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Introduction

T he 38th Annual Sanibel Symposium, orga-
nized by the faculty, students, and staff of
the Quantum Theory Project of the University of
Florida, was held on February 21-27, 1998. Again,
the Ponce de Leon Conference Center in St. Augus-
tine, Florida, was the site of the gathering of more
than 300 scientists.

The symposium followed the established format
with plenary and poster sessions. A compact 7-day
integrated program of quantum biology, quantum
chemistry, and condensed matter physics provided
for intense and lively cross-disciplinary interac-
tions. The topics of the sessions covered by these
proceedings included Density Functional Theory
(DFT) and Applications, Time-Dependent DFT,
Femtosecond Dynamics, Dynamics of Electroni-
cally Excited States, Molecular Properties, Proton
Transfer Dynamics, Methodological Developments
in Quantum Chemistry, Relativistic Quantum Me-
chanics, Condensed Phase Chemistry, Hydrogen
Bonding, and Molecular Properties in High Mag-
netic Fields.

The articles have been subjected to the ordinary
refereeing procedures of the International Journal of
Quantum Chemistry. The articles presented in the
sessions on quantum biology and associated poster
sessions are published in a separate volume of the
International Journal of Quantum Chemistry.

The organizers acknowledge the following
sponsors for their support of the 1998 Sanibel Sym-
posium:

= Army Research Office Grant # DAAG55-98-
1-0117
“The views, opinions, and /or findings con-

International Journal of Quantum Chemistry, Vol. 70, 529 (1998)
© 1998 John Wiley & Sons, Inc.

tained in this report are those of the author(s)
and should not be construed as an official
Department of the Army position, policy, or
decision, unless so designated by other doc-
umentation.”

= The Office of Naval Research through Grant
# N00014-98-1-0215
“This work relates to Department of the
Navy Grant # N00014-98-1-0215 issued by
the Office of Naval Research. The United
States Government has the royalty-free li-
cense throughout the world in all copy-
rightable material contained herein.”

= IBM Corporation

= HyperCube, Inc.

= Q-Chem, Inc.

= The University of Florida

Very special thanks go to the staff of the Quantum
Theory Project of the University of Florida for
handling the numerous administrative, clerical,
and practical details. The organizers are proud to
recognize the contributions of Mrs. Judy Parker,
Mrs. Coralu Clements, Ms. Sandra Weakland, Dr.
Greg Pearl, and Mr. Cristidan Cérdenas. All the
graduate students of the Quantum Theory Project
who served as ““gofers” are gratefully recognized
for their contributions to the 1998 Sanibel Sympo-
sium.

N.Y. Ohrn
J. R. Sabin
M. C. Zerner

CCC 0020-7608 /98 / 040529-01




List of Participants

Albert, Katrin

University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-1597

Fax: 352-392-8722
albert@qtp.ufl.edu

Arteca, Gustavo A.

Laurentian University

Departments of Chemistry and Biochemistry
Ramsey Lake Road

Sudbury, Ontario P3E 2C6

Canada

Phone: 705-675-1151

Fax: 705-675-4844
gustavo@nickel.laurentian.ca

Baeck, Kyoung-Koo
Kang-Nung University
Department of Chemistry
Ji-Byun-Dong, 123
Kang-Won-Do 210-702

South Korea

Phone: 82-391-640-2307

Fax: 82-391-647-1183
baeck@chem.kangnung.ac.kr

Bartlett, Rodney J.
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-1597

Fax: 352-392-8722
bartlett@qtp.ufl.edu

International Journal of Quantum Chemistry, Vol. 70, 531-555 (1998)
© 1998 John Wiley & Sons, Inc.

Bernhardsson, Anders

Lund University

Theoretical Chemistry

Box 124

Lund 221 00

Sweden

Phone: 46-46-2220384

Fax: 46-46-2224543
anders.bernhardsson@teokem.lu.se

Beveridge, David
Wesleyan University
Department of Chemistry
Hall-Atwater Laboratories
Middletown, CT 06457
USA

Phone: 860-685-2575

Fax: 860-685-2211
dbeveridge@wesleyan.edu

Bicca de Alencastro, Ricardo
Universidade Federal de Rio de Janeiro
Inst. de Quimica

Bloco A-CT Sala 622, Cidade Univ.

Rio de Janeiro R] 21949-900

Brazil

Phone: 55-021-590-3544

Fax: 55-021-2904746

bicca@iq.ufrj.br

Billing, Gert D.
University of Copenhagen
H.C. Orsted Institute
Department of Chemistry
Copenhagen

Denmark

Phone: 453-532-0252

Fax: 453-532-0259
gdb@moldyn.ki.ku.dk

CCC 0020-7608 / 98 / 040531-25



LIST OF PARTICIPANTS

Bishop, David M.
University of Ottawa
Department of Chemistry
10 Marie Curie

Ottawa, Ontario KIM 073
Canada

Phone: 613-562-5181

Fax: 613-562-5170
dbishop@science.uottawa.ca

Boettger, Jonathan C.

Los Alamos National Laboratory
Group T-1

MS B221

Los Alamos, NM 87545

USA

Phone: 505-667-7483

Fax: 505-665-5757

jn@lanl.gov

Bogel, Horst

University of Halle

Inst Phys. Chem. (Merseburg)
Geusaerstr.

Halle D-06099

Germany

Phone: 49-3461-46-2127

Fax: 49-3461-46-2381
boegel@chemie.uni-halle.de

Boone, Amy

University of Florida
Department of Chemistry
P.O. Box 117200
Gainesville, FL 32611-7200
USA

Phone: 352-392-0541

Fax: 352-392-0872
boone@chem.ufl.edu

Boudreaux, Edward A.
University of New Orleans
Department of Chemistry
Lake Front

New Orleans, LA 70148
USA

Phone: 504-286-6311

Fax: 504-286-6860

Bouferguene, Ahmed
Florida A & M University
Department of Physics
205 Jones Hall
Tallahassee, FL 32307
USA

Phone: 850-599-3470

Fax: 850-599-3577
boufer@cennas.nhmfl.gov

Brandas, Erkki J.

Uppsala University

Department of Quantum Chemistry
P.O. Box 518

Uppsala 5-75120

Sweden

Phone: 46-18-4713263

Fax: 46-18-502402
erkki@kvac.uu.se

Broo, Anders

Chalmers University of Technology
Physical Chemistry

Kernivagen 3

Goteborg 41296

Sweden

Phone: 46-31-772-3051

Fax: 46-31-772-3858
broo@phc.chalmers.se

Brown, Richard E.

Michigan Technological University
Chemistry Department

Houghton, MI 49931

USA

Phone: 906-487-2383

Fax: 906-487-2061
rebrown@MTU.edu

Bunge, Carlos F.

Universidade Nacional Autonoma de Mexico
Institute of Physics

AP 20-364

Mexico City DF 01000

Mexico

Phone: 525-622-5014

Fax: 525-622-5015
bunge@fenix.ifisicacu.unam.mx

532

VOL. 70, NO. 4/5



Burke, Kieron

Rutgers University
Department of Chemistry
1019 West High St.
Kadoon Heights, NJ 08035
USA

Phone: 609-225-6156

Fax: 609-225-6506
kieron@crab.rutgers.edu

Butler, Leslie G.

Louisiana State University
Department of Chemistry

1126 Beakenham Dir.

Baton Rouge, LA 70808

USA

Phone: 504-769-9751

Fax: 504-388-3458
les.butler@chemgate.chem.lsu.edu

Calderone, Anna

Facultes Universitaires Notre Dame de la Paix
Physics Department

rue de Bruxelles

Namur 5000

Belgium

Phone: 32-81-724705

Fax: 32-81-724707
anna.calderone@scf.fundp.ac.be

Canuto, Sylvio
Universidade de Sao Paulo
Instituto de Fisica

CPX 66318

Sao Paulo 05389-970

Brazil

Phone: 55-11-818-6983

Fax: 55-11-818-6831
canuto@if.usp.br

Cao, Jianshu

University of California, San Diego
Department of Chemistry

9500 Gilman Dr. 0339

La Jolla, CA 92093

USA

Phone: 619-534-0290

Fax: 619-534-7654

jcao@ucsd.edu

LIST OF PARTICIPANTS

Cardenas-Lailhacar, Cristian
University of Florida
Quantum Theory Project
P.O. Box 118435

Gainesville, FL 32611-8440
USA

Phone: 352-392-6713

Fax: 352-392-8722
cardenas@qtp.ufl.edu.

Casida, Mark

Universite de Montreal
Department of Chemistry
C.P. 6128, Succ Centre-ville
Montreal, Quebec H3C 3J7
Canada ,

Phone: 514-343-6111 x-3901
Fax: 514-343-2458
casida@chimie.umontreal.ca

Castillo, Sidonio

Universidad Autonoma Metropolitana-
Azcapotzalco

Ciencias Basicas

Av San Pablo #180

Mexico DF 02200

Mexico

Phone: 52-5-724-4218

Fax: 52-5-723-5940

sca@hp9000al.uam.mx

Castro, Eduardo A.

Universidad Nacional de La Plata
Facultad de Ciencias Exactus

Calles 47 y 115, C.C. 962

La Plata 1900

Argentina

Phone: 54-1-21-214037

Fax: 54-1-21-259485 ¢
castro@nahuel.biol.unlp.edu.ar

Challacombe, Matt

Los Alamos National Laboratory
Group T-12

MS B268

Los Alamos, NM 87545

USA

Phone: 505-665-5905

Fax: 505-665-3909
mchalla@lanl.gov

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 533




LIST OF PARTICIPANTS

Champagne, Benoit

FUNDP

CTA Lab

Rue de Bruxelles 61

Namur B-5000

Belgium

Phone: 32-81-724557

Fax: 32-81-724530
benoit.champagne@fundp.ac.be

Chatfield, David

Florida International University
Department of Chemistry
Miami, FL 33199

USA

Phone: 305-348-3977

Fax: 305-348-3772
chatfiel@fiu.edu

Cheng, Hai-Ping
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-1597

Fax: 352-392-8722
cheng@qtp.ufl.edu

Chou, Mei-Yin

Georgia Institute of Technology
Department of Physics

Atlanta, GA 30332

USA

Phone: 404-894-4688

Fax: 404-894-9958
meiyin.chou@physics.gatech.edu

Chu, San-Yan

National Tsing Hua University, Taiwan

Department of Chemistry
Hsinchu, Taiwan 30043
Republic of China

Phone: 866-35-721634
Fax: 886-35-711082
sychu@chem.nthu.edu.tw

Chun, Paul
University of Florida

Department of Biochemistry & Molecular Biology

Box 100245

Gainesville, FL 32610-0245
USA

Phone: 352-392-3356

Fax: 352-392-2953
pwchun@pine.circa.ufl.edu

Clark, Tim

University Erlangen-Nurnberg
CCC

Naegelshachstr. 25

Erlangen D-91052

Germany

Phone: 49-9131-852948

Fax: 49-9131-856565
clark@organik.uni-erlangen.de

Coffin, James

IBM, Computational Chemistry
Computational Chemistry

8632 Forest Glenn

Irving, TX 75063

USA

Phone: 972-432-9701

Fax: 800-706-6351 Pager
jmcoffi@us.ibm.com

Colgate, Sam

University of Florida
Department of Chemistry

P.O. Box 117200

Gainesville, FL 32611-7200

USA

Phone: 352-392-5876

Fax: 352-392-0872
colgate@physical4.chem.ufl.edu

Cooper, David L.
University of Liverpool
Department of Chemistry
P.O. Box 147

Liverpool L69 7ZD

UK

Phone: 44-151-794-3532
Fax: 44-151-794-3588
dlc@liv.ac.uk

Cory, Marshall
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL. 32611-8435
USA

Phone: 352-392-1597

Fax: 352-392-8722
cory@qtp.ufl.edu

534

VOL. 70, NO. 4/5



Coutinho, Kaline

Universidade de Mogi das Cruzes
Cx.P. 411

Mogi das Cruzes SP 08701-970
Brazil

kaline@onsager.if.usp.br

Coutinho-Neto, Mauricio
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-7184

Fax: 352-392-8722
coutinho@qtp.ufl.edu

Crawford, T. Daniel

University of Georgia

Department of Chemistry

Center for Computational Quantum Chemistry
Athens, GA 30602

USA

Phone: 706-542-7738

Fax: 706-542-0406
crawdad@otanes.ccqc.uga.edu

Cuan, Angeles

Instituto Mexicano del Pertoleo
Gerencia de Catalizadores

Eje Central Lazaro Cardenas 152
Gustavo A. Madero DF 07730
Mexico

Phone: 52-5-567-2927

Fax: 52-5-567-2927
angeles@briseida.ind.imp.mx

Da Costa, Herbert
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL. 32611-8435
USA

Phone: 352-392-3010

Fax: 352-392-8722
dacosta@qtp.ufl.edu

LIST OF PARTICIPANTS

Dalskov, Erik K.

University of Lund

Theoretical Chemistry—Chemical Center
P.O. Box 124

Lund §-221 00

Sweden

Phone: 46-46-222-4915

Fax: 46-46-222-4543
teoekd@garm.teokem.lu.se

Das, Guru P.

Wright Laboratory

MLBP

654, Area B

Wright Patterson AFB, OH 45433
USA

Phone: 937-429-2307

Fax: 937-255-9147
dasgp@picard.ml.wpafb.af.mil

Davidson, Ernest
Indiana University
Department of Chemistry
Bloomington, IN 47405
USA

Phone: 812-855-6013

Fax: 812-855-8300
davidson@indiana.edu

De Kee, Dan

University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-9306

Fax: 352-392-8722
dekee@qtp.ufl.edu

Del Bene, Janet E.
Youngstown State University
Department of Chemistry
One University Plaza
Youngstown, OH 44555

USA

Phone: 330-742-3466

Fax: 330-742-1579
fro42008@ysub.ysu.edu

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 535




LIST OF PARTICIPANTS

Deleuze, Michael S.D.
Limburgs Universitqire Centrum
SBG

Gebow D

Diepenbeek B-3590

Belgium

Phone: 32-11-26-83-03

Fax: 32-11-26-83-01
deleuze@luc.ac.be

Deumens, Erik
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
UsSA

Phone: 352-392-1597

Fax: 352-392-8722
deumens@qtp.ufl.edu

Dobrowolski, Jan Cz.
Drug Institute

Lab. Theor. Meth. and Calc.
30/34 Chelmska Street
Warsaw 00-725

Poland

Phone: 48-22-412940

Fax: 48-22-410652
janek@urania.il. waw.pl

Dombroski, Jeremy P.
Q-Chem, Inc.

Four Triangle Drive, Suite 160
Export, PA 15632-9255

USA

Phone: 412-325-9969

Fax: 412-325-2062
jack@q-chem.com

Ehara, Masahiro

Kyoto University

Synthetic Chemistry and Biological Chemistry
Sakyo-ku

Kyoto 606-01

Japan

Phone: 81-75-753-5660

Fax: 81-75-753-5910
ehara@sbchem.kyoto-u.ac.jp

Enevoldsen, Thomas
Odense University
Department of Chemistry
Campusvej 55

Odense M DK-5230
Denmark

Phone: 45-6557-2568
tec@dou.dk

Estiu, Guillermina L.
Universidad Nacional de La Plata
Dept. Quimica

Calle 47 Y 115 CC962

La Plata, Buenos Aires 1900
Argentina

Phone: 54-21-210784 EX 41

Fax: 54-21-259485
estiu@nahuel.biol.unlp.edu.ar

Fazzio, Adelberto
University of San Paulo
Materials Science

CP 66318

Sao Paulo SP 05315-570
Brazil

Phone: 55-11-818-6983
Fax: 55-11-818-6831
fazzio@if.usp.br

Feller, David F.
Battelle PNNL

K1-96

Richland, WA 99352
USA

Phone: 509-375-2617
Fax: 509-375-6631
d3el02@emsl.pnl.gov

Ferris, Kim F,

National Laboratory Pacific Northwest
Environmental & Energy Science

P.O. Box 999, MS-K2-44

Richland, WA 99352

USA

Phone: 509-375-3754

Fax: 509-375-2186

kim@darter.pnl.gov

536

VOL. 70, NO. 4/5



Fischer, Sighart

Technische Universitdt Miinchen
Theoretische Physik T 38
James-Franck-Str. 12

Garching B Miinchen 85747

Germany

Phone: 49-089-289-12393

Fax: 49-089-289-12444
fischer@venus.t30.physik.tu-muenchen.de

Flamant, Isabelle

Universitaires Notre-Dame de la Paix

Lab de Chimie Theorique Appliquee FUNDP
Rue de Bruxelles 61

Namur 5000

Belgium

Phone: 32-81-724530

Fax: 32-81-724530
isabelle.flamant@fundp.ac.be

Flock, Michaela

University of Leuven

Department of Chemistry

Celestynenlaan 200F

Heverlee-Leuven B-3000

Belgium

Phone: 32-16-327-984

Fax: 32-16-32-7992
michaela@hartree.quantchem kuleuven.ac.be

Folland, Nathan O.
Kansas State University
Physics Department
Cardwell Hall
Manhattan, KS 66506-2601
USA

Phone: 785-532-1615

Fax: 785-841-3038
nof@ksu.edu

Fuks, David

Ben-Gurion University of the Negev
Materials Eng. Department

P.O. Box 653

Beer-Sheva 84105

Israel

Phone: 972-7-6461460

Fax: 972-7-6472946
fuks@bgumail.bgu.ac.il

LIST OF PARTICIPANTS

Gill, Peter

University of Cambridge
Department of Chemistry
Cambridge CB2 1IEW

UK

Phone: 44-1223-336-344
Fax: 44-1223-336-362
pmg@euler.ch.cam.ac.uk

Giribet, Claudia G.
University of Buenos Aires
Physics

Ciudad Universitaria-Pab. 1
Buenos Aires 1428
Argentina

Phone: 54-1-788-9101

Fax: 54-1-782-7647
giribet@df.uba.ar

Goldman, Barbara M.
John Wiley & Sons, Inc.
605 Third Avenue

New York, NY 10158-0012
Phone: 212-850-6007

Fax: 212-850-6264
bgoldman@wiley.com

Goodman, Lionel

Rutgers, The State University of New Jersey
Department of Chemistry

P.O. Box 939

Piscataway, NJ 08854

USA

Phone: 908-445-2603

Fax: 908-445-5312
goodman@rutchem.rutgers.edu

Gubanov, Vladimir

San Jose State University
Physics Department
One Washington Square
San Jose, CA 95192-0106
USA

Phone: 408 /924-5249
Fax: 408 /924-4815
vgubanov@msn.com

Hagmann, Mark J.

Florida International University

Department of Electrical &
Computer Engineering

Miami, FL 33199

USA

Phone: 305-348-3017

Fax: 305-348-3707

hagmann@eng.flu.edu

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY



LIST OF PARTICIPANTS

Hall, Michael B.

Texas A & M University
Chemistry Department
Mailstop 3255

College Station, TX 77843-3255
USA

Phone: 409-845-1843

Fax: 409-845-4719
hall@chemux.tamu.edu

Handy, Nicholas C.
University of Cambridge
Department of Chemistry
Lensfield Road
Cambridge CB2 1IEW

UK

Phone: 44-1223-336373
Fax: 44-1223-336362
nchl@cam.ac.uk

Harris, Frank E.

University of Utah
Department of Chemistry
Salt Lake City, UT 84112
USA

Phone: 801-581-8445

Fax: 801-581-8433
harris@dirac.chem.utah.edu

Havel, Timothy F.

Harvard Medical School
Department of BCMP

240 Longwood Avenue

Boston, MA 02115

USA

Phone: 617-432-3242

Fax: 617-738-0516
havel@menelaus.med.harvard.edu

Hedstrom, Magnus
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-6973

Fax: 352-392-8722
hedstrom@qtp.ufl.edu

Herman, Michael
Tulane University
Chemistry Department
New Orleans, LA 70118
USA

Phone: 504-862-3582
Fax: 504-865-5596

Hess, Bernd A.

Inst fuer Physikalische and Theoretische Chemie
Theoretical Chemistry

Wegelerstrasse 12

Bonn 53115

Germany

Phone: 49-228-732920

Fax: 49-228-739064

hess@uni-bonn.de

Hill, Susan E.

Pacific Northwest National Lab
EMSL

MS D1-96

Richland, WA 99352

USA

Phone: 509-375-6370

Fax: 509-375-6631
sehill@boys.pnl.gov

Hillebrand, Claudia
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611
USA

Phone: 352 /392-1597
Fax: 352 /392-8722
hildebrand@qtp.ufl.edu

Hirata, So

The Graduate University for Advanced Studies
and School of Mathematical & Physical Science

Myodaiji

Okazaki Aichi 444

Japan

Phone: 81-564-55-7261

Fax: 81-564-53-4660

soh@ims.ac.jp

Hobza, Pavel

J. Heyrovsky Institute of Physical Chemistry
Dolejskova 3

Prague 8 18223

Czech Republic

Phone: 420 2 66052056

Fax: 420 2 8582307

hobza@indy jh-inst.cas.cz

538

VOL. 70, NO. 4/5



Hogreve, H. J.

CNRS

Centre de Physique Theorique
Luminy, Case 907

Marseille Cedex 9 F-13288
France

Phone:

Fax: 33-491-269553
hogreve@cpt.univ-mrs.fr

Hu, Zhenming

Kyoto University, Graduate School of Engineering

Dept. of Synth. Chemistry and Biological
Chemistry

Kyoto-606-01

Sakyo-Ku, Kyoto 606-01

Japan

Phone: 81-75-753-5659

Fax: 81-75-753-5910

hu@quantl.synchem.kyoto-u.ac.jp

Ishikawa, Yasuyuki

University of Puerto Rico
Chemistry Department

P.O. Box 23346

San Juan, Puerto Rico 00931-3346
Phone: 787-764-0000 EST 7399
Fax: 787-751-0625
ishikawa@rrpac.upr.clu.edu

Itskowitz, Peter

University of North Carolina
Department of Physics and Astronomy
CB #3255

Chapel Hill, NC 27599

USA

Phone: 919-962-0165

Fax: 919-962-0480
itskowit@physics.unc.edu

Ivanov, Stanislav
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-6973

Fax: 352-392-8722
ivanov@qtp.ufl.edu

LIST OF PARTICIPANTS

Jamorski, Christine
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-6711

Fax: 352-392-8722
jamorski@qtp.ufl.edu

Jauregui-Renaud, Rocio

Universidad Nacional Autonoma de Mexico
Instituto de Fisica

Apdo Postal 20-364

Mexico DF 01000

Mexico

Phone: 525-622-5014

Fax: 525-622-5015
rocio@fenix.ifisicacu.unam.mx

Johnson, Walter R.

Notre Dame University
Department of Physics

334 Nieuwland Science Bldg.
Notre Dame, IN 46556

USA

Phone: 219-631-6651

Fax: 219-631-5952
WRJ@atomic3.phys.ND.edu

Jubert, Alicia H.

Universidad Nacional de La Plata
Facultad de Ciencias Exactas

CC 962

La Plata, Buenos Aires 1900
Argentina

Phone: 54-1-214037

Fax: 54-1-259485
jubert@nahuel.biol.unlp.edu.ar

Karassev, Valentin

Instituto Venezolano de Investigaciones Cientificas
Centro de Quimica

Aptso. 21827

Caracas 1020-A

Venezuela

Phone: 58-2-504-13-57

Fax: 58-2-504-13-50

vkarasev@maria.ivic.ve

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 539




LIST OF PARTICIPANTS

Karle, Jerome

Naval Research Laboratory
Laboratory for the Structure of Matter
Code 6030 Naval Research Laboratory
Washington, DC 20375-5341

USA

Phone: 202-767-2665

Fax: 202-767-0953
williams@herker.nrl.navy.mil

Karna, Shashi

U.S. Air Force Phillips Laboratory, VIM
Space Mission Technologies Div

3550 Aberdeen Ave SE

Kirtland AFB, NM 87117-5776

USA

Phone: 505-853-3158

Fax: 505-846-2290

karnas@plk.af.mil

Kaschner, Roland
Forschungszentrum Jiilich
IFF

Jiilich D-52425

Germany

Phone: 49-2461-612859
Fax: 49-2461-612850
r.kaschnerafz-juelich.de

_ Kasha, Michael

Florida State University

Institute of Molecular Biophysics
452 Molecular Biophysics
Tallahassee, FL 32306

USA

Phone: 850-644-6452

Fax: 850-561-1406
kasha@sb.fsu.edu

Kedziora, Gary S.
Northwestern University
Chemistry

2145 Sheridan Avenue
Evanston, IL 60208-3113
USA

Phone: 847-467-4857

Fax: 847-491-7713
kedziora@chem.nwu.edu

Keshari, Vijaya
University of Puerto Rico
Department of Chemistry
Avenida R Barcelo
Cayey, Puerto Rico 00736
USA

Phone: 787-738-0702

Fax: 787-738-6962
shlok@mailexcite.com

King, James W.
Foundation for Chemistry
P.O. Box 116

Balsam, NC 28707-0116
USA

Phone: 704-452-7570

Fax: 704-452-5432
jwking@sprynet.com

King, Rollin A.

University of Georgia

Center for Computational Quantum Chemistry
Chemistry Building

Athens, GA 30602

USA

Phone: 706-542-7738

Fax: 706-542-0406

rking@tigranes.ccqc

King-Smith, Dominic
Molecular Simulations, Inc.
9685 Scranton Road

San Diego, CA 92121-3752
USA

Phone: 619-458-9990
dks@msi.com

Kirchner, Eric

Harvard-Smithsonian Center for Astrophysics
60 Garden Street

Cambridge, MA 02138

USA

Phone: 617 /495-7237

Kirtman, Bernard

University of California, Santa Barbara
Department of Chemistry

Santa Barbara, CA 93106

USA

Phone: 805-893-2217

Fax: 805-893-4120
kirtman@chem.ucsb.edu

540

VOL. 70, NO. 4/5



Klessinger, Martin
Universitat Minster
Organisch-Chemisches Institut
Corrensstr. 40

Muenster D-48149

Germany

Phone: 49-251-8333-241

Fax: 49-251-8339-772
klessim@uni-muenster.de

Korkin, Anatoli

Motorola, Inc.

SPS

2200 W. Broadway, MD M350
Mesa, AR 85202

USA

Phone: 602-655-3171

Fax: 602-655-2285
korkin@act.sps.mot.com

Krause, Jeffrey L.
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352 /392-1597

Fax: 352/392-8722
krause@qtp.edu

Krauss, Morris

National Institute of Science Technology
Center for Advanced Research Biotechnology
9600 Gudelsky Drive

Rockville, MD 20850

USA

Phone: 301-738-6242

Fax: 301-738-6255

krauss@ibm9.carb.nist.gov

Kryachko, Eugene

The John Hopkins University
Department of Chemistry
3400 N. Charles Street
Baltimore, MD 21218

USA

Phone: 410-546-7462

Fax: 410-546-8420
eugene@jhunix.hcf.jhu.edu

LIST OF PARTICIPANTS

Krylov, Anna

University of California, Berkeley
Department of Chemistry

308

Berkeley, CA 94720

USA

Phone: 510-643-2935

Fax: 510-643-1255
anna@elba.cchem.berkeley.edu

Kubli-Garfias, Carlos

National Autonomous University of Mexico
Lab of Hormonal Chemistry

Apartado Postal 70-469

Mexico City 04511

Mexico

Phone: 525-6-223815

Fax: 525-5-500048

kubli@servidor.unam.mx

Kumar, Anil

Florida A & M University
Department of Physics
Tallahassee, FL 32307
USA

Phone: 850-599-3470

Fax: 850-599-3577

Ladik, Janos

Universitat Erlangen-Niirnberg
Inst. of Theoretical Chemistry
Egerlandstrasse 3

Erlangen D-97058

Germany

Phone: 49-9131-857766

Fax: 49-9131-857736
ladik@pctc.chemie.uni-erlangen.de

Laidig, William D.
Procter & Gamble Co.
Miami Valley Laboratories
P.O. Box 538707
Cincinnati, OH 45253-8707
USA

Phone: 513-627-2857

Fax: 513-627-1233
laidig@pg.com

Lanig, Harald
Computer-Chemie-Centrum
Naegelsbachstrasse 25
Erlangen D-91052

Germany

Phone: 49-9131-852948

Fax: 49-9131-856565
clark@organik.uni-erlangen.de

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 541




LIST OF PARTICIPANTS

Lazzeretti, Paolo
University of Modena
Departimento di Chimica
Via Campi 183

Modena 41100

Italy

Phone: 39-59-378450

Fax: 39-59-373543
lazzeret@c220.unimo.it

Lee, Michael S.

University of California, Berkeley
Department of Chemistry
Head-Gordon Group, 31 Lewis
Berkeley, CA 94720

USA

Phone: 510-848-5296

Fax:
lee@bastille.cchem.berkeley.edu

Leininger, Matt L.

University of Georgia

Center for Computational Chemistry
Chemistry Building

Athens, GA 30602

USA

Phone: 706-542-7738

Fax: 706-542-0406
mlleinin@harpagos.ccqc.uga.edu

Lengsfield, Byron H.

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120

USA

Phone: 408-927-2032

Fax:
bbyron@almaden.ibm.com

Leszczynski, Jerzy
Jackson State University
Department of Chemistry
17910

Jackson, MS 39217

USA

Phone: 601-973-3482

Fax: 601-973-3674

jerzy @tiger.jsums.edu

Levy, Ronald

Rutgers University
Department of Chemistry
P.O. Box 939

Piscataway, NJ 08855-0939
USA

Phone: 732-445-3947

Fax: 732-445-5958
ronlevy@lutece.rutgers.edu

Light, John C.

University of Chicago
Department of Chemistry
5735 S. Ellis Avenue
Chicago, IL 60637

USA

Phone: 773-702-7197

Fax: 773-702-8314
light@pclight.uchicago.edu

Loew, Gilda

Molecular Research Institute
845 Page Mill Road

Palo Alto, CA 94304

USA

Phone: 650-424-9924

Fax: 650-424-9501
loew@montara.molres.org

Lohr, Lawrence
University of Michigan
Department of Chemistry
Ann Arbor, MI 48109-1055
USA

Phone: 313-764-3148

Fax: 313-647-4865
llohr@emich.edu

Lopez-Boada, Roberto
Florida State University
Department of Chemistry
Tallahassee, FL 32306-3006
USA

Phone: 850-644-3810

Fax: 850-644-8281
rboada@dirac.fsu.edu

542

VOL. 70, NO. 4/5



Lotrich, Victor F.
University of Delaware
Department of Physics
Sharp Lab

Newark, DE 19716
USA

Phone: 302-831-3512
Fax: 302-831-1637
lotrich@udel.edu

Lowdin, Per-Olov
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL. 32611-8435
USA

Phone: 352-392-1597

Fax: 352-392-8722
lowdin@kvac.uu.se

Luna-Garcia, Hector

Universidad Autonoma Metropolitana-

Azcapotzalco
Ciencias Basicas
Av San Pablo 180
Mexico City DF 02200
Mexico
Phone: 915-724-4218
lghm@hp9000al.uam.mx

Magers, David H.
Mississippi College
Department of Chemistry
Box 4065

Clinton, MS 39058

USA

Phone: 617-495-4767
magers@mc.edu

Makri, Nancy

University of Illinois
Department of Chemistry
505 South Mathews Avenue
Urbana, IL 61801

USA

Phone: 217-333-6589

Fax: 217-244-0789
nancy@makri.scs.uiuc.edu

LIST OF PARTICIPANTS

March, Norman

Oxford University

6 Northcroft Road

Egham, Surrey TW20 ODU
UK

Martens, Craig C.

University of California, Irvine
Department of Chemistry
Irvine, CA 92697-2025

USA

Phone: 714-824-8768

Fax: 714-824-8571
cmartens@uci.edu

Martin, Charles H.
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-6711

Fax: 352-392-8722
martin@qtp.ufl.edu

Massa, Lou

City University of New York
Chemistry

695 Park Avenue

New York, NY 10021

USA

Phone: 212-772-5330

Fax: 212-772-5332
massa@mvaxgr.hunter.cuny.edu

Mayer, Istvan

Chemical Research Center Hungarian Academy
Institute for Chemistry

P.O. Box 17

Budapest H-1525

Hungary

Phone: 361-325-7900 ext. 295

Fax: 36-1-325-7554 /325-7750
mayer@cric.chemres.hu

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY

543



LIST OF PARTICIPANTS

Mazziotti, David A.
Harvard University
Department of Chemistry
12 Oxford St.

Cambridge, MA 02138
USA

Phone: 617-547-1974

Fax: 617-495-1792
damazz@fas.harvard.edu

McGlynn, Sean P.

Louisiana State University
Department of Chemistry

329 Choppin

Baton Rouge, LA 70803

USA

Phone: 504-769-0021

Fax: 504-388-3458
sean.mcglynn@chemgate.chem.lsu.edu

Micha, David A.
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-1597

Fax: 352 /392-8722
micha@qtp.ufl.edu

Miller, William H.

University of California, Berkeley
Department of Chemistry
Berkeley, CA 94707

USA

Phone: 510-642-0653

Fax: 510-642-6262
miller@neon.cchem.berkeley.edu

Mogensen, Benny
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352 /392-8113

Fax: 352 /392-8722
benny@qtp.ufl.edu

Monkhorst, Hendrik J.
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-1597

Fax: 352-392-8722
monkhors@qtp.ufl.edu

Mora-Delgado, Marco Antonio

Universidad Autonoma Metropolitana-Iztapalapa
Dpto de Quimica

Av Michoacan y La Purisima, Col Vicentina
Iztapalapa DFCP 09340

Mexico

Phone: 52-5-724-4675

Fax: 52-5-724-4666

mam@xanum.uam.mx

Morales, Jorge A.
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-7184

Fax: 352-392-8722
morales@qtp.ufl.edu

Morgan III, John D.
University of Delaware
Department of Physics
Newark, DE 19716
USA

Phone: 302-831-2661
Fax: 302-831-1637
32399@udel.edu

Morita, Akihiro

Kyoto University

Department of Chemistry
Kitashirakawa, Sakyo-Ku
Kyoto 606

Japan

Phone: 81-75-753-4005

Fax: 81-75-753-4000
morita@kuchem kyoto-u.ac.jp

544

VOL. 70, NO. 4/5



Mosley, David H.
University of Namur

Lab. de CTA

Rue de Bruxelles 61
Namur B-5000

Belgium

Phone: 32-81-72-4554

Fax: 32-81-72-4567
david.mosley@fundp.ac.be

Motta, Carlos Augusto M.
Facultes Universitaires de Namur
Department of Organic Chemistry

Centro De Tec, Bloco A, Sala 609A, Cidade Uni.

68563
Rio De Janeiro 21947-900
Brazil
Phone: 55-021-590-3544
Fax: 55-021-290-4746
guto@pc140.iq.ufrj.br

Mukamel, Shaul

University of Rochester
Department of Chemistry
Hutchison Hall, 500 Wilson Blvd.
P.O. RC Box 270216

Rochester, NY 14627-0216

USA

Phone: 716 /275-3080

Fax: 716-473-6889
mukamel@chem.rochester.edu

Nagao, Hidemi

Institute of Molecular Science
Myodaiji

Okasaki, Aichi 444

Japan

Phone: 81-6-850-5405

Fax: 81-6-850-5550
nagao@chem.sci.osaka-u.ac.jp

Nagel, Bengt

Royal Institute of Technology
Theoretical Physics
Stockholm S-100 44

Sweden

Phone: 46-8-790168

Fax: 46-8-10 48 79
nagel@theophys.kth.se

LIST OF PARTICIPANTS

Nagy, Agnes

Kossuth Lajos University
Institute of Theoretical Physics
P.O. Box 5

Debrecen H-4010

Hungary

Phone: 36-52-417266

Fax: 36-52-431722-1291
nalev@tigris.klte.hu

Nakano, Haruyuki

University of Tokyo

Department of Applied Chemistry
7-3-1 Hongo, Bunkyo-ku

Tokyo 113

Japan

Phone: 81-3-5802-3757

Fax: 81-3-5802-3757
nakano@qcl.t.u-tokyo.ac.jp

Nakayama, Akira
University of Tokyo

Department of Chem. System Eng.

7-3-1 Hongo

Bunkyo-ku, Tokyo 113

Japan

Phone: 81-3-3812-2111 x7286
Fax: 81-3-3818-5643
nakayama@tcl.t.u-tokyo.ac.jp

Nicholas, John B.
PNNL

EMSL

1502 SE Oxford
Richland, WA 99352
USA

Phone: 509-375-6559
Fax: 509-375-6631
jb-nicholas@pnl.gov

Nicholson, Donald M.

Oak Ridge National Laboratory
Building 4500-S

Oak Ridge, TN 37831-6114
USA

Phone: 423-574-5873

Fax: 423-574-7659
nicholsondm@ornl.gov

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY

545



LIST OF PARTICIPANTS

Nooijen, Marcel
Princeton University
Department of Chemistry
Frick Lab #123B
Princeton, NJ 08540

USA

Phone: 609-258-3168

Fax: 609-258-6746
nooijen@princeton.edu

Ohrn, Yngve

University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-1597

Fax: 352-392-8722
ohrn@qtp.ufl.edu

Ohta, Koji

Osaka National Research Institute, AIST, MITI
Department of Optical Materials

1-8-31 Midorigaoka

Ikeda, Osaka 563-8577

Japan

Phone: 81-627-51-9523

Fax: 81-627-51-9628

ohta@onri.go.jp

Olsen, Jeppe -

University of Lund
Theoretical Chemistry Dept.
P.O. Box 124

Lund 22100

Sweden

Phone: 46-46-222-8240

Fax: 46-46-222-4543
teojeo@garm.teokem.lu.se

Ortiz, Vincent

Kansas State University
Department of Chemistry
Manhattan, KS 66506
USA

Phone: 913-532-6665

Fax: 913-532-6666
ortiz@ksu.edu

Ostlund, Neil S.
Hypercube, Inc.

2135 NW 15th Ave
Gainesville, FL 32605
USA

Phone: 352-378-9776
Fax: 352-392-8722
ostlund@hyper.com

Ozment Payne, Judy

Penn State University

Division of Science and Engineering
1600 Woodland Road

Abington, PA 19001

USA

Phone: 215-881-7471

Fax: 215-881-7623

096@psu.edu

Paikeday, Joseph M.

Southeast Missouri State University
Department of Physics

One University Plaza MS 6600
Cape Girardeau, MO 63701-4799
USA

Phone: 573-651-2393

Fax: 573-651-2223
c314scp@semovm.semo.edu

Pandey, Ravindra

Michigan Technological University
Physics Department

1400 Townsend Drive

Houghton, MI 49931

USA

Phone: 906-487-2831

Fax: 906-487-2933
pandey@mtu.edu

Pearl, Greg Martin
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-6713

Fax: 352-392-8722
pearl@qtp.ufl.edu

546

VOL. 70, NO. 4/5



Perera, Ajith

University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-6973

Fax: 352-392-8722
perera@qtp.ufl.edu

Perpete, Eric A.

Facultes Universitaires de Namur
C.T.A.

Rue de Bruxelles, 61

Namur 5000

Belgium

Phone: 32-81-724557

Fax: 32-81-729530
eperpete@messiaen.scf.fundp.ac

Person, Willis

University of Florida
Department of Chemistry
P.O. Box 117200
Gainesville, FL 32611-7200
USA

Phone: 352-392-0528

Fax: 352-392-0872
person@pine.circa.ufl.edu

Persson, Petter

Uppsala University

Department of Quantum Chemistry
Box 518

S-751 20 Uppsala

Sweden

Phone: 46-18-4713579

Fax: 46-18-502402
petter@kvac.uu.se

Piecuch, Piotr

University of Florida
Department of Chemistry
P.O. Box 118435
Gainesville, FL. 32611-8435
USA

Phone: 352-392-9227

Fax: 352-392-8722
piecuch@qtp.ufl.edu

LIST OF PARTICIPANTS

Politzer, Peter

University of New Orleans
Chemistry Department
Lakefront Campus

New Orleans, LA 70148-2820
USA

Phone: 504 /286-6850

Fax: 504 /286-6860
papcm@uno.edu

Pople, John

Northwestern University
Department of Chemistry
2145 N. Sheridan Road
Evanston, IL 60208-3113

USA

Phone: 847-491-3403

Fax: 847-491-7713
pople@lithium.chem.nwu.edu

Porter, Leonard E.
Washington State University
Radiation Safety Office
Nuclear Radiation Center
Pullman, WA 99164-1302
USA

Phone: 509-335-7057

Fax: 509-335-1615
porterl@mail.wsu.edu

Poulain, Enrique

Instituto Technologico de Tlalnepantla
Division de Estudios de Posgrado
Apdo Postal 750

Tlalnepantla de Baz DF 54070

Mexico

Phone: 52-5-390-0310

Fax: 52-5-565-3910
sca@hp9000al.uam.mx

Priyadarshy, Satyam
University of Pittsburgh
Department of Chemistry
219 Parkman Avenue
Pittsburgh, PA 15260
USA

Phone: 412-624-8200

Fax: 412-624-8552
satyam@vms.cis.pitt.edu

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 547




LIST OF PARTICIPANTS

Probst, Michael

Innsbruck University

Department of Inorganic Chemistry
Innrain 520

Innsbruck A-6020

Austria

Phone: 43-512-5075153

Fax: 43-512-5072934
michael.probst@uibk.ac.at

Purvis, George D.
Oxford Molecular
P.O. Box 4003
Beaverton, OR 97076
USA

Phone: 503-526-5006
Fax: 503-526-5099
gpurvis@oxmol.com

Pyykko, Pekka
University of Helsinki
Department of Chemistry
P.O. Box 55

Helsinki FIN-00014
Finland

Phone: 358-9-191-40171
Fax: 358-9-191-40169
pekka.pyykko@helsinki.fi

Quintao, Andrea D.

Universidade Federal de Minas Gerias

Dept. of Fisica
Av. Antoio Carlos 6627, Pampulha

Belo Horizonte Minas Gerais 30123-970

Brazil

Phone: 55-031-4995633
Fax: 55-031-499-5600
aquintao@fisica.ufmg.br

Ramek, Michael

Technical University of Graz
Physics & Theoretical Chemistry
Brockmanngasse 27

Graz A-8010

Austria

Phone: 43-316-873-8227

Fax: 43-316-873-8720
ramek@ptc.tu-graz.ac.at

Randic, Milan

Drake University

Department of Math & Computer Science
Des Moines, A 50311

USA

Phone: 515-271-2163

Fax: 515-271-2055

Rassolov, Vitaly A.
Northwestern University
Department of Chemistry
2145 Sheridan Road
Evanston, IL 60208-3113
USA

Phone: 847-491-3423

Fax: 847-491-7713
rassolov@chem.nwu.edu

Ratner, Mark A.
Northwestern University
Chemistry Department
2145 Sheridan Rd
Evanston, IL 60208-3113
USA

Phone: 847-491-5652

Fax: 847-491-7713
ratner@chem.nwu.edu

Récamier, Jose

Universidad Nacional Autonoma de Mexico
Lab Cuernavaca

Apdo Postal 48-3

Cuernavaca Morelos 62251

Mexico

Phone: 52-5-622-7763

Fax: 52-73-173077
pepe@ce.itisicam.unam.mx

Reyes, Andres

University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-3010

Fax: 352-392-8722
reyes@qtp.ufl.edu

Ritchie, Adam B.

Lawrence Livermore National Lab.
Livermore, CA 94550

USA

Phone: 510-423-9180

Fax: 510-422-5102
ritchiel@llInl.gov

548

VOL. 70, NO. 4/5



Roos, Bjorn
University of Lund

Theoretical Chemistry Department

P.O. Box 124

Lund S-221 00

Sweden

Phone: 46-46-2228251

Fax: 46-46-2224543
teobor@garm.teokem.lu.se

Ruiz de Azua, Martin C.
Universidad de Buenos Aires
Dpto. de Fisica

Cdad Universitaria, Pab. 1
Buenos Aires 1428

Argentina

Phone: 54-1-782-1007

Fax: 54-1-782-7647
azua@df.uba.ar

Rychlewski, Jacek

A. Mickiewicz University
Department of Chemistry
Grunwaldzka 6

Poznan 60-780

Poland

Phone: 48-61-8699181 X-275
Fax: 48-61-8658008
rycmlew@man.poznan.pl

Sabin, John R.

University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-1597

Fax: 352-392-8722
sabin@qtp.ufl.edu

Sadeghi, Raymond
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-6973

Fax: 352-392-8722
rsadeghi@qtp.ufl.edu

LIST OF PARTICIPANTS

Saha, B. C.

Florida A & M University
Department of Physics
112A Jones Hall
Tallahassee, FL 32307
USA

Phone: 850-599-3470

Fax: 850-599-3577
saha@cennas.nhmfl.gov

Sahni, Viraht

Brooklyn College of CUNY
Department of Physics
2900 Bedford Avenue
Brooklyn, NY 11210-2889
USA

Phone: 718-951-5785

Fax: 718-951-4407
vvvbc@cunyvm.cuny.edu

Santana, Pedro
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-1597

Fax: 352-392-8722
santana@qtp.ufl.edu

Santilli, Ruggero M.
Institute for Basic Research
Box 1577

Palm Harbor, FL 34682
USA

Phone: 813-934-9593

Fax: 813-934-9275
ibr@gte.net

Satoh, Katsuhiko

Institute of Molecular Science
Theoretical Studies

Okazaki 444-8585

Japan

Phone: 81-564-55-7308

Fax: 81-564-53-4660
ksatoh@ims.ac.jp

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY

549



LIST OF PARTICIPANTS

Saue, Trond

Universite Paul Sabatier
IRSAMC-LPQ

118 Route de Narbonne
Toulouse 31400

France

Phone: 33-516556948

Fax: 33-561556065
tsaue@irsamcl.ups-tlse.fr

Schmelcher, Peter

University of Heidelburg
Theoretical Chemistry Department
Im Neuenheimer Feld 253
Heidelberg D-69120

Germany

Phone: 49-6221-545208

Fax: 49-6221-545221
peter@tc.pci.uni-heidelberg.de

Schmidt, Peter

Office of Naval Research
Chemistry Division

800 North Quincy Street Code 1113
Arlington, VA 22217-5000

USA

Phone: 703-696-4362
schmidt@onrhq.onr.navy.mil

Schmiedekamp, Lumelle A.
Penn State University
Physics Department

1600 Woodland Road
Abington, PA 19001

USA

Phone: 215-881-7572

Fax: 215-881-7623
ams@psu.edu

Schuch, Dieter

JW Goethe-Universitat

Inst. fur Theoretische Physik
Robert-Mayer-Str. 8-10

Frankfurt D-60054

Germany

Phone: 49-69-319523

Fax: 49-69-3088997
schuch@th.physik.uni-frankfurt.de

Schwegler, Eric

Minnesota Supercomputer Institute
1200 Washington Avenue South
Minneapolis, MN 55415

USA

Phone: 612-626-0763

Fax: 612-624-8861
schwegle@chem.umn.edu

Seel, Max

Michigan Technological University
Physics Department

1400 Townsend Drive

Houghton, MI 49931-1295

USA

Phone: 906-487-2156

Fax: 906-487-3347

seel@mtu.edu

Sekusak, Sanja

Rugjer Boskovic Institute
Department of Chemistry
Bijenicka 54

Zagreb

Croatia

Phone: 385-1-4561-089
Fax: 385-1-4680-084
sanja@indigo.irb.hr

Serrano, Lourdes M.

Lake Forest College
Department of Chemistry

Box 1122 555 N. Sheridan Road
Lake Forest, IL 60045

USA

Phone: 847-735-5867

Fax: 847-735-6194
serralm@student.lfc.edu

Seybold, Paul

Wright State University
Department of Chemistry
Dayton, OH 04535

USA

Phone: 937-775-2407

Fax: 937-775-2717
pseybold@wright.edu

550

VOL. 70, NO. 4/5



Sherrill, David C.

University of California, Berkeley
Department of Chemistry

Box 308

Berkeley, CA 94720-1460

USA

Phone: 510-643-2935

Fax: 510-643-1255
sherrill@alum.mit.edu

Shields, George

Lake Forest College
Department of Chemistry
555 N. Sheridan Road
Lake Forest, IL 60045
USA

Phone: 708 /735-5092

Fax: 708 /735-6291
gshields@ifmail.lfc.edu

Shigeta, Yasuteru

Osaka University

Department of Chemistry
Machikane ya ma Machi
Toyonaka 560

Japan

Phone: 81-06-850-5405

Fax: 81-06-850-5550
shigeta@chem.sci.osaka-u.ac.jp

Shillady, Donald D.

Virginia Commonwealth University
Department of Chemistry

1001 W. Main Street, Kapp Hall
Richmond, VA 23284-8599

USA

Phone: 804-367-1298

Fax: 804-828-8599
dshillad@saturn.vcv.edu

Smeyers, Yves G.

Superior Council for Scientific Investigations
Institute of Matter Structure

Calle Serrano No 123

Madrid E-28006

Spain

Phone: 34-1-5855404

Fax: 34-1-5642431

emsmeyers@roca.csic.es

LIST OF PARTICIPANTS

Smith, Vedene H.

Queen’s University
Department of Chemistry
Kingston, Ontario K7L 3N6
Canada

Phone: 613-545-2650

Fax: 613-545-6669
vhsmith@chem.queens.ca

Soscun, Humbetrto

Universidad de Zulia

Fac. of Sciences, Dept. de Quimica
Grano de Oro, Mod. 2

Maracaibo Zulia AP 526,
Venezuela

Phone: 58-61-317902

Fax: 58-61-311348
humberto@sinamaica.ciens.luz.ve

Squire, Richard H.

Marshall University

Department of Chemistry

901 W. DuPont Avenue

Belle, WV 25015

USA

Phone: 304-357-1292

Fax: 304-357-1230
richard.h.squire@USA.dupont.com

Stanton, Christopher
University of Florida
Department of Physics
P.O. Box 118440
Gainesville, FL 32611-8440
USA

Phone: 352-392-8753

Fax:

Stavrev, Krassimir K.
Hypercube, Inc.

1115 NW 4th Street
Gainesville, FL 32601
USA

Phone: 352-371-7744
Fax: 352-371-3662
stavrev@hyper.com

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 551




LIST OF PARTICIPANTS

Stevens, Walter J.

National Institute of Standards and Technology
Computational Chemistry

Building 221, Room A111

Gaithersburg, MD 20899

USA

Phone: 301-975-5968

Fax: 301-869-4020

walter.stevens@nist.gov

Sun, Jun-Qiang
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-6715

Fax: 352-392-8722
sun@qtp.ufl.edu

Surjan, Peter R.

Eotvos University
Theoretical Chemistry
P.O. Box 32

Budapest 1518

Hungary

Phone: 36-1-209-0555-1632
Fax: 36-1-209-0602
surjan@para.chem.elte.hu

Talham, Dan

University of Florida
Department of Chemistry
P.O. Box 117200
Gainesville, FL 32611-7200
USA

Phone: 352-392-9016

Fax: 352-392-3255
talham@chem.ufl.edu

Talman, James

University of Western Ontario
Department of Applied Mathematics
WSC 173

London, Ontario N6A 5B7

Canada

Phone: 519-679-2111 EXT 8800

Fax: 519-661-3523
jdt@apmaths.uwo.ca

Tamm, Toomas
University of Helsinki
Department of Chemistry
P.O. Box 55

Helsinki FIN-00014
Finland

Phone: 358-9-191-40174
Fax: 358-9-191-40169
toomas@chem.helsinki.fi

Thakkar, Ajit J.

University of New Brunswick
Chemistry Department

Bag Service #45222
Fredericton NB E3B 6E2
Canada

Phone: 506-453-4629

Fax: 506-453-4981

ajit@unb.ca

Thorndyke, Brian
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-6365

Fax: 352-392-8722
thorndyke@qtp.ufl.edu

Tobita, Motoi

University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL. 32611-8435
USA

Phone: 352-392-6365

Fax: 352-392-8722
tobita@qtp.ufl.edu

Torring, Jens T.

J. W. Goethe-Universitaet
Chemistry

Marie Curie Street, 11

Frankfurt am Main D-60439
Germany

Phone: 49-69-798-29786

Fax: 49-69-798-29404
toerring@chemie.uni-frankfurt.de

552

VOL. 70, NO. 4/5



Tozer, David J.
University of Cambridge
Department of Chemistry
LCI, Bat. 420

Cambridge CB2 1IEW

UK

Trickey, Samuel B.
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-1597

Fax: 352-392-8722
trickey@qtp.ufl.edu

Trindle, Carl

University of Virginia
Chemistry Department
McCormick Road
Charlottesville, VA 22903
USA

Phone: 804-924-3168

Fax: 804-924-3710
cot@virginia.edu

Truhlar, Donald

University of Minnesota
Chemistry Department

207 Pleasant Street, S.E.
Minneapolis, MN 55455-0431
USA

Phone: 612-624-7555

Fax: 612-626-7541
truhlar@umn.edu

Tschumper, Gregory S.

University of Georgia

Center for Computational Quantum Chemistry
Chemistry Annex, Room 515

Athens, GA 30602-2556

USA

Phone: 706-542-7373

Fax: 706-542-0406
tschumpr@xerxes.ccqc.uga.edu

LIST OF PARTICIPANTS

Tsurusawa, Takeshi

Institute for Molecular Science
Theoretical Studies
Myodaiji-Cho, Okazaki
Okazaki Achi 444-8585

Japan

Phone: 81-564-55-7308

Fax: 81-564-53-4660
ztakeshi@ims.ac.jp

Turner, Rebecca B.

Lake Forest College

Department of Chemistry

LFC Box 1188, 555 N. Sheridan Road
Lake Forest, IL 60045

USA

Phone: 847-735-5374

Fax: 847-735-6194
turnerb@student.lfc.edu

Ugalde, Jesus M.

Euskal Herriko Unibertsitatea
Kimika Fakultatea

P.K. 1072

Donostia 20080

Spain

Phone: 34-43-216-600

Fax: 34-43-212236
ugalde@sq.ehu.es

Vanderbilt, David

Rutgers University

Department of Physics and Astronomy
61 Robert Rd.

Princeton, NJ 08540

USA

Phone: 732-445-2514

Fax: 732-445-4400
dhv@physics.rutgers.edu

Vercauteren, Daniel

University of Namur

Chemistry Department

Rue de Bruxelles, 61

Namur B-5000

Belgium

Phone: 32-81-724534

Fax: 32-81-724530
daniel.vercauteren@sef.fundp.ac.bf

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 553




LIST OF PARTICIPANTS

Vergenz, Robert

University of North Florida
Department of Natural Sciences
3456 St. Johns Bluff Road S.
Jacksonville, FL 32225-2645
USA

Phone: 904-721-1934

Vigneron, Jean-Pol

Universitaires Notre-Dame de la Paix
Department of Physics

Rue de Bruxelles 61

Namur 5000

Belgium

Phone: 32-81-724711

Fax: 32-81-724707
jean-pol.vigneron@scf.fundp.ac.be

Vilkas, Jonas M.

University of Puerto Rico
Department of Chemistry

P.O. Box 23346

San Juan, Puerto Rico 00931-3346
Phone: 787-764-0000 x-5908

Fax: 787-756-7717
vilkas@pauli.uprr.pr

Wagner-Brown, Katrina B.
Conceptual Mindworks
4318 Woodcock Dr. #210
San Antonio, TX 78228
USA

Phone: 210-536-4822

Fax: 210-536-2952
wagner@delta.broks.ad.mil

Warshel, Arieh

University of Southern California
Chemistry Department

1008 Westholme Ave.

Los Angeles, CA 90024

UsA

Phone: 213-740-4114

Fax: 213-740-2701

Watts, John

University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-1597

Fax: 352-392-8722
watts@qtp.ufl.edu

Weatherford, Charles A.
Florida A & M University
Department of Physics

205 Jones Hall

Tallahassee, FL. 32307

USA

Phone: 850-599-3470

Fax: 850-599-3577
weatherf@cennas.nhmfl.gov

Weiner, Brian

Pennsylvania State University
Department of Physics
College Place

Dubois, PA 15801

USA

Phone: 814-375-4700

Fax: 814-375-4784
bqw@psu.edu

Wenzel, Wolfgang

Dortmund University

Theoretical Physics

Otto-Hahn-Str 4

Dortmund D-44221

Germany

Phone: 49-251-755-3551

Fax: 49-251-755-3551
wenzel@wap.physik.uni-dortmund.de

Wilson, Kenneth
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-6365

Fax: 352-392-8722
wilson@qtp.ufl.edu

554

VOL. 70, NO. 4/5



Xantheas, Sotiris S.
Pacific Northwest National Lab

Environmental Molecular Sciences Lab

902 Batelle Blvd., MS K1-96
Richland, WA 99352 ¢
USA

Phone: 509-375-6878

Fax: 509-375-6631
ss—xantheas@pnl.edu

Yamada, Satoru

Osaka University

Department of Chemistry
Machikaneyama-cho 1-1
Toyonaka 560

Japan

Phone: 81-6-850-5405

Fax: 81-6-850-5550
yamada@chem.sci.osaka-u.ac.jp

Yau, Anthony

University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-6365

Fax: 352-392-8722
yau@gqtp.ufl.edu

Yeager, Danny L.

Texas A & M University
Chemistry Department
MS-3255

College Station, TX 77843-3255
USA

Phone: 409-845-3436

Fax: 409-845-4719
yeager@chemvx.tamu.edu

Yi, Zhigang

University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352/392-3010

Fax: 352 /392-8722
yi@qtp.ufl.edu

LIST OF PARTICIPANTS

Yoshioka, Yasunori

Osaka University

Department of Chemistry
Toyonaka, Osaka 560

Japan

Phone: 81-6-850-5406

Fax: 81-6-850-5550
yyoshi@chem.sci.osaka-u.ac.jp

Zakrzewski, Vyacheslav
Kansas State University
Department of Chemistry
111 Willard Hall
Manhattan, KS 66506-3701
USA

Phone: 785-532-6072

Fax: 913-532-6666
vgz@ksu.edu

Zerner, Michael C.
University of Florida
Quantum Theory Project
P.O. Box 118435
Gainesville, FL 32611-8435
USA

Phone: 352-392-1597

Fax: 352-392-8722
zerner@qtp.ufl.edu

Zeroka, Daniel

Lehigh University

Chemistry Department

Bldg. E5554, SCBRD-RTE, ERDEC
Aberdeen Proving Ground, MD 21010-5423
USA

Phone: 410-671-4825

Fax: 410-671-1120

dz00@lehigh.edu

Zhu, Chaoyuan

Institute for Molecular Science
Division of Theoretical Studies
Myodaiji Okazaki 444

Japan

Phone: 81-564-55-7309

Fax: 81-564-53-4660
zhu@ims.ac.jp

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 555
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ABSTRACT: Through the 3,5-contracted Schrodinger equation (3,5-CSchE) quantum
energies and 3-particle reduced density matrices (3-RDMs) are determined directly
without wave functions. Since the 3,5-CSchE involves the 5-RDM, its solution is
indeterminate without N-representability conditions. However, the indeterminacy of the
3,5-CSchE may be removed through a reconstruction strategy for building the 4- and
5-RDMs from the 3-RDM. We present a systematic procedure for obtaining corrections
for Valdemoro’s reconstruction functionals from two complementary approaches, the
particle-hole duality and the theory of cumulants. With the cumulants we are able to
demonstrate that we have obtained all terms in the reconstruction functionals which may
be written as antisymmetric products of the lower rdms. The cumulants allow us to
understand the reconstruction functionals in terms of a renormalized many-body
perturbation theory. The reconstruction functionals also lead to a natural generalization
of Wick’s theorem for evaluating expectation values of fermionic annihilation and
creation operators with respect to correlated reference states. Previous work [Phys. Rev.
A 57, 4219 (1998)] has explored the determination of correlation energy and 2-RDMs
through the 2,4-CSchE, also known as the density equation. Because the reconstruction
functionals employed with the 3,5-CSchE depend only on the antisymmetric products of
lower RDMs in constrast to those used with the 2,4-CSchE, the 3,5-CSchE method
presented here does not require the solution of systems of linear equations during
reconstruction or the storage of the reconstructed RDMs. Application of the 3,5-CSchE
technique to a quasi-spin model generates ground-state energies and 2-RDMs similar in
accuracy to single-double configuration interaction (SDCI). We employ a simple iterative
procedure for the solution of the 3,5-CSchE without traditional diagonalization. The
CSchE techniques offer an approximate solution of the N-representability problem and a
new approach to electron correlation. © 1998 John Wiley & Sons, Inc. Int ] Quant Chem 70:
557-570, 1998

Contract grant sponsor: National Science Foundation.

International Journal of Quantum Chemistry, Vol. 70, 557-570 (1998)
© 1998 John Wiley & Sons, Inc. CCC 0020-7608 / 98 / 040557-14




MAZZIOTTI

Key words: electron correlation; reduced density matrices; N-representability;

cumulants; particle-hole duality

Introduction

F or atoms and molecules with any number N
of electrons the repulsions between electrons
are treated pairwise within the Hamiltonian. A
consequence of this is that the energy and other
properties of molecular systems may be calculated
with only a knowledge of the 2-particle reduced
density matrix (2-RDM). This result suggests a
simplification for the many-body problem for pair-
wise-interacting particles in which calculation of
the N-particle wave function is circumvented
through a direct determination of the 2-RDM.
Many attempts to obtain the 2-RDM variationally
have not succeeded because simple yet complete
conditions for ensuring that the 2-RDM corre-
sponds to a realistic N-particle system have not
been found (N-representability problem) [1, 2]. Re-
cently, however, we have presented an accurate
technique for determining directly the 2-RDM
through the 2,4-contracted Schrodinger equation
(2,4-CSchE) [3].

In 1976 both Cohen and Frishberg [4] and
Nakatsuji [5] derived the (p, p + 2)-CSchE as an
integro-differential equation where p > 1. Matrix
formulations were later developed by Harriman
[6] and Valdemoro [7]. However, the (p, p + 2)-
CSchE alone cannot be employed to determine the
p-RDM because it also requires a knowledge of the
(p + 2)-RDM. In 1993 Valdemoro offered a practi-
cal solution for the indeterminacy of the 2,4-CSchE
by deriving functionals for reconstructing the 3-
and 4-RDMS approximately from a knowledge of
the 2-RDM [8-12]. Yasuda and Nakatsuji have
employed Valdemoro’s formulas for the 3- and
4-RDMs with corrections to solve the 2,4-CSchE for
closed-shell molecules with as many as 14 active
electrons [13, 14]. We have recently derived correc-
tions for Valdemoro’s 3- and 4-RDM reconstruc-
tion functionals through the particle-hole duality
[3]. Our correction for the 4-RDM functional from
the particle-hole perspective agees with the term
proposed by Yasuda and Nakatsuji from the the-
ory of Green’s functions, but our approach for
correcting the 3-RDM is different. We have also
proposed a new reconstruction strategy without
functionals, known as the ensemble representabil-

ity method (ERM), in which contraction and posi-
tive semidefinite conditions are imposed on the 3-
and 4-RDMs. The functional and ERM reconstruc-
tions were separately employed with the 2,4-CSchE
to solve a quasi-spin model with the number of
particles between 4 and 40. For both methods we
obtained ground-state energies as accurate as sin-
gle-double configuration interaction (SDCI) and
2-RDMs which were about an order of magnitude
better than SDCI.

In the present work we explore the possibility of
obtaining accurate energies and 2-RDMs through
the solution of the 3,5-CSchE. By contracting the
Schrodinger equation through the use of test func-
tions, we provide a clear derivation of the 3,5-
CSchE in second quantization. Two different ap-
proaches for deriving a correction to Valdemoro’s
functional for the 5-RDM in terms of lower RDMs
are explored: (i) the particle-hole duality and (ii)
the theory of cumulants. We show how these two
perspectives interrelate and complement each
other. Furthermore, through the cumulant expan-
sion we demonstrate how to obtain all of the terms
for the p-RDM functional which may be written as
antisymmetrized products of the lower RDMs. This
leads us to a natural division of the RDM function-
als into an wunconnected part which may be ex-
pressed as a product of lower RDMs and a con-
nected remainder. The notion of connected will
allow us to elucidate the relationship between the
reconstruction functionals and many-body pertur-
bation theory (MBPT) [15-17] for RDMs. Recon-
struction for two different RDMs (the p + 1- and
p + 2-RDMs) must be employed to remove the
indeterminacy of the (p, p + 2)-CSchE. Ideally, we
would like these functionals to be accurate through
the same order of MBPT, that is scheme consistent
[18, 19]. While the 4-RDM, constructed from the
lower RDMs, may be shown to be exact through
second order, the 3-RDM functional, we will indi-
cate, cannot be made consistent through second
order without a correction to the connected por-
tion. In contrast, both the 4- and 5-RDMs, correct
through second order of MBPT, may be built from
products of the 3-RDM and lower RDMs. This
suggests a possible advantage for solving systems
with pairwise interactions through the 3,5-CSchE.

Solution of the 3,5-CSchE with the reconstruc-
tion functionals for the 4- and 5-RDMs is explored
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through calculations of a quasi-spin system with
as many as 50 particles. The spin model, employed
in a previous study to illustrate the 2,4-CSchE, was
originally used by Lipkin [20] as a benchmark
to test various many-body methods for solving
fermionic systems. The results are compared with
those of the 2,4-CSchE as well as more traditional
approaches to electron correlation like MBPT and
SDCI. As mentioned above, the second-order cor-
rection for the 3-RDM in the 2,4-CSchE requires
the solution of a system of equations in Nakatsuji
and Yasuda’s approach as well as our own, but the
equivalent corrections for the 4- and 5-RDMs in
the 3,5-CSchE may be written as explicit function-
als of the 3-RDM and lower RDMs. For this reason
the 3,5-CSchE may be solved iteratively without
storing the 4- or 5-RDMs.

Derivation

To generate the 3,5-contracted Schrodinger
equation, we begin with the N-particle Schrodi-
nger equation

Hly) = Ely) 1)

where the wave function ¢ may represent any
state of the system and the Hamiltonian is defined
in second quantization as

1
H='2— E

ig,1s, jg/ Js

@

2pcigis ot ot
Ki4z js %, 41545, aj, -

Index labeling begins with 4 since we wish to
reserve the lower integers for later use. The 2-par-
ticle reduced Hamiltonian matrix K has elements
defined by

o - 1

g ls — Y/.1ard S .
K]':r s VJ'4‘3155 + N-1 (Ei4r]4615/]5
in which € and V represent the one- and two-par-
ticle contributions, respectively. For an atomic sys-
tem with nuclear charge Z these terms are given

explicitly by
¢,.4> @)

Efp]! = <¢i4
Ve = <¢14(1)¢i5(2) ¢].4(1)¢,-5(2)>, (5)

+e,.8,) @

ig, fa

2 n

and

1
’

12

with ¢; denoting the one-electron spin orbitals.

3,5-CONTRACTED SCHRODINGER EQUATION

Multiplying the Schrédinger equation on the
right by the function (|, we obtain the expression
for exact energy E as a linear function of the
2-particle density matrix *D (2-RDM):

E= Y K™Dy =TCK’D), (©)

tas 15/ Jar J5

where we define the 2-RDM in second quantiza-
tion as

o1
“Djije = 5y Cwlalalagaly). 7
The normalization of the 2-RDM is (N(N — 1))/2
in this notation. As discussed in the introduction,
direct determination of the ground-state 2-RDM
through variational minimization of the energy is
not yet a practical alternative to traditional ap-
proaches for the many-body problem because sim-
ple conditions for keeping the 2-RDM ensemble
N-representable have not been discovered.
Relationships more general than Eq. (6), how-
ever, may be obtained by testing the Schrodinger
equation with a set of functions {{®,]} rather than
just the wave function {¢/|. Let us consider the set
of one-, two-, and three-particle excitations by
defining the test functions

iy, 19,13} — P
(Pjir2 sl = (Ylajal al aa;,a,l. ®

Multiplying Eq. (1) by these test functions pro-
duces the equations

21riy, is iy, 1y, 03,14, 15 3yiy, ig, ig
. Z . Kj4,j5Rj1,]2,]3,j4,]5 12E Djlljzrja’ ©)
l4:15: Jas J5

where

I, i, i3, 10,05 — tddaaadadaa
Rji,]zz,]i,ji,]i <(/jIa’lalza’salsa]za]1a14a‘5alsa]4lllj)'
(10)

By rearranging the creation and annihilation oper-
ators in the expression for R, we can write the
elements of R as linear combinations of 3-, 4-, and
5-RDMs. Use of a graphical rule not only facilitates
the rearrangement of the operators but produces a
result which is independent of whether the N
particles under consideration obey boson or fermi-
on statistics [21]. We obtain the following expres-
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sion for the elements of R in terms of RDMs:

g i3, g, 15 — BN l2/ 13,14, 15
R]l']2/13r14f15 5( Dhrl:rl.hhr}ﬁ)

A~ i P
| Iy la, 13,15 814 Iy ly 13, 14§15
+4'( D]4/}2//31 }58]1 + D]5r]2r}3/ 146]1

4 i1,45,13,15 iy 4 iy, 0y, 03,14 is
+ D g D

Aryiy, iy, da,is §is 4 4D i i3 iy is)
+ Dy g A D R 8

13 fll’:2:’:3( iy8is iy fs)
+3( Dlar}w/s 8]1 8}2 + 8/2 8/1

3 il’ i2’ '3( ,i-l i5 i~1 15)
+7Djl (81387 + 8,08

3yt i is( §isgis issis
+'Dp i n(dfs + 8a))) D)
in which the p-RDMs are given by the general
second-quantized definition

1
Pty = — (gld . dl
Djirjarie p!<!//|a,la,2...a a.a

i

]-pf]...ahh//)
(12)

Iy

The p-RDMs are normalized to N!/(p!(N — p)).
Collectively, the equations in (9) with the expres-
sion for elements of R in Eq. (11) compose the
3,5-CSchE. Other CSchEs may be gnerated by us-
ing different test functions {®} in Eq. (8). The
1,3-CSchE requires a set of single excitations while
the 2,4-CSchE requires both single and double ex-
citations.

When the RDMs in the 3,5-CSchE are restricted
to the set of pure N-representable matrices, they
will constitute a solution of the 3,5-CSchE if and
only if they may be formed from the contraction of
an N-particle pure density matrix "D(¢) whose
associated wave function ¢ satisfies the Schrodi-
nger equation (SE). This result, known as Nakat-
suji’s theorem, was demonstrated by Nakatsuji in
1976 for an integro-differential version of the CSchE
[5]. We recently presented the first formal proof of
the theorem for the second-quantized 2,4-CSchE
[3]. Proof that a ¢ satisfying the SE contracts to
RDMs, which solve the 3,5-CSchE, follows directly
from the above derivation of the 3,5-CSchE from
the SE. We may demonstrate the other direction of
the proof by showing that within a pure N-repre-
sentable space the 3,5-CSchE implies the following
dispersion condition:

CYIHYY = (PlHIpY =0, (13)

which is true if and only if the SE is satisfied.
Hence, solution of the 3,5-CSchE implies solution

of the SE. Details of the derivation mirror those
given for the 2,4-CSchE. Since the Hamiltonian in
Eq. (13) is defined in second quantization by Eq.
(2), the resulting theorem is valid for both com-
plete and incomplete basis sets. This proof does
not work for the 1,3-CSchE which may have pure
N-representable solutions which do not corre-
spond to the wave function solution of the SE. In
any correlated system the Hartree—Fock RDMs as
well as the correlated 1-, 2-, and 3-RDMs will
satisfy the 1,3-CSchE.

Reconstruction

While Nakatsuji's theorem guarantees that the
3,5-CSchE may be solved directly for the correct 3-,
4-, and 5-RDMs within a pure N-representable
space, simple necessary-and-sufficient conditions
for keeping these RDMs N-representable are not
known. The framework of the 3,5-CSchE, however,
allows us to recast N-representability as a recon-
struction problem. If we knew how to build from
the 3-RDM to the 5-RDM, the 3,5-CSchE in Eq. (9)
furnishes us with enough equations to solve itera-
tively for the 3-RDM. Two approaches for recon-
struction have been explored in a previous study
[3] on the 2,4-CSchE: (i) the explicit representation
of higher RDMs as functionals of lower RDMs and
(ii) the construction of a family of higher RDMs
from lower RDMs by imposing ensemble repre-
sentability conditions. In the following two sec-
tions we will develop the functional approach for
the 3,5-CSchE from two different perspectives, the
particle-hole duality and the theory of cumulants.

PARTICLE-HOLE DUALITY

Many-body problems in quantum mechanics are
usually described by the number of particles N in
the system and the probabilities of finding those
particles at different locations in space. If the rank
of the one-particle basis is a finite number 7, an
equally valid description of the system may be
given by specifying the number of holes r — N in
the system and the probabilities of finding these
holes at different locations in space. This possibil-
ity for an equivalent representation of the system
by particles or holes is known as the particle-hole
duality. By using the fermion anticommutation
relation to rearrange the creation and annihilation
operators in the definition equation (2) of the
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Hamiltonian such that all of the annihilators ap-
pear to the left of the creators, we generate a hole
representation of the Hamiltonian H whose expec-
tation value with the (» — N)-hole density matrix
=MD produces the energy E:

E=Tr(H"MD) (14)
= Tr(*’K*D). (15)

As shown in the second line, like the expression
for the energy E as a function of the 2-RDM, the
energy E may also be expressed as a linear func-
tional of the 2-hole reduced density matrix 2D
(2-HRDM) and the 2-hole reduced Hamiltonian
2K. Direct minimization of the energy to determine
the 2-HRDM would require (r — N)-representabil-
ity conditions. The definition for the p-hole re-
duced density matrices in second quantization is
given by

ufpl;,b).
(16)

_ 1
PDjijaridy = —(pla. a, -+ a.atal -
i, 09,.0000 iy p| 172 Jyhh

Normalization of the p-HRDM in second quantiza-
tion is (r — N)!I/(pi(r — N — p)).

Because the hole and particle perspectives offer
equivalent physical descriptions, the p-RDMs and
p-HRDMs are related by a linear mapping [22, 23].
Thus, if one of them is known, the other one is
easily determined. The same linear mapping re-
lates the p-particle and p-hole reduced Hamilto-
nian matrices (K and *K). An explicit form for the
mapping may be readily determined by using the
fermion anticommutation relation to convert the
p-HRDM in Eq. (16) to the corresponding p-
HRDM. For p = 1 the result is simply

'Dj ='s/ -'D], (17)
which is equivalent to taking the expectation of the
fermion anticommutation relation. Similarly, for
p = 2 we obtain the relation

25 j iy _ §iagi
Dl]11/’1J22 = (61118]2 5/1 8]21)/2
—'Diis%2 +'Diigjz +2Div%, (18)

hel2?
which contains a sum of three different kinds of
terms that have: (i) one 2-RDM, (ii) one 1-RDM
multiplying one &, and (iii) two 8’s. This expres-
sion represents the commutation relation for a
composite particle consisting of two fermions. By

3,5-CONTRACTED SCHRODINGER EQUATION

anticommuting the creation and annihilation oper-
ators, we can generate analogous expressions for
composite particles consisting of more than two
fermions.

Before introducing the general expression, we
express Eq. (18) more concisely through the anti-
symmetric wedge product A from Grassmann
algebra [24]. The wedge product between two ma-
trices D and D involving p and ¢ particles
produces an antisymmetric matrix involving p + g
particles defined by

D A D = Ay"D ® DAy, (19)

where the Ay is the N-particle antisymmetriza-
tion operator and ® is the tensor product. More
details about evaluating wedge products may be
found in Appendix A of [3]. For the 2-HRDM as a
functional of RDMs we obtain

2757, 7 2vi,,10 i 1yi 21y, i

Dol ="Liujz — 2Dy A Tz + 7Dy (20)

i1

where 'I is the identity matrix

11, _ si
I =8 1)

and
27iy,iy — L7i 1yi
I]llr f22 - Ifll A Ifzz' (22)

In general, the linear relation between the p-HDRM
and p-RDM may be expressed as

r—1
'D="I+ % (—1)”(5)"D AP+ (=1)PPD.
n=1

(23)

Indices for the RDMs are not shown for notational
clarity. The p-RDM as a functional of the p-HRDM
may be easily obtained by switching D and ’D in
the above equation.

Valdemoro [8] realized that these particle—hole
relations could be written in the following form:

"D+ (=D""'"D = ¢ D) + (- D’ ¢ 'D),
(24)

where f(’”"'D) is a functional of the (p — 1)-HRDM
and lower HRDMs and f(*"'D) has the same
functional form as f(*~'D) with the HRDMs re-
placed with the corresponding RDMs. With the
appropriate f functional for each p the relation in
Eq. (24) is exact and equivalent to Eq. (23).
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Valdemoro then obtains functionals for the p-
RDM and p-HRDM by assuming that

D ="Dy,q = fC7'D) (25)

and

"D = "Dy,q = f¢7'D). (26)
These formulas are approximate because some of
the terms for the particle and hole RDMs cancel in
relation (24). Rearranging Eq. (23) for each p as
originally described by Valdemoro will produce
the functionals f. We have found an easier method
for extracting the functionals f which, however,
does not show the equivalence between Egs. (23)
and (24). Since Valdemoro’s method appears in the
literature [8], we explain our technique which gen-
erates f from Eq. (23) through the followmg two
substitutions: (i) replace lI with 'D, which is
equivalent to assuming that 'D = 0 in Eq. (17), and
(i) set ’D = 0. The technique works because it
assumes a separatien of particles and holes by
setting all of the hole matrices in the expression to
zero to produce f. For p from 2 to 5 the resulting
RDM functionals are represented by the portions
of the functionals in Table I that are not under-
lined. The underlined corrections will be deter-
mined below through an extension of the
particle-hole arguments and later through cumu-
lant expansions.

Corrections for the 4-RDM and 5-RDM function-
als may be obtained by searching for some terms
involving the wedge products of lower RDMs
which cancel with the corresponding corrections
for the HRDM functionals. Consider the matrices
’A and °A describing the errors in Valdemoro’s
reconstruction functionals for the 2- and 3-RDMs
as well as the matrices A and °A describing the
errors in Valdemoro’s reconstruction functionals

TABLE |

for the 2- and 3-HRDMs:

ZA = 2D - ZDVald (27)
=D - ZBVald (28)
=2A (29)
and
= '(35 - 35Vald) 3D
= - "A. (32)

An appropriate correction for the 4-RDM and 4-
HRDM functionals is

D...=kJA A%A (33)
=kAAA (34)
=D (35)

corr’

because this term has the same functional form for
particles and holes and yet, since they are equal,
they cancel in the commutation relation (24). The
proportionality factor k, is equal to the number of
distinct ways of distributing the four particles in
two groups of two particles. The possibilities are
{12}34}, {13}{24}, and {14}{23}; hence, k, = 3. The
5-RDM and 5-HRDM functionals have the follow-
ing corrections:

Digre = ks °A A A (36)
o L WY (37)
= -°D, (38)

corr*

Again this term has the same functional form for
particles and holes. Note that for odd p the correc-
tions must have opposite signs to cancel in the
anticommutation relation (24). As with k,, the
proportionality factor ks is equal to the number of
distinct ways of distributing the five particles be-

Approximate reconstruction functionals for the p-RDMs in terms of lower RDMs where corrections to

Valdemoro’s functionals are underlined.

p=~°D,,

%D = °Dyy ="'D% + 3(

4D = 4DVaIcl+t::orr - D4 + 4(3D 1D3)

5D = 5DVaId+corr = 1D5 + 10(2D

—'D2) A D3 - 10(3D -D3) A'D2+5(0D -

2
- D) A'D
—6CD —"'D2) A'D2+3%A A %A

DY A'D+10°A A %A
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tween a group of three particles and a group of
two particles; thus, ks = 10.

Cumulants

The reconstruction functionals, derived in the
previous section through the particle-hole duality,
may also be produced through the theory of cumu-
lants [25-28]. We begin by constructing a func-
tional whose derivatives with respect to probe
variables generate the reduced density matrices in
second quantization. Because we require that addi-
tional derivatives increase the number of second-
quantization operators, we are led to the following
exponential form:

c() = <¢|O(exp(21kaz + J,:“ak))lz/o, 39)
k

where the ], and its conjugate J are Schwinger
probe variables. For fermions these Schwinger
probes have the property that they anticommute,
{J., ]} = 0. Differentiation of G(]J) with respect to
the probes leads to the accumulation of creation
and annihilation operators before the exponential.
Because the annihilation and creation operators do
not commute, we need to impose a specific order-
ing for these operators which appear before the
exponential after differentiation. Since we wish to
form functionals for RDMs, we define that the
creation operators should always appear to the left
of the annihilation operators independent of the
order in which we differentiate with respect to the
probes. If we wished to produce the corresponding
HRDM functionals, we would order the annihila-
tors to the left of the creators. We represent this
ordering convention through the ordering operator
O in the definition of G(J). This ordering process
is analogous to the time ordering of the creation
and annihilation operators which appears in the
theory of Green’s functions [29].

The general relation between the differentiation
of G(J) with respect to the Schwinger probes and
the RDMs may be characterized as

PPt 2o ‘
Dy
1 PG
= lim —
j-0 p! (7]1’,, 9], 9, f”j’f (9];;_1 5];:

(40)

3,5-CONTRACTED SCHRODINGER EQUATION

1
= E<l/j|a]:»lﬂ1£2 eee “T’paipaip_l ajll'w[]>' (41)

The coefficients of the multivariable Taylor series
expansion of G(J) about the point where the
Schwinger probes vanish are elements of the
RDMs. Thus, G(]) is known as the generating func-
tional for RDMs. Mathematically, the RDMs of the
functional G(J) are known as the moments. The
moment-generating functional G(J) may be used
to define another functional W(J), known as the
cumulant-generating functional, by the relation

G(]) = exp(W(])). (42)

Just as the moments are formed from G(J) as in
Eq. (41), the cumulants *A are produced from W(J)

by

PALp igseees i
A
i 1 W
= lim — ,
j-0 p! a]ip w0 9], 0 AT - ‘9]]':,1 &]f:

(43)

and the cumulants are defined as the coefficients
of the multivariable Taylor series expansion of
W(J) about the point where the Schwinger probes
vanish. The introduction of another generating
functional W(J) in Eq. (42) may seem unnecessary.
The set of cumulants A for p ranging from 1 to g
contains the same information as the set of mo-
ments 7D for the same range of p, but the informa-
tion is distributed differently. This different distri-
bution of information will allow us to determine
the reconstruction functionals for building higher
RDMs from lower RDMs.

As explained by Kubo [25], cumulants have the
special property that they vanish if and only if one
of their particles is statistically independent of the
rest. Thus, for a mean field approximation (Har-
tree—Fock) where each of the N particles is treated
independently all cumulants except 'A vanish. An-
other way of interpreting this property of cumu-
lants is to say that the p-particle cumulant PA
represents the part of the p-RDM which cannot be
written as a simple wedge product of lower RDMs.
The formula for *Dy,,, from Table I accounts for
situations where two of the particles are close
enough to interact while the remaining particle is
sufficiently separated in space for us to assume
that it is statistically independent of the others.
Therefore, approximating the 3-RDM as a func-
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tional of the lower RDMs is equivalent to assum-
ing that °A vanishes. Similarly, the remaining func-
tionals in Table I which express the given p-RDM
as a functional of lower RDMs do not accurately
represent configurations in which all p particles
are close enough to be simultaneously influenced
by pairwise interactions. They assume that "A van-
ishes. By analogy with the convention for Green’s
functions in quantum field theory [29], we define
the p-particle unconnected RDM (p-URDM) as the
part of the p-RDM which can be written as wedge
products of lower RDMs while the p-particle con-
nected RDM ( p-CRDM) is the remaining portion of
the RDM which cannot be expressed as antisym-
metrized products of lower RDMs. Hence, the con-
nected RDMs are just the cumulants.

We may express the p-RDM in terms of the
g-CRDMS for g between 1 and p by differentiating
Eq. (42) with respect to the Schwinger probes as in
Eq. (40) and taking the limit as the probes ap-
proach zero. The derivatives of the generating
functional G(]J) produce the p-RDM while differ-
entiation of exp(W) on the right side produces
products of elements from the CRDMs according
to Eq. (43). Because the formula for an element of
the p-RDM must treat the permutation of the
upper and lower indices antisymmetrically, the
products between elements of CRDMs may be
replaced with wedge products. As before, this al-
lows us to write the formulas concisely through
the wedge products of Grassmann algebra. The
results for the p-RDMs through p = 6 are summa-
rized in Table II. These functionals for the p-RDMs
are exact, but they include the p-CRDM. An ap-
proximation for the p-RDM in terms of lower
RDMs may be achieved by setting the connected
portion YA to zero. In this way we recover the
functionals for the p-RDMs in Table I with correc-
tions. Thus, through the particle-hole duality we

TABLE 1l

were able to generate the unconnected portion of
the p-RDM exactly. Again the terms missing in
Valdemoro’s approximation are denoted by an un-
derline. In general any terms involving only A
where g > 1 will cancel with the corresponding
p-HRDM correction and not appear in Valdemoro’s
approximation.

The reconstruction functionals may be under-
stood as substantially renormalized many-body
perturbation expansions. When exact lower RDMs
are employed in the functionals, contributions from
all orders of perturbation theory are contained in
the reconstructed RDMs. As mentioned previ-
ously, the reconstruction exactly accounts for con-
figurations in which at least one particle is statisti-
cally isolated from the others. Since we know the
unconnected p-RDM exactly, all of the error arises
from our imprecise knowledge of the p-CRDM.
The connected nature of the p-CRDM will allow
us to estimate the size of its error. For a Hamilto-
nian with no more than 2-particle interactions the
p-CRDM will have its first nonvanishing term in
the (p — 1) order of the MBPT with a Hartree—Fock
reference. This assertion may be understood by
noticing that the minimum number of pairwise
potentials V required to connect p particles com-
pletely is (p — 1). It follows from this that as the
number of particles p in the reconstructed RDM
increases, the accuracy of the functional approxi-
mation improves. The reconstruction formula in
Table I for the 2-RDM is equivalent to the
Hartree—Fock approximation since it assumes that
the two particles are statistically independent. Cor-
relation corrections first appear in the 3-RDM
functional which is correct through first order of
MBPT, and the 4-RDM functional is correct through
second order of MBPT.

The iterative solution of the 2,4-CSchE requires
the reconstruction of both the 3- and 4-RDMs from

Reconstruction functionals for the p-RDMs in terms of the p-CRDM and lower CRDMs where corrections

beyond Valdemoro’s approximation are underlined.

'D="A
%:%Aﬂ+g
Sp="A*+3%A A'A+°A
D="A*+ 62 AN+ 4% A A +3%2 4+ A
SD="A5+10°A A A3+ 10°A A A2+ 15%A2 A A +5°A A A +10°A A PA +°A
8D =A%+ 15%A A 'A% + 20°A A A3 + 45242 A A2+ 15°A A A2+ 60°A APA A A
+6°%A A A +152A% + 15°A A 2A + 10°A2 + %A
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the 2-RDM. Since the 3-RDM formula is missing
some second-order corrections while the 4-RDM
functional is exact through second order, the re-
sulting 4-RDM will only be accurate to first order
when we build from the 2-RDM with a functional
of unconnected RDMs. We would like to achieve
scheme consistency for the 3- and 4-RDM recon-
structions such that they both are correct through
second order [19]. In a previous study [3] we
introduced a technique for building a 3-RDM

" which includes the second-order correction of the

4-RDM. This is achieved by contracting the 4-RDM
functional in Table I to the 3-RDM:

4
— L3

3
Dimpr—N_3 4

(1D4 + 4°A(’Dippe) A'D

impr
+62A A'D? +3%A A ZA), (44)

where L} is the contraction operator which repre-
sents the necessary summation to obtain the 3-
RDM from a 4-RDM. Because the 3-RDM appears
in the 4-RDM formula, this process generates a
system of equations whose solution yields an im-
proved 3-RDM 3Dimpr. The contraction mapping
from the 4-RDM to the 3-RDM maps each order of
the perturbative expansion of the 4-RDM to the
same order in the 3-RDM. Therefore, when we
only neglect “A in our approximation for the 4-
RDM, we have a 4-RDM which is correct through
second order; after contraction this translates into
a system of equations for the 3-RDM which is
correct through second order. Using the connection
between RDMs and Green’s functions, Yasuda and
Nakatsuji have employed Feynman—Dyson pertur-
bation theory to estimate the second-order correc-
tion for the 3-CRDM [14]. In the present study we
explore a third approach for achieving a 3-RDM
which is correct to second order with the 3,5-CSchE.
To remove the indeterminacy of the 3,5-CSchE, we
need to build both the 4- and 5-RDMs from the
3-RDM. Reconstruction of the 5-RDM from the
4-RDM is correct through third order while build-
ing the 4-RDM from the 3-RDM is correct through
second order. While not scheme consistent, this
method is already accurate through second order.
However, we can also achieve scheme consistency
by using Valdemoro’s formula for the 5-RDM
without the term 10 °A A °A since this term is the
third-order correction. Unlike the available ap-
proaches for solving the 2,4-CSchE through second
order, the solution of the 3,5-CSchE allows us to

3,5-CONTRACTED SCHRODINGER EQUATION

perform all reconstructions through the wedge
products of lower RDMs without solving large
systems of linear equations.

Application

To explore the accuracy of solving many-body
systems with the 3,5-CSchE and the derived recon-
struction functionals, we solve for the ground-state
energies and 2-particle density matrices of a
quasi-spin model which we previously employed
to compare solutions of the 2,4-CSchE with tradi-
tional wave function techniques for electronic
structure. The model was originally used by Lip-
kin as a benchmark to investigate fermionic corre-
lation phenomena [20, 30]. The Lipkin model con-
sists of N degenerate states with an energy of
—¢/2 and another N degenerate states with an
energy of +€/2. For each state there is a unique
pair of quantum numbers m and p. The quantum
number m indicates whether the state is a member
of the upper (m = +1) or lower (m = —1) energy
level, and the quantum number p, ranging from 1
to N, specifies the position of the state in a given
level. These energy levels are filled with N
fermions where at most only one fermion can
occupy a given state. For noninteracting fermions,
the configuration of lowest energy —Ne/2 is
achieved when each of the N fermions occupies
one of the N states in the lower energy level
—€/2. We add an interaction to the noninteracting
system according to the Hamiltonian

€
—_ T
H= 2 Z mam,pam,p
m,p

T 1
+V Z B, 1P, pr A=, p, B, pr7

P1s P2, m

(45)

where V is the interaction strength. By the nature
of the V interaction term, the noninteracting
ground-state configuration only mixes with config-
urations in which each fermion has a different p

‘quantum number. Hence, for a nonzero value of

the V parameter a total of 2V configurations may
contribute to the correlated ground state of the
system. Because of the model’s symmetry, how-
ever, we can group the configurations into N + 1
classes. This reduction in basis size and additional
computational details may be found elsewhere [3].
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The 3,5-CSchE in Eq. (9) is solved iteratively.
The following scheme resembles the one employed
by Valdemoro:

= Choose a trial 3-RDM and reconstruct the 4-
and 5-RDMs.

= Use these 3-, 4- and 5-RDMs to build the
corresponding R matrix through Eq. (11).

» Evaluate the left-hand side of the 3,5-CSchE
in Eq. (9) with R.

= Divide the resulting matrix from the previ-
ous step by the energy of the original trial
3-RDM to generate a new trial 3-RDM.

= Antisymmetrize and normalize the new trial
3-RDM.

= Repeat all steps with the new trial 3-RDM
until suitable convergence is achieved.

This procedure is equivalent to the power method
for an uncontracted eigenvalue equation [3]. A
similar scheme is employed for the 2,4-CSchE ex-
cept for the obvious difference that we iterate and
reconstruct with the 2-RDM. To accelerate conver-
gence, we use polynomial extrapolation [31] of the
trial 3-RDMs after every three iterations to achieve
a better estimate for the next trial 3-RDM. The
three consecutive 3-RDMs are assigned to the first

three values in the integer series for 1/n (1, 3, and

TABLE 11l

3), and then we extrapolate to zero which gives us
a guess for the result after an infinite number of
iterations.

The energies from solving the Lipkin model
with the 3,5-CSchE are summarized in Table III for
the number of fermions N ranging from 5 to 50.
The error in the correlation energy is also reported
as a percentage where the sign indicates the direc-
tion of the energy error. The energies in Table III
are dimensionless because we perform calculations
with the scaled Hamiltonian obtained by dividing
the H in Eq. (45) by e. The dimensionless interac-
tion strength V(= V/e) is chosen for each N to
make the ratio of correlation energy to total energy
in the Lipkin model consistent with the values
reported in the literature for atoms with the corre-
sponding number N of electrons [32, 33]. In Table
IV we report the errors in the calculated 2-RDMs
which were measured by the square norm of the
difference between the exact and approximate
RDMs. Two different 3,5-CSchE calculations are
given Table III and IV: (V) where the 5-RDM is
constructed using Valdemoro’s formula and (U)
where the 5-RDM is built with Valdemoro’s for-
mula plus the additional underlined correction in
Table 1. Both methods employ Valdemoro’s func-
tional for the 4-RDM with the unconnected correc-
tion. Since the reconstruction from the 3-RDM to
the 4-RDM neglects the 4-CRDM which contains

Ground-state energies from the CSchE methods are compared to the values from traditional wave function

approaches for a range of N within the Lipkin model.

CSchE methods Wave function methods
3,5 (V) 3,5 (U) 2,4 HF RS2 RS3 SDCI FCI

N Energy

1% Error in correlation energy as a percentage

5 —2512467 —2.512478 —2512396 —25 —2512554 —2512522 —2512476 -—2512546
0.050108 0.62 0.53 1.19 100 -0.06 0.18 0.55 0

10 -5.015357 —5.014338 -—5.015778 -5 —-5.015761 —5.016192 —5.015639 —5.015869
0.026467 3.22 9.65 0.57 100 0.68 -2.03 1.45 0

20 —10.011923 —-10.011820 -10.012600 —-10 —10.012483 -10.012924 —10.012406 —10.012595
0.015438 5.33 6.15 -0.03 100 0.88 -2.61 1.49 0

30 —15.013404 —15.013613 —15.014257 —-15 —15.014062 -15.014698 —15.013965 —15.014225
0.011463 5.76 4.29 —-0.22 100 1.13 -3.32 1.82 0

40 —20.012436 —20.012598 —20.012983 —-20 —20.012804 -—20.013363 —20.012723 -20.012947
0.009170 3.94 2.69 -0.27 100 1.10 -3.21 1.72 0

50 —25.012525 —25.012721 -—25.013016 —25 —25.012828 —25.013408 —25.012746 -—25.012976
0.008040 3.47 1.96 -0.30 100 1.14 -3.32 1.76 0
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TABLE IV
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Errors in the 2-RDMs from the CSchE methods are compared to the errors from traditional wave function

approaches for a range of N within the Lipkin model.?

CSchE methods Wave function methods

3,5 (V) 3,5 (U) 2,4 HF RS2 RS3 SDCI FCl
N 2-RDM error
5 610x107°% 650X 1075 192x10"% 270x10°2 435%x10°% 213x10°5 303x10~% 0O
10 1.43x107% 317x10"*% 850X 10°% 149x10°2 209x10°*% 562x10"5 448X 10-* 0O
20 1.02Xx107% 126x10"*% 235x1075 648X 1072 120x10~% 321 %x10°5 202x10-¢% 0O
30 946X 107°% 122x10% 219x10°° 461x10°2 110Xx10™% 319x10°5 176x10°*% 0
40 961X 107°% 117x10°* 217%x10°5 327 x10°2 756x10-% 213x10-5 1.18%x10-% 0
50 1.08x10* 115x10°% 233Xx10°5 262x10°2 628x10°° 178x 105 968x10-° O

®The errors are measured by computing the square norm of the difference between an approximate 2-RDM and the exact 2-RDM.

third-order terms, the addition of the third-order
correction to the 5-RDM in method (U) should not
improve the reconstruction. Indeed the resulting
energies and 2-RDMs are similar in accuracy
throughout the range of N.

For comparison the solutions of the 2,4-CSchE
are also given as well as the results from more
traditional wave function approaches such as
Hartree—Fock (HF), second- and third-order
Rayleigh—Schrédinger perturbation theory (RS2
and RS3) for the 2-RDM, single-double configura-

tion interaction (SDCI), and full configuration in-
teraction (FCI). The 2,4-CSchE is solved with the
correction for the 3-RDM in Eq. (44) and Valde-
moro’s functional for the 4-RDM with corrections.
Attempts to solve the 2,4-CSchE with only the
unconnected reconstruction functionals in Table I
led to the divergence of the 2-RDMs after a few
iterations. Similar divergence was reported by
Nakatsuji and Yasuda [13, 14]. Comparisons of the
energies and 2-RDMs are easily visualized in Fig-
ures 1 and 2 which plot the 3,5-CSchE (V), the

- | % 35(V) e 24 -k RS2 -#— RS3 —— SDCI

P R RS T RSN EN VN SR ST T

5 10 15 20

30 35 40 45 50

Number of Fermions (N)

FIGURE 1. Difference between the approximate energy and the FCI energy is presented as a function of N for the 2,4
and 3,5-CSchE methods as well as three wave function methods, second- and third-order RS perturbation theory for the

2-RDMs and SDCI.
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FIGURE 2. Logarithmic errors in the approximate 2-RDMs, generated by the 2,4 and 3,5-CSchE methods as well as
SDCI and second- and third-order RS perturbation theory for 2-RDMs, are shown for a range of N. We measure the
error in an approximate 2-RDM by taking the square norm of its deviation from the exact 2-RDM.

2,4-CSchE, and the wave function methods. The
3,5-CSchE produces energies that are similar in
accuracy to those from RS3 and 2-RDMs similar to
those from RS2 but slightly better than those from
SDCI. While the reconstruction formulas employed
to solve both the 2,4-CSchE and the 3,5-CSchE are
exact through second order of MBPT for the RDMs,
the 2,4-CSchE gives energies and 2-RDMs which
are an order of magnitude better than those from
the 3,5-CSchE. Unlike the 2,4 solution, however,
the 3,5-CSchE employs only reconstruction with
unconnected terms.

Discussion

Solution of the 2,4 or 3,5-CSchE depends on the
reconstruction of higher RDMs from lower RDMs.
The importance of the reconstruction represents a
similarity between the CSchE formalism and den-
sity functional theory (DFT). The universal energy
functional within DFT may be considered as a
reconstruction strategy from the 1-density to the
2-RDM since the energy may be written explicitly
as the expectation value of the 2-RDM with the
2-particle reduced Hamiltonian ’K. Within the
CSchE techniques the higher RDMs are built from
either the 2- or 3-RDMs. Yet the reconstruction
methods for DFT and the CSchE have an impor-

tant difference. While the theorem of Hohenberg-
Kohn (HK) states that the 1-density and the parti-
cle number N uniquely determine the ground-state
energy and wave function for an electronic system,
it requires that information about the Hamiltoni-
an’s kinetic and electron—electron repulsion terms
be conveyed through the unknown functional. The
reconstruction functionals which we have pre-
sented, however, do not explicitly contain any
information about the Hamiltonian. They may cor-
respond to electronic, quasi-spin, and many other
systems. Either the 1-density or the 1-RDM alone
is insufficient for reconstructing the N-particle
wave function (preimage) of a correlated system
without more specific information concerning the
Hamiltonian. From a recent result by Coleman [34]
it follows that every 1-RDM, deriving from a
Hamiltonian which is invariant under time-rever-
sal [35], may be obtained from the contraction of
some pure N-particle density matrix correspond-
ing to an antisymmetrized geminal power (AGP)
wave function even if the preimage of interest is
not an AGP function. In contrast to the 1-RDM,
without any specific information about the Hamil-
tonian other than that it contain no more than
pairwise interactions, a ground-state 2-RDM con-
tains enough information to determine its preim-
age exactly (Rosina’s theorem) [3, 36). Therefore,
Rosina’s theorem, rather than the HK theorem,
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provides the foundation for reconstruction from
the 2- and 3-RDMs within the CSchE methods.

The reconstruction functionals were derived by
two different paths, the particle-hole duality and
the theory of cumulants. From the particle-hole
perspective the functional for the p-RDM reflects
the complexity of the commutation (if p even) or
anticommutation (if p odd) relation for a compos-
ite particle containing p fermions. The resulting
functionals, which we call Valdemoro’s function-
als, are approximate because some terms which
are equal in the particle and hole functionals can-
cel with each other in the particle-hole relations.
We are able to infer some of these missing terms
from the lower relations. The statistical theory of
cumulants [25, 28] provides us with a systematic
procedure for obtaining all of the terms for the
p-RDM functional which may be expressed as sim-
ple wedge products of lower RDMs, the uncon-
nected terms. The functionals from the cumulant
approach agree with those obtained through the
particle-hole duality with inferred corrections. As-
suming that the connected portion of the p-RDM
vanishes is equivalent to accounting correctly for
configurations where at least one particle may be
assumed to be statistically independent of the re-
maining p — 1 particles. However, correlated sys-
tems will always have configurations in which all
p fermions are close enough to interact pairwise
even though these configurations may be less im-
portant than the others. Thus, while the p-CRDM
may be small, we would not expect the p-CRDM
to vanish completely in a real system of correlated
particles. Related to this idea is a theorem which
proves that the vanishing of the p-CRDMs for all
p = g where g >3 would violate the necessary
positivity of the moment generating functional
G(]) [37-39]. Note that this is only for p = 3. In
systems of independent particles, as in Hartree—
Fock models, all of the higher RDMs may be
expressed exactly as unconnected wedge products
of the 1-RDM with itself because the p-CRDMs for
p = 2 vanish.

The notion of connected allows us to forge rela-
tionships between the reconstruction functionals
and renormalization of MBPT. Since the recon-
struction functionals depend on the exact lower
RDMs, they contain contributions from all orders
of perturbation theory. Furthermore, we were able
to demonstrate that the neglected p-CRDM has its
first nonvanishing contribution from the p —1
term of the MBPT expansion of the RDM. The
p-RDM functional is thus exact through the first

3,5-CONTRACTED SCHRODINGER EQUATION

p — 2 perturbative corrections beyond Hartree—
Fock. For a noninteracting system the p-RDM re-
construction formulas in Table I become equal to
the 1-RDM wedged with itself p times. These
simplified formulas 'D? may be interpreted as a
statement of Wick’s theorem [29]. Recall that the
time-independent Wick’s theorem states that the
expectation value of creation and annihilation op-
erators with a noninteracting wave function may
be evaluated by the sum of all complete contrac-
tions. Applying this rule to the p-RDM generates
the wedge products of the 1-RDM with itself. Since
any expression of creation and annihilation opera-
tors may be rearranged by the anticommutation
relation so that all creation operators appear to the
left of the annihilation operators as in the defini-
tion for the p-RDM, we can use this formula for
the p-RDM, which is equivalent to Wick’s theo-
rem, to evaluate the expectation value of fermion
operators in any order with respect to a nonin-
teracting reference. Furthermore, the complete re-
construction functionals in Table II represent a
generalization of Wick’s theorem for interacting
particles. We can utilize these functionals to ex-
press the expectation values of annihilation and
creation operators with correlated references in
terms of CRDMs. Expectation values, accurate to
the (p — 1) order of MBPT, may be formed by
neglecting the p-CRDM and higher CRDMs. This
may be useful for multireference coupled cluster
and MBPT schemes. A related extension of Wick’s
theorem has recently been reported [40].

Two techniques currently exist for making the
3- and 4-RDM reconstruction functionals scheme
consistent in the 2,4-CSchE. The relation between
renormalized MBPT and the functionals indicates
that building the 3-RDM from unconnected lower
RDMs is accurate through first order while recon-
struction of the 4-RDM from lower RDMs is cor-
rect through second order. To make these two
schemes consistent through second order, we must
add a connected correction to the 3-RDM. Yasuda
and Nakatsuji have estimated the second-order
correction through arguments involving Green’s
functions [14]. We have obtained a different cor-
rection by contracting the functional for the 4-RDM
to the 3-RDM and then solving the resulting sys-
tem of equations for an improved 3-RDM as indi-
cated in Eq. (44) [3]. In this study we have pre-
sented a new approach based on the 3,5-CSchE for
achieving a renormalized scheme for the 3-RDM
that is correct through second order. We may think
of the reconstruction of the 3-RDM as being per-
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formed by the 3,5-CSchE with which we solve for
the 3-RDM at each step of the algorithm. Although
the size of the 5-RDM may seem prohibitive, the
unconnected and hence explicit dependence of the
4- and 5-RDM functionals on the 3-RDM allows us
for large systems and basis sets to solve the 3,5-
CSchE iteratively without storing either the 4- or
5-RDMs. The ability to reach second-order accu-
racy without any connected corrections may repre-
sent an important advantage for the 3,5-CSchE
approach. Comparison of the 3,5-CSchE with the
2,4-CSchE as well with traditional methods like
MBPT for RDMs and SDCI gives promising re-
sults. By determining the 2-RDM directly, the 3,5
as well as the 2,4-CSchEs offer an approximate
solution to the N-representability problem and a
fresh approach for electron correlation.
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denominators replacing the HF orbital energies with the ionization potentials obtained
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correlation energies. We keep the simplicity of the MP partitioning and handle Dyson
corrections as simple level shifts. Substituting doubly filled HF orbitals by strongly
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Introduction

P erturbation theory, with a variety of its for-
malisms [1], has been a powerful tool for
taking small interactions into account. In some
cases the splitting of the total Hamiltonian comes
up naturally, being motivated by the physics of
the problem (cf. molecules in external fields), while
in other situations the partitioning is ambiguous
and can only be governed by mathematical and
numerical considerations. An example for this lat-
ter case is represented by many-body perturbation
theory (MBPT) as applied to the calculation of
electronic energies in molecules. Here the parti-
tioning of the total electronic Hamiltonian is moti-
vated by selecting a zeroth order which is easily
soluble—a practical rather than unambiguous fac-
tor.

In the most widely used partitioning of this
type one chooses the the Hartree—Fock (HF) level
to define the zeroth order. This choice still allows
for various possibilities. The most straightforward
idea is to consider the diagonal elements of the
configuration interjection (CI) matrix as zero-order
levels, while the off-diagonals represent the per-
turbation (Epstein-Nesbet, EN, partitioning [2, 3]).
Much better numerical results are obtained from
the Moller—Plesset (MP) partitioning [4], where
one chooses the Fockian as zeroth—order operator.
Though the nth order (MP#) corrections do not
offer an upper bound to the energy, general expe-
rience tells us that they usually underestimate the
correlation energy for small 7.

Standard MPn corrections with a simple
closed-shell reference state are applicable only if
the restricted HF determinant is an acceptable ap-
proximation. Dissociation curves or other quasi-
degenerate situations require a multireference ap-
proach [5-14], special damping techniques [15-17],
or a repartitioning of the Hamiltonian by a suitable
level shift [10, 18-20] to remove quasidegeneracies
from the zeroth-order spectrum. A different sort of
repartitioning has been applied by Kapuy et al.
[21-23] in their MBPT with localized molecular
orbitals (LMOs): They select the diagonal elements
of the Fockian in LMO basis as zero-order energies
and treat the off-diagonals as one-electron pertur-
bations.

In approximating the exact energy, it is not
necessary to start at the HF level. One may quote

the old idea of the PCILO method [24] where
approximate, strictly localized MOs are used at the
zeroth order. Correlation and delocalization effects
are treated by PT on an equal footing, thus the
zeroth-order approximation in PCILO is weaker
than HF. Oppositely, one may use a zeroth order
which is better than HF (cf. the multireference PT
approaches [5-10] or attempts to improve geminal
approximations perturbatively [25-30]).

In this study we shall investigate two kinds of
repartitioning in MBPT. In the following section,
level shifts will be introduced within the frame-
work of closed-shell MP theory, while in the third
section the use of the antisymmetrized product of
strongly orthogonal geminals (APSG) reference
state will be discussed. A small number of prelimi-
nary test calculations will be reported in both
cases.

Repartitioning by Level Shifls

REAL SHITTS

In MP theory, one considers the partitioning

H=Ygata +W, (D
i

where H is the total many-body electronic Hamil-
tonian, &,’s are the canonical Hartree—Fock orbital
energies, while a; and a, are creation and annihi-
lation operators for molecular spin-orbitals.

Applying a shift A; to level i corresponds to the
repartitioning

H=Yeara +W, (2)
i

where
€=¢ + A (3)

are the shifted one-particle energies.
Using Eq. (2), the second-order correction be-
comes

2
5 [ pqllrs] @

pq, rs El' + 65 - 6'1 - Eq

AERI — —

1
4

with usual notations, p, q referring to occupied,
r,s to virtual levels. The third-order correction
undergoes a similar modification and, due to the
diagonal perturbation represented by the level shift
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operators, it is augmented by the term

1 [rsll pg]®
-- Y (A, + A — A, —A).

4 pgrs (€, + € — € — €

(5)

Such level shifts have been discussed previ-
ously by several authors [10, 18-20]. Recently [31],
we started to investigate the idea of replacing &;
with correlation-corrected ionization potentials or
electron affinities €, obtained from the second-
order inverse Dyson equation:

1 Lirll pg1?
=¢&t1 = Z il
2 €6t e~ -8
Lipllrs]?

(6)

1
+_.
5L

prsei+8p—8,—as

This formula originates from the theory of one-
particle Green’s functions [32-35] by truncating
the self-energy at second order. Although it is not
a good approximation to obtain accurate jonization
potentials and electron affinities, it shifts the Koop-
mans values in a way to reduce energy gaps [e.g.,
highest occupied molecular orbital and lowest
unoccupied molecular orbital (HOMO-LUMO)
differences] in most cases. This feature of Eq.
(6) is utilized in solid-state theory to compute
correlation-corrected band structures [36, 37]. The
slightly smaller energy denominators, received by
substituting the Koopmans values &; by the
Dyson-corrected ones ¢;, yield slightly larger MP2
corrections, thus a larger fraction of the correlation
energy.

The nonlinear equations (6) for ¢, have to be
solved iteratively. This is straightforward* if the
root of the equation is far from all singularities
(poles). In the general case, however, one has to
introduce a complex damping of strength 7

1 Lirll pql?
€ =&+ 72, il ;
2 o€t e —¢g —¢g —in

) 2
Liplirs]
e,+ap—-ar—£s+in'

1

prs
where 7 tends to zero. Separating the real and
imaginary parts of this equation one may arrive at

*50% damping is usually sufficient to ensure convergence
of the standard iterative series.
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the following damped expression:

Lirl pg)*(e; + &, — €, — &,)
— 84)2 + 52

ST
2 (e +¢ — ¢

. 2
ipllrs]™(e; + &, — &, — &)

1.1
+ = , (8)
ZPZrS (6,+sp——s,—as)2+n2

which can be successfully used to avoid false roots
and to ensure convergence. An example for the use
of Eq. (8) is shown in Figure 1.

An even simpler, iteration-free, correction to the
Koopmans values is obtained by standard MP2

0.6 T

04 |

energy (a.u.)

0
energy (a.u.)

(a)

0.15 T T 7 T
o J

0.05 .

-0.05 ||

0.1 H

energy (a.u.)

-0.16 |

-0.2 [

025 H

-0.3 ¥ L
-0.3 -0.2 0
energy (a.u.)

(b)

FIGURE 1. Solution of the second-order Dyson
equation e = f(e) with (dashed line) and without {solid
line) damping. The straight dashed line is the left-hand
side while the curves are plots of f(e) at the right-hand
side. (a) H, molecule 3-21G** basis, HOMO; (b) N,
molecule 6-3111G** basis, MO No.21.
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theory to ionization energies

1 Lirll pq]?
eMr? = &g+ — Z
pqre,--i-s,—a - &

P q
1 Liplirs]?

+=T
2prs

9

e te, —& — &

Clearly, this corresponds to the first iteration of
Eq. (6). This formula has also been used to correct
band structures in periodic systems [38-40].

IMAGINARY LEVEL SHIFTS

Similarly to the damping of Dyson equation, cf.
Eq. (7), one can introduce an imaginary level shift
in the energy denominator of the MP2 formula

2
(Wil

—. (0

AER

complex = T

While in the case of Dyson equation the actual
value of 7 is immaterial as, after achieving conver-
gence to the correct root, the n — 0 limit has to be
considered, in the case of Eq. (10) a suitable choice
for I' has to be made, in order to make Eq. (10)
valid in quasi-degenerate (QD) situations. Another
question is how to extract a real number from
AEE) siex Of Eq. (10). In Ref. [16], we took the
term-by-term absolute value of this expression and
determined T' by requiring the resulting formula
to be exact for a fully degenerate two-level system
[16] (T}, = W,,), or by fitting T to the relevant term
of the fourth-order expression [41, 42] (T, = 2W,).
In a recent study, Forsberg and Malmqvist [43]
took the real component of Eq. (10), just like Eq.
(8). This has the advantage that it can also be

applied for excited states (negative excitation ener-
gies), but has the disadvantage that it kills a fully
degenerate term completely, thus it is inadequate,
e.g., for a degenerate two-level system. Forsberg
and Malmqvist do not aim to prescribe the value
of T but check the results for several values.

Taking the absolute value of each term in Eq.
(10), preserving the overall negative sign and us-
ing I', = 2W,,, we get the formula

2
AEQP2 = _ Y [Wos|

. (1)
Y (E, — B + 4IW,, 2

This was found to work properly in quasi-degener-
ate situations which can otherwise be handled by
the substantially more complicated quasi-degener-
ate PT formalism [11]. We note that another type
of straightforward modification of the MP2 for-
mula was proposed by Assfeld et al. [44], who
applied the unexpanded square root which occurs
in the exact formula of the corresponding 2-by-2
problem for each state. As this expression does not
contain energy denominators, it may also be useful
in quasi-degenerate situations.

NUMERICAL EXAMPLES

The efficiency of the above ideas has been tested
calculating a few examples which are to be consid-
ered as forming a preliminary rather than repre-
sentative set. Table I presents correlation energies
for He and Ne atoms, the LiH molecule, and a
cluster of 8 hydrogen atoms arranged in a linear
chain with an equidistant (“metallic”’) geometry of
R =1 A. Second-and third-order (MP#n) energies
are evaluated with standard partitioning (denoted
by MPn-Koopmans in Table I), with the imaginary

TABLE |
Second- and third-order correlation energies (a.u.) in various partitionings as compared to CISD and QCISD(T).
Method He(TZ2P) Ne(TZP) LiH(6-31G**) Hg(6-31G**)
MP2-KOOPMANS —0.029972 —0.227947 —0.035922 —0.132450
QD2 —0.029937 —0.227865 —0.035897 —-0.132324
MP2-MP2 —0.030496 —0.243533 —0.037183 —0.145077
MP2-DYSON2 —0.030476 —0.242371 —0.037054 —0.142052
MP3-KOOPMANS —0.035344 —0.227353 —0.037054 —0.157396
MP3-MP2 —0.035524 —0.225853 —0.043847 —-0.161541
MP3-DYSON2 —0.035518 ~0.226016 -—0.043813 -0.160911
CISD —-0.036487 —-0.224202 —-0.045674 —-0.158255
QeisD(T) -0.231893 —0.168463
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level shift introduced in Ref. [16] [QD2 of Eq. (11)],
with real level shifts obtained both by MP2 [Eq.
(9)] and by second-order Dyson correction [Eq. (6)]
to the one-particle energies (MPn-MP2 and MPn-
Dyson, respectively). Variational configuration in-
teraction with singles and doubles (CISD) values
are given for comparison, and for Ne and Hy the
QCISIXT) (T stands for triples) estimates are also
indicated. We see that the small imaginary level
shifts do not affect correlation energies apprecia-
bly, systems in Table I not being (quasi)degener-
ate. The applied real shifts are much larger. Values
presented for He, Ne, and LiH give one a feeling
that a pretty good improvement may be achieved
by this repartitioning, although at the second-order
standard MP-Koopmans values appear to be more
balanced. This can be seen from the example of Ne
where the MP2-Dyson and especially the MP2-MP2
repartitionings apparently exhibit an overcorrec-
tion. At third order, however, the improvement
toward the variational values is remarkable in
each case. The performance of the correction is
especially advantageous for the H chain for which
the gap-closing effect of the Dyson equation is well
established.

It may be of interest to check not only absolute
values but also chemical energy differences. In
Table II we report the inversion barrier for ammo-
nia where the effect of repartitioning is very small
but mostly steps in the good direction. The im-
provement of the second- and third-order total
energies is substantial. The second-order barrier in
the Epstein—Nesbet (EN2) partitioning is also in-
cluded in the table, and it seems to be the best
among second-order results. This is not the case in
general, however, upon checking the cis and trans
barrier of peroxide, Dyson-corrected values proved
to be rather bad and EN2 results were simply

TABLE 1l

Second- and third-order total energies and inversion
barrier (a.u.) of the NH; molecule in 6-311G**

basis set.

Pyramidal Planar Barrier
SCF —56.210397 —56.200814  0.009583
MP2 —56.427497 ~56.417689  0.009808
Qb2 —56.427428 ~56.417598 0.009830
EN2 —56.480479 —56.470515  0.009964
DY2 —56.443469 —56.433693 0.009776
MP3 —56.439803 —56.429630 0.010173
DY3 —56.440335 —56.430095 0.010240
QCISD(T) —56.447435 —56.437057 0.010378
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H2 6-311G*

0.35

0.3

0.25

0.2

0.15
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05 1 15 2 25 3 35 4 45
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FIGURE 2. Potential curve of H, molecule in 6-311G**

basis set, obtained with imaginary (QD) and real level

shift (DY2, DY3) technique. Closed-shell HF SCF and MP

curves are shown for comparison.

pathological. The occasionally catastrophic behav-
ior of the EN2 partitioning was also reported by
other authors [45], though in other cases it was
used successfully with multiconfigurational refer-
ence states [45-47].

Potential curves of H,, F,, and N, are presented
in Figures 2—4 including large interatomic dis-
tances for which the single-reference MPn correc-
tions fail. We computed the curves also by
second-order imaginary level shift technique [16]
(denoted by QD2) which is designed for quasi-de-
generate problems using I', = 2W,, as the damp-
ing constant. As reported in previous studies [16,
17, 42], the dissociation is described in a qualita-
tively correct manner by the QD2 approach in each
case. It was interesting to us to realize that the
Dyson-corrected level shifts may also result in

0.25

0.2

0.15

0.1

0.05

relative energy (a.u.)

-0.05
12 14 16 18 2 22 24 26 28 3
R (angstrom)

FIGURE 3. The same as Fig. 2, for the F, molecule.
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FIGURE 4. Potential curve of N, molecule in 6-311G**
basis set, using RHF-based perturbation theory with
different partitionings; DY2 and DY3 indicates real
denominator shift.

potential curves with a roughly acceptable dissoci-
ation behavior (DY2 and DY3 in Figs. 2-4) within
the investigated range. The reason for this is that
for large interatomic distances the second-order
Dyson equation [Eq. (6)] does not tend to close the
HOMO-LUMO gaps as it usually does at around
equilibrium geometries, but conversely, it tends to
remove quasi-degeneracies. This is equally seen
for each case studied including N, with multiple-
bond dissociation. We do not claim, however, that
this latter level shift technique can be used as a
general and automatic tool for dissociation studies.

APSG Reference State

GROUND STATE

The use of Dyson- or MP2-corrected one-
electron energies involves that, in some way, cor-
relation effects are included already at the zeroth
order. This can be done, however in a more sys-
tematic manner. Various attempts to use multiref-
erence (MR) PT [5-10] or MR coupled—cluster
[12-14] approaches reflect the importance of this
issue. Here we discuss the idea of using strongly
orthogonal geminals to construct the zeroth order
and evaluating perturbation corrections to this ref-
erence state. Such an approach has been initiated a
long time ago [25, 26] and has been discussed
recently for approximate geminals [27-30].

We define the ground-state wave function for a
system of N (even) electrons as

WSS = gl s .. plvac). (12)

The strongly orthogonal geminals ;" are ex-
panded as

(i) N
gi= 2 Clala’, i=1,2,...?, (13)
u<y
where the superscript (i) on the summation indi-
cates that only those indices u and v are consid-
ered which belong to the subspace assigned to
geminal i. In Eq. (13) operators a,(u € i) create
electrons on orbitals spanning the ith subspace.
The subspaces i can be built up by mutually
exclusive sets of orthogonal one-electron functions
which maintain strong orthogonality [48-50]. The
expansion coefficients C;, can be optimized varia-
tionally by solving a set of coupled local 2-electron
Schrodinger equations [27, 30, 51] for each sub-
space. Optimization of the subspaces themselves
leads to the so-called APSG wave function [48-50]
which represents the variational minimum within
the wave function class specified by Eq. (12). The
APSG method is size-consistent and, being triv-
ially exact for a two-electron system, it describes
properly the single-bond dissociation. It does not
give, however, a sufficiently large fraction of corre-
lation energy which motivated the development of
extended geminal schemes [52-56]. Here we dis-
cuss the possibility of using the APSG wave func-
tion as a reference state in MBPT.

Dealing with geminals in a many-body theory is
easier if we study their algebraic properties. The
commutators between creation /annihilation oper-
ators for the composite quasi-particles can be writ-
ten as

Ly, o1 =g, ¢ 1 =0, (14)
Ly, g ] = 8,0, (15)

where the quasiparticle commutator has the form
(27, 30, 51, 57, 58]

(€3]
Q,=1- Y PLala, (16)
ny

with P’ being the first-order density matrix for
geminal i, for which, using the convention C;, =
-G, for u > A, we get [30, 51, 57, 59]:

(i)
P,, = ylara,ly) = Z)\:C;AC,’,A. (17)
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Relation (15), which is a consequence of the strong
orthogonality of the geminals [57], is extremely
important as it tells us that the quasi-particle cre-
ation and annihilation operators commute for dif-
ferent geminals. This permits us to use an analo-
gous algebra in the evaluation of matrix elements
as if we had a single-reference function.

The above equations are valid only if one con-
siders a single geminal within each subspace. This
is normally the ground-state solution of each two-
electron problem. For the treatment of excited
states and PT corrections one needs locally excited
geminals as well:

(i)
Y=Y Chara, (18)

n<y

where a labels the excited state of the ith geminal.
The algebraic properties are defined by the follow-
ing quasi-particle commutator:
[y, ] = 8,05, (19)
N @
ab = Ogp — Zpi%ba:aﬁ' (20)
ap

(For the transition density matrix P*®, see below.)
While the optimization of the expansion coeffi-
cients is a trivial and fast algorithm, finding the
proper one-electron functions which span the sub-
spaces is difficult and can be quite demanding
computationally. This can be done by successive
orbital rotations governed by the appropriate gra-
dients g,, used also for optimizing multiconfigu-
ration self-consistent field (MCSCEF) orbitals [60]:

8w =2, —FE,) (21)

for the rotation of the geminal pair u, v, where F is
the generalized Fock matrix which, for geminals
reads:

(@) €]
F,u,v = th.)\PAlv + Z [U)\IKM]FKIVU'/\
A

aKA
k) () B
+2 2 LloAkplT,, (22)

A j(#i) ko

(nekveik+1i) in terms of spatial orbitals;
I/, is the element of the second-order density
matrix where k, v, o, and A belong to the ith
geminal. It takes the particularly simple form

]‘—‘Kivo)\ = 2Ci:vcl;')\ (23)
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If « belongs to the jth subspace and v to the ith,
we get the following expression for the second-
order density matrix:

3 o 1
T = PicPiy = 5 PPy 4)

KVOA

Note that the intrageminal contribution (23) fac-
torizes to the product of geminal coefficients, while
the intergeminal contribution (24) has the structure
of the second-order density matrix of HF theory,
thus using matrix I' requires neither extra compu-
tations nor extra storage. The k # i restriction in
Eq. (22) reflects that intrageminal orbital pairs need
not be rotated during optimization as the two-
electron problems are exactly solved within each
subspace.

The convergence of such an optimization proce-
dure may nevertheless be slow, so the selection of
initial orbitals is of extreme importance. An exam-
ple is provided by Table III where the total energy
of the LiH molecule is shown at different levels.
Although the basis is very small (minimal STO-6G),
the subspace optimization is not trivial as shown
by the second row of Table III. The corresponding
energy was thought to be optimized if Ref. [61],
but using Boys LMOs as initial guess one gets a
better energy without any optimization. Varying
the Boys orbitals one still gets an energy lowering
of 0.05 mH. (The acronym SLG in Table III and
below means strictly localized geminals, express-
ing that the geminals are not fully optimized but
are expanded in arbitrarily selected orthogonal
subspaces.)

The fact that Boys LMOs represent an appropri-
ate initial guess can also be inferred from Figure 5.
We plot there the variation of the total energy of
some molecules as a function of a single selected
orbital rotation parameter. The scale is chosen so
that the Boys LMOs correspond to 0°. It is apparent
that in two of the cases the variational minimum is

TABLE 1l

Test calculations for LiH in STO-6G basis for
comparison to another optimized APSG
method (a.u.). -

Method Energy
HF —7.96663
Optimized in Ref. [61] —7.97981
SLG-Boys —7.98085
Opt.-APSG —7.98090
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H4 3-21G basis
-5.57 T T T T

-5.675
-5.58
-5.585
-5.59

-5.695

Energy [Hartree]

-5.6

-5.605

-5.61

5615 1 1 | 1 1

-20 0 20
Angle of rotation [Degree]
(a)

Water 3-21G basis
-84.305 T T T T

-84.31

-84.315

Energy [Hartree]

-84.32

-84.326

-84.33 L L ' L L
-40 -20 0 20 40
Angle of rotation [Degree]

(b)

HF 3-21G basis
-104.552 T T T T T
-104.554
-104.556
-104.558
-104.56
-104.562

Hartree]

Energy (
A
R R
LS., |
D D
[=- I

-104.568
-104.57
-104.572 ;
-104.574 - L L L L
-40 -20 ] 20 40
Angle of rotation [Degree]

(c)

FIGURE 5. Variation of total energies as function of
orbital rotation parameters near to SLG-Boys wave
function (3-21G basis). (a) H,, mixing the occupied
bonding LMOs of the H, molecules; {b) H,O, mixing the
lowest occupied bonding LMO of the O—H bonds; (c)
HF, mixing the lowest occupied bonding LMO of the
H—F bond and the lowest nonbonding LMO of F.

almost at 0°, while for the hydrogen fluoride it is
at around 20°, but it is still closer to the Boys limit
than, say, to the canonical MOs.

Having obtained the reference state, it may be
useful for a subsequent perturbation treatment.
The relevant second-order formulas have already
been published in Refs. [27-29]. Among these,
delocalization-type corrections due to single-elec-
tron transfers vanish if the orbitals are fully opti-
mized, while one still can evaluate the second-
order intergeminal dispersion energy:

AE(disp)
Ms=0 [ o1l ) = 3 jololly

)

j<i  ab Ef + Ef - E} - E/'O
1 o olol 11

-—2 X - , (25
45w EN+E —E —F

where the prime means the restriction M{'’ =
+1, M& + Mf =0, j, is the ath excited state of the
jth geminal, and the transformed integrals over
geminal labels can be expanded as

SN0
Liololjdy] = ¥ XL pdlav]BEwplst. (26)

my Ao

The first-order transition density matrix element
between the ground and ath state of the jth gemi-
nal reads as:

pjo" = Y (ClsCl + cjecis). 27
A

Though the APSG wave function represents a
highly correlated multiconfiguration reference
state, derivation of this result is straightforward
due to the simple algebraic rules of the composite-
particle geminal operators [Eqs. (14)-(15)]. To
arrive at Eq. (25), one defines the zero-order
Hamiltonian in terms of ground- and excited-state
geminals as

(i)
Hy= Y Y Efitd, (28)
i a

which has the property that the ground-state APSG
wave function of Eq. (12) as well as similar wave
functions in which one or more geminal is excited,
are eigenfunctions of H,. The pairwise interaction
of two such local excitations results in Eq. (25) by
standard second-order Rayleigh-Schrodinger PT.
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TABLE IV
Energies of model systems (a.u.).
Basis Method H,0 HF

STO-3G HF —1.652457 —74.964107 —98.572412
SLG-Boys —1.695297 —75.003767 —98.593229
Opt.-APSG —1.695760 —75.010899 —98.597985
Opt.-APSG + disp2 —1.698419 —75.015881 —98.597985
MP2 —1.686618 —75.004157 —98.590632
CISD —1.715532 —75.019737 —98.599827

3-21G HF —1.827905 —75.582739 —99.460219
SLG-Boys —1.873473 —75.613209 —99.488554
Opt.-APSG —1.875250 —75.648392 —99.515423
Opt.-APSG + disp2 —1.879222 —75.688531 —99.572902
MP2 —1.869325 —75.707172 —99.5681585
CISD —1.889984 —75.710692 —99.582181

In Tables IV and V, a few numbers are given
illustrating the effect of. orbital optimization in
very small basis sets. (We do not have yet num-
bers for larger molecules and /or larger bases.) The
bond length of HF was optimized at the HF /3-21G
level, while for the water molecule we used r(OH)
= 1.01 A and o(HOH) = 104°. The H, cluster was
constructed in a distorted arrangement: r;, = 75,
=074 A, 1y = 1.0 A, a(123) = 80°, a(234) = 70°,
and the (1234) dihedral angle was 20°.

One can observe that in minimal basis the Boys
localized orbitals represent a rather good initial
guess to fully optimized ones, while in split-shell
basis the optimization is more essential. It is also
important that, with the exception of the H4 sys-
tem, the dispersion energies, collected separately
in Table V, are quite sensitive to the optimization.

To judge the amount of correlation energy which

disp level, all local excitations have been ac-
counted for, as well as the intrageminal single
electron transfers which vanish upon optimization.
However, delocalization of the geminals involving
two electron transfers are missing from this ap-
proximation and may become important in larger
systems and /or larger basis sets.

EXCITED STATES

The APSG wave function may be a useful refer-
ence state for the calculation of electronically ex-
cited states, too [62]. In the Tamm-Dankoff ap-
proach (TDA) [63], essentially equivalent to the
equation-of-motion (EOM) technique [60], one de-
fines the excitation operator O* for the nth ex-
cited state |n)

can be described by the APSG + PT approach, one 070y = In) 29

will need to see calculations in larger basis sets, at

least of double ¢ polarized (DZP) quality. The and expands it as

small basis results of Table IV already indicate that

the dispersive correction alone is not sufficient to Of= Y. X! A;. (30)

reach the MP2 or CISD quality. At the APSG + K

TABLE V

Dispersion contributions to the energy of model systems (a.u.).

Basis Method H, H,0 HF

STO-3G SLG-Boys ~—0.002661 —0.005452 ~0.000000
Opt.-APSG —0.002659 —0.004982 —0.000000

3-21G SLG-Boys —0.003917 —0.008690 —0.020686
Opt.-APSG ~-0.003972 —0.040139 —0.057479
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For the expansion coefficients Xy the general TDA
equations are written as

Y X§ = 0,2 XE, (31)
K K

where w, =E, — E, are the excitation energies
and the TDA matrices are defined as

o= Ol A, [ B, A¢]|oy
= (0l A (H - Ey) A0y (32)
and
S = Ol Az, At]0). (33)

We recall that the general TDA equations (31)
are exact as far as the state [0) is the true ground
state and the operator expansion of Eq. (30) is
complete. Substituting [0) with the Hartree—Fock
state and limiting the expansion to single excita-
tions, one arrives at the CI with singles (CIS)
scheme, a simple, popular but not very accurate
approximation to the general TDA equations.

An important consistency requirement of the
TDA equations is expressed by

0710y =0 (34)

(the ground state cannot be deexcited). The CIS
equations satisfy this requirement, but their im-
provement within TDA is not trivial as better
reference states or larger operator manifolds may
easily violate Eq. (34).

It may be interesting to investigate whether an
APSG reference state could be useful for this goal.
Formally, the answer is positive. Taking Eq. (12) as
the approximation for the ground state, and defin-
ing the excitation operator manifold as

At = wl i (35)

where ¢, annihilates a ground-state geminal and
‘P;a creates one in the ath excited state, Eq. (34)
remains valid and the APSG-TDA matrices be-
come

= CUETSC s g Hgrty g [ WETSC) — B
(36)

and

Sk = (Y, b, Wi W30 (37)

It is to be mentioned that geminal-type wave
functions may be useful not only in connection
with TDA but also with the random-phase approx-
imation (RPA). In particular, Ohrn and Linderberg
have shown that the so-called antisymmetrized
geminal power (APG) wave function, where each
geminal is identical, serves as an appropriate refer-
ence state for RPA calculations [64, 65].

Evaluation of matrix elements in Egs. (36) and
(37) is lengthy but straightforward by the algebraic
rules given earlier. For example, matrix %’ is ob-
tained as

Sk = 8ij5pq(5iq5ab +0 - aiq)<Q1{1]h>)r

a,b#0,L=jqa), K = {iph}. (38)

The excitation space represented by Eq. (35) de-
scribes several types of single and double excita-
tions (in terms of electrons); thus it may be more
adequate to describe electronic excitations than the
CIS scheme. However, intergeminal charge-trans-
fer-type single-electron excitations are missing
from Eq. (35)—they should be accounted for by a
suitable perturbation of the TDA equations. We do
not have yet any numerical results for excitation
energies obtained by this scheme; work in both
lines is now in progress.
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ABSTRACT: Recently, we used Helmholtz’s theorem to construct an unambiguous
exchange—correlation energy density for use in density functional theory. This energy
density requires only knowledge of the density dependence of the exchange-correlation
energy functional, Eyc, for its calculation. We calculate this energy density for Hooke’s
atom in three different regimes: the high-density (or weakly correlated) limit; a moderate
density, comparable to that of the He atom; and a low density, in which the system is
strongly correlated. We compare the exact unambiguous energy density with approximate
energy densities found from approximate energy functionals. The exchange-correlation
energy can be deduced directly from the density in the highly correlated limit and a new
formula for the high-density limit of the correlation energy is given. © 1998 John Wiley &

Sons, Inc. Int ] Quant Chem 70: 583-589, 1998

Introduction

A principal aim of quantum chemistry is the
calculation of ground-state electronic proper-

ties in an accurate and reliable fashion [1]. Tradi-
tional approaches based on the wave function have
recently been complimented by those of density
functional theory [2]. Density functional calcula-
tions are typically much less expensive computa-
tionally and so become the method of choice for
larger systems [3]. This advance has been made
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Contract grant sponsor: Research Corp.

International Journal of Quantum Chemistry, Vol. 70, 583-589 (1998)

© 1998 John Wiley & Sons, Inc.

possible by the increase in accuracy of generalized
gradient approximations (GGAs) [4-9] (and hy-
brids of GGAs with exact exchange [10-14]) over
the local density approximation (LDA).

The only quantity which must be approximated
in a Kohn—-Sham spin-density functional calcula-
tion [15] is the exchange-correlation energy as a
functional of the spin densities, Exc[ p,, pgl, since
its functional derivative, vy, (t) = 8Eyc/8p, (1), is
the only unknown in the Kohn—-Sham equations.
There are several popular approximations to Eyc,
including LDA, GGA, and hybrids. These approxi-
mations can be tested by calculation of the proper-
ties of the system, such as total energies, ionization
potentials, binding energies, bond lengths, vibra-
tional frequencies, and transition-state barriers and

CCC 0020-7608 / 98 / 040583-07
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by comparing them either with more accurate cal-
culations or with experiment [16, 17]. However, all
these properties are determined entirely by Eyc,
evaluated on different densities, which is a quan-
tity integrated over the system. To better under-
stand how these approximate functionals work,
one would like to examine quantities other than
just Eyc. If your energy in a given calculation
comes out poorly, where will you look to find out
why?

A simple choice might be to study the spin
densities themselves. However, many approximate
calculations (Hartree—Fock, LDA, GGA, etc.) yield
very similar spin densities [18], so it is not easy to
study an approximate density to determine the
error in the corresponding energy functional ap-
proximation. Furthermore, for stretched H,, some
approximate functionals can have quite incorrect
spin densities, while still yielding accurate total
energies [19, 20]. Thus, the relation between the
self-consistent spin densities and the total energy
may be too subtle to easily learn about one from
the other.

Another feature which has been studied is the
exchange—correlation hole surrounding an electron
in the system [4, 6, 21-24]. One can consider the
LDA and GGA energy functionals as models for
the exact system-averaged exchange correlation
hole. Certain aspects of the exact hole are well
approximated in LDA [25], because the LDA en-
ergy functional replaces the hole by that of another
system: the uniform electron gas. Thus, various
sum-rules and nonpositivity conditions are shared
by the exact hole and its local approximation [26].
This reasoning was extended by Perdew and
coworkers to construct a sequence of GGAs (PW86
[4, 5], PW91 [6], and PBE [7]) in which the gradient
expansion for the hole was corrected to include
these good features. However, only the system
and spherical average of these holes is accurately
reproduced [24, 26] and, even then, the complica-
tions of calculating these approximate holes mean
that few systems have been tested. (On the other
hand, the potential in LDA arises from an unspher-
ical charge distribution [27].) Similar remarks are
true for the LYP correlation functional [9], which is
based on the Colle—Salvetti approximations to the
pair correlation function [28, 29].

Such comparisons as mentioned in the previous
paragraph suffer from the need for detailed knowl-
edge of the construction of a given approximation.
But an approximation might not carry with it a
derivation which suggests such a comparison. For

a practical calculation, all one really needs is an
approximate spin-density functional for Ey.. This
naturally suggests study of vy, (r) itself. For the
exact case, one needs only a highly accurate den-
sity, as several methods now exist for then solving
for the Kohn—-Sham potential and orbitals [30—-34]
and so deducing the exchange—correlation contri-
bution to the potential. Thus, comparison of ap-
proximate and exact potentials could be hoped to
yield insight into how approximate functionals
work.

Unfortunately [18, 35, 36], potentials corre-
sponding to accurate functionals do not look much
like the exact potentials. Thus, the study of poten-
tials appears to provide little guidance for the
construction of approximate energy functionals.
There are several ways to rationalize how these
potentials can look so poor:

First, focusing on correlation alone ignores a
wealth of experience in functional approximations,
in which the exchange and correlation errors can-
cel. This can be understood simply in terms of the
specific effects which occur for pure exchange [12],
which are not captured by LDA and GGA, but
which wash out when the Coulomb interaction
between electrons is included.

Next, as discussed above, system-averaging is
important in studying the behavior of density
functionals [37]. Many properties of approximate
functionals are incorrect in, for example, the
asymptotic limit far from a finite system [38],
but these have little effect on the total energy or
even on energy differences involving only valence
electrons.

Furthermore, approximate functionals which in-
corporate only the density and its gradient cannot
have any derivative discontinuities with respect to
particle number, which are known to occur in the
exact functional [39-42]. These discontinuities lead
to constants in the potential which are missed by
approximate functionals and so can make the cor-
responding potentials look poorer.

An alternative to studying the exchange—corre-
lation potential might be provided by the ex-
change—correlation energy density, that is, a func-
tion of r which, when integrated over all space,
yields the exchange—correlation energy. Unfortu-
nately, such a requirement does not uniquely spec-
ify which among an infinite number of choices, as
the addition of any function whose integral over
all space vanishes will produce another energy
density. In fact, several choices have been sug-
gested in the past. A popular one, especially for
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chemical purposes, is that of Baerends and Grit-
senko [43], who defined their energy density in
terms of the potential contribution to the ex-
change—correlation hole, plus the difference of the
kinetic energy density from the interacting and
noninteracting density matrices. While this energy
density can be extracted from an accurate wave-
function calculation, there is no reason why any of
the conventional approximate energy densities,
used to define the integrated energy, should look
much like this one. Indeed, the LYP functional [9]
has been integrated by parts in order to remove
inconvenient Laplacian terms [44]. Similar argu-
ments apply to the definition in terms of the cou-
pling-constant integrated exchange—correlation
hole [26].

Similarly, the work of Harbola and Sahni [45,
46] and others [47] has led to an energy density in
terms of potential and kinetic exchange-correla-
tion fields. But the construction of, for example,
the potential fields, is based on the exchange—cor-
relation hole (at full coupling strength), which is
modeled only in some GGAs. Comparisons of these
energy densities with exact ones can only be made
with those GGAs which provide a model for this
hole [46].

The remainder of this article is devoted to the
construction of an unambiguous exchange—corre-
lation energy density, that is, one which is solely
determined by the density dependence of Eyc.
The full details of the construction are given else-
where [49], but a pedagogical derivation is given
here. Results on the Hooke’s atom (two electrons
in an external oscillator potential) are presented for
three cases: moderate correlation, strong correla-
tion, and weak correlation. Atomic units (e* = # =
m, = 1) are used throughout.

Construction of Unambiguous
Energy Density

In this section, we review the construction of
the unambiguous energy density. For simplicity,
we restrict ourselves to density functionals, but all
results are easily generalized to spin-density func-
tionals.

We begin with the virial theorem [50]:

N
2T =<V Y 1, - ViV (xy, ..., 1 )P), &)
i=1

where T is the kinetic energy; ¥, the ground-state
many-body wave function; N, the number of elec-
trons; and V, the potential energy. This may easily
be derived by uniformly scaling the coordinates of
the wave function [51]. We apply this theorem to
both the physical system and the noninteracting
Kohn—Sham system. In the former case, V = V,, +
V., where V,, is the electron—electron Coulomb
repulsion and V,,, is the external potential. This
yields

2T = -V, + fd3r p(Dr - Vo, (1), (2)

since V,, is homogeneous of degree —1 in the
coordinates. Similarly, for the noninteracting
Kohn—-Sham system,

2T, = fd3r p(®)r - Vo (r)
= fd3r p(Or - V(v (1) + vyc(®) — U, 3)

where v,(r) is the Kohn—Sham potential and U is

the Hartree energy. Subtraction of Eq. (3) from Eq.
(2) yields

AT -Ty) +V,,— U= —fd3r p(Dr - Voy(1).
(4)

The second term on the left can be identified as the
potential contribution to Eyc, so that the addition
of one factor of T = T — Tg, the kinetic contribu-
tion, yields Eyc. Thus,

Exc + Te = = [ dr p(r- Voxc@.  (5)

This powerful result was proven for the exact
functional by Levy and Perdew [51].

The integrand of Eq. (5) is an energy density
which is unambiguously determined by the den-
sity dependence of the exchange—correlation en-
ergy functional, via the potential, its derivative.
Unfortunately,

1. It is an energy density not for exchange—-cor-
relation, but for exchange-correlation plus
kinetic—correlation.

2. Its value depends on the choice of origin. If
the origin is shifted, the energy density
changes (see Fig. 8 of [52]).
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3. This energy density does not reduce to the
familiar efnf( p(r)), the energy density of a
uniform gas, when 052" is inserted on the

right.

The first of these shortcomings was easily
solved, using the adiabatic connection formula of
density functional theory [53]. A coupling-constant
A is introduced to multiply the electron—electron
repulsion and is varied while keeping the density
fixed. All quantities can then be considered func-
tions of A. In particular, Bass’ relation [54] relates
T to E2, via

dE}
Td=Et = A—. 6
¢ =Ec a7 (6)
Using this on the generalization of Eq. (5) to arbi-
trary A, we found [49] a virial for the exchange—
correlation energy itself:

Exe = = [ dr p(0)r- Vo (), )
where
) wdX
By () = /1 ~FVc® (8)

is called the exchange—hypercorrelated potential,
as it includes contributions from A > 1, at which
the system is more strongly correlated than at
A = 1. This potential can also be written as [55]

d
Bl 1) = [l p /), @

where
p,(r) = yp(yr) (10)

is a uniformly scaled density. Thus, the integrand
on the right of Eq. (7) forms an unambiguous
exchange—correlation energy density, as it is com-
pletely determined by the density dependence of
Eyc itself, via its potential, evaluated on scaled
densities. In particular, it is very straightforward
to modify any approximate functional to calculate
Dyc (1) instead of vy (r) simply by scaling the den-
sity arguments, according to Eq. (9).

To overcome the second two difficulties, we
generalized an argument of Levy and Perdew [51],
which they used to show that the virial theorem
was satisfied by LDA for a slowly varying electron
gas. This generalization amounts to making the

following exact identification:
3p(r) Vi (r) = Veyo (1) + V X ay,(r). (11)

Insertion of Eq. (11) into Eq. (7), followed by an
integration by parts, shows that the a, term does
not contribute to the energy, while the ey term is
our unambiguous energy density. By use of the
Helmholtz theorem of vector calculus, we can write
an integral form for ey:

(’)—3 d’r p(r) Vo (1) - V : (12)
exclr —-—27—7_[ ¥ pRr) VUycr) - m

This is an exact energy density that depends solely
on the density dependence of the exchange—corre-
lation energy functional. Thus, unambiguous com-
parisons of exact and approximate results can be
made. Furthermore, if EX2* is used on the right,
exa( p(r)) comes out on the left. Thus, all plots of
exf( p(n) can be interpreted as approximate plots
of the exact unambiguous ey-(r).

The right-hand side of Eq. (12) contains the
exchange—hypercorrelated potential, that is, the
potential integrated over coupling constants
greater than 1, as defined in Eq. (8). This is neces-
sary to produce the exchange-correlation energy
density on the left. Alternatively, if vy = v3c! is
inserted on the right, an energy density ey-(r) +
t-(r) emerges on the left, as can be seen from Eq.
(5). For any approximate functional, it is straight-
forward to calculate either quantity. However, for
the exact functional, we only have v, (r) for a few
model systems, where the exact density was eval-
uated by a highly accurate wave-function calcula-
tion and vy, calculated from it. Thus, for purposes
of comparison, it is more convenient to study
exc t tc. Ongoing studies of the adiabatic connec-
tion should allow construction of 9y in the fu-
ture. We anticipate little difference in the qualita-
tive features of the comparison, as the hypercorre-
lated potential is a smooth distortion of the corre-
lated potential (see Fig. 6 of [56]).

Results

To illustrate this energy density, we calculate it
for several values of the spring constant in Hooke’s
atom, which consists of two electrons in an exter-
nal oscillator potential [57, 58]. This model has
been used to study many density functional prop-
erties [36, 59, 60].
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MODERATE CORRELATION

We begin with a moderately correlated exam-
ple, w = 1/2, in which Ec/Ex ~ 7% and T./|E|
~ 75%. In Figure 1, we plot the radial unambigu-
ous exchange—correlation plus kinetic—correlation
energy density, both exactly and within several
functional approximations. We see that, indeed,
the LDA curve underestimates the exact one al-
most everywhere, while the GGA curves reduce
the maximum error significantly. The best GGA
curve in this case is BLYP (but see real atoms in
[49]). Note that the decay of this energy density at
large distances is given in [49] and depends on the
ionization potential and is not captured by any
present-day approximate functionals.

STRONG CORRELATION

Next, we consider the highly correlated (or low-
density) limit. We choose » = 107*, at which value
the density is very close to semiclassical, that is, a
Gaussian centered on the classical electrostatic
equilibrium position [58]. At the maximum, p ~
107% or r, ~ 270. Values for the components of the
energy are given in Table I, from which we see
that E./Ex ~ 40% and T./|Ec| ~ 4%. Thus, corre-
lation has become comparable to exchange and is
almost entirely static. In this extreme regime, we
do not expect too much from our approximate
functionals, and Figure 2 shows that the GGA
corrections to the LSD energy density do not show

0.05 :
exact ——
0
P
005 P
= " LDA-._.
- -01 \ g PBE- - - -
R A BLYPLLL
30 3 j
N -0.2 \ !
\6 2 \\ / 'l
Q>)< '0. 5 \\ '/ ,,
C\lv -0'3 \\-’/ /,
& 035 i
=~ w = 1/2 Hooke’s atom
-0.

4 .
0 05 1 15 2 25 3 35 4

r

FIGURE 1. Radial unambiguous exchange—correlation
plus kinetic—correlation energy density for w =1/2
Hooke’s atom (atomic units).

TABLE |
Energy components in milliHartrees for two extreme
values of w, evaluated on the exact densities.

Component Exact LSD PBE BLYP
w0=10""*

Ey —-3.00 —-2.90 -340 -—-3.54

Eg -1.24 —-2.29 -167 —0.55

Tc 0.05 0.20 0.17 0.003

Ec+Tg -1.19 —-2.09 -150 -0.55
w =100

Ey -7923 -6,773 7585 7717

E¢ —49 —221 =77 -29

Te 48 164 72 33

Values for w =1/2 and 0.00189 are in [56].

a pointwise improvement. In fact, in this regime,
the exact energy density appears more similar to
LSD than above.

An important question was raised by Morrison
and Parr [48], which can be stated as follows:
Given the exact density of some N > 1 electronic
problem, can you find the exact ground-state en-
ergy without solving an N > 1 problem? Recently,
we pointed out that the answer is yes when N = 2
for spin-unpolarized systems [56], since the
asymptotic decay of the density determines the
ionization potential, so that one is left with a

3e-05
2e-05
1e-05

0
-1e-05
-2e-05 A
-36:05 A
-4e-05
-5e-05
-6e-05

4rr2 (exc (r) + tc(r))

W= 10“".“ ,{'-Iooke’s atom

050 100 150 200 250 300 350 400 450 500

r

FIGURE 2. Radial unambiguous exchange~correlation
plus kinetic—correlation energy density for o = 10~ 4
Hooke’s atom (atomic units).
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one-electron problem to solve. Here, we point out
that it is also true in the extreme high-correlation
(or low-density) limit, since T. — 0, so that the
virial of the exchange-correlation potential yields
the exchange—correlation energy.

WEAK CORRELATION

Finally, we consider the weakly correlated (or
high-density) limit, by studying « = 100. Now,
Ec/Ex ~ 0.5%, while T /|Ec| ~ 98%. In this limit,
it becomes appropriate to separate correlation from
exchange, since Gorling-Levy perturbation theory
applies [61]. In Figure 3, we plot the radial unam-
biguous correlation plus kinetic correlation energy
densities and their functional approximations. We
now see a true limitation of LDA, in that its energy
density does not change sign, so that there is no
cancellation in the integral. The exact curve inte-
grates to zero in the w — o limit. The GGAs do
better, and this is reflected in their energies, al-
though the BLYP curve does not follow the shape
of the exact curve. Figure 3 also highlights an
undesirable feature of the new energy density. The
integrated quantity vanishes, so should not the
integrand vanish also? It would be preferable if the
energy density never changed sign (as, indeed, the
uniform gas energy density does not), since then
the allocation of energy densities throughout the
system would be cumulative, and one could more

/
w = 100 Hooke’s atom

)
b

47r7'2(ec(r) +tc(r))/n(r)

0 005 01 015 02 025 0.3 035 0.4

r

FIGURE 3. Radial unambiguous exchange-correlation
plus kinetic—correlation energy density for w = 100
Hooke's atom (atomic units).

easily define averages over the distribution. Since
the prescription described here does not uniquely
specify the choice of energy density, the question
of whether such a variation can be found remains
open.

The high-density limit also raises a slight co-
nundrum: Using Levy scaling [62], one finds v =
A2 0@, in the high-density limit, where v® is the
finite correlation potential when the density is
scaled to the high-density limit, that is, v®(r) =
lim,, _, o[ p, (7). Insertion of this A-dependence
directly into Eq. (12) would cause the hypercorre-
lated potential to diverge everywhere. In reality,
this does not happen, because E- — —constant,
even in the low-density limit. This implies that
vl = O(A) as A — o, and this change in behavior
always occurs for some A ~ O(r,) for any real
system, making the integral converge. Thus, the
high-density limit cannot be taken before the cou-
pling-constant integration.

This raises an interesting point about Eq. (12) in
the high-density limit, since it yields the correla-
tion energy in terms of an integral which stretches
down to the low-density (highly correlated) limit.
For two-electron systems, one may show that the
virial theorem becomes

1 =dX §VA
2) — _ _ 3 . b
ES Z[d r p(Dr v[ (13)

y A% Sp(n)

where V2 is the expectation value of the interelec-
tronic Coulomb repulsion evaluated on the wave
function at coupling-constant A, and E® =
lim,.Ec p,]. One may, of course, apply the
Helmholtz construction to this expression also to
yield an origin-independent energy density as in
Eq. (12).

Conclusions

To summarize, we have presented a new tool
for the exploration of density functionals. The un-
ambiguous energy density provides several inter-
esting advantages over earlier constructions, and
preliminary calculations of this energy density are
promising [49].
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ABSTRACT: A new model for the exchange potential in the framework of DFT is
proposed. The potential is defined as 2a, €;P”", where ;77" is the exchange-energy
density and «, is not a constant but a functional a,[ p] to be determined iteratively. The
exact Fock expression and the LDA, GEA, and Becke88 approximations were used as
€2PP", We provide results for atoms showing that this model potential yields total and
exchange energies and other atomic properties that are in good agreement with
Hartree-Fock values. In addition, total energies obtained by adding to the a,l pl
approach correlation energy corrections computed via the WL and LYP functionals are in
close accord with experimental values. © 1998 John Wiley & Sons, Inc. Int J] Quant Chem 70:
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Introduction

I I Ihe one-particle equations appearing in the
context of the independent particle model of

electronic structure are, in general, coupled partial
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integrodifferential equations for which it is not
possible, due to their complexity, to obtain analyti-
cal solutions. For this reason, they are treated
approximately by means of a self-consistent-field
(SCF) iterative procedure. In the Hartree approxi-
mation [1], the “field” or effective potential in
which a particle moves is an explicit functional of
the one-particle density p(r) and comprises the
external potential and the Coulomb potential ex-
erted by the charge distribution. In the Hartree-
Fock approximation [2], an additional exchange
potential arises from the antisymmetry condition

CCC 0020-7608 /98 / 040591-10
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on the N-particle wave function. In general, how-
ever, this additional term is not a simple func-
tional of the one-particle density.

In 1951, Slater [3] introduced an approximation
to the exchange potential corresponding to a
weighted mean of the average exchange charges.
The advantage of such an approximation was that
it led to a single potential field for all electrons.
When this averaged exchange charge was replaced
by the free electron-gas expression, an exchange
potential depending on just the one-particle den-
sity p(r)'/? was obtained. In this way, a natural
connection between the local-density approxima-
tion (LDA) [4, 5] and the SCF method was estab-
lished. '

This approach was further extended by Gaspar
[6] and Kohn and Sham [7] and was basic to the
formulation of the X, method by Slater and John-
son [8]. However, these methods did not provide a
satisfactory description of exchange and, in conse-
quence, density functional calculations based gen-
erally on the LDA approximation lead to substan-
tial error. Moreover, exchange potentials derived
from these functionals do not show the correct
asymptotic behavior at large distances.

To correct these shortcomings of LDA, the use
of gradient-corrected density functionals has been
advocated. In this direction, for example, Becke
proposed a semiempirical exchange density func-
tional [9] that produces more accurate exchange
energies and better exchange potentials. Becke’s
semiempirical functional was reparametrized by
Lee and Zhou [10]. But these exchange functionals
fail to reproduce the correct asymptotic behavior
of v,.

Recently, Lembarki et al. [11] introduced gradi-
ent-corrected exchange potentials with the correct
asymptotic behavior. They built two model ex-
change potentials with one and four parameters.
The parameters were determined by fitting them
to the values of the highest occupied molecular
orbital (HOMO) energies of three atoms. In addi-
tion, the virial relation of Levy and Perdew [12]
was employed to reproduce the exchange energy.
In a different context [13, 14] (namely, that of the
local-scaling transformation version of density
functional theory), exchange functionals with the
correct asymptotic behavior were constructed for
closed- and open-shell atoms.

In the present article, based on Slater’s [3] initial
formulation of a weighted mean of the average
exchange charges, we advance a new model where

the approximate exchange potential is of the form
o ([pln) =20, ([ pDel™ ([ pl;p). (D

Here, a ([ p] is a functional and €2""'([ p];1) is
some given approximation to the exchange energy
density.

The reason why a,([ p]) was selected to be a
functional is that in this way one can devise a
parameter-free method which retains, neverthe-
less, the formal simplicity of the Xa method. One
must bear in mind, however, that in our present
model, the determination of a ([ p]) must proceed
through a self-consistent-field approach.

In the next section, we describe the particular
form that we have adopted for the functional
a ([ p]). In the third section, we carry out calcula-
tions involving the SCF determination of the func-
tional « ([ p]) for various choices of the exchange
energy density e/’""([ p];1) and present results
some selected atoms. In particular, we discuss the
case where €/"""([ p]; r) is the exact weighted mean
of the average exchange charges and report, in
addition, results that include correlation effects
calculated using the Wilson-Levy (WL) [15] and
the Lee—Yang—Parr (LYP) [16] functionals. These
results are compared with those of Becke-Lee-
Yang-Parr (BLYP) as well as with those based on
the orbital-dependent potentials of Grabo and
Gross [17].

The Model Exchange Potential

The exchange energy component of the ex-
change-only energy density functional in DFT is
defined by

Elpl= fd3r1 p(r)e ([ pl;ry). (2)

The exchange-only potential of DFT arises from
the variation of the functional E.[ p] of Eq. (2)
with respect to the density p(r):

de. ([ pl;1)
0. p)i0) = e pli0) + p(o 2Pl o
8p(r)

Assuming that the Kohn-Sham determinant is
formed from the spin-orbital set {y(r, s) =
¢(0)v,, ()}, then we have that the weighted
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mean of the averaged exchange charges €.(([ p]; 1)
is given by

1 N
e plin)=——= Y 8(m,,m )¢} (r)
p(r) N i f ]

i,j=1
¥ (), (x")
x [ IO b, @
' — 1l
where the orbitals {¢,(r)}Y ; are the solutions to the
exchange-only Kohn-Sham equations:

(—%V2 + 0@ +og([ pl;0) + v, ([ p];r))ﬁbi(r)
= g1¢1(r) (5)

For the case of the two-electron system, the first
and second terms on the rhs of Eq. (3) are the same
and, hence, we can write the exact expression
v,( pl; r) = 2€,( pl; v). Of course, in general, this
is not true, but it may be assumed that for systems
having more than two electrons a good approxi-
mation for v, is still given by v.(pl;r) =
2¢€,( pl;v). In fact, Slater’s [3] initial replacement
of the Hartree—Fock (HF) exchange potential v, by
the weighted mean of the average exchange
charges, given by Eq. (4), is precisely based on this
assumption.

The connection with DFT appears when
€,( pl;1) is approximated by the free-electron ex-
pression. Due to the nonuniqueness of this approx-
imation, one obtains the Slater term € ([ p]; 1) and
the Gaspar-Kohn-Sham term eZ**([ p; r), which
are related by e = 2/3eZ%°. Moreover, the repre-
sentation of the exchange potential by means of

3] pl;r) = 2a,e:([ pl;1), (6)

where «, is a parameter, has been an interesting
and widely exploited alternative in quantum-
chemical and solid-state calculations.

Owing to the linear dependence of the exchange
potential Eq. (6) on «,, there does not exist a
minimum principle associated with the total en-
ergy of the system which may be applied for the
variational determination of an optimum parame-
ter a,. For this reason, there has been much debate
in the context of the Xa method [8] concerning the
best manner to determine this parameter. One such
possible way [18] is to compute «, by requiring
that the total Xa energy be equal to the precise
HF energy. This way of fixing a,, nevertheless,
limits the application of the model potential given
by Eq. (6) to many-electron systems for which total

HF energies are known. Another way [19, 21] is to
minimize the total HF energy for the single-de-
terminantal wave function constructed from the
Xa orbitals.

DEFINITION OF o,

In the present work, we assume that a,l plis
the functional

[Pt p(De ([ p]; 1)

-2/ d% p()r- Ve2PP ([ pl;1) @

ax[ P] =

The rationale for selecting the above functional
comes from the requirement that the exchange
energy E.[ p] computed through Eq. (2) be equal
to the Levy—Perdew virial expression:

E.l P]k= —fdsrp(r)r-Vv,‘j”’”([ pliv). (8

Clearly, when we introduce in Eq. (8) the potential
ve??"([ p]; v) given by Eq. (1), one obtains Eq. (7). In
addition, the following exchange-only Kohn-Sham
equation ensues:

(=3V2 + 0@ + vy ([ pl;0) + 20, ([ pl; 1)
x e ([ pl; 1)) ¢,(x) = &,¢,(v). C))

The above procedure can be implemented by
computing a,([ p]; 1) through Eq. (7) at each itera-
tion until the value

(xiCF = OL,:[ popt] (10)
is attained for the optimal density p,,, computed
from the orbital set {¢,(r)} formed by the con-
verged solutions to the Kohn-Sham equations (9).
As can be seen from Eq. (7) and Eq. (1), the choice
of some approximate form for the exchange energy
density €77"([ p]; 1) is needed in order to evaluate
a,l p] and the exchange potential v;”?". Notice
that €,([ p]; 1) appearing in the numerator of Eq.
(7) is given by Eq. (4) where the orbitals {¢,(r)} are
the solutions to the Kohn—-Sham equations at each
iterative step of the SCF procedure.

VARIATIONAL ASPECTS

Consider the following approximate exchange
energy functional:

Eorrr p] = fd3r pe ([ pl;r), (11)
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where, of course, we assume a known (although
not necessarily very accurate) €i"’([ p];r). This
definition is to be contrasted with that of the
exchange energy given by Eq. (2), where €,( pl; 1)
[as given by Eq. (4)] is defined in terms of an
orbital set which must be determined through the
self-consistent solution of the Kohn-Sham equa-
tions. A compromise between these two exchange
functionals can be reached by introducing the fol-
lowing functional:

E.[pl = ol p]EZ pl, (12)

where of p] is given by Eq. (7).
We define the exchange potential v{""" as the
functional derivative of E [ p] with respect to p:

aEgppr[ p]
5p

appr —
v, =

da,[ p]
——EP [ p]l + of p]
p

_ da,{p]

5p EXrpl + of p]

Seaprrr ;
x| exr7 ([ pl; 1) + p(r)fx_([M .
ép

(13)

It is seen from this equation that the exact varia-
tional potential for the present ansatz contains
terms which are not easily manageable. For this
reason, we advance the conjecture (to be war-
ranted by numerical results) that

(8a,[ pl/8p)ESP! [ p] + af p] p(r)
X (8e;P""([ pl;1)/8p) = ol plelP? ([ p]; ).

Thus, we are led to the approximate variational
potential given by Eq. (1).

PROPERTIES OF v»P"

Clearly, the properties of the exchange potential
vgPP"([ p]; 1) are going to be dictated by the ap-
proximation used for €;7""([ p]; r). For the particu-
lar case when €"""([ pl; 1) = €,( p; 1) (this alter-
native can be implemented by the SCF procedure
discussed above), we observe that v?77"([ p]; 1) has
the following properties:

« It has the correct scaling behavior. This fol-
lows from the fact that

v;ppr([ p)‘]’.r) — AU;WV’([ p], Ar), (14)

where p,(r) = Ap(Ar).

= It has a reasonable behavior at infinity. Since
v ([ p ;1) = —al pl/r for r > », we see
that this behavior is very close to the correct
one, —1/r, because of p] = 1.

» It is finite at the nucleus. This follows from
the fact that v{"""([ p,];¥) = constant for ||

= 0. In this respect, it behaves like the opti-
mized Kohn-Sham x-only potential [22].

Results and Discussion

The numerical results are presented for selected
closed- and open-shell atoms. The converged val-
ues of a3°F are listed in Table I. These values are
calculated assuming that €;"""([ p]; r) appearing in
Eq. (7) is given by Eq. (4). The values o also
listed in this table are obtained by requiring that
the total energy be equal to the corresponding HF
(SCF) one. The differences between «5F and o B¢
lie in the range 0.001-0.002 for all atoms discussed
here. It should be emphasized that the total ener-
gies are quite sensitive to the «, values.

The ground-state energies are calculated as the
expectation values of the HF Hamiltonian with
respect to a single Slater determinant constructed
from the Kohn—Sham orbitals. This Slater determi-
nant corresponds to one of the degenerate mi-
crostates of the ground-state spectroscopic term.
The actual evaluation was carried out numerically
using a modified version of Froese Fischer’s atomic
program [23].

TABLE |
Values of the parameter o, for the ground
states of selected neutral atoms (see notation
in text).

Atom quF afesr afesr/afCF
He 1.00000 1.00000 1.00000
Be 0.87587 0.87784 1.00225
B 0.84684 0.84913 1.00270
C 0.82907 0.83120 1.00257
N 0.81978 0.82173 1.00238
0] 0.80407 0.80565 1.00197
F 0.79576 0.79716 1.00176
Ne 0.79247 0.79376 1.00163
Mg 0.76947 0.77060 1.00147
Ar 0.75094 0.75169 1.00100
Kr 0.71508 0.71548 1.00056

594

VOL. 70, NO. 4/5



SCF WITH DENSITY-DEPENDENT LOCAL-EXCHANGE POTENTIAL

With respect to the exchange energy, however,
it is worthwhile to notice that due to the definition
of the model potential given by Eqgs. (1) and (7) it
follows that E [ p] may be equivalently calculated
by the expression

Elpl = —Zaxf d®r p(Dr - Ve ([ pl;1) (15)

or by the HF expression obtained from Egs. (2) and
().

Table II shows the ground-state energies for the
atoms considered in this work for the case when
a, = a5CF (clearly, when o, = a2, the HF ener-
gies are reproduced). For convenience, we intro-
duce the notation SC-F for the exchange potential
2a, €777, for the case when a, is obtained self-
consistently, that is, a, = a5, and /""" = ¢, is
given by the Fock expression [Eq. (4)]. For com-
pleteness, we compare these results with the ex-
change-only results of Lembarki et al. [11] and
Harbola and Sahni (HS) [25] and also with the
OEP values of Talman [26] and Krieger, Li, and
TIafrate (KLI) [27]. In the x-only calculations of
Lembarki et al. [11], two gradient-corrected ex-
change potentials having the proper asymptotic
behavior are used. The first one is characterized by
a single parameter and the second by four parame-

TABLE 1l

ters (cases 4 and b in Table II, respectively). The
mean deviations (A) and the maximum deviations
(A 4x) from the HF values are given for all the
cases considered in the two last rows of Table IL
One may infer from these results that the exchange
potential SC-F is more accurate than is the Lem-
barki et al. [11] one-parameter case (a) and has the
same accuracy as the four-parameter case (b).

It should be mentioned that the exchange poten-
tial SC-F leads to total energies which are slightly
higher than the corresponding HF values. This
follows from the variational principle as the total
energy is computed as the expectation value of the
Hamiltonian with respect to the single Slater deter-
minant formed by the solution to the approximate
Kohn-Sham x-only equations. The equivalence of
the exchange-energy expressions given by Eqs. (2)
and (8) guarantees that this variational property is
maintained when the exchange energy is calcu-
lated by using Eq. (2).

The values of the exchange energy for several
x-only SCF calculations are listed in Table III. Re-
sults for o, = a5F (SC-F) and a, = a2 are com-
pared with those of cases (a) and (b) of Lembarki
et al. [11]. For completeness, we have also in-
cluded values corresponding to the exchange po-
tential of Becke taken from [28], and values from
OEP, KLJ, and HS calculations. The two last rows
show A and A, ,x deviations from the HF values.

Total energies of selected first- and second-row atoms for several self-consistent x-only calculations

(in Hartrees, negative).

Atom SC-F L12 2P OEP KLI HS HF®
He 2.86168 2.851 2.864 2.86167 2.862 2.86168
Be 14.5670 14.531 14.575 14.5725 14.5723 14.571 14,5730
B 24.5188 24.541 24,532 24,5278 24,5281 24.526 24.5291
C 37.6756 37.675 37.683 37.6865 37.68865 37.685 37.6886
N 54.3853 54.386 54.416 54,3980 54.4030 54.396 54.4009
0] 74.7933 74.822 74.805 74.8075 74.8117 74.805 74.8094
F 99.3918 99.387 99.440 99.4075 99.4088 99.405 99.4093
Ne 128.5276 128.573 128.563 128.5455 128.5448 128.542 128.5471
Mg 199.5912 199.694 199.630 199.6115 199.6107 199.606 199.6146
Ar 526.7874 526.838 526.820 526.81 526.8105 526.804 526.8175
Kr 2752.003 2752.04 2752.0398 2752.030 2752.055
Ad 0.020 0.087 0.021 0.003 0.002 0.007
Apax® 0.042 0.37 0.081 0.006 0.005 0.014

.| smbarki et al.’s SCF calculations with exchange-only potential: 2 Eq. (7) and ®Eq. (8) of [11].

®HF values from [24].

9Mean deviation from the HF results for the column (%).

© Maximum deviation from the HF results for the column (%).
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TABLE 11l

Absolute values of ground-state exchange energies from self-consistent x-only calculations for selected

neutral atoms (in hartrees).

Atom aSCF afest L1 Lob Becke® OEP¢ KLI® HS' HFe
He 1.0258 1.0258 1.010 1.110 1.0273 1.026 1.026 1.0258  1.0258
Be 2.6706 2.6714 2.625 2,672 2.6692 2.666 2.667 26665  2.6669
B 3.7430 3.7442 3.694 3.732 3.7679 37429  3.7587
c 5.0321 5.0334 5.021 5.040 5.0765 50428  5.0647
N 6.5671 6.5687 6.567 6.560 6.6080 6.604 6.603 6.5947  6.5968
o) 8.1415 8.1430 8.105 8.157 8.2345 8.1806  8.2020
F 9.9581 9.9596  10.010  10.005  10.0811 10.0135  10.0340
Ne 12.0456  12.0472 12166 12125 121619 12105 12099 121218 12.1080
Mg 159787 159803 15977 16072  16.0334 15988 15983  16.0034  15.9950
Ar 30.1393 301407  30.187  30.155  30.1845  30.175  30.174  30.1888  30.1780
Kr 93.7685 937702  93.892 93876  93.8270  93.833 93.8635  93.8100
& 036 0.35 0.75 1.1 0.23 0.04 0.05 0.15

Ayax  0.76 0.74 1.72 8.21 0.40 0.11 0.09 0.43

2% embarki et al.’s SCF calculation with exchange-only potential, 2Eq. (7) and ®Eq. (8) of [11].

Becke’s values are taken from Ref. [28).
9 Exact OEP data from [29].
®KLI data from [17].

The HS results are obtained by using a modified version of Froese-Fischer’s [23] program.

9HF values from [28].
f“Mean deviation from the HF results for the column (%).
'Maximum deviation from the HF results for the column (%).

In Table IV, we present the energies — €00 Of
the highest occupied orbitals for the atoms consid-
ered in this work. Again, we compare them to
values obtained by Lembarki et al. [11] and to the
HF values. It can be seen from this table that
the orbital energies —e,onmola%%,] as well as
€yomol a2, ] calculated by the present method
lie consistently (by almost the same factor) above
the HF ones. Let us recall that free parameters of
the exchange potentials of Lembarki et al. were
determined through a fit on the OEP HOMO ener-
gies of three atoms and, hence, these exchange
potentials yield quite accurate €4, energies.

The exchange potentials 2a3“%, plotted in Fig-
ures 1 and 2 for the carbon and neon atoms,
respectively, are in good accord with the “exact”
KS x-only potentials. The latter were calculated in
the present work by the local scaling transforma-
tion (LST) method [30] employing even-tempered
orbitals (8-term for s-states and 6-term for p-states).
The potentials 2%, differ from the “exact’” ones
in the intermediate region by about 10%. For com-
parison, we reproduce GEA and LDA exchange
potentials, which decay more rapidly for large
values of r and which differ from the “exact”” ones

(also in the intermediate region) by about 30%.
Note that the GEA exchange potential diverges
near the origin.

In the first and second columns of Table V, we
list total energies obtained by combining the ex-
change potential, computed via SC-F, with the
correlation potential obtained from the Wilson-
Levy (WL) [15] and the Lee~Yang—Parr (LYP) [16]
functionals, respectively. For comparison pur-
poses, we also include the total energy values
reported by Grabo and Gross [17], the energies
obtained by using the BLYP functional, the CI
values, and the “exact” results. As it may be
inferred from this table, the combinations SC-F &
WL and SC-F& LYP yield excellent approxima-
tions to the total energy. In fact, in both cases, the
mean deviation is smaller than the corresponding
one for the BLYP functional. In Table VI, we fur-
ther analyze the present approach based on the
SC-F& WL and SC-F & LYP functionals and com-
pare the ionization potentials (obtained from the
€10mo energies) with the experimental values. For
completeness, we also present the values calcu-
lated both by Grabo and Gross [17] and those
resulting from the BLYP functional. By and large,

596

VOL. 70, NO. 4/5



SCF WITH DENSITY-DEPENDENT LOCAL-EXCHANGE POTENTIAL

TABLE IV

€ yomo energies for atoms (in Hartrees, negative); notation as in Table II1.

Atom a3 CF aBest L1 L2b HF°
He 0.918 0.918 0.924 0.910 0.918
Be 0.283 0.283 0.334 0.313 0.309
B 0.247 0.248 0.335 0.319 0.310
C 0.339 0.340 0.432 0.426 0.433
N 0.442 0.443 0.550 0.548 0.568
0 0.512 0.513 0.552 0.487 0.632
F 0.600 0.602 0.713 0.655 0.730
Ne 0.704 0.705 0.840 0.830 0.850
Mg 0.213 0.214 0.317 0.278 0.253
Ar 0.472 0.472 0.601 0.592 0.591
Kr 0.400 0.400 0.524

4.5 SOF calculations with exchange-only potential, 2 Eq. (7) and ® Eq. (8) from [11].

®HF values from [24].
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FIGURE 1. “Exact” and approximated exchange
potentials for the C atom.

we observe an improvement of the ionization po-
tentials computed via the SC-F& WL and SC-F &
LYP functionals as compared with those coming
from SC-F alone. We see that the former are in
closer agreement with the experimental values than
are those obtained from the BLYP functional.

As the possibility of using different types of
approximations for e{"*"([ p];r) is open, we per-
formed calculations for the total energy using

appr . LDA _GEA Becke88.
€, €, s €y s €y :

EfDA = A, pl/3

€CEA = A _pl/3

C, )
1+ ——22/3Ax X

0.0 T T T

—— KS x-only

—— - 20,0ple,lp)
EA

,,,,

- LDA

v,(hartrees)

10™ 10
1 (bohr}

FIGURE 2. “Exact” and approximated exchange
potentials for the Ne atom.

B x?
21341+ 6Bxsinh™1(x) |’
(16)

Becke88 _ 1/3
€, =A,.p 771

where

A, = =3/4G3/m)", C,= -7/(#32x(3x)"),
B =0.0042, and x =2V3|Vp|/p*>.

Results of these calculations are presented in Table
VII (noted as SC-LDA, SC-GEA, and SC-B88),
where we have also included the values obtained
directly from the LDA, GEA, and Becke88 func-
tionals and energies calculated employing LDA,
GEA, and Becke88 orbitals and the exact exchange
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TABLE V
Total ground-state energies from various SCF calculations (in Hartrees, negative).
Atom SC-F&WL SC-F &LYP Grabo-Gross?® BLYP? cie Exact?
He 2.9039 2.9055 2.9033 2.9071 2.9037
Be 14.6649 14.6618 14.6651 14.6615 14.6657 14.6674
B 24.6546 24.6516 24.6564 24.6458 24.6515 24.6539
C 37.8549 37.8522 37.8490 37.8430 37.8421 37.8450
N 54.6124 54.6100 54.5905 54,5932 54.5854 54.5893
0] 75.0693 75.0684 75.0717 75.0786 75.0613 75.067
F 99.7203 99.7201 99.7302 99.7581 99.7268 99.734
Ne 128.9118 128.9113 128.9202 128.9730 128.9277 128.939
Mg 200.0364 200.0514 200.062 200.093 200.059
Ar 527.5791 527.5385 527.553 527.551 527.604
Kr 2753.905 2753.7523
AP 0.016 0.022 0.009 0.030 0.009
Apax® 0.042 0.062 0.016 0.12 0.012

& Values taken from [17].

® Mean deviation from the “exact” results for the column (%).

¢ Maximum deviation from the “exact” results for the column (%).
TABLE VI
lonization potential from the HOMO energies of few neutral atoms (in Hartrees).
Atom SC-F&WL SC-F&LYP Grabo -Gross? BLYP? Expt.®
He 0.949 0.950 0.945 0.585 0.903
Be 0.321 0.303 0.329 0.201 0.343
B 0.281 0.271 0.328 0.143 0.305
C 0.376 0.367 0.448 0.218 0.414
N 0.482 0.473 0.579 0.297 0.534
0] 0.553 0.546 0.559 0.266 0.500
F 0.643 0.636 0.714 0.376 0.640
Ne 0.748 0.742 0.884 0.491 0.792
Mg 0.243 0.233 0.273 0.168 0.281
Ar 0.521 0.504 0.619 0.373 0.579
Kr 0.446 0.430 0.514°

® Values taken from [17].
® Value from [31].

energy expression Eq. (2). It is interesting to note
that the present approach leads to a substantial
improvement for the LDA and GEA cases. For
example, the mean deviation A goes from 1.56 to
0.011 for LDA and SC-LDA, respectively. Simi-
larly, we observe an improvement from 0.33 for
GEA to 0.044 for SC-GEA. This effect is less pro-
nounced, albeit present, for the Becke functional.
The energies E,[®"P*]and E, [®°E*] are closer
to the HF values than those of LDA and GEA (.e.,
calculated with the original LDA and GEA ex-
change energy expressions). The mean deviation A

for E;p[®°F4] has the same value as for SC-LDA
(0.011) and is smaller than A for SC-GEA (0.044).

We should note that a virial relation holds (up
to three or more decimals) for all methods em-
ployed. However, for the LDA and GEA function-
als, the virial relation holds only if we calculate the
exchange energy with the original LDA or GEA
exchange-energy expressions.

More detailed results of SCF calculations with
€' = €P4 (or €777 = € = 2€'PA) are given in
Table VIII. The modified LDA results presented in
Table VIII are surprisingly accurate. Let us remark
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TABLE VII
Comparison of total energies of spherically symmetric first- and second-row atoms from SCF x-only calculations
with different € 2PP" = e P4, e %EA, eBecke and LDA, GEA, and Becke88 resuits.?

Method / Atom He Be Ne Mg Ar Kr AP Apax’
SC-LDA 2,8609 14.5707 128.5332 199.6007 526.7981 2752.015 0.011  0.027
LDA 2.7236 14.2233 127.4907 198.2488 524.5174 2746.866 1.56 4.83
E e [®tP4] 2.8578 14.5681 128.5275 199.5973 526.7950 2752.011 0.033 0.14
SC-GEA 2.8563 14.5679 128.5164 199.5959 526.7862 2752.002 0.044 0.19
GEA 2.8423 14.4871 128.2215 199.1364 525.9354 2749.877 0.33 0.68
Ee[DEEA] 2.8606 145712 1285371 199.6050  526.8060  2752.026  0.011  0.038
SC-B88 2.8608 14,5706 128.5330 199.6006 526.7978 2752.015 0.012  0.031
B8S 2.8634 14.5664 128.5901 199.6320 526.7998 2752.101 0.025  0.060
HF 2.86168 14.5730 128.5471 199.6146 526.8175 2752.055

2 All values were obtained by means of a modified version of the program described in [23].

5 Mean deviation from the HF results for the column (%).

¢ Maximum deviation from the HF results for the column (%).

TABLE VIH

Orbital, exchange, and total energies computed
for selected closed- and open-shell atoms using
SC-LDA and comparison of total energy with

HF results

Atom  eyomo E, Erotar Epr
He 0.582 1.0175 2.8609 2.86168
Be 0.195 2.6633 14.5707 14.5730
B 0.125 3.7355 24.5252 24.5291
C 0.190 5.0253 37.6824 37.6886
N 0.261 6.5592 54.3911 54.4009
(0] 0.330 8.1468 74.8000 74.8094
F 0.404 9.9728 99.3983 99.4093
Ne 0.485 12.0654 128.5332 128.5471
Mg 0.155 15.9739 199.6007 199.6146
Ar 0.360 30.1653 526.7981 526.8175
Kr 0.316 93.7936 2752.0147 2752.055

All values are in Hartrees, negative.

for clarity that since in the present approach a$°F

is calculated self-consistently it is not—as in the
case of the original LDA or HF-Slater methods—a
parameter that we can adjust to fit some given
result. It is for this reason that we regard the
present approach as a parameter-free method.

In Table IX, we present results obtained by
solving the Kohn-Sham equations where in addi-
tion to the exchange potential generated from SC-
LDA we have added the WL correlation potential.
Again, we observe that the results are quite accu-
rate.

While this article was under review, there ap-
peared an article by Cortona [32] where he pre-

TABLE IX

Calculations for selected atoms using SC-LDA for
exchange plus the WL functional for

electron correlation.

Atom  eyomo E, Erotar Egsant®
He 0.611 1.0226 2.9032 2.9037
Be 0.232 2.6736 14.6697 14.6674
B 0.155 3.7514 24.6615 24.6539
C 0.223 5.0453 37.8623 37.8450
N 0.297 6.5832 54.6189 54.5893
0 0.367 8.1719 75.0764 75.067
F 0.443 9.9998 99.7272 99.734
Ne 0.526 12.0948 128.9178 128.939
Mg 0.186 15.9961 200.0465 200.059
Ar 0.407 30.2106 527.5904 527.604
Kr 0.361 93.8509 2753.9173

All values are in Hartrees, negative. For comparison, the
“exact” values of total energy are listed.
& Values taken from [17].

sented a method quite similar to the one advanced
here. In fact, Cortona’s approach corresponds to
the particular instance where eZ??" = e¢[P4. His
results are in complete agreement with ours (up to
all decimals reported in [32]) for closed-shell atoms.
For open-shell atoms, his results differ from ours
due to the fact that he used a spin-unrestricted
approach.

ACKNOWLEDGMENTS

One of us (V. K)) acknowledges financial sup-
port from the 38th Sanibel Symposium organizers.

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 599



KARASIEV, LUDENA, AND LOPEZ-BOADA

R.

L. B. is grateful to Conicit of Venezuela for an

53 travel grant and thanks a financial support by
the National Science Foundation under Grant No.
CHEM-9632706. This work was partially sup-
ported by the Comission of European Communi-
ties through Contract No. CIT*-CT93-0333.

NON U1 o

O

10.
11.

12.
13.

References

. D. R. Hartree, The Calculation of Atomic Structures (Wiley,
New York, 1957).

. J. C. Slater, Quantum Theory of Atomic Structure (McGraw-
Hill, New York, 1960), Vol. II.

. J. C. Slater, Phys. Rev. 81, 385 (1951); Ibid., 82, 538 (1951);
Ibid., J. Chem. Phys. 43, 5228 (1965).

. F. Bloch, Z. Phys. 57, 545 (1929).

. P. A. M. Dirac, Proc. Camb. Philos. Soc. 26, 376 (1930).

. R. Géspar, Acta Phys. Hung. 3, 263 (1954).

. W.Kohn and L. ]. Sham, Phys. Rev. A 140, 1133 (1965); B. Y.
Tong and L. J. Sham, Phys. Rev. 144, 1 (1966).

. J. C. Slater and K. H. Johnson, Phys. Rev. B 5, 844 (1972).

. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

Ch. Lee and Z. Zhou, Phys. Rev. A 44, 1536 (1991).

A. Lembarki, F. Rogemond, and H. Chermette, Phys. Rev.

A 52, 3704 (1995).

M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 (1985).

E. S. Kryachko, E. V. Ludefa, R. Lépez-Boada, and J. Mal-

donado, in Condensed Matter Theories, L. Blum and F. Bary

Malik, Eds. (Plenum, New York, 1993), Vol. 8.

15.
16.
17.

18.
19.
20.
21.
22.

23.
24.

25.

26.

27.

28.

29.
30.

31.

32

. R. Lépez-Boada, R. Pino, and E. V. Ludefa, Int. J. Quantum
Chem. 63, 1025 (1997).

L. C. Wilson and M. Levy, Phys. Rev. B 41, 12930 (1990).
C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

T. Grabo and E. K. U. Gross, Chem. Phys. Lett. 240, 141
(1995).

K. Schwarz, Phys. Rev. B 5, 2466 (1972).

L. Lindgren, Phys. Rev. Lett. 19, 382 (1965).

J. H. Wood, Int. J. Quantum Chem. S$3 747 (1970).
E. A. Kmetko, Phys. Rev. A 1, 37 (1970).

O. V. Gritsenko, R. van Lecuwen, and E. J. Bacrends, Int. J.
Quantum. Chem. 57, 17 (1996).

C. Froese Fischer, Comput. Phys. Commun. 43, 355 (1987).
C. Froese Fischer, The Hartree—Fock Method for Atoms (Wiley,
New York, 1977).

V. Sahni, Y. Li, and M. K. Harbola, Phys. Rev. A 45, 1434
(1992).

J. D. Talman, Comp. Phys. Commun. 54, 85 (1989); K.
Aashmar, T. M. Luke, and J. D. Talman, At. Data. Nucl.
Data Tab. 22, 443 (1978).

Y. Li, J. B. Krieger, and G. ]. Jafrate, Phys. Rev. A 47, 165
(1993).

N. H. March, Electron Density Theory of Atoms and Molecules,
(Academic Press, London, 1992).

E. Engel and S. H. Vosko, Phys. Rev. 47, 13164 (1993).

E. V. Ludefa, J. Maldonado, and R. Loépez-Boada, J. Chem.
Phys. 102, 318 (1995).

N. A. Cordero, K. D. Sen, J. A. Alonso, and L. C. Balbas, J.
Phys. II Fr. 5, 1277 (1995).

. P. Cortona, Phys. Rev. A 57, 4306 (1998).

600

VOL. 70, NO. 4/5



Investigation of an Asymmetric
Triple-Excitation Correction
for Coupled-Cluster Energies

T. DANIEL CRAWFORD, JOHN F. STANTON

Institute for Theoretical Chemistry, Departments of Chemistry and Biochemistry, The University of
Texas, Austin, Texas 78712-1167

Received 22 February 1998; revised 1 May 1988; accepted 13 May 1988

ABSTRACT: A correction for the effects of connected triple excitations to the
coupled-cluster singles and doubles energy is studied. The approach relies on the fact
that the ground-state coupled-cluster energy may be viewed as an eigenvalue of an
effective (similarity transformed) Hamiltonian with associated left and right eigenvectors.
Taking these as zeroth-order wave functions and using a conventional partitioning of the
bare electronic Hamiltonian, the lowest order triple-excitation correction to the correlation
energy is found to have an asymmetric form that involves cluster amplitudes as well as
components of the left eigenvector. The popular (T) correction may be viewed as an
approximation to the present approach, though the latter is approximately a factor of 2
more expensive to compute. The method is applied to a number of difficult cases,
including the harmonic vibrational frequencies of ozone and the equilibrium bond length
of N,. In addition, the theory of analytic gradients for the method is outlined and some
aspects regarding its implementation are discussed. © 1998 John Wiley & Sons, Inc. Int J
Quant Chem 70: 601-611, 1998

Key words: coupled-cluster theory; triple-excitation corrections; equation-of-motion
coupled-cluster theory; perturbation theory; analytic energy gradient theory

Correspondence to: T. D. Crawford.
Contract grant sponsors: National Science Foundation;
Robert A. Welch Foundation; Alfred P. Sloan Foundation.

International Journal of Quantum Chemistry, Vol. 70, 601-611 (1998)
© 1998 John Wiley & Sons, Inc. CCC 0020-7608 /98 / 040601-11




CRAWFORD AND STANTON

Introduction

T he importance of higher excitations in the
description of dynamic electron correlation
effects has been well understood for several years.
In the absence of a multiconfiguration reference,
for example, it has been shown that up to hextuply
excited determinants must be included in the cor-
related wave function in order to obtain even
qualitatively correct predictions of bond-breaking
processes, particularly in multiply bonded systems
[1]. For regions of the potential energy surface near
the equilibrium structure, however, the outlook is
not quite so bleak. In systems for which a single-
determinant reference wave function provides a
reasonable zeroth-order approximation, only sin-
gle, double, and triple excitations may be neces-
sary in order to obtain quantitatively accurate pre-
dictions of molecular properties.

In the coupled-cluster (CC) model of electron
correlation [2-5], the inclusion of all triply excited
determinants (CCSDT) [6-8] is, in general, too
computationally intensive to apply to all but the
smallest molecular systems, and much effort has
been devoted to the construction of reliable ap-
proximations. Both iterative [9-11] and nonitera-
tive [10, 12, 13] approaches have been examined,
and the so-called CCSIXT) method, which includes
all singles and doubles [14, 15] as well as a pertur-
bational estimate of connected triple excitations
[12, 13, 16-19], provides perhaps the best balance
between accuracy and affordability of any single-
reference approach [5, 20-23].

Recently, it has been shown [24] that equation-
of-motion coupled-cluster theory (EOM-CC)
[25-30] provides a unique perspective on the
CCSD(T) method. Instead of taking the
Hartree-Fock determinant as the zeroth-order
wave function and subsequently decomposing the
CCSD equations in terms of the many-body per-
turbation expansion, as is usually done, the CCSD
wave function is taken as zeroth-order and the
energy viewed as the lowest eigenvalue of an
effective Hamiltonian with associated left and right
eigenvectors. By substituting converged CCSD
cluster amplitudes in place of the left eigenvector
in the lowest-order energy correction, the usual (T)
energy expression is obtained. In this work, we
examine the alternative correction obtained by
avoiding this final substitution and preserving the

left eigenvector in the equation. [This approach
was used previously [31] to develop a closely
related triple-excitation correction for the equa-
tion-of-motion coupled-cluster method for ionized
states (EOMIP-CC). Footnote 19 of Ref. [31] com-
pares this to the triples correction investigated in
this work.] The resulting formula is more expen-
sive to calculate than the (T) correction. In the
following section, we outline the theoretical basis
for the energy expression and discuss its efficient
implementation. In the third section we apply the
method to selected systems for which triple excita-
tions are particularly important.

Theory and Implementation

In EOM-CC theory,A the normal-ordered elec-
tronic Hamiltonian (H) undergoes a similarity
transformation of the form

H= e‘fﬁef, 1

where the cluster operator () that parametrizes
the transformation may be taken from a related,
ground-state coupled-cluster wave function. The
resulting operator (H) is then diagonalized within
a selected space of determinants [usually chosen to
be the reference (107) and all excitations generated
from it by T]. The lowest eigenvalue is the
ground-state CC energy, Ecc, which, due to the
non-Hermiticity of H, has distinct biorthogonal
right and left eigenvectors,

HI0) = E..l0) (2)

and
(01.%H = (01.LEcc, 3)

respectively. If the diagonalization space is defined
to include all possible excitations from [0), the
similarity transformed Hamiltonian has an eigen-
value spectrum identical to that of the nontrans-
formed (full configuration interaction) Hamilto-
nian. However, this space is usually truncated to
produce only singly and doubly excited determi-
nants, defining the so-called EOM-CCSD approxi-
mation.

We may partition the complete determinant
space |h) into the reference [0), [g> (all singly and
doubly excited gleterminants generated from [0) by
the truncated T) and |q) (all remaining determi-
nants). By defining Ip> =10) U lg), the effective
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Hamiltonian may be written as

_ |H, H
H — _pP _pq . (4)
H‘JP qu

We may use Lowdin’s partitioning approach [32]
to solve for an eigenvalue of the complete Hamil-
tonian in terms of the projections of the left &%)
and right (%) eigenvectors onto the |p) space to
give

— -1 — A
exactlqq qu) qu‘%p' ()

+, Hyo E
The second term on the right-hand side of Eq. (5)
may be considered as the exact correction to an
approximate eigenvalue obtained by diagonalizing
H within the |p) space. By first choosing a parti-
tioning of H and subsequently expanding the in-
verse in Eq. (5) in a power series [32], one may
obtain a variety of iterative approaches for calcu-
lating the eigenvalue E,,,. (If the operator used in
Eq. (5) is the bare electronic Hamiltonian H in-
stead of its similarity-transformed counterpart H,
a power series expansion provides the usual
Rayleigh—Schoédinger or Brillouin-Wigner pertur-
bation theories, as discussed by Lowdin [32].)
A many-body perturbation theory partitioning
of the (nontransformed) electronic Hamiltonian
into zeroth- and first-order components, viz.

A = A + 4, ©)

leads to an order-by-order expansion of the simi-
larity-transformed Hamiltonian [33]:

H=H0 4 504+ 24, %)
and an analogous expansion of the energy

Epar = B9+ EW + ERI + EBL 4 00 (8)

exact
If we further define the [p) space projection of H to
be zeroth-order (along with its corresponding left
and right eigenvectors), order-by-order corrections
toward the exact energy may be obtained which
depend strictly on the partitioning of the bare
electronic Hamiltonian used in Eq. (6). Here we
choose the Moller—Plesset partitioning [34] such
that the Fock operator (F) is used as HU. Since
2 = 1(i.e., the CCSD equations have been solved)

P
it can be shown that the lowest order correction to

ASYMMETRIC TRIPLE-EXCITATION CORRECTION
the CCSD energy appears in third order as [24]

AEPI = (0|28 )(S|HMITYD,(T| H|0)
+ (0l.ZDYXDIHMTYD,(TIHZ|0), (9)

where the notation % _is intended to imply only
the left eigenvector of H,, rather than the p-space
projection of the exact left eigenvector, Sy, [D),
and [T) denote singly, doubly, and triply excited
determinants relative to |0), respectively, and D,
is a shorthand notation for the usual energy de—
nominator, [{ TIHIT)] .

As pointed out prev1ously [24], the form of Eq.
(9) is identical to the conventional (T) correction if
the adjoint of the cluster operator T' is used in
place of the left eigenvector .#. The first term on
the right-hand side of Eq. (9) is therefore analo-
gous to the fifth-order Eg; component of the (T)
correction, while the second corresponds to the
fourth-order E,; component [18]. The difference
in perturbational order between these terms is due
to the fact that the earliest contribution of T, in
Meller—Plesset theory is to the first-order wave
function, while that of Tl is to the second-order
wave function. Both terms contribute to the third-
order correction in the present framework, where
Z is retained in Eq. (9), because both single- and
double-excitation components of the left-hand
eigenvector are zeroth order.

In the more conventional (T) approach, the en-
ergy expression has a more symmetric form due to
the presence of cluster operators on both sides of
each term in the equatlon As a result, only one /"7
term (namely HIT, — T,) must be evaluated. In
the current theory, however, the energy expression
contains components of the left eigenvector on one
side and cluster operators on the other. Thus, two
47 expressions must be evaluated: the same T
containing term as in the (T) correction, as well as
an analogous term involving 2. In addition, the
number of #¢ steps which must be evaluated is
doubled for the present theory since the ground-
state left eigenvector must be constructed as well.
(The so-called A equations, which were developed
within the framework of coupled-cluster gradient
theory [35-38] must be solved via an .#'® proce-
dure in order to obtain the left eigenvector from
the relation £=1+ A.) Hence, the proposed
asymmetric triple-excitation correction, which we
will hereafter refer to as a-CCSIXT), is approxi-
mately a factor of 2 more expensive to evaluate
than that defined by CCSIXT). This triples correc-
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tion has also been independently examined re-
cently by Kucharski and Bartlett [39] who com-
pared this approach to a series of similar methods
obtained using several different coupled-cluster
energy functionals. We have implemented the a-
CCSIXT) method in a local version of the ACESII
program system [40].

Test Applications

POTENTIAL ENERGY CURVE OF H,0

Due in part to the availability of full configura-
tion interaction (FCI) data [41-44], a popular test
of approximate electron correlation approaches has
been computation of single-point energies of H,O
at equilibrium and stretched r(O—H) bond lengths
[6, 9, 13, 44-46]. Using the geometries reported
previously by Saxe and co-workers (R,) [41], Har-
rison and Handy (1.5R, and 2.0R,) [42], and Olsen
and co-workers (2.5R, and 3.0R,) [44], as well as
additional structures at 1.25R,, 1.75R,, and 2.25R,
summarized in Table I, we have computed a-
CCSIXT) energies using the cc-pVDZ basis set of
Dunning [47]. For comparison to the FCI and
CCSDT results reported by Olsen and co-workers
[44], no orbitals were frozen in the correlated cal-
culations. It should also be noted that the spin-re-
stricted Hartree—-Fock (RHF) reference determi-
nants used at the longer bond lengths (specifically
2.5R, and 3.0R,) are those which correlate back to
the lowest-energy RHF wave function at the equi-
librium structure, but are not energetically opti-
mum.

Table II summarizes the total energies at the
RHF, CCSD, CCSIXT), a-CCSIXT), CCSDT, and
ECI levels of theory, as well as differences from the
FCI and CCSDT energies for each method. In addi-
tion, Figure 1 provides a plot of the FCI data
points reported in Ref. 44 and the potential energy
curve for each of the coupled-cluster methods. The
FCI data points show the expected asymptotic
behavior near —79.911 E, while a characteristic
nonvariational “collapse’”” of each coupled cluster
potential energy curve can be observed as the
bonds are stretched. This gradual failure of the
approximate methods is a consequence of the in-
creasing inadequacy of the single-determinant RHF
reference wave function. The infinite-order CCSD
and CCSDT methods show resistance to this col-
lapse even as far out on the potential curve as
3.0R,. The CCSD(T) method, on the other hand,

TABLE |
Nonzero components of the Cartesian coordinates
of the 1.25R,, 1.75R,,, and 2.25R, H,0 geometries
used in this work.?

xR, 0, H, H,

1.25 —0.14687455 1.89407696 1.16550258
1.75 -0.20562438 2.65170774 1.63170361
2.25 —0.26437420 3.40933853 2.09790464

40ther geometries are the same as those used in Ref. 44,
C,, symmetry is assumed with the C, axis coincident with
the z axis and the molecule lying in the yz plane.

fails much sooner and shows a strong decrease in
curvature as early as 2.25R,, while the a-CCSIXT)
introduced here begins to collapse further out (near
2.75R,). As the O—H bonds are stretched, the
a-CCSIX(T) energy remains somewhat closer to FCI
than does CCSIXT). Most important, however, the
a-CCSIX(T) potential energy curve follows the full
CCSDT curve very closely from above across the
entire range of geometries and finally crosses it
only once the longest bond lengths are reached.

HARMONIC VIBRATIONAL FREQUENCIES
OF 0,

One of the most challenging problems for state-
of-the-art correlated methods is the prediction of
the harmonic vibrational spectrum of ozone. Nu-
merous studies have appeared in recent years
which make direct comparisons between experi-
mentally derived harmonic frequencies [48, 49]
and those obtained using configuration interaction
[50-52] or coupled-cluster methods [12, 53-60]. In
order to compare the performance of a-CCSIXT),
CCSIXT), and CCSDT, we have computed opti-
mized geometries and harmonic vibrational fre-
quencies for ozone using DZP [61] and cc-pVTZ
[47] basis sets. The core electrons were not corre-
lated with either basis set, and the three
highest-lying virtual orbitals were deleted for all
calculations carried out with the smaller DZP ba-
sis. These results are summarized in Table IIL

With both basis sets, the a-CCSIXT) prediction
of the equilibrium geometry lies slightly further
away from the CCSDT prediction than CCSIXT),
though the differences are small. For the problem-
atic asymmetric stretching frequency (w;), how-
ever, the a-CCSIXT) method provides considerably
better agreement with CCSDT than does CCSI(T).
With the DZP basis set, the a-CCSIXT) frequency
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TABLE I
Total energies (in E,, + 75), energy differences (in mE,) from the FCI energy (in parentheses) and from the
CCSDT energy (in brackets) for restricted Hartree — Fock and a number of approximate coupled-cluster
methods for H, 0 at equilibrium and stretched geometries using a cc-pVDZ basis set.?

Method R, 1.25R, 1.5R, 1.75R, 2.0R, 2.25R, 25R, 3.0R,
RHF —1.024039  —0.930811  —0.802387 -0.685657 ~—0.587711  —0.506904 —0.441244  —0.344392
(217.821) — (269.961) — (363.954) — (476.747) (567.554)
[217.328] [238.455] [268.538] [310.294] [365.359] [433.431] [501.499] [607.680]
CcCsD —1.238116  —1.164159 —1.062305 —0.981683 —0.929633  —0.904385 -0.897684  —0.901097
(3.744) — (10.043) — (22.032) — {20.307) (10.849)
[3.251] [5.107] [8.620] [14.268] [23.437] [35.950] [45.059] [50.975]
CCSD(T) —1.241202 —1.169006 —1.070717 —0.996436 —0.955485 —0.946101 —0.960555  —1.002458
(0.658) — (1.631) — (—3.820) — (—42.564) (-90.512)
[0.165] [0.260] [0.208] [—0.485] [-2.415] [-5.766] [~17.812] [—50.386]
a-CCSD(T) —1.241162  —1.168878 —1.070217 —0.994754 —0.950967 —0.936454 —0.939937  —0.953788
(0.698) — (2.131) — (0.698) — (—21.946) (—41.842)
[0.205] [0.388] [0.708] [1.197] [2.108] [3.881] [2.806] [-1.716]
CCSDT —1.241367 —1.169266 —1.070925 —0.995951  —0.953070  —0.940335 —0.942743  —0.952072
(0.493) — (1.423) — (—1.405) — (—24.752) (—40.126)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.0001 [0.000]
FCI —1.241860 — —1.072348 — —0.951665 — -0.917991  —0.911946
(0.000) — (0.000) — (0.000) — (0.000) (0.000)
[-0.493] — [~1.423] — [1.405] — [24.752] [40.126]

8FCl and CCSDT results at R,, 1.5R,, 2.0R,, 2.5R,, and 3.0R, were taken from Ref. 44.

-75.85 | : | | | | |
-75.9 FCI + y |
cesd xS _
CeSDM * e —
a-CCSD(T) @
'75.95 I~ CCSDT a

=
w -76.05
-76.1
-76.15

-76.2

2.25

25

2.75 3

1 1.25

1.5

!
1.75 2
n*Rg

-76.25

FIGURE 1. FCI and coupled-cluster potential energy curves (in E,) for H,O at equilibrium and stretched geometries
using a cc-pVDZ basis set.
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TABLE il
Coupled-cluster predictions of the equilibrium geometry and harmonic vibrational frequencies of ozone.
DZP basis cc-pVTZ basis
CCsD CCSD(T)  a-CCSD(T) CCSDT®  CCSD CCSD(T)  a-CCSD(T)  CCSDT® Expt°

le 1.26291 1.28690 1.28293 1.286 1.24993 1.27550 1.27143 1.274 1.272
0, 117.369 116.798 116.939 116.7 117.584 116.948 117.084 116.8 116.8
(N 1255.79 1129.84 1156.55 1141 1277.66 1153.10 1179.17 1163 1135
Wy 747.91 702.82 710.97 705 762.97 715.69 724.05 717 716
w3 1237.42 977.12 1059.02 1077 1265.94 1054.32 1130.51 1117 1089

#Ref. 58.

®Ref. 60.

°Refs. 48 and 49.

of 1059 cm™! lies only 18 cm™! below the full
CCSDT result, while CCSIXT) gives a value that is
100 cm™" too small. As the one-electron basis is
improved to cc-pVTZ, the CCSIXT) prediction for
, still lies about 63 cm ™! below the CCSDT value
of 1117 ecm™' recently reported by Watts and
Bartlett [60], while the a-CCSIXT) prediction moves
even closer to only 13 cm™' above the CCSDT
result. Although there has recently been' some
speculation as to the adequacy of correlated meth-
ods which do not include the effects of connected
quadruple excitations for the ozone problem [60],
the a-CCSIXT) method clearly provides results
which closely approximate those of the substan-
tially more expensive CCSDT approach.

EQUILIBRIUM BOND LENGTH OF N,

In recent work examining the basis-set conver-
gence of the CCSDT method, Halkier and co-
workers [62] determined equilibrium geometries
for a number of closed-shell molecules using the
series of correlation-consistent basis sets devel-
oped by Dunning [45]. Of particular interest in
their work was the comparison between CCSIXT)
and CCSDT predictions using the large cc-pVQZ
basis set. For nearly all of the molecules they
examined, the differences between the two meth-
ods were less than 0.0001 A. The only exception
was for the equilibrium bond length of N, where a
difference of 0.0006 A was noted. As a third test of
the a-CCSD(T) method, we have optimized the
geometry of N, within the cc-pVQZ basis set for
comparison to the results reported by Halkier and
co-workers [62]. These data are summarized in
Table IV. The CCSIXT) method predicts an equi-

librium bond distance of 1.09780 A, a difference of
only 0.0003 A from the CCSDT result. The a-
CCSIXT) method therefore represents a significant
improvement over the CCSD(T) (relative to
CCSDT) in this example.

Conclusions

A noniterative triple-excitation correction for the
CCSD energy has been studied. This approach,
denoted a-CCSIXT), is obtained by using the left
and (trivial) right eigenvectors of the similarity-
transformed Hamiltonian corresponding to the
CCSD energy as zeroth-order wave functions in a
perturbation expansion of the exact energy. The
conventional (T) correction, which is approxi-
mately a factor of 2 less expensive to compute than
a-CCSIXT), may be considered an approximation
to the present approach obtained by substituting
cluster amplitudes (T) in place of the components
of the left eigenvector in the energy expression.

We have shown that the a-CCSIXT) method
provides predictions of molecular properties that
compare closely to those of the very expensive
CCSDT method, including difficult cases such as

TABLE IV
Equilibrium bond length (in A) of N, determined
within the cc-pVQZ basis set of Dunning [47] using
a number of coupled-cluster methods.?

CCSD CCsD(T) a-CCSD(T)  CCSDT

le 1.09089 1.09809 1.09780 1.09746

2Full CCSDT results have been taken from Ref. 62.
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the harmonic vibrational spectrum of ozone and
the equilibrium bond length of N,. [We have also
computed single-point energies for 10 molecules
studied previously [63]. Using the geometries and
basis sets given in Ref. [63] for CH,, H,0, HF, N,,
F,, NO*, O,, C,, BeO, and CN*, the a-CCSID(T)
method gives an average absolute error (relative to
CCSDT) of 711 pE, compared to 762 mE, for
CCSIXT), 14296 wE, for CCSD, 2418 wuE, for
CCSDT-1a [9], 1914 pE, for CCSDT-1b [10, 11]
1037 nE, for CCSDT-2 [10, 11], 1236 uE, for
CCSDT-3 [10, 11], and 1257 uE, for CCSDT-4 [6].]

Although additional comparisons are clearly
needed before any conclusion regarding the rela-
tive accuracies of the a-CCSIXT) and CCSIXT)
methods can be drawn, the present results are
encouraging. Due to its higher computational ex-
pense, it is, however, most unlikely that a-CCSIXT)
will ever achieve the popularity of the CCSIXT)
method.

Appendix A: Analytic Gradient Theory
for the a-CCSD(T) Method

This appendix provides the outline for an effi-
cient method to calculate derivatives of the a-
CCSIXT) energy analytically and a brief discussion
of how the computational requirements differ from
those associated with CCSIXT) energy derivative
evaluation. In a-CCSIXT), the triples energy cor-
rection depends on two sets of wave function
parameters: the cluster amplitudes T _obtained by
solving the CCSD equations and the ,CZ amplitudes
that account for the response of the T amplitudes
to external perturbations. Although the energy is
stationary with respect to neither the T nor &
amplitudes, the 27 + 1 rule of perturbation theory
guarantees that the energy derivative can be ex-
pressed entirely in terms of the unperturbed wave
function parameters. Developing such an expres-
sion for a-CCSIXT) requires some care, and this
aspect of the derivation is stressed in what follows.

The triples energy correction AE; = AEP! of
a-CCSIX(T) can be represented compactly as

AE; = (0|PWD,WT,0), (A1
where W is the part of HU! that comprises the
two-electron integrals and ., T,, and Dj; are de-
fined earlier. Straightforward differentiation of AE;

ASYMMETRIC TRIPLE-EXCITATION CORRECTION

with respect to the generic perturbation x yields

GAE;

o T CTIE0)
ax ax ?

OW .
+ {0l —IT){TIT,I0>
ax

. T,
+ OILWITXTI—I0), (A2)
ox
where
(T|T5l0) = D,(TIWT,0). (A3)

It is easily shown that

(1| T 0) = D,|(T] ‘?Wf 0y <T|W&Tz 0
JR— e _— + _
ax 3 ax 2 ax

A

JF R
—(T|—ITXTIT;0) |, (A4)
ax

where F represents the zeroth-order electronic
Hamiltonian that comprises the occupied—oc-
cupied and virtual-virtual projections of the Fock
operator. Substituting this result into Eq. (A2) al-
lows the derivative of the triples energy to be
expressed as:

JAE
Ix

r 0P, .
= (0|—WIT) D,(TIWT,|0>
Ix
OW o
+ <0|,<Z—(—9;(~IT>D3<TIWT2IO>

oW
+ (0| WIT) D, (TI T 07

AR ' A 0')’1’—\‘2
+ <0]3W|T>D3<T[Wa—|0>
X

. 9F .
- <O|§ZWIT)D3<TI—(9—);IT>D3<TIWT210>.
(A5)

In the gradient expression given above, the first
and fourth terms contain contributions from the
perturbed wave function parameters. It is widely
appreciated in quantum chemistry that such terms
are undesirable from a computational point of
view and that they may always be eliminated by a
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procedure known as either the "“Z-vector’” [64] or
“’Dalgarno-Stewart interchange” [65] method. Ac-
complishing this for a-CCSD(T) is relatively
straightforward although somewhat more tedious
than for CCSD(T). To this end, first consider the

equations that govern the unperturbed T and &
amplitudes:

(glHID) =0, (A6)

(0lHlg) = 0. (A7)

Differentiating both sides of Eqs. (A6) and (A7)
provides explicit equations for the first-order T
and . amplitudes, viz.

oT o
<g|a—X|0>=—[<g|H|g>] (glH*X|0), (A8)

0L - — o1y RN
8~ ggﬁxggg],

(A9)
where the shorthand notation
_ (9H ;
Hx = —eT (A10)
ax

has been introduced. By expanding the derivative
of H that appears in the expression for the deriva-
tive % operator, one can show that Eq. (A9) is
equivalent to

A

0. o _
0|—1Ig> = — {(0|3|g><g|HX|g>
ax

. Lot o
+<0I3|g><g|H3;|g> [{glHlg)] , (A1D)

where terms involving HT/ax) products in the
second term enclosed by braces are restricted to
those that have a connected diagrammatic repre-
sentation.

Armed with the identities provided by Egs.
(A8) and (A11), let us return to the energy deriva-
tive contributions that depend on the perturbed
wave function parameters. The second of these

involves af“z /dx and can hence be rewritten as:

. s . dT,
OlFW |T>D3<T|W——(9;|0>

|
—(OISWIT) D,(TIW ID)(DIg) (gl Flg)) (gl FTXI0),
(A12)
in which the explicit dependence on the aT,/dx
amplitudes has been ehmmated
The term involving a2/ dx,
JAE;

Ix

0 A

P WIT) D,(T|WT,I0>, (A13)
X

requires a somewhat more involved analysis. Us-

ing Eq. (A11), one immediately obtains

o T
—{(012g) gl AYlg) + <0|~7Ig><ngZ—Xlg>

x[(glHlgd] ™ (glWT,0), (A14)

which succeeds in removing the perturbed & am-
plitudes but reintroduces the perturbed T ampli-
tudes. To address this difficulty, we define a new
excitation operator T by

(glT10y = [(glHlg)] ™ (glWT,l0), (A15)

thereby allowing Eq. (A14) to be recast as:
, _ . Lot .
—{01.Z1g>{g|HXT[0) — (0|£2”Ig><g|H—{9— T[07.
X
(A16)

Since both T and T are excitation operators, they
commute and their order can be interchanged in
the second term of the expression above. Doing
this, and substituting Eq. (A8) for the perturbed T
amplitudes leads to

—(011g) gl H*TI0)

gl ).
(A17)

. i —
- (01.¥1g)<gIHTlg) [<g|Hlg)]

This is a desirable expression in the sense that only
the unperturbed wave function parameters appear.
The contraction line appearing in the preceding
equation means that at least one quasiparticle an-
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nihilation line attached to H must not be con-
tracted with T, thereby maintaining consistency
with Eq. (A16). It is further convenient to define
the triple deexcitation operator %, by

(01ZITY = (0LLWITYD,, (A18)

so that Eq. (A12) becomes

—{01%W DX(DIg)[(gl Hlg)]~ (gIH¥0). (A19)

Combining Eq. (A19) and the second term of Eq.
(A17) permits the identification of a deexcitation
operator JI defined on the space of g determinants
as the solution to the system of inhomogeneous
linear equations:

©fS) OLSHTIS)
R N -
(OVIID) | (OLZHTID) + 014,/ D)
_ _ _ -1
«| SIS (SIHID) | o0
|(DIHIS) (DIHID)

The total correlation energy in the a-CCSIXT)
approximation is given by the usual CCSD energy
(Eccsp) plus AE;. Accordingly, the first derivative
of the correlation energy is obtained by simply
adding the CCSD energy gradient expression
[35-38]

aECCSD

= (0|.2H*|0)

(A21)

to JAE;/dyx, ie.,

- aW A
TCDD _ (0| ST=1,0) + (012, —1,0)
ax Ix X

. oF .
— {01, —T,0)
ax

+40[(L+ DA X)) — (0| LT XT|0),
(A22)

where the first three terms differ only in notation
from the second, third, and fifth terms of Eq. (A5).
Contributions involving the T and JI operators are
those that account for the nonstationary nature of
A E; with respect to variation of & and T, respec-
tively.

In CCSIXT) gradient theory, an operator with
the same form as JI appears, but it is handled in a

ASYMMETRIC TRIPLE-EXCITATION CORRECTION

particularly efficient way. Specifically, the inhomo-
geneous term associated with this operator is sim-
ply combined with that of the CCSD & equation,
and the resulting composite operator is obtained
by solving a system of linear equations. This, of
course, is not possible in a-CCSIXT) since both of
the individual operators % and 1 are needed, and
not just their sum. Hence, additional computa-
tional steps are necessary in a-CCSI(T) gradients
to evaluate both /T and T [which has no counter-
part in CCSIXT) gradient theory]. Both of these are
defined on the space of the g determinants and
their amplitudes are obtained by solving a system
of linear equations. The computational scaling as-
sociated with both is precisely the same as that for
the unperturbed £ equations, as all involve itera-
tive steps that scale with the sixth power of the
basis set size (#®). In terms of iterative steps,
a-CCSIXT) gradient calculations require four dis-
tinct .#°® procedures to solve for the amplitudes of
T, 2, T and JI, while CCSD(T) gradients require
only T and the composite operator alluded to
above. Once all of these are available, gradient
evaluation can proceed in the usual way where
terms are recast as contractions between an effec-
tive one- and two-particle density and matrix ele-
ments of the differentiated electronic Hamiltonian.

In methods involving triple excitation effects,
the noniterative N7 steps involving formation of
three-particle operators or contraction of these with
other quantities can often dominate the cost of
calculation. The a-CCSIXT) method is again twice
as expensive as CCSIXT) since two sets of 7
contractions are needed to form contribution's_t|o
the eff_lective two-particle density matrix (& T,
and %, T, are required), while only one such set of
contractions is needed in CCSID(T). Hence, both
the number of iterative .#® and noniterative .#"7
steps required in a-CCSIXT) energy (as discussed
in the body of the text) and gradient calculations
(additional steps discussed above) are twice those
associated with CCSD(T), as might well be ex-
pected since the former is an inherently asymmet-
ric theory while the latter is based on the approxi-
mation &= T,
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ABSTRACT: We present the formalism for the treatment of several states of the same
symmetry in basis-set reduction (BSR), a form of second-order Brillouin-Wigner
multireference perturbation theory, which incorporates the first-order correction of the
primary-space wave function with respect to its orthogonal complement. We benchmark
this method for some valence and some Rydberg excitations of four small molecules (O,,
CO, ethene, and ozone). In direct comparison with the underlying MR-SDCI benchmark
results, we find an average accuracy of 0.2 eV or better for the excitation energies of the
molecules considered and demonstrate the stability of the method with increasing size of
the basis set and primary space. We argue that the configuration-based approach in BSR
allows an accurate description of dynamical correlation effects with minimal primary
space wave functions, containing far fewer configurations than are required for a
CASSCF-based perturbative treatment of the molecules. © 1998 John Wiley & Sons, Inc. Int
J Quant Chem 70: 613-622, 1998

Key words: excitation energies; dynamic correlation effects; perturbation theory;
MBPT; multireference perturbation theory

most notably that of CASPT2 [9-11], has demon-
strated an astonishing accuracy for many molecules
with a significantly reduced computational effort
l in comparison to accurate benchmark techniques,

Introduction

n recent years, second-order multireference such as MRCI and generalized coupled-cluster ap-
perturbation theory has been established as proaches. The computational efficiency has al-
one of the most effective and accurate tools for the lowed the treatment of comparatively large

computation of vertical excitation energies in a
wide variety of systems. The application of various
diagrammatic formulations [1-8] of this method,

Contract grant sponsor: DFG.
Contract grant number: KEI 164/11-1.

International Journal of Quantum Chemistry, Vol. 70, 613-622 (1998)

© 1998 John Wiley & Sons, Inc.

molecules and motivated this investigation into an
alternate nondiagrammatic approach to second-
order perturbation theory, basis-set reduction
(BSR), which is based on a Brillouin-Wigner (BW)
perturbation expansion [12, 13]. The results of our
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initial investigations into this method [14-16]
demonstrated that accurate results for some
low-lying (adiabatic) excitations of small, but diffi-
cult to treat, organic molecules and radicals could
be obtained.

Our approach was motivated by a number of
useful features that BW perturbation theory offers
in comparison to its diagrammatic cousins: (i) By
using a fully correlated energy in the denominator
of the perturbation expansion, the BW approach
generates a rapidly converging perturbation series
that avoids the level crossing problem of diagram-
matic perturbation theory (PT). (ii) Through use of
an implicit summation technique, our formulation
treats near degeneracies between active space con-
figurations and secondary space configurations
particularly well—since a fully dressed energy ap-
pears in the denominator of the perturbation ex-
pansion, a BW approach is free of level crossing
problems almost by definition. Reexpanded in a
diagrammatic context, second-order BW-PT corre-
sponds to the summation of an entire class of
diagrams. (iii) While using an orbital-based parti-
tioning scheme to define the primary space, the
overall Hilbert space of BSR is defined as the
MR-SDCI space for a given, preselected set of
reference configurations. Thus, a change in the size
of the primary space does not affect the size of the
overall Hilbert space, which results in only modest
increases in the computational cost with an in-
creasing size of the primary partition. (iv) The
relaxation of the primary space wave function with
respect to its orthogonal complement in the pri-
mary space allows the application of this method
in cases where the eigenfunctions of the bare zero-
order Hamiltonian are a poor starting point for the
perturbation expansion.

The overall aim of this approach was to reduce
the size of the primary space, which ultimately
determines the cost of calculation, to the absolute
minimum required for the description of the target
states. The major, as of yet uncorrected, drawbacks
of the BW approach are the lack of orbital invari-
ance and the lack of extensivity, which both
severely affect the accuracy of energy differences
between different points of the potential energy
surface (PES). Regarding the calculation of vertical
excitation energies, however, both deficiencies are
less important. We have demonstrated previously
that while the absolute BSR energies can depend
strongly on the choice of the secondary-space or-
bitals, energy differences depend little on the con-

sistent adaptation of some particular choice. The
two primary goals of this article were (i) the pre-
sentation of the formalism in which excited states
of the same symmetry can be computed in the BSR
framework (second section) and (ii) the demon-
stration that vertical excitations energies for some
“canonical’”” benchmark molecules are reproduced
to within 0.1-0.3 eV even for very small primary
spaces (third section). In comparison to published
data of various other approaches to MRPT, we
present results for O,, CO, ethene, and ozone. We
explicitly demonstrate the convergence of the re-
sults with increasing basis-set size and increasing
size of the primary space in direct comparison to
the underlying MRCI benchmark calculations,
which are approximated by the BSR method.

Methodology

In BSR, the many-body wave function
V) = Eci|¢i>r )

where |¢;) labels an individual configuration, is
partitioned according to its orbital occupation [12]
into

|¥,) = P[¥) and (2)
¥, = QI¥)
= ¥ clé), 3)
q9€Q

the primary- and the secondary-space wave func-
tions, respectively. Using an orbital-based parti-
tioning scheme, the primary space wave function
is defined to contain only configurations compris-
ing a set of primary-space orbitals. Throughout
this article, we denote primary (secondary)-space
quantities with subscripts p (), respectively.

We obtain an initial estimate of the primary
wave function for state k|¥)) and the many-body
energy E{¥ by diagonalizing PHP, where P desig-
nates the many-body projection operator onto
the primary space. We then compute an approx-
imation of the secondary-space wave function
|¥{)) through the diagonalization of each two-
dimensional subspace spanned by the primary
many-body wave function and each individual sec-
ondary-space configuration [14, 16]. For each sec-

614

VOL. 70, NO. 4/5



EXCITATION ENERGIES IN BRILLOUIN-WIGNER-BASED MRPT

ondary-space configuration |¢ Y, we solve the sec-
ular equation:

E (YGIH| ¢, ( 1 )
(G |HITSD) (g HIg,) |\ e
= (E© + SEq)(Ciq), @)

where we have assumed (\I’(O)I‘P(O)> = 1 without
loss of generality.

To facilitate the relaxation of the primary-space
wave function in the presence of Q¥, , we com-
pute and store the components of | ) = PHQI\Ifk >
during the evaluation of Eq. (4). We then obtain an
improved approximation [¥{") for the primary-
space wave function, mlmrmzmg the functional:

(O, IHI®,) + (VI HITD) + h.e.) +EF
(¥,I¥,> + NS
_ (WIHIY) + (% xD) + he) + EP
(¥,|¥,) + NP
®)

JO‘(\PP) =

under the constraint that all pairs of states |V,) and
1'W,> remain mutually orthogonal:

<‘Ifk|‘1’1> = 6k1- (6)

The secondary-space contributions to energy and
norm in Eq. (5) arise as

Exo = X {¢ylHIdy,)ci, and

q€Q

Nyg = )y Cl%q'

9€Q

)

The enforcement of the orthogonality constraint in
Eq. (6) complicates the primary-space relaxation
both conceptionally and numerically. Since the cal-
culation of the secondary-space coefficients in Eq.
(4) is strongly nonlinear, the external components
of the various states are not allowed to mix in the
primary-space relaxation step. We have thus modi-
fied the Davidson procedure to accommodate this
constraint. Given a set of converged states {0 <
k < N} and a set of primary-space trial states {¢,,0
<m <M} and a fixed secondary-space wave
function Wy, for the N-th state, we determine an

optimal ¥ = ¥, a,, ¢,, + ¥y, by minimizing
(YIHIY)
(wlw) ’

with respect to the coefficients «,,. To this end, we
consider a basis consisting of the N given states
(including their secondary-space component), a
single artificial state consisting ¥y, and the set of
primary-space trial wave functions ¢,. We com-
pute the (N + K + 1) X (K + 1) overlap matrix S
between the basis and the K + 1 trial states, using
secondary—secondary overlaps computed in the
previous perturbative step. We embed this matrix
inan (N + K + 1) X (N + K + 1) matrix S, filling
the columns with zeros. The nullspace {a,0 <i <
K} of $, which is determined in a smgular value
decomposition, defines a basis

¢; = Zaik¢k ©

that automatically satisfies the orthogonality con-
straints. Note that this basis could be constructed
without the evaluation of any secondary-space
overlap matrix elements during the relaxation step.
In our numerical experience, the subsequent solu-
tion of the eigenvalue problem in this basis can be
numerically instable, when all trial states become
near-collinear. Such instabilities are avoided by the
explicit construction of a further nondegenerate,
orthogonal auxiliary basis ¢} by singular value
decomposition of the overlap matrix in ¢}, such
that all vectors associated with singular values less
than € = 1078 are ignored.

(8)

Application

For all molecules considered here, we followed
the same computational strategy for the determi-
nation of the vertical excitation energies. First, we
determined the minimal reference space to account
for the individual target states in each symmetry,
selecting the one to four most important configura-
tions for each state. Given this set of references, we
iteratively determined BSR-approximate natural
orbitals from the state-average density matrices for
all states of a given symmetry [16, 17]. As a check,
we performed a separate calculation for the ground
state alone and verified that the ground-state ener-
gies in the two different approximate natural or-
bital basis sets did not differ by more than 0.1 eV.
All excitation energies that we report here refer to
the difference with respect to the ground-state
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energy in state-averaged approximate natural or-
bitals. Since BSR directly approximates an
MR-SDCI calculation with the same reference set
in the chosen basis, we also preformed the under-
lying MR-SDCI calculations to provide a basis for
comparison for the excitation energies here. This
comparison eliminates the influence of basis set
and reference choice from the comparison.

TWO REPRESENTATIVE FIRST-ROW DIMERS

As a first test, we computed the vertical excita-
tion energies of O, and CO as simple representa-
tive examples for which data for other diagram-
matic approaches are available. Both molecules
have been subject to numerous studies [22-25]
and Tables I and II summarize our results for two
primary spaces in comparison to a small subset of
other available data. In the smaller 2s/2 p primary
space, labeled BSR-1, we selected the relevant ref-
erence configurations, which determine the overall
size of the Hilbert space. This primary space was
chosen to coincide with that of the other methods
to facilitate the comparison of the results. The
larger primary space, labeled BSR-2, additionally
includes the six most important secondary-space
orbitals based on their approximate NO occupa-

TABLE |

tion and corresponds to a different partitioning of
the same Hilbert space as the previous set of
calculations. Since the cost of the BSR calculation is
primarily determined by the number of reference
configurations, which is the same in both calcula-
tions, the choice of these somewhat large primary
spaces is easily affordable. To demonstrate basis-set
convergence and gauge the inherent errors at the
level of the MR-SDCI benchmark, we performed
calculations in the cc-pVDZ and cc-pVTZ basis [26,
27] sets, respectively. As can be expected for the
states under consideration, the cc-pVDZ basis set
performs adequately at the MR-SDCI level and
the cc-pVDZ excitation energies differ by no more
than 0.1 €V from the corresponding cc-pVTZ ener-
gies for all states considered. For both basis sets,
we find that the excitations energies for the
low-lying states are well reproduced even for the
smaller primary space but find a (still tolerable)
increase of the absolute errors for the higher exci-
tations. As expected, an increase of the primary
space significantly reduces these errors to within
0.1 (0.15) eV of the MR-SDCI values for the cc-
pVDZ (cc-pVTZ) basis sets, respectively. These ex-
citation energies are also reproduced very well in
the third-order effective valence-shell Hamiltonian
method [28, 29]. However, since this method is

BSR vertical excitation energies of O, in the cc-pVDZ and cc-pVTZ basis sets at R = 2.28 au for two
different primary spaces in comparison to MR - SDCI results for the same reference set and in
comparison to the third-order effective valence shell Hamiltonian method (for a double-zeta basis

at R = 2.30 au).
State MR -SDCI BSR-1 Error BSR-2 Error EVSH(3)
cc-pvDZ
A, 1.08 1.08 (-0.05) 1.04 (-0.04) 1.08
'S 1.73 1.82 (+0.09) 1.73 (+0.00) 1.77
S 6.08 6.39 (+0.21) 6.14 (+0.06) 6.15
*A, 6.34 6.66 (+0.32) 6.41 (+0.07) 6.37
’s .k 6.49 6.80 (+0.31) 6.56 (+0.07) 6.51
85 8.19 8.03 (-0.16) 8.15 (—0.04) 9.47
cc-pvVTZ
Ay 0.99 0.96 (-0.03) 0.96 (-0.03)
'3 1.68 1.75 (+0.07) 1.75 (+0.07)
'S 5.99 6.32 (+0.33) 6.10 (+0.11)
°A,, 6.23 6.58 (+0.35) 6.38 (+0.15)
M 6.37 6.72 (+0.35) 6.52 (+0.15)
’s 8.20 8.04 (-0.16) 8.18 (~0.02)

The primary spaces labeled BSR-1 refers to a (2s /2p) CAS primary space; in BSR-2, the primary space of BSR-1 was additionally
augmented by the six most important orbitals of the secondary space in the BSR-1 calculation.
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based on a quasidegenerate treatment of the pri-
mary space, third-order quasidegenerate perturba-
tion theory is required to reach the accuracy a BW
approach obtains already in second order.

The results for CO in Table II are similarly
encouraging. The MR-SDCI results compare fa-
vorably with benchmark calculations, MR-CC [19]
and EOM-CCSD [20], as well as with “experimen-
tal” results [21]. As for the oxygen molecule, the
BSR results in the small primary space are ade-
quate. Increasing the size of the primary space, we
find only a very slight improvement of the ener-
gies to within about 0.1 eV of the MR-SDCI re-
sults, indicating that at this level of theory the
residual error of the BSR approximation has been
reached and that a substantial (and computation-
ally prohibitive) increase in the primary space is
required to significantly improve the results. It is
interesting to compare these results with those of
the third-order quasidegenerate Hilbert-space
MRPT method of Kaldor [5, 6] and its further
extension by Kucharski and Bartlett [7], which are
summarized under the heading MR-MBPT(3) [8,
18] in the table. The accuracy of this method corre-
sponds roughly to that of BSR-1 and Meissner and
Bartlett [30] speculated that fourth-order
MR-MBPT may be required to obtain benchmark
accuracy, which for this simple molecule is already
attained in second-order with either of these two
valence spaces in BSR. Again, the quasidegeneracy
assumption for the primary space is likely one
significant contributing factor to the comparatively
slow convergence of the MR-MBPT perturbation
expansion. One must stress, however, that the

TABLE 1l

MR-MBPT formulation is an explicitly extensive
formulation, which is not possible in the BW ap-
proach pursued here.

ETHYLENE

The understanding of excited states of short
polyenes has long been a subject of intense interest
in quantum chemistry. As its simplest example,
the ethylene molecule has long served as one of
the standard benchmarks for vertical excitation
energies for a variety of methods [31, 32-35]. Iis
spectrum is dominated by an intense 7—7* transi-
tion (N-V) at approximately 7.66 eV, which corre-
sponds not to a vertical transition, but to a slightly
distorted geometry of the molecule. The accurate
reproduction of its vertical excitation energy has
been the subject of numerous studies because of
the challenge to account both for the dynamical
correlation effects and significant valence-Ryd-
berg mixing at the same time. To compare with
one of the more recent studies [32], we performed
the calculations in the augmented ANO-type basis
set used in the CASPT2 calculation [32], consisting
of 4s3p2d functions for carbon and 3s2p for hy-
drogen, which were augmented by sets of diffuse
252 pld functions on carbon (for the exponents of
the diffuse functions, see [32]). All calculations
were performed in D,, symmetry with R(CC) =
1.339 A, R(HC) = 1.086 A, and y(HCC) = 117.6".

Our results are summarized in Table III. The
primary space was chosen to coincide with that of
the CASPT2 study with (o: 3a,1b;,1b,,1b; 7
2by,2b,,1bs,) active orbitals and two active elec-

BSR vertical excitation energies for CO (at R = 2.132 au) in comparison to MR - SDCI, MR - MBPT(3) [18],
MRCC [19], and EOM - CCSD [20] and experiment [21] in a cc-pVDZ basis.

: MR EOM

MRCI BSR-1 Error BSR-2 Error MBPT(3) MRCC CCsD Exp.
°r 6.47 6.42 (—0.05) 6.43 (—0.04) 6.20 6.32 6.34 6.32
8y * 8.46 8.562 (—0.06) 8.40 (—0.08) 8.83 8.26 8.36 8.51
r 8.98 8.92 (—0.06) 9.06 (+0.08) 8.51 8.79 8.64 8.51
A 9.80 10.09 (+0.29) 9.98 (+0.18) 9.75 9.18 9.33 9.36
8- 9.36 9.37 (+0.01) 9.27 (—0.09) 10.35 9.92 9.85 9.88
s - 10.02 9.88 (—0.14) 10.04 (+0.02) 10.52 9.92 10.05 0.88
A 10.35 10.56 (-~0.21) 10.42 (+0.07) 10.71 10.10 10.26 10.23

The primary space in BSR-1 consists of the (2s/2p) orbitals, the 1s orbitals are frozen in all calculations. The primary space in
BSR-2 includes one additional natural orbital per symmetry channel. The errors of the BSR energies have been computed with

respect to the MRCI energies that they approximate.
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TABLE Il

Excitation energies of ethene in an augmented ANO-type basis for a (32212210) primary space with

two active electrons.

CASPT2
BSR MRCI Ccls PTD PTF Exp.
1'By, 7.04 (+0.15) 6.91 (-0.20) 7.10 6.62 7.17 7.11
1By, 7.72 (+0.13) 7.59 (-0.21) 7.68 7.27 7.85 7.80
1'Byg 7.62 (~0.09) 7.71 (-0.19) 7.83 7.37 7.95 7.90
1'B,, 8.00 (+0.00) 8.00 (0.00) 7.78 7.97 8.40 8.00
2'A, 8.22 (+0.08) 8.14 (-0.14) 8.10 8.05 8.40 8.28
2'B,, 8.45 (+0.12) 8.33 (—0.29) 8.71 8.11 8.66 8.62
2'B,, 8.75 (-0.31) 9.06 (-0.27) 8.88 9.31 9.33
1'B,, 8.87 (+0.06) 8.81 (-0.24) 8.88 8.73 9.18 9.05
3'A, 8.74 (+0.01) 8.73 8.83 8.44 8.94
1°B,, 4.05 (-0.22) 4.27 (—0.09) 3.54 3.97 4.39 4.36
1°B,, 6.94 (+0.13) 6.81 (-0.17) 6.87 6.49 7.05 6.98
1°B,, 7.65 (+0.09) 7.56 (-0.23) 7.59 7.25 7.80 7.79
1°B,, 7.75 (+0.07) 7.67 (-0.12) 7.71 7.31 7.90 7.79
1ZA g 8.00 (-0.22) 8.22 (+0.07) 7.75 7.84 8.26 8.15
1°A, 8.94 (+0.21) 8.73
1°B,, 8.72 (-0.02) 8.74 8.66 9.09

All energies are in eV; the errors for the MRCI column were computed with respect to the experimental results and those of the BSR
column with respect to the MRCI calculations that they approximated. The CIS results are from [31] and CASPT2 and experimental

results (mostly adiabatic energies) quoted from [32].

trons. We selected one to three configurations for
each desired state according to their primary-space
occupation and computed state-averaged approxi-
mate natural orbitals for each spin and symmetry
segment. We first note that virtually all MR-SDCI
energies are somewhat low by the same amount
(= 0.2 eV) in comparison to their experimental
counterparts, pointing to a somewhat inadequate
description of the ground-state correlations. Since
more elaborate MR—SDCI studies [34] yield better
agreement, this indicates that our minimal choice
of a single-reference configuration for the ground
state proved to be a somewhat drastic approxima-
tion compared to the more elaborate treatment of
the other states. On the other hand, we recover the
excitation energy of the 'B,, V-state to 8.00 eV,
which is in good agreement with other recent
MR-SCDI calculations [35].

To obtain an unbiased measure of these errors
of BSR for a given reference set and basis, we
compute the errors of the BSR calculations with
respect to the underlying MRCI results, even
though the agreement between experiment and
BSR is often better than that between experiment
and MRCI. With the exception of the 2'B,, state
(error —0.31 eV), the errors of BSR are small (RMS

error 0.14 eV) and compare well with CASPT2. The
agreement for the V-state is particularly striking,
although its only accidental that its numerical ac-
curacy is so much better than the average 0.15 eV.
We note that the CASSCF energy is closer to the
expected value than that of CASPT2F, a fact at-
tributed by Serrano-Andrés et al. [32] to the diffi-
culty to reproduce the partial Rydberg character of
the 7* orbital. By designing a separate orbital
optimization scheme, which forces some Rydberg
character into this orbital, an improved, if not
perfect, value for this excitation energy could be
obtained in CASPT2F. In contrast to CASPT?2, the
orbitals used in the correlation calculation here are
computed in the approximate BSR-NO scheme
employed throughout this study. These orbitals
are constructed from an approximate density ma-
trix computed from the entire (primary and per-
turbative secondary) wave function, which in-
cludes some correlation effects not present in the
CAS-SCF calculations. In a number of examples
[16], we could show that the MR-SDCI energies in
the approximate NOs reproduce those of standard
NOs. For this reason, the Rydberg-valence mixing
of the 7* orbital of ethylene is likely to be taken
into account in the optimization of this orbital
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under the BSR-NO scheme, which explains the
superior behavior of this method with respect to
this state.

OZONE

As a more complicated example, we present
data on the vertical excitation energies of ozone
[36], which have been obtained with the same
computational strategy. Again, we selected the
most important configurations for the description

TABLE IV

of the various states based on their occupation in a
CASSCF wave function. Using these fixed refer-
ence sets, we conducted MR~SDCI calculations in
the cc-pVDZ, cc-pVDZ, and cc-pVQZ basis sets.
The calculations in the largest basis set, which
comprise up to 4 X 10° configurations, were car-
ried out on four nodes of an IBM-SP2 using a
parallel MR-SDCI program [37]. Comparing the
excitation energies in the columns labeled MRCI in
Table IV, these calculations demonstrate that the
excitation energies under consideration are well

Vertical excitation energies of ozone in the cc-pVDZ, cc-pVTZ, and cc-pVQZ bhasis sets for a

(2s/2p) primary partition.

PRIM BSR MRCI MRD —Cl
AE Error AE Error AE AE
Basis: cc-pVDZ
°B, 0.81 (—0.63) 1.46 (+0.01) 1.45
°g, 1.38 (-0.42) 1.85 (+0.05) 1.80
%A, 1.35 (~0.56) 1.98 (+0.07) 1.91
A, 1.45 (-0.68) 2.20 (+0.07) 213
'B, 1.58 (-0.64) 2.25 (+0.03) 2.22
°B, 2.68 (—1.25) 3.80 (-0.13) 3.93
A, 3.01 (-1.16) 4.48 (+0.31) 3.95
'B, 7.14 (+0.88) 7.06 (+0.80) 6.26
%A, 6.46 (-0.02) 6.53 (40.05) 6.48
%A, 8.15 (—0.05) 8.01 (-0.19) - 8.20
Basis: cc-pVTZ
°g, 0.79 (—0.59) 1.53 (+0.16) 1.38 1.69
°B, 1.38 (-0.43) 2.03 (+0.18) 1.81 1.85
%A, 1.38 (—0.51) 2.03 (+0.03) 1.89 2.00
A, 1.45 (—0.65) 2.19 (+0.03) 2.10 2.16
'B, 1.59 (-0.61) 2.26 (+0.16) 2.20 2.10
°B, 2.56 (—1.30) 3.70 (-0.17) 3.86 3.87
A, 2.96 (—1.20) 4.40 (—0.09) 4.16 4.49
'B, 7.21 (+0.84) 7.35 (+0.98) 6.37
°A, 6.48 (—0.16) 6.91 (+0.27) 6.64 6.01
%A, 8.10 (-0.04) 8.34 (+0.20) 8.14
Basis: cc-pvQZ
°B, 0.79 (-0.61) 1.34 (—0.06) 1.40
°B, 1.47 (—0.34) 1.88 (+0.086) 1.82
%A, 1.44 (-0.45) 1.86 (-0.04) 1.90
A, 1.47 (-0.64) 215 (+0.03) 212
'B, 1.61 (-0.52) 2.20 (-0.07) 213
°B, 2.56 (—1.41) 3.47 (-0.42) 3.90
A, 3.05 (-1.01) 4.27 (+0.21) 4.06
'B, 7.16 (+0.76) 7.60 (+1.21) 6.39
°A, 6.53 (-0.15) 6.80 (+0.12) 6.68
%A, 8.09 (+0.28) 8.01 (+0.20) 7.81

All calculations were carried out in C,, symmetry at R =2.413 au and y=116.8°. All energies in eV. The errors of the BSR
calculations are computed with respect to the corresponding MR ~SDCI resullts.
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converged in the cc-pVTZ basis and, furthermore,
furnish a rough estimate of the overall accuracy of
these numbers, approximately 0.1 eV, which can
be compared with the errors of the perturbative
approach. Our cc-pVTZ results also agree well
with the MRD-CI [36] results for a triple-zeta
quality basis with bond-center functions. Under
the heading PRIM, Tables IV and V show the
excitation energies computed in the primary space,
which differ from BSR by more than about 0.6 (0.3)
eV for the small (larger) primary space, respec-

TABLE V

tively, and indicate that substantial differential
correlation effects must be incorporated in the per-
turbative treatment to obtain quantitatively ac-
ceptable results. For the BSR-1 calculations, this is
accomplished with the exception of the 'B, state,
which shows an altogether unacceptable error. The
BSR-2 calculation shows more satisfactory results
for all states and basis sets, reducing the RMS
error for the cc-pVQZ basis to 0.17 eV, where the
majority of the errors arise for states with excita-
tion energies larger than 4 eV, for which such

Vertical excitation energies of ozone in the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets for a (25 /2p)
primary partition augmented with the most important NO in each symmetry channel.

PRIM BSR MRCI
AE Error AE Error AE
Basis: cc-pvDZ
°B, 1.02 (—0.43 1.42 (~0.03) 1.45
°B, 1.12 (-0.68 1.77 (~0.03) 1.80
%A, 1.27 (—0.63 1.92 (+0.01) 1.91
A, 1.49 (-0.63 2.13 (+0.00) 2.13
'B, 1.54 (-0.67 2.20 (-0.02) 222
°B, 2.99 (-0.93 3.83 (-0.10) 3.93
A, 3.54 (-0.62 453 (+0.36) 3.95
'B, 5.51 (-0.75 6.25 (+0.01) 6.26
%A, 5.71 (-0.76 6.21 (-0.27) 6.48
%A, 7.70 (-0.49 8.07 (-0.13) 8.20
Basis: cc-pVTZ
°B, 1.47 (+0.09 1.33 (-0.05) 1.38
°B, 1.63 (-0.18 1.73 (-0.07) 1.81
%A, 1.77 (-0.11 1.80 (-0.09) 1.89
A, 1.79 (-0.21 2.05 (~0.10) 210
'B, 1.89 (—0.21 2.10 (-0.10) 2.20
°g, 3.39 (-0.47) 3.59 (-0.27) 3.86
A, 3.83 (-0.33 418 (+0.02) 4.16
'B, 5.95 (-0.42 5.81 (~0.55) 6.37
°A, 6.18 (—0.46 6.23 (-0.40) 6.64
%A, 8.12 (-0.02 8.12 (-0.02) 8.14
Basis: cc-pvQZ
°B, 1.47 (+0.07 1.37 (-0.03) 1.40
°g, 1.64 (-0.18 1.71 (-0.11) 1.82
%A, 1.78 (-0.12 1.81 (—0.09) 1.90
A, 1.77 (-0.34 2.06 (—0.06) 212
'B, 1.88 (-0.24 2.15 (+0.02) 213
°B, 3.38 (-0.52) 3.70 (—0.20) 3.90
A, 3.84 (-0.21 4.24 (+0.18) 4.06
'B, 6.03 (-0.36 6.10 (-0.20) 6.39
°A, 6.15 (-0.53 16.42 (-0.26) 6.68
%A, 8.11 (-0.30 8.05 (+0.24) 7.81

All calculations were carried out in C,, symmetry at R =2.413 au and y=116.8°. The BSR calculations were performed in
approximate NO basis sets optimized using the larger primary space, while the MR —SDCI calculations are the same as in Table IV,
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deviations can be more easily tolerated, particu-
larly if one takes into account that the BSR-2 (BSR-
1) calculations are a factor of 2000 (12,000) more
efficient than the underlying MR-SDCI calcula-
tions (based on the number of nonzero symmetry-
allowed matrix elements).

Discussion

The understanding and accurate description of
excitation states is one of the central challenges of
quantum chemistry and recent years have seen
tremendous progress in this regard. In particular,
through the application of diagrammatic or many-
body based, multireference perturbation theory, it
became possible to investigate many molecules
that are still inaccessible to benchmark methods.
Many of the prevalent prescriptions for multirefer-
ence perturbation theory rely on a zero-order
CASSCF wave function as a starting point. The
number of active electrons which can be treated
efficiently within this framework has emerged as
one of the crucial bottlenecks in this approach.
While the use of a contracted primary-space wave
functions allows the treatment of very large
CASSCEF spaces, it complicates the relaxation of the
primary-space wave function with respect to its
orthogonal complement. In this investigation, we
thus explored an alternate approach, which sought
to facilitate such a relaxation of the primary space
at least in lowest order. Since we must deal with
the individual configurations of the primary space,
their number must be kept at an absolute mini-
mum to ensure the computational viability of the
resulting method. This, in turn, necessitates the
use of a perturbation expansion, which will con-
verge very quickly even for such a minimalistic
zero-order description of the problem. The results
presented here for both valence and Rydberg exci-
tations in some simple organic molecules demon-
strate that a BW-based approach offers a promis-
ing avenue toward this goal. The key difference
between the BW perturbation expansion and dia-
grammatic many-body techniques lies in the
different origin of the energy gap between the
primary and the secondary space. While the nu-
merators of the different expansions are closely
related, BWPT features a fully correlated energy in
its denominator, which ensures a comparatively
large difference between the reference energy and
that of the perturbatively treated configurations.

In this study, we were able to reproduce the
excitation energies to an accuracy of on average
0.2 eV for some 7—7* and o—7 transitions and
some Rydberg states of the four molecules stud-
ied, which indicates a balanced performance of the
method. It is desirable, but more difficult than in
CASSCF-based methods, to develop the methodol-
ogy for the computation of transition moments.
Such a development is presently under way, but is
complicated by the lack of orthogonality of the
primary-space orbitals for different symmetry seg-
ments. Motivated by the results reported here, we
are presently extending our study to larger
polyenes, azabenzenes, and some transition-metal
compounds. To make the methodology presented
in this work applicable to a wider range of prob-
lems, we are presently investigating extensions,
which enforce the orbital invariance of energies
and render it at least approximately extensive.
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ABSTRACT: The leaky aquifer function W(x, y) is an incomplete Bessel function
which has had application in hydrology and more recently in electronic-structure
calculations. This article presents an expansion which improves the efficiency of the
calculation of W in the only part of its range not treated adequately by previously
published methods, namely, the regime where x and y are both larger than unity but
one is much larger than the other. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70:

623-626, 1998

Introduction

l n an article published recently in this journal
[1], we introduced an expansion which im-
proved the efficiency of the calculation of the in-
complete Bessel function known to hydrologists as
the leaky aquifer function, defined as follows:

we XY/t gt
W(x, y) =f — )]
1

for some purposes, it is convenient to restate Eq.
(1) as

% e——u(t+1/t) dt

W(x,y) = L(u,v) = f , @

v t

International Journal of Quantum Chemistry, Vol. 70, 623626 (1998)

© 1998 John Wiley & Sons, Inc.

where u = (xy)/? and v = (x/y)"/?. Previous
work by others [2-7] had established convenient
methods for the calculation of W when either x or
y was small (less than unity), and our recent
article [1] provided an expansion which was opti-
mum when the ratio x/y was near unity, with no
requirement that either be small. While proper
choices among all these methods enabled at least
moderate efficiency for all values of x and y, it
remained desirable to find a method that would
become optimum when x and y were both large,
but at ratios far from unity. Unfortunately, we had
no solution to this problem when we wrote our
previous article.

We have now found an additional expansion
that is efficient in the range previously causing
problems and which can be regarded, at least
asymptotically, as an expansion in powers of y/(x
+ y). We present here the new expansion and, to
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make this communication reasonably self-con-
tained, the other formulas constituting a complete
set of evaluation algorithms. Readers desiring a
more detailed survey of the relevant previous work
and its use in electronic-structure calculations are
referred to our earlier article [1] and the work of
Delhalle et al. [8, 9].

This article also includes some data illustrative
of the convergence rate of the new expansion.
Interested readers may make further calculations
by using our computer program, written in Maple
V [10], which is available at the author’s World
Wide Web site [11].

Previously Derived Formulas

An expansion which converges rapidly for small
y is [4]

& (_y)”
W(x,y) =3 i

n=0

En+](x)1 (3)

where E, is a generalized exponential integral of
definition

xt

E (x) = [mf-t— dt. )
1

If x is small but y is not, their roles can be
interchanged by invoking the formula [5]

W(x, y) = 2K0(2\/3€17) -W(y,x), (5

where K, is a modified Bessel function of the
second kind (cf. Abramowitz and Stegun [12]).

If neither x nor y is small, but their ratio is near
unity, rapid convergence can be achieved from one
of the expansions [1]

L(u,v) = KoQu) + 72 Y. C,(1)(v — 1)"

n=1
(v<1), (6)
LGu,0) = Ky2u) — e Y C(n) (o~ = 1)

n=1

(v>1, D

where the C, are the polynomials listed in Table 1.

New Formula

To obtain a formula that is efficient when both
x and y are large and their ratio is far from unity,

TABLE |
Expansion coefficients C,(u) occurring in Egs. (6) and (7).
n C,()
1 —1
2 1/2
3 (u-1)/3
4 (—2u+1)/4
5 (~u?2+6u-2)/10
6 (Bu? -8u+2)/12
7 (u® — 18u2 + 30U — 6) /42
8 (—2u® +15u% —18u+3) /24
9 (—u* +40u® — 180u2 + 168u — 24) /216
10 (5u* — 80u3 + 25212 — 192u + 24) / 240
11 (u® — 75u* + 700u® — 1680u2 + 1080u — 120) /1320
12 (—6ud+175u% ~ 1120u® + 2160u2 — 1200u + 120) / 1440
13 (—u® + 1260°% — 2100u* + 10080u3 — 1620012 + 7920u ~ 720) / 9360
14 (7u® — 336u® + 3780u* — 14400u® + 19800u2 — 8640u + 720) / 10080
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we rearrange Eq. (1) to the form

w e~ FEDEY(t=1/1)

W(x, y)=f1 —
_ & Dlx 4wy
- ngo 1’1! ’ (8)
where
006_“ 1 n
Dn(Z)=/; T(f'—?) dt. (9)

Equation (8) will be shown to be efficient when
y < x; if y > x, their roles should be interchanged
using Eq. (5) before applying Eq. (8).

One way to evaluate the D,(z) involves the
explicit introduction of their derivatives:

Di(z) = — ) ‘”(t—l)ndt- (10)
(= = [ (i- 2]

1

using partial integrations, we can establish the
recurrence formulas

D,(z) = =D,_(z)
1
+—[2D,(2) = 2(n = DD, _,(2)]

(n>1), QD

Di(z) = -’Zf[zD,;,l(z) +D(2)]  (n>0). (12)

These formulas can be used for upward recursion
in n, starting from

Dy(z) = E(z), (13)
Di(z) = — 52— (14)
D(z) = =Dj(z) — E)(2). (15)

To understand the formal convergence proper-
ties of Eq. (8), it is useful to note that in the limit of
large n (for fixed z)

(n— D!

n 7

D,(z) ~ (16)

so that the nth term of Eq. (8) approaches
n~'y"/(x + y)". We thus have formal conver-
gence for all relevant values of x and y. However,
as a practical matter, we are also interested in the
behavior of D,(z) when n/z is small; in this

MORE ABOUT THE LEAKY AQUIFER FUNCTION

instance,

2"nle™"
Zn+1 ’

D,(z) = a7

causing the nth term of Eq. (8) to be approximately
Qy)e= ¥ /(x + y)"+1. For large x + y, we thus
see that successive initial terms will decrease
rapidly only if y/x is significantly less than unity.
The generation of the D, by upward recurrence,
using Egs. (11) and (12), is numerically unstable,
but causes no practical difficulties at the parameter
values for which Eq. (8) is recommended.

Numerical

Calculations using the new formula were car-
ried out to supplement those reported previously.
As before, we used Maple V [10], with the preci-
sion set to 14 decimal digits and with results
reported here to 10. The generalized exponential
integrals needed for the recurrence formulas were
generated as in previous work [1]. All the pro-
grams used in these calculations are available to
any interested reader [11].

Figure 1 shows the number of terms needed to
achieve convergence to an absolute accuracy of
1 X 107'% in W(x, y) as a function of x and y for
the new formula, Eq. (8). We used absolute (rather
then relative) accuracy because that is likely to be
a more relevant criterion in electronic-structure
studies. These expansion lengths may be com-
pared with those found previously where calcula-
tions were carried out using Egs. (3) and (7) of the
present article. While the expansion length may be
an imperfect measure of the computational effort,
it is surely qualitatively informative; we find a
significant range of x and y for which the new
expansion is better than those previously reported.
The x, y values for which the new expansion is
best are marked in Figure 1 by asterisks. Values of
x,y lying above the asterisked points are best
computed using Eq. (7), and those falling below
the asterisked points are optimally reached using
Eq. (3).

Qur overall conclusion is that, when the new
expansion is included as an option, satisfactorily
convergent methods are available for the computa-
tion of W(x, y) for all positive values of x and y
to the accuracy needed in electronic structure cal-
culations.
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FIGURE 1. Numbers of terms in the expansion of Eq. (8) needed to attain an absolute accuracy of +1 x 10~ in
W(x,y), shown for integer values of x and y. Asterisked entries identify (x, y) pairs for which this expansion converges
more rapidly than any of the previously reported expansions.
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ABSTRACT: An implicit split-operator FFT algorithm for the numerical solution of
the time-dependent Schrodinger equation is implemented for the electronic structure of
H7 and and H,. The covalent versus separated-atoms behavior is described by two
distinct steady states to which the imaginary-time Schrédinger solution evolves for small
or large internuclear distances, respectively. © 1998 John Wiley & Sons, Inc. Int J Quant

Chem 70: 627-635, 1998

Introduction

| I Ihe exponentiated split operator (esop) fast
Fourier transform (FFT) method of Feit and
coworkers [1] has been used extensively in optical
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and chemical physics; however, it has not found
use in electronic structure or scattering problems
because the explicit form of the temporal advance-
ment algorithm does not conserve energy except
for impractically small time steps. The method of
choice which overcomes this difficulty is the
Peaceman—Rachford alternating direction impicit
(ADD) algorithm used extensively by Kulander [2]
and others; however, this method is limited to 2D
applications and is difficult to implement because
the use of three-point spatial differences to repre-
sent a component of the Laplacian requires a tridi-
agonal matrix inversion at each time step and at
each spatial grid point of the other component of
the Laplacian, with this set of operations carried
out twice over a single temporal interval. In this
article, we implement an algorithm appropriate for
3D applications which is implicit and thus over-
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comes the nonconservation of energy difficulty.
Furthermore, it uses the FFT algorithm to advance
the Laplacian and thus avoids the labor of spatial
differencing methods since the solution of an im-
plicit advancement equation in transform space
requires only a single scalar operation.

Implicit Split-Operator Algorithm

The implicit split-operator (isop) FFT method,
with applications to the hydrogen atom, was pre-
sented earlier by Ritchie and Riley [3], and another
version appropriate for radiation transfer through
optically thick media was presented by Ritchie and
coworkers [4]. We are solving the time-dependent
Schrodinger equation. For the case of one particle
in a potential V (e.g., H3), the time-dependent
Schrodinger equation may be written, in atomic
units, as

N J
H(r)V(r, t) = iE‘I’(r, t) ¢))

where H is the time-independent Hamiltonian op-
erator

H(r) = =1V2 4 V(s). (2)

For completeness, however, we present the isop
algorithm again [applied to Eq. (1)], in slightly
different form from that of [3]:

dt [ dt
1+ —V2 |, , = [1- =V|¥,
8i ] 8i
dt [ dt
1—ZV ‘1’2/3= 1+Z;V qf]/:; 3)
dt ) [ dt )
gV [ 5T Y

where the subscripts, r, 1/3, 2/3, and a refer to
the known solution at a previous time step f, to
intermediate solutions within the interval, and to
the advanced solution at t + dt. The net advance-
ment algorithm is derived by operating succes-
sively from the left on the third equation by the
left-handed operators of the second and first equa-
tions and using the results given by the second
and the first equations respectively. The symmetry
of the equations is such that we can write for the

net algorithm

. dtvz dtV q
+ — —_——_— S
4i 2i !

dt
2i

dt
= [1 - Z—,Vz + =V |¥, + 03dt?). 4)
1

Equation (4) has the form of the Crank-Nicolson
algorithm, which, of course, is implicit and sec-
ond-order accurate. The first and third equations
of Eq. (3) are evaluated in transform space and the
middle equation is evaluated in real space. As we
pointed out earlier, the evaluation of the equations
containing the Laplacian in transform space averts
the use of spatial differences and the need to
invert matrices to find the advanced solution.
Please note that we are showing the equations in
terms of the real time t. The actual solution is
accomplished using imaginary time 7 such that
t= —ir.

Hartree Approximation

For the case of two interacting electrons, as is
the case for the hydrogen molecule, H,, the time-
dependent Schrodinger equation is

. ¥
H(ry, r)W(r,, 1y, t) = iE\I’(ﬁ/"z/ t), (5)

where the Hamiltonian has the form
H(r, 1) = —=1V2 = IV2 4 V(r,, 7). (6)

The solution to Eq. (5) is a function of six spatial
dimensions and one time dimension. To set a more
computationally tractable problem, we make a
Hartree anstaz for the wave function

W(ry, 1y, t) = F(r, 1) X G(ry, 1), (7)

where F and G are complex functions. We would
like to derive a pair of coupled equations for F and
G which involve three spatial dimensions and one
time dimension for each function. We could use an
action principal, in the manner of Kermin and
Koonin [5] with the Hartree ansatz [Eq. (7)] instead
of an Hartree-Fock one as they do, and arrive
easily at the equations

iF(1) = (GIH,2)IG(2)), F(1)

. ! ®)
iG(2) = (FODIH(, 2IF(1)),G(2),
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where the dot over F and G means a time deriva-
tive and we have suppressed the explicit time
dependence in F and G. The subscript on the kets
in Eq. (8) indicates the spatial integration vari-
ables. In arriving at Eq. (8), normalization of F and
G at t =0 is all that is required since the isop
preserves the norm. It is not necessary to require
orthogonality ((F | G) = 0). A key point in the use
of the action principal is the independent variation
of F and G.

Alternatively, we may use a projection proce-
dure. Use the Hartree ansatz [Eq. (7)] in Eq. (5) and
first multiply from the left by G*(2) and integrate
over r,. Then, multiply Eq. (5) [again using Eq. (7)]
by F*(1) and integrate over r,. Using normality
conservation for F and G then results in

iF(1) + iF{G(2) | G(2)),

= (G(2)|H(1,2)IG(2)), F(1)
iG(2) + iGQ)F(1) | E(D)

= (F(DIH(1, 2IF(D)GQ).

)

The difference between Egs. (8) and (9) is the
presence of the overlaps with the time derivatives
in the integrand. If we define the following trans-
formation:

F(1) = f(1)e™ /" 4{C@ICN:

, (10)
G(2) = g(2)e /DT
then we obtain the same form as in Egs. (8):
if(1) = (gIH(1,2)|g(2)), f(1) a1

i§(2) = FOIEA,DIF1))1g(2).

Note again that we are suppressing the time de-
pendence of F and G in the notation. The physics
is not changed by the phase transformation de-
fined in Egs. (10).

To facilitate the use of the isop algorithm, we
use Eq. (6) in Eq. (11):

if(1) = —1V2f(1)
+ (g1~ 3V} + V(1,282 f()

i¢(2) = —3VZg(2)
+ (fD] = 3V + VA, DI (1)1 8(2)
(12)

Realizing that the particle labels are “dummy” in
Eq. (12) because V(1,2) = V(2,1), we may define

the matrix equation, using ¥ = [/], as
q g 2

i = —1V2 + Vs, (13)

where V represents a diagonal potential matrix
with diagonal elements defined by

V11(1) = <g(2)l - %sz + V(1,2)|g(2)>2
V(D) = (f) = 3V + V1, DIf(2))-.

Thus, the isop algorithm, in matrix form, may be
applied to Eq. (13).

In any numerical treatment of the Coulomb
potential, it is necessary to sample the potential at
small enough radius to represent the ground state
accurately. This is achieved for a given numerical
grid using the smoothing procedure given earlier
[3], for which the radial cut off is 7, = [(2dxdydz)/
(97)]'/3. In the two-electron problem, the Hartree
potential is evaluated by solving Poisson’s equa-
tion for a density given by the squared modulus of
the wave function. This equation is also solved in
transform space, where it is necessary to cut off
the Coulomb potential, which goes as 1/k?. Using
similar smoothing arguments, the cutoff [6] in the
radial k variable is ko =1/ V3[(3dk dk,dk,)/
(4m)]3. This cutoff has been tested against
Coulomb integrals evaluated analytically in real
space and found to give results of acceptable accu-

-racy [6].

Results and Discussion

Our results are shown in Figures 1-13. The
Schrodinger equation is integrated in imaginary
time to evolve an assumed initial Gaussian wave
function into the ground-state wave function. First,
we solve the H; problem. In Figure 1 we show
snapshots of the initial Gaussian electronic density
centered about a proton fixed at 1 au on the posi-
tive z axis and then the evolved wave wave-func-
tion density after 20 au of elapsed time, centered
symmetrically about the molecular midpoint with
peaks centered about the proton positions. This
picture is a slice along the z axis for x =y = 0.
The convergence to the molecular covalent state
can be followed in time by observing the orbital
dipole moment (Fig. 2), which begins at 1 au, as
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given by the initial Gaussian, and ends at zero as
the orbital evolves into a covalent orbital with a
center of inversion. Finally, Figure 3 gives the
expectation value of the Hamiltonian, which com-
pares favorably with the exact energy of —1.1026
[7]. This calculation for the energy (Fig. 3) uses a
spatial grid of 64 X 64 X 64 points for a box of
dimension 16 X 16 X 16 au and a temporal grid of
1601 points for a maximum of 20 au of time. A less
accurate but numerically stable result is obtained
for 401 temporal points for the same duration
(Figs. 1 and 2), in which case the energy is graphi-
cally found to be about —1.118 au; thus, the en-
ergy does not converge from above in these nu-
merical solutions. The less accurate calculation
takes about 19 min of CPU time on a Livermore
Cray YMP machine.

Figures 4-13 show the results for the Hartree
model of H,. Figures 4-12 show calculations which
are performed on the same spatial grid of Figures
1-3, but with a sufficient number of temporal
points such that dt = 0.05 au. Figure 13 shows our
results with dt = 0.02 au for the H, potential en-
ergy curve, compared with three time-indepen-

015

0.10 3

Electronic density {a.u.)

005 E

000 E

FIGURE 1. Time-dependent Schrédinger calculation of
electronic density versus Cartesian coordinate z for H,
where two protons are fixed at plus or minus z/2. (A)
Initial Gaussian orbital centered on the proton at z/2.
(B) The orbital after 20 au of time. In the evolution of the
motion, the initial orbital goes awash over the
neighboring nucleus such that eventually it reaches a
covalent state with a center of inversion about the
molecular midpoint (covalent steady state).
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FIGURE 2. (A) Orbital dipole moment versus time for
the evolution to the covalent state shown in Figure 1.

dent calculations. Figure 4 shows snapshots of two
Gaussian orbital densities, initially centered over
the protons, and the evolved densities after the
elapse of 40 au of time. Each initial Gaussian has
gone awash over its neighboring proton, but has
remained primarily centered about its own proton,
as Figure 5, which shows orbital dipoles which
converge to steady-state equal and opposite val-
ues, confirms. On the other hand, at smaller inter-

Energy (a.u.)

-1.00 — -

-1.10 A A A Al-
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FIGURE 3. (A) Orbital energy versus time for the
evolution to the covalent state shown in Figure 1.
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FIGURE 4. Time-dependent Schrodinger calculation of
electronic density versus Cartesian coordinate z for H,,
where two protons are fixed at plus or minus z/2. (A, B)
Initial Gaussian orbitals centered on the protons. (C, D)
Orbitals after 40 au of time. The motion reaches a steady
state in which the two orbitals remain centered primarily
about their originally assigned nuclei with leakage of
density about the neighboring nuclei (separated-atoms
steady state).
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Dipole Moment (a.u.)
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FIGURE 5. Orbital dipole moments versus time. (A, B)
The orbitals of Figure 4. The equal and opposite dipole
moments are characteristic of the separated-atoms
steady state.
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040

Electronic density (a.u.)
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FIGURE 6. Time-dependent Schridinger calculation of
electronic density versus Cartesian coordinate z for H,,
where two protons are fixed at plus or minus z/2. (A, B)
Initial Gaussian orbitals centered on the protons. (C, D)
The orbitals after 30 au of time. In the evolution of the
motion, the initial orbits go awash over the neighboring
nuclei such that, eventually, the two orbitals become
identical and each has a center of inversion about the
molecular midpoint (covalent steady state).
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FIGURE 7. Orbital dipole moments versus time. (A, B)
The orbital dipole moments for the orbitals of Figure 6.
Each orbital dipole moment now individually goes very
slowly to zero as the two orbitals awash over the nuclei
in Figure 6 become identical.
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FIGURE 8. Time-dependent Schrédinger calculation of
electronic density versus Cartesian coordinate z for H,,
where two protons are fixed at plus or minus z/2. (A, B)
Initial Gaussian orbitals centered on the protons. (C, D)
The orbitals after 40 au of time. In the evolution of the
motion, the initial orbitals go awash over the neighboring
nuclei such that, eventually, the two orbitals become
identical and each has a center of inversion about the
molecular midpoint (covalent steady state).
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FIGURE 9. Orbital dipole moments versus time. (A, B)
The orbital dipole moments for the orbitals of Figure 8.
Each orbital dipole moment now individually goes to
zero as the two orbitals awash over the nuclei in Figure
6 become identical.
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FIGURE 10. Time-dependent Schrodinger calculation
of electronic density versus Cartesian coordinate z for
H,, where two protons are fixed at plus or minus z/2.
(A, B) Initial Gaussian orbitals centered on the protons.
(C, D) The orbitals after 20 au of time. In the evolution of
the motion, the initial orbitals go awash over the
neighboring nuclei such that the two orbitals have
become identical and each has a center of inversion
about the molecular midpoint (covalent steady state).
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FIGURE 11. Orbital dipole moments versus time. (A,

B} The orbital dipole moments for the orbitals of Figure
10. Each orbital dipole moment now individually goes to
zero as the two orbitals awash over the nuclei in Figure
10 become identical.
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FIGURE 12. (A, B) Orbital energies versus time and
(C) total energy versus time. Accounting for the binding
energy (total energy — separated atoms energy +
internuclear Coulomb energy) gives close to 80% of the
accurately known binding energy of the hydrogen
molecule, consistent with the interelectronic interaction
model used here.
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FIGURE 13. H, potential energy curves in atomic units:

{(——) time-independent 40-term variational calculation
of [8]; (eee) present time-dependent Hartree calculation;
(—) unrestricted time-independent Hartree —Fock [11];
(- restricted time-independent Hartree —Fock [11].

nuclear distances, Figures 6 and 7 show densities
and orbital dipoles which appear to be converging
to a covalent rather than to a separated-atoms
steady-state limit. This is clear from Figure 7, where -
the equal and opposite orbital dipoles are far from
converged after the elapse of 80 au of time, but
whose small-magnitude temporal slopes are posi-
tive and negative for dipoles which are rising and
declining toward the z axis, respectively; thus,
with sufficient time, unless the slopes converge to
zero for finite equal and opposite dipoles, we
would expect an eventual evolution into two iden-
tical covalent orbitals with zero dipole moment, as
in Figures 1 and 2. Figures 8-11 support this
conclusion: In Figures 8 and 9 for the smaller
internuclear distance for H,, the orbitals have al-
most converged to identical, zero-dipole orbitals
after the elapse of 40 au of time, and in Figures 10
and 11, which are at the equilibrium internuclear
distance for H,, the orbitals have indeed con-
verged to identical, zero-dipole orbitals after the
elapse of 20 au of time.

The convergence to identical covalent orbitals,
even though the initial orbitals form an unsym-
metrized product centered about each nucleus, can
be understood from the work of Riley et al. [8],
which shows that the Pauli principle is satisfied
starting from an unsymmetrized product, if the
symmetry of the Hamiltonian with respect to in-
terchange of the two electrons is represented in a
converged perturbation-theoretic calculation. In
our calculation, at small enough internuclear dis-
tances, the initially nuclei-centered orbitals can mi-
grate to neighboring nuclei such that, with suffi-
cient time, the interchange symmetry of the
Hamiltonian is properly represented after the two
orbitals have become identical, in analogy to the
calculation of Riley et al, after many orders of
perturbation theory. Thus, for small enough inter-
nuclear distances, the Pauli principle is automati-
cally satisfied finally, even though it is not satis-
fied initially. We have convinced ourselves of this
conclusion by repeating the calculations of Figures
8-11, starting with two identical initial Gaussian
orbitals centered on the midpoint between the two
nuclei, in which case these orbitals remain identi-
cal and converge (with different rates of conver-
gence from those of Figs. 8-11) to the same results
as those of Figures 8—11. On the other hand, when
identical Gaussians are centered at the midpoint
for the larger internuclear distances of Figures 4-7,
the calculations converge to identical orbitals hav-
ing a covalent form, but whose orbital energies are
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significantly larger than those of the separated
atoms (unlike the orbital energies of Figs. 4-7,
which are always below the separated-atoms ener-
gies). We reject these results as unphysical since it
is clear that at large enough internuclear distances
one must obtain the separated-atoms result, and,
indeed, the results of Figures 4-7, in which the
initial Gaussians are nuclei-centered, exhibit the
appropriate separated-atoms behavior. This point
emphasizes a characteristic which we have noticed
in other calculations, namely, that a poor choice
for the initial Gaussian can lead to a numerically
converged result which is unphysical; clearly,
Gaussians centered initially at the molecular mid-
point will not migrate properly to the nuclear
positions at large internuclear distances unless they
have greater widths than those used here.

Thus, Figures 6 and 7 show results near a criti-
cal internuclear distance separating two distinct
steady states: a separated-atoms state at larger and
a covalent state at smaller internuclear distances.
To our knowledge, this is the first description of
molecular covalency as a unique steady state of
the time-dependent Schrodinger equation whose
onset occurs at internuclear distances smaller than
a certain critical internuclear distance (Figs. 6
and 7).

Figure 12 shows the orbital energies and total
energy versus time corresponding to Figures 10
and 11. The total energy is about —1.857 au, which
corresponds to a binding energy of 3.88 eV, which
is slightly better than the elliptical-coordinate
nine-term variational Hartree-Fock energy of
3.6360 eV obtained by Kolos and Roothaan [9].
This is approximately 81.7% of the binding energy
of H, (4.75 eV [7]) and is much better than what
one would expect for the present Hartree model
based on our knowledge of the variational
LCAO-MO Hartree model, whose binding energy
is only 2.65 eV [10]. The present binding energy
compares favorably with that of the Heitler—
London model with an optimized exponent [10],
namely, 3.76 eV. We repeated the calculation us-
ing dt = 0.02 au temporal points and found that
our results change slightly. At this time step, we
got a total energy of —1.858 au, giving a binding
energy of 3.91 eV. This is 82.3% of the essentially
exact value of 4.75 eV from [7]. Our result was
converged to the significant figures shown for the
dt = 0.02 au time step.

Finally, Figure 13 shows our potential energy
curve for H, at a time step of dt = 0.02 eV, com-
pared with the time-independent 40-term varia-

tional calculation of [8] and restricted Hartree—Fock
and unrestricted Hartree—Fock calculations using
Gaussian94 [11]. It is clear from Figure 13 that our
present time-dependent Hartree results are closer
to the exact values for all internuclear calculations
than either the restricted or unrestricted time-inde-
pendent Hartree—Fock results. At large internu-
clear separations, our results are even slightly bet-
ter than the best theory from [8]. At R = 4.5 Bohr,
we obtain a binding energy of 0.11eV.

Conclusion

The utility of the time-dependent description of
molecular electronic structure, in our opinion, lies
in the capability of the theory to predict covalent
versus separated-atoms states. This is why the
simple product of states for H, leads to a superior
result than that for the LCAO-MO Hartree result,
which is based on writing a trial wave function
which has equal weighting for components de-
scribing the dissociation of the molecule into the
ions H* and H™ and for components describing
the dissociation into the neutral atoms H and H.
Clearly, a physically compelling weighting must
favor dissociation in the neutral atoms. This exam-
ple illustrates the difficulty of time-independent
variational calculations in which one does not
know the steady-state wave function and, hence,
must construct it using a trial wave function whose
basis-set selection is judgmental. On the other
hand, the time-dependent calculation evolves the
wave function naturally, depending on the inter-
nuclear distance, into states which predict covalent
or noncovalent binding. Thus, to use a variational
analogy, the time-dependent calculation selects
the basis set appropriate for a given internuclear
distance.

We would expect the binding energy to show
considerable improvement if we based our time-
dependent equations on a symmetrized product of
orbitals appropriate for singlet-state symmetry.
Here, we would expect the two orbitals not to be
identical in the covalent steady state. This calcula-
tion is at a higher level of difficulty owing to the
coupling of the two-orbital equations through ex-
change and overlap terms and will be forthcoming
in future work.

Finally, we comment briefly that time-depen-
dent Hartree-Fock (TDHF) theory [5] appears not
to have achieved a high level of regard for useful-
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ness in structure and other problems. However,
we believe that this is in large part due to its
restrictive nature, namely, that the equations be
derived from a variational ansatz for a set of
orthonormal orbitals. Clearly, this is a too restric-
tive mathematical environment to describe even
the simple H, model that we have considered
here, in which the two nonorthogonal orbitals are
propagated in imaginary time until they evolve
either into predominantly atomic orbitals with
small leakage of density about another nucleus
(Figs. 4 and 5) or into covalent molecular orbitals
(Figs. 6—11) which contain a much larger fraction
of the binding energy than that based on the well-
known LCAO-MO variational ansatz. Thus, al-
though we have called our calculation the Hartree
model for H,, it is not the TDHF model in the
usual sense, and we believe that the full model
based on the symmetrized product of orbitals holds
much promise in the description of electronic
structure and scattering problems.
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Introduction

T he description of electronically excited states
presents significant problems in quantum
chemistry. Unquestionably the presently most ac-
curate approaches for smaller systems involve the
initial multiconfiguration self-consistent field (MC-
SCF) optimization of the reference function(s) prior
to a configuration interaction (CI) step, or alterna-
tively a perturbational step, to take proper account
of dynamical correlation effects. A useful introduc-
tion, in the context of the complete active space
self-consistent field (CASSCF) method, is the series
of articles by Roos and co-workers [1-3]. At pres-
ent, modern valence bond theory [4] cannot com-
pete with the most accurate results that may be
achieved by such methods, but it may instead play
an important role in the visualization of the elec-
tronic structure. This is the aim of the current
work.

Modern valence bond descriptions of excited
states have used two main strategies. Perhaps the
most straightforward approach is to follow an or-
bital optimization procedure by a nonorthogonal
CI treatment [5]. This last places particular de-
mands on the quality of the orbital representation,
especially if all the orbitals are obtained from a
treatment of the lowest state. In the most com-
monly employed procedure based on a spin-cou-
pled wave function, all of the “virtual” orbitals
are generated by diagonalizing generalized Fock
operators [6]:

f(#)d)lsﬂ) = s,f”)d),f”). 1)

This procedure yields a series of “‘stacks”” of or-
bitals. Each occupied orbital in the reference func-
tion leads to an eigenvalue equation of the form
shown in Eq. (1) and may be identified as one of
its solutions. Excitation into the low-lying virtuals
in each stack may then provide excellent approxi-
mations to excited states, and accurate results may
be obtained with CI expansions of very moderate
size. The overcompleteness of the orbital basis
thus defined does not lead to significant problems,
provided a critical selection of excitations is car-
ried out. One example of this procedure is an
application to the notoriously difficult excited
states of benzene [7]. Alternative choices for spin-

coupled virtual orbitals have been investigated
recently by Clarke, Sironi, and co-workers [8, 9].

In an alternative to the standard spin-coupled
approach, the Fock operators of Eq. (1) may be
diagonalized in an iterative procedure until self-
consistency is reached. Although such an approach
has been applied to the optimization of ground-
state wave functions [6], it is not likely to compare
favorably with a fully second-order optimization
scheme [10, 11] in terms of either computational
efficiency or convergence characteristics. The main
advantage of this type of approach is instead its
straightforward extension to the description of ex-
cited states, which may be achieved simply by
choosing higher-lying solutions to the Fock eigen-
value problems. Such a procedure has been ap-
plied to some smaller systems by Doggett et al.
[12-14], using an approach formulated as a super-
CI scheme. Their results seem very promising, but
an open question is the application to excited states
that are not well described as a single excitation
from the ground state.

While the optimization of modern valence bond
wave functions for ground states has come very
far, there is little doubt that there is still some
scope for development in the case of excited states.
Our newly developed method for optimization of
general types of valence bond wave functions,
CASVB [15-22], possesses some important advan-
tages in this respect, and we consider its extension
to the treatment of excited states in the following
sections. Main features include the very flexible
forms for the wave function and the natural con-
nection to molecular-orbital-based procedures.
Fully variational optimization of the wave func-
tion is possible, which may provide benchmarks
for other valence bond strategies. Our CASVB pro-
gram is now available as part of the quantum
chemistry package MOLPRO [23], in which it is
interfaced to a sophisticated CASSCF program [24].
We foresee a much wider distribution in the near
future.

CASVB Approach

Prior to considering the optimization of excited
states within the CASVB framework, we review
briefly some of the main characteristics of the
method [15-22].

The cornerstone of the CASVB approach is the
efficient transformation of CASSCF spaces. The
structures defining such spaces may be either Slater
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determinants or configuration state functions
(CSFs), and the subsequent expressions remain
equally valid for both, but there are many advan-
tages associated with a determinant approach, not
least being that of computational simplicity [17].

The CASSCF wave function may in general in-
corporate a core term, ®“, which is common to
all structures @;:

D, = /(D X B, @)

In practice, ®“* is normally based on 1/2N_..
doubly occupied orbitals. The active parts of the
structures, @i, are then constructed as an N in m
full CI expansion compatible with a total spin of S.
It is well known that a full CI is invariant to
nonsingular transformations of the defining or-
bitals, and this observation forms the basis for the
CASVB strategy:

{¢'} = {¢}O = {®'} = {P}T(O). 3

Here { } denotes a row-vector of either the active
orbitals, ¢, or many-electron functions, ®. A very
efficient algorithm for obtaining T(O) is based on
rewriting the orbital transformation, O, as a prod-
uct of m* updates of the form

Oy.v(/\): d)u - ¢y + )\(ﬁ#, (4)

for which the corresponding full CI transforma-
tions are trivial to evaluate [15,17,25].

The modern valence bond (VB) wave function
that we consider in this context takes the form of a
single spatial configuration of N singly occupied
orbitals (i.e., a spin-coupled wave function [4]):

Vg = (DB %YE ... 63PON), (5)

or limited multiconfiguration variants thereof. As
usual [4], ®Y, is an appropriate fully optimized
N-electron spin function. Assuming that ¥y can
be expressed as a linear combination of (nonor-
thogonal) “N-in-m’* CASSCF structures, we can
transform to a representation based on orthogonal
CSFs, according to:

Vg = L (DO X OYB) = Y ¢, ({®IT(0VR));.
I I
)]

Here OY? defines the transformation from CASSCF
molecular orbitals (MOs) to valence bond orbitals,
as in Eq. (3). Optimization of ¥y, will normally be
carried out both with respect to the linear struc-

MOLECULAR EXCITED STATES

ture coefficients; c;, and to the nonlinear orbital
parameters which define the matrix O'®.

For the case of a ground-state CASSCF wave
function, we have in previous work considered
two basic criteria for optimizing Wy;:

(Weps | Uyp?
maximize Sy = W @)
VB VB

or

(Wypl HIWyp)
minimize  Ey = ML AL €))

(Pyp | Pyp)

Each quantity is optimized with respect to the
valence bond parameters considered above. As a
powerful extension, optimization according to Eq.
(8) may be combined with the core-active, core-
virtual, and active-virtual (orthogonal) orbital rota-
tions inherent in a CASSCF procedure, such that a
fully variational modern valence bond solution is
obtained.

It is worth emphasizing the special difficulties
associated with optimization of a valence bond
wave function of this form. First, the optimization
problem is nonlinear, necessitating an exact
second-order optimization procedure with trust re-
gion control for reliable convergence. We have
opted for the method by Fletcher [26,27], in which
an equation of the form

5=—(G-aD7'g, [8l<h (9)

is solved for the update, 8. Second, as a non-
orthogonal orbital optimization, it may not
always be possible to avoid linear dependency
problems. One may need to invoke some form of
constraints on some of the wave function parame-
ters and we have adopted a simple elimination
scheme for this purpose [21]. Alternatively, when
appropriate, facilities for symmetry adaptation
may be used [18], possibly in combination with
other constraints.

Excited-State Optimization

The extension of the criteria in Egs. (7) and (8)
to excited states that are lowest within a given
symmetry is trivial, since such optimizations can
be carried out by simply symmetry adapting the
wave function [18]. In the following, we consider
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instead the optimization of states that are second
or higher within a particular symmetry.

Perhaps most straightforward is the use of the
overlap-based criterion since, given a set of
CASSCF solutions for each electronic state,
(W, Y&, ...}, one can simply maximize

U5 1)
MR E
to get the ith VB solution, ¥{}. A fairly standard
optimization of an appropriate CASSCF wave
function may therefore pave the way for a modern
valence bond description of a given excited state.

Generalization of the energy-based criterion is
somewhat less straightforward. Two natural re-
quirements for consistent representations of differ-
ent states in a given symmetry are

(FO | PPy =5, and (POHTD) = ED5, .
a1

However, neither of these requirements will in
general be satisfied within MCSCF procedures, a
fact that must have some bearing on calculated
excitation energies and transition properties. While
the errors involved may in the majority of cases be
relatively small [1], more rigorous procedures that
avoid these problems are clearly to be recom-
mended. A natural choice is the CASSCF state
interaction approach (CASSD [28] in which the
solutions obtained in preliminary MCSCF opti-
mizations are used to form a secular problem that
leads to more accurate representations of the re-
quired states.

A significant amount of attention has been paid
to the proper definition of excited-state representa-
tions in nonlinear optimization procedures. We
believe that a very natural approach is to consider
the space generated by first-order variations in the
variational parameters:

J d
Yoy = {‘P(xo), B—XT‘I’(XO), a—xz‘l'(xo), . },

for a wave function, ¥, which depends parametri-
cally on the set of variables x. For ¥(x,) to be a
representation of the ith state, it must occur as the
ith root in the secular equations formed from this

super-CI space. While it is possible to implement
this condition directly in an iterative super-CI opti-
mization procedure, such strategies generally show
very poor convergence characteristics.

Perhaps the most widely used approach is
therefore to take as a starting point the stationary
point for which the second derivative matrix has
i — 1 negative eigenvalues; this can be shown to
be closely related to the super-CI requirement out-
lined above. In the context of MCSCF optimiza-
tion, this problem has been considered extensively
by Olsen et al. [29, 30].

A particularly useful account of various possi-
ble second-order optimization schemes has been
presented by Helgaker [31]. Two main families of
strategies exist: the stabilized Newton—Raphson
scheme (see, e.g., Ref. [27]), and the so-called aug-
mented Hessian method (see, e.g., Refs. [32, 33]). A
main advantage of the Newton—Raphson-type
schemes is their natural and efficient trust region
control. We believe the most natural generalization
of such approaches to saddle-point optimization to
be the “trust region image minimization” (or
TRIM) algorithm proposed by Helgaker [34]. De-
tails of our implementation of this procedure for
excited-state optimization are given in an
appendix. In the next section, we describe applica-
tions of our procedures to the 2'A ¢ state of trans-
1,3-butadiene, the ¢'A, state of methylene, and the
first excited singlet state of benzene.

Problems associated with multiple stationary
points for nonlinear optimization procedures are
well known [35] and these are likely to be signifi-
cantly more pronounced for excited-state opti-
mization. Compared with the more straight-
forward ground-state optimization, special
techniques may therefore be required to obtain
convergence onto a particular solution. An attrac-
tive option is likely to be in the form of a partition-
ing of the optimization problem. By employing a
two-step (or, in general, n-step) optimization pro-
cedure, convergence onto stationary points corre-
sponding to particular types of orbital excitations
may be obtained. Using such a strategy, we have
obtained a similar functionality to the procedure
described by Doggett et al. [12-14] and, as such,
we have been able to reproduce their results. Olsen
et al. [29] have stressed the importance of taking
the coupling between optimization problems into
account for two-step optimization procedures, and
we foresee a need to address this question for
treatments of more complicated systems.
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Results

SECOND 'A, STATE OF
TRANS-1,3-BUTADIENE

Polyenes possess low—lylng valence excited
states with the same 'A ¢ sSymmetry as the ground
state [3], but it is well known that only a relatively
small part of the 2'A, wave function can be as-
cribed to single excitations from the ground state.
In a recent study, Serrano-Andrés et al. [3] at-
tributed a figure of 58% to such single excitations.

A ground-state geometry determined by elec-
tron diffraction spectroscopy [36] was adopted in
all of the present calculations and we used Dun-
ning’s pVTZ basis sets [37], consisting of
(10s5p2d /552 p) Cartesian Gaussians contracted
to [4s3p2d /3s2p] for C/H. Energies from 4-in-4
CASSCF calculations for the ground and 2'A,
states are given in Table L. In order to assess the
suitability of 4-in-4 treatments of these states, we
examined also the corresponding 4-in-6 calcula-
tions. Energy lowerings of just 4.9 and 5.5 milli-
hartree, respectively, for the ground and excited
state suggest that the 4-in-4 spaces are quite rea-
sonable. A further consideration, in our case, is the
nature of the subsequent CASVB interpretations;

TABLE |
Energies for various calculations on butadiene.?
State Calculation E, hartree
1'A g SCF —154.969332
2'A, 4-in-4 CAS (MOs from 1'A;)  —154.735740
21Ag 4-in-4 CASSCF —154.776292
2'A, 4-in-6 CASSCF —154.781744
14, 4-in-4 CAS (MOs from2'A;) ~ —155.007687
14, 4-in-4 CASSCF —155.023870
1A g 4-in-6 CASSCF —155.028809
a

Further details are given in the text.

MOLECULAR EXCITED STATES

TABLE |l
Values of S, and E;, for butadiene,
calculated with various sets of orbitals.

VB (CAS) Su E,

14, (1A,) 0.999889 —155.023628
1A (2‘A o) 0.999982 —154.776258
1A (1A ) 0.999930 —154.735622

multiconfiguration VB wave functions would be
required to recover the additional correlation taken
into account by the larger CASSCF models.

The results of valence bond representations of
the 4-in-4 CASSCF solutions are summarized in
Tables II-1V and illustrated in Figures 1 and 2. The
overlap-based optimizations are in all cases
achieved simply by maximizing the overlap (Syz)
between a modern VB wave function of spin-cou-
pled form and the appropriate CASSCF function.
The energy-based results were obtained either by
minimization onto the ground state or by saddle-
point optimization to obtain descriptions of the
excited state.

The values of Syz and Eyy listed in Table II
show that the CASSCF wave functions are repre-
sented with great accuracy by the corresponding
VB solutions. This is to be expected for active
spaces of this size. What is noticeable in this con-
text, however, is the ability of the saddle-point
Eyp optimization to reproduce the max(Syg) re-
sults. The trust region image minimization algo-
rithm therefore seems very viable for use in
MCSCF-type optimization problems.

Compared to the ground state, the excited state
may to a good approximation thought of as an
“excitation” in the spin space (cf. Table IV). As
such, the orbitals remain qualitatively the same,
although a significant increase of the (¢, | ¢3)
overlap, as well as a general “expansion” of the
orbitals, may be detected. These simple observa-

TABLE 111
Symmetry-unique overlap integrals for butadiene solutions.
Solution (i | o) {2l d3) (o1 | P30 (il )
1A (Syg) 0.65086 0.29400 0.07759 0.03223
( ve) 0.65048 0.29547 0.07984 0.03685
(SVB) 0.70369 0.56370 0.21140 0.01383
1A (Eyg) 0.70154 0.56416 0.21081 0.01358
2 A (Syp, 1'Ag) 0.73781 0.49884 0.15976 —0.00943
2A (Eyg, 1'A ) 0.73311 0.50420 0.16257 —0.00878
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TABLE IV
Weights w,, = (cpp)2 of the perfectly paired
spin function, expressed as percentages of the
total spin function in the Kotani or Serber bases.

VB (CAS) W (Syp) Wy (Eyp)
14, (1A)) 99.22 98.15
1A (2‘A o) 2.79 2.83
2‘A (1'A ) 1.60 1.66

tions may go a long way to explaining the proper-
ties of the 2'A, state in this and longer polyenes,
as well as, of course, why no such state is found
for ethene.

The effect of orbital relaxation on the descrip-
tions of the two states may be gauged, for exam-
ple, by basing the excited-state description on the
ground-state CASSCF MOs, giving an energy some
40 millihartree higher than that of the fully opti-
mized excited state (see Table I). Relaxation is thus
a very substantial effect, which underlines the apt-
ness of a CASSI [28], or similar, approach for
ensuring consistent treatments of the two states.
Examination of the VB representations suggests
that a major factor in the orbital relaxation is the
aforementioned increased diffuseness of the partic-
ipating orbitals.

FIGURE 1. CASVB orbitals for butadiene:
overlap-based representation of the 1A1g ground-state
CASSCF wave function. Orbitals are plotted 1 bohr above
the molecular plane and (projected) positions of the
nuclei are marked by their chemical symbols.

FIGURE 2. CASVB orbitals for butadiene:
overlap-based representation of the 2‘A1g excited state
CASSCF wave function, plotted as in Figure 1.

THE ¢'A, STATE OF METHYLENE

Low-lying electronic states of CH, have been
subject to much attention, especially the problem
of describing accurately the splitting between the
’B, ground state and the first excited state (4'A,).
The spin-coupled descriptions of these two states
have been reported previously in several publica-
tions [38—40]. Furthermore, the CASVB representa-
tion of the d@'A, state has been found to resemble
closely the spin-coupled results [15,16] and the
same is true for the CASVB description of the
triplet ground state.

For our calculations on the é'A; state, we em-
ployed the same pVTZ basis sets as for butadiene
and used an ab initio geometry of rqy = 1.064 A
and 6(HCH) = 171.6° [41]. As a starting point for
the CASVB representations, an all-valence CASSCF
calculation was performed keeping 1s as an opti-
mized core, so that the active MOs can then be
classified as 2a,, 1b,, 3a,, 1b,, 2b,, and 44, in C,,
symmetry. The CASSCF solution of interest can be
identified at convergence as the second CI eigen-
vector of 'A, symmetry. The energies obtained in
the SCF and CASSCF calculations are collected in
Table V.

Initial investigations of the CASVB solutions
were carried out using the simple overlap-based
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TABLE V

Energies for various calculations on CH,.?
Calculation E, hartree
SCF (&'A,) —38.837861
CASSCF ¢'A, —38.855187
CAS &'A, (MOs from ¢'A,) —38.891603
CASSCF §'A, —38.893050

& Further details are given in the text.

criterion, because this is computationally the least
expensive. We shall endeavor to describe the series
of calculations in sufficient detail to illustrate the
way in which a degree of common sense must
necessarily be employed to obtain reasonable re-
sults for the ¢'A, state. It seemed natural first to
investigate a solution based on an orbital descrip-
tion analogous to that of the lower #'A, state.
However, an energy difference of 29 millihartrees
from the CASSCF wave function seems to indicate
that such a model of the ¢'A, state, which we label
1a in Table VI, is not very realistic: Corresponding

MOLECULAR EXCITED STATES

TABLE VI

Values of S, and E,, for singlet methylene,
calculated with various models,

as described in the text.

MOdel va EVb Evb - ECAS
1a 0.991724 —38.826331 0.028856
1b 0.993414 —38.838868 0.016319
ic 0.993412 —38.838872 0.016315
1d 0.994545 —38.865023 —0.009836

values for ground-state calculations are typically
10 millihartrees. Furthermore, as is shown in Fig-
ure 3, the forms of the optimized orbitals are
rather unphysical. Indeed, the near-linear depen-
dence, due to high orbital overlaps {¢; | ¢,) and
(¢ | ) (see Table VII), also gave rise to some
convergence problems.

The shortened bond lengths for this state rela-
tive to the lowest 'A, state (1.064 versus 1.117 A
[42]) do not suggest any partial breaking of the

o}

~~~~~

¢3 ¢5

————————
1,7 TN,
VTN
N | [
we o g
AR A
-

e

FIGURE 3. CASVB orbitals for singlet methylene: model 1a with ¢4 - ¢ shown in the molecular plane and ¢, — ¢, in

the perpendicular mirror plane.
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TABLE VI
Overlap matrices for models 1a - 1d, obtained by

maximizing Syg.

Solution 1a
oa ¢ ¢ &, s b
¢ 1

b,| 0997 1

by| 0641 0641 1

6| 0057 0057 0771 1

bs| 0641 0641 —0177 -0698 1

és| 0057 0057 —0698 -0990 0771 1

Solution 1b
ol o ¢ &4 ¢s5 s
& 1

b,| —0.646 1

bs| 0432 01432 1

é,| 0053 0053 0791 1

és| 0132 0132 0601 0248 1

¢s| 0053 0053 0248 —0074 0.791 1

Solution 1c

¢ P2 &3 ¢4 b5 e
o 1

¢,| 0.004 1

¢5| 0.221 0.221 1

¢,| 0.092 0.092 0.792 1

¢s| 0.221 0.221 0.600 0.249 1

dg| 0.092 0.092 0.249 -0.072 0.792 1

Solution 1d
o o
&1 1
¢,| 0.897 1
¢s| 0.243 -—0.054 1
¢, 0.052 -0.036 0.785 1
¢5| 0.243 —-0.054 0.625 0.263 1
¢gl 0.052 —0.036 0.263 —0.087 0.785 1

b3 2 b5 ¢

C—H bonds, and a very natural way of improving
the solution 1a is therefore to add configurations
in which the nonbonding orbitals become doubly
occupied:

vy, ="37((1S)2 X {c11 ¢, b3 D5 b6O5
+0) (P11 b3y s b
+¢2¢2¢3¢4¢5¢6)®go®30})- (12)
This represents a significant improvement, such
that the energy difference from the CASSCF is
reduced to 16 millihartree, and the bond-forming

orbitals (see Fig. 4) now conform to the description
found for C—H bonds in a wide variety of sys-

tems. The spin-coupling coefficients also seem
much more realistic (see Table VIII). We noticed
that the ionic configurations are dominant in the
1b model and so we repeated the calculations
leaving out the covalent part:

\Plc Z«Q/((ls)z X (¢1¢1¢)3¢4d)s¢6
+¢2¢2¢3d’4¢5‘f’o)®(2m®30)- (13)

The associated decrease in quality is not noticeable
(see model 1¢ in Table VI and Fig. 5), so one must
prefer this wave function on grounds of simplicity.
Based on these various results, we conclude that
excitations ¢, = ¢, and ¢, — ¢,, relative to the
a'A, state, provide a very acceptable description of
the electronic structure of the ¢'A, state. Examin-
ing the full CASSCF CI vector transformed accord-
ing to the orbitals of Eq. (13), we find that 98.7% of
the CASSCF wave function is of the form shown in
Eq. (13) (cf. Table VI) and that most of the 1.3%
not accounted for (1.1%) is made up of configura-
tions in which ¢, and ¢, are both doubly occu-
pied.

Even within this active space, it is possible to
improve slightly the description of the nonbonding
electrons by incorporating a degree of radial corre-
lation. Even if ¢; and ¢, are not related by sym-
metry, correct overall symmetry can be ensured by
use of a projection operator [18]. Formally this is
equivalent to a wave function of the form

V4 =£/((1S)2 X (1 3y s s
+(8,0,)(6,0,) by by bs b ) 03,08, (14)

and the orbitals resulting from such a calculation
(1d) are shown in Figure 6. Obtaining the descrip-
tion of the excited state by maximization of the
overlap with the CASSCF wave function is not
variational in the energy. The fact that the expecta-
tion value of the energy for model 14 is slightly
lower than that from a CASSCF calculation for the
same state and with the same active space must
indicate some overlap of the VB wave function
with the corresponding CASSCF solution for the
lower state of this symmetry.

The nonbonding orbitals for the ¢'A, state adopt
far greater 2p character (Figs. 3—6) than do those
for the lower d'A; state [38-40], for which a domi-
nant 2s component is observed. When the spin-
coupled covalent configuration is excluded, as in
1c, the angle between the 2p-type orbitals ap-
proaches 90° (Fig. 5) and their overlap becomes
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TABLE VIII

Weights w,, = (c,,,)? of the perfectly paired
spin function, expressed as percentages of the
total spin function in the Kotani or Serber bases.

Model Wop
1a 75.00
1ib 100
1c 100
1d 99.67

small (Table VID. As a consequence, the bond-
forming orbitals can adopt significantly greater s
character, an observation which is consistent both
with the increased bond angle (102.4° to 171.6°) as
well as the diminished bond lengths relative to the
d'A, state.

S, STATE OF BENZENE

The first excited singlet state (S;) of benzene is
the lowest one of 'B,, symmetry but, rather than
simply symmetry adapting the wave function and

MOLECULAR EXCITED STATES

using the standard “ground-state” approaches, we
decided to use this system as a further test of our
“excited-state”” procedures. Invoking o/ separa-
tion, 6-in-6 CASSCF calculations were performed
in D,;, symmetry using the same geometry and
basis set as in a previous CASVB study [22] of the
'A, , ground state (S;). Explicitly, the basis set is
the same as used above for butadiene and methyl-
ene, except that the two d functions on carbon and
the two p functions on hydrogen were replaced by
functions with exponents d. = 0.8 and py = 1.0.
We number the carbon atoms consecutively around
the ring. The CASSCF excitation energy of 4.96 eV
compares rather well with the experimental value
of 490 eV quoted in Ref. [7] and taken from
Lassetre et al [43].

For our modern VB descriptions, we adopted a
spin-coupled (SC) model of the form:

U =o/(DC X ¢, P30, 50,05,  (15)

and started by maximizing Sy for the S, state.
This resulted in six p,-like functions, each associ-
ated with a particular carbon atom and resembling

B 8

zzzzz

FIGURE 4. CASVB orbitals for singlet methylene: model 16, plotted as in Figure 3.
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FIGURE 5. CASVB orbitals for singlet methylene: model 1c, plotted as in Figure 3.

fairly closely those from a fully variational treat-
ment of the ground state [22]. However, as was
also the case for the corresponding unconstrained
max(Sy;) representation of the S, CASSCF func-
tion [18], we observed some symmetry breaking.
For all subsequent calculations, we constrained the
orbitals ¢,~¢, to be related to one another by
successive C, rotations, and it is convenient to
number them according to the carbon atoms with
which they are associated. Use of the overlap crite-
rion to obtain a modern VB representation of the
S, state then resulted in a very creditable S5 =
0.99874 and a corresponding energy that is only ca.
2 millihartree inferior to that from the CASSCF
calculation (see Table IX). This energy difference is
reduced only very slightly on choosing instead to
minimize Eyg, and the further change on perform-
ing a fully variational SC optimization is almost
negligible. Plots of the orbitals from the three dif-
ferent procedures were exceedingly difficult to dis-
tinguish by eye, and so we present here only a
symmetry-unique orbital from the fully variational
SC calculation (see Fig. 7, which illustrates the

similarity to the corresponding picture for the
ground state [22]). The various orbital overlaps
(see Table IX) are larger than in the case of the
ground state (cf. the earlier results for butadiene).
Expressing the spin function in the traditional
Rumer basis, we find, of course, that all three
modern VB descriptions of the S; state correspond
exactly to the out-of-phase combination of two
Kekulé-like structures, as was anticipated in the
extensive spin-coupled valence bond studies re-
ported in Ref. [7].

Conclusions

The molecular excited states considered here
may all, to a very good approximation, be rational-
ized in terms of single orbital excitations or a
recoupling of the electron spins, relative to the
ground-state descriptions. In general, of course,
low-lying excited states are likely to be derived
from first-order variations in the wave function
parameters, but secondary effects may become very
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o
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FIGURE 6. CASVB orbitals for singlet methylene: model 1d, plotted as in Figure 3.

important even for these cases. Such secondary
effects include the relaxation of active and core
orbital spaces, and possibly also induced changes
in the geometry. An observation for both cases of
spin recoupling considered here, trans-1,3-
butadiene and benzene, was an associated signifi-
cant expansion of the spin-coupled orbitals. Par-
ticularly for gaining an understanding of such
secondary changes in electronic structure, it may
be important to allow free optimization of orbitals

and structure coefficients in each excited state. An
additional consideration in this context is the re-
quirement of a balanced treatment of the various
molecular states, for which separate optimization
of each state would ultimately seem unavoidable.

It is useful to consider separately orbital excita-
tions within the valence space and those going into
the virtual orbital space, because the nature of the
consequent valence bond descriptions will be
somewhat different. Assuming that the ground-

TABLE IX

Energies and (where appropriate) orbital overlaps from calculations on benzene.

State Calculation E, hartree (¢y | Dy (P | Pg) (dy | by
So 6-in-6 CASSCF —230.836822 — — —

So Fully variational SC —230.829332 0.5238 0.0294 —-0.1570
Sy 6-in-6 CASSCF —230.654383 — — —

S, Fully variational SC —230.652205 0.5962 0.2893 0.2787
S, min(Eyg) —230.652197 0.5961 0.2881 0.2768
S, max(Syg) —230.652162 0.5721 0.1705 0.0621
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FIGURE 7. Contours of spin-coupled orbital for the S,
and S, states of benzene, with projected positions of the
nuclei marked x. (Left) In the plane 1 bohr above the
molecular plane. (Right) In a vertical mirror plane.

state VB picture is based on a spin-coupled wave
function consisting of relatively well separated or-
bitals, a valence excitation will lead to a configura-
tion with “ionic”” character. As seen in the case of
the ¢'A, state of CH,, a standard spin-coupled
covalent structure may then be unsuitable, and
could lead to linear dependency problems. How-
ever, applying common sense in selecting the form
of modern VB wave function is likely to resolve
any such difficulties.

The need for a full optimization of states de-
rived by excitations out of the valence space (in-
cluding those leading to Rydberg states) may be
less pronounced than for the valence excited states.
In this context, a nonorthogonal CI treatment cer-
tainly has the unquestionable advantage of gener-
ating representations of a large number of states in
one single step. However, the application of our
CASVB methodology to such cases presents no
formal difficulties and, since there are unlikely to
be any problems associated with linear depen-
dence, such optimizations may very well be signif-
icantly simpler than the corresponding optimiza-
tions for valence excited states. Early tests of our
strategy involved reproducing a series of results
for Rydberg-type excited states [12-14]. Although
no significant difficulties were encountered, the

advantages of invoking a two-step procedure to
converge onto particular states soon became clear.

We believe that the CASVB strategy offers a
number of advantages for the modern VB descrip-
tion of excited states. In addition to the simultane-
ous optimization of VB orbitals and structure coef-
ficients, the possibility of simple “max(Syg)”
optimization for any given CASSCF solution is a
major strength. The requirement for saddle-point
optimization in the case of an energy-based opti-
mization is a complication relative to this, but it is
likely that our implementation of the TRIM algo-
rithm [34] will deal with this in an efficient man-
ner in most realistic cases. It is reassuring to see
that the close harmony between corresponding
overlap-based and energy-based results, previ-
ously found for ground-state calculations, also
holds for applications to excited states.

Appendix: Second-Order Optimization
of Exciled States

We have had very positive experience with the
restricted-step Newton—Raphson approach [26, 27]
for the straightforward optimization of simple
maxima or minima. Restricted step optimization of
excited states is implemented in several MCSCF
programs. It seemed reasonable, therefore, to look
for a generalization of our ground state scheme to
include excited-state optimization. The most natu-
ral such generalization, we believe, is the “trust-
region image minimization” (TRIM) method de-
veloped by Helgaker [34] in the context of
transition-state optimization. TRIM represents a
further development of the “image function opti-
mization” method proposed by Smith [44]. We
review here the main features of the strategy,
together with the particular considerations that we
found to apply to excited-state optimizations.

It is convenient to transform the optimization
problem (i.e., the Hessian matrix, gradient, and
update vectors) to the basis of Hessian eigenvec-
tors. The update, 8, can then be expressed as:

6= ——, i=1,...,n (16)

nog
and

§ = —— i=mn_.+1 N, a7)

neg [ parm ’
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in which g; and G;; are the gradient and Hessian
elements, respectively, and n,,, signifies the num-
ber of Hessian negative eigenvalues required at
convergence, as determined by the order of saddle
point sought. Hessian eigenvalues are assumed to
be in ascending order, and the parameter o is
chosen larger than min(G,

ne, nncg, o nncg+1nncg+1’ 0).

Comparing to the standard stabilized Newton—

Raphson procedure, Eq. (9), one can see this as a
maximization in the space of the first n,,, Hessian
eigenvectors, equally weighted with minimization
within the complementary space. The importance
of using a modified Hessian that has the correct
number of positive and negative eigenvalues has
been pointed out also by other researchers [29]. As
in our standard procedure, o is further optimized
to achieve an update on, or within, the trust sphere:

I8l < k. (18)

The trust sphere radius, h, is varied according to
the quality of the second-order method, which
may be gauged by the ratio r between the actual
(Af) and the predicted changes to the function f:

Af
" oTg +1/25'Gs

(19)

We believe that a number of the important points
in the simple stabilized Newton—Raphson proce-
dure are preserved in this approach:

1. The first n,,, components of & seek to maxi-
mize f, and the last N, — 71, to mini-
mize f, on, or within, the trust sphere.

2. Close to convergence, the method reduces to
the pure Newton—Raphson approach, as the

constant « is set to zero.

3. For small updates, the method approaches a
steepest ascent procedure in the first n,,
variables and steepest descent in the last
Nparm ~ Npeg-

The main difference from the simple extremum
optimization is that updates for which Af has the
“wrong sign” can no longer necessarily be re-
jected. The most straightforward way of overcom-
ing this difficulty is to ensure a relatively strict
adherence to trust sphere sizes for which the sec-
ond-order model is valid. In particular, it seems
likely that somewhat more “rejections” may be
required. The following is an outline of the trust

MOLECULAR EXCITED STATES

sphere control scheme as used in our present pro-
gram:

1. If r <025 or r > 4, the update is rejected
and & is reset to 0.5 X h.

2. If 0.75 < r < 1.33, the update is accepted and
h is reset to 2 X h.

3. For all other values of r, the update is ac-
cepted and h is reset to 1.2 X h.

Compared with our standard optimization proce-
dure, this new approach may require more itera-
tions to reach convergence (typically just 1 or 2),
but in none of the cases studied so far have the
convergence characteristics been severely affected.
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ABSTRACT: Vertical electron detachment energies of F~ and OH~ have presented
difficulties for perturbative electron propagator methods. A recently derived,
nondiagonal, renormalized approximation and two additional improvements are studied
here. These improvements are replacement of the Hartree—Fock reference determinant by
a determinant of approximate Brueckner orbitals generated by a coupled-cluster doubles
calculation and retention of correlation terms in the 2lp—2hp block of the superoperator
Hamiltonian matrix. Agreement with experiment is significantly better with these
methods. When Hartree—Fock orbitals are used, electron detachment energies are
underestimated, but approximate Brueckner orbitals lead to overestimates. © 1998 John
Wiley & Sons, Inc. Int ] Quant Chem 70: 651-658, 1998
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Introduction

E lectron propagator theory [1-8] is a versatile
vehicle for the study of unusual molecular
anions. Electron detachment energies of carbon
cluster anions [9-13], dianions [14, 15]; and quad-
Contract grant sponsor: National Science Foundation.
Contract grant number: CHE-9321434.
Contract grant sponsor: Petroleum Research Fund.

Contract grant number: 29848-ACé.
Contract grant sponsor: Gaussian Inc.

International Journal of Quantum Chemistry, Vol. 70, 651-658 (1998)

© 1998 John Wiley & Sons, Inc.

ranions [16] have been calculated with propagator
methods. Multiply charged, anionic complexes of
transition metals that are stable in the gas phase
have been identified with the aid of electron prop-
agator techniques [17]. Double Rydberg anions [18]
and bound, excited states of organic anions [19]
have been studied as well.

Several perturbative, electron propagator ap-
proximations [20,21] have been subjected to sys-
tematic tests of accuracy in the calculation of verti-
cal electron detachment energies of small, closed-
shell anions [22]. Average, absolute errors are ap-
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proximately equal to 0.2 eV for the partial third-
order (P3) approximation [23], a method that is
easily applied to larger anions.

Two anions, however, continue to challenge
perturbative approaches. Calculations on F~ and
OH™ with a variety of low-order and renormal-
ized methods consistently produce vertical elec-
tron detachment energies that are in serious dis-
agreement with accurate experiments [22]. Some of
these results are summarized in Tables I and II for
Koopmans’s theorem, as well as for second-order,
third-order [24], outer valence Green’s function [8],
and P3 [23] diagonal self-energy approximations.
These difficulties are not due to basis sets, for
additional improvements are likely to favor the
anionic reference state over the neutral final state,
leading to larger errors. While the P3 method per-
forms better than its predecessors of equal or
greater computational difficulty, its errors are still
unacceptable large: approximately 0.7 eV for F~
and OH™ with a triple { basis augmented with
diffuse and polarization functions. Nondiagonal,
renormalized self-energy approximations based on
perturbative improvements to reference state den-
sity matrices, such as 3 + [10,20], do not fare
much better. The inability of currently imple-
mented methods to describe F~ and OH™ impedes
study of the many anion—-molecule clusters and
metal-ligand complexes where these anions occur.
More powerful techniques therefore must be con-
sidered.

Two improvements on a nondiagonal, renor-
malized method that has appeared recently [25]
are considered here. The first is employment of

TABLE |
F ~ electron detachment energies (eV).

Basis KT 2 3 OVGF P3 3+ Expt.

6-311 + G(2df) 4.83 1.23 569 4.39 3.72 4.34
aug-cc-pVDZ 4.93 1.03 6.61 5.05 3.79 4.84
aug-cc-pVTZ 4.92 1.21 6.75 5.00 4.15 4.78 3.40

operator manifolds based on approximate Brueck-
ner orbitals [26] instead of Hartree—Fock orbitals.
For cases where ground-state correlation is qualita-
tively important, such as anions, radicals or transi-
tion-metal complexes, this option may be generally
useful. The second concerns treatment of superop-
erator matrix elements between shakeup opera-
tors. (These operators annihilate two electrons in a
reference determinant while creating an electron in
a virtual spin-orbital.) This improvement is cou-
pled to the first, for rotations between occupied
and virtual orbitals may require equivalent treat-
ment of simple annihilation operators and shakeup
operators.

After a review of previously derived methods,
the present modifications are defined in a common
notation. Test calculations on these two improve-
ments are performed independently and in combi-
nation. The best basis set of the previous study on
anions [22] is used initially so that comparisons
between new and old methods may be made. Basis
saturation is demonstrated by additional augmen-
tations. Conclusions on the utility of Brueckner
orbitals and higher order treatments of shakeup
operators are reached.

Theory

PHYSICAL INTERPRETATION

In its spectral form, the r, s element of the
electron propagator matrix is

G, (E)
= ({a’;a,))
(NlafIN =1, n){N = 1, nla N’
= lim { ), —
n-0|5 E+E(N-1)—E(N)~—in

(NlaJN + 1, m){(N + 1, mla’|N)
E—-E,(N+1)+E(N) +in

+X

m

(D
TABLE Il
OH ™ electron detachment energies (eV).
Basis KT 2 3 OVGF P3 3+ Expt.
6-311 + + G(2df,2pd) 2.88 —-0.01 3.59 2.38 2.12 2.45
aug-cc-p VDZ 2.95 —-0.17 4,22 2.86 2.1 2.84
aug-cc-p VTZ 297 —-0.02 4.43 2.86 2.48 2.82 1.83
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The propagator matrix is energy-dependent; poles
occur when E equals a electron detachment en-
ergy, E((N) — E(N — 1), or an electron attach-
ment energy, —E,(N) + E, (N + 1). Correspond-
ing residues, such as (Nlal|N — 1, n){N —
1, nlaIN) or {Nla,|N + 1, m){(N + 1, mlfINY, are
related to the Feynman-Dyson amplitudes (FDAs),
where

U, ,=(N-1,nlalIN) 2
or

U, ,={(N+1,mnlaIN). 3

FDAs suffice for constructing Dyson orbitals (DOs)
for electron detachments and attachments, where

Dveen(x) = Y ¢, (U, . (4)

In the former case, the DO is related to initial and
final-state wave functions via

poysn(x)) = fq!N(xl, Xy, X3, eee, Xn)
X \Irlik]—l,n( x2/ x3/ X4,..., xN)dxz dx3
Xdxy - dxy, 5)

while for the latter case,

¢'?yson(xl) — /'\If;;(le x3, X4,..., XN+1)

><'\I,N+1,n(xll Xos X3s00ey xN+1)

Xdx, dxy dxy -+ dxy, 4. (6)

The pole strength, P,, for final state n is given by

P, = [1gPren () dx,. )

DIAGONAL APPROXIMATIONS

Approximate electron propagator methods
are often classified by their treatment of the self-
energy matrix that occurs in the Dyson equation.
A computationally convenient form of this equa-
tion is

G 1(E) = G;'(E) — Z(E). ®

The inverse of the zeroth-order, propagator matrix
that recovers the Koopmans approximation for
electron binding energies has a simple form in the
canonical orbital basis,

[Gi(B)],, = (E— ), ©

where ¢, is the rth orbital energy. Relaxation and
correlation corrections reside in the self-energy
matrix, X(E). Poles of the propagator matrix are
values of E that satisfy

det{G~!(E)} = 0. (10)

This requirement is satisfied by searching for E
such that G™'(E) has a zero eigenvalue. The ac-
companying eigenvectors provide the Feynman-—
Dyson amplitudes. For valence electron detach-
ment energies, these eigenvectors are usually close
to unit vectors. Correlation corrections to these
electron binding energies are found chiefly in di-
agonal elements of L(E).

Diagonal approximations in the self-energy ma-
trix therefore have been employed widely. Here,
one needs only search for E such that

E=e¢,+ZL,(E). (11

Three iterations generally suffice for convergence
to 1075 a.u. when a Newton procedure is used.
Diagonal approximations also generate a simple
picture of electron detachment where electrons as-
signed to unperturbed canonical orbitals are sub-
ject to a relaxation—correlation potential repre-
sented by the diagonal elements of X(E).

Diagonal and nondiagonal expressions for ¥(E)
in second and third order of the fluctuation poten-
tial have been characterized in detail [24]. Second-
order results generally overestimate corrections to
the canonical orbital energy for valence ionization
energies of molecules, and third-order results dis-
play the opposite trend. Several recipes for scaling
third-order terms depend on ratios of second-order
and third-order self-energy diagrams; they have
been used widely in the diagonal approximation.
These three procedures are known collectively as
the outer valence Green’s function (OVGF) and
numerical criteria for choosing the best result have
been prepared [8, 27].

The recently derived P3 self-energy [23] pos-
sesses several advantages of efficiency and accu-
racy over its predecessors. It produced an average
absolute error of less than 0.2 eV in calculations on
the ionization energies of typical, closed-shell
molecules. This method eliminated contractions
with OV* dependence on the number of occupied
(O) and virtual (V) orbitals that are the arithmetic
bottlenecks in third-order (and therefore OVGF)
calculations. P3’s most difficult steps scale as
O?V?3. Calculations on the electron binding ener-
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gies of closed-shell molecules with over 300 basis
functions are now routine on relatively modest
workstations [28-30].

NONDIAGONAL, RENORMALIZED
APPROXIMATIONS

There are inherent limitations in diagonal ap-
proximations. Dyson orbitals must remain equal to
canonical orbitals, and final states with major re-
laxation effects therefore may be poorly described.
Diagonal approximations are inappropriate for
states with small pole strengths, such as those
occurring in inner-valence photoelectron spectra
[31].

Nondiagonal approximations with infinite order
corrections, or renormalizations, can be expressed
succinctly in terms of the superoperator Hamilto-
nian matrix. The propagator matrix may be written
as

GE) = [1 ol[El—(alAHa) ~(a | Hf)
~(f1Ha)  E1-(f1Hf)
x[é], (12)

where the primary operator space of simple field
operators, a, is partitioned from the orthogonal,
secondary space of product field operators, f. In
this notation [32],

(plv) =<NI[u,vI,IN), (13)

and elements of the superoperator Hamiltonian
matrix are given by

(w1 Hv) = (NIl ', [v, HIILIN). (14)

Poles and FDAs thus correspond to eigenvalues
and to primary space eigenvector components, re-
spectively, of the superoperator Hamiltonian
matrix. .

Each of the blocks of H may be evaluated in
various orders of the fluctuation potential. For
example, the primary operator block evaluated
through order n has constituents in each order
according to

(a| ﬁa)(n) = (a|Ha) + (a| Ha)i + (a | Ha)
+(a|Ha)s + - +(a| Ha)a. (15)

For this block, the first- and second-order terms
vanish for closed-shell reference states; f; is the
vector of two-particle, one-hole and two-hole,

one-particle (2 ph and 2hp, respectively) operators
defined with respect to a reference configuration.
For the (a|Hf,) and (f,| Ha) blocks, only the
zeroth-order term vamshes while the (f, | Hf,)
block has nonzero contributions in all orders.

Several approximate propagators can be defined
in terms of superoperator Hamiltonian matrix ele-
ments. For example, poles corresponding to the
nondiagonal, second-order self-energy approxima-
tion are recovered by setting

(a | I_/I\a)(O) (a | I_?fB)(l)

o | (16)

(f,1Ha)"  (£,1H5,)

The minimal choice needed to recover all third-
order terms in the self-energy is

A (3)
| @ipa)’®

o (a | Hf3)(2)

wl a7

(£, 1Ha)” (£, 1 Hf,)

The latter approximation also generates other terms
in all orders and is henceforth denoted by 3 +
[10,20]. Self-consistent treatments of the (a | Ha)
block may provide further refinements. Procedures
of this kind are employed in the extended 2ph
Tamm-Dancoft approximation (TDA), or third or-
der algebraic diagrammatic construction (ADC) (3),
methods [8, 201.

A recently developed, nondiagonal, renormal-
ized method (NR2) may be explained in similar
terms by separating the p and h subsets of a and
the 2hp and 2 ph subsets of f,. Diagonalization of
the NR2 superoperator Hamiltonian matrix, de-
fined by

[ Iclgxn)h I:I(O) I’:ngl )2 hp I:\IEI],)Z ph |
ﬁ _ H(;?)x H(;?)p Hp 2hp I:I(p],)2 ph
H(Zz}?p,h Hgl?;) HZh;r,th I/:I(201?p,2ph
I,:I(zl;)fh,h H(Z];))h, r H(ZO;)JII,th I:I(ZO;))II,th

(18)

is equivalent to solving the Dyson equation with a
nondiagonal, renormalized self-energy that is com-
plete in second order, but not third order, in the
fluctuation potential. All terms present in the P3
approximation are recovered in the NR2 method.
To take advantage of programs used for tradi-
tional configuration interaction calculations, eigen-
values of the symmetrized matrices, 2{H + H,
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are computed. Errors in the self-energy matrix
introduced by this procedure occur initially in
fourth order.

IMPROVED REFERENCE STATES
AND OPERATORS

Two extensions of the NR2 approximation are
considered here. This method may not be properly
balanced in its treatment of final states with appre-
ciable shakeup (2hp) character. It retains terms
through second order in the A nonp and H h
blocks, but only first-order terms in the Hth 2hp
block are kept. (In the canonical orbital basis, first-
and second-order terms in the Hh n block vanish.)
Therefore, second-order terms in the H,, »,21np block
are added to restore balance to the treatment of h
and 2hp operators.

A second extension of the NR2 method consid-
ers replacement of canonical orbitals by approxi-
mate Brueckner orbitals. Exact Brueckner orbitals
form a reference determinant such that single exci-
tation coefficients vanish in the full configuration
interaction wave function [26]. Approximate
Brueckner orbitals may be obtained from limited
configuration interaction wave functions by requir-
ing single excitation coefficients to be zero [33].
Coupled-cluster wave functions may employ a ref-
erence determinant, [Brueckner ), defined in a sim-
ilar manner [34]. In the so-called Brueckner dou-
bles (BD) [35] approximation,

BD) = e”2| Brueckner), (19)

where orbitals and double replacement coefficients
occurring in T, are simultaneously optimized. In
this study, the double replacement coefficients,
t, of

occ vir

=Y X tifdtdla;a (20)

ij ab

replace their counterparts from the first-order wave
function of many-body perturbation theory [36].
Superoperator matrix elements are evaluated with
the following metric:

(| v) = (Brueckner| uf, v], e™2[Brueckner).
(21)

This choice produces nonhermitian superoperator
matrices and is motivated by the following consid-
erations. Employment of this metric in combina-
tion with a complete operator manifold (u) for the

propagator final states has implications for
ground-state properties. Insertion of a propagator
defined thus in the contour integral expression for
total energies [37],

1
(N|HIN) =Tr———7f (h® + E1}G(E) dE, (22)
d7ilc

where h) is the matrix of the one-electron part of
the Hamiltonian and C encloses only the ioniza-
tion energy poles, yields the BD ground-state en-
ergy. Specification of a well-defined reference state
total energy is useful in the evaluation of final
state energies and properties [9, 38]. The choice of
Eq. (21) forces only one major modification in
programs written for canonical orbitals. In the
Brueckner orbital basis, elements of the Hh block
of the superoperator Hamiltonian matrix no longer
vanish. The H, , and H » blocks may be diago-
nalized without altering the BD ansatz.

Computational Methods

Calculations were performed with augmented,
correlation-consistent basis sets and the 6-311+ +
G(2df,2pd) [39] basis. These sets contain many
polarization and diffuse functions [40]. Because of
the inability of current propagator-based programs
to accept integrals over g functions, these contri-
butions have been omitted from the aug-cc-pVQZ
basis. For the sake of balance, f functions on
hydrogen have been omitted as well. The resultant
(6s,5p,4d,3f/5s,4p,3d) basis is subsequently sup-
plemented by additional diffuse functions whose
exponents are obtained by multiplying the previ-
ously smallest exponent of each angular momen-
tum type by 0.3. This (75,6 p,54,4f/65,5p,4d) basis
is the largest used here.

The OH bond length is 0.98 A; 1s orbitals on F
and O are omitted from propagator calculations.
Calculations are performed with modified versions
of Gaussian 95 [41].

Results and Discussion

Tables I and II demonstrate the difficulties en-
countered by previously derived methods in de-
scribing the vertical electron detachment energies
of F~ and OH". Errors with respect to experiment
[42] obtained with Koopmans’s theorem (KT) are
between 1 and 2 eV and are not unusual for
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closed-shell molecules and anions. In the columns
labeled 2, 3, OVGF, and P3, results of diagonal
approximations are listed. Corrections to canonical
orbital energies are overestimated with the
second-order self-energy and have the wrong sign
when the third-order self-energy is used. OVGF
predictions, as usual, lie between these two ex-
tremes, but still exhibit major discrepancies with
experiment. The P3 self-energy produces the best
results in the diagonal approximation, for the er-
rors with the aug-cc-pVTZ basis are less than 1 eV.
The nondiagonal 3 + self-energy contains all
third-order terms and many higher order terms; it
is therefore considered a generalization of the
third-order and OVGF diagonal approximations.
Agreement between 3 + and OVGF results is often
observed and differences between these two ap-
proximations are less than 0.22 eV in Tables I and
II. Unfortunately, 3 + results remain in serious
disagreement with experiment. Additional im-
provements in basis sets are unlikely to provide a
remedy for the failures of these approximate self-
energies, for all results, with the exception of sec-
ond order, are too large. Second-order errors in the
limit of basis set saturation are likely to exceed
1eV.

Results that employ four alternative approxima-
tions are shown in Tables III and IV. The first, a
nondiagonal, renormalized generalization of the
P3 self-energy, is the previously derived NR2
method [25]. The original form of NR2 used
Hartree—Fock orbitals and reference states. Here,
this method is labeled NR2-HF. Substitution of
approximate Brueckner orbitals in this treatment
of the superoperator Hamiltonian matrix defines
the NR2-BD method. Retention of second-order
terms in the H,;, ,;, block of the superoperator
Hamiltonian matrix may be called a second-order
description of shakeup states and is therefore la-
beled SH2. This choice can be made with Hartree-
Fock or approximate Brueckner orbitals, thus lead-
ing to the SH2-HF and SH2-BD columns of Ta-
bles III and 1V.

TABLE 1l
F ~ electron detachment energies (eV).

NR2- NR2- SH2- SH2-
Basis HF BD HF BD  Expt

aug-cc-pVTZ 299 355 3.02 3.60
6s,5p,4d,3f 3.16 355 3.16 3.61
7s5,6p,5d,4f 312 356 3.16 3.62 3.40

TABLE IV
OH ~ electron detachment energies (eV).

NR2- NR2- SH2- SH2-
Basis HF BD HF BD Expt

aug-cc-p VTZ 154 185 158 1.92
6s,5p,4d,3f/5s,4p,3d 160 185 1.64 194
7s,6p,5d,4f/6s,5p,4d 161 189 1.65 197 1.83

Comparison of NR2—-HF and P3 results with the
aug-cc-pVTZ basis reveals major discrepancies. For
ionization energies of closed-shell molecules, the
two methods are usually in close agreement [25].
NR2-HF, unlike P3, underestimates both vertical
electron detachment energies. As additional basis
functions are added, the predictions of this column
rise by less than 0.15 eV. Pole strengths are ap-
proximately 0.9 for all three basis sets and contri-
butions from canonical, virtual orbitals to the
Dyson orbitals are negligible. It is therefore likely
that the source of NR2-HF’s superiority is the
renormalization_that derives from the nondiago-
nal, first-order H,,, ,, block of the superoperator
Hamiltonian matrix.

When second-order terms in this block are
added, the SH2-HF model results. Some modest
improvements are realized. Basis set augmenta-
tions beyond 7s,6p,5d,4f/6s,5p,4d will lead to
slightly better agreement with experiment. The
behavior of pole strengths and Dyson orbitals is
similar to the NR2-HF results. Because generation
of second-order H,,, , ,, terms is not computation-
ally difficult, this approximation may be useful for
other anions. Remaining errors are near 0.2 eV.

The NR2 method also may be improved by
replacement of Hartree—Fock orbitals by approxi-
mate Brueckner orbitals. Substantial improve-
ments over the NR2-HF method are displayed in
the NR2-BD columns. Pole strengths are 0.89 for
F~ and 0.88 for OH". One orbital in the Brueckner
determinant dominates the normalized Dyson or-
bital with a coefficient in excess of 0.99 for all basis
sets. For F~, cocfficients near 0.1 for af,a} a,,
shakeup operators appear in the eigenvectors of
the superoperator Hamiltonian matrix. While the
propagator calculation is no more difficult with
the new orbital choice, a substantial investment
must be made in obtaining the BD reference state.

From a computational perspective, the addi-
tional work required by the H,,, ,,, terms that
depend on the coupled-cluster wave function am-
plitudes is minor. Somewhat larger increases in the
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vertical electron detachment energies accompany
the inclusion of these terms when approximate
Brueckner orbitals are used. Pole strengths, Dyson
orbitals, and shakeup operator participation are
approximately the same. With the largest basis, the
SH2-BD model overestimates vertical electron de-
tachment energies by 0.22 eV for F~ and by 0.14
eV for OH".

The SH2-BD model is perhaps the most satis-
factory considered here, for the next set of im-
provements must include 3h2p operators. These
contributions probably improve the description of
the electron-detached final state, but their influ-
ence on the initial state (through triple and
quadruple excitations achieved by coupling to the
p and 2ph operators) is likely to be relatively
minor. These effects will decrease electron detach-
ment energies. A slight overestimate may be ex-
pected with the present set of operators.

Conclusions

Previously derived diagonal approximations in
the self-energy matrix and the nondiagonal, renor-
malized generalization represented by the 3+
method fail to produce satisfactory predictions for
the vertical electron detachment energies of F~
and OH™. Saturation of basis sets provides no
remedy for this conclusion. The best of these meth-
ods is the partial third-order, diagonal approxima-
tion.

The recently derived, nondiagonal, renormal-
ized generalization of the latter method, known as
NR2, produces much smaller errors, approxi-
mately 0.2 eV. Small improvements are realized
when second-order terms in the ﬁz np,2np DlOCk Of
the superoperator Hamiltonian matrix are added.
Both of these methods underestimate the electron
detachment energies.

Replacement of Hartree—Fock orbitals in the ref-
erence determinant by approximate Brueckner or-
bitals generated in a Brueckner doubles, coupled-
cluster calculation produces values that overesti-
mate experiment, but the absolute errors are
smaller. When H, np,2np terms that depend on clus-
ter amplitudes are added, agreement with experi-
ment grows slightly worse.

The new approximations tested here are signifi-
cant improvements over the older techniques and
are a promising foundation for additional method-

ological developments and applications to anion
chemistry.
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ABSTRACT: A procedure for the calculation of molecular properties in the full
quantum mechanical treatment is presented. We formulate the non-Born-Oppenheimer
density functional theory and propose its numerical scheme. We numerically calculate
the energy, particle densities, interparticle distance, and (hyper)polarizability of the
hydrogen molecule and its isotopes using this method and discuss isotope effects on the
physical properties. © 1998 John Wiley & Sons, Inc. Int ] Quant Chem 70: 659-669, 1998

Introduction

T he Born-Oppenheimer approximation (BOA)
[1], which allows one to separate electronic
and nuclear motions, is often used to calculate
physical properties of a molecular system in
molecular physics and quantum chemistry. Within
the BOA, solutions of the electronic Hamiltonian
describe electronic energies depending parametri-
cally upon nuclear coordinates. The solutions give
a very effective and practical concept of the poten-
tial energy surface (PES). There are many advan-

Correspondence to: Y. Shigeta.
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© 1998 John Wiley & Sons, Inc.

tages of the PES concept, for example, the equilib-
rium interatomic distance of the lowest point of
the PES, the excitation among electronic and rovi-
brational states, and the transition states. They
give crucial information on chemical reactions and
spectroscopic data.

In chemical physics, there is, however, a wealth
of problems where quantum effects of nuclei are
essential. It is difficult to describe these nuclear
quantum phenomena within the BOA. The near
(avoid) crossing such as the Jahn-Teller effect
manifests that the separation is not accurate. For
an old problem, we can find a phase transition of
solid molecular hydrogen under a pressure at a
low temperature due to the quantum effect of the
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protons. We also know that proton tunneling plays
an important role in phase transitions between
various phases of water. In small systems such as
a hydrogen molecule and hydrogen molecular ion,
solving the Schrodinger equation without the BOA
has been tried by employing the specialized trial
function [2-5].

There are many ideas and methods grounded
on the non-Born-Oppenheimer (NBO) treatments
for molecular systems in both static [6-12] and
dynamic [13-15] cases. Recently, we developed
the NBO Hartree—Fock method based upon the
generator coordinate method (GCM) [11, 12] and
calculated molecular vibrational spectra and
molecular wave functions directly. The NBO den-
sity functional theory (NBO-DFT) was formulated
by Capitani et al. in 1982 [9]. DFT [16-18] is one of
many useful and simple methods for calculating
electronic properties and structural informations
for molecular systems. One of recent topics in this
field is molecular dynamics (MD) based upon the
DFT, which was initiated by Car and Parrinello in
1985 [19]. Some algorithms and computational
codes based upon the real-space grid (RSG) method
have been proposed for for years [20-26].

Capitani et al. introduced a chemical potential
for both the electron and nucleus by solving the
Euler equation for each particle and discussed the
meanings of the chemical potentials from the
viewpoint of a chemical reaction. They also showed
a relationship between the NBO-DFT and the
NBO-HF methods and pointed out its equality.
Although Capitani et al. formulated the NBO-DFT
method, realistic exchange-correlation potentials
were not expressed and a concrete numerical cal-
culation for molecular systems was not also exam-
ined.

In this article, we present a general NBO-DFT
calculation technique based upon the RSG. Our
aim in this work was to show the possibilities of
this method and a strategy of improvement in
calculations for realistic systems. In the second
section, we review details of the NBO-DFT for-
malism. We also remark on a calculation scheme
using the RSG method. We used the Fast Fourier
Transform (FFT) method and the local spin density
(LSD) approximation through this work for a first
approximation. The third section is concerned with
numerical calculation examples of some physical
properties of the hydrogen molecule and its iso-
topomers. In the fourth section, we briefly outline
the program for future theoretical and numerical

developments to the NBO-DFT. The fifth section
contains a summary and concluding remarks.

Theory and Technique

NON-BORN-OPPENHEIMER DENSITY
FUNCTIONAL THEORY

The full Hamiltonian H for a molecular system
consisting of N electrons and M nuclei is given as
(atomic units are used throughout in this text)

A N M1 1N 1
H=-)}Vi+ ) —V2+ -
2 ; ; 2m, 2 tgi I, — 1)l
1M z7 NM o7
to L~ L L ;@
2 a+bh IRH - Rbl i a |ri - Rnl

where r; and R, are the coordinate for i-th electron
and for a-th nucleus, respectively. Z, and m, de-
note the atomic number of a-th nucleus and its
mass. One defines a particle density for an electron
with ¢ spin:

pl () = [drl¥(r, 0, R, P, @)
and an a-type nucleus with I spin:
I ’ 2
pl(R,) =fdf|\1f(r,.,o,.,Rn,1,,)l, (3)

where dr (dr') denotes the product form of all
spin—space volume elements except for do, dr;
(dl, dR, ). Note that the index of a specifies the
kinds of the nuclei, for example, proton, deuteron,
and so on, whereas the index of a in Eq. (1)
denotes an order corresponding to one nucleus.

We now define a ground-state energy density
functional for the NBO as

E[{p7}, {pi}] = minC¥ . (ug HIW e -
(4)

E searches all wave functions in the domain of the
full Hamiltonian H of Eq. (1) of appropriate sym-
metries and statistics of particles. We can now
construct the well-known Kohn-Sham equation
for each particle using sets of one-particle wave
functions for both electrons {¢/(r)} and nuclei

{ x!<():
ﬁp”‘f’f” (1) = €9 (1),
Elay/«(R) = €ly/(R), (5)
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where }fe" and F} mean the Kohn-Sham operators
defined in the usual manner [16—18]. Explicit forms
of these operators for calculations are stated in the
next subsection.

Next, let us consider a molecular system inter-
acting with a static external electronic field charac-
terized by the scalar potential ¢. The total Hamil-

tonian H' for such a system is
. N M
H=H+ Y ¢G) - Y ZdR), (6
i=1 i=a

where H is defined in Eq. (1). Similarly, we yield
the ground-state energy functional including the
scalar potential ¢ which is a umque functional of
set of particle densities, { p7} and { p/’}:

E[{p}, {p]

= E[(p7}, {pl)] + L [ drpf (0 (x)

M
-z, f dR pL(R)$R). ()
o, I,

For the ¢-representable densities, E[{ p.}, {pl}]
coincides with the functional of Eq. (4).

NUMERICAL TECHNIQUE

We mention here a detail of a calculation scheme
using the RSG. We adopt the higher-order expan-
sions for the kinetic operator in Eq. (1) by using a
uniform grid. We approximate V’$,(x;, y;, z,) as

Vi (x,, Yjr 2)

Ny
= Y C, 7 (x; +n.hy, z)
ny= =Ny,
Ny,
+ Y C,¢7(x, y;,+n,h, z,)
n,= -N, Y
N,
+ Y Co¢7(x,y, 7 +nh), (8
n,=+Ny

where h is a grid spacing; C;, constants in the
differential method; and N,, a positive integer
describing the accuracy of this approximation. The
accuracy is ordered as O(h*Mi*?). The nuclear ki-
netic terms are also represented in analogical forms.
Other approximations for the kinetic operator are
referred to in [22, 26]. With these kinetic operators

in Eq. (8) and the local spin density approximation
(LSD), we can construct a one-particle Schrodinger
equation over the grid. We then yield the Kohn—
Sham equation from Eq. (5) as

ﬁead)ia(xi' Yir z;)
= [fe + V7 (x,, Yjr Zk)] &7 (x:, Y0 21
&b (X1, Y;, 21),
Fly«(X,,Y;, Z,)
= [1, + Vi(X,, Y, 2] xi+(X,, Y, Z)

aXz (X1/ ]/ Zk)/ (9)

where T, (T.), V(@ (V2(R)), and €7 (¢/) are the

one-particle kinetic operator, the external poten-

tial, and the orbital energy of the i-th state for an

electron (for an a-type nucleus), respectively.
These external potentials are defined as

Vx,, Y, z) + Ue(x;, Yir 2i)
(10)

veg(xir Y z) =

and

VI(X Z) = ZV(X,, Y;, Zy)

+ 0(X,, Y, Z), A1

ir Ljr

where V, is a classical Coulomb potential and U"
(Uk) is a exchange —correlation potential for the
electron with spin o (for the a-type nucleus with
spin I,). The classical Coulomb potential, which
does not depend upon the spins of two particles, is
given as

t
p'(s
V.(s) = [ ds s)l (12)

where p' means a generalized total density of the
molecular system defined as

pi(s) = =) Y. Z, pl(s) + Zpe"(s) (13)

a I,

For isolated systems, we can yield V. by the FFT
in forcing the supercell periodicity, which is com-
monly used in the calculations of the band struc-
tures. Other treatments to obtain the V are the
multigrid method solving the Poisson equation
[23, 26] and the direct summation method [21].
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On the other hand, the exchange-correlation
potentials, which depend on the spins of particles,
consist of three parts, which are the exchange part,
the correlation with identical particles, and correla-
tion with other particles. The exchange—correlation
potential in Eqgs. (10) and (11) can be represented
as

U =95+ 97+ 92, (14)
I — Ale o Ale 4 1l
Upe =i + G + 0fs. (15)

Because practical forms of the exchange—correla-
tion potentials are not known yet, then we con-
sider a bold approximation for the potentials. In
this work, we chose an exchange-correlation po-
tential for an electron as the X, potential (a = 0.7
for an electron in the hydrogen atom). The nu-
clear—nuclear correlation and electron-nuclear cor-
relation terms, which are the second term in Eq.
(15) and the third terms in Egs. (14) and (15), are
1gnored for a first-order approximation as 97, =
fige = flg5 = 0.

We can obtain the ground state by using the
reduction technique [14], which is available from
the Taylor expansion of an imaginary time evolu-
tion operator,

where N, and N/ are normalization constants, and
E7(t) and E! «(1) are generated by means of the set

of the wave functions {¢7(#), x/«()} at time t.

Numerical Result and Discussion

In this section, we present numerical results of
the physical properties of the hydrogen molecule
and its isotopomers using the NBO-DFT.

PARAMETERS

Table I summarizes various parameters of the
initial conditions adapted in numerical calcula-
tions. We assume that the range of molecular spac-
ing is L,,, = 44.61 (au), and we divide L,,,, into
128 grids (N = 128). The grid interval h is, there-
fore, about 0.3512 au. The corresponding cuttoff
energies for wave functions in the FFT is about 40
au. For an initial single-particle wave function for
the H, molecule, we set Gaussian functions with
an exponent of 21.95 located at (X,,Y,,Z,) =
(62, 64, 64) for the up-spin proton and (X,,Y,, Z,)
= (66, 64, 64) for the down-spin proton. These ex-
ponents for nuclei are determined by the full vari-
ational molecular orbital (FVMO) method pro-
posed by Tachikawa et al. [27]. Parameters for the
HD and D, are also listed in Table I. On the other

¢ (t +dt) = N,-((i),“’(t) —dt I—i"(t)(bi”(t)) hand, initial electronic wave functions are set at
) (X,,Y1,Z) and (X,,Y,,Z,), and the exponent
+0(dt?), 0.271 is used for all isotopomers. Note that the
initial wave function for the electrons is put at the
t4dt) = £) — dtEo(t) xo(t mnitia p
xi( ) ( xi+(8) () x( )) same grid point of nuclei and that exponents of the
+ 0(dt?), (16) wave function are different from those of nuclei.
TABLE |
Calculation of initial constants (au).
Initial Initial Initial
L max h location exponent mass Spin
H, electron 1 44.61 0.351 = (62, 64, 64) 0.271 1.0 T
H, electron 2 44.61 0.351 = (66, 64, 64) 0.271 1.0 !
H, nucleus 1 44 .61 0.351 = (62, 64, 64) 21.95 1836.0 1
H, nucleus 2 44 .61 0.351 = (66, 64, 64) 21.95 1836.0 A
HD nucleus 1 44.61 0.351 R = (62, 64, 64) 21.88 1836.0 1
HD nucleus 2 44.61 0.351 R, = (66,64, 64) 33.13 3672.0 l
D, nucleus 1 44 .61 0.351 R = (62, 64, 64) 32.43 3672.0 T
D, nucleus 2 44.61 0.351 R, = (66,64, 64) 32.43 3672.0 d
662 VOL. 70, NO. 4/5
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The intermolecular distance for initial location is
almost 1.4 au. We set N, = 4 in Eq. (8).

TOTAL ENERGY AND
INTERPARTICLE DISTANCE

The total energies of the hydrogen molecule and
its isotopomers are listed in Table II. The total
energies yielded by the BO X, method and HF in
the Gaussian 94 package [28] and the NBO-HF
method [11] are also shown in Table IL Note that
the energies obtained from the NBO procedure
include the so-called the zero-point vibration en-
ergy. Our results are comparable to the NBO-HF
method. From Table II, we find that the tendency
of the increment for the total energy of the iso-
topomers agrees with the results obtained from
other methods [4, 11], qualitatively. Note that the
results obtained from the present NBO-DFT
scheme do not include the nuclear-nuclear and
electron—nuclear correlation terms.

The average interparticle distance between elec-
tron and electron (e—e), electron and nucleus (e—n),
and nucleus and nucleus (n-n) is indicated in
Table III. All the tendencies of the interparticle
distances are H, > HD > D,. We should note that
the n-n distance does not mean the equilibrium
distance R, which is available from the BOA, but
corresponds to the average distance (R) over a
nuclear and electronic ground state. We can ex-
plain a relationship between R, and (R) by using
the PES concept shown in Figure 1. R, is the
lowest point of the PES. On the other hand, (R) is
the expectation value averaged over a vibrational
ground state.

DENSITY

We define here the densities for the electron and
nucleus as

P(x) =} Y p(x; Yi» z)h,
o jk
PAX) =L X Lp(X, Y, ZYK. (A7)

o I, jk

The densities for the electron and nucleus are
shown in Figures 2 and 3, respectively. Comparing
Figure 3(a) with (b) and (c), we can find the iso-
tope effect on the densities explicitly. The highest
amplitudes of the proton and the deuteron in each
molecule indicate that the average range where a

TABLE I
Total energy of hydrogen molecule (au).

H, HD D,
NBO-DFT —1.052804 —1.059503 —1.065855
NBO-HF —1.048296 —1.060542 —1.072764
BO-DFT(X_)* —1.066319 — —
BO-HF? -1.126755 — -

 Obtained from Gaussian 94 using the 6-31G basis at 1.4
au.

nucleus moves differ in each case. The protonic
density in H, is slightly different from that in HD
[see Fig. 3(a) and (b)]. The electronic density of HD
is not symmetric due to the nuclear density.

In Egs. (10) and (11), each potential is deter-
mined from the densities of the other particles. The
density of each particle, therefore, also depends
upon the densities of the other particles through
the coupled Kohn-Sham equations of Eq. (5). The
electronic properties depend not only on the atomic
number of nuclei but also on its mass because of
the behavior of the nuclear density. We conclude
that all electronic properties are diversified by a

TABLE 11l
Interparticle distance of hydrogen molecule (au).

e-e n-e n-n
H, 2.115571 1.795880 1.406685
HD 2.086376 1.771450 1.405375
D, 2.085256 1.770079 1.405226

Energy

.~

vibrational G.S.

4
Re<R>
Inter atomic distance (a.u.)

FIGURE 1. A relationship between the equilibrium
interatomic distance and average nuclear distance of the
vibrational ground state using the PES.
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FIGURE 2. Electronic density of (a) H,, (b) HD, and (c) D, (au) using converged wave functions. The range of the
figures are from i = 48 to 80 (from x,4 = —5.62 to x4, = 5.62).
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FIGURE 2. (Continued)

circumstance by which electrons move around, for
example, the nuclear motions and kinds of nuclei
of which molecular systems consist.

POLARIZABILITY AND
HYPERPOLARIZABILITY

We calculated the linear and nonlinear optical
properties of these systems. In Egs. (6) and (7), we
extended the NBO-DFT to molecular systems in a
static external field of ¢(s). The static (hyper-)
polarizabilities are defined as

o= |-ZE (1)
I BTN I
F-0
9°E
B0 = | JE 3 oF ’ (19)
! ] k F—-0

where

E(F) = E(0) — u,F

1 1 5 1 .

—EaF - EBF - ZyF — e (20)
E(F) is the molecular total energy in the presence
of a static electric field ¢(s). ¢(s) is approximated
as F + s in Eq. (7), where F is a field amplitude and
s represents a coordinate. We can obtain (hyper)

polarizabilities by solving Egs. (18) and (19) nu-
merically by using the finite-field method. Table
IV indicates the (hyper)polarizability «,, and B, ,,
of the hydrogen molecules and isotopomers by the
BO and by the NBO-DFT. The «,, values ob-
tained form the NBO-DFT increases in the order
of the nuclear mass, that is, H, < HD < D,. From
Table IV, the B, ,, value of the HD molecule has a
nonzero value, but that of the other symmetric
molecules are equal to zero, due to the unsymmet-
ric system shown as Figures 2(b) and 3(b). Within
the conventional BO procedure, it is difficult to
obtain the B,,, value of the HD because the
nuclear mass effect on the electronic properties is
omitted.

Future Program

In this section, problems which need to be im-
proved on are mentioned briefly.

EXCITED STATES AND
REAL-TIME DYNAMICS

For dynamic cases, we presented the molecular
wave packet (MWP) method to investigate the
isotope effect on the (hyper)polarizability of the
one-dimensional hydrogen molecule and its iso-
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FIGURE 3. Nuclear density of (a) H,, (b) HD, and (c) D, (au) using converged wave functions. The range of figures

are from / = 48-80. H and D represent the proton and deuteron, respectively. The numbers in a parentheses denote the
maximum density.

(=)
'
S
~

topomers [14]. It is, however, actually difficult to Although the present NBO-DFT method also
extend this method into three-dimensjonal many- enables one to extend a real-time evolution scheme
particle systems, because the method is computa- straightaway once the exact ground state is deter-
tionally demanding. To reduce the computational mined, the method deals only with the ground
efforts, it is necessary to introduce an approxima- state. To tackle the realistic cases where the BOA
tion as a possible retaining accuracy. breaks down, this method must be reconstructed
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in order to treat the excited states. Several exten-
sions of the ground-state DFT have been contrived
to cope with excited states. They are based either
on the Reyleigh-Ritz principle for the lowest
eigenstate of each symmetry class [29, 30] or on the
variational principle for ensembles [31, 32]. The
crucial problem is how to determine the ex-
change—correlation energy functionals for excited
states. Recently, Gorling suggested a computa-
tional scheme for the treatment of excited states
within the DFT [33] and the time-dependent
Kohn-Sham formalism which is generalization of
the DFT perturbation [34]. Gross et al. also derived
another time-dependent DFT with excited states
[35]. At the next stage, making use of these meth-
ods may enable us to treat the time-dependent

TABLE 1V
(Hyper)polarizability of hydrogen molecule (au).

aXX ﬁXXX
H, 6.3020 0.0
HD 6.3025 410 x e *
D, 6.3029 0.0
H,(BO-DFT)? 6.6436 0.0

@ Obtained from Gaussian 94 by using 6-31G basis at 1.4
au.

molecular dynamics including both ground and
excited states using the DFT.

EXCHANGE AND CORRELATION ENERGY
FUNCTIONAL FOR ELECTRON AND NUCLEI

Quite independent of the problems connected
with the exchange-correlation energy functionals
for the excited states, there are some questions of
how to uniquely choose the functionals for both
the fermion and boson nuclei and for electron—nu-
clear coupling. At this stage, we have neglected
such effects in Egs. (14) and (15). Here, we will
make some remarks about it briefly.

For the fermion nucleus, due to the anticommu-
tation relation or Hund’s rule, the identical nu-
clear—nuclear exchange—correlation terms may be
represented as the same form for the electronic-
electronic ones. On the other hand, the boson nu-
clei satisfy the commutation relation. For the bo-
son nucleus, the Kohn—Sham equation may be
represented as only one differential equation with
a density. The identical exchange—correlation terms
may be obtained from the imperfect Bose gas
model, taking all these considerations into account.
Electron—nucleus correlation terms which are the
third terms on the right-hand side of Egs. (14) and
(15) and different nuclear-nuclear correlation
terms are indispensable for describing the nonadi-
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abatic effects. We can never neglect these coupling
terms. There are many cases for calculating such
terms, for example, a correlation between the elec-
tron and fermion or boson nucleus and between
fermion and boson nuclei. Although the last terms
are very small in comparison with the other terms,
when one investigates a deuteron in metallic hy-
drogen and a mixture system of *He and *He, the
last terms seem to be very significant. Much
progress is exceedingly expected to search them.
We now prepare for a construction of the exact
functional beyond the LSD using the GW approxi-
mation [36, 37] and the generalized gradient ap-
proximation [38] methods, taking advantage of the
scaling low generated by the virial theorem [39].

Concluding Remarks

An NBO-DFT calculation scheme based upon
the real-space grid method was presented to apply
to molecular systems. A numerical calculation for
a simple system such as the hydrogen molecule
was attempted. We evaluated total energies, densi-
ties, interparticle distances, and (hyper)polarizabil-
ities of the hydrogen molecule. Calculations of the
(hyper)polarizability o,, and B,,, were also per-
formed using the finite-field method. The unsym-
metry of the HD molecule is affected by the B,,,,
which is difficult to obtain by the BO procedures.
We pointed out that all electronic and nuclear
properties depend upon the charges and masses of
particles of which a system consists, because the
densities of particles are determined from the cou-
pled Kohn—-Sham equation of Eq. (5). We showed
that it is possible to discuss isotope effects among
the hydrogen molecule and its isotopomers at least
qualitatively, although only a poor correlation term
is used. Many works are needed to implement the
NBO-DFT method, but the nuclear kinetic effects
on the quantum chemistry and molecular physics
seem to be well understood.
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ABSTRACT: In this article, we derive the analytical asymptotic structure in the
classically forbidden region of atoms of the Kohn—Sham (KS) theory exchange~correlation
potential defined as the functional derivative »,.(r) = §EX5[ p]1/8p(x), where EXS[ p] is
the KS exchange—correlation energy functional of the density p(r). The derivation is via
the exact description of KS theory in terms of the Schrédinger wave function. As such, we
derive the explicit contribution to the asymptotic structure of the separate correlations
due to the Pauli exclusion principle and Coulomb repulsion, and of correlation—kinetic
effects which are the source of the difference between the kinetic energy of the Schrodinger
and KS systems. We first determine the asymptotic expansion of the wave function,
single-particle density matrix, density, and pair—correlation density up to terms of order
involving the quadrupole moment. For atoms in which the N- and (N — 1)-electron
systems are orbitally nondegenerate, the structure of the potential is derived to be

v, (1) ~ —1/r—a/2r* + 8k, x/5r°, where a is the polarizability; x, an expectation

valuergf the (N — 1)-electron ion; and Kg /2, the jonization potential. The derivation
shows the leading and second terms to arise directly from the KS Fermi and Coulomb
hole charges, respectively, and the last to be a correlation—kinetic contribution. For atoms
in which the N-electron system is orbitally degenerate, there are additional contributions
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of O(1/r®) and O(1/r%) due to Pauli correlations. We show further that there is no
0O(1/75) contribution due to Coulomb correlations. © 1998 John Wiley & Sons, Inc. Int ]

Quant Chem 70: 671-680, 1998

Key words: density-functional theory; exchange—correlation potential

Introduction

l n this article, we derive for atoms in the classi-
cally forbidden region the analytical asymp-
totic structure of the Kohn-Sham [1] (KS) density
functional theory [2] exchange-correlation poten-
tial v, (r). This potential is defined as the func-
tional derivative 8EXS[ p]/8p(x), where EX’[ p] is
the KS exchange—correlation energy functional of
the density p(r). The energy functional, and thus
its derivative, incorporate electron correlations due
to the Pauli exclusion principle, Coulomb repul-
sion, and correlation—kinetic effects which are the
source of the difference between the interacting
Schrodinger and noninteracting KS system kinetic
energies. Our derivation is within the framework
of the exact interpretation [3-6] of KS theory in
terms of the Schrodinger wave function V. A prin-
cipal advantage of this interpretation is that it
delineates the contribution of each type of correla-
tion to both the energy and potential. In this man-
ner it is then possible to derive the explicit contri-
bution to the asymptotic structure of v, (r) due to
Pauli and Coulomb correlations and correlation—
kinetic effects. This understanding not only pro-
vides insights into the theory, but also allows for
the meaningful construction of approximate ex-
change—-correlation energy functionals and poten-
tials, which is one major focus of research in den-
sity functional theory. (We note that correlations
due to the Pauli exclusion principle are usually
referred to as exchange effects. However, in KS
theory, the “exchange” potential contains correla-
tions resulting from the Pauli principle as well as
those due to part of the correlation—kinetic effects.
In the present work, we refer to correlations aris-
ing from the Pauli principle as Pauli correlations,
and those due to Coulomb repulsion, as Coulomb
correlations.)

The systems that we consider are those for which
the N-electron atom may be orbitally degenerate,
but the (N — 1)-electron ion is always orbitally
nondegenerate except for the twofold spin degen-

eracy for example, B and Mg atoms and their ions.
For the case when both the N- and (N — 1)-electron
systems are nondegenerate, we obtain the asymp-
totic structure of v, (r) to be

1 o 8Ky X
v (1) ~ - —
r

-e v 27t 5¢° B
where « is the polarizability; y, an expectation
value of the (N — 1)-electron ion; and «2/2, the
ionization potential. The (—1/r) term is shown to
arise directly from the KS Fermi hole charge, and
the (—a/2r?), from the KS Coulomb hole. Neither
Pauli nor Coulomb correlations contribute to
O(1/75). The last term is further shown [7] to be a
correlation—kinetic contribution. For these assigna-
tions to O(1 /r°), the wave function is expanded in
the classically forbidden region to include terms
involving the quadrupole moment tensor. For the
case when the N-electron atom is orbitally degen-
erate, we obtain

8xkox R

~ —_ — — —_—— — + PO — + vee ,
V’“(r)r—m rooord 2rf 5¢r° rd
(2)

where the additional O(1/r%) and O(1/r°) terms
are Pauli-correlation contributions, and Q and R,
multipole moments of the density. The physics of
the other terms remains unchanged.

Prior to proceeding with our derivation, we
briefly discuss the previous work of others. The
first two terms of the structure of Eq. (1) have also
been obtained quantum mechanically by Alm-
bladh and von Barth [8]. These authors first de-
rived the differential equation for the quasiparticle
amplitudes which are the interacting system coun-
terparts of the single-particle orbitals of the nonin-
teracting system. Then, on comparison with the KS
equation, they determine »,(r) to O(1/r*) to be

1
ch(r) = V}SN‘])(I‘) - VH(r) - -2? qufﬁ Qg (3)
af

where v, (r) = [dr'p(r')/Ir — | and v’ (r) are
the Hartree potentials for the N- and (N — 1)-
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electron systems, a,, is the polarizability tensor of
the (N — 1)-electron ion, subscripts o and B rep-
resent Cartesian coordinates, and 7, is a com-
ponent of the unit vector 7. For the case when
both the N- and (N — 1)-electron systems are
nondegenerate, asymptotically, the potentials
v ~ (N-1)/r and vy(r) ~ N/r to ex-

ponentialr—z;czcuracy and a,p = a8: - The leading
—1/r term of Eq. (1) arises as the difference be-
tween two Hartree potentials. The authors, how-
ever, ascribe this term to the Fermi hole which has
a total charge of (negative) unity and, thus, to
Pauli correlations. But the KS Fermi hole charge
does not appear in the derivation so that the basis
for the assignation is unclear. The (—a/27*) term
is attributed to Coulomb correlations. However,
this assignation is based on a comparison with a
classical calculation of an ion and an asymptotic
test charge. Once again, there is no direct relation-
ship between this term and the KS Coulomb hole
charge or other equivalent representation of
Coulomb correlations within KS theory. Of course,
in the classical calculation, even the —1/7 term is
due to Coulomb correlations. It is interesting to
note that, classically, higher-order contributions [9]
are of O(1/7%,1/r®), etc., and thus of even order.
There are no terms of O(1/r°) in the classical
calculation. Such terms are strictly a consequence
of quantum effects and KS theory.

The leading (—1/7) term of v, (r) was also
derived by Sham [10]. In the asymptotic limit, the
integral equation relating »,(r) to the nonlocal
exchange—correlation component 3, (r, 1'; @) of the
self-energy 3(r,1’; ») reduces to

1
v, (r) = mr—)—/dr S e (x)

1

+agr | R W), @

where ¢,(r) are the KS orbitals, u is the chemical
potential, and the electron is in the highest occu-
pied orbital. By considering the leading exchange
term in a diagramatical analysis, the (—1/7) term
is obtained, and, thus, this structure can be at-
tributed to Pauli correlations.

Finally, according to Harbola and Sahni [5], the
asymptotic structure of v, (1) is given by W°(),
which is the work done to move an electron in the
field of the KS Fermi hole. The (—1/r) structure is

then obtained because the total charge of the Fermi
hole is unity and the fact that it becomes an
essentially static charge in the limit of asymptotic
positions of the electron. The KS Coulomb hole
does not contribute asymptotically to this order
since its total charge is zero, and the field due to it
vanishes in this region faster than O(1/r?).

We begin in the next section by defining the KS
exchange—correlation potential in terms of its
components as described by the quantum mechan-
ical interpretation. We first determine the asymp-
totic structure of the wave function, single-particle
density matrix, and pair—correlation density up to
terms including the quadrupole contribution in the
third section. In the fourth section, we then derive
the asymptotic structure of the quantum mechani-
cal Pauli-Coulomb component of the KS ex-
change-correlation potential and separately that of
the Pauli and Coulomb correlation parts. In the
fifth section, we derive the structure of the correla-
tion—kinetic component. In the concluding section,
we summarize what has been understood and
discuss future work. We also discuss how the
present derivation helps explain the accuracy of
previous results on the ionization potential of
atoms.

Definitions

The KS theory exchange—correlation energy and
potential can be described exactly in terms of the
Schrodinger wave function W. For proofs of this
description, we refer the reader to the original
literature [3, 6]. Here, we provide those definitions
relevant to the present work.

The KS electron-interaction energy functional
EXS[ p] = Ey4l p] + EX[ p], where Egl p] is the
Coulomb self-energy. The corresponding local po-
tential representative of all the electron correla-
tions is then w,(1) = SEX’[ pl/8p(x) = vy (x) +
v, (). This functional derivative is the work done
to move an electron in a conservative field F(r):

v = = [ F)-dr. ®)

The work done is path-independent since V X #(r)
= 0. The field $(r) is the sum of an electron-inter-
action &,(r) and correlation-kinetic Z,(r) compo-
nent.
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The field &, (r) is determined by Coulomb’s law
from the pair—correlation density g(r,r'), so that

g, ) —1)

& (1) = [ dr', 6)

e —

where g(r,r') = P(r,r')/p(x), and P(r,1') is the
probability of simultaneously finding electrons at r
and r”:

P(r/rl) = N(N - 1) Z f\P*(r(f’rIU’le}l'“xN)
XW(ro,r'o’,x;, - xy)dV"*x. (7)

(Here, x =ro, [dx =73, [dr, [d"" *x = [dx, -
dxy, and o is the spin index.)

The field Z, (r) is the difference of two fields z(r)
and z (1), Wthh are derived from the kinetic en-
ergy- dens1ty tensors ¢,,5(r) and t ,5() for the
interacting Schrodinger and noninteracting KS sys-
tems, respectively. Thus,

1
Z,(1) = —=lz,;[v] — z(xr;[yD], (®

p(r)

where the component of the field z(r) is z (r) =
255(0/ 1)t g6 [y D, t, 5 [yD = (1/40a8%/
ar! &rg + az/é‘rB&r”)y(r e =, and y(r, 1) is
the spinless single-particle density matrix

y(r, ') = NZ/‘I’*(r(r,xz,-“xN)

XU(t'o,x,, - x)d¥ 'x. (9)

The field z (r) is similarly obtained from the idem-
potent Dirac density matrix y,(r,t') = X, L, ¢¥
(ro)¢(r' o) constructed from the KS orbitals ¢,(x).
The density p(r) is the diagonal matrix element
v(x, 1).

For spherically symmetric atoms, or nonspheri-
cally symmetric atoms in the central field approxi-
mation, etc., the curl of the fields &,(r) and Z,(r)
separately vanish. For such systems then Vu.(l')
W, (r) + W, (r), where

W0 = - [ &,.6)-d1, (10)

and
W = - ['z,a)-av, (11)

and each work done is path-independent.

Asymptotic Structure of Wave
Function, Single-Particle Density
Matrix, and Pair-Correlation Density

In this section, we derive the asymptotic struc-
ture of the wave function ¥, of the single-particle
density matrix y(r,t’) and, hence, of the density
p(r) and the pair-correlation density g(r, ).

WAVE FUNCTION

The ground-state Schrt')dinger equation for a
system of N-electrons in a local external potential
described by the operator V =T, v(r,) is HV =
E,¥, where = —(1/2L; V2 + L v(r) +
(1/2)2‘, 1/Ir; — rl and ¥ and E, are the wave
function and the energy, respectively. The com-
plete set of eigenfunctions and eigenenergies of the
(N = 1)-electron system are defined by the equa-
tion HN-DYN-D = EN-DY(N-D We first ex-
pand the wave funcnon ¥ in terms of the eigen-
functions YN~ :

xy) = Zcm(r)q's(N_U(Xz/ Xy,
(12)

Y(ro,x,,

and rewrite the N-electron Schrodinger equation
as

1Vz 1) % 1 1 %Vz
-=V2+ + Yy —— =3V
2 Vi k-l 25"
N 1
+X v+ 2 2. Cyr (WD
i=2 2 isj#l I, — rjl s
=E, ). C,,(0)¥N-D, (13)

For asymptotic positions of the electron, we have
by Taylor expansion

1 1 r-r 3?2

== —+ Zrmlﬁ(y 07

= 14
It —r] r (19
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so that Eq. (13) may be rewritten as

N-1

1VZ
—E +V(I‘)+

X Y.C,, (D¥N-D 4 HN-DY ¢ ()TN
s s

=Ey ), C,, oD, (15)
s

which reduces further to

1 N-1
[— —2—V2 + v(r) + ]Ecso(r)‘I’S(N_l)

+z[—*+ L rur o 1]

ialip A1, o1 T

X Y Cop (WD
s

= Y [E, - EN-V]C,,0¥ND. (16)
S
Multiplying Eq. (16) from the left by ¥$¥~" and

using the orthonormality condition (‘I'(N D
PYN-DY = § ., we have

1 N —
- 5V2+ v(r) +

>y Z (97" I rg - :;Cs a(r)(st )aB
= [1—:0 - EN-D]C,, (1), a7
where
N
=X f\ys(N_l)*(XZl'“xN)ri
i=2
X WN"D(x,, - xy)dV¥ " x (18)
and

N
N-1y*
(st')aﬁ = Z f‘I's( )(XZr'”xN)riarig
i=2

X WN-"D(x,, - xy)dV " x. (19)

1
C,o (1) + — ch +(OP,,

Here, P, is the dipole moment, and (Q,,),, the
quadrupole moment tensor of the (N — 1) electron
system. With the definitions

D..(#) =#-P,, (20)

and

N =

st'(f;) = Z (3;;&;’\[3 - aaﬂ)(st’)aB' (21)

a, B
Eq. (17) becomes

1
[— EVZ + v(r) + ]Cw(r)

EDss(r) + = ZQ“(r)]

X CS,U(r) = ¢C.. (), 22)

where €, = E; — E&N ™D, This is the same equation
as derived by Almbladh and von Barth for the
quasiparticle amplitudes, but it is derived here via
the wavefunction and carried to O(1/r%). The
asymptotic structure of the coefficients C,,(x) for
s # 0 is then obtained from Eq. (22) as

1 . Cor (0
Cso'(r) == —_ZDSO(r) 3QsO , (23)
r w,
where o, = €, — ¢, = EN™D — E{N"D is an exci-
tation of the (N — 1)-electron system. Thus, the
asymptotic structure of the wave function to
O(1/73) is derived.

SINGLE-PARTICLE DENSITY MATRIX

On substituting Eq. (12) for ¥ into Eq. (9) and
using the orthonormality condition of the ¥V =1,
we obtain the asymptotic structure of y(r,r') as

y(r, ') = NZ ZC ®C,, (')
= NZCOU(r)COU(r,)

O(r) D, (7")
2

{ Z r? r
D5(7) Qso(i}l) Qio(7) Dy(7")

1"2 1’,3 7'3 r/2

L Sa(P) Qso(f')}}

24
1,. r13 ( )
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(Here, Z, = Z,,,.) The dipole-quadrupole cross
terms in Eq. (24) can be shown to vanish by rewrit-
ing each term as

1 D,o(7) Q%(#")
Z ) 2 3

s WS T r
1
= ;.- ’ /3 Zr' rér)\
afBA
1-P
N-1| 2 N-1
XN D g5, [V ),
[A - EN-1]
0
(25)

where d = [rdp(n) dr, 4,
= p(1) — (TN I H@IPN D), p =%, 8(r— 1),
and P = I\I’(N DY (PND] is the projector onto
the (N — 1)-electron ground state. [Note that the
dipole d and quadrupole §,, moment operators
are the same as in Egs. (18) and (19) since the
second term of the operator 85(r) does not con-
tribute on account of the fact that the (N — 1)-
electron system is spherically symmetric.] Now,
the operators P, H, and 4., are invariant under
the inversion operator I, while d, changes sign.
Thus, the dipole-quadrupole term vanishes. The
density matrix is then

y@, ) ~

r,r'ow

= [r,756p(r) dr, 8p(r)

N Z CO(r (r)CO(r (r’)

1 [D;ko(f) Do (7"

X{l—l_ZF 2 12

s B ¥ ¥
| —

The asymptotic structure of the density p(r) is
given by the diagonal matrix element y(r,r) so
that to O(1 /r®)

p(r) ~ NZICOU(I)l2

| D, (MI? N s
LA |Q‘°r: | ]} 27)

¥

|
x{1+2?
S

s

For the systems considered, the leading term of
y(r, ') as r, ¥’ = o is from Egs. (26) and (27):

Vo) Vo), (28)

which is a well-known result [2, 11, 12].

y(r, ') ~
r,rlox

PAIR-CORRELATION DENSITY

On substituting Eq. (12) for ¥ into the defini-
tion of P(r,r') in Eq. (7), we have

P(r,r') = N(N-1)

<8 f [ o )
+ ZC* ()W~ ])*(r’o",x3,--'xN)]

X | Coow MY D' o, x5, - xy)

+) C.,(VYN"D(r'g’, x,, xN)] dN=2x
x

=NY [lcov(r)lzp””‘”(r’)

T

+ 2 CE (1)C., (1) i~ *)(r')]
+ Z C¥ (1)Cy, (1) pty~D(x")

+ Y Cr(0C,., (0 pN ("), (29)
where

p_.gg\'lil)(r,) = (N - 1)2[‘1’5(N_1)*(1"(71,X3,"‘XN)
pr
X WN"D(t'o’,x,, - xy)dV " 2x. (30)

Thus, the asymptotic structure of the pair—correla-

tion den51ty g(r, '), on substituting for C,,(r) from
Eq. (23), is to O(1/r®)
! 2
8 1) ~ — TIC, W o)
) 02 So(r) Q-‘ng)‘ (N=1)(p")
w,| r? r
v 1 [ DE(P)D,o(7)
N Z w,w [ : r :
M] pgﬁ’*”(r')}. (31)
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For the systems considered, the leading term of
g(r, ') in the asymptotic limit is p™ ~P(xr"), which
is also a well-known result [11-13]. Here, we have
provided the higher-order contributions.

Asymptotic Structure of the
Electron-interaction Potential and Its
Pauli and Coulomb Correlation
Components

We begin this section by determining the
asymptotic structure of the quantum mechanical
electron-interaction component W, (r) of the KS
electron-interaction potential v,,(r). Substituting
Eq. (31) for the pair—correlation density g(r, ')
into Eq. (6) for the electron-interaction field &,,(r),
we obtain

N-1 DX (#) Dy(7) 1

gee(r) ~ -V _ Z s0 0 =1
r— r s W, 4

(32)

to the accuracy of O(1/r®). Thus, asymptotically,
the work done in this field is

N-1 o
Wee(r) r—~>°° " - —2_1’:{, (33)
where
» D5(P)D,o(7)
a=2)y 27 (34)
s wS

is the ground-state polarizability of the (N — 1)-
electron system. Note that the result for W, (¥) is to
the accuracy of O(1/7°). In other words, there are
no O(1/r%) contributions to ,,(r) due to Pauli and
Coulomb correlations. The results of Egs. (32) and
(33) are valid for when the N-electron system is
either orbitally degenerate or nondegenerate.

We next determine the separate KS Pauli and
Coulomb correlation contributions to the asymp-
totic structure of W, (r). The pair—correlation den-
sity may also be expressed [3] as g(r,1') = p(x') +
p.{r, 1), where p,(r, 1) is the quantum mechani-
cal Fermi—Coulomb hole charge. In turn, p,(x, 1)
can be written [3] as p,(r 1) = pf5(, 1) +
pX5(x, "), where pXS(r,v') and pf°(r,1") are KS
Fermi and Coulomb holes, respectively. The Fermi
hole is expressed in terms of the KS orbitals ¢,(x)
as pXS(r,r') = —|y(r,t')?/2p(). Thus [3], the

electron-interaction potential W, (1) = vy () +
WXS(r) + WXS(x), where

WS = - | ‘@ XS(r') - dl’ and

X WSS = — [(&X5a) - dv, (35)
with
KS ’ ’
oo PSEE-T)
&0 = f T dr' and
K5(r, ') — t')
gxsw = | 2 ——dr' (36)
e —r'|

being the Pauli and Coulomb correlation fields,
respectively. It is evident that the N/r term of
W, (1) of Eq. (33) of the KS potential v,,(r) is due to
the Hartree potential v(x).

Since in KS theory only the highest occupied
orbital ¢y (x) contributes to the asymptotic struc-
ture, we have to exponential accuracy v,(r, r')

~ ¥, &f(xa)dy (' o). Thus, asymptotically,
roo

4 1
ngS(r)r:w mM’N(r)F(V?)IWN(I )|2 dr
r
T 37)
so that
1
WESG) ~ -~ (38)

to exponential accuracy. Thus, the (—1/7) asymp-
totic structure of the KS electron-interaction poten-
tial »,,(r) is due entirely to Pauli correlations. As a
consequence [and from Egs. (33) and (38)], we
have

WES(D) ~ — (39)

r—® 21’4,

so that the term of O(1/7%) in »,,(¥) is strictly due
to Coulomb correlations, arising from the KS
Coulomb hole charge.

The Hartree vy, (r) and Pauli W/ 5(r) potentials
will have higher-order contributions for the case
when the N-electron system is orbitally degenerate
since the density p(r) is no longer spherically sym-

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 677



QIAN AND SAHNI

metric. Expanding 1/|r — r'| in Legendre polyno-
mials P(x), we have

(r) N + QK (40)
~ — pR— + — + “es
A roow r3 1’5
and
r 3r 5r
&) ~ =5 - =Q- R+, 41
r—ow Y r r
so that
1 Q
Wsz(r)~ - - -=+ ,  (42)
r—w r
where

Q= fp(r’)r’sz(Cos 6') dr’, (43)
R= fp(r’)r’4P4(cos 6")dr’. (44)

Note that the terms of O(1/73) and O(1/r°) in
v (r) and WXS(r) cancel out. Thus, for both the
orbitally degenerate and nondegenerate N-electron
systems, the asymptotic structure of WX%(x) is the
same to O(1/r°) and is given by Eq. (39).

Asymptotic Structure of the
Correlation—Kinetic Potential W, (r)

In this section, we determine the asymptotic
structure of the correlation-kinetic field Z,(r) and
potential W, (r). These results have been previously
derived by us [7], employing quasiparticle ampli-
tudes, and the physics and details of the calcula-
tions are the same. Primarily, the asymptotic struc-
ture of the density p(r) and idempotent density
matrix 7,(r,t') are governed by the highest occu-
pied KS orbital ¢y(x). Since the densities of the
interacting and noninteracting systems are the
same, the asymptotic structure of ¢, (r) is obtained
from Eq. (27) as [8, 11, 13]

(,bN(r) = \/NZ |C0(r(r)|

D A2 ANE2
| 50(4r)| N leo(ér)l

v r

o1
2
s

s @

1/2
} s

The asymptotic structure of y,(r, ') is thus known.
With that of y(r,r') given by Eq. (26), the asymp-

x{1+2

totic structure of the field Z,(r) of Eq. (8) is de-
rived to be

8Ky X1
-, (46)

Z,(r) ~ »
where k§/2 = E{N~" — E, is the ionization poten-
tial and x is an expectation of the spherically
symmetric (N — 1)-electron system defined by x,,
= x6,5, where
YN-Dlg i___d PN

Xap = B[Q_E(()N—l)]z «

(47)

and where the operator d and P are defined in the
Single-particle Density Matrix section. Thus, the
correlation—kinetic component of the KS potential
v,(r) decays asymptotically as

8k X
5r5 °

W, (1) ~ (48)

Conclusions

There are two facets to this article: First, we
have derived the asymptotic structure of the wave
function, single-particle density matrix, the den-
sity, and pair—correlation density in the classically
forbidden region of atoms. The results are specific
to those atoms for which the N-electron system
maybe orbitally degenerate, but the (N — 1)-
electron system is orbitally nondegenerate. The
derivation differs from as well as goes beyond that
of previous work in that higher-order quadrupole
moment terms are included. In the second part of
the article, we employed these expressions within
the exact description of KS theory in terms of the
wave function ¥ to derive the analytical asymp-
totic structure of the KS exchange—correlation po-
tential to terms of O(1/r°). Although terms of
O(1/r*) have been obtained previously, the pres-
ent derivation provides an independent confirma-
tion of these results. However, the derivation via
this interpretation provides the understanding that
the O(1/r) term is due to Pauli correlations; that
of O(1/r*), to Coulomb correlations; and that of
O(1/7°), to correlation—kinetic effects. For systems
for which the N-electron atom is orbitally degener-
ate, Pauli correlations also contribute terms of
O(1/r*) and O(1/r®). There are no quantum me-
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chanical Coulomb correlation contributions to
O(1/7%). For these rigorous assignations to be
made, it was necessary to expand the wave func-
tion, density matrix, etc., to include terms up to
the quadrupole moment. We note that the asymp-
totic structure derived is valid for the Coulomb
external potential. For external potentials that are
not Coulombic, such as in the Hooke’s atom model
[4], the asymptotic structure is different. The pres-
ent procedure can be extended to systems where
the (N — 1)-electron system is degenerate, in which
case the asymptotic structure will have an angular
dependence [12]. We expect to extend our calcula-
tions to such systems in the future.

The KS exchange—correlation potential v, (x) is
also conventionally written as a sum of its ex-
change v,(r) and correlation v(r) potentials, where
v, (1) = 8EX[ p]/8p(x) and v, = SEXS[ pl/8p(D),
and EX[ p] and EXS[ p] are the KS exchange and
correlation energy functionals, respectively. Re-
cently, it has been shown [14] that

b (1) = WESGx) - W), 49)

where W,"(r) is the work done in the field Z{(r)
= z(r;[y{]D /p(¥), with y{O, ') being the first-
order correction to the KS density matrix y,(r, r') as
obtained via adiabatic connection perturbation the-
ory by an expansion of the system wave function
in terms of the electron-interaction coupling con-
stant at fixed electron density. The sum of the
work [WX(r) — W(l)(r)] is path-independent.
Thus, »,() = WX@®) + W, @+ W(l)(r) Solomatin
and Sahni [15] studied the field VA )(r) and poten-
tial W,V(r) in atoms numerically and showed them
to be of much shorter range than &X°(r) and
WXS(r), vanishing within the last occupied shell.
However, for the nonuniform electron gas at a
metal surface, these authors determined [15-18]
the potentials »,(1), WS (1), and W, () analyti-
cally and showed that W(l)(r) is long-ranged both
in the classically forbidden vacuum region as well
as in the metal bulk. We are presently working on
determining the analytical asymptotic structure of
W (r) and that of the higher-order contributions
to v,(r) in atoms.

Fmally, the results derived help explain the
accuracy of the results [3, 19] for the ionization
potential of atoms as obtained by the highest occu-
pied eigenvalue of the Work-Hartree-Fock ap-
proximation [19, 20]. In the Work—Hartree—Fock

approximation, the KS exchange-correlation po-
tential », (1) is replaced by the work W,(r) done in
the field &,(x) of the Fermi hole generated by the
corresponding differential equation. The highest
occupied eigenvalue of the KS equation is [8, 13,
21] (minus) the ionization potential. Further, this
eigenvalue is governed principally by the asymp-
totic structure of v, (r). Now, since Coulomb corre-
lation and correlation—kinetic effects are of O(1/7*)
and O(1/r®), respectively, the asymptotic struc-
ture of ch(l') ~ WX5(r). Thus, the asymptotic

structure of v, (r) is determined exactly by solving
the Work—Hartree Fock differential equation. This
then explains why the highest occupied eigenvalue
of this differential equation closely approximates
the experimental [19] ionization potential. For a
comparison of the highest occupied Work-
Hartree—-Fock eigenvalues to those of exact KS
theory, see [3].
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ABSTRACT: Density functional theory for a single excited state is presented using
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1 Introduction

Density functional theory was originally devel-
oped for the ground state [1]. It has been general-
ized for the lowest energy state in each symmetry
class [2, 3]. To calculate excitation energies Slater
[4] introduced the so-called transition-state
method. The density functional theory was first
rigorously generalized for excited states by
Theophilou [5]. Formalisms for excited states have
also been provided by Fritsche [6] and English et
al. [7]. A more general treatment was given by
Gross et al. [8]. Several calculations have been
done with this method [9-15]. The relativistic gen-
eralization of this formalism has also been done
[16]. The optimized potential method has recently

Contract grant sponsor: Hungarian Ministry of Culture and
Education.

Contract grant numbers: OTKA No. T 16623; FKFP
0314,/1997.

International Journal of Quantum Chemistry, Vol. 70, 681-691 (1998)

© 1998 John Wiley & Sons, Inc.

been generalized for ensembles of excited states
[17]. The ensemble theory has the disadvantage
that one has to calculate all the ensemble energies
lying under the given ensemble energy to obtain
the desired excitation energy. It is especially incon-
venient to use it if one is interested in highly
excited states.

An alternative theory, worth mentioning, is
time-dependent density functional theory (TD
DFT) [18, 19] in which transition energies are ob-
tained from the poles of dynamic linear response
properties. While TD DFT cannot obtain the ener-
gies and properties of excited states directly, it is
complementary to the ensemble method and the
approach to excited states presented here.

The work formalism proposed by Sahni and
co-workers [20] has also been applied in excited-
state density functional calculations [21].

Recently, Gorling [22] presented a new density
functional formalism for excited states generaliz-
ing a recent perturbation theory [23].

CCC 0020-7608 / 98 / 040681-11
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It is also possible, however, to treat a single
excited state in the density functional theory. This
approach is based on Kato’s theorem [24] and is
valid for Coulomb external potential (i.e., atoms,
molecules, and solids).

The outline of this study is as follows: In Section
2 the ensemble theory of excited states is summa-
rized. In Section 3 Gorling’s theory for excited
states via adiabatic connection and perturbation
theory is outlined. Section 4 introduces a new
method treating a single excited state. Section 4.1
presents this new approach of density functional
theory of excited states utilizing Kato’s theorem
and the concept of the adiabatic connection. In
Section 4.2 important expressions for the
coupling-constant-dependent energies and poten-
tials are derived. Section 4.3 addresses the problem
of degenerate states. The optimized potential
method is presented in Section 4.4. A generalized
Krieger, Li, and Iafrate (KLI) potential is derived
in Section 4.5. Section 4.6 presents several illustra-
tive examples. Some important points of the differ-
ent approaches described in this work are dis-
cussed in Section 5.

2 Review of Ensemble Density
Functional Theory for Excited States

First, the ensemble theory of Gross, Oliveira,
and Kohn [8] is summarized. The eigenvalue prob-
lem of the Hamiltonian H is given by
(k=1,..., M), M

A

HVY, = EY,,

where
E,<E < - (2)
are the energy eigenvalues. The generalized

Rayleigh—Ritz variational principle [8] can be ap-
plied to the ensemble energy

M
k=1

where w; > w, > -+ > wy,, = 0. The weighting
factors w; are chosen as

1 - wg
w1=w2=...=wM_g=M—g’ (4)
Wp-g+1 = Wy—gi2 = 77 = Wy =W, )

1
O<sw=< —, 6
W<+ (6)

and
l1<g<M-1. (7)

The limit w = 0 corresponds to the eigenensemble
of M —g states (w; = - =wy_,=1/(M-g)
and wy_ .., = =+ = wy = 0). The case w = 1/M
leads to the eigenensemble of M states (w, = w,
= -+ =wy = 1/M). The generalized Hohen-
berg-Kohn theorems read as follows:

1. The external potential v(r) is determined
within a trivial additive constant, by the en-
semble density 7 defined as

M
n= Y wn,. (8)

k=1

2. For a trial ensemble density #'(r) such that

n'( =0 ©)

and
fn'(r) dr =N, (10)
&ln]l <&[n']. (11)

The ensemble functional & takes its minimum at
the correct ensemble density #. Using the variation
principle, the Euler equation can be obtained:

o8&

E = M. (12)

Kohn-Sham equations for the ensemble can also
be derived:

[—2V2 + vge ] u(0) = €u,(x). (13)
The ensemble Kohn-Sham potential
71, (1)

r —r

vgs(r; 1) = v(r) + [ | dr + v, (r; w, n,)

(14)
is a functional of the ensemble density

1 - wg, Mlie, 5 o of
mj ur
Ml,l JA

m=1 j

nl(r) =

M,
tw Y XA lmF, 15)

m=M; o +1 j
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where g; is the degeneracy of the Ith multiplet.
I
M=Yg (16)
i=1

is the multiplicity of the ensemble and
0<w<1/M,. a7

A,; are the occupation numbers. The ensemble
exchange—correlation potential v,. is the func-
tional derivative of the ensemble exchange—corre-
lation energy functional E,,

( ) SE . [n,w] (18)
Ot w, n) = — s
Using the Hellmann—-Feynmann theorem for the
ensemble [12], the adiabatic connection formula
for the ensemble exchange—correlation energy can
be derived [12].

3 Review of Adiabatic Connection and
Perturbation Density Functional
Theory for Excited States

Recently, Gorling [22] has shown that the den-
sity functional theory can be extended to excited
states via the adiabatic connection and making use
of perturbation theory [23]. The adiabatic connec-
tion characterized by the Schrédinger equation

He[We) = ES¥), (19
He=T+aV,_ + 7V, (20)

represents a continuous connection between a non-
interacting system and the real system. Here not
only the ground-state but also the kth eigenstate
P& of the coupling constant Hamiltonian is con-
sidered. The additional assumption here is that the
energetic order of eigenstates ¥ of H® of the
same symmetry is preserved along the adiabatic
connection. So the coupling constant path estab-
lishes a continuous connection between the kth
eigenstates of the noninteracting and interacting
Hamiltonians. The energy of the kth eigenstate

E]? = <Q)k[n0]|TA|(I)k[ 7’10]> +]k[n0] =+ Ex,k[n()]

+ E2[ng] + fv“(r)ng(r) dr (21)

is a functional of the ground-state density #n, which
is kept fixed in the coupling-constant path.

In order to treat excited states in the Kohn—Sham
formalism, first, the ground-state Kohn—Sham
equations have to be solved, i.e., the ground-state
one-electron energies and orbitals have to be deter-
mined. To obtain the excited-state exchange and
correlation energy functionals, E, ;[n,] and EJ,
[1,], the density functional perturbation theory
can be applied. It has already been shown by
several authors (see, e.g., [19]) that the ground-state
one-electron energies are not just auxiliary quanti-
ties without physical meaning. Gorling [22] pointed
out that their difference provides zeroth-order ap-
proximation to excitation energies.

Table I presents excitation energies in this ze-
roth-order approximation for a couple of atoms.
Calculations were performed using a method of
the author for determining the potential if the
density is available [25]. Hartree-Fock densities
[26] were applied. For comparison Hartree—~Fock
values are also presented. Recently, excitation en-
ergies for certain atoms and ions have been calcu-
lated in first-order coupling-constant perturbation
theory [27].

4 Density Functional Theory for a
Single Excited State

The ground-state density functional theory
states that a knowledge of the ground-state elec-
tron density is sufficient in principle to determine
all molecular properties. This can be simply under-
stood following Bright Wilson’s [28] argument: A
well-known theorem of quantum mechanics, Kato’s
theorem [24] states that

1 9n(r)

Zg= —FF<—— ’
s 2u(r) 9r |r=r,

(22)
where the partial derivatives are taken at the nu-
clei B. So the cusps of the density tell us where the
nuclei are (Rz) and what the atomic numbers Z,
are. On the other hand, the integral of the density

TABLE |
Hartree — Fock and exchange-only density
functional excitation energies (in Ry).

HF DF
Li(2s' - 2p") 0.1353 0.1342
Na(@s' — 3p) 0.1450 0.1462
K(4s' — 4p") 0.1033 0.1024
K(4s' —» 3d") 0.1782 0.1785
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gives us the number of electrons:
N = /n(r) dr. (23)

Thus from the density the Hamiltonian can be
readily obtained from which every property can be
determined. Of course, the Bright Wilson’s argu-
ment does not apply to, e.g., a molecule in a
uniform electric field, since the field itself is not
identified by a cusp in the density.

Kato’s theorem is valid not only for the ground
state but also for the excited states. In the follow-
ing we use it to obtain a density functional theory
for a single excited state.

4.1 DENSITY FUNCTIONAL: THEORY FOR A
SINGLE EXCITED STATE USING KATO’S
THEOREM AND THE CONCEPT OF
ADIABATIC CONNECTION

As Kato’s theorem holds also for excited states,
if the density n; ofAthe ith electron states is known,
the Hamiltonian H is also in principle known and
its eigenvalue problem

HY, =EY,, (k=1,...,i,...) (@4

can be solved.

The adiabatic connection [2, 29] is a key concept
in the density functional theory. This will be now
applied for a single excited state. It is not only
supposed that the electron density is the same
for both the interacting and noninteracting sys-
tems, but there exists a continuous path between
them. A coupling-constant path is defined by the
Schrodinger equation

I:jiaq,ka = Efvy¢, (25)
where
He =T+ oV, + V2. (26)

The subscript i denotes that the density of the
given excited state is supposed to be the same for
any value of the coupling constant «; a = 1 corre-
sponds to the fully interacting case, while a =0
gives the Kohn—Sham system:

HOW? = W) (27)

For a = 1 the Hamiltonian Hf is independent of
i. For any other values of a the “adiabatic” Hamil-
tonian depends on i, we have different Hamiltoni-

ans for different excited states. Thus even the
Kohn-Sham Hamiltonian, the one corresponding
to the noninteracting (o = 0) case is different for
different excited states.

In the ground-state density functional theory
the first Hohenherg-Kohn theorem [1] states that
the external potential v(r) is determined within a
trivial additive constant by the knowledge of the
electron density n(r). As we have seen, the present
theory also provides the external potential v(r) if
the density n,(r) of the ith excited state is known.
Through the adiabatic connection the Kohn—Sham
equations and the Kohn—-Sham potential are also
constructed.

4.2 EXPRESSIONS FOR THE
COUPLING-CONSTANT-DEPENDENT
ENERGIES AND POTENTIALS

Following the ground-state definitions [23, 30],
the correlation energy is defined:

Ecln] = [CuITiey — oIt vy
+ o UV = (VD). (28)
It can also be written as

Ef[n,1 =F*[n;] - F°[n;] — aUln] + E/[nD,
(29)

where the functional F*[#,] is defined:
Foln,] = TCEAT + aV, W), (30)

The classical Coulomb and the exchange energies
are given by

1 (ry)n(xy)
U[ni]=5/w—dr,drz 31)
1

2

and
Eln] = (V¥ - Uln]), (32)

respectively. The energy E°[#,] can be expressed
in the following way:

E¥[n,] = (¥ HYW) = (¥T + oV, JW2)

+fv,."(r)n,-(r) dr. (33)
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Equations (30) and (33) lead to the Hamiltonian:

Hf =T+ oV,
N[ 8(F'[n;] — F¢[n,])
+ v(r,) +
,El | k on(ry)
=T+ aVee

N
+ Y o) + (1 = (i) + vi(r,))

k=1
SE&=1n,] SEX n;]
sn(r,)  onlry)
R X N
=T+aV,+ Y v¥r), (34)
k=1

where
v2(1) = v,(1r) — a(vi(r) + vi(r)

S8EX='n;1  SEX[n;]
sn(x)  on(

(35)

vl and v are the classical Coulomb and the ex-
change potentials

o) = [ :frr) ' (36)
and
(o = 2Bl @7)
Ot = én(x) ’

respectively. v is the Kohn-Sham potential of the
noninteracting system corresponding to the excited
state considered.

4.3 DEGENERATE EXCITED STATE

All stated above in this section is valid for both
degenerate and nondegenerate excited state. For a
degenerate excited state starting out from a den-
sity n;, we can determine the Hamiltonian H, and
we find out that there are several eigenfunctions
with energy E;. But, the densities corresponding to
these eigenfunctions are different. The concept of
adiabatic connection can be applied as for the
nondegenerate state.

However, concerning the approximations one
inevitably should apply in actual calculations, a
slightly different approach may be more useful.
This approach that has been already proposed for

the ground state [31] is based on using density
matrices instead of the density.
Consider the solutions of the symmetry I' of the
Schrodinger equation:
HI¥) = EN¥),  (y=1,2,...,8), (8
where g, is the degeneracy. Instead of treating one

wave function ‘If,j, the density matrix defined in
subspace S’

&8
D'= Y w|¥)}¥l, (39)

=1

is introduced, where the weighting factors w;
should satisfy the conditions

1= ) w (40)
y=1
and
w! > 0. (41)

In principle, any set of weighting factors w, satis-

fying conditions (40) and (41) can be used. The
subspace density is defined as

8
ni = Zw;/w;ﬁ ds, dx,,...,dxy, (42)
y=1

where x stands for both the coordinates and the
spin. The superscript i in #n' and the subspace
density matrix denotes that they are constructed
from wave functions that belong to the subspace
S'. One is free to select the values of the weighting
factors w); they only should satisfy the conditions
(40) and (41). If the weighting factors w, are all
equal, the density has the property of transforming
according to the totally symmetric irreducible rep-
resentation. So, for instance, for atoms the density
will be spherically symmetric. But it is possible to
select other values for the weighting factors w,.

This approach has the advantage that with equal
weighting factors the density has the symmetry of
the external potential.

The concept of adiabatic connection can also be
applied for the subspace density #'. It is supposed
that the subspace density is the same in the cou-
pling-constant path. Now, the Schrédinger equa-
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tion has the form
HelWj ey = EVejwiey,  (y=1,2,...,8),
(43)

where
He =T+ aV, + Ve (44)

The subscript i denotes that the subspace density
n' is supposed to be the same for any value of the
coupling constant o; « =1 corresponds to the
fully interacting case, while o =0 gives the
Kohn-Sham system:
HOWi0) = EVO[wi0),  (y=1,2,...,8). (45)
For a = 1 the Hamiltonian H{ is independent of
i. For any other values of a the adiabatic Hamilto-
nian depends on i. Thus the Kohn-Sham Hamilto-
nian is different for different degenerate excited
states.

4.4 OPTIMIZED POTENTIAL METHOD

In order to perform calculations, one needs ex-
plicit expressions for the functionals. In the
ground-state theory, exchange can be treated ex-
actly via the optimized potential method [32]. Now,
this method is generalized for a single excited
state.

In the optimized potential method the following
problem is solved: Find the potential such that
when it is given a small variation, the energy of
the system remains stationary. It can also be writ-
ten as

oF 0 (46)
sV

Now, we show that from the fact that the en-
ergy is stationary at the true wave function it
follows that the energy is stationary at the true
potential. It is well-known that considering the
energy as a functional of the wave function E[V],
the eigenvalues of the Hamiltonian are stationary
points of E:

oE

— =0, (k=1,...,i,...), (47)

8V,

and only the eigenvalues are stationary points.
From our arguments above from the density of

a given excited state 7;, one can obtain the Hamil-

tonian, the eigenvalues, and eigenfunctions and
through adiabatic connection the Kohn—-Sham po-
tential V,*=° and certainly the solution of the
Kohn-Sham equations leads to the density n;:

n—>H->E,¥ (k=1,...,i,...) > V" > n,.

L ws)

Thus, we can consider the total energy as a func-
tional of the Kohn-Sham potential:

E[¥,] = E[¥[V°]]. (49)
Making use of Eq. (47) we obtain

oE 6E oY,
8V° 8‘1’ %A

+ c.c.= 0. (50)

Thus, from the fact the energy is stationary at the
true wave function follows that the energy is sta-
tionary at the true potential.

The fact, however, that the energy is only sta-
tionary and not minimum at the true density makes
it more difficult to find adequate approximations.
The Kohn—-Sham wave function should be orthog-
onal to the exact Kohn—Sham wave function(s) of
the lower state(s). Since the exact Kohn—Sham
wave functions are not known, one is satisfied if
approximate orthogonality with respect to the ap-
proximate lower Kohn—-Sham wave function(s) is
assured.

In the ground-state theory exchange can be
treated exactly via the optimized potential method
[32]. Now, this method is generalized for excited
states. Following the usual method [32] deriving
the optimal potential, the well-known integral
equation for the effective exchange potential V,
can be obtained.

The total energy E; is considered as a functional
of the one-electron orbltals uj, which are eigen-
functions of the local effective potential V,°:

ot = (=392 + V0)ul = €ul. (51)
From Eq. (50) we obtain
E,  8uf(r')
dr' + c.c.=0.
Zf 614’*(r) sV TS
(52)

The functional derivative of the one-electron or-
bitals u; with respect to the local effective poten-
tial V,° can be calculated with the help of Green'’s
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function:
suj* (r’)
8V°( )
(fli - eji)G]?(r’,r) =8 —1)— u}(r)u}*(r’). (54)

-G, Dui(r), (53)

Using Egs. (51)-(54) an integral equation for the
effective exchange—correlation potential v}, fol-
lows:

[ L, ¥)0i () dr' = Q) (55)
L(r,v') = Y uF @G/, r)uj),  (56)
j

Qi(r) = Z [ ar uF @G, vl (@), (57)

The orbital dependent potential v} ; is given by
o) = ] (58)
ol () = oL
J ui(r)du*(r)

Turning to the degenerate case the total sub-
space energy can be written as [33]:

v ¥ ZC] i (59)

where EJ, is the average energy of the configura-
tion con51dered C; and B; ! are quantities charac-
teristic to the mult1p1et i For instance, if we con-
sider spherically symmetric systems (atoms or
atomic ions) in the case nsmpz, the energies of the
multiplets have the form [34]:

E'(*P) = El, — 2F*(pp) — 3G'(sp), (60)
EiCP) = El, — 2F*(pp) + 3G'(sp), (61)
E!*D) = Ei, + 2F2(pp), (62)
E'®S) = El, + 2F2(pp). (63)

F*(pp) and G'(sp) are the Slater integrals:
Fi(pp) = [ [ R} (rl)R;,,(rz) dry dr, (64)
and

G(sp) = [ [ Raslr) Ry (r2) Ry (DR, (1)

r<
X —-drydr,, (65)

>

where R, and R,,, are the radial wave function
of the ns and mp "electrons. 7 . means r; if it is
smaller than r, and 7, if it is smaller than r,.

In the degenerate case beyond the orbital-de-
pendent exchange potential v, ; there is an extra

orbital-dependent exchange potential:

1 dB
P ap}’

w—-ZCk

(66)

where P/ = rR..

To find the optimized potential is very tedious
even in the ground-state. However, Krieger, Li,
and lIafrate [35] introduced a very accurate approx-
imation that can be used here, too. Recently, an
alternative derivation of the KLI approximation to
the optimized potential method has been pre-
sented [36]. This method can be readily general-
ized to excited states.

4.5 APPROXIMATE POTENTIAL

Let us first treat the nondegenerate case. We
start from the Hartree—Fock equations for the ex-
cited state under consideration:

1 ( . .
=5 VA @) + (@) + 0 ()¢ ()
= [ dr W, ) = &y @), (67)
where v is the external potential and v] is the

classical Coulomb potential:

dr’' n(r')

. (68)
e — r'|

v} (1) = f

The total electron density n; can be expressed with
the Hartree-Fock spin-orbitals ;"

n () = Llg/©F, (69)
j
while the exchange kernel w'(r, t') takes the form
. )Y (n)
wir,r') =Y, (p]———l—p]—- (70)

e —r'l|

j

Now, we introduce the functions K]' with the
following definition:

¥ = ni/?K}. (71)
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Substituting Eq. (71) into (67), multiplying with
K;, summing for all orbitals and making use of the
relation

1=YIKP, (72)
j

then adding the complex conjugate we arrive at
the following equation:

8T,

on n=u;

1 , . A
+ —ZIVK;I2 + v+ v + 0l
j
—_—
= Yok (73)
J
where v} is the Slater potential.

2
. }ZK}*(r’)K}(r)\
o) = - Jdrne)— (74)

Ik —r|
and 8T,,/6n is the functional derivative of the full

Weizsicker kinetic energy functional:

IU 8 [

with respect to the density n.
Let us consider now the Kohn—-Sham equations

(Vn)
(75)

102,04 i i iy
—7Viu + oggu; = €u] (76)

leading to the same electron density n;,. The
Kohn—Sham potential has the form
vks = v + v] + 0L, (77)

where vl is the exchange potential. Introducing
new functions k; with the definition

u; = n’/ZkIf, (78)

substituting into Eq. (76), multiplying with kj,
summing for all orbitals, and using the relation
between k;

= Y IkiP, (79)
J

and adding the complex conjugate of the equation
obtained we arrive at the following equation:

6 TlU

on n=un;

+—Z|Vk|2+v,<g 2e|k|2 (80)

Now, we compare the Hartree—Fock and
Kohn-Sham type equations (73) and (80). We treat
the case when both equations provide the same
(Hartree-Fock) density n,, i.e., the Hartree-Fock
method is posed as a density functional theory.
From Egs. (73) and (80) then follows:
op = ol + L(¢f = o)k = Le/(IK - 1K)
j

j

1
i12 i12
— 5 L[IVKI* - IvKjP]. 8D
]

In earlier studies [22, 25, 37] it was found that in
the ground state the Hartree—Fock wave functions
are very close to the orbitals satisfying the
Kohn—Sham equations (80) with the Hartree—Fock
density. Supposing the same for the ith excited
state, we obtain the following approximate ex-
change potential:

v;=v§+2(6 —a)lkl (82)
j

As shown, this expression is equivalent to the KLI
potential for the ground state. It can also be writ-
ten as

lul?

=l + Z ( z’)‘f‘-F), (83)

X

where 7,; and 7,/ are the expectation values of

the exchange potential V. (83) and the Hartree—
Fock exchange potentials v”r defined in the usual
way with respect to orbital i I

Turning to the degenerate case, only spherically
symmetric systems are considered. The weighting
factors in Eq. (39) are selected to be equal. Then
the Hartree—Fock-like radial equations can be ob-
tained from Eq. (59):

1d> i+ 1) . ‘
R —+v+v,+v§.,i+w/f
X P/ =¢g/P. (84)

Now starting out from Eq. (84) instead of Eq. (67)
and repeating the whole derivation above, we ar-
rive at the Kohn—-Sham potential having the form

Vks = v + vf + 0l + W', (85)
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where v! is the exchange potential

vi=vi+ Y (€ - &})Ikif? (86)
j

and

, , . . 1 dB}
w'= L (k) w = E(k) TCi5r 30 &)
k

- - E @

is the potential which is responsible for the multi-
plet separation.

4.6 ILLUSTRATIVE APPLICATIONS

To illustrate the present method, total energies
are calculated for a couple of ground and excited

TABLE 1l

states for first-row atoms using the generalized
KLI approximation. In a recent work [38], nonde-
generate systems have been considered. Here, de-
generate states are studied.

Table II presents total energies for atoms from
Be to Ne. In a couple of cases exact orthogonality
is assured by the fact that these excited states have
different symmetries than the ground states. Total
energies are also presented for states that are not
the lowest of a symmetry species. Here, only an
approximate orthogonality is ensured through the
orbital representation of the functionals. For com-
parison Hartree—Fock values [39] are also shown.
Result of the generalized KLI calculations are very
close to the Hartree~Fock values. The accuracy of
the generalized KLI results is about the same as

Total energies of ground and excited states of several atoms (in Ry).

Total energy Total energy

Atom Configuration State HF DF
Be [Hel2s2 s 29.1460464 29.1445640
[Hel2s™2p! p 29.0230038 29.0180909
P 28.7894708 28.7518996
B [Hel2s22p" 2p 49.0581214 49.0551763
[Hel2s'2p? ‘p 48.9013152 48.8884686
%D 48.6237378 48.6215037
2s 48.4961812 48.4893193
2p 48.3580864 48.3519425
C [Hel2s22p? %p 75.3772380 75.3707497
'D 75.2626626 75.2603155
's 75.0992218 75.0946642
[Hel2s'2p?® 5s 75.1984292 75.1722258
5D 74.7887394 74.7828623
Sp 74.6754332 74.6717829
D 74.3392354 74.3373082
8s 74.2842284 74.2811503
P 74.2315796 74.2262289
N [Hel2s?2p® ‘s 108.801868 108.788938
D 108.592339 108.588113
2p 108.456204 108.454229
[Hel2s'2p* ‘p 107.976570 107.963937
%D 107.567282 107.564494
s 107.366819 107.363890
2p 107.167882 107.166816
0 [Hel2s22p* 2p 149.618797 149.612502
D 149.458529 149.455621
s 149.222041 149.220299
[Hel2s'2p® p 148.367817 148.360439
P 147.744071 147.744346
Ne [Hel2s22p"® 's 257.094196 257.089024
[Hel2s2?sp53s’ 8p 255.984628 255.975597
P 055.972424 255.968182
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that of the original KLI for the ground state [35].
There is only one exception (the °S state of the C
atom) probably because of the high spin. It has
been shown that the HF total energy is lower than
the KLI one [22, 35, 37]. It is true for the present
results, too.

5 Discussion

In this section the present approach is compared
with the theories of excited states proposed by
Theophilou [5] and Gross, Oliveira, and Kohn [8]
and by Gorling [22].

In the ensemble theory one has to calculate all
the ensemble energies lying under the given en-
semble energy in order to obtain the desired exci-
tation energy. A disadvantage is that one has to do
several self-consistent calculations in order to ob-
tain the excitation energy of a single state. It is
especially inconvenient to use it if one is interested
in highly excited states. The present approach, on
the other hand, can be applied to a single excited
state.

In the theory proposed by Gorling, the adiabatic
connection is applied in the usual way, ie., the
ground-state density is kept fixed. (In the present
approach the density of the excited state consid-
ered remains unchanged in the adiabatic connec-
tion.) The coupling-constant path establishes a con-
tinuous connection between the kth eigenstate of
noninteracting and the interacting Hamiltonian.
This statement is true in both approaches. How-
ever, the noninteracting Hamiltonian is different in
the two methods, as the Kohn—Sham potentials are
different. The reason for it is the following: In
Gorling’s method, the Kohn-Sham potential en-
sures that the noninteracting ground-state density
be equal to the interacting ground-state density. In
the present approach, on the other hand, the
Kohn—Sham potential ensures that the noninteract-
ing excited-state density under consideration be
equal to the corresponding interacting excited-state
density.
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ABSTRACT: Small nickel clusters up to the tetramer are investigated within the
framework of the local spin density functional theory. Several competitive states are
studied for the dimer. Both the geometry and the spin state are optimized for several
starting symmetries in the case of the trimer and the tetramer. Moreover, all those
calculations are followed by a vibrational analysis in order to discriminate between real
minima and saddle points on the potential energy surface. It is found that Jahn-Teller
deformations play an important role in determining transition-metal cluster geometries.
Equilibrium geometries, electronic configurations, binding energies, magnetic moments,
and harmonic frequencies are reported in this work. © 1998 John Wiley & Sons, Inc. Int

Quant Chem 70: 693-701, 1998

Introduction

C lusters are useful as models for surfaces, and
as such, they have been used in the analysis
of surface processes from a theoretical point of
view [1]. The cluster approach focuses on the prop-
erties of a variety of surface sites, taking into
account their local geometries and enabling the
use of accurate quantum mechanical methods.
The rapid development of experimental tech-
niques in recent years has made it possible both to
obtain size-controlled transition-metal clusters and
to study their reactivity against chemisorption pro-
cesses [2, 3]. Although, in principle, metal clusters
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and metal surfaces seem to behave in a very simi-
lar way against chemisorbed species, small transi-
tion-metal clusters show highly size-dependent
properties such as their geometries and magnetic
moments [4]. This intriguing behavior can be at-
tributed to the fact that transition metals have
unfilled valence d orbitals characterized by their
localization and high density of states. As a conse-
quence of this, a variety of geometries and elec-
tronic states are available for a given cluster com-
position. Let us say, for example, that the nickel
dimer presents almost 30 electronic states located
in an energy range of only 0.75 eV [5].

Because of their important catalytic and mag-
netic properties and the just-mentioned complexity
of the electronic structure of low-lying excited
states, nickel clusters seem to be a challenge for
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any ab initio calculation. A description of the
ground-state electronic and magnetic properties of
small nickel clusters was offered by Bash et al. [6]
by means of effective core potential Hartree—Fock
and configuration interaction calculations. Tomon-
ari and coworkers [7] also investigated small nickel
clusters using an all-electron basis set at both Har-
tree—Fock and configuration interaction levels of
theory assuming bulk nickel interatomic distances
for bond lengths. Mlynarski and Salahub [8] stud-
ied Ni, and Ni; using an all-electron basis within
the local and nonlocal density functional for-
malisms. Reuse and Khanna [9] performed a sys-
tematic study of the geometry, electronic structure,
and magnetic properties of small nickel clusters.
Their calculations were carried out using norm-
conserving, nonlocal pseudopotentials within the
local density functional framework. Surprisingly,
none of these authors reported any vibrational
analysis to confirm that their findings correspond
to true minima and not to saddle points in the
potential energy surface of a given conformer. On
the other hand, Castro et al. [10] performed all-
electron local and nonlocal density functional cal-
culations on nickel clusters up to the pentamer.
These authors report not only structural and mag-
netic properties but they also properly characterize
the clusters using the calculation of vibrational
frequencies. Finally, Bérces [11] reported the vibra-
tional frequencies of several optimized geometries
for Ni, calculated using the nonlocal density func-
tional formalism. It is important to remark that
other recent works based on empirical molecular
dynamics calculations on nickel clusters exist [12]
but we prefer to restrict our comparison and dis-
cussion to first-principles results only.

As mentioned above, only Reuse and Khanna
[9] and Castro et al. [10] made a systematic study
on small nickel clusters. However, their results are
rather different, especially for Ni,. In [10, p. 140],
Castro et al. also states that ““the precise source(s) of
these discrepancies is not currently understood. Further
work, with the use of different DFT codes and in
different laboratories, on these small nickel clusters will
be required to understand the shortcomings or limita-
tions that the available DFT techniques possess in the
description of transition metal cluster.”

It was the aim of the present work to contribute
to that very interesting, challenging, and actual
topic. To this end, a systematic study of the geom-
etry, electronic structure, and magnetic and vibra-
tional properties of small nickel clusters up to the
tetramer is presented.

Computational Details

Density functional calculations within the local
spin density approximation (LSDA) [13] were per-
formed on small nickel clusters up to the tetramer
using the ADF package [14]. This code is based on
Slater-type orbitals (STO) instead of the usual
Gaussian-type functions. Furthermore, a set of
auxiliary STOs are available to fit the electronic
density in order to get a faster evaluation of the
Coulomb potential.

The local correlation functional due to Vosko,
Wilk, and Nussair [15] was used. The triple-zeta
basis set of STOs available as set IV in the package
was also used. That basis set does not include
polarization functions. The frozen-core approxima-
tion up to the 3p orbital (included) was utilized.

The geometries and spin multiplicities of the
Ni,, Ni;, and Ni, clusters were optimized with
the default convergence thresholds, that is, 1072
au for the energy, 1072 au for the gradients, and
107° for the self-consistent cycle. The integration
accuracy parameter was also set to its default
value of 4.0 (see [14b] for details about the numeri-
cal integration technique). Several symmetries were
considered for the trimer and the tetramer (see the
next section for details). The optimizations were
symmetry-constrained in all cases. Several differ-
ent starting geometries were considered for each
symmetry.

The frequency calculations were carried out us-
ing the default convergence and accuracy thresh-
olds, that is, 1072 au for the energy, 1072 au for
the gradients, 10~% for the self-consistent cycle,
and 6.0 for the integration accuracy parameter. It is
a well known fact that transition-metal cluster
calculations are very difficult to converge [9, 16].
The electron smearing technique is a very useful
trick that can help to solve that problem. It creates
an energy window around the Fermi level and all
the molecular orbitals inside that window are al-
lowed to have fractional occupation numbers.
Thus, when some of our calculations revealed con-
vergence problems, the program’s smearq key-
word was activated. When this was the case, sev-
eral subsequent calculations were carried out by
letting the smearq parameter to tend gradually to
zero. This must be performed because the true
self-consistency is only achieved when the energy
window width is set to zero, that is, when all the
occupation numbers become integers.
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Results and Discussion

Atomic calculations using the basis set men-
tioned in the last section indicate that the *D (d%s")
state is the ground state at the present LSDA level
of theory. The binding energies reported in this
work are then calculated using that value as the
reference atomic energy. The °F (d4%s?) and 'S (d'°)
states were also calculated. Our results are in qual-
itative agreement with J-averaged experimental
results [17] and show the same trends that other
LSDA calculations (see [8]). Table I shows our
atomic calculations results and the experimental
values [17].

Ni,

The ground state of the nickel dimer is found to
be *3; according to our LSDA calculations. The
binding energies of the ground state and the
low-lying excited states of Ni, are reported in
Table II. The two unpaired electrons in the ground
state are located on a 7, molecular orbital (MO) as
can be seen from the electronic configuration

1621mi2021881m2(1)10,218}.

Due to the near degeneracy found among the
1778, lo,, and 18, MOs, all of them around the
Fermi level, other configurations were studied to
obtain a deeper understanding on the variety of
electronic states of Ni, near the ground state. The
detail of the configurations studied as well as their
bond lengths and binding energies are presented
in Table Il for comparison. It can be seen that
minor modifications take place when one goes
from state I to state II. On the other hand, when
the 8, MO becomes depopulated, states Ill and 1V,
the bond length increases its value and, accord-
ingly, the binding energy lowers its magnitude.

TABLE |
Energy of different atomic states of nickel.

SMALL NICKEL CLUSTERS

TABLE I

Binding energies (BE) of ground and low-lying
excited states of Ni,. The energies are given in eV,
with S the total electronic spin.

S BE

0 1.33
1 1.67
2 0.86

Since the three MOs considered have antibonding
character, a closer look at the antibonding overlap
population between the nickel atoms could help to
understand that behavior. The g, Ty 8,, and total
antibonding overlap populations are presented in
Table IV. It can be seen from that table that the
total antibonding overlap population increases
when passing from state I to state IV. Moreover, it
is clear that the o, and 7, MOs are mainly re-
sponsible for the antibonding overlap between the
nickel atoms. The §, MO, on the other hand,
shows only a weak antibonding character. Thus,
an increase in the total antibonding character must
be expected when the 8§, MO becomes depopu-
lated in favor of the m, MO. These facts are consis-
tent with the variations observed in the binding
energies and the bond lengths (see Table III).

TABLE lli

Comparison of different triplet states of Ni,.
Electronic configuration  Electronic state r BE
(10,)2 (18,)* (1m5)% () °3q 207 1.67
(1g,)' (18,)* (1my)* () °m, 2.06 1.60
(10,)2 (18,)° (1m)* () °M, or °®, 211 156
(10,)2 (18,)2 (1m)* (V) °%g 216 1.26

Only the relevant molecular orbitals of each configuration
are given. Bond lengths (r, in A) and binding energies (BE,
in eV/at) are shown.

TABLE IV
o, Ty, 8,, and total antibonding overlap

Atomic state This work Experimental [17] populations for the states I-1V of Ni,,.
°D(d®s) 0.00 0.00 | [ 1 \Y
3F(d®s?) 1.42 0.03
S(d) 1.85 1.83 a, 0.0442 0.0223 0.0551 0.0713
—— - Ty 0.0561 0.0877 0.0815 0.1029
The values are given in eV and the ground state is taken as ) 0.0048 0.0031 0.0071 0.0080
the reference value. The experimental values [17] are Tté)tal 0.1051 0.1131 0.1437 0.1822

weighted averages over the J components.
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TABLE V
Comparison of different triplet states of Ni.,.

Electronic configuration  Electronic state r BE

(10,)% (18,)* (1m,)? o3 208 1.33

(10,)! (18,)° (1) A, 210 1.33

(10,)? (15,)° (1m,)° M,or'd, 212 131

(10,)" (18,)* (1my)° I 2.06 1.31
u u g u

(10,)° (18,)* (1m,)* 'S 205 1.13

(1g,)2 (18,)2 (1m,)* 'Sior'f, 216 092

Only the relevant molecular ogbitals of each configuration
are given. Bond lengths (r, in A) and binding energies (BE,
in eV/at) are shown.

According to Table II, the singlet state is close in
energy to the triplet state. Moreover, some experi-
mental results indicate that the Ni, ground state
would be a singlet state [5]. Due to this fact,
several singlet states were also investigated. The
results are collected in Table V. It can be seen from
that table that four singlet states are within only
0.02 eV /at. Although those singlet states are close
in energy to the triplet states discussed above, our
calculations clearly favor the triplet state as the
ground state for Ni,.

The bond length, binding energy, and vibra-
tional frequency of the ground state of Ni, are
reported in Table VI together with other theoreti-
cal results and the correspond