from state I to state II. On the other hand, when 
the 8U MO becomes depopulated, states III and IV, 
the bond length increases its value and, accord- 
ingly, the binding energy lowers its magnitude. 

TABLE II  
Binding energies (BE) of ground and low-lying 
excited states of Ni2. The energies are given in eV, 
with S the total electronic spin. 

s BE 

0 1.33 
1 1.67 
2 0.86 

Since the three MOs considered have antibonding 
character, a closer look at the antibonding overlap 
population between the nickel atoms could help to 
understand that behavior. The au, Trg, 8U, and total 
antibonding overlap populations are presented in 
Table IV. It can be seen from that table that the 
total antibonding overlap population increases 
when passing from state I to state IV. Moreover, it 
is clear that the cru and TT% MOs are mainly re- 
sponsible for the antibonding overlap between the 
nickel atoms. The 8U MO, on the other hand, 
shows only a weak antibonding character. Thus, 
an increase in the total antibonding character must 
be expected when the 8U MO becomes depopu- 
lated in favor of the rrg MO. These facts are consis- 
tent with the variations observed in the binding 
energies and the bond lengths (see Table III). 

TABLE III 
Comparison of different triplet states of Ni2. 

Electronic configuration    Electronic state BE 

(10-J2 (15J4 (l77g)
2 (I) 

(1CTU)
1 (1S,)4 (l7Tg)

3 (II) 
(1<TU)

2  (1SU)
3  (1779)

3  (III) 
(K)2(1Su)

2(l7rJ4(IV) 

3n„or3<l> 

2.07 1.67 
2.06 1.60 
2.11 1.56 
2.16 1.26 

Only the relevant molecular orbitals of each configuration 
are given. Bond lengths (r, in A) and binding energies (BE, 
in eV/at) are shown. 

TABLE 1 
Energy of different atomic states of nickel. 

Atomic state This work Experimental [17] 

3D(d9s') 
3F(d6sz) 
'S(dw) 

0.00 
1.42 
1.85 

0.00 
0.03 
1.83 

The values are given in eV and the ground state is taken as 
the reference value. The experimental values [17] are 
weighted averages over the J components. 

TABLE IV  
cru, iTg, 8„, and total antibonding overlap 
populations for the states I—IV of Ni2. 

I II III IV 

au 0.0442 0.0223 0.0551 0.0713 
n9 0.0561 0.0877 0.0815 0.1029 

Su 0.0048 0.0031 0.0071 0.0080 
Total 0.1051 0.1131 0.1437 0.1822 
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TABLE V 
Comparison of different triplet states of Ni i2. 

Electronic configuration Electronic state r BE 

Oo-J2 (1SU)
4 (I77J2 x+ 

2.08 1.33 
(K)1 (1Sj3 (1TÜ4 N 2.10 1.33 
(lo-J2 (15J3 (ITTJ3 ^„or^ 2.12 1.31 
(K)1 (15J4 (I77J3 1n, 2.06 1.31 
(1o-„)° (1Sj4 (ITTJ4 

]*; 2.05 1.13 

(io-„)2{isu)
2(iir0)

4 1Sg
+or% 2.16 0.92 

Only the relevant molecular orbitals of each configuration 
are given. Bond lengths (r, in A) and binding energies (BE, 
in eV/at) are shown. 

According to Table II, the singlet state is close in 
energy to the triplet state. Moreover, some experi- 
mental results indicate that the Ni2 ground state 
would be a singlet state [5]. Due to this fact, 
several singlet states were also investigated. The 
results are collected in Table V. It can be seen from 
that table that four singlet states are within only 
0.02 eV/at. Although those singlet states are close 
in energy to the triplet states discussed above, our 
calculations clearly favor the triplet state as the 
ground state for Ni2. 

The bond length, binding energy, and vibra- 
tional frequency of the ground state of Ni2 are 
reported in Table VI together with other theoreti- 
cal results and the corresponding experimental 
values. It can be seen from the table that, although 

TABLE VI  
Comparison of bond length (r, in Ä), binding energy 
(BE, in eV/at), magnetic moment ((«., in bohr 
magneton /at), and vibrational frequency (we, 
in cm -1) of Ni2 calculated in this work with other 
theoretical calculations and experimental results. 

Method State BE M 

[6]a 

[7]b 

[8]d 

[9] 
[10]d 

This work 
Exp. [5] 

3v + 
„    u 

3v" + 

zg 
Triplet 
Triplet 

2.33 
2.30c 

2.03 
2.00 
2.05 
2.07 
2.20 

0.71 
0.24 
1.82 
1.61 
1.82 
1.67 
1.03 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

211 

379 

354 
353 
381 

a Only Cl results are shown. 
bOnly SCF results are shown. 
0 The bond length was kept fixed at this value. 
a Only LSDA results are shown. 
eA wide variety of states lie around the true ground state, 
making difficult its assignment. Nevertheless, the possibili- 

different codes were used, the present calculations 
are in good agreement with the other LSDA re- 
sults. Moreover, they show the usual tendencies 
attributed to LSDA, that is, shorter bond distances 
and larger binding energies than experimental val- 
ues. The vibrational frequency is reproduced with 
great accuracy. 

t*l3 

The starting symmetries studied in the case of 
the trimer were the DK/, linear structure, the C3v 

equilateral triangle, and the acute and obtuse C2„ 
isosceles triangles. A 5X~ state was found to be the 
ground state of the Dxh Ni3 cluster. The binding 
energies of the ground state and the low-lying 
excited states of the linear trimer are collected in 
Table VII. No Renner-Teller effect should be ex- 
pected due to the absence of degeneracies in the 
electronic state of the cluster. Nevertheless, the 
vibrational analysis reveals one degenerate imagi- 
nary frequency that can be attributed to near-de- 
generacy effects between frontier orbitals. It is con- 
cluded that the linear trimer is not a real minimum 
on the potential energy surface of Ni3. 

In the case of the equilateral triangle, an 3A'2 

state was found to be the ground state. The bind- 
ing energies of the ground and the low-lying ex- 
cited states of the D3h trimer are listed in Table 
VII. The valence electronic configuration of the 
ground state is 

lfl'1
2lc'42fl'1

2lfl'2
2lc"43«'l

22c'4lfl'1'1(t)l«2(T)3e'42e"4. 

No first-order Jahn-Teller (FOJT) effect [18] 
should be expected for this cluster. The vibrational 
analysis confirms that this is a real minimum in 
the Ni3 potential energy surface. 

In the case of the C2v acute and obtuse trian- 
gles, all the geometry optimizations converge to 
the equilateral triangle irrespective of the starting 

_ TABLE VII 
Binding energies of the ground and low-lying 
excited states of Ni3 in different symmetries. 

D 3/7 

1.79 
1.86 
1.11 

1.98 
2.20 
2.00 

ties seem to be 3S,T,32:, 12,7, 12+  1L\ The energies are given in eV. S is the total electronic spin. 
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geometries used. The variation of the total energy 
with respect to the apex angle opening was also 
studied. Only the minimum corresponding to the 
equilateral triangle was identified in that curve. 
This is in agreement with the results reported in 
the previous paragraph. 

A summary of our results as well as their com- 
parison with other theoretical calculations and 
some experimental results is shown in Table VIII. 

It can be seen from that table that the characteri- 
zation of the nickel trimer is a difficult task. Bash 
et al. [6] reported a quintet linear trimer as the 
most stable one. It must be noted, however, that 
the geometry of the equilateral triangle was kept 
fixed and all the calculations were performed at a 
Hartree-Fock level of theory only. Tomonari and 
coworkers [7] only performed calculations on the 
equilateral triangle with fixed bond lengths and 
also at a Hartree-Fock level of theory. They found 
the quintet to be the most stable state. Reuse and 
Khanna [9], on the other hand, performed pseu- 
dopotential LSDA calculations, finding a triplet 
C2v ground state with an apex angle of 61°, very 
close to the equilateral triangle conformation found 
in this work. Castro et al. [10] reported all-electron 
local and nonlocal density functional calculations 
on Ni3. These authors found an equilateral trian- 
gular structure in a triplet electronic state for the 
trimer and it is characterized using a vibrational 

analysis. Berces [11] found using nonlocal density 
functional calculations that the lowest-energy con- 
formation was a triplet D3h structure closely fol- 
lowed by two C2v structures also in triplet elec- 
tronic states with apex angles of 62.1° and 58.3°, 
respectively. 

The amount of experimental information is 
scarce. The ground state is characterized only by 
the C2„ symmetry and an apex angle in the range 
90-100° [19] and two vibrational frequencies [20]. 
It is important to note that irrespective of some 
differences in the calculation methodology within 
the LSDA both the results in [9,10] and the results 
in this work agree to predict the Ni—Ni bond 
lengths and the binding energy to be about 
2.15-2.18 A and 1.96-2.40 eV/at, respectively. 
Since no frequency calculations were performed in 
[6], [7], or [9] the minimum characterization pre- 
sented there is uncompleted from our point of 
view. On the other hand, the frequencies calcu- 
lated in the present work are in excellent agree- 
ment with those reported in [10] and in good 
agreement with those shown in [11], especially the 
higher ones. The disagreement found in the lower 
frequencies can be attributed to the fact that local 
frequencies tend to be higher than nonlocal ones 
(see [10, 16] for some examples). Unfortunately, 
the scarcity of experimental results makes the 
comparison very difficult. 

TABLE VIII _  
Comparison of the binding energy (BE, in eV/at), geometrical parameters (r, in A; 6, the apex angle, in 
degrees), magnetic moment (|x, in bohr magneton/at), and vibrational frequencies (toe, in cm-1) of different 
Ni3 conformers calculated in this work with other theoretical calculations and some experimental results. 

Method Symmetry-State BE 

[6]a D^-quintet 2.38, 180 0.51 1.34 — 
[6]a 

D3h~5E' 2.49,b 60 0.45 1.34 — 
[7]a D3h-

5E' 2.49,b 60 0.19 1.34 — 
[9] C2l,-triplet 2.15,61 1.96 0.67 — 
[10]c D3h-triplet 2.16,60 2.40 0.67 228, 230, 352 
[11] D3h-% 2.21,60 — 0.67 142,356 
[11] C2v- B2 2.21,62.1 — 0.67 — 
[11] r  -3A 

"2v      "1 2.25, 58.3 — 0.67 213, 228, 349 
[19] C2v —,90-100 — — — 
[20] — — — — 100 + 5,230 + 5 
This work n   -3A" U3h      H2 2.18,60 2.20 0.67 229 (e'), 359 (a',) 

Symmetry assignment of frequencies is given in parentheses. 
a Only SCF are shown. 
b The bond length was kept fixed to this value. 
0 Only LSDA results are shown. 
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rvi4 

The study of the nickel tetramer is more com- 
plex than in the previous cases since more struc- 
tures are involved. To simplify the analysis, we 
investigated two-dimensional (2D) and three-di- 
mensional (3D) structures separately. Our results 
are then presented in two different subsections. 

2D Structures 

We started our study with the most symmetri- 
cal 2D structure, that is, D4//. An 5Eg electronic 
state was found to be the ground state for the 
square conformer. The binding energies of the 
ground and the low-lying excited states of the D4;, 
tetramer are listed in Table IX. The presence of 
FOJT deformations due to the nature of the elec- 
tronic state can be expected. A vibrational analysis 
confirmed the existence of two imaginary frequen- 
cies along the Bl and B2g modes. These modes 
would lead to a rectangular structure and a rhom- 
bic structure, respectively, both of symmetry D2,„ 
after distortion. 

We were not able to get any rectangular, D2h, 
structure. Despite the starting geometry used, the 
final geometry always became a perfect square. 

On the other hand, two different rhombic struc- 
tures were obtained characterized by the 5A and 
5B3„ electronic states. The binding energies of the 
ground and the low-lying excited states of the D2h 

tetramers are shown in Table IX. A vibrational 
analysis shows one imaginary frequency along the 
Blu mode for the first conformer, and two imagi- 
nary frequencies along the Blu and Ag modes for 
the second one. When the deformation along the 
Blu mode was investigated, the two rhombi led to 
the same 3D, C2„, structure that will be considered 
in the next subsection. The deformation along the 
A   mode in the second conformer, on the other 

hand, led to the first conformer characterized by 
the 5A   electronic state. 

3D Structures 

We start our study with the most symmetrical 
3D structure, that is, Td. Two different states, 3Tl 

and 5T2, were found to have the same minimum 
energy within 0.01 eV/at and almost the same 
geometrical parameters within 0.01 A. The binding 
energies of the ground and the low-lying excited 
states of the Td tetramers are collected in Table IX. 
FOJT deformations due to the nature of the elec- 
tronic states can be expected. The quintet state 
shows an imaginary frequency along the £ mode, 
in agreement with the Jahn-Teller theorem. This 
mode leads to a Dld structure that will be consid- 
ered later. Surprisingly, the 3TX electronic state 
does not present any imaginary frequency, con- 
trary to what is expected from the Jahn-Teller 
theorem. Additional frequency calculations with 
more stringent conditions than those used as de- 
faults were performed but the same results were 
obtained. Although this could be an error coming 
from the LSDA model, we decided to report this 
nickel conformer as a real minimum on the poten- 
tial surface of the tetramer. The valence electronic 
configuration of the 3T] state (a from now on) is 

lflhf|2fl1
2le42K63f2

62e4H1
62f1

3(T)2f1
1(l). 

C3p structures were also studied. An 5E state 
was found to be the ground state. The binding 
energies of the ground and the low-lying excited 
states of the C3v tetramers are listed in Table IX. 
However, the nature of the electronic state antici- 
pates that this conformer is not a true minimum 
on the potential surface of the tetramer. The vibra- 
tional analysis shows an imaginary frequency along 
the E mode. Unfortunately, we were not able to 

TABLE IX  
Binding energies of the ground and low-lying excited states of Ni4 in different symmetries. 

D2h~5\ D2h~  B3u C2„(c) C2,(d) 

0 — — — 2.43 — — — — — 
1 2.37 2.42 2.38 2.52 2.45 2.52 2.37 2.43 2.46 
2 2.39 2.51 2.44 2.52 2.46 2.53 2.51 2.51 2.51 
3 2.38 2.34 2.30 2.32 2.30 2.34 2.35 2.30 2.30 

The energies are given in eV. S is the total electronic spin. For C2v, the letters c and d indicate the stable conformers, whereas the 
C2v column without any letter indicates the conformer that lead to imaginary frequencies. 
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complete our study on the deformation along this 
mode due to convergence problems. 

The analysis of the D2d structures (including 
that structure coming from the FOJT distortion of 
the tetrahedron mentioned above) leads to an 5A2 

state (b from now on) characterized by the valence 
electronic configuration 

lflflfe|lc42fl?3fl?lbj2b|2e43b|3e4 

4«?1^4e41^5e2( T )2a\( T Hb\( T). 

The binding energies of the ground state and the 
low-lying excited states of the D2d tetramers are 
shown in Table IX. This conformer does not shown 
imaginary frequencies and then can be reported as 
a real minimum on the potential energy surface of 
the nickel tetramer. 

Finally C2v structures were studied including 
that structure coming from the distortion of the 
D2h rhombi along the Blu mode mentioned above. 
Three different ground states were found charac- 
terized by the same electronic states 5BV The bind- 
ing energies of the ground state and the low-lying 
excited states of the C2v tetramers are shown in 
Table IX. 

The vibrational analysis reveals that one of the 
conformers has one imaginary frequency along the 
A2 mode. When the geometry and spin state are 
optimized according the distortion suggested by 

the imaginary mode, the b structure mentioned in 
the last paragraph is obtained. 

The other two conformers, on the other hand, 
have only real frequencies, indicating that these 
are true minima on the potential energy surface of 
the nickel tetramer. Their valence electronic config- 
urations are also the same: 

Ia2lb2lb22a22bllal3a22a2
24a22bl5a23bj6a2 

3a2
24b2

25b\( T )4a2( t )3b24b25b](l )7aj6b\( T). 

To facilitate the report of the geometric parameters 
and the vibrational frequencies, these conformers 
are labeled c and d respectively. 

A summary of our results as well as their com- 
parison with other theoretical calculations is re- 
ported in Table X. The geometrical parameters of 
conformers a-d are shown in Figure 1. 

The results reported in [6, 7] were obtained at a 
Hartree-Fock level of theory, without including 
correlation effects. Only the most symmetrical 
structures were studied. Moreover, the interatomic 
distances were kept fixed. Mlynarski and Salahub 
[8] studied only the tetrahedron finding a quintet 
state and a binding energy of 3.35 eV/at when the 
geometry is optimized. Reuse and Khanna [9] per- 
formed LSDA calculations on the D4h and D2d 

structures only. They found a septet state and the 
same binding energy (2.34 eV/at) for both. No 

TABLE X  
Comparison of the binding energy (BE, in eV/at), magnetic moment (\x., in bohr magneton /at), and vibrational 
frequencies (we, in cm -1) of different Ni4 conformers calculated in this work with other theoretical calculations. 

Method Symmetry-State BE M 

[6]a D^-quintet 
[6]a D

Ah" ß1g 
[6]a Td-

7T2 

[7]a D
Ah~ S1g 

[8]a 7"d-quintet 
[8]d 7^-quintet 
[9] D2d-septet 
[9] D4A)-septet 
hop D2d-quintet 
This work Td-% (a) 
This work D2d-

5A2 (b) 
This work C2,-

5B, (c) 
This work CZv-*B, (d) 

0.58b 1.00 
0.58b 1.50 
0.32b 1.50 
0.50 b 1.50 
2.99° 1.00 
3.35° 1.00 
2.34 1.50 
2.34 1.50 
2.78 1.50 
2.52 0.50 
2.53 1.00 
2.51 1.00 
2.51 1.00 

147, 172(e), 199,300,363 
124(e), 216 (^,356(3,) 
144 {bj, 163 (e), 197 (a,), 297 (b2), 362 (a,) 
51 (a,), 183 (bj, 213 (a2), 225 (a,), 307 (b2), 344 (a,) 
23 (a,), 176 (b2), 209 (a2), 228 (a^, 305 (bj, 349 (a,) 

Symmetry assignment of frequencies is given in parentheses. 
aThe bond length was kept fixed to 2.49 A. 
b Only SCF results are shown. 
0 Only LSDA results are shown. 
d The bond length was optimized to 2.23 A. 
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Ch 

2.19 

.© 
2.31 

116.3' 

2.24 \ 

119.8° 

224\>x/      2.21 

FIGURE 1. Geometrie parameters of the four 
conformersof Ni4: (a) Td-

3T.,; (b) D2d-
5A2; (c) C; 

5ei; 
(d) CZv-

5Bv Distances are in A and angles in degrees. 

vibrational analysis was made in [6-9]. Castro and 
coworkers [10], on the other hand, investigated the 
Td, D2d, and Dzh structures. They found that only 
the D2rf conformer in a quintet electronic state is a 
real minimum, whereas the other two are saddle 
points on the potential energy surface of Ni4. The 
binding energy of the D2d structure was 2.78 
eV/at. Those authors also reported the vibrational 
frequencies. The binding energy of the D2d con- 
former found in this work is rather lower than that 
from [10] and rather higher than those reported in 
[9]. Our vibrational frequencies, on the other hand, 
are in excellent agreement with those given in [10]. 
Moreover, we found three new conformers for 
Ni4, all of them being within an energy range of 
0.02 eV/at. 

Conclusions 

A systematic LSDA study of the geometry, elec- 
tronic structure, and magnetic and vibrational 
properties of small nickel clusters up to the te- 
tramer is presented in this work. The main conclu- 
sions can be summarized as follows: 

(a) A 3S~ state characterized by a bond length 
of 2.07 A was found for the nickel dimer 
The binding energy is found to be 1.67 eV/at 
and the vibrational frequency is 353 cm-1. 

(b) An equilateral triangle characterized by an 
3A"2 state and a bond length of 2.18 A is 
found to be the ground state of the nickel 
trimer. Its binding energy is 2.20 eV/at, and 
the corresponding magnetic moment and vi- 
brational frequencies that confirm that this 
is a real minimum on the potential energy 
surface of the trimer are also reported in this 
work. It should be noted that a stable linear 
trimer was also found but it was impossible 
to complete the vibrational analysis due to 
convergence problems. 

(c) Four different stable conformers were found 
for the nickel tetramer: a distorted tetrahe- 
dron (D2d), a perfect tetrahedron, and two 
butterfly structures (C2„). The spin states are 
triplets and quintets. The binding energies 
ranges from 2.51 to 2.53 eV/at. The corre- 
sponding vibrational frequencies that con- 
firm that these are real minima on the po- 
tential energy surface of the tetramer as well 
as their geometric parameters and magnetic 
moments are also shown in this work. 

The results presented in this work show an 
excellent agreement with the results reported by 
Castro et al. [10]. Thus, the present work repre- 
sents a contribution to clarify the dilemma posed 
by those authors concerning the reliability of the 
present DFT codes. Moreover, a more complete 
description of the potential energy surface of Ni4 

is given. 
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Stable and Efficient Numerical Method 
for Solving the Schrödinger Equation 
To Determine the Response of 
Tunneling Electrons to a Laser Pulse 

MARK J. HAGMANN 
Department of Electrical and Computer Engineering, Florida International University, Miami, 
Florida 33199 

ABSTRACT: The form ¥(x, t) = [F0(x) + F^x, Oe-''"' + F_^x, t)ei"']e-iEt'"1 is 
used for the wave function in the transient solutions. This expression is similar to the 
three dominant terms in the steady-state solution from the Floquet theory, except that 
now Fj and F_1 depend on t as well as x. The function F0 is the static solution, and 
separate partial differential equations are given for Ft and F_v Polynomial extrapolation 
is used to satisfy boundary conditions at the ends of the grid. The numerical solutions are 
shown to converge and to be numerically stable even for simulated times exceeding 2000 
cycles of the radiation field. The examples show delays corresponding to the semiclassical 
tunneling transit time, the classical time for traversing the inverted barrier. A resonance 
is seen when electrons promoted above the barrier by absorbing quanta from the 
radiation field have the closed line integral of momentum between the turning points 
equal to an integral multiple of Planck's constant. A second resonance occurs when the 
period of oscillation for the radiation equals the semiclassical tunneling transit time for 
electrons that absorb one photon from the radiation but are still below the barrier. This 
resonance decays at a rate corresponding to the tunneling dwell time, and, thus, it is not 
present in the steady state. These observations suggest a semiclassical picture of the 
tunneling process.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 703-710, 1998 

L 

mixing signals which have been used for feedback 
Introduction control [1] as well as for imaging the local conduc- 

tivity of the sample [2]. These procedures show 
promise for obtaining atomic resolution with sam- 

aser-assisted scanning tunneling microscopy,        pies having high electrical resistivity, increasing 
in which laser radiation is coupled to the        the speed of imaging, and extending the list of the 

tip-sample junction of a scanning tunneling micro-        types of data that can be imaged. Our simulations 
scope (STM), has been used to generate microwave        [3] show that a single amplitude-modulated laser 

Contract grant sponsor: NSF. focused on the tip-sample junction of an STM will 
Contract grant number: 9500007. generate a tunneling current at the modulation 
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frequency, and this was verified in preliminary 
experiments. Other simulations and experiments 
suggest that optical mixing in laser-assisted field 
emission could be used to generate and detect 
signals over bandwidths as large as 100 THz [4]. 

All these simulations used either single-electron 
solutions [3] or density functional theory with the 
approximation that the time-averaged response for 
electrons in the metal is the same as in the static 
problem, and screening of the radiation fields was 
described classically [4-5]. It was the objective of 
this study to find a numerically stable and compu- 
tationally efficient method for obtaining transient 
solutions of the Schrödinger equation so that this 
method may subsequently be combined with itera- 
tive dynamic corrections to the potential from den- 
sity functional theory to obtain self-consistency. A 
number of methods have already been used to 
obtain transient solutions of the Schrödin- 
ger equation. The method of finite differences was 
used with alternating-direction implicit propaga- 
tion [6], a split-operator propagator [7], and a 
fourth-order predictor-corrector [8]. Other meth- 
ods include finite elements [9], a modification of 
finite elements using complex-coordinate contours 
[10], split-operator spectral techniques with fast- 
Fourier transforms [11], quadratures with expan- 
sions in Vokolov states [12], and a formulation in 
which the wave function is divided by the steady- 
state solution [13]. 

Analysis 

We begin with the dipole approximation [14] of 
the one-dimensional time-dependent Schrödinger 
equation for an electron in a static potential plus a 
radiation field with axial polarization, 

-h2 S2V 
 r + [VQ + exEr.U(t)sm(cot)]V = ih- 
2m   dx 

SV 

~ät' 
(l) 

where U(t) is the unit step function (1 for t > 0, 
else 0), and both the static potential V0 and the 
magnitude of the electric vector of the radiation 
field £0 may be functions of the axial coordinate 
x. In the steady state, Floquet's theorem [15] may 
be used to write the solution of Eq. (1) as 

oc 

¥= 2>Nexp[-i(E + NA«)f/Ä],       (2) 

where the i/rN are functions of x only. Now, for a 
transient solution, we take the three dominant 
terms of the Floquet series [16] and generalize 
their time dependence as follows: 

¥= [F0(x) + Fl(x,t)e-iml 

+ F_^x,t)ei""]e-iE,/f'.   (3) 

Substituting Eq. (3) into Eq. (1) and separating the 
resulting expression results in the following set of 
three equations: 

h2  S2F, dF, 
,  + ih - 

2m  dx2 St 

+ [E + hw- V0 - U(f)V1sin(wO]F1 

-LTCOVjFo (4a) 

h2  S2F -l + m 
SF_, 

2m    dx2 St 

+ [E -hw-V0- U(t)V^sm(cot)]F_^ 

yWWV.Fo 

h2 d2F0 

m   dx2 + [E-V0]F0 = 0 

(4b) 

(4c) 

To solve this system of equations, first, the static 
solution F0 is determined by using shooting meth- 
ods [17] to solve Eq. (4c). Then, F: and F_-i are 
determined by solving Eqs. (4a) and (4b) by time 
stepping using finite differences with the initial 
condition that both Fx and F_1 are identically zero 
for t < 0 at all values of x. In the finite-difference 
approximations, the time derivatives are approxi- 
mated by the midpoint method [18]. For example, 
the approximation of Eq. (4a) is 

M,;,/+i = ^i, /, ;-i 

ihbt 
"*     Tk    3LFI,/+I,I

_
2FI;;/ + F1I/_1//J 

m(Ax) 

2/Af 
+ —— [E + hco- VQ(I-Ax) 

h 

-IK/-AO- V](/-Ax)sin(w/-AO] 

Xfi.M 

At-U(J-At)- VjU-Ax) 
+ • F0(/-Ax), 

(5) 
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where we use the notation Fx rItJ = F/ I • A x, } ■ A t) 
and Vj = exE0. We find that the criterion At < 
m(Ax)2/2Ä must be satisfied for numerical stabil- 
ity, and all solutions obtained using different val- 
ues of the time step which satisfy this criterion are 
numerically equivalent. 

Our numerical solutions show that, in general, 
|F0| » |FJ » |F_j|, so we have also tested a sec- 
ond formulation in which F_1 is deleted and Eq. 
(3) is replaced with the following equation: 

V= [F0(x) + F1(x,f)e-'wf]e" iEt/t (6) 

Substituting Eq. (6) into Eq. (1) and separating the 
resulting expression leads to the following set of 
two equations: 

h2  a2F1 dF1 
 =- + ih  
2m dx2 at 

+ [E + hw- V0 - LfCOVjSinCwOlFj 

-LKOVjFoQ -e2iü>t) 

h1 d2F„ 
+ [E-V0]F0 = 0. 

2m dx2 

(7a) 

(7b) 

Our numerical solutions show that the two formu- 
lations [Eqs. (3), (4a), (4b), and (4c) and Eqs. (6), 
(7a), and (7b)] give equivalent values for the prob- 
ability density and that these two formulations 
have similar numerical stability. However, in the 
second formulation, the term Fje"""' must include 
all time-dependent effects, and so we find that 
even for large values of t the function Ft(x, t) has 
appreciable time dependence. By contrast, with the 
first formulation, we find that in the asymptotic 
limit as t becomes large Fj(x, 0 and F_l(x,t) 
approach functions of x only. The first formula- 
tion was used for all of the examples that are 
presented in this article. 

Conditions Imposed at the Ends of 
the Grid 

At each time step, Eq. (5) and the corresponding 
equation for F__1 are used to update all values of 
Fx and F_t with the exception of those at the 
points at the ends of the grid. These two equations 
may not be used at the ends of the grid because 
the finite difference approximation used for the 
Laplacian operator requires values on both sides of 

the point where the function is to be updated. 
Others have used various types of absorbing 
boundary conditions [19], or, equivalently, com- 
plex-coordinate contours [10], to avoid interference 
by reflections at the ends of the grid. However, 
there are two alternatives to this procedure and 
both of them have the advantage that they do not 
require an increased number of points as is neces- 
sary with absorbing boundary conditions. One ap- 
proach is to use forward-only and backward-only 
differences to approximate the Laplacian operator 
at the two ends of the grid, and the second is to 
use extrapolants approximating the functions near 
the ends of the grid to update the values at the 
end points. We examined both of these methods 
and chose to use extrapolation because it offers 
greater flexibility and appears to have greater nu- 
merical stability. 

It may be shown that for a uniformly spaced 
lattice, polynomial extrapolants have the form 
ClYl = -[C2Y2 + C3Y3 + ... +CN+2YN+2] where 
N — 1 is the degree of the polynomial and the 
Cj are the binomial coefficients for the expansion 
of (x - y)N. For example, with a linear extrap- 
olant, Yj = 2Y2 - Y3, and with a quadratic extrap- 
olant, Yj = 3Y2 - 3Y3 + Y4. It is convenient to 
define extrapolants with fractional degrees as 
interpolations between the two adjacent extrap- 
olants having an integer degree. For example, we 
define the 1.5-degree extrapolant as Yx = 2.5Y2 - 
2Y3 + 0.5Y4. We also define the -1-degree extrap- 
olant as not updating the end point. 

Figure 1 shows the results of stability tests in 
which Fj and F_t at both ends of the grid were 
updated by using polynomials for extrapolation. 
These tests are simulations of laser-assisted field 
emission using the Fowler-Nordheim model [20] 
for the potential at the surface of tungsten metal 
(4> = 4.5 eV, Sf = 19.1 eV) with an applied static 
field of 5.5 V/nm and making the approximation 
that all tunneling electrons are at the Fermi level. 
The potential barrier is approximately triangular in 
shape, with rounding due to image corrections. 
The radiation field has a wavelength of 2 /x.m and 
a power flux density of 108 W/m2 and is turned 
on at time t = 0. The 450-point grid has a spacing 
of Ax = 0.01725 nm. The criterion At < 
m(Ax)2/2h requires that the time step Af < 
0.001285 fs, and the value used was Af = 0.001 fs. 
The figure shows the logarithm of the simulated 
duration of the radiation field for the divergence of 
the calculations versus the degree of the polyno- 
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FIGURE 1. Simulated duration of the radiation field for 
divergence (mean and mean +SEM) versus degree of 
polynomial extrapolant for > 10 ps using polynomials of 
degrees 0, 0.5, 1, 1.5, 2, and 2.5. 
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FIGURE 2. Value of IF,!2 (mean and mean ±SEM) at 
the ends of the grid versus degree of polynomial 
extrapolant for simulations of laser-assisted field emission 
100 fs after turning on a radiation field with a power flux 
density of 108 W/m2 at A = 2 ^m. 

mial extrapolant, where divergence is defined to 
occur when |Fj| > 1 and/or |F_J > 1 at any 
point in the grid. Tests were made using each 
extrapolant with five different distances of the 
metal-vacuum interface from the incident (left) 
end of the grid (3, 2.5, 2, 1.5, and 1 nm), and the 
values of the mean and the mean ( + SEM are 
shown. Figure 1 shows that extrapolation causes 
instability with polynomials having degree less 
than 0 or greater than 2.5, but there was no evi- 
dence of divergence for simulated durations ex- 
ceeding 10 ps when using extrapolants having 
degrees 0, 0.5, 1, 1.5, 2, and 2.5. 

Figure 2 shows the results of stability tests made 
using the same model and parameters as in the 
previous figure. We observed that the errors caused 
by numerical instability are most severe at the end 
points of the grid, which would be anticipated 
because the values at the two end points are evalu- 
ated directly by the extrapolation. Figure 2 shows 
the values of | Fl | for both end points at a simu- 
lated time of 100 fs. Under the conditions used in 
these simulations, the radiation field would cause 
the current to increase by less than 0.1% in the 
steady state [4]. Thus, Figure 2 shows that there 
are significant errors at the end points when using 
extrapolation with polynomials having degree less 
than 0 or greater than 2.5, which is consistent with 
Figure 1. The results in Figure 2 suggest that a 
polynomial of degree 1.5 may be the optimum. 

Figure 3 shows the results of stability tests that 
are similar to those shown in Figure 2 except that 

they were made for 10 eV electrons with a square 
barrier having a height of 11 eV and a length of 
1 nm. The radiation field has a wavelength of 2 
/j,m and a power flux density of 108 W/m2 and is 
turned on at time f = 0. The 450-point grid has a 
spacing A x = 0.00667 nm. The time step used was 
At = 0.00015 fs, where the criterion At < 
m(Ax)2/2h requires At < 0.0001920 fs. In Figure 
3, the values of I Fj |   are shown for both end points 
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FIGURE 3. Value of |FJ2 (mean and mean +SEM) at 
the ends of the grid versus degree of polynomial 
extrapolant for simulations of 10 eV electrons with an 
11 eV, 1 nm-square barrier 50 fs after turning on a 
radiation field with a power flux density of 10s W/m2 

at A = 2 i»m. 
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at a simulated time of 50 fs. Tests were made 
using each extrapolant with five different dis- 
tances of the barrier from the incident (left) end of 
the grid (0.5, 0.6, 0.7, 0.8, and 0.9 nm), and values 
of the mean and the mean ± SEM are shown. The 
results shown in Figure 3 are consistent with those 
in Figure 2 in that they also suggest that degree 1.5 
may be the optimum. We observed that the devia- 
tion in values of the probability density caused by 
changing the spacing between the ends of the 
potential barrier and the ends of the grid is much 
less pronounced within the grid than at the end 
points. This aberrant effect appears to be mini- 
mum for extrapolants having degrees 1, 1.5, and 2. 
When using polynomials having each of these three 
degrees, the solutions show waves that approach 
the right side of the grid and are transmitted 
without reflection, whereas the wave structure near 
the ends of the grid is destroyed by using extrapo- 
lation with polynomials of higher degree. We be- 
lieve that polynomials with degree less than 1 fail 
to approximate the variation of the wave function 
within the grid, and polynomials with degree 
greater than 2 cause oscillations that create numer- 
ical instability at the end points. 

Numerical Examples 

Figure 4 shows the normalized probability den- 
sity for 10 eV electrons exiting at the far side of a 
square potential barrier as a function of the time 

FIGURE 4. Normalized probability density for 10 eV 
electrons exiting from an 11 eV, 1 nm-square barrier 
versus time the radiation field is on. The radiation has a 
power flux density of 108 W/m2 at A = 900 nm. 

since the radiation field was turned on. The square 
barrier has a height of 11 eV and a length of 1 nm, 
and the radiation has a wavelength of 900 nm and 
a power flux density of 108 W/m2. The total 
simulated time is 5 ps, corresponding to 3.333 X 
107 time steps or 1666 cycles of the radiation field. 
The figure is dark because of the many cycles, and 
the fine-scale scalloping does not represent ex- 
trema of the individual optical cycles, but is caused 
by using 10,000 points in the figure, which is only 
six samples per cycle. 

Steady-state solutions obtained with Floquet 
methods [16] and other procedures [21] show reso- 
nances at which the tunneling current is markedly 
increased by a radiation field. The mechanism for 
these resonances is that an electron is promoted 
above the barrier by absorbing one quantum from 
the radiation field, and the line integral of the 
(now real) momentum around the closed contour 
between the classical turning points is an integral 
multiple of Planck's constant. Thus, the wave 
function is reinforced. For square barriers, this 
requires that the length of the barrier is an integer 
multiple of one-half the de Broglie wavelength, 
and so the optical wavelength at resonance is given 
by 

he 
A = 

(Va -E) + 
n2h2 

8md2 

(8) 

where m and E are the mass and energy of the 
particles, V0 is the barrier height, and n is an 
integer greater than zero. For 10 eV electrons with 
an 11 eV, 1 nm-square barrier, the first three reso- 
nances are at wavelengths of 905, 506, and 296 nm, 
for which the barrier length equals 1/2, 2/2, 
and 3/2 of the de Broglie wavelength for particles 
absorbing one quantum [13]. We find that in tran- 
sient solutions, when the frequency of the radia- 
tion field is near a resonance, the initial response 
consists of beating between the two frequencies, 
with a gradual transition to the steady-state re- 
sponse, which contains only the frequency of the 
radiation field. The duration of each beat and the 
time required to reach the steady-state values each 
vary inversely with the difference between the two 
frequencies. Thus, at the wavelength used in Fig- 
ure 4 (900 nm), which is near the first resonance 
(905 nm), each beat has a duration of 3.56 ps or 
approximately 1190 cycles of the radiation field. 

Measurements   with   heterostructures   and 
Josephson junctions [22] suggest that a specific 
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time is required for quantum tunneling, and the 
question of how to calculate or measure this time 
has generated much interest and controversy [23]. 
Our examples are consistent with the semiclassical 
transit time (Tsc), which corresponds to the classi- 
cal time for traversing the inverted barrier, and 
they suggest a semiclassical picture of the tunnel- 
ing process. In each transient solution, we find a 
delay equal to Tsc (1.69 fs for the example in Fig. 4) 
before the probability density at the far side of the 
barrier responds to the radiation field. The optical 
electric field is superimposed on the barrier and so 
the height of the barrier is modulated at the optical 
frequency. Each decrease in the barrier height 
causes increased transmission of electrons through 
the barrier, and each increase in the barrier height 
causes decreased transmission. However, in each 
transient solution, we find a delay equal to Tsc/2 
between each extremum in the instantaneous bar- 
rier height and the corresponding extremum in the 
transmission. 

Figure 5 shows values of the probability density 
as a function of the optical wavelength for 10 eV 
electrons at the far side of an 11 eV, 1 nm-square 
barrier for a radiation field with a power flux 
density of 108 W/m2. The quantities plotted are 
the maximum peak-to-peak value for the relative 
probability density, the maximum values of |Fj|2 

and |F_j| , and the duration of the first beat (first 
null-to-null, shown dashed). The resonance seen in 
Figure 5 at A = 905 nm corresponds to a barrier 

length equal to 1/2 of the de Broglie wavelength 
for particles absorbing one quantum. 

There is a second resonance, at A = 1420 nm, 
which is not present in the steady state [16, 21]. 
Our transient solutions show that this resonance 
decays at a rate that is consistent with the "dwell 
time" for quantum tunneling [23]. Since the 
second resonance occurs at a wavelength A > 
hc/(V0 - E) = 1240 nm, the energy of a single 
photon from the radiation field cannot take an 
electron above the barrier. This new resonance is a 
single-photon effect because we find that the cur- 
rent is proportional to the power flux density, and 
thus the resonance must occur for particles while 
they are tunneling. From numerical values in the 
transient solutions, we find that the criterion for 
the new resonance is that the semiclassical transit 
time for tunneling electrons that have absorbed 
one photon from the radiation field is equal to the 
period of the optical radiation. Thus, an electron 
entering the barrier at a time when the modulated 
barrier height is minimum will also exit the barrier 
when this height is minimum, and, therefore, the 
transmission is increased because the reflection is 
reduced in both transitions. For square barriers, 
the optical wavelength at the new resonance is 
given by 

he 

2(V0 - E) 
1 + 11 + 

2{Vn - E)md2 

,   (9) 

o 
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FIGURE 5. Normalized probability density versus 
optical wavelength for 10 eV electrons exiting from an 
11 eV, 1 nm-square barrier for a power flux density of 
108 W/m2. Quantities plotted are maximum peak-to- 
peak normalized probability density, maximum of IF,!2 

and |F_,|2, and duration of the first beat (dashed). 

where m and  E are the mass and energy of the 
particles and V0 is the barrier height. 

Figure 6 shows the normalized probability den- 
sity for electrons as they exit from the barrier in 
laser-assisted field emission, as a function of the 
time since the radiation field was turned on. We 
used the Fowler-Nordheim model [20] for the 
potential at the surface of tungsten with an ap- 
plied static field of 5.5 V/nm and the approxima- 
tion that all tunneling electrons are at the Fermi 
level. The radiation field has a wavelength of 
660 nm and a power flux density of 108 W/m2. 
The 450-point grid has a spacing Ax = 0.01725 
nm, and the time step was At = 0.001 fs. The 
degree 1.5 polynomial extrapolant was used in 
these calculations. For this potential, we found a 
single resonance at a wavelength of 520 nm, in 
which an electron absorbing one photon from the 
radiation field has a momentum line integral equal 
to Planck's constant. The response shown in Figure 
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FIGURE 6. Normalized probability density for electrons 
exiting from the barrier in laser-assisted field emission 
versus time the radiation field is on. The radiation has a 
power flux density of 108 W/ m2 at A = 660 nm. 

Figure 6, we used the Fowler-Nordheim model 
for tungsten with an applied static field of 
5.5 V/nm. The maximum barrier height is 1.684 
eV above the Fermi level, which corresponds to 
one quantum for a radiation field with a wave- 
length of 736 nm. The radiation field used in the 
simulation is at the resonant wavelength of 520 
nm, with a power flux density of 1012 W/m2. This 
figure shows the initial buildup in a small fraction 
of the first beat period in the response. There is a 
delay equal to Tsc (1.28 fs for the example in Fig. 7) 
before the density of the exiting electrons responds 
to the radiation field. The radiation field modu- 
lates the barrier height at the optical frequency, 
and we find a delay equal to Tsc/2 between each 
extremum in the barrier height and the corre- 
sponding extremum in the density for electrons 
emerging from the barrier. 

6 illustrates beating with the resonance followed 
by a transition to approach the steady state. The 
new resonance seen in Figure 5, which is not 
present in the steady state, was not found when 
using the Fowler-Nordheim model for the poten- 
tial or in any of the other simulations which we 
have made using models other than a square po- 
tential barrier with a single energy. 

Figure 7 shows the logarithm of the probability 
density for electrons in laser-assisted field emis- 
sion as a function of the location and the time 
since the radiation field was turned on. As in 

DISTANCE, NM 

FIGURE 7. Logarithm of the probability density for 
electrons in laser-assisted field emission as a function of 
the location and the time that the radiation field is on. 
The radiation has a power flux density of 1012 W/ m2 at 
A = 520 nm. 

Discussion 

The two systems of equations which we used 
[Eqs. (3) and (4a)-(4c) and Eqs. (6), (7a), and (7b)] 
are each equivalent to Eq. (1). However, an ap- 
proximation of the steady-state solution is built 
into Eqs. (3) and (6), and we find that this causes 
numerical solutions of these two systems to be 
more stable than solving Eq. (1) directly. Further- 
more, in the numerical solutions, we find that in 
the asymptotic limit as t become large Fx(x, t) and 
F_1(x, t) approach functions of x only. Prior to 
this study, we used a product formulation [13] in 
which the wave function V(x, t) = F(x, t)<&(x) 
e~'Et/h, where $>(x)e~'Et/n is the static solution 
and one solves for the function F(x,t) which is 
defined to be unity for t < 0 at all values of x. 
With the product formulation, convergence was 
demonstrated when simulating short optical 
pulses, but the solutions were found to be unstable 
when simulating pulses with durations exceeding 
four to five periods of the optical field. We at- 
tribute this instability to the choice of the static 
solution, rather than to the steady-state solution, 
as the basis. 

Others have used absorbing boundary condi- 
tions [19], or, equivalently, complex-coordinate 
contours [10] to avoid interference by reflections at 
the ends of the grid and empirically adjusted 
"windowing" and "gobbling" [24] and split-oper- 
ator formulations requiring matrix methods [6-9], 
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to obtain numerical stability. The present formula- 
tion does not use any of these techniques, and it 
has been shown to be stable for simulated pulse 
durations exceeding 2000 cycles of the radiation 
field. We find that the present formulation is much 
simpler to implement because (1) the end condi- 
tions do not require increasing the length of the 
grid, (2) the solution is explicit so that no matrix is 
required, and (3) only 5 dimensioned variables are 
declared which correspond to F0 and two values 
of F1 and F_1. The present calculations were made 
for single energies instead of wave packets be- 
cause our objective was to develop stable and 
efficient techniques to be used with density func- 
tional theory in simulating laser-assisted field 
emission [5] where one is not free to specify a 
Gaussian or other distribution. 

The numerical examples shown in Figures 4-7 
offer promise as a new approach to the unsolved 
problem [23] of evaluating the duration of quan- 
tum tunneling. Many different theoretical ap- 
proaches have been used to examine tunneling 
times [23], but the only transient solutions consid- 
ered for this purpose were based on wave packets 
[25]. Wave-packet solutions show a delay between 
the incident and transmitted packets, but the inter- 
pretation of these solutions has been questioned 
[26] because there is no valid basis for comparing 
any part (e.g., peak or centroid) of these two differ- 
ent packets. Furthermore, it appears that the tun- 
neling time is a function of the particle energy, 
and, therefore, the distribution of energies in a 
wave packet would smear the effects of tunneling 
times. Our calculations do not require a distribu- 
tion of energies, and the examples clearly show the 
effects of tunneling times. While the result is by 
no means unanimous [23], 12 different analytical 
methods used to study tunneling times resulted in 
the semiclassical transit time [27], which is the 
classical time for traversing the inverted barrier. 
Our examples are consistent with the semiclassical 
transit time, and they also show the effects of the 
tunneling dwell time, so that they suggest a semi- 
classical picture for the tunneling process. 
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ABSTRACT: The response of the single-electron density matrix of a many-electron 
system to an external field is calculated using the time-dependent Hartree-Fock (TDHF) 
technique. A procedure for inverting the resulting nonlinear response functions to obtain 
an effective quantum multilevel system that has the same response is developed. The 
number of effective states is gradually increased as higher-order nonlinearities are 
computed. The complete set of intrastate and interstate density matrices and excited-state 
energies can be calculated. A favorable N-scaling of computational effort with size can be 
obtained making use of the localization of the optical transitions in real space.    © 1998 
John Wiley & Sons, Inc. Int J Quant Chem 70: 711-727, 1998 
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1. Introduction 

The complete information on the optical re- 
sponse of a quantum system is contained in 

its set of many-electron eigenstates \v),\-q),... and 
energies ev,ev,. [1]. Since the number of states 
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increases exponentially with the number of elec- 
trons, exact calculations become impractical even 
for fairly small molecules with a few atoms. An 
approximation at some level of configuration inter- 
action (CI) allows to compute the states, and opti- 
cal susceptibilities may be calculated using a sum- 
mation over states (SOS) [2-5]. The CI/SOS is 
computationally expensive. In addition, size con- 
sistency is not guaranteed a priori and special care 
needs to be taken when choosing the right configu- 
rations. 

Using the many-electron wave functions it is 
possible to calculate all n-body quantities and cor- 
relations. Most of this information is, however, 
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rarely used in the calculation of common observ- 
ables (energies, dipole moments, spectra, etc.), 
which only depend on the expectation values of 
one- and two-electron quantities. A reduced de- 
scription that only keeps a small amount of rele- 
vant information is called for. An important exam- 
ple of such a method is density-functional theory 
(DFT) [6-11], which only retains the ground-state 
charge density profile: 

p8g 
run (g\CnC„\g>' (1.1) 

where | g > denotes the ground-state many-electron 
wave function and c^(cn) is the Fermi annihilation 
(creation) operators for the nth basis set orbital. 
Hohenberg and Kohn's theorem proves that the 
ground-state energy is a unique and a universal 
functional of p„„ [12, 13], making it possible to 
compute self-consistently the charge distribution 
and the ground-state energy. This approach has 
been remarkably successful, and extensions to ex- 
cited states have been made as well [10, 11]. 

In this study we develop a semiclassical ap- 
proach for calculating the excited-state energies ev 

and density matrices 

Pn„ Olc,tc„,|T?>. (1.2) 

This approach is formally unrelated to DFT. Nev- 
ertheless, it shares its basic philosophy of aiming 
at "the truth but not the whole truth." We recall 
that \v) and I17) represent the global electronic 
states of the system, whereas n and m denote the 
atomic basis functions. These quantities carry more 
information than p,f,f, yet considerably less than 
the complete set of eigenstates. p"" is the reduced 
single-electron density matrix of state v. For v # rj 
pV7> is the density matrix associated with the tran- 
sition between v and 17. When the system is driven 
by an optical field, its wave function becomes a 
coherent superposition state: 

nt)= YJa„{t)\v), (1.3) 

and its density matrix is given by 

(1.4) 

Thus PZJ}, are the building blocks for the time-de- 
pendent single-electron density matrix [14-17]. In 
addition, the density matrix provides the complete 
information necessary for computing the matrix 

elements of all single-electron operators. Given the 
operator 

P = Eft,»,^,,- (1-5) 

we have 

<Hp|l?>  =   EPumPlm- (!-6) 

In particular, dipole matrix elements that deter- 
mine the optical properties have the form of Eq. 
(1.6). 

Our approach starts by coupling the molecule to 
an external field «T(f) through 

H.ml = -pr(0 - E^,„(Oc,:c,„,      (1.7) 

where ^„,„(0 - P„ra^(0. We can then expand the 
induced density matrix in powers of the incoming 
field: 

PnJO = p,f* + fdr E S^,,,„,(f;T)r„,,„,(T) 
n'm' 

+ J J   "J\  "T2   i-i   •3nm,n'm',n"m" 
11'in' 
n" m" 

x(f;T1/T2)rll.m.(T1)r„.(„.(T2) + -. 

(1.8) 

The jth-order density matrix response functions 
(DMRF) S<;) can be conveniently calculated using 
the time-dependent Hartree-Fock (TDHF) approx- 
imation [18-20], which provides a closed system 
of equations for the reduced single-electron den- 
sity matrix pm„. Since the DMRF can be alterna- 
tively expanded in terms of the system energies 
and matrix elements of the single-electron opera- 
tors c^cn, it constitutes a source of information on 
these quantities. However, it is not easy to inter- 
pret the TDHF response in terms of the global 
eigenstates since the structure of the TDHF expres- 
sions is very different from their standard SOS 
counterparts. 

The present article provides an algorithm for 
inverting the DMRF to obtain an effective multi- 
level system which has the same response func- 
tions, resulting in the eigenvalues and all density 
matrix elements [Eq. (1.2)]. Note that the DMRFs 
are more general than the optical response func- 
tions since the interaction [Eq. (1.7)] is not limited 
to the dipole operator. The latter has often selec- 
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tion rules which limit the information to a few 
dominant states. The freedom to use any field 
g°nm(£) in Eq. (1.7) allows us to calculate all possi- 
ble states. 

The effective multilevel system will be con- 
structed in four steps (Fig. 1). 

(i) Starting with the original quantum fermion 
model (QFM), we build its classical limit by con- 
sidering the space of single Slater determinants M 
(the space of coherent states as its phase space). 
The Poisson bracket on M and the classical Hamil- 
tonian have been introduced in [21]. We make use 
of the observation [22] that the TDHF approxima- 
tion can be considered as a classical limit of the 
original many-electron system. Hereafter we refer 
to the classical limit of the QFM as the classical 
oscillator model (COM). As shown in [22] any 
classical system can be mapped onto a set of classi- 
cal coupled oscillators. 

(ii) In the vicinity of the stationary solution 
pss G M of the TDHF equation we transform the 
local variables on M so that the Poisson bracket 
assumes a canonical form. This establishes the 
oscillator representation of the COM. Stated differ- 
ently, this shows the equivalence of the COM and 
a classical canonical oscillator model (CCOM) de- 

Original Quantum 
Fermion Model 

(QFM) 

(i) 

Bosonized Quantum 
Fermion Model 

(BQFM) 

Density Matrices 
Effective Multilevel 

System (EMS) 

(iv) Quantum Oscillator 
(Boson) Model 

(QOM) 

SOS . SOS 

Density Matrix 
Response Functions 
Classical Oscillator 
Model (COM) 

(ii) *V     ^ 
Classical Canonical 
Oscillator Model 

(CCOM) 

FIGURE 1. Four steps involved in constructing the 
effective multilevel system (EMS) out of the original 
quantum Fermion model (QFM). Obtaining a bosonized 
quantum fermion model (BQFM) out of the quantum 
oscillator model should allow to reproduce the exact 
density matrix response functions and not rely on the 
TDHF. This extension goes beyond the scope of the 
present work. 

fined as the COM represented in terms of the 
canonical variables. 

(iii) We build the quantum oscillator model 
(QOM) by quantizing the CCOM, so that the clas- 
sical limit of the QOM reproduces the CCOM. The 
classical system of oscillators can therefore be 
viewed as the classical limit of a system of quan- 
tum coupled oscillators. We thus have two quan- 
tum models: QFM, which corresponds to the origi- 
nal electronic system, and the system of quantum 
anharmonic oscillators (QOM). The classical limits 
for COM and CCOM, respectively, are equivalent, 
and the COM describes the QFM within the TDHF 
approximation. 

(iv) Finally, using a perturbative approach, we 
build an effective multilevel system (EMS) whose 
exact optical response reproduces the classical ap- 
proximation of the QOM, which is the CCOM and 
in turn coincides with the TDHF approximation of 
the original model QFM. In summary, the EMS 
constitutes a quantum model whose optical re- 
sponse reproduces the TDHF approximation of the 
original model. 

In Section 2 we carry out steps (i) and (ii) and 
map the original quantum fermion model onto a 
classical canonical oscillator model. Steps (iii) and 
(iv) are made in Section 3. Computational details 
are given in the Appendices. In Section 4 we apply 
this algorithm to a family of unsubstituted and 
acceptor-substituted carotenoids [23, 24]. The in- 
duced density matrices p„"^ for the states which 
dominate the linear and the quadratic response are 
investigated. Finally we discuss and summarize 
our results in Section 5. 

2. TDHF Approach: Classical 
Electronic Oscillators 

We consider a system described by the molecu- 
lar electronic Hamiltonian [14, 23]. 

H =  Y t    c+  c 
mncr 

+ £ {nm\kl)c^c^,ck(T,cla 
mnkl 
aa' 

-&(t)ZiLm„c+acna, (2.1) 

where c^ 0.(cm „.) are the annihilation (creation) 
operators of an electron on atomic orbital m with 
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spin a which satisfy the Fermi anticommutation 
relations (assuming an orthogonal basis set): 

c    c    , + c    ,c     = S    8   , (2.2) 

and all other anticommutators of c+ and c vanish. 
Pnm = cm, aCn, a is tne reduced single-electron den- 
sity operator [14-17]. The first term in Eq. (2.1) is 
the single-electron (core) Hamiltonian describing 
the kinetic energy and nuclear attraction of an 
electron, the second term represents electron-elec- 
tron (Coulomb) interactions where (mk \ nl) are 
the two-electron integrals, and the last term gives 
the interaction between the electrons and the exter- 
nal electric field f (t), p, being any single-electron 
operator [21, 23]. 

The classical oscillator model is constructed us- 
ing the procedure for approaching the classical 
limit outlined in [22]. We start by defining the 
phase space of the single Slater determinants M 
(defined up to a phase) known as the Grassman 
manifold G(M, N;C), N being the basis set size 
and M is the number of electrons. The Grassman 
manifold M = G(M, N;C) can be alternatively 
represented as the space of hermitian N X N sin- 
gle-electron reduced density matrices with p2 = p 
and rank( p) = M. The classical Hamiltonian is 
given as 

H(p) = <fi(p)|H|fl(p)>, (2.3) 

where fl( p) is the Slater determinant correspond- 
ing to p. Expressions for H( p) in terms of the 
original parameters of the molecular electronic 
Hamiltonian [Eq. (2.1)] and for the Poisson bracket 
were given in [21]. The TDHF equation adopts the 
form of the equation of motion of Hamilton's clas- 
sical dynamics on M. The stationary point of the 
TDHF equations which corresponds to the mini- 
mum of the energy function H(p) on M consti- 
tutes the Hartree-Fock (HF) reduced ground-state 
single-electron density matrix pgg which can be 
found by solving the HF equation [14]: 

[F(pgg),pgg] =0, 

where F(pgg) is the Fock matrix 

F(pgg) = t + V{P
gg), 

(2.4) 

(2.5) 

and the matrix elements of the Coulomb electronic 
operator V are 

V(pgg)mn LP!,S (mk | nl) (mn \ kl) 

To construct the classical oscillators [step (ii)] 
we need to define local coordinates on M repre- 
senting deviations from pgg. The restricted TDHF 
scheme [21] allows us to reduce the number of 
variables from N2 to particle-hole variables M(N 
- M) only. To that end we decompose the single- 
electron density matrix in the form 

p = p** + f+r(f). (2.7) 

(2.6) 

Here £ represents the particle-hole whereas T( £) 
is the particle-particle and the hole-hole parts of 
the deviation of the reduced single-electron den- 
sity matrix from the ground-state pgg. Also pgg, £, 
and T(£) in Eq. (2.7) are N XN matrices.* The 
particle-particle and hole-hole components of the 
density matrix are not independent variables, since 
they can be expressed in terms of the particle-hole 
part [21, 23]. Therefore only the particle-hole com- 
ponents of the density matrix, £, need to be calcu- 
lated explicitly; T can be expanded in a Taylor 
series which contains only even powers of £. For 
computing DMRF not higher than third order, it is 
sufficient to retain only the lowest (second-order) 
term [21, 23]. 

T(£) = H[£,P<?*L£] =Ü-2p*s)£2,   (2.8) 

where I is the N X N unit matrix. 
A convenient coordinate system can be intro- 

duced by parameterizing the electron-hole com- 
ponent (£) of the density matrix. To introduce 
variables close to canonical (as will be explained 
latter) it is convenient to use the TDHF equations 
for f(0: 

i—jU) = UO - r[ p, p] + [ViO, Z + T(f)] 
at 

+ [V(T(£)),f + pgg], 

(2.9) 

where p is given by Eq. (2.7) and the Liouville 
space operator (superOperator) L represents the 
linear part of the equation [21, 23]: 

UO = [t + V(pgg),£] + [V(£),p*s].   (2.10) 

The oscillator variables are computed as the 
eigenmodes of the linear part of Eq. (2.9) satisfy- 
ing: 

L(£,) = nafa,     L(f_a)=-naf_a. (2.1D 

* pss and f(t) are matrices of rank M, M < N. 
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These oscillators are orthonormal: 

Tr(p**[£_a,£,]) = Sa„, (2.12) 

and the particle-hole part of the density matrix 
can be expanded in ija [21, 23] 

f(0=   Ez„(0£, + z*0)£-      (2.13) 
a>0 

Each oscillator a is described by two complex 
operators £a and ij+. Following the notation of 
Ref. [21] we define £_a = £+; za and its complex 
conjugate z_0 = z* constitute the complex oscilla- 
tor amplitudes. A classical picture is obtained by 
introducing the oscillator coordinates Q = 
l/fi(£a + C) and the momenta Pa = if V2(fa 

- £„) [21]. However, it is more convenient to keep 
the complex ga variables. 

Equations (2.13) and (2.7) define a local coordi- 
nate system za on M where pgs is the origin. 
Substitution of Eqs. (2.13) and (2.7) into Eq. (2.3) 
yields the classical Hamiltonian for the variables 
za; H(za) can be calculated in a form of an expan- 
sion in powers of za. The expression to fourth- 
order is presented in [21]. For the applications 
made in this study we only need the Hamiltonian 
up to third-order: 

H(Z)= EnaZ_aza 
a>0 

'    ,_    2w      a, a*' Z™ Za Z, 
oi/3y 

o    i—i   • a, ßy^a^ß ^y '(t)^(z),    (2.14) 

with the polarization 

^(z)=Y,tlaZa+-ZVaßZctZß>      (2-15) 
et Z aß 

where 

M« = Tr([p**,£,][j4/P**]),       (2.16a) 

/ia#/ä = Tr([p« &][/*,$,]),      (2.16b) 

Va^y = Tr(tp« fj[y(^),^]) 

+ Tr([p**,£j 

x[v(i[[^,p^],^]),p^]).   (2.16c) 

All quantities here are N X N matrices in the 
single-electron space, and the trace is defined in 
this space. 

The Poisson bracket for the za variables is cal- 
culated in [21] and to first-order in za it has the 

canonical form 

{za,zß} = i8a>_p. (2.17) 

It has the following useful properties: 

{za,zp} = -{zß/zj, (2.18) 

{za, zßzy) = {za, zß}zy + zß{za, z?}.   (2.19) 

The classical Hamilton equation of motion z = 
{H, z) obtained using Eqs. (2.14)-(2.16) can be 
written as 

d 
1TtZa = üaZa ~ ^~a ~ W^lx--'ßzß 

+ LV-a,ß7zßzY.   (2.20) 
ßy 

These equations are equivalent to Eq. (2.9). The 
linear and the second-order response functions cal- 
culated by solving these equations are given in 
Appendix A. 

Equations (2.14)-(2.20) define the classical oscil- 
lator model. The variable za describes the ath 
oscillator, as is clearly seen from the form of the 
Poisson bracket [Eq. (2.16)]. Higher-order terms of 
the Hamiltonian can be calculated order by order. 
Similarly, the Poisson bracket is not strictly canoni- 
cal and the right-hand side (rhs) of Eq. (2.17) can 
be expanded in powers of za. Second-order correc- 
tions have been calculated in [22]. These devia- 
tions can, however, be eliminated since the Pois- 
son bracket can be always transformed to a canoni- 
cal form [25] using a nonlinear transformation of 
variables 

Zct = Za "■"     2_j   ^a, ßySZßZyZS +  ""   •      (.2.21) 
oißyS 

In practice, the canonical variables can be calcu- 
lated order by order in za. Expressing the Hamil- 
tonian in terms of the canonical variable z'a allows 
us to define a CCOM to any given order in za. 
This accomplishes step (ii) of the procedure. 

3. Intrastate and Transition 
Electronic Density Matrices for the 
Effective Multilevel System 

Step (iii) involves the construction of a quantum 
oscillator model QOM whose classical limit repro- 
duces the CCOM. To that end we associate with 
each classical variable za an annihilation operator 
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a
a (za = (ao)> a > °); z-c = z* is associated with 

a creation operator a^ (z* = (0+)- These satisfy 
the boson commutation relations: 

[«„/<£]   =   Sc/3- (3-1) 

We define the QOM Hamiltonian Hx by 

H, = :H{aa,al):, (3.2) 

where H(«a, a*) is the classical Hamiltonian of the 
CCOM, which is given by Eqs. (2.14) and (2.15) up 
to third order, and :...: stands for normal order- 
ing. We then have 

Hi = Eft»«X + dE ya,ßyaaaßay 
a °   * a/3y 

+ ^Hy-a,ßy<aßay + h.c.\ 
a/3y 

(3.3) 

with 

a 

+ ^-(E/*a0«a«0+   E^-.^^ + ^-l       (3'4) 
Z
' ^ a/3 aß ' 

and the summation in Eqs. (3.3) and (3.4) runs 
over a, ß, y > 0. 

The classical limit of the QOM can be obtained 
by requiring that each oscillator a remain in a 
coherent state parameterized by za at all times. 
This amounts to the following factorizations 
(aaaß) = zazß and (a+aß) = z*zß. Using these 
factorizations, the Heizenberg equation of motion 
äa = i/h[Huaa] with Hl given by Eq. (3.3) coin- 
cides with the classical equation of motion [Eq. 
(2.20)]. The CCOM is thus the classical limit of the 
QOM and step (iii) is accomplished. 

We turn now to step (iv), namely constructing 
the effective multilevel system EMS whose re- 
sponse reproduces the classical limit of QOM 
(which, in turn, coincides with the TDHF approxi- 
mation of the QFM). This will be based on the 
picture established in [22] that the semiclassical 
expansion is a reexpansion of the optical response 
in the anharmonicities of the Hamiltonian and 
nonlinearities of the polarization operator in a and 
fl+. This is carried out for the response up to 
second order in Appendix B. In particular, the 
linear response in the classical approximation is 

obtained by setting Vaßy = 0 and fxaß = 0 (i.e., 
using the model of a set of linearly driven uncou- 
pled harmonic oscillators) whereas the second- 
order response also depends on the terms propor- 
tional to Va ßy and fiaß. 

The QOM is improved successively by incorpo- 
rating higher-order responses. We will concentrate 
on the lower-energy excited states, which can be 
constructed using the linear and the second-order 
responses. For the linear response we set Va ßy = 0 
and fiaß = 0 and obtain a system of harmonic 
oscillators with the polarization linear in a and a+. 
Since the polarization is represented by the most 
general operator given by linear and bilinear com- 
binations c^cn of fermion operators, we can obtain 
the matrix elements of c^c„ between the ground 
state and single-excited oscillator states involved 
in the linear response. The second-order response 
depends on the anharmonicities to the first order. 
This leads to first-order corrections to the oscillator 
wave functions, whereas the eigenvalues remain 
the same (since they only contain higher-order 
corrections). This implies that in this order of per- 
turbation theory, which corresponds to the classi- 
cal limit, the system remains harmonic and simply 
attains new matrix elements of c^ncn. 

It follows from Eqs. (2.1) and (3.3) together with 
Eqs. (2.16) that the operator c*ncn can be repre- 
sented in terms of the oscillator operators in the 
following form: 

c+c   = 0gg + y {(£+)    a+ + (£ )    a } 

+ jE{([fi,Pw]$]U« 
a/3 

+ H-PK^]).M)- (3-5) 

The EMS is constructed as a system of harmonic 
oscillators with the eigenstates \ka,lß,...) and 
eigenenergies E = kila + lüß + ..., where the in- 
tegers k, I = 0,1,2,... label the excited states of 
the various oscillators. The EMS are calculated to 
first-order in V in terms of the oscillator states of 
QOM in Appendix B. The contributions to the 
response functions S(,) can, therefore, be classified 
according to the matrix elements of the effective 
oscillator system (ka,... |c+c„|Z/3,... ). 

The effective level scheme that reproduces the 
linear  response  S(1)  [Eq.  (A3)]   consists  of the 
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ground-state \g) and all single excitations |la>. 
The relevant density matrix elements are 

<gKcn\g) = p&l (3.6a) 

<gl4c„|la> = (£,)»„• 0.6b) 

Equations (3.6a) and (3.6b) simply recover our 
input, i.e., the ground-state density matrix and the 
TDHF electronic modes contributing to the linear 
response. 

The second-order response S(2) [Eq. (A4)] is rep- 
resented by an effective system consisting of the 
ground-state I g), single I la>, and double 

I lal/3> excited states. These are given by Eqs. 
(B3) to first order in V. (The state I 2a> is the 
special case of I lal/3) when a = ß.) The neces- 
sary additional matrix elements are obtained by 
combining Eqs. (B3) and (3.5): 

(gKcn\lalß) 

+ 2£ 

2 
V*ß-y^Sy)mn 

Vctßy\£y  'm„ 

y l aa + ciß - n7    a„ + aß + ny j' 

(3.7a) 

<l*Kcn\Lß) = P&g
n8aß+ ([[£,p**]£ß])mn 

y {-Cla + {lß-Cly      ila-Clß-ilyj' 

(3.7b) 

<la|c+c„|lj81-y> = Uy)mnKß + (§,)m„Say, 
(3.7c) 

where Vaßy is given by Eq. (2.16c). 
Equation (3.7a) gives transition density matrices 

involving the ground state. Equation (3.7b) ex- 
presses the transition density matrices between 
singly excited states obtained from S(1), and Eq. 
(3.7c) gives the transitions between singly and 
doubly excited states. The first term in Eqs. (3.7a) 
and (3.7b) represents the interband (particle-par- 
ticle and hole-hole) part of the density matrix and 
involves only two electronic modes. The second 
(intraband, particle-hole, and hole-particle) term, 
involves a summation over all electronic modes. 
These matrices provide an approximation for the 
density matrices between states contributing to the 
first- and to the second-order optical responses. 
The corresponding energies are 

Ü la n„ Cllalß = Sla + Hß.      (3.8) 

Taking higher-order anharmonicities into ac- 
count will allow us to compute density matrix 
elements involving new states. For example, the 
third-order response S(3) includes higher lying ex- 
citations: (g\c^cn\lalßly), (la\c+cn\lßlyl8), 
<lalj8|c£c„|lyiaiO, and <lalß|c+c„|lylS>. In 
general, S(/) involves all transitions contributing to 
the lower order responses, ;' transitions from the 
ground, single, double,...,(;' - l)th excited states 
to the /th excited state, and transitions between 
(;' - l)th excited states. 

By using an arbitrary single-particle operator 
p,mn in Eqs. (3.7) we can compute the full density 
matrix response function, which depends on all 
electronic modes. When pmn is taken to be the 
dipole operator, we only obtain those modes that 
dominate the optical response. The ability to focus 
on the dominant modes alone has proved to be 
very useful for calculating the optical response [23, 
26-29]. However, in order to compute the excited- 
state density matrices we need to capture all the 
modes (optically bright and dark). 

When only few modes are known, Eqs. (3.7a) 
and (3.7b) are dominated by the interband term 
([£„, pgg]£ß]). The summation over available 
modes gives a negligible contribution because, in 
general, Vaßy <£ 1. The resulting transition matri- 
ces «la|c+c„|l/3>, <g|c+c„|lal/3» will, therefore, 
preserve all localization properties of the ground- 
state pgg and electronic modes £a an {jß. On the 
other hand, the summation over all TDHF modes 
significantly increases the contribution of the sec- 
ond term in Eqs. (3.7a) and (3.7b) yielding the 
transition matrices which do not depend on the 
way the molecule interacts with the optical field 
(molecular dipole) but represent intrinsic molecu- 
lar properties. 

4. Density Matrices of 
Acceptor-Substituted Carotenoids 

We have applied the present algorithm to a 
family of symmetric nonpolar (N) and polar (P) 
conjugated polyenes whereby one end is substi- 
tuted with a strong acceptor group (see Fig. 2). The 
linear absorption and the electronic modes respon- 
sible for the optical response of these molecules 
were studied in [23, 24]. The Hartree-Fock 
ground-state density matrices were calculated first. 
Optimal ground-state geometries were obtained at 
the AMI level using Gaussian-94. The ZINDO 
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FIGURE 2. Structures and atom labeling of the neutral 
N and polar P (substituted by the strong acceptor) 
molecules. 

code was utilized to generate INDO/S [30-32] 
Hamiltonian, and the collective electronic oscilla- 
tor (CEO) procedure [23, 26, 28] was then applied 
to compute the dominant electronic modes and the 
corresponding dipole moments ^ which con- 
tribute to the first- and second-order off-resonant 
optical response:* 
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FIGURE 3. The dipole moments /*,, are displayed vs. 
electronic mode frequencies O,, for the molecules shown 
in Figure 2. Shown are the dominant modes in the first 
two orders of nonlinearity. The dipoles are given in 
arbitrary units. 

Satisfactory convergence of the response to within 
~ 1CT3 was achieved using 10-15 effective elec- 
tronic modes. 

In Figure 3 we display the dipole moments [Eq. 
(4.1)] of the dominant modes vs. mode frequencies 
Clv, calculated using the first- and the second-order 
response. Since the N molecule has an inversion 
symmetry, the first-order response depends only 
on antisymmetric (B„) oscillators (panel A) 
whereas the second-order response depends on 
symmetric (A ) oscillators (panel B). The figure 
shows that the response of the neutral (N) 
molecule is dominated by a single electronic mode. 
In contrast, the polar (P) molecule shows four 
major peaks in each order of the response, and its 
electronic oscillators do not possess any symmetry. 

* INDO/S Hamiltonian was initially parameterized to re- 
produce electronic spectra at Configuration Interaction Singles 
(CIS) level. However, we found that it works also extremely 
well without further reparameterization with the CEO for a 
broad range of molecules: Computed linear absorptions of 
acceptor-substituted carotenoids [23], stilbenoid aggregates [33], 
phenylacetylene dendrimers [28], porphins [34, 35], and static 
second-order polarizabilities of donor/acceptor-substituted 
polyenes [29] compared well with experiment. The input to 
these calculations, the ground-state structures, could be ob- 
tained using other semiempirical (e.g., AMI), ab initio opti- 
mized molecular geometries, experimental X-ray diffraction, or 
nuclear magnetic resonance (NMR) data. The issue of optimiz- 
ing INDO/S Hamiltonian parameters for the CEO approach or 
using other Hamiltonians is an open problem that lies beyond 
the scope of the present work. 

The same modes (a and b) with different dipoles 
show up in both responses. 

We next examine the single-electron density 
matrices p^t for the states corresponding to peaks 
a, b, and c in N and a'b', c', and d' in P. These 
density matrices computed using Eqs. (3.6) and 
(3.7) represent the projection of the full matrix 
which contributes to the first- and second-order 
response, because only the electronic modes which 
dominate the linear and the quadratic optical 
responses were used in the calculations. Other 
components of the matrix do not have a dipole 
moment and, therefore, do not contribute to the 
optical response. The acceptor's effect on the 
molecular properties can be illustrated using con- 
tour plots of the density matrices. The absolute 
value of the reduced ground-state density matrix 
pZS of N is shown in the upper left panel of 
Figure 4. The axes represent carbon atoms. The 
ground-state density matrix is dominated by diag- 
onal and near-diagonal elements, reflecting the 
bonds between nearest neighbors. The (XI) scal- 
ing factor indicates that the largest values of the 
matrix shown by the blue color are equal to 1. The 
diagonal elements represent the electronic charges 
on each carbon atom. The absolute values of the 
matrix Ap"" = p" - p** [panel N( p"")] is the dif- 
ference between the density matrix of state a and 
the ground-state density matrix. The matrix is de- 
localized over the entire molecule. The X10 factor 
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FIGURE 4. Contour plots of ground- and excited-state density matrices which dominate the linear absorption of 
molecules N. The axis labels represent the individual carbon atoms as labeled in Figure 2. Panel labels indicate the 
molecule (Fig. 2) and the state corresponding to the peak in Figure 3: p" ground-state density matrix; Lpvv = pvv - p9g 

the difference between the density matrices of state v and the ground state; pvr> the transition density matrices. 
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FIGURE 5. Same as in Figure 4 but for the polar molecule P. 
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implies that the part of the excited-state density 
matrix which contributes to the second-order opti- 
cal response only changes slightly compared to the 
ground state. The difference for the density matrix 
of state bLphb [panel N(phb)] is less delocalized 
compared with Apatt. In addition it is nonuniform 
along the diagonal, which leads to diagonal local- 
ization sizes. Apcc corresponding to the electronic 
mode contributing to the second-order optical re- 
sponse possesses a delocalization and magnitude 
similar to Apaa. For all excited-state matrices, the 
off-diagonal elements are much larger than the 
diagonal. This means that upon optical excitation 
of the unsubstituted molecule the changes in the 
bonding pattern are much more significant com- 
pared with the charge redistribution. 

The transition density matrices are displayed in 
the middle and the right columns of Figure 4. 
Transitions involving the ground state are de- 
scribed by the electronic modes (pga, pgb, and 
pgc). Their role in the optical response has been 
analyzed in [23]. They have delocalization proper- 
ties very similar to the corresponding states den- 
sity matrices, because in the calculations of the 
latter these modes make the dominant contribu- 
tion. Similarly, the transition density matrices be- 
tween excited states shown in the right column of 
Figure 4 are symmetric and delocalized over the 
entire molecule. The largest coherences appear to 
be at the center of the matrices because the density 
matrices of states a, b, and c have the strongest 
bonding pattern at the center. 

Figure 5 displays the absolute values of the 
calculated density matrices of P. The strong accep- 
tor perturbs the ground state, as shown by the 
reduction of the electronic density toward the ac- 
ceptor in panel P psg. The difference Apaa' for 
state a' is localized in the acceptor end [panel 
P( p"'"')], whereas Apb b' for state b is localized on 
the neutral end of the molecule [panel P(pbh')]. 
Note that ApaV has very large diagonal nd off-di- 
agonal elements implying that excitation to state a 
changes the charge distribution as well as the 
bonding pattern compared to the ground state. In 
contrast, Apbb is dominated by off-diagonal ele- 
ments, which makes it similar to the excited-state 
density matrices of the unsubstituted molecule. 
This reflects the fundamental difference between 
states a' and b'. Apcc' and Apdd corresponding 
to the electronic mode contributing to the second- 
order optical response are both localized at the 

acceptor end and are dominated by a few large 
diagonal and off-diagonal elements. The former 
has a stronger bulk contribution. 

The transition density matrices between the 
ground and the excited states (electronic modes 
pgü" and pgb) are highly asymmetric and delocal- 
ized, reflecting the motions of charges along the 
molecule upon optical excitation. The x and the y 
axis label the electron and the hole, respectively. 
The diagonal elements pnn show induced charges 
on various atoms whereas the off-diagonal ele- 
ments pnm represent the probability amplitude of 
finding an excess electron at the mth atomic orbital 
and a hole on the nth atomic orbital. Electronic 
modes pgc and pgd' corresponding to the high- 
frequency excited states and contributing to the 
second-order response are less asymmetric than 
the former and delocalized over the entire molecule 
(compared with pcc' and pdd). The transition 
density matrices shown in the right column of 
Figure 5 are delocalized over the entire molecule. 
The largest coherences appear where the density 
matrices of corresponding states have the strongest 
bonding patterns. Note that these density matrix 
elements are smaller (X10-12) compared to the 
other displayed matrices (X 4-9), because states a, 
b', and c' are localized in different regions. 

5. Discussion 

The TDHF uses the single-electron density ma- 
trix (g\c*cn\g) to calculate the single-electron 
transition density matrices (electronic modes) be- 
tween the ground state and the excited electronic 
states (g\c^cn\la) which contribute to the linear 
response. In this article we made one step further: 
using the ground-state density matrix and the elec- 
tronic modes we calculated additional density ma- 
trices: between the ground state and the excited 
states (g|c+cJlal/3}, which contribute to the sec- 
ond-order response, and transition density matri- 
ces between states (la\c*cn\lß) as well as the 
single-electron density matrices of the excited 
states (la|c*c„|la) which contribute to the linear 
response. 

The TDHF procedure maps the quantum 
many-electron system onto a system of classical 
oscillators. The present approach is based on in- 
verting the optical response function and mapping 
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the original system onto an effective set of quan- 
tum states. An algorithm is developed for calculat- 
ing DMRF for excited electronic states using the 
TDHF approximation. The DMRF carries addi- 
tional excited-state information about charge dis- 
tributions and bonding patterns as well as the 
dynamical changes induced in these quantities by 
the external field. 

The present analysis has several advantages. 
First, it connects the TDHF representation with the 
quantum mechanical treatments of the optical re- 
sponse in terms of global many-electron eigen- 
states. The latter may be useful for representing 
the properties of optically excited molecules. The 
procedure is further numerically inexpensive. The 
absence of long-range electronic coherence may be 
used to reduce the number of density matrix ele- 
ments from ~N2 to ~NNC where Nc denotes the 
number of orbital points of closely lying atoms [36] 
which communicate coherently upon optical exci- 
tation. Typically Nc «; N results in favorable lin- 
ear N-scaling of computational effort with size. For 
example, Nc ~ 20 heavy atoms (~ 100 atomic Or- 
bitals in semiempirical Hamiltonian) in polyenes. 
This is analogous to similar developments in 
ground-state calculations [37]. We anticipate to 
achieve ~N and ~N2 scaling of memory and 
total computational time with molecular size, re- 
spectively.* 

The present approach can be extended to com- 
pute vibronic structure of electronic transitions [38, 
39] by including the dependence of the electronic 
modes on nuclear coordinates. 

Finally, the present analysis was based on the 
TDHF approximation for the DMRF. The resulting 
EMS is not equivalent to the original QFM. It 
simply reproduces its TDHF response. It is possi- 
ble, however, to extend this approach and obtain 
an exact EMS. To that end the QOM should be 
deformed to yield a bosonized quantum fermion 
model (BQFM) which will be equivalent to QFM 
[40-43] (see Fig. 1). The TDHF is then used only to 
define a convenient set of collective coordinates. 
These coordinates may then be used to compute 
the exact DMRF, and we no longer rely on the 

* To calculate the electronic modes of carotenoids (see Sec- 
tion 4) we used the Density Matrix Spectral Moments Algo- 
rithm (DSMA) [23] which implements a Lanczos-type algo- 
rithm and gives ~N2 and ~N3 size scaling of memory and 
computational time, respectively. We considered molecules of 
moderate size (~40 heavy atoms). These computations are 
inexpensive and therefore the N-scaling procedure was not 
implemented. 

TDHF. This should result in extending the TDHF 
equation to include higher-order oscillator vari- 
ables [22]. The TDHF is then a classical approxima- 
tion which follows the evolution of a point in 
phase space. These extensions are semiclassical 
since they follow the evolution of wavepackets, 
which amounts to including higher moments of 
the classical variables. 

In this study we have used the single Slater 
determinants, which constitute a set of generalized 
coherent states [44] for the many-electron problem, 
to construct the classical limit of the original model. 
This allowed us to introduce the boson language, 
which has been demonstrated to be useful for 
developing various approximation schemes. The 
coherent states form an overcomplete basic set 
which leads to certain difficulties in using them to 
describe quantum dynamics. However, they pos- 
sess the property of the unit operator decomposi- 
tion [44] which eliminates the difficulties. There 
are several ways how the coherent states can be 
used to generate new approximate descriptions of 
the original many-bodied problem [18, 19]. One 
way is to start with the BQFM which is equivalent 
to the original QFM, as described here, and derive 
closed equations of motion for one- and two-boson 
variables in full analogy with the Frenkel exciton 
systems [45]. Another way is to use variational 
dynamical approach by applying Ansätze for the 
many-body wave function and representing it as a 
wavepacket in the space of coherent states [18, 19]. 
Finally the coherent states can be used to formu- 
late nontraditional configuration interaction (CI) 
approaches. Usually the CI schemes take into ac- 
count certain important configurations which are 
classified and truncated according to the number 
of electron-hole pairs, i.e., single CI, double CI, 
etc. The coherent states allow to introduce new 
types of configurational spaces. This can be accom- 
plished by defining the configurational space as 
spanned onto a certain subspace of coherent states. 
The space of coherent states M as stated here form 
a Grassmanian manifold which has a complex ana- 
lytical structure. We can immerse the complex 
projective line CP1 (which is a one-dimensional 
compact complex manifold) into M and form a 
vector subspace in the many-body space of states 
as generated by the coherent states which belong 
to CP1. This should result in a configurational 
space with the same dimensionality of single CI, 
which nevertheless contains an arbitrary number 
of electron-hole pairs. 
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Appendix A: Classical TDHF Response 

To compute the DMRF we recast Eq. (2.20) in 
the form 

i^4^- = nzo(0 + I(v_a_„_yZ*(Oz*(0 
ßy 

+ 2V_a.ßyz$(t)zy(t) 

dt 

+ V_aßyzß(t)zy(t)) 

rü) M-«   +   E(/*-a-pZ|(0 

+ ^-0^(0) (Al) 

where the summation goes over a, ß, y > 0. This 
nonlinear equation may be solved by expanding 
z(t) (z*(0) in powers of the external field 
r(0: z(0 = z(1)(0 + z(2)(0 + ••• • Using the time- 
domain Green function 

Ga(t) = exp(-fnat), 

the first-order solution of Eq. (Al) is 

(A2) 

z«(0 = if   dTr(r)M„aGa(f - T).    (A3) 
•' — rr, 

To second order we obtain 

z£Kt) = f   P dr2 drx r(T2)r(Tx) 
■^ —CO*' — CO 

-^_aj3/A_/3Gß(T2- rO) 

xGa(t~T2) + if    f    dT2äTx 
J —CO*' — CO 

X ^(72)^(70 /"' dT 

ßy 

XG*(T-TX) 

-2V_aß_yfi_ßfiYGß(T- T2)G*(T- TJ) 

+ V_aj8y^_;3/i_yGj3(T-   T2) 

XGy(T-T1))Ga(f-r). (A4) 

The time-dependent linear and second-order polar- 

izabilities are given by 

^(1) = EM-„Z:
(1)

0) + M.z^CO,      (A5) 
a 

a 

+ ^L(^-«-^;a)(t)2|
(1)(0 

+ 2^_/3zf>(0z<1>(f) 

+ ^^«(0z^(0), (A6) 

where z(1)(0(z*(1)(0) and z(2)(0(z*(2)(0) are given 
by Eqs. (A3) and (A4) and their hermitian conju- 
gates. Linear and second-order time-domain re- 
sponse functions are defined by 

^(D = jdT^(r)Rm{t;r), (A7) 

^(2) = f dr2 dTl ^(T2)2'(T1)R
<2)(t; Tj, T2).   (A8) 

Comparing Eqs. (A7) and (A5) [Eqs. (A8) and 
(A6)] and using Eqs. (A3) and (A4) we obtain for 
linear and second-order time-domain response 
function 

Rm(t;r) = -EM-./..(Gaa-T)Gj(t-T)), 

(A9) 

R(2Kt-,TlrT2) 

dT(V_a_ß_yH,afA,ßflyG*(T-  T2) 
aßy    •'! 

XG*(r- rjG^t- T) 

-2Va_ß_yfi_aiipiiyGa(T- T2) 

XG»(T- TJK^O- T) 

+ Kß-yM-aP--/3MyGa(T-   I^GpOr-   Tj) 

XGy(t~   T))   +Ä.C. 

1 
+ ^7E(2M-a-/3Mc[%G*(T2 -  Tj) 

2! a/3 

-Mc,-/3M-c.%Ga(T2 - T1))G/3(f - T2) + h.c. 

-(»-«-ßPaPßGZtt ~  Tl)G|(t -  T2) 

+ /iaß/i-«/i-ßGa(( -  T^GjgCt ~  T2) 

-2ßct-ß^-ct^ßGa(t - Tx)G^{t - r2)). 

(A10) 
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Applying the Fourier transform 

f(ca) = f dtf(t)expi-io)t); 

1    , 
/(f) = —    dwf(w)exp(icot) 

2 77 J 

(All) 

to Eqs. (A10) and (A9), we obtain the frequency- 
dependent linear and second-order polarizabilities: 

r da> 
Pm(-(os; co) = / —2TTS(-W, + w) 

•>   2w 

X ct(-ws;«)r(w),    (A12) 

P^(-COS;CüUCü2) 

r dco1 d(o2 

'   2TT   2TT 

X 2TT8( — (OS + W] + a)2)ß( — (os; w1, co2) 

xr(w1)r(w2). (A13) 

The   final   expressions   for   the   linear   and   the 
second-order polarizabilities are: 

a(co) = Y, 
^-■/»»ß» 

a a 

ß( — ws = (ü1 + (o2; w1, w2) 

1 

4 

a2 - -2 (A14) 

-7   £ (VaßyV-aß-ßP-y + ^-C") 
«07 

X 

+ 

1 

(fla  -  Cl>j)(üß -  W2)(üy +  «j  +  W2) 

1 

(üa + (OjKClß + w2)(ür - (o1 - w2) 

1 
X 

+ 

(üa + (OjXilß - w2)(ür + ü)1 + ü)2) 

1 

(fla - Cü^iClß +  W2)(üy + felj  + w2) 

1 

(na - «jXfig + (o2)(üy - w1 - co2) 

1 

(na + w^n. - o>2)(fl y        "M «"2 

+ (V-aßvMaM-ßM-7 + ^-C-) 

X 

+ 

(üa + w,)(n„ + cü2)(ct + o)X + w2) 

(cia - ü)^)(ciß - (ü2)(ny - w} - w2) 

1 1 ^ 
+ TTj-L(MaßA(--c«/A-ß  +  ft.C.) 

4   Z-   a/3 

+ 

(üa - Wj)(nß + Wj + w2) 

1 

(üa - w2)(flß + a), + w2) 

1 

((la  - (ü^iüß ~  W2) 

1 

(Cia + ü)x)(flß — (ox — co2) 

1 

(fla + a)2)(flß - cox - (ü2) 

1 

(Iia + tü^iüß + a>2) 

+ 2^«8M„M- 

+ 

(üa + w^dig + o)X + w2) 

1 

+ 

+ 

+ 

(na + w2)(fiß + «j + w2) 

1 

(Ha + «i)(flß - w2) 

1 

(fla  -  Cü^iüß -  Wj  -  w2) 

1 

(üa  -  W2)(flß -  Wj  - w2) 

1 

(fla     +     WjXflo    -     W2) 
(A15) 

Appendix B: Sum-Over-States 
Polarizabilities of the Effective 
Multilevel System 

In this appendix we calculate optical polariz- 
abilities for the quantum model QOM using the 
standard sum-over-states expressions [1]. The lin- 
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ear and the quadratic polarizabilities are given by 

a((0) = £ 2yvns        (B1) 

ß( — cüs = o)l + w2; C01, 0)2) 

1 
Er   Y   it ■ ' sn' nn" n <? 

1 
X 

+ 

+ 

+ 

\ (ü)n,g + a>1 + w2)(o)ng + Wj) 

1 

(a)„,g - a»! - (o2)((»ng - Wj) 

1 

(w„.^ + (01 + co2)(wng + w2) 

1 

(a)n,g - (o1- (o2)(wng - w2) 

1 

(ü)n,g +  U)l){(x)ng +  0)l  +  W2) 

1 

) (ft>„,    - Wj)(w 

wave functions of our oscillator system to first 
order in V: 

^ = '?>o-^E    V-a~ß'y 4>m = \g) 3! a ft + n„ + a aßy      a ß y 

vn 

°-   0y 4ia        Ji/3        4iy 

«a«   lg>0, 

(B3a) 

(B3b) 

i 2y_ 
$? = aßar \g>o- —L 0 _ Q" _ n a" ' s>0 

öl     gf   \   ily lig   '       ily iio 4fcg   ~~   4 A/   J 

X ««"«« I £>o, (B3c) 

■"1        <"2 

where Vaßy is given by Eq. (2.16c) and lg)o, 
«a I £><>/ «„«p I g>o- and a+a£a+ \ g)0 denote the 
ground, single, double, and triple excited states of 
the uncoupled system, respectively. 

The transition dipoles among the ground and 
the first two excited states are given by: 

+ 

+ 

(<0„.g +  (02)(cOng +  Cüj  +  (02) 

1 

(C0n.g - CD2)((ting -  Wj  -  0>2) 

1 

+ 

+ 

+ 

((On>g- W2Kwng + Wj) 

1 

(wn,g + ü)2)(wng - Wj) 

1 

(o)n,g- <ol)((ong + w2) 

 ! ), (B2) 

where the sum runs over all excited states n and 
ri, and g stands for the ground state; rn — <fc|^|/) 
(rlk = r*,) is the transition dipole between fcth and 
Zth states. 

We start with the Hamiltonian [Eq. (3.3)] repre- 
senting N quantum oscillators with the electronic 
polarizability operator 3B(a+, a) [Eq. (3.4)]. To cal- 
culate the transition dipoles we first compute the 

(B4a) 

(B4b) 

{<p  M^;    2!^ + 2t'  ft„ + ft«-ft„ y    \    "a 

aßy r^— y 

aa + ftß + ny 
,   (B4c) 

WW^) = /*-.,+ £ ^aß-yM- 

y v fta - ftp - ft7 

+     _V—^^ .   1,   (B4d) 
-fta +ftß-fty 

<<WI*$> = ^- (B4e) 

Substituting these transitions dipoles in Eqs. (Bl) 
and (B2) we obtain expressions for the linear and 
the second-order polarizabilities which coincide 
with Eqs. (A14) and (A15). This proves the equiva- 
lence of the linear and the second-order polariz- 
abilities of the QOM calculated in the classical 
limit and using the sum-over-states expression. 
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Appendix C: Nonlinear Response of 
Systems with Coordinate-Dependent 
Anharmonicities 

When the anharmonicities in Eqs. (3.3) and (3.4) 
only   depend   on   coordinates    qa = (a*  + 
«a)q0a/ \/2 (and not on the momenta pa = (o + - 
aa)p0a/ ]/2) the DMRF are simplified consider- 
ably. In this case we have 

Vaßy = V„ a — ß — y — <xßy 

— v = yq 
— a — ßy a/3y 

Maß        f^-aß — ^aß' 

(V2)3 

%a%ß 

(Jlf 

h^a fla   ~   l^a 41 

(CD 

(C2) 

(C3) 

The time-domain response [Eq. (A10)] then be- 
comes 

RU;TUT2)= -/V 2X^/4/^ 
T2        ctßy 

X Ca{T ~  T2) 

XCßir- Tt)C7(t - r) 

+ E^/sMaM/ 
(foafop) 

aß 

X(2Ca(T2 -  T^CpO -  T2) 

+ Ca(f-T1)Cp(f-T2)),   (C4) 

where 

Ca(t) = KGa(0 - G*(0) = 2sin(n„0   (C5) 

is the classical linear response of a harmonic oscil- 
lator. 

Similarly Eq. (A15) reduces to 

ß( — o)s = (J)1 + w2; o)\, (o2) 

_ r-i     vaßyf*'a t^ßt^y 

~~ Tßy    MaMßMy 

X 
m2

Q - ü>\){ci2ß - co2
2)(n2

y- (w, + w2y 

+ E 
111   111 111 

MaMß 

X 

+ 

\(nl- coDlnj- (u, + a>2)
2) 

1 

(n2
a - o)2

2)(n2-(W] + w2?) 

l \ 

(n2 -w
2)(n2- w

2)]' (C6) 
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ABSTRACT: With electron propagator methods, vertical ionization potentials (IPs) 
and electron affinities can be calculated directly. Our implementation, known as the 
multiconfigurational spin tensor electron propagator method (MCSTEP), is specifically 
designed for open-shell and highly correlated initial states. The initial state that is usually 
used in MCSTEP is a complete active space (CAS) MCSCF state. We have previously 
demonstrated that a small balanced CAS is the optimal choice for the MCSTEP initial 
state. In this article, we examine two ways of determining this balanced CAS for the 
MCSTEP initial state. With these choices, we calculate the low-lying vertical MCSTEP IPs 
of NH2 and compare them with experiment for the three lowest IPs. With (aug-)cc-pVTZ, 
(aug-)cc-pVQZ, and extrapolated complete basis set limits, the MCSTEP IPs for both CAS 
choices are in very good agreement with experiment. We also calculate the next two 
vertical IPs where no accurate experimental estimates are as yet available. The "SCF- 
balanced" CAS choice is advantageous to use with MCSTEP because of simplicity, while 
the "SDCI-balanced" CAS is appropriate for use with MCSTEP when the initial MCSCF 
has undesired properties.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 729-736,1998 
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Introduction 

With electron propagator methods, vertical 
ionization potentials (IPs) and electron af- 

finities (EAs) are determined directly [1, 2]. Tradi- 
tionally, these methods have been based on a sin- 
gle-configurational initial state (also called the 
"reference" state) corrected by perturbation theory 
[3-12]. Although these perturbational Green's 
function techniques have occasionally been suc- 
cessfully applied to more general cases, they are 
usually restricted in applicability to closed-shell 
atoms and molecules with only dynamical correla- 
tion in their initial states. 

The multiconfigurational spin-tensor electron 
propagator method (MCSTEP) was specifically de- 
signed to consistently and reliably determine low- 
lying, vertical principal IPs and EAs for open-shell 
and highly correlated (nondynamical correlation) 
initial-state atoms and molecules [13, 14]. Of 
course, closed-shell atoms and molecules with only 
dynamical initial-state correlation effects can be 
handled as well. Several recent calculations have 
demonstrated the accuracy and reliability of MC- 
STEP for determining the low-lying principal ver- 
tical IPs for general atoms and molecules [13-24]. 

With MCSTEP, a small multiconfigurational 
self-consistent-field (MCSCF) calculation is first re- 
quired to obtain the initial state. For calculational 
simplicity, we usually choose a complete active 
space (CAS) reference state. In previous work, we 
showed that a "balanced" CAS composed of three 
strongly occupied and three weakly occupied Or- 
bitals for the MCSCF reference state in MCSTEP 
calculations gives superior IPs over other CAS 
choices [21, 24]. 

We recently determined an optimal way to 
choose the active orbitals for this CAS [21-24]. 
This involves a balanced CAS where three CAS 
orbitals are the symmetries of the highest occupied 
in the (single configuration) SCF and three CAS 
orbitals are the symmetries lowest unoccupied. 
The initial MCSCF orbital guess has also been 
these SCF orbitals. We will refer to this CAS as an 
"SCF-balanced" CAS. 

This scheme for choosing a CAS for the MCSCF 
calculation is very straightforward and works very 
well, in general, for the initial state for the deter- 
mination of low-lying, principal vertical IPs and 

EAs with MCSTEP [21-24]. However, occasion- 
ally, a fully optimized MCSCF reference state is 
obtained which has undesired characteristics. 
When this MCSCF reference state is used in subse- 
quent MCSTEP calculations, lower-quality IPs are 
obtained. An approximate MCSCF reference state 
with the same CAS choice has then been obtained 
for use in MCSTEP calculations which when used 
in subsequent MCSTEP calculations gives, in gen- 
eral, excellent vertical IPs [21-24]. 

In this article, a different balanced CAS choice is 
presented for the MCSCF state to use with MC- 
STEP calculations. Instead of choosing the CAS 
orbitals using the SCF orbital energies as a cri- 
terium, as was utilized previously, the occupation 
numbers of the natural orbitals obtained from a 
single (SCF)-reference singles and doubles configu- 
ration interaction (SDCI) calculation are used to 
choose the six active orbitals. We refer to this CAS 
as "SDCI-balanced." 

As we report below, the use of either CAS with 
MCSTEP for NH2 gives very good IPs compared 
with experiment. The fully optimized SCF-bal- 
anced CAS MCSCF gives an undesired reference 
state so an approximate MCSCF state must be 
used for the MCSTEP calculations. The SDCI-bal- 
anced CAS MCSCF state does not have undesired 
characteristics, and, hence, the true, fully opti- 
mized MCSCF state is used for the MCSTEP calcu- 
lations. The use of the SDCI-balanced CAS in MC- 
STEP calculations gives low-lying vertical IPs for 
NH2 in even better agreement with experiment 
compared with the SCF-balanced choice. 

Theory 

MULTICONFIGURATIONAL SPIN TENSOR 
ELECTRON PROPAGATOR 
METHOD (MCSTEP) 

In this section, some of the theory relevant to 
MCSTEP is very briefly discussed. The intent is 
not to be complete, but, instead, to be indicative of 
the methodology. For a more complete discussion, 
interested readers are directed to the original arti- 
cles on MCEP [13] and MCSTEP [14]. For a sum- 
mary on MCEP and MCSTEP longer than given 
here, interested readers should examine [15]. 

The poles of the single-particle Green's function 
are the IPs and EAs of a system [1, 2]. In general, 
these poles cannot be obtained exactly. Therefore, 
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approximations have to be made. There are two 
principal approximations: For the initial or refer- 
ence state and for the complete operator manifold 
that describes the ionization or attachment pro- 
cesses [2-24]. 

The single-particle Green's function equations 
for closed-shell atoms and molecules were tradi- 
tionally solved by approximating the reference 
state by a single-determinant Hartree-Fock state 
corrected by Moller-Plesset perturbation theory 
[2-12]. In these techniques, operators were in- 
cluded in the operator manifold to assure the solu- 
tion of the resulting equations correctly through a 
certain order in the electron-electron interaction. 
To obtain reliable IPs for outer-valence principal 
IPs for closed-shell systems that had initial states 
well described by Moller-Plesset perturbation the- 
ory, it was found that for IPs the equations needed 
to be solved at least through third order in the 
electron-electron interaction. Some higher-order 
terms are sometimes required in the perturbational 
Green's function solution in order to obtain accu- 
rate IPs. 

Although these third- and third + -order per- 
turbative Green's function methods have been very 
successful [25-27], they are somewhat limited in 
applicability. Perturbative approaches often cannot 
handle reliably or handle at all systems with initial 
states that are open-shell and/or highly correlated 
(nondynamical correlation) for either IPs or EAs. 

With MCSTEP, these problems are solved by 
using a multiconfigurational reference state and 
explicitly coupling tensor ionization and attach- 
ment operators to a tensor initial state. For calcula- 
tional simplicity, an MCSCF reference state is used 
in MCSTEP, although, in principle, a CI state or 
other nonperturbatively correlated state could also 
be used. The operator manifold chosen for MC- 
STEP includes simple electron addition and de- 
struction operators, N — 1 transfer operators which 
remove an electron from the occupied/partially 
occupied orbitals and allow all possible rearrange- 
ments of the remaining electrons in the partially 
occupied space, and N + 1 transfer operators 
which add an electron to the unoccupied/partially 
unoccupied orbitals and allow all possible rear- 
rangements of the remaining electrons in the par- 
tially occupied space [13-15]. 

MCSTEP IPs and EAs are obtained from the 
generalized eigenvalue equation 

where 

Mr,p=E(-D 
r 

S0~T-Sry, W(yrypS0S0;rSf) 

x(2r + i)1/2 

X ((NS0\\{K(yr), H, hp(yp)}r\\NS0))  (2) 

and 

Nr,p =£(-!) So-r-Sf-Yr W(yry„S0S0;TSf) 

X(2T + 1) 
1/2 

X «NS0||{^+(yf),^(yp)}r||NS0»   (3) 

<Df is an IP or EA to the final ion tensor state 
\N ±lSf)), which has spin Sf. W is the usual 
Racah coefficient; hp(yp) and h^(yr) are tensor 
operator versions of members of the operator man- 
ifold with ranks yp and yr, respectively; { , } is the 
anticommutator 

{A, B) = AB + BA; (4) 

MXf= (DfNXf, V 'f"*f, (1) 

and { , , } is the symmetric double anticommuta- 
tor 

{A, B,C} = \{A,[B,C]} + \{[A, B],C).   (5) 

We have demonstrated that MCSTEP is very 
accurate and reliable for lower-lying (in energy) 
IPs [13-24]. These are the IPs corresponding to 
processes that are primarily simple electron re- 
moval (i.e., the principal IPs) of the outer-valence 
electrons. Higher-lying inner valence and core 
principal IPs and shake-up IPs (where the primary 
processes correspond to simple electron removal 
with excitation of the remaining electrons) can, in 
principle, also be determined with MCSTEP; how- 
ever, they are usually at best only of qualitative 
accuracy. 

MCSTEP IPs are incorrect when important con- 
tributions from processes that are simple electron 
removal + excitation of the remaining electrons to 
diffuse orbitals are necessary for an accurate de- 
scription. (This is true regardless of the number of 
diffuse functions in the basis set.) These IPs are 
usually higher in energy and include most inner- 
valence and core IPs as well as most of the shake- 
up IPs. We have previously shown that these 
higher-lying IPs can be accurately determined by 
an extension of MCSTEP known as the reparti- 
tioned  multiconfigurational  spin-tensor  electron 
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propagator method (RMCSTEP) [14]. RMCSTEP is 
considerably more complicated than is MCSTEP. 

REFERENCE MCSCF STATE AND 
EIGENVALUES OF THE LAGRANGIAN 

In MCSTEP, we first perform an MCSCF calcu- 
lation in order to obtain an MCSCF reference state 
and the needed MCSCF orthogonal compliment 
states. The CAS choices for the MCSCF for MC- 
STEP involve a few strongly occupied orbitals and 
a few weakly occupied orbitals as discussed above 
for the SCF-balanced and SDCI-balanced CAS 
choices. Since MCSTEP is designed to calculate 
outer-valence IPs and EAs, for a "desired" MCSCF 
state, the eigenvalues of the Lagrangian corre- 
sponding to the partially occupied orbitals should 
be above the eigenvalues of the doubly occupied 
orbitals. The Lagrangian is defined: 

eir = Ly(rjMij) + 2Zr(rjk1)(ij | Id),    (6) 
; ju 

where y is the one-body density matrix and T is 
the two-body density matrix. Note that in the limit 
of a closed-shell single determinant the eigenval- 
ues of the Lagrangian correspond to the canonical 
orbital energies. 

In some cases, the Lagragian eigenvalues for 
some of the MCSCF active orbitals are below the 
eigenvalues of the doubly occupied orbitals. We 
refer here to such an obtained MCSCF state as 
"undesired" (at least for use in subsequent MC- 
STEP calculations). 

When an undesired MCSCF state is obtained, a 
desired but approximate MCSCF state with the 
same CAS can usually be obtained by reoptimiz- 
ing the MCSCF while neglecting one or more or- 
bital rotations in the MCSCF iterations [21]. When 
this approximate MCSCF state is used as the ref- 
erence state, the obtained CAS orbitals, while 
obviously not fully variational, are still used in 
forming the ket-bra states used in the transfer 
operators. 

COMPLETE BASIS SET (CBS) LIMIT 

The basis sets that we used in the calculations 
for NH2 are the Dunning correlation consistent 
basis sets, cc-pVDZ, cc-pVTZ, and cc-pVQZ, and 
the Dunning augmented correlation consistent 
basis sets, aug-cc-pVDZ, aug-cc-pVTZ, and aug- 
cc-pVQZ [28, 29]. The aug-cc-pVXZ sets have addi- 

tional diffuse functions added to the correspond- 
ing cc-pVXZ sets. 

We then apply a three-parameter exponential 
fitting function of [30] to estimate values at the 
CBS limit: 

A{x) = ArRo + Be -Cx (7) 

where x = 2, 3, and 4 for the DZ, TZ, and QZ 
basis sets. 

Calciilational Results 

The ground state of NH2 is of 2B, symmetry. 
The principal configuration of the ground state is 
\a\2a]\b\?>a\\b\. Since it is open shell, the usual 
perturbative Green's function methods cannot, in 
general, be used to determine ionizations from this 
state. 

In Tables I—III, low-lying principal vertical IPs 
are listed using MCSTEP with balanced CAS 
choices and several different basis sets at the ex- 
perimental ground-state 2Bi geometry [31-34] (i.e., 
the HNH angle is 103.3° and the NH bond length 
is 1.93508 au). The low-lying, principal vertical IPs 
of NH2 determined with MCSTEP using the SCF- 
balanced CAS are given in Table I. The CAS used 
in these calculations consists of five electrons in 
the (lb23a^lbl2b24al3b2) orbitals. For neutral B, 
states, this involves only 52 determinants. This 
CAS was chosen by the SCF-balanced scheme de- 
scribed above, that is, the three occupied (single- 
configuration) SCF orbitals with the highest orbital 
energies and three unoccupied SCF orbitals with 
the lowest orbital energies were used as an initial 
orbital guess for the active orbitals for the subse- 
quent MCSCF. 

Upon examination of the fully optimized MC- 
SCF states used as the MCSTEP reference states, it 
was found that the MCSCF states had an unde- 
sired ordering of the Lagrangian eigenvalues. The 
3flj orbital which was included in the active space 
had a lower eigenvalue than the 2ax orbital which 
was doubly occupied. The resulting MCSTEP IPs 
using this state are not of the same quality as are 
the MCSTEP IPs obtained from a more "desired" 
initial state. 

To correct this, rotations between the 2ax and 
3flj were neglected in the MCSCF optimizations, 
and approximate MCSCF states with the correct 
ordering of the Lagrangian eigenvalues were ob- 
tained. Use of these approximate MCSCF states 
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TABLE I   
Low-lying principal vertical ionization potentials for NH2

aD, with the MCSTEP calculations using the 
SCF-balanced (1b23a11b12D24a13b2) CAS.C   

Ion 
state 

MCSTEP 
cc-pVDZ 
basisd 

MCSTEP 
cc-pVTZ 
basis d 

MCSTEP 
cc-pVQZ 

basis d 

MCSTEP 
CBS 
limite Experiment* 

Ä'A^bJ-' 
%(3a,)-' 
3/A2(1ö2)-

1 

1A2(1b2)"
1 

11.40 

12.09 
13.82 
16.48 
17.87 

11.67 

12.30 
14.03 
16.68 
18.08 

11.74 

12.34 
14.07 
16.73 
18.13 

11.77 

12.36 
14.09 
16.75 
18.15 

12.00 

12.45 
14.27 

a All results are in electron volts. 
bThe ground-state neutral experimental geometry is from [31-34]. 
cThe CAS used for the MCSTEP calculations is all possible configurations with five electrons in the ^bz3a^b^2b24a-l2b2) 
orbitals. 
d pVDZ, pVTZ, and pVQZ basis sets are from [28]. The cc-pVDZ calculations include all six Cartesian d components; the cc-pVTZ 
calculations include all six Cartesian d components and all 10 Cartesian f components; and the cc-pVQZ calculations include the 
five spherical d components, seven spherical f components, and nine spherical g components. 
e Equation (7). 
f [35, 36]. The authors report their experimental vertical IPs to hundredths of an electron volt. 

yields MCSTEP IPs which were considerably bet- 
ter. This problem has manifested itself previously 
in MCSCF calculations of Os [23], HCN [21], 
HNC [21], and several others. The energies of 
these approximate MCSCF 2B1 ground states 
are, respectively, -55.614410, -55.6339520, and 
-55.638503 au for the cc-pVDZ, cc-pVTZ, and 
cc-pVQZ basis sets. 

The MCSTEP IPs reported in Table I were ob- 
tained with the SCF-balanced CAS approximate 
MCSCF initial states using cc-pVDZ, cc-pVTZ, and 
cc-pVQZ basis sets. The results show that the cc- 

pVDZ basis set is not adequate for obtaining 
low-lying principal vertical MCSTEP IPs, while the 
cc-pVTZ and cc-pVQZ results are very similar and 
in very good agreement with experiment. With the 
best basis set results reported in Table I (i.e., with 
the pVQZ basis set), the MCSTEP results differ by 
-0.26, -0.11, and -0.20 eV from experiment [35, 
36] for IPs to the X ^O^)-1, Ä^ilb^1, and 
1B1(3a1)

_1 states, respectively. [Note that the ex- 
perimental vertical IPs are reported to hundredths 
of electron volts in [35, 36]. Although we do not 
think that such experimental accuracy is possible 

TABLE II 
Low-lying principal vertical ionization potentials for NH2

a' 
SDCI-balanced (1b23a11b12b24a15a1) CAS. 

D, with the MCSTEP calculations using the 

Ion 
state 

MCSTEP 
cc-pVDZ 
basisd 

MCSTEP 
cc-pVTZ 
basisd 

MCSTEP                     MCSTEP 
cc-pVQZ                        CBS 

basisd                       limite Experiment' 

ÄV^Ob,)-1 

^Oa,)"1 

3/A2(1b2)"
1 

1/A2(1b2)"1 

11.34 

12.11 
13.84 
16.55 
17.80 

11.63 

12.32 
14.05 
16.72 
17.97 

11.71                         11.74 

12.38                           12.40 
14.12                           14.15 
16.78                           16.81 
18.04                           18.09 

12.00 

12.45 
14.27 

a,b See footnotes a and b to Table I. 
c The CAS used for the MCSTEP calculations is all possible configurations with five electrons in the (1b23a11ö12ö24a15a1) orbitals. 
d cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets are from [28]. The cc-pVDZ calculations include all six Cartesian d components; the 
cc-pVTZ calculations include all six Cartesian d components and all 10 Cartesian f components; and the cc-pVQZ calculations 
include the five spherical d components, seven spherical f components, and nine spherical g components. 
B,f See footnotes e and f to Table I. 
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TABLE III 
Low-lying principal vertical ionization potentials for NH2

a,D, with the MCSTEP calculations using the 
SDCI-balanced (1o23a11b12o24a15a1) CAS and with the basis sets including diffuse functions.0'd 

Ion 
state 

MCSTEP 
avg-cc-pVDZ 

basis d 

MCSTEP 
avg-cc-pVTZ 

basisd 

MCSTEP 
avg-cc-pVQZ 

basisd 

MCSTEP 
CBS 
limit6 Experiment' 

X^Oa,)"1 

Ä'A.ilb,)'1 

^Oa,)"1 

342(1ö2)"
1 

^2(1ö2)-
1 

11.71 

12.40 
14.11 
16.82 
18.05 

11.75 

12.41 
14.15 
16.83 
18.08 

11.76 

12.42 
14.16 
16.84 
18.09 

11.77 

12.42 
14.17 
16.84 
18.10 

12.00 

12.45 
14.27 

1  See footnotes a and b to Table I. 
°The CAS used for the MCSTEP calculations is all possible configurations with five electrons in the (10238,10,20243,53,) orbitals. 
d aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ basis sets are from [28, 29]. The aug-cc-pVDZ calculations include all six Cartesian 
d components; the aug-cc-pVTZ calculations include all six Cartesian d components and all 10 Cartesian f components; and the 
aug-cc-pVQZ calculations include the five spherical d components, seven spherical f components, and nine spherical g 
components. 
e,f See footnotes e and f to Table I. 

(see the next section), for comparison purposes, we 
report the MCSTEP IPs to the same accuracy.] The 
CBS extrapolated limit values differ from experi- 
ment by -0.23, -0.09, and -0.18 eV. 

Vertical NH2 MCSTEP IPs using the SDCI-bal- 
anced CAS are reported in Tables II and III. 

Performing an SDCI calculation including all 
single and double excitations from the 
\a\2a\\b\?>a\\b\ single-configuration SCF state, 
obtaining the natural orbitals, and choosing the 
three lowest occupancy strongly occupied orbitals 
and the three highest occupancy weakly occupied 
orbitals gives a (lb23a1lb12b2ial5a1) CAS. This 
MCSCF CAS includes all possible configurations 
of five electrons in the (lb23allbl2b24:a15a]) or- 
bitals. For neutral Bl states, this involves only 76 
determinants. 

The fully optimized 2B1 ground-state SDCI-bal- 
anced CAS MCSCF energies are, respectively, 
-55.620342, - 55.634819, and - 55.639730 au for the 
cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets. Fur- 
thermore, the orbitals with these basis sets had the 
desired order of the Lagragian eigenvalues, that is, 
the MCSCF active orbitals had Lagragian eigenval- 
ues higher than those of the MCSCF doubly occu- 
pied orbitals. 

The MCSTEP IPs reported in Table II were ob- 
tained with this SDCI-balanced CAS using cc- 
pVDZ, cc-pVTZ, and cc-pVQZ basis sets. The re- 
sults also show that the cc-pVDZ basis set is not 
adequate for obtaining low-lying principal vertical 
MCSTEP IPs, while the cc-pVTZ and cc-pVQZ 
results are very similar and are in very good 

agreement with experiment. With the best basis set 
reported in Table II (i.e., with the cc-pVQZ basis 
set), the MCSTEP results differ by -0.29, -0.07, 
and -0.15 eV from experiment for IPs to the 
X^Oflj)"1, Ä]Ax{\b,r\ and 'BiOflj)-1 states, 
respectively. The CBS-extrapolated limit values 
differ from experiment by -0.26, -0.05, and -0.12 
eV. 

The MCSTEP vertical IPs with the augmented 
basis sets and the SDCI-balanced CAS are even 
better compared to the reported experimental 
values. The 2Bl ground-state MCSCF energies 
are, respectively, -55.623540, -55.636853, and 
-55.640393 au for the aug-cc-pVDZ, aug-cc-pVTZ, 
and aug-cc-pVQZ basis sets. Furthermore, the fully 
optimized MCSCF orbitals had the desired order 
of the Lagragian eigenvalues, that is, the active 
orbitals in the CAS had Lagragian eigenvalues 
higher than those of the MCSCF doubly occupied 
orbitals. 

The MCSTEP IPs reported in Table III were 
obtained with this SDCI-balanced CAS using aug- 
cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ basis 
sets. The results show that the aug-cc-pVDZ, 
the aug-cc-pVTZ, and aug-cc-pVQZ results are 
very similar to each other and are in even better 
agreement with experiment compared to the 
corresponding non-aug basis sets with the same 
SDCI-balanced CAS. This is undoubtedly due to 
the extra functions added to the cc-pVXZ basis 
sets. With the best basis-set results reported in 
Table III (i.e., with the aug-cc-pVQZ basis set), the 
MCSTEP results differ by -0.24, -0.03, and -0.11 
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eV from experiment for IPs to the X3ß1(3a1)"
1, 

AlAjdbj)-1, and ^O^)-1 states, respectively. 
The CBS-extrapolated limit values differ from ex- 
periment by -0.23, -0.03, and -0.10 eV. 

Summary, Discussion, and Conclusions 

The lowest three MCSTEP vertical, principal IPs 
for NH2 are in very good agreement with experi- 
ment with either the SCF-balanced CAS or the 
SDCI-balanced CAS for cc-pVTZ, cc-pVQZ, and 
cc-CBS limit estimates. For the aug-cc basis sets, 
the MCSTEP IPs are also in excellent agreement at 
the pVDZ level as well. For the three lowest verti- 
cal IPs, the MCSTEP values are slightly low com- 
pared with the experimentally obtained values. 

For all these experimentally determined vertical 
IPs, however, it should be kept in mind that since 
NH2 is a free radical it is very reactive. Hence, the 
experimental photoelectron spectrum is very clut- 
tered and is difficult to interpret [35, 36]. There has 
been some controversy where it was argued that 
the X^jOflj)"1 IP of [35, 36] was too high by 
approximately 0.30-0.35 eV [37, 38]. Of course, it is 
also often difficult or impossible to interpret ex- 
actly (i.e., within hundredths of an electron volt) 
where the vertical is experimentally from a PES 
that may have, for example, some vibrational 
structure, even when the spectrum is uncluttered. 
Other good theoretical results have likewise been 
reported lower than experiment by similar 
amounts or even more (see [35-38]). 

Because of the accuracy of the MCSTEP calcula- 
tions reported here and other previously reported 
MCSTEP IP calculations as well, the MCSTEP ver- 
tical IPs to the 3A2(lfc2)

_1 and lA2{lb2Y
l states at 

around 16.8 and 18.2 eV, respectively, can also be 
assumed to be very accurate. This region of the 
NH2 photoelectron spectrum is even more diffi- 
cult to interpret due to contaminant clutter and 
low peak intensity [35, 36]. 

While both the SCF-balanced CAS and the 
SDCI-balanced CAS give very good vertical IPs in 
NH2 compared to experiment, use of the SDCI- 
balanced CAS is advantageous when the two CASs 
differ or when the SCF-balanced CAS gives an 
"undesired" MCSCF state (i.e., meaning here one 
with partially occupied orbitals having Lagrangian 
eigenvalues lower than the eigenvalues for some 
of the doubly occupied orbitals). While we have 
devised a computational scheme to obtain an ap- 

proximate MCSCF state when the true MCSCF 
state is undesired—by neglecting a rotation or two 
in MCSCF optimization [21]—it is sometimes un- 
clear which rotations) need to been ignored to 
obtain this approximate MCSCF state. Also, if too 
many rotations are neglected in the MCSCF opti- 
mization, the obtained approximate MCSCF state 
may be so far from the true quantum mechanical 
state as to be useless for use as the MCSTEP 
reference state. 

Hence, in general, the best CAS choice for the 
MCSCF initial state used in MCSTEP is the SCF- 
balanced CAS. This is because this CAS is straight- 
forwardly obtained from a simple SCF calculation. 
If, however, the MCSCF state using the SCF-bal- 
anced CAS is "undesired," then and SDCI-bal- 
anced CAS MCSCF state should be used instead. A 
similar analysis applies for the MCSTEP initial 
state for H2Ö and other molecules as well. 
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ABSTRACT: Static second hyperpolarizabilities were calculated for molecules 
including tetrahydrofuran homologs by ab initio molecular orbital methods at the 
Hartree-Fock and various correlation levels. Substitution of the heteroatom with a 
heavier atom is found to be effective for increase of the second hyperpolarizability of 
these homologs. Comparison between the present results and previous results for furan 
homologs shows that 17-conjugation is not effective for the increase of second 
hyperpolarizability of the molecules when the heteroatom is heavier.    © 1998 John Wiley 
& Sons, Inc. Int J Quant Chem 70: 737-743, 1998 

ture-property  correlation  has  been  extensively 
Introduction studied. For the third-order nonlinear optical prop- 

erties, however, this correlation is not well estab- 
Nlished. 

onlinear optical properties of molecular ma- Molecular orbital calculations are a useful tool 
terials are important because of possible fu- for investigating structure-property correlation at 

ture photonics applications. In this field, the struc-        the molecular level [1-9] because they give indi- 
vidual molecular properties directly. This informa- 

Conespondence to: K.Ohia. tion ^ complementary to statistically averaged 
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of Science, Osaka University, 1-1 Machikaneyamacho, Toyon- properties  obtained  by  most  experimental  tech- 
aka, 560-0043, Japan. niques from the condensed phase. 
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We have extensively studied the third-order 
nonlinear optical properties of molecules contain- 
ing second- or higher-row atoms by molecular 
orbital calculation [6-8]. Some of these molecules 
containing heteroatoms are important because of 
their large third-order nonlinearities. We have re- 
vealed, by experiment and molecular orbital calcu- 
lation [9, 10], the effect of variation of the het- 
eroatom on the nonlinearity of the homologs of 
thiophene. These materials are not only the sim- 
plest unsaturated heterocyclics but are also the 
constitutive unit of the potential nonlinear optical 
materials such as polythiophene. 

In this article, we report the static hyperpolariz- 
ability, y, of tetrahydrofuran homologs (saturated 
derivatives of furan homologs) studied by ab initio 
molecular orbital methods. By comparing the y 
values of furan and tetrahydrofuran homologs, we 
investigated the influence of 7r-conjugation on the 
molecular second hyperpolarizabilities of furan 
homologs and the effect of heavier heteroatom 
substitution. Finally, we compared the present cal- 
culations with the observations obtained by the 
optical Kerr effect (OKE) experiments which have 
been done in our laboratory [9, 10]. 

Calculation Method 

Here, we describe the calculation method used 
in this study. The Gaussian 94 program [11] was 
used for the ab initio molecular orbital calculations 
throughout this study. Finite-field methods were 
used for the calculation of static second hyperpo- 
larizability. At the Hartree-Fock level, we used 
the following equation for the first-order numeri- 
cal derivative of the first hyperpolarizability val- 
ues ß: 

r,7;.= [8{/3,,7(F;)-Al7(-f;)} 

-{A,7(2F;.)-ß,;.(-2F;)}]/12F;,   (1) 

with i, j = x, y, z. Individual /3,,.(F ) values can be 
obtained under the application of a uniform elec- 
tric field by the optional routine in the Gaussian 
program [6]. In this case, the minimum finite elec- 
tric-field value F: was set at 0.0025 au [6]. 

Various kinds of correlation methods including 
MP2, MP3, MP4, CCSD, and CCSD(T) models were 
used for examining the effect of electron correla- 
tion on the hyperpolarizability. For this purpose, 
we used the following equations for the fourth- 

order numerical derivative of the total energy E: 

yiiU = -[56E(0) - 39{ E(F,) + Ei-F^} 

+ 12{E(2F,) + £(-2F,)} 

-{E(3F,) + £(-3F,.)}]/6F,4 (2) 

7iijj = -[72£(0) - 38{£(F,) + E(-F,) 

+ E(Fj) + E(-Fj)} 

+ 2{E(2F,) +EC-2F,.) +E(2F;) + E(-2F;)} 

+ 20{E(F,,F;) + £(F,., -FJ) 

+ £(-F„F;) + £(-F,,-F/)} 

-{E(2F„F,) + E(2F,., -Fy) 

+ E(-2F,,F/) + E(-2F,., -F;.) 

+ £(F,,2F;) + £(F,., -2Fj) 

+ E(-Fi,2Fj) + E(-F„ -2F;)}]/12F,2F/
2, 

(3) 

with i, j = x, y, z. In this case, the minimum finite 
electric-field values F, and F; were set at 0.005 au 
[8]. It should be noted that y in eqs. (l)-(3) is 
defined as the coefficient of the next Taylor expan- 
sion of total electric dipole moment, JX, with re- 
spect to the applied electric field F: 

fi = i*0 + aF + )3FF/2 + yFFF/6 + ,     (4) 

where /J.0 is the permanent electric dipole moment 
and a is the linear polarizability. The orientation- 
ally averaged value of the second hyperpolariz- 
ability ys is evaluated as 

'S wjjfljc lyyyy    '     /2222 "■   ^-Ixxyy 

+ 2r**22 + 2yyy22)/5. (5) 

This can be directly compared to the electronic 
component of the experimental Kerr coefficients 
observed for the isotropic gas or liquid phase. 

Basically, the 6-31G basis set was used for light 
atoms in the present calculation. For carbon, oxy- 
gen, and sulfur atoms, two different basis sets 
augmented with diffuse orbitals were used. First, 
the 6-31G + pd basis set is the 6-31G basis set 
augmented with diffuse p and d orbitals on the 
atoms. Second, the 6-31G + pdd basis set is made 
by adding another semidiffuse d orbital to the 
6-31G + pd basis set. 

For the calculations of (hyper)polarizability, the 
contribution from the electrons in the outer region 
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of molecules is considered to be more essential 
than are the electrons of the inner shell. This gives 
a reasonable basis for using the effective core po- 
tential (ECP) for the calculation of (hyper)polariza- 
bility [3, 4]. In our previous work [7], we used the 
ECP method for the calculation of linear polariz- 
ability of the molecules containing selenium and 
tellurium in order to clarify the mechanism of 
third-order nonlinear optical properties of those 
molecules observed by picosecond degenerate 
four-wave mixing method. In this study, the con- 
tribution of core electrons in selenium and tel- 
lurium atoms was estimated using Wadt-Hay's 
effective core potential (LANL1DZ) [12] aug- 
mented with the pd (LANL1DZ + pd) and pdd 
(LANL1DZ + pdd) diffuse orbitals. The procedure 
for determining the orbital exponents of the dif- 
fuse functions is the same as previously reported 
[7, 8]. The exponents of the orbitals augmented to 
the 6-31G and LANL1DZ basis sets are summa- 
rized in Table I. 

In principle, it would be better to calculate the 
electronic response properties for the optimized 
geometry. However, tetrahydrofuran and its ho- 
mologs are known to have flat potential energy 
surfaces with respect to the distortion of the 
molecular plane and we have confirmed that there 
is little difference between the calculated y values 
of the distorted and the plane geometries. There- 
fore, for simplicity, molecular geometries opti- 
mized at the plane configuration (for each basis set 
at the Hartree-Fock level) were used for the calcu- 
lation of y. The molecular axis for designating the 
tensor component of y is shown in Figure 1. 

Results and Discussion 

Static hyperpolarizability values calculated for 
tetrahydrofuran (C4HgO), tetrahydrothiophene 
(C4H8S), tetrahydroselenophene(C4H8Se), and te- 
trahydrotellurophene (C4H8Te) are summarized in 
Tables II-V, respectively. Various approximation 

HH hTH 

X 

—x  

HH 

FIGURE 1. Molecular fixed Cartesian coordinates used 
in the present calculation for tetrahydrofuran homologs 
C4H8X (X = O, S, Se, Te). 

levels including the Hartree-Fock method are 
shown. For the correlated results, the last digit in 
every y component under 10 au was neglected 
due to the lack of stability which may have oc- 
curred in the numerical differentiation. 

First, we discuss the basis-set dependence of the 
calculated second hyperpolarizability for the 
molecules at both Hartree-Fock level and correla- 
tion methods. As described before, it is necessary 
to augment the basis set with the diffuse orbital 
having large orbital exponents for the calculation 
of hyperpolarizability [1-6]. Once the diffuse p 
and d orbitals are added to the basis set, the 
obtained y values become quite stable to further 
augmentation. However, there still seems some 

TABLE 1 
Orbital exponents for functions augmented to the 6-31G and LANL1DZ basis sets 

C O S Se Te 

Basis set P              d P              of P                Of P d P              of 

+pd 
■\pdd 

0.0438      0.0438 
0.0438      0.18719 

0.0438 

0.0845      0.0845 
0.0845      0.26 

0.0845 

0.0405      0.0405 
0.0405      0.16225 

0.0405 

0.0367 
0.0367 

0.0367 
0.11558 
0.0367 

0.0301     0.0301 
0.0301     0.08709 

0.0301 
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TABLE 
Individual components of the second hyperpolarizability of tetrahydrofuran (C4H80) calculated with 
6-31G + pd and 6-31G + pdd basis sets (atomic units).3 

Method "Yxxxx Vyyyy yzzzz "Yxxyy yxxzz Jyyzz 7s 

6-31G+prJ 

HF 7591  (1.00) 3465 (1.00) 6989 1.00) 2377 (1.00) 2131 (1.00) 1567 (1.00) 6039 1.00) 
MP2 13,310 (1.75) 5320 (1.54) 12,700 1.82) 4110 (1.73) 3480 1.63) 2530 (1.61) 10,310 1.71) 
MP3 11,180 (1.47) 4840 (1 -40) 10,390 1.49) 3480 (1.46) 2950 (1.38) 2180 (1.39) 8730 1.45) 
MP4D 11,300 (1.49) 4830 (1.39) 10,670 1.53) 3550 (1.49) 2980 1.40) 2210 (1.41) 8860 1.47) 
MP4DQ 11,440 (1.51) 4890 (1.41) 10,780 1.54) 3590 (1.51) 3010 1.41) 2230 (1.42) 8960 1.48) 
MP4SDQ 13,430 (1.77) 5410 (1.56) 12,930 1.85) 4260 (1.79) 3440 1.61) 2570 (1.64) 10,470 1.73) 
MP4SDTQ 14,820 (1.95) 5800 (1.67) 14,370 2.06) 4570 (1.96) 3780 1.77) 2800 (1.79) 11,500 1.90) 
CCSD 13,520 (1.78) 5370 (1.55) 12,630 1.81) 4360 (1.83) 3410 1.60) 2540 (1 -62) 10,420 1.73) 
CCSD(T) 14,620 (1.93) 5750 (1.66) 13,690 1.96) 4640 (1.95) 3670 1.72) 2710 (1.73) 11,220 1.86) 

6-31G+pdd 
HF 7457 (1.00) 3922 (1.00) 6281 1.00) 2507 (1.00) 2013 1.00) 1671 (1.00) 6008 1.00) 
MP2 13,090 (1.76) 5530 (1.41) 11,150 1.78) 4140 (1.65) 3290 1.63) 2500 (1.50) 9930 1.65) 
MP3 10,710 (1.44) 5000 (1 -27) 9030 1.44) 3470 (1.38) 2750 1.37) 2160 (1.29) 8300 1.38) 
MP4D 10,830 (1.45) 4940 (1 -26) 9210 1.47) 3510 (1.40) 2770 1.38) 2170 (1.30) 8380 1.39) 
MP4DQ 11,010 (1.48) 5020 (1.28) 9340 1.49) 3560 (1.42) 2810 1.40) 2200 (1.32) 8500 1.41) 
MP4SDQ 13,120 (1.76) 5480 (1.40) 11,190 1.78) 4250 (1.70) 3230 1.60) 2480 (1.48) 9940 1.65) 
MP4SDTQ 14,620 (1.96) 5890 (1.50) 12,520 1.99) 4670 (1.86) 3570 1.77) 2700 (1.62) 10,980 1.83) 
CCSD 12,800 (1.72) 5330 (1.36) 10,740 1.71) 4180 (1.67) 3120 1.55) 2400 (1.44) 9650 1.61) 
CCSD(T) 14,020 (1.88) 5870 (1.50) 11,650 1.85) 4330 (1.73) 3360 1.67) 2580 (1.54) 10,410 1.73) 

Nos. in parentheses are ratios to the Hartree-Fock values. 

TABLE III 
Individual components of the second hyperpolarizability of tetrahydrothiophene (C4H8S) calculated with 
6-31G + pd and 6-31G + pdd basis sets (atomic units).3 

Method ixxyy Jyyzz 7S 

6-31 G+pd 
HF 
MP2 
MP3 
MP4D 
MP4DQ 
MP4SDQ 
MP4SDTQ 
CCSD 
CCSD(T) 

6-31G+ pdd 
HF 
MP2 
MP3 
MP4D 
MP4DQ 
MP4SDQ 
MP4SDTQ 
CCSD 
CCSD(T) 

10,617 
17,420 
15,610 
15,430 
15,640 
17,100 
18,460 
17,070 
18,300 

9609 
15,550 
13,460 
13,280 
13,520 
14,980 
16,400 
14,710 
16,090 

1.00) 
1.64) 
1.47) 
1.45) 
1.47) 
1.61) 
1.74) 
1.61) 
1.72) 

1.00) 
1.62) 
1.40) 
1.38) 
1.41) 
1.56) 
1.71) 
1.53) 
1.67) 

10,481 
16,920 
16,260 
15,910 
16,170 
17,730 
18,790 
19,130 
20,030 

10,857 
16,420 
15,510 
14,930 
15,300 
16,580 
17,700 
17,050 
18,070 

1.00) 
1.61) 
1.55) 
1.52) 
1.54) 
1.69) 
1.79) 
1.83) 
1.91) 

1.00) 
1.51) 
1.43) 
1.38) 
1.41) 
1.53) 
1.63) 
1.57) 
1.66) 

19,020 
29,570 
26,630 
26,160 
26,520 
28,980 
31,230 
28,810 
30,700 

16,982 
26,020 
22,750 
22,250 
22,680 
24,940 
27,210 
24,380 
26,020 

1.00) 
1.55) 
1.40) 
1.38) 
1.39) 
1.52) 
1.64) 
1.51) 
1.61) 

1.00) 
1.53) 
1.34) 
1.31) 
1.34) 
1.47) 
1.60) 
1.44) 
1.53) 

3112 (1.00) 
4750 (1.53) 
4390 (1.41) 
4320 (1.39) 
4380 (1.41) 
4750 (1.53) 
5070 (1.63) 
4780 (1.54) 
5010 (1.61) 

3060 (1.00) 
4450 (1.45) 
3990 (1.30) 
3930 (1.28) 
3990 (1.30) 
4320 (1.41) 
4640 (1.52) 
4260 (1.39) 
4330 (1.42) 

4106 
7060 
6370 
6300 
6400 
7010 
7550 
7080 
7520 

3849 
6300 
5510 
5410 
5520 
6110 
6670 
6050 
6460 

1.00) 
1.72) 
1.55) 
1.53) 
1.56) 
1.71) 
1.84) 
1.72) 
1.83) 

1.00) 
1.64) 
1.43) 
1.41) 
1.43) 
1.59) 
1.73) 
1.57) 
1.68) 

5059 (1.00) 12,934 ( 
7880 (1.56) 20,660 ( 
7310 (1.44) 18,930 ( 
7180 (1.42) 18,620 ( 
7270 (1.44) 18,880 ( 
7960 (1.57) 20,650 ( 
8490 (1.68) 22,140 ( 
8140 (1.61) 21,000 ( 
8550 (1.69) 22,240 ( 

5290 (1.00) 12,369 ( 
7770 (1.47) 19,000 ( 
7100 (1.34) 16,980 ( 
6890 (1.30) 16,580 ( 
7040 (1.33) 16,920 ( 
7620 (1.44) 18,520 ( 
8180 (1.55) 20,060 ( 
7610 (1.44) 18,390 ( 
7980 (1.51) 19,540 ( 

1.00) 
1.60) 
1.46) 
1.44) 
1.46) 
1.60) 
1.71) 
1.62) 
1.72) 

1.00) 
1.54) 
1.37) 
1.34) 
1.37) 
1.50) 
1.62) 
1.49) 
1.58) 

Nos. in parentheses are ratios to the Hartree-Fock values. 
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TABLE IV  
Individual components of the second hyperpolarizability of tetrahydroselenophene (C4H8Se) calculated with 
6-31G + pd and 6-31G + pdd basis sets and ECP methods (atomic units).3 

Method Jyyyy txxyy "Yxx Tyyzz 7s 

6-31G + pd for C, ECP (LANL1DZ + pd) for Se 
HF 12,669 (1.00) 20,698 (1.00) 27,382 
MP2 20,310 (1.60) 31,990 (1.55) 40,460 
MP3 18,460 (1.46) 31,990 (1.55) 37,360 
MP4D 18,270 (1.44) 31,170 (1.51) 36,590 
MP4DQ 18,510 (1.46) 31,750 (1.53) 37,120 
MP4SDQ 19,930 (1.57) 34,300 (1.66) 39,890 
MP4SDTQ 21,420 (1.69) 36,000 (1.74) 42,680 
CCSD 19,780 (1.56) 37,380 (1.81) 39,810 
CCSD(T) 21,140 (1.67) 38,980 (1.88) 42,310 

6-31G+ pdd for C, ECP (LANL1 DZ + pdd) for Se 

HF 10,796 (1.00) 21,263 (1.00) 22,939 
MP2 17,230 (1.60) 30,850 (1.45) 34,020 
MP3 15,070 (1.40) 30,260 (1.42) 30,430 
MP4D 14,900 (1.38) 28,930 (1.36) 29,660 
MP4DQ 15,150 (1.40) 29,740 (1.40) 30,250 
MP4SDQ 16,610 (1.54) 31,770 (1.49) 32,830 
MP4SDTQ 18,120 (1.68) 33,560 (1.58) 35,570 
CCSD 16,200 (1.50) 32,790 (1.54) 32,190 
CCSD(T) 17,530 (1.62) 34,330 (1.61) 34,310 

(1 .oo; 
(1.48: 
(1.36: 
(1.34 
(1.36 
(1.46 
(1.56 
(1.45 
(1.55 

(1 .oo: 
(1.48: 
(1.33: 
(1.29: 
(1.32: 
(1.43: 
(1.55: 
(1.40: 
(1.50 

)    4253 (1.00) 5553 ( 
)    6300 (1.48) 9270 ( 
)    6030 (1.42) 8600 ( 
)    5930 (1.39) 8480 ( 
)    6010 (1.41) 8620 ( 
)    6410 (1.51) 9280 ( 
)    6780 (1.59) 9920 ( 
)    6630 (1.56) 9390 ( 
)    6940 (1.63) 9950 ( 

))    4050 (1.00) 5142 ( 
i)    5770 (1.42) 8200 ( 
I)    5380 (1.33) 7360 ( 
))    5260 (1.30) 7210 ( 
!)    5350 (1 -32) 7360 ( 
i)    5720 (1.41) 8020 ( 
>)    6100 (1.51) 8690 ( 
))    5680 (1.40) 7930 ( 
))    5860 (1.45) 8430 ( 

1.00) 8516 (1.00) 19,479 (1.00) 
1.67) 12,540 (1.47) 29,790 (1.53) 
1.55) 12,060 (1.42) 28,240 (1.45) 
1.53) 11,800 (1.39) 27,690 (1.42) 
1.55) 11,970 (1.41) 28,120 (1 -44) 
1.67) 12,860 (1.51) 30,250 (1.55) 
1.79) 13,590 (1.60) 32,140 (1.65) 
1.69) 13,280 (1.56) 31,110 (1.60) 
1.79) 13,900 (1.63) 32,800 (1.68) 

1.00) 8217 (1.00) 17,963 (1.00) 
1.59) 11,600 (1.41) 26,650 (1.48) 
1.43) 10,980 (1.34) 34,640 (1.37) 
1.40) 10,630 (1.29) 23,930 (1.33) 
1.43) 10,860 (1.32) 24,460 (1.36) 
1.56) 11,590 (1.41) 26,370 (1.47) 
1.69) 12,290 (1.50) 28,280 (1.57) 
1.54) 11,660 (1.42) 26,340 (1.47) 
1.64) 12,160 (1.48) 27,820 (1.55) 

aNos. in parentheses are ratios to the Hartree-Fock values. 

TABLE V 
Individual components of the second hyperpolarizability of tetrahydrotellurophene (C4H8Te) calculated with 
6-31G + pd and 6-31G + pdd basis sets and ECP methods (atomic units).3 

Method 7yyyy 7xxyy Jyyzz 7s 

6-31 G+pd for C, ECP (LANL1 DZ + pd) for Te 
HF 17,938 (1.00) 52,229 (1.00) 45,390 
MP2 27,660 (1.54) 75,700 (1.45) 63,640 
MP3 25,510 (1.42) 77,570 (1.49) 59,850 
MP4D 25,230 (1.41) 75,590 (1.45) 58,540 
MP4DQ 25,580 (1.43) 77,090 (1.48) 59,400 
MP4SDQ 27,230 (1.52) 81,720 (1.56) 63,180 
MP4SDTQ 29,140 (1.62) 84,910 (1.63) 67,150 
CCSD 26,970 (1.50) 88,230 (1.69) 63,040 
CCSD(T) 28,740 (1.60) 91,710 (1.76) 66,770 

6-31G+ pdd for C, ECP( LANL1D2 : + pdd) forTe 
HF 14,883 (1.00) 49,836 (1.00) 36,069 
MP2 22,750 (1.53) 67,580 (1.36) 50,860 
MP3 20,190 (1.36) 68,100 (1.37) 46,370 
MP4D 19,920 (1.34) 64,840 (1.30) 45,050 
MP4DQ 20,280 (1.36) 66,830 (1.34) 46,030 
MP4SDQ 21,880 (1.47) 69,830 (1.40) 49,230 
MP4SDTQ 23,750 (1.60) 73,010 (1.47) 52,970 
CCSD 21,320 (1.43) 72,000 (1.44) 48,420 
CCSD(T) 22,980 (1.54) 75,260 (1.51) 51,510 

(1.00) 
(1.40) 
(1.32) 
(1.29) 
(1.31) 
(1.39) 
(1.48) 
(1.39) 
(1.47) 

(1.00) 
(1.41) 
(1.29) 
(1.25) 
(1.28) 
(1.36) 
(1.47) 
(1.34) 
(1.43) 

8600 
12,370 
12,350 
12,100 
12,300 
13,000 
13,610 
13,700 
14,300 

7971 
10,800 
10,620 
10,240 
10,490 
10,980 
11,560 
11,130 
11,530 

1.00) 
1.44) 
1.44) 
1.41) 
1.43) 
1.51) 
1.58) 
1.59) 
1.66) 

1.00) 
1.35) 
1.33) 
1.28) 
1.32) 
1.38) 
1.45) 
1.40) 
1.45) 

9414 
14,650 
13,870 
13,610 
13,860 
14,730 
15,650 
14,840 
15,690 

8317 
12,490 
11,450 
11,160 
11,430 
12,200 
13,090 
12,050 
12,780 

1.00, 
1.56 
1.47 
1.45 
1.47 
1.56: 
1.66: 
1.58: 
1.67: 

1.00: 
1.50: 
1.38: 
1.34: 
1.37: 
1.47: 
1.57: 
1.45: 
1.54 

17,810 
24,590 
24,330 
23,790 
24,160 
25,500 
26,660 
26,260 
27,350 

15,364 
20,430 
19,980 
19,270 
19,730 
20,630 
21,640 
20,840 
21,700 

(1.00) 
(1.38) 
(1.37) 
(1.34) 
(1.36) 
(1.43) 
(1.50) 
(1.47) 
(1.54) 

(1.00) 
(1.33) 
(1.30) 
(1.25) 
(1.28) 
(1.34) 
(1.410 
(1.36) 
(1.41) 

37,441 
54,050 
52,800 
51,670 
52,540 
55,720 
58,610 
57.570 
60,380 

32,818 
45,730 
43,750 
42,240 
43,290 
45,710 
48,460 
45,960 
48,350 

1.00) 
1.44) 
1.41) 
1.38) 
1.40) 
1.49) 
1.57) 
1.54) 
1.61) 

1.00) 
1.39) 
1.33) 
1.29) 
1.32) 
1.39) 
1.48) 
1.40) 
1.47) 

aNos. in parentheses are ratios to the Hartree-Fock values. 
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basis-set dependence, depending on tensor compo- 
nents and molecular species. For example, the 
+ pdd basis set gives 10-20% smaller molecular 
planar components yxxxx and y2Z22 compared with 
the +pd basis set at the Hartree-Fock level. On the 
other hand, the +pdd basis set gives a larger com- 
ponent Jyyyy concerning the axis perpendicular to 
the molecular plane than the +pd basis set (except 
for C4H8Te). 

Electron correlation increases all tensor compo- 
nents of y. This increase depends on the contribu- 
tions from different excitation types to the total 
MP4 or CCSrXT) results and is similar to the case 
of carbon disulfide [8]. As pointed out previously 
for carbon disulfide [8], the smaller +pd basis set 
can tend to exaggerate the effect of electron corre- 
lation on the hyperpolarizability. A similar ten- 
dency can also be observed for the present case by 
comparing the results between the Hartree-Fock 
and correlation methods. For example, the yyyyy 

component becomes larger with the +pd basis set 
than with the +pdd basis set at any correlation 
level while it is larger with the +pdd basis set than 
with the +pd basis set at the Hartree-Fock level 
(except for C4H8Te). Also, the +pd basis set gives 
a larger y for almost all components compared to 
the +pdd basis set at MP4SDTQ or CCSEXT) lev- 
els, irrespective of molecular structure. 

Now let us examine the effect that substitution 
of the heteroatom with a heavier atom has on the 
second hyperpolarizability based on the CCSD(T) 
models with the +pdd basis set. As can be seen 
from the comparison among Tables II-V, all the 

components of y monotonically increase as the 
heteroatom becomes heavier. The ys values show 
the increase due to the heavier heteroatom, illus- 
trating clearly the effect of heavy atom on the 
resultant third-order optical nonlinearity of these 
homologs. However, this increase is not uniform 
depending on the components. The yxxxx compo- 
nent, which is the planar component, of C4H8Te is 
within twice that of C4HgO. On the other hand, 
the yyyyy component, which is the component per- 
pendicular to the molecular plane, of C4H8Te is 
more than 10 times that of C4HgO, implying that 
the out-of-plane orbitals of the heavy atom play an 
essential role in the increase of the y value. 

It should be noted that the electron correlation 
effect on the hyperpolarizability is smaller for the 
homologs with heavier heteroatoms. This variation 
seems systematic, although it is difficult to explain 
the origin of this phenomenon at the present time. 

Comparison of the present results with those for 
the furan homologs is important for the examina- 
tion of the effect of 77-conjugation on the nonlinear 
optical properties of furan homologs. Here, we 
consider the static ys value from the 6-31G + pdd 
basis set and CCSEXT) method as the best calcula- 
tion value. Table VI summarizes the orientation- 
ally averaged values obtained by the present ab 
initio calculations and the OKE experiments, with 
the results for furan (C4H40), thiophene (C4H4S), 
selenophene (C4H4Se), and tellurophene (C4H4Te). 
The experimental procedure was described in pre- 
vious articles [9, 10]. The C4HgO and C4H8S 
molecules give, respectively, smaller ys   values 

TABLE VI  
Comparison between the orientationally averaged second hyperpolarizabilities obtained by the present 
ab initio calculations and OKE experiment.8 

Molecule 

Tetrahydrofuran 
Tetrahydrothiophene 
Tetrahydroselenophene 
Tetrahydrotellurophene 

Furan 
Thiophene 
Selenophene 
Tellurophene 

Nos. in parentheses are ratios to the values for furan molecule. 
"Present CCSD(T) results, 6-31G + pdd, ECP for Se and Te. 
cMeasured at 790 nm. See [10]. 
dNA, not available. 

Calculationb Experiment0 

au 10 "36 esu (ratio) 10-36 esu (ratio) 

10,410 5.2 (0.71) 5.3 (0.71) 
19,540 9.8 (1.3) 11.3 (1.5) 
27,820 14.0 (1.9) N.A.' d(N.A.) 
48,350 24.4 (3.3) N.A. (N.A.) 

14,750 7.4 (1.0) 7.5 (1.0) 
19,990 10.1 (1.4) 13.2 (1.7) 
25,460 12.8 (1.7) 17.2 (2.3) 
38,800 19.5 (2.6) N.A. (N.A) 
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than do C4H40 and C4H4S both experimentally 
and theoretically. This clearly indicates that the 
presence of -^-conjugation enhances optical nonlin- 
earity at the molecular level. Conversely, C4H8Se 
and C4H8Te with the heavier heteroatom give 
larger ys values than the corresponding C4H4Se 
and C4H4Te. This means that the effect of 7r-conju- 
gation contributes little to the larger second hyper- 
polarizability of the heterocyclic compounds with 
the heavier heteroatoms. In other words, we can 
state that the increasing effect of y due to the 
heavier atom originates from the electrons local- 
ized on the heteroatoms in these homologs. 

Finally, we would like to point out that agree- 
ment of the present calculations with experimental 
results is excellent, especially for the molecules 
with atoms of smaller atomic numbers when con- 
sidering the higher correlation effects. In the case 
of selenophene, there is some discrepancy between 
the experimental observations and the theoretical 
calculations. Possible cause of this discrepancy will 
be discussed in detail in a separate article with the 
extensive calculational results for the furan ho- 
mologs [13]. At present, no experimental data are 
available for the C4H8Se and C4H8Te molecules. 
However, we may expect larger y values for 
molecules without 7r-conjugation compared to 
those with 7r-conjugation. 

Concluding Remarks 

In this study, static second hyperpolarizabilities 
were calculated for tetrahydrofuran homologs by 
ab initio molecular orbital methods. We found that 
substitution of the heteroatom with a heavier atom 
increases the second hyperpolarizability of the te- 
trahydrofuran homologs. Comparison of the pre- 
sent results with those for furan homologs shows 
that 7r-conjugation does not increase the second 
hyperpolarizability as the heteroatom becomes 
heavier. Use of effective core potential (ECP) to- 
gether with diffuse functions is found to be effi- 
cient for calculation of second hyperpolarizability 
of molecules containing heavy atoms. Good corre- 

lation between the experimental results and the 
present calculations is observed with the inclusion 
of the effect of electron correlation. 
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ABSTRACT: (CH3)2NC6H4NC6H40 is a merocyanine dye that exists in resonance 
between the two extreme conformations of a keto and an eno form. The keto form is more 
stable in the gas phase and the eno form is believed to be more stable in solution. We 
show that the keto form can prevail in nonpolar solvents, but in polar solvents like 
chloroform, the eno form should be dominant. Analysis is made of the solvent effects in 
the low-lying absorption transition and its consequence in the first dipole 
hyperpolarizability. We show by explicit calculations that the hyperpolarizability of the 
eno form is one order of magnitude greater than in the keto form. We then contend that 
this structure dependence may also lead to very large changes of the hyperpolarizability 
of similar molecules and polymers in solvents.    © 1998 John Wiley & Sons, Inc. Int J Quant 
Chem 70: 745-750, 1998 

Introduction 

4-[(4-Dimethylamino)phenyl)imino]-2,5-cyclo- 
hexadien-1-one (DIA), also known as phenol 

blue, is a merocyanine dye with promising nonlin- 
ear optical properties, especially enhanced in the 
chloroform environment [1]. However, the precise 
location of its low-lying excited states is not known 
and this is of great importance to the understand- 
ing of the large nonlinear response. Moreover, the 
influence of the solvent on the low-lying transi- 

Correspondence to: S. Canuto. 
Contract grant sponsors: CNPq; FAPESP (Brazil). 

International Journal of Quantum Chemistry, Vol. 70, 745-750 (1998) 
© 1998 John Wiley & Sons, Inc. 

tions of DIA is of primary importance. This is the 
subject of this article. 

DIA may exist in two possible configurations, 
as shown in Figure 1. Configuration (I) is expected 
to be more stable in isolated form, but due to its 
larger dipole moment, configuration (II) is be- 
lieved to be more stable in solution. Brooker and 
Sprague [2] measured the low-lying excitations in 
different solvents and noticed a red shift of the 
first absorption transition that is increased as the 
polarity of the solvent increases. Lushkov and 
Warshel [3] made interesting theoretical studies of 
the two low-lying excited states and noticed that 
the experimental data could be best reproduced 
using configuration (I). Karelson and Zerner [4] 
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CH3 

CH 
N—C   i^N 

(I) 

O 

also used configuration (I) to analyze spectral shifts 
in different solvents. Thus, it is natural that most 
of the effort should be concentrated in configura- 
tion (I), but, as we shall see, some interesting 
results will emerge for configuration (II). 

Methods and Results 

CH 

CH 

FIGURE 1. The two extreme configurations of the 
resonance form of DIA. 

We first performed a gas-phase full geometry 
optimization of configuration (I) using ab initio 
methods and the Gaussian 94 program [5]. Some of 
our results are shown in Figure 2 (which defines 
the geometrical parameters) and Table I. Only the 
most relevant structural parameters are shown. 
With all theoretical methods used, the Cl—O and 
the Nj—C3 distances are compatible with a dou- 
ble bond as is the case of configuration (I). Simi- 
larly, the Nj—C4 distance is compatible with a 
single bond. The bending angle C3—N^—C4 varies 
from one model to the other but keeps around a 
value of 120°. The molecule shows a rather pro- 

FIGURE 2. The optimized geometry of isolated DIA. The atomic indices are used to define the geometric parameters 
and the atomic sites for Figures 3 and 4 and Tables l-lll. 

TABLE 1 
Comparison of the calculated geometries for configuration (1) using different ab initio theoretical methods. 

Geometry 
(A and degree) HF/STO-3G HF/3-21G HF/6-31G* MP2/6-31G* 

RfC,—0) 1.228 1.218 1.197 1.241 
RO^—C3) 1.290 1.269 1.263 1.313 
R(N1-C4) 1.460 1.408 1.407 1.400 
0(C3—N,—C4) 119.6 127.7 123.9 120.6 
V(C3—N,— C4- -c6) 122.9 143.9 128.8 139.1 
<p(C2—C3—N.|- -c4) 350.0 353.1 354.7 350.0 
cp(C6—C7—N2- -c8) 10.4 0.4 18.7 3.4 
?(C6-C7-N2- -c9) 241.2 181.6 243.3 229.1 
Energy (au) -713.04979 -717.98145 -722.01735 -724.38968 

Geometric parameters are defined in Figure 2. 
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nounced interring modification at the central Nx 

atom, as given by the angles 0(C3—Nj—C4), 
<p(C3—Nx—C4—C5), and <p(C2—C3—Nx—C4). 
This comes from the steric interaction between the 
ortho hydrogens of the ring. Comparison between 
the results obtained at the HF/6-31G* and 
MP2/6-31G* levels shows that the C1—O distance 
and the out-of-plane angle (p(C3—Nj—C4—C5) 
are the geometric parameters most affected by the 
inclusion of correlation effects. However, it is the 
angle 0(C3—Nj—C4) that is found to have the 
largest influence in the calculated spectrum for 
this case of configuration (I). Overall, we notice the 
usual trend that improving the basis set decreases 
the distances and including correlation effects in- 
creases these distances, giving the reason for the 
generally good performance of the HF/STO-3G 
model for obtaining geometries for this type of 
system. 

Using the HF/STO-3G geometry, we calculated 
next the low-lying transition energies. This was 
made at the semiempirical INDO/CIS level using 
ZINDO [6]. The lowest state is an n-v* state with 
an intraring character, whereas the second state is 
an allowed 77-77* state that results from an inter- 
ring charge transfer. The calculated value (see 
Table II) of 26,000 cm"1 seems too high. There is 
no experimental result to make a direct compari- 
son. However, the first-allowed absorption transi- 
tion was measured in several solvents [2]. This 
transition lies at 18,100 cm"1 for cyclohexane, 
17,200 cm"1 for acetone, 16,400 cm"1 for methyl 
alcohol, and 15,000 cm"1 for water. By interpolat- 
ing these results for the dielectric constant of chlo- 
roform, we could expect a transition energy close 

to 17,000 cm"1. This indicates that our gas-phase 
result is indeed too large, as an unexpectedly large 
red shift is necessary to have a good agreement. At 
this level, the calculated value for the static hyper- 
polarizability of DIA using the sum-over-states 
method [7] (including over 200 excited states) is 
ßvec = 6.7 X 10 ~30 cm5/esu, which is certainly too 
low compared to the experimentally measured 
value of about 106.0 X 10"30 cm5/esu [1]. This 
large underestimate is corroborated by ab initio 
calculations: Using the HF method with the 6-311 
+ +G** basis, which includes as many as 472 
contracted Gaussian-type functions, we obtained 
the value of 7.2 X 10"30 cm5/esu. 

To include some of the solvent effects, super- 
molecular calculations of DIA in chloroform were 
made. These supermolecular structures were ob- 
tained from a separate Monte Carlo simulation [8]. 
The simulation used a Lennard-Jones plus Cou- 
lomb 12-6-1 interatomic potential. The Lennard- 
Jones parameters were obtained from the OPLS 
suggestion of Jorgensen et al. [9]. The Coulomb 
charges were obtained from CHELPG calculations 
[5, 10] at the HF/6-31G** level. Our first interest 
in this stage is the possible role of the hydrogen 
bonding between the DIA molecule and the CHC13 

solvent. Figure 3 thus shows the pairwise radial 
distribution function of the two N and O atoms of 
DIA and the H atom of CHCL. All three functions 
exhibit a peak around 2.5 A, characteristic of hy- 
drogen bonds. Integration of these three peaks in a 
volume space shows that, on average, there are 
two hydrogen bonds formed on the O site and one 
hydrogen bond on each of the N atoms. This is 
illustrated in Figure 4, which shows the four hy- 

TABLE II   
Calculated values for the first n-<n* and TT-TT* transitions (in 1000 cm   1) and the first static hyperpolarizability 
ßvec (in 10 "30 cm5/esu) of DIA both isolated and including the hydrogen-bonded chloroforms (see Fig. 4). 

n-Tr* Transition 7* Transition 

DIA (isolated) 
DIAOM^-HCCIg 
DIA(N2)-HCCI3 

DIA(0)-2HCCI3 

DIA"-4HCCI3 

Experiment (in HCCI3) 

23.48 (0.002) 
23.29 (0.003) 
23.55 (0.002) 
23.46 (0.005) 
23.13 (0.001) 

26.14(0.104) 6.7 
25.79 (0.095) 5.5 
26.85(0.101) 4.6 
24.99(0.117) 10.5 
25.96 (0.149) 9.1 
16.95a 106b 

'    All values are obtained with the INDO/CI method as implemented in the ZINDO program [6]. Nos. in parentheses are the 
calculated oscillator strengths. See text. 
a Interpolated from the experimental results of [2]. 
b Experimental result [1] within the uncertainty of 10%. 
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12.5 15.0 

FIGURE 3. The pairwise radial distribution function between the corresponding atomic sites of DIA and the H atom of 
HCCI3, as obtained from the Monte Carlo simulation. 

FIGURE 4. Illustration of the four hydrogen bonds formed between the 0 and N atomic sites of DIA and HCCI3. Also 
shown are the optimized hydrogen bond distances. 

drogen bonds. The influence of these hydrogen 
bonds are shown in Table II. As can be seen, these 
four hydrogen bonds do have some influence on 
the low-lying transitions. The separate contribu- 
tion of the hydrogen bonds in each site is given. 
The (two) hydrogen bonds on the O site have the 
largest influence on the 77-77-* shift. Although rela- 
tively large, this shift is not enough to bring the 
calculated transition even close to the experimen- 

tal result. A similar conclusion can be reached 
from the still very low calculated value of ßvcc = 
9.1 X 10"30 cm5/esu. We should mention that the 
results we obtained for a dipolar self-consistent 
field using a spherical cavity are similar to the 
gas-phase result. This is, of course, expected, as 
the reaction field depends on the inverse cubic 
power of the cavity radius. Other attempts to in- 
clude the solvent effects via supermolecular calcu- 
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lations including the first solvation shell after the 
four hydrogen bonds have, similarly, given poor 
results compared to experiment. 

the results obtained for configuration (II) are 
more promising. It is important to mention that 
full geometry optimization of configuration (II) is 
not very simple. Several attempts made at the HF 
level converged back to the lowest energetic con- 
figuration (I). However, by including some corre- 
lation contribution and some restraints, we were 
able to obtain at the MP2/STO-3G level the geom- 
etry shown in Table III. Now, the Cl—O and the 
Nx—C3 distances are compatible with a single 
bond as in the case of configuration (II). The bend- 
ing angle (C3—Na—C4) is lower than 120°. Using 
this ab initio MP2/STO-3G geometry, we again 
calculated the lowest excited states of isolated DIA 
using INDO/CIS. The second excited state is an 
n-TT* state at 18,600 cm"1 with an intraring na- 
ture and a low transition moment. The lowest 
calculated excited state is the 77—77-* interring 
charge transfer calculated at 17,000 cm"1, in excel- 
lent agreement with the experimental result. The 
calculated static ßvec is now 91.2 X 10 "30 cm5/esu, 
which is one order of magnitude larger than that 
for configuration (I) and now in good agreement 
with the experimental value [1]. The explicit use of 
configuration (II) leads to an improved description 
of the low-lying states of DIA in solution. To make 

a direct comparison between the two configura- 
tions, the results obtained using the same theoreti- 
cal procedure for obtaining the geometries 
(MP2/STO-3G) are given in Table III. The relative 
location of the 77-77-* is reversed with the n-7r in 
the two configurations. The reversal of the n-77-* 
and the 77—77-* states in going from nonpolar to 
polar solvents has also been noted elsewhere [11]. 
It is interesting to note the large difference in the 
calculated dipole moment. It can be seen that con- 
figuration (II) gives a 77—77-* transition that is 
red-shifted by nearly 8000 cm"1 as compared with 
configuration (I) and has also a much larger oscil- 
lator strength (given in parentheses). These have 
clear consequences in the calculated ßvec, which is 
now in considerable improvement and makes the 
two-level approximation [1, 7] work better for con- 
figuration (II) that for configuration (I). 

There is an interesting and complementary ar- 
gument relative to the competition between con- 
figurations (I) and (II): In the case of nonpolar 
solvents, it is expected that configuration (I) could 
still be more stable. For instance, for the case of 
DIA in cyclohexane, the experimental value [1] is 
around 15.0 X 10"30 cm5/esu, which is, indeed, in 
accord with our results for configuration (I). There 
is, of course, no reason to believe that these argu- 
ments should not prevail in other similar systems. 

TABLE III  
Comparison of the calculated geometries, dipole moment, first dipole hyperpolarizability, and transition 
energies for configurations (I) and (II). 

Geometry (A and degree) Configuration (I) Configuration (II) 

FKCi-O) 
R(N1-C3) 
R(N1-C4) 
R(N2—C7) 
0(C3- 
<p(C3- 
<p(c3- 

-IV 
-c4) 
-C4- -c5) 

-c4) 
Properties 

/a(D) 
ßvec(total) in 10"30 cm5/esu 
/3vec(two-level) in 10 "30 cm5/esu 
Transition energies (1000 cm "1) 

1.28 
1.36 
1.49 
1.48 

115.2 
123.1 
355.6 

2.7 
10.3 
24.1 
23.2 (0.009) n-TT* 
24.9 (0.174) 7T-TT* 

1.31 
1.49 
1.36 
1.45 

117.0 
152.6 
341.4 

7.4 
91.2 

130.9 
17.0 (1.153) TT- -TT* 

18.6 (0.029) n- -77* 

Geometric parameters are defined in Figure 2. See text. 
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In particular, it is known that some polymers in- 
crease the value of the first hyperpolarizability by 
an order of magnitude when in a solvent media. 

Conclusions 

Summarizing, this paper gives the ab initio-op- 
timized geometry of DIA in the most stable config- 
uration (I). As in solution configuration (II) is 
expected to be more stable than configuration (I), 
we have given some attention to its determination. 
It is seen from the calculated results that the 
molecular properties change with the configura- 
tion considered. It is thus expected that a large 
contribution of the solvent effects comes from the 
structure variation induced by the solvent. Of 
course, the usual solvent effects in the low-lying 
excitation spectrum, as given by the difference in 
stabilization energies in the ground and excited 
states due to the different contributions of the 
intermolecular forces, still play an important role. 
However, this article emphasizes the strong struc- 
ture dependence of the low-lying excited states 
that are of great importance for the understanding 
of the solvent effects, with dramatic consequences 
for the first dipole hyperpolarizability. 
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Introduction 

The design of new compounds for nonlinear 
optical (NLO) applications is a domain of 

intense activity where quantum chemistry pro- 
vides efficient tools to highlight the physical un- 
derlying phenomena and to determine structure- 
property relationships [1]. In particular, two recent 
theoretical reviews have considered the potential 
of large conjugated oligomers and polymers for 
NLO and have addressed the importance of the 
vibrational contributions with respect to (w.r.t.) 
the electronic counterpart, the effects of the sur- 
roundings, as well as the influence of including 
electron correlation and taking into account the 
frequency dispersion [2-3]. 

Due to a high degree of electron delocalization, 
ir-conjugated organic oligomers and polymers are 
the preferred materials for exhibiting large NLO 
responses. Nevertheless, 7r-conjugation could also 
be the cause of a lack of stability with respect to 
air exposure, laser irradiation, and processing con- 
ditions. In addition, the corresponding bandgap 
being small, absorption of the second- and third- 
harmonic-generated light consists in another limi- 
tation for their applications. Polysilylenes, most of 
the time named polysilanes (PSI) exhibit also fa- 
vorable NLO properties [4] which are combined 
with good electrical, mechanical, and thermal 
properties [5]. In addition, PSi presents a larger 
bandgap and is, therefore, more often transparent 
w.r.t. the generated higher harmonics than 77-con- 
jugated systems. These exceptional properties of 
PSi are due to their cr-conjugation and are at the 
origin of the increasing attention paid to their 
photoluminescence, piezochrdism, thermochrdism, 
conductivity, nonlinear optical properties, etc. 

Many theoretical studies have already con- 
cerned the PSi chains. The discovery of the ther- 
mochromic conformational transitions in PSi have 
directed the initial theoretical studies toward the 
relative energy of the various backbone conforma- 
tions and their associated spectra [6]. The effects of 
the conformational modifications on the ionization 
energies of small oligosilanes have been addressed 
by Ortiz and co-workers [7] and have been ratio- 
nalized in terms of phase relationships between 
bond and antibond orbitals localized in the Si-Si 
bond regions. Band structure calculations have de- 

termined the nature of electronic states and their 
evolution upon substitution by alkyl and aryl 
groups [8] as well as the shape of the energy 
dispersion curves [9]. Other theoretical calcula- 
tions have revealed that the lowest energy excita- 
tion in small oligosilanes is characterized by a 
weakly dipole-allowed a-ir* transition whereas 
larger chains present a strong a-a* transition [10]. 
The o--conjugation in PSi leads to a decrease of the 
lowest excitation energy with the size of the 
oligosilane just as the TT-TT* excitation energy de- 
creases with the polyacetylene (PA) chain length. 
These effects of electron delocalization were ex- 
pected to lead to substantial linear and nonlinear 
polarizabilities. 

Linear and nonlinear electronic responses of PSi 
and related oligomers have already been consid- 
ered several times. The first of these studies, car- 
ried out at the MNDO semiempirical level, claimed 
that PSi chains are more polarizable than the tv- 
conjugated PA chains of the same length [11]. 
Following studies have confirmed the highly (hy- 
per)polarizable character of PSi chains but have 
pointed out that PSi exhibits a similar linear polar- 
izability per unit cell to PA whereas its second 
hyperpolarizability per unit cell is one order of 
magnitude smaller. In particular, at the coupled 
Hartree-Fock (CHF/6-31G) level, Kirtman and 
Hasan [12] have calculated the electronic static 
polarizability, af(0;0), and second hyperpolariz- 
ability ytO; 0,0,0) of PSi chains up to Si)5H32. In 
the infinite chain length limit, the longitudinal 
static electronic polarizability, a[(0;0), per Si2H4 

unit amounts to 131.4 + 0.2 a.u* whereas the lon- 
gitudinal static electronic second hyperpolarizabil- 
ity, y[(0; 0,0,0), attains 5.16 + 0.14 X 105 a.u.f per 
unit cell which is one order of magnitude smaller 
than in ^-conjugated PA [13] and polydiacetylene 
[14]. Coupled and uncoupled Hartree-Fock polar- 
izability calculations performed on the infinite pe- 
riodic PSi have revealed that this large a[(0;0) is 
due to the highest occupied crystalline orbitals, 
which are built from Si3;, functions oriented paral- 
lel to the polymer axis [15]. More recently, Ortiz 
and Rohlfing have shown that the linear polariz- 

*1.0 a.u.  of polarizability = 1.6488  1(T41   C2   m2  J~1 = 
0.14818 A3. 

1.0 atomic unit of second hyperpolarizability = 6.235377 X 
10~65 C4 m4 r3 = 7.0423 X 10"54 m5 V~2 = 5.0367 X 10~40 

esu. 
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ability of polyCphenylsilane) oligomers slightly in- 
creases when the PSi backbone leaves its all-trans 
conformation to become helical [16]. 

Several aspects of the structure-property rela- 
tionships for PSi chains remain to be tackled in 
order to point out the main structural properties 
which should be tuned for optimizing their NLO 
responses. One important aspect is the evaluation 
of the vibrational contribution to the second hyper- 
polarizability which, for trisilane and pentasilane, 
has been shown by Kirtman and Hasan to modu- 
late strongly y as a function of the NLO process 
[12]. A forthcoming study is in fact devoted to the 
determination of the yv contributions in increas- 
ingly large PSi chains with inclusion of the 
lowest-order anharmonicity contributions [17]. The 
present study determines at the time-dependent 
Hartree-Fock (TDHF) level the nonresonant fre- 
quency dependence of y[ for the most common 
NLO processes: the electro-optic Kerr effect (dc- 
Kerr), the electric-field-induced second harmonic 
generation (ESHG), the third harmonic generation 
(THG), and the intensity-dependent refractive in- 
dex or degenerate four-wave mixing (DFWM) phe- 
nomena. Future works will consider the effects of 
the surrounding and of the substituents upon the 
second hyperpolarizability of PSi's. 

Methodological and 
Computational Aspects 

The second hyperpolarizability (y) is the third- 
order response of the dipole moment with respect 
to the external electric fields: 

fi£(<oa) = f$ + I>^(-öV; ajE^aJ 
i 

+ ^(2)Lj8ftf(-ü,(7;ft)1/6J2) 
if 

X Ev((oi)Ei(w2) 

+ ?K(3) E T^C-öv; (olrü)2, a>3) 
■nix 

XE7,(a»1)Ef(fl»2)E/a>3) + .../     (1) 

where wCT = E, &>, and the summations are running 
over the field indices 17, f, and x, associated to the 
Cartesian coordinates; fi°  is one element of the 

permanent dipole moment; iC(2) and K(3) are such 
that the ß and y of different NLO processes con- 
verge toward the same static value. The static, 
dc-Kerr, ESHG, THG, and DFWM responses are 
therefore given by y(0; 0, 0, 0), y(-oo; a>, 0, 0), 
y( — 2<w; 00, 00, 0), y( — 3oo; co, co, to), and y( —<u; to, 

- co, to), respectively. The two main approaches to 
evaluate the hyperpolarizabilities are based either 
upon perturbation theory methods which provide 
summation-over-states (SOS) expressions, or upon 
response function schemes. In the latter case, the 
response can be determined numerically (leading 
to the finite field schemes) or analytically. 

Perturbation theory provides general SOS 
expressions for molecular second hyperpolarizabil- 
ities [18]. Ordinarily, the electronic second hyper- 
polarizability (yc) is evaluated within the canoni- 
cal or clamped nucleus (CN) approximation [19] 
which means that the field effects upon the elec- 
trons and nuclei are considered sequentially. Vari- 
ous approaches can approximate the exact CN 
frequency-dependent SOS electronic second hyper- 
polarizability. The TDHF [20] procedure is proba- 
bly the most common procedure in ab initio calcu- 
lations. In this approach, a term representing the 
interaction between an external electric field (which 
contains both static and dynamic components) and 
the molecular dipole is added to the Fock matrix. 
Its effects upon the density matrix are obtained by 
expanding the TDHF equation as a power series in 
the external electric fields and by solving it self- 
consistently order by order. The successive density 
matrix responses are then used to evaluate the 
hyperpolarizabilities. The static limit of the TDHF 
procedure is referred to as the coupled-perturbed 
Hartree-Fock (CPHF) scheme [21] and has been 
presented under a convenient computational for- 
mulation by Dykstra and Jasien [22]. The CPHF 
procedure is in fact equivalent to the Hartree-Fock 
finite field (HF-FF) technique where the electronic 
hyperpolarizabilities are obtained as successive 
numerical derivatives of the field-dependent elec- 
tronic dipole moment with respect to the static 
external electric field. In this approach, the field 
dependence of the electronic dipole moment is 
built in the self-consistent field (SCF) procedure, 
via the - E,, ße

v Ev coupling term where /i* is one 
component of the dipole moment operator. Similar 
HF-FF approaches can be based upon the energy 
(E), the electronic polarizability (ae), or the elec- 
tronic first hyperpolarizability ( ße). Indeed, at the 
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HF level, one has: 

y{m (0; 0,0,0) = 

wx, (o2, w3) = yc(w„; -( ,, -w3).   A   useful 

~dEl 

dla ii dß m 
dE\ 

E = 0 
dEt 

E = 0 

£ = 0 

(2) 

Both the CPHF and TDHF schemes are atomic- 
orbital-based methods which are particularly well 
suited to deal with large organic compounds. Their 
sister method, the random phase approximation 
(RPA) technique [23] gives equivalent hyperpolar- 
izability values which are obtained from a compu- 
tationally more demanding molecular orbital-based 
procedure. However, in the RPA scheme, once the 
superoperator resolvent has been worked out, the 
hyperpolarizabilities for a large range of optical 
frequencies and processes can be calculated at a 
low computational cost whereas the TDHF equa- 
tions must be solved for each frequency of interest. 

For computing ye, we use the conventional 
CPHF and TDHF schemes as implemented in the 
HOND095-3 [24] computer program. As a matter 
of fact, our approach is a fully relaxed Hartree- 
Fock procedure which neglects the effects of the 
instantaneous interactions between electrons hav- 
ing opposite spin. Future works will investigate 
the importance of including these corrections 
which, on one hand, turn out to be significant for 
aL, and especially, for yL, of ^-conjugated carbon- 
based oligomers [25] whereas, on the other hand, 
their effects estimated at the MP2 level is rather 
small for <(0;0) of PSi chains [26]. The 6-31G 
basis set [27] has been employed for computing 
the static and frequency-dependent electronic sec- 
ond hyperpolarizabilities because it has already 
proven many times its adequacy for computing at 
a lower computational cost accurate electronic (hy- 
perpolarizabilities of extended a- and 77-con- 
jugated oligomers [12, 28]. Indeed, when the chain 
is lengthened, the gap between the 6-31G and 
extended basis sets bearing diffuse functions be- 
comes negligible as a result of the cooperation of 
the neighboring atomic functions. 

Dispersion formulas for yc(-wa; (olr w2, w3) are 
expressible in power expansions in squares of 
the optical frequencies. Indeed, since y  is real 

[ye(- Wi 3) = y'(- «1,   Wl )*] 
and since changing the sign of all the optical 
frequency is equivalent to taking the conjugate 
complex     [,yc(w(r;  - w1( - co2,  - w3)  = 
ye(-coa; o)v o)2, w3)*],   it   follows   that   ye(-o)a; 

form for comparing responses obtained with dif- 
ferent processes consists in expressing yc{-(x)tr; 
wl, w2, w3) in a power expansion in col = w* + u>\ 
+ w\ + w3. Indeed, for the diagonal, yuu, second 
hyperpolarizability tensor components, we have 
the relation: 

r««(_ftv; wi> wi> w3> 

= y£K(0; 0,0,0) 

x[l+Aw2
L +Bwi

L + Cwt +...],   (3) 

where A is the same for all optical processes (the 
process dependence being accounted for in wl) 
but depends on the molecule. Originally this fact 
was pointed out experimentally [29]. Then, it was 
demonstrated for atoms and centrosymmetric 
molecules [30] as well as for noncentrosymmetric 
molecules [31]. With the exception that it is identi- 
cal for dc-Kerr and ESHG, B depends upon the 
molecule and the NLO process. Depending upon 
the relative importance of the two terms involved 
in B [31], there could also exist molecules for 
which B is quasi process independent. The hyp- 
erpolarizability expressions due to Hättig [32] 
expanded in terms of symmetrized-frequency 
products also highlight these relations while, in 
addition, in this formalism, dispersion coeffici- 
ents are dropped out systematically when the 
NLO process involves static fields. To our know- 
ledge, this is also the first study dealing with C 
and D coefficients [32]. In conjugated systems, 
the longitudinal tensor component is often domi- 
nant and therefore, these equivalence relations hold 
also for the isotropically average quantity, y 
= ^L^iy^ + yfn(v + y^) which reduces to 
y = \yL. Consequently, for the most common NLO 
processes, the {[ye

L(-a>a; wv co2, co3)/y[(0;0,0,0)] 
- 1} quantity will obey the simple ratio rule 6:3:2:1 
for THG:ESHG:DFWM:dc-Kerr, respectively, pro- 
vided the optical frequency is small enough. Di- 
vergence with respect to this ratio rule is expected 
when w increases and particularly when w ap- 
proaches resonances which are defined by simple 
ratios of the excitation energies. 

Most of the time in conjugated systems, 
ye(-o)a; u)v w2, a)3) is dominated by a strong low- 
lying dipole-allowed transition which also deter- 
mines the three-photon resonance. This is the case 
in PSi for which Hasegawa et al. [4f, 4g] have 
highlighted the crucial role of this low-lying state 
in determining the third-order NLO response. From 
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analyzing the frequency dependence of the linear 
polarizability {[ae(-co; w)/ae(0; 0)] - 1} = A'a>l 
+ B'col + Cool + •■••/ an upper bound to this first 
excitation energy (A£) is given by 1/ {Ä, its [1,0] 
Pade approximant [33]. 

Results 

The fully optimized RHF/6-31G all-trans 
Si2NH4N+2 chains belonging to the C2h point group 
have been employed for the second hyperpolariz- 
ability calculations. As described in Refs. [13 and 
17], the evolution with chain length of the geomet- 
rical parameters saturates rapidly and the parame- 
ters of the central unit cell are already converged 
for N = 5. Figure 1 summarizes the polymeric 
RHF/ 6-31G unit cell geometry. 

The CHF/6-31G yL
e(0; 0,0,0) values as a func- 

tion of the PSi chain length are listed in Table I. In 
order to address the polymeric limit, it has become 
usual to define the second hyperpolarizability per 
unit cell as the difference between the y of 
oligomers containing N and N - 1 units: Ay[N] 
= y[N] - y[N - 1]. In our study, the unit cell is 

, 
\ 107.5      H 

112.9 

Si ^ 

%^                 •^ ̂ 2.381 

*Si 

""A H            H 

FIGURE 1. RHF/6-31G PSi converged geometrical 
parameters (in A and degrees). The PSi chains are 
oriented in such a way that the middle point of the 
central and end Si-Si bonds belong to the Z axis which 
is therefore referred as the longitudinal axis. The Si-Si 
bond of Si2H6 forms a 33.55° angle with the Z axis in 
order to foresee the orientation of the Si-Si bonds in 
growing PSi chains. The unit cell length is 3.970 A. 

TABLE 1 
CHF/6-31G y[(0;0,0,0)[N] and A7f(0;0,0,0)[N] = 
the number of Si2H4 unit cells (N).a 

= yl(0; 0,0,0)[N] - 7f(0; 0,0,0)[A/ - - 1] as a function of 

N cells                                  -yL
e(0; 0,0,0) AyL

e(0; 0,0,0) 
yliO; 0,0,0) 

yL
e(0; 0,0,0) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

5526 

35075 

137392 

335709 

620245 

967513 

1356506 

1772593 

2206288 

2651690 

29549 

102317 

198317 

284536 

347268 

388993 

416087 

433695 

445402 

2.111 

3.407 

4.197 

4.501 

4.635 

4.705 

4.745 

4.770 

4.787 

4.800 
aThe y values are given in a.u. (1.0 a.u. of second hyperpolarizability = 6.235377 x 10"65 C4 m4 J"3 = 7.0423 x 10"54 m5 

V_2 = 5.0367 x 10~40 esu). The last column lists the ratio between the longitudinal and average y. 
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the Si2H4 fragment. The chain length dependence 
of AyL

e(0;0,0,0), given in Table I and represented 
in Figure 2, is typical of conjugated systems where, 
due to electron delocalization, it first increases, 
then it saturates toward an asymptotic polymeric 
value. 

Another evidence of this one-dimensional elec- 
tron delocalization is demonstrated by the \ye

L/ye\ 
ratio, which is close to the value of 5.0, that would 
have been obtained if all the tensor components 
except y[ were equal to zero. By adopting the 
procedure described [13, 34] and employed in pre- 
vious investigations [14] for extrapolating to the 
infinite chain length the NLO properties of conju- 
gated materials, we obtain a value of 463 + 10 X 
103 a.u. for the asymptotic limit of AyL

f(0; 0,0,0). 
This value can be compared to the previous result 
of Kirtman and Hasan [12] who obtained from 
fitting their data to a 1/N power series expansion 
a value of 516 ± 14 X 103 a.u. The difference be- 
tween the two polymeric values originates from (i) 
slightly different geometrical parameters and (ii) 
the use in Ref. [12] of only the 1/N power series 
expansion for extrapolating Ay/;(0;0,0,0), which 
generally yields larger polymeric values. In order 
to compare PSi to other conjugated compounds, it 
is suitable to consider the y[ per unit length given 
by Ay [/a where a is the unit cell length. The static 

Ay[,(0;0,0,0) 

5 105 

FIGURE 2. CHF/6-31G Ay^O; 0,0,0) (in a.u.) as a 
function of the number of Si2H4 unit cells. 

h.y[/a value of PSi, PA, polyyne (PY), polydi- 
acetylene (PDA), and polybutatriene (PBT) are in 
the ratio 1.0:24:8.4:7.7:365, showing the more hy- 
perpolarizable character of the ir- versus rr-con- 
jugated compounds. 

For the N = 1-7 oligomers, we have evaluated 
the dynamic second hyperpolarizabilities by 
adopting the TDHF scheme. The results for the 
dc-Kerr, ESHG, THG, and DFWM processes are 
listed in Tables II-V for frequencies ranging be- 

TABLE II —  
TDHF/ 6-31G y£ (- w; o, 0,0) (in a.u.) as a function of the number of Si2H4 unit cells (N) and the frequency of 
the optical light.8   

Äw(eV) \ 
N 

0.2 5531 
0.4 5549 
0.6 5578 
0.8 5620 
1.0 5673 

A 9.69 
B (X10) 8 
C(x100) -10 

TDHF 
Estimated 

6125 
6119 

-0.09%) 

35128 137669 336498 621846 970163 1360326 

35290 138504 338881 626682 978173 1372020 

35562 139911 342906 634861 991732 1391823 

35945 141916 348656 646564 1011156 1420222 

36453 144555 356250 662061 1036922 1457934 

14.15 
15 
10 

40831 
40817 
-0.03%) 

18.62 
25 
34 

21.72 
33 
49 

23.84 
40 
67 

tf(- >,0,0)|, 

168056 
168074 

(+0.01%) 

425207 
425119 

(-0.02%) 

804674 
804514 

(-0.01%) 

25.30 
45 
77 

1276276 
1275764 
(-0.04%) 

26.33 
48 
80 

1810650 
1809238 
(-0.08%) 

aThe corresponding A, B, and C parameters (in a.u.) obtained by fitting Eq. (3) are listed in the middle section. An estimate of the 
dc-Kerr effect at A = 6328 Ä (hco = 1.959 eV = 0.0720 a.u.) by using Eq. (3) is compared to the TDHF result at the bottom of the 
table; in parentheses are given the differences in percent. 
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TABLE III  
TDHF/6-31G vf(-2to; to, to, 0) (in a.u.) as a function of the number of Si2H4 unit cells (N) and the frequency of 
the optical light.3 

hio (eV) \ 
N 

0.2 5543 35236 138225 338084 625064 975493 1368106 
0.4 5596 35727 140765 345354 639840 999992 1403896 
0.6 5687 36567 145151 357971 665578 1042776 1466511 
0.8 5814 37793 151627 376755 704116 1107093 1560915 
1.0 5986 39461 160581 403027 758448 1198275 1695269 

A 
B (X10) 
C (X100) 

9.78 
5 
2 

14.15 
15 
16 

18.61 
25 
35 

21.73 
33 
55 

23.85 
39 
73 

25.31 
44 
87 

26.31 
48 
90 

yl(-2w; co <W,0)|A=6943Ä 

TDHF 
Estimated 

7207 
7268 

(+0.8%) 

52418 
52293 
(-0.2%) 

235894 
234312 
(-0.7%) 

637097 
629667 
(-1.2%) 

1262927 
1292651 
(-1.6%) 

2070506 
2029088 
(-2.0%) 

3009001 
2929065 
(-2.7%) 

aThe A, B, and C parameters (in a.u.) obtained by fitting Eq. (3) are listed in the middle section. An estimate of the ESHG at 
A = 6943 A {ha>= 1.786 eV = 0.0563 a.u.) by using Eq. (3) is compared to the TDHF result at the bottom of the table; in 
parentheses are given the differences in percent. 

tween hco = 0.2 eV to hw=1.0 eV. The cor- 
responding dispersion curves plotted in Figure 3 
for Si4H10 and Si12H26 show the order y[(-co; 
,0,0) < y[(-co; co,- co, co) < y[(~2co; co, w,0) < 
yL

e( — 3<w; co, co, co). The differences between the 
values associated with the different NLO processes 
increase with the energy of the optical frequency 
as well as with the size of the PSi chain. This could 
be explained by a dominant dipole-allowed transi- 
tion of which the corresponding excitation energy 
decreases with chain length. Similar effects have 
already been noted for PA chains [35-37]. 

These data have been used for fitting [Eq. (3)] 
and obtaining the A, B, and C coefficients that are 
also given in Tables II-V. We have found a good 
agreement between the A parameters obtained 
from the different NLO processes; the differences 
being due to the numerical accuracy on the 
y[(-coa; col, co2, co3) values and, subsequently, due 
to the effects of truncating the fitting function. 

An asymptotic value, A(°°), of 27.8 + 0.9 a.u. 
has been determined by considering the extrapola- 
tions of the four frequency-dependence sets and by 
using various analytical functions to fit the A(N) 

TABLE IV  
TDHF/6-31G y£(-3to; to, to, to) (in a.u.) as a function of the number of Si2H4 unit cells (W) and the frequency of 
the optical light.3 

hco (eV) V 
0.2 5561 35398 139064 340484 629939 983571 1379901 
0.4 5668 36397 144264 355418 660367 1034109 1453824 
0.6 5852 38159 153591 382514 716017 1127055 1590314 
0.8 6125 40849 168222 425817 806108 1278899 1814783 
1.0 6505 44754 190303 492981 948569 1522342 2178249 

A 
B (x10) 

C (X100) 

9.70 
7 
5 

14.15 
15 
20 

18.65 
24 
47 

21.79 
32 
77 

23.94 
37 
104 

25.43 
41 
127 

26.46 
44 
144 

aThe A, B, and C parameters (in a.u.) obtained by fitting Eq. (3) are listed in the bottom section. 
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TABLE V  
TDHF/6-31G7f(-to;w,<o, 
of the optical light.3 

-to) (in a.u.) as a function of the number of Si2H4 unit cells (W) and the frequency 

h<o (eV) \ 
N 

1 

0.2 5537 35182 137946 337289 623451 972821 1364205 

0.4 5573 35507 139626 342089 633197 988970 1387787 

0.6 5632 36058 142486 350287 649881 1016656 1428254 

0.8 5716 36850 146621 362197 674197 1057098 1487469 

1.0 5826 37903 152175 378295 707209 1112158 1568275 

A 
B (X10) 

C (X100) 

9.68 
8 
-9 

14.15 18.62 21.72 23.84 25.30 26.33 

14 23 30 36 40 46 
15 30 40 52 58 67 

aThe A, B, and C parameters (in a.u.) obtained by fitting Eq. (3) are listed in the bottom section. 

C u 

O a 
3 
W 

4.60 104 c 

.5  .;? 4.40 io" 

T3 
e 
o 
a< 
<u 
-a 

o 

o 
& 
<u 

>-. 
J3 
■a e o 

13 g 

B 
'ED 
e 
o 

K 

4.20 10" 

4.00 104 

3.80 104 

3.60 10" 

3.40 104 

—•—dc-Kerr 

—h^ESiG 

—x— THG 

—o-DFWM 

1.50 106 

5     1.30 106 

o 
& 
u &, >. 

J3 
T3 c o 

1.10 10» 

9.00 10' 

0.2 0.4 0.6 

ftcoineV 
0.8 

—•—dc-Kerr 

—x—THG 

—a— DFWM 

0.2 0.4 0.6 Oi 

ßcoineV 

FIGURE 3. TDHF/6-31G dispersion of 
&>„, a><, a>Q 

processes. 
to,) (in a.u.) for the most common NLO 

data [13, 34]. This value should therefore help in 
determining y[{-wa; cou w2, a3) for any NLO 
process and for any light frequency. Determination 
of an asymptotic value for the B and C coeffi- 
cients, that are going to play a more and more 
important role when w increases, is, however, 
difficult because of their slow convergence with 
chain length as well as of their decreased numeri- 
cal accuracy. The numerical accuracy on the B 
coefficients can be addressed simply by comparing 
the B values obtained from the dc-Kerr and ESHG 
data which, in principle, should be identical. 

It is also interesting to define a frequency range 
in which the Awl term accounts for most of the 
frequency dispersion of y[. To do so, we have 
calculated the hwA below which Bwf < A col/10, 
i.e., the Aa>l contribution is about 10 times larger 
than the next term. For Si8H]8, hcol is equal to 
1.55, 0.90, 0.65, and 1.15 eV for the dc-Kerr, ESHG, 
THG, and DFWM processes, respectively, whereas 
for Si14H30, the corresponding energy limits are 
1.42, 0.82, 0.61, and 1.03 eV. We have also deter- 
mined the hcon values for which Acol = Bco^. In 
the same order, they are equal for Si8H18 to 3.46, 
2.02, 1.46, and 2.57 eV, whereas for SiuH30, they 
are 3.18, 1.83, 1.36, and 2.30 eV. We see that hwx 

and hwn decrease with chain length as expected 
from the chain length dependence of A E. A simi- 
lar treatment has been applied for the Ca>l w.r.t. 
the Bu>l terms. Keeping the same order for the 
NLO processes, the corresponding h<ax are equal 
to 1.82, 0.86, 0.50, and 1.19 eV for Si8H18, whereas 
for Si14H30 the energy limits are 1.49, 0.82, 0.43, 
and 1.10 eV. We have also determined the corre- 
sponding h(Du values which are equal for Si8H18 
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to 4.07,1.92,1.13, and 2.65 eV, whereas for Si14H30 

they are 3.33, 1.82, 0.97, and 2.46 eV. For the 
purpose of the following discussion, we could as- 
sume in first approximation that hcol and hcou for 
the C(x>l versus Bw* terms are roughly the same 
as for the Bcol versus A col terms. Consequently, 
for a light beam of energy smaller or equal to h cov 

the A(x>l term makes the major contribution, Bai* 
and Cco[ contributing for circa 10 and 1%, respec- 
tively. The situation for hcoa is totally different 
because the three contributions are roughly of the 
same importance. This also suggests that higher- 
order terms should not be excluded for determin- 
ing y[ and that the validity of using the truncated 
Eq. (3) is questionable. 

Another approach to delimit the region of valid- 
ity of Eq. (3) consists in locating the first resonance 
for each process. Indeed, Eq. (3) is no more valid in 
the vicinity of resonance. As is discussed in the 
last paragraph of this section, an upper bound to 
the excitation energy of the lowest-energy one- 
photon absorption, AE, is 7.41 and 6.74 eV for 
Si8H18 and Si14H30, respectively. AE corresponds 
to the position of the first one-photon resonance 
for the dc-Kerr and DFWM processes whereas for 
ESHG and THG the first dipole-allowed resonance 
occurs at AE/2 and AE/3, respectively. In the 
case of SigH18 and Si14H30, these resonances are 
located at 3.70 and 3.37 eV for ESHG and at 2.47 
and 2.25 eV for THG, respectively. Approximately, 
these resonances are located at energies twice as 
large as hcou. Moreover there also exist two-pho- 
ton resonances which can play an important role in 
the dispersion [4d,4f,4g] but cannot be assessed 
from the dispersion of the linear polarizability. 

Further assessment of the pertinence of using 
Eq. (3) to guess y[( — toa; co1, co2, co3) has been car- 
ried out by comparing the TDHF/6-31G y[(-co; 
w,0,0)|A=6328 Ä and y[(-2co; co, «,0)|A = 6943 A to 
their respective estimated values. The source 
wavelengths are typical of dc-Kerr and ESHG ex- 
periments. For the dc-Kerr results, the h co value of 
1.959 eV falls well below the hcon (close to hco^ 
limit, and the y[(-co; co, 0,0) estimates are in good 
agreement with the true TDHF value, with 
an error smaller than 0.1%. The estimations of 
y[( — 2 co; co, co, 0) are also of good quality even if 
the relative difference attains nearly —3% for the 
largest PSi chain considered. These larger devia- 
tions should be related to the fact that hco = 1.786 
eV is twice as large as hyl and is very close to the 
hcou limit. 

The y[(-coa; cov co2, co3) frequency dispersion 
curves of conjugated systems are often dominated 
by a strong low-lying dipole-allowed transition. 
We have estimated its excitation energy by fitting 
the [ae

L(-co; oo)/ae
L(0;0)] ratio to a power series 

expression in to 2  From Si2H6 to Si1AH 14iA30' AE is 
successively equal to 10.48, 8.86, 7.93, 7.41, 7.09, 
6.88, and 6.74 eV. Extrapolation to the infinite 
chain limit yields AE = 6.50 + 0.07 eV. This upper 
bound to the A E of the infinite stereoregular PSi 
chain can also be compared to the Hartree-Fock 
3-21G band gap of 9.63 eV that has been evaluated 
from a crystal orbital calculation [38] which does 
not include the electron-hole interactions and 
which therefore overestimates AE. In addition it 
can be compared to the numerous theoretical in- 
vestigations of the PSi band gap, including explic- 
itly (local density functional methods) or implicitly 
(valence effective Hamiltonian) electron correla- 
tion effects, which provide AE values ranging 
between 3.75 and 4.53 eV and assign it to a a — cr* 
transition [8]. 

Further Discussions 

It is tempting to relate our theoretical estimates 
to the available experimental quantities. First of 
all, one should only consider experiments carried 
out under nonresonant conditions. Second, it is 
necessary to make the connections between the 
macroscopic measured #(3) values and the micro- 
scopic calculated y values by using appropriate 
local field factors as well as density of Si-Si units. 
The relation between ^(3) and Ay can be ex- 
pressed as 

X{?,\-coa; cot, co2,co3) 

= xLJ<oJo,Ja,Nv X AyL(-o)„; cou co2, co3), 

(4) 

where the factor ^ comes from the difference of 
convention to define the experimental and theoret- 
ical quantities and from a § factor which relates y 
to the dominant longitudinal yL value. Nv repre- 
sents the number of Si2H4 unit cells per unit 
volume and is given by NA X (d/M) where NA is 
the Avogadro's number, d the weight density, and 
M the molecular weight of the unit cell. 

Kajzar et al. [4a] have determined a ^(3)(-3w; 
co, co, co) value  of 1.5 X 10~12   esu  for films  of 
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poly(methyl-phenylsilane) at A = 1064 nm. For 
THG, the pure vibrational contribution can be as- 
sumed to be negligible and therefore the NLO 
response is dominated by the electronic response 
and its zero point vibrational averaging (ZPVA) 
correction. The local field factors have been esti- 
mated from the simple Onsager/Lorentz expres- 
sions, fw = (el0 + 2)/3. An ew value of 2.5 has 
been chosen (/w = 1.5). It corresponds to the di- 
electric constant of poly(di-n-hexylsilane) [4e] 
which depends weakly upon the energy of the 
light in range of use for NLO measurements. By 
using d = 1.06 g/cm3 from Ref. [4d], one obtains 
AyL(-3w; co, co, co\ = WM nm = 6.6 X 106 a.u. 
whereas theoretically we have calculated 7.5 X 105 

a.u. It is important to remember that the experi- 
mentally derived value is the third-order NLO 
response per (SiMePh)2 unit, i.e., in first approxi- 
mation, the response of both the Si2 unit and the 
four substituents. For instance Ay(-3«; 
co, co, w)A=iof,4 nm = 2-l X 104 a.u. for benzene as 
computed by Kama et al. [39]. Another THG ex- 
periment [4b] of thin films of poly(methyl-phenyl- 
silane) and poly(di-M-hexylsilane) has provided 
*(3)(-3&>; co, co, «)A = 1907 nm values equal to 4.2 X 
10"12 esu and 1.3 X 10"12 esu, respectively which, 
using the same procedure as above, corresponds to 
AyL(-3co; co, co, «)A = ]907 nm = 1.9 X 107 a.u. and 
9.7 X 106 a.u. whereas the theoretical estimates is 
5.5 X 105 a.u. Baumert et al. [4b] have also high- 
lighted the conformational dependence of *-(3) via 
its temperature dependence. 

McGraw et al. [4c] have determined for poly(di- 
n-octylsilane) what they called the electronic and 
orientational contributions to ^(3)(-w; co, -co, co) 
at A = 532 nm. Their electronic contribution, which 
in fact contains both electronic and vibrational 
terms, amounts to 1.8 + 0.5 X 10"12 esu. By using 
d = 1.06 g/cm3 and fl0 = 1.5, the estimated 
AyL(-co; co, -co, w)A = 532 nm attains 1.7 X 107 a.u., 
whereas our theoretical electronic estimate attains 
only 8.4 X 105 a.u. Yang et al. [4d] have measured 
the #(3)( -co; co, - co, co) of poly(phenyl-methyl- 
silane) in THF solution at A = 1064 nm. Their 
X(3)(-co; co, - co, co) value extrapolated to the solid 
film (d = 1.06 g/cm3) is 5.0 X 10"13 esu. The local 
field factors have been estimated from the simple 
Onsager/Lorentz expression, which for THF 
amounts to /w = 1.32. The corresponding experi- 

1S mentally derived  AyL(-co; co, - co, co\ = WM nm 

equal to 3.7 X 106  a.u., whereas our theoretical 
estimate amounts to 5.6 X 105 a.u. 

Systematically, the theoretical estimates are one 
order of magnitude smaller than the experimen- 
tally derived quantities. This discrepancy could 
originate from different factors: (i) the crystal pack- 
ing effects which are not properly accounted for by 
using simple local field factors, (ii) the vibrational 
contribution of which the pure vibrational part—as 
opposed to the ZPVA correction—depends strong- 
ly upon the NLO process but is negligible for 
THG, (iii) the lack of electron correlation, and (iv) 
the effects of the substituents. The importance of 
the vibrational contribution is assessed in another 
work [17]. On the other hand, the substituents 
have a double effect upon ^<3>. Indeed they pos- 
sess their own x0) contribution, but they also 
modify the electronic structure and the conforma- 
tion of the PSi backbone. In particular, they de- 
crease the band gap and therefore they enhance 
the NLO response; the extent of which remains to 
be assessed. 
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ABSTRACT: We propose a computational technique to evaluate the reflectivity and 
the transmission of the harmonics generated by a planar-stratified material containing 
nonlinear layers. Maxwell's equations are solved and the scattering boundary conditions 
are implemented using a transfer matrix technique. As our goal beyond this study is to 
model sum-frequency generation spectra, our approach is limited to second-order 
processes. The great advantage of this algorithm is that owing to a self-consistent 
procedure the nonlinear scattering problem is reduced to the repeated solving of linear 
equations.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 763-770, 1998 
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Introduction 

Since the advent of lasers that produce highly 
coherent beams of light that can be extremely 

intense, a continued interest has been devoted to 
nonlinear optics [1-3]. Nonlinear processes are be- 
ing increasingly exploited in a variety of optoelec- 
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tronic and photonic applications, for instance, in 
the area of telecommunications. Furthermore, non- 
linear optical techniques, such as second harmonic 
generation (SHG) and sum-frequency generation 
(SFG) [4], which rely on specific second-order opti- 
cal processes, have emerged as useful tools to 
study various types of surfaces and interfaces [5, 
6]. 

Due to the complexity of nonlinear optical pro- 
cesses, their theoretical modeling can be very help- 
ful for a better understanding and a.proper ex- 
ploitation of the experimental techniques. In this 

CCC 0020-7608 / 98 / 040763-08 



CALDERONE AND VIGNERON 

way, the study of the interaction of an electromag- 
netic wave with a nonlinear medium depends on 
many parameters such as anisotropy, polarization 
of the light, and the structure of the sample. While 
most of the physics of the linear electromagnetic 
wave propagation in a stratified system is known 
from previous work in optics [7-9], much less has 
been undertaken to develop the required algorith- 
mic tools for nonlinear materials. 

In this study, we propose a computational tech- 
nique that allows for the evaluation of the contri- 
butions of harmonics in the waves reflected and 
transmitted by a planar-stratified material. The 
algorithm, described in the following section, is 
based on the resolution of Maxwell's equations 
and uses a transfer matrix technique [10] to com- 
pute the needed electromagnetic transmission co- 
efficients. Since our goal, beyond this study, is to 
attempt to model SFG spectra, we have limited 
our approach to second-order processes. The great 
advantage of our algorithm is that because of a 
self-consistent procedure, the nonlinear scattering 
problem is reduced to sequentially solving a sys- 
tem of linear equations. Another specificity lies in 
the mode of propagating the fields through the 
nonlinear medium. Indeed, this one is cut in suffi- 
ciently thin slices to consider that the fields in each 
of them are constant, so that an exact solution to 
Maxwell's equations can be obtained, in contrast 
to most standard integrators which are based on 
truncation techniques. An application related to 
the scattering of electromagnetic waves through a 
nonlinear organic film deposited on a glass sub- 
strate will be presented in the third section. 

Algorithm for the Computation of 
Electromagnetic Energy Transfer 
Through Nonlinear Anisotropie Films 

z 

/ 

1 an 

in 

eIII 

wave emitter 

I 

active nonlinear medium 
II 

substrate 
III 

FIGURE 1. Geometry of interest for the nonlinear 
stratified system. The Yg™ contain the dielectric functions 
and the second-order susceptibility tensors 
characterizing the nonlinear medium. 

The incident wave may present a transverse- 
electric (TE) or a transverse-magnetic (TM) polar- 
ization depending on whether the electric field is 
perpendicular or parallel to the incident plane, 
respectively. However, due to the presence of the 
nonlinear medium, the polarization of the result- 
ing transmitted waves can be mixed. 

The macroscopic polarization P induced in a 
nonlinear material due to the application of an 
intense electromagnetic field can be written as a 
Taylor series: 

P(r,f) 

P0 + *(1)(r)E(r, 0 + -*(2)(r)E(r, f)E(r, t) 

+ — A-(3)(r)E(r, f )E(r, f)E(r, f) + - ,     (1) 

GEOMETRY 

The stratified system considered here consists of 
a stack of nonlinear anisotropic films deposited on 
a dielectric substrate (Fig. 1). We will refer to the 
nonlinear films as "the active nonlinear medium." 
Moreover, the system contains a third medium, 
the wave emitter, in which the incident and the 
reflected waves propagate. The incident plane de- 
fines the yz plane: the y axis is oriented in the 
direction of incidence and the z axis is perpendic- 
ular to the surface. 

where P0 is the permanent polarization which 
exists in the material prior to when the field is 
applied, \m is the linear susceptibility tensor, and 
X(2) and x(3) are the second-order and third-order 
susceptibility tensors, respectively. In our algo- 
rithm, we have limited the polarization to the 
second order; this is sufficient for simulated SHG 
or SFG. Due to the stratified structure considered 
in this work, the space-varying dielectric and sus- 
ceptibility anisotropic tensors depend only on the 
normal coordinate z. 
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TIME-DEPENDEIW FIELD EQUATIONS AND 
THE HARMONIC REPRESENTATION 

The active nonlinear media induces a local dis- 
tortion of the incident signal, which we write as a 
Fourier series: 

+ 00 

E(M) = E   E   Eßn(z)ein^-^        (2) 
ß   n= -co 

+ CO 

H(r,0= E    E   H„B(zV<*»!'-ft">/      (3) 

where ß represents the spatial coordinates x, y, 
and z. This representation represents the fact that 
the interaction of an incident wave at frequency w 
with the nonlinear medium can lead to the forma- 
tion of new waves (which are the reflected or 
transmitted waves) at frequencies a>,2co, 3w,... 
and that the lateral momentum is conserved 
(therefore, if we transform a frequency to into a 
frequency 2 w, we must collapse two photons with 
an energy hu> into one photon with an energy 
2hw). 

With this representation, we shall write 
Maxwell's equations. The Gauss electric equation 
is: 

V • D = 0. (4) 

For a nonlinear interaction up to the second order, 
the a component of the displacement vector D can 
be written in the international mks system units 
as: 

4- °° 

Da = s0 E E  E 
n= — co   ß   m= -oo 

«a<Am + 2! 
T y(2l 

'E]n-m\^) Epm(z)e"*k»y-ot\   (5) 

where both ;', a, and ß represent the spatial coor- 
dinates x, y, and z. To simplify, we will introduce 
the notation: 

yßm = !»    i V y(2)   p. ( z) (6) 

As explained in the next section, in order to render 
the problem linear, we introduce a self-consistent 
approach and consolidate the values of the electric 
fields appearing in Tg™ to their values calculated 
in the previous iteration step. Finally, the Gauss 

electric equation (4) becomes: 

d r 

dz 
E ^zn"Eßm     ~       i-nky  E ^yn^ßm' 
ß,m J ß,m 

Vn = -co to +oo.   (7) 

The Gauss magnetic equation 

V • H = 0 (8) 

becomes: 

dH,„ , . 
= -ink H   ,       Vn = -ooto +°o.   (9) 

dz ""y   y 

And Faraday's law 

V X E(r, t) = -Mo 
<?H(r,f) 

dt 
(10) 

can be written, for each n going from - °° to + °°, 
as: 

dE yn 

dz 
= ink Ezn - infi0ü)Hxn, 

dEy 

dz 

Finally, Ampere's law 

V X H(r, t) 

in^0(oHv„, 

k.. 

^0w 

(11) 

(12) 

(13) 

<?D(r, 0 

dt 

becomes for each n going from — °° to + °°: 

dH ■yn 

dz 

dH, 

dz 

inkyHzn + ino)s0 E ^xn^ß 
ß,m 

=   -ina>e0  E ^ynEßm> 

(1) 
fi   _ „  v r'3mF nxn _     0 j.      l-i lzn   ^ßm' 

V ß,m 

(14) 

(15) 

(16) 

(17) 

where the sum over ß runs over the three coordi- 
nates x, y, and z while the sum on m goes from 
— oo tO  -t-o°. 

It should be noted that the time dependence in 
Maxwell's equations has now disappeared. It 
should also be noticed that since Eqs. (16) and (12) 
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can be obtained by combining Eqs. (7) and (17) 
and Eqs. (9) and (13), respectively, Eqs. (7) and (9) 
can be ignored, as redundant. 

SELF-CONSISTENT APPROACH TO 
NONLINEAR SCATTERING PROBLEMS 

At this stage, the system of equations [(11)—(13) 
and (15)-(17)] can be rewritten in such a way as to 
eliminate the normal component of the fields. The 
Hzn component is automatically eliminated by Eq. 
(13): 

H,„ — 
Mo« 

■£„• (18) 

Concerning the Ezn component, if we develop 
the sum over ß appearing in Eq. (17), we obtain: 

YrzmE   =——H   - Y(rxmE   + r^T  ) l—i'-zn '-'ztn lLxn        l—iKxzn  '-'xm        l zn  t-'ym'm 

SnO) 

If we denote 0" the inverse matrix of T2
2 

EatiTzm      c m 

(19) 

(20) 

By introducing Eq. (20) into Eq. (19), the E2„ com- 
ponent is found to be: 

E    = 
eo<»  p 

Ee^P-L(£0JT/;<)E,,„ 

EfEW/'K,,,.  (21) 
m    ^    n ' m   s   p 

Using Eqs. (18) and (21), the normal compo- 
nents of fields can be eliminated in the tangential- 
fields differential equations [(11), (12), (15), and 
(16)]: 

—-.(^c) — |HV„, (22) 

dE y 
dz 

(-«'^Efl/r Xt) 

*q 

+ E 
i 

+ E 
i 

V 

(-inkJZ,8J>r.yi ZP yq 

{nkyY 
(nw/c)' 

H xq 

-Kii0c)\ — )HX„, (23) 

dHx, 

dz E 
ncD\   1 

/x0c 

r*f _   y yr^maprxq 
1 yn l—i l—i * yn "in l zp 

m     p 
*q 

+ E -i 
nw\   1 

ß0C 

■ TM - V  y rz'iißpryq) 
I    yn l—i   i—ilyn"mlzp  I 

m      p 
VI 

+ E 
1   L 

(-'»UEW y' l-i'yn "m 
til 

Hxq,    (24) 

dH, 
y» 

(nk,Y 

dz 

+ E 

fi0c(nw/c)   x" 

na>\   1 

c   I fl0C 

rxij _yy yzmapyxq 
xn L^ L^ ± xii "ill    zp 

ill     p 

+ E 
no)\   1 

c   ) /x0c 

ryq _ y y rznißpryq | 1 ill 1J tj * xn "in l zp   I 
ill     p ' 

yq 

+ E 
1   L 

(MJEr^i H xq- (25) 

Finally, we have to resolve for each value of n 
(which in practice has a finite value) a system of 
four differential equations [(22)-(25)] which de- 
pend on the tangential components of the fields 
Ex, E , Hx/ and Hy. The normal components are 
afterwards explicitly given by Eqs. (18) and (21). 
However, T^"' (and thus the 0"), appearing in this 
system of equations, also depend on the electric 
fields. As pointed out above, we propose to intro- 
duce a self-consistent approach to make the scat- 
tering problem linear. In practice, our algorithm 
first solves the system of equations [(22)-(25), (18), 
and (21)] in the linear case, by considering that 
T£™ = eaß8"'. Then, the nonlinearity is introduced 
in a self-consistent manner. In the first iteration 
step, the values of the electric fields appearing in 
the rj3,,"' [see (6)] are those calculated in the linear 
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case. Then, in each following iteration, a new Yg™ 
is constructed where the values of the electric 
fields are fixed to those calculated at the previous 
step. After each step, a convergence test is per- 
formed on the convergence of the multifrequency 
reflection value. The nonlinear scattering problem 
is therefore reduced to repeated solution of linear 
equations. 

SCATTERING BOUNDARY CONDITIONS AND 
TRANSFER MATRIX 

On a plane with a constant value of the coordi- 
nate z, the tangential component of the electric 
field (E||) is a continuous function of z, even if the 
dielectric function e(z) contains a discontinuity. 
Moreover, for nonmagnetic materials (fi = 1), the 
tangential component of the magnetic field (H,,) is 
also continuous across the interface. 

In emitter region I and in collector region III, the 
dielectric function el and sm are constant over 
space. In such homogeneous regions, the electric 
field can be represented as a superposition of plane 
waves, with polarization vectors normal to the 
propagation direction. For an incident wave with 
lateral wave vector lcH (that is to say ky in the 
chosen geometry), the polarization vector 'n, de- 
fined as being the direction of the electric field in a 
local transverse electric configuration, corresponds 
simply to ex: 

Yl = 
k,| x e2 

|k„ x ez 

(26) 

while the direction of the corresponding magnetic 
field jji is defined as 

M-i = Xi yfca/c 
(27) 

for a wave which propagates in the direction of e2 

and 

^i ■Xi yfe^o/c 
(28) 

in the case of a backward propagation along e2. 
The tangential part of these complementary polar- 

ization vectors (xi) is given by: 

(na>) 2 
e, n (nkj 
■l    c2 

Xi = no) "V 

with die 
(xi 

7 
„ 1.2 > 0.   (29) 

Similar expressions exist for region III, with sm as 
dielectric function. We now write the general form 
of the fields in the emitter region as a superposi- 
tion of plane waves with both directions of propa- 
gation along the normal e2 and both polarizations: 

E„„(z) = N+T, e<»*.<*-*.> + Nf„r, C--»*I(*-*I> 

+ X^xic'"*'^"^ - xinXie-inHz-z'\   (30) 

while the magnetic field is expressed as: 

H||„(z) = 
}ß\ 

(N+Xie«,(z-2l) _ N- Xie-i«H*-*ö 
fl0C 

-XI
+„iie,'"':'(z-2l) - X^Tie-''"*1^-^).   (3D 

Similar expressions can be written for the collector 
region (III), with in this case the set of coefficients 
N£„, X5,„, N{lln, X,n„, and em as dielectric func- 
tion. 

Applying scattering boundary conditions 
amounts to finding the amplitude of the reflected 
wave so that, combined with a single incident 
wave, the field in region I provides initial condi- 
tions to propagate across the nonlinear medium 
and leaves in region III only outgoing waves (that 
is to say that N„In and X„In are both zero). Ob- 
taining the correct coefficients is merely a matter 
of choosing the appropriate superposition of plane 
waves in both regions, with the constraint that 
they connect according to the propagation equa- 
tions [(22M25), (18), and (21)]. _ 
_The_set of coefficients Nx

+, Xj+, N, , X1 and 
Win/ xiii' Nm.' xiii (tne overbar denotes an entire 
column of components corresponding to the differ- 
ent frequencies and labeled by the n indices) are 
representations of the wave in the incidence and 
emergence regions, respectively. If these coeffi- 
cients are known, the wave can be reconstructed 
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using the explicit field expressions given above. In 
particular, if the coefficients N,|„ XjJ„ Nuu XjJ, 
are known, the fields at z = zin are given by: 

Ell„(zm) = Ki,W + Nm„n + X^„xm - XmnXm 

(32) 

Hll«(zm) = -—riKinXm - N|Ti„Xm 

-x\\\,n - xm,Pl)-    (33) 

Conversely, if we know the field values on the 
interface   z = z,,  we can reconstruct the corre- 

sponding wave coefficients by inverting the above 
formulas, relocalized at the edge of region I. The 
computation of the wave coefficients is then re- 
duced to a simple four-order matrix multiplica- 
tion: 

where 

X in 

T- 

E*„(zi) 
EyH(Zl) 

(fi0c/}/7^)Hx„(zl) 
(34) 

r-1 = 
2c 

0      - 

2c 

e, a) 

u> 
, J-2 

'] C2 * 

e, &) 

'V 

2c 

2c 

}fe[i 

w 

(35) 

On the other hand, due to the linearity of 
Maxwell's equations, Eqs. (22)-(25), (18), and (21), 
there exists a transfer matrix that connects the 
coefficients in region I with those in region III. This 
relation is written as: 

N,+ 

\KN MJVX ^NN MNX] Nzt, 

xr M
+

X
+

N Mxx MxN Mxx Xni 

Nf Mut, MN
+

X MNN MM N,„ 

xr M-x
+

N M~xx MXN Mxx XlM 

(36) 

If the matrix is applied to a basis vector (in 
which all components are zero, except the one 

appearing in position q), the result of the multipli- 
cation in Eq. (36) is column q of the matrix. There- 
fore, the transfer matrix will_be computed by 
putting all wave coefficients N,{„ X,1,,, Nm, and 

Xni to zero, except one of them which will be set 
to 1. Then, using Eqs. (32) and (33), the corre- 
sponding fields are computed at z = z,„ and these 
values are taken as initial conditions to solve the 
system of equations [(22)-(25), (18), and (21)] and 
to propagate the electromagnetic waves through 
the nonlinear medium. In fact, to do this, the 
nonlinear medium is cut in different slices suffi- 
ciently thin to consider that the fields are homoge- 
neous in each of these layers. As the tangential 
fields are continuous at each interface, the system 
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of differential equations [(22)-(25)] is solved ex- 
actly for each layer, by using the values of the 
fields calculated in the previous slice as an initial 
condition. In this way, the waves are propagated 
from the interface at z = zm to the_ interface_at 
z = Zj where the coefficients Nt

+, Xj1", N[, Xf 
are built using (34). These correspond to a whole 
column of the transfer matrix. All columns are 
obtained in this way. We have tested this method 
of integration of the fields on known linear scatter- 
ing problems, and we have obtained very good 
results. The exact algorithm is expected to perform 
much better than standard integrators (like 
Runge-Kutta) which have to deal with truncation 
techniques. 

Once the transfer matrix is available, the scatter- 
ing boundary conditions can be implemented by 
specifying that, on_one hand, the incident wave 
and thus its N[, Xf coefficients are known and, 
on the other hand, there is no back-traveling wave 
in the emergence region, e.g., N^ = 0 and Xjjj = 0. 
Once introduced into Eq. (36), this provides a 
direct relationship between the coefficients of the 
transmitted waves and those of the incident wave. 
The transmission coefficients can be obtained from 
a system of linear equations: 

X7, 

M 
M 

NN 

XN 

M; 

Ml 

i-i 
NX 

xr 
(37) 

It is apparent that only a fraction of the transfer 
matrix is needed. 

Finally, the energy transfer which corresponds 
to the surface integral (/) of the Poynting vector 
over the unit surface a: 

/=|sKe[E||„(z)xHf„(z)-e2] (38) 

can be obtained directly from the computed coeffi- 
cients, using 

2/A0W' 

(nw) 
-nkl J = (|Nra„|2 + IX^/W em-^        ,^y 

(na>) „ . 
®l*ni 2 nky  '    (39) 

The Heaviside ©-function (1 for positive argu- 
ments, 0 otherwise) ensures that only radiative 
emerging waves transfer energy. 

Application 

As an application, we have modeled the scatter- 
ing of electromagnetic waves through a very thin 
nonlinear organic film of 5 X 10"9 m deposited on 
a glass substrate. The nonlinear film is composed 
of frans-1-dicyano, 14-aminotetradecaheptaene 
molecules which are planar and lie perpendicular 
to the incident plane, their long axis oriented along 
the y axis. The dielectric function and second-order 
susceptibility tensors are both anisotropic and are 
calculated from the corresponding polarizabilities 
and first hyperpolarizabilities provided by 
AM1/FF (Austin Model 1/Finite Field) quantum 
chemistry calculations performed by Geskin [11]. 
In this way, we have taken as real parts of the 
dielectric function tensor: sxx = 1.0300, eyy = 
1.1452, szz = 1.0000, exy = eyx = 1.0014. 

The other components and the imaginary part 
of all components are taken as zero and for the real 
parts  of the  second-order susceptibility  tensor: 
XX ?l = xfL = 4.8 X IQ"5   m/V, • (2)    =   v(2) 

Vyxx "yy = X, yy* 
1.59 XHT4 m/V, *$y = -7.510 x"l(T3 m/V; 
the other components and the imaginary part of all 
components are zero. The power of the incident 
beam is 20 X 10 "3 W and its wavelength is about 
0.632 X 10 ~6 m; these parameters correspond to 
those of a weak infrared laser. The polarization of 
the incident wave is TE. 

In Figure 2, we present the total reflectivity and 
the contributions of the first to fourth harmonics 
obtained at angles of incidence ranging from 0° to 
90°. As expected, the reflectivities calculated for 
the third and fourth harmonics are very weak. The 
reflectivity of the first harmonic is close to the total 
one, it starts from 0.04 at 0° (which corresponds to 
the value obtained at normal incidence at the vac- 
uum/glass interface) and increases to one at 90°. 
The high reflectivity at grazing incidence limits the 
penetration into the nonlinear medium and ex- 
plains the fact that the contributions of the other 
harmonics fall to zero. On the other hand, we have 
noted that they increase with the thickness of the 
nonlinear film. 

Conclusions 

We have built an algorithm which evaluates the 
electromagnetic harmonic generation by stratified 

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 769 



CALDERONE AND VIGNERON 

£» 
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FIGURE 2. Total reflectivity (tot) and the contributions of the first to fourth harmonics calculated, at different angles of 
incidence, for a nonlinear film of frans-1 -dicyano, 14-aminotetradecaheptaene deposited on glass. 

systems containing nonlinear layers. It is based on 
the direct solution of Maxwell's equations and it is 
limited to second-order processes. The scattering 
boundary conditions are implemented using a 
transfer matrix technique, and the integration of 
the fields through the active nonlinear medium is 
carried out by an exact approach. The great advan- 
tage of this algorithm is that because of a self-con- 
sistent procedure, we have reduced the nonlinear 
scattering problem to the repeated solution of a 
system of linear equations. The first results ob- 
tained in the case of an organic nonlinear film 
deposited on a glass substrate show promise. Our 
future goal is the modeling of sum-frequency gen- 
eration in order to help the interpretation of exper- 
imental spectra. 
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ABSTRACT: A recently published theory of electric field effects on electron spin 
resonance hyperfine couplings [Phys. Ref. Lett. 79, 379, (1997)] is extended to nuclear 
quadrupole coupling. With the use of the ab initio coupled Hartree-Fock approach and 
augmented Sadlej basis set, results are obtained for the first-order corrections to the 
isotropic and anisotropic parts of hyperfine coupling tensor and the electronic part of the 
electric field gradient tensor for 170 and 2H nuclei in OH radical. The first-order 
coefficients exhibit a number of interesting features. The calculated results, in general, 
appear to be insensitive to the bond-centered polarization functions used in the 
calculation.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 771-778, 1998 

Key words: electric field effects; hyperfine interactions 

Introduction 

Effects of electric field on the hyperfine inter- 
action in a paramagnetic system was first 

predicted by Bloembergen [1]. According to 
Bloembergen, if a nucleus or paramagnetic ion 
with I > \ occupies a site in a crystal lattice with- 
out inversion symmetry, an externally applied field 
will cause, in general, a change in the quadrupole 
coupling constant linearly proportional to the 
strength of the applied field. Later, Bloembergen 
[2] also predicted that the effective g-tensor and 

International Journal of Quantum Chemistry, Vol. 70, 771-778 (1998) 
© 1998 John Wiley & Sons, Inc. 

nuclear spin-electron spin hyperfine coupling 
(HFC) tensor A of a magnetic nucleus located at a 
noncentrosymmetric site in the lattice will experi- 
ence changes which are linear in electric field 
strength. 

The linear electric field effect, or the Bloember- 
gen effect as it is called now [3], has been observed 
in numerous nuclear quadrupole resonance (NQR) 
and electron spin resonance (ESR) experiments on 
crystaline [4-15] materials. Due to its ability to 
provide information on the spatial symmetry of a 
paramagnetic site as well as the strength of the 
local electric field near it, there is currently interest 
in measuring Bloembergen effect on ESR HFC of 
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point defects in amorphous materials, such as a- 
Si02, in metal-oxide-semiconductor (MOS) de- 
vices [16]. 

In contrast to the experimental measurements, 
theoretical treatments of the electric field effects on 
hyperfine interaction have been rather few and 
generally concerned with phenomenological de- 
scription [2, 17, 18] or semiempirical calculations 
[19]. In a recent letter [3], a general theory of the 
electric field effects on the nuclear spin (I)-elec- 
tron spin (S) hyperfine interaction within the per- 
turbation approach was presented. Results for the 
first-order corrections corresponding to the Bloem- 
bergen effect on the ESR HFC constants of 2H and 

O nuclei in OH radical were also presented. 
In this study, the theory presented in Ref. [3] is 

extended to nuclear quadrupole coupling constant. 
Expressions are derived for the coefficients repre- 
senting electric-field corrections to HFC parame- 
ters and electric field gradient (EFG) tensors in 
terms of the matrix elements of HFC operators and 
perturbed spin/total density matrices. Using the 
theory presented here, results are obtained for the 
first-order corrections to HFC and EFG tensor for 
OH radical. Effects of bond-centered functions in 
the basis set on the calculated results are also 
investigated and discussed. 

Theory 

The nuclear-electron hyperfine coupling tensor 
A appearing in the interaction Hamiltonian 

H' = I-A-S (1) 

is a combination of two terms: 

A = a + T, (2) 

where, a, known as the isotropic hyperfine coupling 
constant, is a scalar quantity which results from the 
interaction of the electron spin magnetic moment 
in contact with the nuclear magnetic moment. The 
second term in Eq. (2), known as the anisotropic 
hyperfine coupling tensor, results from the classical 
dipolar interaction between electron spin magnetic 
moment and nuclear spin magnetic moment. The 
anisotropic term, T, is a second-rank, traceless 
tensor whose principal components give the dipo- 
lar part of the HFC constant (HFCC). 

For a magnetic nucleus N, with IN > 1, there is 
also quadrupole moment QN associated with the 
nucleus. This quadrupole moment interacts with 
EFG around the nucleus leading to the splitting of 

NQR spectrum. The hyperfine splitting resulting 
from nuclear quadrupole interaction is described 
by a tensor, \, defined as 

A" = eqQ, (3) 

where e is the electronic charge and eq represents 
the EFG tensor. For the sake of simplicity in nota- 
tion, we shall denote the EFG tensor eq by R, so 
that Eq. (3) can be written as 

* = RQ- (4) 

Similar to the anisotropic HFC tensor T, # is a 
second-rank, traceless tensor. In the principal axis 
system, the component of y parallel to the direc- 
tion of the applied field, say z, gives nuclear 
quadrupole coupling (NQC) constant. If we treat 
Q as a constant and use its scalar value, as is often 
done, it is clear from Eq. (4) that \ is essentially 
described by EFG, R, which is a second-rank, 
traceless tensor. The EFG tensor is a sum of a 
nuclear term and an electronic term written as 

R = R„uc + Rci- (5) 

The nuclear term Rnuc results from the EFG due to 
all nuclei in the system other than the nucleus 
under consideration and depends on the nuclear 
charge and positions. The electronic part, Rcl, on 
the other hand, depends on EFG due to electronic 
charge and depends on electronic charge density. 
In the presence of an external electric field, both 
Rnuc and Rel would be affected: the former due to 
ionic movement and the latter due to polarization 
of electronic charge distribution. Thus, for a com- 
plete treatment of the electric field effects on x> 
changes in Rnuc as well as Rd need to be consid- 
ered. However, treating both terms at the same 
time quickly complicates the mathematical deriva- 
tion. Therefore, in the present study, we focus our 
attention on the electronic part only. The effects of 
electric field on the nuclear part will be treated in 
a separate work. 

Taking the scalar value of Q for a given nu- 
cleus, we can write the electronic part of \ tensor 
as 

xc = QRci- (6) 

At this point it is useful to introduce some con- 
stant terms and matrix elements of various opera- 
tors to be used. Let us define, 

Gc = (8V3)G,„ 

Gä  =   C2)geßegNßN. 

(7) 

(8) 
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The spin density,  pz, 
defined as 

pz(P) = (V 

at a point P in space is 

L2Szk8(rk) ¥>. (9) 

The total charge density, p(P), at point P is de- 
fined as 

p(P) = (V LS(rt) ¥>. (10) 

The matrix element, V£v, of the Dirac delta opera- 
tor is defined as 

^ = <^|5(rN)|^>. (11) 

The matrix elements, V^v of the electron-nucleus 
dipolar interaction operator is given by 

<*„!>■; ■(3 YN: rN, ■Aj)\4>v).    (12) 

In the above equations, ge is the electronic g 
factor, ße is the Bohr magneton, gN is the nuclear 
g factor, ßN is the nuclear magneton, Sz is the 
eigenvalue of the z-component of the spin angular 
momentum operator, <5(rN) is the Dirac delta oper- 
ator, rN is the radius vector of an electron from 
nucleus N, 8^ is the Kronecker delta, ^ is the 
total wave function of the system, </>^, <j>v represent 
the /nth and i<th atomic orbitals in the system, i, j 
represent Cartesian axes (x,y,z), and k repre- 
sents the fcth electron in the system. The summa- 
tion index k in the definition of the spin and total 
charge density runs over all the electrons in the 
system. 

Using these definitions and notations, the hy- 
perfine and EFG terms can be written in the matrix 
form as 

a = Gctr[vy], (13) 

Tl7 = Gdtr[V'V], (14) 

K,; = tr[V'H (15) 

Here, tr stands for trace. So far it has been as- 
sumed that the system is free from any external 
field. 

Let us now assume that an external electric field 
represented by E(r, t) = E(r)cos wf is applied to 
the system. For the sake of generality, an electric 
field with arbitrary frequency has been used. If 
this field is only sufficiently large to polarize the 
spin and charge distributions, we can describe the 

HFCC and EFG tensor by Taylor series expansions 
in the applied electric field, so that 

«(E) = «<°> + E4% + I: E £«??E*Ez +..., 
2! k     I 

(16) 

Tij{E)=Tip+ZT$Ek + -ZY,Tl%EkEl + ..., 

(17) 
k     I 

^(E)=^>+E^E,+-EE^LE,E;+.... 
2! k    I 

(18) 

In writing the above expansions, the frequency- 
dependent part of the electric field has been 
dropped for the sake of brevity. Here, a(0) is the 
field-free isotropic hyperfine coupling constant and 
d\) and af) represent the first- and the second- 
order corrections, respectively, to the contact term. 
Similarly, T/;

0) and Rf) represent the field-free 
terms, while T$, Rty and T$„ Rffa are the first- 
and second-order corrections to the anisotropic 
HFC tensor and EFG tensor, respectively. 

The zero-order dipolar terms T(0) and R(0) are 
tensor quantities of rank 2 and their nth-order 
correction terms are tensor quantities of rank m = 
n + 2. The zero-order contact term, a(0), is a scalar 
and the first-order correction term, a(1), is a vector. 
The second- and higher-order corrections to the 
contact term are tensor quantities of ranks 2 and 
higher. The first-order terms a(1) and T(1) together 
describe the Bloembergen effect [1, 2] and vanish 
for a paramagnetic center at a site with center of 
inversion. Similarly, first-order EFG term, R^k, 
vanishes for a nucleus located at a centrosymmet- 
ric site. It is trivial to show that the first-order 
correction to the nuclear quadrupole coupling ten- 
sor, Xijki at a center with center of inversion van- 
ishes. In fact, this is true for all odd-rank T and R 
tensors, i.e., for a nucleus located at a site with 
center of inversion [20], 

Similarly, 

j(l) = j(3) = 

R(D = R<3) .0. 

(19) 

(20) 

The even-rank tensors T(0), T(2), and R<0), R(2) etc., 
on the other hand, do not have this inversion 
symmetry  restrictions.  However,  the  following 
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trace relations [20] 

ET,r-ETfl>-ET$ = 0;       iijik = XfyfZ 
i i i 

(21) 

and 

E^=L^)=E^ = 0;       i,j,k = x,y,z 
i i i 

(22) 

hold for T and R in all orders. 
Similar to the HFC parameters, the spin density 

matrix, pz, and the total density matrix, p, can be 
expanded in the Taylor series of the applied elec- 
tric field as 

k z-   k     I 

(23) 

P(E) = p<°> + £p£% 4lEpg)ElE, + -, 
2! it    / 

(24) 

Substituting Eqs. (16) and (17) on the left-hand 
side of Eqs. (13) and (14), respectively, substituting 
Eq. (23) for the spin density matrix on the right- 
hand side, and separating terms with the equal 
coefficients in the resulting two equations, we ob- 
tain 

and 

a(0) = Gctr[Vcp2(0>], 

^> = Gctr[v^>], 

«i?«G£tr[Vfof>] 

T,f = Grftr[VV(0)L 

7^ = Grftr[VV/2)] 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

Similarly, substituting Eq. (18) on the left-hand 
side and Eq. (24) for the charge density matrix, p, 
on the right-hand side of Eq. (15) and separating 
terms with equal coefficients, we get 

R%, = tr[v"pß>] 

(32) 

(33) 

Rf) = tr[V V0)l/ (31) 

In deriving the above expressions, it has been 
assumed that the matrix elements of the contact 
operator, V"j,, and the dipolar interaction operator, 
V'/, over atomic functions are not affected by the 
external electric field. Although it is rigorously 
true only in the limit of the complete basis set, the 
effects of the electric field on the basis functions, in 
general, are too small to invalidate the assump- 
tions made here. 

Equations (25)-(33) provide a means to calcu- 
late electric field effects to HFC interaction from a 
knowledge of the matrix elements of the Dirac 
delta operator, dipolar interaction operator, and 
perturbed spin and total density matrices. The 
calculation of the matrix elements Vc„ and V^i is 
rather trivial. However, the same is not true for the 
calculation of the perturbed spin density and the 
charge density matrices. The simplest and a 
straightforward approach to calculate the static as 
well as the dynamic density matrices is the time- 
dependent coupled Hartree-Fock (TDCHF) theory 
[21]. In this work we use the TDCHF approach to 
calculate the first-order coefficients. 

Calculations 

We calculated the elements of the first-order 
coefficients a(1), T(1), and R(1) along with their 
zero-order counterparts for the 170 and 2H nuclei 
in OH radical. The first-order density matrices, 
p2(1)(w) and p(1)(w), were calculated via spin- 
unrestricted time-dependent Hartree-Fock (TDHF) 
method [22]. The calculations were performed at 
an internuclear distance R(OH) = 1.95 bohr using 
Sadlej basis set [23]. The Sadlej basis was further 
augmented by successively adding an s(3.80), a 
p(1.85), and a rf(0.925) function centered in the 
middle of the O—H bond. Numbers inside paren- 
theses are the exponents of the auxiliary functions. 
Frequency-dependent calculations were performed 
at an optical wavelength, A = 694.3 nm. 

Results and Discussion 

The calculated  results are listed  in Tables I 
through VII. For the sake of completeness, the 
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calculated values of the dipole moment, fi, and 
electric polarizability, a, are also listed in Table I 
along with the total energy. The bond functions 
systematically lower the total energy (Table I). 
However, the calculated properties (Tables I-VII), 
in general, seem to be insensitive to the additions 
of the bond functions. The Sadlej basis set [23] is 
fairly large and includes appropriate functions to 
accurately describe the core and valence regions of 
the molecule. Therefore, it is possible that addi- 
tional s, p, and d functions in the middle of the 
bond do not modify the charge and spin distribu- 
tions. On the other hand, the exponents of the 
bond functions, chosen somewhat arbitrarily, may 

be too large. An optimized set of functions would 
perhaps exhibit noticeable effect. 

The zero-order HFC parameters for the H nu- 
cleus in OH are available from gas-phase ESR 
experiments [24, 25]. Results of the present calcula- 
tions are compared with experiment in Table V. 
The calculated values of 2H(a(0)) are about twice as 
large as their experimental counterpart. On the 
other hand, the calculated values of the principal 
components of 2H(T(0)) are in good agreement 
with experiment. These results are consistent with 
other studies [26], whereby it is known that the 
unrestricted Hartree-Fock theory, as used in the 
present calculations, generally overestimates the 

TABLE I .  
Calculated values of total energy, E (a.u.), dipole moment, (JL (D), and polarizability, a (10   24 cm3)3 of OH. 

Basis setb 

aa(a)) calculated at A = 694.3 nm. 
bA = Sadlej basis. 
°x is the number listed in this row. 

A + S A + p A + sp A + spd 

£(-75.0-x)c 0.411732 0.412041 0.412290 0.412482 0.413052 

f1 1.806 1.805 1.806 1.805 1.805 

axx(0) 0.8441 0.8442 0.8445 0.8447 0.8471 

OLyy{0) 
azz(0) 

0.9916 0.9916 0.9923 0.9923 0.9937 
1.3007 1.3011 1.3010 1.3012 1.3003 

<a(0)> 1.0455 1.0457 1.0459 1.0461 1.0470 

axx(co) 0.8547 0.8549 0.8552 0.8554 0.8578 

OLyy(<o) 

azz(w) 
1.0050 1.0050 1.0056 1.0057 1.0071 
1.3167 1.3173 1.3172 1.3174 1.3165 

<a(«)> 1.0588 1.0591 1.0594 1.0595 1.0604 

TABLE II 
Calculated values of zero-order isotropic HFC constant, 
X<0), and asymmetry parameter, t\, for 170 in OH radical. 

a(0), anisotropic 
a 

HFC tensor, T<°>, NQC tensor, 

Basis set A A + s A + p A + sp A + spd 

a<°> -84.92 -84.77 -85.33 -85.42 -85.21 

T(0) 
'XX -269.60 -269.60 -269.02 -269.98 -270.58 

T(0) 
yy 138.09 138.14 137.55 137.62 138.52 

T(0) 
'zz 131.51 131.46 131.47 131.36 132.06 

y(0) -3.80 -3.90 -3.52 -3.63 -3.90 

y(0) 
Ayy -12.82 -12.78 -12.86 -12.81 -12.86 

xiV 16.62 16.68 16.38 16.44 16.76 

vb 0.5426 0.5325 0.5407 0.5583 0.5348 

a All results except for the values of ■»?, are in MHz. 
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TABLE 
Nonzero components of a(1) and T(1) for 170 in OH radical.8'b 

Basis set A + s A + p A + sp A + spd 

a<1>(0) -79.68 -79.21 -79.99 -79.54 -79.01 

a<1>M -82.23 -81.70 -82.51 -82.04 -81.50 

T&ft» 5.62 5.80 5.54 5.72 5.47 

Ty';»z(0) -12.60 -12.47 -12.63 -12.48 -12.29 

Tz
(
x>(0) 30.78 30.88 30.69 30.65 31.69 

Tz<;»y(0) 2.16 1.98 2.19 2.03 2.24 

Tjil(0) 6.97 6.67 7.08 6.76 6.83 

T<,>» 5.58 5.63 5.36 5.54 5.29 

T;;Z(CU) -13.12 -13.09 -13.26 -13.11 -12.92 

T<x>» 38.24 38.36 38.25 38.23 39.43 

Tz«;y(w) 2.79 2.65 2.87 2.70 2.92 

T<1>» 7.54 7.45 7.90 7.56 7.63 

aAll results are in the units of (10~11 MHz m/V). 
D Frequency-dependent coefficients calculated at A = 694.3 nm. 

isotropic HFC of first-row elements by about a 
factor of 2 but yields fairly accurate values for the 
dipolar terms. We, therefore, believe that the dipo- 
lar terms calculated in this work are fairly accu- 
rate, whereas the coefficients involving Dirac delta 
operator should be in error by a factor of about 2. 
We also believe, however, that the ratio (na)/a(0)) 
describing the Bloembergen shift in the ESR hyper- 

fine spectrum due to s-type electrons should be 
reasonably accurate. 

An inspection of the results for the first-order 
coefficients, a(1), T(1), and R(1), reveals a number of 
interesting features. First, we note that the magni- 
tude of the nonzero element of a(1) is considerably 
larger than any component of T(1). We also note 
that whereas for ' O, a(P has the same sign as its 

TABLE IV 
Components of R| t°>(a.u.)andR<e

1,>(10 11 a.u. m/V) for 170 in OH radical.3 

Basis set A A + s A + p A + sp A + spd 

R(0) 
' 'xx -2.2519 -2.2444 -2.2586 -2.2495 -2.2577 

R(0) 
nyy 2.6098 2.6180 2.5693 2.5791 2.6314 

fl<z> -0.3579 -0.3736 -0.3107 -0.3296 -0.3737 

fl<]>z(0) -0.7025 -0.7024 -0.7060 -0.7066 -0.7061 

Ry%(0) -0.9314 -0.9318 -0.9252 -0.9262 -0.9324 

n<])x(o) 0.5800 0.5785 0.5854 0.5845 0.5958 

R^yiO) 0.2887 0.2817 0.2957 0.2899 0.2914 

*&(o) 1.6339 1.6342 1.6311 1.6328 1.6385 

RUM -0.7140 -0.7142 -0.7179 -0.7185 -0.7180 

RylM -0.9499 -0.9504 -0.9436 -0.9447 -0.9511 

/?<;>» 0.6757 0.6739 0.6829 0.6815 0.6945 

R$yM 0.3114 0.3046 0.3191 0.3130 0.3146 

flz
1

z>>) 1.6639 1.6646 1.6615 1.6632 1.6691 

1 Frequency-dependent coefficients calculated at A = 694.3 nm. 
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TABLE V  
Results for the zero-order isotropic HFC constant a(0), anisotropic HFC tensor, T(0), NQC tensor, x<0), and 
asymmetry parameter, r\, for 2H in OH radical.3 

Basis set A + s A + p A + sp A + spd Expt.1 

a(0) 

T(0) 
'XX 

T(0) 
>yy 
T(0) 
'zz 
y(0) 
Axx 
y(0) 
Ayy 

v<°> 

-125.52 

-25.43 

-66.55 

91.98 

-0.0780 

-0.1311 

0.2091 

0.2536 

124.08 -121.21 -121.47 

-24.51 -24.64 -24.08 

-65.61 -66.03 -65.43 

90.12 90.67 89.52 

-0.0732 -0.0705 -0.0680 

-0.1262 -0.1242 -0.1217 

0.1994 0.1947 0.1897 

0.2658 0.2761 0.2833 

■121.66 

-21.20 

-68.18 

89.38 

-0.0682 

-0.1181 

0.1863 

0.2678 

-64.74 

-17.514 

-60.326 

77.56 

* Units for a and the components of T and x are MHz. 
DRef. [24]. 
: See footnote of Table II for the definition. 

zero-order counterpart, in the case of the H nu- 
cleus the sign of d-^> is opposite to that of a(

2
0). This 

suggests that an external electric field may cause 
either an increase or a decrease in the ESR HFC 
splitting. 

Second, we note that the elements of static as 
well as dynamic T(1) and R(1) obey the trace rela- 
tions given in Eqs. (21) and (22), respectively. It is 
also interesting to note that the elements of the 
dipolar terms T(1) and R(1) do not exhibit a permu- 
tational symmetry known as the Kleinman sym- 
metry [27] that is exhibited by the electric hyper- 
polarizability tensor, ß, in the static field limit. 

Finally, we note that the elements of a(1), T(1), 
and R(1) exhibit considerable frequency depen- 
dence. Thus, the extent of Bloembergen shift in 
ESR or NQR hyperfine splitting will depend on the 
frequency of the external field. 

Summary 

We have presented here a general theory of 
electric field effects on hyperfine parameters. With 
the help of the ab initio TDCHF approach and 
extended set of basis functions, results were ob- 

TABLE VI 
Nonzero components of a(1> and T<1) for 2H in OH radical.3 

Basis set A A + s A + p A + sp A + spd 

a<1>(0) 51.70 50.97 51.33 50.82 49.50 

a<1>U) 54.39 54.91 55.32 54.78 53.40 

Tx
{?z(0) 3.76 3.86 3.85 3.91 3.38 

V;>(o) 11.95 12.02 12.02 12.07 12.98 

7^(0) -13.65 -13.62 -13.67 -13.65 -12.83 

T™(0) 7.08 7.06 7.20 7.20 7.30 

WM -15.71 -15.88 -15.87 -15.98 -16.36 

T£l(o) 4.07 4.27 4.26 4.32 3.80 

7$U) 12.26 12.44 12.44 12.49 13.42 

T&{o) -12.18 -12.15 -11.87 -11.84 -10.87 

Tz%(co) 7.30 7.30 7.44 7.44 7.53 

TUX») -16.33 -16.71 -16.70 -16.81 -17.21 

1 Frequency-dependent coefficients calculated at A = 694.3 nm. The unit is 10   11 MHz m / V. 
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TABLE VII  
Components of Rj,?' (a.u.) and RJ.V (10~11 a.u. m/V) for 2H in OH radical: 

Basis set A + s A + p A + sp A + spd 

.".".MR«? 
-0.9628 
-0.8838 

-0.9700 
-0.8911 

-0.9740 
-0.8940 

-0.9777 
-0.8978 

-0.9774 
-0.9031 

Riy 1.8466 1.8611 1.8680 1.8755 1.8805 

fl&(0) -0.0673 -0.0659 -0.0664 -0.0655 -0.0651 

fl<J>z(0) -0.0890 -0.0876 -0.0884 -0.0875 -0.0863 

fl<]>x(0) 0.0523 0.0522 0.0525 0.0523 0.0512 

R$y(0) 0.0273 0.0272 0.0276 0.0275 0.0258 

Ri1z»z(0) 0.1563 0.1535 0.1548 0.1530 0.1513 

R<x>» -0.0684 -0.0670 -0.0676 -0.0667 -0.0662 

/$» -0.0902 -0.0888 -0.0896 -0.0887 -0.0872 

fl&u) 0.0491 0.0490 0.0493 0.0491 0.0497 

fl&U) 0.0265 0.0265 0.0270 0.0269 0.0251 

fl<1
z>» 0.1586 0.1558 0.1572 0.1554 0.1534 

' Frequency-dependent coefficients calculated at A = 694.3 nm. 

tained for the first-order corrections to ESR HFC 
parameters and EFG tensor for OH radical. These 
coefficients exhibit some very interesting features 
which may be useful in probing microscopic struc- 
ture and properties of paramagnetic sites in solids. 
For a reliable prediction of these coefficients, par- 
ticularly the contact terms, a more accurate theo- 
retical technique than TDUHF is required. We 
hope that the present work will serve as a stimulus 
for further theoretical development and calcula- 
tions and experimental exploration of the electric 
field effects on hyperfine interaction. 
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1. Introduction 

Even for atoms described by the nonrelativis- 
tic Schrödinger equation, for the number of 

electrons N exceeding a certain rather small inte- 
ger, the many-electron wave function ^r(rl... rN; 
0-j ... aN) with r„ and an representing space and 
spin coordinates of the nth electron contains a 
great deal of redundant information. Therefore, 
Löwdin [1], Coleman [2], McWeeny [3], and others 
proposed to work with reduced density matrices, 
defined from ^ in a way described for example by 
Löwdin [1]. For a customary nonrelativistic Hamil- 
tonian H, the ground-state energy E is well known 
to be determined by the first-order spinless den- 
sity matrix (1 DM) yGr^r'j) and the (diagonal ele- 
ment of the) second-order matrix (2 DM) 
y^r^r'^). 

In density functional theory, theorems exist [4] 
which show formally that E — E[ p] and the im- 
portant exchange-correlation potential energy 
Vxc[ p], related to the energy component Exc[ p] of 
E[ p] containing exchange plus correlation contri- 
butions by the functional derivative relation 

VJ P] 
SEJ P] 

Sp(r) 
(1.1) 

are, as indicated notationally above, functionals of 
the electron density p(r), related to 1 DM y(r1,r'1) 
by 

p(r) = y(r,r). (1.2) 

Very recently, Holas and March [5, 6] obtained 
Vxc[ p] exactly in terms of y and y2, plus the 
single-electron reference system defined formally 
by the Slater-Kohn-Sham (SKS) Schrödinger 
equations [7] characterized by the one-body poten- 
tial V(r). Holas and March [5] described this re- 
ference system, not, of course, exactly available 
because of the as yet unknown Vxc, by noninteract- 
ing density matrices ys and y2s defined from a 
single Slater determinant formed from the occu- 
pied SKS one-electron orbitals, that is, 

vxc - vxc[y,y2;y5,y2s]. (1.3) 

The N-representability problem arises with y and 
y2: namely, how one knows that approximate 
forms of, say,  y2   came from an antisymmetric 

N-electron ground-state wave function ^P. One 
must expect especially from the work of Coleman 
[2] (see also Young and March [8] on the jellium 
model) that ad hoc approximations to Vxc in atoms 
and molecules can lead to ground-state energies 
below the exact ground-state energy E, in spite of 
the variational basis of density functional theory. 
Therefore, Holas and March [6] subsequently pro- 
posed a method which, in principle, can bypass 
the N-representability problem associated with Eq. 
(1.3) by employing diffraction experiments. It re- 
mains to be seen, however, what accuracy can be 
achieved for V^r) for a specific system (e.g., Be 
metal: Brown [9], Coppens [10], and Massa et al. 
[11]) by the Holas-March proposal. Of course, one 
must hope that, if this approach has useful accu- 
racy for Vxc(r), building up a body of results of 
Vxc(r) will lead one toward the construction of 
"variationally acceptable" approximations to 
VJ pi 

However, all this is for the future, and in the 
present article, we focus directly on the differential 
equation satisfied by the ground-state density am- 
plitude {p(r)}1. This equation takes the form 

vV + -^[-Ul - Vr) -y(r)] P" = °' (1-4) 

with \I\ the ionization potential. The historical 
background of this equation was discussed by 
Levy and Görling [12]: the potential energy VIt) 
being termed the Pauli potential ([13], see also 
Herring and Chopra [14] and Holas and March 
[15]). 

In Eq. (1.4), V(r), of course, as defined above 
characterizes the SKS Schrödinger equations, while 
V (r) is a one-electron quantity defined by 

V'M~    W 
STS[ p]       8TJ p] 

Mr) 
(1.5) 

While T.„[ p], the von Weizäcker inhomogeneity 
kinetic energy, has the form [7] 

Up] = —/ dt, 
J       n im 

(1.6) 

the single-particle kinetic energy functional Ts[ p] 
remains unknown (and current practice, of course, 
is to bypass it by calculating single-particle kinetic 
energies from the one-electron orbitals generated 
by the SKS equations). It will be useful below to 
write the effective potential V,,//1") entering the 
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density amplitude Eq. (1.4) as 

Veff(r) V/r) + V(i) 

V(r) + VH(r) + Vxc(r),      (1.7) 

where VH(r) is the Hartree potential generated by 
p(r) and the potential energy of the nuclear frame- 
work of the molecule under investigation. Evi- 
dently, except at point nuclei, Poisson's equation 
relates VH(r) to the ground-state density p(r) by 

V2VH(r) = -477-p(r)e2 (1.8) 

which expresses the requirement of self-con- 
sistency. Equation (1.8) plays a crucial role in the 
setting up of explicit, although, of course, approxi- 
mate, equations for the electron density p(r) be- 
low. Let us begin by using the simplest semiclassi- 
cal approach, the Thomas-Fermi statistical method, 
the forerunner of modern density functional the- 
ory [7, 16]. 

2. Semiclassical Differential Equation 
for Ground-State Electron Density p(r) 

Using the variational principle 

8[E -Np] =0, (2.1) 

where p is the Lagrange multiplier taking care of 
the density normalization 

fp dt = N, (2.2) 

having the physical significance that it is the con- 
stant chemical potential of the electronic charge 
cloud throughout the inhomogeneous density dis- 
tribution p(r), one has in Thomas-Fermi (TF) the- 
ory, with Ts( p) = ckfp(x)5/3 dr. 

p=^p2/3 + V„(r) + Ve(r), (2.3) 

where V„(r) + Ve(r) is the Hartree potential VH(i) 
already introduced in Eq. (1.7) above, n denoting 
the nuclei, and e, the electrostatic potential of the 
electronic charge cloud p(r), and ck = (3h2/10m) 
X (3/8TT)

2
/

3
. 

Operating with the Laplacian V2 on Eq. (2.3) 
and utilizing Poisson's Eq. (1.8) then yields after a 
short calculation the result [17] 

V2^ 

P 

Vp 

p 
EL (2.4) 

where the length lx is a pure number given by 

1 / 77\5 
h = — I —   fl0

: ao = ^ /me2. (2.5) 

Equation (2.4) is the simplest of the self- 
consistent-field equations for the electron density 
to be displayed in the present study. 

2.1. MODIFICATION OF ZERO-FIELD E0- 
(2.4) FOR ATOMS IN INTENSE MAGNETIC 
FIELDS OF STRENGTH B 

Solving Eq. (2.3) yields p(r) a[ p, - VH(r)]3/2, 
which is the three-dimensional TF density-poten- 
tial relation. However, for atoms in intense fields, 
the cyclotron radius lB defined by 

h 
1 M1/2 

e 
(2.6) 

must enter the equation for p(r, B). Motion along 
the magnetic field is still determined by VH 

through a one-dimensional TF factor [ pB — 
VH(r)]J, where the chemical potential now de- 
pends on the field strength B. But this is propor- 
tional to a number of electrons/unit length, and, 
hence, the number p(r, B) per unit volume has the 
form 

constantf pB - VH(r)F 
p(r, B) = -2 .     (2.7) 

'B 

Kadomtsev [18] was the first to derive Eq. (2.7) 
(see also Banerjee et al. [19]) and the explicit form 
is 

p(r, B) = constant B[ p - VH(r)p,     (2.8) 

where the constant is as in [18] and [19]. Thus, 
squaring Eq. (2.8), one has 

constant p2(r, B) 
pW =  ^  + VH(r).      (2.9) 

Of course, Eq. (2.9) cannot be employed for other 
than large B. A form unifying Eqs. (2.3) and (2.9) 
was given by Pfalzner and March [20] but we shall 
not go into this generalization here. 

Combining Eq. (2.9) with Poisson's Eq. (1.8) 
yields then 

constant 
0 = -47re2p(r) +  -=—V2[ p2(r, B)] 
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or 

V2P 

TTK»
4 

+ 
Vp 

P 
(2.10) 

For atoms, solutions of this equation can be con- 
structed from the earlier work of Hill et al. [21] 
who solved for the Hartree potential VH(r) for 
atomic ions. In the above TF theory, the atoms 
remain spherical, and so in some sense, the semi- 
classical limit corresponds to "small" B. Lieb et al. 
[22] showed, in fact, that one must distinguish for 
atoms regimes of both B and atomic number Z 
large, but still one can have B/Z3 «: 1, B/Z3 ~ 1 
and B/Z3 » 1 regimes. The first is the TF regime, 
while the last is the hyperstrong (HS) field regime 
in which atoms become "needles." 

3. Density Amplitude Differential 
Equation for Atomic Needles 

Following Lieb et al. [22], one can construct a 
density matrix theory which eventually yields a 
differential equation for the density amplitude 
pHz) = >f/(z), with z along the field. This equation 
takes the form 

-iA"(z) - S(z)i/r(o) + <//3(z) = const t/Kz), 
(3.1) 

with physical solution, for A = N/Z < 2, 

2*(2 - A) 
<Kz) 

4sinh[K2 - A)|z| + c] ' 
(3.2) 

with tanh c = (2 - A)/2. For A < 2, the energy is 
given by 

EHS(A) = A + -A2 A3        (3.3) 
4        8 48 

and the corresponding chemical potential equation 
is 

1       1 A" 

ZA%S=-4~ + 4"A--. 
(3.4) 

Lehmann and March [23] discussed the Pauli po- 
tential Vp from Eq. (3.1). This method shows that 
atomic needles can bind 2Z electrons to an atomic 
nucleus carrying charge Ze. One must expect ter- 

restrial chemistry to be totally changed in the 
atmosphere of a neutron star [24]. 

We do not, presently, have a theory to enable us 
to pass smoothly from the semiclassical high-field 
TF theory characterized by the differential Eq. 
(2.10) to the Lieb et al. [22] eq. (3.1), that is, from 
spherical atoms to needles. 

4. Inclusion of Exchange 

So far, we have neglected the potential Vxc(r) in 
the original density amplitude equation. Let us 
next incorporate the Dirac-Slater (DS) exchange 
potential 

Vx
D5(r)= --cxp*:cx 

3e2 ( 3 , 

Then,   the   chemical   potential   equation   of  the 
Thomas-Fermi-Dirac [16, 7] theory reads 

PTFD = \ckP(rf/3 + VH(r) - \cxp"\   (4.2) 

Again, let us take the Laplacian of Eq. (4.2) to find 

5      (2     ,     ] 4      C1 
0 = -ckV{ -p~'Vp\ - \irpc2 - -cxV{ -p  'Vp 

(4.3) 

or 

2 _ Airpe 

Defining 

10 1 4 9 
P~'V2p- -p'KVp) 

p-iV2p--p-HVpY 

V2p       i ( Vp 

P       3 \ p 

(4.4) 

(4.5) 

we find from Eq. (4.4) 

10 4 
477pV = —ckL

(1) - -c,p-*[L<2>].     (4.6) 

Equation (4.6) generalizes Eq. (2.4) to include the 
effect of Dirac-Slater exchange. The relativistic 
generalization of Eqs. (2.4) and (4.6) is effected in 
Appendix 1 below. The high-field Eq. (2.10) also 
has a relativistic analog, which is derived in 
Appendix 2. 
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5. Inclusion of Gellmann-Brueckner 
High-Density Correlation Energy 

We next treat the effect on the differential Eq. 
(4.6) for the ground-state density of including the 
Gellmann-Brueckner [25] correlation energy, as 
obtained from the high-density limit of the jellium 
model. This has been achieved in the work of 
March et al. [26]. 

The chemical potential equation becomes then 

5 4 
^IFDC = 3^P2/3(r) - -cxP^3(t) 

-cclnp(r) +VH(r).   (5.1) 

When we apply the Laplacian operator to Eq. (5.1), 
we find the new term beyond the TFD theory to 
have the form 

v>tap = v.(^) = ^-(^)W>. (5.2) 

Hence, as March et al. [26] emphasized, the depen- 
dence of the self-consistent-field problem on the 
reduced density gradient variables V2p/p and 
iVp/p)2 remains intact. 

6. Proposal of Generalized Local 
Density Approximation and Use of 
Experimentally Determined 
Ground-State Density 

The three zero-field Eqs. (5.2), (4.6), and (2.4) all 
are embraced by the equation 

V2p Vp 
 S(p) + —-VrS(p) = l. (6.1) 

P P 

It can immediately be verified that if one substi- 
tutes the self-consistent atomic TF density prF(r) 
obtained by solving Eq. (2.4) with the appropriate 
atomic boundary conditions then Si p) follows 
from Eq. (6.1) as 

STFi p) = Zj pj-p3 (6.2) 

and nothing new is obtained. Similarly, substitut- 
ing p£pD from (4.6), one finds 

and adding Gell-Mann and Brueckner correlation, 
the generalization 

S
TFDC( P) = h Prfoc + h PT/DC + h PT/DC   (6-4) 

follows. 
If one now asserts that a "generalized" local 

density approximation consistent with the se- 
quence (6.2)-(6.4) is described by 

S(p) (6.5) 

STFDi p) — /j PrFD + '2 PrFb' (6.3) 

then Eq. (6.1) follows. 
Of course, one must input pir) to extract S(r) 

by solution of the first-order differential equation 
(6.1). The proposal here is to take pir) from mea- 
sured X-ray or electron scattering experiments on 
Xe. This will then yield, to within "experimental" 
error, Sir) for Xe from Eq. (6.1). But atomic densi- 
ties p(r) decrease monotonically from the nucleus 
and, hence, Si p) can be found for Xe. We expect 
Si p) to converge to a unique limit as the atomic 
number is increased in a nonrelativistic theory. If 
we then go to radon, to test the convergence of 
Si p), the "experimental" pir) may need correction 
in the K shell due to relativistic effects. 

It seems intriguing to contemplate that informa- 
tion on the "jellium" model in the form of Si p) 
defined through Eqs. (6.5) and (6.1) might be ex- 
tracted from "atomic" densities, but that is, in fact, 
part of the underlying philosophy of DFT and, 
indeed, the entire basis for the TFDc theory given 
above and characterized completely by Eq. (6.4), 
with lu i = 1-3, taken from jellium calculations. 

7. Slater Sum: or Generalized 
Partition Function 

We turn from the ground-state electron density 
to the generalized partition function, or Slater sum 
P{t, ß), with ß = ikBT)~l. Again, we focus on 
normalized eigenfunctions t/>,(r) and correspond- 
ing eigenvalues e, generated by the one-body po- 
tential Vit). Then, the definition of P(r, ß) is 

Pit, ß) = £ «A,(r)4>* (r)exp( - ßet).    (7.1) 
alii 

It will be convenient this time to begin with the 
external-field problem. In particular, let us treat 
initially free electrons described by plane-wave 
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functions exp(z'k • r) in a constant electric field F 
along the z axis. 

7.1. SLATER SUM P(z,ß,F) FOR FREE 
ELECTRONS IN CONSTANT ELECTRIC FIELD 
OF STRENGTH F 

Thomas-Fermi theory would simply move each 
energy level by a "constant" amount—Fz, leaving 
the wave functions as the original plane waves. 
The approximation to the Slater sum is then 

PTF(z,ß,F) = P0(ß)exp(ßFz).       (7.2) 

This, in fact, needs to be corrected by a factor 
given by Jannussis [27] and by Harris and Cina 
[28] to yield the exact form 

P(z,ß,F) = P0(ß)exp\ ßFz + 
3r2 

~~24~ 

(2770) 
-3/2 

■P0(ß) 

(7.3) 

Lehmann and March [29] constructed the differen- 
tial equation satisfied by P(z, ß, F) in Eq. (7.3) as 

1 d P a \   aP\      1 
 r -    -Fz + —-     —    - -P = 0,   (7.4) 
8 dz3      \ Sß   \ dz)      2 

for this  free-field  problem with arbitrary  field 
strength F. 

7.2. SLATER SUM OF BARE COULOMB 
POTENTIAL-Ze2/r 

March and Murray [30, see also 31] in early 
work on central-field problems analyzed P(r, ß) 
into / waves and, hence, constructed a differential 
equation for the partial wave term P,(r, ß). This 
has the form 

1   d3 

8 dr3 - — (r2P,) 
10 + i) a 

2r      dr 

d 

dr 
- V—i^P,) 

l av „ 
irP')-il7rP> 

(r2P,) = 0,    (7.5) 
aßdr 

but for a general central field V(r), it has not, to 
date, proved possible to sum over / to obtain the 
desired differential equation for P( r, ß). 

However, for a bare Coulomb field V(r) = 
-Ze2/r, such a differential equation has been 
constructed independently by Cooper [31] and by 
Pfalzner et al. [32, 33] as 

1 a3P       1   a2P        1 

8 dr' 
+ 

2r dr2 + 
4r2 

av 
- V- a\ 

ap 
dr aß] dr 

+ -V'P = 0,   (7.6) 

where V is the bare Coulomb potential energy 
-Z/r. 

To date, no completely general result has proved 
possible for central fields described by V(r), for 
reasons analyzed by Amovilli and March [33, 34]. 
These workers pointed out that, with presently 
available techniques, progress can be made only 
when there is a simple relation between the kinetic 
energy density tensor and the kinetic energy den- 
sity itself. Such a relation always exists in one 
dimension, and, therefore, in this case, a differen- 
tial equation for the Slater sum P(x, ß) can al- 
ways be written down [30]. 

However, it remains of considerable interest to 
be able to find a synthesis of Eqs. (7.4) and (7.6) 
appropriate to treat the Stark effect in the hydro- 
genlike atom. Therefore, in Section 7.3, we outline 
the recent progress of Amovilli and March [35] 
toward a differential equation for the Slater sum, 
but now restricted to the axis of the electric field. 

7.3. SLATER SUM ALONG AXIS FOR 
CYLINDRICALLY SYMMETRIC FIELDS 

Attention is focused here [35] on a variety of 
cylindrically symmetric inhomogeneous electron 
liquids. These include separable potentials in which 
a general variation along the (z) axis of cylindrical 
symmetry is combined with isotropic harmonic 
confinement in the (x, y) plane. In this case, an 
explicit differential equation is derived for the 
Slater sum along the z axis by projecting out of the 
(off-diagonal) canonical density matrix the states 
with zero angular momentum about the axis of 
symmetry. Some attention is then given to the 
calculation of the Slater sum for a hydrogenlike 
atom in a uniform electric field of arbitrary 
strength. The model of a separable potential with 
harmonic confinement, although no longer exact, 
is shown to lead directly to a (now approximate) 
equation for the Slater sum along the z axis for the 
Stark effect in hydrogen. 
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7.3.a. Harmonic Confinement of Electrons in 
a General Potential Varying Along the z Axis 

It is of some interest to discuss an example in 
which perpendicularly to the axis of cylindrical 
symmetry is switched on a harmonic force, and 
along the z axis, a more general field. The poten- 
tial has the separable form (1/2)w2p2 + V(z). In- 
serting this potential into the Bloch equation for 
the (off-diagonal) Slater sum, expanding to work 
then with the diagonal form P(r, ß) only, Amovilli 
and March [35] showed that one has finally for 
P(z,ß) 

1 
_p'" _ to coth( ßco) + V + 

dß 
P' 

1 
-V'P = 0, 

(7.7) 

which is valid for any given potential V varying 
along z. 

These workers then linked the exact differential 
equation (7.7), valid for a wide class of cylindri- 
cally symmetric problems, with the Stark effect; 
we summarize their approach very briefly below. 
One has now to deal with the specific cylindrically 
symmetric potential about the field (z) axis: 

V= - 
p2 + z2 Fz:p = (x2 + y2)V\   (7.8) 

Although this potential is not contained in the 
class of potentials satisfying Eq. (7.7), we follow 
Amovilli and March [35] in linking that equation 
approximately with the Stark problem. 

7.3.D. Modeling the Stark Effect by 
Harmonic Confinement 

The potential (7.8), referring to the Stark effect, 
can be expanded, near the z axis and for large z, 
up to second order in p, namely, 

Z / p2 

V(p,z)= -Fz- — I-7J-2 
z 2z2 + ... (7.9) 

In this regime perpendicularly to the axis, the 
electron is subjected to elastic forces of "constant" 

|3 " (7.10) 

This consideration has led us [35] to formulate an 
approximate differential equation for the Slater 

sum substituting w from Eq. (7.10), as a function 
of z now, into Eq. (7.7) in order to build a model 
for the Stark effect along the axis of symmetry. The 
equation 

«(z)coth(ßw(z)) + V(z) + — 
dß 

1 

P' 

--V'(z)P = 0,   (7.11) 

where co(z) is to be obtained from Eq. (7.10), is the 
equation derived by Amovilli and March [35] as 
an approximate equation for the Slater sum for the 
Stark effect in hydrogen, with V(z) = —Z/\z\ - 
Fz. This equation should eventually be amenable 
to numerical solution techniques. 

8. Summary and Proposed 
Future Directions 

A sequence of zero external-field differential 
equations in which Hartree self-consistency has 
been imposed leads rather naturally to the "gener- 
alized" local density approximation S( p) defined 
formally in Eq. (6.5). It has been stressed that it 
will be of interest for the future to input experi- 
mental data on p(r) for Xe and, hence, to integrate 
the first-order differential equation (6.1) for S(r). 
But since p(r) is monotonically decreasing from 
the nucleus, knowledge of r determines p and, 
hence, S can be plotted against p. We expect S( p) 
to converge to a unique limit for nonrelativistic 
closed-shell atoms. Unfortunately, even for radon, 
relativistic corrections would have to be applied, 
should p(r) prove measurable. Nevertheless, the 
route to this "generalized" local density approxi- 
mation is conceptually attractive and, in some 
sense, is the inverse procedure to the sequence TF, 
TFD, and TFDc as set out in some detail above. 

Considerable attention has then been focused on 
differential equations for both the ground-state 
electron density and the Slater sum for atoms 
in intense external fields. For magnetic fields of 
arbitrary strength, equations are set up for the 
ground-state density both in nonrelativistic and in 
relativistic semiclassical theory. For the case of 
electric fields, progress has proved possible via the 
Slater sum, Eqs. (7.4), (7.6), (7.7), and (7.11) afford- 
ing specific examples of differential equations for 
this sum  P(t, ß). Further progress on the Stark 
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effect in atoms is to be expected along such direc- 
tions in future studies. 

ACKNOWLEDGMENTS 

Many valuable discussions with Drs. C. Amo- 
villi, A. Holas, and A. Nagy are gratefully ac- 
knowledged. The work on atoms and molecules in 
intense external fields was supported in part by 
the Office of Naval Research. It is a particular 
pleasure to thank Dr. P. Schmidt of that office for 
much stimulation and continuous encouragement. 

Appendix 1: Inclusion of Exchange in 
Relathlstic Thomas-Fermi Theory 

Following MacDonald and Vosko [36], the ex- 
change energy density exa in relativistic electron 
gas theory can be written (see also March and 
Santamaria [37]) as 

e*a = ex0F(/3), (Al.l) 

where a is the fine structure constant. exo is the 
usual Dirac nonrelativistic result [16]: 

3    (3 Y 

-c*'V3:c'-rb ■ (AL2) 

In Eq. (Al.l), 

F(ß) = i-^{a + ß2r 

-lnjß + ü + iS2)1]}2//?4; 

ß = bPK (Al .3) 

where 

In this local density theory, with kinetic energy 
density ta( p), the chemical potential pa, constant 
throughout the entire charge cloud of the atom or 
molecule under consideration, is given by 

^ = ~Jp~ + yH—(r) + ~Jp~ 
(A1.5) 

Acting on Eq. (Al .5) with the Laplacian operator 
V2 and utilizing again Poisson's equation for V2 

^Hartree   yields 

0 = V2[-^]-477P(r)e
2 + V2|^J.   (A1.6) 

Putting the exchange contribution equal to zero, 
Eq. (Al .6) reduces to the differential equation al- 
ready derived [38] for the relativistic TF ground- 
state electron density. 

It remains to write the exchange term in Eq. 
(A1.6) explicitly using Eqs. (A1.1)-(A1.4). Taking 
for simplicity of presentation the atomic case with 
spherical symmetry, and writing dp{x)/dr = p', 
etc., one readily obtains 

= P ~rr +
 \P 

+ ZP ra~ dp dp' r    )  dp* 

(Al .7) 

and, hence, from Eqs. (Al.6) and (Al.7), 

dt„ \ . . <?3ev ,/2 0 = V2   —    -47rp(r)e2 + p'    a 3 1   dp j dp5 

{    „       2    ,\^" .    (Al .8) 

Using the analogous result to Eq. (Al.7) for 
V2 {{dtj/(dp)}, one reaches the desired differen- 
tial equation for p(r) in this relativistic TF atomic 
theory including exchange: 

4irp(r)e2 = p a <?3('a  +   O 

dp' 

+ \P"+-P' 
d2{ta + exa) 

dp2 
.   (Al .9) 

b = (3ir2)1/\h/mc). (Al.4)        Writing finally 

1      dL 

iire2 dp2 
(ta + exa)^ga(p),    (A1.10) 

an evidently local density function, the shape of 
the final differential equation in relativistic TF 
theory plus exchange is given by 

.2d8« p(r) = (Vp)2-p + (V2p)ga(p).   (Al.ll) 
dp 
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Evidently, ga( p) is determined quite explicitly by 
the known forms of ta( p) and e,.a( p), the latter 
being given in Eqs. (A1.1)-(A1.4). The final form 

p% | = 1   (A1.12) 

where Ga( p) is given in terms of ta by 

dp 

shows again the central role played by the reduced 
Laplacian (V2p/p) and the "local wave number" 
Vp/p, the latter quantity being discussed for 
closed-shell atoms, but now in nonrelativistic 
quantum mechanics, by Nagy and March [39]. 
Equation (Al. 11) naturally reduces to the earlier 
relativistic TF equation [38] when exa is set equal 
to zero. To the writer's knowledge, Eq. (Al.12), 
with ga( p) given by Eq. (Al. 10) has not been 
derived hitherto. 

Appendix 2: Relativistic Generalization 
of Eq. (2.10) for Atoms in Intense 
Magnetic Fields 

The kinetic energy density ta( p) in relativistic 
theory for electrons in intense magnetic fields was 
discussed by the writer in the context of the virial 
[40]. As the fine structure constant a = e2/hc is 
allowed to tend to zero, the result t0( p) a p3 is 
recovered, which affords an alternative route to 
Eq. (2.9) above, utilizing the variational principle 
(2.1). 

The relativistic generalization of Eq. (2.9) then 
can be written as 

PTF' dpir) 
+ VH(t). (A2.1) 

Utilizing once more the constancy of the chemical 
potential throughout the entire electronic distribu- 
tion, one can operate with V2 on Eq. (A2.1) to find, 
using, again, Eq. (1.8), 

4-rrpe  = 
dpit) 

(A2.2) 

Utilizing spherical symmetry as in Appendix 1 
(such a state is variationally the best, not with- 
standing the magnetic field), Eq. (A2.2) is readily 
cast into the form 

V2p / Vp 
— Ga(p)+   - 

P \ P ' dp 

Ga(p) = 
1      d2 

47re2 dp2 *«, (A2.4) 

= 1   (A2.3) 

where {dta/dp) is given explicitly in [40]. 
In early work, Hill et al. [21] solved numerically 

the complementary problem for the Hartree poten- 
tial for an assumed B field of strength 1014 Gauss 
(motivated by neutron stars) and atomic number 
Z = 100. Their results can be utilized to derive the 
density p(r) satisfying Eq. (A2.3). However, it is to 
be noted that there is a region, having the size of 
the nuclear radius, in which they transcend Eq. 
(A2.3) in order to effect the normalization of p(r). 
We remind the reader that this should occasion no 
surprise in a relativistic theory, for the Dirac one- 
electron wave function for the H atom ground 
state has a weak (although still normalizable) sin- 
gularity at a point nucleus. 
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ABSTRACT: The ground states of small atoms and molecules, namely those of the 
hydrogen, helium, and lithium atoms and the hydrogen molecular ion and hydrogen 
molecule, are studied in the presence of an external magnetic field. For the one-electron 
systems the ground state is of the same symmetry for arbitrary field strengths, and the 
corresponding binding energy shows a monotonic increase with increasing field strength. 
More interesting, the two- and three-electron systems show ground-state transitions 
which involve both transitions in the spin multiplicity and spatial quantum numbers. An 
outlook on the expected cascade of transitions in many electron atoms and molecules is 
provided.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 789-795, 1998 

Key words: strong magnetic fields; ground states; binding properties; symmetry 
transitions 

Introduction 

Atoms and molecules subjected to strong mag- 
netic fields experience severe changes of both 

their electronic properties as well as dynamical 
behavior. The term strong hereby refers to the 
ratio of the magnetic and Coulomb binding forces 
of the considered system: If the magnetic and 
corresponding Coulomb interaction become com- 
parable, we encounter a variety of nonperturbative 
and complex phenomena. For a single electron in a 
magnetic and Coulomb field (fixed nucleus hydro- 
gen atom), the electronic wave function continu- 
ously  changes  its  shape  with  increasing  field 

strength. For the extreme cases, i.e., for the zero- 
field case and high-field regime, we have the 
field-free hydrogenic and the combined Landau 
and one-dimensional Coulomb behavior, respec- 
tively. More interesting is the intermediate regime 
which bears the transformation between these two 
configurations. From a dynamical point of view 
the intermediate regime is characterized by the 
prevalence of chaotic classical motion in phase 
space and its corresponding quantum signatures. 
Due to an enormous effort, i.e., a large number of 
studies during the past 20 years (see Ref. [1] and 
references therein), we have a very clear and de- 
tailed understanding of the behavior and proper- 
ties of the hydrogen atom for any regime of field 
strengths and degree of excitation. This picture 
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changes, however, dramatically if we turn to more 
electron atoms and molecules. Already for the he- 
lium atom the number of investigations is very 
limited (see Refs. [2-4] and references therein) and 
for more than two electrons only a few works are 
available [3, 5-11]. For molecules the literature is 
even more scarce. For the parallel configuration of 
the Hj ion, arbitrary configurations of the Hj ion 
and for the parallel configuration of the hydrogen 
molecule we refer the reader to the Refs. [12-15] 
and references therein, respectively. More electron 
molecules have been treated, for example, in Refs. 
[16,17]. The small amount of available literature is 
in contrast to the fact that many interesting phe- 
nomena have to be expected which possess no 
counterpart in field-free space and do in particular 
not occur for the hydrogen atom in a magnetic 
field. One of the reasons for this lack of investi- 
gations is certainly the computational difficulties 
encountered in a theoretical study of interacting 
electronic systems in strong magnetic fields: new 
approaches and techniques have to be developed 
in order to properly describe the effects of compet- 
itive Coulomb and magnetic forces. 

The purpose of the present work is to draw a 
picture of the state of the art concerning the ground 
states of atoms and molecules in strong magnetic 
fields and to provide a perspective of possible 
phenomena with respect to the ground-state tran- 
sitions of many electron atomic and molecular 
systems. Since our knowledge on finite particle 
systems in magnetic fields is very limited, this can 
at best be a theorist's outline, which hopefully will 
soon be enriched by many more manifestations of 
complex magnetic field phenomena discovered in 
concrete investigations. 

Our discussion is as follows. In the following 
section we focus on atomic systems. After a few 
comments on the hydrogen atom we discuss the 
helium and lithium atom. The third section deals 
with the hydrogen molecular ion and the hydro- 
gen molecule, and the final section contains our 
conclusions as well as the outlook on many elec- 
tron atoms and molecules. 

Ground States of Small 
Atomic Systems 

Let us first consider the hydrogen atom. The 
remaining symmetries in the presence of the exter- 
nal magnetic field are the rotations around the 
magnetic field axis (magnetic quantum number), 

which is in the following assumed to be aligned 
with the z axis, the parity, and, as a combined 
quantity of the latter operations, the z parity. It is 
well-known that each of the lowest electronic states 
of gerade z parity and a given magnetic quantum 
number show a monotonic increase in binding 
energy with increasing field strength B [18]. These 
states uniquely correspond to the field-free hydro- 
gen ls0,2p_-l,3d_2,etc states. Indeed, their bind- 
ing energy diverges EB -» °° in the mathematical 
limit B -» oo. This means that in particular the 
ground state is a so-called strongly bound state. 
The corresponding wave function hereby under- 
goes a transition from a spherical (field-free space) 
to a needlelike shape (high field regime) [19, 20]. 

Next let us turn to the helium atom. The field- 
free ground state is of *Sg symmetry and is there- 
fore a spin singlet state. If we turn on a magnetic 
field, it shows a monotonic increase of binding 
energy with increasing field strength. However, 
since the external magnetic field couples to the 
spin through the spin Zeeman term, we expect 
that there occurs for some critical field strength Bc 

a crossing of the lowest state of *Xg symmetry 
with a spin triplet state which has all spins an- 
tiparallel to the magnetic field. Indeed, for suffi- 
ciently large field strengths, it can be conjectured 
that any triplet state which is fully spin polarized 
antiparallel to the field will be lower in energy 
than the lowest state of l^g symmetry. The ques- 
tion then is: Which is the lowest of those triplet 
states? In concrete investigations it turns out that 
this state is of 3n„ symmetry. It shows also a 
monotonic behavior of its binding energy with 
increasing field strength. Figure 1 illustrates the 
total energies of the corresponding states of 'Xg 

and 3n„ symmetry as a function of the magnetic 
field on a logarithmic scale thereby demonstrating 
the crossover in the global ground state of the 
helium atom around Bc « 0.7 (1 a.u. corresponds 
to 2.35 X 105 Tesla). Having a closer look at the 
wave function of the 3III( state in the high-field 
limit, one finds that the dominant configuration is 
of Is i 2p_l i character. This means that the two 
electrons are in those magnetized hydrogenic Or- 
bitals which correspond to the two energetically 
lowest above-mentioned strongly bound states of 
hydrogen. Occupying these states provides there- 
fore the energetically most favorable configuration 
for the helium atom in the high-field regime. The 
transition with respect to the ground state at B ~ 
0.7 involves, therefore, in an effective one-particle 
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FIGURE 1. Total energy of the 12g (solid line) and 3nu (broken line) electronic states of helium atom as a function of 
the field strength on a logarithmic scale. Energy and field strength are given in atomic units (S = 1 a.u. corresponds to 
2.35 X 10s Tesla). 

picture, not only a transition with respect to the 
total spin and its projection but also a change in 
the spatial quantum numbers. Obviously other spin 
triplet states, associated with, for example, the Is 
1 2s 4 configuration are for any field strength 
much higher than the above-described ground 
state. 

Considering the Li atom, the literature is al- 
ready very scarce: There exist only two very recent 
investigations [3, 10] on the Hartree-Fock level. 
The field-free ground state is given by the spin 
düblet Is22s J, configuration. The binding energy 
of this state increases monotonic with increasing 
field strength. Since it is not a fully spin-polarized 
state, we again expect that there occurs a transition 
with respect to the ground state of the Li atom 
with increasing field strength to a spin quartet 
state. The numerical investigation [10], however, 
shows that the situation is more complex than 
originally assumed. Of course, starting with the 
field-free situation and increasing the field 
strength, we observe that the Is22s J, configura- 
tion represents the ground state of the Li atom for 

a certain regime of field strengths. This is the case 
up to Bc ~ 0.176 a.u. where the first transition 
takes place. The new ground state above Bc is 
constituted by the ls22p_1 J, configuration, and 
therefore we do not encounter a transition with 
respect to the spin and its projection but a transi- 
tion purely with respect to the spatial quantum 
numbers: The weakly bound 2 s magnetized hy- 
drogenic orbital is replaced by the strongly bound 
2p_j orbital. Obviously, this transition is prior to a 
spin flip transition. 

The ls22p_j i spin doublet configuration is 
the global ground state of the Li atom in the 
regime 0.176 <B < 2.153 a.u. At BCi = 2.153 a.u. a 
second transition takes place, and for B > 2.153 
a.u. the new ground state is represented by the 
fully spin polarized 1 s J, 2p_x I 3d_2 | configu- 
ration [10]. Figure 2 shows the corresponding total 
energies as a function of the magnetic field on a 
logarithmic scale. Above Bc the three electrons are 
therefore in the three lowest strongly bound mag- 
netized hydrogenic orbitals Is, 2p_lr and 3d_2 

which, together with the fact of antiparallel spins 
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FIGURE 2. Total energy of the electronic configurations 1s22s (solid line), 1s22p_, (broken line with crosses), and 
■\s2p„i3d_ 2 (broken line with stars) of the lithium atom as a function of the field strength on a logarithmic scale in 
atomic units. 

with respect to the magnetic field, represent the 
energetically lowest configuration in the high field 
regime. This means the electronic configuration 
does not change for B > BC2. 

For heavier atoms there exist a few investiga- 
tions (see, e.g., Refs. [5-8]) which, however, deal 
only with the ground state in the high field limit. 
Therefore no information is now available on the 
ground-state transitions of atoms with more than 
three electrons. 

Ground States of the Hydrogen 
Molecular Ion and the 
Hydrogen Molecule 

Before entering the discussion of the global 
ground state of a specific molecule, let us provide 
some general features of diatomic molecules in 
strong magnetic fields. The electronic potential en- 
ergy, defined through an adiabatic approximation 
in a magnetic field [21], depends on the internu- 

clear distance R and the angle © between the 
magnetic field and the internuclear axis and repre- 
sents therefore a two-dimensional surface, i.e., e = 
e(R,0). In Ref. [22] it has been shown that the 
parallel and perpendicular configurations are dis- 
tinguished by their higher symmetry and that the 
diabatic energy curves exhibit extrema at these 
positions. The positions 0 = 0° and 0 = 90° are 
therefore good candidates for becoming the global 
equilibrium configuration of the ground state. 
However, there is to our knowledge no fundamen- 
tal reason why the positions 0 ¥= 0°, 90° should be 
excluded from representing the global equilibrium 
configuration in particular if one takes into ac- 
count vibronic interaction effects. 

Most of the investigations on the hydrogen 
molecular ion have been performed for the parallel 
configuration (see Ref. [12] and references therein). 
Studies of the full potential energy surfaces (see 
Ref. [13] and references therein) have shown that 
the parallel configuration represents the global 
equilibrium configuration for the ground state for 
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arbitrary field strengths. The latter is of 1 er sym- 
metry, and its binding as well as dissociation en- 
ergy increases monotonically with increasing field 
strength. Simultaneously the bond length de- 
creases. In particular there occur, of course, no 
transitions for the ground state, i.e., the dominant 
contribution comes from the molecular orbital of 
gerade parity which is built up from the lowest 1 s 
magnetized hydrogenic orbital. 

Considering the hydrogen molecule, the situa- 
tion is much more complicated and was unre- 
solved until recently. For the literature on the 
hydrogen molecule in the parallel configuration, 
we refer the reader to Refs. [14, 15] and references 
therein. References [14, 15] clarified the question 
for the global ground state of the molecule for this 
configuration in arbitrary field strengths. In field- 
free space the ground state is well-bound and of 
1l<g symmetry, i.e., in particular a spin singlet 
state. In the presence of a magnetic field the dia- 
magnetic term causes an increase in the total en- 
ergy with increasing field strength. At the same 

time the spin-Zeeman shift tends to lower the total 
energy for triplet states with M$ = -1. As a result 
a ground state crossing between the potential en- 
ergy curves of the singlet *2 and triplet 3S„ state 
occurs at B « 0.18 a.u. (see Fig. 3). For BCj > 0.18 
a.u. the potential energy curve of the 3XM state is 
lower in energy than that of the x2 state and 
represents therefore the global ground state of the 
hydrogen molecule. Since the potential energy 
curve of the 3S„ state is, apart from a very shallow 
van der Waals minimum, a purely repulsive curve 
the hydrogen molecule is unstable in the corre- 
sponding regime of field strengths, i.e., for Bc < B 
< Bc . And Bc = 12.3 a.u. is another crossing field 
strength above which the unbound 3S„ state is no 
more the ground state but an excited state. The 
new ground state above Bc is of 3II „ symmetry 
and a strongly bound state. This state includes the 
two strongly bound hydrogenic orbitals Is and 
2p_j and represents the ground state in the high- 
field regime. To summarize we have two ground- 
state transitions for the hydrogen molecule in a 
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FIGURE 3. Total energy of the electronic equilibrium configurations 12g (solid line), 32u (broken line with crosses), 
and 3UU (broken line with stars) of the hydrogen molecule as a function of the field strength on a logarithmic scale in 
atomic units. 
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magnetic field: In the weak field regime B < BCi 

the ground state is of lXg symmetry, and strongly 
bound. In the intermediate regime defined by 
Bc < B < Bc the ground state is the triplet 3S„ 
state which is almost purely repulsive and pro- 
vides no bound H2 molecule. Beyond BCi, i.e., in 
the high-field regime, the 3IIH state represents the 
ground-state configuration and is in particular a 
strongly bound state of the molecule. Let us con- 
clude this section with the remark that the above- 
described results on the hydrogen molecule are 
strictly valid for 0 = 0° only. However, we do 
expect from the way the mixing of different mag- 
netic quantum numbers takes place for 0 =£ 0° 
that the above-drawn picture holds also for 0 + 0°. 

The available literature on more electron 
molecules is very scarce and restricted to the 
high-field regime (see, e.g., Refs. [16, 17]) 

Conclusions for General Atoms 
and Molecules 

In view of the existing results of investigations 
on small atoms and molecules in strong magnetic 
fields, which have been sketched in the previous 
sections, let us try to draw a picture of the 
ground-state transitions in general atoms and 
molecules. As already mentioned this can at best 
be considered as an intuitive outline of partially 
speculative character. 

The discussed features of the ground states of 
few electron systems demonstrate that the global 
ground state of any atom or linear molecule in the 
high-field limit should not only be fully spin polar- 
ized but should at least within a Hartree-Fock 
effective one-particle picture be constituted by the 
Is, 2p_l7 3d_2,..., Nz„N + 1 magnetized hydro- 
genic orbitals (N is the number of electrons of the 
system, z indicates the highest possible angular 
momentum in the Nth shell) [10]. For example, for 
the carbon atom with six electrons the high-field 
ground state is given by 1 s I2p^^ I3d_2 4 4/_3 

-I 5g_4 i 6h_5 i configuration. The high-field 
ground state of multielectron systems possesses 
therefore a total angular momentum component 
- {-N(N — 1). For polyatomic molecules the situa- 
tion might be more intricate. Either the global 
ground-state geometry is linear (chains) in which 
case the above arguments hold or the geometry is 
nonlinear in which case one could at least in prin- 
ciple imagine that the molecular bonding modifies 
the above picture of the selection of strongly bound 

hydrogenic orbitals for the ground state of the 
molecular system. 

What does happen with increasing field strength 
on the way to the high-field limit? Obviously, a 
number of spin polarization transitions finally 
yielding the fully spin polarized state have to 
occur. However, it can certainly not be said a priori 
over what regime of field strength these transitions 
take place. In particular we have also the transi- 
tions of the orbitals to the series of hydrogenic 
magnetized orbitals (Is,2p_],3d_2/...) which 
represent the strongly bound orbitals in the high- 
field limit. It can be conjectured that the sequence 
of the transitions which belong to changes in spa- 
tial quantum numbers is given by the hierarchy 
(Is,2p_1,3d_2,...). However, there is a great va- 
riety in the possible sequences of spin polarization 
and spatial quantum numbers, which are to a large 
extent independent from each other and indeed 
one might expect that also other orbitals could be 
involved in the cascade of transitions depending 
on the individual system under consideration. A 
great complexity of ground-state transitions will 
therefore be encountered for multielectron atoms. 
Including correlation effects might in addition 
change the transitions and in particular their ap- 
pearance as a function of the field strength. 

For heavy systems it might well be that, with 
increasing field strength, not all inner shell orbitals 
are "converted" to hydrogenic magnetized and 
strongly bound orbitals before relativistic correc- 
tions due to the external magnetic field become 
relevant (relativistic corrections to the Coulomb 
interaction are assumed not to change the picture 
drawn above for the high-field limit). In addition 
mass corrections are known to be relevant in the 
very high field regime and might additionally have 
some impact on the scenario sketched above. 
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mentalist to make maximum use of each event. 
Introduction Ideally,  a complete experiment can be accom- 

plished in a single event. An optical absorption 
W experiment requires attention to sample prepara- 

e wish there were many opportunities for tion, the optical apparatus, time and wavelength 
performing experiments in magnetic fields calibrations, and light leaks. The 1000-Tesla mag- 

approaching 1000 Tesla. The current, highly lim- netic field is achieved with an explosive charge 
ited access puts additional pressure on the experi-        which generates a shock wave that tiavels toward 

Correspondence to: L. G. Butler. the sample [1-4]. As the shock wave reaches the 
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optical path, the beginnings of a light leak, caused 
by the shock wave, distort the absorption spec- 
trum of the sample. Light leaks are, for the 1000- 
Tesla magnet, an inherent feature and occur at or 
near peak magnetic field. Herein, the experiment 
is discussed, with an emphasis on measurement 
and analysis of optical properties of samples in 
high field. 

Sample Holder 

Space constraints in the magnet force a small 
sample. We chose to use a light path that is folded 
back upon itself, as shown in Figure 1. In this 
probe design, the incident light beam is carried by 
a 600-)U,m diameter optical fiber, and the transmit- 
ted light is collected and returned to the spectro- 
graph via a 100-/j,m fiber. The smaller fiber is 
sharply bent in a 180° curve with an outside diam- 
eter of 5.7 mm. This bend is smaller than the 
manufacture's recommendation but was found to 
be stable for about one day. 

The sample, bis(tetrabutylammonium) octa- 
chlorodirhenate(III) [(C4H9)4N]2[Re2Cl8] was dis- 
solved in dichloromethane, poly(methy meth- 
acrylate) (PMMA) added, and the mixture poured 
onto a glass slide and allowed to evaporate to 
produce an approximately 1-mm-thick PMMA 
film. A disk cut from the film was fixed between 

the two ends of the fiber. The surface roughness of 
the film causes some light scattering. A sample 
consisting only of PMMA was prepared and its 
spectrum was measured before the shot; this spec- 
trum serves as the intensity reference (J0) for the 
absorption calculation. 

Spectrograph and CCD Camera 

The light transmitted through the sample is 
returned to the spectrograph via a 10-m 100-/y,m 
optical fiber. The propagation delay of the fiber is 
4.93 ns/m (the refractive index is 1.48). Wave- 
length dispersion in the spectrograph is accom- 
plished with a roof prism; gratings are available 
for higher resolution work. Time dispersion is done 
with a streak camera; the spectrum is directed to a 
photocathode, the ejected electrons retain wave- 
length dispersion while time dispersion is per- 
formed with a rapidly ramped electric field. A 
scintillator plate converts the electron beam back 
to visible light which is then detected with a CCD 
camera. 

The fiber optic/prism/streak camera-CCD 
camera system entails several experimental details. 
As noted above, the propagation delay from the 
sample to the spectrograph is significant. The prism 
requires a wavelength calibration and the streak 
camera a time calibration. The time calibration 

from Xe flash lamp 
 ► 

600 u. optical fiber 

Re2Cl82" in PMMA 

T 
2 mm 

to prism/streak camera 
(-40 ns propagation delay) 
M 100 n optical fiber 

5.7 mm 

FIGURE 1. Schematic drawing of the sample holder. 
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data also provide a means to determine and cor- 
rect for CCD mounting errors, i.e., the CCD pixel 
array may be misaligned with respect to the wave- 
length and time axes as displayed on the scintilla- 
tor. Absorption spectra are calculated from three 
images—the shot image, an image of a PMMA 
film, and a CCD background image—and then a 
search is made for light leaks in the optical system 
by an analysis of the shot image. 

For this run, the CCD camera consisted of a 
Ik X Ik pixel array with a 16-bit readout. The 
camera control software was IPLab (Scanalytics, 
Inc.; www.iplab. com) running on a Macintosh Ilfx. 
The binary data files have a 2120-byte header, with 
the data consisting of Ik X Ik array of unsigned 
2-byte integers, followed by a footer of varying 
length. Figure 2 shows a gray scale image of a raw 
data file from the shot. Key features in this image 
are the Re2Cl|" absorption between columns 750 
and 800, the timing comb pulses between columns 
952 and 964, the fiducial mark at column 98, row 

618 (visible in an expanded plot), and the glow of 
the crushed optical fiber at row 627 and higher. All 
of the data processing software was written in 
Matlab 4.2 and 5. 

Wavelength Calibration 

Wavelength calibration is done with a set of 
images acquired with known light sources: a tun- 
able HeNe laser, a semiconductor laser, and the 
Hg emission lines from the lab's fluorescent lights. 
The calibration data are listed in the insert to 
Figure 3; the plot shows a best fit to the transfer 
function [5], where A is given in nanometers. The 
inverse of this function was obtained by linear 
interpolation between calculated points. The semi- 
conductor laser at 819 nm is labeled "comb" in 
Figure 3, and, when the laser is remounted on the 
streak camera, is used to generate the timing comb 
pulses discussed below. The point labeled "limit" 

1000 

Jj   800 

1 
Ö 

1 u 
Q 
Ü 
Ü 

600 

400 

200 

200        400        600        800        1000 
CCD column number (wavelength) 

FIGURE 2. Raw data from the shot showing the Re2CI|~ absorption, glow from the fiber crush, the time comb pulses, 
and the fiducial timing mark. The horizontal axis has the wavelength dispersion, with red to the right. The vertical axis is 
the time domain. 
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FIGURE 3. Data used to generate a wavelength calibration for the CCD images. 

was created to yield a useful functional form to the 
red of 819 nm. 

Time Calibration 

The fiducial time mark is displayed in detail in 
Figure 4. This short duration light pulse is linked 
to the common time base used for logging the 

magnetic field data. Hence, this pulse is the con- 
nection between the spectroscopic observation and 
the magnetic field data. The fiducial timing mark 
for the spectrograph was measured several days 
prior to the experiment. To be included separately 
in our data analysis is the propagation delay from 
the sample to the spectrograph. Based on the light 
pulse maximum, CCD row 618 is assigned to 72.853 

u 

I 
Q 
O 
O 

622? 

620 

618 

616 

97 98 99 
CCD column number 

100 

FIGURE 4. Fiducial timing mark at 72.853 /xs on the 
common time base. 
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964      966 

FIGURE 5. Timing comb pulses used to determine the 
time step per row (14.32 ns / row) and the CCD mounting 
error (a -6 row error at the columns corresponding to 
the Re2Cl|~ absorption). 
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/u.s, subject to a later correction for CCD mounting 
error. 

The timing comb pulses, shown in Figure 5, are 
generated by an 819-nm semiconductor laser 
mounted adjacent to the roof prism. The pulse 
interval is 500 ns. A fast Fourier transform (FFT) of 
the comb pulses along the row axis yielded a 
relative time calibration of 14.32 ns/row. The "tilt" 
of the timing comb is used to assess the alignment 
between the CCD pixel array and the electrostatic 
sweep voltage in the camera, i.e., the time axis. In 
this run, a slight rotation of the CCD mount is 
revealed. We assume that the CCD chip itself has 
orthogonal rows and columns. The application of 
simple geometry (similar right triangles) shows 
that the — 8 row error in column 960 is a — 6 row 
error in columns defining the Re2Clg~ absorption. 
Thus, row 612 of the Re2Clg~~ absorption is as- 
signed the absolute time value of 72.853 /AS. 

Absorption Spectra 

The absorption spectra are calculated in units of 
absorbance (optical density) for two situations, 

preshot and shot, corresponding to zero and high 
magnetic field, respectively. For each experiment, 
four data sets were acquired: background (no 
flash), PMMA, sample preshot, and sample shot. 
The absorption for the shot is calculated as 

Abs(shot) = log{(PMMA - background)/(Shot 

-background)}, 

where the CCD background image is acquired 
with the Xe flash lamp disabled; typical photon 
count was about 50. The PMMA image was ac- 
quired a few hours before the shot with an alter- 
nate sample holder containing only PMMA film; 
the fiber length was set to be identical to the 
sample. The preshot data were acquired a few 
minutes before the shot. These three data sets are 
shown in Figure 6. We note that some timing jitter 
is evident as judged by the leading edge of the 
light pulse in, for example, column 700. For this 
reason, the PMMA data set was shifted back in 
time by 35 rows to obtain a preshot Re2Cl|~ ab- 
sorption trace that was constant as a function of 
time. In the absence of a correction, the Re2Cl|~ 

PMMA 

400      600       800 

Re2Cl82" Before Shot     Re2Cl82_ Shot 
"sr 

800 400      600      800 400      600 
CCD column number 

Figure 6. Xe flash lamp jitter as determined from the leading edges for the PMMA, preshot, and shot images. 
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absorptions in both preshot and shot would have a 
linear slope with time. We emphasize that Xe flash 
lamp timing jitter does not affect the absolute time 
base of the experiment. 

Light Leaks and the End of the 
Experiment 

Figure 7 shows the absorption spectrum of oc- 
tachlorodirhenate during the shot. The next step in 
data analysis is assessing the end of reliable ab- 
sorption data. The duration of the magnetic field at 
its high values can be as short as 50 ns, or roughly 
3 CCD rows of data. To better ascertain the "end" 
of the optical experiment, spectral regions for 
preshot and shot were integrated, as shown in 
Figure 8. There is a very close match for preshot 
and shot Re2Clg~ absorption at row 550, corre- 
sponding to about 300 Tesla at 1 /AS before maxi- 
mum field. The fiber crush is evident as a sudden 
change in the baseline at spectral regions away 
from the Re2Clg~ absorption. By this standard, the 
last good data are in CCD row 626, corresponding 

to an absolute time of 73.013 (is [ = fiducial mark 
time + time per row X row offset - propagation 
delay = 72.853 (is + 0.01432 (is/row X (626 - 
612) - 0.040 (is]. Interestingly, some of the mag- 
netic field sensors were destroyed by 72.839 (is, 
CCD row 611 for the Re2Clg~ absorption, so we 
are suspicious of data after this time. 

A low-level light leak, probably caused by the 
shock wave, is difficult to detect in the absorption 
plot (Figs. 7 and 8) but more easily seen in a 
reexamination of the raw data. In Figure 9, a 
portion of the raw data from CCD rows 550 to 626 
is shown, along with integrated traces of selected 
spectral regions. In this plot, we note that the 
region of maximum Re2Clg~ absorption (rows 
775-795; 645-690 nm) shows a very low average 
photon count of 2700 counts/pixel. The baseline 
regions all have more transmitted light, depending 
upon the Xe flash lamp. Therefore, a small light 
leak on the other of 500 counts/pixel will cause a 
dramatic change in the measured Re2Clg~ absorp- 
tion, while scarcely affecting the absorbance in the 
"baseline" regions. The region in rows 550-570 
has a low average count of 5600, and corresponds 

Wavelength/nm 
423     466       498       541        603      705 

800 P''W!" •spppH  

550      600       650       700       750       800 
CCD column number 

FIGURE 7. Absorption spectrum of octachlorodirhenate during the shot. The Re2Clg~ absorption dominates the 
spectrum prior to the fiber crush near row 627. 
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FIGURE 8. Integrated absorptions for preshot and shot Re2CI|" absorptions, and the baseline regions in the shot 
data. Average absorbances in regions of intense Re2CI|" ground-state absorption, and in "baseline" regions of little or 
no Re2CI|" ground-state absorption. After row 626, significant changes in baseline regions suggest that data are no 
longer reliable. 
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FIGURE 9. A second search for low-level light leaks, caused by the shock wave, based on raw CCD data. The 
integrated photon count for the Re2Cl|~ absorption (CCD columns 775-795) shows an increase, indicating a possible 
reduction of the ground-state absorption as the experiment progresses in time. However, a baseline region with low 
count rate (CCD columns 775-795) shows an unexplained increase in photon counts starting at CCD row 617. The 
extra counts are attributed to the onset of a low-level light leak. 

to 423-450 nm, a region that does not have a 
significant Re2Clg~ ground-state absorption. How- 
ever, there is an upturn in the counts beginning at 
CCD row 617. The most likely explanation of the 
increased count is a white-light leak from the ex- 
plosion shock wave as it contacts one of the optical 
fibers. Hence, we believe that the last reliable 
optical data to be in row 616, corresponding to an 
absolute time of 72.870 /xs. 

The next step in data analysis is the correlation 
of the absorption change with the magnetic field. 
This work is ongoing as there is substantial effort 
involved with determining the magnetic field from 
the pickup coils and Faraday rotation probes, an 
interpretation that is done by the magnet team at 
Los Alamos. 
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ABSTRACT: When the one-body part of the relativistic Hamiltonian H is a sum of 
one-electron Dirac Hamiltonians, relativistic configuration interaction (CI) calculations 
are carried out with an ad hoc basis of positive-energy orbitals, {u,+, ;' = 1,2,..., m} and, 
more recently, with the full bases of positive-energy and negative-energy orbitals, 
{M;

+
,M~, ;' = 1,2,..., m}. The respective eigenproblemsH+C^ = E£C£, k = 

1,2,... ,yr(m), and HC*. = EfcCfc; k= 1,2,... ,M2m) are related through E£ < 
^+/(2u)-/{i«) [R- Jäuregui et al., Phys. Rev. A 55, 1781 (1997)]. This inequality becomes 
an equality for the independent-particle Hartree-Fock model and some other simple 
multiconfiguration models, leading to an exact decoupling of positive-energy and 
negative-energy orbitals. Beyond Hartree-Fock, however, it is generally impossible to 
achieve an equality. By definition, optimal decoupling is obtained when the difference 
Ek+jr{2m)-jr{m) ~ ^k   ^s a rninimum, which amounts to maximize the energy Et

+ with 
respect to any set of m functions in the 2m-dimensional space {M.

+
, uj, j = 1,2,..., m). 

Straight maximization is a slowly convergent process. Fortunately, numerical calculations 
on high-Z atomic states show that optimally decoupled, or best positive-energy orbitals 
are given, to within 6 decimals in atomic units by the positive-energy natural orbitals of 
the full eigenfunction Cjt+i/pBI)_^M). Best orbitals can accurately be obtained through 
CTby-parts treatments for later use in large-scale relativistic CI, as illustrated with Ne 
ground-state calculations.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 805-812, 1998 

Key words: negative-energy orbitals; Dirac equation; relativistic configuration 
interaction; Breit-Dirac-Hartree-Fock; minimax theorem; best orbitals; natural orbitals 
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Introduction 

In a previous study [1] we discussed how to 
incorporate negative-energy orbitals exactly in 

relativistic variational calculations of electronic 
bound states. However, except for very small sys- 
tems, calculations with negative-energy orbitals re- 
quire formidable computational resources and 
techniques. The purpose of this study is to show 
how to determine positive-energy orbitals which 
minimize, in a strict sense, the energy contribution 
of negative-energy orbitals. After this, the energy 
contribution of negative-energy orbitals, always of 
positive sign [1], can be added from an ab initio 
estimate obtained with small orbital bases. 

We consider a relativistic  N-particle Hamilto- 
nian H, 

H = HD + Ve. (1) 

where HD is a sum of one-particle Dirac Hamilto- 
nians hD, 

HD = E hDW, 
i — 1 

(2) 

hD = ca ■ p + ßmc2 - 
Z 

r ' 
(3) 

and Ve_e is a two-body electron-electron interac- 
tion. The Ve_e interaction can be the Coulomb 
repulsion among the electrons, Ce_e plus the Breit 
interaction, Bc_e, or any other Ve_e which is 
bounded from below with respect to nonrelativis- 
tic trial wave functions. When trying to apply a 
variational principle in the relativistic realm, the 
problem with H is that for any normalized N-elec- 
tron Xi properly built up from Dirac bispinors, the 
expectation value { x\H\x) is not bounded from 
below due to the occurrence of small components 
in the Dirac bispinsors. 

The study of ^dimensional representations H 
of H in Hilbert space [2] shows that the eigen- 
value equation, 

HCk = EkCk,       k = l,2,...,J/-=yy-+J/,+ ,   (4) 

Ek < Ek+1, contains two sets of equations with 
different behavior [2]: 

HC; = EjCj, ; = 1,2,...,^",   (5) 

i = \,2,...,jf\   (6) 

In quantum chemistry, Eq. (4) corresponds to a full 
configuration interaction (CI) expansion. 

In Eq. (5), although C represents JV linear vari- 
ational coefficients, neither these nor E; can be 
made stable upon variations in the nonlinear pa- 
rameters specifying the one-particle basis. Thus, 
although Eq. (5) is mathematically correct and use- 
ful for a given basis set, variational collapse to- 
ward minus infinity ensues after legitimate varia- 
tions in the basis set within Hilbert space. 

On the other hand, Eq. (6) yields solutions which 
are stable upon any variations in the basis set. 
Thus, despite the unboundedness of H, if one 
jumps over the lower Jf~ eigensolutions of Eq. (4), 
a genuine variational principle valid for the re- 
maining yf+ higher-lying eigenvalues is found [1], 
encompassing the ground and all excited eigen- 
states. This corresponds to the expected behavior 
of finite-dimensional representations of operators 
having a discrete spectrum coexisting with a con- 
tinuum from minus to plus infinity. 

In order to overcome the unboundedness of H, 
most relativistic electronic structure treatments 
based on the Dirac-Hamiltonian use the "no-pair" 
Hamiltonian H+ [3-5], 

H+= A2 + HA2 + , 

H+%+= E + %+, 

(7) 

(8) 

where A2+  is a product of one-particle projection 
operators, 

A2+= llA + (0, (9) 
i = i 

A
+
(D= E |«;(I)><M;(D|,    do) 

ii(e;>0) 

and the uj 's are the positive-energy eigenfunc- 
tions of a one-particle operator h0(l) yet to be 
specified: 

fc0(l)w;
+(l) = ejufil),        ej>0.       (11) 

The negative-energy eigenfunctions, 

ft0(l)M;-(l) = e,M-(l),        e;<0,        (12) 

are defined likewise. The eigenstates of the corre- 
sponding finite-basis representation H+ satisfy 

H+C,+ = E,+ C,+ ,       i = l,2,...,yr+.     (13) 
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In some circles, Eq. (13) is considered the funda- 
mental and only valid equation of modern rela- 
tivistic CI. 

The no-pair eigenvalues Ej of Eq. (13) are 
related to the unique eigenvalues E^- +, of Eq. (6) 
by [1], 

E,+ < E ■•AT' + i i i = 1,2,..., jr^ (14) 

indicating that the eigenvalues Ej of relativistic 
calculations with positive-energy one-particle bases 
will always lie below the eigenvalues E^- +,- of the 
matrix H, Eq. (6), whatever choice of positive- 
energy bases is made. Also, the bound eigenstates 
of H (clearly independent of h0) are devoid of the 
indefiniteness in the no-pair eigenvalues, caused 
by the ad hoc nature of h0. 

In Eq. (14), although the eigenvalues E^- +, are 
invariant upon linear transformations of the orbital 
basis, the corresponding Ej are not. The differ- 
ence between these eigenvalues is equal to the 
energy contributions of negative-energy orbitals, 
always a positive quantity on account of (14). In 
this study we will discuss positive-energy orbitals 
yielding Ej as close as possible to the E^~ +,-. For 
short, positive-energy and negative-energy orbitals 
will be denoted by ( + ) and (-) orbitals, respec- 
tively. 

satisfied. In that circumstance the reference config- 
uration is the Hartree-Fock solution, and any ma- 
trix element of H with the Hartree-Fock function 
on one side and a single excited configuration on 
the other is equal to zero, a result known as 
Brillouin's theorem [7]. The matrix H+ consists of 
just one entry which is equal to the Hartree-Fock 
energy. The CI singles matrix H contains H+ as its 
first element, and has zero elements in the remain- 
ing of the first column (row), indicating that one of 
its eigenvalues, Er- + 1, is equal to Ej. 

The same result is obtained for some excited 
states within the same symmetry and also for 
some simple multireference Hartree-Fock eigenso- 
lutions, but it cannot be extended for general wave 
functions beyond Hartree-Fock. Furthermore, the 
annihilation of singly excited coefficients provides 
a completely general method to obtain multirefer- 
ence Hartree-Fock solutions even when E^- +, — 
E,+ > 0 [8]. 

Best (+) Orbitals for 
Two-Electron Systems 

Let us define an m-dimensional one-particle ba- 
sis of normalizable Dirac bispinors embracing nkr 

irreducible representations: 

Minimax Theorem 

The yf(2 m) eigenvalues of H are entirely deter- 
mined by the {uj, uj, j = 1,2,..., m) set, inde- 
pendently of any basis of ( + ) orbitals, {uj, ;' = 
1,2,..., m). What happens if we maximize the no- 
pair energies E,+ with respect to a nonsingular 
linear transformation within the entire {uj, uj, 
j = 1,2,..., m}? Since the E,+ can never be above 
the Ejr- + j, it follows that Eq. (14) contains a varia- 
tional theorem concerning maximization of E,+ . 
One can then define best ( + ) orbitals for a given 
bound state i as those for which E^~ +, - Ej is a 
minimum. Since E^- +, is an invariant, minimiza- 
tion of the above difference amounts to maximiza- 
tion of E,+. 

Before setting to maximize Ej, let us discuss 
the possibility that E^- +, - Ej = 0. It is readily 
seen that this happens for the case of the lowest 
state i — 1 of a CI singles (a CI with a reference 
configuration and all singly excited ones) when the 
CI coefficient of each singly excited configuration 
is zero, that is, when the Brillouin condition [6] is 

^n}jmj
a - 

l(   Pnt,j(r)Km, \ 

\      " ' 'I 

k = 1,2,.. 

"irr 
m =   E kx(lj). 

U;)= 1 

■ ,kx(lj),   (15) 

(16) 

This one-particle basis is called a single primitive 
(SP) basis. An SP basis is not necessarily associated 
with (+) states, although it can become one after 
certain transformations that we shall discuss 
shortly. To date, all many-electron relativistic cal- 
culations beyond Hartree-Fock (HF) have been 
carried out by means of SP bases of one kind or 
another. However, if one wishes to evaluate accu- 
rate relativistic self-consistent field (SCF) wave 
functions not through SCF equations but rather via 
Brillouin's theorem [6], negative-energy orbitals 
need to be included [8] to start the iterative pro- 
cess, although, in the end, the converged relativis- 
tic Hartree-Fock orbitals are bonafide (+ ) orbitals. 
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The radial functions P belong to a wide family 
of continuously differentiable radial functions with 
suitable boundary conditions at the origin and at 
infinity. In the applications of this study the P's 
are Slater-type orbitals (STOs): 

P„klj(r) = rT+">-V (17) 

where y = y K
2
 - (aZ)2 > \, viz., Z < 118. More- 

over, each lower component Qk is coupled to the 
upper component Pk [9, 10] through the kinetic- 
balance condition [12]: 

aid       K 
Q,(r) = -- + 7K(r). (18) 

Since the final orbitals will contain linear combina- 
tions of the upper components differing from the 
corresponding linear combinations for the lower 
components, kinetic balance is alien to Hartree- 
Fock or similar orbitals. The only exceptions to 
Eqs. (17) and (18) are when K > 0 and n = I + 1, 
viz., for 2p1/2, 3d3/2, 4/5/2, etc., and for ls1/2 

orbitals, where the Pk's and Qk's are chosen to be 
hydrogenic eigensolutions, that is, eigenfunctions 
of Dirac's equation with arbitrary charge Z = n\. 

Following our method to overcome a so-called 
continuum dissolution [1], we explicitly incorpo- 
rate, on an equal footing, both ( + ) and (-) one- 
particle states into the theory. We do this by sup- 
plementing the original m-dimensional SP basis 
with another complementary m Dirac bispinors, 

1 
■qr(k + ni) _   _ 

"kl)mi r 

Pntli(r)K,ni 
\ 

(19) 

differing from the first m in the minus sign pre- 
ceding the lower components Qk. In analogy with 
the SP set, the full 2 m-dimensional one-particle 
basis will be called a double primitive (DP) set. 
With one exception [12, 13], all relativistic HF 
calculations [10, 14] use DP sets, a fact that is 
important to make explicit. 

It is advisable to choose the DP set so as to 
avoid variational collapse at the one-particle level; 
if one is going to optimize the nonlinear parame- 
ters of the orbital basis at the relativistic level, this 
requisite becomes mandatory. As is well known 
[15-19], a matrix representation of a one-particle 
Dirac Hamiltonian hD is not a trivial matter. A 
satisfactory basis must yield positive-energy eigen- 
values of the one-particle Dirac equation avoiding 

variational collapse and providing upper bounds to 
the exact one-particle eigenvalues. Such bases 
[20-22] will be said to span the physical domain 
of hD. 

Distinctively from the SP set, the crucial prop- 
erty of the DP set is that it is invariant under 
separate nonsingular linear transformations of its 
upper and lower components. A special partition- 
ing of a DP space is a representation of the type 
{«;

+,w~, / = 1,2,..., m} used above, with the 
«/,w;

7 given by Eqs. (11) and (12), but this is 
generally not necessary. We shall now look for a 
2m-by-2m orthogonal transformation @2m 

&1 

1        \ 
"l 

/         \ 

«„, v„l 

u III +1 »,,,+1 

1 "2"< , 1 v*»< 1 

(20) 

such that E,+ is a maximum when H+ is defined 
in {Vj, j = 1,2,..., p < m). The orthonormal set 
[Uj, j = 1,2,...,2m} is initially given by 

u,. = Pk (21) 

with TJH. = 1. After developing the primitive basis, 
Eqs. (15) and (19), we choose any arbitrary set {wy-, 
j = 1,2,..., m) and maximize E,+ with respect to 
variations in the r\k. 

The maximization of E]+ will be illustrated with 
full CI for U90+ Is2 with a DP basis of eighteen 
ls]/2 orbitals. Thus m = 9, the CI size is ./K2m) = 
171, and jV~(2m) = 126. We use Eqs. (15) and (19) 
with radical functions 

P,hlj(r) = Q,hlj(r) = rye 
jp-^k' (22) 

The orbital exponents kk were optimized at the 
relativistic level by minimizing the CI eigenvalue 
of order JV~ + 1 = 127. After several hundreds of 
iterations we get: 

At = 12.7255,17.8156, 28.8820, 40.4350, 56.5954, 

79.5754, 90.7381,153.449, 213.177, 

Jt = l,...,9.    (23) 

The energy E127 is given in the first entry of Table 
I. This is an invariant for the given DP set. The 
behavior of neighboring eigenvalues and eigen- 
functions in a similar situation has been discussed 
in detail [1]. 
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TABLE I  
Full Cl calculations with the Dirac-Coulomb 
Hamiltonian for U90+ 1s2 ground state using a 
DP basis, best (+) orbitals, natural orbitals, and 
relativistic HF orbitals.3 

Basis Energy 

DP 
Best (+) orbitals 
(+) natural orbitals 
HF orbitals 

-9651.3855 029 
-9651.3863 464 
-9651.3863 465 
-9651.3888 435 

aThe four calculations use the same nine s-type STO basis. 
Energies in a.u., c = 137.0373 to conform with literature 
data. 

Next we maximize E-f with respect to the pa- 
rameters r\k carrying out a CI of order 9 X 10/2 = 
45. The result appears to be unique, at least in the 
present case. When HF orbitals (one occupied and 
eight virtuals) are given as input, iterations take 
several minutes of CPU time, but when more 
general orbitals are considered, the CPU time rises 
to many hours. At this point it is important to 
control orbital orthogonalization with respect to 
fixed input orbitals since otherwise, after millions 
of orthogonalizations, the ensuing loss of precision 
becomes severe and the optimization process stalls. 
The maximized Ex

+ is the second entry of Table I, 
this is the closest one can get to E127 with an SP 
basis. 

A conventional no-pair calculation using the 
nine ( + ) HF orbitals yields an Ef sinking 3340 
jiihartree below the DP basis, as shown in Table I. 
This is precisely the energy contribution of (-) HF 
orbitals. In general, HF bases split in an equal 
number of (+) and (-) orbitals. 

We shall now look at results obtained with 
natural orbitals (NOs) [23]. These are the eigen- 
functions of the reduced first-order density matrix 
y(l,l'), 

y(l,l') = N/V(l,2,...,N) 

X W,2,...,NM2,3,...,N),    (24) 

y(i,i')=E«jfaWi'), (25) 

and they provide a fast-convergent orbital basis for 
the N-electron CI expansion [23], so it is not sur- 
prising that they play a major role in optimal 
decoupling of (+) and ( -) orbitals in the relativis- 
tic regime. The eigenvalues ni of y(l, 1'), called 
occupation numbers, are a measure of the impor- 

tance of Xi iR a CI expansion expressed in terms of 
NOs. 

If we solve for the NOs of C127 we find only 
eight ( + ) NOs. These resemble very closely the 
first eight best (+ ) orbitals, and the corresponding 
energies differ only by 0.1 ^.hartree, as shown in 
Table I. This is a blessing since the latter are very 
hard to evaluate, while NOs are trivially obtained. 

The definition of ( + ) NOs requires more detail 
than that of ( + ) HF orbitals. A ( + ) NO has posi- 
tive kinetic energy expectation values and positive 
expectation value of the mass operator ßc2. (A 
positive expectation value of ßc2 is equivalent to a 
relative weight NP of the upper component larger 
than 0.5.) 

In Table II we provide pertinent natural orbital 
data for the ground state Is2 of U90+. There is an 
almost perfect splitting between (+ ) and (-) NOs; 
however, the fifth NO has a positive kinetic energy 
expectation value but NP < NQ (negative expecta- 
tion value of the mass operator). Upon using this 
NO in an SP basis, we find that it behaves as a (-) 

TABLE II 
Properties of the natural orbitals arising from a 
relativistically optimized s1/2-type basis set for U 90 + 

ground state.3 

1 "* <ca-p> NP NQ 

1 2.00 11329.30 0.87 0.13 
2 3.85 X 10~6 26070.61 0.73 0.27 
3 1.46 X 10"7 41440.12 0.57 0.43 
4 2.96 X 10"8 22619.00 0.63 0.37 
5 1.68 X 10"8 10560.19 0.37 0.63 
6 3.41 X 10~9 -8832.77 0.29 0.71 
7 7.46 X 10 "10 6350.86 0.86 0.14 
8 1.46 X 10~w -21428.18 0.26 0.74 
9 7.48 X 10"12 -52371.51 0.23 0.77 

10 2.57 X 10"12 1449.22 0.97 0.03 
11 4.14 X 10"13 -31940.34 0.20 0.80 
12 2.49 X 10 ~14 -4835.44 0.04 0.96 
13 8.69 X 10"15 846.41 0.96 0.04 
14 2.74 X 10~17 -554.74 0.03 0.97 
15 4.89 X 10~19 89.28 0.92 0.08 
16 1.07 X 10"20 466.88 0.61 0.39 
17 3.37 X 10"21 -982.68 0.28 0.72 
18 5.82 X 10"22 -276.20 0.18 0.82 

aThe dimension of the double-primitive basis is 18. The 
second column gives the occupation number nk of orbital k 
added over the angular momentum quantum number m,. 
The expectation value of the kinetic energy operator ca • p 
is given in the third column. The relative weights NP and NQ 

of the upper Pk and lower Qk components for each natural 
orbital are given in the fourth and fifth columns. 
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NO, that is, in a CI calculation it must be counted 
as a (-) orbital. Therefore, (-) NOs will be de- 
fined as those NOs that are not (+ ) NOs. 

Those NOs with ni < 10"16 may be numerically 
unreliable and do not yield significant contribu- 
tions to the wave function, thus ( + ) NOs with 
such small n{ may be discarded. 

The natural orbitals are closely related to erg- 
onals, the eigenfunctions of the reduced 1-p 
energy-density operator h (1,V) [24]: 

fcp(l,l') = j>*(l,2,...,N) 

xi[H(l,2,...,N) + H(l',2,...,N)] 

X W,2,...,N)d(2,3,...,N).    (26) 

If ^ is a full CI, it holds: 

Vl,l') = -y(l,l'), (27) 

thus ergonals become natural orbitals and their 
eigenvalues are proportional to the occupation 
numbers. We have observed that for 2w-dimen- 
sional DP bases, the eigenvalues of both, hD and of 
the Fock-Dirac operator, split into m ( + ) and m 
(-) orbitals. Alternatively, there are usually fewer 
than m (+) NOs, as it may be suspected from the 
results of Table II. Since the latter are identical 
with ( + ) ergonals for full CI, we see that this 
difference cannot be ascribed to the use of "en- 
ergy" operators in the first case. 

One of the original motivations for introducing 
NOs [23] was to reduce the number of primitive 
orbitals. We notice that this expectation is clearly 
fulfilled in relativistic calculations when condens- 
ing a 2 m-dimensional DP basis into an SP basis of 
dimension even smaller than m, as illustrated in 
Tables I and II. 

In conclusion, for two-electron systems, ( + ) 
NOs are as close to best ( + ) orbitals as one may 
hope to get. For the ground state Is2 of U90+, ( + ) 
NOs yield an energy only 0.1 /uhartree below that 
of best (+) orbitals. Also, the energy contribution 
of s-type (-) NOs is 844 /Ahartree, four times 
smaller than that of (-) HF orbitals. 

(+) Natural Orbitals for 
Many-Electron Systems 

Maximizations of E+ are very time-consuming. 
In view of the remarkable coincidence between 

best ( + ) orbitals and ( + ) NOs for two-electron 
systems, we will examine the viability of comput- 
ing ( +) NOs of Qjr- +, even when JV~ + i exceeds 
practical limits. 

Let us consider Ne ground state and settle for a 
singles and doubles CI approximation. An STO 
basis of 8s7p6d5ßg3h2i orbitals [25] yields a 
nonrelativistic energy E = -128.914571 a.u., re- 
covering about 94% of the correlation energy. The 
full ;; basis is 16S14pl4P12dl2D10/10F8g8G6 
h6H4i4I, where lowercase and uppercase are used 
for /' = / - \ and j - I + j, respectively. Here JV 
= 23586 and yf"= 17984, thus simplifications are 
warranted. In short, we will calculate approximate 
NOs through CI by parts. These approximate NOs 
are quite distinct from the rigorous NOs. How- 
ever, one hopes that the corresponding ( + ) NOs 
will span essentially the same space as the rigor- 
ous (+) NOs. 

The reliability of our procedure will be tested 
with small 14S10pl0P bases which allow both 
rigorous and approximate treatments to be carried 
out. Rigorous (+) NOs are a subset of the NOs of 
the 2283th excited state of a doubles CI of order 
2827, with all singles being excluded to allow the 
HF orbitals to be part of the NO set. Approximate 
S-type NOs are a subset of the S-type NOs of a CI, 
including all double substitutions of IS2, 2S2, 2p2, 
and 2P2, and similarly for the p-type and P-type 
NOs. In both instances, a full DP base is used. In 
the first column of Table III we present model CI 
energies obtained with the full basis, thus a very 
highly excited state is considered. Columns 2 and 
3 report energies obtained with rigorous and ap- 
proximate ( + ) NOs, respectively. The fact that 
both columns are equal means that our approxi- 
mate ( + ) NOs essentially span the same space as 
the rigorous ones. 

In Tables IV and V we present model calcula- 
tions in terms of approximate (+) NOs, using the 
Dirac-Coulomb and the Breit-Dirac-Coulomb 
(BDC) Hamiltonians, respectively. Relativistic en- 
ergy contributions in the last column reflect basis 
set incompleteness rather than actual convergence. 
In both cases, however, convergence to within 
0.0001 a.u. appears to be achieved, which is a 
better accuracy than one recently obtained for the 
nonrelativistic correlation energy [26]. However, 
this optimism must be tempered by further studies 
on reliable calculations of energy contributions of 
(-) orbitals, which are appreciable in Breit-Dirac- 
Coulomb calculations, even in such small systems 
as Ne. 
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TABLE III 
Ne ground-state energies for model calculations using the full (+, -) orbital bases, rigorous (+) NOs and 
approximate (+) NOs, using the Dirac-Coulomb (DC) and the Breit-Dirac-Coulomb (BDC) Hamiltonians.3 

Model (+,-)                  Rigorous (+) Approximate (+) (-) 

DC, Hartree-Fock -128.691969              -128.691969 0 
BDC, Hartree-Fock -128.675328              -128.675328 0 
DC, Cl doubles 7s5p -128.872829              -128.872829 -128.872829 0 
DC, Cl singles and doubles 7s5p -128.874803              -128.874803 -128.874803 0 
BDC, Cl doubles 7s5p -128.853822              -128.857090 -128.857090 0.003268 
BDC, Cl singles and doubles 7s5p -128.855803              -128.859062 -128.859062 0.003259 

aEnergy contributions of negative-energy orbitals are given in the last column. Energies in a.u., c = 137.0359895 

TABLE IV 
Ne ground-state energies for model calculations in terms of approximate (+) NOs, using the Dirac- Coulomb 
(DC) Hamiltonian.3 

Model Nonrelativistic DC energy Difference 

Hartree-Fock -128.547098 -128.691969 0.144871 
Cl singles and doubles 8s7p -128.733861 -128.879017 0.145156 
Cl singles and doubles 8s7p6d -128.860136 -129.005254 0.145118 
Cl singles and doubles 8s7p6d5f -128.896413 -129.041502 0.145089 
Cl singles and doubles 8s7p6d5f4g -128.909090 -129.054168 0.145078 
Cl singles and doubles 8s7p6d5f4g3h -128.913068 -129.058142 0.145074 
Cl singles and doubles 8s7p6d5f4g3h2i -128.914571 -129.059643 0.145072 

aEnergies in a.u., c = 137.0359895. 

TABLE V 
Ne ground-state energies for model calculations in terms of approximate (+) NOs, using the 
Breit-Dirac-Coulomb (BDC) Hamiltonian.3 

Model Nonrelativistic BDC energy Difference 

Hartree-Fock 
Cl singles and doubles 8s7p 
Cl singles and doubles 8s7p6d 
Cl singles and doubles 8s7p6d5f 
Cl singles and doubles 8s7p6d5f4g 
Cl singles and doubles 8s7p6d5f4g3h 
Cl singles and doubles 8s7p6d5f4g3h2/ 

-128.547098 
-128.733861 
-128.860136 
-128.896413 
-128.909090 
-128.913068 
-128.914571 

-128.675321 
-128.863404 
-128.989878 
-129.026174 
-129.038844 
-129.042819 
-129.044321 

0.128223 
0.129543 
0.129742 
0.129761 
0.129754 
0.129751 
0.129750 

aEnergies in a.u., c = 137.0359895. 

The obvious strategy is to calculate those quan- 
tities accessible to more exact results, from which 
one can deduce the less accurate ones. The next 
challenge is to evaluate accurate quantum electro- 
dynamics corrections. Purely variational nonrela- 
tivistic results [26] may be improved by a combi- 
nation of variational-perturbation and perturbation 
techniques. Estimates of the energy contributions 
of (-) orbitals can be made approximately, but 
more experience is needed to know how reliable 
these approximate estimates are. Of course, for 

two-electron systems, exact incorporation of (-) 
orbitals is always possible [1]. 
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ABSTRACT: Second-order multiconfigurational Dirac-Fock self-consistant-field 
calculations are reported for the ground and low-lying excited states of boronlike ions, 
Ne+S, P+1°, Ca + 15, Mn+20, Zn+25, and Mo+37. Relativity alters an important class of 
strong configuration interaction, asymptotic CI, along the isoelectronic sequence, and 
multiconfigurational Dirac-Fock self-consistent-field calculations including n = 2 and 
n = 3 complexes are sufficient to accurately predict fine-structure splittings for larger Z, 
while for small Z, it is necessary to accurately account for the remaining dynamical 
correlation.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 813-823, 1998 

Introduction 

It is widely recognized that accurate predictions 
of properties of atoms and molecules must take 

electron correlation into account. In heavy-atom 
systems and highly ionized high-Z ions, the effects 
of relativity become important in addition to elec- 
tron correlation. Further, the effects of relativity 
and electron correlation in these systems are 
strongly intertwined. There are two distinct meth- 
ods for studying the relativistic and correlation 
effects in atoms and molecules: The first is the use 

Correspondence to: Y. Ishikawa. 
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© 1998 John Wiley & Sons, Inc. 

of nonrelativistic wave functions, the relativistic 
effects being introduced by perturbation theory. 
Pyper [1] and Molzberger and Schwarz [2] showed 
that relativity significantly modifies even the dy- 
namics of valence electrons in heavy atoms. These 
studies indicate that perturbation theory is less 
adequate for investigating relativistic effects in 
heavy atoms or in molecules which contain heavy 
atoms. The second of the two methods is the direct 
use of the Dirac Hamiltonian or its two-component 
variant which incorporates major one-electronlike 
relativistic effects in variational calculations. 

An intense effort in the last decade has been 
directed toward developing relativistic many-body 
theories that accurately account for both relativis- 

CCC 0020-7608 / 98 / 040813-11 



VILKAS, ISHIKAWA, AND KOC 

tic and electron correlation effects in heavy-atom 
systems and highly ionized high-Z ions. Among 
the relativistic many-body techniques developed 
recently are numerical finite-difference multicon- 
figuration (MC) Dirac-Fock self-consistent-field 
(DF SCF) theory [3-5], relativistic many-body per- 
turbation theory (MBPT) [6-11], relativistic cou- 
pled cluster (CC) theory [12-15], and the relativis- 
tic configuration interaction (CD method [16-19]. 
Discrete basis sets of both "local" [6, 7, 12, 14, 17] 
and "global" [5, 8-10, 13, 16, 18] functions as well 
as numerical finite-difference algorithms [3, 4, 11, 
15, 19] have been used. Implementations based on 
expansion in analytic basis functions [5-10, 12-14, 
16-18] have the advantage over those based on 
numerical finite-difference algorithms [3, 4, 11, 19] 
of providing a compact representation of the com- 
plete Dirac spectrum and of providing analytic 
energy gradients and Hessian matrices of second- 
energy derivatives. 

We recently [20] employed the generalized cou- 
pling operator method [21] to construct a single 
Fock operator for open-shell matrix DF SCF and 
showed that with such an operator all closed- and 
open-shell four-component Dirac spinors can be 
determined. We reported state-specific relativistic 
MBPT [10] and relativistic CI [18] calculations for 
open-shell systems. The spinors used in these cal- 
culations were obtained in single-configuration 
matrix DF SCF calculations. Correlated methods 
based on the single-configuration reference state 
are very effective in describing dynamical correla- 
tion, but do not work well when significant non- 
dynamic correlation (i.e., near-degeneracy) is 
present. Systems in which only the dynamical 
correlation is important may be described by sin- 
gle-configuration DF wave functions, whereas sys- 
tems with significant nondynamical correlation 
cannot be correctly described within single-config- 
uration DF wave functions. Near-degeneracy of 
the valence spinors gives rise to a manifold of 
strongly interacting configurations, that is, strong 
configuration mixing within a relativistic complex 
due to asymptotic degeneracy [22], and makes a 
relativistic multiconfigurational treatment manda- 
tory. The classic examples are the near-degeneracy 
effects in the beryllium and carbon isoelectronic 
sequences, open-shell atoms with two or more 
valence electrons, molecular reactive and excited- 
state energy surfaces, and multiply bonded 
molecules. 

In the present study, we outlined a recently 
developed second-order matrix MC DF SCF [23, 

24] which is applicable to systems with significant 
nondynamical correlation effects. Numerical 
finite-difference and matrix MC DF SCF algo- 
rithms based on first-order energy variation often 
exhibit slow convergence for the ground states of 
atoms and molecules and are often nonconvergent 
for their excited states. Second-order optimization 
of Dirac four-spinors and configuration mixing co- 
efficients in the MC DF SCF is thus necessary to 
guarantee well-controlled convergence in rela- 
tively few iterations. The essential feature of the 
MC DF SCF is that the multireference technique is 
employed as a means of treating nondynamical 
correlation. Once the near-degeneracy effects in the 
relativistic complex are accounted for by MC DF 
SCF, the remaining dynamical correlation may be 
accounted for by multireference (MR) configura- 
tion interaction with single and double excitations 
(CI-SD) out of MC DF reference wave functions or 
MR perturbation theory. In the second-order MC 
DF SCF, we develop the MC variational energy up 
to second order in the unitary rotation parameters 
and seek the stationary point by employing a 
quadratic approximation to the energy surface. The 
approach parallels the second-order algorithm de- 
veloped in nonrelativistic multiconfigurational SCF 
calculations [25] and provides excellent conver- 
gence once a quadratic basin on the energy surface 
is entered. In the next section, we briefly outline 
the quadratically convergent relativistic MC DF 
SCF [23, 24] and MR CI-SD algorithms imple- 
mented with analytic basis sets of Gaussian 
spinors. In the third section, the results of matrix 
MC DF SCF calculations on the ground and 
low-lying excited states of boronlike ions, Ne + 5, 
P+1°, Ca + 15, Mn+20, Zn+25, and Mo+37, are pre- 
sented. For low-Z ions, Ne+5 and P+1°, MR CI-SD 
calculations that account for the remaining dy- 
namic correlation are also reported. 

Theory 

The effective N-electron Hamiltonian (in atomic 
units) for the development of our matrix MC DF 
SCF algorithm is taken to be the relativistic "no- 
pair" Dirac-Coulomb (DC) Hamiltonian [26, 27], 

H^c= EM0+^+ .    . r ■ 
\&±. (1) 
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where hD(i) is the Dirac one-electron Hamiltonian: 

hD(i) = caiPi + (& - l)c2 + VttttC(.r{).     (2) 

Here, a and ß are the 4x4 Dirac vector and 
scalar matrices, respectively. Vnuc(r) is the nuclear 
attraction term. The nucleus is modeled as a sphere 
of uniform proton-charge distribution (Z is the 
nuclear charge, and R, the radius of the sphere) 
[28]: 

V   (r) = < 

2R\       R2 

for r > R 

for r < R. 

(3) 

The positive-energy projection operator SC^ for- 
mally takes into account the field-theoretic condi- 
tion that the negative-energy states are filled 
[26, 27]. It is defined in terms of the positive- 
energy spinors obtained from MC DF SCF calcula- 
tions [27]. 

Adding the frequency-independent Breit inter- 
action, 

Bi2 = -Hai'a2 + (or'uXaz-ruVful/fu, 
(4) 

to the instantaneous electron-electron Coulomb 
interaction, in Coulomb gauge, results in the 
Coulomb-Breit potential, which is correct to order 
a2 (a being the fine-structure constant) [26]. Addi- 
tion of the Breit term yields the no-pair 
Dirac-Coulomb-Breit (DCB) Hamiltonian [26, 27]: 

tfocB = EM» +&+ E ^ + BJ\<?+, (5) 

which is covariant to first order and increases the 
accuracy of calculated fine-structure splittings and 
inner-shell binding energies. Higher-order QED ef- 
fects appear first in order a3. Studies have ap- 
peared that go beyond the no-pair approximation 
where negative-energy states are needed to evalu- 
ate the higher order QED effects [29, 30]. 

Eigenfunctions of the no-pair DC Hamiltonian 
are approximated by a linear combination of N- 
electron configuration state functions (CSFs): 

NCSF 

*MCDFC(y&r) =   E Cr^(r^).       (6) 
I 

Here, the MC Dirac-Fock-Coulomb self-consistent- 
field (DFC SCF) wave function ^MCDFC^'Y^

7
'^ ^

S
 
an 

eigenfunction of the angular momentum and par- 
ity operators with total angular momentum ^"and 
parity ir, and <E>J(yJ>97r) are the CSFs. y denotes a 
set of quantum numbers other than !T and TT nec- 
essary to specify the state uniquely. In the follow- 
ing, Cf* is abbreviated as CJ. 

In the atomic case, the total DC energy of the 
general electronic state ^MCDFC^J^

7
^ 

can be ex- 
pressed as 

&* = <*MCDFc(">^)l^cl^MCDFc(y^)> 
Nr, 

=   E CJCji^iy^lH+c&jiy^)) 

X(2-6I;). (7) 

Here, it is assumed that ^MCDFC^J^
17
^ 

an<^ 
<$>j(yj$ir) are normalized. The configuration mix- 
ing coefficients {CJ} and the integrals involved in 
Eq. (7) may be chosen real in atomic many-electron 
calculations. The number of terms in the summa- 
tion has been reduced by using the hermiticity of 
the Hamiltonian and by having chosen coefficients 
{CJ} and integrals real. The total energy can be 
conveniently expressed in terms of the unique 
elements of the one- and two-particle radial inte- 
grals: 

N, Ny 

E^=   E tj(aabj +   £ VßRHaßbß,cßdß), 
a=l 0=1 

(8) 

where Nt and Nv are the numbers of nonzero ta 

and Vß coefficients. The short notation for the 
radial integrals was used: 

I(ab) = I(naKanbKb) = <^„A(r)|ftD(r)|^>„tKt(r)> 

(9) 

R"(ab, cd) = R"(naKanbKb, ncKcndKd) 

hM^ArJ 
rv+l 
' > 

do) 

where {</>„„(?")} is an orthonormal set of Dirac 
one-electron radial spinors of symmetry K. The 
symmetry K is related to spinor angular momen- 
tum ;' by K = +(;' + \) for I = j + \, where I is 
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orbital angular momentum quantum number of 
the large component spinor. The generalized coef- 
ficients ta and Vß are expressed in terms of nonzero 
angular coefficients t'J and Vj1: 

ta =    E  tj,8(a,a'){2 - Sl})CJCJ       (11) 
a' = l 

N'v 

Vß =   E  Vß'!S( ß, ß'){2 - 8„}CJCj.    (12) 

The angular coefficients t'J and Vß
] account for 

the symmetries of the radial integrals I(aaba) and 
R"(aßbß,cßdß), and the notations a = {aabj and 
ß = {vß, cißbß, Cßdß} were used. 

Throughout the section, the following notations 
are used: The indices e and / denote occupied 
spinors, the indices p, q, r, and s denote any of 
the occupied or virtual spinors (both positive and 
negative energy spinors), the indices I, /, and K 
denote CI coefficients, and the indices a, b, c, d, 
and v are reserved for the sets a and ß describing 
unique radial integrals. 

SECOND-ORDER DIRAC-FOCK 
SELF-CONSISTENT-FIELD ALGORITHM 

Given a trial orthonormal set of 2NK one-elec- 
tron radial spinors {<j>„iK(r)}, the optimum occu- 

pied radial spinors {<£"'*} can be found by a uni- 
tary transformation U = 1 + T via 

«'>) = 
1 

Y 

2N. 

2N„ 

= L <t>n,Jr)Upi, 

E^y.JrXX, + spe). (13) 

Here, the summation extends over both negative 
and positive energy spinors. P„K(r) and QnK(r) are 
the large and small radial components and are 
expanded in NK Gaussian-type functions (GTF) 
that satisfy the boundary conditions associated 
with the finite nucleus [9, 20, 28]. Variation of the 
energy with respect to the parameters {Tpe} leads 
to the Newton-Raphson (NR) equations: 

'pe +   Lf^pe.qfTqf ~ 0' 
If 

(14) 

where the first derivative with respect to Tpe is 

■>pc ST. pe 7 = 0 

Y, ta[I(pba)8(e,aa) + I(aap)8(e,ba)] 

Nv 

+ E Vß-{RlHpbß,Cßdß)8(e,aß) 

+ R"i>(aßp,Cßdß)8(e,bß) 

+ R"»(aßbß, pdß)8(e,cß) 

+ R',ß(aßbß,cßp)8(e,dß)} (15) 

and the Hessian matrix with respect to T    and T j 
is 

1,00 
"{"■■If 

d2Ey'7lT(T) 

dTpedTq( 

=   Lta[I(pq)8(e,aj8(f,ba) 
a=l 

Nv 

+ I(qp)8(e,ba)8(f,aJ] +   £ Vß 

0=1 

x{R,'ß(pq,cßdß)8(e,aß)8(f,bß) 

+ R',K(pbß,qdß)8(e,aß)8(f,cß) 

+ R"»(pbß,cßq)8(e,aß)8(f,dß) 

+ R"»(aßp,qdß)8(e,bß)8(f/cß) 

+ R,Haßp, cßq)8(e, bß)8(f, dß) 

+ Rv»{aßbß,pq)8{e,Cß)8(f,dß) 

+ Rl'ß(qp, cßdß)8(f, aß)8(e, bß) 

+ R"»(qbß,pdß)8(f,aß)8(e,cß) 

+ R"»(qbß, cßp)8(f, aß)8(e, dß) 

+ R"ß(aßq,pdß)8(f,bß)8(e,cß) 

+ RHaßq,Cßp)8{f,bß)8{e,dß) 

+ RHaßbß,qp)8(f,Cß)8(c,dß)}.   (16) 

To account for the orthogonality constraints, terms 
involving Lagrange multipliers must be added to 
the energy functional. 

The CI coefficients CJ [Eq. (7)] are not constant, 
and variations over them must also be incorpo- 
rated in the second-order energy. Consider two 

816 VOL.70, NO. 4/5 



SECOND-ORDER MC DF CALCULATIONS ON BORONLIKE IONS 

sets of CI coefficients - Cy = {CJ} (optimum) and 
C(0)7 = {Cj(0)y} (approximate). A Taylor expansion 
of the energy yields 

with 

E^(T,CT = C(0)y + AC7) 

dEy^(T,Cy) 
= E^(T,C(0)7) + £■ 

7 

i ^ d2Ey^{T,cy) 
+ öE 

dCJ 
•AC/ 

C(0)y 

2 ~       <9C/<?C/ 
AC/AC7 + ... . 

C(»)T 

(17) 

AC/ may be expanded in terms of the CI vectors 
{Q(0)7'}: 

AC/ = CJ - Cf)y =   £ Ay,Cf)y' - Q(0)7 

y' = i 

NCSF NcSF 

=   E (Ay-S7,r)C}°>7'=   E ByCr'- 
y' = l y' = l 

(18) 

Now, the second-order energy can be expressed in 
terms of AC/ or By,. By collecting terms with up to 
second-order in ACT and T, we obtain the NR 
nonlinear equations. 

^ y.   I     Ve,qf      "pe, y"  I j   1 if 

&}     fcW'.of   hr,r}\Br, 
,   (19) 

where the additional Hessian matrix elements are 
defined by 

hco,     = hoc   , y , pe pe, y 

Ncs, 

- E 
i 

N, 

LtiiKpbjSicaJ 
a. 

+ I(aap)8(e,ba)} 
Nv 

+ E V^{R^(pbß,cßdß)8(e,aß) 

+ Rvß(aßp,cßdß)8(e,bß) 

+ Rvß(aßbß,pdß)8(e,cß) 

+ R"»(aßbß,cßp)8(e,dß)} (-(0)y' (20) 

hcc   „ = 2Fy'8 , „ (21) 

>K = . 
dt„ 

dCl 

Nt 

=   E  t!J,8(a,a>) 
C(0)r        a' = l 

X {Cf)y8(I, K) + C?)y8(J, K)}    (22) 

=   £ VßU8(ß,ß') 
C(0)T ß' = \ 

X {Cf)yS(I,K) + Cf)y8(J, K)}    (23) 

and the first derivative with respect By, is 

v«K=- 
dVR 

g;, = 2EV%,y. (24) 

As with the spinor orthogonality constraints, the 
normalization condition Ey Ay.Ay, = 1 of the CI 
vectors must be incorporated. The intermediate 
coupling is built in through the MC DF SCF 
process. 

The second-order MC DF SCF procedure starts 
with the construction of CFSs by vector selection. 
From a set of nonscreened hydrogenic spinors gen- 
erated by diagonalizing the matrix Dirac one- 
electron Hamiltonian, positive-energy (electronic) 
spinors are selected to construct relevant CSFs 
while negative-energy (positronic) spinors are left 
unoccupied. Second-order MC DF SCF is thus a 
c-number theory which does not reinterpret the 
negative-energy solutions as 17-number theory 
does. It treats a desired electronic state as an ex- 
cited state to which the iterative NR equation 
converges by vector selection. A straightforward 
application of the iterative NR equations [Eq. (19)] 
starting from nonscreened hydrogenic spinors, al- 
though they are poor initial guesses, exhibits rapid 
convergence to a targeted electronic state. Further, 
the solutions of the second-order MC DF SCF 
equations reveal an extension of Talman's mini- 
max-principle [31] for one-electron systems to 
many-electron systems. For the lowest electronic 
state of a given symmetry, the spinor Hessian 
possesses NK positive and NK negative eigenval- 
ues corresponding to a minimum and a maximum, 
respectively, in the space of large and small com- 
ponent parameters. Our second-order optimization 
procedure is thus equivalent to employing a mini- 
max principle. 

RELATIVISTIC MULTIREFERENCE 
CONFIGURATION INTERACTION 

In the previous section, we derived a Newton- 
Raphson equation to determine optimum MC DFC 
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SCF wave functions based on the DC Hamiltonian. 
The effects of the frequency-independent Breit in- 
teraction may be excluded or included in the MR 
CI-SD step. These correspond to MR CI-SD calcu- 
lations based, respectively, on the no-pair DC and 
DCB Hamiltonians. In the following, they will be 
referred to as the DC MR CI-SD and DCB MR 
CI-SD schemes. In our DC and DCB MR CI-SD 
schemes, the eigenfunctions of the DC and DCB 
Hamiltonians are constructed as linear combina- 
tions of CSFs generated by single and double exci- 
tations out of the reference CSFs Q^JJ^TT) in- 
volved in Eq. (6): 

(CAi + CBj)<$>B.e, leading to summation in (25) only 
over nonredundant CSFs. If the reference MC DFC 
SCF wave function includes the most important 
double excitations from the dominant CSFs, the 
multireference CI-SD wave function will contain 
important triple and quadruple excitations. 

BASIS-SET EXPANSION METHOD 

The large radial components PnK(r) of the Dirac 
spinors of symmetry K are expanded in sets of 
even-tempered GTFs (G-spinors): 

*,/; = N>"«exp(-£,.r2), (26) 

I     \ i 

+ EQD$W^) (25) 

where rf (nf) is the total number of singly excited 
CSFs <J>,r;(, (doubly excited <£",,<•) constructed by 
single (double) excitations from the reference CSFs 
$;. Cff and Cjf are CI—SD coefficients, which 
are determined variationally. Since MC SCF calcu- 
lations provide only occupied and virtual spinors 
of the same symmetries, virtual spinors of other 
symmetries are generated via a Fock operator [32] 
with fractionally occupied MC SCF spinors. 

In expansion (25), some of the CSFs coming 
from different reference states <i>A may be identi- 
cal. For example, 

for    A # B. 

In such a case, the expansion coefficients may be 
factorized, {CAi<br

A
s.cf + CB;-4>ß;(,), and replaced by 

with nK= - K for K < 0, and nK = K + 1 for K > 0. 
N^j is the normalization constant. The small com- 
ponent basis set {x^} is constructed to satisfy the 
boundary conditions associated with the finite nu- 
cleus [28]. The basis-set exponents {£Ki} in even- 
tempered GTFs are given in terms of the parame- 
ters a and ß by the geometric series £K, = 
aß'~l; i = 1,2,..., NK. The speed of light is taken 
to be 137.0359895 au throughout this study. The 
GTFs that satisfy the boundary conditions associ- 
ated with the finite nucleus automatically satisfy 
the so-called kinetic balance condition [33]. 

Results and Discussion 

Table I contains the results of single-configura- 
tion DF SCF and MC DF SCF calculations on the 
odd-parity / = 1/2 ground state of boronlike ions 
Ne+5 (Z = 10), P + ,° (Z = 15), Ca + 15 (Z = 20), 
Mn+20 (Z = 25), Zn+25 (Z = 30), and Mo+37 (Z = 
42), in increasing number of configurations (NCSF) 

TABLE I 
Computed MC DFC energies, EMCDFC (au), and MC DFB energies, EMCDFB (au), for the ground J - 
along the boron isoelectronic sequence in increasing CSF expansion lengths. 

= - state 

NCSF Z=10 Z=15 Z = 20 Z = 25 Z = 30 Z = 42 

EMCDFC 1 
2 
6 

24 

-116.061472 
-116.133428 
-116.136557 
-116.141849 

-276.927731 
-277.032602 
-277.035835 
-277.041098 

-507.799766 
-507.932284 
-507.935593 
-507.940936 

-809.698759 
-809.851457 
-809.854847 
-809.860288 

-1183.992448 
-1184.156449 
-1184.159931 
-1184.165519 

-2388.951640 
-2389.110745 
-2389.114474 
-2389.120492 

EMCDFB 1 
2 
6 

24 

-116.046411 
-116.118431 
-116.121563 
-116.126857 

-276.872623 
-276.977756 
-276.980997 
-276.986270 

-507.663422 
-507.796602 
-507.799932 
-507.805304 

-809.424886 
-809.578874 
-809.582308 
-809.587817 

-1183.509078 
-1183.675199 
-1183.678764 
-1183.684487 

-2387.571464 
-2387.735014 
-2387.739052 
-2387.745559 

818 VOL 70, NO. 4/5 



SECOND-ORDER MC DF CALCULATIONS ON BORONLIKE IONS 

up to NCSF = 24. Even-tempered G-spinor basis 
sets of 23sl9p, 23sl9p, 28s26p, 29s27p and 30s27p 
were used, respectively, for Ne+5, P+1°, Ca+15, 
Mn+2°, Zn+25, and Mo+37. The MC DF calculations 
were performed using both the no-pair DC and 
DCB Hamiltonians, and in the table they are 
designated, respectively, as multiconfigurational 
Dirac-Fock-Coulomb (MC DFC) and multicon- 
figurational Dirac-Fock-Breit (MC DFB) SCF. 
Single-configuration DFC and DFB SCF wave 
functions were derived from the electronic con- 
figuration, (ls1/2)2(2s1/2)

2(2p1/2)1. A set of all 
configurations of the same parity which are 
asymptotically degenerate in the hydrogenic limit 
is called a complex [22]. Within the n = 2 complex, 
there are only two / = 1/2 odd-parity CSFs, 
the (ls1/2)

2(2s1/2)
2(2p1/2)

1 and (ls1/2)
2(2p1/2)1 • 

(2p3/2)2. The two-configuration DFC and DFB 
wave functions are constructed from these CSFs. 
The 24-configuration DFC and DFB wave func- 
tions are a complete active space (CAS) wave func- 
tion which contains all the CSFs constructed by 
keeping (ls1/2)

2 frozen and distributing the three 
valence electrons over the spinor set 2s1/2, 2p1/2, 
2p3/2, 3s1/2, 3p1/2, 3p3/2. All the MC DFC and 
DFB SCF energies were computed with basis sets 
of even-tempered 25s23p G-spinors for Ne+5 and 
30s27p G-spinors for Mo+37. Calculations were 
done with a finite nucleus of uniform proton charge 
distribution. The atomic masses used for Ne+5, 
P+1°, Ca+15, Mn+20, Zn+25, and Mo+37 are, respec- 
tively, 20.18, 30.97, 40.08, 54.94, 65.37, and 
95.94 amu. One- and two-configuration numerical 
finite-difference MC DFC SCF calculations on Ne+5 

made with GRASP [4] yielded, respectively, the 
total energies, -116.061509 and -116.133483 au. 
The GRASP results were obtained with a finite 
nucleus of Fermi proton charge distribution. The 
total energies obtained in our second-order MC DF 
calculations are in very good agreement with those 
obtained by the GRASP finite difference program. 
The discrepancies between the two calculations are 
on the order of 10 microHartrees. 

Two-configuration DFC SCF energies of the 
ground / = 1/2 odd-parity states for the boronlike 
ions are reproduced in Table II along with the 
configuration mixing coefficients. The magnitude 
of the configuration mixing coefficients is a mea- 
sure of configuration mixing. For Z = 10, there is a 
nonnegligible mixing of the two configurations 
that arises from the n = 2 complex. As Z in- 
creases, however, this mixing tends to diminish, 
and for Z = 42, a single-configuration DF wave 

TABLE II  
Ground state J = \ two-configurational DFC 
energies, EMCDFC (au) and configuration mixing 
coefficients along the boron isoelectronic 
sequence. 

EMCDFC C2s22P)/2 ^2Pl/22P3/2 

z = 10 -116.133428 0.98148 0.19155 
z = 15 -277.032602 0.98425 0.17677 
z = 20 -507.932284 0.98649 0.16383 
z = 25 -809.851457 0.98884 0.14900 
z = 30 -1184.156449 0.99125 0.13201 
z = 42 -2389.120492 0.99599 0.08943 

function is sufficient to describe the ground / = 
1/2 odd-parity state. For neutral boron (Z = 5), 
nonrelativistic charge expansion theory [34] ap- 
plies well because relativistic effects are very small. 
The strong configuration mixing within a complex 
due to asymptotic degeneracy is asymptotic CI. 
The nonrelativistic complex for the isoelectronic 
sequence consists of 2s22p1 2P and 2p3 2P. This 
asymptotic CI within the nonrelativistic complex 
produces, for lighter ions, a linear Z-dependence 
in the energy shift. As Z increases, relativity starts 
to weaken the configuration mixing predicted non- 
relativistically, and a linear Z-dependence of corre- 
lation energy typical of the nonrelativistic complex 
is diminished by the relativistic complex. In the 
high-Z relativistic hydrogenic limit, relativity 
causes separation of the 2p1/2 and 2p3/2 spinor 
energies, making ls2

/22s2
/22pJ/2 the dominant 

configuration for the / = 1/2 ground state. Table 
II displays just such a trend as the nuclear charge 
increases. 

Table III contains the results of single-configura- 
tion SCF and MC DF SCF calculations on the 
lowest odd-parity / = 3/2 state of boronlike ions 
Ne+5 (Z = 10), P+1° (Z = 15), Ca+15 (Z = 20), 
Mn+20 (Z = 25), Zn+25 (Z = 30), and Mo+37 (Z = 
42), in an increasing number of configurations 
(NCSF) up to NCSF = 32. The MC DF calculations 
again were performed with the no-pair DC and 
DCB Hamiltonians, and in the table they are 
designated, respectively, as multiconfigurational 
Dirac-Fock-Coulomb (MC DFC) and multicon- 
figurational Dirac-Fock-Breit (MC DFB) SCF. 
Single-configuration DFC and DFB SCF wave 
functions were derived from the electronic config- 
uration, (ls1/2)2(2s1/2)

2(2p3/2)
1. Within the n = 2 

complex, there are four / = 3/2 odd-parity CSFs, 
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TABLE III 
Computed MCDFC energies, EMCDFC (au), and MC DFB energies, EMCDFB (au), for lowest J = f state along 
the boron isoelectronic sequence in increasing CSF expansion lengths. 

NCSF Z=10 Z=15 Z = 20 Z = 25 Z = 30 Z = 42 

EMCDFC 1 
4 
8 

32 

-116.054727 
-116.126129 
-116.129243 
-116.134682 

-276.879559 
-276.984905 
-276.988118 
-276.993870 

-507.621251 
-507.757618 
-507.760889 
-507.766852 

-809.219531 
-809.383030 
-809.386351 
-809.392433 

-1182.931208 
-1183.117313 
-1183.120688 
-1183.126835 

-2384.410435 
-2384.634446 
-2384.637959 
-2384.644177 

EMCDFB 1 
4 
8 

32 

-116.040314 
-116.111751 
-116.114868 
-116.120309 

-276.827325 
-276.932807 
-276.936030 
-276.941785 

-507.492660 
-507.629353 
-507.632648 
-507.638620 

-808.962075 
-809.126181 
-809.129552 
-809.135654 

-1182.477923 
-1182.665008 
-1182.668475 
-1182.674662 

-2383.122386 
-2383.348348 
-2383.352181 
-2383.358555 

the 1 s1/22 s1/22 P3/2/ 1 si/22 Pi/2^ P3/2, 
lSi/22p|/22p3/2, and lsj/22pl/2. The four-config- 
uration DFC and DFB wave functions are con- 
structed from these CSFs. The 32-configuration 
DFC and DFB wave functions are a CAS wave 
function which contains all the CSFs constructed 
by keeping (ls1/2)

2 frozen and distributing the 
three valence electrons over the spinor set 2s1/2, 
2Pi/2> 2P3/2> 3s1/2, 3p1/2, 3p3/2. The convergence 
patterns of our second-order MC DFC SCF for 
Ne+5 are demonstrated in Table IV. For the / = 
1/2 and / = 3/2 states, the convergence pattern is 
shown, respectively, for the 24- and 32-configura- 
tion DFC SCF. In the table, \T + B\ represents the 
norm of spinor and CI rotation parameters, and 

AE, the energy difference between successive 
Newton-Raphson iterations. Nonscreened hydro- 
genic spinors were used as initial guesses. The 
crux of quadratically convergent MC DF SCF is its 
simplicity and straightforwardness in applying the 
NR equation [Eq. (19)] to obtain rapid convergence 
to the solution. 

Four-configuration DFC SCF energies of the / = 
3/2 odd-parity states for the boronlike ions are 
reproduced in Table V along with the configura- 
tion mixing coefficients. For Z = 10, there is a 
nonnegligible mixing of three configurations, 
ls1/22s]/22p3/2, ls1/22p1/22p3/2, and ls1/22p3/2, 
that arise from the n = 2 complex. As Z increases, 
however, this mixing tends to alter, and for Z = 42, 

TABLE IV  
Convergence of the second-order MC SCF for the Ne+5 ion lowest states using 24-configuration space 
functions for J = 1 /2 and 32-configuration space functions for J = 3/2a, the energies, EMCSCF> AE(2), 
and AE are in atomic units. 

NR iteration |7" + S| AE<2> AE -MCSCF 

J=1/2 

1 1.19[+0] 
2 6.12[-1] 
3 4.26[-1] 
4 2.66[-2] 
5 3.65[-3] 

J = 3/2 

1 1.16[+0] 
2 6.00[-1] 
3 7.00[-1] 
4 6.08 [-2] 
5 6.82[-3] 
6 9.97[-4] 

-1.16[- 
-3.21 [- 
-3.08[- 
-2.32[- 
-5.28[- 

2] 
3] 
3] 
6] 
8] 

-2.17[-2] 
-7.881-3] 
-8.92[-4] 
-1.86[-5] 
-2.07[-7] 
-6.80[-9] 

-8.33[-3] 
-3.10[-3] 
-3.21 [-4] 
-2.62[-6] 
-5.22[-8] 

-9.39[-3] 
-6.65 [-3] 
-9.42 [-4] 
-2.03[-5] 
-2.01 [-7] 
-6.81 [-9] 

-116.130104 
-116.138429 
116.141525 

-116.141847 
116.141849 
116.141849 

-116.117681 
116.127072 

-116.133719 
-116.134661 
116.134682 
-116.134682 
116.134682 

aNonscreened hydrogenic spinors were used as initial guesses. 
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TABLE V  
Lowest J = | state 4-configurational DFC energies, EMCDFC (au), and configuration mixing coefficients 
along the boron isoelectronic sequence. 

-MCDFC '2s22p3/2 
/2p1/22p3/2 '2Pi/22p3/2 Gon3 

Z=10 -116.126129 0.98135 0.13657 0.00007 0.13529 

Z=15 -276.984905 0.98381 0.12894 0.00023 0.12443 

Z = 20 -507.757618 0.98543 0.12542 0.00052 0.11484 

Z=25 -809.383030 0.98691 0.12342 0.00092 0.10381 

Z = 30 -1183.117313 0.98831 0.12208 0.00133 0.09127 

Z = 42 -2384.634446 0.99101 0.11918 0.00190 0.06074 

the ls2
/22 pl/2 CSF mixes much less than for Z = 

10 with the other three CSFs because, in the high-Z 
relativistic hydrogenic limit, relativity separates 
the 2 p1/2 and 2 p3/2 spinor energies. On the other 
hand, relativity causes a smaller separation of the 
2s1/2 and 2p1/2 spinor energies as Z increases 
(i.e., the 2s1/2 and 2p1/2 spinor energies become 
asymptotically degenerate in the hydrogenic limit 

[22]), making ls2
/22s2

/22pi/2 and ls2
/22p2

/22pi/2 

the two dominant configurations for the J = 3/2 
state. Table V displays the trend in energies as 
nuclear charge increases. 

The fine-structure separations between the low- 
est / = l/2 and / = 3/2 states for the boronlike 
ions are displayed in Table VI in increasing CSF 
expansion lengths. The table  also contains the 

TABLE VI  
Fine-structure separation (cm ~1) between the lowest J = \ and J = f states along the boron isoelectronic 
sequence in increasing CSF expansion lengths. 

N, CSF Z=10 Z=15 Z = 20 Z = 25 Z = 30 Z = 42 

This work 
MCDFC 

1-1 1480 
2-4 1602 

MR DC RCI 
2-4 1443.4 

MCDFB 
1-1 1338 
2-4 1466 
6-8 1469 
24-32 1437 
24-32 + LSa 1440 

MR DCB RCI 
2-4 1308.6 
2-4 + LSa 1312 

Previous work 
MCDF(n = 2)b 1465 
Relativistic MBPTC 1311 
Nonrelativistic MBPTd 1275 

Experiment6 1309(4) 

10,573 
10,468 

10,290 

9942 
9865 
9869 
9763 
9784 

9691 
9712 

9871 
9713 
9546 

9695(15) 

39,180 
38,336 

37,478 
36,707 
36,715 
36,583 
36,659 

36,717 
36,631 
35,971 

36,615(30) 

105,178 
102,808 

101,576 
99,355 
99,368 
99,238 
99,434 

232,915 
228,064 

996,679 
982,434 

226,312 976,460 
221,711 962,762 
221,733 962,807 
221,631 962,836 
222,037 964,390 

99,322 221,481 959,831 
99,423 222,002 963,920 

99,287(110) 222,021 964,255 

aLamb shift (LS) estimated by GRASP [4] (n = 2 complex) is added to MC DFB value. 
bCheng et al. [36], n = 2 complex MCDF calculations. Lamb shift included. 
cSafronova et al. [35], relativistic second-order MBPT calculations using single-particle orbitals generated in the HF potential of the 
(1s2) heliumlike core. Lamb shift included. 
dMerkelis et al. [37], nonrelativistic second-order MBPT calculations using single-particle orbitals generated in the HF-type 
potential. Breit-Pauli relativisitic correction is included. 
eEdlen [38], experimental and recommended values. 
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fine-structure separations obtained previously by 
correlated methods and by experiment for compar- 
ison. The number of CSFs included in the MC DFC 
and DFB SCF calculations for the / = 1/2 and 
/ = 3/2 states to evaluate the fine-structure sepa- 
rations are denoted as 1-1, 2-4, etc., in the first 
column. For Z = 10, the fine-structure splitting, 
1480 cm-1, obtained as the difference between the 
single-configuration DFC SCF energies of the / = 
1/2 and / = 3/2 states (denoted by 1-1 in the 
table) is much poorer than is the value, 1338 cm"1, 
obtained in DFB SCF calculations. The latter agrees 
well with the experimental fine-structure separa- 
tion: 1309 cm"1. The results indicate that treat- 
ment of the Breit interaction is important to accu- 
rate determination of fine-structure separations. 

For Z = 10, the agreement between the com- 
puted fine-structure separation and experiment 
deteriorates as the number of CSFs in the MC DF 
SCF calculations is increased. Partially accounting 
for dynamical correlation by including the n = 3 
complex in MC DF SCF calculations simply causes 
an imbalance in the recovery of dynamical correla- 
tion for each / state. Accurate determination of 
dynamical correlation is necessary to predict the 
fine-structure separation. For Z = 10 and 15, DC 

and DCB MR CI-SD calculations were performed 
using the 23sl9pl7dl7fl6gl6h basis set to take 
into account the remaining dynamic correlation. 
Table VII displays the DC and DCB MR CI ener- 
gies of Ne+5 and P+1° in increasing order of par- 
tial-wave expansion. The extrapolated energies are 
given in the last column of the table. The fine- 
structure separations computed by taking the dif- 
ference between / = 1/2 and 3/2 extrapolated en- 
ergies are displayed under MR DCB RCI in Table 
VI (1308.6 cm"1 for Ne+5 and 9691 cm"1 forP+1Q) 
and are in good agreement with experiment. 
Safronova et al. [35] performed MR relativistic 
MBPT calculations on boron isoelectronic se- 
quence. The fine-structure separation for Z = 10 
computed by their relativistic many-body pertur- 
bation method is 1311 cm-1, in excellent agree- 
ment with experiment. 

For ions with large Z, however, the trend ob- 
served in Z = 10 is reversed and a steady increase 
in accuracy in the fine-structure splitting is ob- 
tained as the number of CSFs in the MC DF SCF 
calculations is increased. When the Lamb shift for 
each fine structure level is accounted for, the com- 
puted fine-structure separations agree well with 
experiment. 

TABLE VII 
Computed MR DC RCI energies, EDC 

state and lowest J = § state for Ne+5 
:(/) (au) and MR DCB RCI energies, EDCB{I) (au), for the ground J = { 
and P+1° in increasing partial-wave expansion.8 

f Limit g Limit h Limit Extrapolatedb 

Ne+5 

J = i 

EDC(I) 
EDCBU) 
J- 3 

-116.231698 
-116.217784 

-116.232735 
-116.218825 

-116.233047 
-116.219138 

-116.233274 
-116.219366 

U        2 

EDC(D 
EDCB(I) 
p + 10 

-116.225125 
-116.211826 

-116.226160 
-116.212864 

-116.226470 
-116.213176 

-116.226698 
-116.213404 

J = h 
EDCU) 
EDCB«) 
J- 3 

-277.133624 
-277.081201 

-277.134803 
-277.082390 

-277.135108 
-277.082698 

-277.135321 
-277.082912 

EDC(D 
EDCB(I) 

-277.086743 
-277.037053 

-277.087919 
-277.038237 

-277.088224 
-277.038544 

-277.088436 
-277.038759 

Two-configuration and four-configuration MC DFC wave functions were used as reference spaces, respectively, for J = 1 / 2 and 
J = 3/2 states. 
"Extrapolation was performed using the formula A£(/) = a(l + 1 /2)b. 
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ABSTRACT: The body-centered cubic-face-centered cubic (bcc-fcc) structural phase 
stability of molybdenum (Mo) is studied as a function of volume with both nonrelativistic 
and scalar-relativistic linear combinations of Gaussian-type orbitals-fitting functions 
(LCGTO-FF) calculations. It is demonstrated that relativity has a significant, albeit small 
effect, on the bcc-fcc structural energy difference, which increases with pressure. The 
scalar-relativistic structural energy difference curve is shown to be in excellent agreement 
with an earlier scalar-relativistic calculation using the full-potential linear muffin-tin 
orbital (FP-LMTO) method, clearly demonstrating the ability of the scalar-relativistic 
LCGTO-FF method to resolve an extremely subtle relativistic effect. It is argued that 
relativity will tend to delay pressure-induced structural phase transitions that are 
triggered by electron band reordering.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 
825-830, 1998 

Key words: molybdenum; phase stability; relativity; Douglas-Kroll 

Introduction 

The linear combinations of Gaussian-type 
orbitals-fitting function (LCGTO-FF) tech- 

nique is one of the few all-electron, full-potential, 
density functional theory (DFT) electronic struc- 
ture techniques able to treat isolated clusters of 
atoms [1], one-dimensional periodic polymer 
chains [2], two-dimensional periodic films [3], and 
crystalline solids [4] on an equal footing. To this 
extent, the LCGTO-FF method may be viewed as 

Contract grant sponsor: U.S. Department of Energy. 

International Journal of Quantum Chemistry, Vol. 70, 825-830 (1998) 
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a "universal" methodology able to bridge the of- 
ten wide gap between solid-state physics and 
quantum chemistry. For this reason, the LCGTO- 
FF method is well-suited for studying systems that 
do not lie entirely within the scope of either disci- 
pline; for example, nanostructures on a surface, 
impurities in a crystal, catalysis, etc. 

One disadvantage of the LCGTO-FF method 
relative to numerical solid-state electronic struc- 
ture techniques has been the absence of a stable 
method for incorporating relativistic effects during 
calculations on systems that include heavy atoms, 
an affliction shared by most pure variational meth- 
ods. This limitation effectively restricts LCGTO-FF 
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calculations to systems formed from atoms in the 
first three rows of the periodic table. Although a 
number of strategies have been suggested over the 
years for incorporating relativistic effects into vari- 
ational calculations [5], most practical calculations 
still rely on either perturbation theory or some 
form of relativistic pseudopotential. 

A major breakthrough on this venerable prob- 
lem occurred several years ago when Häberlen 
and Rösch [6] (HR) demonstrated the feasibility of 
carrying out scalar-relativistic LCGTO-FF calcula- 
tions on heavy-atom clusters using an "incom- 
plete" Douglas-Kroll-Hess [7-9] transformation, 
hereafter, the HR approximation. Since that time, 
the scalar-relativistic LCGTO-FF cluster technique 
has been applied to a number of systems contain- 
ing heavy atoms with apparent success [10]. The 
HR approximation has also been implemented 
quite recently [11] in an existing computer pro- 
gram designed to carry out LCGTO-FF calcula- 
tions on crystalline solids and thin films (GTOFF) 
[4]. GTOFF was then used to carry out the first 
all-electron, scalar-relativistic LCGTO calculation 
on a crystalline solid, gold (Au; Z = 79) [11]. The 
HR approximation was shown to produce bulk 
and electronic properties for face-centered cubic 
(fee) Au that are nearly indistinguishable from 
those obtained with numerical scalar-relativistic 
electronic structure techniques. 

In this investigation, GTOFF is used to study 
the effect of relativity on the equation of state and 
face-centered cubic-body-centered cubic (fcc-bcc) 
structural phase stability of Mo. Since Mo is a 
standard test case for new bulk electronic structure 
programs, a number of prior calculations of the 
zero-pressure properties [12-18], both relativistic 
and nonrelativistic, are available for comparison. 
In addition, the structural phase stability of Mo 
has been studied with at least one high-precision, 
all-electron, scalar-relativistic local density approx- 
imation (LDA) technique; the full-potential linear 
muffin-tin orbital (FP-LMTO) method [19]. Thus 
the current investigation represents an important 
test of the scalar-relativistic LCGTO-FF method on 
a rather subtle relativistic effect. 

The scalar-relativistic LCGTO-FF method has 
been described in detail elsewhere [11], and that 
discussion will not be repeated here. Instead, this 
study will begin with a brief discussion of the 
basis sets used and other computational details. 
The results obtained here for the bec and fee phases 
of Mo will be presented and compared with prior 

calculations in the third section. A few concluding 
remarks will be given in the final section. 

Computational Details 

The orbital basis set used here for volumes near 
ambient was derived from Huzinaga's 17sllp8rf 
atomic basis [20] by replacing the five most diffuse 
s-type GTOs with more local basis functions and 
augmenting the p-type basis with one diffuse GTO. 
The resulting I7sl2p8d crystalline basis set was 
then reduced to a I3s8p5d basis set by contracting 
the most local GTOs of each /-type using atomic 
orbital coefficients from nonrelativistic or scalar- 
relativistic atomic calculations using the same LDA 
model as was used in the crystalline calculations, 
Hedin-Lundqvist (HL) [21]. The charge density 
and the exchange-correlation (XC) integral kernels 
were fitted with a single 15s GTO basis set, se- 
lected on the basis of prior experience with 
LCGTO-FF calculations. The orbital and fitting 
function exponents used near the ambient volume 
of Mo are listed in Table I. For the more highly 
compressed volumes considered here, the expo- 
nents of the most diffuse GTOs were increased as 
needed to avoid numerical instabilities due to 
near-linear dependencies. In all cases, the same 
basis sets were used for a given volume regardless 
of the crystal structure under consideration. 

All Brillouin zone (BZ) integrations were carried 
out on a uniform mesh with 145 irreducible k- 
points using a Gaussian-broadened (10 mRy) his- 
togram integration technique. Additional calcula- 
tions using a sparser mesh with 72 irreducible 
^-points indicate that the calculations are well con- 
verged with respect to the mesh density. The self- 
consistent field (SCF) cycle was iterated until the 
total energy varied by less than 0.004 mRy. 

Results 

Nonrelativistic and scalar-relativistic total ener- 
gies were calculated for bec and fee Mo at 10 
volumes ranging from 41.8414 to 113.4905 a.u. Co- 
hesive energies were then obtained by removing 
atomic energies calculated in a manner consistent 
with the crystalline calculations. (For the atomic 
calculations, the basis sets were augmented with 
diffuse functions to mimic the effect of off-site 

826 VOL.70, NO. 4/5 



STRUCTURAL PHASE STABILITY OF MOLYBDENUM 

TABLE I ^^____  
GTO exponents for the s-, p-, and d-type primitive orbital basis functions and s-type GTO fitting functions 
used here for crystalline Mo at low compressions.3 

s D d FF 

564811 
84340 
19223 
5640 
1935 
736. 
304, 
134 
50. 
22. 

7. 
3. 
1. 
0. 
0. 
0. 
0. 

.58 

.172 

.887 

.4270 

.0108 

.03701 

.54661 

.49152 
361750 
461279 
7112170 
9263438 
9200000 
9600000 
4800000 
2400000 
1200000 

4706.3308 
1104.2933 
361.17122 
139.14298 
58.356511 
25.821389 
10.718475 
4.7732916 
2.0262457 
0.83764641 
0.34208279 
0.12000000 

172.75830 
51.005487 
19.267661 
7.9229414 
3.3785846 
1.3293987 
0.49531799 
0.15895673 

40000.00 
11000.00 
4000.00 
1500.00 
610.00 
270.00 
100.00 
45.00 
15.40 
7.85 
3.66 
1.78 
0.79 
0.27 
0.12 

aThe smaller exponents were increased as needed for the larger compressions; see text. 

functions in the crystalline calculations.) The re- 
sulting cohesive energies are listed in Table II. 

The low-pressure properties of fee and bec Mo 
were obtained by fitting the cohesive energies for 
the seven largest volumes in Table II with a modi- 
fied version of the universal equation of state [22]. 
Table III compares the zero-pressure lattice con- 
stant aQ, bulk modulus B, and pressure derivative 
of the bulk modulus B' found here for the fee and 
bec structures, both nonrelativistically and scalar- 
relativistically, with results from a number of other 

calculations. Experimental values [23] for aQ and B 
are also given in Table III. 

Comparison of the theoretical results in Table III 
reveals several interesting features. First, the 
LCGTO-FF results are consistent with the previ- 
ous calculations. For example, the average scalar- 
relativistic values for the lattice constant and bulk 
modulus of bec Mo are 5.9035 a.u. and 287 GPa 
versus 5.905 a.u. and 292 GPa from the scalar-rela- 
tivistic LCGTO-FF calculations. In general, the 
various results in Table III are also consistent with 

TABLE II  
Nonrelativistic (NR) and scalar-relativistic (SR) cohesive energies (in Ry) for bec and fee Mo at 10 atomic 
volumes (a.u.). 

V NR-bcc NR-fcc SR-bcc SR-fcc 

113.4905 
108.0000 
102.6895 
97.5560 
92.5965 
83.5965 
73.1399 
62.6877 
52.2768 
41.8414 

-0.524290 
-0.529628 
-0.530574 
-0.526364 
-0.516046 
-0.475826 
-0.376416 
-0.178588 
0.196072 
0.925012 

-0.496500 
-0.500762 
-0.500852 
-0.496056 
-0.485698 
-0.447196 
-0.353718 
-0.170688 

0.174362 
0.866048 

-0.566522 
-0.573288 
-0.575564 
-0.572468 
-0.563186 
-0.524512 
-0.425568 
-0.227942 
0.154008 
0.895774 

-0.537012 
-0.542308 
-0.543268 
-0.539044 
-0.529066 
-0.490334 
-0.369060 
-0.209874 

0.144004 
0.846594 
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TABLE 
Lattice constant (a0; bohr), bulk modulus (B; GPa), and pressure derivative of the bulk modulus (B') for bcc 
and fee Mo obtained here from nonrelativistic (NR) and scalar-relativistic (SR) LCGTO-FF calculations are 
compared with other calculations and experiment. 

Method Rel. Struc. Ref. B B' 

LCGTO-FF NR fee Present 7.493 246 4.10 
LAPW SR fee 13 7.504 247 
APW SR fee 16 7.475 256 
LCGTO-FF SR fee Present 7.472 269 3.85 
KKR NR bcc 12 5.91 251 
FP-LMTO NR bcc 14 5.97 255 
LMTO-ASA NR bcc 15 5.948 265 4.38 
LCGTO-FF NR bcc Present 5.930 273 4.12 
LAPW SR bcc 13 5.917 291 
LMTO-ASA SR bcc 15 5.910 248 4.99 
APW SR bcc 16 5.904 288 
FP-LMTO SR bcc 17 5.879 297 
FCD-LMTO SR bcc 18 5.906 306 
LCGTO-FF SR bcc Present 5.905 292 4.11 
Expt. bcc 23 5.949 261 

the widely held belief that relativistic effects are 
quite small for rf-bonded materials, making it diffi- 
cult to judge the reliability of the scalar-relativistic 
LCGTO-FF method based on the zero-pressure 
properties of Mo. Still, the - 0.025 a.u. shift in the 
lattice constant found here is in reasonable agree- 
ment with the - 0.038 a.u. shift found by Moriarty 
[15] using the more approximate linear muff in-tin 
orbital-atomic sphere approximation (LMTO- 
ASA) method. The scalar-relativistic LCGTO- 
FF results for bcc Mo exhibit the expected small 
lattice contraction and bulk modulus enhance- 
ment, relative to experiment, expected for an LDA 
calculation. 

Figure 1 compares the nonrelativistic and 
scalar-relativistic bcc-fcc structural energy differ- 
ence versus volume curves found here with struc- 
tural energy differences determined from scalar- 
relativistic FP-LMTO calculations [19]. Figure 1 
illustrates two important results: (1) Relativity has 
a significant, albeit small, effect on the structural 
energy difference of Mo that initially increases 
with pressure. (2) The scalar-relativistic LCGTO-FF 
results are in good agreement with the FP-LMTO 
results, demonstrating the ability of the LCGTO-FF 
method to resolve a rather subtle relativistic effect. 

Although the relativistic correction to the struc- 
tural energy difference is fairly small, it signifi- 
cantly delays the onset of the structural phase 
transition from a relative volume of about 0.57 to 
roughly 0.53. This delay in the transition has a 
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FIGURE 1. Energy difference (A£) between the bcc 
and fee structures of Mo is shown as a function of 
relative volume for the current scalar-relativistic (solid 
circle) and nonrelativistic (open circle) LCGTO-FF 
calculations. Results from the scalar-relativistic FP-LMTO 
calculations of [19] are also shown, solid triangles. 
Negative values imply stability of the bcc structure. 

rather simple interpretation. It is well-known that 
pressure-induced structural phase transitions are 
frequently associated with a transfer of electrons 
from low-angular-momentum states to high-angu- 
lar-momentum states. For example, elemental 
solids formed from third-row atoms exhibit struc- 
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tural phase transitions that can be related to a 
pressure-induced transfer of electrons from the 3 s 
state to the 3d state [24]. Since relativity tends to 
reduce the energy of low-angular-momentum 
states relative to high-angular-momentum states, 
relativity will tend to delay any structural phase 
transitions that are triggered by reordering of the 
electron bands. 

Another obvious question is "Why does relativ- 
ity have such a large effect on the high-pressure 
properties of Mo but not on the low-pressure prop- 
erties?" It is well-known that under pressure the 
(initially fully occupied) 5 s band of Mo is driven 
through the partially occupied id band [15]. Thus, 
under pressure, Mo first transforms from a d- 
bonded material (relatively insensitive to relativis- 
tic effects) to a mixed s- and d-bonded material 
(with large relativistic effects) and then returns to 
a d-bonded material (with small relativistic effects). 
This process is evident in the relativistic correction 
to the structural energy difference, shown in Fig. 2 
as a function of relative volume. The relativistic 
correction reaches its maximum at a relative vol- 
ume of about 0.5 and then begins to decrease as 
the pressure is increased further. Thus, the present 
analysis is entirely consistent with what is already 
known about the s -> d transition in Mo. 

Conclusions 

It has been demonstrated here that the scalar- 
relativistic LCGTO-FF method as embodied in the 

' 0.3 0.4 0.5 0.6 0.7 0.8 09 1.0 1.1 
Relative Volume 

FIGURE 2. Relativistic correction to the bcc-fcc 
structural energy difference of Mo is shown as a function 
of relative volume. 

program GTOFF produces zero-pressure proper- 
ties of Mo that are indistinguishable from the 
results of other scalar-relativistic calculations. More 
importantly, it has been shown that the LCGTO-FF 
technique is able to resolve a very subtle relativis- 
tic effect; namely, the volume-dependent correc- 
tion to the bcc-fcc structural energy difference. It 
is argued that relativity will tend to delay struc- 
tural phase transitions that are triggered by pres- 
sure-induced reordering of electronic states. Fi- 
nally, the current results suggest that relativity 
must be taken into consideration when studying 
the high-pressure properties of materials even if 
they are unaffected by relativity at low pressures, 
since pressure can significantly alter the basic na- 
ture of the bonding. 
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Hydrogen-Bonded Pattern in Liquid 
Water: Ab Initio Orientational Defects 
in Water Hexamers and Octamers 

EUGENE S. KRYACHKO* 
Bogoliubov Institute for Theoretical Physics, Kiev-143, Ukraine 252143; Cherry L. Emerson Center for 
Scientific Computation and Department of Chemistry Emory University, Atlanta, Georgia 30322 

Received 30 March 1998; revised 8 June 1998; accepted 23 June 1998 

ABSTRACT: Fifteen different structures of the water hexamer found ab initio within 
the 6-311G(d, p) basis set in the interval of 1.75 kcal/mol above the global minimum 
represent an unprecedented wide range of conformational plasticity of liquid water. The 
present work also provides the first ab initio demonstration of the existence of 
pentacoordinated water clusters of an orientational defect type and elaborates their 
properties.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 831-853, 1998 

Key words: Liquid water; H-bond pattern; orientational defect; water cluster; 
"dangling" bond; ab initio HF/6-311W, p) calculation 

Introduction 

Liquid water is the most abnormal substance 
ever known. It is formed by hydrogen or H 

bonds and, in fact, its H-bonded pattern with in- 
terconnectivity and tortuosity is believed to play 
the key role in that liquid water is as it actually is 

Correspondence to: E. S. Kryachko, Department of Chemistry, 
The Johns Hopkins University, Baltimore, MD 21218. 

* Cherry L. Emerson Fellow. 

[1]. It has been known for a long time that H- 
bonded patterns of liquid water and hexagonal ice 
Ih are tetrahedral [1], which is why an ice-Ih-like 
open tetrahedral pattern is often chosen as a rea- 
sonable reference, the so-called icelike model, in 
the study of the H bond one of liquid water. The 
aforementioned tetrahedrality originates, in fact, 
from the tetrahedral charge distribution around 
the oxygen atom in the water monomer possessing 
two positive partial charges at the positions of the 
hydrogen atoms and two negative partial charges 
that refer to a rabbit's ear-like lone electron pair 
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[2]. This is simply expressed by the Bernal-Fow- 
ler-Pauling or so-called ice rules [3]: 

(i) There are exactly two hydrogen atoms that 
belong to each oxygen atom with the O—H 
bond length of  ~ 1 A. 

(ii) There is exactly one hydrogen atom that 
occupies each O • • • O bond between any pair 
of neighboring oxygen atoms. 

The "icelikeness" of liquid water is manifested 
in that each of its oxygen atoms is involved in two 
covalent and two hydrogen bonds, that is, each 
water molecule is four-bonded and is surrounded 
by four nearest-neighbor water molecules compos- 
ing its first coordination shell. In the Bernal-Fow- 
ler-Pauling H-bonded pattern, the oxygen atoms 
are arranged in such a way that all the O—O—O 
bond angles between the nearest-neighbor water 
molecules are tetrahedral, that is, equal to ca. 
109.47°. The hydrogen atoms decorate therein the 
O—O bonds, establishing the so-called hydrogen 
bigamy. It is clear that this ice like model is good, 
although to what extent it is appropriate or, in 
other words, whether this "icelikeness" ade- 
quately describes the whole H-bonded pattern of 
liquid water is still a question? Let us put this 
question in another way: Does liquid water con- 
tain some "patches" in its pattern that, in fact, 
violate the Bernal-Fowler-Pauling ice rules? It is 
now apparently hard to believe that resolving a 
liquid water paradigm becomes possible with 
denying the very existence of such non-icelikeness 
"patches." So, to say simply, water can be crudely 
describable by a "two-state" model with one 
"state" that obeys the Bernal-Fowler-Pauling 
rules and the other one violating them. 

A "two-state" model satisfies either the energet- 
ical or geometrical criterion imposed on a H- 
bonded pattern [4-6]. The former suggests that 
two water molecules are H-bonded if their interac- 
tion energy V < VHB. A negative threshold H- 
binding energy VHB plays the role of model cutoff 
parameter. It is allowed to take on a sequence of 
values, VHB = —Ine, with integer n from interval 
(10,41) and e = 0.07575 kcal/mol. VHB varies then 
from -6.2115 to -1.5150 kcal/mol. According to 
the geometrical criterion (for current references, 
see [7]), two water molecules are H-bonded if the 
following three constraints are accomplished alto- 
gether: The first one is the constraint on interoxy- 
gen separations that must be less than R//(r = 

3.4-3.7 A [8]. The R„,r determines the position of 
the first minimum of the goo radial distribution 
function and defines, in fact, the boundary of the 
first coordination shell. It certainly depends on the 
temperature and pressure. The second constraint is 
imposed on the distance between the oxygen atom 
of the acceptor water molecule and the hydrogen 
atom of the donor one. This is the so-called H-bond 
length. It should be smaller than rlhr = 2.45 A, that 
is, the distance at which the first minimum of the 
radial distribution function gOH takes place [8]. 
The third constraint limits the angle Su between 
the participating oxygen and the hydrogen of the 
donor molecule and the oxygen atom of the accep- 
tor molecule: SH > 160°. This constraint seems to 
be quite fragile and is often omitted because a 
reasonable deviation of SH from 160° to smaller 
angles indicates a stronger nonlinearity of a H 
bond. These constraints are sometimes supple- 
mented by another one imposed on values of the 
lone pair-oxygen-oxygen angle. 

The second "state" is further subdivided into 
two types: ionic and orientational, depending on 
which Bernal-Fowler-Pauling ice rule is violated. 
It is highly worth noticing here two subtle features 
of liquid water that show how much it is actually 
distinguished from the Bernal-Fowler-Pauling 
model. It is obvious that both these features should 
be incorporated into this non-Bernal-Fowler-Paul- 
ing "state" under the assumption that two "states" 
suffice to describe water correctly. The first feature 
is related to the O—O radial distribution function 
goo of liquid water at 25°C. It is experimentally 
revealed [8] that its first maximum is sharply 
peaked at 2.86 A and its integral from zero to R„,r, 
which is interpreted as the mean number of water 
molecules within the first coordination shell, is 
about 4.5. This clearly implies that liquid water 
must possess fivefold coordinated "patches," 
which obviously violate ice rules. Another feature 
concerns the O—O—O bond-angle distribution 
function. According to recent experiments [9] (see 
also [10]), it possesses two maxima, one of which 
is very broad and corresponds to the tetrahedral 
bond angle. The other maximum is peaked at ZO 
—O—O = 60°, which demonstrates that the corre- 
sponding water molecules are settled in nontetra- 
hedral directions. 

The present work focuses on orientational de- 
fects as such H-bond "patches" that violate the 
second Bernal-Fowler-Pauling rule. The simplest 
model of an orientational defect in ice was long 
ago suggested by Bjerrum [11(a)] (see also [1]). 
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Bjerrum orientational defects are of two types: The 
first one is that which corresponds to an "empty" 
or "dangling" 0---0 bond. It is called the L-de- 
fect.f The other one, the D-defect,* is actually a 
doubly occupied bond O—H ••• H—O. This defini- 
tion of orientational defects seems rather schematic 
and it does not take into account the cooperative 
nature of H-bonding in liquid water. Progress to- 
ward understanding the nature of orientational 
defects has been made due to the first and, in 
some sense, semiempirical calculations by Dunitz 
[12(a)], Cohan and coworkers [12(b)], and Eisen- 
berg and Coulson [12(c)] (see also [12(d-h)]). These 
calculations show that an orientational defect is 
some "patch" in the H-bonded pattern around an 
"empty" or doubly occupied H bond surrounded 
by some distorted H bonds. Distortion is primarily 
thought of in terms of a SH angle, whose value in 
the range of 160°-130° describes a leaned or non- 
linear H bond. The latter converts into a so-called 
bifurcated H bond when this angle approaches 
120°-100°. A physical model of a solitonic-type 
orientational defect where the central part is some 
sort of bifurcated H bond was elaborated in [13] 
(for a recent review, see [14]). A bifurcated H-bond 
is a specific type of H bond where the hydrogen 
atom simultaneously participates in or donates two 
hydrogen bonds. In other words, the hydrogen 
atom is shared by a couple of oxygen atoms simul- 
taneously [12(e-h), 15]. It is believed that these 
bonds contribute significantly to the Raman [16] 
and infrared [1] (see also [13(b)]) spectra of liquid 
water. It is also believed that they play a major 
role in the mobility of water. This view was sup- 
ported experimentally [17] and in computer simu- 
lations [10,18]. However, it should be stressed that 
all these Bjerrum-type defects rely on the tacit 
assumption of preserving fourfold coordination. It 
was recently suggested [10] that a fivefold "patch" 
is a new type of orientational defect with a bifur- 
cated H bond which appears as a result of the 
approaching of a fifth water molecule. It was also 
suggested in [10] that this "patch" facilitates a 
transition from one Bernal-Fowler-Pauling pat- 
tern to another one through a lowered energy 
barrier. A similar model of a fivefold "patch" 
cluster was recently discussed by Head-Gordon 
and Stillinger [19]. 

f Originally from the German word "leer" that means 
"empty." 

* Originally from the German word "doppelt" that means 
"double." 

Following the idea of the early quantum-chem- 
ical studies of orientational defects by Dunitz, 
Eisenberg, and Coulson, Cohan and coworkers, 
and Newton, it is natural, before invoking a penta- 
coordinated orientational defect as the second 
"state" in the H-bonded pattern of liquid water, to 
quest it in water clusters. This was the principal 
aim of the present article. Its realization requires a 
performance of a quite exhaustive ab initio search 
of the total potential energy surface (PES) of water 
clusters that is feasible at the Hartree-Fock com- 
putational level with the 6-311G(d, p) basis set. 
The layout of the present article is the following: 
The next section furnishes the computational 
GAUSSIAN-type methodology. The second section 
starts with a succinct exposition of the present 
state of the ab initio hexamer and octamer water 
clusters. This is the main section that presents the 
results of a PES search of the water hexamer and 
octamer clusters, gives the structures of lower-lying 
pentacoordinated water clusters, and discusses 
thoroughly their properties. The third section sum- 
marizes the present work. 

Computational Methodology 

All calculations were performed with the Gaus- 
sian-94 suite of programs [20] at the Cherry L. 
Emerson Center for Scientific Computation of 
Emory University in Atlanta. A search of the total 
potential energy surface of water clusters was per- 
formed at the Hartree-Fock (HF) level of compu- 
tation with the triply split valence 6-31 lG(d, p) 
basis set that includes polarization functions on 
the oxygen and hydrogen atoms in particular [21]. 
In all computations, no constraints were imposed 
on the geometry of water clusters. Full geometrical 
optimization was performed for each water cluster 
structure, and the attainment of the energy mini- 
mum was verified by calculating the vibrational 
frequencies that result in the absence of negative 
eigenvalues. Default options were used for the 
SCF convergence and for the threshold limits de- 
termining the final changes in the maximum forces 
and displacements in the geometry optimization. 
Vibrational modes and the corresponding frequen- 
cies are based on a harmonic force field. Empirical 
scaling factors were not used. For conciseness, the 
tables report only the most intensive infrared (IR) 
and   Raman  active  bands   of  pentacoordinated 
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orientational defects for which the IR intensity 
and Raman activity exceed ca. 200 km/mol and 
ca. 50 A4/amu, respectively, and also include the 
scissor and H-stretching vibrational bands. 

Pentacoordinated Water Clusters 

PRELUDE: HEXAMER AND OCTAMER 

The study of water clusters is one of the promis- 
ing ways to shed light on the liquid water 
paradigm. It is obvious, on the one hand, that a 
larger cluster mimics better a bulky water. On the 
other hand, it is also quite evident that a larger 
cluster possesses a richer landscape of its PES. 
Regarding this, deserving to be mentioned is a 
rather well-spread and reasonable belief that to 
grasp the nature of water it might be sufficient to 
study those water cluster structures that occupy 
lower-lying energy minima on the PES. Water hex- 
amer and octamer clusters are at the primary place 
in this cluster approach. They were the subject of 
numerous ab initio studies (see [22, 23] and refer- 
ences therein). In particular, it was shown in [22(d)] 
that at the HF/6-311G(d, p) level of computational 
theory the global minimum of the hexamer PES is 
attained by the prism structure. Two lower-lying 
local minima close to the global one were also 
found in this work: One corresponds to the mono- 
cyclic chair-type structure, whereas the other one 
is occupied by the boat form. Xantheas and Dun- 
ning [22(a)] and Xantheas [22(b)] studied the cyclic 
water hexamer at the HF and the second-order 
Moller-Plessett perturbation theory (MP2) levels 
with an augmented correlation-consistent polar- 
ized valence double-zeta basis (aug-cc-pVDZ) ba- 
sis set. The global minimum of a cage type with 
eight H bonds was detected by Jordan and 
coworkers [22(c), 23(d)] at the MP2/aug-cc-pVDZ 
level. They also found that the prism is a more 
stable structure by approximately 0.2 kcal/mol 
compared with the cyclic one. A similar conclusion 
about the cage as the most stable water hexamer 
was recently reached by Saykally and coworkers 
[23(e)], Gregory and Clary [23(f)], and Saykally 
and coworkers [23(g)]. 

In the present work, we performed a rather 
exhaustive search of the landscape of the total PES 
of the water hexamer around its global minimum. 
The results of these searches are reported in Table 
I for the energy, zero-point vibration energy 
(ZPVE), enthalpy, and entropy and in Table II for 

rotational constants and the total dipole moment. 
They are also displayed in Figure 1. It shows that 
two prism structures, prism I and prism II, of 
(H20)6 are at the bottom of the total PES. Prism I 
is in its global minimum at the present computa- 
tional level, although prism II lies much closer to 
it. Their energy difference is only 5.8 cm-1 taking 
ZPVE into account (see Fig. 2). Four cage-type 
structures follow them. In the notations of [23(g)], 
cage I corresponds to {dd}, cage II to {ud}, cage III 
to {du}*, and, finally, cage IV to {uu) hexamers. 
They are shown altogether in Figure 3. Table II 
demonstrates a good agreement of the rotational 
constants for cages calculated in the present work 
and reported in [23(g)]. Four lower-lying cages 
I-IV possess very particular geometries. The in- 
teroxygen distances between 03 and 04 are 3.466, 
3.465, and 3.471 A, respectively, in the cages I, II, 
and III. Moreover, in cage II, the distance 
R(09—015) = 3.699 A, and in cage IV, RtOj—04) 
= 3.465 and R(09—014) = 3.692 A. This implies 
that, according to the first geometrical constraint, 
all these pairs of the oxygen atoms form "dan- 
gling" bonds, namely, cages I and III posess one 
"dangling" bond, whereas cages II and IV, two 
bonds of this sort. Furthermore, some O—O—O 
interbond angles move away from the tetrahedral 
value to lower angles thanks to pentacoordination. 
For example, in cage I, Z03—014—04 = 74.63°; 
in cage II, Z03—014—04 = 74.61°; in cage III, 
Z-03—014—04 = 74.51°; and in cage IV, A01— 
Ou—04 = 70.94°. Interestingly, the cage struc- 
tures of the water hexamer mimics the basic unit 
of one of the high-density polymorphs of ice, ice 
VI (compare with [1(a)], Fig. 3.8). They are inter- 
connected with each other via flipping of the free 
O—H bonds of two donor-acceptor monomers. 

Proceeding to the next structures, it is worth 
mentioning that prism V is exactly the one found 
in [22(d)] at the global minimum. Its isoenergetic 
isomer, prism IV, is also revealed in the present 
PES search. They are interconnected through flip- 
ping of the two-sided O—H bonds. Even more 
interestingly, this list includes the pre-opened 
prism structure shown in Figure 2 with a very 
high dipole moment of 4.38 D. Another cage struc- 
ture, cage V, displayed in Figure 4, also possesses 
a rather high dipole moment equal to 3.45 D. The 
distance between its oxygen atoms 02 and 05 is 
3.62 A, so they form a sort of "dangling" bond. 
One structure of the water hexamer that was un- 
known is the so-called propeller-type structure. It 
is also portrayed in Figure 4. With ZPVE correc- 
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TABLE I  
Energy, enthalpy H, entropy S, and ZPVE of lower-lying water hexamers. 

Structure 
- Energy 

+456 Hartrees (kcal / mol) 
ZPVE 

(kcal / mol) 
- Enthalpy 

+456 Hartrees 
AH 

(kcal / mol) (cal/molK) 

Boat 0.354985963 3.4392354 
1.5462454a 

99.55746 0.179342 2.670025 
0.777035 a 

135.271 

Book 0.356340902 2.5890071 
1.7422371a 

100.60368 0.180000 2.257128 
1.4103583 

126.412 

Chair 0.356702756 2.3619426 
0.7666526a 

99.85516 0.180874 1.708691 
0.113401a 

132.506 

CageV 0.357035657 2.1530463 
1.6980763a 

100.99548 0.180491 1.949024 
1.4940543 

121.942 

Propeller 0.357274355 2.0032625 
1.1068525a 

100.55404 0.1810310 1.610173 
0.7137633 

125.363 

Preopened prism 0.357431391 1.9047220 
1.2040020a 

100.74973 0.181046 1.600760 
0.900040a 

123.652 

Prism III 0.358047985 1.5178074 
1.3752474a 

101.30789 0.181304 1.438864 
1.2963043 

119.300 

Prism V 0.358048203 1.5177980 
1.3761080 a 

101.30876 0.181303 1.439492 
1.297757a 

119.297 

Prism IV 0.358048107 1.5177308 
1.3759908a 

101.30871 0.181303 1.4394922 
1.297752a 

119.301 

Cage IV 0.358758406 1.0720161 
0.6344461a 

101.01288 0.182218 0.865327 
0.4277573 

121.718 

Cage III 0.358944226 0.9554135 
0.6047335 a 

101.09977 0.182346 0.785006 
0.434326a 

121.111 

Cage II 0.359012959 0.9122833 
0.5649433a 

101.10311 0.182409 0.745474 
0.398134a 

120.983 

Cagel 0.359013050 0.9122262 
0.5606662 a 

101.09889 0.182410 0.744846 
0.3932863 

121.022 

Prism II 0.360449222 0.0110239 
0.0166139a 

101.45604 0.183583 0.008785 
0.0143753 

118.301 

Prism 1 0.360466790 0.0 
0.0 

101.45045 0.183597 0.0 
0.0 

118.347 

1 ZPVE correction is taken into account. 

tion, the difference in energies of prism I and the 
propeller structure is 1.107 kcal/mol. This water 
hexamer has a rather large dipole moment of 3.74 
D and one "dangling" bond between the oxygen 
atoms 07 and Og with a very short distance of 
R(07—03) = 3.104 A. Because the distance be- 
tween the oxygen atom Og and the hydrogen H10 

is 2.564 A and the angle SH = A07—H10—Og = 
116.67° < 160°, it is unlikely that they form a hy- 
drogen bond. This "dangling" bond is seen from 
the oxygen atoms 04 and 013 under the angles 
63.85° and 63.56°. This is the first structure among 
lower-lying water hexamers that contributes to the 
second nontetrahedral maximum of the O—O—O 
bond distribution function. 

Table I reports the calculated thermodynamic 

properties of all the studied hexamer structures. It 
is seen there that the boat and chair are character- 
ized by rather high entropies of 135.27 and 132.51 
cal/mol T, respectively. Entropies of the book, 
propeller, and pre-opened prism structures are also 
quite large compared with that of the prism I 
structure. This means that despite that the latter is 
at the global minimum at T = 0 K the energy 
ordering changes substantially with increasing 
temperature. For example, prism I remains at the 
global minimum at T < 130 K. At T > 130 K, the 
chair structure becomes the lowest one by the free 
energy. At room temperature, cages I-IV compete 
with prism I. Interestingly, at T > 300 K, the pre- 
opened prism becomes more energetically favor- 
able than prism I. Even more interesting to notice 
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TABLE II 
Rotational constants and total dipole moment of 
lower-lying water hexamer structures.3 

Dipole 
Structure Rotational constants (GHz) moment (D) 

Boat 1.23136 1.12844 0.62217 0.8101 
Book 1.82085 1.00761 0.76171 2.8858 
Chair 1.16607 1.16607 0.59509 0.0 
CageV 2.06059 1.08402 1.07861 3.4507 
Propeller 1.65997 1.18276 0.91629 3.7428 
Preopened 1.57297 1.29319 1.07046 4.3841 

prism 
Prism III 1.63253 1.28955 1.26493 2.8531 
Prism V 1.63298 1.28948 1.26525 2.8512 
Prism IV 1.63251 1.28955 1.26522 2.8523 
Cage IV 2.11851 1.08603 1.02710 2.0095 

(2.1334) (1.1055) (1.0790) 
Cage III 2.10894 1.09042 1.03060 2.0980 

(2.2808) (1.1596) (1.1096) 
Cage II 2.14024 1.07891 1.01597 1.8667 

(2.1336) (1.1021) (1.0755) 
Cagel 2.13849 1.07943 1.01628 1.8524 

(2.1332) (1.1027) (1.0747) 
Prism II 1.61272 1.32655 1.28996 2.9921 
Prism 1 1.61452 1.32630 1.29033 2.9038 

a Calculated rotational constants from [23(g)] are in paren- 
theses. For the cage III ({du}, in notations of [23(g)]), these 
values are approximate (see Table 2, [23(g)]). 

is that at room temperature the propeller structure 
distances from the chair by approximately 2 
kcal/mol. 

With regard to the water octamer, it is well 
known that the cubic structure Ca [23(a)] of D2rf is 
the most stable one on the water octamer PES 
energy surface computed at the HF/6-311G(d, p) 
level. The cubic structure of S4 symmetry occupies 
the local minimum that lies 3.49 kcal/mol above 
the Ca structure. In addition, there have been 
found another 25 lower-lying octamer structures, 
among which the ring structure R8a is energeti- 
cally higher than the Ca one by 12.91 kcal/mol. At 
room temperature, their free-energy difference di- 
minishes to 0.19 kcal/mol [23(a)]. 

"DANGLING" BOND IM WATER HEXAMER 

Two novel low-energy local-minimum struc- 
tures of the (H20)6 water cluster are revealed on 
the water hexamer PES at the HF/6-311G(d, p) 
computational level. They are shown in Figure 
5. The first one with a total dipole of 2.47 D 

is hereafter named Defect I. It lies above prism V 
and the chair water hexamers by 2.88 and 2.04 
kcal/mol, respectively, and distances from the 
prism I structure by 4.40 kcal/mol, which reduces 
to 3.19 kcal/mol when taking ZPVE into account. 
The ZPVE, enthalpy, and free energy of Defect I 
and their differences with respect to the corre- 
sponding quantities for the prism and chair struc- 
tures are listed in Table III. One readily figures out 
that at room temperature the energy of the forma- 
tion of Defect I is 1.15 kcal/mol with respect to the 
prism I structure. It is worth mentioning that the 
Defect I structure and prism VI become almost 
isoenergetical at room temperature. 

The internal coordinates of Defect I are pre- 
sented in Table IV. One sees there that in Defect I 
the water molecule H2H3Oj's distances from the 
nearest-neighbor water molecules with which it 
forms either a covalent or H bond are rather far 

o 

apart than the typical O—O separation of 2.86 A 
inherent for the tetrahedral pattern. To specify, 

R(0,—04) = 2.93 A, R(01—05) = 3.08 A, and 
R(0,—015) = 2.97 A. It is, in fact, due to that this 
water molecule has a fifth nearest-neighbor one 
that is settled on the oxygen atom O10 and charac- 
terized by the distance R(0,—O10) = 3.16 A. The 
latter one is less than R„ir and, thus, one might 
think of these molecules as bonded to each other 
by a so-called dangling bond. One therefore con- 
cludes that this water cluster with a "dangling" 
bond represents itself as a fivefolded "patch" that 
may appear among fourfolded ones in the H- 
bonded pattern of liquid water. The formation of a 
"dangling" bond promotes the appearance of non- 
linear H bonds between 0lr on the one side, and 
05 and 015, on the other one, with r(Oj—H9) = 
2.34 A, ZO,—H9—05 = 134.63°, KOj—H18) = 
2.17 A, and ZO,—H18—015 = 141.29°. This is 
clearly seen in Figure 5. It follows from Table IV 
that the "dangling" bond causes distortion of the 
rest of the H-bonded pattern of the Defect I water 
hexamer that remains fourfolded. For instance, 
R(05—O10) = 2.95 A, r(O10—H8) = 2.07 A, Z05 

—H8—O10 = 154.30°, and R(04—015) = 2.90 A, 
with r(04—H18) = 2.07 A and Z.04—H7—0,5 = 
144.44°. It is also worth noticing that, compared 
with the propeller structure, Defect I solidly con- 
tributes to the second nontetrahedral maximum of 
the O—O—O bond distribution function thanks to 
five O—O—O bond angles which are clustered 
around 60°. These are, in particular, the following: 
Z04—O]— 0]5 = 62.75°, /LOj—04—0]5 = 59.57°, 
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FIGURE 1. Lower-lying structures of water hexamer. (Olid line) O—H, (dashed line) H and (dot-dashed line) 
"dangling" bonds. 
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H(17) 

PRE-OPENED PRISM 

FIGURE 2. Six lower-lying prismlike structures of water hexamer. Symbols same as in Figure 1. 
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cage I cage II 

H(16) 

cage III cage IV 

FIGURE 3. Four lowest cage structures of six molecules of water. Symbols same as in Figure 1. 

and Z04—014- -05 = 63.41°. One also sees from 
Table IV that the lone-pair distribution of Ox loses 
its tetrahedrality characterized ZOs—Oj—015 = 
87.60° due to fivefold coordination. Before ending 
this paragraph, it is interesting to notice that due 
to the "dangling" bond the separation between the 

oxygen atoms Oj and 014 considered as the sec- 
ond-neighbors is 4.22 A. 

The assignment of the most active harmonic 
vibrations of the Defect I "patch" is carried out in 
Table V. Harmonic frequencies computed for inter- 
and intramolecular modes of the Defect I structure 
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H(16) 

BOOK 

FIGURE 4. Chair, propeller, cage V, boats and book structures. Symbols same as in Figure 1. 
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1J49. 

Defect II 

H(12) 

FIGURE 5. Pentacoordinated water hexamer Defects I and II. Symbols same as in Figure 1. 

are listed in the second column of this table. Its 
third and fourth columns report the corresponding 
theoretical IR intensity and Raman activity. First of 
all, before inspecting Table V, it deserves to be 
mentioned that the theoretical spectra of the chair 
and boat water hexamers do not possess vibrations 
in the region of 4000-4200 cm"1, implying that the 

hydrogen atoms in these structures are solely of 
two sorts: the hydrogens involved in forming the 
H bond and the "free" hydrogens participating in 
unbonded OH groups. On the contrary, the prism 
hexamers and Defect I do have H-stretching vibra- 
tions in this region. The most intensive IR band of 
Defect I is the librational one centered at 663.5 (IR 
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TABLE III  
Energy (£), enthalpy (H), entropy (S), ZPVE, and free energy of defect water hexamers. 

E (Hartree) 

AP£ 

H (Hartree) 

ApH 

Ac« 

S (cal / mol K) 
A0S 
APS 

ZPVE (kcal/mol) 
A0G 
APG 
ACG 

Defecf / 
-456.3534556 

4.40 
2.88 
2.04 

Defect II 
-456.3532593 

-4.52 
3.01 
2.16 

-456.1773545 
3.92 
2.48 
2.21 

-456.1771700 
4.03 
2.59 
2.32 

127.64111 
9.29 
8.34 

-4.86 

126.23200 
7.89 
6.94 

-6.27 

100.24399 
1.15 

-0.01 
3.66 

100.32397 
1.68 
0.52 
4.19 

Prisms I and VI and chair hexamers are chosen as the reference ones. A 
kcal /mol, X = E, H, and G (at room T= 298.15 K); AXS in cal/mol K, x = o,p,c. 

prism I = A„ ^prismVI - Ap, A,X in 

intensity 564 km/mol, Raman activity 0.5 A4/ 
amu) compared with the most IR intensive ones 
for the prisms, chair, and boat hexamers that fall 
into the region of H-stretching vibrations. The band 
at 663.5 cm-1 is assigned to the composed libra- 
tion of the O, -H6, 05-H8, and 05- -H9 bonds. 
Other IR intensive bands of Defect I are the follow- 
ing: first of all, the band 467.2 cm"1 (343.3,2.2) 
associated with the composed librational vibration 
ofO-H3,05-H8,05-H9, and 015—H18 bonds. 
The other ones belong to the H-stretching region. 
These are the bands centered at 4001.96 cm"1 

(511.8,22.0) with the 04—H6, 014—H13 stretching 
vibration character and the band at 4111.4 cm"1 

(369.8,21.3) assigned merely to 04—H7 stretching. 
Regarding the O—H stretching vibrational modes 
with the frequencies v[heor = 4141.9 cm"1 (17.7, 
65.5; symmetric) and vt3

hcor = 4237.6 cm"1 (57.4, 
32.4; asymmetric) computed for the HF/6-311 
G(d, p) water monomer (for comments, see foot- 
note §), one may divide the whole stretching re- 
gion of Defect I into three groupings. The first one 
spans the range from 3967 to 4069 cm"1 and pos- 
sesses the dominant character of stretching of H- 

See [24(a) and (b)]. Experimental harmonic frequencies of 
the water molecule are the following: 
= 1649 cm"1, and 

v'*P' 3832 cm 

4"" 3942 cm" 

expl 

1750.30 cm"1 

expt at the HF/6-311GW, p) level. Scaling factors /, = v^""/v\ 
i =1,2,3 are equal to 1.0809, 1.0614, and 1.0750, respectively. 
The average scaling factor </> = (/\ + f2 + /3)/3 = 1.0724. The 
scaled frequencies vfc" = v'l"'°r/(f) [with the relative error, 
5 = (*?' expl )/"/ expt %]   are   3862.17  cm"1   ( + 0.79%), 
1632.09 cm"1 (-1.03%), and 3951.43 cm"1 ( + 0.21%). 

bonded hydrogen atoms. The band 3967.5 cm"1 

(79.7,162.6) describes the composed symmetric 
stretching vibration of 04—H6 and 014—H13 

bonds and is, in fact, the strongest Raman active 
band. The aforementioned 4002.0 cm"1 band cor- 
responds to their asymmetric stretching vibrations. 
Compared with the stretching bands of a single 
water molecule, the latter bands of Defect I are 
both redshifted, considerably enhanced, and be- 
come closer to each other by 60 cm"1. The second 
grouping of bands lies in the interval from 4085 to 
4180 cm"1 and is primarily contributed to by non- 
linear or bent H-bonded hydrogens. The last one 
consists of bands spanning the interval from 4183 
to 4221 cm"1. They are assigned to the stretching 
vibrations of "orphaned" H-bond donors. These 
bands are slightly blue-shifted and mainly en- 
hanced in twofold compared with the stretching 
mode v3 the of the water monomer. 

The, second water hexamer displayed in Figure 
5 and named Defect II looks more noticeable be- 
cause its H-bonded imperfectness seems to be more 
spectacular and manifests itself in the following: 
(1) Table IV shows that the oxygen-oxygen sepa- 
ration between 015 and 014 reaches 3.12 A. On the 
one hand, this implies that, according to the first 
geometrical constraint, the corresponding water 
molecules are bonded. On the other hand, they are 
also not H-bonded because the hydrogen atoms of 
one water molecule are settled so far away from 
the oxygen atom of a possible acceptor water 
molecule [r(014—H17) = 2.68 A] that the second 
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TABLE IV  
Internal coordinates of defect water hexamers. 

Defect 1 

Interoxygen Distance, (A) 

R(0,-04) R(01-05) 
R(O4-O,0) 
R(O6-O10) 

R(O,-O,0) 
R(04—014) 
R(05-014) 

R(0,—0,6) 
R(04-015) 
R(O,0-O,4) 

2.932 3.075 
2.842 
2.953 

3.162 
2.824 
2.869 

2.969 
2.897 
4.120 

H-bond Angle SH (deg) 

0l_H3-04 

04-H7-015 

0,— H9—05 

O5-H8-O10 

0,-H,8-0,5 

O10-H„-O4 

04-H6-014 

0,4-H,3-05 

167.99 
144.44 

134.63 
154.30 

141.29 
153.55 

155.45 
161.84 

0 —0—0 Bond Angle (deg) 

04—0,-0« 0,0-0,-0,5 
0,-04-015 

O10-O5-O,4 

05-0,-015 

O,o-05-0,4 

04-0,4-05 

o,4-o4-o,5 
O,-O5-O,0 

0,-015-04 

62.75 43.89 
59.57 
86.70 

87.60 
86.70 
63.41 

73.37 
93.11 
57.67 

Defect II 

Interoxygen Distance (A) 

R(0,-04) R(0,-05) 
R(04—014) 

R(0,-0,4) 
R(04-0,5) 
R(O10-O,5) 

R(0,-015) 
R(O5-O,0) 
R(014-0,5) 

2.916 2.840 
3.002 

2.836 
3.135 
2.876 

2.910 
2.869 
3.121 

H-bond Angle 8H (deg) 

0l-H3-04 0,—H2—05 

05-H3-O10 

0,5-H18-0, 

04-H6-0,4 

Oio—Hu—0,5 
0,4-H,7-0,5 

04-H7-0,5 

0,4-H,3-0, 
0,4—H,8—0,5 

135.44 159.51 
168.09 
169.35 

146.19 
158.08 
109.09 

126.16 
143.68 
90.02 

0 —0—0 Bond Angle (deg) 

04-0,-0,4 05-0,-0,4 

05-0,-015 

04-0,-0,5 

O,-O,5-O,0 

O,-O5-O,0 

04-0,-05 

05-O,o-0,5 
04-0,-0,5 

62.90 149.64 
88.41 

65.21 
90.65 
92.24 

121.88 
88.50 
65.79 
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TABLE V 
Most intensive bands of Defect 1 water hexamer: vibrational frequencies v (cm   1) IR intensity (km / mol), 

Raman activity (A4/amu), force constant (mdyne/A), and reduced mass (amu). 

V IR Raman Force Reduced mass 
No. (cm~1) intensity activity constant Assignment 

1 7426.87 191.66 1.32 0.1163 1.0830 
01—H2, 015—H17—H18 libration 

2 467.16 343.34 2.20 0.1357 1.0554 
O.-Ha, 05-H8-H9, 015-N18 

libration 
3 591.19 203.24 4.31 0.2162 1.0497 

Oi—H3, 04—H7 libration 
4 663.51 564.12 0.47 0.2763 1.0651 

04—H6, 05—H8—H9 libration 
5 792.43 292.40 0.88 0.3940 1.0650 

04—H6—H7, 05—Hg, 014—H13 

libration 
6 1756.83 203.58 3.66 1.9633 1.0797 

H2—O)—H3, H^—O10—H12, 
H17—015—H18 scissor 

7 1822.21 107.83 3.87 2.1091 1.0781 
H2—O,— H3, H8—05—H9 scissor 

8 3967.47 79.66 162.57 9.7897 1.0566 
04—H6, 014—H13 stretch 

9 4001.96 511.76 22.01 9.9429 1.0537 
04-H6, 04-H7, 014-H13 

stretch 
10 4016.36 167.01 25.95 10.0461 1.0570 

O10—Hni stretch 
11 4047.50 227.75 89.05 10.1860 1.0553 

O,—H3, 04—H6, O10—H„ stretch 
12 4068.80 143.11 36.64 10.2569 1.0516 

05—H8, 05—H9 stretch 
13 4085.39 211.26 48.75 10.3511 1.0526 

14 4111.36 369.79 21.25 10.7142 
015—H17, 015—H18 stretch 

1.0758 
04—H7 stretch 

15 4159.71 177.57 29.98 10.9754 1.0766 
05—H9 stretch 

16 4183.20 111.31 32.23 11.0601 1.0727 
O,—H2 stretch 

17 4210.83 124.08 51.80 11.2187 1.0739 
O10—H12 stretch 

18 4212.04 81.71 59.75 11.2060 1.0721 
014—H16 stretch 

19 4220.61 113.57 47.29 11.3126 1.0779 
015—H17 stretch 

geometrical constraint is not satisfied. Moreover, 
the angle 8H in this case is ^0]4—H]7—014 = 
109.09°. Altogether, it results in that this couple of 
water molecules form a "dangling" bond. (2) The 
separation between 04 and 015 is quite normal for 
the nearest neighbors. However, the bond length 

of 2.49 A between 015 and H7 slightly exceeds rllir 

and the corresponding bond angle Z.04—H7—015 

= 126.16° is far beyond the interval of the 6H 

inherent for a regular tetrahedral "patch." Never- 
theless, one may suggest that this is, in fact, a H 
bond, albeit rather weak and strongly nonlinear, 
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TABLE VI 
Most intensive bands of Defect II water hexamer. 

V IR Raman Force Reduced mass 
No.            (cm"1) intensity activity constant Assignment 

1               558.00 548.86 2.93 0.1978 1.0782 
04—H6, O10—H^, 014—H13, 
015—H17—H18 libration 

2              663.55 395.30 1.58 0.2780 1.0716 
0,-Ha, 04-H7, 05-H9, 
O10—H^ libration 

3               695.54 188.50 0.49 0.2959 1.0383 

°1— H2> °10— H11> 
014—H13 libration 

12 

13 

736.56 

5 1761.25 

6 1781.83 

7 1788.81 

8 1819.17 

9 3966.58 

10 4004.87 

11 4019.74 

4041.97 

4059.63 

14 4091.93 

15 4113.52 

16 4180.60 

17 4188.06 

18 4205.30 

19 4207.32 

20 4213.11 

234.87 

145.79 

102.85 

118.23 

103.45 

87.30 

541.04 

482.95 

93.95 

105.91 

185.26 

302.18 

130.02 

127.12 

110.69 

87.44 

115.71 

0.83 0.3332 1.0425 
01—H2—H3, 04—H6—O10—H^, 
014—H13, 015—H18 libration 

5.11 1.9704 1.0781 
H13—014—H16 scissor 

3.17 2.0210 1.0804 
H8—05—H9, H^—O10—H12 scissor 

4.28 2.0275 1.0754 
H6—04—H7, H17—015—H18 scissor 

2.47 2.1016 1.0779 
H6—04—H7, H17—015—H18 scissor 

191.47 9.7875 1.0558 
O,—H2, 05—H9, O10—H^, 
015—H18 stretch 

23.68 9.9611 1.0541 
Oi—H2, 05—H9, 015—H18 stretch 

13.43 10.0578 1.0565 
01— H2, O10— H^, 014—H13, 
015—H18 stretch 

71.60 10.1556 1.0550 
O5—H9, O10—H11P O10—H12, 
°14—H13- O15—H18 stretch 

59.50 10.2369 1.0543 
°1 H2> Ol4 H13> °15 H18 
stretch 

31.57 10.3782 1.0520 
04—H6, 04—H7 stretch 

26.87 10.7087 1.0741 
O.,—H2, OT— H3, 04—H6 stretch 

21.57 11.1098 1.0789 
04—H6, 04—H7 stretch 

39.50 11.0769 1.0719 
015—H18 stretch 

41.85 11.1851 1.0735 
°5 H8' Ol0 H11' °10 H12 
stretch 

55.50 11.1803 1.0720 
05—H8 stretch 

56.96 11.2516 1.0759 
°14—H13> °14—Hie stretch 

For notations, see caption of Table V. 

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 845 



KRYACHKO 

that is caused by the closer presence of a "dan- 
gling" bond. The conclusion to be drawn is that 
the water molecule H17H18015 in the Defect II 
structure is fivefold coordinated with one "dan- 
gling" bond. Moreover, it is rather interesting to 
see from Figure 5 that Defect II includes a square- 
like substructure formed by four water molecules. 
Its diagonal takes two values, 4.11 and 4.01 A, 
respectively for the Oj—Oj0 and 05—015 separa- 
tions. One can easily recognize that, by the struc- 
ture, Defect II partly resembles a norbornane water 
heptamer found in [25]. 

Energetically, Defect II is slightly less stable 
than is Defect I by 0.13 kcal/mol (see Table III). 
Their ZPVE difference of 0.08 kcal/mol is almost 
negligible. The difference in their free energies is 
0.53 kcal/mol at room temperature, so that Defect 
II is slightly less stable than is Defect I. Further- 
more, it is less polar than is Defect I by 0.09 D. The 
assignment of harmonic vibrational modes of De- 
fect II is presented in Table VI. Similarly to Defect 
I, it also possesses the two most IR-intensive bands. 
The first one with an IR intensity of 548.86 km/mol 
belongs to the libration range and is centered at 
558.0 cm"1. It is associated with the composed 
libration of H-bonded Od ~H6' °io- -Hn, and 014 

—H13 bonds. The second one is characterized by 
an IR intensity of 541.04 km/mol and is peaked at 

4004.87 cm-1. It describes the asymmetric stretch- 
ing vibration of H-bonded hydrogen atoms in- 
volved in the squarelike substructure. Their sym- 
metric stretching vibration at 3966.58 cm-1 is the 
most Raman-active one with a Raman activity of 
191.47 A4/amu. Compared with the stretching vi- 
brations of the water molecule, both these vibra- 
tions are red shifted by approximately 200 cm-1 

and more pronounced. By analogy with the parti- 
tion of stretching bands of Defect I into three 
groupings, a similar one exists for Defect II. Re- 
garding the intramolecular or scissor modes of 
these defect structures, it has to be mentioned first 
that the harmonic mode „f"""""»") 0f the water 
monomer calculated at the HF/6-311G(rf, p) level 
is 1750.30 cm-1. Its IR absorption and Raman 
activity constitute 79.15 km/mol and 6.38 A4/amu, 
respectively. Two intramolecular modes of Defect I 
and four of Defect II listed in Tables V and VI are 
red-shifted compared with „(»"""""<■'•) and more 
pronounced. Their normal Vibration assignment is 
also shown there. For instance, the first intramolec- 
ular mode of Defect I with a frequency 1756.83 
cm"1 describes the composed scissor vibrations of 
the water molecules H2H3Oj and HnH12O10 

bonded to each other via a "dangling" bond. The 
two last bands of Defect II correspond to the com- 
posed symmetric and asymmetric scissor vibra- 

FIGURE 6. Pentacoordinated water octamer Defect III. Symbols same as in Figure 1. 
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tions of the H6H704 and H17H18015 molecules of 
water. 

FIVEFOLD COORDINATED 
WATER OCTAMERS 

Figure 6 displays a pentacoordinated water oc- 
tamer. The distinctive features of this structure are 
that one of its water molecules forms three H 
bonds and looks identical to the structure R6c 

found in [23(a)], although a slight deviation in 
their properties is revealed.* Its energy, enthalpy, 
ZPVE, and entropy calculated at the HF/6- 
311G(d, p) computational level are reported in 
Table VII. Before going further, a word about the 
studied water clusters should be said. With regard 
to the cage, propeller, and defect structures of the 

* The relative properities of Defect III with respect to the 
R6c structure are AE = 2-10"4 kcal/mol, AH = -4-10"4 

kcal/mol, and AS = -21.74 cal/mol K. 

TABLE VII 
Energy (E), enthalpy (H), entropy (S), ZPVE, and free energy of defect water octamer. 

Defect 
£ (Hartree) 

Aca£ 
H (Hartree) 

Aca" 

Steal/molK) 
AcaS 

ZPVE (kcal / mol) 
AcaG 

Defect III -608.4765824 
12.291 

-608.2403860 
10.802 

156.181 
17.905 

134.42923 
5.47 

The Cubic octamer Ca is chosen as the reference one. For other notations, see caption of Table I 

TABLE VIII 
Internal coordinates of defect water octamer. 

Interoxygen Distance (A) 

R(01-04) 
R(04-05) 
RfOs-Ou) 

R(0,-Om) 
R(04—0„) 
R(0B-01B) 

R(04-019) 
R(O10—019) 

R(0!—021) 
R(04—021) 
RtOn—019) 

3.051 
2.989 
2.990 

2.883 
2.972 
2.862 

2.842 
2.802 
2.875 

2.930 
2.890 
3.061 

H-bond Angle SH (deg) 

0l_H3-04 
O4-H14-O10 

Ol0—H17—0-I9 

04—H9-Os 

Oi—H2—018 

04-H7-021 

Oe-Hs-On 
°5 H16 Ol8 
On    H22    019 

Ol—H13—Oio 
04-H6-019 

Oi— H24—021 

155.49 
137.24 
162.59 

152.07 
157.20 
146.57 

136.03 
160.34 
129.83 

161.78 
158.87 
147.54 

O —O- -O Bond Angle (deg) 

Oi-018—06 
05-04-019 

o, -o5- Ol8 
Oi -Oio- -Oi9 
o5 -04- 021 

104.14 
84.15 

113.46 

-Oi-Ot 
O4—o,. -o„ 
O.o-O, -021 

O18—Oi-021 

Oi -O5- -O18 
On -O4- -Dm 
On -O4- -021 

0« -O4- -O21 

138.43 
63.95 

169.30 
111.81 

77.73 
103.22 

122.58 
99.21 

112.69 
122.74 
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water hexamer, it is worth noticing that they serve 
as an example of that in lower-lying clusters a 
water molecule may form a first-coordination shell 
with five water molecules in such a way that an 
approaching fifth water molecule is bonded to the 
central water molecule by a "dangling" bond. The 
Defect HI portrayed in Figure 6 refers to an abso- 
lutely different type of pentacoordinated water 
clusters. It is seen there that the oxygen atom 04 

has three elongated and rather weak H bonds with 
the oxygen atoms Oj, Os, and On separated from 
it by ca. 3 A (Table VIII). Despite that, the angle 
Z.H6—05—H7 = 107.13° remains, in fact, un- 
changed compared with the water monomer. 
However, the lone-pair angular distribution suf- 
fers drastic changes that are revealed in the calcu- 
lated values of the corresponding angles: 
Z-H3—04—H9 = 69.19°, Z_H9—04—H14 = 70.54°, 
and Z-H3—04—014 = 115.65°. Its arrangement 
relative to the H6—04—H7 plane is determined 
by the angles Z_H3—04—H7 = 88.91°, Z_H6—04 

—H14 = 79.56°, and Z-H6— 04—H9 = 125.61°. 
As the Ca structure, Defect III possesses 12 H 

bonds, albeit seven of which may be considered as 
relatively weak because their lengths exceed 2 A. 
What is mostly impressive in the H-bonded pat- 
tern of Defect III is that the water molecule 
H]4H15On is weakly bonded to its nearest neigh- 
bors. This is clearly seen, first, in that the inward- 
ing H bonds such as On—H8 and On—H22 have 
lengths of 2.24 and 2.37 A, respectively. The 
outwarding H-bond 04—H14 is also strongly 
elongated to 2.21 A. Second, the angles Z_05—H8 

—On = 136.03°, Z_04—H]4—On = 137.24°, and 
Z-On — H22—019 = 129.83° keep, therefore, a very 
low profile. The angle /LO„— 04—019 = 63.95° 
shows, in particular, a loss of tetrahedrality in this 
area of the pentacoordinated "patch." It seems 
worthwhile to discuss right now the dis- 
tribution of oxygen-oxygen separations beyond 
the first-coordination shell. It is rather well clus- 

o 

tered around 4.65 A and takes such values as 
R(04—O10) = 4.32 A, R(05—019) = 4.54 A, R(04 

— 018) = 4.62 A, R(019—021) = 4.71 A, 
R(O10—021) = 4.84 A, R(Os—021) = 4.92 A, and 
RCO]—On) = 4.94 A. However, the oxygen atom 
is placed in a particularly privileged position be- 
cause it stays much closer to 05 and 019, namely, 
by 3.58 and 3.86 A, respectively. 

The dipole moment of the Defect III "patch" is 
very low and equal to 0.87 D. Energetically, it is 
situated 12.30 kcal/mol above the Ca structure. At 

room temperature, their difference in free energy 
is just 5.47 kcal/mol. Regarding the spectrum of 
this "patch" presented in Table IX, it is worth 
noticing that the spectrum of Defect III possesses 
rather strong IR-intensive bands, namely, its most 
IR-intensive and Raman-active bands fall only in 
the region of stretching vibrations. This is, first, the 
band i^2° = 4113.9 cm"1 with an IR intensity of 
453.6 km/mol attributed chiefly to the stretching 
of the O,—H3 bond. The second one v^0 = 3978 
cm"1 with a Raman activity of 142.27 A4/amu and 
an IR intensity of 429.7 km/mol is assigned to the 
composed symmetric stretching vibration of the O] 
—H2 and 0]8—H16 bonds. As seen from Table IX, 
the grouping of the bands in the region 4091-4168 
cm"1 correspond to the stretching vibrations of 
three O—H bonds that establish the fivefold coor- 
dination of the H6H704 water molecule and of 
another two directed to H14H15On. Compared 
with the stretching modes of the water monomer, 
these bands are slightly red shifted, which indi- 
cates their substantial weakness. This grouping of 
bands borders another one falling to 4205-4215 
cm"1 and describing the stretching vibrations of 
"free" O—H groups. Table IX also lists the most 
intensive vibrations of the fully deuterated Defect 
III calculated at the HF/6-311G(rf, p) level of com- 
putation. Its ZPVE is 87.961 kcal/mol and its en- 
tropy is 178.571 cal/mol K. Hence, the ratio 
ZPVEH20/ZPVED2o = 1.53E.11 For the deuterium 
Defect III, the band ^2

D
0
2° = 2880.0 cm"1 becomes 

the most IR and the most Raman active simultane- 
ously contrary to the protium Defect III. It is more 
interesting to analyze the dependence of z^27 as- 
signed to the coupled asymmetric stretching vi- 
brations of On—H14 and Os—H9 bonds under 
isotopic substitution. In the case of the protium 
Defect III, this band possesses an IR intensity equal 
to 48.8 km/mol, whereas it becomes pronounced 
in about five times for its deuterated isotopomer. 
In analyzing the second and sixth columns of Table 
IX, one finds that the calculated harmonic frequen- 

Compare with for instance, the frequencies v and reduced 
masses fi of water isotopomers H20 and D20 calculated via 
the STO-3G basis set, which arc the following:  j/'W^O) = 

1.0491   (2.1747)   amu; 
MH20(D20)   =   li0785 

4142.29   (2992.49)   cm" Mi 
1I20(D20) 

„H20(D20) = 2169.80   (1584.65)   cm"1 

(2.2429) amu; and i^°<D20»(2) = 4393.38 (3212.88) cm'1, 
MH2O<D20) = j Q774 (2.2696) amu. Further, ZPVE,,2„ = 15.30 
kcal/mol, ZPVED 0 = 9.94 kcal/mol, and their ratio 
ZPVEH2o/ZPVED2o = 1.54. Also, v\^°/v^° = 1.38, v\^°/ 
„D20 =2,H20/J,p20 = l 37 and   ^H.O/^0 =  y^p/^P 

= 1.44, vV^0/M?2° = 1.45. 
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TABLE IX 
Most intensive bands of defect water octamer. 

V IR Raman Force Reduced mass 
No. (cm-1) intensity activity constant Assignment 

1 167.50(139.68) 134.88 (66.82) 
021     H23 

2.49(0.13) 0.0217 1.3153(2.4140) 
Translation 

2 186.88 (145.25) 188.76 (47.14) 0.82 (0.50) 0.0286 1.3893 (2.8709) 
018    H20, On-H15 Translation 

3 454.54 (329.81) 247.97(119.39) 
019    H22 

1.45 (0.69) 0.1290 1.0594 (2.2083) 
Libration 

4 479.03 (347.03) 156.33 (94.76) 3.36 (1.69) 0.1426 1.0549(2.1971) 
01-H31 019    H22 Libration 

5 492.42 (357.49) 217.73(108.48) 0.69 (0.39) 0.1513 1.0592(2.2157) 
021     H24, Olg    H22 Libration 

6 533.88(387.10) 161.88(114.83) 0.31 (0.43) 0.1781 1.0605(2.1872) 
05-H8, On-H14, 05-H9 Libration 

7 546.94 (395.37) 170.08 (50.61) 3.40 (1.52) 0.1849 1.0492(2.1872) 
04-H7, 021—H24 Libration 

8 601.84 (436.54) 202.77(116.59) 1.35 (0.65) 0.2256 1.0571 (2.2097) 
05-H9, Ol8 H16 Libration 

9 654.55 (474.21) 134.04 (68.85) 0.87 (0.46) 0.2673 1.0591 (2.1829) 
05-H9, Oi9—H17 

Libration 
10 668.36 (486.34) 332.08 (191.89) 1.49 (0.75) 0.2802 1.0646 (2.2347) 

°18— H16> 019    H22 Libration 
11 693.47(501.19) 250.72 (127.85) 0.93 (0.42) 0.2975 1.0501 (2.1782) 

0-I9—H17, 04-H6 Libration 
12 757.18(548.76) 149.08 (73.69) 1.94 (0.96) 0.3574 1.0582(2.1919) 

04-H6, 04-H7 Libration 
13 798.45 (570.25) 381.95 (234.52) 0.13(0.10) 0.3851 1.0488(2.1742) 

0,-H,, 04-H6 Oio—H13 
Libration 

14 844.58 (615.41) 177.47 (112.25) 0.40(0.13) 0.4484 1.0670 (2.2478) 
04-H7, 0,-H,, C^-Ha, 

021     H24    H18, Libration 
15 908.64(654.81) 128.66(77.92) 0.64 (0.30) 0.5079 1.0441 (2.1547) 

04-H6, Ol9—Hl7 Libration 
16 1754.08(1282.64) 132.62 (67.93) 

On—H14—H15 

6.41 (3.41) 1.9589 1.0806 (2.2559) 
Scissor 

17 1774.04(1295.89) 116.20(54.80) 
021     H23    H24 

5.05 (2.71) 1.9991 1.0781 (2.2477) 
Scissor 

18 1843.89 (1344.61) 188.18(100.98) 1.93(1.11) 2.1503 1.0735 (2.2360) 
O-,—H2—H3, 05—H8—H9 scissor 

19 3927.49(2842.71) 257.45(111.19) 
04-H6 

122.55(74.23) 9.6031 1.0566(2.1797) 
Stretch 

20 3978.39 (2880.00) 429.69(252.81) 142.27 (77.02) 9.8550 1.0568(2.1812) 
0.-H2, 0-18—H16 

Stretch 
21 4003.26 (2897.42) 438.73 (199.00) 20.23 (11.63) 9.9717 1.0561 (2.1801) 

O-I0—H13> °18_ H16> °19—H17 Stretch 
22 4015.09 (2903.59) 114.94(48.68) 36.68(19.66) 10.0101 1.0539(2.1756) 

0,-H,, C*18 H16' °19—H17 Stretch 
23 4034.36(2917.34) 345.32 (143.67) 38.65(19.40) 10.1096 1.0542 (2.1738) 

°io—H13> Ol9 H17 Stretch 
24 4058.52 (2937.93) 61.32 (36.05) 96.31 (40.38) 10.2950 1.0608(2.1743) 

°21 H24> 04-H7 Stretch 
25 4085.48 (2954.27) 426.88 (35.75) 35.90 (8.48) 10.5052 1.0682(2.1656) 

04-H7, 021—H24 Stretch 

(Continued) 
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TABLE IX 
(Continued) 

V IR Raman Force Reduced mass 
No. (cm-1) intensity activity constant Assignment 

26 4091.03 (2955.79) 41.88 (53.56) 21.64 (45.36) 10.3624 1.0509(2.1632) 
On—H14, 05-H9 Stretch 

27 4094.86 (2985.00) 48.83(233.61) 67.66(21.11) 10.3814 1.0508 (2.2772) 
On-Hu, 05-H9 Stretch 

28 4113.90(3005.70) 453.56 (233.57) 
O1-H3 

37.92(19.01) 10.6611 1.0692 (2.2742) 
Stretch 

29 4161.77(3046.49) 96.49 (53.20) 26.93(15.75) 11.0057 1.0785(2.2812) 
05-H8l 05-H9, 019    H22 Stretch 

30 4168.43 (3049.50) 256.07 (169.94) 
019    H22 

23.34 (10.82) 11.0101 1.0755 (2.2797) 
Stretch 

31 4205.02 (3072.61) 104.06 (88.09) 

O10—H12 

49.36 (23.54) 11.1776 1.0729 (2.2705) 
Stretch 

32 4208.77 (3074.79) 100.10(85.73) 

^18      '"'20 

52.66 (24.84) 11.1935 1.0725(2.2691) 
Stretch 

33 4213.47 (3082.78) 116.91 (76.78) 43.67(20.41) 11.2567 1.0762 (2.2801) 
021     H23, 021—H24 Stretch 

34 4214.21 (3087.05) 110.76(88.40) 47.58(19.72) 11.2964 1.0796 (2.2878) 
On-H^, 0,,-H^ Stretch 

For notations, see caption of Table V. Values for fully deuterated Defect III are given in parentheses. 

cies and reduced masses of the protium and deu- 
terium Defect III do not show the known isotopic 
relationships connecting the ratio of frequencies of 
translational and bending modes vH^°/vDl° with 
the square root of the ratio of the corresponding 
moments of inertia or masses, respectively. Al- 
though this is perhaps the common situation with 
computing harmonic vibrational frequencies,** al- 
though in the present case with larger water clus- 
ters, this deviation appears more significant than 
with the water dimer. From Table IX, it follows 
that, first, for vH*° = 167.5 cm"1 the ratio 
v^^°/v^° = 1.20, whereas, according to this rela- 
tionship, it should be /20/18 = 1.05. Second, one 
directly obtains further that J/"

2
°/V°

2
° = 1.29 and 

yV"20/|u£2° = 1-44. Third, for the rest of vibra- 
tions listed in Table VIII, the isotopic frequency 
ratio behaves rather regularly around 1.37-1.38 
with the exception for the 13th and 15th modes 
when this ratio ratio is 1.40 and 1.39, respectively. 
The isotopic reduced mass ratio does not reveal 
such simple regularity, although it is largely clus- 
tered near 1.44-1.45. Altogether, this isotopic anal- 

**We analyzed the ratio vH*°/vD2° for the harmonic 
vibrational frequencies of the water dimer calculated in [26] at 
the HF/6-31G* and MP2 levels. Following Tables 1 and 2 of 
[26], one easily derives that this ratio spans the range 1.16-1.18 
for all the listed modes. 

ysis emphasizes a very anharmonic landscape of 
the total potential energy surface of water clusters. 

Summary 

Fifteen different structures of the water hex- 
amer found in the interval of 1.75 kcal/mol around 
its global minimum at the HF/6-3111G(rf, p) com- 
putational level represent an unprecedented wide 
range of conformational excursions for the water 
hexamer cluster and obviously, for the PES of 
liquid water. The richness of the PES landscape of 
water clusters is not actually a new fact. Tsai and 
Jordan [22(c), 27(a)], combining the TIP4P water- 
water potential with ab initio calculations, re- 
vealed 135 distinct minima of the water hexamer. 
Some lower-lying minima were also found in 
[22(g), 27(b, c)], although they do not show such 
striking plasticity of the PES landscape of the wa- 
ter hexamer in a rather close, of 1.75 kcal/mol by 
energy, neighborhood of its global minimum. The 
results of the present search is actually a challenge 
to the ability of the model water-water interaction 
potential to reproduce such high conformational 
plasticity. 

The present work provides the first ab initio 
demonstration of the pentacoordinated water hex- 
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amer structure. This structure is not, in fact, the 
defect one in the common sense of defects in the 
H-bonded pattern that violate the Bernal-Fow- 
ler-Pauling rules or those structures that involve 
the bifurcated H bond. It actually represents a 
novel structure of H bonds where an approaching 
fifth water molecule forms a "dangling" bond with 
the central water molecule generating in such a 
way a pentacoordinated "patch" of higher density. 
This "patch," being incorporated into the H- 
bonded pattern of liquid water, on the one hand, 
contributes partly to nontetrahedral configurations 
and to the known maximum of the O—O—O 
bond angle distribution function around 60° in 
particular. On the other hand, it contributes to 
tetrahedral configurations as well. Notwithstand- 
ing that such hexamer and octamer fivefold coor- 
dinated "patches" occupy lower-lying local en- 
ergetic minima on the total potential energy 
surfaces, they become energetically accessible at 
room temperature. One would say that the struc- 
ture of the propeller and Defects I—III reconcile the 
concept of an orientational defect as the violation 
of the second ice rule, on the one hand, and with 
non-icelikeness specific features of liquid water, on 
the other hand. In this context, pentacoordinated 
"patches" within the H-bonded pattern of liquid 
water is an appealing concept since they constitute 
an intriguigingly simple and, to some extent, rather 
universal organization principle of the underlying 
liquid water dynamics. 

There is still one question worthy to be pointed 
out in ending the present work. How significantly 
are the conclusions that we have drawn sensitive 
to the computational level? First of all, let us 
notice that the order of the water hexamer struc- 
tures displayed in Figure 1 at 0 K would undergo 
some changes with the varying of computational 
levels, albeit this is not the main conclusion of the 
present article. Rather, it aimed to show how the 
water hexamer and bulky water as well might 
have so rich and intricate landscape where there 
are certainly some energetically accessible minima 
for those clusters that are pentacoordinated, on the 
one side, and that contribute to the subtle 
O—O—O angular distribution function peak at ca. 
60°, on the other side. Although, speaking pre- 
cisely, to pose a question of which one of two, say, 
minima is the lowest, one might not be too essen- 
tial and perhaps even unreasonable at any com- 
putational level for many reasons: One simply is 
that there is always another superior level. An- 
other reason is that this requires to taking the 

ZPVE and basis-set superposition error into ac- 
count together with including correlation effects 
that make the post-HF methods with high-level 
basis sets almost unfeasible for studies of 
medium-size water clusters, like, for example, the 
water hexamer. On the contrary, the HF/6-31G* 
and HF/6-31G** levels show quite accurate ener- 
gies of "both conformational change and hydrogen 
bonding" [27] for hydrogen-bonded complexes and 
they are, in fact, rather feasible in distinction, for 
instance, to known highly accurate empirical wa- 
ter-water potentials that are unable to reproduce 
the aforementioned features of liquid water [27]. 
However, thanks to the thorough analysis by 
Xantheas and Dunning [22a] and Xantheas [22b] of 
small water clusters according to which, in partic- 
ular, the HF level produces larger O—O distances 
between neighboring water molecules, one may 
interpolate their conclusion on the O—O distances 
in cages and may suggest that it is apparently that 
all present cages will have "dangling" bonds at 
higher computational levels. There is certainly a 
powerful alternative to these methods, namely, to 
employ density functional methods, although fol- 
lowing [22e], "ideally, the question of the lowest 
hexamer structure could thus be answered experi- 
mentally by IR spectroscopy." However, physi- 
cally speaking, there is probably strong evidence 
that the prism structure of the water hexamer is 
the most stable one at 0 K and at normal pressure 
compared to the cage structure. Otherwise, instead 
of ices I, ice VI will exist at such conditions that 
contradict the phase diagram of H20 given, for 
instance, in Figure 3.4 by Eisenberg and Kauz- 
mann [la]. Their mutual order certainly changes at 
higher temperatures and it is likely to suggest that 
it will be even interfered with by the ring or cyclic 
structures in such a manner that these structures 
will be dominant in some temperature range at 
least. 
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ABSTRACT: The results of an ab initio post-Hartree-Fock study of the molecular 
structures, relative stabilities, and mechanisms of intermolecular proton transfer in 
isolated and monohydrated cytosine complexes are reported. The geometries of the local 
minima and transition states were optimized without symmetry restrictions by the 
gradient procedure at the HF and the MP2 levels of theory and were verified by energy 
second-derivative calculations. The standard 6-31G(d) basis set was used. The single-point 
calculations were performed at the MP4(SDQ)/6-31 + G(d, p)//MP2/6-31G(d) and 
MP2/6-311 + +G(d, p)//MP2/6-31GW) approximations. All values of the total energies 
were corrected for scaled zero-point energy contributions. The post-Hartree-Fock ab 
initio theory predicts the height of the proton-transfer barrier for monohydrated cytosine 
complexes to be approximately three times lower for the tautomeric oxo-hydroxo reaction 
compared with non-water-assisted processes. The influence of polar media (Onsager's 
self-consistent reaction-field model) slightly changes these values according to the order 
of the stability of the tautomers in a polar solution. The interaction with one water 
molecule changes the order of the relative stability of cytosine tautomers from the gas 
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phase to the one which corresponds to the experimentally measured relative stabilities in 
polar solutions. In contrast to guanine, we did not find significant water influence on the 
NH2-nonplanarity phenomena. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 855-862, 
1998 

Introduction 

The relative stability of the tautomers of DNA 
bases is of fundamental importance to the 

structure and functioning of nucleic acids [1]. The 
occurrence of rare tautomers has been put forward 
as a possible mechanism for spontaneous muta- 
tions [1, 2]. Although the most stable tautomer of 
each species has been determined experimentally 
in matrix isolation infrared studies [3] and in solu- 
tions [4], the stability and properties of the rare 
tautomers are difficult to measure. The question 
concerning the properties of tautomers hydrated 
by a limited number of water molecules has risen 
in response to the possibility of local hydration of 
the DNA bases in the first solvation shell [5]. This 
is especially important for such DNA bases as 
cytosine and guanine due to the coexistence of a 
number of their tautomers in the gas phase as had 
been established by studies for isolated molecules. 

Recently [6], we initiated a comprehensive theo- 
retical investigation of the role of hydration on the 
properties of DNA bases and base pairs. In partic- 
ular, the mono- and dihydrated species of the 
guanine molecules were investigated [6a, b]. Be- 
cause the main goal of our investigation was the 
phenomenon of intramolecular proton transfer, 
only the cyclic forms of the water-hydrated gua- 
nine were taken into account. The following new 
features were established: First of all, we found the 
unique role of water molecules in controlling the 
nonplanarity of the NH2 group of guanine. The 
influence of water molecules is twofold: They are 
the source of nonplanariry of the hydroxo forms of 
guanine, and they also decrease the nonplanarity 
of the oxo-tautomers. Another interesting peculiar- 
ity is the stepwise interaction of guanine with 
water molecules. We showed [6a, b] that the inter- 
action of guanine tautomers with one and two 
water molecules monotonically change the order 
of the gas-phase stability into the order which 
corresponds to the stability of the guanine tau- 
tomers in a polar solvent. Finally, we analyzed the 
barrier heights for forward and reverse reactions of 

intramolecular proton transfer to form rare (hy- 
droxo-) forms of guanine. We concluded that the 
value of the rate constant in isolated guanine tau- 
tomers will be characterized by a nonappreciable 
rate in both directions. The situation should be 
completely different in mono- and dihydrated gua- 
nine complexes where we expect quite sizable rate 
constants in the direction yielding the oxo type of 
guanine tautomers. 

In principle, cytosine has an amidic fragment 
(—NH—CO—) similar to guanine and is able to 
form the same type of hydrogen bonding as ob- 
served for guanine (see Fig. 1). There is, however, 
one important difference in the chemical structure 
of cytosine compared with guanine. The NH2 

group of cytosine is placed relatively far from the 
—NH—CO— amidic moiety. In addition, it is 
important to remember that cytosine is the com- 
plementary base for guanine in DNA. 

In the present article, we investigated the influ- 
ence of the interaction of a water molecule on the 
nonplanarity phenomena of the oxo- (CYT) and 
hydroxo- (CYT*) cytosine tautomers, the relative 
stability of the isolated and monohydrated (CYT • 
H20 and CYT* • H20) cytosine tautomers, and, 
finally, the rate of intramolecular proton transfer 
for these species. All these data are compared with 
similar data predicted for guanine. 

Computational Methods 

The ab initio LCAO-MO method was used for 
the study of the interaction of cytosine tautomers 
with one water molecule. The calculations were 
carried out with the Gaussian-94 program [7]. The 
standard 6-31G(tf) basis set was used. All the ge- 
ometries of the local minima and the transition- 
state structure were optimized without symmetry 
restrictions (C, symmetry was assumed) by the 
gradient procedure initially at the HF level and 
subsequently at the second order of closed-shell 
restricted Möller-Plesset perturbation theory [8]. 
The characterization of the local minima and tran- 
sition states were verified by establishing that the 
matrices of the energy second derivatives (Hes- 
sians) [at the HF/6-31GW) level] have zero and 
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FIGURE 1. Molecular structure of cytosine -water 
complexes. 

one negative eigenvalue, respectively. The sin- 
gle-point calculations were performed at the 
MP4(SDQ)/6-31 + G(d, p)//MP2/6-31G(d) level 
of theory and at the MP2/6-311+ + G(d, p)// 
MP2/6-31G(d) level for all the studied systems. 
The total energies were corrected for the HF/6- 
31G(d) zero-point energies scaled by a factor of 
0.9. 

To estimate the effect of the polar medium on 
the relative stability of cytosine tautomers and 
their monohydrated complexes, we applied the 
Onsager reaction-field model [9] as implemented 
in the Gaussian-94 program. In this model, the 
solvent is viewed as a continuous dielectric 
medium of uniform dielectric permittivity e. The 
solute occupies a spherical cavity within the sol- 
vent. We used the relative permittivity e = 80.0 
and the cavity radius obtained from the calcula- 

tion of the volume (Option Volume of Gaussian-94 
program) of a given molecule. The MP2 single- 
point energy calculated in this way (MP2solv) was 
also corrected for the scaled zero-point energy. 

Results and Discussion 

GEOMETRY OF LOCAL MINIMA AND 
TRANSITION STATE 

Before discussing the obtained results, we would 
like to mention that the MP2-level calculated ge- 
ometries of cytosine and its monohydrated com- 
plexes were already published in a number of 
articles [10]. Therefore, in the present article, we 
discuss only the problems that were not revealed 
in [10]. 

According to earlier investigations of a large 
number of hydrogen-bonded systems, the geome- 
try of the A—H • • • B fragment plays a crucial role 
in forming the proton-transfer barrier. Especially, 
it was established in [11] that a low proton-transfer 
barrier takes place when the A—B distance is 
< 2.5 A (A and B atoms are oxygens and/or 
nitrogens). It was also found that the case of a low 
proton-transfer barrier corresponds to the so-called 
strong hydrogen bonds, the energy of formation 
which exceeds 120 kj mol"1. 

An analysis of the obtained data collected in 
Table I and drawn in Figure 1 allows us to make 
the following conclusions: 

(i) Previously [6a, b], based on an analysis of 
the geometrical parameters of monohy- 
drated guanine, we predicted that hydro- 
gen bonds in this molecule should be clas- 
sified as rather weak. The geometrical 
parameters of the monohydrated amidic 
part of cytosine and guanine are very simi- 
lar. Current data justified that the same 
assumption could be made regarding the 
hydrogen bonds in the monohydrated cyto- 
sine species. 

(ii) The most prominent difference in the ge- 
ometries of the transition states compared 
to the geometry of the local minima is 
demonstrated in the decrease in the inter- 
atomic distances between heavy atoms in- 
volved in the hydrogen bond which are 
remarkably shorter. They certainly reached 
the threshold of 2.5 A, which divides the 
strong and weak hydrogen bonds. Thus, 
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TABLE 1 
Selected geometrical parameters of cytosine monohydrated species.8 

CYT•H20 TS • H20 CYT* • H20 

1015H14 

^14010 

^OlöNö 

lO15O10 

< 
N5H11015 

< 
H11015H14 

< 
O15H14O10 

1.908 
(1.890) 

0.986 
(0.984) 

1.888 
(1.930) 

2.827 
(2.810) 

2.785 
(2.811) 

147.0 

(148.0) 

78.9 

(80.4) 

149.8 

(147.6) 

1.285 
(1.319) 

1.230 
(1.200) 

1.210 
(1.196) 

2.425 
(2.431) 

2.410 
(2.410) 

149.3 

(149.3) 

83.2 

(84.5) 

157.8 

(156.7) 

0.985 
(0.985) 

1.799 
(1.777) 

0.985 
(0.986) 

2.807 
(2.810) 

2.740 
(2.740) 

140.8 

141.3 

81.1 

80.4 

163.0 

160.3 

3 The values of corresponding geometrical parameters for monohydrated 9-guanine species are given in parentheses [6a]. 

the rather weak hydrogen bonds in mini- 
mum-energy forms become considerably 
strong for the related transition states. 

(iii) The very similar values of the geometrical 
parameters characterizing bonds involved 
in proton transfer in the local minima and 
transition states of the monohydrated cyto- 
sine and guanine species allow us to pre- 
dict the very close values for the water-as- 
sisted proton-transfer barrier in cytosine 
and guanine. 

The nonplanar geometry of the isolated DNA 
bases has been the subject of a number of articles 
(see [12] for a review references therein). The im- 
portance of the specific interaction with water 
molecules on the nonplanarity phenomena of gua- 
nine tautomers was demonstrated recently [6a, b]. 
Two structural sources of nonplanarity were re- 
vealed: The nonplanarity of the first type is con- 
nected with the partial sp3 hybridization of the 
amino group which could be characterized by the 
sum of the CNH and HNH angles of the amino 
group (SAH in Table II). In this case, the degree of 

nonplanarity could be estimated as the deviation 
of SAH from 360° (8 in the Table II). 

The second source of the nonplanarity is the 
interaction of amino group hydrogen atoms with 
the closest atoms belonging to the rest of the DNA 
base. To analyze the nonplanarity of this type, it is 
also convenient, instead of <CH12N7C2Ni (see 
Fig.   1),   to   introduce   the   angle   <p = 180° - 
«CHjjNyCjNj. In this case, it should be clear that 
the difference between q> and <CH1]N7C2N1 (A in 
Table II) is the simplest estimation of the interac- 
tion of the H12 amino group hydrogen atom with 
the closest H8 atom of the cytosine tautomers. 

Let us start the analysis of nonplanarity of the 
calculated cytosine tautomers from the nonpla- 
narity of the first type. There are two important 
observations: First of all, we should confirm our 
previous statement [6a] that the nonplanarity of 
the first type (sp3 hybridization of the amino 
group) is the internal property of a particular DNA 
base and does not depend significantly either on 
the change of chemical structure of cytosine tau- 
tomers or on its interaction with a water molecule. 
The amino group in cytosine is simply less nonpla- 
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TABLE II  
Selected values of torsion angles of cytosine tautomers3 calculated at the MP2/6-31G(d) level. 

CYT CYT* CYTHoO CYT*•HoO 

XAH3 348.2 
(337.9) 

346.2 
(343.2) 

S4 11.8 
(22.1) 

13.8 
(16.3) 

<H,2U7CZN, 155.8 
(140.2) 

155.5 
(158.1) 

<H„U7CZU, 14.3 
(11.8) 

17.1 
(21.9) 

<o5 24.2 
(39.8) 

24.5 
21.9 

A6 9.9 
(28.0) 

7.4 
(-0.5) 

349.3 347.2 
(340.2) (341.5) 

10.7 12.8 
19.8 (18.5) 

157.1 156.3 
(146.3) (153.3) 

14.1 16.4 
(33.7) (26.7) 

22.9 23.7 
33.7 26.7 

8.8 7.3 
(18.5) (6.2) 

aThe calculated distortion of the atoms of heterocycles from planarity is nonsignificant. The values of corresponding torsional 
angles for 9-guanine species are given in parentheses [6a]. 
b SAH = <H12N7C2 + <H13N7C2 + <H13N7H12. 
CS = 360.0 -SAH. 
"<p= 180.0 - <H12N7C2N1. 
eA = o>- <H11N7C2N1. 

nar than in guanine as has been shown previously 
in a number of articles [12]. 

The characteristics of the second type of nonpla- 
nariry are certainly different from those predicted 
for guanine. They do not depend on the nature of 
the cytosine tautomers and on its interaction with 
a water molecule. The origin of such behavior is 
also clear. As the most important reason for the 
changes depending on the nature of the guanine 
tautomers, we have distinguished the interaction 
of the hydrogen atom of the amino group with the 
hydrogen atom attached to Nl atom of the gua- 
nine ring in the oxo-tautomers. This hydrogen mi- 
grates during a tautomeric reaction. So, it is absent 
in the hydroxo-tautomers of guanine. In the case of 
cytosine, a similar atom (H8) is attached to C3 of 
the cytosine ring and is not moving during the 
tautomeric transformation. It is also well known 
that the polarity of the CH bond is lower than 
those of the NH bond, so the repulsion of the H12 
hydrogen of the amino group by the H8 atom of 
the ring should be less pronounced in the cytosine 
case. The nonplanarity of the second type also 
does not depend significantly on the interaction 
with a water molecule because the amino group in 
cytosine is placed relatively far from the attaching 

water molecule, in contrast to guanine where this 
interaction is significant. 

RELATIVE STABILITY 

According to the experimental results of matrix 
isolation IR studies of cytosine tautomers, the CYT* 
tautomer is the most stable one. The experimental 
estimated energy difference between CYT and 
CYT* is 2-5 kj mol-1 in favor of CYT* [3, 10a]. 
The experimental stability in a water solution is 
also known—only the CYT tautomer has been 
found [4, 10a]. The conclusions of matrix isolation 
IR studies are supported by the results of high- 
performance ab initio calculations at the CCSLXT) 
and MP4(SDTQ) levels. According to these calcula- 
tions, the energy difference is 4.2 [10b] and 2.3 
[10c, d] kj mor1 in favor of CYT* at the CCSD(T) 
and MP4(SDTQ) levels, respectively. The polar sol- 
vent which has been taken into account in the 
framework of a continuum approximation [13] 
reverses the stability order, and the CYT tauto- 
mer predominates over CYT*. Our data at the 
MP4(SDQ)/6-31 + G(rf, p)//MP2/6-31G(d), 
MP2/6-311 + + G(d, p)//MP2/6-31G(d), and 
MP2/6-31G(d//MP2/6-31G(d) levels  of theory 
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TABLE III 
Relative stability (kJ mol   1) of cytosine tautomers and their monohydrated forms.' a 

MP4(SDQ) 
6-31 + G(d,p)// 
MP2/6-31G(d) 

MP2/ 
6-311+ + G(d,p)// 

MP2/6-31G(d) 

MP2/ 
6-31 G(d)// 

MP2/6-31G(d) 
MP2 
solv 

CYT 0.0 0.0 0.0 0.0 

CYT* 0.5 -9.3 
(1.2) 

-1.3 
(-0.2) 

13.3 
(22.1) 

CYT-H20 0.0 0.0 0.0 0.0 

CYT*•H20 8.1 -1.8 
(9.5) 

5.3 
(15.1) 

9.7 
(17.2) 

"The relative stability of corresponding 9-guanine tautomers are given in parentheses [6a]. 

(Table III) on the isolated bases are in good accord 
with that mentioned above. 

An interesting peculiarity could be seen from 
the predicted relative stability of the monohy- 
drated species. The data on the isolated tautomers 
indicate that 

CYT* > CYT, 

where the relative stability of the monohydrated 
species is reversed, 

CYT • H20 > CYT* • H20, 

and approaches the stability of fully hydrated 
complexes. So, one can conclude that even the 
interaction with one water molecule is sufficient to 
reverse the gas-phase relative stability of cytosine 
tautomers into the order which corresponds to the 
stability found in a water solution. 

PROTON TRANSFER 

Discussion of the relative stability of the DNA 
base tautomers from both theoretical and experi- 
mental points of view usually stands on the as- 
sumption of the thermodynamic control of these 
transformations. There are only a few theoretical 
articles where the questions concerning the rate of 
these transformations are discussed for the proto- 
typic molecules as formamide and formamidine 
[14]. Except for the recent work where simple 
estimations were done for guanine and its mono- 
and dihydrated species [6a], data on the rate of the 
proton transfer are not available either from exper- 
imental or theoretical studies. 

Although the most stable tautomer in the gas 
phase is CYT*, it is more convenient for compari- 

son with the similar data [6a, b] obtained for 
9-guanine to define the forward proton transfer 
reaction from the oxo to the hydroxo form, and the 
reverse is the reaction in the opposite direction. 
The calculated values of the proton-transfer barri- 
ers in cytosine and their monohydrated complexes 
are collected in Table IV. Due to the high sensitiv- 
ity of the barrier height at the correlated level of 
computation [e.g., for water-assisted proton trans- 
fer in formamide, the calculated barrier height is 
as follows [14b]: 108.3 (QCISD), 941 (MP2), 81.6 
(DFT/B3LYP), and 69.0 (DFT/BLYP)], the ob- 
served difference between the MP4 and MP2 re- 
sults is not surprising. 

Following a comparative analysis of the geo- 
metrical parameters for local minima and transi- 
tion states of the cytosine and guanine species, we 
expect very similar behavior for the rate of proton 
transfer in both bases. An analysis of the data 
collected in Table IV, completely supports our 
assumption. The data of the barrier height for 
cytosine and guanine are different by a few kJ 
mol"1 for the corresponding complexes. In partic- 
ular, we should distinguish a dramatic decrease in 
barrier heights (to compare with gas-phase data) 
when one water molecule participates directly in 
the proton-transfer reaction. The values of the pro- 
ton-transfer barriers are decreasing approximately 
threefold for both forward and reverse reactions. 
Nevertheless, due to the difference in stability, a 
preference for the reverse reaction should be re- 
markable. 

The influence of the polar surrounding, in- 
cluded in the framework of the Onsager model on 
the height of the proton-transfer barrier, is also 
noticeable. It also corresponds to the change of the 
relative stability of the tautomers which takes place 
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TABLE IV 
Zero-point-corrected barrier heights for proton transfer of cytosine species (kJ mol -v 

MP4(SDQ) / 
6-31 + G(d, p) // 
MP2/6-31G(d) 

MP2/ 
6-311++G(d,p)// 

MP2/6-31G(d) 

MP2/ 
6-31 G(d)/ 

MP2/6-31G(cf) 
MP2 
solv 

Forward 
CYT^TS 157.0 137.8 142.4 

(148.5) 
146.7 

(150.6) 

CYTH20 ->TS-H20 66.4 47.0 56.1 
(58.1) 

59.4 
(56.5) 

Reverse 
CYT* -> TS 156.5 147.2 143.7 

(141.0) 
133.4 

(128.4) 

CYT* • H20 -» TS • H20 58.2 48.9 50.7 
(48.5) 

49.7 
(47.7) 

aThe values of corresponding zero-point-corrected barriers heights for 9-guanine species are given in parentheses [6a]. 

after dissolving the corresponding species in solu- 
tion. 

As we have already mentioned [6a], a notice- 
able influence of tunneling in contributing to the 
barrier height of the proton-transfer reaction in the 
prototypic molecules does not allow us to use the 
values from Table IV to directly estimate the rate 
constant. Nevertheless, a simple comparison is 
possible, using the following assumptions: The 
available value of the calculated thermal rate con- 
stant for the proton-transfer barrier in formami- 
dine (gas phase, nonwater-assisted reaction) 
amounts to 8.37-10"u s"1 (300 K) with a corre- 
sponding zero-point energy-corrected barrier 
height of 189.1 kJ mol"1. The calculated value of 
the rate constant for a forward water molecule-as- 
sisted reaction in formamidine-water complexes is 
4.6 X 10"4 s"1 (300 K), and the corresponding 
value of the proton-transfer barriers is 90.8 kJ 
mol"1. The calculated value of the rate constant 
for the reverse reaction is 1.0 X 105 (300 K) with a 
barrier height of 46.0 kJ mol"1. Because these val- 
ues have been obtained for the same reaction of 
the prototypic molecules, we can apply these data 
for estimation of the trends for the proton-transfer 
reaction of cytosine tautomers placed in the gas 
phase and in a water surrounding. We expect that 
the calculated nonwater-assisted gas-phase rate 
constant for both forward and reverse reactions 
will never reach the values which characterize any 

appreciable rate at room temperature. In other 
words, the value of the proton-transfer barrier is 
too large in both directions to be reached with any 
really observable rate at room temperature. In con- 
trast, the value of water-assisted barriers could 
produce much higher interconversion rates that 
should be observable at least in the reverse direc- 
tion. We expect that a profound preference for the 
reverse reaction will occur at any temperature of 
biological importance. These preferences should be 
increased after surrounding the tautomers in a 
water solution. 

Conclusion 

In this article, we reported the results of a 
comprehensive post-Hartree-Fock investigation of 
the structural parameters, stabilities, and inter- 
molecular proton-transfer phenomena in monohy- 
drated tautomers of cytosine. The principal conclu- 
sions from this study are the following: 

1. The similarity of the calculated structural pa- 
rameters of the monohydrated amidic frag- 
ment of cytosine tautomers with the similar 
fragment of the 9-guanine molecule was 
shown. 

2. Two possible structural sources of nonpla- 
narity of the NH2 group (sp3 hybridization 
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and the interaction of the amino hydrogens 
with the rest of the molecule) of cytosine 
tautomers were investigated. The difference 
in the origin of nonplanarity parameters of 
the monohydrated cytosine tautomers com- 
pared with the similar monohydrated gua- 
nine complexes is explained on the basis of 
the differences in the chemical structures of 
cytosine compared to guanine. 

3. We found that the interaction of the cytosine 
tautomers with a water molecule changes the 
gas-phase stability CYT* > CYT into the or- 
der which corresponds to the stability of the 
cytosine tautomers in a polar solvent CYT > 
CYT*. 

4. An analysis of the barrier height of forward 
and reverse reactions of intermolecular pro- 
ton transfer of isolated and monohydrated 
cytosine species was performed. Data similar 
to guanine were obtained, which is in accord 
with the similarity of the structural parame- 
ters of these complexes. We expect that the 
value of the rate constant of the isolated 
cytosine tautomers will be characterized by a 
nonappreciable rate in both directions at room 
temperature. The situation should be com- 
pletely different in monohydrated cytosine 
complexes where we expect a quite sizable 
rate constant in the direction yielding to the 
oxo type of the cytosine tautomers. The influ- 
ence of the polar solvent should further in- 
crease this tendency. 
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ABSTRACT: The 3-substituted-2-methoxybenzoic acid system exhibits resonance- 
stabilized intramolecular hydrogen bonding between the 2-methoxy oxygen and the 
adjacent carboxylic acid. This intramolecular hydrogen bond can be disrupted by adding 
another substituent with variable size on the neighboring 3-position of the ring. To 
relieve steric strain, the system must sacrifice hydrogen bonding and/or resonance 
stabilization. Full-energy optimizations have been done at HF/D95V (valence double-zeta 
Dunning-Huzinaga), HF/6-31G* (Pople), HF/D95 (full double-zeta 
Dunning-Huzinaga), HF/D95V(d, p), and HF/6-31 + G(d, p). Further single-point 
calculations were done at MP2/D95V, MP2/6-31G*, MP2/D95, MP2/D95V(d, p), and 
MP2/6-31 + G(d, p). The thermal populations of various conformational states including 
the hydrogen-bonding conformation are presented. The computational results were 
compared with the experimental thermal population of hydrogen bonding determined by 
nuclear magnetic resonance (NMR) and infrared (IR) spectroscopies. Results indicate that 
polarization of the second-row elements in intramolecular hydrogen bonding and 
perturbation-theory calculations that correct for electron correlations are very important 
for intramolecular hydrogen bonding. Adding polarization and diffuse functions to the 
hydrogens, while useful, are quite costly for these systems and do not seem to be as 
important.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 863-875, 1998 

  bonding is used to explain key chemical and bio- 
IntrodllCtion logical  structures  and processes.  Although the 

widespread occurrence of hydrogen bonding dem- 
Honstrates the importance of this interaction, the 

ydrogen bonding is one of the most impor-        hydrogen bond is sometimes falsely portrayed as a 
tant interactions within and between cova-        long-range driving force for molecular conforma- 

lent chemical systems. From protein tertiary struc-        tion preferences. Forces such as ionic attraction, 
tures [1, 2] to DNA double-helical structure [3] to        electronic resonance, and steric hindrance are dy- 
the behavior of lipid membranes [4], hydrogen        namic forces; they act to change the conformation 

Correspondence to: J. O. Payne. of molecular systems which are "unfavorably ori- 
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ented" and provide the impetus which moves the 
atoms to a more favorable position. If "unfavora- 
bly oriented" local minima exist at all, their ener- 
gies are far too high to contribute to a thermal 
population of conformations. Hydrogen bonding is 
not such a dynamic force. It has very specific 
geometry constraints. A molecular system in a 
nonhydrogen-bonded conformation will not neces- 
sarily reorient to take advantage of a possible 
hydrogen-bonded conformation, and non-hydro- 
gen-bonded conformations often have low enough 
energy to compete favorably in a thermal popula- 
tion. As a result, hydrogen bonding has more 
recently been characterized as a stabilizing force 
rather than as a driving force [5]. 

Our aim in this work was to investigate the 
changes in hydrogen bonding in a resonance-sta- 
bilized system as it is sterically strained by the 
addition of a neighboring substituent. The mole- 
cule 2-methoxybenzoic acid, called MBA-H in this 
work (see Fig. 1), is stabilized by an intramolecular 
hydrogen bond between the carboxylic acid group 

and the methoxy oxygen. Both nuclear magnetic 
resonance (NMR) and infrared (IR) spectroscopies 
show the contribution of the hydrogen-bonded 
conformation to a thermal population to be over 
90% [6, 7]. However, when another substituent is 
added to the ring at the position adjacent to the 
methoxy group (MBA-R, see Fig. 1), steric crowd- 
ing may interfere with and change the hydrogen 
bond. The experiments show that the hydrogen- 
bonded conformation contribution to the thermal 
population can be far less than 90% in some cases 
[6, 7]. Therefore, as a tool to compare these sys- 
tems, we will show a way of characterizing the 
steric environment for a range of substituents. 

Energetically, there is a measurable stabilizing 
effect when a hydrogen bond is formed. As an 
example, each one of the intermolecular hydrogen 
bonds formed in water dimers provides about 20 
kcal/mol [8]. Geometrically, the ideal hydrogen 
bond is found to have a linear arrangement of the 
three atoms involved (e.g., the bond angle of 
N—H---N would be 180°. However, a stable hy- 

H  R 

t—O 
MBA-R [H,TA] 

'   ^   o 
i 

MBA-R [H,CA] 

H...  H 

—ii    "3C 

"H^V^W 

MBA-R Substituents 

MBA-H 2-methoxybcnzoic acid 

MBA-OCH3 2,3-dimcthoxybcnzoic acjt| 

MBA-CH3 3-mcthyl,2-mcthoxybenzoic acid 

MBA-Naph I-mclhoxy,2-napthoic acid 

MBA-JNltrO 3-nitro,2-methoxybcn?oic acid 

MBA-t-bufyl 3-/-butyl,2-mcthoxyben7oic acid 
—o 

MBA-t-buty] 

(b) 

FIGURE 1. Nomenclature: (a) specific nomenclature of the various conformations of and substitutions for 
2-methoxybenzoic acid; (b) six 3-substituted-2-methoxybenzoic acids (MBA-R). 
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drogen bond can be formed with angles ranging 
from 130° to 180° when the LUMO of the hydrogen 
donor is symmetrical (e.g., a commonly reported 
bond angle for O—H---0 is 165° [9]). Sufficient 
overlap of the LUMO of the donor with the HOMO 
of the acceptor is possible even when the three 
atoms are not linearly arranged, as long as their 
respective sigma planes are still aligned. Hydro- 
gen bonds which deviate significantly from linear- 
ity and/or co-planarity will have a reduced orbital 
overlap and will result in less favorable interac- 
tions. For example, the H2CO--H20 hydrogen 
bond is almost 15 kcal/mol less stable when its 
geometry is changed from linear to approximately 
110° [10]. Unless the molecule is very large, in- 
tramolecular hydrogen bonds are rarely formed 
with angles near 180°, due to the ring strain that 
would be created. This leads us to a conforma- 
tional investigation of a few key dihedral angles to 
check coplanarity, as well as the hydrogen-bonded 
(0---H) distance and angle (O—H---0). We ex- 
pect that intramolecular hydrogen bonds will be 
weaker and that they will provide less stabiliza- 
tion compared to their intermolecular counter- 
parts. 

Previous theoretical work has been done on 
related systems. Energy-optimized local minima at 
the HF/STO-3G level were found for 2-methoxy- 
benzoic acid (MBA-H) [11]. The four primary con- 
formations, called [H,TA], [H,CA], [0,CA], and 
[0,TA] in this work, are show in Figure 1. A 
semiempirical study [12] of various resonance-as- 
sisted hydrogen-bonding systems found that no 
common semiempirical method accurately models 
intramolecular hydrogen bonding. In 2-hydroxy- 
nitrobenzene, studied at the HF/6-31G* and 
MP2/6-31G* levels, [13] aromatic resonance was 
found to align the hydrogen-bonded atoms. In a 
study of amide-water and amide-amide hydro- 
gen bonds. [14] it is reported that the polarized 
Dunning-Huzinaga double-zeta valence (DZP) ba- 
sis set properly describes relative energetics better 
and, as a result, represents hydrogen bonding more 
accurately than does 6-31G*, because the DZP 
basis set has polarization functions on hydrogen 
and a larger number of polarization and diffuse 
functions. 

We performed full-energy-optimization calcula- 
tions in Cl symmetry at the Hartree-Fock level on 
a series of MBA-R molecules in the hydrogen- 
bonded conformation, [H, TA] (see Fig. 1), and the 
three other energetically competitive conforma- 
tions: [H,CA], [0,CA], and [0,TA]. We compared 

the results of the 6-31G* basis set and the Dun- 
ning/Huzinaga valance double-zeta basis set 
(D95V). We compared the effects of adding other 
polarization and diffuse functions. Using opti- 
mized conformational energies from Hartree-Fock 
as well as conformational energies adjusted for 
correlation effects using second-order Moller-Ples- 
set perturbation theory, we address the various ab 
initio methods' ability to recreate the experimental 
thermal populations. We also report some of the 
key geometrical features of the energy-optimized 
hydrogen-bonded conformation. From molecule to 
molecule, the geometrical results will vary related 
to their respective steric environment. Also, fi- 
nally, we examine the flexibility of those basis sets 
to responding to the changing steric environment. 

Calculations 

Full-energy-optimization calculations were done 
at the Hartree-Fock level in Cl symmetry using 
the Gaussian program [15, 16]. Several basis sets 
were used: 6-31G* [17], D95V [18], and D95 [18]. 
The effectiveness of adding basis enhancements 
for full double-zeta (D95), polarization functions 
(d, p), and diffuse functions ( + ) were investi- 
gated. The size of these molecular systems pre- 
cluded a full study at the higher basis levels. The 
harmonic frequencies of all optimized structures 
were calculated to assure that each one represents 
a local minimum. Single-point energy calculations 
were done for correlation corrections at the opti- 
mal Hartree-Fock-optimized geometries using 
second-order Moller-Plesset theory (MP2). Spar- 
tan 4.1 was used for visualization and generating 
some geometrical parameters and molecular Or- 
bitals. 

Thermal populations of various conformational 
states were calculated using Boltzman's distribu- 
tion law [19]. The four (or three) significant confor- 
mational states were used to approximate the en- 
tire ensemble of states. The percent of the fcth state 
Nu is calculated as follows: 

3. 
Ntot' 

P(-Ek/RT) 

■100% = 
E,-e' 

i-E./RT yl00%, 

where Ek is the optimized energy of the fcth con- 
formational state, relative to the lowest-energy 
conformational state, T is the temperature in 
Kelvin (298 K), and R is the gas constant (R = 
1.99 X 10"3 kcal/mol). 

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 865 



SCHMIEDEKAMP-SCHNEEWEIS AND PAYNE 

Results and Discussion 

STERIC ENVIRONMENT 

To describe the steric environment, we deter- 
mined the ability of the 3-substituent (R) to cause 
steric restrictions on the hydrogen-bond acceptor's 
position. The 2-methoxy group was rotated at 15° 
intervals from its optimized location and a series 
of single-point energy calculations was done. With 
the optimized energy as a reference, the relative 
energies are plotted in figure (Fig. 2). This pro- 
vided a qualitative picture of how the hydrogen- 
bond acceptor is sterically crowded by the acid on 
one side and the R group on the other. In MBA-H, 
the shape of the rotational potential well is very 
flat in the region from 0 to 100°. Hence, the 2- 
methoxy experiences little resistance to moving 
over that range. However, when the substituent at 
the 3-position is large, such as f-butyl, a steric 
"wall" impedes the rotation of the 2-methoxy 
group to a planar orientation and instead forces it 

to take a position roughly perpendicular to the 
plane of the ring (approximately 70-100°). The 
presence of f-butyl creates a more restrictive steric 
environment. The steric environment was judged 
by each of the 3-substituents' ability to restrict the 
motion of the 2-methoxy. The order of the steric 
environment is the following: MBA-H < MBA- 
OCH3 < MBA-CH3-MBA-Naph < MBA-nitro < 
MBA-f-butyl. The geometric and energetic com- 
parisons shown in this study make use of this 
order of increasing steric environment as a stan- 
dard measure. 

ENERGIES AND THERMAL POPULATIONS 

The optimized energies of the various confor- 
mations are presented in Table I. The D95V ener- 
gies are systematically higher than those of 6-31G*. 
On the occasions where a comparison is possible, 
the optimized energies determined by the larger 
basis sets that include polarization functions on 
hydrogen as well as diffuse functions are im- 
proved. The size of these systems makes the full 

-35fr 

o 
E 

4) 
e 

W 

Carbon-2 Methoxy Dihedral Angle (Degrees) 

FIGURE 2. Steric environment of hydrogen-bonding conformation [H,TA]. The HF/6-31G* single-point energies 
(relative to the HF / 6-31 G*-optimized structure) is calculated at 15° interval rotations of the carbon-2 methoxy dihedral 
angle. Relative optimized energies are in kcal/mol. 
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analysis of all six MBA-H systems too costly, so 
two test cases were chosen: one where the steric 
strain is minimal, and one where the first signifi- 
cant onset of steric strain is seen, namely, MBA-H 
and MBA-CH3. The aim of this work was to 
ascertain which of the lower-level methods pre- 
serves most of the results obtained by the larger 
calculations. One can see that even the relative 
energy ordering of the three lowest-energy con- 
formers changes at various calculation levels. 

It seems that polarizing the second-row ele- 
ments (*) provides some improvement. Secondary 
improvement is seen when the hydrogens are also 
enhanced. The most important energy improve- 
ment came with the MP2 single-point calculations 
to include electron-correlation effects. The 6-31G*- 
optimal geometries were deemed more closely 
comparable (energetically and geometrically, de- 
scribed later) to those obtained at the higher levels, 
so we performed MP2/6-31G* single-point ener- 
gies on all six MBA-R systems. The relative con- 
formational relationships between the MP2/6- 
31G* energies in kcal/mol are diagrammed in 
Figure 3. This figure shows that the [O, TA] confor- 
mation has a much higher energy than that of the 
other three conformations. This may be due to 
destabilization of the molecule with the acid hy- 
drogen in the "trans" orientation. Under these 
circumstances, the [O, TA] conformation appears 
to suffer more notably from oxygen-oxygen repul- 
sion. 

In all six MBA-R systems, at the MP2/6-31G* 
level (Fig. 3), the hydrogen-bonded conformation 
[H, TA] is the lowest in energy. However, there is 
a very small difference between the conforma- 
tional energies (only 0.97-1.7 kcal/mol between 
[H, TA] and the next lowest conformational state). 
Therefore, while we do see some stabilization en- 
ergy, it is smaller than those seen in intermolecular 
bonds. 

The thermal populations of various conforma- 
tional states were calculated using the relative 
energies of Boltzman's distribution. Several varia- 
tions were attempted, including accounting for 
entropic changes and thermal vibrational and rota- 
tional motion, and the best comparisons to experi- 
ment are those presented (Table II). As the steric 
environment increases, there is a general decrease 
in the percent of hydrogen bonding in the MP2/6- 
31G* thermal population (Fig. 3). MBA-OCH3 is 
an exception. The steric environment in this 
molecule is minimal, since the methyl of the 3- 
methoxy is able to rotate away from the 2-methoxy. 
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FIGURE 3. MP2/6-31G* relative energies and thermal population of states. Relative MP2/6-31G* conformational 
energies are shown for all six of the MBA-R systems, including the percent thermal population of each conformation. 

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 869 



SCHMIEDEKAMP-SCHNEEWEIS AND PAYNE 

in 
<o 

■*-» 

CO 

o 
c 
o 
n 
3 
Q. 
O = a 

Hl n 
_l t- m b. 

< _ 
HH 

c 
o 

jjl 
D 
Q. 
O 
Q. 

"cö 
E 

cö 
I 

CO 

CM 
Q. 

> 
IT) 
CD 
Q 

O 
cö 

I 
CO 

\0    sO    VQ SO    SO     st)    SQ 
ff-  (r  a**     0s  ff-  0s  p- 
CM  O  O     CM  CD  CM  O 
<M  00 O     i-  CO  ID O 
CO CO d     T^CÖLOO     T^ 

0> 

-•9 ff- 
o 

ff- 
CO 

-5 ff- 
CM 
CD 

tf- o o 10 

ff- 
CD o 

ff"* o 
-y 
o o 

co 
•<fr 

T— 
o a CO LO o 

-*»   NP   su   ^u SV^öSPNP 
O-   ff-   ff-   ff- O-   ff-   ff-   ff- 
0)0)1-0 CDOC0O 
to^tooo co w T- o 
^ in oi d s^t aid 
<0     I"     I" CD    T-     T- 

VPNPVON^) -P   -*p   vP   vO sP   \0   \0 
O-    ff-   ff-   ff- ©-   p-   ff-   p- ©-   ff-   ff- 
(O   N   T-   O CDCOCOO 00   lf>   h- 
N ONO ooooo r-^t-i^ 
oi d d 6 <* T^ ^d aicricd 
O) 0> T- N- 

£ - co 
5  LO CD 

ff-     ff- 
o 
q x 
o    ^ 

S? £ £ o O O 
N **>. °°. 

-P xp SP -P Nj»     \0     -P     VP 
6s o^ o^ ff- o- d- ff- d- 
00 CM O O SMOO 
eq co co o t^^r^o 
r t^- Ö Ö Oi-^Kd 
CD CM i- W  CM   CM 

sfl   vP   sO   NP        SP 
O-   fl-   tf-   tf-        o- 
t-    T-    00 
OSN 
d cd CD 
CM CM in 

- „    ff- 
a> co N 
0) C0    T- 
CM O CD 
r OB 

Ä   ^p   sP   —p ip ff- ff- ff- 
\fl \0 yO vO ff- e- ff- S- 

O    o co N o 
O     C0 CD O O 

i^ c\i d    >sr cd c\i d 
•5J-    lO T- ^t ^t 

co 
co 

in 

cö 

co 
1- 

CM 
0) 

co 
cd 
in 

o 
CM 

6- 
co 

ff- 
co 

-9 ff- 
CO 
O) 

CM 
0> 

CO 
CM 

< < < < 
hüüP 
I I o o 

< < < < Püüh 
I I o o 

< < < < 
I X o o 

< < < < 
POOP 
I I o o 

< < < < Poop 
X I o o 

< < < < 
Püüh 
I I o o 

XlIX 
 •   1   I I < < < < 
00 co ca cd 
S 5 5 2 

S> co co co 
X I I X 
O O O O 
O O O O 

i i i i 
< < < < 
DQ CD m co 

2 co co co 
?; x x x o o o o 

i   i i i < < < < 
CD cd CO CO 
s: 

■S -c -c -c 2- Q. CL Q. 
2 (0 CO Cd 
<= C C C 

I      I I I < < < < 
DO CO CO CO 

2 o o o   f |,|,§> 

;.t.t.t  -9 -a -Q ü 

2   2 2 

c c c 

2E < < co m co 
5 2 2 

™ *w ■*—I t-J 
I I I I < < < < 

DO CO CO CO 

.Q 

|2 
c 
(0 
0) 
'o> 
o c o 
ü 
'c 

•D 
in 
c 
ns 
E 
o 
m 
C3) 
c 

w 
= c 
(0 o 

.4- "> 

°'<5 
CO Q. 

S o 
co ü 
'S o 

S^ 
to . 
E'S 
O -a 

o S 
o > 

g cö 

° o co ~ 

E .1 
S ä) 
£ a r a 

870 VOL. 70, NO. 4/5 



RESONANCE-STABILIZED HYDROGEN BONDING 

c 
CD 

E •-9 if* ■-P 
3 

00 * CO 

CD ri T- 
CO 
1- Q. 

X 
o> 1» 

UJ c 
CO , ^ CO 

a ö) 

, ■Q NP   NP sP   sP 
0s   0s     n 

co 
c 

£0 T- in ^ NO5? CD 
r oq nsoi ü s + oi i^ co oi CM •* c 

Y— ao 00         i- o 
CO 

1 tj 
CO CO 

CO 

CO ^—^ JZ 
a vP  ^p ■a 

CM "O o> Si- s? N   03  3? c 

i¥ in r^- i-~ to I»-: in CO 

m cö c\i in c\i i^ 1 o> en 00            i- CO 

Q 

^—v JD 
a '£3 

■o 
£ ü x + 

^ s; ^s T-    O)    0s 

■sP    vP 
»*   5s   vO 
in in os 

CO 

T3 

oq oq co tO  ■* 03 _co 

CO   CO  OJ 03 T^  03 c 
co 

CO 
1 

tO   CM ■t- CM in E 
CO o 

m 
co ^_^ c 

CO 
3 

CD 
sP    vO <>   c£   .r, vp ^p 

£ r ^9 N f1» e^ 
CO x > oq q CM <t  N.  00 "D 

Co 
o GO   CO  CO to d CM 3 c CD in CM T- l-   CM   CO 
o O o 

"■ti CO 
05 ü 

3 
Q. 
O ft1 SS 

vp   vO 
P^  P"* > o 
00  CN  o* 

vP   -*p 
£: £: -5 ^ ^- s^ 

CD 

O 

Q. Q. 0) 0)  O O i- 00 o 

TO 
E 

2 D oi d d CO I-1  CM CO 
o> 00         ■■- E 

B 
CD 
sz 

u. !5 
vp   vp 
3s o^ .0 ^ CD a* 

vp *sp 

00 CM  ä? 

"co 

CO 

tr 
3 x Q 

enoo 
oi d d 

i-  •*  -ä" 
i-^   CO  CM 

i 
< 
m 
2 CD CM      r» 

o 

X 
eg CD 
Q.     T— 

vP                    ^p 
j; -j ,o s 
It)   6~-   &•   O 
N  CM  O  O .0

4%
 

.3
4%

 
.6

%
 

.0
00

%
 

"S-S 
S S- S CO 

CD 

en CM oo o 
oi cd cö d 
00 5 ^ £ ° 13 ^ B 8 

U-  LO 

^9 
sfl    £   sO    sO 
ff-   O)   S^   0s 15 

to r- 
E cQ- 

£ -a 

winso 
l>~ CO o o 
oi °. «N P 

» «^ ,o 
!>- in cS 
oi * ® 

0)000 T-  CO CO 
1^ 

C    CO 
O  "O 
o  > 
co  9 

* 
U.C5 co \p \o y 

S 5s-  o^ O 
"i  CO CO O 

^9 

O o^ tf^ O 

8 * 
■C    CD 
CO   i: >   « 
H-    CO X CO Q'NCOO 

1 

co 5 £i °" °" w CM  T- 

< < < < 
HOOK 
I X o o 

CM cö CO d 
CM in 

< < < < 
hüüh 
I X o o 

O    C 
co -2 

11 
CO   D. 
"5   ° 

c 
■a 

—  CD 
3 

03 2 CO CO  CO 
x X X X 

"5  J> 
E E 

UJ  C 

SI 
3 
o 
CD 

O 

:> 

XXXX 
1   1   1   1 

< < < < 
O o o o 

1   1   1   1 
< < < < 

CD    CD 

EL   °- 
.a     111 

CO CQ CD CD CQ CD CD CO 

1- <J sm E1SS 

GEOMETRIC CONSIDERATIONS: RELATING 
RESONANCE STABILIZATION, STERIC 
EFFECTS, AND HYDROGEN BONDING 

Three key parameters related to resonance stabi- 
lization and steric effects are given in Table 111(a). 
The two dihedral angles represent the relative ori- 
entation of the acid group and the methoxy group, 
respectively. The degree of planarity of the acid 
group, designated by 0=CCC, indicates the extent 
of electronic resonance with the acid group with 
the ring. We found that while there is some minor 
"puckering" of the hydrogen in the acid group the 
major change is represented as a simple rotation 
about the CC bond that connects the acid to the 
ring; hence, we provide one dihedral angle to 
indicate that rotation. The dihedral angle of the 
methoxy group, COCC, indicates the degree of 
steric crowding as described earlier. The bond an- 
gle of the methoxy group, designated COC, indi- 
cates the type and degree of hybridization experi- 
enced by the methoxy oxygen for positioning its 
nonbonding electron pairs. Additionally, all these 
angles provide some information to address the 
linearity and planarity of the hydrogen donor and 
the hydrogen acceptor and the possible positions 
of the lone pair of electrons on the methoxy oxy- 
gen. 

At all calculation levels, we see that MBA-H 
enjoys a completely planar arrangement. It has 
maximum electronic resonance with the ring, min- 
imal steric strain, and a high percentage of hydro- 
gen bonding. However, the planarity of the acid 
group is quickly sacrificed once a substituent is 
placed in the 3-position. All optimizations give 
similar values for the coplanar dihedral, and all 
optimizations show a significant rotation of the 
acid out-of-the-ring plane to compensate for the 
steric-induced rotation of the 2-methoxy out-of- 
the-ring plane. These results show that the 
molecule sacrifices the coplanarity of the acid 
group with the ring (and thereby sacrifices reso- 
nance between the acid group and the ring) in the 
face of severe steric strain. 

Three key parameters related to hydrogen bond- 
ing are given in Table 111(b). The hydrogen-bond- 
ing distance shows the proximity of the hydrogen 
to the methoxy oxygen. The angle formed between 
the two oxygens and the shared hydrogen indicate 
the planarity of the hydrogen bond. The dihedral 
angle (CO • • • HO) represents the relative planarity 
of the atoms involved in the hydrogen bond. 
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TABLE III  
Selected geometric parameters directly associated with (a) electronic resonance and steric environments and 
(b) hydrogen bonding: 

Dihedral angles:    Name 
02-C7-C1-C6 0 = CCC 
C8-03-C2-C1 COCC 
C2-03-H1-01 CO-HO 

/ ~\_ /   J\ HP 
Angle: 

2^ 

t c, 
Hi 

.0, 

3\_ / 
H. 

H, 01-C7-02 

Distance: 
03-H1 

Name 
OCO 

Name 
O-H 

(a) Geometrical parameters related to electronic and steric effects 

Molecule 
6-31G* 
0=CCC 

6-31G* 
COCC 

6-31G* 
COC 

MBA-H 
HTA 
HCA 
OCA 

MBA-CH3 
HTA 
HCA 
OCA 

MBA-f-butyl 
HTA 
HCA 
OCA 

-0.0120 
-0.4064 
166.2833 

15.5994 
1.9586 

157.7890 

22.5644 
25.9563 

157.4296 

179.9765 
179.9553 
179.7663 

92.9405 
86.9137 
90.8539 

75.6819 
67.9729 
57.4054 

121.0217 
120.7769 
120.8218 

115.7510 
116.5386 
116.9619 

115.8312 
117.2145 
121.0111 

D95V 
0=CCC 

D95V 
COCC 

D95V 
COC 

MBA-H 
HTA 
HCA 
OCA 

MBA-CH3 
HTA 
HCA 
OCA 

MBA-f-butyl 
HTA 
HCA 
OCA 

0.0059 
-28.0228 
179.9633 

15.5901 
-24.3610 
159.4363 

22.7952 
20.4457 

■171.2245 

179.9962 
173.6036 
179.9974 

101.2156 
96.2190 
88.0364 

77.4336 
64.5484 
59.5876 

122.3787 
122.2936 
122.7225 

118.3933 
119.6954 
120.4005 

117.8380 
120.4173 
123.4954 

6-31+G(d,p) 
o=ccc 

6-31+G(o\p) 
COCC 

6-31+G(d,p) 
COC 

MBA-H 
HTA 
HCA 
OCA 

MBA-CH3 
HTA 
HCA 
OCA 

-0.0337 -179.9837 
-14.3933 179.5488 
166.3337 179.5823 

17.1097 95.2809 
-8.5974 91.7560 
155.8869 

(Continued) 
91.4651 

121.2265 
120.9451 
121.0716 

116.0413 
117.0077 
117.4040 
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MBA-f-butyl 
HTA 
HCA 
OCA 

24.9617 
28.8020 

-156.5036 

75.5732 
67.3157 
56.4168 

TABLE III 
(Continued) 

(a) Geometrical parameters related to electronic and steric effects 

Molecule 
6-31+G(d,p)                                         6-31+G(d,p) 

o=ccc                                         COCC 
6-31+G(d,p) 

COC 

116.0292 
117.5005 
121.3581 

D95V(d, p) 
0=CCC 

D95V(d, p) 
COCC 

D95V(d, p) 
COC 

MBA-H 
HTA 
HCA 
OCA 

MBA-CH3 
HTA 
HCA 
OCA 

MBA-f-butyl 
HTA 
HCA 
OCA 

0.0000 
-4.8078 
173.2467 

16.4571 
2.6065 

157.6700 

24.2722 
27.3619 

-159.0988 

179.9974 
179.8691 
179.7449 

94.4732 
86.8947 
91.0405 

75.9209 
68.1236 
57.9022 

120.7590 
120.5065 
120.5575 

115.4523 
116.2557 
116.7127 

115.4643 
116.9076 
120.6949 

(b) Geometric parameters related to hydrogen bonding 

Molecule 
6-31G* 
O-H 

6-31G* 
O-H—O 

6-31G* 
CO-HO 

MBA-H 
MBA-CH3 
MBA-f-butyl 

HTA 
HTA 
HTA 

1.8056 
1.8721 
1.9471 

144.3140 
139.5956 
139.5956 

-0.0268 
44.0264 
58.6097 

D95V 
O-H 

D95V 
O-H—O 

D95V 
CO-HO 

MBA-H 
MBA-CH3 
MBA-f-butyl 

HTA 
HTA 
HTA 

1.7689 
1.8612 
1.9679 

140.7154 
135.2406 
127.9940 

-0.0178 
39.5856 
56.0579 

6-31+G(d,p) 
O-H 

6-31+G(d,p) 
O-H—O 

6-31+G(d,p) 
CO-HO 

MBA-H 
MBA-CH3 
MBA-f-butyl 

HTA 
HTA 
HTA 

1.8075 
1.8816 
1.9767 

144.0548 
139.0622 
131.8841 

-0.0154 
44.0357 
60.2814 

D95V(d, p) 
O-H 

D95V(d, p) 
O-H—O 

D9SV(d, p) 
CO-HO 

MBA-H 
MBA-CH3 
MBA-f-butyl 

HTA 
HTA 
HTA 

1.8029 
1.8766 
1.9708 

144.6997 
139.6923 
132.4931 

-0.0101 
44.2935 
60.2166 
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At all calculation levels, we see that MBA-H 
has a relatively short hydrogen bond, set essen- 
tially planar, with the widest angle of 144°. How- 
ever, the angle described by the O • • • O—C is 
never in the preferred linear arrangement or even 
at the 165° typical OHO angle. Therefore, the angu- 
lar arrangement imposed by the intramolecular 
nature of these hydrogen bonds is consistent with 
their small stabilization energy. 

As the steric environment becomes more 
crowded, the hydrogen bond lengthens, the angle 
narrows, and the planarity decreases. This helps 
explain why the population of the hydrogen- 
bonded conformer decreases. These geometrical 
changes are making the hydrogen bond weaker. 
The steric crowding reduced the effectiveness of 
the hydrogen bond and increased the chances that 
the thermal population will start to favor a less 
crowded conformation. The changes in the COC 
angle suggests that that electron density of the 
nonbonding electron pair on oxygen moves out of 
the ring plane. The signs (+, -) of the dihedrals 
for the [H, TA] conformer's acid and the methoxy 
are always opposite, suggesting that acid hydro- 
gen appears to "follow" that nonbonding electron 
pair. 

Comparing the optimized geometrical parame- 
ters of the smaller basis sets (6-31G* and D95V) 
with those of the larger ones [6-31 + G(d, p) and 
D95V(d, p)], we see that in most instances the 
6-31G* geometries are better than those of D95V. 
The H ••• O, O ••• H-O, COCC, and COC parame- 
ters compare much more favorably with the ge- 
ometries of the better calculations. In fact, there is 
only one parameter in D95V that compares better 
than in 6-31G* and that is the MBA-f-butyl hy- 
drogen-bond length. The most striking results are 
seen in the 0=CCC angles of the [H, CA] conform- 
ers. Each of the different basis sets optimized at 
significantly different acid dihedral angles for this 
particular conformer. According to energetics, we 
expect the 6-31+G(d, p) to be closest to right, 
although there are not many significant differences 
between this and D95V(rf, p). 

When hydrogen bonding is energetically favor- 
able and sterically unhindered, the D95V distances 
are consistently shorter than for 6-31G*, and when 
hydrogen bonding becomes less favorable (less 
than about 75% of the thermal population) and the 
3-substituent's steric influence is greater, the D95V 
distances become smaller than for 6-31G*. The two 
basis sets optimized the O • • • H—O angle at signif- 

icantly different values. The D95V O • • • H—O an- 
gles are consistently smaller than those in 6-31G*. 

Conclusion 

We do see some stabilization energy in the 
conformations of 3-substituted-2-methoxybenzoic 
acid that are able to form hydrogen bonds, al- 
though it is smaller (1-2 kcal/mol) than those 
seen in some intermolecular bonds. An increase in 
the 2-methoxy-substituent's steric environment 
systematically reduces the thermal population of 
intramolecular hydrogen-bonded structures. The 
extremely nonlinear and eventually even nonpla- 
nar arrangement imposed on these hydrogen bonds 
by the ring arrangement and the steric environ- 
ment is consistent with their small stabilization 
energy. Thermal populations compare within a 
few percent of experimental when the hydrogen- 
bonding conformation is the most favored. The 
best comparison to experiment is achieved with 
MP2/6-31 + G(d, p). However, none of the iso- 
lated molecule models studied so far predicts ap- 
propriate decreases in the thermal population, in 
cases where the steric environment becomes signif- 
icant. Even in the case of MBA-CH3, the best 
comparison is 10% off. This lack of consistency 
suggests that it may be insufficient to compare the 
results of calculations for isolated molecules to 
these experimental values. The coplanarity of the 
acid group and the 2-methoxy group appears to be 
the key to what small amount of stability there is 
left in these hydrogen bonds. Comparing the calcu- 
lation results, we find that the polarization of the 
second-row elements in intramolecular hydrogen 
bonding and perturbation theory calculations that 
correct for electron correlations are very important 
for intramolecular hydrogen bonding. Adding po- 
larization and diffuse functions to the hydrogens 
will help, but do not seem to be as important. 
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ABSTRACT: The interaction between nitrate anion and water has been investigated 
by Hartree-Fock calculations with the 6-311 + G(d, p) basis set and by B3LYP density 
functional calculations with the aug-cc-pVTZ basis set. It is found that the global energy 
minimum is a planar configuration where both hydrogen atoms of water are coordinated 
to two oxygen atoms of NO^" by distorted hydrogen bonds. In contrast to former studies 
on NOj/H20 this configuration is found to be asymmetric at the highest theoretical 
level employed. The corresponding structure with C2v symmetry is a saddle point at 
slightly higher energy. A singly hydrogen-bonded configuration is still about 2.4 kcal/mol 
higher in energy. The shifts in the vibrational frequencies of water and nitrate upon 
complexation were calculated. A compact analytical potential function of NOj/HzO for 
use in statistical thermodynamic simulations was obtained from 390 points of the energy 
surface and an intramolecular force field for the nitrate anion is presented.    © 1998 John 
Wiley & Sons, Inc. Int J Quant Chem 70: 877-886, 1998 

Key words: potential functions; nitrate anion; nitrate-water interaction; nitrate-water 
cluster geometries; vibrational frequencies 

" in the third section its vibrational behavior. An 
Introduction analytical function representing the energy surface 

of NO^/HjO as well as an intramolecular poten- 
tial function for NO3"  are derived in the fourth 

T his work is organized as follows: First, we section. 
discuss relevant previous works. In the sec- Because of their great chemical, biological, and 

ond section we present the energetic and confer- technical importance, many experimental studies 
mational properties of the system N03/H20 and have  focused  on elucidating  the  properties of 

aqueous nitrate solutions. Specifically, articles in- 
Correspondence to: M. Probst. l ,        .       , 7     ■.     . 1   .■ 1 
Contract grant sponsor: Austrian FWF. vestigatmg the structure of nitrate solutions by 
Contract grant number: P10106-MOB. various spectroscopic techniques under a variety 
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of conditions have been published (vide infra). In 
contrast, rather few quantum chemical studies 
dealing with the properties of NOJ were reported. 

It has been found that NO^" can serve as a 
sensitive probe of the molecular environment, es- 
pecially via vibrational spectroscopy. The experi- 
mental evidences are, for example, reviewed in 
great detail in [1]. Other important reviews include 
[2] and [3]. The rotational behavior of NOJ was 
also investigated by nuclear magnetic resonance 
(NMR) spectroscopy [4, 5]. The easy distortion of 
the D3h symmetry of the anion causes shifts and 
splitting of the vibrational bands as well as changes 
in their intensity. This topic is discussed together 
with the results of our frequency calculations in 
the following section. 

One of the first theoretical studies on the system 
NO^~/H20 was performed by Howell et al. [6]. 
With Hartree-Fock calculations and the 6-31G ba- 
sis set, a cyclic structure with two distorted hydro- 
gen bonds was found to be most stable with a 
binding energy of -18.49 kcal/mol versus —17.23 
kcal/mol for a singly hydrogen-bonded one. 

In Ref. [7] the system N03"/H20 was studied 
by Hartree-Fock calculations and compared with 
the isomeric form ONOO~/H20 (as well as with 
H2N04~ in a subsequent study [8]). The largest 
basis set used by them was a double zeta basis set 
with polarization functions [9]. The authors find, 
similar to [6], the global minimum in a planar 
conformation with C2„ symmetry and two strongly 
bent hydrogen bonds with a binding energy of 
-14.9 kcal/mol. 

Velders and Feil [10] studied changes in elec- 
tronic density and geometry of nitrate anion in the 
presence of a proton and could correlate them with 
experimental crystal geometries. In a related study, 
Probst [11] calculated properties of various NO^/ 
M"+ ion pairs and the intramolecular vibrational 
frequency shifts caused by the counterions. The 
binding sites and the frequency shifts were found 
to depend on the size of the cation. 

A computer simulation involving an aqueous 
silver nitrate solution was performed by Laakso- 
nen and Kovacs [12]. They used a rigid model with 
a Lennard-Jones force field for the nitrate and the 
rigid SPC water model. Another molecular dynam- 
ics simulation was performed by Kataoka [13] with 
the Carravetta-Clementi water model and an em- 
pirical potential for the nitrate interactions. A se- 
ries of molecular dynamics simulations investigat- 
ing the dynamics of NO^" in molten salts has been 
published by Kato et al. [14]. 

The N03/H20 Complex 

Geometry optimizations of the nitrate-water 
complex with all degrees of freedom included have 
been performed at the HF/6-311G + (d,p) [15, 16] 
and B3LYP/aug-cc-pVTZ [17] levels. Different 
starting geometries always resulted in one of two 
minima on the potential hypersurface. While this 
is no proof of the nonexistence of other minima, 
the symmetric structure of NO^ makes it plausi- 
ble that no other minima exist. Our investigations 
included, for example, a nonplanar configuration 
with C2v symmetry which is a saddle point, bifur- 
cated structures with two hydrogen atoms adja- 
cent to one oxygen of NO^, and structures with 
water on top or below the plane of the anion. All 
of them do not constitute local minima as well. 
However, as discussed below, generally only small 
energy differences between various configurations 
are found and point to the fact that parts of the 
potential surface are very shallow. 

The global minimum is a cyclic structure with 
two hydrogen bonds. The exact structure of this 
configuration, however, differs between HF/6- 
311G + (d,p) and B3LYP/aug-cc-pVTZ calcula- 
tions. The former method leads to a structure with 
C2t> symmetry similar as in [7] and [6] with a 
binding energy of -14.0 kcal/mol, while at the 
B3LYP/aug-cc-pVTZ level the corresponding pla- 
nar configuration with C2„ symmetry exhibits one 
imaginary frequency. If optimized without sym- 
metry constraints, the B3LYP/aug-cc-pVTZ dimer 
is asymmetric and - 0.1 kcal/mol lower in energy 
( — 14.5 and —14.4 kcal/mol, respectively). Figure 
1(a) shows that despite the small energy difference 
the deviation from C2„ symmetry is not negligible 
and the structure can even be viewed as an inter- 
mediate between a cyclic structure and a singly 
hydrogen-bonded one. The singly hydrogen- 
bonded structure shown in Figure Kb) is +1.9 
kcal/mol higher in energy ( — 12.6 kcal/mol) and 
is found to be a local minimum on the potential 
energy surface. The distance between the oxygen 
atom of water and the nitrogen is more than 0.3 A 
larger for the singly bonded configuration (3.355 
and 3.703 A). 

A comparison between optimized monomers 
(rN_0: 1.258 A, r0_H: 0.962 A, and ^H-o-H: 
105.1°) and the dimers (values given in Fig. 1) 
exhibits only small geometric changes with the 
exception of ^H_0_H  for the global minimum 
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FIGURE 1. Geometries optimized at the B3LYP/aug-cc-pVTZ level, (a) Global minimum and (b) second energy 
minimum. 

configuration which decreases by 6.2°. The largest 
change in one of the Z.0_N_0 angles is less than 
1° and the largest changes in rN_0 and r0_H 

bond lengths are +0.013 and +0.025 A, respec- 
tively. It can be seen that the values of r0_H 

correspond to the ability of the corresponding 
atoms to participate in hydrogen bonding. 

Vibrations of Nitrate Anion 
andN037H20 

As already mentioned above, nitrate anion is an 
extremely useful molecule for probing the molecu- 
lar environment, especially via its vibrational be- 
havior. This stems partially from the fact that N03, 
due to its high symmetry, is a "vibrationally defi- 
cient" molecule. Symmetry lowering from D3h to 
Clv can occur easily, leading to infrared (IR) and 
Raman band splitting and intensity changes. Also 
IR, Raman, and the ultraviolet (UV) intensities of 
its electronic transitions depend much on the envi- 
ronment, but this shall not be studied further here. 
As a tetraatomic molecule, nitrate anion exhibits 
six vibrational modes: A total symmetric stretch- 

ing mode (vs = Vj), two degenerate asymmetric 
stretching modes (vas = v3), two degenerate bend- 
ing modes (5as = v4), and one out-of-plane mode 
(v = v2). While the occurrence of the splitting of 
the Sas and vas vibrations in an asymmetric envi- 
ronment is therefore easy to understand in princi- 
ple, there is yet no concise explanation why this 
symmetry lowering can even readily be observed 
in dilute aqueous solutions [1, 2]. Ion pair forma- 
tion can be ruled out experimentally because the 
splitting is largely independent of concentration 
and cation. An explanation by assuming specific 
hydrogen bonding between the anion and its hy- 
dration shell has the drawback that the splitting is 
neither found in deuterated H20 nor in other 
solvents with strong hydrogen bonding to NO^. 

Table I gives a comparison of various theoreti- 
cal methods with experiments. The experimental 
values were derived from measurements in solu- 
tion. It can be seen that a high theoretical level and 
large basis set is needed and that the B3LYP val- 
ues are closer to the experiment than the more 
expensive MP4 results. Keeping in mind that ex- 
perimentally the typical half-height linewidth of 
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TABLE 1 
Vibrational frequencies of nitrate anion (cm   1). 

Method                                £' (5as) A2" Uoop) AV (ps) E' ("as) 

MP4/aug-cc-pVTZ 
B3LYP/aug-cc-pVTZ 
BLYP/aug-cc-pVTZ 
MP4(SDQ)/MIDI + ** 
HF/MIDI + ** 

689 
707 
663 
705 
781 

HF/MIDI + ** 
MP4(SDQ)/MIDI + ** 

785, 796 
713, 720 

B3LYP/aug-cc-pVTZ 712,718 

IR, Raman [19] 
IR, Raman [18] 

719 
720 

NO, 
816 
844 
783 
842 
959 

I 
945 
832 

N03-/K + 

N03-/H20 
841 

825 
825 

Solution 

996 1379 
1062 1364 
978 1240 

1056 1369 
1200 1516 

1183 1453, 1688 
1029 1263,1518 

1062 1341,1402 

1049 1348,1404 
1050 1345, 1400 

the peaks is 50 cm"1, the B3LYP/aug-cc-pVTZ 
values seem very reasonable. The largest deviation 
from the experimental values is 19 cm"1 for voop 

(the experimental value for the unperturbed vas is 
about 1380 cm"1 [18]). 

In the optimized NO^/H20 complex (global 
minimum), the coordination of water leads to a 
splitting of the degenerate asymmetric stretching 
modes at 1364 cm"1 into 1341 and 1402 cm"1 and 
of the two degenerate asymmetric bending modes 
at 707 cm"1 into 712 and 718 cm"1 (B3LYP/aug- 
cc-pVTZ values). The out-of-plane and the sym- 
metric stretching modes remain (nearly) un- 
changed at 844 and 1062 cm"1. These splittings are 
very similar to the experimental values from 
Table I. 

In order to be able to compare these frequency 
splittings from hydrogen bonding with the split- 
tings caused by symmetry lowering from ion pair 
formation, corresponding calculations were per- 
formed on an NO^/K+ contact ion pair. The fre- 
quencies obtained with the MP4(SDQ) method and 
the MIDI basis set augmented with diffuse and 
polarization functions each [20] (no aug-cc-pVTZ 
basis set for K has yet been published) are in- 
cluded in Table I. With 255 cm"1, a considerably 
larger splitting than for H20 was found for the vas 

mode. It is not unlikely that for a hydrated potas- 
sium cation ion pair the spitting comes down to a 
similar range than for H20. 

It can be concluded that the magnitude of the 
band splitting found in NO^/H20 is comparable 
to the experimental value in solution and that even 

a rather weak cation like K+ causes a larger split- 
ting in the vas band. In accordance with experi- 
ment, the splitting of the other degenerate band, 
8as, is much smaller. 

Potential Energy Functions 

A calculation of the energy surface of NO3"/ 
H20 was performed at the Hartree-Fock level 
with the 6-311 + G(d, p) basis set. This method 
was chosen in view of the large computational 
effort involved in the more accurate B3LYP/ aug- 
cc-pVTZ calculations. Despite the fact that, as dis- 
cussed above, a symmetric global minimum struc- 
ture results at the 6-311 + G(d, p) level, the actual 
binding energies of both methods are very close 
and, for example, comparable to the approxima- 
tions introduced by assuming rigid monomers. 
[The HF/6-311G + (d, p) binding energy at the 
global minimum obtained with rigid monomers is 
— 13.67 kcal/mol versus —13.97 kcal/mol for a 
full optimization.] The intramolecular geometries 
of water and nitrate anion were kept rigid at the 
experimental values [21] with rN_0 = 1.220 A, 
^O-N-O = 120°, r0_H = 0.957 and Z.„_0_H = 
104.5°. No counterpoise correction has been ap- 
plied since test calculations showed that for this 
basis set the superposition error at the global mini- 
mum is less than 4% of the binding energy. 

Fifteen sets of configurations were chosen and 
for each set 26 energy points were calculated by 
moving the water molecule along a line. Due to 
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the high symmetry of nitrate anion the resulting 
390 energy points should sufficiently cover the 
representative regions of interaction. 

Figures 2(a) and 2(b) visualize some of the 15 
configurations. The configurations which result by 
water being rotated out of the nitrate plane by 90° 
are not shown in order to avoid overcrowding the 
picture: In Figure 2(a), configuration 2 is derived 
from configuration 1 (nitrate anion and water are 
in one plane and the atoms N—O • • • H—O are 
collinear) with water rotated around the N—O • • • 
H—O axis by 90°. Configurations 4, 7, and 9 (not 
shown) are derived in the same way from configu- 
rations 3, 6, and 8, respectively. Configuration 5 is 
derived from configuration 9 but has the hydrogen 
atoms pointing away from the nitrate anion. Con- 
figurations in which the oxygen atom of water is 
located out of the nitrate plane are shown in Fig- 
ure 2(b). In configurations 10 and 11, the 0---N 
axis is inclined by 45° out of the nitrate plane 
whereas in configurations 12 and 13 it is perpen- 
dicular to it. In 10 and 12, one hydrogen atom 
points toward the nitrogen atom while in 11 and 

13 both hydrogen atoms point away from it. Con- 
figurations 14 (like 13 but the hydrogen atoms 
point toward N) and 15 (like 13 but with water 
below one oxygen atom of NO^~) are not shown. 

The binding energies corresponding to the vari- 
ous sets of configurations are shown in Figure 3 
(circles) as a function of the N—O distance. As can 
be expected from electrostatic considerations, con- 
figurations 5, 6, 7, 11, and 15 are always repulsive. 
In 12, a hydrogen atom approaches NO^ from the 
top. The attraction from the oxygen atoms predom- 
inates in this case and a shallow minimum is 
found. 

The 390 energy points were used to fit a polyno- 
mial with 4 adjustable parameters for each site-site 
interaction: 

T/n- E 
k,i 

Ikli ß^ + + + Dki 

(1) 

where A to D are the parameters to be fitted, qk 

and qt are the partial charges at the centers of 

a) 

O 
8 

C '. 13 © 

FIGURE 2. Configurations considered in the scan of the potential energy surface, (a) Shows the configurations where 
water oxygen atom is in the nitrate plane and (b) shows the out-of-plane configurations. See text for further 
explanations. 
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FIGURE 3. Calculated energy points (symbols) and fitted energies (solid lines) for the 15 configurations plotted 
against the N ••• O interatomic distance. The energies are given in kcal/mol and the distances in Angstram. 

interaction k and i in the two molecules, and rki, 
is their distance. A calculation of the q's by 
CHELPG [22] population analysis gave charges of 
+1.298 and -0.766 electrons for nitrogen and oxy- 
gen, respectively. Since the potential function is 
intended to be used in computer simulations of 
aqueous nitrate solutions, for reasons of electro- 
static consistency the partial charges of the well- 
known MCYL water potential [23] were taken. For 
O and H atoms of water the charges are -1.434 

and +0.717, respectively. The charges were kept 
constant in the fitting process. Their values, some- 
what arbitrary as any charge partition scheme, are 
larger than the corresponding ones from CHELPG 
(-0.808 and +0.404, respectively) and are in- 
tended to be effective charges for liquid water. The 
values of the optimized parameters A to D are 
given in Table II. 

The overall standard deviation of the fit (includ- 
ing the electrostatic terms) was 1.17 kcal/mol. 

TABLE II . — 
Values of the parameters (kcal / mol, A) of the analytical pair potential for the nitrate - water interaction in 
formula (1). 

A 
B 
C 
D 

On-0„ 

456.230953 
-14346.495583 
135881.693843 

-163716.597217 

On-H„ 

-9.267009 
509.57219 
1063.771480 
654.054407 

Nn-0„ 

-141.352593 
8378.086698 

-52972.399360 
60790.249131 

Nn-H„ 

-286.238598 
1710.782613 

-4740.608610 
3454.023536 
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FIGURE 4. Correlation of all fitted energy points versus 
Hartree-Fock energies (kcal/mol). 

Figure 4 shows a reasonably good correlation be- 
tween ab initio and fitted energies. The solid curves 
in Figure 3 show the analytical potential. It can be 
seen that the important characteristics of the ab 
initio potential curves can be found in the calcu- 
lated potential. Configuration 8 includes the global 
minimum and shows that within the method used 
and under the restriction of rigid monomers, a 
cyclic structure is somewhat more stable than 
a single hydrogen bonded one. Structures with 
linear O—H • • • O—N hydrogen bonds (configura- 
tions 1 and 2) are about as stable as the corre- 
sponding configurations where the nitrate mole- 
cule is turned by 60° and O—H points to the 
bisector of O—N—O (configurations 3 and 4). If 
the nitrogen atom is directly involved, the bonding 
is much weaker (configuration 12). 

Figure 5 shows two-dimensional cuts of the 
potential energy surface in the plane of NO3" for 
three typical cases. In the left part the orientations 
of the water molecules are shown and in the right 
part the corresponding energy surface as contour 
plot. From the picture on top which includes the 
configurations with two hydrogen bonds (-13 
kcal/mol contour), it can be seen that (if water is 
thought to move around the anion) bifurcated hy- 
drogen bonds are about 4-5 kcal/mol less stable. 
For the singly hydrogen-bonded structures (Fig. 5 
middle), there is even less difference between lin- 

ear hydrogen bonds and bifurcated ones. Finally, 
the contour diagram at the bottom shows a set of 
typical repulsive configurations. 

The agreement between the calculated points 
and the fitted potential as discussed above indi- 
cates that our potential function is no worse than 
comparable ion-water potentials published so far. 
It can be assumed to be more reliable than poten- 
tials constructed from standard molecular mechan- 
ics parameters or combination rules. Since for our 
system it describes a shallow energy surface with 
subtle hydrogen bonding features, it should be 
mentioned that its parameters are certainly not 
transferable and that only subsequent computer 
simulations can demonstrate its accuracy. 

No intramolecular potential for NO^ seems to 
have been described in the literature yet. In order 
to be able to perform future simulation studies 
with flexible nitrate anion, we prepared a simple 
intramolecular potential function compatible with 
the N03"/H20 potential described above. A com- 
parison of the quantum chemically calculated har- 
monic spectrum with a force-field-based one was 
performed. The matrix of the second derivative of 
the energy with respect to the Cartesian coordi- 
nates was obtained by quantum chemical calcula- 
tions and was converted into a function of the six 
internal coordinates ArN_0, AZ0_N_0 and 
^OOP where the Ar and AZ values are the devia- 
tions of the bond length and bond angles from the 
equilibrium values and ^QOP is the out-of-plane 
angle describing the pyramidal distortion of NO^". 
It can be defined as 90° minus the angle between 
the vector perpendicular to the Ol—N—02 plane 
and the vector from N to O,: 

ViDta = iLfuDiDi+    £ f^D^. (2) 
1=1 i#; = l 

Here the three distances Ar, the two independent 
angular internal coordinates A/L, and the out-of- 
plane angle (ZOOP) are abbreviated D-^-D^ This 
function was used in molecular dynamics calcula- 
tions, and the vibrational spectrum was subse- 
quently extracted from the trajectories of the atoms 
by the usual Fourier-transform methods. The re- 
sults showed that for NOJ even modest accuracy 
in reproducing intramolecular vibrational frequen- 
cies requires the inclusion of the terms in the 
second sum in formula (2), the harmonic cross 
terms. On the other hand, the inclusion of anhar- 
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FIGURE 5. Contour plots of the nitrate -water energy surface (right side) together with pictures of the respective water 
orientations (left side) for three typical orientations. The water molecule is located in the plane of the nitrate anion. The 
contour map on top contains the global energy minimum at the HF/6-311G + (d, p) level of theory. 
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monicity has a much smaller effect as was found 
by augmenting formula (2) by correction terms 
incorporating the first anharmonicities along the 
normal modes. The largest anharmonic contribu- 
tion to the energy is contributed by the cubic force 
constant fUi of the total symmetric mode. Its in- 
clusion gives our final expression for the in- 
tramolecular force field: 

6 6 

Vintra = lLfiiD1Di+     £   /,.D;D!;. 
i=l i#/=l 

(3) 

-Ol  + ^rN —02 + 

+ 6/444^4^4^4' 

where S4 is the coordinate (Arh 

ArN_03)/V3. 
The values of the force constants are given in 

Table III. The numerical values of the harmonic 
force constants were determined by calculations 
on the MP4/aug-cc-pVTZ level of theory. The cu- 
bic force constant /444 was obtained from five 
energy points at displacements of 0,  ±0.05 and 

o 

+ 0.1 A along the total symmetric normal mode S4 

by minimizing the least-square difference between 
their ab initio energies and the energies obtained 
from formula (3). 

Summary 

The system NO^/H20 at the B3LYP/aug-cc- 
pVTZ level forms a planar complex with Cs sym- 
metry and two distorted hydrogen bonds. The 
binding energy is -14.5 kcal/mol. The symmetric 
complex which is found to be stable at a lower 
theoretical level [HF/6-311G + (d,p)] is a saddle 
point about +0.1 kcal/mol higher in energy. A 
singly hydrogen-bonded complex is still +2.4 
kcal/mol higher in energy. The vibrational fre- 
quencies  of nitrate  anion  and  of the  complex 

TABLE III  
Force constants of the intramolecular potential of 
N03 (atomic units). 

*r1- rl 

'a1- a1 

'oop 

'r1- r2 

'a1- a2 

'a1- r1 

'444 

0.4840 
0.7130 
0.1748 
0.0583 
0.3565 
0.0886 

-1.3759 

NOj/H20 were calculated and are in good 
agreement with experimental results. The magni- 
tude of the splitting of the asymmetric stretching 
mode due to symmetry lowering is similar to the 
experimental values found for aqueous nitrate so- 
lutions. It is therefore—at least in principle—pos- 
sible that asymmetric anionic hydration causes the 
observed behavior. However, in view of the rather 
low binding energies of about 14 kcal/mol the 
absence of dynamic averaging remains to be un- 
derstood. 

Interaction potentials for NO^/H20 were ob- 
tained from high-level ab initio calculations. Dia- 
grams of the potential energy surface show that 
little energetic differences between linear, cyclic, or 
bifurcated hydrogen bonding exist. Configurations 
with hydrogen bonding from above or below the 
nitrogen atom are somewhat less favorable but 
still result in attractive interactions. An intramolec- 
ular force field for nitrate anion that includes the 
most important anharmonic terms was developed. 

Work on molecular dynamics simulations of 
aqueous nitrate solutions incorporating the inter- 
action potentials is in progress. 
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ABSTRACT: We compare two systematic approaches to the calculation of reaction 
rates in liquid solutions: the separable equilibrium solvation (SES) approximation and the 
equilibrium solvation path (ESP) approximation. These approaches are tested for two 
reactions, C1CH3 + NH3 -» OT-f HgCNHj (Rl) and NHJ- N'H3 -» NH3- N'Hj 
(R2), both in aqueous solution. The first reaction illustrates the importance of variational 
optimization of the transition state, and the second illustrates the importance of tunneling. 
Free energies of solvation are calculated by the Solvation Model 5. All calculations are 
carried out by the new AMSOLRATE program, which is an interface of the AMSOL and 
POLYRATE programs.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 887-896, 1998 

Introduction 

The interface of electronic structure theory with 
dynamics has received considerable attention 

in recent years, especially in conjunction with tran- 
sition-state theory [1]. Most of this work has been 
concerned with gas-phase reactions, and systemat- 
ically improved methods [2, 3] have been devel- 
oped that require the representation of the poten- 
tial energy only in a valley [4] centered on the 
minimum-energy path (MEP) or in a somewhat 

Correspondence to: D. G. Truhlar. 
Contract grant sponsor: National Science Foundation. 

wider region [5] called the reaction swath. The 
present article summarizes two systematic ways to 
extend this kind of theory to reactions in solution 
and illustrates them for two reactions. Both ap- 
proaches involve equilibrium solvation; however, 
in the first approach, the calculation is based on 
the gas-phase MEP, whereas in the second ap- 
proach, the calculation is based on the equilibrium 
solvation path [6] (ESP). For completeness, we 
should mention a third possible approach, in which 
solvation is not assumed to be at equilibrium with 
the solvent at all points along the reaction path [7]. 
(Nonequilibrium solvation is sometimes called 
nonadiabatic or dynamic solvation, in which case 
equilibrium solvation is called adiabatic or static.) 

International Journal of Quantum Chemistry, Vol. 70, 887-896 (1998) 
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We will use the following shorthand notation 
for these three approaches: 

SES: Separable equilibrium solvation—The free 
energy of solvation at a fixed solute geom- 
etry is added to the gas-phase free energy 
using gas-phase geometries for reactants, 
products, intermediates, and transition 
states and using gas-phase reaction paths. 
While the reaction path remains constant 
in coordinate space, the position of the 
potential energy (and free energy) maxi- 
mum along the path can be shifted. 

ESP: Equilibrium solvation path—One defines a 
solution-phase potential of mean force by 

W(R|T) = V(R) + AGS°(R|T),    (1) 

where W(R | T) is the free energy of a 
solute molecule in a solution as a function 
of the solute coordinates R and the tem- 
perature T, V(R) is the Born-Oppenheim- 
er potential energy in the gas phase, and 
AG°(R | T) is the standard-state free en- 
ergy of solvation of a solute with geometry 
R and temperature T. This represents ad- 
ditional flexibility over SES in the sense 
that the location of the transition state may 
now move not only along the gas-phase 
reaction path but also perpendicular to it 
in the remaining 3N - 7 degrees of free- 
dom. 

NES: Nonequilibrium solvation—This approach 
requires including solvent coordinates in 
the definition of geometries and reaction 
paths. 

A complete microscopic description of a reac- 
tion in solution must consider nonequilibrium sol- 
vation [7-10],* but we can learn a lot with the SES 
and ESP approaches. Thus, our first goal was to 
systematize these approaches. Our motivation for 
this follows from the observation that systemati- 
cally defined procedures can be tested, validated, 
and incorporated in user-friendly computer pack- 
ages much more readily than can nonsystematized 
methods. 

Solvation effects on transition-state structures 
have also been considered by previous researchers, 
notably by Berträn and Rivail and coworkers 
[11-13]. Berträn et al. [12] distinguished three op- 
tions: Option 1 is identical to the SES approach 

* An extensive review of nonequilibrium solvation theories 
is given in [1]. 

with conventional transition-state theory (i.e., as- 
suming the dynamical bottleneck is at the gas- 
phase saddle point); option 2 is identical to the SES 
approach with variational transition-state theory; 
and option 3 is equivalent to the ESP approach. 
Berträn et al. [12] did not consider tunneling. In 
the present article, tunneling in solution is calcu- 
lated by treating solute modes in the ground-state 
transmission-coefficient approximation [14-16] and 
solvent modes by the zero-order canonical mean 
shape (CMS-0) approximation, which is presented 
in a previous article [7]. The CMS-0 approximation 
is discussed further in the second section of this 
article. 

The second section presents the dynamical the- 
ory for generalized transition-state theory calcula- 
tions based on the SES and ESP approaches. The 
third section discusses the interface of electronic 
structure theory and dynamics for solution-phase 
reactions. The fourth section presents applications 
to two prototype reactions. The applications were 
carried out with a new computer program called 
AMSOLRATE. The fifth section contains conclud- 
ing remarks. 

Dynamical Theory 

The theory for variational transition-state theory 
in solution was given previously [9, 10]. The the- 
ory for including semiclassical transmission coeffi- 
cients to account for tunneling was given previ- 
ously [7]. Here, we summarize the essential formu- 
las. 

In canonical variational theory (CVT), the rate 
constant at temperature T for a bimolecular reac- 
tion in solution, assuming it is not diffusion-con- 
trolled, is given by [9, 10] 

k~T 
kCVJ(T) = —-rexp{-[G°(CVT|7)) 

nC 

-G°(R\T)]/kT),   (2) 

where k is Boltzmann's constant, h is Planck's 
constant, C° is the concentration corresponding to 
the standard state, G°(R | T) is the solution-phase 
standard-state free energy of reactants at tempera- 
ture T, and G°(CVT | T) is the solution-phase stan- 
dard-state free energy of the canonical variational 
transition state at temperature T. The latter is 
given by 

G°(CVT|T) = maxG°(GT,s|T),        (3) 
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where G°(GT, s | T) is the solution-phase standard- 
state free energy at temperature T of a generalized 
transition state (GT) located at a signed value s of 
the reaction coordinate. (A generalized transition 
state is a trial choice of a variational transition 
state with s # 0.) The value of s that maximizes 
G°(GT, s | T) is called the canonical variational 
transition-state location. The free energies are, in 
turn, given by [17] 

G°(X,T) = W(RX|T) + GRVE(X|T),      (4) 

where W(RX | T) is given by Eq. (1) for species X 
(X is R or GT) at its classical equilibrium geometry, 
which is denoted Rx, and GRVE(X | T) is the rovi- 
bronic internal free energy of species X at tempera- 
ture T relative to a nondegenerate, structureless, 
motionless particle at equilibrium (where X is R) 
or at position s on the reaction path (when X is 
GT). Note that AGS°(R | T) in Eq. (1) is evaluated 
using the same concentration for the standard state 
in both the gas phase and solution. In the SES 
approximation, GRVE(X | T) in Eq. (4) is evaluated 
from the gas-phase potential V(R), whereas in the 
ESP approximation, GRVE(X | T) is evaluated from 
the potential of mean force W(X | T). At transition 
states, one omits the imaginary frequency mode 
(which is the reaction coordinate) in calculating 
GRVE(GT, s = 0 | D so that G°(GT, s = 0 | T) is ac- 
tually a free energy of activation rather than a true 
free energy; one also omits the reaction coordinate 
from   GRVE(GT, s\T)   at   generalized   transition 
states, and, therefore, G°(GT, s | T) is a generalized 
free energy of activation. A plot of G°(GT, s | T) 
versus s is sometimes called a free-energy profile. 

Tunneling is more complicated. In general, tun- 
neling is included by multiplying kCVT(T) by a 
transmission coefficient K(T). For gas-phase reac- 
tions,  K(T) is evaluated using the ground-state 
transmission   coefficient   approximation,   as   de- 
scribed previously [14-16]. For solution-phase re- 
actions, K(T) is evaluated by treating solute modes 
by the ground-state transmission-coefficient ap- 
proximation [14-16] and treating solvent modes 
by the canonical-mean-shape (CMS) approxima- 
tion, also described previously [7]. We can express 
these two approximations in a unified approxima- 
tion as follows: 

K(r) = 
fo dEP{Vl,V11 E)exp(-E/kT) 

where E is total energy, P(VV V2 \ E) is the trans- 
mission probability at energy E using V/R) as the 
effective multidimensional potential and V2(s) as 
the effective adiabatic potential, and s*VT(T) is the 
location of the canonical variational transition state 
at temperature T. For gas-phase reactions (ground- 
state approximation), we have 

and 

VX(R) = V(R) 

V2(s) = Va
G(s), 

(6) 

(7) 

where Va
G(s) is the vibrationally adiabatic 

ground-state potential given by [14-16] 

Va
G(s) = VRP(s) + GRVE(GT, s | T = 0),    (8) 

where VRP(s) is V(R) evaluated along the reaction 
path. For solution-phase reactions (ground-state 
approximation for solute modes and CMS approxi- 
mation for solvent modes), we have 

VX(R|T) = U(R|T) (9) 

and 

fv-, l4VT(T)) dEexp(-E/icT) 
(5) 

y2(s) = uRP(s | T) + vfl
G(s) - yRP(s), do) 

where !i(R | T) is the CMS potential given by 

<?W(R|T) 
IKRIT) = W(RIT) + ß .    (ID 

op 

ß is (MT1, and URP(s | T) is U(R | T) evaluated 
along the reaction path. 

We will employ a further approximation, de- 
noted the zero-order canonical mean shape (CMS-0) 
approximation in our previous work [7], namely, 
we neglect the temperature derivative in Eq. (11). 
As pointed out previously [7], the CMS-0 approxi- 
mation is justified when thermally excited bath- 
mode frequencies are approximately independent 
of s over the range of s important for tunneling. 
This should be a reasonable approximation in many 
cases. 

The meaning of "conventional transition state 
theory" (TST) is ambiguous for solution-phase re- 
actions. What we shall mean by this is placing the 
generalized transition state at s = 0, which de- 
notes the location of the gas-phase saddle point in 
SES calculations and denotes the location of the 
liquid-phase saddle point in ESP calculations. An 
alternative definition that one might consider for 
the ESP case is the location of the maximum of 
UMEP; we call this choice VTST (max UMEP). 
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The above formulation is general enough to 
encompass all of the standard tunneling approxi- 
mations in the POLYRATE computer program 
[15,16,18], namely zero-curvature tunneling (ZCT) 
[14], small-curvature tunneling (SCT) [15, 19], 
large-curvature tunneling (LCT) [15, 20, 21], and 
microcanonical-optimized multidimensional tun- 
neling (juOMT) [21]. 

The formulas given above also apply to uni- 
molecular reactions provided one makes a single 
change: C° is replaced by unity in Eq. (2). 

Interface of Dynamics with 
Electronic Structure 

In the SES approximation, stationary points (re- 
actants and products) are optimized using V(R), 
the reaction path is calculated using V(R), and 
G

RVE(
X

 I T) is computed using V(R) for gas-phase 
species. In the ESP approximation, stationary 
points are optimized using W(R | T), the reaction 
path is calculated using W(R | T), and GRVE(X | T) 
is computed using W(R | T) for solution-phase 
species. 

To carry out the calculations, we interfaced the 
POLYRATE computer program with the AMSOL 
computer program using of an interface program 
called AMSOLRATE [22]. 

We calculated V(R) by the Parametrized Model 
3 (PM3) [23] version of the neglect-of-diatonic-dif- 
ferential-overlap [24] molecular orbital theory. Al- 
though the PM3 model is not quantitatively accu- 
rate for V(R), it is adequate for the present work 
where the goal is to demonstrate dynamical ap- 
proximations. We calculated AG°(R | T) by the 
SM5.4/PM3 [25] and SM5.2R/PM3 [26] solvation 
models. 

At this point, it might be useful to interject a 
note about consistency. In particular, we note that 
the SM5.4 solvation model was parameterized, al- 
lowing the solute geometry to relax in solution, 
while the SM5.2R solvation model was parameter- 
ized using gas-phase geometries in solution. Thus, 
a purist might insist that the SM5.4 model not be 
used in SES calculations and the SM5.2R model 
not be used in ESP calculations. But that would be 
inconsistent with general usage of semiempirical 
models in other contexts. For example, the gas- 
phase PM3 model was parameterized for heats of 
formation, yet is routinely used for predicting elec- 
tronic energies. Similarly, semiempirical methods 
are often parametrized by matching fixed-R dipole 

moments to experimental ones, which are vibra- 
tionally averaged. In this spirit, one may use either 
solvation model with either dynamical approxima- 
tion. In the present article, we used both models 
with the SES approximation, and the SM5.4 model 
with the ESP approximation, for a total of three 
combinations. 

The SES calculations will be denoted SM5.4/ 
PM3//PM3 and SM5.2R/PM3//PM3 since they 
are based on gas-phase PM3 geometries, reaction 
paths, and vibrational potentials. The ESP calcula- 
tions will simply be denoted SM5.4/PM3 since 
solvation is fully included in optimizing geome- 
tries and calculating reaction paths and vibration 
potentials. 

Results 

All calculations in this article are for T = 298 K, 
and the solvent for all liquid-phase reactions is 
water. All values of U are evaluated in the CMS-0 
approximation. All information (i.e., geometries, 
energies, gradients, and Hessians) required for the 
dynamics calculations was obtained from the com- 
puter program AMSOL, and the reaction rates 
were calculated using the AMSOLRATE package 
[22]. Although solution-phase calculations were 
carried out with the AMSOLRATE program, as a 
check we compared gas-phase calculations with 
AMSOLRATE to gas-phase calculations carried out 
with the MORATE [20, 27] package, and we ob- 
tained the same result within the accuracy af- 
forded by the numerical derivatives. 

Two reactions are used to illustrate the differ- 
ences between the SES and ESP approximations: 

and 

C1CH3 + NH3 

NHt-N'H, 

CI-+H3CNH+       (Rl) 

NH, ■N'H4
+. (R2) 

Rl is the widely studied [12, 28, 29] Menshutkin 
reaction, and R2 is a symmetrical unimolecular 
proton-transfer reaction. 

Even though there is a van der Waals complex 
and an ion-pair complex along the reaction path 
of Rl, we treat it as a bimolecular reaction. Al- 
though R2 is a unimolecular reaction, we neverthe- 
less considered a Boltzmann-weighted continuum 
of tunneling energies in Eq. (5). 

For both-reactions, we scaled [30] the coordinate 
system to a reduced mass /x of 1 amu, and the 
frequencies along the reaction path were evaluated 
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in the harmonic approximation by a transforma- 
tion to redundant internal coordinates [31]. Zero-, 
small-, and large-curvature tunneling calculations 
were carried out with 30 quadrature points for 
each action integral, and they were Boltzmann- 
averaged using 30 energies. For reaction Rl, we 
followed the reaction path with the Page-Mclver 
[32] algorithm with a step size 0.01 aQ over the 
range of -4.0a0 < s < 2.0a0 for the gas phase and 
over the range -2.0a0 < s < 1.56o0 for solution. 
Hessians were obtained using central differences 
with a step size of 0.013a0 for the gas phase and 
0.009fl0 for solution at each step. For reaction R2, 
we followed the reaction path with the Page- 
Mclver method [32] with a gradient step size equal 
to 0.015a0 over the range -1.3«0 < s < 1.3a0 for 
both the gas and solution phases. Hessians were 
calculated using the central difference algorithm 
with a numerical step size of 0.01 la0 for both the 
gas phase and solution at each gradient step. 

Table I gives the optimized values of the mak- 
ing and breaking bond distances of the stationary 
points for reactions Rl and R2 in both the gas 
phase (PM3) and aqueous solution phase (SM5.4/ 
PM3), Table II gives free energies of solvation, 
Table III gives values of U at the saddle point and 
product (both relative to reactants), and Figures 
1-4 show URP(s | T) plotted both as a function of s 
and as a function of the difference in the making 
and breaking bond lengths. 

We see for reaction Rl that the C—N bond 
distance at the saddle point is 0.3 A shorter in the 
gas phase than in the aqueous solution, and the 
C—Cl bond is 0.3 A longer. This results in a large 

TABLE I  
Bond lengths in A. 

R1-PM3 
Reactant 
van der Waals complex 
Saddle point 
Ion pair 
Ionic products 

R1-SM5.4/PM3 
Reactant 
Saddle point 
Product 

R2-PM3 
Reactant 
Saddle point 
Product 

R2-SM5.4/PM3 
Reactant 
Saddle point 
Product 

rNC 
00 

rcci 
1.764 

3.785 1.767 
1.762 2.269 
1.473 2.718 
1.495 00 

''NC 
CO 

''cci 
1.777 

2.063 2.094 
1.481 00 

rNH 
1.048 

^N'H 
1.721 

1.302 1.302 
1.721 1.048 
rNH 
1.022 

rN'H 
1.789 

1.290 1.290 
1.789 1.022 

shift in the position of the maximum of U in the 
SES approximation compared to its position in the 
ESP approximation in Figure 1, and it results in 
large differences in the SES and ESP free energies 
of solvation of the stationary points of Rl in Table 
II. As a consequence, applying conventional transi- 
tion-state theory with the free energies of solvation 
added to the gas-phase-optimized stationary points 
gives a very inaccurate reaction rate for Rl, as 
shown in Table IV. However, this does not mean 
that the gas-phase reaction path is not useful. In 
particular, it can still be useful for reasonably 
accurate calculations on reaction Rl if one employs 
variational transition-state theory. 

TABLE II  
Standard-state free energy of solvation in kcal / mol. 

R1 

R2 

NH3 

CH3CI 
CICH3 - 
CI-CH3 
Cl 
ci- 

NH, 
NH, 

CHgNH^ 

NH; -NHq 

NH3 

NH, NHt 
•NH, 

SM5.2R/PM3//PM3 SM5.4/PM3//PM3 SM5.4/PM3 

4.3 
-0.8 
-4.1 

-41.5 
-32.7 
-77.0 
-79.1 

-81.0 
-74.6 
-81.0 

-3.5 -3.6 
-0.5 -0.5 
-4.0 
40.7 -14.7 
32.6 
77.2 -77.2 
78.2 -78.5 

72.7 -73.8 
69.0 -71.2 
72.7 -73.8 
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TABLE III  
Energetics of R1 and R2 in kcal / mol.a 

Reaction Method U(s = 0)-UR Up -U" 

R1 PM3 41.2 119.9 
SM5.2R / PM3//PM3 4.0 -32.2 
SM5.4/PM3//PM3 4.4 -31.7 
SM5.4/PM3 21.6 -31.7 

R2 PM3 9.5 0.0 
SM5.2R/PM3//PM3 15.9 0.0 
SM5.4/PM3//PM3 13.3 0.0 
SM5.4/PM3 13.7 0.0 

a R and P denote values at reactant and product, respec- 
tively. 

In Figure 1, we observe that in the SES approxi- 
mation the maximum of URV(s | T) for Rl is shifted 
1.47A0 (in mass-scaled coordinates) toward the re- 
actant side. However, by plotting üRP(s | T) versus 
the difference in the C—N and C—Cl bond lengths 
in Figure 2, we see that both the SES and ESP 
approximations give similar classical barriers for 
this reaction. In the ESP approximation, the barrier 
in URF(s | T) is 21.6 kcal/mol, whereas in the SES 
approximation, the variational maxima U(s\T) 
calculated by the SM5.2R/PM3//PM3 and 
SM5.4/PM3//PM3 approximations are 22.3 and 

21.9 kcal/mol, respectively. Of course, the reaction 
rates also depend on the geometries and frequen- 
cies, and different partition functions are used to 
compute the reaction rates in the SES and ESP 
approximations. Thus, Table IV shows that the 
SM5.4/PM3//PM3 and SM5.4/PM3 estimations 
of the CVT rate constant differ by factor of 2. We 
found that the dominant tunneling mechanism is 
the small-curvature one, and it increases the rate 
by a factor of 2.5-2.7, which is similar to the 
magnitude of the tunneling effect in the gas phase 
[29]. 

Now we turn to reaction R2. The lowest real 
frequency mode, which corresponds to the internal 
rotation of the two NH3 subgroups around the 
N—H—N' axis, is hard to calculate precisely 
without analytical Hessians. In addition, the 
semiempirical method is not reliable for such a 
mode. Preliminary calculations with both 
MORATE and AMSOLRATE and showed that the 
frequency of this mode does not vary strongly 
with s. We therefore set the frequency of this 
mode equal to a constant along the whole reaction 
path. For the gas-phase calculation, this constant 
was set equal to 34.6 cm-1, which we obtained 
using the GAUSSIAN94 program [33] at the 
MP2/6-31G** level [34, 35] for the reactant com- 

CHjCl - NH, 
50 

-> Cl" + CH3NH3
+ 

0 

-10 

-20 

-30 

Equilibrium Solvation 
Path SM5.4/PM3 

Separable Equilibrium Solvation 
SM5.2R/PM3//PM3  
SM5.4/PM3//PM3   

i   ■   ■   ■   ■   I   .   .   .   .   i   .   .   .   . 

-3 -2 -1 0 

reaction coordinate s (bohr) 

FIGURE 1. Adiabatic potential curves U for reaction R1 in the gas phase as calculated by PM3 and in aqueous 
solution as calculated by SM5.2R / PM3//PM3, SM5.4/PM3//PM3, and SM5.4 / PM3 as functions of the reaction 
coordinate s. 
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CH3C1 + NH3 —> Cl- + CH3NH3
+ 

50 

40 
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_L_ 
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0.5 

FIGURE 2. Adiabatic potential curves U for reaction R1 in the gas phase as calculated by PM3 and in aqueous 
solution as calculated by SM5.2R / PM3 // PM3, SM5.4 / PM3 // PM3, and SM5.4 / PM3 as functions of the making and 
breaking bond distances from the gas-phase saddle-point geometry. 
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FIGURE 3. Adiabatic potential curves U for reaction R2 in the gas phase as calculated by PM3 and in aqueous 
solution as calculated by SM5.2R / PM3 // PM3 and SM5.4 / PM3 as functions of the reaction coordinate s. 
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plex. For the aqueous-phase calculation, this con- 
stant was set equal to 50 cm"1, which is an aver- 
age value from SM5.4/PM3 calculations at differ- 
ent values of s. The partition function of this mode 
was evaluated by a hindered-rotor approximation 
[36]. We found that in the gas-phase calculation 
the hindered-rotor partition function differed by 
about 5% from the free-rotor limit, and for the 
solution case, it differed by about 10% from the 
free-rotor limit. Thus, the results are not sensitive 
to the frequency of this mode after all. 

The SM5.2R/PM3//PM3 method overestimates 
the effective barrier height by 2.3 kcal/mol (Fig. 
3), and the SM5.4/PM3//PM3 method underesti- 
mates it by 0.5 kcal/mol (Fig. 4). Therefore, Table 
V shows a larger TST reaction rate in the SM5.4/ 
PM3//PM3 case than in the SM5.4/PM3 case. 

Table V shows the tunneling effect for reaction 
R2. The tunneling is dominated by the large-curva- 
ture mechanism. The increase in the unimolecular 
rate constant due to tunneling is very sensitive to 
the level of theory. For quantitatively meaningful 
results, it is clear that very careful choices of gas- 
and liquid-phase methods must be made. 

Concluding Remarks 

In this article, we illustrated two different meth- 
ods for calculating reaction rates in solution. The 
SES approximation utilizes the reaction path ob- 
tained from a gas-phase calculation and then sol- 
vates each configuration along the reaction path. 
This is compared with the ESP approximation 
where the free energy of solvation is included 
while following the reaction path. For the Men- 
shutkin reaction, we observed that even though 
the saddle-point geometries differ in the gas phase 
and in solution, the SES approximation is still 
applicable within a factor of 2 when the same 
solvation model (SM5.4/PM3) is employed. For 
proton transfer between ammonium and ammo- 
nia, the ESP approximation gives a rate constant 
about 3j times smaller than the SES approxima- 
tion when tunneling is neglected, but tunneling 
reduces the difference to about a factor of 2. In 
general, the ESP approximation provides a more 
complete approach to studying the dynamics in 
solution; however, the SES method is an affordable 

NH4
+...NH3 —> NH3...NH4

+ 

'A       Equilibrium Solvation • 
"•) Path SM5.4/PM3 

-0.5 0 0.5 
reaction coordinate s (bohr) 

1.5 

FIGURE 4. Adiabatic potential curves U for reaction R2 in the gas phase as calculated by PM3 and in aqueous 
solution as calculated by SM5.4 / PM3//PM3 and SM5.4 / PM3 as functions of the reaction coordinate s. 
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TABLE IV  
Rate constants of reaction R1 at 298 K. 

k (in 10~31 cm3/molecule  1s  1) 

SES 

SM5.2R/PM3//PM3 SM5.4/PM3//PM3 
ESP 

SM5.4/PM3 

TST 
VTST(maxL/MEP 

CVT 
CVT/ZCT 
CVT/SCT 
CVT/LCT 
CVT/,uOMT 

1.5E13 
2.6a 

2.5d 

5.7 
6.2 
5.8 
6.2 

2.8E12 
2.1b 

2.0e 

4.6 
4.9 
4.6 
4.9 

5.3 
c 

4.6f 

11.2 
11.8 
11.3 
11.8 

aMax of UMEP occurs at s^EP = -1.46 bohr. Results denoted VTST (maxUMEP) are obtained by finding the maximum of 
W(GT, s | T) rather than G°(GT, s | T). 
bMax of UMEP occurs at s!f p = -1.40 bohr. 
: Same as above because the maximum of UMEP occurs at the conventional transition state in the ESP method. 
d Variational transition state occurs at sMEP 

MEP . ' Variational transition state occurs s 
Variational transition state occurs at s^ 

1.41 bohr. 
-1.35 bohr. 
= -0.07 bohr. 

TABLE V  
Rate constants of reaction R2 at 298 K. 

Mins"1) 
SES 

SM5.2R/PM3//PM3 SM5.4/PM3//PM3 

TST 
VTST(max L/MEP 

CVT 
CVT/ZCT 
CVT/SCT 
VT/LCT 
CVT/AIOMT 

1.8E4 
1.8E4 
1.8E4 
1.4E7 
5.8E7 
2.5E8 
2.5E8 

1.8E6 
1.8E6 
1.8E6 
2.7E8 
6.4E8 
1.6E9 
1.6E9 

ESP 
SM5.4/PM3 

' Same as above because the maximum of UMEP occurs at the conventional transition state in the ESP method. 

4.9E5 
a 

4.9E5 
4.7E7 
1.2E8 
8.1 E8 
8.1 E8 

approximation which will often be in reasonable 
agreement with the ESP method and can be em- 
ployed economically with a variety of different 
electronic structure methods (e.g., a variety of ab 
initio methods) to obtain the gas-phase reaction 
path. 
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Introduction 

The rate at which molecules undergo transi- 
tions between quantum states in condensed 

phases plays an important role in energy relax- 
ation and dissipation in these systems. The compu- 
tational evaluation of these rates present difficult 
challenges. If the energy difference between the 
initial and final states is large compared with KBT, 
then the quantum nature of the transition is often 
very important and must be accounted for in a 
calculation of the rate. On the other hand, the fact 
that these processes take place in condensed-phase 
systems requires that the evaluation of the rate 
involves an average over the multitude of config- 
urations that are accessible to the system. Semi- 
classical approximations [1-3] can often provide 
useful procedures for studying these types of dy- 
namical processes in condensed-phase systems. 
Semiclassical methods include important quantum 
aspects of the problem, including phase interfer- 
ence between different semiclassical amplitudes, 
while relying only on information obtained along 
classical trajectories. 

In the work described here, semiclassical meth- 
ods are employed for the calculation of the rate of 
vibrational energy relaxation in condensed-phase 
systems. Although this work is specialized on vi- 
brational relaxation [4-21], the semiclassical meth- 
ods are, in principle, applicable to other quantum 
transition processes as well. In this semiclassical 
description of the relaxation process, the rotational 
and translational degrees of freedom evolve along 
classical trajectories on the potential energy sur- 
face for the system in a given vibrational state. The 
transitions between vibrational states are ac- 
counted for by means of hops from the energy 
surface corresponding to the system in one vibra- 
tional state to the surface corresponding to another 
vibrational state. The momenta of the rotational 
and translational degrees of freedom are adjusted 
so as to conserve energy when the system under- 
goes the hop. This semiclassical surface hopping 
procedure is described in the subsection Semiclas- 
sical Surface-hopping Expression  It is then ap- 
plied to the propagation of the density in the 
subsection Surface-hopping Treatment  An al- 
ternative quantum/classical propagation proce- 
dure that is appropriate for degenerate or very 
nearly degenerate transitions is described in the 

subsection   Quantum-Classical   Approach The 
results for the time-dependent probability for tran- 
sitions between vibrational states are presented in 
the third section. These transition probabilities ex- 
hibit quantum interference effects at short times, 
and this feature is examined in detail through 
model calculations. In the case of resonant transfer 
between the same vibrational state of identical 
molecules, the quantum coherence effects are 
found to persist for several picoseconds in model 
calculations. 

Theory 

SEMICLASSICAL SURFACE-HOPPING 
EXPRESSION FOR NONADIABATIC 
TRANSITIONS 

It is useful in many problems to divide the 
system into "fast" coordinates, r, and "slow" coor- 
dinates, R. The division of molecular systems into 
"fast" electronic and "slow" nuclear coordinates is 
a familiar example. A quantum description is gen- 
erally employed for the electronic coordinates 
within the Born-Oppenheimer approximation [22]. 
In many problems, semiclassical approximations 
[1-3] provide a very useful approach for treating 
the nuclear degrees of freedom, since semiclassical 
methods retain the important quantum inter- 
ference aspects of the problem, while utilizing 
information from classical trajectories to evaluate 
approximate wave functions, state energies, 
transition applitudes, etc. 

The quantum time evolution of a wave function 
can be expressed as [23] 

^(R,O = /rfR1K(R,R],f)^(R1,0),      (1) 

where K(R,RV t) is the propagator. The semiclas- 
sical expression for the propagator is given by [1] 

K(R,Rut)= £ (-2irih)~ 
d2S 

dRBVL, 

1/2 

X exp(iS/h),   (2) 

where d is the dimensionality of R, and S(R, Ru t) 
is the action for the classical trajectory that travels 
from Rj to R in time t. The summation in (2) is 
over all classical trajectories which travel between 
Rj an R in time t. 

The Born-Oppenheimer approximation ignores 
the action of the kinetic energy operator for the 
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slow variables on the wave function for the fast 
degrees of freedom [22]. These neglected terms, 
which are called the nonadiabatic coupling, are 
responsible for transitions between the adiabatic 
(Born-Oppenheimer) states of the fast coordinates. 
For problems in which two or more adiabatic states 
are important, there is an energy surface, E;(R), 
corresponding to each of these states. These E;(R) 
are the fast variable adiabatic-state energies, and 
they depend on the slow coordinates R. The semi- 
classical treatment of the slow degrees of freedom 
is considerably more difficult when there are sev- 
eral interacting adiabatic states, since there is no 
longer a smg/e-energy surface on which to run the 
classical trajectories. 

Various semiclassical methods have been devel- 
oped for treating problems with nonadiabatic tran- 
sitions [3, 24-42]. These include the effective path 
methods [24-27] which run trajectories on a sin- 
gle-energy surface obtained by averaging the fast 
variable Hamiltonian over the time-dependent fast 
variable wave function. The complex trajectory 
method of Miller and George [28] is another semi- 
classical technique for problems involving nonadi- 
abatic transitions. This method integrates complex 
trajectories around the points where the surfaces 
cross in the space of complex values of the slow 
coordinates. Surface-hopping techniques represent 
a third class of semiclassical nonadiabatic methods 
[29-42]. In these methods, classical trajectories un- 
dergo discrete jumps between the different adia- 
batic energy surfaces. The work described in this 
article is based upon semiclassical surface-hopping 
procedures. 

In can be shown that the propagator for a multi- 
surface nonadiabatic problem can be written as 
[41] 

K,-(R/,R0,f) 

= (p,.(R0)4.exp(iS,/ft) 

+ E <P/(R0)/ dui AijO-ijiRjexpUSij/h) 
i 

+ L I>*(Ro)/ A/'d«2 A^o-i/R,) 
;'   k 

X ajk(R2)expOSijk/h) + •••. (3) 

The <p.(R)'s are the adiabatic fast coordinate states. 
Kj(Rf, R0, 0 is the semiclassical surface-hopping 
propagator for the system to be at R^ in some 
(pXRf) at time t, given that it was at R0 in state 

<p;(R0) at time zero. The first term on the r.h.s. of 
(3), ^(R0)A,- expdSj/h), is the single-surface 
semiclassical propagator on energy surface E,(R), 
corresponding to adiabatic state <p{. St and A, are 
defined as in the usual single surface case given by 
(1) and (2). This term implicitly contains a sum 
over all classical trajectories on surface i that travel 
from R0 to R^ in time t. This sum is not explicitly 
shown to simplify the notation. 

The second term on the r.h.s. of (3) includes all 
contributions to the semiclassical nonadiabatic 
propagator that are first order in the nonadiabatic 
coupling. This term contains a summation overall 
all possible final states <p.. The nonadiabatic cou- 
pling between the initial state cpt and the final state 
(Pj is given by 

r\M <^(R)|Vft(R)>, (4) 

where V is the gradient with respect to the "slow" 
coordinates, R, and < • • • > denotes integration over 
the fast coordinates, r. Since V<p,(R) is a vector 
function, KI,; is also a vector. For a given ;', the 
first-order term in the propagator includes contri- 
butions from paths that follow a classical trajectory 
in the slow coordinates on adiabatic energy surface 
E,(R) from R0 to a hopping point Rv The trajec- 
tory then hops to surface E;(R) at this point and 
continues on this surface to the final point R^. The 
term includes all such hopping paths with a total 
propagation time of t. The energy is conserved in 
the hop by adjusting Pv, the component of the 
momentum which is parallel to KI^CRJ). The hop- 
ping points, Rj, for this set of single-hop trajecto- 
ries form a one-dimensional curve [41]. The ux 

integration in (3) is an integration over this curve. 
The condition that energy is conserved during the 
hop determines the magnitude of Pv, but not its 
sign. In general, hopping trajectories with both 
signs of Pv can contribute to the surface-hopping 
propagator [32]. The action for this hopping trajec- 
tory, S, ■, is just the sum of the classical actions for 
the two portions of the trajectory, before the hop 
and after the hop. The prefactor for the first-order 
term in the nonadiabatic propagator is given 
by [41] 

A, (-2U-IÄ)" 
p,i 

d% 

^Rfl^Ry- 

1/2 

(5) 

This prefactor has the same form as the prefactor 
for single-surface propagator, except for the addi- 
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tion of the factor |P -/P^l, which is the absolute 
value of ratio of the r) component of the momen- 
tum after the hop and before the hop at R,. The 
only remaining factor in the first-order contribu- 
tion to the surface-hopping propagator is the tran- 
sition amplitude [41] 

aa = 
p  + p 

v> -    VI 

2 P. VI 
Vn (6) 

where the plus sign is used if Pvi and P have the 
same sign and the minus sign is used if P • and 
Pvj have opposite signs. Pvi and P • are treated as 
positive quantities in (6), and TJ, • is the magnitude 
of Tf|/y- multiplied by the sign of P, • 17, . 

The nth-order term in (3) contains contributions 
from trajectories with n intersurface hops. This 
requires an integration over the variables 
ux,u2,...,un, which parameterize the n hopping 
points. (Alternatively, these integrations could be 
converted into integrations over n hopping times 
t1 < t2 < ■■■ £„,with t1 > Oand t„ < t. This change 
of integration variables would introduce an addi- 
tional Jacobian factor in the integrand.) The contri- 
bution for each nth-order hopping trajectory con- 
tains the usual phase factor of the form exp(iS/h), 
where S is the classical action for the n hop trajec- 
tory; n transition amplitudes; crjk, given by (6), and 
a prefactor A, which has the form of (5), except 
that it contains n \ P^k/P | factors, one for each 
transition. The nth-order term is also summed 
over all sequences of adiabatic states resulting 
from the n transitions. In addition, recall that the 
zeroth-order term implicitly includes a summation 
over different classical trajectories that travel from 
the R0 to R| in time t. Each classical trajectory in 
the zeroth-order term gives rise to a set of surface- 
hopping trajectories, parameterized by the H inte- 
grations. Just as is the case for the zeroth-order 
term, this sum over different sets of trajectories is 
not explicitly shown in (3). 

It has been shown [41] that this form for the 
semiclassical surface-hopping propagator satisfies 
the full time-dependent Schrödinger equation, in- 
cluding nonadiabatic coupling terms, to order h. 
This is the same order that the single-surface semi- 
classical propagator, (2), satisfies the single-surface 
time-dependent Schrödinger equation. Other sur- 
face-hopping semiclassical procedures [29-31, 
33-40] have been developed for nonadiabatic 
problems. In particular, the fewest-switches 
method of Tully is a procedure that affords rela- 

tive computational simplicity, while providing ac- 
curate results [36, 37]. The surface-hopping propa- 
gator given by (3) is very useful for the work 
described in the rest of this article, and it is em- 
ployed throughout. 

SURFACE-HOPPING TREATMENT OF 
VIBRATIONAL TRANSITION PROBABILITIES 

The quantity that we are interested in is the 
probability that the system, which was in vibra- 
tional state i at time t = 0, is in vibrational state / 
at time t. This quantity is formally given by [43] 

Plf(t) = QjxTrs{f\exV{-iHt/h)\i) 

X (i\exp(-ßHm(i\exp(iHt/h)\f),   (7) 

where Trs indicates a trace over the slow degrees 
of freedom and Q, = 7>s</|exp(-/3H)|/>. This ex- 
pression projects the canonical density operator, 
p = exp(-/3H), onto the initial vibrational state, 

I i), using the density projection operator, 1001 "• 
1001, and propagates this projected density for 
time t, exp(-z7-ft/fi)p, exp(/Hf//0, where p, = 
lOO'lplOO'l- The propagated density is then pro- 
jected onto the final vibrational state, |/>, and a 
trace over slow coordinates is performed to give 
the transition probability. In this work, an adia- 
batic approximation is employed to accomplish the 
separation of the degrees of freedom into "fast" 
vibrational coordinates, r, and "slow" solvent or 
bath coordinates, R. In the adiabatic approxima- 
tion, the vibrational wave functions and energies 
are R-dependent, and the bath coordinates evolve 
on the vibrational energy surfaces. If the coordi- 
nate representation is employed for the slow vari- 
ables, this transition probability takes the form [44] 

P,f(0 = QrfdRffdRiafdRlbKfi(RflRia,t) 

X Pll{Rw,Rlb,ß)Kf!{R},R,b, t)*,   (8) 

where pu(Ria,Rlb, ß) = 0',Rje~"H|z,R,.fc> is the 
canonical density function for the system in this 
representation, and Kfj(Rj, R;, t) = </, RJ 
exp(-iHt/fi)\i,R,-> is the nonadiabatic transition 
propagator corresponding to final state <Pj(Rf). This 
propagator is given, within the semiclassical ap- 
proximation, by all terms in the surface-hopping 
expression, (3), with cpj(Rj) as the final state. 

The lowest-order approximation (in the nonadi- 
abatic coupling) for P,y(0 is obtained by using an 
adiabatic approximation for the canonical density, 
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p„(R!fl/R,,,, jß), and the first-order approximation, 
(3), for the transition propagators. The high-tem- 
perature approximation is utilized for the canoni- 
cal density [44] 

Pll(Rm,Rib/ß) 

= {m/2TTh2ß)d/1 exp{-(m/2h2ß) 

x(R!fl - Ribf - /SWR,-,) + ^(R,.b)]/2}, 

(9) 

where d is the dimensionality of R, and V{ = E,(R) 
is the adiabatic potential energy for the bath coor- 
dinate when the molecule is in vibrational state i. 
Notice that the semiclassical propagation of the 
density and the calculation of the transition proba- 
bility require an integration over pairs of hopping 
trajectories, since there are two propagators in (8). 
One of these trajectories travels from R!a to R^ 
with a single hop between the initial and final 
vibrational states, while the other travels from Rjb 

to Rf, also with a single hop. If the R^r integration 
is performed by the method of the stationary phase, 
the stationary-phase condition is that the momen- 
tum at Rj is the same for both paths [44-45]. Since 
both paths have the same phase space point at R^ 
in this case, the two trajectories are identical after 
they have both hopped. This stationary-phase inte- 
gration connects the two paths at the point of the 
second hop and combines the two semiclassical 
propagators into a single propagator associated 
with the combined trajectory. 

It can be shown [46] that the second-order tran- 
sition probability, PfjXt), depends only on the 
portion of the trajectories when one trajectory is 
still on the initial adiabatic surface and the other 
trajectory has already hopped to the final adiabatic 
surface. In this case, the transition probability can 
be reexpressed in the form [46] 

PffKt) = IReQ-1 f dRudPufdr(t - r)(Pvfa/m) 

x(Pvfb/m)JAtfexp(iSif/h) 

X cr,/(Rlfl)a-;/(Rli,)p„.(R,fl,R;i„ ß), 

(10) 

where Rlfl is the point at which the trajectory from 
R,-a to Rf hops; Rlb, the hopping point for the 
trajectory from R;6 to Rf; r, the time between the 
first and second hops; Pvfa and Pvfb, the values of 
P <■ for the trajectories labeled a and b, respec- 
tively; and ¥Uf, the momentum at Rlfl on the final 

adiabatic surface. / is the Jacobian for the change 
of integration variables from Rlb to Plfly that is 
made in deriving (10). The semiclassical ampli- 
tude, Aif exp(iSlf/h), corresponds to a trajectory 
that travels on the final adiabatic surface from RlB 

to R16 in time T and then hops to surface i and 
travels backward in time for time T. This ampli- 
tude accounts for the combined amplitudes of the 
two trajectories on different surfaces in (8). 

The derivation [44, 46] of (10) transforms the 
integration over Rifl, R,-,,, ua, and ub into an inte- 
gration over the two hopping points, Rlfl and Rlfc, 
the time between the hops, T, and the time of the 
first hop. The integrand in this expression does not 
depend on the time of the first hop, tv and the 
integration over tt simply gives the factor (t - T). 

The Rlb integration is then changed to the Plfl/ 

integration in (10). It is assumed in (10) that the 
hop at Rlfl occurs before the hop at Rn. The 
opposite possibility is accounted for by taking 
twice the real part of the contribution when the 
Rlfl hop comes first. According to (10), the calcula- 
tion of PffKt) requires the integration over all 
times T and all single-hop trajectories of the type 
associated with the semiclassical amplitude in (10). 

Since the two branches of the trajectories are on 
different adiabatic surfaces, the contribution to the 
integrand is generally small due to phase cancella- 
tion unless T is small [44-48]. We refer to the 
decay time for the T integration as the quantum 
coherence time, TC. For times t » TC, the r integra- 
tion can be extended to infinity with introducing 
serious error. In this case, the only t dependence 
in the transition probability comes from the t in 
the t - T factor. Therefore, Pif(t) takes the form 

PM) = kift + C, t » TC, (11) 

where the constants kif and C are given by the 
integrals over T, Rlfl, and Pla/ for the terms con- 
taining t (after the t has been taken out of the 
integrand) and T in (10), respectively. The constant 
k{f is the rate constant for the transition. 

If only very short time trajectories contribute 
significantly to the transition probability due to 
phase cancellation, then it should be possible to 
obtain accurate results using short-time approxi- 
mations for the dynamics of the slow degrees of 
freedom. Specifically, we considered approxima- 
tion calculations which treat the forces on the bath 
coordinates, the difference between the initial and 
final energy surfaces, and the nonadiabatic cou- 
pling as constant [44-48]. The d-dimensional bath 
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coordinate dynamics become separable into d 
one-dimensional problems when these approxima- 
tions are made, and only the direction parallel to 
the nonadiabatic coupling vector plays a role in 
the vibrational relaxation. The contributions from 
remaining perpendicular bath coordinates cancel 
between the integrals in (10) and the correspond- 
ing factors in the partition function, Q,. Within 
these approximations, the rate constant can be 
expressed as a Boltzmann average [44]: 

kif= Qi' f dRexpl-ßV^mK^R),    (12) 

where K^iR) is the integral over T and the 17 
component of Plfl/ of expißVj) times the factors 
multipling t in (10) for the one-dimensional prob- 
lem in the 17 direction. 

QUANTUM-CLASSICAL APPROACH 
FOR RESONANT VIBRATIONAL 
ENERGY TRANSFER 

The semiclassical methods described in the pre- 
vious section are well suited for the calculation of 
vibrational energy relaxation rates, when the en- 
ergy difference between the initial and final vibra- 
tional state is large compared with KBT. Resonant 
transfer of vibrational energy between different 
molecules represents the opposite extreme. In the 
adiabatic representation, the intermolecular inter- 
actions break the exact degeneracy of the vibra- 
tional states of different molecules. However, the 
energy differences are generally quite small com- 
pared to KBT. In this case, it is reasonable to 
ignore the changes in the bath momentum that 
accompany changes in the vibrational state of the 
system. If these momentum changes are ignored, 
then the bath propagation can be treated as occur- 
ring along a single classical trajectory. The vibra- 
tional coordinates are set to their equilibrium val- 
ues, ie, during the propagation of the classical 
trajectory for the bath coordinates. 

The evolution of the vibrational degrees of free- 
dom can be treated quantum mechanically in this 
case [49]. We define a set of N vibrational basis 
functions for the N molecule system. The ;'th vi- 
brational basis function, \\ij, is the product of a 
vibrational wave function for each molecule, with 
the ;'th molecule in the excited vibrational state of 
interest and the remaining molecules in their vi- 
brational ground state. The vibrational Hamilto- 
nian is defined as Hv = Tv + Vv(r,R), where Tv 

is  the  vibrational  kinetic  energy  operator and 

V(r, R) = V(r, R) - V(re, R). The vibrational 
Hamiltonian depends on the bath coordinates 
through Vv(r,R). Within the vibrational subspace 
of interest, which is defined by the N basis func- 
tions, Hv can be expressed as an N X N matrix, 
H", and the vibrational wave function is a linear 
combination of the basis functions 

¥'(0 =  ZcjiOipj. (13) 
/=i 

The R dependence of W, together with the t 
dependence of R along the classical trajectories for 
the bath variables results in tF being time-depen- 
dent. Within the N X N matrix representation of 
the vibrational transfer problem, the propagation 
of the vibrational wave function is given by 

CO + 8t) = exp{-iW8t/h)C(t),      (14) 

where C(f) is the column composed of the cXt). In 
the work described here [49, 50] the matrix propa- 
gator, exp(-iHv8t/h), is evaluated by treating H" 
as independent of time over the short 81 interval. 
H" is diagonalized for each interval, UTH"U = D 
(where D is diagonal and U is unitary), and the 
matrix propagator is expressed as exp(-Mv8t/h) 
= \Jexp(-iD8t/h)UT. 

The appropriate initial condition for the reso- 
nant transfer problem is that the vibrational excita- 
tion is localized on a single molecule, which is 
taken to be molecule one without loss of general- 
ity. This corresponds to the condition that c.-(0) = 
S1j. The probability that the excitation has been 
transferred to molecule / at time t is given by 
ky(f)| . This probability is averaged over a canoni- 
cal ensemble of initial coordinates and momenta 
for the classical bath coordinate trajectories [49, 
50], giving P,;.(0 = <|c;(f)|

2>r, where < ••• >r indi- 
cates this ensemble average, which is performed 
using a Monte Carlo algorithm [51]. 

Results 

Results from Monte Carlo calculations [44, 45] 
for the relaxation rate for the first excited vibra- 
tional state of a diatomic in a simple monoatomic 
solvent are presented in Table I. The basic system 
mimics Br2 in Ar. A Morse potential is employed 
for the diatomic bond potential and Lennard-Jones 
potentials are used for the interactions between the 
different solvent atoms and between the atomic 
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centers in the diatomic and the atoms in the sol- 
vent. The purpose of the calculations is to explore 
the sensitivity of the relaxation to changes in dif- 
ferent physical parameters that define the system, 
rather than to evaluate the relaxation rate for a 
specific physical system. Therefore, no attempt was 
made to optimize the potential for vibrational re- 
laxation calculations. The calculations were per- 
formed within the short-time approximations for 
the surface-hopping dynamics of the solvent that 
are described in the subsection Surface-hopping 
Treatment The relaxation rate is obtained as a 
Monte Carlo average over solvent configurations, 
as described by Eq. (12). The simulation system 
consists of a single diatomic with 107 solvent atoms 
in a box with an excluded volume fraction of 0.3 
at T = 300 K. Periodic boundary conditions are 
employed. The potential parameters and details of 
the simulation procedure can be found elsewhere 
[44, 45]. 

The results [44, 45] presented in Table I indicate 
that the relaxation rate of this system is more 
sensitive to the mass of the solvent atoms than to 
the mass of the diatomic. We also found that 
neglecting the components of the nonadiabatic 
coupling vector corresponding to rotations of the 
diatomic had a negligible effect on the relaxation 
rate. These results are reasonable, since the solvent 
atoms in this system are lighter than the diatomic 
molecule. Therefore, the diatomic center-of-mass 

TABLE 1 
Rate for 1 -> 0 vibrational relaxation for diatomic 
in simple solvent [44, 45]. 

System 
(change from basic system) Rate (ps   1 ) 

Br2 in Ar (basis system) 0.37 x 10" -2 

Solvent mass changed 
to 20.18 amu 0.99 x 10" -a 

Diatomic mass halved 
(reduced mass held fixed) 0.49 X 10" -2 

Diatomic frequency doubled 0.024 X 10" -2 

e doubled for Br—Ar 
Lennard-Jones potential 0.61 X 10" -2 

6-12 Br—Ar potential replaced 
with 6 -9 potential 0.072 X 10" -2 

6-12 Br—Ar potential replaced 
with 6-15 potential 0.37 X 10" -2 

Br2 in Ar, ignoring rotational 
components of % 0.34 X 10" -2 

Br2 in Ar, including only 
rotational components of % 0.014 X 10" -2 

motion and rotations correspond to relatively 
low-frequency motions, and the comparatively 
"high-frequency" solvent motions provide better 
accepting modes. The relaxation rate is also sensi- 
tive to the frequency of the vibrational potential, 
while it is less sensitive to the Lennard-Jones en- 
ergy parameter, e, for the diatomic-solvent interac- 
tions. Softening the 6-12 Lennard-Jones potential 
to a 6-9 potential results in a large decrease in the 
relaxation rate, indicating that the hardness of the 
repulsive interactions is a significant factor in the 
vibrational relaxation in this system. On the other 
hand, replacing the 6-12 potential with a 6-15 
potential had little impact on the rate, suggesting 
that there is a saturation of this repulsive hardness 
effect. 

These calculations are based on short-time ap- 
proximations for the solvent dynamics. These ap- 
proximations rely on the argument that the phase 
difference between two trajectories, one on the 
initial vibrational energy surface and the other on 
the final vibration surface, should be a rapidly 
growing function of time. If this is the case, the 
averaging of the rate expression over the initial 
coordinates and momenta for the classical trajecto- 
ries produces significant phase cancellation, except 
at early times. To test these approximations, we 
considered a simple one-dimensional model in 
which the center of mass of a single molecule 
moves between two fixed solvent atoms [46-48]. 
The center-of-mass motion is the lone solvent coor- 
dinate in this model. Since there is only a single 
bath coordinate, it is feasible to numerically per- 
form the integrations over Rlfl, Plfly, and T in (10) 
without the use of any simplifying approxima- 
tions. The results of these calculations can then be 
compared with those of calculations using the 
short-time approximations. Results [48] are shown 
in Figure 1 for the transition probabilities of a 
system with a triatomic molecule moving between 
fixed solvent atoms. The potential parameters 
model C02 in Ar. The three curves correspond to 
the transition from the first excited state of the 
symmetric stretch to the vibrational ground state, 
from the first excited state of the asymmetric 
stretch to the vibrational ground state, and from 
the asymmetric stretch state to the symmetric 
stretch state. Details of the calculations and the 
potentials are provided elsewhere [48]. The short- 
time approximations provide very good results for 
this system. The transition probabilities are nonlin- 
ear at short times, up to about 0.2 ps, and then the 
quantum oscillations die out and P,y(0 essentially 
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FIGURE 1. Calculated vibrational transition 
probabilities are plotted versus time for one-dimensional 
Ar — C02 — Ar model system [48]. The solid curves are 
results from the full second-order calculations and the 
dotted curves are results obtained using short-time 
approximations for the solvent dynamics. The curves 
labeled a present Pif(t) x 106 for the transition from the 
first excited symmetric stretch vibrational state to the 
ground state. The curves labeled b give Pif(t) x 107 for 
the transition from the first excited asymmetric stretch 
vibrational state to the ground state. The curves labeled 
c present Plf(t) x 108 for the transition from the first 
excited asymmetric stretch vibrational state to the first 
excited symmetric stretch state. 

becomes a linear function of time. The slope of the 
Pjf(t) in the linear region gives the rate constant 
for the vibrational transition, as discussed in the 
subsection Surface Hopping Treatment  

Similar model calculations were performed for 
the Br2 in the Ar system [46, 47]. In this system, 
the short-time approximations are again found to 
provide good results, although the errors are 
somewhat larger than for the C02 in Ar system. 
The quantum oscillators are also more pronounced 
and persist for about twice as long as in the Br2 

case as compared with the C02 system. This is 
quite reasonable, since the C02 has much stronger 
bonds and the energy difference between initial 
and final vibrational states is much larger for the 
C02 transitions than for the Br2 transition. We also 
performed similar model calculations which mimic 
KrF2 between Ar atoms [48]. This molecule has 
weak bonds, and the coupling between the bonds 
is weak, since the central atom is heavy compared 
with the light end atoms. Due to the weak cou- 

pling between the bonds in KrF2, the energy differ- 
ence between the first excited states of the asym- 
metric and symmetric stretches is quite small: 
93 cm-1. In this KrF2 case, the quantum oscilla- 
tions in the transition probabilities are more pro- 
nounced and persist for about 0.5 ps. The short- 
time approximations are much less accurate, com- 
pletely breaking down for the asymmetric stretch- 
to-symmetric stretch transition. 

In large condensed-phase simulations, where 
there are many solvent coordinates, there will be a 
great deal more averaging than in these one-di- 
mensional model calculations. This increased aver- 
aging may result in a decrease in the quantum 
nonlinearities in the transition probabilities. As a 
result, the errors introduced by the short-time ap- 
proximations in the model calculations are ex- 
pected to be provide an upper limit on the size of 
the errors introduced by these approximations in 
the larger simulations. Although the short-time 
approximations might fare better in a large con- 
densed-phase simulation due to more complete 
averaging and phase cancellation, these calcula- 
tions suggest that care must be taken when apply- 
ing these short-time approximations to systems 
with very low energy vibrational transitions. 

Figure 2 presents results from simulations on 
two-dimensional clusters of N identical diatomic 

1.00 

0.95 

0.90 
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FIGURE 2. Plot of the calculated probability that a 
vibrational excitation on molecule one at time zero 
remains on molecule one at time f for two-dimensional 
Br2 clusters [50]. The dashed curve is for a cluster of 
10 molecules and the solid curve is for a cluster of 
20 molecules. 
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molecules for the resonant transfer of a single 
quantum of vibrational energy [50]. Results are 
shown for N = 10 and N = 20. The quantum- 
classical simulation method described in the 
subsection Quantum-Classical Approach... was 
employed. The use of two-dimensional systems 
reduces the number of coordinates without chang- 
ing the essential physics, and it increases the size 
of the cluster, as measured by the diameter, for a 
given value of N. The potential parameters are 
chosen to model a cluster of Br2 molecules. The 
individual molecules have harmonic bond poten- 
tials with co = 60.06 ps"1. The intermolecular in- 
teractions consist of Lennard-Jones interactions be- 
tween the atoms in different molecules with e = 
170 K and a = 3.6 A. An additional harmonic 
potential is added between the center of mass of 
each molecule and the origin of the coordinate 
system. This keeps the cluster from fragmenting. A 
force constant of 10 K/A2 is employed for this 
additional potential in both calculations presented 
in the figure. The quantity shown, P^t), is the 
probability that the single vibrational quantum, 
which was localized on molecule one at time zero, 
is still on molecule one at time t. 

The initial-phase space points for the classical 
trajectories are selected using a Monte Carlo sam- 
pling procedure at T = 300 K. The results shown 
are the average of the transition probabilities over 
400 trajectories [50]. The initial-phase space points 
for these trajectories are well-separated points in 
the Monte Carlo sampling to assure a lack of 
correlation among the trajectories. The quantum- 
classical simulation procedure for resonant trans- 
fer has been tested against a modified version of 
the semiclassical surface-hopping procedure at 
short times for a simple model with two Br2 

molecules moving in one dimension between fixed 
Ar atoms [49]. The results of the two methods 
agreed to within statistical error, indicating that 
ignoring the small changes in the bath momentum 
when the system undergoes a vibrational transi- 
tion is a good approximation in these resonant 
transfer calculations. 

The interesting feature of the results is that the 
transition probability is nonlinear for several pi- 
coseconds. The total transition probability, 1 - 
P:(0, appears quadratic at short times and then it 
crosses over to a linear behavior at about 5 ps. This 
indicates that the quantum coherence time for these 
nearly resonant transitions is around 5 ps, which is 
a somewhat surprising length of time for quantum 
effects to persist in a cluster at a high temperature. 

These results indicate that the possibility of long 
quantum coherence times must be accounted 
for in order to accurately evaluate transition rates 
between degenerate or nearly degenerate states 
[49, 50]. 

Discussion 

In this article, we have outlined computational 
methods for studying vibrational relaxation in con- 
densed systems. We have found that semiclassical 
surface-hopping procedures provide a very useful 
methodology for vibrational energy relaxation. 
Model calculations indicate that short-time ap- 
proximations for the solvent dynamics, which sig- 
nificantly simplify the calculations in condensed- 
phase systems, yield very accurate results as long 
as the energy difference between the vibrational 
states of interest is not small compared with KBT. 
The results from these model calculations show 
quantum coherence effects for a few tenths of a 
picosecond. Calculations of the resonant transfer of 
a vibrational quantum of energy in clusters of 
identical molecules indicate that the quantum co- 
herence can persist for several picoseconds in this 
case. It is reasonable to assume that the transfer 
probabilities for transitions between vibrational 
levels, which are energetically very close, will also 
display long quantum coherence times. These 
quantum coherence times can be expected to vary 
from a quite long (a few picoseconds) to quite 
short (a few tenths or hundredths of a picosecond) 
as the energy difference between the levels varies 
from very small to quite large compared with 
KBT. 

Bittner and Rossky [52] recently presented a 
discussion of the decoherence of quantum transi- 
tion probabilities in a condensed-phase system. 
Their analysis was based upon the idea that the 
interaction of the degrees of freedom undergoing 
the transition (which we simply refer to as the 
system) with the bath coordinates has the same 
effect as a measurement of the system, producing 
a reduction of the mixed state system to a pure 
state system. The classical trajectories describing 
the evolution of the bath degrees of freedom de- 
pend on the quantum state of the system. The 
divergence of trajectories, which correspond to dif- 
ferent quantum states after the system undergoes 
a reduction to a pure state density, produces the 
quantum decoherence. Bittner and Rossky [52] also 
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demonstrated through model calculations that the 
transition probability can depend strongly on the 
quantum coherence time. Bittner and Rossky con- 
sidered coherence times on the order of 10 fs or 
less in their model calculations. This is reasonable, 
since they are modeling electronic transition and 
the energy differences between quantum states is 
much higher than is the case for the vibrational 
transitions considered here. The larger energy dif- 
ferences result in a more rapid divergence of the 
trajectories and shorter coherence times. 

The formalism discussed in the current work 
contains the decoherence produced by the diverg- 
ing of the trajectories, which is included in the 
analysis of Bittner and Rossky [52]. There are two 
propagators in Eq. (8) for the time-dependent tran- 
sition probability, one of them complex-con- 
jugated. The calculation of the transition probabil- 
ity requires an integration of all pairs of hopping, 
and the phase of the integrand is given by the 
difference in the phases for the two trajectories. 
Only those times when the two trajectories corre- 
spond to the system in different quantum states 
contribute to the integration [44-50]. The diverg- 
ing of these trajectories is one of the features that 
contributes to quantum decoherence in our work. 
In the quasidegenerate case of resonant vibrational 
energy transfer, we find that the trajectories di- 
verge very slowly and the phase cancellation in- 
creases very slowly as well. In this case, the loss of 
correlation in the coupling between quantum states 
as a function of time also plays an important role 
in the decay of quantum effects [50]. The pair of 
trajectories describing the evolution of the transi- 
tion density have different hopping times. The 
lowest (second)-order transition density contains a 
factor of the interaction coupling the initial and 
final states from each of the hops. The values of 
the coupling at the two hopping times become 
uncorrelated as the time between the hops in- 
creases. This loss of correlation has an impact on 
the integration over all pairs of trajectories, which 
is similar to the effect of increasing phase cancella- 
tion in those cases where the trajectories are rapidly 
diverging [50]. 

In conclusion, the semiclassical surface-hopping 
method and the quantum-classical simulation pro- 
cedure appear to provide computationally useful 
and accurate methods for the large energy gap and 
nearly degenerate cases, respectively. On the other 
hand, the development of methods that can sys- 
temmatically and accurately account for the quan- 
tum nature of the transition and provide accurate 

results for the full range of possibilities, including 
the intermediate range of energy differences, re- 
mains a challenge. 
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Introduction 
present a comparative overview of single-electron 
capture by a-particles from different alkali atoms. 

Charge-transfer processes involving multiply 
charged ions and alkali atoms have, lately, 

been a subject of detailed theoretical and experi- 
mental studies (see [1] and [2] for reviews on the 
subject). Single-electron capture in such reactions 
often leads to selective population of certain ex- 
cited states, especially at low and intermediate 
energies. These special products obviously radiate 
and, hence, have the potentiality of turning into 
ultraviolet and X-ray lasers [3]. So, it is not sur- 
prising to find in the literature a flurry of activity 
—theoretical and experimental—on electron cap- 
ture by a-particles from alkali targets, especially 
the low-lying alkalies such as Li and Na [4, 5]. 
Another important reason behind these studies 
may be the simplicity with which the aforesaid 
interacting systems can be looked at; they provide 
a pseudo-one-electron picture. The outermost 
weakly bound electron of the alkali target hardly 
allows any one else to participate in the collisional 
processes leading to single-electron capture by the 
incident a-particle. 

Although Li and Na have enjoyed much atten- 
tion, recently an attempt was made by Schweinzer 
and Winter [6] to go beyond this, when they mea- 
sured the cross sections for single-electron transfer 
from ground state K to the incoming bare nuclei of 
He at low impact energies. Previously, Shah and 
Gilbody [7] also carried out such measurements in 
the intermediate energy region. These measure- 
ments on K and alpha have been a motivating 
factor for us to examine the process of charge 
exchange in this reaction from a theoretical point 
of view. This may also be viewed as a step in the 
direction of a systematic study of various alkali 
targets at low and intermediate energies so as to 
observe the target dependency of these cross sec- 
tions (see also Nagata [8]), if any. Although similar 
in electronic structure of their cores, alkali atoms 
provide a systematic variation in the binding of 
their outermost electron. This can have a profound 
effect on the positions of the group of electronic 
states responsible for charge transfer. With this 
motivation, we proceed not only to investigate the 
K-a system for which some measurements are 
available in the literature, but also go one step 
ahead and attempt to look into the interesting case 
of Rb-a. With these calculations, we also intend to 

Theoretical Methods 

We used the standard semiclassical MO expan- 
sion method for our present study. In this method 
(see, e.g., Kumar et al. [9] and references therein), 
the pseudo-one-electron system is described by a 
quasi-molecule model, where the active electron is 
supposed to move in the combined electric field of 
the two cores (the alkali core and the bare nucleus 
of He). The dynamics of the relative motion of the 
two nuclei is described in terms of a straight-line 
trajectory, and the effective potential, Vert, of the 
participating electron is accounted for by invoking 
the technique of the pseudo-potential [10]: 

Veff(r) = VSR(r) + VLR(r) + Va,        (1) 

where the short-range part VSK(r) is given by 

VSR(r) = L V-;
s*(r)|Y,„,(?)><Y;„,(r)|.      (2) 

l,m 

In this expression, |Y/m(r)> are the spherical har- 
monics and V,SR(r) is the Gaussian-type radial 
function: 

Vt
SR(r) = A, exp(-B,r2). (3) 

The /-dependent pseudopotential parameters A, 
and B, used above were chosen to fit the spectro- 
scopic data and were tabulated by Bardsley [10] 
for K and Rb. The long-range part, VLR, of the 
effective potential consists of the polarization 
terms: 

VLR(r) = 
2(r2 + d2f      2(r2 + d2f 

and 

Vc'(r) = 1/r, 

(4) 

(5) 

where ad and aq are the dipole and quadrupole 
polarizabilities, respectively, and d is the cutoff 
distance. The motion of the bound electron is de- 
scribed quantum mechanically and we performed 
the structure calculation by expanding the electron 
wave function in terms of molecular orbitals (MO). 
They, in turn, are constructed by a linear combina- 
tion of Slater-type-orbitals (STOs) centered on the 
core of the alkali atom as well as on the incident 
a-particle ion. In the present study, we used the 
STOs provided by Kimura et al. [11] for alkali 
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targets. The basis set centered on the a-particle is 
of hydrogenic character and was given by Sato and 
Kimura [4]. The motion of the electron with re- 
spect to the center of mass of the colliding system 
is also introduced in the calculation via a plane- 
wave electron translation factor (ETF). Substituting 
the ETF-modified (see also [12]) electron wave 
function in the time-dependent Schrödinger equa- 
tion, we get a standard set of coupled equations: 

Zfl; EV'(P + A)i;fl,- + SjUj, (6) 

where P and A are the nonadiabatic coupling ma- 
trices and the ETF correction, respectively, and e- 
represents the adiabatic electronic energy of the 
;'th state of the quasimolecule. The above coupling 
matrices are expressed as a sum of radial and 
angular terms which can be evaluated numerically 
[11]. We then solve a finite number of coupled 
equations [see Eq. (6)] for each contributing impact 
parameter to evaluate the probability of transition 
to the /th state: 

Pj(E,b) = \aj( + a,b)\2 

subject to the initial condition 

fl;(f = -a) = S,7. 

(7) 

(8) 

The transition probability multiplied by the impact 
parameter is then integrated over all possible b 
values to yield the integrated cross sections: 

<r} = 2ir f db-P^E, b)-b. (9) 

In the present case, the total number of configura- 
tions used by us for obtaining molecular 2 and II 
states are 23 and 12, respectively. It may here be 
pointed out that the previous calculation per- 
formed on Na-a by the same method [5] also uses 
exactly the same number of configurations to 
obtain molecular states for that reaction. We 
have, thereafter, carried out a 13-state calculation 
(82 and 511) to evaluate cross sections for single- 
electron capture by a-particles from the two alkali 
targets K and Rb. 

Results and Discussion 

ADIABATIC POTENTIAL CURVES 

The adiabatic molecular potential energy curves 
for the K(4s) + He2+ system are presented in Fig- 

ures 1 and 2. The potential surfaces for the other 
system, that is, Rb(5s) + He2+, also exhibit more 
or less similar character, but they do vary in de- 
tails when it comes to various avoided crossings. 
For convenience, we present the atomic states cor- 
relating to various 2 and II states used in our 
calculations for the two interacting systems in 
Table I. We would like to mention at this stage 
that unlike Na(3s) + He2+ capture into He+ (n = 
2) was not found to make any significant contribu- 
tion toward the total electron capture cross sec- 
tions for the two systems that we investigated 
here. We arrived at this conclusion by actually 
performing a couple of 18-state calculations for the 
two systems where all the molecular states cor- 
relating to He+(n = 2) were taken into account. 
In addition, the A molecular states correlating to 
He+(3d and 4d) were also included in these test 
calculations. But no significant contributions were 
made by these states, and, hence, to save on com- 
putational efforts, these states were dropped from 
our final calculation. In this context, it is worth 
pointing out that Shah and Gilbody [7], while 
measuring the total single-electron capture cross 
section on a-K, tried to record the contribution of 
formation of He+(2s) toward this reaction and also 
arrived to the same conclusion regarding their 
relative importance. 

Before we talk about the adiabatic potential 
surfaces of these systems, we would like to point 
out that Coulomb repulsion plays a dominant role 
in shaping the nature of these curves related to 
various outgoing channels of the reaction [He+(nl) 
+ A+]. This, in both cases, causes strong avoided 
crossings with the incoming channel around which 
appreciable flux transfer is mainly responsible for 
the single-electron capture. The incoming channel 
(K4s2) has a very strong avoided crossing with 
the outgoing channel 3d2 [correlated to He+(3rf)] 
around R = 20a0 in K-a. The 3d2 itself interacts 
very strongly with 3p2 in the region of 13a0 < R 
< I7a0. These two interactions are marked as 1 
and 2 in Figure 1 and then are magnified in Figure 
2 to show the involved energy defects for these 
avoided crossings. Another near crossing between 
the incoming channel and 3d2 is observed around 
R = 8a0. Exit channels correlating to the excited 
target, that is, K(4p) and He+ (n = 4 manifold), 
have only weak interaction with the incoming 
channel at still lower R values, which is, therefore 
expected to be important at only high impact ener- 
gies. These avoided crossings also manifest them- 
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Internuclear separation (in a.u.) 

FIGURE 1. Adiabatic potential energies for the quasimolecule (KHe)2+. Various channels are marked by their 
designated symbols as adopted in Table I. 

selves through strong radial couplings in the same 
range of internuclear separation. For example, the 
K4sX «-» 3dX radial coupling has two sharp peaks 
around 7.5aQ and 20 a0. These are the strongest of 
all radial couplings that exist for this system. The 
incoming channel has only a mild coupling with 
3pX at lower R values (= 7aQ). However, the 
3pX «-» 3dX radial coupling exhibits two strong 
peaks around R = 13.5o0 and 17.5a0. Perhaps these 
radial couplings are responsible for the flux finally 
ending up in 3pX, which makes capture into 
He+(3p) the most dominant contributor to the 
process of single-electron transfer up to 30 keV of 
the projectile energy. 3pX also couples signifi- 
cantly with 3sX up to R = 7a0 and this helps in 
populating the outgoing channel correlating to 
He+(3s) + K+. 

So far, as the rotational couplings are concerned, 
they are, more or less, subordinate to the radial 

couplings in populating various manifolds of out- 
going channels. At this juncture, one may refer to 
the observations made by Gargaud et al. [13] re- 
garding the relative importance of radial and rota- 
tional couplings in the process of charge transfer. 
They hold the view that the primary mechanism of 
charge transfer is through the radial couplings; the 
rotational couplings do have some important sec- 
ondary effects under favorable circumstances. 
Here, also, the molecular states of different sym- 
metries correlating to the n = 3 manifold of He+, 
for example, 3pX <-> 3^n and 3rfX «-> 3dU, are 
found to have significant rotational couplings in a 
certain region of internuclear separation. But their 
effect on the total capture cross section turns out to 
be moderate and secondary, at least in the energy 
range of our interest. 

A more or less similar situation exists in case of 
Rb colliding with   a-particles. The molecular  X 
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-0.159 

-0.167 

Internuclear separation (in au) 

FIGURE 2. Avoided crossings among K4sS, 3d£, and 3p2. 

states representing the outgoing channels of Rb+ + 
He+ (n = 3 manifold) have strong radial cou- 
plings with the incoming channel Rb5s2. But the 
range of these strong avoided crossings shifts 
slightly toward the lower R values, and their 
strength, in comparison to K-a case, also dimin- 
ishes. On the other hand, the initial channel ex- 
hibits a bit stronger radial coupling with the Rb5pX 

TABLE I  
Different atomic states correlating to X and n 
states used in the present calculations. 

He+(3s)+A+ 3s2 
He+(3p)+A+ 3p2 3pn 
He+(3d)+A+ 3d£ 3c/n 
He2++A(4/5s)a A4/5s£ (Initial channel) 
He2++A(4/5p) A4/5p2 A4/5pII 
He+(4s)+A+ 4sS 
He+(4p)+A+ 4p£ 4pn 
He + (4c0+A+ 4d2 4dU 

aA stands for the alkali atom target K/ Rb. 

state, which, in turn, has moderate couplings with 
the states correlating to He+ (n = 4 manifold). 
This is perhaps responsible for the n = 4 states of 
He+ being populated with a somewhat larger 
probability in the case of Rb-a. 

SINGLE-ELECTRON CAPTURE CROSS 
SECTION 

Both in the case of K-a and Rb-a, we per- 
formed 13-state calculations to evaluate single- 
electron capture cross sections at low and interme- 
diate energies. These cross sections, along with the 
experimental measurements of Schweinzer and 
Winter [6] and Shah and Gilbödy [7], for K-a, are 
graphically presented in Figure 3. Although we do 
not include the theoretical calculations carried out 
for K-a by Schweinzer and Winter in this figure, 
we do compare our results with their estimates. To 
look into the selectivity of the charge-transfer pro- 
cess in this reaction, we also present partial cross 
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FIGURE 3. Cross sections (in 10 ~16 cm2) for single-electron capture by a-particles from ground state K: (present cal) 
calculated cross sections for total capture; (n = 3) cross sections for capture into n = 3 manifold of He+; (•) 
experiment by Schweinzer and Winter [6]; (A) experiment by Shah and Gilbody [7]. 

sections for single-electron capture into the n = 3 
manifold of He+ in this figure. 

Our cross section for single-electron capture in 
the reaction K-a exhibits a peak around the im- 
pact energy 3 keV. This is the region where 
Schweinzer and Winter also measured the maxi- 
mum cross section. However, our calculated cross 
sections are twofold as large as their experimental 
measurements. In comparison to that, the close- 
coupling calculations by Schweinzer and Winter, 
which use the usual AO expansion method, are 
found to be in better agreement with their own 
measured values, although these results also lie in 
the higher side of the experimental results. But this 
apparent better agreement needs to be judged in 
the light of the fact that a number of simplifying 
assumptions have been incorporated into these 
calculations.  As mentioned by Schweinzer and 

Winter, instead of including the ETF explicitly in 
their calculations, they used an approximate 
scheme put forward by Larsen and Taulbjerg [14] 
to evaluate their matrix elements. The importance 
of the proper choice of ETF in such calculations 
can hardly be emphasized; this may not signifi- 
cantly affect the total capture cross section, but its 
effect on various individual channels is bound to 
be appreciable [11]. In fact, one may get unphysi- 
cal distribution of the total cross section into vari- 
ous individual channels if the ETF is not properly 
accounted for. Another aspect that has not been 
taken care of in these calculations is the excitation 
of the target atom. As shown in Figure 1, the 
excited target, that is, K(4p), energetically lies just 
below the He+ (n = 4) manifold, and, hence, its 
inclusion in the close-coupling calculation seems 
to be unavoidable if one wants to get a realistic 
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picture of flux distribution. We do include these 
states (for both K and Rb) in our MO calculations 
and the ETF has also been taken care of in the 
proper way. Even Schweinzer and Winter [6], while 
commenting on their A013 calculations, accept 
that a larger basis set along with proper treatment 
of ETF may be needed while investigating such 
colliding systems. 

Agreement of our cross sections with another 
set of experimental measurements by Shah and 
Gilbody [7], carried out in intermediate-energy 
region, is much more satisfactory. Our cross sec- 
tions, although still at the higher side in absolute 
magnitude, are much closer to these experimental 
results which have an accuracy within + 20% 
(shown here in the form of error bars). Also, our 
observations that capture into He+ (n = 2) is 
negligibly small in this energy range concur with 
these measurements. In fact, we found that cap- 
ture into the n = 3 manifold of He+ is still the 
most dominant process contributing toward sin- 
gle-electron capture in this energy region. Capture 
into He+ (n = 4 manifold) increases with increase 
in the impact energy but its absolute magnitude is 
slightly more than 10% at the highest impact en- 
ergy that we have looked into. Here, also, our 
observations are somewhat different from those of 
Schweinzer and Winter, who found that the maxi- 
mum contribution of capture into He+ (n — 3) is 
limited up to 75%. It may here be pointed out that 
their A013 calculations also did not agree with 
their experimental measurements on the partial 
capture cross section. We feel that the excited 
states of these atoms must be included in any 
close-coupling calculation to obtain a realistic pic- 
ture of different individual processes contributing 
toward the single-electron capture by a-particles 
from alkali atoms. As pointed out earlier, the ini- 
tial channel K4sX couples with those states corre- 
lating to He+ (n = 4 manifold) only through K4p2. 
This substantially restricts the population of K+ + 
He+ (n = 4) channels in low- and intermediate- 
energy regions. It is expected that couplings which 
exist between K4pX and different states correlat- 
ing to He+ {n = 4), at small internuclear separa- 
tions, will significantly enhance the possibility of 
capture into the n = 4 manifold in high-impact 
energies. For theoretical interest, it may be pointed 
out here that capture into £ molecular states corre- 
lating to He+ (n = 3) are found to dominate over 
capture into II states, except at very low impact 
energies where II states also make significant con- 
tributions toward populating the He+ (rc = 3) out- 

going channel. This is perhaps a manifestation of 
the relative strengths of various radial and angular 
couplings that are important and also of the domi- 
nant role played by the radial couplings in such 
colliding systems. 

The cross sections for single-charge transfer from 
Rb to the incident a-particles, along with those for 
a-Na and a-K, are graphically presented in Fig- 
ure 4. The most striking feature of a-Rb is, more 
or less, a constant cross section for single-electron 
capture in the investigated low- and intermediate- 
energy region. After attaining a peak around 3 keV 
of the projectile energy, where a-K also has its 
peak, the estimated cross section for a-Rb goes 
on to acquire a nearly constant value. Also, the 
relative contribution of capture into He+ (n = 4 
manifold) keeps increasing with increase in the 
impact energy. As discussed earlier, comparatively 
stronger couplings between Rb5p2 and other 
molecular states correlating to Rb++ He+ (n = 4), 
at smaller R values, are mainly responsible for 
these individual processes becoming dominant at 
higher impact energies. Actually, the incoming 
channel, in both the systems (a-K and a-Rb), 
interacts with the above-mentioned outgoing chan- 
nels only through the molecular state correlating 
to the excited target atom, that is, K4/?2/TI and 
Rb5pS/II. But in the case of the a-Rb majority of 
the flux passed onto the Rb5p2 state finally ends 
up with the individual channels representing cap- 
ture into He+ (n = 4 manifold). The difference in 
the magnitude of the target excitation cross sec- 
tions in the two cases also agrees with this obser- 
vation. At the highest impact energy (=30 keV), 
the cross sections for excitation to K(4p) and Rb(5j>) 
in these reactions are approximately 55 and 40 A2, 
respectively. This prompts us to conclude that 
even though the target excitation may not be an 
important reaction channel in these collisions its 
significant role in the selectivity of the electron 
capture cross section cannot be denied. Another 
interesting feature of the electron capture in a-Rb, 
from a theoretical point of view, is the dominance 
of II states in populating He+ (n = 3) manifold of 
the outgoing channel. Obviously, the rotational 
couplings, in this system, are much stronger than 
they are in case of a-K. 

In Figure 4, we also include the capture cross 
sections calculated by Kumar et al. [5] for a-Na in 
the same energy region. They used exactly the 
same method as has been employed by us in the 
present study. The a-Na cross-section curve has a 
slightly different characteristic in the low-energy 
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FIGURE 4. Comparison of capture cross sections (in 10 "16 cm2) for a-particles colliding with alkali targets. Curves 
for different colliding systems are clearly marked. 

region, where it exhibits Stuckelberg-Landau- 
Zener oscillations (see [5]). Except for this oscilla- 
tion, the above curve is found to have similar 
energy dependence as possessed by the a-K curve, 
especially beyond 15 keV. The capture cross sec- 
tions in both the systems monotonically decrease 
with increase in impact energy as we pass to the 
intermediate-energy region. Also, in terms of the 
selectivity of the capture process, these two sys- 
tems appear to be closer. For example, the a-Na 
system has a selectivity of 90% in terms of capture 
into He+ (n = 3 manifold) up to an impact energy 
21 keV, whereas the a-K pair possesses this kind 
of selectivity even at higher energies. In the case of 
Rb-a, the preferential population of He+ (n = 3) 
falls below 90% much earlier (at 12 keV of projec- 
tile energy). Perhaps this is the most important 
aspect that separates this system from the other 

two interacting pairs. With increase in the impact 
energy, the contribution of new channels of charge 
transfer becomes increasingly significant, perhaps 
imparting an altogether different energy depen- 
dence to the electron capture cross section in a-Rb. 

The above-stated fact also supports the idea of 
looking into the target dependency of the capture 
cross sections for alkali atoms. These atoms appar- 
ently present a pseudo-one-electron character for 
the incoming bare nuclei. But when it comes to the 
transfer of that outermost weakly bound electron, 
the internal structure of the target atom seems to 
enter into the scheme. The striking similarity be- 
tween the a-Na and a-K pairs is perhaps a mani- 
festation of the fact that these target atoms have, 
more or less, a similar core. In both cases, the 
outermost electron (ns1) is backed by a core which 
has the configuration (« - l)s2(« - Dp6. But as 
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the d-shell enters into the picture, the core for the 
5s1 electron of Rb changes. This is perhaps re- 
flected by an altogether different energy depen- 
dence of the electron capture cross section for the 
colliding system ct-Rb. One may argue at this 
stage that the pseudopotential approach, which 
has been employed by us in the present study, 
does not include any core orbital, and, hence, such 
a conclusion seems to be a bit far-fetched. But it 
should be noted that the parameters used for the 
pseudopotential were extracted from the spectro- 
scopic data (see Bardsley [10]) which has all the 
information about the core structure embedded in 
it. At this stage, we not only agree with the obser- 
vations of Schweinzer and Winter [6] that the a-K 
pair needs to be further investigated, but also feel 
that a systematic study on all alkali targets, both 
theoretically and experimentally, should be carried 
out to decipher the role played by their cores 
toward target dependency of these charge-transfer 
cross sections, especially in the low- and interme- 
diate-energy regions. 

We have thus carried out a close-coupling cal- 
culation, using the MO expansion method in a 
semiclassical approximation, to estimate single- 
electron capture cross sections by a-particles from 
K and Rb in the low- and intermediate-energy 
regions. Along with the total capture cross sec- 
tions, we also calculated the partial cross sections 
for various individual channels. These calculated 
results are found to be in satisfactory agreement 
with the available experimental measurements ex- 
cept at very low impact energies. This may, in 
part, be due to the use of a semiclassical approach, 
although we have reasons to believe that cross 
sections calculated by this method should provide 
a satisfactory account of experiments even at these 
energy values. We certainly need a more detailed 
and systematic study on these target atoms, where 
the selective population of excited states of He+ 

dominates in low energy. Also, the issue of the 
target dependency of these cross sections and the 

possible role played by their cores therein needs to 
be looked into. 
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ABSTRACT: If one is to calculate the stopping power for a specified projectile-target 
combination within the energy interval of applicability of modified Bethe-Bloch theory, 
values of several parameters appearing in the formulation must be ascertained. In the 
past, the author has established such values for numerous target materials through fits of 
stopping-power measurements with modified Bethe-Bloch theory. However, the 
semiconductor materials ZnSe and GaAs have not yet been thus characterized. A set of 
very recent measurements of the stopping powers of each compound for low-energy 
protons and alpha particles, reported by members of the Helsinki group, has been 
analyzed in order to remedy this dearth of parameter values. Moreover, some 
corresponding measurements for 7Li ions traversing ZnSe have been analyzed for the 
purpose of obtaining the value of a single effective charge parameter. Results of these 
studies are reasonably consistent with expectations, and values are recommended for the 
mean excitation energy and the Barkas-effect parameter for each compound.   © 1998 John 
Wiley & Sons, Inc. Int J Quant Chem 70: 919-924, 1998 

Introduction 

The energy lost by an ion while traversing 
matter often must be known with consider- 

able accuracy, both for tests of theories in physics 
and for application to numerous, diverse areas of 
experimental physics. Energy-loss measurements 
for every projectile-target combination would be a 
formidable undertaking indeed. Hence, the avail- 
ability of a reliable method of calculation is essen- 
tial. The modified Bethe-Bloch theory of stopping 
power has great utility for a broad range of projec- 
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© 1998 John Wiley & Sons, Inc. 

tile velocities, provided that values of several pa- 
rameters appearing in the theory are known [1-5]. 
If the target material features aggregation effects, 
for example, compounds or alloys, Bragg's rule of 
the (linear) additivity of stopping effects must be 
invoked [6]. A method of energy-loss calculation 
in this type of target has been set forth previously 
[2, 5, 7]. 

The stopping powers of two compound semi- 
conductor materials for protons and alpha parti- 
cles have been reported in the past 2 years [8, 9]. In 
the first experiment [8], the stopping powers of 
GaAs for 0.3-2.5 MeV protons and alpha particles 
were measured using both Rutherford backscatter- 
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ing spectrometry (RBS) and foil transmission 
methods. In the second experiment [9], the stop- 
ping cross sections of ZnSe for 0.4-2.2 MeV pro- 
tons and alpha particles and for 1.6-8.9 MeV Li 
ions were measured using the RBS technique. Nei- 
ther of these targets has yet been adequately char- 
acterized in terms of Bethe-Bloch stopping-power 
parameters. Hence, the author elected to analyze 
both sets of measurements [8, 9] in order to pro- 
vide recommended parameter values. In the case 
of GaAs targets [8], the measurements made with 
each of the two methods, RBS and foil transmis- 
sion, were analyzed separately for the sake of 
subsequent comparisons. Finally, measurements 
for 7Li ions in the energy interval 4.0-8.9 MeV 
were selected for analysis in order to determine 
the value of an effective charge parameter for this 
projectile-target combination. 

Theory 

The modified Bethe-Bloch stopping power for- 
malism and the procedure utilized in the analysis 
of stopping-power data for the extraction of values 
of the various parameters contained in the formal- 
ism have been extensively described in previous 
studies [2, 5, 7, 10, 11]. In the case of an elemental 
target of atomic number Z and atomic weight A, 
the stopping power S for a projectile of atomic 
number z and velocity v = ßc is given by 

0.30706     Z 

ß2 A 
(1) 

in units of MeV cm2/g. In this expression, L, 
signifying the (dimensionless) stopping number 
per target electron, consists of three terms: 

L = L0 + £zLj + L2, 

where the basic stopping number, L0, is 

(2mc2ß2 

(2) 

L0 = In | 
\ 1 - /3" 

- ß2 -In I- C/Z- 8/2.   (3) 

The symbol I in this equation represents the target 
mean excitation energy, mc2 denotes the rest mass 
energy of the electron, C signifies the sum of target 
shell corrections, and 8 is the density effect correc- 
tion required for highly relativistic projectiles [12]. 
The mean excitation energy can be determined in a 
fit of accurate stopping-power measurements. Shell 

corrections can be evaluated by the method of 
Bichsel [1], whereby Walske K- and L-shell correc- 
tions [13] are employed with scaling factors as- 
signed to the L-shell correction in order to obtain 
the M- and N-shell corrections: 

C = CK(ß
2) + VLCL(HLß

2) + VMCL(HMß
2) 

+ VNCL(HNß
2).   (4) 

Here, CK and CL denote the K- and L-shell correc- 
tions, respectively, and the V, and H, (with i = 
L, MrN) represent the scaling factors. 

The (zL,) and L2 terms of Eq. (2) signify two 
necessary correction terms of higher order in the 
projectile atomic number (z). The (zLa) term has 
been named the Barkas-effect term, whereas the L2 

term is known as the Bloch term [14]. These correc- 
tions have recently been reviewed in the course of 
a random-phase approximation evaluation of the 
L: term [15]. This term was calculated by the 
author on the basis of the formalism that demon- 
strably best agreed with a large body of experi- 
mental data [3], namely, the formalism prepared 
by Ashley et al. [16-19], that is, the Barkas-effect 
term was obtained for analyses in the current 
study from the expression [16-19] 

u 
F(b/x1/2) 

Z1/2x3/2  ' 
(5) 

where F denotes a function graphed in [16], x = 
(18787)ß2/Z, and b represents the sole free pa- 
rameter of the formalism. £ precedes the Barkas- 
effect term as an adjustable parameter that was 
introduced for the study of a controversy over the 
inclusion of close-collision contributions to the term 
[2, 7, 10]. In recognition of the conclusion drawn 
by the author [2, 7, 10] and others [20] that the 
controversy could not be resolved through fits to 
stopping-power measurements, the value of f is 
now generally set at unity. The Bloch term [14], 
originally introduced as a correction term to make 
the transition from the first Born approximation to 
classical scattering at low projectile velocities [15], 
is obtained as 

L2(y) = 0(1) -Re[i//(1 + iy)], (6) 

where ifi denotes the digamma function [21] and 
y = za/ß, with a representing the fine structure 
constant. 

A complete discussion of data-fitting strategies, 
especially in the case of a target evincing aggrega- 
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tion effects, can be found in [5]; that is, stopping- 
power measurements generally are provided with 
a fit by modified Bethe-Bloch theory, in the course 
of which best-fit values of I and b are established. 
The figure of merit employed in the fitting proce- 
dure is the root-mean-square relative deviation of 
calculated from measured stopping powers, a. 
This quantity is defined as 

O" : 

<5    — •? °m        Jc 
(7) 

for measurements at N energies, with Sm denoting 
the measured stopping power; Sc, the calculated 
stopping power; and ASm, the uncertainty in the 
measured value. Hence, a resulting value of a 
near unity implies that agreement between theory 
and experiment is acceptable. 

The additivity test usually applied to the value 
of mean excitation energy is based on a Bragg 
value (IB) calculated from the expression [22, 23] 

\nIB=ZnjZj\nIj/Y,n,Z}, (8) 

where L, Z , and n;, respectively, denote the mean 
excitation energy, atomic number, and atomic con- 
centration of the ;'th component of the composite 
target material. In the present investigation, this 
test has little value, since of the four components 
of GaAs and ZnSe only one (Zn) has had its mean 
excitation energy determined previously. 

One further modification in the Bethe-Bloch 
formula must be made in order to account for the 
gain and loss of electrons by the projectile when its 
velocity has decreased to a value comparable to 
those of atomic electrons. This method of extend- 
ing downward the projectile energy of applicabil- 
ity of the Bethe-Bloch formula is often effected by 
incorporating some form of projectile effective 
charge [10, 24]. The form utilized by the author has 
proved successful in one quite comprehensive 
study of heavy ion stopping powers [10], wherein 
the projectile charge ze is replaced by an effective 
charge yze, with 

l-£e -\vr (9) 

Here, vr represents the ratio of projectile velocity 
in the laboratory frame (v) to the Thomas-Fermi 
velocity (e2/h)z2/3, so that vr = /3/az2/3, and £ 
and A stand for the effective-charge parameters 
whose values must be established for any given 
projectile-target combination [10]. This method 

was used in the present study for analysis of the 
stopping-power measurements with Li projectiles 
and ZnSe targets [9]. 

Analyses and Results 

The basic procedure utilized was that described 
previously [2, 5, 7, 10, 11], that is, shell-correction 
values were calculated by the Bichsel method [1] 
and £ was set at unity so as to ascertain best-fit 
values of I and b. The values of the known param- 
eters, including the average atomic number (Z) 
and atomic weight (A), are displayed in Table I. 
The values of IB shown there were obtained from 
Eq. (8), and the constituent I values, from the one 
value based on measurement (Zn) and three esti- 
mates, all from [1]: I = 334 eV for Ga, 347 eV for 
As, (330 + 10) eV for Zn, and 348 eV for Se. This 
method was used for analyses of all light projectile 
measurements. 

In selecting measurements for analysis, it is 
important to know the lowest-energy data point 
that can be included without employing a charge- 
state correction (i.e., an effective charge formalism). 
The answer to this question has been established 
in earlier studies with protons [11, 25, 26] and with 
alpha particles [27, 28]. The lower bound for pro- 
ton energy inclusion without an appreciable dis- 
tortion of extracted parameter values is 300 keV, 
whereas that for alpha particles is 1.0 MeV. Thus, 
the energy intervals selected were consistent with 
this constraint. 

Results are displayed in Table II. To assess the 
relative credibility of results for each experiment, 
uncertainties in the extracted parameters (AI and 
Afr) were evaluated according to the procedure 
described in detail previously [10]. The values of 
uncertainties reflect the number, accuracy, and in- 
ternal consistency of the measurements analyzed. 

TABLE I  
Average atomic number (Z) and atomic weight (A), 
shell correction scaling parameters (VL, HL,VM, HM), 
and Bragg value of mean excitation energy (/B) 
for both compound targets. 

Target Z A VL "L vM WM lB (eV) 

GaAs 
ZnSe 

32 
32 

72.32 
72.17 

1.0 
1.0 

1.0 
1.0 

2.25 
2.25 

5.39 
5.39 

340.6 
339.4 
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TABLE II 
Projectile-target combination, projectile energy interval utilized, and type of experiment, with corresponding 
best-fit values of mean excitation energy (/), Barkas-effect parameter (b), and figure of merit (a). 

Target                 Projectile £ (MeV)                  Expt. /                       b               a 

ZnSe Proton 0.4-2.2 RBS 320.1 2.77 0.73 
Alpha 1.0-2.2 RBS 328.1 1.99 0.65 

GaAs Proton 0.6-2.5 RBS 315.1 2.70 1.55 
Alpha 1.0-2.2 RBS 323.9 2.00 0.37 
Proton 0.3-2.4 Transmission 301.9 3.42 1.40 
Alpha 1.0-2.1 Transmission 309.6 2.20 0.43 

Results, which are shown in Table III, will be 
discussed further below. 

A final aspect of the analyses described in this 
investigation was the assignment of a value of a 
single effective charge parameter [ A in Eq. (9)] to 
measurements of 7Li energy loss in ZnSe targets 
[9] in the energy interval 4.0-8.9 MeV. For this 
portion of the study, a value of 324 eV was as- 
signed to the mean excitation energy (7) and a 
value of 2.0 to the Barkas-effect parameter (b). The 
resulting value of A was 1.35, with a figure of 
merit (a) of 0.56. This outcome compared favor- 
ably with those from similar studies with tar- 
gets of kapton (A = 1.28 ± 0.08) [29] and mylar 
(A = 1.30) [24], but less favorably with those 
from a study on nickel (A = 1.04) and havar 
(A = 1.16) [30]. 

Discussion 

The experiments analyzed in this study [8, 9] 
were conducted with thin-film transmission and 
Rutherford backscattering techniques, as was the 
case in a similar previous study with polystyrene 
as a target material [5]. An inspection of the results 
in Table II does suggest possible systematic out- 
comes based on the type of experiment. (This pos- 
sibility will be explored below.) 

The figure of merit (a) exceeded unity in two 
cases, one for each type of experiment but both for 
the proton-GaAs projectile-target combination. 
Indeed, the graphical data presentation indicates 
considerable scatter for each of those two sets of 
measurements [8]. Salient characteristics of the pa- 
rameter values extracted from the experimental 
data, displayed in Table III, will be explained on a 
quantitative basis. 

In the final stages of developing the Barkas- 
effect formalism employed herein [16-19], two of 
the authors recommended that, in general, b = 
1.4 ± 0.1 [19]. In fits to measurements, extracted b 
values often stray considerably from this guideline 
[5, 9, 11, 27]. However, one might assign higher 
plausibility to the reported measurements which 
provide extracted b values in the vicinity of the 
guideline value, assuming that the modified 
Bethe-Bloch theory is correct. In Table III, three 
rather high values of b are observed, notably those 
for protons in GaAs (transmission experiment). In 
fact, all three of these values arose from the proton 
measurements. Indeed, the calculated uncertain- 
ties in both 7 and b were high for all three sets of 
proton measurements; this outcome reflects some 
scatter in the two cases of GaAs targets, but scatter 
was only moderate in the case of a ZnSe target [9]. 

There is no firm guideline for extracted I val- 
ues, since the Bragg values (7B) are based on 
recommended constituent 7 values [1] that are 
tenuous indeed. An alternate set of recommend- 
ed 7 values for the constituent elements, pub- 
lished much earlier [31], were generally lower 
than those of [1]: 7 = 290.6 eV for As, 301.8 eV 
for Ga, 300.9 eV for Se, and 323.1 eV for Zn. Hence, 
the Bragg values calculated from these constituent 
values would lie considerably lower than those 
given in Table I (approximately 310 eV for ZnSe 
and 295 eV for GaAs). Since the experiment-based 
value of 7 for Zn [1] was (330 + 10) eV, and since 
the observed 7 values for compounds are gener- 
ally expected to exceed additivity-based values, 
one might lend higher credence to the extracted 7 
values for the two subject compounds that lie in 
the vicinity of the range cited for Zn. 

To assess the outcome of the current analysis 
systematically  and  quantitatively,  the  extracted 
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TABLE III  
Projectile-target combination, projectile energy interval utilized, and type of experiment, with corresponding 
experimental relative uncertainty (AS / S), number of data points analyzed (N), and calculated uncertainties 
in mean excitation energy (A/) and Barkas-effect parameter (Ab). 

Target Projectile £ (MeV) Expt. 
AS/S 
(%) N I ± A/ (eV) b± Ab 

ZnSe Proton 0.4-2.2 RBS 4.0 11 320.1 + 9.2 2.77 ± 0.52 
Alpha 1.0-2.2 RBS 4.0 9 328.1 + 3.4 1.99 + 0.04 

GaAs Proton 0.6-2.5 RBS 3.5 17 315.1 ± 8.2 2.70 ± 0.63 
Alpha 1.0-2.2 RBS 4.0 5 323.9 + 3.3 2.00 + 0.06 
Proton 0.3-2.4 Transmission 3.0 27 301.9 + 4.0 3.42 + 0.25 
Alpha 1.0-2.1 Transmission 2.0 27 309.6 + 1.3 2.20 ± 0.03 

parameter values were combined for average val- 
ues, weighted according to the uncertainties in the 
extracted values as shown in Table III. The results 
of this approach are given in Table IV. 

Uncertainties in the extracted parameter values 
were definitely lower in the experiments with 
alpha particle projectiles. Hence, the weighted av- 
erage values closely approach those from the al- 
pha-particle experiments for both ZnSe and GaAs 
targets. In the case of GaAs targets, two other 
comparisons were possible: one by type of experi- 
ment (RBS or foil transmission) and one by type of 
projectile (proton or alpha particle). Since the 
smallest uncertainties by far were obtained for the 
alpha particle in the GaAs (transmission) experi- 
ment, the parameter values characterizing that ex- 
periment clearly dominated all comparisons, as 
readily observed by viewing Tables III and IV. In 
light of the remarkably high value of b and low 
value of I associated with the proton in the GaAs 
(transmission) experiment, it appears reasonable to 
suggest that some difficulties attended those mea- 
surements, but there is no rationale for excluding 

TABLE IV 
Comparison of weighted average values of mean 
excitation energy (/) and Barkas-effect parameter 
(5) by target and group of measurements. 

Target Group / (eV) 

ZnSe All 327.1 1.99 
GaAs All 310.8 2.18 
GaAs RBS 322.7 2.01 

Transmission 308.9 2.22 
GaAs Proton 304.4 3.32 

Alpha 311.5 2.16 

any other experiment from the six available. Al- 
though the alpha-particle measurements mani- 
fested the greater internal consistency, for exam- 
ple, the proton measurements covered an energy 
interval that was twice as large. On the basis of the 
systematics observed in the results of the forego- 
ing analysis, the author has risked a recommenda- 
tion of parameter values for each target. The rec- 
ommendations appear in Table V. 

Summary 

Very recent measurements of the stopping pow- 
ers of two semiconductor compounds, GaAs and 
ZnSe, for protons and alpha particles [8, 9] were 
analyzed in terms of modified Bethe-Bloch theory 
to extract values of the mean excitation energy and 
Barkas-effect parameter. Results of this study are 
quite consistent with general expectations. More- 
over, a single effective charge parameter for Li 
ions in ZnSe targets [9] was evaluated, with results 
comparable to those of several similar previous 
studies [24, 29, 30]. Recommended values of the 
mean excitation energy and Barkas-effect parame- 
ter for each compound, shown in Table V, will 

TABLE V  
Recommended values of the Bethe-Bloch 
parameters, mean excitation energy (/), and 
Barkas-effect parameter (b) for both compounds. 

Target /(eV) 

ZnSe 
GaAs 

325 + 5 
315 ±5 

2.0 + 0.1 
2.2 + 0.1 
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have to await the advent of experiments more 
accurate than those analyzed [8, 9] in order to be 
confirmed or revised. 
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ABSTRACT: Optimum geometries are computed at both the SCF level of theory and 
the level of second-order perturbation theory for several isomers on the potential energy 
hypersurfaces of GeCH2, GeSiH2/ and Ge2H2/ including linear structures, methylene- 
carbenelike structures, dibridged structures, and monobridged structures. In addition, 
harmonic vibrational frequencies are computed to characterize these structures as local 
minima or transition states. All computations employ basis sets of triple-zeta quality on 
valence electrons with d and / polarization functions on the heavy atoms and p 
functions on hydrogen. This investigation is the first systematic study to include all of 
these germanium systems and to employ /-type polarization functions in such a study. 
Previous investigations of ours indicate that large basis sets such as those employed in 
this study can, in part, compensate for the lack of a more advanced treatment of electron 
correlation. While a dibridged global minimum is confirmed for both Ge2H2 and GeSiH2 

systems, the C2v isomer, methylenegermene, is found to be the most stable structure for 
GeCH, 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 925-932, 1998 

Introduction 

The isomerization of acetylene to meth- 
ylenecarbene (Fig. 1) has been one of the 

most thoroughly studied unimolecular reactions 
[1-4] and has led to interest in various isoelec- 
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tronic species. Research of silicon derivatives has 
been of particular importance due to the increasing 
interest in the development of silicon thin films 
[5]. In 1983, an ab initio study predicted that disi- 
lyne (Si2H2) prefers a butterfly, double-bridged 
geometry (Fig. 2) instead of a linear structure simi- 
lar to that of acetylene [6,7]. The first experimental 
evidence of this dibridged structure was reported 
in 1991 by Bogey and coworkers using microwave 
spectroscopy [8]. The very next year, a eis mono- 
bridged isomer (Fig. 3) of disilyne was predicted 
by Grev and Schaefer to be the second most stable 

International Journal of Quantum Chemistry, Vol. 70, 925-932 (1998) 
© 1998 John Wiley & Sons, Inc. CCC 0020-7608 / 98 / 040925-08 



BOONE, MAGERS, AND LESZCZYNSKI 

H 

H- C==C H V 
.A \ 

H 
/ 
c=c: 

FIGURE 1. Isomerization of acetylene to 
methylenecarbene. 
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FIGURE 3. c/s-HSiHSi. 

isomer on the surface [9] and was discovered ex- 
perimentally that same year by Cordonnier and 
coworkers [10]. Similar structures have also been 
predicted for Ge2H2 [11, 12]. 

Discovery of these three-centered bonding 
structures has sparked interest in the possibility of 
similar isomers of other isoelectronic systems, par- 
ticularly those containing only one silicon atom 
[13-15]. Investigations have mapped out a com- 
plete potential energy surface for SiCH2, with the 
C2v isomer methylenesilene being observed exper- 
imentally in the gas phase as confirmed by neu- 
tralization-reionization mass spectroscopy [16]. 
Other minima on this surface include another C2v 

isomer, silylenecarbene (CSiH2), as well as a pla- 
nar trans-bent structure [14, 17, 18]. 

The goal of this present study was to exten- 
sively examine the potential energy surfaces of 
three germanium systems isoelectronic to the sys- 
tems mentioned above, namely, Ge2H2, GeSiH2, 
and GeCH2. A former computational study from 
our research group of linear and methylenecar- 
benelike Clv structures on each of these surfaces 
has offered insight into bonding trends of these 
systems [19]. This study builds on this previous 
work by investigating not only linear and C2„ 
structures, but butterfly dibridged, cz's-mono- 
bridged, frans-monobridged, trans-bent, and pla- 
nar dibridged conformations as well. 

Computational Details 

In the present study, optimum equilibrium ge- 
ometries, harmonic vibrational frequencies, and 
corresponding electronic energies were deter- 
mined for the singlet ground states of various 
minima and transition structures on the surfaces of 
Ge2H2, GeSiH2, and GeCH2. These computations 
were performed at both the SCF level and the level 
of second-order perturbation theory (MP2) using 
the Gaussian94 program package [20]. The SCF 
computations were performed only for reference, 
and, therefore, they are not reported in tabular 
form here. 

In all of the second-order calculations reported 
in this study, core molecular orbitals (MOs) are 
frozen. For example, in GeCH2, 14 MOs corre- 
sponding to the germanium Is, 2s, three 2p, 3s, 
three 3p, and five 3d functions and one MO corre- 
sponding to the carbon 1 s function are frozen. No 
virtual orbitals are deleted for any of the corre- 
lated calculations. 

A basis set of triple-zeta quality for valence 
electrons is employed for each molecular system. 
For hydrogen, carbon, and silicon, the basis set is 
the standard Gaussian94 6-311G(2df,2p). the 6- 
31 IG basis is a split-valence basis set comprising a 
single-zeta core description and a triple-zeta de- 
scription for valence orbitals [21]. A similar basis 
set developed by Huzinaga and coworkers is em- 
ployed for germanium [22]. This basis set also 
consists of a triple-zeta description for valence 
orbitals and is referred to as TZV(2df,2p). 
Throughout this study, the overall basis set for a 
molecular system is denoted only as JZV(2df,2p) 
for simplicity. The (2 df, 2 p) represents the number 
and types of polarization functions included on the 
heavy atoms and on the hydrogens, respectively. 
Each d function represents five degenerate com- 
plex d functions, while the / function comprises 
seven degenerate complex / functions. The expo- 
nents for the two d functions and the / function 
used for germanium are 0.108, 0.382, and 0.450, 
respectively. The number of functions included in 
the basis sets employed for the various molecular 
systems ranges from 91 functions for GeCH2 to 
104 functions for Ge2H2. Previous investigations 
of ours have shown that large basis sets can, in 
part, compensate for the lack of a more advanced 
treatment of electron correlation [23]. 
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Results and Discussion 

Optimum equilibrium geometries and corre- 
sponding energetics for six stationary points lo- 
cated on the potential energy hypersurface of 
Ge2H2 are reported in Table I. Computation of the 
harmonic vibrational frequencies of these struc- 
tures reveal that four are minima and two are 
transition states. At least five of these structures 
were investigated in previous studies. In 1990, 
Grev and coworkers predicted that the global min- 
imum of Ge2H2 exhibits a C2v double-bridged 
butterfly form (Fig. 4) analogous to that found for 
Si2H2 [11]. The present study reveals that this 
dibridged structure is only about 8.7 kcal/mol 
lower in energy than the next minimum on the 
surface at the MP2/TZV(2d/,2p) level of compu- 
tation. This next local minimum is a planar (Cs) 
cz's-monobridged isomer (Fig. 5) which was first 
predicted in 1993 by Palägyi and Schaefer to exist 
as a minimum at correlated levels and as a transi- 
tion state at the SCF level [12]. This result is 
interesting in light of the fact that similar isomers 
of Si2H2/ A12H2/ and Ga2H2 are shown to exist as 
minima at both the SCF level and correlated levels 
of theory [24]. 

Examination of the results reported in Table I 
reveals another structure which lies energetically 
between the dibridged global minimum and the 
cz's-monobridged isomer. A planar Dlh dibridged 
transition state is found to lie about 8.4 kcal/mol 
above the dibridged isomer at the MP2/TZV 
(2df,2p) level. This structure appears to be the 
transition between the "flip-flop" or inversion of 
the C2v dibridged isomer and exists as a transition 
state on both the SCF and the MP2 potential en- 
ergy surfaces. 

Two other minima are found on the Ge2H2 

MP2 surface, namely, germylenegermene, a C2v 

isomer (Fig. 6) analogous to methylenecarbene, 
and a planar (C2h) trans-bent structure (Fig. 7) [11]. 
At the MP2/TZV(2d/,2p) computational level, 
GeGeH2 possesses an energy about 13.7 kcal/mol 
higher than the dibridged isomer, while the trans- 
bent isomer, resting about 17.7 kcal/mol above the 
global minimum, is only slightly higher in energy. 
It is interesting to note that the trans-bent isomer, 
like the planar cz's-monobridged structure, only 
exists at correlated levels, but, in contrast, pos- 
sesses two imaginary vibrational frequencies at the 
SCF level. When observing bond lengths, it is 
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FIGURE 4. GeHHGe (C2v). 
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FIGURE 5. HGeHGe(Cs). 
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FIGURE 6. GeGeH2(C2J. 
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FIGURE 7. HGeGeH(C2„). 

found that the Ge—Ge bond distance in this struc- 
ture is somewhat shorter than that of the double 
bond found in GeGeH2; however, it is slightly 
longer than that of the triple bond observed in a 
linear structure. This fact suggests that the trans- 
bent isomer can best be described as a biradical 
with two unpaired IT electrons localized on the 
terminal atoms and weakly coupled into the ob- 
served singlet electronic state. The prototypical 
example of this type of biradical nature is ozone 
[25]. 

One other structure is reported in Table I. A 
linear structure analogous to acetylene is found to 
be over 40 kcal/mol higher in energy than the 
global minimum at the MF2/7ZV(2df,2p) level 
and collapses directly to the frans-bent isomer. The 
HGeGeH structure is a transition state with two 
degenerate imaginary frequencies corresponding 
to the out-of-line hydrogen motion of ir symme- 
try. The existence of the linear structure as a high- 

energy transition state seems to be in direct con- 
trast with the corresponding stable acetylene iso- 
mer. This contrast may be explained by taking a 
closer look at the electronic structures of C2H2 

and Ge2H2. 
The relative energy levels of the molecular Or- 

bitals in linear Ge2H2 are quite different from 
those in acetylene. In both molecules, the occupied 
molecular orbital with the highest energy (HOMO) 
has 77,, symmetry and the unoccupied molecular 
orbital with the lowest energy (LUMO) has 7rg 

symmetry. However, the HOMO-LUMO energy 
gap in Ge2H2 is much smaller than is the corre- 
sponding gap in acetylene. The LUMO in Ge2H2 

is lower in energy than is the LUMO in acetylene 
and the HOMO in Ge2H2 is higher in energy. 
When the linear symmetry of Ge2H2 breaks into 
the C2h symmetry of the frans-bent isomer, the 
degenerate iru HOMO splits into two nondegener- 
ate orbitals. One has au symmetry, and one has bu 

symmetry. The highest occupied a-tl(a*) orbital of 
the linear structure also becomes an orbital of bu 

symmetry in the nonlinear isomer. The reduced 
symmetry of this trans configuration allows mix- 
ing of these bu orbitals, which leads to an overall 
lower energy in Ge2H2. This type of stabilization 
is referred to as second-order Jahn-Teller stabiliza- 
tion. Of course, the same type of orbital mixing 
can occur in a trans configuration of C2H2, but the 
original molecular orbital energy levels in the lin- 
ear isomer of this molecular system are qualita- 
tively different. In C2H2, this bu mixing in the 
trans configuration does not lead to an overall 
energy more stable than that of acetylene. A dis- 
cussion similar to the above was given by Cole- 
grove and Schaefer in their article on Si2H2 in 
which a trans-bent isomer is one of the local min- 
ima reported [26]. 

With the exception of the existence of the planar 
c/s-monobridged transition state at the SCF level, 
no monobridged transition states have been dis- 
covered as yet on the Ge2H2 energy surface. How- 
ever, there is sufficient evidence to support the 
existence of such stationary points on this surface. 
Known isomers of Ge2H2 are analogous to those 
found for Si2H2. The latter exhibits two different 
monobridged transition states, namely, a nonpla- 
nar structure, as well as a planar trans structure 
[12]. 

The GeSiH2 potential energy surface shares 
many features with that of Ge2H2. The current 
study examined eight different stationary points 
on the potential surface of GeSiH2. Optimum equi- 
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librium geometries and corresponding energies 
and relative energies of these eight structures are 
given in Table II. The global minimum on the 
GeSiH2 surface at the correlated level is a di- 
bridged butterfly structure with Cs symmetry sim- 
ilar to the global minima of Si2H2 and Ge2H2. 
Another relatively low-lying local minimum on 
this surface is silyenegermene, a C2v isomer with 
the lone electron pair residing on the germanium 
(GeSiH2). At the MP2/TZV(2df, 2 p) computa- 
tional level employed in this study, this structure 
is about 8.4 kcal/mol higher in energy than the 
dibridged isomer. However, at the SCF level, this 
C2v isomer is the global minimum, with the di- 
bridged structure being slightly over 1 kcal/mol 
higher in energy [TZV(2df, 2 p)]. 

A similar C2v isomer with the lone pair residing 
on the silicon (SiGeH2) is also a local minimum. 
However, this structure, germylenesilene, pos- 
sesses the highest energy of all the minima on the 
GeSiH2 surface at both computational levels em- 
ployed. The energy difference between SiGeH2 and 
the dibridged isomer is almost 20 kcal/mol 
[MP2/TZV(2d/, 2p)]. The stability of silyene- 
germene (GeSiH2) relative to germylenesilene 
(SiGeH2) is due to the ability of germanium's 
diffuse electron cloud to accommodate a lone elec- 
tron pair more easily than can silicon. Another 
local minimum discovered on this potential sur- 
face is a planar (Cs) trans-bent structure [15] that 
exists with an energy about 17.5 kcal/mol higher 
than the dibridged isomer. Like the similar struc- 
ture found for Ge2H2, this trans-bent isomer, due 
to its biradical nature, only exists at the correlated 
level. 

Two additional minima were previously re- 
ported to exist on the GeSiH2 surface: Two planar 
(Cs) cz's-monobridged isomers were first discov- 
ered in 1995 by O'Leary and coworkers [15] and 
the present study concurs. The first of these mono- 
bridged isomers has the terminal hydrogen on the 
silicon (Fig. 8). This structure is about 6 kcal/mol 
higher in energy than the dibridged isomer, putting 
it lower in energy than the GeSiH2 C2v isomer at 
the highest computational level employed in this 

H 
H 

\3^iSi 
FIGURE 9. HGeHSKCc 

study. However, this monobridged structure only 
exists at the correlated level and collapses to the 
CZv GeSiH2 isomer at the SCF level. The other 
monobridged structure (Fig. 9) with the terminal 
hydrogen on the germanium is the last local mini- 
mum that we located on the GeSiH2 surface. At 
the MP2/TZV(2 df, 2 p) level, it has an energy about 
11.5 kcal/mol above that of the dibridged isomer. 
This second monobridged structure is also a mini- 
mum only at the correlated level, but it exists as a 
transition state at the SCF level [15]. 

Three transition states on the GeSiH2 surface 
have been revealed in this study. Similar to Ge2H2, 
a linear structure exists as a transition state and 
possesses an energy of about 40 kcal/mol 
[MP2/TZV(2d/,2p)] above that of the dibridged 
isomer. As previously mentioned with Ge2H2, the 
instability of the linear structure is due to 
Jahn-Teller stabilization of the trans-bent isomer. 
A second transition state that is similar to one 
found on the Ge2H2 surface is a planar dibridged 
structure with C2v symmetry. At the highest com- 
putational level employed in this study, this struc- 
ture is about 10.3 kcal/mol higher in energy than 
the Cs dibridged isomer and, as before, probably 
represents the inversion of the latter. A third tran- 
sition state not reported in Table II appears to 
exist. It is a nonplanar frans-monobridged struc- 
ture (Fig. 10) with the terminal hydrogen on the 
silicon. Preliminary MP2 calculations using a 
smaller basis set [TZV(rf, p)] place this structure 
about 11.2 kcal/mol higher in energy than the 
dibridged isomer. Such a structure could easily 
represent the barrier between the C2v GeSiH2 iso- 
mer and the dibridged isomer. If this is true, a 
similar nonplanar frans-monobridged structure 
with the terminal hydrogen on the germanium 
might also exist as the barrier from the C2v SiGeH2 

H 
H 

N Si—KjQ 
FIGURE 8. HSiHGe (Co). 

H^ Si. 

H 

FIGURE 10. HSiHGe^) 
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isomer to the global minimum. Future study is 
required. 

Lastly, this study has revealed six different sta- 
tionary points on the GeCH2 potential surface. 
Optimum equilibrium geometries and the corre- 
sponding energies of these structures are reported 
in Table III. Two different structures analogous to 
methylenecarbene with C2v symmetry exist as 
minima on this energy surface. Methylenegermene 
(GeCH2) has the lone electron pair residing on the 
germanium, and, the other, germylenecarbene 
(CGeH2), has the lone pair residing on the carbon. 
Methylenegermene, with an energy over 42 
kcal/mol lower than any other stationary point on 
the potential surface, is the global minimum. 

The next local minimum on the surface is a 
planar (Cs) trans-bent form which only exists at 
the correlated level. As noted with the previous 
two systems, this fact is due to the biradical prop- 
erties of this isomer. The third and last local mini- 
mum revealed in this study is the previously men- 
tioned CGeH2 C2v structure. It possesses an en- 
ergy over 104 kcal/mol higher than that of the 
global minimum at the highest computational level 
employed in this study. 

Three transition states have also been found on 
this GeCH2 energy hypersurface. As with the pre- 
vious two systems, a linear structure exists as a 
transition state due to Jahn-Teller stabilization of 
the fra«s-bent isomer. More interestingly, two pla- 
nar (Cs) frans-monobridged structures were lo- 
cated and characterized as transition states. One 
has the terminal hydrogen on the carbon (Fig. 11), 
and the other has the terminal hydrogen on the 
germanium (Fig. 12). 

H 

FIGURE 11. HCHGe(Cs). 

H 

(A 
FIGURE 12. HGeHC(Cs). 
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The minima and transition-state structures 
found in this study appear to adequately describe 
the entire GeCH2 potential energy hypersurface at 
the MP2 level. The frans-monobridged structure 
with the terminal hydrogen on the carbon appears 
to be the transition state between the GeCH2 C2v 

global minimum and the frans-bent isomer. The 
energy barrier for this transition is about 60 
kcal/mol [MP2/TZV(2rf/,2p)] from the GeCH2 

C2v isomer. Continuing along the surface, the lin- 
ear structure serves as the transition between mir- 
ror images of the trans-bent isomer. Note, how- 
ever, that these mirror images are superimposable 
and, therefore, represent the same structure. This 
transition has an energy barrier of only around 4 
kcal/mol at the computational level employed. 
Next, the other frans-monobridged structure with 
the terminal hydrogen on the germanium is proba- 
bly the transition between the frans-bent isomer 
and the CGeH2 C2v isomer, with the barrier being 
over 60 kcal/mol [MP2/TZV(2rf/,2p)] from the 
trans-bent structure. 

The GeCH2 surface is quite similar to that of 
SiCH2 [15]. It is interesting to note that both of 
these surfaces are planar, unlike the other two 
systems studied in this work. This deviation is due 
to the extreme differences between the atomic ra- 
dius of carbon and those of germanium and sili- 
con. This difference is, of course, typical of second- 
row atoms when compared to third- and fourth- 
row atoms. Carbon's electron cloud is much smaller 
than that of the heavier atoms and is consequently 
less diffuse. Another major distinction is the fact 
that carbon is more electronegative than is hydro- 
gen, whereas the reverse is true for hydrogen and 
the heavier atoms. Both of these variations tend to 
make it difficult for carbon to accommodate a lone 
pair of electrons, as would be the case in a di- 
bridged structure. This fact becomes evident when 
observing that the local minimum CGeH2, which 
has the lone electron pair residing on the carbon, 
possesses the highest energy of all the minima on 
that surface. 

Conclusions 

This study revealed, collectively, 20 different 
stationary points on the potential energy surfaces 
of the isoelectronic systems Ge2H2, GeSiH2, and 
GeCH2. These various stationary points demon- 
strate certain bonding trends of these particular 
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systems and also present the tendency of the heav- 
ier atoms to form nonclassical dibridged and 
monobridged structures. However, planar trans- 
bent and C2v minima as well as linear transition 
states were found native to all three surfaces. It is 
interesting to note the differences in these corre- 
lated results and SCF computations. All three of 
the correlated surfaces contain frans-bent local 
minima; SCF results predict these structures to be 
transition states or not to be stationary points at 
all. SCF theory predicts the global minimum of 
GeSiH2 to be the C2„ isomer silyenegermene, while 
correlated calculations reveal the dibridged struc- 
ture to be the global minimum. On this same 
surface, the MP2 results predict a cz's-monobridged 
isomer to be the second most stable local mini- 
mum. At the SCF level, this structure rearranges to 
the corresponding C2v structure. Obviously, and 
not surprisingly, correlated treatments are re- 
quired to adequately handle such systems with 
nonclassical structures. 

Of the 20 stationary points reported here, seven 
are transition states. Tentative positions for these 
transition states were hypothesized in this current 
study, but future work will include intrinsic reac- 
tion coordinate computations for definitive place- 
ment of these states on their respective surfaces. In 
addition, nonplanar fraws-monobridged transition 
states still need to be found and characterized for 
the two larger systems so that their entire potential 
energy surfaces can be completely described. 
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ABSTRACT: This work reports the first density-functional theory (DFT) treatment of 
excited-state potential energy surfaces exhibiting avoided crossings. Time-dependent 
DFT (TD-DFT) results, using a recently proposed asymptotically corrected local density 
approximation functional, are compared with multireference doubles configuration 
interaction (MRD-CI) results for the rAt manifold of the CO stretching curves of planar 
formaldehyde. TD-DFT is found to reproduce the qualitative features essential for 
understanding the spectroscopy of this manifold, specifically the strong mixing of the 
\TT, 7T*) with Rydberg transitions and the resultant avoided crossings.    © 1998 John Wiley 
& Sons, Inc. Int J Quant Chem 70: 933-941, 1998 

Key words: time-dependent density-functional theory; excited state surfaces; avoided 
crossings 

1.   Introduction 

The well-established place of photochemistry 
within the greater domain of chemistry stems 

from the fact that different reaction pathways are 
available, and different products may be obtained, 

Correspondence to: M. E. Casida. 
Contract grant sponsors: Natural Sciences and Engineering 

Research Council (NSERC) of Canada; Fonds pour la formation 
des chercheurs et l'aide ä la recherche (FCAR) of Quebec. 

from photochemical as opposed to thermal pro- 
cesses. Photochemical pathways are important in 
synthesis, in state-selective chemistry, in decompo- 
sition of chemicals released into the environment, 
and in the pursuit of materials with novel optical 
properties. A detailed understanding of photo- 
chemical reactions begins with an understanding 
of the manifold of excited-state potential energy 
surfaces of the molecular species involved. The 
very features which can make the description of 
these surfaces difficult are also the ones which are 
important for photochemistry: the number and 
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density of states and their various types of encoun- 
ters (i.e., crossings, avoided crossings, conical in- 
tersections.) These encounter regions are of partic- 
ular interest because, for example, avoided cross- 
ings significantly alter the shapes of the adiabatic 
surfaces. 

Clearly the theoretical methods used to calcu- 
late excited-state surfaces need to be capable of 
describing the interactions between surfaces in the 
encounter regions, and correctly reproducing the 
resultant shapes of the surfaces. While some 
avoided crossings are simply due to avoided cross- 
ings at the orbital level, many are due to configu- 
ration mixing at the n-electron level and thus 
require a theoretical method capable of describing 
this mixing. Various correlated ab initio methods 
can handle this. However, production of multiple 
excited-state surfaces is a computationally de- 
manding task, and this is especially true for the 
medium and large sized molecules of interest for 
practical applications. Thus, an inexpensive yet 
accurate method which could obtain such avoided 
crossings would be very useful. 

Hohenberg-Kohn-Sham density-functional the- 
ory (DFT) [1, 2] has proven remarkably successful 
at providing a variety of ground-state properties to 
an accuracy comparable to that of correlated ab 
initio methods, at a fraction of the computational 
cost. Thus, the ability to study the structure of 
excited-state surfaces via DFT would be valuable. 
However, the DFT treatment of excited states is 
not yet as fully developed as is the ground-state 
theory. To our knowledge, no previously pub- 
lished study using any DFT method has ever re- 
ported an avoided crossing due to configuration 
mixing. 

In molecular applications of DFT, excited states 
have traditionally been treated by simply applying 
ground-state DFT to excited states. This is based, 
in the first instance, on the theorem that the energy 
of the lowest excited state of each symmetry may 
be obtained by minimizing a functional of its 
charge density ([3] pp. 204-205) and is, for exam- 
ple, the usual way to treat the lowest triplet ex- 
cited state of a closed-shell molecule in DFT. Exci- 
tation energies are then simply obtained by the 
ASCF (self-consistent field) or related transition 
orbital method. This same approach is often ap- 
plied with impunity to treat higher excited states. 
Another formal problem (usually ignored) is that 
the functional needed for each excited state need 
not be the same as that used for the ground state. 
However, the primary difficulty with this method 

is practical as well as formal. The so-called 
excited-state multiplet problem originates in the 
intrinsic limitation to n-occupied Kohn-Sham Or- 
bitals when constructing excited-state wave func- 
tions. This is frequently insufficient to construct 
open-shell reference wave functions such as in the 
very simple and notable case of singlet excited 
states of a closed-shell molecule where n + 2 Or- 
bitals are actually needed to construct the singlet 
wave function, $ -» (1/ <JlM\T an + a\x äiT )$. 
A group-theoretic method has been devised which 
partially addresses this problem, but it is, of course, 
not able to describe important configuration mix- 
ing arising from other effects besides symmetry 
[4-7]. In cases where nonsymmetry-related mixing 
of configurations is expected, e.g., based on experi- 
mental results, a post hoc configuration-interac- 
tion-like correction can sometimes be applied (e.g., 
[8] p. 5025) at the risk of double counting correla- 
tion effects. However, this is of limited utility for 
predictive purposes, and it is clearly not a very 
natural, nor well justified, way to treat the struc- 
ture of excited-state surfaces where avoided cross- 
ings involving configuration mixing are important. 

For atoms and simplified cluster models, pho- 
toabsorbtion spectra have long been calculated us- 
ing a time-dependent generalization of the 
Kohn-Sham equation, 

/     1   , ,p(r,f) \ 
|--V2 + „(r,0 + /^TTjrfr' + vj Pl](r) 

X t//;(r, f) = z — ipj(r,t), 
dt 

(1.1) 

within the adiabatic approximation. Here 
vxc[ p,](r) = 8Exc/8p,(r), where p,(r) = p(r, t). In 
this approach, a scattering theory formalism is 
used, and spectra are obtained in the form of a 
spectral strength function [9-16]. This scattering 
theory approach precludes the treatment of spec- 
troscopically dark states, and, although it is a 
natural way to treat the continuum part of the 
spectrum, artificial line broadening is required for 
treatment of the discrete spectrum. 

Although time-dependent DFT (TD-DFT) was 
initially ad hoc, a substantial body of work has 
now given it a rigorous formal footing [17-26] (see 
especially reviews by Gross and co-workers 
[27-29]). The dynamic response of the charge den- 
sity for a system, initially in its ground stationary 
state, that is exposed to a time-dependent pertur- 
bation,   is   described   via   the   time-dependent 
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Kohn-Sham equation (1.1). Excitation energies, o)Ir 

and oscillator strengths, /„ may then be obtained 
from the poles and residues of the dynamic polar- 
izability, 

a(<w) = £■ /; 
a. 

(1.2) 

using the well-known sum-over-states theorem 
[30]. We have formulated [30] and implemented 
[31] this approach in a manner suitable for molecu- 
lar applications. The excitation energies and oscil- 
lator strengths, respectively, are the eigenvalues 
and eigenvectors obtained by solving a matrix 
eigenvalue problem, 

ftF, = (of¥lt 

where (in the spin density formalism) 

(1.3) 

ftifl<r,;6T= 8ar8ij8ab(€a O* 
+ ]/€aa-eiJia\SV^/8pT\jb] 

(1.4) 

[30-32] is constructed from the Kohn-Sham Or- 
bitals and orbital energies for the unperturbed 
self-consistent field problem (i.e., calculated in the 
SCF step). This provides a natural way to treat 
discrete spectra and yields dark as well as bright 
states. It should be emphasized that Eq. (1.3) is 
completely rigorous, involving no further approxi- 
mations beyond the finite basis set model and the 
functionals used in TD-DFT. In the adiabatic ap- 
proximation, which will be used in this work, ft is 
independent of w, so this is an ordinary eigen- 
value problem. (See Ref. [30] for a discussion of 
the nonadiabatic case.) The presence of configura- 
tion mixing in this method follows from the con- 
figuration interaction (Cl)-like nature of Eq. (1.3) as 
does the ability to generate entire manifolds of 
excitation energies in a one-shot process. This 
method is thus a natural candidate for a computa- 
tionally simple treatment of excited-state surfaces. 

In order for TD-DFT to be able to describe, even 
qualitatively, surfaces exhibiting avoided crossings 
due to configuration mixing, two factors are im- 
portant: (1) the structure of the TD-DFT coupling 
matrix (SVSCF/dp) and (2) the functional. Al- 
though our formulation of TD-DFT resembles 
time-dependent Hartree-Fock (TDHF), the TD- 
DFT coupling matrix differs significantly from that 

of TDHF (see Ref. [30]). TD-DFT appears to do 
quite well at describing the configuration mixing 
responsible for multiplet splittings, in which case 
the mixing is due primarily to symmetry [31, 33]. 
We have also noted the occurrence of significant 
configuration mixing that does not arise from sym- 
metry [31], however, its correctness has not been 
examined explicitly. A severe test is to see whether 
TD-DFT can describe the strong configuration mix- 
ing responsible for avoided crossings. The present 
study demonstrates that TD-DFT can give at least 
a qualitatively correct description in the difficult 
case of avoided crossings due to mixing of valence 
and Rydberg excitations in the lAx manifold of 
formaldehyde. 

The simultaneous description of valence and 
Rydberg excitations is a demanding task for the 
functional. The TD-DFT method has been found to 
give remarkably good results for low-lying vertical 
excitations, when the local density approximation 
(LDA) is used [31, 33, 34]. We have also shown 
that correction of the asymptotic behavior of the 
exchange-correlation potential, vxc, used in the 
SCF step, is crucial for treating higher excitations 
[33]. Quite reasonable results are obtained by us- 
ing the asymptotically correct potential of van 
Leeuwen and Baerends [35] in the SCF step, com- 
bined with the time-dependent local density ap- 
proximation (TDLDA) for the post-SCF step [33, 
36]. We have improved on this by combining the 
LB94 potential in the asymptotic region with the 
LDA in the "bulk" region of the molecule where 
v^A is more nearly parallel to the exact potential 
than is v^9i, while at the same time shifting o^PA 

down to compensate for the fact that we are ap- 
proximating the exact vxc which has a particle 
number discontinuity by an approximate func- 
tional which has no derivative discontinuity [37]. 
Specifically, 

i;x
A

c
c"LDA(r) = Max[üx

L
c
DA(r) - A,yx

L
c
B94(r)],  (1.5) 

where 

A = I + e HOMO (1.6) 

is the difference between the ASCF ionization po- 
tential and the negative of the highest occupied 
molecular orbital (HOMO) energy, in the LDA. 
This asymptotically corrected LDA (AC-LDA) will 
be used in the present work (i.e., we use the 
TDLDA/AC-LDA functional, meaning that the 
AC-LDA is used for the SCF step and then com- 
bined with the TDLDA coupling in the post-SCF 

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 935 



CASIDA, CASIDA, AND SALAHUB 

step). The AC-LDA energy expression is 

:AC-LDA EX-/<c-LDA(rii>(r)Jr 

Z '12 

(1.7) 

and gives total energies very close to those of the 
LDA since v£f~LDA and u^c

DA differ by no more 
than a rigid shift in the energetically important 
regions of space [37]. Using the TDLDA/AC-LDA 
functional, we obtained most of the first 20-30 
vertical excitations of formaldehyde and 3 other 
small molecules to within 0.5 eV [37]. Although 
there are a few states with larger errors (~ 1 eV), 
indicating a need for continued improvement of 
the functional, the results from the AC-LDA func- 
tional are good enough that we are now in a 
position to hope that TD-DFT will be able to de- 
scribe photochemically interesting phenomena in- 
volving both valence and Rydberg excitations, and 
configuration mixing between the two. 

As a first trial, we have chosen to focus on the 
CO-stretch cross section of the \Aj manifold of 
formaldehyde. These surfaces exhibit avoided 
crossings due to configuration mixing, and this 
mixing has been found to be essential for a resolu- 
tion of the longstanding enigma of why the 
l(ir, 7T*) transition has never been observed exper- 
imentally [38-40]. As will be seen, TD-DFT is able 
to describe this phenomenon. 

2.   Computational Details 

The TD-DFT calculations were performed using 
version 2 of our program deMon- (for "densite de 
Montreal") DynaRho (for "dynamic response of 
p") [41]. Version 4.0 of deMon-KS (for "Kohn- 
Sham") [42] was used for the SCF step due to its 
automated orbital symmetry assignments [43]. 
Both of these programs use the same auxiliary 
basis sets, which improve computational scaling 
both through the elimination of four-center inte- 
grals and by reducing the number of grid points 
needed to evaluate exchange-correlation terms. 

Since TD-DFT produces transition densities, 
rather than the «-electron wave functions for the 
excited states, a complete assignment of term sym- 
bols for the transitions obtained typically requires 

that some additional approximation be introduced. 
Following Ref. [30], we assume that the wave 
function, ty,, for the Jth excited state has the form, 

ijo- 

I" F>j(ra)Jiir* + -,   (2.1) 

where <£ is the single determinant of Kohn-Sham 
orbitals occupied in the ground-state noninteract- 
ing system and the creation and annihilation oper- 
ators, a'ja and ailT, refer to the Kohn-Sham mol- 
ecular orbital representation. This approximation 
appears to be quite adequate, and is used in the 
present work, for the qualitative purpose of assign- 
ing term symbols to the quantitative transition 
energies and oscillator strengths obtained by solv- 
ing the eigenvalue problem Eq. (1.3) and for ana- 
lyzing the orbital promotions associated with each 
excitation. 

We studied the CO-stretch cross section of the 
surfaces, holding the CH2 moiety frozen at its 
experimental ground-state equilibrium geometry 
(RCH = 2.0796 bohrs, ZHCH = 116.3°), the same 
as used in Ref. [38]. The zero energy is taken to be 
the minimum of the ground-state CO stretching 
curve. The excited-state surfaces were obtained by 
adding the TDLDA/AC-LDA transition energy to 
the AC-LDA ground-state energy, for each geome- 
try. 

Gaussian-type orbital (GTO) basis sets are used 
for both orbital and auxiliary basis sets. We used 
the Sadlej+ basis set of Ref. [33], which consists of 
the Sadlej basis [44, 45] supplemented with two 
diffuse s and one set each of diffuse p and d 
functions, for a total of 102 contracted GTOs. The 
deMon library (4,4; 4,4) auxiliary set was used for 
C and O. For H, a (4,1;4,1) auxiliary basis set was 
obtained by supplementing the deMon library 
(3,1; 3,1) basis with a diffuse s function with ex- 
ponent 0.06. 

The deMon "extrafine" "random" grid (with 32 
radial and 194 angular points per atom) con- 
structed using C2v symmetry was used. The SCF 
convergence criteria were a change of less than 
10~8 a.u. in the charge density fitting coefficients 
and, simultaneously, less than 10~8 hartree in the 
total energy. 

3.   Results and Discussion 

One of the strengths of our response theory 
formulation of TD-DFT is that the ability to de- 
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scribe configuration mixing, which is important for 
avoided crossings, is present in the formalism. In 
this section, we verify that this works in practice, 
by comparing our TDLDA/AC-LDA excited-state 
surfaces with the multireference doubles configu- 
ration interaction (MRD-CI) results of Hachey, 
Bruna, and Grein [38] for the lAx manifold of 
formaldehyde. 

We will use orbital promotion labels for the 
primary components of the transitions in order to 
interpret our surfaces. Placing CHzO in its canoni- 
cal orientation [46] with CO along the z axis and 
the hydrogens in the (y, z) plane, DFT with the 
AC-LDA functional gives the following ordering 
of valence-type orbitals: 

[l[72((T')]2[5fl1(cr)]2[lfc1(7r)]2[2^(«)]2[2fc1U*)]0, 
(3.1) 

followed by the Rydberg orbitals, 

[6fl1(3s)]0[7fl1(3pz)]0[3^2(3py)]0[3fe1(3p;c)]0 

x[8fl1(3dlJ_yO]0[4fc2(3dy2)]° 

X[9ai(3dz2)]0[la2(3dxy)]0, (3.2) 

in order of increasing energy. The "chemical 
names" are traditional [47], up to minor variations. 
For ease of comparison, we use the same chemical 
names as Hachey, Bruna, and Grein [38]. Note also 
that our distinction between "valence" and "Ryd- 
berg" is simply the one already well-established in 
the formaldehyde literature [47]. 

It is worthy of note that, in contrast to Hartree- 
Fock, all of the above unoccupied molecular or- 
bitals are bound, and their ordering reflects the 
ordering of the Rydberg excited states [37]. In fact, 
when a sufficiently good exchange-correlation po- 
tential is used, DFT orbital energy differences pro- 
vide a remarkably good approximation to Rydberg 
excitation energies [37, 48, 49]. This is illustrated in 
Table I, which also gives an idea of the level of 
agreement between our TDLDA/AC-LDA vertical 
excitation energies and the MRD-CI results of 
Hachey, Bruna, and Grein [38]. 

Since our excited-state surfaces are obtained by 
adding the TD-DFT transition energies to the 
ground-state energy, we begin with a look at our 
ground-state surface (Fig. 1). Note that the LDA 
and AC-LDA curves are virtually indistinguish- 
able. This is as it should be, since the AC-LDA was 
designed to be an asymptotic correction which 
would leave the LDA orbitals (and hence total 
energy) essentially unaltered in the energetically 
important 'bulk' region of the molecule [37]. Al- 
though the AC-LDA and LDA curves are quite 
similar to the MRD-CI curve near the potential 
minimum, the difference increases significantly for 
large CO distances, where the AC-LDA and LDA 
curves go from being 0.1 eV too high at Rco = 2.6 
bohrs to 0.4 eV too high at 3.2 bohr. This error will 
be inherited by our excited-state curves. Since the 
error in the shape of the ground-state curve can be 
diminished by using a gradient-corrected func- 
tional [50], it is worth noting that the asymptotic 
correction paradigm applied to create the AC-LDA 

TABLE I  
Comparison of AC-LDA orbital energy differences, TDLDA/AC-LDA, and MRD-CI excitation energies at the 
experimental ground-state equilibrium geometry (Rc0 = 2.2739 bohrs, [38, 54]).a 

Transition 
>A1 Vertical Excitation Energies (eV) 

MRD-Clb TDLDA/AC-LDA Aec 

\n,3dyz) 
(n,3dyz) 

3(n,3dyz) 

\n,3py) 
(n,3py) 

3(n,3py) 

V,7T*) 

V,77*) 

9.06 {3%) 

9.18 (3%) 

7.99 (2^) 

7.92 (23Aj 

9.65 (4^) 

6.15 (l3/^) 

10.13 (4^) 

9.62 (33AJ 

8.02 {2%) 

7.85 (23AJ 

9.48 O1^) 

6.23 (-\3AJ 

a Note that the 1(n, 3dyz) and V, -n-*) configurations are heavily mixed at this geometry (see text). 
bRefs. [38, 54], basis set B. 
c AC-LDA orbital energy difference. 

9.76 

7.99 

7.42 
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FIGURE 1. Comparison of ground-state CO-stretch 
potential energy curves of planar formaldehyde 
calculated using DFT (LDA and AC-LDA functional) with 
the MRD-CI curve of Hachey, Bruna, and Grein [38] (Cl 
data courtesy of Michel Hachey). All curves have been 
shifted so that their minima are at zero energy. Note that 
the LDA and AC-LDA curves are essentially coincident. 

could equally well be used with a gradient-cor- 
rected functional, and would be expected to lead 
to improved excited-state surfaces. 

The calculation of the 1Al excited-state surfaces 
played an important role in understanding the 
spectroscopy of formaldehyde. A classic puzzle 
has been the placement of the 1

(TT, TT*) state. De- 
spite an expected large oscillator strength, this 
transition has never been observed experimentally 
[38]. Hachey, Bruna, and Grein's calculation of the 
CO-stretch cross section of the lAj manifold of 
excited-state surfaces has done much to give a 
definitive resolution to this enigma [38-40, 51, 52]. 
They found that the 1

(TT, TT*) diabatic curve is 
indeed present, but that it is so strongly perturbed 
by Rydberg states that what is actually observed 
are strong mixtures of l(v, TT* ) and Rydberg states. 
The resulting avoided crossings can be clearly un- 
derstood in terms of the KIT, TT*), 

1(n,3py), and 
\n,3dyz) diabatic curves (Fig. 2). (Although the 
diabatic curves are not shown, as such, in this 
figure, they are evident from the labeling of the 
primary components present in various portions of 
the adiabatic curves.) Since the 1

(TT,TT*) diabatic 
curve is dissociative, Hachey, Bruna, and Grein 

FIGURE 2. Comparison of TDLDA/AC-LDA (solid) with 
MRD-CI [38] (dashed) 2, 3, and 4 % CO-stretch potential 
energy curves of planar formaldehyde. The energy zeros 
are the minima of the corresponding (AC-LDA or MRD-CI) 
ground-state CO-stretch potential energy curves. The 
major orbital promotions found from the analysis of the 
TDLDA/AC-LDA "wave function" [Eq. (2.1)] have been 
indicated (in parentheses), as have the major orbital 
promotions for the MRD-CI curves given in Ref. [38] (no 
parentheses). 

attribute the observed absorption continuum above 
about 7.5 eV to predissociating interactions. (The 
vertical ionization potential of CH20 is 10.88 eV 
[53].) 

This kind of global description of what is going 
on in the spectroscopy of the first several states in 
the lAj manifold of formaldehyde is exactly the 
sort of information we would like to be able to 
obtain from TD-DFT. Our goal in the present work 
is not so much quantitative agreement with the 
MRD-CI results (since functionals for TD-DFT are 
still undergoing rapid development, and different 
basis sets are used), but rather to ascertain whether 
TD-DFT yields the same global picture as MRD-CI. 

Figure 2 shows our TDLDA/AC-LDA excited- 
state CO-stretch curves. Analysis of the compo- 
nents of our TD-DFT excitations shows that the 
same three diabatic curves, 1

(IT, TT*), 
l(n,3py), and 

l(n,3dyz), are present as in the MRD-CI calcula- 
tion. The TDLDA/AC-LDA \n,3py) curve is 
within about 0.2 eV of the MRD-CI \n,3p ) curve. 
The TDLDA/AC-LDA \TT,TT*) diabatic curve is 
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also close to the MRD-CI \TT, IT*) diabatic curve, 
for Rco less than 2.5 bohrs. However, the differ- 
ence increases going toward large Rco, becoming 
about 0.7 eV at Rco = 3.2 bohrs. This increasing 
error at large Rco is partly due to the error in the 
AC-LDA ground-state surface in this region. When 
this is taken into account, the difference in the 
KIT, IT*) curves at 3.2 bohr reduces to 0.3 eV. 
Overall, the largest differences between the 
TDLDA/AC-LDA and MRD-CI diabatic curves are 
seen for the Kn,3dyz) curves where the TDLDA/ 
AC-LDA diabatic curve is consistently about 1 eV 
higher than the corresponding MRD-CI diabatic 
curve, though this difference reduces to 0.5 eV for 
small Rco (2.0-2.1 bohr). Our tests at the equilib- 
rium geometry indicate that differences in orbital 
basis set, and the choice of auxiliary basis, change 
these excitation energies only by about 0.1 eV or 
so. The substantial observed difference between 
the TDLDA/ AC-LDA and MRD-CI \n, 3dyz) dia- 
batic curves thus appears to be due primarily to 
limitations of the functional. 

The most striking feature of the TDLDA/AC- 
LDA curves is the appearance of avoided cross- 
ings. Although avoided crossings can arise simply 
from avoided crossings of the orbital energy 
curves, that is not the case for the present curves. 
Rather, the avoided crossings seen here are due to 
configuration mixing between n-electron states. 
The 1[lt1(7r),3&1(7r*)]/1[2b2(n),3b2(3py)] avoided 
crossing is of this type, with 

13^) s -OJ^tl&xUUfcjU*)]) 

+ 0.53|1[2b2(n),3b2(3py)]> 

+ 0.29|1[2&2(n),4b2(3dyz)]>, 

12^) = o.^ru&iU^u*)]) 
+ 0.9ir[2&2(n),3fc2(3py)]>,   (3.3) 

at 2.5 bohr. Because our formulation of TD-DFT is 
a response theory method based upon ground-state 
orbitals, multiconfiguration descriptions of excita- 
tions may arise both from relaxation effects and 
from true configuration mixing. While the combi- 
nation of the last two terms in the 3xAa expansion 
may be simply interpreted as arising from a single 
excitation with relaxation, 

2b2(n) -* 3b'2 = 0.88 X 3b2{3py) 

+ 0.48 X 4fc2(3rfyz),   (3.4) 

and so could be described with a single excited- 
state configuration, 1[2fe2(n),3&2], the presence of 
combinations of bx -> bx with b2 -» b2 terms can- 
not. Thus, this avoided crossing does indeed in- 
volve true configuration mixing. Note that the 
resulting energy separation (between the 1lAx and 
3^! curves) is about the same in the TD-DFT and 
MRD-CI results. 

Examination of the components of the 3^ and 
4xAj states reveals strong configuration mixing of 
Kir, IT*) and Kn,3dyz), in the region around 
2.3-2.4 bohr and indicates an avoided crossing of 
these two curves. However, since the TDLDA/ 
AC-LDA diabatic Kn,3dyz) curve is about 1 eV 
higher than the corresponding MRD-CI curve, it is 
not surprising that the appearance of the respec- 
tive avoided crossings is different. In the TDLDA/ 
AC-LDA results, the £AX transition at Rco = 2.1 
bohr is predominantly Kn,5b2), where the 5b2 is 
an unbound unoccupied orbital to which we have 
not attempted to assign a "chemical" name. In 
view of the proximity to the molecular iomzation 
potential, the orbital and auxiliary basis sets, as 
well as the functional, should be further investi- 
gated before attaching too much significance to the 
points approaching 11 eV. 

The TDLDA/ AC-LDA V^ CO-stretch curves are 
qualitatively similar to the MRD-CI curves, and 
the TDLDA/AC-LDA does yield the important 
mixing of the Kir, IT*) with the Kn,3pv) and the 
1(n,3dyz) Rydberg excitations, thus giving the 
same global picture found by Hachey, Bruna, and 
Grein [38] to explain why the long sought Kir, IT*) 

transition has never been observed. A ASCF-based 
DFT study of these excited-state curves would 
have been far more difficult (if it were possible), 
involving multiple ASCF (or Slater transition or- 
bital) calculations for each geometry. Even so, it is 
difficult to see how the extensive configuration 
mixing at these energies could be described by the 
ASCF-based approach without the introduction of 
post hoc second-order corrections [7] of a non-DFT 
nature. 

4.   Conclusion 

In this work, we have presented the first DFT 
calculation of excited-state surfaces exhibiting 
avoided crossings. The present results with the 
TDLDA/AC-LDA functional show that TD-DFT is 
capable of describing the important configuration 
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mixing effects intrinsic to the behavior of these 
surfaces, and that TD-DFT yields the same global 
picture of the spectroscopy of the long-enigmatic 
A1 manifold of formaldehyde as was found in the 

MRD-CI study of Hachey, Bruna, and Grein [38]. 
While the TDLDA/AC-LDA already gives a good 
qualitative description, and is quantitative (agree- 
ment within a few tenths of an eV) for some 
portions of these surfaces, further improvement in 
the functional will be needed in order to make the 
results fully quantitative. 
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ABSTRACT: The differential scattering cross-section (DCS) for electrons scattered 
elastically by neon and argon atoms is studied using a model potential. In the present 
study the long-range polarization potential is represented by an energy-dependent 
function, and the short-range part is constructed from the nonrelativistic Hartree-Fock 
wave function of the target atom. The computed differential cross section obtained using 
the approximate effective interaction potential for electrons scattered by neon and argon 
atoms in their ground state is compared with available published results. In the present 
study the parameters contained in the energy-dependent effective potential are 
determined by the minimization of the DCS with respect to angle 6 and the incident 
energy. The resulting DCS in the angular range 2° < 0 < 178° is found to be in good 
agreement with the available experimental and theoretical results in the intermediate 
energy range.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 943-950, 1998 

Key words: electron scattering; effective potential 

Introduction 

The present work is a continuation of the dif- 
ferential cross-section (DCS) computations of 

electrons scattered by the neon atom reported ear- 
lier [1]. The method has been refined and applied 
to argon as well as neon over the intermediate 
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energy range. Electron scattering by atoms and 
selected molecules has been a topic of considerable 
interest as evidenced by a large number of experi- 
mental and theoretical works published over the 
last decade. The theoretical work has progressed 
mostly along the application of R-matrix theory [2] 
while the semiempirical calculations based on the 
optical potential models [3] with or without ad- 
justable parameters have increased over the last 
few years owing to their simplicity and the ease of 
computations leading to the DCS over a wide 
range of incident energy. In the present study, the 
model potential is based on the dipole polarizabil- 
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ity ad of the target atom and two parameters 
contained in the energy-dependent polarization 
potential determined by minimizing the DCS at 
the critical angle [4] with the condition that the 
computed integral cross section agrees with the 
experimental value of the integral cross section for 
two selected incident energies. The significance of 
the DCS minimum at the critical angle can be 
understood on the basis of the phenomenon of 
low-energy electron diffraction associated with the 
interaction between the incident electron and the 
atomic target. While the reported differential 
cross-section data for a given target atom varied 
from 5 to 13% depending on the incident energy, 
the integral cross section is known to have less 
uncertainty for most closed-shell atoms over the 
intermediate energy range. In the present study, 
the critical minima and the integral cross section of 
the computed DCS are shown to depend on the 
values of the parameters so that one can vary them 
to find the set that minimizes the DCS at the 
critical angle and corresponds to the correct inte- 
gral cross section within the uncertainty of the 
experimental data at a selected incident energy. 
Using this set of parameters, the differential cross 
section for the target atom is computed over the 
energy range 20 < E < 500 eV and the angular 
range 2° < 0 < 180°. The computed DCS are found 
to be in good agreement with recently reported 
experimental and theoretical cross-section data for 
neon and argon atoms over the intermediate en- 
ergy range. 

Approximation to the Effective 
Potential 

The effective potential is constructed from the 
Hartree-Fock orbitals [5] of the target atom and is 
of the form given by 

Ve = Kx(r) + Vv(E,r) p 

2Z 
+ (—   EE^„K„(r)exp(-ß,r),    (1) 

\    r   I   k     n 

where Vex(r) and Vp(E,r) are the exchange and 
polarization potentials, respectively, and the val- 
ues of A„ and Bk (k = 1,2,..., M, M < 10) are 
determined from the Hartree-Fock wave function 
[5] of the target atom, and the function Ru is an 
nth order polynomial in r. The approximate func- 
tion representing the short-range part of the poten- 
tial and the exchange potential is then represented 

by the following truncated potential given by 

Vs(r) = (2Z/r)£C„exp{-ttC0r}.      (2a) 
n 

The coefficients C„ (n = 1 to 7 for argon and 1 to 6 
for neon) for this representation of the effective 
potential is computed from the following equa- 
tions: 

C„= EE[B]H*[exp(-*C0ry)] 

x{<<D0|V(r;.)|<V + Vex(r,.)},    (2b) 

where $0 is the wave function of the target atom 
and the (N X N) matrix B is defined by 

B„jt = E*(«,iWU); 
i 

V(n,i) = v4„exp(-m-,-); 

■9(i,k) = A„exp(-kri). 

(3) 

In Eq. (3), the value of ri = (/ - 0.5) Ar is based 
on the stepsize Ar = rmax/M, where M is the 
number of subdivisions (30-60) of the range over 
which the potential is approximated (0 < r < 30fl0) 
and the sum over i is from 1 to M(M > N). The 
values of M and N entering in this algorithm is 
optimized with the condition that the computed 
DCS obtained from this approximating potential 
agree with that obtained from the initial potential 
within 1% or less. This leads to six constants for 
the neon target and seven values of C„ for the 
argon atom. For neon, and argon the values of the 
constants are listed in Table I. The truncated form 
of the potential increases the efficiency of the mini- 
mization algorithm over the intermediate energy 
range to produce the DCS surface over an energy 

TABLE I  
Constants C„ for the e-neon and e-argon 
potentials defined in Eq. (2a). 

Neon Argon 

0 1.37079301 1.03130210 
1 1.114661 (-7) 0.391702 (-6) 
2 1.259580(1) 0.136716(1) 
3 -0.129429(0) 0.111888(0) 
4 0.858429(0) -0.253920(1) 
5 -0.274376(1) -0.158640(1) 
6 1.736750(0) 0.726041(1) 
7 — -0.360875(1) 
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grid of 15 and angular grid of 90. The operator 
V(rk) contained in the equation for Cn represents 
the Coulomb interaction between the incident elec- 
tron and the target atom. 

The   energy-dependent  polarization  potential 
used in the present study is of the form: 

Vp(E,r) = ad/[r+aa,b,E)f, (4) 

where ad is the experimentally known dipole po- 
larizability [6] of the target atom (for neon atom, 
ad = 2.66 atomic units and 11.09 for argon) and 
£(a, b, E) is an energy-dependent function given 
by £, = a + bE, where a and b are parameters de- 
termined by the DCS minimization code. In the 
present study, the values of a and b are a = 1.13, 
b = 0.0036 for neon and a = 2.932, b = 0.00245 for 
argon target. This form of the polarization poten- 
tial is based on a localization of the nonlocal po- 
tentials resulting from the well-known polarized 
orbital method of Temkin and Lamkin [7]. With 
this choice of the polarization potential, the func- 
tion £ has the effect of a cut-off parameter making 
the minimum value of the radial distance to be 
energy-dependent and at large distances from the 
atom, the polarization potential has the correct 
asymptotic form [3]. The inclusion of the dipole 
polarizability takes into account the excited states 
[8] of the target atom which contribute to the 
polarizability and thus to the polarization poten- 
tial. Because of the long-range effect of the polar- 
ization potential, at intermediate energies (50 < 
E < 500 eV) of the incident electron, a large num- 
ber of phase shifts (200 or more) have to be deter- 
mined from direct numerical solution of the 
Schrödinger equation and the Born approximation. 

Computation of Differential Cross 
Section 

The effective interaction potential used in the 
present study is represented by the sum of the 
short-range term and the energy-dependent long- 
range polarization terms given by 

Ve(r) = (<S>0\V(r)\<$>0) 

+ ad/[r + Z(a,b,E)]4 + Vex,   (5) 

where <E>0 is the ground-state Hartree-Fock [5] 
wave function of the target atom, the operator 
V(r) contains the electron-electron and electron 

nuclear potentials, ad is the dipole polarizability 
of the target atom, and the parameters a and b 
contained in £(«, b, E) are to be determined for 
selected incident energies E of the electron. The 
form of the exchange potential Vex is similar to the 
one used in an earlier study [9]. The differential 
scattering cross section l(k, 6) is then computed 
from the scattering amplitude f(k, 9) as a function 
of the wave number k and scattering angle 8 given 
by 

/(M) = i-^AzO-l + V) 

X[exp(2i'S,) - l]P,(cos 0),   (6) 

where the phase shifts 8l are computed by solving 
the radial part of the Schrödinger equation for 
angular momentum in the range 0 < / < 12 using 
the Numerov algorithm [10] from which the zeros 
of the wave functions are used in the argument of 
Bessel and Neumann functions to compute the 
phase shifts accurate to four decimal places. In 
Eq. (6), the functions P,(cos 6) are the Legendre 
polynomials of order I [11]. For higher partial 
waves, the Born approximation is used in the 
range 11 < I < 30 with a 32-point Gauss quadra- 
ture method for the numerical integration. The 
phase shifts for higher partial waves are computed 
using an analytical expression [12] for the phase 
shift in terms of integrals involving Bessel func- 
tions of fractional order for values of I up to 200. It 
has been found that for scattering angles > 2°, not 
more than 200 partial waves are needed for the 
DCS to converge to an accuracy of +0.1%. How- 
ever, for angles less than 0.1°, it was found that 
more than 1000 partial waves were needed for 
convergence to the listed accuracy. All the compu- 
tations were performed in double precision using 
an IBM4381 and the DCS data reduction in graph- 
ics form was done with a Pentium PC. For scatter- 
ing angles in the small-angle range, it was found 
that a faster algorithm was required to efficiently 
execute the minimization routine. For this, the 
electron-atom interaction was represented by a 
truncated least-square fitted function containing 
fewer terms which substantially reduced the com- 
puting time of the forward scattering amplitude 
and the resulting integral cross section. For the 
higher partial waves, the approximation to the 
short-range interaction did not significantly affect 
the final results since phase shifts depend mostly 
on the polarization potential. This enabled the de- 
termination of the approximate values of parame- 

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 945 



PAIKEDAY AND LONGSTREET 

ters a and b appearing in Vp(E,r) for neon and 
argon atoms that satisfy the specified conditions 
with a few minutes of computer time for each 
incident energy for a given target atom. 

Discussion of Results 

The variation of computed integral cross-section 
er with the parameters contained in the polariza- 
tion potential £(a, b, E) is shown in Figure 1. As 
the value of £ was varied from 1 to 4, the value of 
the integral cross-section cr varied from 25.2 to 
16.7 at the selected incident energy of 100 eV. 
Using the approximate experimental value of 17.82 
(a.u.) for a, the value of £ is determined to be 
3.177. Then, from the minimization of the DCS 
surface [1], the values of a and b contained in 
£(a, b, E) were determined to be 2.932 and 0.00245, 
respectively, for argon. A similar procedure was 
used for the neon target for which the values of 
the parameters are 1.13 and 0.0036. Thus, using the 
potential given by Eq. (5), the DCS and the integral 
cross-section a at all energies in the range 50 < 
E < 500 eV were then computed. Comparison of 
the computed a(E) and other available theoretical 
[13] and experimental data [14] as a function of 
energy E is shown in Figure 2. The variation of <r 
with £ is shown in Table II for argon for the 
incident energy of 100 eV. The comparison of the 
computed integral cross-section a with other the- 
oretical and experimental data for various energies 
in the range 50 < E < 500 eV is shown in Table III. 
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FIGURE 2. Comparison of the computed integral cross 
section for e-argon scattering for incident energy in the 
range 50-600 eV. Solid line, the computed a. Open 
circles are theoretical results [13] and closed circles are 
the experimental results [14]. 

At the energy of 50 eV, the computed cr was 
found to be greater than the experimental values 
from different sources. At larger energies, the com- 
puted a is in good agreement with theory and 
experiment in the intermediate energy range. For 
all energies, the computed a appears to be larger 
than the experimental values. Comparison of the 
computed DCS with other theoretical and experi- 
mental data is shown in Tables IV and V. At these 
energies, the theoretical values of DCS are greater 
than the experimental results at all angles. How- 
ever, the critical angle at 100 eV appears to be in 
good agreement with the published results. For 
the determination of the critical angle and energy 

TABLE II  
Variation of integral cross-section a with £ for 
e-argon system at incident energy £ = 100 eV.a 

FIGURE 1. Change of the integral cross-section a (in 
units of a*) with the parameter £ in the range 1 -4 for 
e-argon system at an incident energy of 100 eV. 

2.246 
2.446 
2.646 
2.846 
3.046 
3.246 
3.446 
3.646 
3.846 
4.046 

20.650 
19.751 
19.053 
18.490 
18.052 
17.699 
17.409 
17.183 
17.001 
16.840 

'Experimental value of <r= 17.82 ± 0.5 (ag) from Ref. [14]. 
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TABLE III  
Comparison of the computed integral cross-section 
or with theory and experiment at various incident 
energies for e-argon scattering.9 

TABLE V  
Comparison of the differential cross section with 
experimental and other theoretical results for 
argon at 100 eW 

Theory Experiment 
Angle 9 Present Ref. [13] Ref. [14] 

50 30.49 33.28 26.0, 25.6, 21.8, 22.0 
75 21.63 23.37 24.3 0 42.6 50.5 

100 17.81 19.21 18.7, 16.5, 17.3, 17.0, 10 22.5 23.2 
18.0, 19.3 20 9.61 10.7 6.48 

150 14.18 15.02 12.0, 13.0, 10.9, 12.7 30 3.74 4.19 2.16 
200 12.21 12.80 11.5, 10, 10.9, 12.7 40 1.17 1.40 0.79 
250 10.89 50 0.37 0.46 0.26 
300 9.91 10.32 8.7,8.0,8.9, 10.2 60 0.32 0.32 0.16 
350 9.14 70 0.54 0.50 0.25 
400 8.51 80 0.71 0.71 0.43 
450 7.97 90 0.70 0.75 0.43 
500 7.52 100 

110 
0.47 
0.18 

0.55 
0.24 

0.33 

V is in units of a?. 0.18 

Present results. 120 0.01 0.02 0.04 
c Theoretical results from Ref. [13] 130 0.15 0.13 0.06 
d Experimental data from Ref. [14] 140 0.66 0.66 

150 1.48 1.54 
160 2.32 2.52 
170 3.05 3.29 
180 3.19 3.58 

a Units in 3Q / ster. 

TABLE IV 
Comparison of the differential cross section 
with experimental and other theoretical results 
for argon at the incident energy of 50 eV.a 

Theory Experiment 

Angle 6 Present Ref. [13] Ref. [15] Ref. [14] 

0 46.6 48.9 57.4 
10 29.9 29.3 33.9 
20 17.3 17.7 19.6 13.7 
30 9.31 9.86 10.8 6.80 
40 4.08 4.71 5.29 3.10 
50 1.13 1.62 1.91 1.15 
60 0.06 0.22 0.30 0.11 
70 0.26 0.16 0.13 0.09 
80 1.00 0.90 0.82 0.54 
90 1.63 1.74 1.63 1.08 

100 1.75 2.08 2.01 1.19 
110 1.35 1.72 1.73 0.97 
120 0.69 0.92 0.99 0.58 
130 0.18 0.24 0.26 0.20 
140 0.12 0.14 0.04 
150 0.58 0.80 0.57 
160 1.33 1.92 1.59 
170 2.03 2.96 2.56 
180 2.27 3.38 2.94 

a Units in an/ster. 

(9C, Ec), the DCS surface was generated over a grid 
of 15 X 90 with the width in energy and angle was 
reduced to obtain the surface near the critical re- 
gion. The DCS surface for e-Neon system is shown 
in Figure 3 in which the approximate (6C, Ec) is 
shown to be approximately (65°, 100 eV) as can be 
seen in the corresponding contour plot of Figure 4. 
Once the approximate critical region is known, the 

E-NEON DCS(6,E) 

150 

100   E(EV) 

0     0 

FIGURE 3. Differential cross section (DCS in atomic 
units) surface for e-neon system showing a minimum 
near (95°, 65 eV). 
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60     SO     100     120 

INCIDENT ENERGY (EV) 

FIGURE 4. Contour plot corresponding to Figure 3 
showing the approximate minimum of the surface at 
(95°, 65 eV). 

grid size was reduced to about A0 = 0.1° and 
AE = 2 eV. The DCS surface near the critical re- 
gion for e-Ne system is shown in Figure 5 and the 
corresponding contour plot is shown in Figure 6. 
Thus the value of (6C, Ec) is seen to be about (65°, 
98 eV) for e-neon system. This is in excellent agree- 
ment with the published results [16]. The DCS 
surface for the e-argon system is shown in Figure 7 
for a grid of (A0 = 2°, AE = 10 eV) and the ap- 
proximate value of (6C, Ec) is seen to be about 
(120°, 120 eV) in the contour plot of Figure 8. 
Using a smaller grid size of (A 0 = 0.1°, AE = 2 

65 70 75 80 

INCIDENT ENERGY (EV) 

FIGURE 6. Contour plot corresponding to Figure 5. 

E-ARGON DCS(8,E) 

0     50 

100      c   (.EN"1 

FIGURE 7. Differential cross section (DCS in atomic 
units) surface for e-argon system showing a minimum 
near (120°, 120 eV). 

FIGURE 5. Differential cross section (DCS in atomic 
units) surface for e-neon system over a smaller grid of 
(A0= 0.2°, AE = 3 eV) showing a minimum near (98°, 
65 eV). 

100     120     140     160 

INCIDENT ENERGY E (EV) 

FIGURE 8. Contour plot corresponding to Figure 7 
showing the approximate minimum of the surface at 
(120°, 120 eV). 
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V 
i«t»B 

FIGURE 9. Differential cross section (DCS in atomic 
units) surface for e-argon system over a smaller grid of 
(A0 = 0.1°, A£ = 2eV) showing a minimum near (117.4°, 
120 eV). 

eV), the DCS surface for e-argon system shown in 
Figure 9 appears to have a sharp minimum near 
the critical value of (117.4°, 120 eV) as is seen in 
the corresponding contour plot of Figure 10. Thus 
the present model calculations for DCS are in good 
agreement with available published data except at 
lower energies for which more accurate experi- 
mental data is needed for further analysis. At 
present a second-order function g(a, b, c, E) is be- 
ing tested to determine the DCS the critical angle 
and energy for other atoms to determine the limi- 
tations of the effective interaction potential for the 

115      120      125 

INCIDENT ENERGY E (EV) 

FIGURE 10. Contour plot corresponding to Figure 9. 

computation of DCS in the intermediate energy 
range. In conclusion, the usefulness of the model 
potential used in the present study is clearly for 
intermediate energies where a large number of 
partial waves are needed to obtain converged val- 
ues of the differential scattering cross section for 
low scattering angles. For low energies, where 
fewer number of partial waves will be sufficient 
for the convergence of DCS, the close-coupling 
calculations have the advantage of being more 
accurate at all angles. 
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ABSTRACT: The structural, electronic, vibrational, and topologic properties of a 
series of acid sites of zeolites were studied at different levels of ab initio molecular orbital 
theory. The zeolite acid sites were modeled by using the following molecular clusters: 
silanol H3SiOH (B0) and the clusters H3SiO(H)AlH3 (Bj), (OH)3SiO(H)Al(OH)3 (B^OH), 
and ^SiCKHJAKOHDjSiHjCBj). The calculation of geometries and properties of these 
clusters were performed at the Hartree-Fock level, and, additionally, second-order 
Meller-Plesset (MP2) and density functional BLYP calculations were carried out for 
silanol and Bl clusters. Geometries were fully optimized by following Cs symmetry 
restrictions. The standard STO/6-31 + G(D, P) basis set, which includes polarization and 
diffuse functions, was used for all the calculations. The topologic properties of the zeolite 
acid clusters, based on the theory of atoms in molecules, were analyzed in terms of the 
total density and the Laplacian density properties, both evaluated at the position of the 
bond critical points. The calculations showed that the frequency of the OH vibrational 
modes of the zeolite acid sites, often used as an infrared index for characterizing the 
acidity of zeolites, is linearly related to the total density of the charge at the critical points 
of the OH bonds, with a correlation coefficient of r2 = 0.97. These results indicate that 
the total density of the electronic charge at the critical point of the OH bond can be used 
as a tool for interpreting the structural and electronic features of the zeolite hydroxyl 
groups. A relationship between the Mulliken population of the H atom of the OH bond 
and the OH frequency gives a correlation coefficient of 0.67. On the other hand, the 
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values of the Laplacian density calculated at the critical points of the bonds of the acid 
sites indicate that the zeolite structure is dominated by a network of Si—O and Al—O 
ionic interactions, while the O—H bonds are characterized as covalent bonds, with 
different extents of charge concentration.    © 1998 John Wiley & Sons, Inc. Int J Quant Chcm 
70: 951-960, 1998 

Introduction 

Zeolites are crystalline aluminosilicate com- 
pounds widely used as molecular sieves and 

acid catalysts in many important industrial pro- 
cesses [1-3]. The acidic properties of these materi- 
als arise from the presence of hydroxyl groups 
named acid sites of zeolites, where two different 
acid sites are distinguished [4]. One of them is the 
isolated hydroxyl group denoted as SiOH, which 
is found in amorphous silica and named terminal 
hydroxyl groups of zeolites, whose acidic features 
are moderate, allowing for the interaction with 
basic molecules leading to the formation of H 
bonds. The other acid group is referred as a 
Brönsted acid site of zeolites and are formed by 
surface hydroxyl groups that are inserted between 
the Al and Si atoms of the zeolite network. In fact, 
these Al and Si atoms are bonded as tetrahedral 
oxide units [Si04]

4" and [A104]
5~ through the OH 

bridge to give a Brönsted Si(OH)Al acid function. 
These acid sites are located at the internal surface 
of the zeolite channels. The Si(OH)Al group is a 
very strong acid site, being the main species re- 
sponsible for the catalytic properties of zeolites. 
Both of these groups, Brönsted and terminal OH 
sites, the main acid sites of zeolites, are able to 
interact with different substrates, particularly with 
those species with electronic lone pairs [5]. 

The zeolite acidity can be characterized by us- 
ing either experimental or theoretical determina- 
tions. Experimentally, IR techniques have been 
very useful for understanding the nature of the 
isolated and bridging surface hydroxyls. IR allows 
one to determine the vibrational properties of zeo- 
lite-adsorbed molecules [4, 5]. The dominant vibra- 
tional properties of these hydroxyl groups corre- 
spond to the OH valence-stretching mode, ^OH. 
These OH modes were observed at 3744 cm1 and 
in the region of 3520 and 3630 cm"1 for the SiOH 
and Al(OH)Si groups, respectively. This property 
is directly related to the force constant of the OH 
bond; in consequence, the value of vOH is consid- 
ered an important index for the zeolite acidity. The 

known values of this index for OH bonds in zeo- 
lites indicate that the Brönsted sites are more acidic 
than are the SiOH terminal groups [6]. Much atten- 
tion has been dedicated to the problem of zeolite 
acidity; both experimental [7, 8] and theoretical [9, 
10] investigations have been performed to estab- 
lish relationships between the catalytic activity of 
zeolites and the determined structural and elec- 
tronic properties, such as Al/Si ratio, gas phase 
acidity, and protonation energy. 

The main aim of this article was to investigate 
the fundamental factors that govern the acid sites 
in zeolites from the structural and electronic points 
of view. To gain insight in this direction, we started 
a theoretical research program to characterize zeo- 
lites by using the topologic theory of atoms in 
molecules developed by Bader et al. [11, 12] as 
implemented by Ciowslowsky et al. [13] in the 
Gaussian packages [14]. This theory, based on the 
topological properties of the molecular charge dis- 
tribution p(r) and their associated fields, the gra- 
dient of p(r) and the Laplacian of p(r), is able to 
characterize locally the bonds, the global structure, 
the stability of a molecular system and its reactiv- 
ity. In particular, ionic and covalent bonds and 
chemical reactivity can be clearly differentiated 
from the topological properties of the Laplacian of 
P(r) [12]. 

This article reports the first investigation about 
the topologic properties of the electronic charge 
distribution, at the ab initio level, of a series of 
hydroxyl acid sites of zeolites. These zeolite hy- 
droxyl groups are represented by silanol H3SiOH 
(BO) and by two kinds of differently sized clusters 
of the bridged and terminal hydroxyl groups, 
namely, H3Si(OH)AlH3 (Bl) and 
(HO)3Si(OH)Al(OH)3 (Bl_OH), and 
H 3Si(OH)Al(OH)2SiH 3 (B2) and 
(HO)3Si(OH)Al(OH)2Si(OH)3 (B2_OH) (see 
Scheme 1). In addition, structural and vibrational 
features of the selected acidic groups of zeolites 
were studied to explore relationships between 
these properties and the topologic properties of 
zeolites. The results, analyzed in terms of the 
available theoretical and experimental data, have 
shown that the density of p(r), calculated at the 
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SCHEME 1 

position of the critical point of the OH bonds, is 
linearly related to the frequency of the OH vibra- 
tion mode. 

Theory and Computational Details 

Quantum mechanic methods have become use- 
ful for studying the bonding interactions that oc- 
cur between zeolites, represented by clusters of 
different chemical composition, and small 
molecules [5, 15]. These theoretical studies are 
limited by the complexity of the interacting 
molecules and, more significantly, for the size of 
the cluster taken as model for representing the 
zeolite active site. These limitations and the avail- 
ability of computational resources define the levels 
of the theory that should be employed. This article 
concerns applications of the standard SCF-MO 
calculations at Hartree-Fock and post-Hartree- 
Fock methods and the application of the topologic 
theory of a molecular charge distribution. The first 

deals with the levels of theory for the calculations 
and the second one is based on the theory of atoms 
in molecules [11, 12]. This theory deals with the 
topologic characterization of the electronic charge 
distribution of a molecular system, based in the 
properties of p(r) and the Laplacian of p(r). 

THEORY OF ATOMS IN MOLECULES 

The theory of atoms in molecules, developed by 
Bader et al. [11], is based on the topologic proper- 
ties of a molecular charge distribution p(r), which 
are characterized by the nature of the extreme of 
p(r), known as the critical points of p(r). These 
critical points are defined as the points where the 
gradient vector field of p(r) vanishes [ Vp(r) = 0] 
and are classified according to the three curvatures 
of p(r), which are determined by the three eigen- 
values (Aj, A2, and A3) of the diagonalized Hessian 
matrix of p(r) [H,; = d2p(r)/dxt <?*•]. Each criti- 
cal point can be labeled by two numbers: D and S, 
where D corresponds to the number of nonzero 
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eigenvalue, and S is the difference between the 
nonzero and the negative eigenvalues. The set 
(D, S) is often called the signature of the extreme. 
The label for a maxima critical point is (3, -3) 
because all the three eigenvalues of H are nonzero 
and negative, being S = 3 and D = -3, while a 
label for a minima is (3, +3). In a molecular sys- 
tem, the maxima, minima, and saddle points in 
p(r) are defined as attractors, cage, and either 
bond (3, -1) or ring points (3, +1), respectively. 
The regions where the Vp(r) is zero lead to the 
existence of a zero-flux surface that splits the 
molecule in fragments linked by bond paths char- 
acterized as (3, -1). These regions, demarcated by 
the zero-flux surfaces, are named the basins. At- 
tractors of basins are often located at the position 
of the nuclei, while bond critical points are located 
between two bonded atoms and correspond to a 
local maxima in two directions and a local minima 
in the third direction. The set of (3, -1) critical 
points defines the network of bond paths and 
describes the molecular structure by the character- 
ization of all their atomic interactions. Along each 
bond path, the charge density is a maximum with 
respect to any neighboring line. The value of the 
electron density at the bond critical point [ pc(r)] 
has been referred as an useful index for represent- 
ing the corresponding bond order [11]. This is a 
property that accounts for the degree of charge 
concentration on the bond path. In the present 
work, we use this parameter for rationalizing the 
electronic properties of the OH bonds in the acid 
sites of zeolites, particularly for interpreting the 
frequency of the OH vibrational stretching mode 
that is used as an index for the zeolite acidity. 

The characterization of how the electronic den- 
sity is rearranged according to the concentrations 
and depletions of the charge is described by the 
properties of the Laplacian of p(r),V2p(r). In par- 
ticular, the sign of V2p(r) determines the regions 
where the charge density is locally concentrated 
[V2p(r) < 0] or locally depleted [V2p(r) > 0] [12]. 
These regions identify the chemical reactivity of a 
molecule. For instance, if the Laplacian is calcu- 
lated at the position of a bond critical point, V2pc(r), 
positive values are indicative of ionic interactions, 
while negative values are associated with covalent 
bonds. In the present work we used these proper- 
ties of the Laplacian of p(r) for characterizing the 
bond features of zeolites through the atomic inter- 

actions within the clusters and for describing the 
differential reactivity of the OH bonds in terminal 
and Brönsted acid sites of zeolites. 

CLUSTER MODELS FOR THE ZEOLITE 
ACID SITES 

An accurate selection of the cluster size and 
their chemical composition is crucial for under- 
standing at the theoretical level the geometric and 
electronic features of the acid sites of zeolites. 
Furthermore this information is important to ratio- 
nalize the observed tendencies in the reactivity of 
different zeolites. In the present work we studied 
silanol (B0) H3Si(OH)ALH3 (Bj) (HO)3Si(OH) 
Al(OH)3 (B^OH), and H3Si(OH)Al(OH)2SiH3 

(B2) clusters. Geometric optimizations of B0, Bv 

and B2 were referenced elsewhere [15], whereas 
for Bj_OH, no report has been published yet. We 
performed new electronic structural, and vibra- 
tional calculations for B0, B1, and B2 models in 
order to be consistent with the comparisons. 

CALCULATIONS 

For silanol and B1 clusters, the calculations of 
geometry optimizations and IR frequencies were 
performed at three levels of theory: Hartree-Fock 
Moller-Plesset [16] at second order of perturbation 
MP2, and density functional theory with the BLYP 
hybrid methods [17]. MP2 methods account for the 
second-order electronic correlation effects and 
BLYP density functional methods evaluate correla- 
tion and exchange electronic effects. For the 
B^OH and B2 clusters calculations for geometry 
optimizations and IR spectra were carried out at 
the Hartree-Fock level. Different basis sets were 
employed for the calculations but in this work, we 
only report the results obtained by using the stan- 
dard STO/6-31 + G(D,P) basis set [18]. Polariza- 
tion and diffuse functions in the heavy atoms are 
included in this basis set. The geometry of clusters 
were fully optimized following Cs symmetry re- 
strictions via the optimization method of Berny 
[19] and vibrational frequencies were evaluated by 
analytic methods within the harmonic approxima- 
tion. The GAUSSIAN-94W, GAUSSIAN94 [14], and 
GAMESS [20] quantum chemistry packages were 
employed for the calculations, which were done on 
PC, IBM RS/6000, and Silicon Graphics worksta- 
tions, respectively. 

954 VOL.70, NO. 4/5 



CHARGE DISTRIBUTION OF ACID SITES OF ZEOLITES 

Results and Discussion 

Zeolite clusters of different sizes and different 
chemical compositions were investigated in order 
to obtain reliable information about the changes in 
their properties according to the variations in the 
chemical environment around the acid sites, both 
the terminal and Brönsted ones. Particularly, for 
the clusters, calculations of geometry optimiza- 
tions, IR frequency in the harmonic approximation, 
and topological properties of the electronic charge 
were performed to explore the existent relation- 
ships among themselves. It was expected that the 
introduced structural modifications in the cluster 
models were able to reflect the rearrangements in 
the electronic density of the OH hydroxyl groups 
by perturbation of the systematic increasing of the 
size of the clusters. 

Here, we report the results of ab initio SCF-MO 
calculations of four different clusters to represent 
the acid sites in zeolites—silanol H3SiOH, 
H3SiO(H)AlH3, (HO)3Si(OH)Al(OH)3, and 
H3Si(OH)Al(OH)2SiH3, which will be denoted in 
the following as B0, Bx, Bi_OH, and B2 clusters, 
respectively. These models consider the effects of 
the addition of the A1H3 group to B0 to give the B1 

cluster; the substitution of the H atoms that are 
linked to Si and Al atoms by OH groups, giving 
the B,OH cluster; and the formation of B, from 

Bx with the substitution of H atoms bonded to Al 
by OH groups. The B0 and B: clusters represent a 
single terminal acid site and a single Brönsted acid 
site without environment perturbations, respec- 
tively, while Bx_OH and B2 are single Brönsted 
acid sites with environment perturbations. In all of 
these clusters there are three Brönsted acid sites 
and nine terminal acid sites. We expected that the 
behavior of the electronic density of the hydroxyl 
groups of these acid centers of zeolites will be 
representative for understanding at electronic level 
their acidity as interpreted in terms of the OH 
vibrational mode. Additionally, we expected that 
the Laplacian of the electronic charge of the se- 
lected acid sites can give to us reliable information 
about the nature of the bonding interactions that 
occur in the Si—O, Al—O, and O—H network 
bonds of zeolites. 

GEOMETRIC STRUCTURE OF THE ACID 
SITES OF ZEOLITES 

Tables I and II report the results of bond dis- 
tances in angstroms and bond angles in degrees 
for the fully Cs optimization geometry performed 
for the B0, Bx, B^OH, and B2 clusters. For B0 and 
Bj, these optimizations were carried out at the 
Hartree-Fock, MP2, and BLYP levels of theory 
and the standard STO/6-31 + G(D, P) basis set. 
Total energies in atomic units are also reported for 

TABLE I 
Optimized bond lengths of B0, B,, B1 _OH, and B2 symmetry Cs. 

Bond B0 Bi B^OH 
HF/6-31 

B2 

length HF/6-31 + MP2/6-31 + BLYP/6-31 + HF/6-31 + MP2/6-31 + BLYP/6-31 + HF/6-31 
(angstroms) G(c/,p) G(d,p) G(d,p) G(d,p) G(d,p) G(d,p) + G(d,p) + G(d,p) 

a 1.6495 1.6768 1.6920 1.7027 1.7225 1.7369 1.7012 1.7043 
b 0.9413 0.9618 0.9733 2.0409 2.0352 2.0808 1.9331 1.9482 
c 1.4687 1.4657 1.4880 0.9467 0.9660 0.9755 0.9474 0.9485 
d 1.4768 1.4745 1.4981 1.4693 1.4675 1.4896 1.6127 1.7153 
d1 0.9417 
e 1.6002 1.5937 1.6111 1.7086 
e1 0.9373 
f 1.4635 1.4625 1.4846 1.6087 1.4692 
f1 0.9523 1.4626 
g 1.5956 1.5891 1.6049 1.7314 1.4813 
gi 0.9401 1.4786 
h 
i 

1.7145 
0.9378 

-E/Eh 366.14701 366.45314 367.11059 609.79466 610.18922 611.30803 1059.40606 1124.73743 
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TABLE 
Optimized bond angles ofB^B^OH , and B2, symmetry Cs. 

Bond Bo Bi B^OH 
HF/6-31 

B2 

length HF/6-31 + MP2/6-31 + BLYP/6-31 + HF/6-31 + MP2/6-31 + BLYP/6-31 + HF/6-31 

(angstroms) G(d,p) G(d,p) G(d,p) G(d,p) G(d,p) G(d,p) + G(d,p) + G(d,p) 

ab 121.61 118.84 117.51 131.08 130.54 132.24 120.52 133.00 

ac 106.70 105.46 105.22 118.80 118.41 118.08 120.44 119.31 

be 95.03 94.43 93.31 99.17 

bd 93.37 

ad 111.02 111.31 111.63 105.71 105.66 106.00 103.85 

cd 110.04 110.36 110.22 
ad1 
dd 108.04 108.07 107.92 
dd1 123.32 

eel 132.15 

ed 162.85 

af 107.84 107.44 107.58 106.21 105.07 

afl 108.09 

bg 98.68 

bh 101.56 

dh 117.55 

eg 118.30 118.58 118.46 121.65 109.75 

ff 111.73 111.80 111.66 114.75 

ff1 117.26 111.67 

f1f1 111.89 

gg 116.68 116.72 117.22 109.67 

eg1 111.58 

ggi 124.05 107.88 

gigi 108.00 

hh 117.92 

hi 128.64 

these clusters. For the B1_OH and B2 clusters, 
geometry optimizations are reported at the HF/6- 
31 + G(D, P) level of theory. Scheme 1 shows the 
cluster figures, indicating the corresponding geo- 
metric parameters. Table I shows that the elec- 
tronic correlation effects at the MP2 level of theory 
and the electronic exchange and correlation com- 
bined effects at the BLYP level of theory increase 
the Si—O and O—H bond lengths if the 
Hartree-Fock quantities are taken as references, 
following the order HF < MP2 < BLYP with the 
STO/6-31 + G(D, P) basis set. For silanol and a 
similar cluster to Bj, reported with the STO/6- 
31G** basis set [15], the correlation effects follow 
the same order as in the present work with a most 
extended basis set. For the Bj cluster, MP2 calcula- 
tions decrease the Al—O bond length, while the 
BLYP effects increase it with respect to the 
Hartree-Fock ones. Regarding to the rest of the 
clusters, B^OH and B2, the Hartree-Fock OH 

bond lengths, b for silanol and c for B,, Bj_OH, 
and B2, increase regularly with the size of the 
cluster, from B0 to B2. This tendency indicates that 
there is a structural effect in the chemical environ- 
ment of these acid zeolite clusters that is directly 
reflected in the studied OH bonds. These results 
indicate that there is increasing Brönsted acidity of 
these clusters with increasing of the size. At the 
Hartree-Fock level, the Si-O bond lengths are 
approximately constants in the Brönsted acid sites 
Bj, B1_OH, and B2 and are slightly larger in the 
silanol molecule. On the other hand, the Al—O 
bond decreases from Bx to B^OH and B2. No 
systematic behavior, however, was found for the 
rest of geometric parameters with respect to the 
variation of the clusters. For the terminal OH bonds 
in Bj_OH and in the B2 clusters, the OH distances 
lie in the known range of OH zeolite bond lengths. 

Table II shows the bond angles corresponding 
to the geometry optimizations of the clusters. These 
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TABLE III  
Vibrational properties of the zeolite clusters. 

OH Vibrational 
Mode (cm-1) 

Bond HF MP2 BLYP 

Silanol cluster 
b (O—H) 
B< cluster 

b (O—H) 
B^OH cluster 

c (O—H) 
d1 (O—H) 
e1 (0—H) 
f1 (O—H) 
g1 (0-H) 
B2 cluster 

c (0—H) 
i (0-H) 

4236 

4160 

4154 
4239 
4301 
4045 
4258 

4131 
4290 

3955 

3871 

3750 

3728 

bond angles are consistent with previous calcula- 
tions [15]. 

VIBRATIONAL PROPERTIES 

Table III shows the IR frequencies of the OH 
vibrational modes, of the Brönsted acid sites, and 
of the OH terminal, calculated in the harmonic 
approximation for the studied clusters. The ten- 
dencies observed in the values of the OH frequen- 
cies at the Hartree-Fock level gives an account of 
the environment and the size effects of the clusters 
of B0 to B2. It is important to note that the OH 
frequency values decrease systematically with in- 
creasing of the number of tetrahedral sites in the 
clusters. These results also show that the OH fre- 
quencies are larger in the OH terminal than in the 
bridged ones, being in the O—H fl mode in 
BJ_0H. The larger OH frequencies indicate that 
these groups are less acidic than are the OH 
bridged groups. 

TOPLOGICAL PROPERTIES 

Density of Charge 

The topological properties of the charge distri- 
bution of the zeolite clusters, according to Scheme 
1, are reported in Table IV. This table reports for 
the clusters the values of the total density, pc(r), 
and the Laplacian density, V2pc(r), calculated at 
the position of the critical points of the bond paths. 

The labels for these bond paths correspond to the 
labels for the geometric parameters of clusters 
(Scheme 1). In addition to these results, Mulliken 
populations were also calculated. For silanol and 
Bj, the topological properties were calculated at 
the HF and MP2 levels, while for B^OH and B2, 
they were calculated at the HF level only. All these 
calculations were performed with the STO/6-31 + 
G(D, P) basis set. The set of pc{r) values gives a 
consistent pattern of values for the Si—O, O—H, 
and Al—O bonds, where the degree of charge 
concentration follows the order O—H > Si—O > 
Al—O. Regarding the OH bonds, the charge den- 
sity is bigger in terminal OH than in bridge OH, 
following similar tendencies as observed for the 
OH IR frequencies, indicating that the bridged OH 
are stronger acids than are the terminal ones. Fig- 
ure 1 shows the relationship between the fre- 
quency of the OH mode and the charge density 
calculated at the critical point of the OH bonds, 
with a lineal correlation coefficient of r2 = 0.98. In 
fact, this value of charge density gives a measure 
of the degree to which electronic charge is locally 
accumulated between the O and H nuclei of the 
OH bond in zeolites. These results indicate that the 
charge density, calculated at the position of the 
OH critical point is a reliable theoretical index to 
characterize zeolite acidity. On the other hand, 
Mulliken population at the position of the H atom 
of the OH bond gives a relationship with the OH 
frequency vibration of r2 = 0.68 (see Fig. 2). 

Laplacian of the Charge Density 

The distribution of the Laplacian of the charge 
density is a property that is the contribution of the 
three diagonal elements of the second derivative 
matrix of the density in each point of the space. 
The Laplacian features are determined by the signs 
of the V2p(r) that at each point of the space deter- 
mines the regions where the charge density is 
locally concentrated [V2p(r) < 0] or locally de- 
pleted [W2p(r) > 0]. These regions are clearly iden- 
tified by the signs of the Laplacian and determine 
the chemical reactivity in a particular cluster. For 
instance, these charge concentrations determine the 
nature of the bonding interactions, either ionic or 
covalent ones. Also, this property gives informa- 
tion about the sites of electrophillic attack (local 
concentration) and the sites for nucleophillic attack 
(local depletion). 

For a Brönsted acid, such as the B1 cluster, the 
distribution of Laplacian of p(r) performed with 
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TABLE IV 
Topological properties on critical points of zeolite clusters. 

Total density Density of Laplacian 

Bond path                             HF                                      MP2 HF                                  MP2 

Silanol cluster 

A(Si- 
B(AI- 
C(0- 
D(AI- 

-O) 
-O) 
H) 

-0) 
E (Si—0) 
F (Si—H) 
F1 (Si—H) 
G (Si—H) 
G1 (Si—H) 
H (Al—O) 
I (0-H) 

A (Si—0) 0.125 
B (0—H) 0.382 
C (Si—H) 0.120 
D (Si—H) 0.122 
B1 cluster 

A (Si—0) 0.108 
B (Al—0) 0.036 
C (0—H) 0.373 
D (Si—H) 0.123 
E (Al—H) 0.075 
F (Si—H) 0.126 
G (Al—H) 0.076 
B, OH cluster 

A (Si—0) 0.109 
B (Al—0) 0.049 
C (0—H) 0.369 
D (Si—0) 0.141 
D1 (0—H) 0.378 
E (Al—0) 0.095 
E1 (0—H) 0.385 
F (Si—0) 0.141 
F1 (0—H) 0.363 
G (Al—0) 0.092 
G1 (0—H] 0.384 
B2 cluster 

0.107 
0.046 
0.370 
0.091 
0.133 
0.123 
0.126 
0.118 
0.119 
0.095 
0.386 

0.119 
0.357 
0.122 
0.120 

0.104 
0.038 
0.349 
0.123 
0.076 
0.125 
0.077 

0.102 
-2.460 
0.280 
0.283 

0.826 
0.259 

-2.521 
0.283 
0.279 
0.283 
0.281 

0.827 
0.387 

-2.533 
1.175 

-2.495 
0.908 

-2.436 
1.202 

-2.505 
0.841 

-2.398 

0.819 
0.365 

-2.539 
0.867 
1.162 
0.284 
0.282 
0.279 
0.278 
0.892 

-2.411 

0.863 
-2.033 
0.267 
0.261 

0.716 
0.252 

-2.076 
0.263 
0.275 
0.262 
0.278 

the MOLDEN program [21] is depicted in Figure 3, 
where the positive and negative regions are shown. 
The positive regions are located around the Si, O, 
and Al atoms, while the negative regions are con- 
centrated around the H atoms. In Table IV are 
reported the values of the Laplacian density, calcu- 
lated at the position of the critical points in the 
acid cluster of zeolites according to Scheme 1. 
These results indicate that for zeolite acid clusters 

the SI—O and O—Al network of bonds are domi- 
nated by ionic interactions, while the Laplacian of 
the O—H groups indicate that these bonds are 
covalent ones. The ionicity of the OH bonds, ac- 
cording to the negative value of the Laplacian that 
parallel the charge density, increases within the 
following order: B0 < Bx < Bj_OH < B2. This or- 
der is the same for the increasing of the acidity in 
these clusters according to the OH frequency. 
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FIGURE 1. Relationship between the HF/ 6-31 + 
G(d, p) calculated frequency of the OH vibrational mode 
and the HF/6-31 + G(d,p) total density, calculated at 
the postion of the critical point of OH bonds in the zeolite 
cluster acid sites. Linear correlation coefficient is r2 = 
0.98. 

Conclusions 

The present work has shown that ab initio cal- 
culations of the topology of the charge density of a 
selected number of zeolite clusters, used for mod- 
eling zeolite acid sites, can be used for rationaliz- 
ing the IR observation of zeolites. In particular, we 
showed that the total density, evaluated at the 
position of the critical point of the OH bond, gives 

o 
zt o 
g 4100- 

0.34        0.36        0.3B        0.40       0.42        0.44       0.46        0.48 

Mulliken Charge of H atom of the OH bond 

FIGURE 2. Relationship between the HF/6-31 + 
G(d, p) calculated frequency of the OH vibrational mode 
and the HF/6-31 + G(c/,p) Mulliken population of the H 
atom of the OH bonds in the zeolite cluster acid sites. 

FIGURE 3. A relief map of the distribution of the 
Laplacian of electron density for a Brönsted acid site of 
zeolite as represented in the B1 cluster. The map has 
been oriented taking as reference the plane of the cluster, 
containing the H-Si-0(H)-AI-H nuclei. 

a real measure of the extent of acidity of the zeolite 
cluster. Mulliken populations, calculated at the 
position of the H atom of the OH bond, give an 
incomplete interpretation about the acidity of zeo- 
lite acid clusters. The results of the Laplacian dis- 
tribution clearly indicate the presence of Al—O 
and Si—O ionic bonding in the zeolite clusters, 
whereas the OH bonds are of covalent nature. 
These properties allow us to characterize topologi- 
cally the nature of the charge distributions and the 
network bonds in a zeolite molecular system. 
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ABSTRACT: A density functional study was used to investigate potential energy 
surfaces of the oxidative addition reaction CpM(CO) + CH4 -> CpM(CO)(H)(CH3) (M = 
Ru~, Os~, Rh, Ir, Pd+, and Pt+). A qualitative model which is based on the theory of 
Pross and Shaik was applied to develop an explanation for the barrier heights. As a 
result, our theoretical findings suggest that the singlet-triplet splitting (AEst = Etriplet - 
Esinglet) of the CpM(CO) species can be a guide to predict its reaction activity and 
enthalpy for oxidative additions. A better linear correlation was found between the latter 
two quantities. Considering the nature of the metal center, the following conclusions 
therefore emerged: For the 16-electron CpM(CO) system, a heavier transition-metal 
center (i.e., the third-row) will lead to a smaller A Est and, in turn, will facilitate the 
oxidative addition reactions to alkane C—H bonds. In contrast, a lighter transition-metal 
center (i.e., the second row) will result in a larger A Esf and then tend to undergo the 
reductive elimination reactions of the C—H bond-forming. The results obtained are in 
good agreement with the available experimental results and allow a number of predictions 
to be made.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 961-971, 1998 

I 

homogeneous metal complex using a permethylcy- 
IntrodllCtion clopentadienyl iridium complex. This observation 

generated tremendous excitement in academic and 
industrial communities, as it led to the employ- 

n 1982, Janowicz and Bergman reported the        ment of alkanes in homogeneous organometallic 
first well-characterized example of a simple        reactions [1-3]. Although several theoretical stud- 

oxidative addition of an unactivated alkane to a        ies have confirmed the low activation barrier in 

Correspondence to: S.-Y. Chu. the case of CpM(CO) (Cp = T,5 - C5H5; M = Rh, 
Contract grant sponsor: National Science Council of Taiwan. Ir) [4], we believe that a somewhat different ap- 
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proach and some new aspects emphasized here 
may supplement their results. In addition, no pre- 
vious calculational work has to our knowledge 
been published on the dependence in the reaction 
on the barrier height as a function of the nature of 
the transition-metal center. In the present study, 
we therefore chose the 16-electron CpM(CO) (M = 
Ru~, Os~, Rh, Ir, Pd+, and Pt+) complexes as 
models to reveal their mechanisms and the reactiv- 
ities of the oxidative addition to the C—H bond of 
CH4. 

Our aim was to explain the trend of the reactivi- 
ties in numerous variations in the central metal 
atoms and to bring out the determined factor that 
controls the activation barrier for the 16-electron 
CpM(CO) reactions. It will be shown that the sin- 
glet-triplet gap of the 16-electron CpM(CO) com- 
plex correlates nicely with its reaction activity and 
thus can be a guide to predict its reactivity for 
oxidative addition reactions. 

Origin of the Barrier and Reaction 
Enthalpy for Oxidative Addition of 
CpM(CO) 

To highlight the questions which formed the 
basis for this study, it is perhaps worthwhile to 
review briefly the electronic structure of the CpML 
fragment. A general outline of the valence molecu- 
lar orbitals (MOs) in CpML, which are explicitly 
shown in Figure 1, was given previously [5]. They 
are identified as la', la", 2a', 2a", and 3a' orbitals 
under Cs symmetry. Basically, the former three 
orbitals (la1, la", and 2a') have more or less bond- 
ing interactions between the central metal M and 
the ancillary ligand L, so that they all lie in lower 
energy. At highest energy are the two metal-based 
orbitals, 2a" and 3a', composed primarily of dxz 

and d orbitals, respectively. Note that it is the 
two frontier levels, 2a" and 3a', that allow one to 
view 16-electron CpML as organometallic analogs 
of CH2 [6]. Accordingly, when the CpML complex 
and methane interact with each other, the main 
interaction is between the HOMO (2 a") of the 
former and the low vacant CT^H 

or the latter, yield- 
ing an important back-bonding electron transfer. 
Likewise, the interaction between the occupied aCH 

orbital of methane and the high LUMO (3a') of the 
CpML group is strong as well. 

Before proceeding further, we shall use a simple 
valence-bond model as illustrated in Figure 2 to 

Cp 

Cp 

FIGURE 1. The valence molecular orbital correlation of 
the 16-electron CpML complex. 

develop an explanation for the activation of alkane 
by CpML. According to Su's study [7] based upon 
the configuration mixing (CM) model described by 
Pross and Shaik [8], it was suggested that the 
singlet-triplet gap of carbene plays a crucial role 
in insertion reactions, that is, the relative stabilities 
of the lowest singlet and triplet states are, in turn, 
a sensitive function of the barrier height for car- 
benic reactivity. Since, as mentioned above, 16- 
electron CpML is isolobal to CH2: [6], one may 
envision that those predictions for carbenic reactiv- 
ity should also apply to the 16-electron CpML 
systems. We therefore take the oxidative addition 
reaction CpML + CH4 as an example by using the 
CM model as shown in Figure 2 to understand the 
origin of the barrier height and bonding nature of 
the CpML species. 

Basically, the oxidative addition reaction may 
exist in a number of predetermined states, each of 
which may be approximated by the appropriate 
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cP... 

Cp---ibxD@f 

Cp(L)M: CH4 Cp(L)(H')M-CH3 

FIGURE 2. Energy diagram for an oxidative addition reaction showing the formation of a state curve (\P) by mixing 
two configurations: the reactant configuration (fa) and the product configuration (fa,). It can be seen that both the 
activation energy (AE*) and reaction enthalpy (AH) is linear with respect to AEst (= Etrlplgt 

16-electron CpML) and AEatT, (= Etriplet Esinglet for CH4)- See tne text- 

Esingiet for the 

molecular orbital configuration. However, as 
shown in Figure 2, there are only two predominant 
configurations that contribute considerably to the 
total wave function ty and, in turn, that affect the 
shape of the singlet surface. One is the reactant 
ground-state configuration $j that ends up as an 
excited configuration in the product region. The 
other is the excited configuration of the reactants, 
4>2, that correlates with the ground state of the 
products. In consequence, the reaction complex at 
any point on the reaction profile can be described 
by '\fr, a linear combination of cj)1 and </>2, and the 
character of the transition state will reflect the 
extent of mixing between <f>l and <f>2 in the region 
of the avoided crossing. It is notable that the prod- 
uct configuration (02) is doubly excited with re- 
spect to the reactant configuration (c^), forms an 
overall singlet state, and allows both M—H and 
M—C bond formation and simultaneous C—H' 
bond breaking. Indeed, from the valence-bond 

point of view (right side in Fig. 2), the bonding in 
the product can be recognized as bonds formed 
between a triplet CpML and two doublet radicals 
(overall singlet), a methyl radical, and a hydrogen 
atom. This is much in the same way as the bond- 
ing in the water molecule can be viewed: as bonds 
formed between a triplet oxygen atom and two 
doublet hydrogen atoms. Consequently, avoiding 
crossing of these two configurations ((f)1 and <p2) 
leads to the simplest description of the ground- 
state energy profiles for the oxidative addition 
reactions of 16-electron CpML complexes. 

As demonstrated in Figure 2, it is apparent that 
the barrier height (AE*), as well as the reaction 
enthalpy (AH), may be expressed in terms of the 
initial energy gap between the reactant and prod- 
uct configurations. In other words, the reactivity of 
such oxidative additions will be governed by the 
singlet-triplet excitation energies for each of the 
reactants,  that  is,   AES(  (= Etri plet -'singlet for 
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CpML) and AEaa. (= Etriplel - Esinglcl for CH4). 
Accordingly, if AE(nT. is a constant, then a smaller 
value of A Est leads to (1) reduction of the reaction 
barrier since the intended crossing of 4>\ an 02 ls 

lower in energy, and (2) production of a larger 
exothermicity since the energy of the product is 
now lower than that of the reactant. In short, the 
smaller the AES( of CpML is, the lower the barrier 
height and the larger the exothermicity and, in 
turn, the faster the oxidative addition reaction. 
Note that the predictions from the CM model are 
basically in accordance with Hammond's postulate 
[9]. We shall see the calculational results support- 
ing these predictions below. 

Methodology 

All geometries were fully optimized by employ- 
ing the density functional theory (DFT) without 
imposing any symmetry constraints. For DFT cal- 
culations, the hybrid gradient-corrected exchange 
functional proposed by Becke [10a,b] was com- 
bined with the gradient-corrected correlation func- 
tional of Lee, Yang, and Parr [10c]. Henceforth, we 
will denote this functional as B3LYP, which has 
been shown to be quite reliable both in geometry 
and in energies for semiquantitative discussions 

[11]. 
Effective core potentials (ECPs) were used to 

represent the 28 innermost electrons of the ruthe- 
nium, rhodium, and palladium (up to the 3d shell) 
[12]. Likewise, ECPs were used to represent the 60 
innermost electrons of the osmium, iridium, and 
platinum (up to the 4/ shell) atoms [12]. For these 
atoms, the basis set was that associated with the 
pseudopotential [12], with a standard LANL2DZ 
contraction [13]. For hydrogen, carbon, and oxygen 
atoms, the double-zeta basis of Dunning-Huzinaga 
was used [14]. Hence, the B3LYP calculation is 
denoted by B3LYP/LANL2DZ. 

Vibrational frequencies at stationary points were 
calculated at the B3LYP/LANL2DZ level of theory 
to identify them as minima (zero imaginary fre- 
quencies) or transition states (one imaginary fre- 
quency). All calculations were performed using 
the GAUSSIAN94 package [13]. 

Results and Discussion 

The optimized geometries for the reactants, pre- 
cursor complexes, transition states, and products 

for the various metals are given in Figures 3-5, 
respectively. Also, the total and relative B3LYP 
energies are reported in Table I. The potential 
energy profiles based on the data in Table I are 
therefore summarized in Figure 6. Four interesting 
results can be drawn from this figure: 

First, it is readily seen that the oxidative addi- 
tion reactions of the Ru, Os, and Ir systems are 
much more favorable than are those of Rh, Pd, and 
Pt kinetically and thermodynamically. For in- 
stance, the activation barriers from the precursor 
complex to the transition state at the B3LYP level 
of theory increase in the order Os(0.621 kcal/mol) 
< Ir(1.91 kcal/mol) < Ru(3.24 kcal/mol) < 
Rh(12.9 kcal/mol) < Pt(14.5 kcal/mol) < Pd(29.4 
kcal/mol). Likewise, the reaction enthalpies de- 
crease in the order Pd(19.3 kcal/mol) > Rh(-4.24 
kcal/mol) > Pt(-6.30 kcal/mol) > Ru(-27.2 
kcal/mol) > Ir(-31.8 kcal/mol) > Os(-49.1 
kcal/mol). This theoretical finding is in accordance 
with the conventional concept mentioned by 
Bergman et al. [lb,c] and Jones and Feher [2j]. 

Second, as seen in Figure 6, it is obvious that 
the energy of the transition state for the Rh, Pd, 
and Pt cases is apparently higher than that of the 
reactants, while in the other cases, the energy of 
the transition state is below the energy of the 
reactants. This result strongly implies that the 
CpM(CO) (M = Ru, Os, and Ir) intermediates 
should readily overcome the intrinsic barrier and 
then undergo insertion into the saturated C—H 
bonds in a concerted fashion, whereas for Pd, Pt, 
and Rh homologs, the process might be signifi- 
cantly more difficult. 

Third, considering the reverse process, that is, 
the reductive elimination from the alkyl hydride 
for the CpM(CO) species (right to left in Fig. 1), it 
is apparent that the barriers to reductive elimina- 
tion for Ru, Os, and Ir systems are much higher in 
energy than those for Rh, Pd, and Pt analogs. For 
example, the barrier energies increase in the order 
Pd(0.141 kcal/mol) < Pt(9.85 kcal/mol) < Rh(10.8 
kcal/mol) < Ru(23.5 kcal/mol) < Ir(24.1 
kcal/mol) < Os(39.6 kcal/mol). 

Fourth, our model calculations also suggest that 
the oxidative additions of the third-row transition 
metals would be preferable to those of the second- 
row transition metals, since it is demonstrated not 
only that the former is thermodynamically favor- 
able but also that the kinetic barriers associated 
with them are typically small. For instance, as seen 
in Figure 6 and Table I, the facile oxidative addi- 
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>2.617 K^^H) 
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(Precursor Complex) 
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Rh-CO = 1.812Ä 

(Transition State) 
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(Precursor Complex) 

(H)    OS-00 = 1.822 A 
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Os-CO = 1.816A 
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FIGURE 3. Optimized structures at the B3LYP / LANL2DZ level for the [CpRu(CO)]" and {CpOs(CO)]" systems. 
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Rh-CO = 1.855 A 

(Product) 

riss A (£)     (Triplet) 

fo) 

76.97°   (g) 

(H) 1.092 A 

ir-co = 1.827 A   (Precursor Complex) 
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FIGURE 4. Optimized structures at the B3LYP / LANL2DZ level for the [CpRh(CO)] and {Cplr(CO)] systems. 
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FIGURE 5. Optimized structures at the B3LYP/LANL2DZ level for the [CpPd(CO)]+ and {CpR(CO)]+ systems. 
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FIGURE 6. The potential energy profile of the reaction 
of CpM(CO) (M = Ru~, Os^, Rh, Ir, Pd+, and Pt+) with 
CH4. All the energies were calculated at the B3LYP/ 
LANL2DZ level. 

tion is in the order Os > Ru, Ir > Rh, and Pt > Pd. 
Additionally, these trends are consistent with the 
electronegativity of the central metal, that is, the 
electronegativity of the third-row metal is larger 
than that of the second-row element (such as Ru 
(1.42) < Os (1.52), Rh (1.45) < Ir (1.55) and Pd 
(1.35) < Pt (1.44) [15]). Furthermore, the reductive 
elimination of the second-row metals is more fa- 
vorable than that of the third-row homologs. To 
the best of our knowledge, the experimentally sup- 
porting evidence comes from the fact that, in com- 
parison of oxidative additions of the iridium and 
rhodium intermediates to alkane C—H bonds, the 
products formed in the latter case are much less 
stable and undergo reductive elimination at -20°C 
[lb,c]. 

Furthermore, as mentioned earlier, a strong cor- 
relation between A Esl and the activation energy as 
well as the reaction enthalpy is expected [16]. For 
instance, the B3LYP calculations suggest that A Es) 

increases in the order Os(-14.4 kcal/mol) < 
Ru(-11.7 kcal/mol) < Ir(-3.58 kcal/mol) < 
RM0.112 kcal/mol) < Pd(1.03 kcal/mol) < Pt(3.26 
kcal/mol), while the barrier height also increases 

TABLE I 
Energies for singlet and triplet CpML fragments and for the process CH4 + CpML -> precursor complex -> 
transition state -> product.6 

Precursor Transition 
Singlet Tripled Reactant0 complex0 state6 Product' 

System (Hartrees) (Hartrees) (Hartrees) (Hartrees) (Hartrees) (Hartrees) 

CpRu(CO) - -400.71041 -400.72904 -441.22489 -441.23584 -441.23067 -441.26818 
(-11.7) (-6.87) (+3.24) (-27.2) 

CpOs(CO) ~ -397.85012 -397.87309 -438.36459 -438.38068 -438.37969 -438.44286 
(-14.4) (-10.1) (+0.62) (-49.1) 

CpRh(CO) -416.31084 -416.31066 -456.83208 -456.83547 -456.81495 -456.83208 
(+0.11) (-6.37) (+12.9) (-4.24) 

Cplr(CO) -411.48311 -411.48882 -451.99759 -452.01296 -452.00991 -452.04833 
(-3.58) (-9.64) (+1.91) (-31.8) 

CpPd(CO) + -433.26482 -433.26318 -473.77930 -473.79516 -473.74836 -473.74859 
(+1.03) (-9.96) (+29.4) (+19.3) 

CpPt(CO)+ -425.67850 -425.67330 -466.19298 -466.21041 -466.18733 -466.20302 
(+3.26) (-10.9) (+14.5) (-6.30) 

Etnpie, ~ Esingle„ units in kcal/mol). 
-40.51448 Hartrees. 

units in kcal/mol), which is 

aAt the B3LYP/LANL2DZ level. 
bThe value in the parentheses is A£s, (= 
c The B3LYP / LANL2DZ energy of CH4 is 
dThe values in the parentheses represent the stabilization energy of the precursor complex {\Elr 

relative to the corresponding reactant. 
eThe values in the parentheses represent the activation energy (AEac(, units in kcal/mol), which is relative to the corresponding 
precursor complex. 
'The values in the parentheses represent the reaction enthalpy (AH, units in kcal/mol), which is relative to the corresponding 
reactants. 
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in the order Os(-9.47 kcal/mol) < Ir(-7.73 
kcal/mol) < Ru(-3.63 kcal/mol) < Pt (3.55 
kcal/mol) < Rh(6.51 kcal/mol) < Pd(19.4 
kcal/mol). Again, the enthalpy follows the same 
trend as in the AES(: Os(-49.1 kcal/mol) < 
IrC-31.8 kcal/mol) < Ru(-27.2 kcal/mol) < 
Pt(-6.30 kcal/mol) < Rh(-4.24 kcal/mol) < 
Pd(19.3 kcal/mol). Additionally, as seen in Figure 
7, the DFT calculations indicate that there exists a 
linear correlation between the activation energy 
and the reaction enthalpy, namely, our theoretical 
results confirm the Hammond postulate considera- 
tions as discussed earlier. This investigation makes 
it quite obvious that in order to find a good model 
for the facile oxidative addition of 16-electron 
CpML to C—H bonds an understanding of the 
singlet-triplet gap AEsf of the coordinatively un- 
saturated CpML is crucial, namely, oxidative addi- 
tions in which 16-electron CpML complexes have 
large singlet-triplet gaps will have larger barriers 
as well as smaller exothermicity than will reactions 
whose corresponding complexes have small sin- 
glet-triplet gaps. The smaller the AEsf of 16-electron 
CpML is, the lower the barrier height and, in turn, the 
faster the oxidative addition reaction is, the larger the 
exothermicity. 

Finally, one may wonder why the oxidative 
addition of a third-row metal is preferable to that 
of a second-row one. The reason for this can be 
traced to the singlet-triplet energy gap (AEst) of 

~   20 
o 
| 
M 
O 

i_ 
<D 
C 
tu 
c o 
'■a > 
ts < 

Pd ' 

10' 
Rlir 

0' 

/*Ru 

S   * 
'    Pt 

10. 
Os     . 
M 4 

/<■ Ir 

-60 -40 -20 20 

The Reaction Enthalpy (kcal/mol) 

FIGURE 7. The reaction enthalpy (x) versus the 
activation energy (y) for the oxidative addition of methane 
to CpM(CO) (M = Ru", Os~, Rh, Ir, Pd+, and Pt+). All 
were calculated at the B3LYP / LANL2DZ level (see Table 
I). The linear regression equation is y = 8.62x + 0.433, 
and the correlation coefficient R = 0.951. 

CpML. As analyzed above, the smaller the AES, of 
CpML (if AE^, is a constant), the lower the bar- 
rier height and the larger the exothermicity, and, 
in turn, the faster the oxidative addition reaction. 
Furthermore, as studied previously [16], the Os 
atoms have a quintet d6s2 ground state with a 
relatively high excitation energy of 32 kcal/mol to 
the triplet d7s1 state. On the other hand, the Ru 
atom has a quintet d7s1 ground state with a low 
excitation energy of 19 kcal/mol to the triplet d7s1 

state. Likewise, the Ir atom has a quartet d7s2 

ground state with a high excitation energy to the 
doublet d9 state of 61 kcal/mol. For the Rh atom, 
the ground state is quartet <iV but with a rela- 
tively low excitation energy to the doublet d9 state 
of 7.8 kcal/mol. Again, the ground state of the Pt 
atom is triplet sld9 (with the dw state lying 21.9 
kcal/mol), while that of the Pd atom is singlet dw 

(with the sld9 state lying 11.0 kcal/mol). These 
results strongly imply that the third-row metals 
would prefer to remain in high-spin states, whereas 
the second-row metals favor low-spin states. It is 
reasonable to expect that the promotion energy 
from the singlet state to the triplet state should be 
smaller for the former than for the latter. Our 
B3LYP/LANL2DZ results as shown earlier are 
consistent with the above prediction. For this rea- 
son, insertion into a C—H bond is more easier and 
more exothermic for the third-row system than for 
its second-row counterpart. 

In summary, our study has shown that the 
singlet-triplet gap AEst (= Etriplet - Esinglet) based 
on the CM model can provide a useful basis for 
understanding and rationalizing the relative mag- 
nitude of the activation barriers as well as reaction 
enthalpies for the activation of alkane by CpML. 
With the above analyses in hand, we are confident 
in predicting that for the 16-electron CpM(CO) sys- 
tem a more electronegative as well as a heavier transi- 
tion-metal center {i.e., the third row) will lead to a 
smaller AES( and, in turn, will facilitate the oxidative 
addition reactions to alkane C—H bonds. In contrast, 
a less electronegative and a lighter transition-metal 
center (i.e., the second row) will result in a larger 
A Est and then tend to undergo the reductive elimina- 
tion reactions of the C—H bond-forming. Despite the 
fact that the estimated magnitude of the barrier 
and the predicted geometry of the transition state 
for such reactions appear to be dependent on the 
calculational level applied, our qualitative predic- 
tions are in accord with the calculational results 
presented here as well as the available experimen- 

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 969 



SU AND CHU 

tal observations.*^ It is hoped that our study will 
stimulate further research into the subject. 
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ABSTRACT: We developed an empirical potential for interactions between Si and N 
to describe silicon nitride systems using the Tersoff functional form. With this model, we 
explored the structural properties of amorphous silicon nitride through the Monte Carlo 
simulations and compared them to available experimental data. The empirical model 
provided a very good description of such properties for a - SiNx (0 < x < 1.5). Electronic 
structure of amorphous and point defects in crystalline silicon nitride were then studied 
using first-principles calculations. For such calculations, the configurations were created 
by the empirical model, with the relaxed structures used as input for the first-principles 
calculations. Atomic relaxation was later allowed in the first-principles calculations. 
© 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 973-980, 1998 

Introduction 

Silicon nitride is a material of great technologi- 
cal interest due to its mechanical and elec- 

tronic properties allowing a number of applica- 
tions [1]. Due to its high melting temperature, low 
mechanical stress, chemical inertness, and strong 
resistance against thermal shock, it is suitable for 
high-temperature applications [2]. It has high di- 
electric constant, large electronic gap, and high 
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resistance against radiation. Due to these proper- 
ties, silicon nitride has been widely used in micro- 
electronic devices as a gate dielectric in thin-film 
transistors and as a charge storage medium in 
nonvolatile memories. This wide range of applica- 
tions led to intensive studies aiming to understand 
its microscopic properties. The electronic proper- 
ties of amorphous silicon nitride have received 
special attention [3-5]. This is because applications 
as a gate dielectric in thin-film transistors or as a 
charge storage medium require the understanding 
of the properties of charge trapping centers in the 
material [6]. These centers, associated with Si and 
N dangling bonds, are related to gap levels which 
appear in the amorphous matrix. 

CCC 0020-7608 / 98 / 040973-08 
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Methods involving electronic calculations have 
been successful in describing a number of micro- 
scopic properties of silicon nitride [7, 8], but com- 
putational cost hinders their use to systems larger 
than a few hundreds atoms. However, many im- 
portant problems require thousands of atoms for a 
proper description. Since these problems are too 
expensive to be explored using such methods, em- 
pirical models have been alternatives in studying 
structural properties. These methods are computa- 
tionally efficient and can handle systems involving 
thousands to millions of atoms. Two empirical 
models were developed [9, 10] for silicon nitride. 
However, their tmnsferability to a wide range of 
silicon nitride compositions, such as low nitrogen 
content, was never tested. The problem is that 
those models lack reliability when describing the 
Si—Si interactions. The Tersoff potential [11-13], 
originally developed for pure silicon, has been 
successfully used and tested over the last few 
years [14]. In that sense, this functional form ap- 
pears to be the best choice for an empirical poten- 
tial to describe silicon nitride. 

Here we introduce an empirical potential for 
Si—N interactions using the Tersoff functional. 
Using this empirical model to generate a relevant 
silicon nitride system, we study the electronic 
properties of point defects in crystalline ß— Si3N4 

and of amorphous SiN^. The electronic properties 
are computed within the framework of density 
functional theory (DFT) using local density ap- 
proximation (LDA). This study is organized as 
follow: In the following section we discuss the 
interatomic potential. In the third section we dis- 
cuss the fitting strategy to find the set of parame- 
ters which best describes relevant properties of 
silicon nitride, and in the fourth section we use the 
empirical model to study structural properties of 
amorphous SiN^ system using Monte Carlo simu- 
lations. In the fifth section, we discuss electronic 
properties from ab initio calculations of amor- 
phous silicon nitride and defects in silicon nitride. 
Finally, in the last section, we present final re- 
marks. 

Interatomic Potential 

The Tersoff potential [11-13] is a bond-order 
potential composed of a two-body expansion which 
depends on the local environment. These bond- 
order models have been shown to describe reason- 

ably well the chemical properties of bonding in 
covalent materials [15, 16]. 

The total potential energy E is given by the sum 
over all n atoms of the energy of site i, (£,): 

E £,• = T E v„, 
1=1 Z   !'#/ 

(1) 

where V,- • is the interaction energy between atoms 
i and ;' and is a combination of repulsive and 
attractive terms. 

V,7=/c(rlV){/R(r,7) + b,7^(r,y)}/ (2) 

where r,- ■ is the distance between atoms i and ;'. 

/*('.■/) = A/expC-A^r,-,.), (3) 

fA( r,7) = - Bu exp( - Ulf,}, (4) 

'1, 

fMij) = { 2 + \ cos xijf    if Rjj < r,7 < S,7   (5) 
0, if r,7 > Su 

where xtj = 7r(r,7 - K,7)/(S,; - Rtj). 
The parameter fri; defines the strength of the 

attractive interaction as function of local environ- 
ment. 

-1/2", 

tij= E fc(
rikh(eijk), 

g(6m) = 1 + 
df + (hj — cos 6ijky 

(6) 

(7) 

,   (8) 

where dijk is the angle between ij and ik bonds. 
All the parameters take into account the atom 

type to describe the interaction. For atoms i and j 
of different types, the parameters are given by: 

AJ: — ( Aj X A:)     , (9) 

B,7 = (B,.XB;.)
1/2, (10) 

A, + A, 
A<7 ~       2      ' (11) 

(12) 

Rij = (RiXRj)
v\ (13) 

s,7 = (S,. x spv\ (14) 

where the parameters with single index describe 
the interaction between atoms of the same type. 
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The parameter x takes into account the 
strengthening or weakening of heteropolar bonds. 
For interactions between atoms of the same type, 
this term is normally taken equal to 1. For a bond 
involving atoms of different types, this number 
weakens the attractive interaction as a result of the 
bond polarity. In our model, while this parameter 
is set to 1 for Si—Si interaction, it is set to zero 
for the N—N interaction, i.e., the N—N interac- 
tion has only repulsive terms. This choice was 
motivated by the fact that the N—N interaction 
to form N2 molecule is so strong, with binding 
energy of 9.8 eV that when N2 is formed inside a 
silicon nitride sample, it essentially does not inter- 
act with other atoms and diffuses through the 
system to evaporate on the surface. To keep nitro- 
gen atoms stable inside the crystalline structure, 
we take Xa—n = 0. The best value for the parame- 
ter x f°r Si—N interaction, was 0.65, which is 
considerably smaller than the value 0.9776 found 
for Si—C previously [13]. This can be explained 
by the difference in electronic affinity between Si 
and N which is considerably larger than the one 
between Si and C. 

Fitting Procedure and Tests 

In this section we describe the procedure used 
to search for the best set of parameters for all 
interactions. The fitting procedure combined two 
ingredients: the choice of a database of ab initio or 
experimental results and the strategy of finding 
the parameters which best describe the properties 
chosen in the database. We considered a database 
of ab initio and experimental properties, including 
experimental lattice parameter of the crystalline 
ß— Si3N4 [17], ab initio value for average binding 
energy [8], experimental interatomic distance and 
binding energy of the N2 molecule [18], and the ab 
initio result for the structure of the N—Si bonds 

molecule. [The structure of the 

fitting parameters is defined as a sum: 

in the Si3NH9 

Si3NH, was found with ab initio calculations us- 
ing the density functional theory with an extended 
basis function 6-31G(p, d).] 

For the Si—Si interactions, we used the param- 
eters from the original Tersoff model [13], which 
provides a reliable description of silicon [14]. For 
other interactions, the best set of parameters are 
determined using a least-squares approach [19, 
20]. A multidimensional cost function of all the 

<& E 
k 

Ef 
(15) 

where the index k runs over all the configurations 
in the database, Ek is the property calculated us- 
ing the empirical model for configuration k, Ef is 
the corresponding target result (ab initio or experi- 
mental data), and ak is the tolerance which con- 
trols the weight of each configuration in the cost 
function. Simulated annealing was used to find a 
minima of $. The procedure for minimization was 
as follow: for a given set of parameters, the cost 
function is computed. The temperature in the be- 
ginning of the annealing process is very high, and 
after a large number of Monte Carlo steps, the 
temperature is reduced every few thousand steps 
with all parameters allowed to vary at once. In the 
simulations, the initial parameters are used as rea- 
sonable guesses, for example, the cut-offs were 
guessed around 2.5 A, corresponding only to first- 
neighbor interactions. As a convergence criteria for 
the cost function, the best set of parameters were 
found to always converge within a reasonable 
range no matter the initial set of parameters used. 
Table I gives the best set of parameters for all 
interactions. 

The reliability of this empirical potential in de- 
scribing silicon nitride systems was tested over 
several properties. The tests were performed using 
Monte Carlo simulations [20] at room temperature 

TABLE I  
Best set of the parameters that define the 
Si—Si [13], and the Si—N interactions obtained 
from a simulated annealing fit to the database 
described in the text. 

N Si 

A(eV) 6.36814 X 103 1.8308 X 103 

B(eV) 5.11760 X 102 4.7118 X 102 

A (A-1) 5.43673 2.4799 

MA"1) 2.70000 1.7322 

ß 5.29380 X 10"3 1.1000 X 10"6 

n 1.33041 7.8734 X 10 "1 

c 2.03120 X 104 1.0039 X 105 

d 2.55103 X 101 1.6217 X 101 

h -5.62390 X 10 _1 -5.9825 X 10_1 

R(A) 1.80 2.70 

S(A) 2.10 3.00 

XSi — N 0.65 
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(300 K) with periodic boundary conditions and 
756 atoms. The statistical sampling is taken after 
initial equilibration of a few thousand steps. The 
internal stress is released by allowing relaxation of 
the simulation cell volume (NPT ensemble) in the 
Monte Carlo scheme [20]. 

There are two stable crystalline phases for Si3N4: 
a and ß [17]. For both phases the local bonding is 
similar, differing mostly by the number of atoms 
in the primitive cell. In the simpler structure (ß), 
and believed to be the most stable, the N atoms 
form bonds with the three Si first neighbors in a 
planar structure (sp2 hybridization). The Si atoms 
form bonds with the four N first neighbors in a 
tetrahedral structure (sp3 hybridization). Table II 
compares the results of binding energy and lattice 
parameter of the ß—Si3N4 to experimental and 
ab initio data. Due to the strong bond between Si 
and N atoms, silicon nitride has a large bulk mod- 
ulus. The bulk modulus in the ß phase is found to 
be 2.40 Mbar, in very good agreement with ab 
initio [8] and experimental results [21]. The good 
description of local bonding and mechanical 
strength shows the reliability of this model for 
silicon nitride. This model now can be used for 
predicting properties of other silicon nitride sys- 
tems. In the following section we study the 
a — SiNx and compare structural properties to re- 
cent experimental data [4, 5]. 

Structural Properties of 
Amorphous Sil\A 

We now discuss the structure of A — SiNA (0 < 
x < 1.5) and compare the results with experimen- 
tal data [4, 5, 22, 23]. The a— SiNA. was created by 
a simulated annealing process, using 756 atoms 
and periodic boundary conditions. The relaxation 
of both the atoms and the simulation cell volume 
was allowed during the simulations. For each x, 
the simulation started at a very high temperature 
(T > 6000 K), when the material is essentially liq- 
uid. After allowing equilibration at such tempera- 
ture, so that any memory of crystalline phase is 
lost, the temperature is slowly reduced in a sched- 
ule until it reaches T = 300 K. Then the statistical 
properties are computed over a large number of 
configurations. 

Figure 1 shows the density as a function of x. 
The density of the material increases as x in- 
creases, consistent with experimental findings [5]. 
For all nitrogen contents, this model provides a 

TABLE II 
Properties of ß crystalline phase computed 
using this model as compared with ab initio and 
experimental data.8 

Experiment Ab initio This work 

a (A) 7.606b 7.61d 7.513 
7.595a 7.586e 

EB (eV) — -5.307d 

-5.342e 
-5.305 

p (g/cm3) 3.19c 3.17d 3.32 
B (Mbar) 2.56f 2.65d 

2.82e 
2.40 

Binding energies (EB) are given in eV/atom, lattice param- 
eter (a) in A, and bulk modulus (S) in Mbar. 
bRef. [30]. 
cRef. [17]. 
dRef. [8], 
eRef. [31]. 
fRef. [21]. 

reasonably good description of the density as com- 
pared to experimental data [5]. Figure 2 shows the 
total radial distribution function g(r) for x = 0, 
0.5, 1.0, 1.33, and 1.5. As x increases, g(r) changes 
its behavior considerably. At x = 0, the system is 
a— Si and g(r) shows a peak around 2.4 A which 
is the first-neighbor average distance of Si—Si. 
As x increases, the peak corresponding to Si — Si 
bonds decrease^ and a peak appears at a shorter 
distance (1.73 A) corresponding to the Si—N. In 

2.00 I ' 1 ' 1 " 1 ' 1 1 1 1 1 r 
0.00    0.25    0.50    0.75    1.00    1.25    1.50    1.75    2.00 

FIGURE 1. Density (in g/cm3) of amorphous silicon 
nitride (SiNj computed by Monte Carlo simulations 
compared to experimental results (D) [5]. 
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o> 

FIGURE 2. Total radial distribution function g(r) for x = 0.5, 1.0, 1.33, and 1.5. The experimental result [22] for the 
x = 1.33 is presented in the insert. 

the case of x = 1.33, where there is available ex- 
perimental data, g(r) is in very good agreement 
with experimental results reached by x-ray scatter- 
ing [22] shown in the insert of the figure. 

Figure 3 compares the  average coordination 
number at Si and N centers as a function of x with 

experimental data [5]. The coordination number is 
computed as the area under the radial distribution 
function inside the covalent radius. The figure 
shows the coordination nA(B), the average num- 
ber of neighbors A for atom type B. For x = 0 
(a— Si) each Si atom has an average coordination 
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2.00 

FIGURE 3. Average coordination number at Si and N sites as function of x. The simulation results (solid symbols) are 
compared to experimental data (open symbols) [5]. The figure shows (D) <nSi(Si)>, (A) <nN(Si)>, and (°) <nSi(N)>. 

of 4.13. As x increases, the N atoms compete with 
Si atoms to form bonds, so that the coordination 
nSi(Si) falls from 4.13 at x = 0 to about 0.9 at 
x = 1.5. On the other hand, the coordination «Si(N) 
grows linearly for x < 1 from zero to four. The 
coordination nSi(N) is about 3 for all the range of 
x. This is consistent with the fact that N atom has a 
preference to bind to three Si atoms [24, 25]. These 
results agree very well with experimental data [5]. 
However, this comparison should be taken with 
caution. The samples in which the experiments 
were performed had considerably high hydrogen 
concentration. Hydrogen competes with Si and N, 
to form Si—H and N—H bonds instead of 
Si—N or Si—Si. Theoretical coordinations are 
larger than the experimental ones because in our 
case there is no H competing to form bonds. 

Electronic Properties of Defects in 
Silicon Nitride 

Empirical models have been used as alternative 
methods to study structural properties of materi- 
als. More recently, these models have been com- 
bined to first-principles calculations to explore 
electronic structure [25]. Since thermodynamical 
properties are not feasible using the first-principles 
calculations, empirical models can be used to cre- 

ate configurations which are used as input for the 
electronic calculations. We studied the electronic 
properties of SiN systems using an empirical model 
to generate relevant equilibrium structures. Then, 
we computed the electronic properties within 
the framework of DFT/LDA framework [26]. The 
Khon-Sham equations were solved using Car- 
Parrinello scheme [27] with Troullier-Martins type 
pseudopotentials [28] in Kleinmann-Bylander form 
[29]. The basis sets were expanded in plane waves, 
with kinetic energy of 60 Ry. The number of atoms 
in the large unit cell (LUC) varied depending on 
the structure analyzed, but no LUC comprised 
more than 56 atoms. 

We studied the electronic properties of the crys- 
talline Si3N4, a — SiNj 33, N-type vacancy, and Si 
antisite (Si[N]). Figure 4 shows the density of states 
(DOS) for all those systems. In all cases, the zero in 
energy corresponds to the top of the valence band. 
Figure 4(a) shows the DOS for the crystalline 
ß—Si3N4 which agrees very well with experi- 
mental results [3] and other theoretical calculations 
[7]. The electronic structure shows clearly the va- 
lence band split in two subbands, with a pseudo- 
gap located around 11 eV below the top of the 
valence band. The states located at the bottom of 
the valence band arise from the N 2 s-orbitals. The 
peak in the top of the valence band arises from the 
N 2 p-lone pairs. 
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FIGURE 4. Density of states (DOS) for: (a) the 
crystalline ß—Si3N4, (b) a N vacancy in crystalline Si3N4, 
(c) a Si antisite in crystalline Si3N4, and (d) the 
a—SiN^ 33. The arrows in the figure represent the Fermi 
levels. 

A number of defect centers related to Si and N 
dangling bonds have been studied [6]. The K cen- 
ter involves a Si dangling bond (Si bounded to 
three N atoms), the N2 center involves an N dan- 
gling bond (N bounded to two Si atoms). Here we 
search for a different kind of dangling bond which 
may appear in amorphous silicon nitride, those 
coming from antisite configurations. Figure 4(b) 
shows the DOS for the N vacancy. This defect 
introduces a singly occupied dangling-bond orbital 
located in the middle of the gap. Removing a 
nitrogen atom gives rise to three Si atoms with one 
dangling bond each, as shown schematically in 
Figure 5. Two of them form a bond state located at 
the top of the valence band leaving one dangling 
bond state in the gap. 

Figure 4(c) shows the DOS results for the Si[N] 

antisite. Due to the small size of the LUC, with 
28 atoms, the removal of one N atom causes a 
nonnegligible decrease in the DOS from the levels 
coming from the N-lone pair. The localized mini- 
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FIGURE 5. Schematic representation of a Si antisite 
and a N vacancy and in crystalline Si3N4. 

band which appears in the middle of the energy 
gap comes from the Si—Si wrong bonds fully 
occupied. The extra electron appears close to the 
top of the conduction band, with a localized char- 
acter. These results show that Si antisite behaves 
as Si+. This kind of structural defect should pre- 
sent a diamagnetic behavior around the Si antisite. 
In Figure 5, this process is shown schematically. 

Figure 4(d) shows the DOS for the a— SiN133. 
The empirical model, described in the previous 
sections, was used to generate the amorphous 
structure. We started with a cell containing 56 
atoms in the ideal ß phase. The crystal was melted 
using the Monte Carlo scheme (NPT ensemble). 
After thermalization, the temperature was slowly 
decreased to 1 = 300 K. The final structure was 
used as input for the ab initio calculation. Figure 
4(d) shows the DOS with the dashed line referring 
to the results without lattice relaxations (only fully 
electronic self-consistent calculations), while the 
solid line describes the results after full relaxation 
until all the Hellman-Feynman forces are lower 
than 0.01 eV/A. Both results are in reasonably 
good agreement showing that the empirical model 
describes reasonably well the structural properties 
of the amorphous material. However, we should 
point out that the atomic relaxations in the ab 
initio calculations are important to describe the 
gap region, consequently, the microscopic proper- 
ties related to transport in disordered systems. 
After relaxation, a small gap forms. We did not 
expect a large gap in this prototypical amorphous 
for two reasons: (0 the number of atoms in the 
unit cell is too small that the system has high 
concentration of structural defects (Si and N dan- 
gling bonds and Si—Si wrong bonds) which in- 
troduce states in the gap; (n) to reduce the DOS in 
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the gap, hydrogen atoms should be incorporated 
in the cell to passivate the dangling bonds. 

Final Remarks 

In summary, we presented a new empirical 
model for the silicon nitride system using the 
Tersoff functional form. The potential provides a 
considerably reliable description of crystalline and 
amorphous silicon nitride over a wide range of 
configurations and systems. Using the empirical 
model, we created relevant defect structures to 
study electronic properties through ab initio calcu- 
lations. The vacancy and antisite defects create 
energy gap levels, which are electrically active. 
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Introduction 

The three-dimensional "body" of a molecule is 
commonly described by an envelope surface. 

The simplest model is the van der Waals (or 
"fused-sphere") surface, defined by interpenetrat- 
ing atomic spheres. This model has a long estab- 
lished history in the study of gases, solids, and 
liquids [1]. In modern molecular modeling, alter- 
native surfaces can be used, depending on whether 
one wants to convey an accurate electron density 
surface or simply map properties around the 
molecule [2, 3]. (For an up-to-date review on 
molecular surface models, see Ref. [4].) Despite 
their idiosyncracies, all fused-sphere models share 
one weakness: they assign a "clear-cut" boundary to 
the molecule. Not only is this unphysical from a 
rigorous viewpoint, but also the set of fixed atomic 
radii used to build the surface is not uniquely 
defined. This situation creates inconsistencies be- 
tween calculated properties [5] and difficulties in 
obtaining an unbiased comparison of molecular 
shapes [6]. In this work, we deal with an improved 
version of the fused-sphere molecular surface that 
takes into account the "fuzzy" nature of this 
boundary, yet conserves the simplicity of the com- 
putations. 

The possibility of using "adjustable" atomic 
radii (i.e., varying from molecule to molecule) has 
been proposed [5a]. Here, we take a more physical 
stand. We study molecular shape features averaged 
over a range of atomic radii. To this end, we replace 
the notion of a single molecular surface by a con- 
tinuum of surfaces [7, 8]. This ensemble is defined 
by a scaling parameter acting on a set of atomic 
radii. By studying the continuum as a function of 
the scaling parameter, one can extract essential 
shape properties over all size scales. In this work, 
we analyze the behavior of a family of shape 
descriptors derived from simple properties of the 
continuum, namely, the molecular surface area 
and the volume of the scaled surfaces. 

Molecular surface area (S) and volume (V) are 
the most important geometric properties of hard- 
sphere models. Actually, all thermodynamic prop- 
erties of a system composed of packed hard spheres 
are determined by the volume and surface area of 
the free space accessible to the spheres [9, 10]. (In this 
latter case, one must deal with the geometry of the 

actual molecules as well as the voids between them 
[11, 12].) Despite their simplicity, hard-sphere 
models describe well a number of properties of 
real systems in the limit of infinite dilution. This is 
the situation found in molecular modeling and 
drug design applications, which are frequently 
based on single-molecule simulations. Molecular 
surface areas computed at equilibrium geometries 
correlate well with experimental properties. In hy- 
drophobic molecules, relative solvent affinity can 
be completely characterized in terms of surface 
areas, as these are found to be proportional to the 
logarithm of the partition coefficient between im- 
miscible liquids (e.g., log pa/w for «-octanol- 
water) [13]. Similarly, solvation free energies 
[14-16], critical parameters [17-19], and diffusion 
coefficients [20] can be computed from molecular 
surface areas and related properties. 

In contrast, these parameters are problematic for 
assessing similarity. Molecular surface area and 
volume do not discriminate well between 
molecules. There have been some attempts to build 
better shape descriptors from S and V. Two de- 
scriptors proposed by Meyer [21] are relevant to 
the present work: the molecular rugosity (G,) and 
the molecular globularity (G2). 

The rugosity, defined as the ratio G, = S/V, 
takes large values if the molecule has indentations 
and protuberances. As a descriptor, it has some 
drawbacks. Note that, for a sphere, Gj is propor- 
tional to the reciprocal radius. Therefore, two 
molecules with similar shape but different size will 
be assigned different rugosities. In other words, Gx 

will not be invariant if we scale isotropically the 
molecular surface. The globularity is defined as 
the ratio G2 = Se/S, where Se is the surface area of 
a sphere with the same volume V as the molecule 
in question. In contrast with the rugosity, G2 is 
scaling invariant in a sphere. Thus, we can expect 
that molecules (or interstitial voids in clusters) 
with similar G2 values could share similar essen- 
tial shape features, even if they differ in size. This 
is a valuable feature when assessing molecular 
similarity [3]. Note, however, that the globularity 
of nonspherical molecules may depend on how the 
molecular "boundary" is defined. In this work, we 
improve on this approach by extending the concept 
of molecular globularity to a continuum of scaled sur- 
faces [8]. We propose to use the scaling behavior of 
a globularity-like property as a shape descriptor 
for molecules or clusters. 
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The work is organized as follows. In the next 
section, we introduce the molecular shape descrip- 
tors and analyze some of their properties. In the 
following section, the descriptors are tested on a 
series of hydrocarbons. Another section discusses 
the extension to other molecules, including the 
comparison of large- and small-scale shape fea- 
tures in proteins. We close with remarks on how 
the method can be extended to more realistic sur- 
faces. 

sent a rich behavior upon scaling. The changes in 
these descriptors (as functions of /) can be corre- 
lated with "transitions" in molecular shape as one 
moves away from the nuclei. 

Let Sif) and Vif) be the surface area and 
volume, respectively, associated with the scaled 
surface Iy(r). (There are several techniques for 
computing Sif) and Vif) [22-28]. Here, we use 
the method proposed in Ref. [25].) First, we intro- 
duce a function of Sif) and Vif) as follows: 

Molecular Shape Descriptors for a 
Continuum of Scaled Surfaces 

The key idea of our method is as follows. Let 
{pv p2,..., p„} be the series of "standard" van der 
Waals (VDW) radii characterizing a molecule of n 
nuclei, in a spatial configuration indicated by nu- 
clear positions (Rv...,R„). The VDW envelope 
surface is defined by the set of points, Fix), that lie 
on the surface of an atomic sphere and are not 
enclosed by any other one: 

F(r) = {r e m3: ||r - R,.|| = p„ 

and ||r - R;|| > Pj, V; # i).   (1) 

If we now consider that the molecular boundary is 
fuzzy, we can replace (1) by a continuum. The 
simplest approach is to derive a series of molecu- 
lar surfaces that differ from (1) by a scaling param- 
eter / modifying the VDW radii: p, -> /p;. This 
scaled surface will be indicated by F^(r): 

F/(r) = {re9t3:||r-R,.||=/p!., 

andllr-Ryll^/p^V;*!},   />0.   (2) 

The continuum comprises all scaled surfaces, i.e., 
{F/(r), / > 0}. Note that F;(r) differs from other 
"augmented" surfaces, such as the solvent accessi- 
ble surface [2]. In the latter case, a constant (the 
"solvent radius") is added to the atomic radii. 

Whereas the surface area and volume change 
continuously upon scaling, a ratio such as (area) X 
(volume) ~2/3 would be constant in a sphere, but 
not in a nonspherical surface. Therefore, by study- 
ing this descriptor as a function of the scaling 
parameter /, we could distinguish among molecu- 
lar surfaces. We generalize this simple notion by 
introducing geometrical shape descriptors that pre- 

Qif) 
sif) 

(3677)VV(/) \2/3 " (3) 

The function Qif) is the reciprocal of the molecu- 
lar globularity as denned in Ref. [21]. The denomi- 
nator in Eq. (3) ensures that Qif) = 1 in a sphere, 
for all values of the scaling parameter /. Note that 
all molecules reach this limit if / -» °°. This is 
consistent with the asymptotic behavior of the 
electron density, whereby all molecules look 
spherical at vanishingly small density values. 

As a descriptor, Qif) has some disadvantages: 

1. For / <r 1, the surface becomes a series of 
disconnected spheres. In this case, we find a 
limit behavior Qif) ~ n1/3. As a result, Qif) 
will have a strong dependence on molecular 
size. 

2. The value of Qif), while describing a contin- 
uum of surfaces, depends on the initial VDW 
radii used for scaling. 

Both these problems can be solved by using a 
"relative" Qif) function. Let Q0if) be the value of 
the Q function when computed with a "standard" 
set of radii. (In our case, we will use the set of 
atomic radii proposed by Gavezzotti [29]. The cor- 
responding surface area and volume will be indi- 
cated by SQif) and V0if), respectively.) The 
molecular envelope described by this function can 
be bounded by two "virtual" surfaces. Let Qmif) 
be the value of Eq. (3) when all the nuclei are given 
the smallest value for a radius (i.e., when the VDW 
radii are taken as p; = min{ p}, for all /). This 
surface will be characterized by surface area and 
volume denoted by Smif) and Vmif), respectively. 
Let QMif) be the value of Eq. (3) when all the 
nuclei are given the largest value for a radius (i.e., 
when the VDW radii are taken as p = max{ p}, for 
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all /). In this case, the surface area and volume 
will be denoted by SM(f) and VM(f), respectively. 
Finally, we associate the following shape descrip- 
tors with a given molecule: 

<?,„(/) = Qo(/)/Q,„(/) = (s0/sm)(vm/v0)
2/\ 

(4a) 

<7M(/> = QO(/)/QM(/) = (SQ/SMKVM/V0)
2/3. 
(4b) 

These parameters are ratios of surface areas and 
molecular volumes computed by using two scales 
of atomic radii. We shall refer to q,„(f) and qM(f) 
as the relative globularities (lower and upper 
bounds, respectively). An intuitive analysis sug- 
gests the type of information conveyed in the de- 
scriptors q,„(f) and qM(f): 

1. In the descriptor q„,(f), atoms are replaced 
by the smallest atomic spheres. Therefore, 
the major changes in globularity will be 
caused by the number and location of the 
largest atomic spheres. Therefore, the varia- 
tions in q,„(f) as a function of / will reflect 
global shape features associated with the po- 
sitions of bulky (usually, nonhydrogen) 
atoms. 

2. In the descriptor qM(f), atoms are replaced 
by the largest atomic spheres. Therefore, the 
major changes in globularity will be caused 
by the number and location of the smallest 
atomic spheres. We would thus expect that 
the variations in qM(f) as a function of / 
will normally be related to the number of 
hydrogen atoms and their spatial positions. 

In other words, we expect qm(f) and qM(f) to 
reflect the interplay between local geometry (i.e., 
the distribution and relative position of different 
atoms) and global shape features (i.e., the ratios of 
surface area and volume). The simultaneous use of 
q„,(f) and qM(f) should provide a "signature" of 
molecular shape. 

Note that qs(f) -» 1 (s = m, M) when /-> °o 
(i.e., all molecules become asymptotically spheri- 
cal). When /->0+, q,„(f) and qM(f) become a 
constant whose value depends only on the initial 
set of atomic radii. For a general n-atom molecule, 

a simple calculation gives: 

lim qjf) =   lim qM(f) 
f->0 + f->0 + /^o+ /-.(>< 

-1/3. 
EP2 

-i2/3 

i=i 

= c. (5) 

For most molecules, the constant C is found to be 
between 0.96 and 1.00. For intermediate values of 
/, the changing contacts of atomic spheres will 
cause variations of surface area and volume, and 
this will be reflected in the descriptors q„,(f) and 
qM(f)- As discussed before, we do not expect these 
descriptors to be too sensitive to differences in 
molecular size. 

A simple example serves to illustrate the quali- 
tative behavior of the qs(f) descriptors. Consider 
the fused-sphere model of a homonuclear diatomic 
molecule. In this case, we have two identical 
spheres with VDW radii pY = p2 = p, separated by 
a bond distance d < 2 p. Let p be the correspond- 
ing "standard" atomic radius. Let p„, < p be a 
reasonable lower bound to p (e.g., the smallest 
VDW radius, pm = 1.17 A, corresponding to hy- 
drogen [29]). A simple calculation gives the exact 
volume and area for the surface built with the 
radius p: V = (47rp3/3)(l + d/2p) and S = 
4irp2(l + d/2p). We can now calculate the Q0(/) 
descriptor for the molecular surfaces with scaled 
radius /p. Considering that the spheres are dis- 
jointed whenever fp < d/2, the result is: 

(21/3, pf<d/2 
Qo(/) =    , u/3 •    <6> \(l + rf/2p/)1/3,    pf>d/2 

A similar result holds for the descriptor Q,„(f) 
computed with the smaller radius p,„ < p. Finally, 
we evaluate the relative descriptor q,„(f) as a 
continuous function of the scaling parameter: 

<?,„(/) 

[(2p/+rf)/4p/],/3, 

f<d/2p 

d/2p<f<d/2p„ 

[(2p/+rf)/(2pm/+rf)]1/3(p„/p),/3, 

f^d/2p,„ 

(7) 
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Note that qm(f) = 1 when / -» 0, as required by 
Eq. (5) in the case of identical VDW radii. For 
completeness, we note how qm(f) tends to unity as 
the surface becomes asymptotically large: 

?«(/) Ä 1 - 
dip- pm) 

6fpPm 

+ o(r2). (8) 

Figure 1 translates schematically the behavior in 
Eq. (7). The regions denoted by A, B, and C 
represent three topologically different situations 
for a diatomic molecule: (a) the atomic spheres are 
disjoint, A; (b) the spheres fuse in the regime of 
large atomic radii, B; and (c) the spheres fuse also 
in the regime of small atomic radii, C. These three 
regimes represent the different molecular shapes 
expected in a continuum of diatomic surfaces 
"grown" from a range of initial VDW surfaces. By 
using information related to the nuclear geometry 
and connectivity, the descriptor qm(f) manages to 
capture these essential shape features. As such, it 
provides a one-dimensional descriptor of molecu- 
lar shape. 

The "transitions" in qm{f) values are indicative 
of the changes in shape that accompany the scaling 
of the molecular surface. A similar analysis can be 
made for the complementary descriptor, qM(f), 
defined by the upper bound to the atomic radii. In 
this case, qM(f) exhibits a maximum in terms of /. 
This maximum corresponds also to a transition in 
spherical contacts. These results are representative 
of the qualitative scaling dependence of the relative 
globularity for most molecules. 

FIGURE 1. Schematic dependence of the qm{f) 
descriptor upon scaling for a homonuclear diatomic 
molecule [cf. Eq. (7)]. (The minimum indicates the region 
of atomic radii where the spheres fuse.) 

If the molecule contains two different types of 
atoms, we will compute qm(f) and qM(f) with a 
simple choice for the "reference" surfaces. In this 
case, qm(f) will be defined over a surface where all 
atoms have the radius of the smallest atom of the 
two. Similarly, qM(f) will be defined over a sur- 
face where all atoms have the radius of the largest 
atom. As the geometry becomes more complicated, 
further information can be retrieved from the be- 
havior of qm(f) and qM(f) in terms of /. For 
example, we can expect new transitions in qm(f) if 
the contacts between atomic spheres lead to cycles, 
cages, or voids. Similarly, the transitions in qm(f) 
values will depend on the range of atomic radii 
used to "grow" the continuum of surfaces. In the 
next section, we compute these descriptors for 
hydrocarbons and discuss in more detail their be- 
havior and interpretation. 

Shape Descriptors for Scaled Surfaces 
of Hydrocarbons 

The VDW surfaces of hydrocarbons are defined 
by their equilibrium geometries and two atomic 
radii. By choosing the "minimum radius" as pm = 

PHydro = 1.17 A [29] and the "maximum radius" 
as pM = Pcarbon = 1-75 A [29], we can compute the 
relative globularity descriptors. Molecular shape 
features can then be assessed from the behavior of 
qm(f) and qM(f) during scaling. 

The details of the computations are as follows. 
Since the surface area and volume are rather insen- 
sitive to small changes in nuclear geometries, we 
have used minimum energy conformations opti- 
mized with molecular mechanics. (We employ the 
force field MM2 [30], as implemented and modi- 
fied in the molecular modeling program Hyper- 
Chem [31]. This force field (MM + ) is well-tested 
and reliable for stable hydrocarbon conformations.) 
In the case of several accessible conformers, we 
have always used the global minimum. The sur- 
face area and volume are computed with the pro- 
gram GEPOL [25, 26]. This program calculates the 
surface area by a recurrence of triangulations on 
an atomic sphere. We have used the highest preci- 
sion allowed by the program (i.e., 5 levels of trian- 
gulation over an initial C60-like polyhedron per 
atomic sphere). Using this method, we have com- 
puted areas and volumes for values of the scaling 
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factor / between 0.10 and 3.00, in steps of 0.05. For 
all molecules discussed in this work, / = 3 corre- 
sponds to the regime of spheroidal surfaces (i.e., 

As a first example, Figure 2 shows the results 
for qm(f) (full line) and qM(f) (dotted line) in a 
number of linear saturated hydrocarbons. Both 
qm(f) and qM(f) show changes in terms of / as the 
chain lengthens. Some important observations are: 

1. All hydrocarbons present a sharp peak in 
qM(f) (dotted line) for /< 1. This peak de- 
fines the region of atomic radii where one 
changes from disjoint spheres to 
hydrogen-carbon spherical contacts. A sec- 
ond peak (/« l) occurs for hydrocarbons 
other than methane. This second peak is as- 
sociated with the fusion of adjacent carbon 
spheres, as well as the fusion of hydrogen 
atomic spheres located in these adjacent car- 
bons. [Note that hydrogen atoms are as- 
signed a larger radius when computing 
qM(f).] The larger the number of such con- 
tacts, the larger the change on the relative 
globularity. As a result, the height of this 
peak increases with the length of the chain. 
This observation is consistent with our dis- 
cussion in the previous section, whereby 
qM(f) was expected to be strongly dependent 

Methane \ Ethane 
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FIGURE 2. Relative globularity descriptors qm{f) (full 
line) and qM{f) (dotted line) for methane and some 
saturated linear hydrocarbons. 

on the number and position of the smallest 
atoms. 

2. The function qm(f) (full line) shows a mini- 
mum in all hydrocarbons. The minimum be- 
comes broader, deeper, and shifts as the chain 
lengthens. In methane, the minimum indi- 
cates the transition from disjoint to fused 
hydrogen-carbon spheres. [Note that the 
minimum in </„,(/) is found at larger / val- 
ues than the maximum in qM(f). This is 
expected because q„,(f) uses the lower bound 
to the atomic radii, and thus the first spheri- 
cal contacts will be found in more "swollen" 
surfaces.] As in the example above, the longer 
chains shift the minimum in qm(f) due to the 
presence of carbon-carbon and hydrogen- 
hydrogen contacts between neighbor groups. 

The relative importance of carbon-carbon vs. 
hydrogen-hydrogen contacts can be assessed by 
comparing molecules with the same number of 
carbons in similar geometries, but different num- 
ber of hydrogens. This is done in Figure 3, where 
n-hexane and hexa-l,3,5-triene are compared (both 
in all-trans conformations). The results indicate 
that the height of the second peak in qM(f) is most 
influenced by the number of hydrogen-hydrogen 
spherical contacts. These contacts have a smaller 
influence on the depth of the second minimum in 

Figure 4 complements the analysis of Figure 3. 
Here, we compare the series of cyclic hydrocar- 
bons from cyclohexane (in chair conformation) to 
benzene. The effect on the qM(f) descriptor is 
clear. With each double bond, two hydrogen 
spheres on adjacent carbons are removed. This is 
reflected in a decrease in the second maximum. In 
benzene, this maximum is barely noticeable. 

n-Hexane, all trans \Hexa-l,3,5-trienc, all trans 

FIGURE 3. Compared behavior of the qm(f) (full line) 
and qM(f) (dotted line) descriptors in two molecules with 
similar carbon skeletons but different number of 
hydrogen atoms. 
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FIGURE 4. Relative globularity descriptors qm(f) (full 
line) and qM(f) (dotted line) for cyclic molecules with 
varying number of hydrogen atoms. [Note the 
disappearance of a maximum in qM(f) as the number of 
hydrogen atoms decreases.] 

The role of the carbon-carbon contacts is well 
illustrated in the behavior of qm(f) in Figure 4. 
Note that the minimum in benzene appears as a 
secondary minimum or "shoulder" for the other 
hydrocarbons. This feature in common must be 
associated with two characteristics: a local envi- 
ronment consisting of —CH— groups and a global 
cyclic connectivity. If we compare n-hexane (Fig. 
3) and cyclohexane (Fig. 4), we can estimate the 
relative weight of these two factors. In the cyclic 
molecule, the main difference is found in the addi- 
tional carbon-carbon contacts. This difference ap- 
pears to translate in a lowering of the minimum in 

The results in Figures 2-4 show the interplay 
between local and global shape features in the 
relative globularity. Even though we use global 
properties (volume and surface area), the qm(f) 
and qM(f) descriptors appear to be quite sensitive 
to the local environments around the atoms. As 
the scaling parameter / increases, the changes in 
qm(f) and qM(f) will reflect the modulation of 
surface area and volume by the fusion of neighbor- 
ing atomic spheres. Consequently, we can expect 
that two molecules whose atoms have similar 
neighborhoods over a range of atomic radii will 
have similar qm(f) and qM(f) descriptors. In this 

FIGURE 5. Relative globularity descriptors qm(f) (full 
line) and qM(f) (dotted line) for polycyclic aromatic 
hydrocarbons. (Planar benzenoid polycycles are virtually 
indistinguishable from benzene. Biphenyl shows the 
difference caused by a different pattern of spherical 
contacts around the C—C bond connecting the two 
rings.) 

case, these two molecules will be said to be 
(qm, qM)-equivalent within a given range of scaling 
factors. 

This notion can be further tested by studying 
other hydrocarbons with common local neighbor- 
hoods. Figure 5 compares the results for qm(f) and 
qM(f) in benzene, biphenyl, and a series of poly- 
cyclic aromatic hydrocarbons: naphthalene (2 fused 
benzenoid rings), anthracene and phenanthrene (3 
fused benzenoid rings), and naphthacene (4 ben- 
zenoid rings fused in a row). Two observations can 
be made from Figure 5: 

1. The qs(f) (s = m, M) values for benzene and 
the polycycles are virtually identical. In other 
words, as the molecular surfaces are scaled 
up, their properties are completely deter- 
mined by the cyclic connectivity and by the 
occurrence of three nearest neighbors around 
each carbon atom. 
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2. The only noticeable difference in shape de- 
scriptors is found in q,„(f) for biphenyl. This 
difference reflects the fact that four hydrogen 
atoms in biphenyl have a distinct neighbor- 
hood (the hydrogens are staggered about the 
C—C bond linking the two rings). 

As indicated by observation 2, the notion of 
"local neighborhoods" should be understood as a 
region in space where an atomic sphere can "fuse" 
with others. This region is determined by nuclei 
close in space, and not just by simple bond con- 
nectivity. Depending on molecular structure and 
conformation, the effect of nonbonded atoms on 
the globularity can be important. This can be illus- 
trated by studying nonplanar polycyclic hydrocar- 
bons. 

We have computed qm(f) and qM(f) for a num- 
ber of planar polycycles and helicenes. For clarity, 
Figure 6 shows some of the key structural features 
of the molecules being compared. On the one hand, 
we have benzo[ a]phenanthrene as a planar polycy- 
cle with 4 benzenoid rings in C2v symmetry. If one 
more ring is added terminally, the molecule re- 
leases stress by becoming the nonplanar [5]heli- 
cene, with only C2 symmetry (Fig. 6). If further 
rings are added in sequence, the molecule curls in 

Benznfajphenanlrene (planar) [5]hcliccnc (nonplanar) 

[8]helicene (nonplanar, axis view) [Hjhelicene (nanplanar.side viev.) 

FIGURE 6. Equilibrium geometries for some planar 
and nonplanar aromatic polycycles. (Note that 
[5]helicene is nonplanar but exhibits few ring-ring 
contacts. In contrast, the full helical turn causes strong 
contacts between two stacked rings in [8]helicene.) 

space and adopts a left-handed helical conforma- 
tion. As an example, Figure 6 shows two views of 
[8]helicene. We should expect that these molecules 
belong to a different equivalence class of molecu- 
lar shape than the planar polycycles. 

By stacking benzenoid rings with every helical 
turn, helicenes introduce new atoms into the 
neighborhood of the "lower" rings. Accordingly, 
we find marked changes in relative globularity as 
the molecular surface is enlarged. From the se- 
lected results displayed in Figure 7, we make the 
following observations: 

1. Benzo[ a]phenanthrene and [5]helicene show 
similar behavior for qM(f), whereas the sec- 
ond minimum in qm(f) is slightly deeper in 
[5]helicene. These small differences are due 
to the fact that [5]helicene shows no ring 
stacking but only some close contacts be- 
tween the terminal rings. 

2. Once a turn of the helix is completed (e.g., in 
[8]helicene), qM(f) develops a third maxi- 
mum. The height of this new maximum in- 
creases with the number of turns (cf. 
[14]helicene, which has two complete turns). 
This third maximum is due to the 
hydrogen-carbon and carbon-carbon con- 
tacts between spheres belonging to stacked 
rings, i.e., for neighbors along the helical axis. 

FIGURE 7. Relative globularity descriptors qm{f) (full 
line) and qM(f) (dotted line) for a planar benzenoid 
polycycle and a number of helicenes. 
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3. In helicenes with more than one helical turn, 
the descriptor qm(f) develops a deep second 
minimum. This second minimum is also due 
to changes in molecular surface area and 
volume caused by helical contacts between 
the atomic spheres of nonbonded atoms. The 
effect of molecular size on the qm(f) mini- 
mum is more marked than the effect on the 
CjM(f) maximum. 

In summary, the spherical contacts between 
nonbonded atoms can translate into important 
changes in the shape descriptors as a function of 
the scaling parameter. In linear hydrocarbons, these 
contacts exist but they are limited to second neigh- 
bors along the chain. In the case of stacking, these 
"distant" neighbor contacts are widespread. As a 
result, relative globularity descriptors correctly 
classify helicenes in a different molecular shape 
class than the planar polycycles. Similar differ- 
ences could be expected in other molecules, partic- 
ularly in flexible polymers. In this case, the shape 
of the molecular surfaces will vary differently upon 
scaling depending on whether we deal with 
"swollen" or "compact" polymer conformations. 

Shape Descriptors for General 
Molecular Surfaces 

The VDW surfaces of hydrocarbons can be natu- 
rally bound between the surfaces defined by as- 
signing either pHydrogen or pCarbon to all atoms. In 
molecules with at least three different atoms, the 
choice of the reference radii pm and pM is less 
clear. For the sake of simplicity, one could still use 
the same values employed for hydrocarbons, con- 
sidering that carbon and hydrogen represent the 
extreme values of VDW radii among the common 
"organic" elements (i.e., H, C, O, N). We provide 
below some exploratory examples of the behavior 
of qm(f) and qM(f) for general molecules, using 
the scale of radii tested for hydrocarbons. 

As an illustration, we have computed the rela- 
tive globularity descriptors for some a-amino 
acids, in their neutral form (i.e., H3N— 
CHR—COOH, where R is the side chain). The 
nuclear geometries are taken as the global minima 
derived with the molecular mechanics force field 
AMBER 3.0 [32], as implemented in the molecular 
modeling program HyperChem [31]. 

Figure 8 shows the results for glycine, alanine, 
valine, and leucine [with R: —H, —CH3, 
—CH(CH3)2, and —CH2CH(CH3)2, respectively]. 
The qualitative behavior of qm(f) and qM(f) is 
similar in all cases, although the values of the 
qM(f) maxima and qm(f) minima depend on the 
molecule. Not surprisingly, the differences in shape 
between valine and leucine are marginal. 

A comparison between Figures 8 and 2 reveals 
also a close similarity between the shape descrip- 
tion of these amino acids and some hydrocarbons. 
Whereas the qm(f) and qM(f) functions of glycine 
and alanine resemble those of propane and butane, 
the descriptors for valine and leucine resemble 
those of nonane and decane. These similarities 
indicate that the dominant shape features of their 
molecular surfaces are determined by the underly- 
ing presence of short saturated chains. Note that 
leucine and valine contain branched chains with 8 
and 9 nonhydrogen atoms, respectively. Since short 
branches in hydrocarbons do not introduce large 
changes in spherical contacts, the coincidence be- 
tween the three-dimensional shapes of the molecu- 
lar surfaces of amino acids and some linear or 
branched hydrocarbons is not surprising. 

However, the packing of amino acids in pro- 
teins presents the possibility of different shape 
features. In globular proteins, hydrophobic side 
chains will tend to group near the core, thus largely 
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FIGURE 8. Relative globularity descriptors qm(f) (full 
line) and qM(f) (dotted line) for some a-amino acids, in 
neutral form. 
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increasing the contacts between neighboring atomic 
spheres. A comparable situation would not likely 
be found in long hydrocarbons, as the latter lack 
native structure and do not form stable hydropho- 
bic cores. 

To illustrate this idea, we have computed qm(f) 
and qM(f) in proteins. In this case, we have used 
the experimental geometries deposited in the 
Brookhaven Protein Data Bank (PDB) [33]. (Entries 
normally contain coordinates for all nonhydrogen 
atoms derived from X-ray diffraction or nuclear 
magnetic resonance (NMR) spectroscopy. On these 
structures, we have restored any "missing" hydro- 
gens, assuming standard bond distances and bond 
angles. In the case of multimeric proteins, only the 
first monomer listed in the PDB entry was consid- 
ered. On the resulting complete structures, we have 
computed surface areas, volumes, and shape de- 
scriptors.) 

Figure 9 shows the results for three small pro- 
teins: 8PTI (bovine pancreatic trypsin inhibitor, 
with 56 residues), 2LZT (hen lysozyme, with 129 
residues), and 1MBS (seal metmyoglobin, with 151 
residues). Qualitatively, the results are quite simi- 
lar for all proteins. This is in indication that protein 
molecular surfaces consist of similar local neighbor- 
hoods, despite differences in tertiary structure. 

The qm(f) and qM(f) descriptors reveal some 
shape features not seen in other molecules. Most 
remarkable is the occurrence of a broad, intense 
maximum in qM(f). As seen in the previous sec- 
tion, the qM(f) maxima are dominated by the 
spherical contacts involving hydrogen atoms. In a 
compact protein, the contacts between nonbonded 
atomic spheres are more frequent due to the pack- 
ing of amino acids. This effect is much larger than 
the one observed in helicenes. 

In conclusion, some essential shape features 
about general molecular surfaces can be retrieved 
by using measures of relative globularity. These 
descriptors indicate how large-scale properties of 
the surface relate to the nature of the local neigh- 
borhoods about the atoms. As far as we know, 
these features are not captured by commonly used 
shape parameters. 

Further Comments and Conclusions 

The descriptors introduced in this work allow 
one to study subtle aspects of the molecular shape 

8PTI, 876 atoms 
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FIGURE 9. Illustrative results for globularity descriptors 
qm(f) (full line) and qM(f) (dotted line) in some selected 
proteins. (Proteins are labeled according to their entry 
code in the Brookhaven Protein Data Bank. The number 
of atoms listed includes all hydrogens "missing" from 
the X-ray structures. The latter have been added with a 
molecular modeling program [31].) 
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of a continuum of surfaces. Interestingly, although 
our geometrical descriptors characterize the entire 
continuum, their central properties are determined 
by the interrelation between local and global shape 
features. 

For this reason, these descriptors may be suit- 
able for applications other than similarity analysis 
between single molecules. We believe these de- 
scriptors are also well adapted for the study of 
molecular clusters, including liquids, glasses, and 
polymer networks. Note that, when modeling these 
systems, one normally studies clusters of increas- 
ing size and looks for intrinsic properties that 
remain invariant. Consequently, a detailed charac- 
terization of a given cluster is not particularly 
interesting because it is bound to be size depen- 
dent. Rather, one would be interested in describ- 
ing the shape features associated with "local 
neighborhoods" around the atoms. In particular, 
the volume and surface area of the intermolecular 
voids are specially important for liquids [11]. As 
the clusters increase in size, their time-averaged 
local shape features should reach stability. The 
descriptors introduced in this work can be used to 
extract the state of these local neighborhoods from 
the data of the entire cluster. 

In closing, we should mention that the present 
procedure can also be generalized to more realistic 
molecular surfaces. The extension of our analysis 
to electron densities is immediate, once we "label" 
the surfaces in an electron density continuum in 
terms of a single "scaling" parameter. In order to 
transform isodensity surfaces into a family of sur- 
faces Ff(x) similar to those in Eq. (2), we proceed 
as follows. Let p(>r) be the one-electron (or "margi- 
nal") electron density at a point r in space. Let p* 
be the maximum value of p(r) anywhere in space. 
(This maximum will be located, normally, on the 
nucleus corresponding to the atom with the largest 
number of electrons.) As p(r) approaches p*, a 
constant electron density contour will comprise 
disjoint, spheroidal surfaces centered about the 
atoms. This situation is comparable to the limit 
/ -» 0+ in the scaled VDW surface. As the electron 
density decreases, some of these separate surfaces 
will "fuse." In the limit p(r) -* 0, the isodensity 
surfaces become asymptotically spherical, a situa- 
tion that is equivalent to the limit / -» °° in the 
scaled VDW surfaces. Accordingly, we can label a 
continuum of isodensity surfaces in terms of a 

"scaling" parameter / as follows: 

F/r) = {r e 9ft3: p(r) = p*/Ü+/)h   />0.   (9) 

By computing the molecular surface area and vol- 
ume for an isodensity surface FAT), we can define 
the reciprocal globularity Q0(f) as in Eq. (3). To 
compute relative globularity descriptors [Eq (4)], a 
number of choices are possible. For example, we 
can measure the globularity relative to a "virtual" 
electron density with minimal electron contribu- 
tions to bonds. A relevant choice would be a total 
electron density obtained from a superposition of 
the electron densities of the isolated atoms at the 
same nuclear geometry. In this case, the Qm(f) 
computed with this virtual density would reflect 
the changes in surface area and volume brought 
about by the actual interaction between the atoms. 
The relative globularity descriptor defined as 
?m(/) = Qo(/VQm(/) could then be used to moni- 
tor the effects of local geometry on surface area or 
for high-quality molecular similarity assessments. 
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Introduction 

Aluminosilicate zeolite frameworks with a high 
Si/Al ratio, such as MCM-22 (Si/Al = 

10-14), ZSM-5 (Si/Al = 20-50), Beta (Si/Al = 
5-15), etc. constitute an important class of adsor- 
bent and catalyst materials. The necessity to con- 
sider accurate electrostatic interactions to locate 
the preferential positions of an adsorbed species is 
now confirmed by direct ab initio Hartree-Fock 
calculations on systems such as the all-siliceous 
form of ZSM-5, i.e., silicalite [1]. All-siliceous forms 
are the simplest models which can be considered 
by three-dimensional (3D) periodic ab initio 
Hartree-Fock (PHF) computations and whose 
study could provide a deeper knowledge to simu- 
late electrostatic interaction effects. The modeling 
of the behavior of an adsorbed molecule then re- 
quires the most accurate estimation of the field 
which is created only by the silicon and oxygen 
atoms of the all-siliceous frameworks (or mainly 
by these atoms within zeolites with high Si/Al 
ratio). Therefore, the largely used cluster embed- 
ded models require to consider the long-range 
interactions between the adsorbed molecule and 
the inert rest of the zeolite structure. In the case of 
embedded cluster models, which include a 
molecule near a cation or near a bridged hydroxyl 
group linked to the closest aluminum atom [2], the 
electrostatic long-range interactions have often 
been estimated as created by these last two types 
of framework atoms only. 

A conventional way to evaluate the electrostatic 
field is through the derivation of the atomic multi- 
pole moments for the total host-guest system for 
which we can calculate the wave function. The 
distributed multipole analysis (DMA) scheme re- 
lated to the atomic positions developed by Saun- 
ders et al. [3] allows to express these moments in 
terms of internal geometric coordinates. For the 
case of zeolite frameworks, the application of the 
DMA scheme was proposed first through ab initio 
computations of some zeolite models with a rela- 
tively small number of atomic orbitals (AO) per 
elementary unit cell (UC) considering basis sets of 
a relatively advanced level [4, 5]. More particu- 
larly, it allowed to derive simple analytical ap- 
proximations of the calculated multipole moments 
with respect to some internal geometric character- 
istics of each atom, which interestingly can be 

applied to other zeolites with a higher number of 
AOs per UC, those latter constituting most of the 
materials effectively used in various types of 
chemical catalytic processes. 

In our previous works, the Mulliken charges 
(moments of zeroth order) were calculated with 
the ab initio Hartree-Fock linear combination of 
atomic orbital (LCAO) code CRYSTAL92 [6] for 
two types of periodic systems [4, 5]. One-dimen- 
sional expressions with respect to the average 
T—O distance (T = Al, P, Si) were then fitted to 
represent the Mulliken charges of the silicon atoms 
within all-siliceous structures [4] and of both the 
aluminum and phosphorus atoms within alu- 
minophosphates (Al/P = 1) [5]. It has also been 
shown that various distortions of the T04 tetrahe- 
dra do not influence strongly the charge value of 
the T atoms. A two-dimensional type dependence 
was obtained for the Mulliken oxygen charges 
within all-siliceous analogs and a three-dimen- 
sional one for the Mulliken charges and dipolar 
atomic moments of oxygens within the alumino- 
phosphate (ALPO) frameworks [5]. 

In order to verify our method of estimating the 
multipole moment dependences for any arbitrary 
siliceous zeolite or ALPO based on the approxi- 
mate results obtained for structures with a rela- 
tively small number of AOs per UC, the behavior 
of both types of dependence of each multipole 
moment and their convergence need to be con- 
firmed with different basis sets. To our knowledge, 
this has so far been discussed only for the Mul- 
liken charges [7-9], but not for their dependences 
with the internal geometric characteristics of the 
respective atom. 

In our previous study treating a series of all-sili- 
ceous zeolites [4], we confirmed the use of a same 
type of two-dimensional analytical dependence for 
the Mulliken oxygen charges and of a one-dimen- 
sional expression for the silicon charges with two 
basis sets, i.e., the STO-3G and a 6-21G type qual- 
ity basis. In this study, we analyze the evaluation 
of their dependences with higher quality basis 
sets, including a split valence pseudopotential ps- 
21G* (Durant-Barthelat) on Si and 6-21G* on O, 
for 5 all-siliceous zeolites, i.e., chabazite (CHA), 
gmelinite (GME), merlinoite (MER), montesom- 
maite (MON), and RHO. In total, this amounts of 6 
different types of silicon atoms and 19 types of 
oxygens. 

In the next section, we briefly discuss the basis 
sets together with the characteristics of the frame- 
works. In the third section, we present the fitting 
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of the atomic Si and O charges with respect to the 
internal geometric parameters using the depen- 
dences obtained previously [4, 5]. In the last sec- 
tion, the approximations using the herein com- 
puted parameters are applied to predict the 
Mulliken charges of 10 siliceous zeolites with a 
larger number of AOs per UC, for which the direct 
solution can hardly be achieved with the most 
modern available computing platforms and elec- 
tronic structure codes. The validity of such an 
application is confirmed by comparison with avail- 
able results obtained by direct PHF calculation for 
all-siliceous mordenite with a basis set of 6-21G* 
quality [10]. 

Theoretical Aspects 

The theoretical bases for the solution of the 
Schrödinger electronic problem in three dimen- 
sions considering periodic boundary conditions 
have already largely been described in the litera- 
ture [3, 6, 11, 12]. The choice of the siliceous 
structures was done on the basis of a relatively 
small number of atoms per UC, hence a reasonable 
number of two-electronic Coulomb and exchange 
integrals to evaluate. The characteristics of the 5 
all-siliceous frameworks, which were treated with 
the CRYSTAL92 code, have been taken from the 
MSI database [13] (Table I). The characteristics of 
the other 10 all-siliceous forms whose charge val- 
ues were predicted on the basis of the herein 
derived approximations are presented in Table II. 

The pseudopotential Durant-Barthelat ps-21G* 
basis set on silicon atoms [26]  and 6-21G* on 

oxygens [27] with conventional exponents for the 
d-polarization functions, i.e., 0.5 and 0.92 a.u.~2 for 
Si and O, respectively, was applied to all zeolites 
considered in Table I. An exponent value of 0.35 
a.u.~2 for the oxygen rf-polarization function was 
optimized in the case of the MON zeolite, but we 
held the value of 0.92 a.u.~2 providing acceptable 
computation limits for all 5 frameworks. No con- 
vergence could be reached for DAC and MON, 
whereas the other zeolites could not be treated 
with the ps-21G*(Si)/6-21G*(0) basis set because 
the number of atomic orbitals in their UC was too 
large. 

Computations with the CRYSTAL92 code were 
carried out partly on an IBM RISC 6000 model 560 
workstation (with 256 Mb of memory) and partly 
on an IBM 15-node (120 MHz) Scalable POWER- 
parallel platform (with 1 Gb of memory/CPU). For 
all cases, the thresholds for the calculations were 
fixed to 10~5 for the overlap Coulomb, the pene- 
tration Coulomb, and overlap exchange, to 10~6 

and 10~n for the pseudo-overlap exchange, and to 
10 "5 for the pseudopotential series. 

Approximation of the Mulliken Charges 
of the Si and O Atoms 
in Small Size Type Zeolites 

Omitting d-polarization functions on the oxy- 
gen atom, we first wished to compare the quality 
of the basis sets chosen with available results of 
Apra et al. for the "Opt3" model of silico-chaba- 
zite [8]. The Mulliken total silicon charge 12.230 |e| 
calculated with the CRYSTAL92 code and ps-21G* 

TABLE I  
Symbol, number of different silicon and oxygen types, of total atoms, and of atomic orbitals (AO) per unit cell 
(UC) using the ps-21G*(Si) /6-21G*(0) basis set, and symmetry group of the considered zeolite frameworks.3 

Name Symbol" "si/"o Atoms/UC AO/UC 
Symmetry 

group 

Montesommaite MON 1/3 24 328 d I41 /amd 
Chabazite0 CHA 1/4 36 492 R3c 
Merlinoite MER 2/6 48 656 Immm 
Gmelinite GME 1/4 72 984 P63 / mmc 

RHO RHO 1/2 72 984 Im3m 

aAII coordinates are from Ref. [13] if no other reference is given. 
bRef. [14]. 
cRef. [6, 8]. 
d368 for basis set 6-21G* on both atoms. 
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TABLE II  
Symbol, number of different silicon and oxygen types, of total atoms, and of atomic orbitals (AO) per unit 
cell (UC) using the STO-3G basis set, and symmetry group of the zeolite frameworks whose charge 
distributions were predicted on the basis of the estimations with functions (1) and (2). 

Name Symbol3 ns\lno Ref. Atoms/UC 
AO/UC 

(STO-3G) 
Symmetry 

group 

Ferrierite FER 4/8 15 54 342 Immm 
ZSM-57 MFS 8/14 16 54 342 Imm2 

Mordenite MOR 4/9 17 72 456 Cmc21 

ZSM-12 MTW 7/14 18 84 532 C2/c 
Mazzite MAZ 2/6 19 108 684 P63 / mem 
VPI-5 VFI 2/6 20 108 684 P63 / mem 

ZSM-11 MEL 7/15 21 144 912 I4m2 
Beta BEA 9/17 22 192 1216 P4^2 

NU-87 NES 17/34 23 204 1292 P21/c 
MCM-22 MCTb 8/12 24 216 1368 P63/mmm 
Silicalite MFI 12/26 25 288 1824 Pnma 

aRef. [14]. 
"Symbol from Ref. [13]. 

basis coincides exactly with the value given in [8] 
(below for simplicity, we consider the difference 
between the number of electrons of the neutral 
atom, i.e., 14 \e\ for Si and 8 \e\ for O, and the 
Mulliken charge). 

The PHF computation of the 5 all-siliceous 
frameworks allowed us to obtain the Mulliken 
charges with the ps-21G* basis set for 6 different 
types of silicon atoms and 19 types of oxygens 
(Table I). Then, a fitting of the Si charges (M) was 
made using a simple ID expression with respect to 
the average Si—O distance R = (X^=1RSiCH-)/4 (A) 
of each Si atom within its respective Si04 tetrahe- 
dron [4]: 

Q°0(R) = a,e a2(R-a3) (1) 

with flj = 2.019, «2 = -0.771, and a3 = 1.517 be- 
ing obtained by fitting. For the oxygen charges 
(|e|), we fitted the calculated values with a 2D 
function depending on the average Si—O distance 
of each O atom R' = (ROSi2 + Rosn)/2 (A) and Si 
—O—Si angle (#, radian) [5]: 

Q0°(R',#) = V iiR' + b2e m(R'-Ro) 

with -1.373, n 

cos(# - V   (2) 

-0.277, b2 = 0.198,  m = 
-0.595, R0 = -0.139, and d0 = 0.091 being ob- 
tained by fitting. The root mean square deviation 
(RMSD) values for the approximate Mulliken 
charges obtained with the ps-21G* basis for the Si 
and O atoms are 0.40 and 1.23%, respectively. 
Function (2) leads to a better RMSD for the two 

STO-3G and 8-31G(S0/6-21G(O) basis sets, i.e., 
1.57 and 0.77%, respectively, as compared to 2.0 
and 1.2% presented earlier [4]. The positions of the 
calculated Si charge values (open circles) relative 
to the approximate function (1) is presented in 
Figure 1 together with the other results obtained 
with STO-3G (diamonds) and with a basis of 6-21G 
quality (triangles) [4]. One can remark a very slight 
variation of the slope of the new dependence (1) 
obtained for the different basis sets. But the princi- 
pal conclusion is that the conservation of the same 
type of approximate functions with all three basis 
sets for both the Si and O atomic charges is clearly 
verified. 

The quality of function (1) obtained here with 
only 6 silicon charge values needed to be tested. 
For this, we compared our results with those cal- 
culated with the 6-21G* basis [10] for siliceous 
mordenite. The closeness between the 6-21G* and 
ps-21G* basis sets suggests that dependence (1) 
corresponding to 6-21G* could be estimated using 
a simple shift by a constant value (vertical arrow 
in Fig. 1) from the charge values obtained with 
ps-21G* (Table III). Namely, a value of 0.223 \e\ 
obtained as the difference between the Si charge 
values 2.102 (triangles in Fig. 1) and 1.879 M ob- 
tained for MON with the 6-21G* and ps-21G:|: 

basis, respectively. The average Si charge value 
1.872 |e| evaluated with dependence (1) for the 
MOR framework was corrected accordingly to 
2.095 |c| (corresponding to the average value over 
the 4 charges depicted by  *) which nearly coin- 
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1.58 1.60 1.62 1.64 1.66 
Si-0 distance, Ang 

FIGURE 1. Mulliken Si charge values (in |e|) of various 
zeolite models calculated with: STO-3G (diamonds, Ref. 
[4]), 8-31G (Si)/6-21G (O) (triangles, Ref. [4]), ps-21G* 
(empty circles), and 6-21G* (filled circles, MON zeolite) 
compared to the approximate dependence [eq. (1)] (solid 
lines) versus the average Si—0 distance R = 
(2%=iRSi0k) / 4 (in A). The dashed line corresponds to 
function (1) corrected for the 6-21G* level charges (stars) 
in the case of MOR. The vertical arrow depicts the 
difference between the charges of MON estimated with 
ps-21G* and 6-21G* basis sets. 

TABLE IV  
Mulliken oxygen charges (|e|) for the MOR zeolite 
approximated via function (2) including the average 
Si-0 distance R' = (R0sn + "os^) /2 and Si—0—Si 
angle (d) using the parameters fitted over the 
Mulliken charges calculated with ps-21G* basis sets 
for five smaller size type zeolites. 

Type3 fl'.A ■&, degree -Q°o 

7 1.5872 180.00 0.955 
2 1.6060 158.00 0.942 
3 1.6115 168.45 0.945 
4 1.6116 144.37 0.931 
5 1.6243 150.52 0.932 
6 1.6295 137.26 0.920 
1 1.6313 145.81 0.927 
9 1.6373 146.80 0.926 
8 1.6408 147.17 0.925 

Average 0.935 
Correction13 0.112 
Corrected 1.047 
Calculated with 1.04 
6-21G* basis set [10] 

aNumbering from Ref. [10]. 
bFrom the calculation with the MON zeolite (see text). 

cides with 2.09 |e| [10]. An analogous correction of 
the average O charge —0.935 |e| for the same 
framework in the opposite direction by half of the 
upper estimated correction (-0.112 |e|) led to 
— 1.047 |e| also in agreement with the direct PHF 
calculated value -1.04 |e| [10] (Table IV). 

TABLE III  
Mulliken silicon charges (|e|) for the MOR zeolite 
approximated via function (1) including the average 
Si—O distance R = (££=1RSj0(r) /4 using the 
parameters fitted over the Mulliken charges 
calculated with ps-21G* for five smaller size type 
zeolites. 

Type fi,A Oo° 

2 1.6047 1.893 
1 1.6189 1.874 
4 1.6214 1.870 
3 1.6352 1.851 
Average 1.872 
Correction3 0.223 
Corrected 2.095 
Calculated with 
6-21G* basis set [10] 2.09 

aFrom the calculation with the MON zeolite (see text). 

These results suggest that function (1) is precise 
enough despite the small number of charge values. 
It also proves the validity of a similar behavior of 
dependence (1) obtained with the ps-21G* and 
6-21G* basis sets here applied. We hence conclude 
that functions [(1) and (2)] for the Si and O charges 
conserve their types with all three basis sets. How- 
ever, on the other hand, this coincidence could be 
due to the relative short differences between the Si 
—O distances within the mordenite framework 
(stars in Fig. 1). Further studies would thus be 
useful to clearly ascertain the extrapolation of one 
dependence versus another corresponding to a dif- 
ferent basis set. 

Evaluation of the Mulliken Charges 
of the Si and O Atoms in Larger 
Size Zeolites 

The good agreement obtained above between 
the calculated and approximate [functions (1) and 
(2)] charge values for the mordenite framework 
permits us to evaluate the charge distributions of 
some other all-siliceous zeolites. Moreover, this 
work is very useful considering the absence, to our 
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knowledge, of any data about the electrostatic field 
for most of the herein studied zeolite forms. Thus, 
we chose some zeolite forms whose UC sizes make 
the direct calculation with a periodic Hartree-Fock 
approach and an advanced basis set (like ps-21G*) 
either rather "expensive" or even nonrealistic. The 
simple charge evaluations with formulas (1) and 
(2) for the chosen zeolites can indeed be easily 
performed knowing the geometric parameters of 
all types of silicon (i.e., R) and oxygen (i.e., R' and 
d) within the frameworks (Table V and VI). 

TABLE V  
Mulliken oxygen charges Q{j(|e|) approximated with 
function (2) including the average Si—O distance 

R' = (Rosii + Rosi2) /2 On A) and Si—0—Si angle ö 
(in degree). 

Type 

BEA 

FER 

MAZ 

MCT 

Atom 
numb.a R' -Q°o 

16 1.6155 154.80 0.938 
4 1.6158 153.27 0.937 
2 1.6158 148.29 0.933 
9 1.6159 137.46 0.924 
8 1.6159 162.35 0.942 

15 1.6160 149.23 0.934 
12 1.6160 144.86 0.930 
5 1.6160 148.28 0.933 
17 1.6160 150.62 0.935 
6 1.6161 157.91 0.939 
13 1.6161 154.81 0.937 

1 1.6161 163.02 0.942 
10 1.6161 143.84 0.930 
3 1.6161 156.45 0.938 
14 1.6162 165.58 0.943 
7 1.6162 154.53 0.937 

11 1.6163 137.45 0.924 
6 1.5910 153.26 0.944 
5 1.5916 180.00 0.954 
4 1.5974 157.95 0.945 
8 1.6029 147.35 0.936 
7 1.6108 152.85 0.938 
2 1.6148 152.67 0.936 
1 1.6179 169.27 0.944 
3 1.6251 153.52 0.934 
6 1.6403 136.64 0.917 
2 1.6407 171.19 0.938 
3 1.6414 146.54 0.925 
4 1.6429 144.74 0.923 
5 1.6488 137.34 0.915 
1 1.6558 149.24 0.923 
1 1.4457 180.00 0.997 

11 1.5194 157.04 0.966 
6 1.5632 164.50 0.958 
9 1.5874 159.45 0.948 

TABLE V _ 
(Continued) 

Type 

MEL 

MFS 

MTW 

Atom 
numb.a R' 0°n 

10 1.5952 143.22 0.935 
3 1.6093 136.21 0.925 
5 1.6225 180.00 0.945 
4 1.6323 145.83 0.927 
2 1.6409 142.13 0.921 
12 1.6458 145.82 0.923 
8 1.5482 151.18 0.926 
7 1.6502 159.31 0.931 
14 1.5578 165.13 0.959 
9 1.5619 158.57 0.955 
3 1.5800 150.96 0.945 
7 1.5855 151.92 0.944 
13 1.5871 165.27 0.951 
2 1.5895 146.59 0.939 
12 1.5983 145.64 0.936 
15 1.6006 160.43 0.945 
6 1.6049 147.55 0.936 
1 1.6148 149.77 0.934 
8 1.6155 144.07 0.930 
4 1.6171 161.00 0.941 

11 1.6291 145.37 0.927 
10 1.6326 159.10 0.935 
5 1.7452 120.59 0.874 
8 1.5814 162.19 0.951 
3 1.5818 162.32 0.951 
2 1.5842 158.00 0.948 
6 1.5851 157.17 0.948 
4 1.5854 158.00 0.948 
13 1.5855 158.95 0.948 
10 1.5898 154.93 0.945 
11 1.5916 149.55 0.941 
7 1.5938 148.56 0.939 
12 1.5944 147.58 0.939 
9 1.5955 147.69 0.938 
14 1.5961 146.67 0.937 
1 1.5981 145.40 0.936 
5 1.6043 145.13 0.934 
6 1.5641 144.77 0.945 
8 1.5673 155.57 0.952 
2 1.5685 156.21 0.952 

13 1.5777 146.09 0.942 
3 1.5877 146.37 0.940 
14 1.5891 145.86 0.939 
10 1.5926 152.09 0.943 
12 1.5936 144.86 0.937 
5 1.6014 148.05 0.937 
7 1.6042 156.91 0.942 
4 1.6228 157.94 0.938 
1 1.6236 158.59 0.938 

11 1.6292 152.79 0.933 
9 1.6340 134.39 0.917 
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TABLE V _ 
(Continued) 

TABLE V _ 
(Continued) 

Type 

VFI 

NES 

MFI 

Atom 
numb.a 

4 
1 
3 
6 
2 
5 
3 

17 
18 
19 
16 
2 

20 
7 

22 
27 
10 
8 
5 

23 
14 
9 

29 
33 
34 
28 

4 
6 

31 
21 
12 
30 
26 
32 
15 
13 
11 

1 
24 
25 
17 
19 
13 
15 
10 
3 
6 

22 
4 
7 

R' # 

1.4339 
1.5766 
1.6074 
1.6250 
1.6551 
1.7025 
1.5713 
1.5714 
1.5749 
1.5764 
1.5787 
1.5847 
1.5875 
1.5876 
1.5880 
1.5883 
1.5890 
1.5898 
1.5905 
1.5906 
1.5910 
1.5922 
1.5925 
1.5939 
1.5942 
1.5948 
1.5949 
1.5953 
1.5956 
1.5963 
1.5982 
1.5995 
1.6016 
1.6020 
1.6101 
1.6107 
1.6191 
1.6287 
1.6301 
1.6358 
1.5378 
1.5538 
1.5608 
1.5620 
1.5704 
1.5724 
1.5736 
1.5788 
1.5808 
1.5811 

164.41 
180.00 
131.02 
156.52 
174.48 
167.59 
136.21 
156.91 
151.91 
153.04 
166.49 
168.10 
145.64 
170.98 
145.19 
150.87 
141.46 
164.28 
143.54 
148.84 
157.54 
148.73 
145.98 
143.91 
156.27 
143.37 
154.64 
160.26 
137.72 
140.07 
149.76 
140.75 
146.65 
164.84 
145.91 
158.69 
146.81 
167.36 
157.03 
150.57 
149.61 
171.81 
175.00 
157.40 
159.94 
174.01 
162.62 
149.49 
162.14 
156.40 

-Oo° 

0.995 
0.958 
0.920 
0.936 
0.935 
0.920 
0.935 
0.951 
0.947 
0.947 
0.954 
0.953 
0.939 
0.953 
0.938 
0.943 
0.935 
0.950 
0.936 
0.941 
0.946 
0.940 
0.938 
0.936 
0.944 
0.935 
0.943 
0.946 
0.930 
0.932 
0.939 
0.932 
0.936 
0.947 
0.933 
0.941 
0.931 
0.940 
0.935 
0.929 
0.956 
0.963 
0.962 
0.954 
0.953 
0.958 
0.954 
0.944 
0.951 
0.948 

Type 
Atom 

numb.a R' ■& -Q°o 

12 1.5819 155.59 0.948 
2 1.5839 145.18 0.940 

11 1.5839 158.93 0.949 
14 1.5852 166.54 0.952 
21 1.5859 150.86 0.943 
24 1.5910 142.85 0.936 
25 1.5930 152.73 0.943 

9 1.5947 153.39 0.943 
5 1.5982 146.12 0.936 

26 1.6049 145.84 0.934 
18 1.6148 139.89 0.927 

8 1.6156 155.37 0.938 
20 1.6165 148.21 0.933 

1 1.6223 142.61 0.927 
23 1.6375 156.04 0.932 
16 1.6554 151.94 0.925 

"Numbering of the atoms from references given in Table II. 

TABLE VI  
Mulliken silicon charges Q°(|e|) approximated with 
function (1) including the average Si—O distance 
R = (Xl=,RSi0k)/4{mk). 

Type 
Atom 

numb.a 
Oo° 

BEA 

FER 

MAZ 

MCT 

8 
5 
1 
9 
4 
3 
6 
2 
7 
4 
3 
1 
2 
2 
1 
7 
6 
5 
2 
4 
3 
8 
1 

1.6159 
1.6159 
1.6159 
1.6159 
1.6160 
1.6160 
1.6161 
1.6161 
1.6163 
1.5964 
1.5984 
1.6140 
1.6263 
1.6405 
1.6513 
1.5485 
1.5801 
1.5861 
1.5914 
1.5932 
1.6071 
1.6268 
1.6604 

1.878 
1.878 
1.878 
1.878 
1.878 
1.878 
1.877 
1.877 
1.877 
1.905 
1.902 
1.880 
1.864 
1.844 
1.830 
1.972 
1.927 
1.919 
1.912 
1.909 
1.890 
1.863 
1.818 
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TABLE VI _ 
(Continued) 

TABLE VI _ 
(Continued) 

Type 

MEL 

VFI 

MFS 

MTW 

NES 

Atom 
numb.a 

2 
6 
3 
7 
5 
1 
4 
2 
1 
4 
2 
7 
1 
3 
6 
5 
8 
1 
3 
2 
7 
5 
6 
4 
8 
2 
14 
15 

1 
3 
16 
7 
6 
17 
9 

11 
12 
10 
13 
4 
5 

OS 

1.5617 1.954 
1.5783 1.930 
1.6048 1.893 
1.6050 1.893 
1.6170 1.876 
1.6290 1.860 
1.6596 1.819 
1.5948 1.907 
1.6064 1.891 
1.5878 1.917 
1.5879 1.917 
1.5881 1.916 
1.5886 1.916 
1.5912 1.912 
1.5915 1.911 
1.5917 1.911 
1.5933 1.909 
1.5677 1.945 
1.5901 1.913 
1.5971 1.904 
1.5984 1.902 
1.6007 1.859 
1.6094 1.887 
1.6146 1.880 
1.5814 1.926 
1.5841 1.922 
1.5849 1.921 
1.5852 1.920 
1.5867 1.918 
1.5868 1.918 
1.5877 1.917 
1.5904 1.913 
1.5910 1.912 
1.5940 1.908 
1.5958 1.905 
1.6023 1.896 
1.6057 1.892 
1.6079 1.889 
1.6082 1.888 
1.6095 1.887 
1.6211 1.871 

Two evident features of the charge estimations 
can be emphasized. First, all the charge values are 
strictly related to the spatial models referenced in 
Table II. Any optimization of these initial coordi- 
nate sets would alter the internal geometry and 
hence the charge distribution.  But evidently,  a 

Type 
Atom 

numb.a Oo° 

MFI 8 
6 
10 
11 
4 
5 
3 
9 
7 
1 
2 
12 

1.5610 1.955 
1.5734 1.937 
1.5756 1.934 
1.5768 1.932 
1.5769 1.932 
1.5831 1.923 
1.5874 1.917 
1.5935 1.909 
1.5941 1.908 
1.6007 1.899 
1.6137 1.881 
1.6257 1.864 

Numbering of atoms from references given in Table II. 

spatial optimization using empirical type poten- 
tials could lead to reasonable results if the depen- 
dences [(1) and (2)] are also taken into account. 
Second, the charge distribution obtained herein 
with the ps-21G* basis set can be corrected to the 
level corresponding to 6-21G* considering the sim- 
ple shift by a constant value of 0.223 \e\ for the Si 
charges and by -0.112 \e\ for the O charges. Cau- 
tion should, however, be taken if the zeolite sys- 
tem under study has very large Si—O bond 
lengths. The boundaries for the hopeful estimates 
applying the charge distribution shift may be eval- 
uated from the extremal values of the Si—O dis- 
tances for the 4 types of Si charges of mordenite, 
i.e., 1.605 to 1.635 A. 

Conclusions 

The Mulliken charges for 5 all-siliceous zeolites, 
i.e., chabazite, gmelinite, merlinoite, montesom- 
maite, and RHO, were calculated using the CRYS- 
TAL92 code with a pseudopotential ps-21G* 
(Durant-Barthelat) basis set on the silicon and 
6-21G* on the oxygen atoms. The Si charge values 
were approximated by a simple one-dimensional 
function with respect to the average Si—O dis- 
tance within the respective Si04 tetrahedra. A 
two-dimensional function with respect to the aver- 
age Si—O distance and Si—O—Si angle was con- 
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sidered for the O atomic charges. Both types of 
approximate functions were found to be appropri- 
ate to fit the charge values computed with this 
presently proposed basis set in the same way as it 
was shown previously for charges obtained with 
STO-3G and 6-21G sets [4, 5]. The comparison 
between the atomic charges computed directly 
with the CRYSTAL92 code for mordenite showed 
a good agreement with our estimations based on 
the two simple proposed analytical functions. This 
also allowed to evaluate the charge distribution for 
some zeolites with a larger number of atoms per 
elementary unit cell without the necessity to pass 
thru the direct solution of the electronic problem. 

The knowledge of the Mulliken charges only 
provides a rather qualitative level for the evalua- 
tion of the electrostatic field [3, 9]; however, it is 
useful to estimate an order of magnitude for the 
electrostatic field of the considered host system 
and hence to propose preferential positions of any 
adsorbed molecule. We hope that the approximate 
charge (multipole moments of zeroth order) de- 
pendences for both the silicon and oxygen atoms 
could be completed later by similar types of ap- 
proximate dependences for the hydrogen and alu- 
minum atoms obtained on the basis of analogous 
fitting of the charges and higher order multipole 
moments for a series of H-form zeolite models 
with a small number of atomic orbitals per UC. 
The direct calculations of these moments with the 
CRYSTAL code are presently in progress. 
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A Dication with Two 2-Electron 
3-Center Bonds 
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ABSTRACT: The dication NH§+ has been studied by state-of-the-art quantum 
chemical techniques. NHg+ is a square-based pyramid with C4v symmetry. The apical H 
is bonded to N with a 2-electron covalent bond, while the other H atoms are bonded to N 
through degenerate 2-electron 3-center bonds. No other local minimum exists on the 
potential energy surface. A C2„ transition state linking equivalent C4p structures is only 
1.35 kcal mol-1 higher in energy. The barrier to deprotonation is 26.4 kcal mol"1.   © 1998 
John Wiley & Sons, Inc. Int J Quant Chem 70: 1003-1007, 1998 

Key words: dications; coupled-cluster calculations; penta coordinate nitrogen 

Introduction 

Although the dication NH|+   has not been 
observed experimentally, it is an interesting 

species for several reasons. 

1. NH§+ is isolectronic with the pentahydrides 
BH5 and CH5 , which have been the subjects 
of several theoretical [1] and experimental [2] 
studies. 

Correspondence to: J. D. Watts. 
Contract grant sponsor: U.S. Air Force Office of Scientific 

Research. 
Contract grant number: AFOSR-F 49620-95-1-0130. 

2. NH|+ continues the known isoelectronic se- 
ries NH2 , NH3, and NH4 , which we exam- 
ined recently [3]. 

3. Olah and Rasul [4] have noted that NH^+ 

is isolobal with the gold complex 
[(C6H5)3PAu]5N

2+ [5], which features a trig- 
onal bipyramidal nitrogen. 

In this study we report a series of coupled-clus- 
ter calculations with extended basis sets on NH^"1". 
The aims of this work were to determine the struc- 
ture and energetics of local minima and other 
important stationary points, to compute vibra- 
tional frequencies, which might be useful for fu- 
ture experimental studies, to analyze the bonding, 
and to compare with isoelectronic analogs. Since 

International Journal of Quantum Chemistry, Vol. 70, 1003-1007 (1998) 
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experimental study of small multiply charged 
species is very difficult, high-quality calculations 
may provide useful data, as well as valuable in- 
sight into the bonding in these species. During the 
final stages of this work, Olah et al. [6] reported an 
attempt to generate NH2+ and (CH3)4NH2+ by 
protonating NH4 and (CH3)4N

+ in superacid me- 
dia, but these were not successful. They also re- 
ported some ab initio calculations on NH2+ with 
the MBPT(2) and QCISD methods and 6-31G** 
and 6-31 IG** basis sets. These calculations are 
much less extensive than the ones reported in this 
work, but both studies lead to similar structures 
and energetics. 

Computational Methods 

Calculations were performed with the ACES II 
program [7, 8]. The methods used were second- 
order many-body perturbation theory [MBPT(2)] 
and coupled-cluster singles and doubles with non- 
iterative triples [CCSD(T)] [9]. The basis sets used 
were the augmented correlation-consistent polar- 
ized valence triple-zeta basis set (aug-cc-pVTZ) 
[10], and this basis set without diffuse functions on 
hydrogen (denoted aug'-cc-pVTZ). Geometries 
were determined at the MBPT(2)/aug-cc-pVTZ, 
CCSD(T)/aug-cc-pVTZ, and CCSD(T)/aug'-cc- 
pVTZ levels. Since the CCSD(T) structures of 
NH2+ computed with the two basis sets are essen- 
tially identical, only CCSD(T)/aug'-cc-pVTZ har- 
monic vibrational frequencies were computed. 
Geometry optimizations of BH5 and CH5 were 
performed at the MBPT(2)/aug-cc-pVTZ level for 
comparison. In all calculations, the Is electrons of 
the nonhydrogen atom (B, C, or N) were not corre- 
lated. Spherical harmonic d and / functions were 
used throughout. 

Results and Discussion 

The potential energy surface of NH2 + was first 
searched at the MBPT(2)/aug-cc-pVTZ level. Sta- 
tionary points were then further investigated at 
the CCSD(T)/aug-cc-pVTZ level. Unless otherwise 
stated, energy differences quoted below are from 
CCSD(T)/aug-cc-pVTZ calculations. The station- 
ary points on the NH2+ surface are shown in 
Figure 1, and their total energies, along with those 
of several other relevant species, are given in 
Table I. 

The lowest energy structure of NH2+ (1) has 
Civ symmetry, and is a local minimum. The ge- 
ometries of 1 obtained at three levels of theory are 
reported in Table II. The next lowest energy sta- 
tionary point is 2. This is a transition structure of 
C2v symmetry, which is only 1.35 kcal mol"1 higher 
in energy than 1. Structure 2 is the saddle point for 
interchange of apical and basal hydrogen atoms in 
1, and so connects equivalent C4v structures. A 
second transition state of importance is that for 
deprotonation of NH2+, which is structure 3. As 
expected, decomposition to NH4 + H+ is highly 
exothermic (98 kcal mol"1), but the barrier to 
deprotonation is significant (26.4 kcal mol-1). 
Elongation of one of the basal N—H bonds leads 
to the transition state for deprotonation. This tran- 
sition state was expected to have only Cs symme- 
try, since elongation of one of the four equivalent 
N—H bonds reduces the symmetry to Cs How- 
ever, closer examination showed it to have C3lJ 

symmetry, as reported by Olah et al. [6], which is 
the highest symmetry possible for NH4 + H+. 
Elongation of the apical N—H bond appears to 
lead to unfavorable homolytic dissociation, rather 
than deprotonation. The trigonal bipyramidal 
structure of NH2 + (4) is only 2.7 kcal mol"1 higher 
in energy than 1, but it is neither a local minimum 
nor a transition state. It has a doubly degenerate 
imaginary frequency. This mode leads to the C4„ 
structure, the two axial H atoms of 4 become basal 
H atoms in 1, and one of the equatorial H atoms in 
4 becomes the apical H atom in 1. Structure 4 
provides another pathway for interchange of api- 
cal and basal H atoms of 1. 

In the equilibrium structure of NH2 + (1), four 
of the H atoms (H,,) are at the base of a pyramid, 
and the fifth H atom (H„) is at the apex. All of the 
N—H distances are similar. The N—H„ distance 
is slightly smaller than the N—H(, distance. The 
shortest H—H distance is 1.46 A, which is the 
distance between adjacent basal H atoms. By no 
means, then, is NH2 + a complex between NH2 + 

and H2. What, therefore, is the bonding in C4;, 
NH2 + ? A qualitative and plausible description can 
be obtained by examining the occupied molecular 
orbitals (MOs). The most stable valence MO in the 
MO in the C4v structure has ax symmetry and is 
essentially the 2s N orbital, but is largely non- 
bonding. Higher in energy are the degenerate e 
orbitals, which form the bonds between the N and 
the four equivalent Hb atoms. If one pair of H/; 

atoms lies along the x axis and the other along the 
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FIGURE 1. Four stationary points on the NH§+ potential energy surface. The point group symmetries of 1, 2, 3, and 4 
are C4v, C2v, C3l/, and D3h, respectively. 

y axis, one e orbital consists largely of an N px 

orbital overlapping with an antisymmetric combi- 
nation of a pair of Hb s orbitals, and the other is of 
the same type, but with the N py orbital and the s 
orbitals of the other pair of Hfc atoms. Since the N 

atom lies 0.4 A above the base of the pyramid 
(Table II), the bonds between the N and basal H 
atoms may be described as two bent 2-electron, 
3-center bonds. The highest occupied MO, which is 
almost degenerate with the e MOs, has ax symme- 

TABLE I .  
Total energies (Hartrees) and relative energies (kcal mol"1) of stationary points 1, 2, 3, and 4 of NH|+ and some 
other relevant species.3 

Symmetry 

NH + (1) 
NH| + 

NH| + 

NH|+ 

NH + 
NH + 

(2) 
(3) 
(4) 

C4v 

^3v 

'3/1 

D3 

0» 
a Energies obtained with the aug-cc-pVTZ basis set. 

MBPT(2) 

-56.64071 (0.0) 
-56.63842(1.4) 
-56.59862 (26.4) 
-56.63959 (2.6) 
-56.79615 (-97.5) 
-55.22365 
-1.16502 

CCSD(T) 

-56.66145 (0.0) 
-56.65930(1.3) 
-56.61935 (26.4) 
-56.65720 (2.7) 
-56.81802 (-98.2) 
-55.24923 
-1.17264 
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TABLE II  
Distances (A) and angles (°) in C4„ NH§+. 

MBPT(2)/aug-cc-pVTZ CCSD(T)/aug-cc-pVTZ CCSD(T)/aug'-cc-pVTZ 

r(N-Ha)a 

r(N-Hb)b 

r(N-X)c 

r(H-H)d 

0(HaNHb)e 

1.0517 
1.1068 
0.4063 
1.4559 

111.5 

1.0524 
1.1074 
0.4068 
1.4566 

111.6 

1.0522 
1.1072 
0.4066 
1.4564 

111.5 
aThe distance from N to the apical H atom (Ha). 
b The distance from N to one of the basal H atoms (Hb). 
0 The perpendicular distance from N to the basal plane. 
d The distance between adjacent basal H atoms. 
eThe HaNHb angle. 

try and constitutes the bonding MO between the N 
and the apical H atom. 

ues for the reactions BH, 
CH| +H2,andNH 2 + 

BH3 + H2, CH5
+ -^ 

NH+ + H2 are 0.6, 43.7, 

with that in BH5 and CH^ BHr is best described 
The bonding in Civ NH5     contrasts strongly        and 115.5 kcal mol"1, respectively. Are there stable 

C4„ structures for BH5 and CH5 and how do 
these compare with the equilibrium Cs structures? 
At MBPT(2)/aug-cc-pVTZ, C4p structures of BH5 

and CH5 are 18 and 3 kcal mol"1 less stable than 
the Cs structures and are not local minima. 

CCSLXT)/aug'-cc-pVTZ and MBPT(2)/aug-cc- 
pVTZ harmonic frequencies and infrared intensi- 
ties for the C4„ structure of NH§+ are given in 
Table III, along with approximate descriptions of 
the normal modes. There are no low-frequency 
vibrational modes in NH5"1". This suggests that if 
this dication could be formed, it should be stable 
at low temperature. Moreover, the lowest fre- 
quency mode does not lead to decomposition. 
Rather, it reduces the symmetry to C2„, and is the 
initial motion toward the C2a transition state for 
exchange of apical and basal H atoms. The most 

as a species in which H2 is attached to an almost 
unperturbed BH3 molecule, with the complex sta- 
bilized by overlap of the H2 bonding orbital and 
the empty p orbital on BH3. At the MBPT(2)/aug- 
cc-pVTZ level, the H2 bond length in BH5 is 0.79 
A, compared with 0.74 A in free H2. Similarly, 
CH5 can be described as a complex between CH3 

and H2, but in this case the interaction is stronger, 
and the H—H distance (0.98 A) is significantly 
larger than in free H2. That the nature of the 
bonding in NH|+ is unlike that in BH5 and CH5 
is further illustrated by a comparison of the en- 
ergies required to remove H2. In the series 
BH5, CHJ, NH^+, the energy for removal of H2 

increases considerably, as expected. At the 
MBPT(2)/aug-cc-pVTZ level of theory, AH0 val- 

TABLE III 
MBPT(2) / 
(km mol ~ 

aug-cc-pVTZ and CCSD(T) / aug'- 
')forC4vNH* + .a 

■cc-pVTZ harmonic frequencies (cm   1) and infrared intensities 

MBPT(2) CCSD(T) 

Symmetry (Ü / 0) / Description 

b2 

e 

ai 
e 

b2 

e 

«i 

620 
674 

1352 
1536 
1627 
2369 
2653 
2755 
3146 

0 
930 
266 

75 
0 
0 

2041 
148 
471 

624 
643 

1352 
1538 
1618 
2368 
2654 
2755 
3144 

0 
936 
263 

77 
0 
0 

1963 
143 
441 

Antisymmetric HaNHb, bend 
HöNHb "rocking" motion 
Symmetric HaNHb bend ("umbrella" mode) 
HaNHb bend 
In-plane HbNHb bend ("scissor") 
Antisymmetric N-Hb stretch 
N-Hb stretch 
Symmetric N-Hb stretch 
N-Ha stretch 

a Ha and Hb are the apical and basal H atoms. 

1006 VOL.70, NO. 4/5 



STRUCTURE AND PROPERTIES OF NH*+ 

intense band in the infrared spectrum of NH5"1" is 
predicted to occur around 2650 cm"1. This band 
is due to a degenerate antisymmetric stretching 
mode involving the basal H atoms and N. This 
mode reduces the symmetry to Cs, which is the 
initial motion along the pathway leading to depro- 
tonation. 

Finally, it should be noted that although Civ 

NHg+ is a local minimum, exchange of hydrogen 
atoms is likely to be rapid, as the transition state is 
of low energy and tunneling may be important. 
Accordingly, except on very short time scales, the 
H atoms will be effectively equivalent. Some of 
these features of the behavior of CH5 have previ- 
ously been noted [1(d), (e)], and there have been a 
few dynamical studies of that system [11]. Unlike 
CH5 , however, NHg+ does not have any very low 
vibrational frequencies. 
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ABSTRACT: The structure, stability, and theoretical 13C- NMR spectra of nonlinear 
C60 carbon clusters of the carbyne type have been estimated by ab initio calculations. 
Semiempirical AMI calculations have shown the knot-cycle energy difference to increase 
with the number of knot crossings and to decrease with the number of atoms constituting 
the molecule. Some C60 carbyne prime knots belong to the following symmetry point 
groups: D30h for cycle, D3 for trefoil, Cx for figure eight (but S4 for the C64 figure eight), 
C2 for cinquefoil and the other five-crossing knot, and Q for six crossing knots. Knot 
symmetry and the calculated 13C-NMR qualitative spectra provide the basis for 
experimental identification of the knotted carbyne structures.    © 1998 John Wiley & Sons, 
Inc. Int J Quant Chem 70: 1009-1015, 1998 

Key words: ab initio; carbon allotrope; carbyne; 13C-NMR; topological isomerism; knot 

Introduction 

Knot theory has been developed by mathe- 
maticians and physicists since the 18th cen- 

tury [1-3], and although knotted chemical struc1 

hires are still bizarre for chemists, several DNA 
knots are already well known and well character- 
ized [4-18]. Knotted structures have also been 
considered in polymer science [19-23]. Knots, links, 
and various other topological isomers have been 
discussed in monographs on chemical conforma- 
tion and chirality [24]. 

Correspondence to: J. Cz. Dobrowolski. 
Contract grant sponsor: Drug Institute, Warsaw. 

Carbynes, that is, carbon allotropes with pure 
sp-hybridization, were expected to be synthesized 
in the last quarter of the 19th century [25, 26] and 
the first quarter of the 20th century [27]. Then, in 
the 1950s, small carbon molecules (up to C8) were 
identified by mass spectrometry [28-30] and stud- 
ied theoretically [31, 32]. Now, the spectroscopy of 
small carbon clusters (including carbynes) is be- 
coming a field of increasing interest [33-40]. Car- 
bynes are considered to be chainlike carbon al- 
lotropes [41, 42], likely to occur in interstellar dust 
[43]. Those with even numbers of C atoms prefer 
the cycle to the linear chain [44-46] and are better 
described as (C= C— )„ rather than as (C=C=)„ 
[47, 48]. Interaction of a cyclic carbyne with lan- 
thanum has recently been observed [49] and stud- 

International Journal of Quantum Chemistry, Vol. 70, 1009-1015 (1998) 
© 1998 John Wiley & Sons, Inc. CCC 0020-7608 / 98 / 041009-07 



DOBROWOLSKI AND MAZUREK 

ied theoretically [50-53]. We have studied cyclic, 
knotted (trefoils), and linked carbyne compounds 
[54, 55] and introduced the name cycarbynes for 
unknotted cyclic carbynes, knocarbynes for knotted 
carbynes, and catecarbynes for carbyne links. We 
have also proposed [55] supplementing the kno- 
carbynes and the cycarbynes names with the topo- 
logical symbol [56] denoting the topological type 
of knot or link. 

So far, several knots and various other topologi- 
cal (carbon) isomers have been described in gen- 
eral terms of mathematical chemistry [57-66]. We 
have shown [54, 55] that the energy difference 
between 3l knotted (trefoil) and 0l unknotted 
(cyclic) C„ carbyne structures (C=C—)„ dimin- 
ishes as n increases and should become negligible 
at n « 150. The theoretical IR and NMR spectra of 
C30/ C40, C50, and C60 cycarbynes and trefoil 3X 

knocarbynes [54] (cyclic and knotted carbynes) and 
also NMR theoretical spectra of two C60 catecar- 
bynes, that is, carbyne links of the C30 and C20 

carbon rings, 21 catecarbyne (C30C30), and 62 cate- 
carbyne (C20C20C20) (Borromean rings) [55], show 
how such topological isomers can be identified 
and distinguished experimentally. 

This article sets out to describe the structure, 
energetics, and theoretical 13C-NMR spectra of C60 

knocarbynes endowed with not more than six 
crossings. Comparison of the calculated spectral 
properties with those of C60 fullerene provides the 
basis for experimental identification of C60 knotted 
structures, which may have implications in inter- 
stellar dust spectroscopy. 

Computations 

Preliminary molecular modeling, that is, struc- 
ture building and AMI optimization, was per- 
formed using the Spartan 5 package of programs 
with a graphical interface [67]. The ab initio calcu- 
lations were carried out with the Gaussian 94 [68] 
system of programs. Both programs were executed 
on SGI computers. Full optimization was done at 
the HF/STO-3G//HF/STO-3G level. Theoretical 
13C-NMR chemical shifts were calculated using the 
CHF-GIAO approach [69] based on the HF/DZP- 
HB single-point calculations for both the HF/STO- 
3G and AMl-optimized structures of the molecules 
(where DZP-HB denotes the double-zeta DZP- 
CGTO basis of Hansen and Bouman [70] com- 
posed for carbon atoms of (721/221/1) AO con- 

tracted to [3s3pld]). The double-zeta basis set [70] 
used here has already been shown to be efficient 
for chemical-shift calculations [71-75]. 

Results and Discussion 

A schematic representation of the knots studied 
and their optimized ab initio structures are shown 
in Figure 1. 

ENERGETICS—ENERGY DIFFERENCE: 

Cyclic versus Knotted Structures 

We have shown the energy difference between 
3j knotted (trefoil) and 0j unknotted (cyclic) C„ 
carbynes to diminish as n is increased and have 
estimated that it should become negligible at n « 
150 [54]. The semiempirical AMI heats of forma- 
tion for the cycle and the knot-cycle heat-of-forma- 
tion differences for the first seven carbyne prime 
knots (i.e., 3V 4X, 5j, 52, 6V 62, and 63) for the 
molecules composed of 40, 50, 60, 70, 80, 90, and 
100 carbon atoms are listed in Table I and pre- 
sented graphically in Figure 2. The energy differ- 
ences between the knotted and cycle carbyne 
structures decrease as the number of carbon atoms 
is increased; for the C100 molecule, the differences 
range from only 50 to 200 kcal/mol for trefoil and 
the 63 carbyne knot, respectively. Moreover, the 
AMI energy differences were consistent with the 
HF/STO-3G values and the basis-set extension to- 
gether with inclusion of correlation effects remark- 
ably reduced the difference for the trefoil [54]. This 
results from the decrease in the structural strain 
both in cyclic and knotted carbynes, especially for 
the latter. For six-crossing C60 knocarbynes, for 
which the structural strain is large, the AMI en- 
ergy predictions agree less with those calculated at 
the HF/DZP-HB//HF/STO-3G level (Table I). Ob- 
viously, as the number of C atoms in knocarbynes 
is increased, the degree of packing and the strength 
of repulsive interactions decrease in the vicinity of 
the crossings. The increase in strains with the in- 
creasing number of knot crossings can be read 
from Figure 2. Indeed, for C40 carbynes, only cy- 
cle, trefoil, figure eight, and cinquefoil knocar- 
bynes are stable at the AMI level. Then, for the 
C50, C60, and C70 structures, the energy increases 
in line within the knot-type series, except for the 61 

knocarbynes, for which two stable forms were 
found. 
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FIGURE 1. A schematic representation of the knots studied and their optimized ab initio structures. 

TABLE I  
AM1 heat-of-formation for cylic carbynes and knot cycle heat-of-formation difference (kcal / mol) for carbynes 
with 40,50,..., 100 carbon atoms. 

Topological type of carbyne molecule 

No. C atoms 0i 3i 4i 5, 52 61 62 63 

40 1059.44 231.38 544.85 1067.97 nc nc nc nc 
50 1307.31 145.59 308.02 502.00 554.48 1152.42 (nc)a 1079.75 1169.35 

1557.73 106.58 210.96 320.27 341.31 606.45 (566.78)a 577.87 622.69 
60 2242.194032 b 104.51 202.88 307.70 334.28 669.91 637.74 695.01 

2270.637542° 98.16 189.00 301.41 329.66 673.35 647.23 699.36 
70 1809.57 84.62 162.43 228.45 241.80 414.53 (382.37)a 390.29 417.99 
80 2062.32 70.28 134.32 178.45 186.76 283.07 (283.21 )a 289.55 308.27 
90 2315.66 60.12 115.26 147.42 154.14 223.82 230.10 241.90 

100 2569.43 52.52 101.09 122.97 132.35 185.03 192.41 200.55 

nc, not converged. 
aTwo different conformers are observed. 
bRHF/STO-3G // RHF/STO-3G calculations. 
CHF/DZP-HB // HF/STO-3G calculations. 
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FIGURE 2. The AM1 knot-cycle heat-of-formation differences for the first seven carbyne prime knots for the molecules 
composed from 40 to 100 carbon atoms: (asterisks) 3, knots; (circles) 4^ knots; (suns) 5, knots; (wedges) 52 knots; 
(triangles) 6^ knots: (diamonds) 62 knots; and (crosses) 63 knots. 

KNOCARBYNES SYMMETRY AND 
QUALITATIVE "C-NMR SPECTRA 

Symmetry 

In mathematical knot theory [1, 56, 76, 77], the 
knot group is a concept based on the fundamental 
group method. This results in a very effective knot 
classification and construction of different knot 
invariants. However, when chemical molecules of 
knotted structures are studied, geometrical param- 
eters again become important and classification 
with respect to point symmetry groups is again of 
use. So, the cycarbyne C2„ molecule (n = k, k = 20, 
30,..., 50) constitutes a 2 w-gon with the sides al- 
ternately equal, belonging to the Dnh point group 
symmetry. Thus, the C60 cycarbyne belongs to the 
D30/, point group symmetry (but the C100 cycar- 
byne to the D5o;, point group). The carbyne trefoil 
C2„ molecules (n = 3k, k = 5, 6,..., and so also 
the C60 trefoil) belong to the D3 point group of 
symmetry,  whereas  the  other trefoil  molecules 

belong to the C2 or Cx point group of symmetry. 
The carbyne figure-eight C2„ knots (n = 4k, k = 
5,6,...) belong to the S4 symmetry group; the 
other figure-eight knocarbynes have no symmetry. 
Thus, the ^C^, knocarbyne has no symmetry, 
whereas the ^C^ and 4, C64 structures have the 
roreflexion S4 axis. The C2„ knocarbyne molecules 
with five crossings (n = 5k, k = 4,5,...), both the 
5j and the 52 types, belong to the C2 point group 
symmetry. All the six-crossing knocarbynes pos- 
sess only a trivial symmetry element, that is, they 
belong to the C, point group. 

Qualitative '^C-NMR Spectra 

The medium-size Hansen-Bouman double-zeta 
basis [70] was used to calculate BC-NMR shield- 
ing constants. The spectra were calculated for knot 
geometries using the STO-3G basis set and, for 
comparison, for those optimized at the AMI level. 

Qualitatively, the spectra calculated for the 
STO-3G and AMI geometries are identical but, the 
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latter are dispersed over a wider spectral range. 
Probably, the AMl-based spectra are less accurate 
because the HF/DZP-HB//AM1 energies are 
much higher than the HF/STO-3G// HF/STO-3G 
energies: from ca. 0.007 (fullerene) to 0.08 Hartree 
(63 knocarbyne). 

The C60 buckminsterfullerene belongs to the 
icosahedral symmetry group Ih and all its atoms 
are equivalent. The same is true for the C60 cycar- 
byne which has the D30h symmetry. However, its 
single signal is placed in a completely different 
region of the 13C-NMR spectrum [54] (Table II). In 
the case of the C2„ trefoil with D3 symmetry, n/3 
equal signals should be observed [54], which, for 
the C60 trefoil, implies that 10 NMR signals of 
equal intensity should appear [54, 55] (Table II). 
The C60 figure-eight knocarbyne has no symmetry, 
but, in fact, the calculated spectrum consists of 30 
NMR doublets. However, the C2n figure-eight 
knocarbynes of series (n = 4fc, k = 5,6,...) belong 
to the S4 symmetry group; therefore, for the C64 

figure-eight knocarbyne, 16 signals should be ob- 
served, and for C56, only 14. All five-crossing kno- 
carbynes belong to the C2 point group; therefore, 
for the 5j and 52 C60 knocarbynes, 30 signals of 
equal intensity are expected (Table II). Because the 
six-crossing knocarbynes possess no symmetry, 60 
separate signals of equal intensity should be ob- 
served in all three cases (Table II). 

The calculated chemical shifts (Table II) illus- 
trate qualitatively the possible locations of signals 
that might be assigned to different topological 
isomers. Table II demonstrates also the complexity 
of the spectrum determined by the knot type and 
its symmetry and the tendencies of the signals to 
shift with the increasing number of knot crossings. 
We showed earlier [54] that, with the increasing n 
(decreasing bending stress and repulsive interac- 
tion), both the 13C-NMR signal for the cycle and 
signals for the C„ trefoil shift up-field and that the 
signals of the C60 trefoil are expected to occur 
between the signal of the C60 buckminsterfullerene 
and the signal of the C60 cycle. Now, it seems that 
those knocarbynes that are relatively slightly 
strained (trefoil and figure eight) exhibit the C- 
NMR signals between the fullerene and cycle sig- 
nals. With the increase in strain as the number of 
knot crossings increases, the signals cover a wider 
spectral region which does not extend beyond the 
limit set by the fullerene signal but includes the 
signal originating from the cycarbyne. 

Conclusions 

1. By using ab initio and semiempirical quan- 
tum chemical methods, several knotted car- 

TABLE II ^___  
13C-NMR chemical shifts (ppm) calculated for C60 carbyne-knotted topological isomers. 

CRn molecular 
No. equal 

signals     Chemical shift3 

Fullerene [54] 1 161.19(156.61) 
Cycle [54] 1 71.88 (72.86) 
Trefoil [54] 10 99.23 98.96      96.90      94.03 92.02 85.98 83.93 77.70 74.11 72.24 

(129.67 126.99    122.89    112.66 110.10 95.23 84.88 77.52 66.02 64.66) 
Figure 8 30 (dublets) 133.12- -77.88(168.05- -51.70) 
C64 figure 8 16 118.49 

81.87 
117.58    115.95    114.96 
79.00      76.07      72.46 

107.15 
70.17 

101.42 
68.01 

98.71 93.86 89.82 85.10 

(160.34 160.34    149.53    148.24 142.13 141.76 115.43 113.63 102.06 98.33 
78.43 74.71      67.25      63.83 56.77 51.49 

5, (cinqfoil) 30 138.10- -65.19(189.81 -37.13) 

52 30 133.54- -58.60 (200.93 -36.02) 

61 60 130.30- -31.67(233.19 -51.91) 

62 
60 142.16- -43.26(232.10 -39.94) 

63 60 142.37 -36.81 (230.66 -30.09) 

The Hansen and Bouman double-zeta basis set was used to calculate chemical shifts: values calculated for the STO-3G geometries 
(in parantheses, results for AM1 geometries). 
aChemical shifts are calculated against the 13C atoms of TMS (shielding constant, 201.05 ppm for STO-3G and 195.40 for AM1 
geometries). 
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bynes have been predicted to exist and to be 
identifiable by the NMR method. 

2. The energy differences between the C„ knot- 
ted and cycle carbyne structures decrease 
with n and for the C100 molecule, the differ- 
ences range from only 50 to 200 kcal/ mol for 
trefoil and the 63 carbyne knot, respectively. 

3. The energy differences increase in line with 
the knot-type series. 

4. Some of the C2„ knocarbynes exhibit the fol- 
lowing symmetries: 
—0j of series n = 2k, k = 5,6,7,... belong 

to the Dnh point symmetry group, 
—3j of series n = 3k, k = 5,6,7,... belong 

to the D3 point symmetry group, 
—4j of series n = 4k,k = 5,6,7,... belong 

to the S4 point symmetry group, 
—5X of series n = 5k, k = 5,6,7,... belong 

to the C2 point symmetry group, 
—six-crossing knocarbyns possess no sym- 

metry. 
5. In the 13C-NMR spectrum of C60 knocar- 

bynes, the following numbers of signals 
should be observed: 
•—one for 0l7 

—10 for 3V 

—30 doublets for 4j, 
—30 for 5j and 52, and 
—60 for 6j, 62, and 63. 

6. Our research in that area may serve as a 
model study on knotted structures for DNA, 
RNA [78-83], and other macromolecules. 
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Introduction 

In a recent paper [1] we expressed the scattering 
matrix and the far-field or scattering amplitude 

of a potential V(r), separable in dimensionless el- 
lipsoidal coordinates, in the form of a series in 
perturbed ellipsoidal wave functions arising when 

'Permanent address: Department of Numerical Methods, 
Computing Center of Russian Academy of Sciences, Vavilova 
str. 40, 117967 Moscow GSP-1, Russia. 

Correspondence to: E. J. Brändas. 
Contract grant sponsor: Russian Foundation for Basic 

Research. 
Contract grant number: 96-01-00951. 
Contract grant sponsor: Swedish Defence Research Estab- 

lishment. 
Contract grant number: FOA Project E 6022. 
Contract grant sponsor: Swedish Institute. 

the variables in the Schrödinger equation 

A^ + (k2 - V(r))V = 0, r e. (1) 

are separated. Here A is the Laplacian and k = |k | 
is a wave number. In what follows we will derive 
the expansion of the total scattering cross section, 
as well as give a proof of the optical theorem, for 
the potentials under study. Unexpected behavior 
will be discussed and explained. The general char- 
acter of the ellipsoidal coordinate system is also 
emphasized. 

Perturbed Ellipsoidal Wave Functions 

To introduce the ellipsoidal coordinates, we fix 
the ellipsoid S: x2/a2 + y2/b2 + z2/c2 = 1 of 
semiaxes a > b > c > 0 and consider the equation 
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(with respect to £) 

+ 
(a2-b2)£      (a2-b2)(£-l) 

+ 
U2-b2)(£-p2) 

= 1   (2) 

with p2 = (a2 - c2)/(a2 - b2) > 1. This equation 
defines a family of confocal surfaces specified by 
the variable £. For each point (x, y, z), xyz # 0, 
there are exactly three different roots: ^ e lx = 
(0,1), ^2EI2 = (1, p2), and f36J3 = (p2,~). If 
f = £j, the surface, defined by Eq. (2) above, is a 
hyperboloid of two sheets; for £ = £2 it is a hyper- 
boloid of one sheet, and for £ = f3 it is an ellip- 
soid [e.g., the equation £3 = £* = a2/(a2 - b2) de- 
fines S]. 

The above three families of confocal surfaces 
form an orthogonal curvilinear coordinate system 
related to Cartesian coordinates within each octant 
(e.g., x > 0, y > 0, z > 0) by the one-to-one corre- 
spondence 

x2 = {a2-b2)^^,/p2, 

f= _(fl2_b2)U]_1)(6_1)U3_1)/ 

(p2-D, 

z2 = (*2 - b2)^ - p2)(£2 - p2)(£3 - p
2)/ 

Kp2-l)p2]. 

(See also [2].) 
The most general appearance of a separable 

potential is here given by (see, e.g., [3]) 

VU„£2,^) 
U3 - g2)a1(g1) + (£ - g>2(g2) + (& - ^W^) 

(3) 

Here ot,(£,), z = 1,2,3, are arbitrary functions. 
By separating variables, we arrive at a system of 

three identical equations 

,    d    (   , dk: 

1 
+ -(q(Zi,h,l,w)-ai(€i))Ai = 0,    £e/., 

i = 1,2,3,    (4) 

which in the case V(^, £2> £3) = 0 coincide with 
the Lame wave equations. Here h, I are separation 
constants, /U) = f(f-lXf- P2), <?(£, Ä, /, a») = 
hp2 - lp\ + io\2, a)2 = k2(a2 - b2). 

A particular solution to (1), i.e., the product 
A/^XAjtyxAjty, must be either odd or 
even with respect to each of coordinate planes 
x = 0, y = 0, and z = 0 (see below). Hereafter we 
will specify the parity properties of a partial solu- 
tion by a triplet of binaries (ix,iy,iz), equal to 0 or 
1 depending on the parity requirement with re- 
spect to the corresponding plane. Thus functions 

A ,-(£,-) are subject to 

either       lim   Uf(^)A\(^)) = 0       or 

lim  AjCfj) = 0; 
+ o 

either      lim   A,(^) =    lim   A2(£2) = 0, 
fi-»i-o £2-1 + 0 

(5) 

or lim   (VTÜJA'^)) 

=    lim   (^-/(f2)A'2(&)) = 0; 

either      lim    (v/-/(£2) A2(£2)) 
f2-p2-ov ' 

=     lim    (V7(UA3(£3)) = 0, 

or lim    A2(£2) =     lim    A3(£3) = 0. 
£2-P

2
-O f3-*p2+o 

The functions Aj(^) and A2(£2) form the 
eigenfunction H(^, £2) = A/^,) X A2(£2) of a 
two-parameter self-adjoint eigenvalue problem. 
That is, one must find such a couple of values 
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(Z, h) for the separation constants, called the eigen- 
value, that Eq. (4) has nontrivial solutions both on 
lx and on I2, which satisfy the boundary condi- 

tions (5) determined by (ix, i , iz). According to 
general multiparameter spectral theory [4] the 
eigenfunctions normalized by 

u [H„m(^^2)f(^2-^) 

*J [-fikUi ~ 1X^2 - D(fi - P2Xf2 - P2)] 
1/2 

d£i d%2 = ö 

constitute a complete system in Jzf2(Yl), where 
II = Ij X I2, m and n — m are the number of inter- 
nal zeros for A"'"1^) and A2

,m(£2), respectively, 
n = 0,1,..., m = 0,1,..., n. Let S°: £3 = £3° be an 
arbitrary ellipsoid. As (£x, £2) vary over II, the 
points (£j, £2, £3°) cover one-eighth part of S°. 
Therefore, we continue each function H™(£i, £2) 
according to its parity properties (ix, i , iz) over 
the whole ellipsoid. Note that in the absence of a 
potential these functions coincide with the surface 
ellipsoidal wave functions analogous to the spheri- 
cal harmonics in the case of spherical symmetry. 
The perturbed surface ellipsoidal wave functions 
of all possible parities build up a complete system 
in ^2(S°). 

The perturbed radial ellipsoidal wave function 
A"3' 

m( £3)—i.e., the solution to (4) and (5) on £3 e I3 

—behaves at infinity as follows: 

A"3'
mU3) = -^sin(aV^ + A») + o(^- 

Here the limit phase A™  is determined by the 
potential, and D is an arbitrary constant. 

To calculate the perturbed functions, we ap- 
plied the methods proposed in [5, 6], see also Refs. 
[7, 8], which provide an efficient and economic 
way to calculate ellipsoidal wave functions at a 
wide range of parameter variations. 

Scattering Data Representations 

For details on the expansion of the scattering 
matrix S as well as the far-field amplitude /(n, n0) 
we refer to [1, 9, 10]. We will here present the 
fundamental expressions: 

S(n,n0)=      £      £   £ [exp(2iÄ») 
iix,iy,iz) n = 0 m = 0 

xH:(^^)H:(^M°)](,,fj,y,   (6) 
277" °° n      1 

/(n,n0) = —     £      £   £ {[exp(2»Ä») - l] 
lK   Ux,iy,iz)n = Qm = 0 

• •BZ^&Kig,*?)}^^,   (7) X 

where the unit vectors n = r/r = (1, cp, 6) and n0 

= k/fc = (1, <p°, 0°) indicate the observation and 
incident directions, respectively. Note that the an- 
gle ellipsoidal coordinates £x, £2 connect in (6) and 
(7) with the spherical angle coordinates as given 
by 

£j £2 = p2 cos2 0, 

(^-1X^-1)= -(p2-l)sin20cos2<p, 

(£ - p2)(£2 - p2) = p2(p2 - Dsin2 ösin2 «p, 

where 6 is measured in relation to the x-axis. The 
coordinate £3 plays the role of the radius: 

(a2 - b1)^ = r2 + 0(1), (8) 

In Eqs. (6) and (7) we have extracted the phase 
shift A™ from the limit phase A", i.e., 

A" = A™- TT-tf. + fy + iJ^       (mod IT). 

We can now use formula (7) to expand the total 
scattering cross section fl for the class of poten- 
tials given by (3). 

Substituting in the definition 

Sl(0°,<p°)= (*[ \f(d,cp,e0,<p°)\ sind dO d<p 

(9) 
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the series (7) as well as the orthogonality relations, see Ref. [1], 

f^Ha^e, vh^uEZXe, <p\t,.i;,;;>]sin e de d<p 

<!/ n; 4[-£,&(& - 1)(& - lXf, - p2)(£2 - p2)] 
1/2 "M "52 ~~ °n,n'°/n,m'°(ix,i    iz),(i'x,i'   i't)i    d™ 

we obtain 

ft(nn) = 
16TT 

fr2        E      E   E fsin2(A"„') 

[B?U^°>]\., ,,.   (ID x 

In comparing the last formula with (7), we recog- 
nize the well-known optical theorem [11]: 

4-n- 
ft(n0) = —Jl/(n0,n0)]. 

Note that total cross section depends on the inci- 
dent direction, and that the optical theorem holds 
for all n0. 

Results and Discussion 

We have calculated here several examples of 
cross sections for potentials that vanish at infinity 
as r~", where n = 2,4,6,12. We found, for n = 2, 
and n = 4, that the scattering cross section did not 
depend very much on n0 (for k not too large), 
while for n > 6 the nonspherical effects became 
clearly visible. In Figure 1 we display preliminary 
calculations for the potential 

.12 

V(t) = y0[(Z3-t2)({3-^)Y 
cr 

73 

which, according to (8), vanishes at infinity as the 
well-known Lennard-Jones potential, used in 
molecular physics, i.e., 

V(t) = y0 

,12 

-12 

We have presented the scattering data in Figure 1 
with the total cross section in the first column and 
the scattering amplitude for various incident direc- 
tions in the next three columns. See figure caption 
for details. We have chosen k2 = 1.0 and y0 = 1.0 
to be constant in all plots, while the other parame- 

ters are varied as shown. The accuracy of the 
auxiliary ordinary differential equation (ODE) cal- 
culation is e = 10~6. 

We have found that when the potential is small 
enough, the phase A"' scales nearly linearly with 
the parameter y0, similarly to previous observa- 
tions [1]. Therefore, according to (7) and (11), small 
values of y0 preserve the shape of fl(0°, <p°) as 
well as of /(n, n0). 

It is important to note that the scattering data is 
entirely dependent on the values of w and p. 
Compare, for instance, the spherical case, when we 
have a simple scale dependence on kR where R is 
the characteristic size of the scattering scenario. 
While the latter case implies a simple but useful 
reciprocal law, the ellipsoidal formula embodies a 
more flexible invariance. For example, in Figure 1 
scattering data (up to the factors k2 and k, respec- 
tively) on the second row may correspond to either 

a2 = 1.00...02, 

1997 

1.00...01, 

1997 

„2 _ 1.0, 

(12) 

or 

a2 = 200.00 b2 = 100.00...01, 

1997 

(13) 

provided k2 = 101999 or k2 = 10_1, respectively, 
i.e., values of both p and w remain as presented in 
the figure. In [12] we have observed that the sur- 
face ellipsoidal wave functions and the corre- 
sponding spherical functions behave similarly for 
co small (and coincide for co = 0!) independently of 
p. The simple explanation is, of course, that by 
varying geometrical parameters one may come as 
close to a sphere as desired, see, e.g., (12) above, 
keeping p constant. On the contrary one can also 
vary p arbitrarily while remaining in the vicinity 
of the spherical case. 

As is well-known there are exactly 11 coordi- 
nate systems in which the Helmholtz equation is 
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separable. The ellipsoidal system is the most gen- 
eral one as the remaining 10 of them can be ob- 
tained by special limits of its parameter values [2]. 
Letting the semiaxes a, b, and c go to these limits 
one may approach any of the above 10 symme- 
tries. Note that in the limit cases, corresponding to 
nonspherical symmetry, small values of k will 
give the same scattering data as in a nearly spheri- 
cal case for large k, as soon as the values of w and 
p are the same. This is to some extent an explana- 
tion of the well-known fact that for small values of 
the wave number |k |, scattering data of a sphere is 
a good approximation for other cases. 

On the other hand this means that even small 
deviations from spherical symmetry may produce 
essential influences upon the scattering scenario, 
provided |k | is large enough. 
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ABSTRACT: Conical intersections are a common feature in most nondiabatic singlet 
photoreactions. For ethylene, several Sj-S0 conical intersections could be located by 
CASSCF calculations. The energetically lowest one is different from the one determined 
by Ohmine [J. Chem. Phys. 83, 2348 (1985)]; its geometry suggests that cis-trans 
isomerization and a [l,2]hydrogen shift occur via the same funnel.    © 1998 John Wiley & 
Sons, Inc. Int J Quant Chem 70: 1023-1028, 1998 

Introduction 

The mechanism of photochemical cis-trans 
isomerization has been the subject of many 

studies [1]. Of particular interest is the nonadia- 
batic transition from the low-lying excited to the 
ground state. In recent years, conical intersections 
have been located using ab initio calculations for a 
large variety of photoreactions [2], and it can be 
assumed that the occurrence of this topological 
phenomenon, previously believed to be quite im- 
probable, is more likely to be the rule than an 
exception. Several models have been proposed to 
predict the structure of a conical intersection. Robb 
and Bernardi [3] showed that in the framework of 
a 2 X 2 VB model the nature of the surface-cross- 
ing region may be predicted on the basis of the 
geometry dependence of the VB exchange inte- 

Correspondence to: M. Klessinger. 

grals. Particularly useful is the two-electron two- 
orbital model (2-in-2 model) of Michl and 
Bonacic-Koutecky [1, 4]. 

For 90°-twisted ethylene, the p orbitals are or- 
thogonal and degenerate; the pericyclic geometry 
of C2v symmetry [Fig. 1(b)] corresponds to a per- 
fect biradical with a very large gap between Sj 
and S0 [1]. A heterosymmetric perturbation 8 
(electronegativity difference of the localized p or- 
bitals) reduces the energy gap, but calculations 
show that pyramidalization of one of the methy- 
lene groups alone [Fig. 1(c)] does not represent a 
perturbation 8 sufficient for reaching a conical 
intersection [5]. Ohmine showed, however, that an 
additional distortion of one of the CH bonds to- 
ward the other carbon causes a crossing of S1 and 
S0 potential energy surfaces, thus explaining the 
experimentally observed fast photoreaction [6]. 

Ohmine restricted his calculation to Cs symme- 
try with one hydrogen migrating within the mirror 
plane from a planar CH2 group to a pyramidal 
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a) 
D 2h 

b) 

y-vr < 

yt~ 

'2v 

Cs Conical Intersection C, Conical Intersection 

FIGURE 1. Ethylene symmetries: (a) ground state 
(D2h); (b) 90°-twisted (C2„); 90°-twisted and 
pyramidalized (Cs); (d, e) conical intersections (Cs and 
C1( respectively). 

one as shown in Figure 1(d). In view of the fact 
that conical intersections in general occur at struc- 
tures with no symmetry [2], the question arises as 
to how relaxing the Cs symmetry will affect the 
results. As hydrogen motion is apparently in- 
volved in efficient excited-state relaxation, another 
open question is whether the [l,2]hydrogen shift 
and cis-trans isomerization reactions will proceed 
via the same conical intersection or whether differ- 
ent excited-state reaction paths lead to different 
conical intersections for these two reactions. 

A complete determination of the outcome of a 
photochemical reaction requires detailed dynamics 
calculations. As the first step toward this goal, we 
present here a discussion of the S0 and Sj surfaces 

and of their topology which allows some of the 
questions to be answered. 

Method of Calculation 

Preliminary calculations were carried out using 
the semiempirical MNDOC-Q method [7]. Final 
results on the ab initio CASSCF level of theory 
were obtained using the GAUSSIAN 94 [8] and 
MOLPRO 96.4 [9] software. 6-31G and 6-31G** 
basis sets were employed; the neglect of diffuse 
basis functions is justified by the fortunate circum- 
stance that in contrast to planar geometries at the 
photochemically important twisted geometries of 
ethylene the lowest excited states are all purely 
valence character while the Rydberg states are 
high in energy [la]. For calculating energy sur- 
faces, the active space consists of four orbitals; 
final results were obtained with six electrons in an 
active space of six orbitals. The optimization of 
conical intersections was achieved in the (/ — 2)- 
dimensional intersection space using the method 
of Bearpark et al. [10] implemented in the GAUSS- 
IAN 94 program. 

Results and Discussion 

The lowest-energy intersection point of the S, 
and S0 potential energy surfaces of ethylene was 
located using the GAUSSIAN 94 package and the 
CASSCF (4,4) procedure with a 6-31G basis. If the 
optimization procedure was started at a point of 
Cs symmetry, the result of Ohmine [6] was recov- 
ered and the conical intersection shown in Figure 2 
was obtained. If, however, the Cs symmetry is 
relaxed, another conical intersection some 15 
kcal/mol lower in energy (see Table I) is reached, 
which is shown in Figure 3. Geometry parameters 
and total electronic energies for these conical inter- 
sections are collected in Table I, with the number- 
ing of atoms being shown in Scheme 1, where H, 
is the migrating hydrogen atom. The geometry at 
the conical intersection of Cx symmetry is shown 
in Figure 4. The main difference between the two 
structures of Cs and Cj symmetry is found, apart 
from the dihedral angles, for the CC distance, 
which is longer, and the angle CjQHj, which is 
considerably smaller in the nonsymmetrical case. 

The same conical intersection was found if the 
optimization was started  at any point with  Cl 
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FIGURE 2. Conical intersection of the S0 and Si surfaces of ethylenes;calculation started in Cs symmetry. 

TABLE I .   
Energies (in au) and geometries (distances r in A, angles a and dihedral angles d in degrees) of the conical 
intersections of ethylene. 

Method 

MRDCIa CAS(4,4) CAS(4,4) CAS(6,6) MNDOC-CI 

Basis 

DZ, 6-31G 6-31G 6-31G** 

Symmetry 

Nearly Cs C, Ci Ci 

Energy in Hartrees -77.98 -77.8141 -77.8389 -77.9063 

r(C,C2) 1.373 1.364 1.419 1.405 1.393 

r(C,H,) 1.295 1.217 1.297 1.221 1.240 

r(C,H2) 1.067 1.053 1.086 1.086 1.091 

r(C2H3) 1.101 1.089 1.076 1.118 1.109 

r(C2H4) 1.101 1.089 1.076 1.081 1.095 

a{CzC,H,) 67.0 67.9 73.0 77.2 73.1 

a{C2C,H2) 173.9 165.7 121.4 119.7 122.9 

aCC^aHg) 123.8 123.8 125.7 125.8 129.9 

a(C,CzH4) 123.8 123.8 119.6 120.7 119.4 

d(H^C2H2) 180.0 180.0 -86.0 -89.0 -95.0 

d{H^C2H3) 90.0 -87.7 -62.1 -58.3 -69.9 

d(H3C2C,H4) 180.0 -175.0 -172.9 -168.3 -169.1 

'See [6]. 
5 Dunning and Huzinaga basis. 
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-77.8 

H H 

H' H' 

-77.9 

-o.r 

Xl 
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-o.i 
X2 

0.1 

FIGURE 3. Nonsymmetrical conical intersection of the S0 and S, surface of ethylene calculation started in C^ 
symmetry. 

H1 H3 

W 
H* H4 

SCHEMEL 

symmetry, for example, from an initial structure 
obtained by pyramidalizing one of the methylene 
groups and distorting one of the CH bonds of the 
same methylene group [cf. Fig. 1(e)]. Hence, it is 
concluded that this is the energetically lowest min- 
imum of the Sj-S0 intersection space, while sym- 
metry restriction leads to another stationary point 
in the same intersection space. Since even very 
small deviations from Cs symmetry yield the non- 
symmetrical conical intersection, the (^-symmetri- 
cal stationary point first reported by Ohmine [6] is 
most likely a transition state between the two 
equivalent nonsymmetrical conical intersections, 
which result from the Cs symmetric one by alter- 
ing the HJCJCJF^ dihedral angle in a positive or 
negative sense, respectively. 

In the diagrams of Figures 2 and 3, the energies 
of the lowest two singlet states  S0 and  Sl are 

plotted against *j and x2; the coordinate xx is the 
gradient difference vector given by 

*i = d(E0 - Ex)/dq, 

where q is a vector of nuclear displacement coor- 
dinates. x2 is the gradient of the interstate cou- 
pling vector given by 

x2=(C0(dH/dq)C1), 

where C0 and Cx are configuration interaction (CI) 
eigenvectors and H is the corresponding CI Hamil- 
tonian. The vector x2 is parallel to the nonadia- 
batic coupling vector g(q) = (ifi0 \ d\pl/dc{). The 
vectors xr and x2 are depicted in Figures 5 and 6 
for the Cs conical intersection [cf. Fig. 1(d)] and the 
Cj conical intersection [cf. Fig. 1(e)], respectively. 
To show clearly all atomic displacement vectors, 
the perspective had to be slightly changed with 
respect to Figure 4. These vectors illustrate the 
nuclear motion at the conical intersection: Trajecto- 
ries through the tip of the cone will follow the 
slope of the cone wall most likely in a direction 
close to the *j vector; trajectories that miss the 
cone tip have some probability of performing a 
jump onto the lower surface, and an amount of 
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a) 

120° 121°  /1°9 

b) 
162.2° 

126° 

H 
130 

FIGURE 4. Geometry of the nonsymmetrical (C,) conical intersection of the S0 and S, surfaces of ethylene; (a) side 
view; (b) Newman projection with localized nonbonding orbitals. 

a) b) 

FIGURE 5. Three-dimensional representation of (a) the gradient difference vector x-, and (b) the nonadiabatic 
coupling vector x2 at the conical intersection shown in Figure 2. 

energy equal to the height of the jump is converted 
into a component of motion in a direction given by 
the x2 vector. 

In the immediate vicinity of the apex of a coni- 
cal intersection, the reaction path can follow any 
direction in the xv x2 plane and may reach differ- 
ent reaction valleys that develop on the S0 surface. 
To establish which valleys can be reached in the 

case of ethylene, the structures of various points 
on the seam of the S0 surfaces shown in Figures 2 
and 3 were optimized, yielding ethylene with the 
two possible arrangements of the hydrogens corre- 
sponding to eis- and frans-configurations as well 
as methylcarbene. This demonstrates that, starting 
from the conical intersection, the products of both 
cis-trans isomerization and the [l,2]hydrogen shift 

a) b) 

FIGURE 6. Three-dimensional representation of (a) the gradient difference vector xt and (b) the nonadiabatic 
coupling vector x2 at the conical intersection shown in Figure 3. 

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 1027 



FREUND AND KLESSINGER 

as well as that of the initial reactant can be reached 
on a barrier-less ground-state relaxation pathway. 

The results are similar for both conical intersec- 
tions. The restriction to Cs symmetry, however, 
considerably reduces the probability of reaching 
the reaction valley of the [l,2]hydrogen shift, as 
may be verified particularly from the atomic com- 
ponents of the gradient difference vector xx shown 
in Figures 2 and 4. In contrast to the nonsymmetri- 
cal conical intersection, only two of 20 optimiza- 
tions produced methylcarbene. 

As shown in Table I, CASSCF(6,6) calculations 
with a 6-31G** basis confirm the results for the 
nonsymmetrical conical intersection. The same 
conical intersection could also be obtained on a 
semiempirical level including full valence configu- 
ration interaction [11] by minimizing the projec- 
tion of the gradient into the (/ - 2)-dimensional 
subspace orthogonal to x1 and x2 according to the 
method of Bearpark et al. [10]. 

Conclusion 

Radiationless decay from Sl to S0 of ethylene 
occurs via a conical intersection, which, in agree- 
ment with the generally observed situation [2], 
occurs at a very unsymmetrical structure. Starting 
from this conical intersection, the products of both 
the cis-trans isomerization and the [l,2]hydrogen 
shift reactions as well as the initial reactant can be 
reached on a barrier-less ground-state relaxation 
path. The conical intersection of Cs symmetry 
which was first obtained by Ohmine [6] corre- 
sponds to a stationary point in the same intersec- 
tion space and is presumably a transition state 
between the two equivalent nonsymmetrical coni- 
cal intersections. 
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ABSTRACT: The basic and fundamental mechanisms governing the catalytic reaction 
of small iridium clusters with H2 are presented here with the purpose to determine its 
behavior in hydrogenation reactions. The iridium dimer's lowest states in interaction 
with H2 potential energy surface were obtained using ab initio multiconfigurational 
self-consistent-field calculations (MC-SCF), with relativististic pseudopotentials. The 
electronic correlation contribution was included by configurations interaction (CI) 
calculations, which considered a variational part plus a second-order perturbative part. 
The Ir2 + H2 reactions were developed in the C2v symmetry. The Ir2's five lowest 
electronic states were determined, 5Ug, 3IIg/ 

JX + , 3X^, and 5lg, and studied when 
reacted with H2. It was found that the iridium dimer, in these five states, might capture 
and break the H—H bond, spontaneously in certain cases and after surmounting 
activation barriers in other cases.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 
1029-1035, 1998 

in a dissociative way [1]: in the last mode, in a 
Introduction 1:1 H and Ir rate, with an adsorption heat of 

18.40 kcal/mol in the (110) plane [1]. But in in- 
creasing the iridium dispersion over a support, 

hat metallic iridium adsorbs H2 without acti-        each Ir atom can adsorb two or three H atoms [2]. T vation is observed in many experiments. The        The dispersion is increased easily in iridium-sup- 
adsorption occurs both as a molecular reaction and        ported catalysts, reaching almost a 100% value [3], 

by far different from other transition metals, as 
Correspondence to: E. Poulain. ,. . .,. i ,I,J t 
Contract grant sponsor: CONACYT (Mexico). platmum, where the atoms have the tendency to 
Contract grant number: 3494PE. sinter. 
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Iridium has been employed to improve the 
Pt/Al203 reforming catalyst, but the resulting 
bimetallic catalyst is not easily regenerated, so its 
industrial application is difficult. Better applica- 
tions have iridium catalysts in a variety of hydro- 
genation or dehydrogenation reactions, as, for ex- 
ample, in cyclohexene, benzene [4], and linoleic 
acid hydrogenation [5], with the purpose to obtain 
products with a large added value. Iridium cata- 
lysts also have been employed in hydrogenolysis 
reactions. Also, iridium complexes (phosphynes, 
carbonyls) are currently employed [4]. 

The Ir ground state is an 4F(5rf76s2) configura- 
tion. Ir reacts very quickly and easily with alkenes, 
but does not react with methane and other al- 
kanes. This behavior has to be explained in terms 
of the ground and excited states' electronic config- 
uration [6] and topology. 

It was suggested that the 6 s orbital lanthanide 
contraction modifies the 5rf series atoms reactivity. 
Also, the positive Ir ion is efficient, the most effi- 
cient among transition-metal ions. For instance, 
among other characteristics, in gas-phase methane 
dehydrogenation, the Ir ion easily changes its spin 
value [7]. Ir monomers have been studied theoreti- 
cally, where some characteristics were presented: 
particularly, studies of the Ir + H2 and Ir + CH4 

reactions are shown in [8, 9]. 
Theoretically and experimentally [10-24], the 

H2 reaction with many metals has been the object 
of intense work in our laboratory. Due to, in par- 
ticular, that the Ir + H2 interaction is a prelimi- 
nary not yet well-determined catalytic reaction, 
many steps of these reactions are in process. More- 
over, they are especially important in petrochemi- 
cal processes [25], where in these reaction types, 
the hydrogen is a reactant or a product and is 
employed to activate the catalysts. For instance, 
the H2 interaction with metal is a powerful reac- 
tion test, which has produced the greatest number 
of experimental reports [26]. 

Pd and Pt are the most employed metals in 
catalysis because of their electronic properties. The 
most important catalyzed reactions using them are 
the CO, H2, and alkane activations [27, 28]. But 
there are other metals also with important catalytic 
properties. Iridium is one of these metals. Some 
iridium organometallic complexes may activate 
and break the C—H alkane bonds by inserting an 
Ir atom in the bonds and forming a carbon-metal- 
hydrogen complex [29]. 

Method of Calculation 

The potential energy states (PES) parameters' 
determination in each point is done and initiated 
using ab initio Hartree-Fock self-consistent-field 
(HF-SCF) calculations with the PSHONDO pro- 
gram [30], with relativistic pseudopotentials, also 
called relativistic effective core potentials (RECP). 
The Ir pseudopotential is a xenon core type [31]. 
These calculations are followed by small multicon- 
figurational (MC) SCF calculations, which gives 
the initial energy value and the initial wave func- 
tion. The electronic correlation is considered and 
added to the energy value previously described 
throughout configuration interaction (CI) methods. 
This term is obtained by CI variational and pertur- 
bative calculations, where an energy value is de- 
termined by making a variational calculation, 
modified by a perturbative calculation upon sec- 
ond order, using the CIPSI algorithm [32]. The 
iridium atomic basis functions are Gaussians taken 
from [31], contracted to a triple zeta scheme 
(3s3p4rf)/[lll/21/211]. The hydrogen functions 
are of double-zeta quality [33] plus two polariza- 
tion functions [34]. 

Results and Discussion 

IRIDIUM ATOM CALCULATIONS 

As the first step of the Ir2 + H2 reaction study, 
the Ir atomic basis and the Ir pseudopotential were 
tested. Here, we used the best set from the litera- 
ture reproducing the experimental iridium atomic 
energy spectra; Table I presents the calculated and 
the reported energies [35] of the atomic iridium's 
three low-lying F states. These results show that 

TABLE 1 
Experimental and calculated splitting of the three 
lowest F iridium atom states. 

Atomic state 
AE (this work) 

(kcal / mol) 
A£ (experimental3) 

(kcal / mol) 

4F(5d76s2) 
4F(5d86s1) 
2F(5d86s1) 

0.0 
13.6 
19.3 

0.0 
9.2 

26.0 

aFrom [34], the J-averaged values over all spin-orbit com- 
ponents. 
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by using the selected functions we obtained a 
satisfactory description of the Ir states. 

H2 in C2r Approach to the Ir(4F:5d76s2) and 
Ir(4F^tfös1) Atoms 

The hydrogen molecule activation by a single 
iridium atom was studied previously [36] and 
recently by Gropen et al. [8]. In both calculations, 
it was found that the iridium atom in its 4F ground 
state captures H2 after surmounting a small bar- 
rier. In addition, the former authors found that the 
iridium atom in its lowest 2F excited state sponta- 
neously inserts between the H atoms. These con- 
figurations were calculated by us and the results 
presented in the mentioned work were repro- 
duced. It seems not relevant to include them here. 

Table II shows that the iridium atom, in its 
ground state *F:5d76s2, captures and breaks the 
hydrogen molecule. These PES reactions are 4A2 

and % excited states. The % and 4B2 PES of the 
first iridium excited state present, first, an attrac- 
tive character, arriving at an avoided crossing re- 
gion with the 4A2 and % PES. After that, they 
change to a repulsive character. The 4A2 and B1 

states of the 4F:5d76s2 + H2 reaction are initially 
repulsive curves. After the avoided crossing, these 
PES became attractive, showing potential wells, 
where the H2 is captured and the H—H rupture 
occurs. The potential barriers presented in these 
interactions are in all cases a consequence of 
avoided crossings. 

H2 C2r Approach to the Ir(2F:5d86s1) Atom 

For the iridium in the doublet state, we found 
that in the 2F:5d86s1 + H2 reaction the 2AV 

2A2, 
and 2B1 states spontaneously occur, capturing and 
breaking the hydrogen molecule. Our results are in 
very good agreement with those of [36]. 

IRIDIUM DIMER CALCULATIONS 

The electronic configurations of the iridium 
dimer's lowest most important states were calcu- 
lated. The energies and interatomic distance for 
these configurations are presented in Table III. As 
we can see from this table, the Ir2 ground state is a 
quintuplet, where the excited-state energy gap dif- 
ference is similar and the metal-metal distance 
presents a very interesting behavior. The electronic 
configuration of the Ir2 

5IIg ground state as well as 
the first 3I1 excited state have the same four 
single-occupied molecular orbitals: cru(Ir(s) + 
Ir(-s)), TTg(Hdyz) + Udyz)\ Sg(Hdxy) + Udxy)), 
and 8u(Jr(dxy) + U-dxy)). 

POTENTIAL ENERGY SURFACES FOR THE 
Ir2 + H2 INTERACTION 

The PES reactions of the five Ir2 lowest states in 
the reaction with H2 were determined. The hydro- 
gen molecule approached the iridium dimer in the 
Clv symmetry in two ways: one in which both 
systems are in the same plane, and in the other, 
where the two systems are in perpendicular planes. 

TABLE III  
The five lowest Ir-, states. 

Molecular electronic state 

±g:TTuTru<Tg   Sg   Su TTg lTg bg &„ 
3V + . ^2_2s>2_2tt2,n.2,Tr2!!2_1-_1 
^u-7!u7ru°g °g °u ™g ™g °g °g °ii 

5v    . „2„2„2S2S2„2„2^l!;1„1c;1 
-ig: 7TU1TU O-g °g °u ^g wg ffg "g au °u 

Relative 
energy 

(kcal / mol) 

Ir—Ir 
distance 

(au) 

0.0 4.6 

15.9 4.4 

21.6 4.4 

29.6 4.6 

35.3 4.8 

TABLE II  
H2 C2v approach to an Ir atom. 

Ir electronic 
state 

d(lr—mcH2) 
(au) 

d(H—H)a 

(au) 
% H—H 

relax 
Depth of well 
(kcal / mol) 

Barrier 
(kcal / mol) 

4S, 

2.5 
2.1 

No capture for this state 
3.0 113 11.2 15.0 
4.0 184 

No capture for this state 
11.8 4.5 

ad(H—H) nonactivated = 1.41 au. 
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Both Systems in the Same Plane: Side on C2r 

Approach of H2 to Ir2 

In this reaction mode (Table IV), it was found 
that Ir2 activates the H2 in its four low-lying 
states, 5Ug, 3nr 

!X+, 3S,t, where capture and 
dissociation of H2 is obtained, but with barriers 
present, whereas in the highest state, Xx, the H2 

capture and dissociation occurs spontaneously. 
But, this last state is a very high one, hardly 
important in catalyzed reactions. 

From Table IV, we can see that all the well 
depths (adsorption heats) are larger than the ex- 
perimental adsorption heat (18.40 kcal/mol). All 
the capture distances are similar, and, in general, 
the captures need to be activated. 

The Ir2(
5Iip + H2 PEs ground-state reaction 

shows a well only surmounting a potential barrier 
of 13 kcal/mol. This barrier is produced by an 
avoided crossing of this PES with an attractive PES 
coming from a high quintuplet state, whose sepa- 
rate fragments correlate with an iridium dimer in a 
quintuplet state and the hydrogen molecule is in 
the ground state. Similar to this case, all the poten- 
tial barriers in this reaction mode are produced by 
avoided crossings. 

Let us now analyze the molecular orbitals of the 
system. The Ir2H2 in equilibrium resulting from 
the Ir2(

5Il?) + H2 reaction present the following 
molecular orbital elements: a bonding ax orbital, 
due to the overlap of the Ir(s + dz2 + dyz) + 
his + dz2 - dyz) orbitals with the H(ls) + H(ls) 
orbital; and a bonding a2 orbital coming from the 
overlap of the orbital Ir(s + dz2 + dyz) orbital + 
Ir(-s - dz2 + dIJZ) with the antibonding H(ls) + 
H(-Is) orbital. 

Considering the bond formation, the following 
reaction mechanism is proposed to explain the 
Ir2(

5np + H2 interaction in the lowest state: At 
the beginning, the H2 a* empty orbital started to 
populate from the singled occupied Ir2 cr„[Ir(s) + 
Ir(-s)] orbital, later interacted with the double- 
occupied 7Tg[h(dz2) + h(-dz2)], due to that at the 
beginning the au orbital has a higher energy than 
has the TT orbital, but when the reaction pro- 
gresses, the Trg becomes more important and both 
interactions contribute to generate the a2 orbital. 
In the barrier zone, the a2 orbital formation is in 
competition with a repulsive interaction of the 
occupied Ir(s) + Ms) with the H2 a orbital and 
the bonding ax orbital of the Ir2H2 in equilibrium 
system. 

II2 in C2r Perpendicular Approach to One of 
the Ir of the Ir Dimer 

In this approach, the metal and the hydrogen 
are in a plane and Ir2 in its five II^,, IIS, £+, 
3X,|, and 5£ low-lying states captures and acti- 
vates H2 without need of activation (see Table V). 
In the two lowest states, 5Ug and 3Ug, the hydro- 
gen molecule is only relaxed, whereas in the next 
three highest states of the metal, the hydrogen 
molecule is clearly dissociated. In addition, the 
adsorption heat is lower in the lowest metal states, 
being quite close to the reported values. The 
Ir2(

5Ss) + H2 PES depth of the potential well dif- 
fers < 2 kcal/mol with the Ir adsorption heat in 
the (110) plane. This is the minor adsorption heat 
found in the present study. The capture distances 
are smaller for the highest metal states. 

TABLE IV  
H2 C2„ lateral approach to lr2 reaction parameters. 

lr2 

electronic 
state 

d(lr2—H2) 
(au) 

d(H—H)b 

(au) 
% H—H 

relax 
Depth of well 
(kcal / mol) 

Barrier 
(kcal / mol) 

Dn 9 
n& 

2.8 
2.8 
3.0 
3.0 
3.0 

5.6 297 33.4 13.3 
4.6 226 49.2 16.7 
4.0 184 54.3 8.5 
4.6 226 66.0 13.0 
4.6 226 50.2 No 

Mass center-mass center distance. 
"Compared with d(H—H) nonactivated = 1.41 au. 
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TABLE V __   
H2 C2v perpendicular approach to one Ir of the lr2, both species in the same plane. 

lr2 

electronic 
state 

°n 

d(lr2-H2)a 

(au) 

3.0 
3.0 
3.0 
1.5 
2.5 

alr—Ir bond bisecting the H- 
bAs in Table IV. 

-H bond. 

d(H-H)b 

(au) 

1.8 
1.8 
4.7 
5.0 
4.6 

% H—H 
relax 

28 
28 

233 
255 
226 

Depth of well Barrier 
(kcal / mol) (kcal / mol) 

17.0 No 
29.2 No 
34.8 No 
52.2 No 
42.7 No 

This reaction mode is the most similar one to 
the direct reaction of a single Ir atom with the 
hydrogen molecule. Comparing the one and two Ir 
atoms' reactions with H2 and comparing with the 
platinum case, we can see that there are at least 
two differences: A ground-state single Ir atom can 
activate H2, whereas a single Pt atom only can 
activate H2 from an excited state. Also, the second 
Ir atom does not poison the reaction of one Ir atom 
and the Pt dimer is able to activate the H2, but in 
an excited state, with a lower angle (almost one- 
half of a single Pt atom) because of the poisoning 
of the second atom. 

The 100% dispersed Ir catalysts are easily pre- 
pared and adsorb H2 [3], whereas it is very diffi- 
cult to have Pt catalysts with this dispersion. In 
some experiments, by introducing Pt in small 
porous zeolites, it is possible to get such a disper- 
sion, but in any of these cases, Pt does not adsorb 
H2 [37]. 

H2 in C2r Approach to Ir2, Both Systems in 
Perpendicular Planes 

Again, for Ir2 in the four lowest states, Ug, 
3II , 1lt*, and 32+, for this reaction mode, activa- 
tion is necessary to induce the dissociative capture 
of H2, especially in the ground state (Table VI). 
But we have to remark that this approach is not a 
comparable scheme /with the experimental results, 
due to the following: This model does not consider 
the Ir atoms of the subjacent plane. 

In the experimental situation, the hydrogen 
molecule falls over the Ir crystal plane but not on a 
single isolated dimer. However, it is useful to 
consider the characteristics of this approach over 
an isolated and naked cluster because the H2 can 
rotate. 

From Table VI, we can observe, that in this 
approach mode, the distances between the metal 
dimer and the hydrogen are the smallest. In all the 

TABLE VI .  
C2„ approach of H2 to lr2, both dimers in perpendicular planes. 

lr2 

electronic 
state 

n9 3n 
%+ 
3V

y+ 

d(lr2—H2 

(au) 

0.8 
0.0 
0.0 
0.8 
1.5 

d(H—H)b 

(au) 

3.8 
3.8 
4.4 
4.2 
3.4 

% H—H 
relaxation 

170 
170 
212 
198 
141 

Depth of well 
(kcal/mol) 

22.1 
32.5 
48.7 
35.1 
24.0 

Barrier 
(kcal / mol) 

39.8 
9.1 

13.7 
27.5 
No 

bSee footnotes a and b to Table IV. 
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cases presented, the H—H bond is completely 
ruptured with a very different well depth, depend- 
ing on the electronic state, but all the five metal 
states show dissociative capture. In the 52^ highest 
state, the dissociative H2 adsorption is sponta- 
neous, that is, it does not present a barrier. 

For the Ir2(
3IIg)—H2 and Ir/S^)—H2 interac- 

tions, it was found that the metal-hydrogen dis- 
tance is null, that is, the hydrogen atoms are be- 
tween the Ir atoms, forming a bridged structure 
(Table VI). This structure is presented in 
organometallic compounds [38]. Comparing the re- 
sults of Tables V and VI, there are some similar 
behaviors. This can be explained by considering 
that it is possible to change the reaction mode 
from the same plane to the perpendicular planes, 
with a simple rotation. 

This reaction mode for the equilibrium Ir2H2 

system, the Ir2(
5Il^)—H2 interaction, presents, 

among others, the following orbitals: a bonding ax 

orbital, resulting from the overlap of the o"x[Ir(s) + 
lr(s)] orbital, with the H2(o-g) orbital. Also, there is 
a bonding bx orbital from the overlap Tru[lr(dxy) + 
M-d^)] orbital with the o-*(H2) orbital. The bond 
arises from the following proposed mechanism: 
The empty o-'(H2) orbital may be populated and 
form a bond with the Ir2 doubly occupied 
TTu[\iidxy) + Ir(-dxy)] orbital; nevertheless, at the 
beginning of the reaction, this Ir2 orbital is much 
deeper in energy than are the other Ir2 partially 
occupied orbitals, so the o-*(H2)y7r„(Ir2) cannot 
overlap completely. In advancing the reaction, the 
overlap is produced and the described equilibrium 
geometry is achieved. 

The interaction of both orbitals led to the Ir2H2 bx 

orbital formation. Also, at the beginning of the 
reaction, the b1 orbital formation is in competi- 
tion with the repulsive interaction of the occupied 
Ir(s) + Ir(s) with the a (H2) orbital. This last 
interaction produces the bonding ax Ir2H2 orbital. 
As a consequence, in this approach mode, a high 
barrier appears in the Ir2( 11^)—H2 interaction. 
When the reactants are in the same plane, they 
show from the beginning an attractive interaction 
compared with the high barrier existence in this 
approach and is in agreement with a less favorable 
directional character of the molecular orbitals in 
the reaction with the metal dimer and the hydro- 
gen in perpendicular planes. 

The present study shows that the iridium dimer, 
in the ground state, as in its four low-lying excited 
states, can activate the hydrogen molecule. In cat- 
alytic processes, the excited states' contribution is 

quite probable, mainly because the ligands may 
modify the electronic structure of the metal's lead- 
ing to many active states, giving the best catalyst 
[8, 20]. 

Conclusions 

From the Ir dimer study, we obtain the molecu- 
lar configuration, the equilibrium interatomic dis- 
tances, and the energies of the five lowest states, 
5Ylg being the ground state, and 3Ug, *£+, 32 + , 
and  1g, the four lowest excited states. 

Ir2 could capture and activate the hydrogen 
molecule in almost all the cases studied. In the 
perpendicular reaction mode, where H2 and Ir2 

are in the same plane, both the molecular and the 
dissociative capture of H2 is obtained. As experi- 
mentally observed, no barriers are presented. 

The participation of some of the metal excited 
states must be considered because they also have a 
dissociative reaction with H2. Other modes of re- 
action may be considered as important because the 
excited states are also active, but the presence of 
avoided crossings generate high barriers which 
make it more difficult to reach these states. 
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ABSTRACT: Electron propagator calculations in two diagonal self-energy 
approximations, partial third order and the outer valence Green's function, are employed 
in interpretation of the photoelectron spectra of anisole and thioanisole. Major features of 
the spectra are accurately predicted and are associated to canonical molecular orbitals. 
Contributions from planar and orthogonal rotational structures are responsible for minor 
features of the spectra that are dependent on temperature. Correlation effects are large 
and change the order of final states in thioanisole. Partial third-order calculations are 
more accurate than outer valence Green's function results.    © 1998 John Wiley & Sons, Inc. 
Int J Quant Chem 70: 1037-1043, 1998 

Key words: anisole; thioanisole; conformations; propagator theory; photoelectron 
spectra 

Introduction 

Substituted anisoles (phenyl alkyl ethers) and 
thioanisoles (phenyl alkyl sulfides) have low 

barriers to internal rotation of alkyl groups about 
C—O and C—S bonds [1]. The conformational 
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behavior of these compounds remains controver- 
sial despite numerous experimental and theoreti- 
cal attempts to determine energetically preferred 
conformations. Estimates of rotation barriers vary 
from 0.8 to 3.0 kcal/mol for anisoles and from 0.3 
to 1.4 kcal/mole for thioanisoles. Conformational 
isomerism in these compounds has attracted inter- 
est because of their regioselective chemical proper- 
ties. Recent work has shown that anisole and 
thioanisole form distinctive complexes with NO+. 
While anisole forms a ^-complex, thioanisole forms 
an «-complex at the sulfur atom [2]. This observa- 
tion suggests that the highest occupied molecular 

International Journal of Quantum Chemistry, Vol. 70, 1037-1043 (1998) 
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orbital of thioanisole has dominant sulfur, lone-pair 
character. Photoelectron spectra (PES) may pro- 
vide additional insights into the electronic struc- 
ture and reactivity of these compounds. 

PES of anisole have appeared in a number of 
publications [3-7]. In all but one of these works, 
the peaks were interpreted in terms of a single, 
planar conformation. The presence of a second, 
less stable conformation was hypothesized in Ref. 
[6]. A shoulder at ~ 8.8 eV and a low amplitude 
feature at 10.0-10.4 eV were assigned to this con- 
formation. A 91:9 planar-to-orthogonal abundance 
ratio and an energy difference of ~ 1.4 kcal/mol 
were inferred from the temperature dependence of 
PES band intensities. These features are seen in 
other published spectra as well [3,5]. 

Spectra of thioanisole [3,4,8,9] have been inter- 
preted in terms of rotational isomerism. The first 
attempts of this kind were based on qualitative 
models and Koopmans's theorem [3]. To assign 
unusually wide bands, Dewar and co-workers [4] 
postulated a conformational equilibrium between 
planar (major) and orthogonal (minor) rotational 
isomers. This assumption was used widely to ex- 
plain photoelectron, ultraviolet, and infrared spec- 
tra of several substituted thioanisoles [10]. In con- 
trast, an assumption of free rotation [11] provided 
a consistent interpretation of PES. 

In this work, PES of anisole and thioanisole are 
interpreted with electron propagator methods [12]. 
Relationships between vertical ionization energies 
and initial state conformations are examined. 
Computational predictions are compared with PES. 
Results then are explained in terms of a one-elec- 
tron picture of electronic structure that is based 
on correlated generalizations of molecular orbital 
concepts. 

Electron Propagator Theory 

The recently developed, partial third-order ap- 
proximation (P3) [13] has predictive and computa- 
tional advantages that have facilitated a variety of 
applications to large aromatic and heteroaromatic 
systems [14]. The outer valence Green's function 
method [15] (OVGF) is used as well. These two 
methods employ the diagonal approximation in 
the self-energy matrix. While relaxation and corre- 
lation effects (i.e., corrections to Koopmans's theo- 
rem results) are included in the vertical ionization 
energies   calculated   here,   the   Feynman-Dyson 

amplitudes (FDA), 

<P      yx^) = I y¥N_](x2, x3, xir..., xN) 

Xdx2dx3dxi... xN, 

remain equal to canonical orbitals. These one- 
electron functions are overlaps between initial, 
N-electron states and final states with N - 1 
electrons. In this picture of electronic structure, 
electrons assigned to uncorrelated molecular 
orbitals are subject to an effective, correlated, en- 
ergy-dependent potential represented by the diag- 
onal elements of the self-energy matrix. The Dyson 
equation reduces to 

E = e, + 2„(E), 

where e, and X,-,-(E) are the zth canonical orbital 
energy and the zth diagonal element of the self-en- 
ergy matrix, respectively. Propagator poles (ioniza- 
tion energies and electron affinities) are values of 
E that satisfy the previous equation. Pole searches 
iterate on E and generally converge in three itera- 
tions. 

Correlated photoionization intensities are pro- 
portional to pole strengths, P, that are less than 
unity and greater than zero. The OVGF and P3 
approximations remain valid only for outer va- 
lence ionization energies for which P >- 0.80. In 
these cases, the sum of the squares of all orbital 
coefficients in the normalized ionization operator 
(0,on,z) that contains h (occupied orbital), p (vir- 
tual orbital), 2h - p (shakeup) and 2p - h 
(shakeon) contributions, where 

occ vir 
Oio"iz-=£C„a,+ ECpflp 

h p 

occ   vir 

+ E EQ1/,2pflpflA,fl/i2 
hvh2   p 

vir    occ 

+    2-,    2-/Cplp2hahapl
ai)2> 

is given by 

occ vir 

EIQI2+ Elc/ = p>o.8o. 
h p 

For outer valence ionization energies of closed-shell 
molecules, contributions to a given FDA from the 
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Koopmans orbital in question generally dominate 
those of other canonical orbitals. The P3 and OVGF 
methods used here neglect the non-Koopmans or- 
bital operators, so that for ionization energies, 

O1' ^-"Koopmans wKoopmans 

vir    occ 

+ E T>ch1h2P
alah1

ah2+ E ECplP2h4a
Pl«p2' 

hx,h2   p pvp2   h 

Pole strengths are evaluated according to 

P,= 1 - 
rfSH(Epole) 

dE, pole 

Lowered pole strengths usually indicate enhanced 
shakeup character in the final states. In the uncor- 
related case, where the self-energy matrix is ne- 
glected, the Koopmans theorem (KT) value corre- 
sponds to a pole strength equal to unity. For all 
states studied here, the pole strengths are suffi- 
ciently large to justify use of the OVGF and P3 
methods. 

Computational Methods 

GAUSSIAN 95 (development version) [16] was 
used for all calculations. A semidirect algorithm 
[17] for the P3 and OVGF methods was utilized. 
All molecular orbitals (MOs) except for core or- 
bitals were included in electron propagator calcu- 
lations. 

Geometry optimization for all molecules was 
first performed at the Hartree-Fock (HF) level 
with the 6-31G* basis set [18]. Analytical second 
derivatives [19] were calculated at every optimiza- 
tion step due to poor self-consistent field conver- 
gence. Planar and orthogonal conformations of 
anisole and thioanisole were reoptimized with a 
density functional recipe, B3LYP [20], and the same 
basis set. HF optimizations with the 6-311G* basis 
[21] also were done for thioanisole. Optimized 
geometries were used in OVGF and P3 calcula- 
tions. 

Structural diagrams were generated with the 
MOLDEN program [22]. 

Results and Discussion 

The  atomic  numbering  scheme  is  given  in 
Figure 1. In the planar forms [Fig. 1(a)], the C7— 

X(0, S) 

(a) 

(b) 
FIGURE 1. Anisole and thioanisole in planar (a) and 
orthogonal (b) forms. 

X—Cj—C6 dihedral angle is zero. For the orthog- 
onal forms [Fig. 1(b)], the optimized value of this 
angle is closer to 90°. 

ANISOLE 

Structures of planar and orthogonal conformers 
have been fully optimized with HF/6-31G* and 
B3LYP/6-31G* total energies. All stationary points 
have a reflection plane of symmetry. Planar iso- 
mers are more stable in each case. The following 
energy differences between the conformers were 
obtained: 1.4 (HF) and 3.0 kcal/mol (B3LYP). These 
values are in excellent agreement with the esti- 
mate of 1.4 kcal/mol that was based on the tem- 
perature dependence of the PES [6]. Harmonic 
frequency analyses were performed in each case. 
At the HF level, both stationary points are minima. 
However, at the B3LYP level, the stationary point 
corresponding to an orthogonal form becomes a 
transition state. Because the ionization process is 
much faster than internal rotation, two poorly 
resolved ionization bands observed in the PES of 
anisole [3,6] may be produced by nonplanar 
conformers. 
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TABLE I 
Planar anisole: vertical ionization energies (eV) and pole strengths. 

HF geometry B3LYP geometry Expt. 

State KT OVGF P3 KT OVGF P3 [3, 4, 5, 6, 7] 

2A" 8.42 8.06 
0.90 

8.31 
0.89 

8.42 8.07 
0.91 

8.32 
0.89 

8.39 -8.46 

2A„ 9.23 9.05 
0.90 

9.18 
0.89 

9.20 9.02 
0.90 

9.16 
0.89 

9.22 -9.32 

2A„ 12.69 11.31 
0.87 

11.20 
0.86 

12.65 11.25 
0.87 

11.14 
0.86 

11.02-11.14 

2A' 13.04 11.57 
0.90 

11.59 
0.90 

13.05 11.58 
0.90 

11.62 
0.89 

11.52 -11.76 

2A' 13.94 12.44 
0.90 

12.50 
0.89 

13.90 12.40 
0.90 

12.48 
0.89 

12.33-12.76 

Two basis sets were initially used for OVGF 
calculations: the correlation-consistent, polarized, 
valence double-^ set (cc-pVDZ) [23] and 6-31 IG** 
[21]. While producing essentially the same ioniza- 
tion energies, the latter basis set required signifi- 
cantly less time for semidirect calculations [17]. All 
further propagator calculations therefore were per- 
formed with the 6-311G** basis set. 

Propagator calculations were performed with 
HF and B3LYP geometries. Differences in the ini- 
tial state's structure produce discrepancies in the 
ionization energies that are less than 0.06 eV. These 
energies and experimental peak positions are pre- 
sented in Tables I and II for planar and orthogonal 
forms of anisole. 

Results for five final states of the planar isomer 
are considered here. Correlation corrections to KT 
results may be as large as 1.4 eV, but there are no 

reorderings of final states that follow. All pole 
strengths are above 0.85; this result implies that 
shakeup features lie at considerably higher ener- 
gies. There is close agreement between P3 results 
and the principal spectral features listed in Table I. 
In each case, the predicted ionization energy is 
within 0.1 eV of the experimental range. Somewhat 
larger discrepancies occur for the OVGF calcula- 
tions. 

When similar calculations are performed for the 
orthogonal isomer, it is possible to account for the 
minor spectral features mentioned above. The low- 
est ionization energy increases by ~ 0.55 eV at the 
P3 level. Pole strengths are not significantly af- 
fected by the conformational change. (Note that 
the symmetry label for this state changes from 2A" 
in the planar case to A' in the orthogonal case.) 
This   result   provides   a   compelling  explanation 

TABLE II 
Orthogonal anisole: vertical ionization energies (eV) and pole strengths. 

HF geometry B3LYP geometry Expt. 

State KT OVGF P3 KT OVGF P3 [3, 4, 5, 6, 7] 

2A' 8.88 8.71 8.88 8.87 8.72 8.86 8.8-8.9 
0.90 0.89 0.90 0.89 

2A„ 9.25 9.13 9.25 9.22 9.09 9.23 9.22-9.32 
0.90 0.89 0.90 0.89 

2A" 11.95 10.28 10.10 11.98 10.29 10.12 10.0-10.4 
0.90 0.90 0.90 0.90 

2A 13.27 11.89 11.80 13.23 11.83 11.76 11.52-11.76 
0.86 0.85 0.86 0.84 

2A' 13.83 12.37 12.40 13.74 12.36 12.36 12.33 
0.90 0.89 0.88 0.86 
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for the temperature-dependent shoulder seen at 
~ 8.8 eV. Because the FDA for the second state is 
insensitive to the structural change (it remains a 
nearly unperturbed 7r-orbital on the benzene ring), 
the corresponding ionization energy changes little. 
In the orthogonal structure, the third FDA is con- 
siderably more localized on oxygen. P3 predictions 
for this state account for the low-intensity feature 
seen between 10.0 and 10.4 eV. 

THIOANISOLE 

Geometries of thioanisole were optimized in the 
same manner as those of anisole. HF optimizations 
obtained minima for orthogonal conformations and 
transition states for the planar ones. B3LYP opti- 
mizations gave the opposite result. Total energies 
of the orthogonal form relative to the planar form 
are -1.20, -1.49, and 0.42 kcal/mol, respectively, 
at the HF/6-31G*, HF/6-311G*, and B3LYP/6- 
31G* levels. Values for the lowest harmonic fre- 
quency are no higher than 46 cm-1 for minima 
and are no lower than -15.1 cm"1 for transition 
states. These data imply a shallow potential energy 
surface near the stationary points. Low rotation 
barriers, small absolute values of harmonic fre- 
quencies, and contradictions between HF and 
B3LYP results suggest that nearly free rotation of 
the methyl group about the S—C bond occurs in 
thioanisole. 

As was the case with anisole, two basis sets 
were used in the OVGF and P3 calculations, cc- 
pVDZ and 6-311G**. The P3 method combined 

with the 6-311G** basis set gave much closer 
agreement with PES maxima while demanding 
significantly less computer resources than either 
the OVGF method or the cc-pVDZ basis set. All 
further discussion pertains to the P3 method and 
the 6-311G** basis set. 

Calculated ionization energies obtained for ge- 
ometries optimized at different theory levels are 
displayed in Table III and IV. Agreement with 
experiment is close and provides a consistent as- 
signment of observed features. All pole strengths 
exceed 0.85. Propagator corrections to KT results 
are especially large for the last three states of the 
planar structure and for the first and last two 
states of the orthogonal structure. In the latter 
geometry, correlation reorders the final states 
and provides an explanation for the feature at 
8.55-8.71 eV. The FDA for the lowest final state 
has a pronounced ring-sulfur antibonding rela- 
tionship in the planar geometry. In the orthogonal 
structure, the FDA for the lowest ionization energy 
is dominated by sulfur 3p contributions. HF and 
B3LYP geometries lead to different orderings of 
the next two states. For the second FDA (according 
to the ordering provided by the HF geometries), 
almost no change in the ring-localized 7r-orbital 
pattern takes place as the C—S bond is rotated 
and the ionization energy varies relatively little 
(from 9.26 to 9.05 eV at the P3 level). In the third 
FDA of the planar form, sulfur 3p contributions 
are in a bonding relationship with a benzene v- 
pattern. This stabilizing interaction is lost and lo- 
calization on the ring is accentuated in the orthog- 

TABLE 
Planar thioanisole : vertical ionization energies (eV) and pole strengths. 

HF geometry B3LYP geometry Expt. 

State KT P3 KT P3 [3, 4, 8, 9] 

2A„ 8.02 7.82 
0.89 

8.11 7.82 
0.89 

8.01 -8.07 

2A" 9.20 9.26 
0.88 

9.29 9.22 
0.88 

9.25-9.30 

2A„ 10.77 10.05 
0.88 

10.84 10.01 
0.88 

10.1 -10.20 

2A 12.01 11.00 
0.89 

12.10 11.02 
0.89 

11.10 

2A' 13.29 12.12 
0.89 

13.33 12.09 
0.89 

11.90 
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TABLE IV 
Orthogonal thioanisole: vertical ionization energies (eV) and pole strengths. 

HF geometry B3LYP geometry Expt. 

State KT P3 KT P3 [3, 4, 8, 9] 

2A„ 9.44 8.64 
0.90 

9.46 8.47 
0.90 

8.55-8.71 

2A" 9.23 9.16 
0.88 

9.18 9.12 
0.88 

9.25-9.30 

2A 9.33 9.05 
0.89 

9.30 9.18 
0.88 

9.25 -9.30 

2A 12.07 11.01 
0.89 

12.06 11.01 
0.88 

11.10 

2A> 13.34 12.06 
0.86 

13.24 12.04 
0.86 

11.90 

onal form. This leads to a lower ionization energy 
(from 10.05 to 9.16 eV) in the latter structure. Other 
states are relatively insensitive to conformational 
changes. 

Conclusions 

Application of correlated electron propagator 
methods to the analysis of rotational isomerism in 
anisole and thioanisole reveals the linkage be- 
tween ground state energies and vertical ioniza- 
tion energies. Rotations about C—O and C—S 
bonds account for the appearance of extra spectral 
features. A correlated treatment of vertical ioniza- 
tion energies is required for a consistent assign- 
ment. The P3 method with the 6-311G** basis set 
obtained very close agreement with PES and per- 
mitted assignment of unassigned bands. Correla- 
tion affects the order of final states in thioanisole. 
P3 results are more accurate and are easier to 
obtain than their OVGF counterparts. 
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Introduction 

Restricted Hartree-Fock (RHF) linear combi- 
nation of atomic orbitals (LCAO) calcula- 

tions on extended chains with one-dimensional 
periodicity [1, 2] have become close to routine for 
systems containing small to moderate-sized unit 
cells [3]. Extended chains represent an increasingly 
important class of materials because of a number 
of their properties, for example, non-linear optical 
responses and electrical properties, which make 
them interesting potential candidates for integra- 
tion in many devices. Computed electronic band 
structures, densities of states, total energies, etc., 
can be correlated with experimentally determined 
properties of existing systems. The success of such 
correlations serves as a basis for quantum chem- 
istry-aided design of new molecular structures 
with improved properties [4, 5]. 

RHF calculations on infinite model chains face 
numerical and algorithmic difficulties posed by, 
for example, lattice summations, and basis-set ex- 
tension and possible pseudo-linear dependencies 
[6], since they can affect the quality of the results. 
It should be noted that essentially all practical 
calculations in this area are carried out in the 
direct space (DS) approach. 

In the DS approach, the Coulomb and exchange 
contributions are treated on a different footing. 
The Coulomb sums are computed generally via a 
multipole expansion of the two-electron integrals 
in the asymptotic regime of small overlap of the 
interacting charge distributions [7, 8]. The imple- 
mentation of such an algorithm is more difficult 
for the exchange summations, the convergence of 
which is fixed by the decay of the LCAO density 
matrix elements [9, 10], and the usual practice still 
amounts to guessing the limits of these lattice 
summations. The situation is worst in the case of 
metallic systems since a very large number of 
interacting cells is required to stabilize the ex- 
change summations and the reproduction of the 
genuine features of the Hartree-Fock description 
of the metallic situation is impossible in practice 
[11]. This raises questions on the meaning of ap- 
plying schemes going beyond the HF level if the 
starting point is not a proper description of a 
symmetry-constrained metallic solution. 

A Fourier representation of the RHF equations 
for band structure calculations on infinite chains 

has been proposed to evaluate the Coulomb and 
exchange lattice sums on a consistent basis [12]. It 
has been shown that combining the Poisson for- 
mula [13] and the Ewald technique [14] in the 
context of Gaussian basis sets can be used to 
compute accurately and efficiently these summa- 
tions and that the Fourier representation method 
yields the special exchange behavior of metal- 
lic chains [15]. Our Fourier transform code 
(FTCHAIN) is still in the prototype phase, and at 
the current stage of development, only s-type 
Gaussian atomic orbitals can be considered. Nev- 
ertheless, it has already illustrated successfully the 
applicability and the merits of the FS-RHF scheme 
(FS for Fourier space) in the context of calculations 
of the electronic structure of extended chains 
[16, 17]. 

In previous work [18], the success of the float- 
ing spherical Gaussian orbital (FSGO) basis set 
[19-22] in the identification of conformational sig- 
natures in the valence band of polyethylene has 
led us to consider polyoxymethylene (POM) in 
which lone pairs on oxygen atoms, which replace 
alternate CH2 units, could lead to interesting 
geometry-dependent electronic characteristics. This 
study has shown that the approach based on the 
use of FSGOs provides a simple and computation- 
ally fast scheme of calculation that reproduces 
correctly the bonding trends in polymeric chains, 
but that important discrepancies are observed in 
the band structures of POM obtained using the 
subminimal FSGO and minimal STO-3G basis sets. 
Moreover, few optimized exponents and positions 
of FSGOs for extended systems are available in the 
literature, and the use of FSGOs for practical appli- 
cations and quantitative results is not realistic. 
Indeed, the procedure of optimization of FSGO 
exponents and positions is not trivial and has to be 
done for each case studied. 

In this contribution, we outline the FS-RHF 
approach to the calculation of the band structure 
of POM using a distributed basis set of s-type 
Gaussian functions (DSGF) to simulate p-type 
functions. The aim of the present work is twofold: 
First, we aim to show that, contrary to the FSGO 
basis sets, which are unable to describe correctly 
the oxygen lone pairs and their interactions, the 
DSGF basis set reproduces qualitatively the fea- 
tures of the band structure observed with minimal 
basis set. To do this, the band structure results are 
compared to those obtained in [18] in which STO- 
3G basis sets [23] (within the conventional DS-RHF 
approach) and FSGO basis sets are used. Second, 
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we aim to highlight the differences and advan- 
tages of the FS approach compared to the conven- 
tional DS approach. Overall, the FS and DS results 
are in good agreement, but we show that minor 
differences originate in difficulties of lattice sum- 
mations within the DS approach, illustrating the 
advantages of the FS method. 

The article is planned as follows: In the Theoret- 
ical Considerations section, the basic RHF equa- 
tions which are used and some computational as- 
pects are introduced. In the Results and Discussion 
section, we assess qualitatively the performance of 
the DSGF basis set in the description of long-range 
interactions in POM, and we analyze the numeri- 
cal results on the POM chain obtained with the FS 
and DS approaches. Finally, we make a few con- 
cluding remarks. 

Theoretical Considerations 

RELEVANT RHF EXPRESSIONS 

The RHF-Bloch states <p„(fc,r) are doubly occu- 
pied up to the Fermi energy EF and orthonormal- 
ized as shown in the following equation: 

I ditfW ,i)9n{k,i) = 8k.k8n.nl (1) 

where k and n are the wavenumber and the band 
index, respectively. In our notation, the wavenum- 
ber k is expressed in units of 2ir/a0 and is defined 
in the Brillouin zone (BZ), that is, k e [- 
The Bloch states 

2' 2 

?„tt,r)= E C_„U) fcpa,r) 

]. 

(2) 

are expressed in terms of Bloch sums bp(k,r): 

00 

fep(Jfc,r) = N~1/2    £   expdlTTtnk) 

XXP(r ~ (Rp + mez)a0) 
CO 

= N"X/2    £   expU2irmk)x?(T),   (3) 

where p and the vector Rp (in units of cell length 
a0) represent the label and the position of the 
atomic function, xp> in the reference unit cell, 
respectively. N~1/2 is the normalization factor for 
a polymer containing N cells. Indices p, q, r, and s 

denote the atomic functions and the lattice sites 
are identified by the integers m, m', and m" 
( = 0, + 1, + 2,...). Density matrix elements Ppq(k) 
are given by 

P„(*) = EC*(*)C„(*)0„(*)/ (4) 

with the occupation function 0n(k) defined as 

en{k) 
'2 if E„(fc)<EF 

Oif En(k)>EF, 

where En(k) is the energy of band n. 
Expansion coefficients Cpn(k) and one-electron 

energy eigenvalues En(k) are solutions of the fol- 
lowing system of equations: 

EFM(fc)C„(fc) = Entt)ZSpMCqn(k),   (5) 

where Spq(k) and Fpq(k) are the overlap and Fock 
matrix elements, respectively, given by 

S.e(*) = <b,(*,r) I &,(*,!)> VI (6) 

and 

FpAk) = TpXk) + Vik) + J(k) + X„(t),   (7) vv VI vv PT 

where T (k) is the kinetic term, PR 

Tpq(k) =(bp(k,t)\ - iV2(r)|Z>,U,r));     (8) 

V Xk), the electron-nuclear attraction term, 

Vp,(*) = (bp(k,r) 
M 

HzA 
A = \ 

x£|r- (R^ +me>( 
i-i ty*,r) (9) 

/  (fc), the electron-electron repulsion term, 

]pq(k) = N[   dfc'EPr.(*')/„„(*,*'),   Ü0) 
JBZ r, s 

where 

Jpqrs(k,k') = {bp(k,t1)bqa,r1)\ 

X|rx - r2| \brtt',t2)bs(k',r2));    (11) 
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and Xpq(k), the exchange term, 

Xpq(k)= --NJ   rf/c'£PrsU')X,,,rsa,*'), 
'B7, 

(12) 

where 

X.^tt,*') = (blk,t^bs{k,,tl)Wl -r2r
]| 

br(k',r2)bq(k,r2)).   (13) 

ZA and the vector R^ define the nuclear charge 
and the position of atom A, respectively, and M is 
the number of a'toms. The analysis of the problems 
associated with these terms with respect to the 
convergence of the lattice sums which enter in 
their definition, the analytic properties of the LCAO 
density matrix elements Ppq(k) in the BZ, and the 
consequences on the RHF results have been docu- 
mented [10, 24, 25]. 

COMPUTATIONAL ASPECTS 

POM, with the unit cell —CH2—O—, is the 
simplest polymer related to polyethers. We con- 
sider, in this study, a hypothetical zigzag planar 
conformation of the POM chain. This conformer, 
denoted PZZ, corresponds to a C—O—C—O di- 
hedral angle of 180°. Tetrahedral angles have been 
assumed between the C—O—C, O—C—O, 
H—C—O, and H—C—H bonds, and the C—H 
and C—O distances have been set equal to 1.1066 
and 1.4306 A, respectively. This unit cell geometry 
is illustrated in Figure 1. The xz plane is defined 
by the carbon and oxygen atoms and the direction 
of periodicity is the z-axis. 

The DSGF basis set for the POM translational 
unit cell consists of the standard nuclear centered 
STO-1G exponents for the carbon and oxygen Is 
and 2s orbitals and for the hydrogen Is orbitals, 
and of s-type Gaussian orbitals (s-GTO's) to simu- 

FIGURE 1. Geometry of the zigzag planar (PZZ) 
conformation of the POM chain. The unit cell boundaries 
are denoted by dotted lines. 

TABLE I  
Exponents and positions (distance from the atom) 
of the distributed basis set of s-type Gaussian 
functions for the POM translational unit cell. 

Basis 

function Exponent 

Distance from 

the atom (A) 

H1s 

C1S 

C2S 

s-C 

02s 

s-0 

2P 

2P 

0.27095 0.0 
8.71074 0.0 
0.25911 0.0 
0.656 0.55751 
15.89814 0.0 
0.50786 0.0 
0.62 0.39822 

s-C2p and s-02p are the s-GTOs that simulate the C and O 
2p orbitals, respectively. 

late the C and O 2p orbitals. Each 2p orbital is 
represented by two identical s-GTOs symmetri- 
cally centered about the nucleus, at distances cor- 
responding to the position of the maxima of the 
standard STO-1G 2p function. The exponent of the 
s-GTOs simulating the C and O 2p orbitals has 
been optimized by minimizing the total energy of 
the Cri4 and H20 molecules, respectively, using 
the GAMESS program [26]. The exponents and 
positions of the basis functions used are listed in 
Table I. The results obtained with the DSGF basis 
set are compared to those obtained using the FSGO 
basis set. For the POM chain, the FSGO basis set 
consists of two core orbitals (Cls, 0]s), four opti- 
mized bond-centered orbitals (two C—O, two 
C—H), and two optimized orbitals to represent 
oxygen lone pairs (O-LP). 

Contrary to an approach based on the use of 
FSGOs, where the number of basis functions is 
equal to the number of electron pairs, the density 
matrix is not uniquely defined as the inverse of the 
overlap matrix and the iterative self-consistent- 
field (SCF) procedure is thus no longer avoided. 
The criterion for convergence of the iterative SCF 
procedure on the density matrix elements is set 
equal to 10~6. The band structures obtained by the 
FS approach using the DSGF basis set were checked 
against ab initio band structure calculations in a 
conventional DS approach using the PLH-93 pro- 
gram [3]. 

Results and Discussion 

In this section, we first assess qualitatively the 
performance of the distributed basis set of s-type 
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Gaussian functions in the description of long-range 
interactions in POM. We then analyze the numeri- 
cal results on the POM chain obtained with the FS 
and DS approaches. 

ELECTRONIC STRUCTURE OF THE 
POM CHAIN 

To assess the performance of the DSGF basis set 
in the calculation of the electronic structure of 
POM, we compare the occupied valence band 
structures and the occupied valence band density 
of states (DOS) of POM obtained using the DSGF 
basis set to the results obtained in [18] in which 
FSGO and STO-3G basis sets are used. The total 
energies ET per —CH2—O— unit and occupied 
valence band energies at selected /c-points using 
the FSGO, DSGF, and STO-3G basis sets are listed 
in Table II, and the valence band structures and 
valence band DOS are plotted in Figure 2. 

Comparison of the inner-valence band struc- 
tures (labeled bands 1 and 2) and DOS plotted in 
Figure 2 shows that the FSGO, DSGF, and STO-3G 
results are in good agreement qualitatively. The 

TABLE II  
Total energy ET per —CH2 — O — unit, 
occupied valence band energies at selected 
fr-points, En{k), and total bandwidths, 
Wn (n being the band index) for the zigzag planar 
(PZZ) conformation of POM chain using the FSGO, 
DSGF, and STO-3G basis sets (energies in 
atomic units). 

FSGO DSGF STO-3G 

ET 
-96.08581 -97.28808 -112.41214 

E,(0.0) -1.43273 -1.60798 -1.37784 
£,(0.25) -1.38940 -1.56461 -1.33023 
£,(0.5) -1.33065 -1.50768 -1.25672 
w, 0.10208 0.10030 0.12112 

E2(0.0) -0.76795 -0.88688 -0.84458 
E2(0.25) -0.78795 -0.89210 -0.84046 
£2(0.5) -0.86726 -0.99849 -0.94098 
W2 0.09931 0.11920 0.10632 

£s(0.0) -0.16132 -0.37118 -0.38238 
f5(0.25) -0.18576 -0.40269 -0.42273 
E5(0-5) -0.25331 -0.52460 -0.51917 

wB 0.09249 0.15342 0.13679 

E6(0.0) -0.13846 -0.25760 -0.34417 
E6(0.25) -0.15367 -0.26691 -0.35703 
E6(0.5) -0.19089 -0.33091 -0.41233 

We 0.05243 0.07359 0.06816 

high intensity ratio of the inner-valence peak II, 
relative to peak I, which fingerprints the PZZ 
conformation, is obvious from the graphs of the 
FSGO, DSGF, and STO-3G valence band DOS 
(Fig. 2, right-hand side). As can be seen from the 
inner-valence band structures (Fig. 2, left-hand 
side), the top of band 2 is characterized by a small 
dispersion. The bandwidth between k = 0 and k 
= 0.25 is equal to 0.02000, 0.01281, and 0.00992 au 
for the FSGO, DSGF, and STO-3G basis sets, re- 
spectively. There is an improved agreement be- 
tween the DSGF and STO-3G results compared to 
the FSGO results. 

The characteristic sharpening of peak II is due 
to the stabilization of band 2 towards the point 
k = 0 (Fig. 2, left-hand side). To understand the 
origin of the stabilization of the uppermost part of 
the inner-valence band, it is useful to analyze the 
composition of the crystalline orbitals at k = 0 for 
bands 1 and 2, schematically represented in the 
case of the STO-3G basis set in Figure 3. The 
FSGOs contributing most to bands 1 and 2 at k = 0 
are the C—O, and C—H and O-lone pair (O-LP) 
bond orbitals, respectively. Similarly, for the STO- 
3G basis set, there is a switching in the composi- 
tion of the crystalline orbitals from a C2s—02s in 
character (band 1) to another nodal structure en- 
riched in Hls atomic functions and C2px and 02px 

atomic functions in the plane of the polymer back- 
bone and perpendicular to the direction of period- 
icity (band 2). In the case of the DSGF basis set, 
there is also a change in the composition of the 
crystalline orbitals which goes from being C2s—02s 

in character (band 1) to C2s—02s, Hls, and anti- 
symmetric combinations of s-GTOs simulating the 
C2 and 02„ atomic functions (band 2). The sym- 
metries of band 1 and 2 with the DSGF basis set 
are the same as those using the FSGO and STO-3G 
basis sets. This mixing of states enables the devel- 
opment of long-range stabilizing interactions be- 
tween successive methylene groups (hyperconju- 
gation) and between lone pairs oriented in parallel 
directions. 

While the graphs of the outer-valence band 
structures obtained using the FSGO and STO-3G 
basis sets show significant differences such as the 
width of band 5 [Fig. 2(a,c), left-hand side], the 
DSGF and STO-3G results compare very well, ex- 
cept for the crossing of bands 3 and 5 towards 
k = 0.5 observed in the case of the DSGF basis set 
[Fig. 2(b,c), left-hand side]. As can be seen from 
the valence band energies listed in Table II, while 
the FSGO and STO-3G calculated widths of band 5 
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FIGURE 2. The valence band structures (left-hand side) and valence-band density of states (DOS) (right-hand side) of 
POM in zigzag planar form obtained using the (a) FSGO, (b) DSGF, and (c) STO-3G basis sets. Energy values are in 
atomic units and the DOS values are in arbitrary units. 
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(2) torn of band 5 is due to through-space interactions 
between the 02px and C2px favored by the relative 
position of atoms in the PZZ chain. Contrary to the 
FSGO basis set, the DSGF basis set does succeed in 
describing the interactions between the oxygen 
lone pairs in the POM chain. 

(1) 

FIGURE 3. Sketch of the crystalline orbitals at k = 0 in 
terms of atomic orbitals (STO-3G basis set) for bands 1 
and 2 in the case of the PZZ chain of POM. 

[Fig. 2(a,c), left-hand side] are very different 
(0.09249 and 0.13679 au, respectively), the DSGF 
and STO-3G widths of band 5 [Fig. 2(b,c), left- 
hand side] are more comparable (0.15342 and 
0.13679 au). 

In the case of the STO-3G basis set, the atomic 
functions contributing most to band 5 are the 02px 

and C2px orbitals and the 02s and C2s orbitals. 
Similarly, for the DSGF basis set, the functions 
contributing most to band 5 are the 02s and C2s 

orbitals and antisymmetric combinations of s- 
GTOs simulating the 0,„ and C2„ orbitals. The 
strong dispersion of the energy levels at the bot- 

COMPARISON OF THE FS AND 
DS APPROACHES 

To highlight the differences and advantages of 
the FS approach compared to the conventional DS 
approach, we analyze the DSGF results on the 
POM chain obtained with the two methods. Over- 
all, the FS and DS results compare fairly well and 
the graphs of the occupied valence band structures 
and of the occupied valence band DOS obtained 
within the two methods are indeed indistinguish- 
able. Selected occupied and unoccupied valence 
band energies computed with the FS and DS ap- 
proaches are listed in Table III. As can be seen 
from the data in Table III, the FS and DS occupied 
valence band energies are in good agreement (to 5 
or 6 significant digits), while there are discrepan- 
cies between the results obtained for the unoccu- 
pied bands. See, for example, band 16, for which 
the results at k = 0 and k = 0.25 compare to 3 
significant digits only. 

To identify the origin of these discrepancies, we 
computed the eigenvalues of the three contribu- 
tions to the Fock matrix elements: the kinetic en- 
ergy term, Tpq(k), the Coulomb term, Cpq(k), which 

TABLE III  
Selected occupied and unoccupied valence band energies, En(k) (n being the band index) for the POM 
chain using the DSGF basis set, and within the Fourier space (FS) and direct space (DS) approaches 
(energies in atomic units). 

k = 0 k = 0.25 k = 0.5 

FS DS FS DS FS DS 

Occupied 

E, -1.60798 -1.60797 -1.56461 -1.56461 -1.50768 -1.50767 

E2 
-0.88688 -0.88693 -0.89210 -0.89212 -0.99849 -0.99849 

E3 
-0.67888 -0.67886 -0.65892 -0.65891 -0.59550 -0.59550 

E, -0.48603 -0.48601 -0.61160 -0.61160 -0.52460 -0.52459 

E5 -0.37118 -0.37117 -0.40269 -0.40268 -0.52460 -0.52459 

E6 
-0.25760 -0.25758 -0.26691 -0.26689 -0.33091 -0.33088 

Unoccupied 

El3 1.19752 1.19758 1.43530 1.43555 1.47829 1.47822 

Eu 1.90760 1.90758 1.73804 1.73804 1.59900 1.59905 

£l5 2.45067 2.45032 2.20492 2.20465 1.95252 1.95263 

£l« 3.08117 3.06786 2.89753 2.87218 2.72459 2.72427 
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TABLE IV  
Eigenvalues at selected /(-points of the kinetic energy term, T(k), Coulomb term, C(k), and exchange term, 
X(fc), obtained for band 16 using the DSGF basis set, and within the Fourier space (FS) and direct space (DS) 
approaches (energies in atomic units). 

k = 0 k = 0.25 k = 0.5 

FS DS FS DS FS DS 

Uk) 
C(k) 
X(k) 

26.86613 
-0.16053 
-0.06666 

26.86616 
-0.16123 
-0.06524 

26.88931 
-0.16188 
-0.07121 

26.88930 
-0.16182 
-0.07110 

26.90580 
-0.16005 
-0.07208 

26.90580 
-0.16010 
-0.07155 

includes the electron-nuclear attraction and the 
electron-electron repulsion contributions, and the 
exchange term, X (fc). The results corresponding 
to band 16 obtained within the FS and DS ap- 
proaches are listed in Table IV. As one can expect, 
in the case of the kinetic terms, for which the 
convergence of lattice sums entering their defini- 
tion does not pose any problem, the eigenvalues 
obtained within the two approaches compare very 
well (7 significant digits). On the contrary, the 
maximum relative differences between the FS and 
DS results are of the order of 10 "3 and 10_1 for the 
Coulomb and exchange terms, respectively. 

To understand further the origin of this dis- 
agreement between the FS and DS results, we 
computed the band structures of POM using a 
more   localized   basis   set  within   the   two   ap- 

proaches. To do this, we multiplied the exponents 
of the s-type Gaussian functions by four. Selected 
occupied and unoccupied valence band energies 
and the eigenvalues corresponding to band 16 are 
listed in Tables V and VI, respectively. As one can 
see from the data in Tables V and VI, the FS and 
DS results are in perfect agreement and improve 
upon the situation observed with the initial basis 
set. In the case of the Coulomb term, the better 
agreement between the FS and DS results is due to 
the fact that the more localized basis set improves 
the reliability and accuracy of the multipole expan- 
sion method used in the PLH program to evaluate 
the long-range corrections. Within the FS ap- 
proach, a multipole expansion technique as an 
approximation for long-range interactions is not 
used, and the rapid and accurate calculation of the 

TABLE V 
Selected occupied and unoccupied valence band energies, En(k) (n being the band index) for the POM chain 
using the DSGF basis set with all exponents multiplied by four, and within the Fourier space (FS) and 
direct space (DS) approaches (energies in atomic units). 

k = 0 k = 0.25 k = 0.5 

FS DS FS DS FS DS 

Occupied 

£i -0.07163 -0.07163 -0.06914 -0.06914 -0.06651 -0.06651 
E2 -0.00588 -0.00588 -0.00496 -0.00496 -0.00404 -0.00404 
E3 0.26054 0.26054 0.26468 0.26468 0.26831 0.26831 
E4 1.02083 1.02083 0.88065 0.88065 0.79456 0.79456 
E5 1.11486 1.11486 1.08486 1.08486 1.02928 1.02928 
E6 1.27060 1.27060 1.27044 1.27044 1.27029 1.27029 

Unoccupied 

*13 4.66369 4.66369 4.55049 4.55049 4.39950 4.39950 
Eu 4.70919 4.70919 4.65357 4.65357 4.61279 4.61279 
EK 12.15199 12.15200 12.13294 12.13295 12.11404 12.11404 

fie 21.23576 21.23577 21.21351 21.21350 21.19142 21.19142 
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TABLE VI 
Eigenvalues at selected /(-points of the kinetic energy term, T(k), Coulomb term, C(k), and exchange term, 
X(k), obtained for band 16 using the DSGF basis set with all exponents multiplied by four, and within the 
Fourier space (FS) and direct space (DS) approaches (energies in atomic units). 

k = 0 k = 0.25 /c = 0.5 

FS                          DS FS                          DS FS                        DS 

T(k)                  95.12429                 95.12429 
C(k)                -0.34294                -0.34294 
X(k)                -0.13233                -0.13233 

95.11660                 95.11660 
-0.34297                -0.34297 
-0.13266                -0.13266 

95.10896             95.10896 
-0.34300            -0.34300 
-0.13292            -0.13292 

lattice summations is ensured by the use of a 
combination of the Ewald technique and the Pois- 
son formula. 

A multipole expansion technique is more diffi- 
cult to implement for the exchange contributions 
and the practice in the PLH program is to guess 
the limits of the lattice summations appearing in 
the exchange term. The DS results have been ob- 
tained with Nx = 21( +10 cells), the maximum 
number of interacting cells that can presently be 
taken into account in the PLH program to compute 
the exchange contributions. Within the DS ap- 
proach, the convergence of the exchange lattice 
sums is fixed by the decay with respect to the 
lattice indices of the Fourier transform density 
matrix elements, P0m, 

PvT = ^rf   Pvc,ik)ex?{i2irmk)dk.     (14) 
" 277" JBZ 

The FS method avoids the systematic use of the 
density matrix elements, P°i", and the exchange 
contributions are accurately evaluated on the same 
footing as the Coulomb term. We have checked 
that the density matrix elements corresponding to 
the more localized basis set decay faster than those 
corresponding to the initial basis set. Thus, the 
larger discrepancy between the FS and DS results 
noted for the less localized basis set indicate that 
the number of interacting cells, Nx = 21, used 
within the DS approach is not enough to evaluate 
the exchange contributions correctly, leaving an 
error of the order of 10"1. 

Concluding Remarks 

pairs in the polyoxymethylene chain, restoring 
nicely the qualitative agreement with the band 
structure observed with the STO-3G basis set. Ad- 
ditionally, it has been seen that DSGF results ob- 
tained within the Fourier space (FS) and direct 
space (DS) approaches are in good overall agree- 
ment. This comparison constitutes a test of the 
reliability of the FTCHAIN prototype code. 

Minor differences between the FS and DS re- 
sults have been shown to originate in difficulties 
of lattice summations within the DS approach. It 
must be stressed that these differences are already 
observed for a localized basis set which behaves 
better from a numerical point of view in the lattice 
summations. Indeed, it has been demonstrated that 
the more localized the basis set is the better the 
agreement between the two approaches. Even if 
the situation is not dramatic in the case studied 
here, a similar analysis on results obtained with 
richer basis sets (STO-3G, 3-21G, 6-31G, 6-31G*,...) 
is necessary when the FS code is able to treat s, p, 
and d Gaussian-type functions. Moreover, we have 
seen that the disagreement between the FS and DS 
results is more marked in the unoccupied valence 
bands. This has important consequences in the use 
of methods including electron correlation effects, 
since the energies of the unoccupied valence bands 
are involved in the expressions [27, 28]. 

Finally, we can conclude that the FS approach 
permits equally efficient handling of delocalized 
and localized basis sets and avoids the problem of 
selecting the number of interacting cells needed in 
a particular situation. The numerical consistency of 
the results for a given level of approximation is 
ensured by the use of the FS approach. 

In this contribution, it has been shown that, 
contrary to the FSGO basis set, the distributed 
basis set of s-type Gaussian functions (DSGF) de- 
scribes correctly the interactions between the lone 

ACKNOWLEDGMENTS 

I. F. thanks Dr. D. H. Mosley for useful discus- 
sions and practical help. The calculations reported 

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 1053 



FLAMANT, FRIPIAT, AND DELHALLE 

were carried out at the "Namur Scientific Comput- 
ing Facility" with the financial support of the 
FNRS-FRFC, the "Loterie Nationale" (9.4553.92), 
and the FNRS/Belgian Ministry of Science "Action 
d'impulsion ä la recherche fondamentale" 
(D.4511.93). 

References 

1. G. Del Re, J. Ladik, and G. Biczo, Phys. Rev. 155, 977 (1967). 
2. J. M. Andre, L. Gouverneur, and G. Leroy, Int. J. Quantum 

Chem. 1, 427 (1967). 

3. J. M. Andre, D. H. Mosley, B. Champagne, J. Delhalle, J. G. 
Fripiat, J. L. Bredas, D. J. Vanderveken, and D. P. Ver- 
cauteren, Methods and Techniques in Computational Chemistry 
(METECC-94), E. Clementi, Ed. (Stef, Cagliari, 1993), Vol. B. 
J. G. Fripiat, D. H. Mosley, B. Champagne, and J. M. Andre, 
PLH-93 from METECC-94. 

4. J. M. Andre, J. Delhalle, and J. L. Bredas, Quantum Chem- 
istry Aided Design of Organic Polymers (World Scientific, 
London, 1991). 

5. J. M. Andre and J. Delhalle, Chem. Rev. 91, 843 (1991). 
6. S. Suhai, P. S. Bagus, and J. Ladik, Chem. Phys. 68, 467 

(1982). 
7. L. Piela and J. Delhalle, Int. J. Quantum Chem. 13, 605 

(1978). 
8. J. Delhalle, L. Piela, J. L. Bredas, and J. M. Andre, Phys. 

Rev. B 22, 6254 (1980). 
9. H. J. Monkhorst and M. Kertesz, Phys. Rev. B 24, 3015 

(1981). 

10. J. Delhalle and J. L. Calais, J. Chem. Phys. 85, 5286 (1986). 

11. J. Delhalle, M. H. Delvaux, J. G. Fripiat, J. M. Andre, and 
J. L. Calais, J. Chem. Phys. 88, 3141 (1988). 

12. J. Delhalle and F. E. Harris, Phys. Rev. B 31, 6755 (1985). 

13. P. Henrici, Applied and Computational Complex Analysis 
(Wiley, New York, 1977), Vol. 2. 

14. P. P. Ewald, Ann. Phys. 64, 253 (1921). 

15. J. Delhalle, J. Cizek, I. Flamant, J. L. Calais, and J. G. Fripiat, 
J. Chem. Phys. 101, 10717 (1994). 

16. I. Flamant, J. G. Fripiat, and J. Delhalle, Int. J. Quantum 
Chem. 60, 1487 (1996). 

17. I. Flamant, J. Delhalle, and J. G. Fripiat, Int. J. Quantum 
Chem. 63, 709 (1997). 

18. I. Flamant, J. G Fripiat, and J. Delhalle, Theor. Chem. Ace. 
98, 155 (1997). 

19. A. A. Frost, J. Chem. Phys. 47, 3707 (1967). 

20. A. A. Frost, J. Chem. Phys. 47, 3714 (1967). 

21. B. V. Cheney and R. E. Christoffersen, J. Chem. Phys. 56, 
3503 (1972). 

22. R. E. Christoffersen, D. Spangler, G. G. Hall, and G. M. 
Maggiora, J. Am. Chem. Soc. 95, 8526 (1973). 

23. R. F. Stewart, J. Chem. Phys. 52, 431 (1970). 

24. H. J. Monkhorst, Phys. Rev. B 20, 1504 (1979). 

25. J. Delhalle and J. L. Calais, Phys. Rev. B 35, 9460 (1987). 

26. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. 
S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. 
Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. 
Montgomery, J. Comput. Chem. 14, 1347 (1993). 

27. J. Q. Sun and R. J. Bartlett, J. Chem. Phys. 104, 8553 (1996). 

28. J. Q. Sun and R. J. Bartlett, J. Chem. Phys. 106, 5554 (1997). 

1054 VOL.70, NO. 4/5 



Periodic INDO Calculations of Organic 
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ABSTRACT: A new parametrization for use in periodic semiempirical quantum- 
chemical INDO calculations is proposed. Parameter sets for C and N atoms are tested on 
a number of C- and N-containing molecules, giving reasonably good agreement with 
experimental data and/or ab initio results. The new parametrization is intended for 
studies of organic adsorbates on oxide surfaces using a periodic large unit cell (LUC) 
model. As an example, two possible adsorption geometries for bi-isonicotinic acid on a 
TiOz rutile(HO) surface were investigated, and structural effects involved in the 
adsorption are discussed.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70:1055-1066,1998 

Key words: periodic INDO; bi-isonicotinic acid; adsorption; Ti02 surface; rutile 

Introduction 

The adsorption of large organic molecules on 
oxide surfaces is rapidly gaining in techno- 

logical importance, for example, in dye-sensitiza- 
tion of solar cells [1]. Understanding and improv- 
ing the molecule-surface linkages in these systems 
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is an important step in developing such molecular 
devices [2]. Much less is, unfortunately, known 
about oxide surfaces than metal ones, and theoreti- 
cal studies are urgently needed in this general 
area, especially in view of the difficulty of inter- 
preting experimental observations for these sys- 
tems [3]. Some detailed studies of oxide-adsorbate 
structures do exist; the orientation of acetate on a 
Ti02 (110) surface has, for example, recently been 
investigated experimentally [4], and several accu- 
rate theoretical studies on systems involving small 
adsorbates using DFT-pseudopotential [5, 6] or 
periodic HF [7, 8] methods have been published in 
the last few years. 

For larger adsorbates, typically containing more 
than one aromatic ring, many experimental studies 
have been made on interesting spectroscopic and 
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chemical properties, but usually the detailed struc- 
ture is hard to determine. Theoretically, these sys- 
tems are difficult to treat due to their inherent 
complexity, but some advances have been made 
recently to study, for example, hydrocarbon ad- 
sorption using atomistic simulations [9]. Simu- 
lation techniques do, however, not give any 
electronic structure information which often is of 
interest for systems with optical applications. Thus, 
semiempirical quantum-chemical methods may 
still be a useful tool for these types of systems. 

The INDO method employed here [10] uses 
periodically repeated large unit cells (LUCs) [11, 
12] and is designed for the calculation of the total 
energy and electronic structure of crystals. The 
exchange interaction is carefully treated. However, 
the calculation scheme of the modified crystal 
INDO method has so far only been applied to 
calculations of the electronic structure of perfect 
and defective crystals. 

The objective of this work was to extend the 
method to include organic complexes. In particu- 
lar, we are concerned with the parametrization of 
carbon and nitrogen, two main components of 
organic matter. The parametrization includes stud- 
ies of carbon- and nitrogen-containing molecules 
of different sizes, with the aim of reproducing 
their spatial structure and charge distribution. The 
results are compared to available experimental data 
or GAUSSIAN94 [13] ab initio computations. 

The obtained parameters are primarily intended 
for studies of organic adsorbates on metal oxide 
surfaces. In this article, we study two possible 
adsorption structures of bi-isonicotinic acid (4,4'- 
dicarboxy-2,2'-bipyridine) on the Ti02 rutile(HO) 
surface. This is a model for the surface-dye con- 
tact in the above-mentioned solar cells. 

Computational Details 

The INDO method modified for crystal calcula- 
tions, as implemented in the CLUSTERD computer 
code [10], was used in the calculations. The ap- 
proach is based on semiempirical molecular orbital 
(MO) theory [14] with a specific parametrization 
scheme [15]. There are two main models incorpo- 
rated into the computer code: (i) the periodic LUC 
model [11], which calculates both the electronic 
structure and the total energy of the crystal via 
MO as linear combinations of atomic orbitals 
(LCAOs), and (ii) the embedded molecular cluster 

(EMC) model [16]. Additionally, one can use a 
so-called molecular model to study free molecules. 
During the parametrization procedure, the molec- 
ular model was applied, while the periodic LUC 
model was used later on to simulate an infinite 
rutile(HO) surface. We preferred to use the LUC 
model because of its advantages compared to the 
EMC model, for example, a better treatment of the 
exchange interaction. A full discussion of the com- 
putational relations for calculating the total energy 
of the crystal within the framework of the LUC 
approach was given in [10-12]. Here, we shall 
only outline the basic idea of the method. 

In the LUC k = 0 approximation, the Fock ma- 
trix elements are made self-consistent through 
terms of the form 

-E^,(k)exp(fkRp), (1) 

where the summation is carried out over all the 
values k in the reduced Brillouin zone (RBZ) of the 
large unit cell. The method is not fully self-con- 
sistent because of the nature of the approach: We 
only obtain information about the density matrices 
P (k) at the point k = 0. However, it has been 
proven that the computation of the electronic 
structure of the unit cell at k = 0 in the RBZ is 
equivalent to a band calculation at those BZ k 
points which transform to the RBZ center on ex- 
tending the unit cell [17, 18]. As indicated by 
numerous studies, a fourfold- or eightfold-sym- 
metric extension of the unit cell proves to be com- 
pletely sufficient to correctly reproduce the elec- 
tronic-density distribution in the crystal [17]. The 
modified INDO, using both the LUC and EMC 
models, has been applied to a vast number of 
materials and has shown its reliability in describ- 
ing different properties of perfect and defective 
crystals (see [10, 19] and references therein). Re- 
cent applications include, for example, studies of 
various properties and phenomena in such com- 
plex oxides as a-Al203 [20], W03 [21], and a series 
of computations on Ti02 [22-24]. 

Parametrization Results 

The Fock matrix elements in the modified INDO 
approximation contain a number of semiempirical 
parameters. The orbital exponent £ enters the ra- 
dial part of the Slater-type atomic orbitals. A va- 
lence basis set including 4s, 4p, and 3d atomic 
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orbitals (AO) on Ti, 2 s and 2 p on O, C, and N, and 
Is on H was used. The diagonal matrix elements 
of the interaction of an electron occupying the k'th 
valence AO on atom A with its own core are 
calculated as 

UA = ukk Eneg(k)        L^yPmmJkm        l^mm^km)    (2) 

where P°„ are the diagonal elements of the den- 
sity matrix (= mth AO populations), E^eg, is the 
fcth AO electronegativity, and ykm and Kkm are 
one-center Coulomb and exchange integrals, re- 
spectively. The matrix elements of the interaction 
of an electron in the fc'th AO belonging to an atom 
A with the core of another atom B take the form 

V» = Zf ' kb 
R, 

+ (kk\ mm) 
R AB 

Xexp(-akBRAB)\, (3) 

where RAB is the distance between atoms A and 
B, ZB is the core charge of atom B, akB is an 
adjustable parameter characterizing the nonpoint 
character of the atomic core B and additionally the 
diffuseness of the fc'th AO, (kk | mm) is the two- 
center Coulomb integral. Finally, the so-called res- 
onant integral parameter ßAB, enters the nondiago- 
nal Fock matrix: 

FL = ß. AB^km Pkm(kk\mm), (4) 

where the k'th AO belongs to atom A and the mth 
AO to atom B, u is an electron subsystem with a 
or ß spin, Skm is the overlap integral matrix be- 
tween the fcth and  mth AO's, and x km is the 

spin-density matrix. The parametrization scheme 
thus contains the five parameters £, Eneg, P°, a, 
and ß. It is useful to define the values of the AO 
populations (parameters P°) to be equal to those 
of the free atoms (C and N atoms in our case). 
Additionally, special attention has to be paid to 
reproduce the ionization potentials (IPs) for the C 
and the N atoms. 

PARAMETRIZATION OF CARBON 

As the first step, the parameters for the C atom 
were fitted to get reliable values for the IPs and 
interatomic distances. The results are presented in 
Tables I—III. As one can see, the ionization poten- 
tials are generally well reproduced up to the fourth 
IP. The geometries of the C-containing molecules 
are, with some exceptions, very close to the experi- 
mental results. We did, however, not manage to 
get fully satisfactory results for the interatomic 
distances of the C02 and CO molecules (Table II), 
nor to fully reproduce the difference in bond length 
between the single and the double bonds in formic 
acid (Table III). The experimental values are 1.20 

TABLE I  
Calculated and experimental ionization potentials for 
the carbon atom (in eV). 

INDO 

1st 
2nd 
3rd 
4th 

'[25]. 

Experiment3 

9.44 11.26 
25.21 24.48 
47.47 47.47 
64.47 64.48 

TABLE II 
C-containing molecules: calculated and experimental geometries (in Ä and degrees). 

Molecule Property INDO Exp.a Standard INDO 

CH. fl.(C—H) 1.06 1.1068 1.116 

C2H2 fle(C—C) 
Re(C—H) 

1.22 
1.05 

1.2031 
1.0608 

1.20 
1.05 

C2H4 fl.(C—C) 
fl0(C—H) 
0(H—C—H) 

1.31 
1.03 

118 

1.339 
0.085 

117.83 

1.31 
1.11 

124.3 

C02 fl,(C—0) 1.24 1.16 1.162 

CO fle(C—0) 1.21 1.128323 1.196 

'[26]. 
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TABLE III 
Formaldehyde and formic acid: calculated and 

experimental geometries (in A and degrees) 

Molecule Property INDO Exp.a 

HCHO fle(C—0) 1.23 1.2078 
fl8(C-H) 1.05 1.1161 
0(H—C—H) 114 116.5 

HCOOH fle(C—0,) 1.24 1.202 
fle(C-02) 1.29 1.343 
fte(C—H,) 1.10 1.097 
fle(02-H2) 0.97 0.972 
©(H,—02—C) 105 106.3 
0(H2—C—0,) 124 124.1 
@{0,— C—02) 124 124.9 

The numbering of the atoms for HCOOH is the same as 
Figure 1(a). 
a[26]. 

and 1.34 A for the C—O double and single bonds, 
respectively. Our corresponding INDO values are 
1.24 and 1.29 A, constituting the best compromise 
between a good description of a single and a 
double bond, respectively. 

We also note that the geometries calculated by 
our method are very close to those obtained using 
the standard Pople-Beveridge INDO parametriza- 
tion scheme [14] (except for C02) as shown in the 
Table II. This is an encouraging fact as our method 
was primarily developed for crystal computations 
and has never before been used for isolated 
molecules. 

PARAMETRIZATION OF NITROGEN 

The same procedure was used to optimize pa- 
rameters for the N atom. The ionization potentials 

FIGURE 1. (a) Formic acid; the numbering of the atoms 
corresponds to that in Table III; (b) isonicotinic acid; the 
numbering of the atoms corresponds to that in 
Table VI. 

FIGURE 1. (continued) 

for the free N atom (Table IV) and the geometries 
of N-containing molecules (Table V) were calcu- 
lated in order to fit available experimental data 
and/or ab initio results. The comparison shows, in 
general, good agreement between experimental 
and calculated results, confirming the reliability of 
the N parameters. 

Computations on free isonicotinic acid was an- 
other test for the modified INDO method and the 
new parametrization. Due to the lack of experi- 
mental data on the isonicotinic acid geometry, we 

TABLE IV  
Calculated and experimental ionization potentials 
for the N atom (in eV). 

INDO Experiment3 

1st 
2nd 
3rd 
4th 
5th 

14.95 14.53 
30.30 29.593 
45.66 47.426 
70.97 77.45 
92.22 97.863 

a[25]. 
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TABLE V  
N-containing molecules: calculated and experimental 

geometries (in A and degrees). 

Molecule Property INDO Exp.s 

CN, RJC-N) 1.29 1.232 

N20 fle(N—N) 1.26 1.1284 
fle(N—0) 1.21 1.1841 

N204 fle(N—N) 1.49 1.782 
fle(N—0) 1.21 1.190 
0(0—N- 0) 154 135.4 
0(0—N- -N) 103 112.5 

NH3 fle(N—H) 1.04 1.0116 
0(H—N- H) 107 106.68 

'[26]. 

fitted INDO results for this molecule to HF/6- 
311G** ab initio calculations. The results for inter- 
atomic distances and net atomic charges are shown 
in Table VI. We managed to reproduce the geome- 
try of the molecule very well and the electron 
distribution satisfactorily. The trends in atomic 
charges are consistent between the two methods 
within the expected deviations. We also note that 
the charges obtained by the ab initio calculations 
are basis-dependent, which makes a direct com- 
parison of ab initio and semiempirical charges less 
relevant. 

To find nondiagonal et parameters between Ti 
and C and between Ti and N, the TiC and TIN 
molecules were used. The correct ground-state 
configurations 3X+ (for TiC) and 2X (for TIN) 
were obtained. The interatomic distance for TiC 
was fitted to match the corresponding ab initio 
value of 1.733 A obtained by using the multirefer- 
ence configuration interaction (MRCI) method [27], 
and that for TIN was fitted to the experimental 
value of 1.582 A [28]. The results are shown in 
Table VII. The necessity of including nondiagonal 
a parameters follow from the fact that we have to 
describe the interaction between the rutile(HO) 
surface and the adsorbate, in particular, the inter- 
action between Ti and C as well as between Ti 
and N. 

To reproduce the Ti—O interaction is more 
complicated since it exists both within the crystal 
framework and also between atoms in the adsor- 
bate and the surface. In general, the computer 
program allows the definition of different parame- 
ter sets for the same type of atom and one might 
use two parameter sets for the O atoms in the 
crystalline framework and the adsorbate, respec- 
tively. In our previous studies [22-24], the stan- 
dard oxygen parameters [10] were used, giving 
reliable results. This was the reason why we re- 
tained standard O parameters also for the O atoms 
in the adsorbate. We made use of the standard H 
parameters [10] as well, except for a few a values 

TABLE VI 
Isonicotinic acid INDO and ab initio HF/6-311G** geometries (in A and degrees), and atomic charges (in e). 

Property INDO Ab initio Property INDO Ab initio 

fleH-Ca) 1.32 1.35 fleK-Cg) 1.32 1.35 
fle(C2-C4) 1.37 1.40 fle(c3-c5) 1.37 1.40 
fle(C4-C6) 1.35 1.41 fle(C5-C6) 1.35 1.41 
fle(C6-C7) 1.48 1.48 fle(C7-08) 1.24 1.24 
fle(C7-09) 1.31 1.38 fle(09-H14) 0.96 0.99 
fle(C2—H10) 1.06 1.09 Re(C3—H1t) 1.06 1.09 
Re(C4—H12) 1.07 1.09 Fte^5—H13) 1.09 1.09 

qW -0.13 -0.39 q(08) -0.60 -0.46 
q(C2) 0.08 0.15 g(o9) -0.86 -0.47 

q(C3) 0.07 0.15 q(H10) 0.17 0.13 

<7(C4) -0.26 -0.16 q(H10) 0.16 0.13 

<7(CB) -0.26 -0.17 Q(H12) 0.22 0.14 

Q(C6) 0.13 -0.14 Q(H13) 0.26 0.14 

<7(C7) 0.57 0.66 q(H14) 0.46 0.30 

The numbering of the atoms is the same as in Figure 1 (b). 
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TABLE VII 
Properties of TiC and TiN molecules: interatomic distances (in A) and dipole moments (in D, and 
corresponding to Ti+X " polarity, where X is C or N). 

Molecule Property INDO Ab initio Experimental 

TiC 

TiN 

fleffi—C) 

fte(Ti—N) 

1.72 
4.04 
1.58 
2.56 

1.733s 

2.73a 

1.61b 

3.25b 
1.582b 

3.56b 

a[27]. 
b[28]. 

(ct0_H, aH_0, aH_H) which were modified in or- 
der to fit some interatomic distances more pre- 
cisely. Finally, parameters for Ti were derived in 
one of our previous studies [22]. The parameters 
are given in Tables VIII and IX. 

Application: Adsorption Geometries 
for Bi-Isonicotinic Acid on a Ti02 
Rutile(HO) Surface 

We studied two possibilities of molecular ad- 
sorption of bi-isonicotinic acid (BINA) to a Ti02 

rutile(HO) surface. BINA is a bipyridine-type mol- 
ecule believed to be the ligand responsible for the 
adsorbate-surface binding in a variety of pro- 
posed solar cells [29]. In particular, a link to the 
surface can be expected through the carboxyl 
groups which are known to bind to oxide surfaces, 
at least for smaller carboxylic acids [4]. The geo- 
metric constraints imposed by the molecular struc- 
ture may, however, prevent the best local car- 
boxyl-surface links to form. 

TABLE VIII  
INDO parameter set. 

Atom    AO      £ (au) Eneg feV) -0(eV)    P° (e) 

Our starting geometries were chosen because of 
the visually good fit between surface and adsor- 
bate and because they were consistent with pre- 
liminary experimental information [30]. While 
there are several other chemisorption possibilities, 
we feel that our study illustrates the kind of geo- 
metric and electronic effects which are essential to 
adsorption of large organic molecules on oxide 
surfaces, and the potential of the present method 
to elucidate this type of problem. 

The present results are based on periodic calcu- 
lations using the LUC method with a unit cell 
containing 146 atoms: 120 surface atoms, and the 
26 BINA atoms. The unit cell has surface dimen- 
sions of 12.988 and 14.790 A in the (-110) and 
(001) directions, respectively. This is large enough 
for BINA to fit above the surface part of one unit 
cell comfortably. The cells used are shown in Fig- 
ures 2 and 3, respectively. 

Since it is known that the carboxylic acid disso- 
ciates upon adsorption, the H+ ions were initially 
positioned and optimized on top of surface oxy- 
gens some distance away from the Ti—O sur- 
face-adsorbate bonding sites. They were then 
locked in these positions throughout the calcula- 
tions. 

TABLE IX 
The derived electron-core interaction parameters 

H ^s 
2s 

1.2 
1.72 

4.0 
19.8 

2.0 
8.7 

0.8 
2.0 

«HB au   1), w here (j. e A. 
(J 

2p 
2s 

1.48 
2.15 

2.0 
20.6 

8.7 
9.8 

0.66 
2.0 A 

ß 
N Ti O H C N 

2p 1.72 4.8 9.8 1.0 
O 2s 2.27 4.5 16.0 1.97 Ti 0.16 0.11 

2p 1.86 -12.6 16.0 1.96 O 0.42 0.16 0.11 
Ti 4s 1.4 1.4 0.5 0.65 H 0.23 0.33 0.38 0.03 

4P 1.1 -10.0 0.5 0.04 C 0.36 0.14 0.22 0.12 0.00 
3d 1.93 -2.9 9.0 0.62 N 0.55 0.11 0.34 0.30 0.04 
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FIGURE 2. 1 M-monodentate adsorption of BINA on Ti02 rutiled 10): (a) perspective view of one unit cell along the 
[001] direction; (b) bird's eye view along the [110] direction. 

Partially optimized adsorption structures were 
obtained by performing series of single-point cal- 
culations with controlled variations of the most 
important bond lengths, angles, etc. No relaxation 
of the surface was allowed in this study. Experi- 
mentally, the Ti02 surface has been characterized 
as quite stable [31], and adsorbate-induced relax- 
ations are expected to be less important for low 
coverages [4], as is the case here. 

The different adsorption cases are labeled ac- 
cording to the type of surface-adsorbate bonding 
for each of the two carboxyl groups. In the first 
case, there are two 1 M-monodentate bonds, and in 
the second case, there are two 2M-bidentate bonds. 

1 M-MONODENTATE ADSORPTION 

Vertical binding of BINA diagonally across a 
row of bridging oxygens with on-top binding of 
one oxygen per carboxyl group and without inter- 
nal twisting of the BINA was considered as one 
option (Fig. 2). The adsorption geometry which 

gives the best overall fit to the surface is such that 
the Ti atoms to which the BINA binds lie one step 
shifted along the (001) direction relative to each 
other, making an angle, @, of 60° between BINA 
and the (001) direction. The most important struc- 
tural parameters for the best adsorption geometry 
are given in Table X, and a graphical representa- 
tion of the system is shown in Figure 2. The 
preferred adsorption distance between the fivefold 
surface Ti atoms and the adsorbate oxygens was 
investigated, and the results are shown in Figure 4. 
The optimal adsorption distance according to these 

o 

calculations is 2.2 A, but with a rather small varia- 
tion in energy in the range 2.0-2.2 A. An effect of 
the additional Ti—O bonds coming from the car- 
boxyl group is the creation of an effective six-coor- 
dination of the involved Ti atoms. This is expected 
to be favorable, as it is the natural environment of 
bulk Ti. The bond formed is, however, somewhat 

o 

longer than the bulk Ti—O distance of ca. 1.9 A. 
One explanation for the discrepancy is that the 
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FIGURE 2. (continued) 

distance between the two BINA oxygens directly 
involved (6.3 A) does not exactly match the dis- 
tance between the two relevant surface Ti atoms 
(7.1 A). This introduces some strain into the sys- 
tem. The surface-adsorbate bonding can only be 
optimized at the expense of deforming the adsor- 
bate and/or the surface. This balance between 
optimizing the local surface-adsorbate bond, and 
keeping a favorable overall adsorbate structure is 
an effect which does not play a significant role for 
small adsorbates with a single contact point to the 
surface, but which is anticipated to be a recurring 
consideration in the detailed study of large adsor- 
bates on complicated, site-specific, surfaces such as 
oxides. 

2M-BIDENTATE ADSORPTION 

Like the lM-monodentate example, this system 
involves adsorption diagonally across a row of 
bridging oxygens, but now we consider a nonpla- 
nar adsorbate where internal twists between the 
functional units of the molecule are introduced in 
order to accommodate four surface-adsorbate 
bonds (Fig. 3). Bonding of a carboxyl group to 
Ti02 rutile(HO) surfaces with both oxygens coor- 
dinated to a Ti atom, in a 2M-bidentate way, has 
been found to be favorable for small carboxylic 
acids such as acetic acid [4], but will only be 
advantageous for large and relatively rigid 
molecules such as BINA if such a configuration is 
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FIGURE 3. 2M-bidentate adsorption of BINA on Ti02 rutile010): (a) perspective view of one unit cell along the [001 ] 
direction; (b) bird's eye view along the [110] direction. 

compatible with the additional geometric con- 
straints and if the disadvantage of straining the 
adsorbate is compensated for by improved linkage 
to the surface. As Figure 3 shows, a structure with 
two 2M-bidentate bonds can be realized with rela- 
tively moderate adsorbate distortions. Again, the 
most important geometrical features are listed in 
Table X. The most significant modifications are a 
34° twist between the two pyridine rings, as well 
as a 25° twist between each ring and the attached 
carboxyl group. 

The optimum adsorption distance according to 
these calculations is 2.0 A, which is 0.2 A shorter 
than for the lM-monodentate case and closer to 

o 

the bulk value of 1.9 A. The shorter Ti-adsorbate 
distances in the 2M-bidentate case can be under- 
stood from the fact that although there is an initial 
distortion of BINA to form the 2M-bidentate bond- 
ing arrangement the additional distortion in 
changing the adsorption distance from 2.2 to 2.0 A 
is small, whereas for the lM-monodentate configu- 
ration, the incompatibility between adsorbate and 

surface grows in importance as the bond distance 
is shortened. However, once shorter bonds than 

o 

the favored 2.0 A are considered, the 2M-bidentate 
system is destabilized more rapidly as there are 
four rather than two bonds with close-range repul- 
sion. This explains the steeper slope of the 2M-bi- 
dentate case compared to the lM-monodentate case 
for short Ti—O distances in Figure 4. 

Conclusions 

The INDO model modified for crystal calcula- 
tions was extended to include organic species. 
Parameters for C and N, including the electron- 
core interaction parameters a^g, needed for stud- 
ies of systems containing H, C, N, O, and Ti, were 
determined and shown to work satisfactorily for a 
representative sample of molecules. The method 
was used to study two molecular adsorption possi- 
bilities of bi-isonicotinic acid on a Ti02 rutile(HO) 
surface, where new considerations due to the addi- 
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FIGURE 3. (continued) 

TABLE X _  
Geometries (distances in A and angles in degrees) 
as obtained by the modified INDO calculations for 
(i) the 1 M-monodentate and (ii) the 2M 
bidentate models. 

1 M-monodentate 2M-bidentate 
Property model model 

Re 2.2 2.0 
0 60 45 
a 0 34 

ß 0 25 

Re is the Ti—Oads distance. © is the angle between the 
BINA orientation and the surface (001) direction, a and ß 
are the dihedral angles between the two pyridine rings and a 
pyridine ring and its carboxyl group, respectively. 

tional strain arising from several surface-ad- 
sorbate contact points emerge, compared to most 
previously studied adsorbates with only a single 
contact point to the surface. 

For the two cases considered here, it appears 
that the configuration with two 2M-bidentate 
bonds interacts more favorably with the surface, 
having the best binding energy and the deeper 
adsorption well. The favoring of the lM-monode- 
ntate system at large adsorption distances reflects 
the fact that the planar structure is more stable 
than is the nonplanar one for an isolated BINA 
molecule. 

The present study is, however, not exhaustive: 
Further adsorption possibilities and other factors 
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-1583.70 

-1583.80 

-1583.90 

-1584.00 

-1584.10 

FIGURE 4. Total energy of one unit cell as a function of surface-adsorbate bond distance for (-+-) the 1 M-monodenate 
and the (- x -) 2M-bidentate models. 

such as coverage dependence could be considered. 
Experiments like NEXAFS and XPS can give indi- 
rect information about, for example, molecular ori- 
entations or atomic environments in the naturally 
occurring situation, and such information could be 
compared to results expected from theoretically 
predicted structures. There is a wide field of re- 
lated systems of great practical interest, involving 
the adsorption of large organic molecules on oxide 
surfaces, where the present methods could be use- 
ful. Some such studies are underway and will be 
published elsewhere. 
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ABSTRACT: In the framework of the coherent potential approximation we show that 
the interaction parameter for disordered Fe-Al alloy strongly depends on the 
concentration. The calculations were provided within linear muffin-tin orbital formalism 
in the atomic sphere approximation. Calculation data for B2 phase for different 
concentrations were used to extract the interaction parameter, V(0), for disordered solid 
solutions and were compared with the parameter treated from the X-ray scattering data. 
The concentration dependence of V(0) leads to the failure of the application of the 
regular solid solution model to the study of the phase relations in the Fe-Al system. 
Parameter V(ks), which is responsible for ordering tendency, also depends on 
concentration, and it is in accordance with the experimental data.    © 1998 John Wiley & 
Sons, Inc. Int J Quant Chem 70: 1067-1073, 1998 

Key words: Fe-Al alloys; electronic structure calculations; ordering; phase transitions 

Introduction 

Intermetallic compounds (intermetallics for 
short) have attracted considerable interest dur- 

ing recent decades because of fundamental as well 
as technological reasons [1]. The fundamental in- 
terest is mainly concern with structural instabili- 
ties of the relatively simple lattices, sometimes 
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Contract grant sponsor: German-Israel Binational Science 

Foundation. 
Contract grant number: GI-418-038.10/95. 

exhibiting cubic symmetry for different concentra- 
tions in a wide temperature range. In Fe-Al sys- 
tems the structural instabilities manifest them- 
selves in a series of phase transitions which may 
be of first or second order. Fe-Al alloys form one 
of the classical alloy systems of long-standing in- 
terest. It represents magnetic and structural phase 
transformations, which may be driven by the mag- 
netic interactions and by other factors, such as 
volume per atom, relaxation, etc. 

The increasing interest in aluminides due to 
their technological importance has recently trig- 
gered studies on Fe-Al intermetallics [2-6]. Monte 
Carlo study of Fe-Al systems was carried out by 
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Schmid and Binder in the framework of the 
Ising-Heisenberg model [7]. The energy parame- 
ters used in this work were extracted from the 
experimental data. In Ref. [8] the theoretical study 
of ordering in Fe-Al alloys based on a density- 
functional generalized perturbation method was 
performed. It was found that ordering tendencies 
in Fe-Al systems strongly depend on the underly- 
ing magnetic structure as well as the local mag- 
netic moments. Ordering tendencies show a signif- 
icant dependence on the Wigner-Seitz radius in 
the alloy. It is concluded that the concentration 
dependence of the pair interactions in the ferro- 
magnetic model is significant. 

Fe-Al alloy has a complicated phase diagram 
[9]. For equiatomic composition the paramagnetic 
disordered body-centered cubic (bcc) phase (A2) 
transfers into paramagnetic B2 phase at 1068°C. At 
the atomic fraction of iron equal to 0.75 the para- 
magnetic A2 phase undergoes at 612°C a phase 
transition to the two-phase mixture, where the B2 
paramagnetic phase coexists with the ferromag- 
netic A2 phase. Further, at 552°C, this state changes 
into a DO, paramagnetic phase which is mixed 
with a small amount of ferromagnetic A2. After 
510°C the D03 phase becomes ferromagnetic. A 
study of phase competition of these phases in a 
wide concentration range demands the concentra- 
tion-dependent effective potentials of interatomic 
interactions. The procedure described in Ref. [10] 
to estimate the parameters of the effective mixing 
potential may be realized for different phases with 
the stoichiometric composition. Taking into con- 
sideration, for example, only phases that are stable 
from the Lifshitz criterion [11] and writing down 
the formula, analogous to those represented for the 
B2 phase in the ground state, it is possible to 
evaluate the effective mixing potential for the dif- 
ferent concentrations, corresponding to the stoi- 
chiometric compositions. The equilibrium between 
coexisting phases is described by the competition 
of the mixing energy term and the entropy of 
mixing. Typically the modeling of the mixing en- 
ergy is carried out in terms of regular or subregu- 
lar solid solutions. Parameters of these models are 
phenomenological constants, but in the common 
case they may be concentration-dependent. Such a 
dependence reflects the changes of the interatomic 
interaction of alloy constituents. 

Band structure calculations based on the den- 
sity-functional theory allow to obtain a quantita- 
tive description of the ground-state properties of 

absolutely ordered alloys. Application of these 
methods to the calculations of the thermodynamic 
properties of partially ordered or random alloys is 
discussed for example in Refs. [12-14]. The formal- 
ism presented in [12] allows to derive the cluster 
variables from a series of density-functional calcu- 
lations on ordered compounds and to apply the 
theory of cluster expansions to estimate the energy 
of disordered system from first principles. In this 
case, the total energies of a number of atomic 
configurations are calculated by the ab initio 
method, after which the Connolly-Williams (CW) 
procedure is used for matching calculated total 
energies to their phenomenological expression in 
terms of multisite interactions. One may find the 
application of this approach for example in [15, 
16]. Some difficulties appear in this scheme when 
the atomic volumes of components are different. In 
this case it is impossible to calculate the inter- 
atomic interactions on the set of equilibrium vol- 
umes, because even in simple metals the equilib- 
rium is defined mostly by the contributions which 
cannot be expressed in terms of interatomic inter- 
actions (i.e., ion-electron, electron-electron inter- 
actions, exchange and correlation effects, etc.). A 
detailed review on first-principles approaches 
which are combined with the CW procedure or 
with the generalized perturbation method (GPM) 
[17] is presented in [18]. Recently a fast version of 
the linear muffin-tin orbitals-coherent potential 
approximation (CPA-LMTO) method was pro- 
posed [19] which reduces the computational time 
of electronic structure calculations for random solid 
solutions. The most attractive feature of the 
single-site coherent potential approximation (CPA) 
is the ability to apply this scheme to the direct 
calculations of the electronic structure of random 
or partially ordered alloys [14]. Applications of the 
CPA scheme show that this method allows to 
reproduce accurately lattice parameters, bulk mod- 
uli, and enthalpies of formation (see, e.g., Refs. 
[20-23] and references therein). This accuracy is 
adequate to the accuracy of the electronic structure 
density-functional methods for completely ordered 
phases. 

Hence in this work we study the concentration 
dependence of the energy parameters which de- 
scribe the stability of the disordered Fe-Al alloy 
and the phase transformation in B2 phase. Band 
structures of Fe-Al alloys at different concentra- 
tions are calculated within the CPA-LMTO proce- 
dure described in [23]. We decided to use this code 
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as the fastest scheme for the direct calculations of 
electronic structure of the alloy under considera- 
tion. With the self-consistently obtained bands we 
calculated the total energies of the completely or- 
dered B2 phase, partially ordered and random 
phases in the paramagnetic state. In the approach 
that we are suggesting in our study the description 
of the temperature dependences of the long-range 
order parameter and of the free energy of ordering 
is done according to the static concentration wave 
(SCW) theory [24]. The SCW method allows to 
take into account interatomic interactions at arbi- 
trary distances. It establishes the relation between 
the statistical theory and the Landau-Lifshitz ther- 
modynamic theory of second-order transforma- 
tions in the ordering of an alloy. This method 
provides the possibility to predict the structure of 
the ordered phase if the pairwise interatomic inter- 
actions are estimated. Thus SCW theory over- 
comes several principal difficulties of the tradi- 
tional theories of ordering [25, 26]. We combine the 
SCW theory with the first-principles calculations 
of the interatomic interaction and evaluate the 
above-mentioned concentration and temperature 
dependences. 

Study of the Energy Parameters for 
Fe-AI Alloy 

CONCENTRATION WAVE APPROACH 

The Gibbs free energy of Fe-AI alloy, G, may be 
written in the form 

:FeGFe + cMGAl + AG(cFe, cA1),       (1) 

where AG is the Gibbs free energy of mixing. This 
value depends nonlinearly on the molar fractions 
of components and may be presented by means of 
different models for solid solutions: regular solid 
solutions, subregular solid solutions, etc. AG con- 
tains the enthalpy of mixing, AH, and the excess 
entropy of mixing. For ambient pressure AH is 
practically identical to the internal energy of mix- 
ing, AH. 

Description of the temperature dependences of 
the long-range order (LRO) parameter and of the 
free energy of ordering may be performed accord- 
ing to the SCW theory [24]. In the framework of 
this theory the internal mixing energy of ordering 
phase AH may be written in terms of pairwise 

interactions 

AH=-V(0)cFe(cFe l) + ^L%2V?V(ks).   (2) 
s 

where % is the long-range order parameters that 
describe the ordering in the superstructure, and ys 

is the structural constants which depend on the 
symmetry of the ordering phase. V(ks) is the 
Fourier transform of the mixing potential V(R) = 
VFe_Fe(R) + VM_A1(R) - 2VFe_A1(R) that is calcu- 
lated for the superstructure reciprocal lattice vec- 
tors k c 

V(kJ EV(R)e 
R 

ik,R (3) 

V(0) is just the same as (3) but for k s = 0. Vectors 
k s belong to the stars of vectors which describe the 
superstructure. The summation in Eq. (3) is pro- 
duced over the stars of vectors satisfying the Lif- 
shitz criterion [11]. In the case of CsCl-type (B2) 
superstructure, for example, the vector ks that is 
responsible for the formation of this phase from 
the disordered bcc solid solution is k s = 27r/a(lll). 
As shown in Ref. [24] ys = \ for this structure. The 
vector ks defines the site occupation probabilities 
for the ordered phase that is stable with respect to 
the formation of the antiphase domains in an alloy. 
The site occupation probability, n(R), for B2 su- 
perstructure is 

n(R) = cFe + ±ve2^x+y+z\ (4) 

where x, y, and z are the coordinates of the bcc 
lattice sites. At cFe = \ and 17 = 1 this equation 
describes the completely ordered phase. With Eq. 
(3) for this k s it is easy to obtain 

V(ks) 

and 

-SV(RX) + 6V(R2) + 12V(R3) 

- 24V(R4) + 8V(R5),    (5) 

V(0) = 8V(Ri) + 6V(R2) + 12V(R3) 

+ 24V(R4) + 8V(R5).   (6) 

Here we restricted ourselves by only five coordi- 
nation shells of the Ising lattice. Now we can get 
the expression for the mixing energy of B2 phase 
in the stoichiometric composition in the form 

ALT V(R2) + 3V(R,) + 2V(K5).      (7) 
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It is obvious that this mixing energy in the ground 
state depends only on the interaction potential 
between atoms in such a binary phase. If such 
potential is known it is possible to calculate the 
temperature dependence of the long-range order 
parameter using the equation of the Bragg- 
Williams (BW) type 

In 
(1 'Fe l/2r,)(cFe - 1/27,) 

(1 - cFe + l/277)(cFe + I/277) 
WO 

kT ■n, 

(8) 

and the temperature of the order-disorder phase 
transition 

Tc = 
cFe(l cFpMkJ 

(9) 

Here k is the Boltzmann constant. Substituting 
7/(7) dependence into Eq. (2) one can immediately 
obtain the temperature dependence of the internal 
energy. 

In the framework of the SCW theory the expres- 
sion for the Gibbs free energy of mixing AG (ne- 
glecting the pü, term) is 

AG = inO)cFe(cFe - 1) + lV(ks)772 

+ |fcT[(cFe + I17) 

Xln(cFe + 577) 

+ (1 - cFe - j-q)h\(l - cFe - ^17) 

+ (cFe - 5*?)ln(cFe - \ri) 

+ (1 - cFe + |77)ln(l - cFe + |TJ)].   (10) 

The values of V(0) and V(ks) may be obtained 
from diffuse X-ray scattering data as discussed in 
Ref. [27], where V(0) is constant [ V(0)/k = 5800 K] 
while V(ks) depends on concentration (see Fig. 1). 

Concentration dependence of V(ks) leads to the 
substantial change in the temperature dependences of 
LRO for different concentrations. Turning to Eq. (8) 
with obtained values V(ks) we may study the 
influence of the concentration dependence of V(k s) 
on the temperature dependence of the long-range 
order parameter 77. Results of calculations of the 
temperature dependence of the long-range order 
parameter for different concentrations of iron in B2 
Fe-Al phase are presented in Figure 2. Bold lines 
in this figure are plotted for the constant value 
V(kg) = -5400 K. Even slight change of V(ks) 
values with concentration detected in experiment 

0.6 0.7 0.8 
atomic fraction of Fe 

FIGURE 1. V(0) and V(ks) from Ref. [22] vs. 
concentration. V(0) is a constant value and is given by a 
dashed line. V(ks) values are presented by squares and 
the extrapolation of the experimental data is shown by 
the bold line. 

moves these dependences to the lower tempera- 
ture region. 

NONEMPIRICAL CALCULATIONS 

The selection of the interaction parameters of 
SCW V(0) and V(ks) may be carried out by the 
fitting of the V(R) to the volume dependence of 
the mixing energy. The choice of the functional 
dependence of V(R) for this fitting has some free- 
dom and, for example, in our work [28] it was 

200 400 600 800       1000 
temperature, K 

1200  1400  1600 

FIGURE 2. Temperature dependence of the long-range 
order parameter for different concentrations of iron with 
(dashed lines) and without (bold lines) concentration 
dependence of V(ks). Atomic fractions of iron 0.5, 0.6, 
and 0.7 are shown as squares, circles, and triangles, 
respectively. 
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selected as the Morse-type function. The alterna- 
tive way is to calculate the mixing energy for the 
B2 phase in the form 

AÜ = ^(0)cFe(cFe - 1) + lV(ksW.    (11) 

For the completely disordered phase (A2) the 
long-range order parameter TJ equal to zero and 
we calculate the concentration dependence of V(0) 
from the nonempirical CPA-LMTO calculations of 
the mixing energy. 

From a series of CPA-LMTO calculations for B2 
and A2 phases with different volumes per atom 
we calculated the equilibrium states for differ- 
ent concentrations. The calculations have been 
performed in the scalar-relativistic approach 
with the Perdew-Zunger parametrization of the 
exchange-correlation potential [29]. Core electrons 
were frozen after initial atomic calculations. All 
calculations were done in the framework of the 
atomic sphere approximation (ASA) [30]. In all 
calculations the individual atomic sphere radii 
were set equal to the radius of the average atomic 
Wigner-Seitz sphere of the alloy. The convergence 
criteria for the total energy was 0.001 mRy. The 
equilibrium lattice parameter and corresponding 
ground-state energy of a given alloy were obtained 
on the basis of a set of self-consistent calculations 
of the total energy close to the equilibrium lattice 
parameter with a fit to a Morse-type equation of 
state [31]. The integration over the Brilloin zone 
has been performed with the special points tech- 
nique. 

The resulting values of V(0) for different atomic 
fractions of iron are shown in the Figure 3. Calcu- 
lated values are marked by squares on this plot. 
The straight line illustrates the linear tendency of 
the y(0) concentration dependence if we consider 
only values of V(0) for atomic fraction of iron less 
then 0.7. Assuming such a linear dependence of 
y(0) vs. cFe we obtain a change of the sign of V(0) 
for cFe = 0.75. The expression f^(0)cFe(cFe - 1) 
represents the mixing energy in absolutely disor- 
dered solid solution (rj = 0). The change of the 
sign of the mixing energy leads to decay of the 
solid solution. After calculation of V(0) for few 
values of cFe > 0.7 we see the change of the char- 
acter of the concentration dependence of V(0), 
which remains negative. This result is in a contra- 
diction with the treatment of diffuse X-ray mea- 
surements [27]. In this work the absence of the 
V(0) concentration dependence was assumed on 

0.05 

-0.02 

a"-0.09 

f--0.16 

-0.23 

-0.3 

y'' 

s" 

■ 

m 
' m        m 

\\ 

0.4 0.5 0.6 0.7 
atomic fraction of Fe 

0.8 0.9 

FIGURE 3. Nonempirically calculated values of the 
energy parameter V(0). Calculated values are shown by 
squares. The straight line shows the tendency of the 
concentration dependence of V(0). 

the basis of the analysis of the data close to the 
pure Fe side of the phase diagram. Taking few 
right points of the plot we also can see very slow 
dependence of V(0) on the concentration. 

The data on V(ks) may be received from the 
calculations of the mixing energy for the com- 
pletely ordered B2 phase. Using Eq. (11) we simply 
subtract from these mixing energy values the term 
with the calculated data of V(0) for the completely 
disordered phase. In these calculations we used 
the maximum value of the long-range order pa- 
rameter 17 for each concentration. We put nonem- 
pirically calculated values V(ks) into Eq. (9) and 
compare concentration dependences of the temper- 
ature of order-disorder transition with the values 
obtained on the basis of experimental data [27]. 
The experimental data is shown in Figure 4 by 
triangles. The slope of the calculated and experi- 
mental curves is approximately the same. 

Summary 

In this study we carried out CPA-LMTO calcu- 
lations of the mixing energy for Fe-AI system in a 
wide concentration range. We discussed the possi- 
ble schemes of calculations of the energy parame- 
ters V(ks) and V(0), which determine the thermo- 
dynamic properties of absolutely disordered A2 
phase and ordering B2 phase. We calculated these 
parameters and used the obtained data to study 
concentration dependences of the temperature of 
order-disorder phase transition in B2 Fe-AI. The 
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0.35 0.45       0.55       0.65       0.75       0.85 
atomic fraction of Fe 

0.95 

FIGURE 4. Comparison of calculated values (squares) 
and extracted from the diffuse X-ray measurements 
(triangles) of Tc / 7c

max dependences on the atomic 
fraction of iron. 

results show that V(ks) vs. concentration depen- 
dence change the temperature dependence of 17 for 
different concentrations. This means, by the way, 
that Tc is not a parabolic function of the concentra- 
tion [see Eq. (9)]. This result is an extension of the 
Bragg-Williams description of second-order phase 
transition and explains the possibility of existence 
of a nonsymmetric behavior of Tc(c) even for the 
ordering phases with equiatomic stoichiometric 
composition. V(0) is also obtained concentration 
dependent and shows thus that the phase equi- 
librium in disordered Fe-Al systems cannot be 
described in the simple model of regular solid 
solutions. 

An important result of our study is that the 
energy parameters V(0) and V(ks) are intimately 
linked with the interatomic interaction potentials 
and their concentration dependence reflects the 
concentration dependence of interatomic interac- 
tions in alloys. These results support the study of 
short-range order properties for Al-transition 
metal alloys performed in Ref. [32]. Although the 
concentration dependence of V(ks) in the region 
of disordered Fe-Al solid solutions was already 
discussed in [30], its application to Bragg-Williams 
approach means some effective account of correla- 
tions when the ordering process for different con- 
centrations is considered. The dependence V(0) on 
concentration was not obtained in experimental 
studies. Perhaps it was a sequence of the very 
narrow concentration range of alloys investigated. 
Nevertheless this dependence may be of principle 
importance because it shows the deviation from 

the model of regular solid solutions, still widely 
used in the study of the phase competition. 
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ABSTRACT: Some molecular systems for a charge-mediated superconductor are 
proposed from the viewpoint of the metallic side and the insulator side. An approach to 
the charge-transfer (CT) model is presented. Expressions of the effective electron-electron 
interaction in the charge-fluctuation models is also derived by a field-theoretical approach. 
© 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 1075-1084, 1998 

Introduction 

The superconductivity in usual metal has been 
well explained by the BCS theory [1-6]. 

Characteristic electrons in the metal are described 
by the free fermion gas model, for the electron 
correlation effect is small. The electron-electron 
interaction becomes attractive through the elec- 
tron-phonon interaction in this case. On the other 
hand, the high-temperature superconductivity has 
been realized in copper oxides [7] with an appro- 
priate hole concentration. The copper oxides are 
antiferromagnetic insulators before doping. Elec- 
trons in the antiferromagnetic insulator are local- 

Correspondence to: H. Nagao. 

ized at the copper atoms because of strong elec- 
tron-electron interaction. The electron correlation 
is found to be still strong [8] even if the medium 
becomes a metallic conductor after doping holes. 
The high-temperature superconductivity in copper 
oxides is, therefore, intrinsically related to the elec- 
tron correlation. The high-Tc copper oxide has been 
investigated by many approaches [9-24]. 

The discovery of high-Tc copper oxide sug- 
gested the idea that doping in an antiferro- or 
ferromagnetic system, more generally, molecular 
charge-transfer (CT) insulators, may provide sev- 
eral exotic electronic phases [25-27], which are 
as follows: (1) a ferromagnetic metal or insulator; 
(2) spin glasses; (3) a paramagnetic metal; (4) an 
antiferromagnetic metal; (5) a ferrimagnetic metal 
or insulator; and (6) a charge- or spin-mediated 

International Journal of Quantum Chemistry, Vol. 70, 1075-1084 (1998) 
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superconductor. From these works, we have there- 
fore started our theoretical attempts to search for 
possible models for charge- or spin-mediated su- 
perconductivity and have presented the hypothe- 
ses about the possibilities of the superconductivity 
in the intermediated region of the metal-insulator 
transition in a previous article [28]. 

Concerning charge-mediated superconductivity, 
the introduction of charge fluctuation from the 
metallic side was already examined by Little [29] 
in the case of conductive polymers. On the other 
hand, the possible role of the CT excitation from 
the non-magnetic insulator side in the intermedi- 
ate region of metal-insulator transitions has not 
been elucidated yet. 

In this article, we propose some molecular sys- 
tems, which may be the charge-mediated super- 
conductor and the CT models from the viewpoint 
of the metallic side and the insulator side. We also 
present a Hamiltonian for the CT model. The po- 
larization properties of the models were investi- 
gated by the field-theoretical approach. In the 
charge-fluctuation model, the effective electron- 
electron interaction through the CT or the exciton 
is derived. 

General Discussion 

Two possible approaches to charge-mediated 
superconductivity are illustrated in Figure 1. Sev- 
eral approaches from the metallic side in Figure 1 
were performed by Little et al. [29-39]. In this 
section, from two viewpoints, from the metallic 
and nonmagnetic insulator sides, some models 
which may be charge-mediated superconductivity 
are proposed. 

POLYMER NETWORK SYSTEM 

Little [29] considered a molecule consisting of 
two parts: a long chain called the spine in which 
electrons fill various levels and might or might not 
be a conducting system, and, second, a series of 
atoms or side chains attached to the spine as shown 
in Figure 2. He assumed that the spine was a 
conjugated chain of double and singlet bonds res- 
onating between the two at each link. This corre- 
sponds, in the band theory of a metal, to a band 
which is half-filled and ideally is a metallic con- 
ductor. The individual side-chain molecules were 
chosen so as to have a low-lying excited state such 

Exciton model 
(Charge-fluctuation 

model) 

FIGURE 1. Two approaches to obtain charge-mediated 
superconductors in the intermediate region of the metal - 
insulator transition. 

that transition from the ground state to its excited 
state corresponds classically to an oscillation of 
charge from end to end of the molecule. This can 
provide an interaction between the electrons mov- 
ing in the spine. If the interaction is sufficiently 
attractive, we have a necessary condition that the 
superconducting state results. 

On the other hand, in the spin-mediated system, 
Hirsch and Scalapino pointed out a strong-coupling 
mechanism of high-Tf superconductivity expected 
for weakly coupled double-valence fluctuating 
molecules [40, 41]. Strongly or intermediately elec- 
tron-correlated systems have received continuous 

Spine 

Side chain 

e 

+ - 

e 

FIGURE 2. An infinitely long conjugated chain molecule 
(spine) substituted by dye molecules (side chain). The 
electron passing through the spine polarizes the side 
chain. 
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interest in relation to both magnetism and 
(super)conductivity. 

First, from this analogy, we propose a charge- 
fluctuation model instead of the Little model. The 
model systems have the charge transferring from 
the spine (side chain) to the side chain (spine) as 
shown in Figure 3(a). The side chains consist of 
donors or acceptors. This model is different from 
the Little model in relation to the CT. 

Next, we present a model from the metallic side 
to extend the Little model. The model system 
consists of the spine and the side chain with the 
interaction between side chains as shown in Figure 
3(b). The side chain is a zwitterionic structure of 
the A-B-C species. In the next section, we present 
a model for the polymer network system (see 
Fig. 7). 

CRYSTAL SYSTEM 

Recently, several types of molecular magnetic 
compounds were synthesized and their magnetic 
properties were thoroughly investigated [42, 43]. 
Fujiwara et al. [44] designed new types of fer- 

romagnetic or ferrimagnetic polymers composed 
of heteropoly transition-metal tetrathiolates 
[poly(MlTM2); T: tetrathiolates] on the basis of 
the orbital-symmetry rules for superexchange cou- 
plings of unpaired electrons via anionic lig- 
ands, which have been derived from previous ab 
initio calculations of the binuclear complex 
(HS)2M1TM2(SH)2 [45]. Spin-fluctuations also play 
important roles in spin-mediated exotic materials. 
Theoretical results are utilized for the molecular 
design of ferromagnetic metals, dense Kondo and 
spin-mediated superconductors composed of the 
segregated columns of trinuclear complexes 
(L)2M2TM1TM2(L)2 (L = proper ligand) [46]. The 
isologous analogy among these inorganic systems 
and TTF derivatives with radical groups are clearly 
shown on the basis of the Anderson-type Hamilto- 
nian. 

We present charge-fluctuation models instead 
of spin-fluctuation models of TTF derivatives as 
shown in Figure 4. The models consist of donors 
and acceptors instead of isoelectrons. The systems 
have the CT between the conducting sites and the 
local charge sites of the donors or acceptors. 

Sp. 

4 
■*■' 

ne 

4 

+ ^3. 
V 

e 

A 

Side chain Side chain 

- >■ 

▼ 

4 

+ 
\ 

e 

4 

- 

Acceptor 

+ 
i 

Donor 

(a) 

Spine 

(b) 

!        Side chain              ! 

+ 

e 

> 

f                                                     N i 

+ 
e ) 

\ 

*                                                      > 

< 

+ 
i t                                                       i * 

FIGURE 3. CT polymer network models, (a) depicts a model which consists of the spine and the side chain with the 
CT between the spine and the side chain. The electron transfer is illustrated as arrows. In (b), another model interacting 
between side chains is shown. 
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        Bs_. -^B^ 

(a) (b) 

M 

L= Donor or Acceptor 

(c) (d) 

L =   Donor  or  Acceptor 
(e) 

FIGURE 4. Crystal systems for charge transfer model. In (a -c), the systems consist of zwitterionic structures, and the 
dotted lines mean the through space electron transfer. In (d, e), L is a donor or an acceptor. 

Finally, we propose composite systems consist- 
ing of the polymer network and crystal systems as 
shown in Figure 5. We also present some models 
for the crystal system in the next section (see 
Fig. 7). 

General Theory for Charge-mediated 
Superconductivity 

Little's calculation was criticized by Paulus [30] 
using two points:  (1) Little  used the screened 

Coulomb interaction for the electron-electron in- 
teraction in the unsaturated spine, but this is not 
the case. Attractive coupling of two electrons in 
the spine, if it occurs, results when one of them 
polarizes the charge distribution in a side chain 
and then the second one is attracted to the result- 
ing excess of positive charge near the spine. How- 
ever, since this polarization is an electronic effect, 
the distorted charge distribution will relax very 
rapidly back to the undistorted one, so that the 
second electron must be very close, in both space 
and time, to the first one in order to feel any 
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Spine 
4\   /c" 

../ 

V C 
(a) 

A C 

Spine 

/. 

(b) 

Spine 

Spine 

(C) 

FIGURE 5. Composite models for the CT model, (a, b) show the system which consists of a spine and zwitterionic 
side chains. The electron transfers between the spine and the side chains through space, (c) illustrates the system of 
spines and donors / acceptors. 

appreciable effect due to the distortion. The spine 
electron will move at velocities comparable to those 
of the substituent electrons, so that there will be no 
time to screen the Coulomb repulsion of the two 
spine electrons before the distortion in the side- 
chain charge distribution disappears again. (2) Lit- 
tle used two opposite point charges at the ends of 
each side chain to represent its polarized distribu- 
tion. This is a large overestimation of the effective 
polarization and of the consequent coupling be- 
tween the spine electrons. Paulus concluded that it 
is unlikely that any substituent can be found which 
provides sufficient coupling between the spine 
electrons to make overall interaction attractive. 

As to the second point, Salem [32] pointed out 
that it was possible, at least in principle, to build a 
side-chain molecule in which the transition density 
was effectively localized at the ends of the 
molecule; in other words, Little's estimate would 
be reasonable. Further, he showed that, due to the 
resulting large coupling, the superconducting state 
will be possible, if other conditions are met. 

In this section, we present a Hamiltonian in the 
model system as shown in figure 3(a) in the previ- 
ous section. Differences between the Little model 
and our CT model will be clearly shown. 

HAMILTONIAN 

The total Hamiltonian for a many-electron sys- 
tem in the CT model as shown in Figure 3(a) is 
written as 

H = HS + H?nt + H> + U\ni + H"b + H&,  (1) 

where 

HS=   E h'rsa\aatal (2) 

1 
H?ttt = - E  E^r««tp«„„   O) 

r, s, t, u cr,p 

Ho=   E Ksblbsa, 
r, s, a 

(4) 
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Hb   = —    V     V V"pl"Tb1: tf b   b d) ninl ry       l—i        I—,   vrslu    ur,ruspulf>uliir ' ^J' 
r, s, I, u (T, p 

Hab =   E trs[albsa + blaslT], (6) 
r, s, (7 

H°!;< =   L   E cr«L b\pKa»° + 12 terms- 
r , s, t, u <r, p 

(7) 

The first and second terms are the Hamiltonian for 
the spine and the third and fourth terms describe 
the side-chain part. Other terms imply the mixing 
terms between the spine and side-chain parts. a\lT 

(arir) is the creation (annihilation) operator for the 
r-th site with spin a in the spine. b]lT (bra) is that 
for the side chain. 

In the next subsection, we study the possibility 
of the charge-mediated superconductivity in rela- 
tion to the effective electron-electron interaction in 
two cases of the charge-fluctuation model and the 
CT model. 

CHARGE-FLUCTUATION MODEL 

For the charge-fluctuation model as for the Lit- 
tle model, the Hamiltonian, HCF, is derived from 
Eq. (1): 

HCF ~ Ho + Ho + H"nl, (8) 

where other terms in Eq. (1) are ignored. The 
Hamiltonian for the many-electron system in the 
spine is rewritten as 

where 

H - H0 + H„„, 

H0 = Iei«l«((r, 

(9) 

(10) 

with 

(iajß\kßla)=fdr1dr2<l>fa(ri)<l>fß(r2)V(rur2) 

X <t>kß(r2)4>la(rj-   (13) 

The effective electron-electron interaction, 
V(rv r2, w), satisfies the following integral equa- 
tion: 

V(rl,r2ta>) = V0(|r, - r2\) 

+ ffdrdr'V0(\ri -r\) 

X 7r(r,r',(o)V(r',r2,w),   (14) 

where V0(\r^ - r2\) is the bare potential and 
Tr(r, r', a>) is the frequency-dependent polarization 
part or the irreducible particle-hole propagator. 
This equation is usually represented diagrammati- 
cally as shown in Figure 6. All the coordinates 
assume N discreet values, so that the equation 
may be written in the matrix form as 

V(co) = V0 + V0TT(CO)V(U). (15) 

Therefore, the effective interaction becomes 

v = [i -yn7r]~V0. (16) 

We divide this into two parts, P and Q. The 
former refers to the spine, and the latter, to the 
side chain. Then, Eq. (16) becomes 

VP V, PQ 

vt QP V, QQ 

1 - 
M)PP       "oPQ 

V0QP       V0QQ 

77 PP 

TT, QP 

PQ 

QQ 

X 
VQPP       VQPQ 

VQQP     VOQQ 
(17) 

Hinl = - E     E   Tffisa]JjßWiB- (ID 
i, j, k, I a, ß, y, d 

The first and the second terms imply the kinetic 
and the interaction parts, respectively. a]a (ajtT) is 
the creation (annihilation) operator for the f-th 
orbital with spin a. T is the bare vertex part: 

rffis={iajß\kyl8)8ag8ßli 

- (iajß\18ky)8aySßl>,    (12) 

MWAWAWAV 
—^      ww\Mww ""r     IAAAAAAAA^AC- 

FIGURE 6. The Dyson equation for electron-electron 
interaction and the approximation for the polarization 
part. 
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The effective electron-electron interaction in the 
spine is written as 

Vpp = [1 ~~ VOPP^PP ~~ VOPQ'KQP 

-(V0pplTpQ +  V0pQTTQQ) 

X(! - VOQP^PQ - ^OOQ^QQ) 

X(V0QpTTpp + V0QQ7TQp)\ 

X [Vopp + (VoppTTpQ + VopQ1TQQ) 

XQ - V0Qp1TpQ - V0QQ7TQQ)     v0QP\. 

(18) 

Without Charge Transfer Between Spine and 
Side Chain 

To proceed further, we assume that 17PQ = TTQP 

= 0, which implies that the CT between the spine 
and the side chain is neglected. There is a single 
bond between them. We get 

Vpp= [l- V0ppTTpp 

-v, :>(! _ ^ooo^oo)    vo r 0PQ"QQyx       v0QQ"QQ'      "0QP"PPJ 

x[y0PP+y0PQ7rQQ(i-y0QQ7rQQ)   v0QP\. 

(19) 

If we restrict ourselves to retain the first-order 
term with respect to TQQ, we get 

^Little = (1  ~~ ^OPP^PP'      ^OPP + ^0PQ7rQQ^0QP' 

(20) 

which is the Little approximation. The first term in 
Eq. (20) may be positive. The first term implies the 
screened Coulomb interaction in the spine. The 
second term will be negative through the exciton 
in the side chain. In the Little approximation, the 
effective electron-electron interaction may be neg- 
ative in an appropriate model. On the other hand, 
in the approximation of Eq. (19), it is unlikely that 
the effective interaction becomes attractive [33-35]. 

We consider that the polarization TTQQ is large 
in Eq. (19). The second factor in the right hand of 

Eq. (19) is rewritten as 

^OPP + V0PQ77QQ^ ~ ^OQQ^QQ)      
V0QP 

= V0PP + V0PQ(TTQQ - V0QQJ    V0QP   (21) 

=   V0pp VQPQVQQQVQQP. (22) 

If the second term is larger than the first term, this 
factor becomes negative. Therefore, in the infinite 
limit of the polarization TTQQ, the effective interac- 
tion in Eq. (19) becomes 

V, pp [1-Vl OPpTTpp +   VQIPQVOQQVGQP 

X[^0PP        ^OPQ^OQCT OQPJ •     '23) 

In the small polarization, the effective interaction 
will also become positive. 

It is found that although in the Little approxi- 
mation the effective electron-electron interaction 
is negative it becomes positive in Eq. (19) by the 
field-theoretical procedure because of the small 
polarization, TTQQ, in the side chain consisting of 
the organic system. Thus, we are inclined to con- 
clude that the organic superconductor is unlikely 
to occur at this stage. 

With Charge Transfer Between Spine and Side 
Chain 

We consider the CT between the spine and the 
side chain. When the polarizations of TTPQ are 
large, the second factor on the right-hand side of 
Eq. (18) 

Vopp +  (V0ppT7-pQ +  V0pQ7TQQ) 

X(l - VQQP^PQ ~ ^OQQ^QQ)      
V0QP 

approximately becomes 

~V0PQ7TQQ7rPQ- (24) 

Thus, the effective electron-electron interaction is 
written as 

V
PP 

= ~[1 _ \
V

OPQ ~ VOPP
V

OQP
V

OQQ)'
7T

QP 

+ y0PQ'n'QQ'n"PQ(7rPP + VÖQPVOQQTQP)] 

X V0PQ7rQQ7rPQ> 

where 

"QQ ^ ^PQ- 

(25) 

(26) 
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It may be attractive in the polymer system with 
the CT between the spine and the side chain. 

From the viewpoint of the possibility of the 
organic superconductor, the sign of the interaction 
is essential. When the CT between the spine and 
the side chain is larger than that in the side chain, 
the effective interaction of Eq. (25) may be attrac- 
tive. 

Although the polarizations of TTPQ and TTQQ are 
very small, the effective interaction in this case 
may be negative: 

VP0 = [1-V. 

X[V, OPQ 

^0PQ7rQpJ 

0PP
7T

PQV0QQ + ^0PQ7rQQ'/0QQJ- 

(30) 

0PP"PP 

+ VnppTTpnV, 

Another Charge-fluctuation Model 

Next, we consider the charge-fluctuation model 
as shown in Figure 3(b). In this system, electrons 
transfer between the side chains and between the 
spine and the side chain. The Hamiltonian, HCF2, 
is derived from Eq. (1): 

WCF2 = t„ E a\aasa + tb E b}abjo 
r, s, a i, jcr 

+ Kb E [a\abia + b]aara] 

+ _    y    r,"TPat a* a   a 
r, s, a, p 

+ -    Y   Tbaptf tf b- b- 
i,l,a- ,P 

+ -    E    TT'P""a\ab]pbipara.    (27) 
r, i,a, p 

Here, we consider that the transfer between the 
spine and the side chain is small: 

t„ » t„bf h » tab- (28) 

The effective electron-electron interaction, VPQ, 
between the spine and the side chain is then writ- 
ten as 

VPQ ~ [^ ~ V
OPP

7T
PP ~ VOPQ^QP 

~("OPP'
TT

PQ 
+ VQPQ'KQQ' 

X(l _  V0QP7TPQ ~ VOQQKQQ) 

X(V0Qp7Tpp + V0QQ7TQp)J 

X[^0PQ + (V0PPTTPQ +  VOPQ'KQQ) 

xd - VQQP^PQ - V
OQQTTQQ)  

1
V0QQ\- 

Because the second term in the second factor on 
the right-hand of Eq. (30) becomes largely nega- 
tive, the effective interaction of electrons between 
the spine and the side chain will be attractive. If 
the attractive part is over a longer time scale than 
the short time scale repulsion, they will form a 
dielectron pair with a very short lifetime. In this 
case, we will have the gapless superconducting 
state as (TMTSF)2X. 

From these estimations for the charge-fluctua- 
tion system, we present some models for the poly- 
mer network and the crystal systems as shown in 
Figure 7. Figure 7(a) shows a polymer network 
system which consists of two spines connected 
with side chains. L in Figure 7 means a side chain 
of a donor or an acceptor. Crystal systems are 
illustrated in Figures 7(b-d). The series of M corre- 
spond to conducting part connecting with side 
chains. We chose the conducting part as BEDT-TTF 
or TMTSF or Ni(dmt)2. In these cases, the effective 
interaction between electrons in each spine may be 
attractive. 

CHARGE-TRANSFER MODEL 

In the CT model, the total Hamiltonian is writ- 
ten as Eq. (1). This Hamiltonian reduces to the 
Anderson Hamiltonian: 

H
CT = t„ E a\aasa + tb E b]nbja 

r, s, <T i, ja 

(29) 

+ *ab   E    [«lAa+blara] 

'    A   i—ilr uraur-(r"r-<TUr 

+ -y^-'rbibi„bi^bi(T.   on 

The solution of the Hamiltonian of Eq. (31) should 
be studied by the nonperturbation theory. Unfor- 
tunately, we cannot analytically solve the equa- 
tion. If the superconducting state occurs in such 
system, we expect the high-Tc  charge- or spin- 
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m-<M>-m 

X^H: 

(a) (b) 

[3><M>-m-<M>-CT; 
1 ■ 
1 I 

I^><5>£T><5>-CX>CM>-C 

T~l—c'jPV-l L K^M^-y-TT" 
• ; i i ■ 

(c) (d) 

^■OO-OO m L        =    donor or acceptor 

CS3-     0-0        CD- 00 

(e) 

Ni(dmt)2 

FIGURE 7. Some possible models of polymer network and crystal systems for the superconductor. 

mediated or charge plus spin-mediated (namely, 
cooperative mechanism) superconductivity. 

Concluding Remarks 

We propose some molecular models which may 
be the charge-mediated superconductivity. The 
models are classified into the polymer network 
system, the crystal system, and the composite sys- 
tem. These models are different from the Little 
model. The models have the CT between the spine 
and the side chain. A Hamiltonian for the CT 
model is also presented. 

We provide a Hamiltonian for the charge- 
fluctuation model, and the effective electron-elec- 
tron interaction in the spine for the charge-fluctua- 
tion model is also derived. We point out that the 
CT between the spine and the side chain is impor- 
tant in the model systems and that the effec- 
tive interaction will be attractive in such models 
with the CT between the spine and the side chain. 
If the attractive part is over a longer time scale 
than the short time scale repulsion, the state will 
exhibit the superconductivity. The bandwidth ef- 
fect and the consideration of the dynamic polariza- 
tion are future problems in the course of our 
treatment. 
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ABSTRACT: The preferable carbon occupation in copper-based solid solutions is 
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analysis of electronic density distributions for different interatomic distances, supercell 
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T 

the increasing interest in composites as structural 
Introduction materials and conducting materials for modern 

micromachinery devices, understanding the ten- 
dencies of formation and bonding in such solid 

he study of solid solutions that are usually        solutions gives a powerful tool for the design of 
formed in interface regions of composite ma-        new technologically important materials [1]. The 

terials is not only an academic problem: Because of        problem of stability of copper-carbon solid solu- 
tions is significant for the development of modern 
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possibility of developing improved high-tempera- 
ture strength. Addition of particulate graphite to 
copper matrices permits considerable improve- 
ments in tribological properties. Thus copper- 
carbon composites see regular application in slid- 
ing electrical contacts applications. 

Carbon is insoluble in copper up to very high 
temperatures; its solubility does not exceed 0.02 
at %. Thus a problem of wettability of carbon 
fibers by copper arises. This wettability is extraor- 
dinarily small [4] and does not allow one to fabri- 
cate the composite material. So the interface bond- 
ing in copper-carbon composites is extremely 
weak [5]. Formation of very dilute Cu-C intersti- 
tial solid solution at the interface may be diffusion 
controlled. 

Study of copper-carbon solid solutions formed 
at the interface between the copper host and car- 
bon fibers [6] shows that the interface region in 
these composites is very narrow and does not 
exceed 100 nm. The experimental investigation of 
the properties of these interfaces is a complicated 
task. This is why theoretical studies of interface 
alloys have to be appreciated. The modeling of 
diffusion of interstitial carbon atoms may be a 
unique opportunity in the understanding of cohe- 
sion and wetting at copper-carbon interfaces [7]. 
To predict the diffusion behavior of carbon atoms, 
we have to study the structure and interatomic 
interactions in such alloys. 

In this study we focus on nonempirical embed- 
ded cluster and supercell studies of the structure 
of the interstitial Cu-C solid solutions. However, 
the experimental data on these solutions are very 
limited, and it would be very attractive to produce 
comparative study of Cu-C alloys by nonempiri- 
cal density functional embedded cluster and su- 
percell schemes. 

Methodology 

Density functional (DF) theory is a first-princi- 
ples self-consistent approach to electronic struc- 
ture, which has wide applications to molecules 
and solids [8]. Even the crudest approximation, 
local density approximation (LDA), to the density 
functional theory has been successfully applied to 
predict structural and dynamical properties of a 
large variety of materials. Equilibrium volumes, 
elastic constants, phonon frequences, surface re- 
construction, and magnetism are just some exam- 

ples of properties which could be successfully cal- 
culated for systems without particularly strong 
electron correlations within the LDA (an LSDA, 
the local spin-density approximation). The LDA 
usually leads to some overbinding in solids (equi- 
librium volumes are typically 1-3% underesti- 
mated). Considerably larger errors are found in 
cases where the LDA is not sufficiently accurate; 
the ionic compounds like MgO serve as examples 
when the simple LDA fails. 

In order to study the effects of chemical bond- 
ing in copper-based solid solutions on the elec- 
tronic density distributions we model different 
Cu-C lattice cells and calculate electronic density 
distributions based on the linear muffin-tin Or- 
bitals (LMTO) [9] and discrete variation method 
(DVM) computer codes. Such a study is based on 
the analysis of electronic density distributions for 
different interatomic distances, supercell configu- 
rations, and compositions of carbon. Changes in 
the concentration will lead to two results: 

1. Changes of the positions of atoms in the 
supercell, i.e., the reconstruction of the cell 

2. Changes in the character of the bonding forces 

Our own development of the embedded cluster 
scheme permits a spatially localized expansion of 
electronic wave functions, densities, and derived 
properties by treating fragments of the extended 
system [10]. This approach gives a feasible 
methodology for self-consistently treating large 
systems with low symmetry, and is thus particu- 
larly well suited for problems of impurities, sur- 
faces, and interfaces [11]. Extraction of the interior 
"seed" volume of each cluster, and alignment of 
equivalent partial densities of states (equivalent 
Fermi energies) completes the self-consistent frag- 
ment matching procedure. The DF wave functions 
for each embedded cluster are obtained by the 
well-developed discrete variational (DV) method 
[8], using the DF potential derived from the total 
electronic density. 

LMTO even in the crudest atomic sphere ap- 
proximation (ASA) approach is a well-established 
technique to study metals, alloys, and also per- 
ovskites and different phases with sometimes non- 
trivial very complicated structures (see, e.g., Refs. 
[12-14]). In recent years it was successfully ap- 
plied to the study of surface alloys (see, e.g. [15]). 
In the case of dilute alloys the properties of Fe 
embedded in V and Cr matrices was successfully 
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studied [16]. It seems that today this scheme is one 
of the most promising techniques in band struc- 
ture studies due to the ability to calculate very fast 
electronic structures for various crystal lattices. 

Study of Bonding in Cu-C Solid 
Solutions 

SUPERCELL CALCULATIONS 

In Ref. [17] the interatomic Cu-C potential was 
used to calculate the carbon atom energies in dif- 
ferent interstitial (octahedral and tetrahedral) posi- 
tions, u0 and ut, respectively. Interactions in the 
first- and the second-coordination shells were ac- 
counted for in these calculations. The energies u0 

and ut were used to study the temperature depen- 
dence of the relative concentrations c0 and ct of 
carbon in octahedral and tetrahedral positions. 
These results show clearly that the probability of 
finding carbon atoms in octahedral positions is 
much higher than in tetrahedral ones. Only after 
heating over a temperature T ~ 1000 K the occu- 
pation probability of octahedral positions de- 
creases to 80% and tetrahedral positions will be 
occupied by 20% of atoms. Thus we are convinced 
to use the model of the interstitial occupation of 
carbon atoms in Cu-C solid solution with the 
carbon atoms randomly situated in octahedral po- 
sitions. This model is valid up to T ~ 1000 K. 

The LDA calculations for Cu-C supercells (tet- 
rahedral and octahedral occupation of carbon atom) 
with 20% carbon concentration performed in the 
framework of LMTO formalism [9] yield an equi- 
librium lattice parameter for tetrahedral occupa- 
tion 5.21 a.u. and for octahedral occupation 7.12 
a.u. The octahedral occupation was modeled in the 
cubic supercell with carbon situated in position 
a{0.5,0,0} and copper atoms in positions «{0,0,0}, 
«{0.5,0.5,0}, «{0.5,0,0.5}, and «{0,0.5,0.5}. The te- 
trahedral supercell differs by the position of a 
carbon atom, which is put in the position 
«{0.25,0.25,0.25}. 

The calculated density of states (DOSs) for both 
types of supercells are shown on the applied Fig- 
ures 1 and 2. Fermi energy for supercell with a 
carbon atom in octahedral position (O) is much 
less than for the tetrahedral occupation (T). The 
differences in DOSs are mainly expressed in p- 
band occupation. We can see that in O-case p-band 
is unoccupied and is much narrower than in T-case. 
The   p-band  in T-case  supercell  simulations  is 

highly smashed. Positions of main p-band peaks 
of carbon and copper in O and T occupation coin- 
cide. The lower p-band peak positions in T- and 
O-cases are situated at distances 0.3 and 0.45 Ry 
under Fermi energy, respectively. These data were 
a basis of the chemical bonding study in DVM 
formalism, as we supposed that the lower position 
of p-band in O-sites shows the tendency to forma- 
tion of weak chemical bonding. 

We calculated the equation of states for O- and 
T-occupations. These equations are plotted in Fig- 
ures 3(a) and 3(b), respectively. The equilibrium 
tetrahedral supercell is much more compressed 
than the octahedral one. In Figure 4 we show the 
dependence of the equilibrium lattice parameter in 
Cu-C solid solution with octahedral occupation of 
carbon on the displacement of the carbon atom 
along the path {0.5-x, x, 0}. This path represents 
the diffusion path of the interstitial atom between 
two nearest interstitial positions in face-centered 
cubic (fee) copper host lattice (see Ref. [17]). Our 
results show the minimal value of the lattice pa- 
rameter of the cell with the displaced carbon atom. 
This displacement is x = 0.02 and reflects the weak 
bonding of carbon in this off-center position. As 
will be shown later, this result correlates very well 
with the calculations of a charge redistribution in 
the vicinity of displaced and nondisplaced intersti- 
tial carbon atom in the copper host matrix. In 
Figure 5 we present the data for the calculated 
dependence of the lattice parameter in Cu-C solid 
solutions vs. atomic fraction of carbon. This depen- 
dence was modeled by inclusion of additional car- 
bon atoms in the previously described supercell. In 
our simulations these carbon atoms occupied 
«{0.5,0.5,0.5}, «{0,0.5,0}, and «{0,0,0.5} additional 
sites in the cubic cell. The increasing number of 
carbon atoms in the supercell allowed us to calcu- 
late the energies and the lattice parameter for the 
following atomic fraction of carbon: \, f, and \. 
The last concentration corresponds to the total 
occupation of octahedral positions in fee lattice. 
The lattice parameter vs. atomic fraction depen- 
dence is nonmonotonic and reflects the changes of 
the quasielastic response of the lattice on the occu- 
pation of interstitial positions. Analogous behavior 
of the concentration dependence of the lattice pa- 
rameter is a well-known fact for interstitial Ti-C, 
Zr-C, and other carbides with a wide homogene- 
ity region on a phase diagram. Even in the Kan- 
zaki force formalism it happens that for small 
atomic fraction of interstitial atoms the lattice ex- 

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 1087 



ELLIS ET AL. 

4 

3 

Q.2 

1 

0 

... u 
^ £-i_. «   ~ W   ^     <E  

.1 ?■."./' 
I1   v 

.'^ - ^ - ■ 

2 

1.5 

'    1 

0.5 

'   ■     I  " "T" —1        "I  ..... , 1                         1 

f. - 
'     ■                  » 

i\ ■ r ■ ■> ■ 

' '■ -\ 

.y^   -'\. 
:^-T--n .*.. — ►_— ,__ -.\-w v^ ,f--~/_- +  

0.5 1.5 2 2.5 
Energy [Ry] 

3.5 

FIGURE 1. Density of states for the copper-carbon supercell with 20% of carbon. Carbon occupies the tetrahedral 
interstitial position. 

pansion concentration coefficient 

1 da 

a dc 

(a is a lattice parameter and c is an atomic frac- 
tion) is positive. Increase of atomic fraction of 
interstitial atoms leads to compensation of Kanzaki 
forces (starting from some atomic fraction). It re- 
sults in a change of sign of u and in a decrease in 

the equilibrium lattice parameter of solid solu- 
tions. 

CLUSTER CALCULATIONS 

The first-principles density functional theory has 
been used to calculate electronic structure of car- 
bon present as substitutional and interstitial impu- 
rities in copper. Using the embedded cluster for- 
malism and localized orbitals, we have obtained 
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FIGURE 2. Density of states for the copper-carbon supercell with 20% of carbon. Carbon occupies the octahedral 
interstitial position. 

energy levels and wave functions for finite molec- 
ular fragments within the infinite copper host. 
Three coordination shells were included in the 
cluster with the center in the octahedral interstitial 
position. The following sites were treated: substi- 
tutional, octahedral interstitial, and tetrahedral in- 
terstitial. In all cases displacements of the C atom 
from the site of high symmetry were studied, with 
the objective of determining response of the Cu 
lattice to the impurity and the relative energy 

versus position. Symmetric relaxation of the first 
shells of Cu atoms around the impurity was also 
considered. Mulliken population analysis of the 
self-consistent wave functions shows that C is gen- 
erally a weak electron acceptor, with net charge 
ranging from -0.1 to -0.3 depending upon loca- 
tion. In the highly improbable substitutional site, C 
is found to be a net electron donor. The copper 
populations show the expected s-d hybridization, 
with typical configuration of 3d9-74sa94p0'5- Net Cu 
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V   (a.u.   ) 
(a) 

(b) V (a.u.3) 

FIGURE 3. Equation of states for the copper-carbon 
solid solution with 20% of carbon, (a) Carbon atom 
occupies the octahedral interstitial position and (b) 
carbon atom occupies the tetrahedral interstitial position. 

charges are found to be inversely proportional to 
distance from C. For example, in the highly stressed 
tetrahedral site, net Cu charges of +0.39, +0.02, 
and -0.02 are found for first, second, and third 
neighbors, respectively. These charges are a mani- 
festation of the Ruderman-Kittel oscillations pre- 
dicted in simpler (electron gas) models of impurity 

response. A DOS diagram [18] shows that for the 
octahedral interstitial site the occupied portion of 
the valence band is 5 eV in width, and there is 
little overlap between major C2s,2p features with 
that of the Cu 3d. We reduced a number of atoms 
in the cluster ("microscope") by a factor of 3 and 
received the energy and volume charge curves 
with just the same tendencies. Analysis of total 
energy results versus carbon displacement and Cu 
shell relaxation (see Figs. 6 and 7) suggests that the 
minimum energy configuration lies off the octahe- 
dral site, toward the fee cube center. The micro- 
scope approach (Fig. 7) completely reproduces the 
energy decrease with the off-center shift of carbon. 
We complement the present data with calculations 
of the volume carbon charge along the same {0.5- 
x, x, 0} path. Our simulations show the tendency 
to the formation of the chemical bonding between 
the displaced carbon and copper atoms (see Figs. 8 
and 9). Reduction of number of atoms in the clus- 
ter (Fig. 9) does not influence sufficiently the char- 
acter of bonding and confirms the formation of 
weak chemical bonding in the system with the 
off-center shift of carbon atom. These results corre- 
late with the supercell calculation (see above). 
Comparing Figures 6 and 8 we see that the posi- 
tion of the energy minimum with carbon displace- 
ment from the center of octahedral position is 
surprisingly well and corresponds to the minimal 
value of the carbon volume charge and is equal to 
x = 0.04. This result is only twice as large as ob- 
tained in LMTO calculations where the carbon 
concentration was much larger. The decrease of 
the binding energy after   x = 0.12 is related  to 

0.05 

FIGURE 4. Equilibrium lattice parameter dependence on the displacement of carbon atom along the path {0.5-x, x, 0} 
for the copper-carbon solid solution with 20% of carbon. Carbon occupies the octahedral interstitial position. 
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id 
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FIGURE 5. Calculated dependence of the lattice parameter in Cu-C solid solutions vs. atomic fraction of carbon. 

influence of cluster boundaries in embedded clus- 
ter simulations. 

Summary 

The DF cluster and supercell results correspond 
in predicting the off-center displacements of the 
carbon atom and indicate a charge transfer of ~ 1 e 
to carbon, mostly from the first-neighbor shell, in 
all relaxed environments studied. Bond-order data 
display the Cu-C interaction to be bonding in 
nature. Densities of states show the interaction to 
be primarily C 2p-Cu 3d in nature, dominated by 
the nearest-neighbor coordination shell in all envi- 
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FIGURE 6. Binding energy as a function of carbon 
atom displacements. The path of the carbon motion is 
{0.5-x, x, 0}, the data of the embedded cluster density 
functional calculations. 

ronments. Inclusion of the electrostatic charge- 
transfer component of the Cu-C interaction, ac- 
companied with a refinement of initial force field 
parameters, should permit accurate future atom- 
istic simulations not only of relaxation, but also of 
diffusion processes. Work in progress on copper- 
carbon interfaces is aimed at addressing the pro- 
cess of diffusion from carbon fibers into the metal- 
lic host at elevated temperatures, and to provide a 
detailed interpretation of the interface bonding re- 
gion which we have observed with microscopy 
studies [6]. 
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FIGURE 7. Binding energy as a function of carbon 
atom displacements. The path of the carbon motion is 
{0.5-x, x, 0}, the data of the embedded cluster density 
functional calculations. Number of atoms in the cluster 
reduced by a factor of 3 (microscope). A dashed line is 
a spline interpolation. 
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FIGURE 8. Volume carbon atom charge as a function 
of carbon atom displacements. The path of the carbon 
motion is {0.5-x, x, 0}, the data of the embedded cluster 
density functional calculations. 
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FIGURE 9. Volume carbon atom charge as a function 
of carbon atom displacements. The path of the carbon 
motion is {0.5-x, x, 0}, the data of the embedded cluster 
density functional calculations. Number of atoms in the 
cluster reduced by a factor of 3 (microscope). A dashed 
line is a spline interpolation. 
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Atomic Motion at Germanium Surfaces: 
Scanning Tunneling Microscopy and 
Monte Carlo Simulations 
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ABSTRACT: The observation of the motion of an adatom on the reconstructed Ge 
(111) is a rare event, which will be examined by way of simple adatom-surface 
interaction models. Estimations of the residence time of adatoms on energetically 
favorable sites indicate that a thermal excitation can account for casual adatom motion 
and that a strong tip-surface interaction is not obviously needed to explain the changes 
found in sequences of scanning tunneling microscopy (STM) images of the same surface 
areas.    © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 1093-1097, 1998 

Key words: surface; STM; germanium 

Introduction 

The (111) surface of elemental semiconductors 
like Ge usually assumes a rather complex 

structure, and several types of reconstructions 
(1 X 2,2 X 8...) can be identified [1]. The long- 
range regularity of the reconstructions encoun- 
tered on this surface is easily disrupted by the 
presence of defects, and this fragility of the surface 
order is expected to have some impact on the 
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thermally activated self-diffusion [2]. The direct 
observation of the Ge (111) surface by scanning 
tunneling microscopy (STM), and the new com- 
puter tools that can be used to achieve a better 
interpretation of the images provide a new direct 
way of studying the diffusion processes that take 
place on these systems. 

Crystalline Structure of the 
Germanium (111) Surface 

The crystalline structure of bulk Ge can be 
viewed as a succession of parallel, equidistant, 
rumpled planes lying normal to the [111] direction. 
The thickness of these rumpled planes is about 
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a/7 (a = 5.658 A), while the gap between two of 
these planes is nearly twice as large (a/4). A clean 
surface in this direction can be created by cutting 
off the crystal between two of these rumpled 
planes, creating an ideal lxl surface, in which 
each terminating atom reinforces the surface en- 
ergy by its associated dangling bond. The surface 
tension is immediately partially released by a sub- 
stantial flattening of the last rumpled plane (surface 
relaxation) and by a change in the native crystal 
translational symmetry. At some temperature, the 
Ge (111) surface presents a 2 X 1 reconstruction 
[3], which is usually observed after a direct cleav- 
age under high-vacuum conditions. After high- 
temperature annealing, the surface is usually found 
in a 2 X 8 reconstruction state, in which the num- 
ber of dangling bonds is reduced by an exact 
factor of 2. Here, the near-ideal surface is covered 
with supplementary Ge adatoms, which find their 
place in a so-called T4 site, right on top of one of 
the lower atoms in the surface rumpled plane. The 
surface rumpled plane indeed defines an outer 
surface layer made of an hexagonal arrangement 
of atoms, leaving us with two types of triangular 
sites: the site T4 is at the center of a triangle 
occupied by one of the atoms in the second atomic 
plane. The site at the center of the other type of 
triangle, usually called H3, is empty. The T4 appel- 
lation reminds of the fact that the adatom lies on 
top of the second-plane shallow surface atom, and 
will there experience the contact with four nearest 
neighbors. The hollow site where the adatom inter- 
acts only with three neighbors (H3) is, as will be 
shown below, substantially higher in energy, but 
is also clearly a possible adatom meta-stable state. 

Interpretation of the Adatom 
STM Image 

The STM image of the (111) surface of Ge under 
positive sample bias is easily understood in terms 
of the tunneling from the occupied states of the tip 
into the unoccupied states are essentially localized 
at the same lateral coordinates as the adatoms, so 
that under these bias conditions, these adatoms are 
easily located: in a 2 X 8 configuration, four of 
these high-current density spots are observed, at- 
tributed to the protruding adatoms stabilized on 
the T4 site. The STM image can easily be simulated 
by a method presented a few years ago at this 
conference [5], and which has been extended to 

allow deriving semiconductor surface STM cur- 
rents. Equation (29) of Ref. [5], which expresses the 
tunnel conductance for electrons flowing between 
a metallic tip and a metallic sample at zero bias 
(V = 0) should be modified, for positive bias V, to 
include all electrons flowing from occupied tip 
states to unoccupied Ge states (from EF - eV to 
£f). All electrons from any incidence (summed 
over all wave numbers g + qn) compatible with 
the tunneling energy attempt to cross the bias-de- 
pendent tip barrier and tunnel, except if reflected 
back to the tip, an event which arises with the 
probability amplitude a~. , when scattered from a 
plane-wave state g' into a plane-wave state g: 

•'«7      "•'Er-<?V g       V   Ä   ' 4:TT2h 

X 

BZ JEr-eV 

kg'l\ 

8'   KS' 

.    (1) 

In this expression, @(x) is the Heaviside function, 
which filters out evanescent waves (wave vectors 
kgl, when they are imaginary) and the transfer 
amplitudes a~,gl are computed with the transfer- 
matrix technique. Figure 1 shows the result of a 
simulation of the constant-height tunnel current 
(5 A above the adatom layer) for the scattering by 

10- 

£ 
■P 
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I    «    •    •    • 
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FIGURE 1. Results of a transfer-matrix simulation of 
the constant-height STM image of the 2 x 8 
reconstructed (111) surface of Ge, under positive-sample 
bias. Light spots are located at the surface coordinates 
of the adatoms. 
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a 2 X 8 germanium surface, with Ge atoms repre- 
sented by a (non-self-consistent) local Gaussian 
pseudopotential based on parameters given by Co- 
hen and Bergstresser [6]. Contrasting the experi- 
mental images, this simulation does not show the 
presence of the so-called restatoms in the first 
surface layer, which are atoms not bound to 
adatoms, and then still presenting a dangling bond. 
This discrepancy is due to the fact that the simula- 
tion has been carried out at constant tip height, 
while experimental images are usually obtained 
under constant-current conditions. Figure 2 shows 
a pair of STM images of the same area of the (111) 
Ge surface, taken 5 min one after the other. Most 
of the adatoms seen on the first picture are found 
again at the same site a few minutes later, which 
demonstrates the stability of the adatoms on their 
(T4) surface grid at room temperature. However, it 
is clearly apparent that one of the adatom (indi- 
cated by an arrow) has moved to a neighboring 
site between the STM snapshots. A question arises 
as to whether the move could be induced by the 
tip-adatom mechanical interaction during the 
measurements or is the result of the thermal exci- 
tation of the adatom during the few minutes 
elapsed during the experiment. The following dis- 
cussion of the energetics of the adatom-sample 

interaction can bring some information relevant to 
this question. 

Adatom Diffusion Energy Map 

The energy variations of the adatom when 
moved over the various sites of the surface define 
several properties related to the atomic self-diffu- 
sion. The changes in energy experienced by an 
adatom when relocated at different places over the 
Ge (111) surface can be defined in the following 
way. We consider an isolated adatom on an other- 
wise clean, but fully relaxed Ge (111) surface. We 
position this adatom at fixed lateral (x, y) coordi- 
nates and change the adatom-surface distance 
while relaxing the surface atoms in the vicinity of 
the adatom. We use a simple Metropolis algorithm 
[7] and a classical Tersoff representation [8] of the 
system to achieve a complete relaxation of the 
substrate for each elevation of the adatom. We 
then look in a systematic way for a total energy 
minimum (golden-section search algorithm [9]) 
with respect to the adatom altitude. This gives the 
map represented on Figure 3. It is seen that the 
less comfortable site for an adatom is, by far, to sit 
on top of one of the terminal surface layer atom, 

FIGURE 2. Two successive STM images of the same area of the (111) Ge. Most of the adatoms seen on the first 
picture are found again at the same site a few minutes later, but it is clearly apparent that one of the adatom (indicated 
by an arrow) has moved to a neighboring site between the STM snapshots. 
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FIGURE 3. Energy of an adatom, mapped against the (111) Ge clean surface, showing the adatom stable sites. 

where it can only passivate one dangling bond, 
while reintroducing itself several new expensive 
empty states. The better gain in energy concerns, 
as expected, the threefold symmetric T4 site, on 
top of a subsurface layer atom. There, the adatom 
rebonds to four very close neighbors, and passi- 
vates a maximum number of dangling bonds. The 
H3 site is found to lie about 0.6 eV above the 
energy of the T4 site, but can also be described as a 
stable point, as more energy (0.2 eV) is needed to 
leave this site before returning to the T4 site. The 
path for connecting two neighboring T4 sites passes 
through an N3 site, as most experimental studies 
indicate today [10-12]. The stability of the adatom 
at the T4 site is large: The lifetime of a Ge adatom 
at this site at room temperature can be estimated 
from Arrhenius law: 

T= v'lexp{E/kT) (2) 

temperatures (e.g., at 600 K, the residence time on 
a T4 site would drop to about 106 s), the adatom 
mobility is much better understandable. 

Conclusions 

In light of the present discussion, we cannot 
rule out the possibility that the STM might have 
produced adatom motion at room temperature 
during the scan, but the energetics of the adatoms 
on the (111) surface indicates that this motion, 
though relatively slow, can be thermally excited at 
room temperature. Further work is in progress to 
examine the influence of adatom disorder and the 
influence of the presence of an impurity on the 
shape and height of the T^-H^-T^ diffusion bar- 
rier. 

to a few seconds, a time much longer than the 
time of residence on a H3 site, which amounts to 
10~10 s (we use an attempt frequency v of the 
order of 1013 s"1). This leaves the possibility of a 
very slow transfer from T4 to T4 sites via H3 by 
thermal excitation at room temperature. At higher 
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