
ARMY RESEARCH LABORATORY

The Distributed Interactive Simulation
(DIS) Lethality Communication Server

Volume I: Overview

Geoffrey C. Sauerborn

ARL-TR-1775 FEBRUARY 1999

,„,«** n*"0"01

Approved for public release; distribution is unlimited.

VR Link® is a registered trademark of MäK.

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of
the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Abstract

A new approach to handling battle simulation lethality is presented. In this
approach, a single vulnerability/lethality server provides standard
distributed interactive simulation (DIS) damage states to entities fast
enough for most real-time applications. Benefits include DIS simulations
being freed from the burden of maintaining damage state tables and DIS
exercises being easier to configure as a whole. A DIS software
implementation is freely available by contacting the author.

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

1. PURPOSE 1

2. INTRODUCTION 1

3. OBJECTIVE 1

4. LIMITATIONS 2

4.1 Limitation on Environmental Awareness 2
4.2 Data Latency 2

5. DESIGN 3

5.1 Callable Subroutine Inside the Simulation 4
5.2 Networked Server, With DIS Traffic Monitored 4

6. FEATURES AND EXPANDABILITY 6

6.1 Criteria for Determining Which Data are Delivered 6
6.2 Criteria for Determining Lethal Parameters 7
6.3 Returned Results 8
6.4 Beyond DIS 10

7. SUMMARY 11

REFERENCES 13

APPENDIX

A. DIS Lethality Server Architecture 15

DISTRIBUTION LIST 21

REPORT DOCUMENTATION PAGE 25

in

INTENTIONALLY LEFT BLANK

IV

LIST OF FIGURES

Figure Page

1. DIS Server Response Latency 3

2. Networked Server, DIS Traffic Not Monitored 5

3. Networked Server Topology 5

4. Non-Network Server Topology 6

5. Default Results 9

INTENTIONALLY LEFT BLANK

VI

LIST OF TABLES

Table Page

1. MFK "Probability" Space 9

Vll

INTENTIONALLY LEFT BLANK

Vlll

THE DISTRIBUTED INTERACTIVE SIMULATION (DIS) LETHALITY
COMMUNICATION SERVER VOLUME 1: OVERVIEW

1. PURPOSE

This report presents an overview of the distributed interactive simulation (DIS) lethality

communication server (the server). The report's scope is focused on the server's purpose,

overall design, and some particular features. However, this text cannot be used to effectively

prepare, operate, or modify the server. (Refer to Volume 2 of this report for these practical

considerations.)

2. INTRODUCTION

The ARL DIS lethality communication server is a combination of application program

interface (API) libraries and utility programs that make it possible to allow multiple applications

to access a single lethality data source. The server is designed for the DIS environment. As such,

the server returns lethality results as described by (the DIS) Institute of Electrical and Electronics

Engineers (IEEE) Standard 1278.1 [1] Furthermore, the server expects input in DIS standard

protocol data unit (PDU) format, although the equivalent input may be greatly condensed at more

abstracted layers within the APIs. The DIS server has demonstrated a data latency of less than

1/100th of a second and thus may be useful for a wide variety of applications. This project was

jointly sponsored by the U.S. Army Modeling & Simulation Office (as a 1997 Army Modeling

Improvement Program [AMIP] project) and by the U.S. Army Research Laboratory (ARL).

3. OBJECTIVE

The motivation for the server stemmed from the author's experiences in conducting DIS

exercises among different types of simulations. A frustrating problem was to discover "holes" in

one or another simulation's lethality data set. Naturally, different simulations handled this

situation differently. This resulted in "unfair" play between simulators (or occasionally, a fatal

error in a simulator). Until the problem could be fixed (and the lethality holes "plugged"), the

impact on the DIS exercise was usually catastrophic. Thus, the original objective of the server

was to alleviate this situation and thereby increase the amount of "free play flexibility" and

decrease the amount of overall pre-exercise preparation. After a little thought, it became evident

that there are several serendipitous benefits to having a lethality server:

• The server could eliminate DIS interoperability variances in lethality results (remove

"unfair" weapons effects play), since all DIS simulations will resolve lethality effects

through a single, repeatable means.

• It would allow increased ease of verification, validation, and accreditation (VV&A) for

battle simulations exercises as a result of having a standard (and centralized) set of

unclassified lethality calculations.

• It could decrease DIS simulation development time by providing a completed, computer

platform-generic, lethality/vulnerability-handling mechanism. That is, because the lethality

issue has been decoupled from the rest of the simulation, the lethality-handling mechanisms

may be "stubbed out," allowing more time to devote to the rest of the simulation

development process.

4. LIMITATIONS

Every automated system must have design trade-offs and performance limitations. This

section mentions two of the most important.

4.1 Limitation on Environmental Awareness

There is currently no provision for making the server aware of the synthetic environment

(terrain). The server's knowledge of what and where things are is limited to the DIS network

traffic. Therefore, only distance and orientation from the point of detonation are considered for

area (indirect) detonations against a platform. External influences that may affect the outcome (e.g.,

walls, earth, etc.) are not considered since the lethality server will have no knowledge of them.

4.2 Data Latency

The DIS server should be acceptably fast for real time, training, and most other applications.

Informal tests demonstrate the server's response time to be faster than normal human reaction

speed. Naturally, data latency depends on computer processing speeds, network bandwidth, and

network traffic. The informal tests were conducted with an unoptimized1 server compilation

1 No special considerations were made to "tweak" the server or client programs; they were compiled without
optimization. Furthermore, both the DIS server and the client application output verbose "debugging" information
during this test. Therefore, these results could be viewed as a data latency upper boundary for these processors over
a standard 10-mbps (millions of bits per second) Ethernet.

across a populated network during "normal business hours." Figure 1 shows the distribution of

time taken to send (and receive the answer to) 440 separate server queries. For these tests, the

average data latency was about 6 microseconds (|isec), but a very few tests (about 0.7% of the

queries) took much longer (between 20 and 30 jisec).

100

80

60

40

20

Data Latency During D!S PDU Network Traffic

95

76

-22.

t—\r-\

58 OS"1

54

/9

o o o o
ö 6

m o o
Ö

o o
Ö

in o o
d

© o O
O
d

t—f-
CO o o o o

o
o ©

Co

o
o o o o o

o

Time (seconds)

CO
CM o
©

©
CO o
d

Figure 1. PIS Server Response Latency.

The DIS exercise included 79 DIS entities (67 tanks, 10 infantry fighting vehicles, and 2

mobile anti-aircraft platforms). Together, they generated 20,281 PDUs during a heavy 16-minute

battle. This took place across a standard 10base2 (thin Ethernet) network that was not dedicated

to the DIS server. That is, other data beside the server's queries and the DIS PDUs also

competed for network bandwidth. Approximately 98 other network hosts (other computers,

printers, etc.) resided on the same network and produced normal uniform data protocol (UDP)

and transmission control protocol/internet protocol (TCP/IP) traffic on the network, although an

unknown number were probably inactive at the time. The DIS server (and the client application)

resided on Silicon Graphics Incorporated (SGI) Indigo2 computers that used 150-MHz R4400

processors.

5. DESIGN

First and foremost, from an implementation point of view, the server is designed to be

expandable. Many extensions can be accomplished by manipulating system parameters and

initialization data. Other enhancements require additional software. For example, an unsupported

vulnerability data format may be accommodated by adding two functions to a software library.

(More of these details are discussed in Section 6.)

At the most general point of view, the server is a system designed to provide "data," based

on some criterion. Currently, the criterion is focused on DIS battlefield "munition" type events.

However, the server may be expanded to include other criteria. The data that the server provides

are given somewhere in a local (to the server) file (or potentially at a remote site). The

appropriate data are delivered to the client upon request.

Operationally, the server is designed be flexible to meet the needs of client applications by

allowing networked or non-networked use. In network mode, clients communicate with the

server via (a standard and platform-independent protocol) TCP/IP sockets. Optionally, the

server can be implemented as a callable subroutine (inside the client application) with no external

networking traffic necessary. This allows flexibility for the client. The network connection will

be slightly slower; however, its use shall ensure that all exercise participants using it are accessing

the same lethality data sets. These two communication configurations are explained now.

5.1 Callable Subroutine Inside the Simulation (fastest communication speed)

In this schema (shown in Figure 4), data relating to the vulnerable platform and the

threatening munition are a binary stream representing standard DIS PDUs. This information is

passed directly to the server via an API function call. The server returns the lethality result (the

damage state occurring against the threatened entity platform as a result of the munition

detonation or other event).

5.2 Networked Server. With DIS Traffic Monitored

In this topology (shown in Figure 3), the server monitors DIS PDU traffic on the UDP DIS

network. Communication with client occurs via TCP/IP sockets. The client requests-the result

from a detonation event by referencing the identifier (ID) for the detonation event and the ID of

the threatened entity. These IDs are part of the DIS standard, and because the server is

monitoring the DIS traffic, it knows which type of platform is referred to by the entity ID. The

server also monitors other data that were broadcast on the DIS network and are relevant to a

vulnerability calculation. The server then returns the result to the client via the TCP/IP network

link.

Originally, a third topology was planned as shown in Figure 2.

DIS Network Traffic

Client TCP/IP _
network

Server

Figure 2. Networked Server. DIS Traffic Not Monitored (unimplemented).

This topology differs from Figure 3 in that the server would have no prior knowledge of

detonations or entities. In this case, the client would be required to send more detailed information

concerning the event. This topology was proposed as a building block before the topology of

Figure 3 was achieved. However, once the server's capability to monitor DIS network traffic was

completed, it made no sense to implement this topology for the reasons stated below.

DIS Network Traffic

lMt/ff& ;»j;ww»j»w/jj»jjjj,'»/j»/fwrrrm

Client TCP/IP _
network

Server

Figure 3. Networked Server Topology.

a. In the topology of Figure 4, the data required by the server would be delivered in the

form of DIS PDUs. These very same PDUs were already broadcast on the DIS network. With

the capability to monitor DIS PDUs completed (Figure 3), it is unnecessary for the client to

resend them (since the server has been monitoring the network and already has these PDUs).

b. If the client wishes to simulate a DIS exercise by sending complete PDUs, this may be

done by using the topology of Figure 4.

DIS Network Traffic

VJ/J»fJ>t. >>sj;.';jm>}>.>.>.'},w/}>>>»>};»>J»;;w>fTm

Client (Server is a non-networked
subroutine to the client.)

Server

Figure 4. Non-Network Server Topology.

6. FEATURES AND EXPANDABILITY

This section highlights features and outlines the type of expandability that is built into the

server's design at the time of this writing.

6.1 Criteria for Determining Which Data are Delivered

The server needs to know which type of data a client application wishes to retrieve. This

is accomplished in two steps. The first step is to associate the data with a "threat" and "target."

These data describe a target-threat interaction of a certain lethality "class." The second step

involves monitoring the battlefield for the triggering event.

Currently, the server only handles one type of triggering event, namely, "munition"/

"detonation" type threats against an entity. There is no provision for damage resulting from

collisions, biological/chemical exposure, or other kinds of damage mechanisms. However, the server

is expandable and there is no reason why these (and other means of damage assessment) may not

be added. However, this would require additional code to make the server "look for" and process

the particular battlefield events that the lethality result depends upon (see Section 6.2).

It was mentioned that the target-threat interaction is a certain lethality "class." This class

identifier allows the server to respond differently for different situations. As an illustration,

suppose the data source for a ballistic munition divides lethality results according to dispersion at

impact time. Without a lethality class, the server will return the lethality result from that data

source even if the munition (was close but) missed the target. On the other hand, if the server

knows that this munition-target interaction is of the "direct fire hit-to-kill" class, then it will

correctly bypass the data source and return a "no further damage" result (since the munition

missed). This flexibility allows the server to be expanded to other lethality classes as they

develop. There are currently only two lethality classes ("indirect fire" and "direct fire hit to kill").

6.2 Criteria for Determining Lethal Parameters

Knowing how to behave for certain "lethality classes" is not enough. The server also needs

to know upon what environmental factors and initial conditions the lethality calculation depends.

The server accomplishes this by using the "lethality class" identifier to associate which parameters

are important to that particular type of lethality result. Currently, the server only handles one type

of triggering event—that of "munition"/ "detonation" type threats, of which, direct and indirect fire

munitions are sub-categories. These threats are characterized by an explosion or explosive/

nonexplosive ballistic impact. The server knows which environmental parameters are necessary to

complete the lethality calculation for these types of threats. Specifically, the server tracks the

appropriate DIS PDUs and extracts the required environmental parameters from them.

In the DIS environment, the simulation that controls such a direct or indirect fire munition

announces the munition's explosion or impact by broadcasting a detonation PDU to all the

exercise participants. Any munition that can be simulated in this manner can currently be

serviced by the server. A provision of this is that the resulting damage to a threatened entity

would then occur as a relatively immediate reaction to the detonation as opposed to one requiring

prolonged exposure to a damage-inflicting environment (such as a dust storm, forest fire, noxious

gas, etc.). This is because the lethality server does not account for damage as a function of time

for these lethality classes. It merely returns lethality data based on an event (a denotation).

These returned data are then used by the client in an appropriate manner. [2] The server does not

continue to monitor the environment for "continued degradation" resulting from prolonged

exposure. This type of behavior could be added by creating a new "lethality class." Naturally, it

would also require adding new behavior code to the server for that class.

One exception to the immediate lethality reaction just mentioned is that the server maintains

a record of the number of munition "hits" occurring against any entity. While this information is

available for clients to use as they see fit, it is not currently used by the server to assess damage.

Furthermore, current APIs do not distinguish which types of munition accounted for the various

hits; however, all this information is maintained by the DIS monitor module, and a summary

output of all munitions and their effects is output in a report file (called roiiup.det).

6.3 Returned Results

6.3.1 Types of Vulnerability Methods (Results)

When a lethality event occurs, many results are possible. Analysts usually divide the

number of "end states" into more manageable sets. We refer to a set of possible outcomes as the

vulnerability methodology. The only criterion is that the outcome sets describe the complete

universe of possible outcomes. A simple example would be a binary methodology ("dead" or

"alive" states). Most often, it is useful to have a more detailed division of outcomes. The server

is designed to accommodate a variety of "kinds" of vulnerability methodologies.

6.3.1.1 One Implemented Vulnerability Methodology (the MFK class)

While the server is designed to accommodate a variety of vulnerability methods, as of

this writing, only one methodology is implemented. This methodology conforms to DIS standard

terms that describe the damage state of an entity. (Specifically, lethality results are a subset of

damage "states" in the DIS entity state appearance field.) This methodology divides lethality

results in terms of mobility, fire power, and catastrophic "kills" (MFK). Expanding the server to

handle other methodologies would require adding another probability (result) classes in addition to

MFK, along with APIs to support them. (Volume 2 of this report explains how this may be done.)

6.3.1.2 A Variety of Answers for Each Vulnerability Methodology

Within the context of a vulnerability method, effects may be returned in a variety of

formats, depending on the form that the query takes (or which API is called). In addition to (or

instead of) returning the results, the server can return the raw probabilities and let the client

decide how to use them. For example, the client may query what is the probability that no

significant damage occurred (a single probability), or the client may query what is the probability

of each of the possible outcomes occurring (multiple probabilities). However, it is recommended

that for DIS battle simulations, clients should request the results (and not the probability of a

result occurring). In this manner, the probabilities are organized and the same random number

generator is used by every client.

As concerns the one implemented vulnerability methodology (MFK), if a client

requests an MFK lethality result (as opposed to the probability of a result), the answer will be

one and only one of the items listed in Table 1.

Table 1. MFK "Probability" Space

Damage State Explanation

MKILL Mobility and only mobility kill.

FKILL Firepower and only firepower kill.

MFKILL Both mobility and firepower kills.

KKILL Catastrophic kill.

NoDamage No additional damage inflicted.

The results in Table 1 describe the universe of all possible outcomes under the MFK methodology.

Along with each of the results, a flag will be returned, which informs the client if an

actual lethality data source was used to determine the weapon effects. The only reason that a

source would not be used is because it was not found by the server (because it did not exist) or

because it was inaccessible (by the server). In either case, when a valid lethality source cannot be

accessed, then the result is generated from a random draw of a single fixed (invalid) distribution.

In the case of MFK, this distribution is portrayed in Figure 5.

Current Fixed (default) MFK Distribution

0.5

£0'4

to

S0.2
a.

0.1

0
M- F- M/F K- no

KILL KILL KILL KILL Dmg

Figure 5. Default Results (when a valid lethality data source is not available).

In this way, the server can guarantee that all data "holes" are filled.2 Also, all clients will know

when they are receiving results from an (invalid) default distribution.

This distribution is maintained in the API function VL_mfkDiS_ResultGenericRanäomDraw() and may
be modified there. See Volume 2 of this report for details (Appendix B, vl(3)).

6.3.2 Look-up Table

The server returns damage results found by accessing "look-up" tables. At least one data

file is associated with each target-threat combination. (However, the same file may be used for

any number of targets and threats.) Currently, these files must be accessed within the file system

of the host computer, but the server may be relatively easily extended to add remote file access.

This is because files are specified by a uniform resource locator (URL). Thus, a natural extension

is to allow look-up table file access over a network by a number of protocols (http, gopher, ftp,

etc.). Naturally, proper security measures must be maintained if any of these data are classified.

Currently, the server only implements local file access (e g.._/Zfe:///tmp/file 123 .daf) and will

return an error if a datum source is specified as a remote host. URL access is serviced by

employing a tiny subset of the Libwww (a general purpose web API provided by the World Wide

Web Consortium). Therefore, expanding the capability of the server (by adding more functionality

to the Libwww) should be relatively easy. The current (and final version of Libwww) is available

at URL address http://www.w3 .org/Librarv.

Once further development is made to allow for other types of URL access, the server would

not be limited to just static "look-up" tables. The URL could reference another database server

with queries, or even another application that could return calculations "on the fly" from higher

fidelity vulnerability/lethality models. ARL's Survivability/Lethality Analysis Directorate

(SLAD) has an ongoing project to make models available for "on-the-fly" analysis in the future.

However, it is unclear what form the "front-end" server for this capability will assume at this time.

6.4 Bevond PIS

While numerous server components are tailored to the DIS environment, the server or

portions of the server could be expanded for use in other environments. This is allowed by the

layered design of the server. For example, an HLA3 "front end" may be added to the server

simply by changing one component (the DIS monitor component) to listen to "HLA" traffic

instead of "DIS" traffic. In the language of HLA, the server's clients would become "federates"

which "subscribed" to the server's "published" lethality results. The appendix explains in a little

more detail the division of the components and the services each provides. (Another HLA

compatibility option would be to leave the server as a "DIS only" tool and insert a translation

3 The U.S. Department of Defense high level architecture (HLA); first release specification was in August 1996.

10

Utility on the network such as the HLA Gateway4.) This tool translates relevant HLA network

traffic into DIS traffic (PDUs). Reference [3] suggests some possible approaches toward HLA

migration.

7. SUMMARY

A DIS lethality server has been implemented. It has the potential to eliminate differences in

how lethality effects are treated and to remove variances in which data sources are used among

DIS exercise participants. This supports a tighter and more easily handled DIS exercise

configuration management (since all lethality sources of a distributed exercise are handled in a

single location) and conforms to recommended standards [4].

The server is designed to be flexible and expandable. Detailed examples of how to expand it

are presented in Volume 2.

The server can increase the ease and amount of DIS exercise "free play" flexibility and can

decrease the amount of overall pre-exercise preparation.

4 Developed at the Institute for Simulation and Training, Orlando, Florida
(http://www.ist.ucf.edu/labsproj/projects/hgprode.htm).

11

INTENTIONALLY LEFT BLANK

12

REFERENCES

1. IEEE Computer Society. "Standard for Distributed Interactive Simulation-Application
Protocols." IEEE Standard 1278.1-1995, Institute of Electrical and Electronics Engineers, Inc.,
NY, 1995.

2. Deitz, P.H., et al. "The Generation, Use, and Misuse of 'PKS' in Vulnerability/Lethality
Analysis." ARL-TR-1640, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD,
1997.

3. Sauerborn, G.C. "Communicating Platform Vulnerability in a Distributed Environment."
Paper: 98F-SIW-130, Simulation Interoperability Workshop Papers, The Simulation
Interoperability Standards Organization (SISO), pp. 809-815, September 1998.

4. IEEE Computer Society. "Recommended Practice for Distributed Interactive Simulation-
Verification, Validation, and Accreditation." IEEE Standard 1278.4-1996 (Section 6.5.4.3
Verify Data and Databases), Institute of Electrical and Electronics Engineers, Inc., NY, 1996.

INTENTIONALLY LEFT BLANK

14

APPENDIX A

DIS LETHALITY SERVER ARCHITECTURE

15

INTENTIONALLY LEFT BLANK

16

DIS LETHALITY SERVER ARCHITECTURE

Figure A-l displays a view of the server's architectural design. Boxes enclosed by solid

lines represent independent processes. Each of these processes may be run on separate

computers. The one exception is the DIS Server and DIS Monitor; these two processes must

reside on the same host machine, as indicated by the dotted box. Dashed lines separating the VL

API and Data Manager indicate that these represent DIS server service layers (APIs) which

must reside within a parent process.

DIS Network Traffic

TCP/IP link

i ■■ t iti •■■■■■■■iia i >•■■■■ •

Single Host Computer

DIS Monitor

VL API

Data Manager

TCP/IP
link

UDP link

ARL DIS
Manager

Figure A-l. DIS Server Architecture.

The architecture layout seen in Figure A-l is a more detailed depiction of the networking

topology shown in Figure 3. The clients' connectivity to the DIS network is not shown. To

connect to the DIS network, clients may choose to use the ARL DIS Manager (which is freely

provided with the lethality server), use a commercially available product (such as VR Link), or

their own in-house DIS networking library. It is not the responsibility or within the scope of the

lethality server to decide how clients prefer to connect to the DIS network.

17

An explanation of the components follows:

• The ARL DIS Manager monitors DIS PDUs and sends them to its own clients. In this

case, the DIS manager has one client (the DIS Monitor). Because the DIS monitor currently

only is concerned with MFK vulnerability, it only requests to receive entity state, fire, and

detonation PDUs (since these are the only PDUs necessary to calculate MFK results). The

DIS monitor may request other PDU types from the DIS manager as necessary.

• The DIS Monitor monitors all fire/detonation events (along with information concerning

any entities involved). It maintains cached records of these events. In this way, the

parameters involved will be available when the DIS Server queries it for the results of a

particular detonation.

• Upon receipt of a query from the DIS server, the DIS monitor calls the VL API which sets

the appropriate parameters that describe the conditions at the time of the detonation (e.g.,

munition type, velocity, etc.). The VL API then calls the Data Manager API which

provides data. The VL API layer then returns these data in a format appropriate to query.

• The Data Manager API manages many types of low level data. It maintains records of

where to find data sources for each entity and threatening munition. It keeps track of which

functions are used to read each type of data source into memory and (once read) which

function to use to find results in the cached memory data structures. It is also responsible for

maintaining which DIS enumerations are used to describe a particular vehicle, munition, or

other item.

• The job of the DIS Server component is relatively simple. This component merely passes

client queries to the DIS Monitor and returns the DIS monitor's results to the client. This

raises the question, why is the DIS server component necessary? There are several benefits

to using a networked approach. First, it allows a "fair fight" if all clients are assured they are

receiving data from the same source and in the same manner. Second, VV&A of the

simulation exercise is made easier since only one lethality data set needs to be checked.

Simulation development time might be decreased. These points were made in Section 3.

Despite these advantages, some applications may find it beneficial (for speed or other

reasons) to use a non-networked server architecture (and thereby bypass the DIS Server

component). The server's modular design allows this. All that is necessary is for the application

to use the API calls directly. Doing so will tremendously reduce data latency. The drawback is

18

that the application will have to handle many of the bookkeeping services provided by the DIS

monitor, as well as provide its own interface to the DIS traffic.5 Figure A-2 displays the

architectural layout of this approach.

DIS Network Traffic

UDP link

Client

VL API

Data Manager

Single Host Computer

Figure A-2. Non-Networked Connection to DIS Server APIs.

Figure A-2 is a more detailed version of the topology seen in Figure 4. Here, the client is

responsible for monitoring the DIS network traffic and passing to the VL API the appropriate

parameters. The parameters passed to the API functions would be in the form of PDUs.

5 Although as mentioned, the ARL DIS Manager may be used to connect to the DIS network if the user so desires.

19

INTENTIONALLY LEFT BLANK

20

NO. OF
COPIES ORGANIZATION

NO. OF
COPIES ORGANIZATION

ADMINISTRATOR
DEFENSE TECHNICAL INFO CENTER
ATTN DTIC OCP
8725 JOHN J KINGMAN RD STE 0944
FTBELVOIR VA 22060-6218

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL CS AL TA REC MGMT
2800 POWDER MILL RD
ADELPHIMD 20783-1197

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL CILL TECH LIB
2800 POWDER MILL RD
ADELPHIMD 207830-1197

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL D R WHALIN
2800 POWDER MILL RD
ADELPHIMD 20783-1197

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL DD J J ROCCHIO
2800 POWDER MILL RD
ADELPHIMD 20783-1197

DOD JOINT CHIEFS OF STAFF
ATTN J39 CAPABILITIES DIV

CAPT J M BROWNELL
THE PENTAGON RM 2C865
WASHINGTON DC 20301

OFC OF THE DIR RSRCH AND ENGRG
ATTN R MENZ
PENTAGON RM 3E1089
WASHINGTON DC 20301-3080

OFC OF THE SECY OF DEFNS
ATTN ODDRE (R&AT) G SINGLEY

ODDRE (R&AT) S GONTAREK
THE PENTAGON
WASHINGTON DC 20301-3080

OSD
ATTN OUSD(A&T)/ODDDR&E(R)
ATTN RJTREW
WASHINGTON DC 20301-7100

1 AMCOM MRDEC
ATTNAMSMIRD W C MCCORKLE
REDSTONE ARSENAL AL 35898-5240

1 CECOM
ATTN PM GPS COL S YOUNG
FT MONMOUTH NJ 07703

1 CECOM
SP & TERRESTRIAL COMMCTN DIV
ATTN AMSEL RD ST MC M H SOICHER
FT MONMOUTH NJ 07703-5203

1 US ARMY INFO SYS ENGRG CMND
ATTNASQBOTD F JENIA
FT HUACHUCA AZ 85613-5300

1 US ARMY NATICK RDEC
ACTING TECHNICAL DIR
ATTN SSCNC T P BRANDLER
NATICK MA 01760-5002

1 US ARMY RESEARCH OFC
4300 S MIAMI BLVD
RESEARCH TRIANGLE PARK NC 27709

1 US ARMY SIMULATION TRAIN &
INSTRMNTN CMD

ATTN J STAHL
12350 RESEARCH PARKWAY
ORLANDO FL 32826-3726

1 US ARMY TANK-AUTOMOTIVE &
ARMAMENTS CMD

ATTN AMSTA AR TD M FISETTE
BLDG 1
PICATINNY ARSENAL NJ 07806-5000

1 US ARMY TANK-AUTOMOTIVE CMD
RD&E CTR
ATTN AMSTA TA J CHAPIN
WARREN MI 48397-5000

1 US ARMY TRAINING & DOCTRINE CMD
BATTLE LAB INTEGRATION & TECH DIR
ATTNATCDB J A KLEVECZ
FT MONROE VA 23651-5850

1 NAV SURFACE WARFARE CTR
ATTN CODE B07 J PENNELLA
17320 DAHLGREN RD BLDG 1470 RM 1101
DAHLGREN VA 22448-5100

21

NO. OF
COPIES ORGANIZATION

NO. OF
COPIES ORGANIZATION

1 DARPA
ATTN B KASPAR
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

1 UNIV OF TEXAS
ARL ELECTROMAG GROUP
CAMPUS MAIL CODE F0250
ATTN A TUCKER
AUSTIN TX 78713-8029

1 HICKS & ASSOCIATES, INC.
ATTN G SINGLEY III
1710 GOODRICH DR STE 1300
MCLEAN VA 22102

1 ARL ELECTROMAG GROUP
CAMPUS MAIL CODE F0250 A TUCKER
UNIVERSITY OF TEXAS
AUSTIN TX 78712

1 SPECIAL ASST TO THE WING CDR
50SW/CCX CAPT P H BERNSTEIN
300 O'MALLEY AVE STE 20
FALCON AFB CO 80912-3020

1 HQ AFWA/DNX
106 PEACEKEEPER DR STE 2N3
OFFUTT AFB NE 68113-4039

1 APPLIED RESEARCH ASSOCIATES INC
ATTN MR. ROBERT SHANKLE
219 W BEL AIR AVENUE SUITE 5
ABERDEEN MD 21001

1 CDR US ARMY AVIATION RDEC
CHIEF CREW ST R7D (DR N BÜCHER)
MS 243-4
AMES RESEARCH CENTER
MOFFETT FIELD CA 94035

1 ITT INDUSTRIES
ATTN CHARLES WOODHOUSE
2560 HUNTINGTON AVE
ALEXANDRIA VA 22303

1 ITT INDUSTRIES
ATTN MICHAEL O'CONNOR
600 BLVD SOUTH SUITE 208
HUNTSVILLE AL 35802

1 OPTOMETRICS INCORPORATED
ATTN FREDERICK G SMITH
3115 PROFESSIONAL DRIVE
ANN ARBOR MI 48104-5131

1 DIR US ARL
ATTN AMSRL SL EP (G MAREZ)
WHITE SANDS MISSILE RANGE NM

88002

1 DIR US ARMY TRAC
ATTN ATRC WE (LOUNELL SOUTHARD)
WHITE SANDS MISSILE RANGE NM

88002

4 DIR US ARMY TRAC
ATTN ATRCWEC JOE AGUILAR

CARROL DENNY DAVID DURDA
PETER SHUGART

WHITE SANDS MISSILE RANGE NM
88002

3 CDR TARDEC
ATTN AMSTA TR D M/S 207

FSCS-
ROGER HALLE GEORGE SIMON

WARREN MI 48397-5000

3 CDR ARDEC
ATTN AMSTA AR FSS JULIE CHU

DON MILLER BILL DAVIS
PICATINNY ARSENAL NJ 07806-5000

1 DEFENSE THREAT REDUCTION AGENCY
ATTN SWE (WALTER ZIMMERS)
6801 TELEGRAPH ROAD
ALEXANDRIA VA 22310

ABERDEEN PROVING GROUND

2 DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL CI LP (TECH LIB)
BLDG305 APGAA

1 US ARMY EDGEWOOD RDEC
ATTN SCBRD TD J VERVIER
APGMD 21010-5423

RAYTHEON SYSTEMS COMPANY
ATTN JOHN D POWERS
6620 CHASE OAKS BLVD MS 8518
PLANO TX 75023

22

NO. OF
COPIES ORGANIZATION

26

DIR AMSAA
ATTN PDEITZ M BORROUGHS

BBRADLEY JBREWER
D HODGE D JOHNSON
R NORMAN A WONG

NO. OF
COPIES

1

US ARMY RESEARCH LABORATORY 1
ATTN AMSRL WM BF J LACETERA

AMSRL WM BF G SAUERBORN (25 CYS)
BLDG 120

US ARMY RESEARCH LABORATORY
ATTN AMSRL SL BV

AMSRL SL BV
AMSRL SL BV
AMSRL SL BV

BLDG 238

R SANDMEYER
J ANDERSON
C KENNEDY
M MUUSS

ORGANIZATION

PRIN DPTY FOR ACQTN HDQ
US ARMY MATL CMND
ATTN AMCDCGA D ADAMS
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

DPTY CG FOR RDE HDQ
US ARMY MATL CMND

ATTN AMCRD BG BEAUCHAMP
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

COMMANDER
US ARMY MATERIEL COMMAND
ATTN AMCDEAQ
5001 EISENHOWER AVENUE
ALEXANDRIA VA 22333-0001

US ARMY RESEARCH LABORATORY
ATTN AMSRL M SMITH

AMSRL G MOSS
BLDG 321

DIR USARL
AMSRL WMW DR INGO MAY
LARRY JOHNSON
BLDG 4600

DIR USARL
AMSRL WM B A. HORST
BLDG 4600

DIR USARL
AMSRL-SL-B J SMITH
BLDG 328

ABSTRACT ONLY

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL CS AL TP TECH PUB BR
2800 POWDER MILL RD
ADELPHIMD 20783-1197

COMMANDER
US ARMY MATERIEL COMMAND
ATTN AMCRDA TF
5001 EISENHOWER AVENUE
ALEXANDRIA VA 22333-0001

PRIN DPTY FOR TECH GY HDQ
US ARMY MATL CMND
ATTN AMCDCG T
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

23

INTENTIONALLY LEFT BLANK

24

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

February 1999

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

The Distributed Interactive Simulation (DIS) Lethality Communication Server
Volume I: Overview

6. AUTHOR(S)

Sauerborn, G.C. (ARL)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
Weapons & Materials Research Directorate
Aberdeen Proving Ground, MD 21010-5066

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
Weapons & Materials Research Directorate
Aberdeen Proving Ground, MD 21010-5066

5. FUNDING NUMBERS

PR: 1L162618AH80

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ARL-TR-1775

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A new approach to handling battle simulation lethality is presented. In this approach, a single vulnerability/lethality server
provides standard distributed interactive simulation (DIS) damage states to entities fast enough for most real-time applications.
Benefits include DIS simulations being freed from the burden of maintaining damage state tables and DIS exercises being
easier to configure as a whole. A DIS software implementation is freely available by contacting the author.

14. SUBJECT TERMS

client server
degraded states

DIS
distributed simulation

lethality
vulnerability

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES
35

16. PRICE CODE

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 25
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

