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3. RESEARCH ACCOMPLISHED AND PAPERS PUBLISHED 

The research accomplished deals with two main topics: 

(a) stretched atoms in collisions with other species (electrons, ions and atoms) 

and 

(b)stretched (excited) atoms resulting from electron - ion recombination. The dynamics of 

stretched atoms has therefore been concerned with collisions and with recombination. 
The following research in these two topics has been written up and published. 

1. Recombination at Ultra-low Energies, by M. R. Flannery and D. Vrinceanu, in APS 
Topical Conference on Atomic Processes in Plasmas, eds. E. Oks and M. S. 
Pindzola (AIP Press, 1998). 

2. The Classical Atomic Form Factor, by D. Vrinceanu and M. R. Flannery, Physical 
Review Letters, (1999) 

3. Cross Sections for Electron Excitation of the 235 Metastable Level of He into Higher 
Triplet Levels, G. A. Pech, M. E. Lagus, L. W. Anderson, C. C. Lin and M. R. Flannery, 
Phys. Rev. A 55,(1997), pp. 2842-2856. 

4. Elastic Scattering: Classical, Quantal and Semiclassical, by M. R. Flannery in 
Atomic, Molecular and Optical Physics Reference Book, ed. G. W. F. Drake 
(AIP Press, New York, 1996), Chap. 43, pp. 499-525. 

5. Electron-Ion and Ion-Ion Recombination, by M. R. Flannery, in Atomic, Molecular 
and Optical Physics Reference Book, ed. G. W. F. Drake (AIP Press, New York, 
1996), Chap. 52, pp. 605-629. 

The first two papers are attached as Appendices A and B of the present report. Publication 
#3 represented a joint collaboration with the experimental collision group headed by Pro- 
fessor C. C. Lin at the University of Wisconsin on electron - excited atom collisions. The 
first page of this publication is reproduced in Appendix C. Publications #4 and 5 were fully 
documented in the final report AFOSR Grant F 49620-94-1-0379, but were only published 
during the current research period. 



4. INVITED PAPERS PRESENTED AT CONFERENCES 

The following papers were presented at professional scientific conferences during the period: 

1. Recombination at Thermal and Ultracold energies, M. R. Flannery, M. R. Flannery, 
Invited Paper, presented at 50th Gaseous Electronic Conference, Madison, 
Wisconsin, October 5-9, 1997. 

2. Recombination at Low and Ultralow Temperatures, M. R. Flannery, M. R. Flannery, 
Invited Paper, presented at Molecular Ion Physics Workshop, Oak Ridge Na- 
tional Laboratory, Oak Ridge, Tennessee, February 20-21, 1998. 

3. Recombination at Ultracold Energies, M. R. Flannery, Invited Paper, presented at 
Atomic Processes in Plasmas, 11th Topical APS Conference, Auburn, Alabama, 
March 22-26, 1998. 

4. Recombination, M. R. Flannery, Allis Prize Invited Plenary Lecture, presented 
at American Physical Society (APS) Division of Atomic, Molecular and 
Optical Physics, Santa Fe, New Mexico, May 27-30 , 1998. 

5. Three-Body Recombination, M. R. Flannery, Allis Prize Invited Plenary Lecture, 
presented at 51st Gaseous Electronics Conference, Maui, Hawaii, October 19-22, 
1998. 

6. Three-Body Electron-Ion, Ion-Ion and Neutral-Neutral Recombination at Thermal and 
Ultra-Cold energies, M. R. Flannery, Invited Paper, presented at 65th Meeting of 
the Southeastern Section of The American Physical Society, Miami, Florida, 
November 13-15, 1998. 



5. HONORS AND AWARDS RECEIVED 

The following academic and scientific Honors and Awards were received during the period: 

* Doctor of Science (honoris causa): The Queen's University of Belfast, 1998 
Cited: For distinction as a physicist. 

* Recipient of the APS Allis Prize for the Study of Ionized Gases, 1998 
Cited: For advancing the understanding of recombination processes, in particular 
for developing a microscopic theory of three-body ionic recombination; and for his 
novel applications of classical and quantum mechanical methods to the dynamics of 
atomic,molecular and ionic systems. 

* Elected Honorary Member: Royal Irish Academy, 1997 
Cited: In recognition for his distinguished services in the Section of Science. 



Appendix A 

Recombination at Ultra-low Energies 

M. R. Flannery and D. Vrinceanu 

School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-043Ö1 

Abstract. Three-body electron-ion recombination is described at ultralow electron 
temperatures Te. At 4ÜT, the initial stage involves extremely rapid collisional capture 
into high Rydberg states n > 200 with high angular momentum I « n - 1 at a rate 
~ T~4-5. This is followed by extremely slow collisional-radiative decay. The key 
collisional mechanism appears to be collisional i-mixing of the Rydberg atoms A(n) by 
ions and electrons until sufficiently low i's are attained so as to permit relatively rapid 
radiative decay to the lowest electronic levels. This sequence is in direct contrast to the 
sequence of much slower collisional capture at higher Te followed by the much faster 
decay of A(n) by electron collisions to lower levels where radiative decay completes 
the recombination. At ultra-low temperatures, the rate limiting sequence is therefore 
collisional /-mixing followed by radiative decay in contrast to recombination at much 
higher energies and electron densities Ne ~ 108 cm-3, where the rate limiting step is 
the initial collisional or radiative capture at intermediate Te(~ 1 eV) and higher Te 

(~ 10 eV) respectively. 
An exact classical solution for i-mixing is obtained. 

INTRODUCTION 

Three-body collisional capture 

e- + Az+ + e" —> A<z-a>+(n) + e~ (1) 

and radiative capture 

e- + Az+ —> A^-^+Cn) + hv (2) 

in an electron gas at cryogenic temperatures T ~ AK and lower are considered. 
Simple classical expressions for the cross section a and rate a ~ Z3T~45 of (1) 
are derived. We shall also provide an exact classical solution for the angular mo- 
mentum mixing n,l -*• n,V of Rydberg levels by the time varying electric field 
S = -[Zie/R3(t)]R(t) generated by distant collisions with an ion of charge Z\e. 
The work has particular significance to the production of anti-hydrogen at 4 K and 
to proposed experiments on electron recombination with Rb+ and Xe+ at 5 mK. 

J) This Research is supported by the U.S. Air Force Grant No. F49620-96-1-0142 



RADIATIVE RECOMBINATION 

The quantal cross section for photoionization of A(n, I), in conventional notation 

[1], is 

<Ji(h *.t 64a .     ON 
n 

\hu) 

31 2/ + 1 21 + 1 
Gni(hv) = k<rn{hv)——Gni{hu) 

7T rr 

where kVn{hv) is the semiclassical (Kramers) photoionization cross section [2] and 
the bound-free Gaunt factor Gn\ ~ 1 and u~(l+W as u = hu/In tends to 1 and oo 
respectively. The former limit is appropriate to ultracold ejected electrons while 
the latter limit indicates that low V are favored. The detailed balance relation is 

gegjklaR(E) = gv9AK°i(hv) 

where the statistical weights <& are {2,1,2,2(2Z +1)} for e, A+, hv and A, respec- 
tively and where k2Jk2

e = a2(hu)2/{AEIH) = {v0/cf{IH/AE) with IH = (e2/2a0). 
The cross section for radiative recombination of electrons with energy E is then 

E } 
In 

n (In + E) 
Gn(E + In) 

which is much smaller by a factor ö(a2) than 07. Gn is the /-averaged Gaunt factor 
n~2 YH=O(21 + l)Gnj. The corresponding rate is 

aMn)Te)={Ve)(^ 
2Z2IH 

W -Fn(bn) n 

with 

Fn(bn) = bneb" l9jMe-K« fa 
J      u 
1 

where bn = In/kTe and u = hv/In. For ultracold recombination, Gn ~ 1 so that 

def 
= ao(Te)-&nefc»E1(fen) 

n (3) 

the semiclassical (Kramers) rate [1] where 

a0(Te) = 5.966 10"13 (^)V' Z2 cmV1 

and where Ei is the first exponential integral /6°° e~x dx/x. Since bebEi increases 
from 0 to 1 as b increases from 0 to 00, (3) shows that Radiative Recombination 
favors transitions to low n. 



Ultracold Radiative Recombination into the high level n0 determined by kTe = In 

then proceeds at the rate 

n/300\1/2Z2       3   , 
aRR(n) = 7.12 10~13 (^—J     — cm^"1 

The rate into all levels n' > n is 

aRR{n' >n) = a0(Te) J e6Ei(6) db 
o 

= ao(Te)[7 + ln6n + e6-E1(6n)] 

where 7 = 0.5772 is the Euler's constant. For bn = 1, then 

aRR(n' > n0) = 7 1(T13 '(^^ Z2 cm^"1 

The rate into all levels n' <n including the effect of cascades [3] is 

/300\0'63 

aRR(n' < n) = 3.80 10~12 (—)      Z2 cmV1 

COLLISIONAL CAPTURE RATE 

The forward recombination and reverse ionization rates aR and a/ of process (1) 
are interconnected by detailed balance 

NeN{n)aj(n) = NeN+aR(n) (4) 

where the Saha-Boltzmann distribution N of bound levels n in collisional equilib- 
rium with the continuum state distributions Ne and N+ is 

Br^h^n2eMIJkT') ' w2£       (5) 

where /„ is the ionization energy level n. It is useful to rewrite (5) in the equivalent 
forms: 

^ = Z(7ri?2)3/2(n2/n2)exp(n2/n2)    ;    In/kTe = n2/n2 (6) 

in terms of the characteristic Coulomb Radius ZRe = Z(e2/kTe) = 2nl(a0/Z), and 

f££ = f (^)3/2 K"2 ^ exp(bn)    ;    bn = In/kTe (7) 



where dbn/dn = (2bn)/n. The distribution (6) exhibits a minimum at n = n0 which 
corresponds to bn = 1. 

The rate for ionization of A(n) by electrons of energy E is 

oo 

ai(n) = (veoi(E)) = (ve) J e e~e die) de   ;    e = E/kT 
o 

A. Detailed Balance Rate: The Thomson collisional cross section [4] 

*«>-«4(K)«*T(H) 
for electron ejection from the Rydberg A(n), yields the rate of ionization 

-b„ 

b~ 
aj(n) = Z2irR2

e(ve)^ (l - 6ne
6"Ex(6n)) 

From detailed balance (4) and (7), the rate of collisional capture into level n is 
then: 

«coin) = Z\irRlfl\ve) Ne (n^2)"1!! " ^""E^)] (9) 

The factor multiplying [ ] in (9) varies as ZznAT~2. Since 6ebE!(6) -* 1 - b~l for 
very large b then ace ~ ZzrfiT~l at ultracold energies when kTe <C /„. 

Recombination into all levels £ < n proceeds at a rate 

n r rb ji 

acc(E) = 53 acc(«') ~ / aCc{n')dn' = /   aCc{n)-^- dbn 
n'=l t ,/6n l0n 

where 6 = I\/kTe can be replaced by infinity since 6i ~> bn. Then 

(10) 

OCCCV) = y(TTfle)572 <«e) #«/(*.) (11) 

where 

Since 

/(U = / 
l-bn^E1{bn) 

b7'2 

bn 

db 

5/2       _ 8.094 IP"9 20 / 300 y-5 

5.144 10-27     4.070 10 -32 

^eV "^Rj/ 

for Te expressed in different units, then 



accV) = 6.71 10-20iVe (^)4'5 R(bn) (12) 

which exhibits the characteristic Z3T~45 dependence [5]. The function is R(bn) = 
I(bn)/I(\). Since the equilibrium distribution (7) exhibits a maximum at kTe = In, 
where n = n0 or bn = 1, there is a bottleneck at n = no and it may be argued 
that all levels n > n0 are collisionally connected with the continuum and may be 
regarded as subject to re-ionization alone, while levels n <n0 are connected mostly 
with lower bound levels and are therefore subject only to further de-excitations. 
Then R in (12) is unity. 

In terms of this bottleneck level no, 

/2\1/2 

ZRe = 2n2
0(a0/Z)    ;    (ve) = [-)     (Zv0/n0) 

Then (9) provides the CC-rate into level n0 as 

acc(no) = 64 TT
2
 Z~6 nl(a2

0v0)(Neal) {[1 - eE^l)] = 0.4} 

and (11) the CC-rate into all levels n < no as 

Qcc(n < n0) = 32 Tr2n9
0(alv0)(Neal) {/(l) = 0.1329} (13) 

The strong n0-dependencies are therefore highlighted. Since n2, ~ Z2/kTe, the 
Z3T~4-5 dependence of (11) is recovered from (13). Although the Thomson cross 
section (8) can be replaced by a variety of cross sections derived from more elaborate 
binary-encounter classical theory, the key dependence Z3T~45 is still preserved. 
Allowance for the discrete n' summation rather than the continuous integration in 
(10) shows that Qß(n)/2 is simply added to (11). 
B. Direct CC Rate:In the three-body CC (1), some of the energy gained by 
the incident (test) electron 1 moving with total energy E\ = (3/2)kTe and kinetic 
energy Ti(R) = 3/2/cre-t-|Vi3(i2)| in the field of the ion 3 with charge Ze is lost upon 
repulsive Coulomb collision with an ambient (field) electron 2 of average energy 
E2 = (3/2)fcTe in an electron gas bath at temperature Te. For (1-2) scattering by 
angle ty in the (1-2) CM, the energy in the laboratory (fixed ion 3) frame lost by 1 
to 2 is 

AE = [Ti(Ä) - Et] sin2 - = \Va{R)\ sin2 - 

In order that the total energy of 1 is changed from E\ to all bound energies 
E[ < —eokTe, the (1-2) scattering must satisfy 

|y13(fi)|sin2|>(^ + 60)fcre (14) 

In a repulsive Coulomb (1-2) encounter 

,2* bl sin — = .„ c ,„    ,    bc = 
e 2 

2      b2 + b2
c    '      c     2Erel 



where Erel is the energy of (1-2) relative motion which, on average, is 3/2kTe. 
Condition (14) then provides the averaged cross section 

2 

.„(*) = i<§ -1)   ,   *-^.   **-W. (15) 

for the formation of bound states with energy E[ < -e0kT3 by (e - e) collisions at 
test-electron - ion separation R < Ro- For R > RQ, CTI2 vanishes. When e0 = 0, Ro 
is the Thomson trapping radius [1]. The collisional capture cross section at total 
energy 2 

E = \mev\R) + V13(R) = l-meR
2 + V13(R) + 2meE^ 

is 
oo oo 

acc{E) = 2TTJ pdp J W(R, E) dt (16) 
0 —oo 

where W(R, E) dt is the probability of the energy-reducing (1-2) collision occuring 
within the time interval dt = dR/vR{R) about R(t) of (1-3) trajectory, so that 

OO 00 

aCc(E) = 4n j pdp J W(R,E) dR 

0 ßi"(p) 
R 

where Ri is the orbit's pericenter at which R = 0.   On reversing the order of 
integration, 

'"     dp2 

acc(E) = 2n j W{R,E)dRJ 
n R(E,E) 

where p\(R,E) = R?[l - V(R)/E] gives the maximum impact parameter pi that 
can just acces the point R. For purely atractive interactions Ri(0) = 0 and V = E 
at Ri(0) when repulsion occurs at zero impact parameter. Since 

dp2 2R2 ri     V13{R), r     dp*     = 2K* 

J R(R.E)      v(R)[ ^ R(R,E)     v(RY E 

then oo 
W{R,E){,     V13(R), 

acc(E) = 47T J   -^-[1 —] dR 

The (1-2) collision probability within an element ds of the (1-3) orbit is 

ds 
W{R, E)dt= — = Nean{R)v(R) dt 

A 



where A is the free path length towards collision. Hence (16) reduces exactly to 

acc(E) = AnNe jau(R) (l - ^dSPj R2 dR 

which with (15) and Vl3(R) = -Ze2/R, yields 

aCc(E = ekT) = -*2Z6R\Nt 
1 + 3(e0 + 3/2)/e 

2(e0 + 3/2)3 (17) 

The factor ZZR\ originates from the reaction volume R\ while the additional R\ 
originates from the (1-2) scattering cross section (15). 

The associated collisional capture rate 

oo 

®cc = {ve) J vcc(t)ee~£ de 

is then 

acc(eo) = -^Z\ve)RlNt 

3   e0 +11/6 
2 (eo + 3/2)3 

The rate for production of all levels < —kTe is therefore 

acc{l) = 2.29 10-20 (^) 
4.5 

K (18) 

which is in excellent agreement with the Monte-Carlo result of Mansbach and Keck 
[5] and a factor of 3 lower than the detailed balance rate (12) derived from the 
Thompson ionization cross section (8). This simple result ~ Z3T~45 is preserved 
even in elaborate classical treatments of the ionization [6] or of the recombination 
[7] with correct averaging of the dynamical quantities . 

The frequencies vCc - ocCcNe and uRR = aRRNe are compared in Table (1) at 
various Te for typical Ne » 108 cm-3. Since VCC/VRR ~ Ne/T* it is seen that 
Collisional Capture dominates Radiative Recombination at cryogenic and lower Te 

by large factors ~ 107. Also CC w RR at Te ~ 300K while CC < RR at leV. 

TABLE 1. Collisional Capture and Radiative Recombina- 

tion frequencies for different temperatures 

vcc(s l) VRR(S 
l) 

4K 
300 K 
leV 

6.3xl04 

2.3xl0-4 

2-QxlQ-11 

5.8xl0-3 

3.8xl0~4 

3.9xlQ-5 



RADIATIVE DECAY RATES 

Level i decays radiatively to level j at a rate 

A(i^j) = ±A0(Eij/IHf(St»/gi) 

where the line strength 5y in a.u. is J2a,a' \{nlm\r\n'l'm')\2 and A0 = a3/t0 = 
1.604 1010 s_1 where t0 is the a.u. of time (e2/a0)/h. Level nl decays to all lower 
levels s at frequency 

ur(nl) = ^2 A(nl -+ s, I + 1) 
s<n 

= lz>A° 1 In5 , for J =   n — 1 
n3(Z + |)2        \ 4/9 n-3   , for I =   1 

The circular (I = n — 1) states, mainly populated by collisional capture (CC), 
are therefore very long lived and decay at frequency 

/       , 1N 1010 / ^ 4   1010   t   -U i/r(n, I = n - 1) « —=-      <      ^r(np -► Is) « - —j- (s x) 

very much less than that for the (np —► Is) transition. The levels n0 ~ 200 popu- 
lated by CC at 4K have therefore a long radiative lifetime rr ~ 32 s when compared 
with 2 10-3 for the (nop —> Is) transition. The overall rate of recombination via 
capture into level n followed by radiative decay is 

vcvT 
a ~ 

VC + Vr 

where uc = vcc + VRR- Since the radiative decay frequencies for n « n0 are much 
less than the frequency accN2 for collisional capture at ultralow temperatures, 
the overall recombination rate is controlled by the limiting rate vr. The question 
now addresed is the further effect of collisions between Rydberg atoms and ambient 
electrons and ions. 

INELASTIC COLLISIONS AND STARK MIXING 

Three important frequencies or timescales in the collision, depicted in Figure (1) 
are: 

(A) The projectile Rotation (Collision) Frequency UR of the Projectile 

•      bv large b v 1 
UR = * = T^ ~ 

R2 b Tcoii 

(B) The Transition (Orbital) Frequency un of the Rydberg electron: 

Ei — Ej 
Ui> =      ft 



FIGURE 1. The three important frequencies in the Rydberg projectile collision 

which for transitions n -> n - 1 between neightboring levels is simply u;n,n_i = 
uo/n3 = un = vn/an, the orbital frequency, where an = n2a0/Z and vn = Zv0/n. 

(C) The Stark Precession Frequency ws for precession of A about R: 
Under the ion Electric Field 8 = Zie/R2 the Stark frequency 

3 an .    .      3 Zianvn 

provides the precessional frequency of the Runge-Lenz (eccentricity) vector A of 
the Rydberg orbit about the field direction. 

By considering the exp(iut) factor in time dependent perturbation theory, the 
following types of collisions can be characterized as in [8]. 

1. Orbital Adiabatic: LüR <C un 

b V 
— » — 
a„ Vn 

where the orbital electron adjust itself adiabatically to the ion perturbation and no 
transitions occur. 

2. Orbital Sudden: UR 3> u>n 

b 
< 

which causes inelastic (n —> n') transitions 
3. Stark Adiabatic: UJR <£. UJS 

v 

bv 3 Z\anvn 

2     B? 



an ■i 

3 Zxvn 

where elastic collisions occur. 
4- Stark Sudden: UR » us 

b 3 Z\vn 
—      >      r —— 

V 

which causes /-mixing (n/ —> n/') transitions. 
5. 77ie weak Field Condition us <C un i.e., the Stark splitting fius <C A-E^-i 

implies that e£ <C 2/3(e2/a^) so that the collision occurs for distant encounters 
at R » an, the Rydberg radius, for fields e£ = Z\e2/R2. The electron's orbital 
time is then much shorter than any characteristic time to cause changes to the 
elliptical orbit. The vectors A and angular momentum L which are constant for 
the unperturbed motion become good dynamical variables for the description of 
the perturbed motion. 

With respect to orbital motion, the collision is sudden or adiabatic according 
to b < be and b > be, respectively, where be = (v/vn)an. With respect to the 
Stark frequency, collision is adiabatic or sudden according to b < bs and b > 65, 
respectively, where 6s = (vn/v)an. The impact parameter 6-space can then be 
partitioned according to: 

—      Orbital Sudden 
be = ~0m 

   Orbital Adiabatic 

Stark Adiabatic Stark Sudden 

U    _ 3 Zivn us —  9    1,    un 2    1; 

As v decreases, bs increases outward and be increases inward, thereby limiting 
the extent of the sudden regions where n changes and /-mixing occurs. The (v, b)- 
phase space can be partitioned into the four characteristic regions illustrated in 
Figure (2). For v > vn, the (n,l) changing and / changing (Orbital and Stark 
Sudden) shaded regions overlap and expand, in direct contrast to ultracold speeds 
v < vn where the Orbital and Stark Adiabatic (clear) regions increase and the 
shaded regions diminish and do not overlap indicating few collisional changes. 

CLASSICAL THEORY OF STARK MIXING 
COLLISIONS 

In addition to the energy En and angular momentum L of an unperturbed 
Rydberg electron moving with velocity v in an elliptical orbit with eccentricity 



eV 

300 K 

V3/2 

ultracold 
(4K) 

y/ZJ2 

FIGURE 2. Partitioning the v-b phase space map into 4 regions characterized mainly by: 

(a) energy changes, (b) energy and angular momentum changes, (c) angular momentum changes 

and (d) no changes under the weak field condition (5) 



e = (1 — L2/mank)xl2 and semi-major axis an = k/2\En\ in the field —k/r, the 
Runge-Lenz (or eccentricity) vector 

A = ^[vxL--r] 
r 

vn = (vY2 = —        k = Ze2       v0 = ^ 
n n 

directed toward the pericenter and normalized to angular momentum units is also 
conserved in magnitude A — (manA;)1/'2e and direction.  Moreover A • L = 0 and 
A2 + L2 = mank = n2h2. The dipole classically averaged over the orbit time is 

3e 3e A 
d= -e(r) = — (ane) = 

2 2 mvn 

In a.u., A2 = n2 — (I + 1/2)2 and the dipole d = (3/2)nA is maximum 3/2n2 for 
highly eccentric orbits / « 0 and is vanishingly small for circular orbits (I ;$ n). 
In presence of an electric field of intensity S, the angular momentum L changes at 
the rate 

dL 
— = -er x S 
dt 

so that the change of L (classically) averaged over one orbital period T is given by 

.dL. e   r.       _. AL      .dL. _   . .       Ä.   , 

Approximation 1:  Assume that the perturbation is adiabatic (UR <C un) with 
respect to the orbital frequency un. Then (r x S) = (r) x (£) so that 

— = -usx A 

in terms of the Stark frequency 

3e(5) 3e(t)      3/an\ 

which is 3n(£au)/2 in a.u. 
Approximation 2: Assume also that (£ x L) = {£) x (L) for slowly varying £. 

It can be shown that the change A over one period is 

AA       dA 

Approximation 3: Replace the changes AL and AA over one period by LT and 
AT to give the set of coupled equations 

^A / v     ,.        dL 
— = -us(t) x L        — = -us(t) x A 



where u>s tracks the time variation of the electric field in magnitude and direction. 
Under the substitution 

X=L + A       Y = L^A (19) 

the above set of differential equations becomes decoupled to yield 

^ = -Us(t) x X       ^ = +us{t) x Y (20) 
at dt 

where X2 = Y2 = (L2 + A2)/A = n2h2/4. The classical analysis for constant 
electric fields is given Born in [9]. For time independent ws, both X and Y precess 
with constant frequency us about the (fixed) direction of w5. For general time- 
varying ws, the system of differential equations (20) does not have an exact solution. 
Percival and Richards [8] have used classical perturbation theory to solve (20) and 
then provided a diffusional theory of angular momentum mixing. Bellomo et al 
[10] approached the same problem by proceeding via the time evolution propagator 
U*ot(t, to) f°r x an(* Y in the rotating frame, an approach which results in formulae 
too complicated for physical changes AL and A A to be extracted. 

An Exact Analytical Solution is however possible when the external time 
dependence of us{t) is provided by the electric field S = Zie(-R)/R2 of a projectile 
ion or electron of charge Zxe passing the Rydberg atom at large distances i? » an, 
the condition for the weak field approximation. Then 

R(t)   _     3 fZi\ (^VrA    . 
JP(t)~    2\z)\&{t))     [) 

which varies in both magnitude and direction.  Since the vector R rotates at the 
frequency 

, v d$ „        vb    . UR{t) = ~ä * = W) * 
then the vector 

a(t) = ^ = 1 (%) ^H R{t) v '      uR      2 V Z)   bv      w 

has the constant magnitude 3/2(Zi/Z){bv)~1 for a particle with reduced speed v = 
v/vn in a given trajectory of reduced impact parameter b = b/an. Since the value 
a = 1 separates the Stark Sudden (a < 1) and the Stark Adiabatic (a » 1) regions 
at b = bs (see Figure (2)), we refer to a as the Stark parameter. This suggests 
that $ could be a more useful variable instead of time t. Hence the first equation 
in (20) is 

dX.     dXd$ .     . . ,_ v 
3X = -J7-JI = a(°>sm$«cos $) x X (21) d$       dt dt 

Since the tip of X moves on the surface of a sphere, the solution of this equation, 
the final X vector (corresponding to t —► oo or $ = 0), is a rotation of the initial 



X vector (corresponding to t —* — oo or $ = ir). The second equation in (20) has 
a similar solution. The exact form of the resulting rotation matrices are presented 
in the Appendix. As a result of the collision the vectors L and A change to 

■£l" i u -~2 

.u. 
1 + a2 cos(7T7)Li        -a27sin(7T7)A2   a(—1 + cos(7T7)).43 

72cos(7T7)L2 7sin(7T7)L3 —cry sin(7r7)j4i 
7sin(7r7)L2   -(a

2 + cos(7T7))L3      a(l - COS(7T7))>1I 

(22) 

and 

i3J 
Y 

(1 + a2 COS(7T7))J4I 

—72 cos(7r7)-A2 

7 sin (^7)^2 

—a27 sin(7T7)L2   a(—1 + cos(7T7))L3 

7sin(7T7)i43 cry sin(7T7)Li 
-(a2 + cos(7T7))A3      a(l - cos(7T7))Li 

(23) 

where 7 = y/1 + a2 and the components of the initial and final vectors (L, A) and 
(L, Ä) are defined in the fixed coordinate frame of Figure (1). It easy to check 
that the above exact solutions satisfy the invariant relations 

LA = LA = 0 

and 
L2 + A2 = L2 + A2 2*2 n'h 

The new (n, L) orbit is confined to a plane perpendicular to the new L and the 
energy is preserved (n is not changed). The key to the present exact solutions of 
(20) for a non-uniform rotating field is provided by the recognition that $ is a more 
useful variable than time t and by the Rotation Matrix Algebra (in the Appendix). 

In the Stark Sudden region, the Stark parameter a is < 1. In this limit, the 
solutions have the simpler form 

and 

Li 
h 

Ax 

h 
4» j 

(1 - 2a2)!,! - 2a^3 

L2 + 7ra2/2 L3 

_ (1 - 2a2)L3 - 7ra2/2 L2 + 1aAx 

(1 - 2a2)Ai - 2aL3 

A2 + 7ra2/2 A3 

(1 - 2a2)Az - ?ra2/2 A2 + 2aLx 

The magnitude of the final angular momentum (for a <C 1) is then 

L2 = L2 + 4a(-A3L1 + A^) + 4a2(A2 - A\ - L2 + L2) 

On retaining only the first order term in a 

L2 « L2 + 4a(A x L) • y = L2 + 4aALcos£ 



where f is the angle between A x L and the Oy axis (Figure (1)). 
Since the vectors A and L are always orthogonal, the angle £ is then uniformly 

distributed over the range (0,7r) if L is uniformly distributed on the sphere with 
radius L, as for an equilibrium distribution of magnetic m-sublevels. The initial 
L-states then evolves to the final L states with angular momentum distributed 
according to 

F(L) dL = -d£ = -   , L d~L 
* * y/{4aAL)2 - {I2 - L2)2 

In fact T can be identified with WL_i, the transition probability density for L —► L 
transitions. 

For arbitrary a, the transition probability W has in general not a simple form. It 
is however important to recognize that the probability W depends on the projectile 
velocity v and impact parameter b only via the Stark parameter a = ZZ\n/2Zvb. 

The cross section for /-mixing in the the Rydberg atom is now 

da 

d~L =2* h-iMb - ^ (|)2 (f )2 / >-»da 
bs 0 

where the a-integral is independent of the speed of the projectile and the Rydberg 
level n. This general result (where / is the above mentioned integral) 

2  / V \ 2 

dl =^mm 
is in agreement with the behavior of a normalized Born approximation presented 
in the recent review [11]. 

SUMMARY 

In addition to providing radiative and collisional rates, the three main points of 
this paper are: 

• Development of a simple classical expression for the cross section (16) and rate 
(18) of the three-body collisional capture (CC) into level n. The result agrees 
with the Monte-Carlo trajectory calculations [5] and preserves the Z3T~45 

dependence of a. 

• Presentation of an exact classical analytical solution for the changes AL and 
AA in the angular momentum L and Runge-Lenz vector A of a Rydberg atom 
in the time varying electric field £ = —ZieR(t)/R2(t). 



• Pointing out that recombination at ultracold temperatures proceeds by very 
rapid three-body collisional capture into levels nl, with high /, followed by 
angular momentum mixing by collisions mainly with ions. Recombination 
then becomes stabilized by radiative decay of the lower /-levels so produced. 
This sequence is in direct contrast to recombination at Te > 1 eV where 
collisional and radiative capture are generally the rate limiting steps. 

APPENDIX: ROTATION MATRIX ALGEBRA 

For a given direction n, rotate vector x by angle <f> about the fixed direction n to 
give 

x' = cos 0x + (1 — cos4>)(h • x)n + sin4>{n x x) = R(n, </»)x 

This rotation corresponds to the matrix operator: 

R{n,<f>) 
c + (1 — c)n\ (1 - c)nin2 - sn3       sn2 + (1 - cn,\n3 

(1 - c)nin2 + sn3 c + (1 - c)n2
2      -sni + (1 - c)n2n3 

-sn2 + (1 - c)ninz   sni + (1 - c)n2n3 c + (1 - c)n3
2 

where c = cos(j), s = sin</> and h = h{ni,n2,n3). This matrix can also be written 
as 

R(n, 4>) = exp 4>{nilx + n2Iy + n3Iz) 

where Ix, Iy, Iz are the infinitesimal generators of the 0(3) group, i.e. 

0   0 0 0    0   1 0 -1   0 
/* = 0   0 -1 Iy = 0    0   0 Iz = 1 0    0 

0   1 0 -10   0 0 0    0 

The equation (21) can now be rewritten as 

dX 
d$ 

a(cos $/2 + sin $/y)X 

The transformation (" rotation frame") 

X' = R(x, $)X 

eliminates the $ dependence of the precessional frequency of the vector X' in the 
rotating frame since 

1$ = (d¥^_1 + a^(cos^ + sin S/^iT^X' =  (7X + aIz)X' 

The general solution for X' is then 

X'(*) = exp ((* - $o)(4 + alsj) X($o) 



or in the language of rotation matrices, 

X'($) = R (   .  1      (hi + ah3), ($ - $o)Vl + a2J X'($0) 

The exact solution for X(t) in the laboratory frame Figure (1) is 

X($) = Ä(n1? -$)Ä ( -=L=(ni + on3), ($ - $o)\/l + a2) fi^, $0)X($0) 
Vvl + a2 / 

Initially X = X* when the projectile approaches from infinity so that $* = 7r. The 
collision is completed when $y = n so that 

X/ = £ (-7= -(ni + an3), -Hi + a2 ) Ä(ni,7r)Xi 
\vHtt / 

Upon replacing a by -a the solution Y/ of the second equation in (20) is 

Yf = R (      l    2{hx - ah3), -Hi + a2 j RfarfYi 

These last two equations and the substitutions (19) provide the relations (22) 
and (23) between the initial and final angular momentum and Runge-Lenz vectors. 
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Appendix B 
The classical atomic form factor 

D. Vrinceanu and M. R. Flannery 
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 

(January 21, 1999) 

The general trends exhibited in the variation of the inelastic form factor in collisional transitions 
nl —* n'i', when I' is changed and n, I and n' are kept fixed are explained solely in terms of classical 
mechanics. Previous quantal results are reproduced from purely classical mechanics principles. 
Our conclusions are valid not only for large quantum numbers (which provide the usual classical 
correspondence) but also for other cases, which, up to now have only been described by quantal or 
semiclassical methods. The interesting trends exhibited in the form factor are directly reflected in 
experimental and theoretical treatments of collisions involving excited atoms. 

32.80.Cy, 34.50.-s, 31.15.Gy 

With the advent of new technology which facilitates 
the accurate measurement [1] of electron - excited atom 
collision cross section there has also been renewed interest 
in the theory [2] of collisions involving Rydberg atoms. 
Recent experiment [1], in particular, has confirmed that 
the cross section for the quadrupole 235 —> 33£> transi- 
tion in e — He(23S) collisions is much higher then that 
for the pure dipole 235 —> 33P transition at low and 
intermediate energies, in accord with the theoretical pre- 
dictions of [3] (Born and Multichannel Eikonal approxi- 
mations). Flannery and McCann [4] have noted that this 
unexpected behavior is only part of a more general sys- 
tematic trend in that (a) the 235 —> n3D collisional tran- 
sitions are predominant over all other transitions to the 
same value n-value, even for transitions to the electronic 
continuum and (b) that there is a unique value l'max of 
the final angular momentum I' that is preferentially pop- 
ulated in nl —> n'V transitions (n' » n) in collisions 
between Rydberg atoms and electrons or atoms. 

The origin of this general behavior was traced [4] to 
the variation with V of the quantum mechanical inelastic 
form factor 

•fy(q) = <V7(r)|e*r/ft|tfi(r)) = (<t>f(P + q)lfc(p)>   (1) 

for i(n, I) —» f(n',l') transitions between atomic states; 
i>ij{r) are the wave functions in position space and 
4>i,f{p) — {2nh)~3/2 f ipij(r)exp(—iqr/h)dr, the wave 
functions in momentum space. 

When an instantaneous impulse applied at t = to 
transfers momentum q to an atomic electron, the exact 
solution of Schrödinger's equation under Hamiltonian 

H(p, r, t) = p2/2m - e2/r - r • qS{t - t0) (2) 

is 

1'(r,i) = (l+ei9r/fiö(t-to))V'n/m(r) 

where 6 is the Heaviside step function. The probability 
for i = \nl) —> / = \n'V) transitions from the (21 + 1) 
initial sublevels is then 

Pni,n>i>{q) = |<4vH#>|2 = E Kn'l'mV'^nlm)? 
m,m' 

(3) 

The probability of any impulsive i —> f transition, 
whether due to particle collisions or electromagnetic field, 
is therefore 

KM) = l^/i(q)l2 (4) 

which provides physical significance to the inelastic form 
factor, a fundamental property of the atom. For impul- 
sive collisions between a particle 1 and a Rydberg elec- 
tron 2 bound to a core 3, the overall transition matrix 
element T decomposes as [5] 

ri/(q)=Jvi(q)T12(q) (5) 

where T12, the matrix element for (1-2) free-free elastic 
scattering in the (1-2) center of mass, is a function only 
of q, as for Coulomb scattering T12 = 47r7i"e2/q2, or for 
Born's approximation, T12 = / V(ri2)exp(zqr/7i)dri2. 
The probability of transition in the target atom per each 
(1-2) impulsive encounter is Pj/ = |Tt/|2/|Ti2|2, in agree- 
ment with (4). 

The cross section is obtained by the following integra- 
tion of the form factor (5) over momentum change, 

TU 
27r 

k? 

ki+kf 

(M/M12)
2 I \?frW)\2 l/i2(g')l21'dq' (6) 

\ki-k, 

where kitj are the initial and final wavenumbers of rela- 
tive motion of the projectile - target system of reduced 
mass M and q' = h\ki — k/| is the momentum change. 
The scattering amplitude for (1-2) collisions of reduced 
mass M12 is /12 = (2Mi2/47rfi2)Ti2. For (1-2) slow col- 
lisions with scattering length a, the Fermi interaction 
Vr(ri2) = [47ra(fi /Mj2)](5(ri — r2) also yields decomposi- 
tion (5) with /12 = a. 



. The" inelastic quantal form factor therefore not only ex- 
erts primary importance in collision studies, but also has 
a deep physical reality. In recent experimental studies 
of excitation of Rydberg atoms by short unipolar half- 
cycle electromagnetic pulses the transition amplitude is 
determined directly by the inelastic form factor [6]. 

Analytical quantal [7,8] and semiclassical [9] form fac- 
tors are available although general systematic trends can 
not be easily extracted from them. A key point of this pa- 
per is that a complementary classical approach can also 
be developed in a way which reveals, quite succintly, im- 
portant aspects which remain hidden within the quantal 
treatment. 

Consider a Rydberg atom in a stationary (n, I) state 
with energy E and angular momentum L. If the atom is 
perturbed by any general impulsive field (as in eq. (2) 
or the Fermi interaction), then the transition probabil- 
ity to the final state (n', I') (of energy E' and angular 
momentum L') is the inelastic form factor. 

The quantal probability density for finding the electron 
in the radial interval (r, r + dr) is 

Pli(r)=r2\Rnl\-
i 

(7) 

where i?n; is the hydrogenic radial wave function ex- 
pressed in terms of the generalized Laguerre polynomial. 

The phase space of a classical atom, with Hamiltonian 
H(r,p) = p2/2m + V(r), angular momentum L(r, p) = 
rxp and period Tni in stationary state (n, I) is populated 
according to the microcanonical distribution [10] 

pc
nl drdp = {(2nh2/rnl)S(H - E)6(\L\ - L)} 

drdp 
(27Tft)3 

(8) 

normalized to (2/ + 1) states in all of phase space. On 
integrating over the momentum space p and angular part 
of the configuration space r, the classical distribution is 

c 21 + 1 2 
Pni(r) dr=  T dr 

Tnl      r 

where the radial speed is given by mf2/2 = E - V(r) - 
(l + l/2)2H2/2mr2. For the Kepler atom (r„j = 2TTTI

3
 a.u) 

and pc
nl (in a.u.) is 

fair) = 7rn° 

(/ + 1/2) 21 -1/2 
_1 1_ 
7T713 j^r) 

(9) 

The quantal (7) and classical (9) radial probability 
densities are illustrated in figure Fig. 1. As in the text- 
book example of the harmonic oscillator, the classical 
distribution has singularities at the corresponding turn- 
ing points given by the radii (in a.u.): 

& = n2{l±e} = n2 {l ± [l - (/ + l/2)2/n2]1/2} 

(10) 

The classical distribution is zero outside the accessible 
region, bounded by R±. 

By using definition (1) the transition probability (3) 
can be converted to the new form 

Pi/(q) = (27rfi)3y"pn,(r,p)p;,/,(r,p + q) drdp     (11) 

where the quantal distributions in phase space are given 
by ffl = (27rft)-3/V(r)exp(-ip . r/ft)0*(p). This form 
is now suitable for classical correspondence on replacing 
densities pq by the phase space distributions (8). The 
basic definition of the classical form factor is therefore 
given by (8) and (11). The physical significance is that 
the initial and final state correspond to definite regions in 
phase space, populated according to the microcanonical 
distribution (8), and the transition probability is given, 
in a geometric sense, by the amount of overlap of these 
regions. In configuration space, the regions are spherical 
shells with inner and outer radii given by eq. (10), the 
pericenter (R~) and apocenter (R+) of the Kepler orbit. 

Analytical expressions with explicit dependence on q 
for quantal and classical transition probabilities are de- 
veloped in a separate paper [8]. Rather than examining 
the V variation of (11) for a given q, the key results are 
more readily deduced and are easily transparent by in- 
vestigating the probability for all momentum transfers 

nl- *n'V = / PiM) dq = (27TR)3 j dv P
C

nl{v)pc
n,v{T) 

TZ 

(12) 

where H is the overlapping region in configuration space 
defined by intersection of (R~,Rf) and (RJ,R^) inter- 
vals. 

Inserting p(r) = 47r/?c(r)r2 with (9) in (12) gives the 
classical form factor (CFF) 

nt->n'l' 
,(2/' + l) 

n.mQ 

/ 
dr/r2 

(r)ff{r) 
(13) 

where i^tn = max(Ä{ ,Rf) and Rmax = min(i?I
+,fi+) 

define the bounds of the overlapping region 1Z. Different 
overlap situations are illustrated in Fig. 2 for a repre- 
sentative case. The gray region is the accessible region 
for the initial state and the curves are possible final state 
trajectories. Transitions only occur when the final state 
trajectory penetrates the initial state accessible region. 
The longer time spent by the electron on the final state 
trajectory within the initial state accessible region, the 
bigger is the transition probability. 



. As I increases from zero to its maximum value for cir- 
cular orbits, R~ increases from zero to n2, while R+ de- 
creases from 2n2 to the same value n2. For final states 
n' > \/2n, then Rmax = Rt f°r a^ vames of V■ Three 
regions of overlap are then apparent and are respectively 
accessed as V is increased: 

• Region I, RJ < R~ : Here the overlap region 

TZ = (R~,Rf) is determined solely by the initial 
state and has spatial extent which remains constant 
as V is varied from zero to some value l\ where 
RJ = R~. There is always an orientation of the 
final orbit which will then intersect the initial or- 
bit, as exhibited in Fig. 2, for (n = 3, 1 = 2) and 
(n' = 8, V = 0 - 2) orbits. The V variation of (13) 
is contained solely within the increasing integrand 

(r/)"1. 

• Region II, R~ < RJ : Here the overlap region 1Z = 

{RJ, Rf) includes the f-pericenter and has spatial 
extent which decreases, as I' increases, eventually 
to zero when RJ = Rf. In this region, the initial 
and final orbits can intersect each other, as for the 
(n' = 8, I' = 4) orbit in Fig. 2. The I' variation 
of (13) results from variation of both the increasing 
lower limit RJ and the increasing integrand (r/)-1. 

• Region III, RJ > Rf : Here the initial and final 
trajectories no longer intersect, since the pericenter 
of the final state is greater that the apocenter of the 
initial state. This region where (i —► /) transitions 
do not occur, as illustrated by (n' = 8, I' = 5,6,7) 
orbits in Fig. 2, is the classically inaccessible re- 
gion. 

The boundaries between regions I and II and between 
regions II and III occur respectively at I' = Zi where 
RJ(n',l') = R~{n,l) and at I' = Z2 where RJ(n',l') = 

R*(n,l). Thus li and h are given by 

(Ji.2 + \? = n2(l =F e) (2 - (1 T etf/n12) (14) 

where e is the eccentricity [1 — (Z + l/2)2/n2)1/2 of the 
initial orbit. 

Variation of the CFF (13), with final angular momen- 
tum /' is then determined both by the lower integration 
limit Rmin (which is a constant i?~in region I and in- 
creases as RJ in region II) and by the integrand (r/)-1. 
Fig. 3 illustrates the general pattern. As I' is increased 
from 0 to Zi (region I), increase in CFF originates purely 
from the increasing integrand (r/)_1. As Z' is varied 
from l\ to Z2, the increasing integrand is offset by the 
decreasing range (RJ ,Rf) of integration (region II). For 
I2 < I' < n — 1, CFF is zero because transitions are not 
classically allowed in region III. 

At /' = l\ the trajectories touch only at their corre- 
sponding pericenters and CFF has a turning point sin- 
gularity characteristic of classical descriptions. The zero 
radial speed of the electron at the contact point of both 
initial and final orbits causes the infinite CFF (transition 
probability). 

As is evident from Figs. 3-5, the agreement between 
the classical and quantal results is excellent in region I, 
even for small quantum numbers. In region II, the quan- 
tal results oscillate about CFF. Since classical motion is 
confined to a definite region, the dramatic fall for large V 
is more steep than that for the quantal case where states 
have exponential tails within the classical inaccessible re- 
gion III. As expected from correspondence principles, for 
the larger quantum numbers, the quantum form factor 
tends to CFF, even in the regions II and III, as shown 
in Fig. 4. The quantal results exhibit maxima in the 
neighborhood of V = l\,h where CFF has the classical 
singularities. The position of l\ defined by (14) in the 
limit of large I, where the eccentricity e —» 0, is 

li(l -» n - 1) = nV2(l - 1/2 (n/n1)2)1'2 - 1/2 

an exquisite result for initial circular orbits. For n' S> n, 
l\ tends from the bottom to 

Zi(Z-»n-l,n'»n) = nV2 - 1/2 (15) 

a key result in detailed agreement with that previously 
derived from consideration of the quantal momentum - 
space overlap [4]. 

For small initial angular momentum 1, e —► 1 and Zi is 
then zero so that the maximum CFF is given by 

l2(l _» 0) = 2n(l - (n/n')2)1/2 - 1/2 

appropriate to highly eccentric initial orbits. In the n' 3> 
n limit then 

Z2(Z -* 0,n' » n) = 2n - 1/2 (16) 

As the initial 1 increases, there is therefore a slow varia- 
tion (2n —> \/2n) in the position of the maximum of CFF 
(Eq. (15) and (16)), which is pushed slightly to lower val- 
ues. This theoretical prediction is also confirmed by the 
quantal results [4]. 

When the energy E' of the final orbit is not sufficient to 
accommodate the value of fa deduced above (n' < \/2n), 
the peak in CFF (as in Fig. 5) is given by l\, provided the 
initial Z is large enough. When the final n' is sufficiently 
small so that the lower l\ can not be accomodated, i.e. 
h > n' — 1 CFF and the quantal result exhibit a mono- 
tonic increase confined to Region I, which is always char- 
acterized by excellent agreement between quantal and 
classical results. Classical expressions (11,13) for the 
atomic form factor have been derived. The pattern ex- 
hibited by the Z' variations (Figs. 3-5) is essentially iden- 
tical with the quantal pattern. The positions of maxima 



of the ?'-variation of CFF depend strongly on the initial 
n and only weakly on the initial /, in agreement with the 
quantal calculations [4], which were restricted to certain 
cases. Excellent quantitative agreement between classi- 
cal and quantal results makes the classical form factor a 
very useful tool particularly at large quantum numbers 
(Rydberg atoms) where exact quantal results are not easy 
to obtain (either analytically or numerically) and to use, 
due to the highly oscillatory nature of the wave function. 
Although the emphasis here is on the electron form fac- 
tors, the present analysis is applicable also to form factors 
for transitions between rovibrational states of molecules. 

This work was supported by AFOSR: F 49620-96-1- 
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FIG. 2. Various final state (n = 8, /' = 1 - 7) tra- 
jectories and the initial accessible region corresponding to 
(n = 3, I = 2). 
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FIG. 3. Characteristic dependence of the the inelastic form 
factor on the final angular momentum I', for fixed n (= 3), 
I (= 2) andn' (= 8). Classical calculations: solid line; quantal 
results: dots. 
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FIG. 4. Classical (solid line) and quantal (dots) inelastic 
form factor for transitions from state (n = 35, I = 30) to 
(n' = 55, I' = 0 -» 54) states. 
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FIG. 1. Classical and quantal radial densities of probability 
of localization for the stationary state of the hydrogen atom 
(£=-l/(2x202) and! = 8). 
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FIG. 5.  Classical (solid line) and quantal (dots) inelastic 
form factor for transitions from n = 6, I = 5 to n' = 8 states. 
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Cross sections for electron excitation out of the 2 35 metastable level of He into the 2 P. 3 '5. 3 'P. 
3 'D. 4 3S. 4 V. 4 3D. 5 35. and 5 }D levels have been obtained for energies up to 18 eV We have observed 
a broad excitation function for the 2 :"P level with a peak apparent cross section of 1.2x 10" u cm". For the 
n = 3. 4. and 5 levels, the excitation functions show a pattern of sharp peaks for excitation into the n "5 levels, 
slightly less sharp peaks for excitation into the n 3P levels, and relatively broad peaks for excitation into the 
n -'D levels. Absolute cross sections have been obtained for all the above mentioned levels using a laser- 
induced fluorescence technique and the results agree well with experimental values reported by Lagus et al. 
[Phys. Rev. A 53. 1505 (1996)] The cross sections for the 23S->n :'P excitations which correspond to 
dipole-allowed optical transitions are smaller than the corresponding 2 35—n 3S and 2 'S — n D excitation 
cross sections, in contrast to the trends observed for excitations out of the ground level. This reversal behavior 
is discussed in terms of the dipole matrix element sum rule. Our cross-section data are compared with those of 
the alkali-metal atoms. [S 1050-2947(97)06204-5] 

PACS number(s): 34.80.Dp 

I. INTRODUCTION 

Excitation out of the metastable levels of rare gases is an 
important mechanism in a wide variety of phenomena, such 
as high density gas discharges, astrophysical plasmas, and 
electron-beam pumped lasers. In the case of the 2 'S and 2 S 
metastable levels of helium, much theoretical work has been 
done on calculating both differential and integral cross sec- 
tions for electron excitation out of these excited levels [1-7]. 
An early measurement by Gostev et al. [8] shows results that 
are in serious disagreement with the subsequent experiment 
of Mityureva and Penkin [9]. Measuring cross sections for 
processes out of the metastable levels has proven to be much 
more difficult than measuring cross sections for the corre- 
sponding processes out of the ground levels of these gases. 
This is primarily due to the difficulty in producing sufficient 
densities of metastable atoms to study and separating the 
associated signal from signals due to ground level atoms. In 
our laboratory we have used a hollow.cathode discharge to 
produce a thermal atomic beam containing metastable he- 
lium with a density of 6X107 cm-3. With this apparatus, 
along with the use of special techniques for detecting very 
low photon emission signals, we have measured excitation 
functions and cross sections for electron excitation out of 
both the singlet and triplet metastable levels for electron en- 
ergies up to the onset of ground level excitation [10-12]. 
Our current work represents a refinement and extension into 
the n =2 and n =5 triplet levels of the previous results of Rail 
et al. [10]. We have found distinct patterns in the shapes of 
the excitation functions for the 5, P, and D levels. 

Part of the motivation for our effort is that the experiment 
of Rail et al., which used the aforementioned thermal atomic 
beam as a target, and the experiment of Lagus et al. [13], 
which used a fast (1 keV) beam of metastable atoms pro- 
duced by charge exchange collisions as a target, had a dif- 

ference in their absolute cross sections of about 5(Fr. We 
feel that it is important to improve the absolute calibration of 
the thermal atomic beam experiment to determine the source 
of this discrepancy. As discussed in Sec. Ill E. with the im- 
proved absolute calibration our absolute cross-section mea- 
surements using the thermal metastable beam target show 
good agreement with the results of Lagus et al.. which are 
based on an entirely different method of absolute calibration. 

II. EXPERIMENTAL APPARATUS 

A schematic diagram of our experimental apparatus is 
shown in Fig. 1. which is quite similar to the apparatus de- 
scribed by Lockwood et al. [11.12]. In this experiment, an 
electron-beam crosses at right angles an atomic beam con- 
taining both ground-state and metastable He atoms produced 
by a hollow cathode discharge. The emission intensity from 
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FIG. 1. Schematic diagram of the experimental apparatus used. 
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