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ABSTRACT 

The nonlinear thin film rupture has been analyzed by investigating the stability of 

thin films under the influence of electrostatic field to finite amplitude disturbances. The 

dynamics of the liquid film is formulated using the Navier Stokes equations including a 

body force term due to van der Waals attractions. The effect of the electric field is 

included in the analysis. The governing equation was solved by finite difference method 

as part of an initial value problem for spatial periodic boundary conditions. A discussion 

is provided for the effect of the electric field strength on the film rupture. 



NOMENCLATURE 

A' Hamaker constant 

Ca Capillary number 

d characteristic film thickness 

Ev electric field in vapor 

F electric field strength 

Fr Froude number 

g gravitational acceleration 

H distance from charged foil to the plate 

h film thickness 

K dimensionless electric field strength 

L length of plate 

p pressure 

Re Reynolds number 

t time 

U0 reference velocity 

u,v velocity components in x and y directions 

x,y coordinate directions parallel and perpendicular to the plate 

ß    - angle made by the plate with horizontal direction 

<|) electric potential 

\ 
^ aspect ratio 



p density of fluid 

(i dynamic viscosity 

v Kinematic viscosity 

\|/ potential function for van der Waals forces 

e dielectric constant 

a surface tension 

Subscripts 

0,1 first order and second order perturbations 



INTRODUCTION 

The hydrodynamic stability of thin liquid films has attracted much attention in 

view of many applications in chemical, mechanical and biomedical engineering fields. 

When a liquid layer becomes ultra thin  (100-1000A), it becomes unstable. The 

instability is due to the van der Waals potential and results in the rupture of the layer. The 

rupture of thin liquid films occurs in many industrial applications involving disperse and 

colloid systems and in biological phenomena. The spontaneous rupture of a liquid film on 

a planar solid wall was studied by Ruckenstein and Jain[l]. The liquid film was modeled 

by them as a Navier-Stokes continuum with a body force with a potential due to the van 

der Waals interactions. They used lubrication approximation to obtain the linear dynamic 

instability results. From this analysis, one can obtain rough estimates for the rupture time, 

namely, the time needed for the thin film to attain zero thickness at some point. William 

and Davis [2] examined the nonlinear evolution equation and numerically treated it as an 

initial value problem with periodic boundary conditions. Their results indicated that the 

nonlinearities of the system will accelerate the rupture phenomenon. 

Kim and Bankoff [3] studied the interaction of an electrostatic field with a thin 

liquid film flowing under gravity down an inclined plane. They did not include the van 

der Waals force term in their analysis because they were concerned with thick films. They 

examined the stability and evolution of the interface in the thin film limit. A discussion 

was provided on the application of their numerical results to a proposed electrostatic 

liquid film space radiator. 



A review of the literature indicated that no one until now has addressed the 

question of how the thin liquid film and an electrostatic field interact. The present work 

has been undertaken in order to investigate this problem. We are interested in the specific 

working regimes of the parameters, where it will be possible to stop rupture or dry out of 

the thin film. This will be accomplished by solving the equations of thin film motion in 

the presence of an electric field. A long wave theory is formulated for the nonlinear 

dynamic instabilities of the thin film. 



ANALYSIS 

We consider the flow of a thin liquid film down an inclined plane under gravity. 

The plane is assumed to make an angle ß with the horizontal. We choose x and y 

directions to be parallel and normal to the plane, respectively as shown in Figure 1. We 

assume that the characteristic thickness of the film to be d and the length scale parallel to 

the film to be L. The aspect ratio ^ = d / L. For a thin film, £ « 1. The distance from 

the charged foil and the plane is H. 

The electric field is determined by solving Laplace's equation. 

V2<|> = 0 (1) 

where (|>(x,y) is the electric potential. The boundary conditions are 

<t>(x,H) = <E>(x);   <!>(x,0) = 0 (2) 

Along y = h(x,t) we have the boundary conditions that the tangential electric field 

and the normal displacement field are continuous. It may be noted that y = h(x,t) is 

unknown, so that solution of the electrostatic problem is coupled to the dynamics of the 

film. 

The liquid film is governed by the Navier-Stokes equations. The liquid layer is 

assumed thin enough that van der Waals forces are effective and thick enough that a 

continuum theory of the liquid is applicable. 

We assume that the liquid is incompressible. The governing equations and 

boundary conditions are made dimensionless by using the following scales: length in y- 

direction=d,   in   x-direction«L,   velocity   in   x-direction«U0,   velocity   in   y- 

direction« £U0, unit of time« L/ U0, unit of pressure ~ pU0
2, and unit of electric field 



~ F. We take p as the fluid density, e0 the dielectric constant and |i. the viscosity. The 

continuity equation becomes 

9u    dv 
9x    3y 

The momentum equation becomes 

(3) 

3u      3u      9u 
at+U^ + V3yj S3x    Re \ 

a2u  a2u 2„\ 

V ax2   ay2; 
+ —ysinß-£ 

3\|/ 
Fr2""r   '3x 

(4) 

t2(3v      3v    t  3v^ 
^ \^3t       3x    ^ 9y, 

=_ap+J_ 
3y    Re Fr 

^cosß-^   (5) 
3y 

In the above equations, u and v are the velocity components in x and y directions 

respectively, p is the pressure and \|/ is the dimensionless potential function representing 

the van der Waals forces. We follow Williams and Davis [3] and write a modified 

expression for \j/: 

\|/ = Ah-3 

where A is related to the Hamaker constant A' as A = 
A' 

67tpU0
2 

(6) 

. We have introduced the 

Reynolds number, Re = pU0d / u, and the Froude number, Fr = U0 / ^/gd. 

The boundary conditions along the solid plane wall are given by : 

y = 0;u = v = 0 (7) 

At the fluid interface, we have the kinematic condition: 

y = h(x,t):- + u- = v (8) 

The continuity of tangential stress on the interface requires 



y = h(x,t) 1-S5 

3x, 
9u 3v 
— + V 
3y   s dx) 

+ 2% 
9h 
3x 

ray__9u^ 
3y    3x 

= 0 (9) 

The continuity of normal stress at the interface y = h(x,t) becomes 

JT£h 
Ca3x2 -KI: 

-3/2 
Re 

+ Ah_3= p + K 
2 \$f    J 

[(E:)a
+5f(E;)a]+5 ^ 

rahY3u_3h 
9xJ dx    3x 

f3u   K23v^ 
W        öyj 

1+s2 

.3x. 

., do) 

where: 

K = 
SpdF2 

16K|IUC 

ef = dielectric constant of the fluid (dielectric constant for vapor is taken as unity) 

e0 = electrical permittivity of free space 

E„ t = normal and tangential components of the electric field in the vapor at the interface 

Ca = 2jiU0 /a is the capillary number 

Equations (3)-(10) determine the motion of the liquid film. Our aim here is to solve for 

the stability of the liquid film while including the effect of van der Waals forces and an 

applied electric field. 

We now apply the long-wave theory to study the stability problem. When the layer 

is thinner than a critical value, small disturbances begin to grow. These waves have 

wavelengths much larger than the mean thickness of the layer. Defining a small parameter 

K that is related to wave number of such disturbances, we may rescale the governing 

equations: 

X = KX; Y = y;t = Kt (11) 
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We now assume the following expansions for the flow field: 

U = U0+KU,+K
2
U2+0(K

3
) 

v = K[V0 + KV, + K2
V2 + 0(K

3
 )] 

1 , ■     -, (12) 

P = -[p0+Kp,+K 2p2+0(K 3)] 

\ff 0 = Ki|/ * 0(1) äs k -> 0 

Neglecting the variation of p with y and substituting expressions (12) into equations (1)- 

(10), we get 

u0 = —smß + Re-^— + — Jj -hY (13) 

r^ 
v0 = -Re£ 

Po = 

2,„ "N 
3 Po    9 ¥o 

i^ax2    ax2 6 

hY2 Re sinß + jap0_| 3y0' 
Fr ax   ax 

rah 
ax 

Re 
V  \2    ,    „    /T7V\2-1 ^ KE^+^cErr]-^- 

aV 
ca ax2 

Y2(14) 

(15) 

where K=KK; Ca = Ca/K3. 

Similarly, expressions u,, v, andpj may be derived. Since these expressions are 

very long, they are not reproduced here. 

Using equations (13)-(15) we may show that the leading order evolution equation 

for the film rupture is given by 



3h_*L Re 
Fr2 sinß + Re-£ 

2 
Re' dx3+K\ 

—-1 

3KA  3h" 1 3h 
h *  axj Jax 

^ 
:v\2 

dX 
[(E;r+ef(E;n 

Re£h3 _2_ 
Re 

3KA 

h4 

Ca 3X4+i\ef     j 

_92h    (N + l)faiT 
~8X2+     h    Ux, 

^d2 

dX 
ii(Eff+zt{E*t)

2] 

(16) 

+ 2 ' 3X 
Re 

-^sinß + Re-t 
2   (    £    33h    _ 

Re Ca 9X3 + K —-1 
V£f     V 

—[(E:r+£f(Er)2] 

3KA ah" 
h4  ax 

subject to initial conditions: 

h(X,0) = F(X) (17) 

Equations (16) and (17) may be solved numerically in order to predict the rupture 

characteristics. 

We now define 

Z = 
'ACa^ 

T=(A2Ca)t 

Equations (16) and (17) now reduce to the following form: 

(18) 
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9h    Re sin ß 

3T+    Fr2 

V> 

^A3Ca 

8h    2K 
— 1 

Vef      J 
h2^[(E:)2+ef(Er)2] 

/9hY       ,3h  33h 
-Re-h-2 —   +2h2—   

{dz, 

_   2  3j^h    Re  K 

~"3h9Z4+ 3   A 

9Z 3Z3 

v    ^ (19) 

—-1 
\ef    J 

v\2n 
h az7^ +£f(E'} ] 

-Reh 
,,a2h 

az2 

with initial conditions: 

h(Z,0) = g(Z) (20) 

Equation (19) governs long wave interfacial disturbances to the static film (having h=l) 

subject to van der Waals attractions. 

To linearize (19), we put h=l+H(Z,T) and the resulting linearized equation is given by: 

HT + 
Resinß 

Fr2 

1 V* 

^A3Ca 

2K 1 
—-1 

Vef     J az [(E^e^E?)2] H, 

+ ReHzz+-Hzzz = 0 

(21) 
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RESULTS AND DISCUSSION 

The nonlinear partial differential equation (19) was solved numerically using the 

finite difference method. Central differences were used for space variable and the 

midpoint rule was used for time. The Newton-Raphson method was used to solved the 

resulting system of difference equations. The problem was treated as an initial value 

problem with spatial periodic boundary conditions within the interval 0 < Z < qm, where 

qm = —f= is the maximum wave number. We used spatial grid point N=50 and time steps 

AT = 0.001 in all the computations. The initial condition was given by 

h(Z,0) = 1 + 0.1 sin(qmZ) (22) 

All the computations were done for a horizontal plate (ß = 0). 

Figure 2 shows the initial disturbance introduced and the film profile at the time 

of film rupture. Figure 3 displays the timewise variation of minimum film thickness with 

and without the imposed electric field effect. When electric field is imposed, the 

dielectric constant ef has been chosen as a parameter. It may be observed that the rupture 

time increases when electric field is imposed. The transient variation of minimum film 

thickness for £f =50(water), 81 (glycerin) and °° coincide within the scale of the figure. 

As ef decreases to 2.5(trichloromonofluoromethane Rl 1), the rupture time increases 

furthermore. 

Figures 4-6 show the variation of the rupture time with the wave number of 

disturbance, q. From figure 4, we observe that the mode of the wave number 

corresponding to the minimum value of rupture time does not change significantly as the 

12 



value of £f changes. The wave numbers of these unstable modes are approximately equal 

to   Vrr. When £f =2.5, the highest values of rupture times are obtained. From figure 5 

and 6, we observe that for a given fluid, the ruptures times increase as the intensity of the 

electric field strength is increased. 
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CONCLUDING REMARKS 

In this paper, we have formulated a long wave theory for the nonlinear dynamic 

instabilities of a thin liquid film interacting with an imposed electric field. Numerical 

solutions are obtained for the Navier Stokes equations governing the dynamics of the 

liquid film in the presence of an electric field. The results indicate that the film rupture 

time may be delayed by increasing the electric field strength. 
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Figure 1. Flow Model for the Thin Film Flow 
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