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Thermal and electro-thermal modeling and 
simulation techniques for multichip modules 

1. Introduction 

1.1 The purposes of the work 

The purpose of our activity is to study and elaborate suitable strategies for the 
thermal simulation and verification of MCM designs in the design flow of Fig.1. 
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»Fig. 1. The considered design flow 

The main questions to be investigated are as follows: 

■   Where is the optimal place of the thermal or coupled electro-thermal 
simulation in the design flow? 



Which are the optimal tools for thermal and coupled electro-thermal 
simulation - taking into account the accuracy/computer time trade-off and 
the real requirements in accuracy, and the availability and feasibility of 
such tools? 

What are the problems that have to be simulated thermally and whether 
the steady-state thermal simulation is sufficient? How can the scope of 
thermal simulation be extended to the dynamic problems? 

Is it possible to simplify the thermal and electro-thermal simulation or 
design verification by using simplified, compact thermal models of the 
MCM module? How can such compact models be generated? 

The second purpose of the work is to investigate how the access of alternative thermal 
solvers~can be provided in a design environment. 

Having a choice of thermal solvers in the framework, the following advantages can be 
identified: 

■ For each problem the most suitable solver can be used, e.g. a rough 
simulation at higher levels, while accurate but rather time consuming 
simulation at lower levels, etc. 

■ More accurate or faster solution modules can be used at certain levels of 
the design flow instead of the usually inaccurate and time-consuming 
FEM codes. 

■ Frequency or time domain dynamic solution, thermal model generation, 
etc. becomes also possible with the suggested new tools. 

■ The different solvers can be compared, the resolution, accuracy etc. 
features can be investigated and matched to the given problem, etc. 

1.2.The Benchmark MT-MCM Model 

The benchmark MT-MCM Model used throughout this report is such a multichip 
module, which contains high performance computing chips, micro-electro- 
mechanical systems (MEMS), and possibly microfluidic systems. 



2. Strategy of the thermal verification during the MCM design 

The strategy of the thermal simulation/verification in the design flow should be 
influenced strongly by the fact that the thermal simulation may require huge 
amount of computer time - especially if high-resolution thermal map is needed 
or if dynamic (transient) solution is calculated. So, a great care should be 
applied deciding where and how coupled or thermal simulation steps have to be 
inserted into the design flow. Both the long waiting times of superfluous thermal 
simulations and the superficial handling of the thermal issues should be 
eliminated at the same time. 

The strategy for the coupled electro-thermal simulation requires a bit more 
care. Coupled means that there is a two-way interaction between the electrical 
and the thermal subsystems. The electronic circuit dissipates heat therefore acts 
as a source for the thermal part. Inversely, the temperature response of the 
thermal part influences the operation of the electrical part. In order to follow 
these phenomena, an elegant and theoretically well established method is 
frequently used: namely the simultaneous solution of the electrical and thermal 
subsystems. This method, however, requires the modification of the code of 
both the electrical and the thermal solvers. Moreover, if the complexity of the 
electrical circuitry is beyond the limit of handling it on component level, the 
simultaneous solution becomes to be problematic. In such cases coupling of the 
simulators is the appropriate way. This means that the electrical and the thermal 
solutions do not occur simultaneously but alternately. In our opinion this is the 
right way for the coupled electro-thermal simulation in a design environment 
where at least one of the following criteria is fulfilled: 

■ Higher level simulation tools are used as well (e.g. logic gate level, 
register transfer level or behavioral level), 

■ Easy linking of new simulation tools is a requirement, without the need of 
any modification in the simulator code, 

■ Not solely the pure electrical simulators but electromagnetic and other 
solvers are of concern. 

In our opinion the following rules should be kept in mind in order to find the right 
place(s) of thermal or electro-thermal simulation step(s) in the design flow: 

■ A fast thermal simulation (even with moderate accuracy) should be 
applied as early as possible, in order to highlight the rough thermal 
problems in the early phase of the preliminary design. Such serious 
problems can be corrected usually by the rearrangement of the chip 
placement but sometimes only by choosing other package and/or cooling 
scheme. The early thermal analysis helps us to avoid useless investment 
of work into a design that is thermally unmanageable. 



Conclusion 

A detailed and accurate thermal simulation is needed at the final phase 
of the detailed design. This simulation helps us to produce the thermal 
specification of the MCM module, including the thermal resistance 
towards the ambience, the maximum values of the chip temperatures, 
etc. If strong interactions can be expected in the system, at this point 
electro-thermal simulation is needed, otherwise the purely thermal 
solution is sufficient. The dissipation values should be calculated 
however properly from the data of the detailed electrical simulation even 
in the latter case. 

In cases when the MCM unit operates in transient mode thermal or 
electro-thermal transient simulation is also needed. 

In the case when the thermal interactions between the chips of the MCM 
are considerable and may influence the overall quality of operation, the 
models of the internal thermal couplings are also needed. Compact 
models for an MCM package can be generated also from the results of 
the thermal simulation. The advantage of these compact models 
manifests in the fact that if such a model has been derived once, it is 
possible to predict the thermal behavior of the package, without further 
time-consuming field-solver simulations. In a number of cases the 
coupled electro-thermal simulation uses these compact models as well. 
Compact thermal models are indispensable if fluid flow is present in the 
system. 

The thermal effect of fluid flow has to be simulated by CFD 
(Computational Fluid Dynamics) programs. These programs request 
usually extremely long run times (for usual systems this can be in the 
order of magnitude of several weeks on supercomputers), so the 
simplicity of the models of the system elements is a key issue. 

We propose to use a fast thermal solver in the early phase of the design, in the 
first moment when 

(i)       the package has been chosen, 

(ii)       the first placement of the chips is done, 

(iii)      the dissipation of the chips is known (or estimated). 

We propose to use a high-resolution and accurate thermal solver in the final 
phase of the design, in conjunction with the precise dissipation and boundary 
condition data. In this phase the electro-thermal simulation is also needed if 
strong   interactions   are   expected.   This   simulation   will   give   the  thermal 



specification data of the MCM. Beside this, based on this simulation, the 
compact thermal model of the design can be generated as well. 
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3. The program modules proposed to be linked to a general purpose 
design framework 

3.1. Thermal field solver based on the Fourier method (THERMAN) 

This program module is able to calculate the thermal field in rectangular shape, 
multi-layer structures. The physical structure of the lateral MCMs is rather close 

.  to this model. This allows very fast calculation of the thermal field, although 
some inherent constraints of the model limit the accuracy of the results. 

-    The detailed features of this solution engine are the followings: 

■ Number of the different layers: unlimited 

■ Resolution on the surface: from 256x256 to 2048x2048 

■ Boundary conditions, top surface and side walls: adiabatic, isothermal or 
natural convection 

■ Boundary conditions, bottom surface: isotherm or described by a 2D 
thermal impedance matrix 

■ Heat removing through leads or upper-side heat-sinking pistons can be 
taken into account 

■ Solutions: steady-state and frequency-domain 

■ Algorithm: Fourier method, realized by using FFT 

■ Constraints: the layers must be of equal size (but may have different 
thickness values), the thermal parameters of the different materials are 
assumed to be constant (not depending on the temperature), the 
thickness of the chips inserted into the MCM can not be taken into 
account. 

In order to visualize the used model a real MCM structure and his thermal model 
is demonstrated in Fig.2. The different layers of the MCM package appear in the 
model as well. Note however, that this tool does not model possible differences 
in the lateral layer sizes. The dissipating chips appear on the surface of the 
model with their real position and sizes. The thickness of the chips is neglected 
- they appear as 2D dissipating areas. 

The results of the analysis can be plotted e.g. by using a set of isothermal lines 
or by using pseudo-color maps. Two examples of such thermal map plots are 
shown in Fig.3. 
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< Fig.2. MCM package and its thermal model in the THERMAN program 

26.24 C 
26.03 C 

' Fig.3. Plots of thermal maps calculated by the THERMAN program 

The detailed description of the model and the solution algorithm of this program 
can be found in Appendix 1. 

3.2. Thermal field solver based on the finite differences and successive 
node reduction (SUNRED) 

This program module is based on the finite difference model of the investigated 
structure. The structure is mapped into a lumped RC network. This network is 
solved using an original method called Successive Network REDuction 
algorithm. This algorithm provides an acceptable solution time even for model 
networks having a great number of the network nodes. The solver has been 
already tested to handle 2D problems appropriately. The extension for 3D 
problems is just in the finishing phase. The model can follow the real structure of 
the MCM module including the thickness of the chips and the different lateral 
sizes of the layers of the package. 

The expected features of the 3D version of this simulation tool are the 
followings: 



Lateral resolution: 

Vertical resolution: 

Grid: 

from 32x32 to 128x128 

from 4 to 16 

variable size 

■ Boundary conditions: arbitrary. Natural convection can be modeled as well. 

■ Solutions: steady-state and time-domain (transient) 

■ Algorithm: finite difference, successive network reduction 

■ Constraints:   Linear solution  (the thermal  parameters  of the  different 
materials does not depend on the temperature) 

A real MCM structure and its SUNRED model are plotted in Fig.4. 

The detailed description of the model and the solution algorithm of this program 
can be found in Appendix 2. This description concerns the 2D tool but the 
extension to the 3D problems is straightforward. 

^~^s 
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• Fig.4. An MCM structure and the corresponding SUNRED model 

3.3. Thermal compact model generator (THERMODEL) 

The use of the common thermal simulation tools (as FEM codes, Fourier solvers 
etc.) is rather time consuming, so that it is highly advisable to avoid repeated 
runs necessary during the design process. Using the results of one single 3D 
thermal simulation run a simplified compact thermal model can be extracted. 
This latter can be used in the subsequent simulations leading to a significant 
save in the run-time. 

THERMODEL is a software tool, which generates compact thermal models to 
describe the heat conduction of 3D physical structures, from either the time- 
domain or the frequency-domain response of the given structure. The generated 
compact model consists of a single (or twin) RC ladder of eight-twelve stages. 
Both the one-port and the transfer thermal behavior can be modeled. These 
compact models can be useful in circuit-level simulators (like SPICE or ELDO) 
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where thermal effects have to be considered in the models or in the electro- 
thermal IC chip simulators where all the relevant thermal couplings of the chip 
can be modeled in this way. 

In the next example a conventional IC structure will be investigated. The 
operation of high-gain monolithic operational amplifiers can be heavily disturbed 
by the thermal feedback from the output transistors toward the input stage. Let 
the problem be to model this feedback path for a real structure. 

Dissipator 
100x100 ftm 

Si X=150W/mK 
c=1.67e6Ws/m3K 

160^mgap 

300 p.m 
10^m 

300/im 
10/Im 

Solder X= 5 W/mK 

FeNiCo 
X = 17.3W/mK 
c = 4.0e6Ws/m3K 

• Fig.5. Physical outlines of an IC chip. The thermal transfer impedance has been calculated between the 
Dissipator area and the point T(s). 

The chip arrangement and the main dimensions are shown in Fig.5. The 
THERMAN program calculated the heat distribution on the chip as function of 
the frequency. The 3D-field calculation provides the Bode plot or the complex 
locus of the thermal transfer impedance. The identification will be carried out in 
the frequency domain in this case. 

11 
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Complex locus of the thermal transfer impedance 
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• Fig.6. Responses of the IC chip. Solid line: calculated by the 3D field solver, dashed line: response of the 
generated model 

The complex locus of the thermal transfer impedance calculated by the 
THERMAN program is shown in Fig.6. (solid line). The THERMODEL program 
provides the time-constant spectrum as the result of the identification. The 
model network generated by THERMODEL consists of 17 stages. 

4. The problems to be solved in order to link the new knowledge sources 

4.1. The required input data 

In order to build the model of the investigated MCM structure the following 
groups of data are needed: 

■ files  for the  thermal   material  parameters  (heat  conductivity,   thermal 
capacitance), 

■ description of the MCM package structure (geometrical sizes, etc.), 

■ description of the chips mounted into the MCM (sizes, position), 

■ power map of the chips (or, at least, the list of the integral heat dissipation of 
the individual chips). 

12 
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4.2. The required control data 

Each new solver module requires a few control data, like the resolution, the 
steady state/dynamic flag, time interval definition in the dynamic-transient case, 
etc. Following the conception of the Blackboard Framework we propose to 
collect these control data in an (alphanumeric) file. This file can be generated by 
the control mechanism of the framework or by using a command-window with 
radio buttons. 

4.3. Results provided for the further evaluation and for display 

The results are also planned being written into files of the framework as well. 
Two alternatives are open when defining the format of these results: 

■ to follow the format already used in the Framework for thermal analysis 
results 

■ to define a format more appropriate for the new simulation engines. 

In the latter case a set of further program modules is needed, which are capable 
to translate these data into the format required by the other system modules (as 
displaying results in graphics windows etc.) 

The results of the compact thermal model identification will be generated in the 
format of the standard network netlists (as e.g. the format of SPICE netlists). 

13 
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APPENDICES 

Appendix 1. 

Algorithm of the THERMAN program 

A1.1. The Fourier algorithm for multi-layered structures 

Our research team has been involved in the thermal simulation of IC chips for 18 
years. The simulation tool THERMANAL developed at our department is based on th 
Fourier method. The reason of this choice is the obtainable very quick computation 
compared to the other solutions such as the FEM or the finite difference methods. 
Improvements developed by our group, such as taking into account the non-ideal 
nature of the heat-sink, calculating the heat distribution of beam-lead like structures 
etc. were already reported a decade ago. 

Dissipating elements 

• Fig. A1.1. The model of the IC chip 

Let us first discuss the "classic" multilayer solution. The considered structure is 
shown in Fig.AH. Equally-shaped rectangular layers are stacked on an ideal 
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heat sink. Each layer is characterized by its specific thickness dt, heat 
conductivity Xt and unit volume heat capacitance q. The dissipating elements are 
lying on the upper surface of the uppermost layer. Heat removal is 
accomplished only on the bottom surface of the structure while the "sidewalls" 
are adiabatic. Heat transfer is assumed only by conduction. This is a reasonably 
good model for a conventional IC chip. The heat-flow differential equation can 
be written as 

divgrad T = 
c_dT_ 

x dt 
(A1.1) 

for a homogeneous medium with constant A heat conductivity and c unit-volume 
heat capacitance. Having more layers with different A, and c, values this equation 
is applied for each region and are matched on the layer interfaces. 
The boundary conditions to be fulfilled by the overall solution are: 

dT 

OX; 
= 0 i = 1,2 (A1.2) 

X-O.L; 

for the four "sidewalls" of the multi-layered parallelepiped (where L, and L2 are 
the lateral sizes of the structure), 

dT_ 
= p(xi,x2,t) (A13) 

•>:,=/., 

for the upper surface, where p(x^,x2lf) is the dissipation-density on the surface, 
and 

7(x1,x2,0,f) = 0 (A1.4) 

for the lowest surface, where ideal heat-sinking is assumed. Additional boundary 
conditions are valid between the neighboring layers: 

7(x1,x2,srs,0 = T(xvx2,S!+e,t)    (i = 1 ... n-1) 
and 

where 

X 
dT 

' dx-, 
.v-.=,v 

-x. dT 
i+] dx3 

= 0     (i = 1... n-1) 

(A1.5) 

(A1.6) 

(A1.7) 
k=\ 

and s-»0. 
The solution of Eq.(A1.1) will be constructed as a two-dimensional Fourier- 
cosine series in the two lateral dimensions with coefficients depending 
exponentially on the third, x3 dimension. The time dependence is assumed as 
sinusoidal. For the /-th layer 
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™ " x x  r l 
r'(x,,x2,x3,0 = J]5]C0S(OT7I7L)C0S(,m7L)K' exP(Y/*3) + 3L exp(-y,x3)Je3cp(7(oO 

ni=0 n=0 L L 

(A1.8) 

One can prove by substitution that this function, and each summand of the 
double summation as well, fulfills Eq.(A1.1) if the following condition holds: 

f      V 
y,: = 

mn 

V L\ J 
+ ' nn • 

\^2 j 
+ ja- 

C: 
(A1.9) 

Beyond this, the function (A1.8) fulfills automatically the boundary conditions of 
Eq.(A1.2) because the expression 

x x 
cos( mn—L) cos(nn—) 

I I 
(A1.10) 

yields zero at x, =0, x, =/.,, x2 =0, x2 =L2 for any integer m and n values. The 
coefficients A'mn and ß'mn can be chosen arbitrarily and are suitable to match the 
solution to the remained boundary conditions of Eq. (A1.3) - (A1.4). For the 
bottom of the structure 

(A1.11) Ä   +B'   =0 urn inn 

for the i-th interface 

4,i, exp(YA) + K,„ exp(-YA-) = A% exp(y/+15,) + B'* exp(-y/+,5-) (A1.12) 

and 

YA/(4L expCY,.*,)-^,, expC-y^jJ-Y.A+iU™ expCy,.^,.)-^,1 exp(-y/+1J,.)) = 0 

(A1.13) 

For the upper side of the structure 

TAU",, exp(y,A,)-£;/„, exp(-y„j„))= Pnm 

where Pmn are the Fourier coefficients of the 2D Fourier expansion of the 
p(x1,x2)exp(/cof) dissipation density function: 

A1.14) 

P  =■ 
1 

L,L2{hm+l){hll+\)i 
- j \p(x],x2)cos(mn—L)cos(mt—) <3x2dx,      (A1.15) 

L, 

where 8j is the Kronecker - 5. (Sj=1 if i=0 otherwise 6=0) 
Expressions (A1.11) - (A1.14) constitute a system of linear equations for the 2/7 
unknown A'mn and B'mn values. This system of equations defines a linear 
relationship between these unknowns and Pmn: 
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4„,=^(Kv^Kim     BL=bi(\v,<o)Plm, (Aue) 

where for a given physical structure a, and b, depend on the co angular frequency 
and the X,sp wavelength of the spatial harmonics determined by the m and n 
indices: 

M " 4 

ff        \2       ,        N2A 

V 

m r    \ n 

\L2j 
(A1.17) 

The process of the thermal field calculation can be thus summarized as follows. 

Preparatory step:Using the \,cxt d, data of the given structure the functions a^oo) 
and /?i(A.sp,co) have to be calculated in tabulated form for the A.sp range, that will be used 
during the subsequent calculations. These functions are independent of the 
dissipation pattern thus are suitable to calculate the thermal field of different surface 
layout arrangements. 

Calculation for a given layout pattern 

(i)First the Fourier expansion coefficients of the p(x1,x2) surface dissipation 
density have to be calculated, using Eq. (A1.15). 

(ii)The Pmn coefficients will be multiplied by the appropriate values of the 
aAsp.o>) and bi(A.spico) functions according to Eq. (A1.16). 

(iii)Eq. (A1.8) can be used to obtain the temperature field of any layer. 

Step (i) involves a 2D Fourier expansion step, (iii) means a Fourier 
reconstruction step. The number of elements in the Fourier expansion should be 
limited owing to practical reasons. This number determines the spatial resolution 
of the calculation. Considering a chip of 2mm by 2mm size the solution using 
1024 by 1024 elements Fourier series gives a resolution of about 2pm. 

In the practical realization of the algorithm we work with sampled versions for 
both the p(x1,x2) power dissipation and 7(x1,x2,x3=sn) surface temperature 
functions. Therefore the need of a pre-sampling, anti-aliasing spatial filtering is 
usually raised. 

On the sampled 2D functions discrete Fourier transformation (DFT) has to be 
executed. For this goal the most convenient way is the use of the Fast Fourier 
Transformation (FFT) method. This algorithm provides a very fast computing 
which is essentially the main advantage and the primary attractive property of 
the Fourier method. 
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Free convection cooling of the surface can take an important part in the thermal 
effects. The air around the investigated structure has very bad heat conduction 
properties, however, the amount of heat transfer through that media can not be 
neglected in some cases. This phenomena can be approximated with the 
THERMANAL by adding one or more pseudo-layers to the layer structure at the 
bottom or/and at the top of it. This pseudo-layers should model the additional 
heat transfer and heat conduction to the ambient. This method is equivalent with 
the use of the heat transfer coefficient calculation of the natural convection, 
which is an acceptable model in still air. 

A1.2. Extension for bulk dissipation 

The assumption that the dissipation arises exactly on the surface is a rather 
rough one in many cases. The conventional ICs are usually covered by a 
protection layer. Moreover the active region of the dissipating components (as 
e.g. the collector-base junction of a bipolar transistor) are situated in some depth 
from the surface. Stacked 3D packaging of ICs (3D Multi-Chip modules) is 
constituted of multi-layered blocks as well, with dissipating areas on the layer 
interfaces, that is on the surfaces of the individual layers. 

A slight extension of the algorithm described above allows us to solve such 
problems as well. Let us complete the model in such a way that dissipating 
elements lay not only on the very top surface of the block but on the interface 
plane between layers, too. Let us denote the dissipation density between the /-th 
and /+1 th layers by pi(x1,x2). Only the boundary condition of Eq. (A1.6) has to be 
changed to the form of 

3T 
'   dXy 

,     dT 

ox. 
pi(x],x2)     (i = 1... n-1)        (A1.18) 

The corresponding equation in the Fourier algorithm which will substitute Eq. 
(A1.13)is 

YA,|C exp(y,5/)-5;;„, exp(-yA))-Y/+1?w+i(C' exp(Y/+1s,)-C expH^-s,.))^! 

(i=1... n-1) (A1.19) 

where Pmn are the Fourier coefficients of p{x„x2). In this case the linear system 
of Eqs. (A1.11), (A1.12), (A1.19) and (A1.14) results in the following linear 
relationships 

<„, = a,j (K, <»)PL        BL, = W <o)Pi (A1.20) 

As it can be seen the number of Fourier transformation steps during the 
simulation has increased. The coefficients Pmn have to be determined by 2D 
Fourier expansion for all;', so the 2D Fourier expansion has to be repeated k 
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times, where k is the number of dissipation planes in the actual task. After the 
calculation of the Amn and Bmn coefficients, the temperature distribution in any 
plane can be obtained by 2D inverse Fourier transformation, so the number of 
2D inverse Fourier transformation steps equals to the number of the 
investigated planes (chosen by the user). All the other features of the algorithm 
remain unchanged. 

A1.3. Extension for heat transfer via beam-leads 

There are microelectronic parts suspended on thin and narrow strips. Beam- 
lead packages belong to this class as well as the ball-grid array attachment of 
conventional IC chips. The Fourier algorithm can be extended for these cases 
as well supposing that 

(i)the suspended structure is also a multi-layered rectangular one, 
(ii)one or more necks or beam-leads that support the structure are narrow 

enough to be treated as one-dimensional from the point of view of heat 
transfer. 

The leads act as heat-sinking elements. Heat sinking elements can be treated 
as dissipating elements with negative dissipation. If we are able to calculate this 
negative dissipation for each lead the solution of the structure can be obtained 
using the algorithm described in Section A1.1. These negative dissipation 
values can be obtained as follows. 

The attaching points of the leads are considered as ports of a linear thermal 
network. When we have k leads the chip can be treated as a linear k -port. First 
we suppose that the leads are disconnected and calculate the heat distribution. 
Let us denote the temperatures of the lead connection points by Tto. In the 
second step we calculate the thermal impedance matrix ZC^ of the linear k -port. 
This matrix can be calculated in the following way. First we assume a unit-power 
dissipation to be forced on the 1st port while all other dissipating elements are 
disabled. After solving the problem and obtaining the temperature distribution 
the temperatures of the 1st... k th ports give the first column of the ZC^ matrix. In 
a similar manner all the columns of the matrix can be obtained. 

Let ZLy be the heat resistance (impedance) diagonal matrix of the leads. For 
one-dimensional leads with constant cross-section this can be calculated by 
analytical equations. Using the elementary methods of network theory for multi- 
ports we obtain: 

TI0 = (ZC, + ZLJPI (A1.21) 

Solving this set of equations for Pl we obtain the vector of heat flux flowing 
through the leads. Taking into account these fluxes as negative dissipations on 
the lead connection points we can get by a final solution step the true 
temperature map of the lead-suspended structure. 
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Appendix 2. 

Algorithm of the SUNRED program 

A2.1. The 2D model 

The 2D version of the program treats the linear heat conduction problems in two 
dimensions. Anisotropy can be taken into account. The equation being solved is 

/ ,     ,      ST     d(.dT)     d(.crf) 
p(x,y) + c— = —\X—  +— A.— 

dt    dxv   dxJ    dy\   dy (A2.1) 

and in the steady-state case 

d f. cfT]     d 
P(x,y) = —U— + 

rJt 
(A2.2) 8K\   öKJ    dy\   dyj 

This is the 2D form of the well-known Poisson equation, the mathematical 
description of many physical phenomena. 

The investigated area is a rectangle. A dense equidistant grid is spawned to this 
area defining a cell matrix. The suggested grid size is either 256x256 or greater. 
A material type is assigned to each cell. Constructing an image - in the sense of 
the digital image handling methods performs this assignment. Each pixel of this 
digital image corresponds to a grid-cell whereas the material type constituting 
the cell is coded by the color of the pixel. 

Thus, in order to enter a problem, two files have to be prepared: 

■ a "problem-image" which can be in any usual image format, 

■ a "material-table" assigning different material parameters to each color. 

This method of problem definition provides a very easy and fast input of 
complex geometrical arrangements (using any general picture editing tools). 
Almost arbitrarily shaped structures can be investigated; limitation is coming only 
from the finite resolution of the digital image. 

On the edges of the investigated rectangular area either forced temperature or 
zero heat-flow can be prescribed - individually, for any grid points of the 
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boundary. Excitations can be defined in the interior of the investigated area as 
well, forcing a given temperature or a given heat-flux to any cell. Obviously a 
new "color" should be introduced for each excitation value in the problem image. 

The solution of Eq. (A2.1) is accomplished by using the method of finite 
differences, and applying a network model for the thermal field. An electrical 
model describes the cells of the field. The cells are squares (or rectangles), with 
a node in their center (Fig.A2.1a.). Heat flux can be forced into them - this 
corresponds to the current flowing in this node. Forced temperature means the 
forced value of the cell node. 

-e—<>—& 

a.) 

> Fig.A2.1. Cell, center node and terminal nodes 

b.) c) 

The boundary between different materials is lying always on the cell edges. In 
other words: each cell is "filled" by a single material. Each cell has four terminals 
in the direction of its four neighbors (Fig.A2.1b.). On the terminals each cell can 
be described by a 4x4 matrix. This way the center node is hidden, but knowing 
the terminal temperatures the temperature of the center node can be back 
calculated. Fig.A2.1c. presents that the cell shows four terminals to the outside 
and the inner node is hidden. 

The steady-state model of the cell is shown in Fig.A2.2. It contains four thermal 
conductances. The value of these conductances depends on the thermal 
conductivity of the material filling the cell and on the geometry. This basic cell 
can be described by an admittance matrix of 4x4 size. 

a.) 

o-i I-«-I t-r> 

o 
b.) 

■ Fig.A2.2. Steady state circuit models of a single cell. 

a.)    Current excitation, b.) forced voltage 
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A2.2. The solution algorithm [1] 

The solution of the problem is done by the electrical solution of the whole model 
network. This raises serious problems because of the size of this network. For a 
256x256 grid arrangement the model network consists of 131072 nodes. 
Although the corresponding circuit matrix is extremely sparse the solution of 
such a big network is a hard problem. 

In order to avoid the troublesome "when to finish the iteration" problems we 
have not considered iterative solutions - only direct methods have been 
investigated. A successive procedure has been developed for the network 
reduction. The essential features of this algorithm are briefly presented in this 

_.    paragraph. 

Four basic cells can be assembled to form a block or macrocell as shown in 
Fig.A2.3.a. In other words: a 1st order cell has been built from four zero-order 
cells. The four interior connecting terminals of the cells can be eliminated; they 
will not appear in the outside-directed description. 

4       4- ; .t      f       ft 

a.) b.) 

• Fig.A2.3. Network reduction. 

■ a.) Four basic cells will constitute a 1 st level cell, b.) Building a 2nd level cell 

Using four 1st level cells we can assemble a 2nd level cell as shown in 
Fig.A2.3b. The inner terminals can be eliminated again. 

Continuing this successive construction of higher and higher level cells we 
obtain finally the matrix of a single cell - the terminals of which are lying on the 
four edges of the investigated rectangular field. Matching with the boundary 
conditions means the solution of this matrix for the U or I constraints, given 
individually for the terminals lying on the boundaries of the investigated field. 
The voltages of all the inside nodes can then be calculated by a successive 
back-substitution. 

Let us present the procedure in terms of the data flow and arithmetic operations 
used. The cells are described by their admittance matrices Y relating to the 
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boundary nodes and by their inhomogeneous vectors J representing the 
excitations on all the inside nodes but reduced to the boundary nodes. For the 
Oth level cells shown in Fig.A2.1. Using elementary calculations can 
generate Y and J. The connection of two cells as shown in Fig.A2.3. is 
equivalent to the addition of their Y matrices and J vectors where the areas of 
the connected nodes overlap as shown in Fig.A2.4. as well. 

connected 
nodes 

 ■  !—-  
1   '■: 

■. 1    ■■ : 

1 
Y1 
Tp 

0 

-..- ■*:-.. 

0 
YQ 

• Fig.A 2.4. Connection of two cells and the resulting Y matrix and J vector 

The next step is to eliminate the inside (^connected) nodes. For sake of better 
understanding Y and J are visualized in Fig.A2.5. in a rearranged node order. 
The first N nodes are the boundary nodes (that should be kept), M are the inside 
nodes that being eliminated. Partitions of Y are denoted by YA, YB, X and X1 as 
shown in Fig.A2.5. 

UA £*$ 
M 

IA 

IB 

YA 

YB 

JA 

JB m 
< Fig.A2.5. Partitions of the admittance matrix 

The nodal voltages and nodal currents are represented by the U and I vectors, 
respectively. The J, U and I vectors are partitioned similarly to Y. The linear 
matrix equation for the two connected cells is 

IA = YA   UA +   X   UB   + JA (A2.3) 

IB =   X4  UA + YB   UB + JB (A2.4) 

Elementary rearrangements of these equations result in the formula for the 
reduced admittance matrix 
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YRED =   YA -XZBX1 (A2.5) 

where ZB=YB1. The new inhomogeneous part is 

JRED =    JA-XZB  JB (A2.6) 

During the back-substitution step [UA] -> [UA, UB] 

UB = - ZB X1  UA - ZB  JB . (A2.7) 

It is worthy for note that the same matrix is appearing in (A2.6) and (A2.7) 
because 

ZB X1 = (XZB)1 . (A2.8) 

All the Y matrices are symmetrical. This permits a saving of about 50% both in 
storage and in arithmetic operations. 

The description of all cells by their Y matrices represents a huge amount of data. 
As the processing is essentially serial, it is advantageous to store these data 
streams in files. Thus the organization of the program is mainly pipelined: the 
program segments read one or more streams from files and writes the results 
into further files. This way a quite large number of nodes can be handled on 
computers having only limited amount of memory. 

Organization of the operations 

The short description of the main program segments demonstrates clearly the 
pipelined process: 

1. Network reduction. The segment reads the queue of the Y matrices of 
nth level cells, reduces them in fours by using three times Eq. (6) and writes 
the resulting, n+1th level Y matrices into a new file. The ZB and XZB 
matrices are calculated and stored into a further file as well. The number of 
runs of this segment is \og2(K), where K is the number of the pixels in one 
edge of the problem-image. 

2. Forward substitution. This segment reads the file of the XZB matrices, 
reads the queue of the J inhomogeneous vectors of nth level cells, reduces 
them in fours by using Eq. (7) and writes the resulted, n+1th level J vectors 
into a new file. The number of required runs is log2(K) again. 
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3. Solution. This segment uses the uppermost level Y matrix and J vector 
and solves the corresponding system of linear equations, taking into account 
the actual boundary parameters. 

4. Backward substitution. This segment calculates the voltages on the 
internal nodes in a hierarchical top-down order, by using Eq. (8) and two 
files: the queues of the J vectors and the XZB matrices. 

The advantage of this ordering of the calculus lies in the fact that the first and 
most time consuming step has to be repeated only in the case when the 
investigated structure has been changed. When the excitations are only 
changed, steps 2, 3 and 4 have to be repeated. In the case when only the 
boundary conditions are modified repeating of the steps 3 and 4 is sufficient. 

A 2.3. Extension of the SUNRED algorithm for 3D 

The 3D model 

In the model of the 3D SUNRED program the investigated volume is an 
orthogonal parallelepiped. A dense mesh is spawned to the volume defining a 
three-dimensional cell matrix. A single material property is assigned to each cell. 
In the x and y dimensions the resolution (the number of the cells) must be the 
same while in the z direction it can be different. This enables simplified handling 
in the case of layered structures where the resolution in the third dimension can 
be reduced if the layers are of homogeneous material. Such (so called 2 and 
half dimension) structures are quite usual in microelectronics and their treatment 
in this way requires much less computation than the usual 3D simulation. 

The definition of the problem to be analyzed is a basic question in case of 3D 
field solvers. In the case of the 2D SUNRED program the innovative problem 
definition treats the structures to be analyzed as images. In the present version 
of the 3D SUNRED program the two dimensional problem description is 
extended to handle the layered structure where each pixel in a single layer 
corresponds to a grid cell. This assures that real images like printed circuit board 
masks may be used as geometry input. It means that, the problem geometry is 
defined with the help of layers given by a series of images. The cells and the 
layer thickness describe the layers. In the case of the SUNRED program the 
mesh is not restricted to be equidistant. A non-uniform mesh can be prescribed 
for the cells, which further reduces the computation time where the grid 
resolution is not so critical. 
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The Poisson equation for the structure is constructed by using the finite 
difference method applying a network model for the thermal field. An electrical 
model describes the cells with a node in the center. Each cell has six terminals 
in the direction to its six neighbors. On the terminal points their admittance 
matrices can describe each cell. If we know the temperature of the terminal 
points the temperature of the center node can be back calculated. The values of 
the six thermal conductances' in each cell can be calculated from the material 
properties and of the size of the cell 

' Figure A 2.6 Circuit model of the single cell. 

On the edges of the investigated rectangular area either forced temperatures or 
zero heat-flow can be prescribed. Excitations can be defined in the interior of the 
investigated area as well, either by forcing a given temperature (U constraint) or 
a given heat-flux (/ constraint) to any cell, see Fig. A.2.6. 

In the case of the transient solution a capacitance is added to each cell between 
the center node and the ground, the value of which is determined by the heat 
capacitance of the cell. 

In the case of calculating in the frequency domain the model is the same, but 
the elements are frequency dependent. Even the solution algorithm can be the 
same, except that the elements of the admittance matrix are complex numbers. 

The 3D solution algorithm 

The solution of the problem is done by the electrical solution of the model 
network. The solution of the three dimensional problem is similar to the two- 
dimensional case, but the resulting matrices are now even much larger. For the 
theoretical background of the successive network reduction algorithm refer to [3]. 

In the three-dimensional case eight basic cells are assembled to form a higher- 
level macro cell. This means, that a 1st order cell is built from eight zero order 
cells. The 12 interior connecting terminals of the cells can be eliminated, they 
will not appear in the outside-directed description. Using eight 1st level cells we 
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can assemble a 2nd level cell etc. ( See Fig. A.2.7). The inner terminals can be 
eliminated again. 

(i+l)th level cell 

ith level cell 

• Figure A.2.7. Cell assembly. 

Continuing this successive construction of higher level cells we obtain finally the 
matrix of a single cell - the terminals of which are lying on the six sides of the 
investigated orthogonal parallelepiped. 

The solution of the problem can be calculated by matching the prescribed 
boundary conditions to the top-level cell and using back substitution steps to 
calculate the results for each internal node. 

The cells are described by their admittance matrices Y relating to the boundary 
nodes and by their inhomogeneous vectors J representing the excitations on all 
the inside nodes but reduced to the boundary nodes. For the 0th level cells 
shown in Figure A.2.6 elementary calculations can generate J and Y. The 
connection of two cells is equivalent to the addition of their Y matrices and J 
vectors where the areas of the connected nodes overlap. 

The next step is to eliminate the inside (^connected) nodes. Y and J are shown 
in Fig.A.2.5. in a rearranged node order. The first N nodes are the boundary 
nodes (that should be kept), M are the inside nodes that will be eliminated. 
Partitions of Y are denoted by YA, YB, X and X*. 

The vectors U and I represent the nodal voltages and nodal currents. The J, U 
and I vectors are partitioned similarly to Y. The linear matrix equation for the two 
connected cells is, similarly to Eq.s (A2.3) -(A2.8) 

IA = YA   UA +   X   UB   + JA 

IB =   X1  UA + YB   UB + JB 

Elementary rearrangements of these equations result in the formula for the 
reduced admittance matrix 

1 RED =  YA -XZBX* 
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where ZB=YB1. The new inhomogeneous part is 

JRED =   JA-XZB  JB 

During the back-substitution step [UA] -»[UA.UB] 

UB = -ZBXt  UA-ZB  JB 

ZBX1 = (XZB)1 are the same matrices, just like in the 2D case. 

The three-dimensional implementation exploits the hierarchical nature of the 
network reduction and organizes the data in the same pipelined manner as in 
the two dimensional implementation. 

An interesting property of the algorithm is that the describing admittance 
matrices can be constructed independently, so it is possible to obtain them by 
using parallel calculation. 

The original 2D implementation handles the admittance matrices of the problem 
as upper triangular matrices. However, the admittance matrices have a unique 
property, namely that they are symmetric positive definite matrices. This enables 
to use efficient factorization methods, which reduces the computation time 
again. In the present version the algorithm uses a special form of the Cholesky- 
factorization to invert the matrices during the successive reduction and the 
boundary solution. 

Efficiency 

The operation requirement of a single matrix inversion is Ordo(P3) in general 
cases where P is the number of nodes in the structure. 
Sparsity can be exploited by using different methods. The successive node 
reduction  gives  the  following   numbers  for the  necessary  floating   point 
operations: 

N2D *127P 

N3D*216P* 

where P is the number of nodes in the whole network. The most important result 
is that the 3D SUNRED algorithm requires Ordo(P2) operations to calculate the 
results. 

Up to now the SUNRED 3D algorithm has been compared with four very 
important traditional sparse techniques: 

■   the solver described by Chua in [4]. 
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the Sparse 1.3 library from the Univ. of Berkeley, USA in 

the iterative sparse symmetric Gauss-Seidel method [2]. 

the iterative sparse symmetric successive over-relaxation method [2]. 

The comparison was done on a Sun Enterprise 2170 computer and the results 
are given in Fig. A.2.8. The computational time is considered as the sum of the 
factorization time and the solution time. The comparison demonstrates that the 
SUNRED 3D program is faster than any other of the examined, extensively 
used methods, if the number of nodes is greater than « 2000. According to our 
detailed study this is because SUNRED exploits the special structure of the 
analyzed problem and spends less time with the reordering of the equations. 
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• Figure A.2.8 Comparison of SUNRED (S3D) with traditional methods 

Changing the dimension from two to three results in a computationally harder 
problem: A 64 x 64 grid in 2D contains the same number of cells as a 16x16x 
16 grid in 3D. Whereas the size of the top-level matrix for this 2D problem is only 
256 x 256, but for the 3D case it is already 1536 x 1536. This means that the 
time consumed by the boundary solution is about 200 times longer for this same 
element-number problem in 3D than in the 2D case. 

The gain in the computation time over the other sparse matrix solver algorithms 
is slightly less than in the case of 2D SUNRED, although still considerable, 
especially in the case of large node numbers. The not so high gain is originated 
from the large number of matrix elements: the algorithm spends more than 75 
percent of the computation time with matrix multiplication operations. 
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Appendix 3. 

Algorithm of the THERMODEL program 

A.3.1. Theoretical background 

The theoretical background of the model generation method used in the 
THERMODEL program is based on a new representation of the distributed RC 
networks. In this representation the behaviour of the network is described by 
convolution equations. Here we present this theory very briefly, limited only to 
the elements needed to follow the algorithm of the THERMODEL tool. 

In the following calculation the f time and the co angular frequency will be 
substituted by their natural logarithm: 

z = ln(/)       Q = ln(co) (A3.1) 

The R{z) time-constant density function will be defined in order to represent the 
RC circuits either in lumped-element or in distributed circuit case. This function 
gives the intensity of the terms of different time-constants in the response. We 
can interpret this function as a special kind of a spectrum, which depicts the 
occurrence and the relative intensity of the different time-constants in the circuit 
response. Sometimes we will use the alias-name time-constant spectmm as 
well. 

The R{z) function is a sum of Dirac-8's in case of a lumped element network 
where the response consists of terms of discrete time-constants in a finite 
number: 

R(z) = YJKid(z-lnxi)) (A3.2) 
'=' 

T; are the time-constants of the poles, Kj are the corresponding magnitudes, p is 
the number of the poles. The R{z) spectrum is a continuous function in case of 
an infinite distributed network. In this case the definition is 

„, „    ,.    magnitudes relating time - cons tan ts between z and z + 8z .. _ _. 
R(z) = hm—  (A3.3) 
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The R(z) time-constant spectrum is related both to the time and the frequency 
responses. The relation is of convolution-type in both cases. In the time-domain 

—a(z) = R(z)®w,(z) (A3.4) 
dz 

where a(z) is the unit-step response, ® is the convolution operator and the wt(z) 
function is defined by 

M>, (z) = exp(z - exp(z)) (A3.5) 

In the frequency-domain, for the Z(co) impedance function the following equation 
can be applied: 

-—Re(Z(Q)) = R(z = -Q) ® wr (Q) (A3.6) 
dQ. 

where 

Wr(Q) = 2-     £XP(2Q)   2 (A3.7) 
(l + exp(2Q))2 

Both convolution equations are suitable for the model identification. If we know 
the time-response of the network Eq.(A3.4) should be used. Knowing the 
frequency-domain behaviour Eq.(A3.6) has to be applied. In either case the 
inverse operation of the convolution: the deconvolution should be accomplished 
to extract the R(z) time constant spectrum from the network responses. 

Unfortunately we do not have a straightforward way to execute the 
deconvolution. In most cases this operation is extremely ill-defined, and as a 
consequence the smallest inaccuracy or noise in the input function (in the 
network response in our case) makes the result completely useless. There are 
various methods to overcome these difficulties and the solutions are usually 
tailored to the individual problems. 

A usual solution is the Fourier-domain inverse filtering. As it was shown 
previously the responses of the network are obtained by convolution integrals, 
as 

m{x) = R(x) ® w(x) (A3.8) 

- where m(x) is a response of the network, R(x) is the time-constant spectrum 
and w{x) is one of the two weighting-functions of (A3.5) and (A3.7). Turning into 
the Fourier domain we have the corresponding formula as 

M(<D) = /?(<D) • W(0) (A3.9) 
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where the capital letters represent the Fourier transform functions whereas <I> is 
their "frequency" variable. This equation contains multiplication instead of 
convolution. 

It must be emphasized that the m(x) -» M(0) transformation is not the same as 
the usual transformation into the frequency-domain since the variable x is not 
the time but \n(time) or \n(frequency). The frequency O can be interpreted as the 
number of waves per frequency-decade or time-decade on the logarithmic R(z) 
function. 

The Fourier domain, the space of the CD frequencies is well suited to execute the 
deconvolution (the inverse of convolution) since (A3.9) yields 

/?(<D) = -^) (A3.10) 
W(O) v ' 

Thus theoretically we can obtain the required function by a simple division. 
Since the higher O frequency components of l/l/(0) are quite small the division 
enhances the higher frequency values of A7(®)$ extremely, resulting in an 
unwanted enhancement of the noise. This enhanced high-frequency noise can 
be as large as or even larger than the useful part of the function and can 
completely hide them. This fact constitutes the ultimate limit of the resolution or 
accuracy of the deconvolution. 

The relation between the noise level and the resolution limit of the deconvolution 
is detailed in a recent work Q for the network identification problem. Here we 
recall only some results of these investigations. Let us examine for instance the 
identification using Eq.(A3.6). If we have m(x) with an accuracy of 10"8 (which is 
not impossible in case of a response produced by simulation) the possible 
resolution of the approximate R(z) function is 0.66 octave. This means that a 
single line of a discrete-line spectrum is broadening to a finite-width peak the 
half-value width of which is approx. 0.66 octave. 

The last problem to be solved is to find a procedure suitable to generate a 
lumped element equivalent network in the knowledge of the formerly determined 
R{z) function. 

The R(z) function of the distributed networks is continuous if their length can be 
taken to be infinite. Owing to the finite resolution, identification of lumped 
networks results in continuous R(z) functions as well. In order to build lumped 
models we have to approximate these continuous functions by a set of discrete 
spectrum lines. This approximation always involves a trade-off. On one hand, it 
is practical to keep the number of these lines as low as possible in order to 
minimize the size of the model network. On the other hand the error of the 
approximation should remain below an allowable limit. 

Let us discuss the time-constant density function in the case when fi(z)>0 (case 
of driving point impedances). A possible approach is the direct discretization of 
the R(z) function. The most straightforward way for this is the equidistant 
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placement of the poles on the logarithmic z or Q axis. If the relevant part of the 
function is in the [za,zb] region of the z axis (see Fig.A3.1) then the location of the 
poles is given by 

z, =z„+\i- 
1 

Ax /=1.../V (A3.11) 

where N is the pole number of the approximation, and 

Az = 2h-2a 

N 
(A3.12) 

The magnitudes of the discrete spectrum lines can be calculated by the 
following simple expression: 

;+Ar/2 

K,=    \R(s)dq 
:,-Az/2 

(A3.13) 

• Fig.A3.1. Discretization of the time-constant spectrum 

Possessing now the discrete-line R(z) spectrum the construction of the RC- 
ladder model network is a routine task of the linear network theory. 

In the case of transfer functions a special problem appears typically: the 
magnitudes are partly negative. An easy way to cope with this problem is to 
realize the positive and the negative part of R(z) separately, by two distinct RC 
one-ports and finally to add the output variables of these two sub-networks with 
the appropriate sign. 
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