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I. Introduction 

Theoretical procedures were developed, computer programs were written, and systematic 
calculations were performed to investigate (1) the validity of the van de Hülst's localization 
principle for spherical and nonspherical particles and (2) the effects of laser beam induced 
electromagnetic stresses on droplet geometry. The results of this study are described in the 
following. Section II contains the results of a systematic investigation, for the arrangement 
of a focused laser beam incident upon a spherical particle, of the validity of the localization 
principle as a function of beam waist diameter and resonance mode conditions. In Sec. III., 
the effects of surface perturbations on the validity of the localization principle and resonance 
Q are discussed. Section IV provides calculated electromagnetic stress distributions for a 
spherical particle at resonance and nonresonance conditions. In Sec. V, the theoretical 
development for the determination of the effects of electromagnetically-induced stresses on 
droplet geometry is presented along with some initial calculated results. A discussion of 
possible future work is given in Sec. VI. 

II. Localization Principle: Resonance Mode and Beam Waist Effects 

A set of systematic calculations were performed investigating the validity of van de Hulst's 
localization principle as a function of beam waist diameter and resonance mode. The van 
de Hulst's localization principle predicts that a spherical particle resonance should be most 
strongly excited with the laser beam focused at a radial position (r0) given by 

r0/a = (/ + l/2)/a (1) 

where a is the particle radius, I is the resonance principle mode number and or = 2-Kaj\ext is 
the particle size parameter. Since under ordinary circumstances / > a, Eq. (1) suggests that 
the resonance will be most strongly excited by positioning the focal point of the incident 
laser beam outside the surface of the particle. To test the rigor of Eq. (1), calculations 
of resonance excitation as a function of focal point positioning were performed for a range 
of different beam waist diameters and different resonance modes. The degree of resonance 
excitation was expressed by summing over the squares of the magnitudes of all the azimuthal 
mode (m terms) coefficients associated with the principle mode number (I, see Appendix A 
for details) which provides a single scalar term (U) that is proportional to the resonance 
electromagnetic energy stored in the particle. 

The eight different resonance modes that were investigated are fisted in Table I. along 
with the associated size parameter (a0), resonance Q, and the localization principle prediction 
(r0/a) for each resonance. For all except the d97i2* resonance, an index of refraction of n = 
(1.332,0.0), approximately that of water at the argon-ion laser wavelength of 0.5145 /im, was 
assumed. For the special case of the d97>2* resonance, an index of refraction of (1.50,0.0) was 



assumed. All resonances are magnetic wave (i.e., TE, transverse electric) resonances except 
for the C97,i resonance which is an electric wave (i.e., TM, transverse magnetic) resonance. 
The first subscript refers to the principle mode number of the resonance, while the second 
subscript refers to the order of occurrence of the resonance. The first five resonances listed 
in Table I, with size parameters of the order of 80, would correspond to the arrangement of 
an argon-ion laser incident upon an approximately 12 fim diameter water droplet. The last 
three resonances listed in Table I, with higher size parameters, would correspond to droplets 
with proportionally larger diameters. 

A focused Gaussian beam propagating in the -fz-axis direction and with electric field 
polarization in the x-axis direction was used to investigate the validity of the localization 
principle. For this arrangement, the magnetic wave resonances are most effectively excited 
by translating the focal point of the beam along the y-axis (incident electric field parallel 
to the particle surface). Figures 1, 2, and 3 show resonance excitation as a function of 
nondimensionalized beam focal point positioning along the y-axis (as given by y0 = yo/a) 
and nondimensionalized beam waist radius (as given by w0 — w0/a) for, respectively, the 
d971, d94)2, and d91)3 resonances. As can be seen in Figs. 1-3, indeed, consistent with the 
localization principle, for equal power beams, a resonance can be most efficiently excited 
using a tightly focused beam with the focal point oriented just outside the surface of the 
particle at a location approximately equal to, but not exactly equal to, a location as predicted 
by the van de Hulst's localization principle. Figures 1-3 also show that the position for 
optimum resonance excitation depends not only on the principle mode number but on the 
relative beam waist radius as well. 

The effect of beam waist radius on optimum focal point positioning is shown in Fig. 4. 
The horizontal dashed lines indicate the corresponding predicted values of of the localization 
principle. As can be seen in Fig. 4, for the d97>i, d94)2, and d91t3 resonances, the optimum 
position for resonance excitation equals the localization principle prediction only when the 
beam waist is equal to about one-fifth of the particle diameter. For smaller beam waists the 
optimum focal point position is further from the particle than the predicted value and for 
larger beam waists the predicted value is closer to the particle than the predicted value. 

In Fig. 5, a plot is presented of Ay0/a = y0/a - r0/a (the difference between the 
calculated focal point location for optimum resonance excitation and the the location as 
predicted by the localization principle) versus w0/a (beam waist radius) for all eight of 
the different resonance modes. (For the Cg7)i mode, a focused beam with an electric field 
polarization in the y-axis direction was used.) As can be seen in Fig. 5, when AyQ/a is 
plotted versus w0/a, the data clusters near a common line for wQ/a greater than about 0.20, 
but diverges for w0/a less than about 0.20. Figure 6 is similar to Fig. 5, but now Ay0/a 
is plotted versus the product of the size parameter (a0) and the beam waist radius (w0/a). 
As can be observed in Fig. 6, when plotted in this way, the data clusters near a common 
line for w0/a less than about 0.20, but diverges for w0/a greater than about 0.20. From the 
results of Figs. 5 and 6, the following empirical relationship was derived and is offered a 
"corrected" version of the localization principle. 

r0/a = (/ + l/2)/a + 1.08/(auio)2 - 0.099^ (2) 



III. Localization Principle and Resonance Q: Surface Perturbation Effects 

Systematic calculations, using the Pi's boundary matching method, were performed 
investigating the effects of small surface perturbations on the resonance Q and the focused 
beam excitation of resonances in microspheres. The theoretical procedure and the calculated 
results are presented in a paper that was submitted to the Journal of the Optical Society of 
America A (subsequently, the paper was accepted for publication pending optional minor re- 
vision). A copy of the original manuscript of this paper, "The effects of surface perturbations 
on the quality (Q) and the focused beam excitation of microsphere resonance," is provided 
in Appendix A. The reader is referred to Appendix A for the details of this development, 
only a summary of the findings will be presented here. 

The effects of perturbations on the same d97il, ^94,2, and d91i3 magnetic wave resonances 
introduced in Sec. I (as well as the corresponding electric wave resonances, C97)1, 094,2, and 
C913) were investigated.   Axisymmetric particles with a "corrugated" roughness expressed 

by,' 
r(6) = l + ecos(N0)  , (3) 

where e is the nondimensionalized (relative to the particle radius) amplitude of the perturba- 
tion and N was an integer that was varied through a range from 20 to 40, and a "combined" 
roughness expressed by, 

r(0) = l + 4=[cos(180)-fcos(3O0) + cos(420)]  , (4) 
v3 

were considered. 

For a given resonance mode, the presence of a distributed surface perturbation was found 
to have a negligible effect on the resonance Q until a threshold value of surface perturbation 
amplitude (e) is reached, after which the Q decreases with increasing e (see, for example, 
App. A Figs. 2 and 4). The Q as a function of e relationship was found to follow, for most 
cases, the simple second-power model suggested by Lai et al.,1 

1/Q*l/Q3p + C2e
2    . (5) 

where Qsp is the Q for the perfect sphere. However, for conditions that were weakly-Q 
spoiling, it was found necessary to include an additional fourth-power term. The excitation 
localization principle was found to fail when the surface roughness amplitude is large enough 
to cause a significant lowering of the resonance Q (see, for example, App. A Figs 5 and 6). 
In this case, for focused beam excitation of the resonance, the resonance was found to be 
most efficiently excited with the focal point of the beam located at a position just inside 
the surface of the particle. Apparently, for these conditions, the internal resonance mode 
is being pumped predominately by surface scattering due to the presence of the surface 
perturbations. 

IV. Spherical Particle Electromagnetic Stress Distributions 

The electromagnetic fields associated with a focused laser beam can induce stresses 
on a particle that may distort the particle shape and which, as shown in Sec.   Ill, may 



affect the resonance Q and the applicability of the localization principle. For a perfectly 
nonabsorbing particle (as considered here) the electromagnetically-induced stresses occur 
only at the surface of the particle, where the stress is directed outward and normal to the 
surface. For a liquid droplet, a nondimensional electromagnetic surface stress can be defined 
as, 

# = =£, m a 
where, here, r0 is the nominal droplet radius, P is the electromagnetic surface stress, and <x 
is the surface tension of the liquid-surrounding medium interface. P can, in turn, be related 
to the electromagnetic fields by, 

P{$) = IoF(0) (7) 

where 

WO) = \^t{n2 - l)[n2El + El, + JEjJ*, (8) 

and 

/o=-^= (9) 

In Eq. (8), ££,-££1, and E2
2 are, respectively, the nondimensionalized normal and two 

parallel components of the electric field at the particle surface (for a spherical particle, these 
would be El,Eg, and Efy and in Eq. (9), 70, is the nominal intensity of the incident beam. 
For example, for a water droplet in air (cr « 0.0727 N/m at 20°C) with d0 = 2r0 = 10 fim 
and J0 = lxlO6 W/cm2,10 « 2.3xl0"3. 

In order to demonstrate the distribution of electromagnetic stresses that might occur 
over the surface of a spherical droplet, calculations were performed for both nonresonance (a 
= 80) and resonance (^97,1) conditions. Figures 7-10 show the angular distribution of F(6) for 
plane wave incidence (propagating in the + z-axis direction) with electric field polarization 
in the x-axis direction. Figures 7 and 8 are for nonresonance, with Fig. 7 showing the 
distribution in the y-z plane and Fig. 8 showing the distribution in the x-z plane. The 
beam propagation direction is from left-to-right. As can be seen in Figs. 7 and 8, the 
focusing effect of the illuminated side of the droplet results in strong electric fields, and 
strong electromagnetic stresses, on the shadow side of the droplet. The stress distributions 
in the x-z and y-z planes are similar, but not identical, due to secondary polarization effects, 
and would tend to pull the droplet into a prolate-like geometry. 

Figures 9 and 10 show the corresponding results for the ^97,1 resonance condition. In 
this case the electromagnetic stresses are greatly enhanced due to the resonance condition 
(the stress distributions of Figs. 9 and 10 have been scaled down by about 6 orders of 
magnitude in comparison with the stress distributions of Figs. 7 and 8). In addition, the 
stress distribution for the resonance condition, instead of being approximately axisymmetric 
as for the nonresonance condition, is now very nonaxisymmetric with the electromagnetic 
stresses concentrated in the y-z plane (the plane of the resonance). Figures 11 and 12 are 
for the same resonance condition as Figs. 9 and 10, but now a focused beam oriented at the 
surface of the droplet is used to excite the resonance (instead of plane wave incidence as used 
in Figs. 9 and 10). In this case, the light circles inside the particle in only one direction, 



there are no interference effects, and the resultant electromagnetic stress is nearly uniform 
in the y-z plane. The stress distribution of Figs. 11 and 12 would tend to pull the droplet 
into an oblate-like geometry. 

V. Electromagnetically-Induced Droplet Shape Distortion 

The electromagnetically-induced stress distributions calculated in Sec. IV were for a 
spherical particle. For the case of a liquid droplet, the electromagnetically-induced surface 
stresses would distort the shape of the droplet. An iterative procedure was developed to 
determine the steady-state (i.e., equilibrium) geometry of a liquid droplet during continuous 
illumination by a high intensity laser beam. For the initial analysis, the incident light was 
assumed to be a circularly-polarized plane wave so that the electromagnetically-induced 
stresses, and thus the resultant droplet geometry as well, would be axisymmetric. 

On the droplet surface, the electromagnetically-induced stresses are balanced by the 
surface tension stress and the pressure difference across the liquid interface, 

- '(IT + h = APW + pW (10) 

where Rx and R2 are the radius of curvatures of the surface, Ap is the pressure difference, 
and P is the electromagnetically-induced surface stress that was discussed in Sec. IV. If rp 

represents the angular dependent radial coordinate position of the droplet surface, then for 
the axisymmetric geometry considered here, rp(6) only, and 

R, rp
{1     l + (r'pf 

and 

r" 
^—} (11) 

1 [1 - r'pcos91sinB) 

■R2 rp >/l + W 
where 

r; = (i^) (13) 

and d    ldr 
p      dOKrpdO> V    ; 

If rp = r0(l + e) where e(0) only (e becomes the deviation of the droplet surface from that 
of a perfect sphere), then equivalently 

r' = I*z = -J— (15) 
r*     rp89      (1 + e) ^    } 

r" - i-riÄ - -£_ -   {e')2 * -^—                     (16) 
»~ d9\d0,~ (1 + e)     (1 + e)2       (1 + e) K    J 



where e' = de/dO, t" = d2t/d$2 and in Eq.  (16) the assumption is made that (e')2 « 1. 
When Eqs. (15) and (16) are used to eliminate rp in terms of e, Eqs. (11) and (12) give 

-(hk)=w^{2+2e-c'c°°e/sine-'') ■        (17) 

Now substituting Eq. (17) into Eq. (10), the following nondimensional equation can be 
obtained 

1      {2 + 2e - e'cos 9/sin 6 - e"} = Ap + P (18) 

where Ap = rQAp/<x and P = r0P/(T. Multiplying through by (1 + e)2, neglecting terms of 
the order of (e)2, and rearranging gives 

[2(Ap0 + P - 1) - Sicos 6}e + [^]e' + e" = 2 - (Ap0 + P) + ^cos 6 (19) 

where 
Ap = Ap0- 7(1 + t)cos9 (20) 

In Eq. (20), Apo = r0p0/(T is the uniform part of the pressure difference (equal to 2 for 
a spherical droplet with no applied surface stresses) and 7 = jrl/cr is a pressure gradient 
term that may arise because of gravitation or the acceleration of the particle due to a net 
electromagnetic force. 

The solution procedure for determining the steady-state geometry of a liquid droplet 
continuously illuminated by a high intensity laser beam is then as follows. 
(1.)   Assuming a perfectly spherical droplet, the nondimensionalized electromagnetically- 
induced surface stress distribution, P(6), is calculated using the procedure discussed in Sec. 
IV. 
(2.) P(6) is then substituted into Eq. (19), and the deviation of the droplet geometry from 
the spherical geometry, e(0), is determined by solving Eq. (19) using finite difference with 
the two boundary conditions that e'(0) = 0 and e'(7r) = 0. In actual practice, for M incre- 
ments, the conditions d0 = 0 and CM = eo were nrst imposed and then the values of Ap0 and 
7 were varied until the conditions of conservation of droplet volume, V = V/^nrl = 1, and 
e'M = 0 were achieved. 
(3.) The new droplet geometry as described by the e(6) values obtained in Step 2 are now used 
to recalculate the electromagnetic field distribution and the corresponding electromagnetically- 
induced stress distribution, P(6). 
(4.) Steps 2 and 3 are now repeated until a convergence in e(6) is obtained. 

As an example, Fig. 13 shows the calculated droplet geometry (the valuejof e has been 
doubled to assist visualization) for the nonresonance condition (a = 80) with /0 = 0.05. For 
this case it was found that Ap0 = 1.979 (indicating a slight lowering of the internal pressure 
of the droplet) and 7 = 8.95 x 10~3 (indicating a net force on the droplet in the +z-axis 
direction). As can be seen in Fig. 13, the strong electromagnetic stresses on the shadow 
side of the droplet (refer back to Figs. 7 and 8) elongate the droplet along the z-axis (i.e., 
prolate-like, but not symmetrical from front-to-back). Figure 14 is for the same conditions 
as Fig. 13, but now the incident intensity has been doubled to I0 = 0.10. For I0 = 0.10, Ap0 



= 1.967 (i.e., the internal pressure decreases) and 7 = 1.19 x 10"2 (i.e., the pressure gradient 
increases). In addition, for the higher intensity, as seen in Fig. 14, the droplet distortion 
becomes more pronounced and the deviation from the initial spherical shape becomes more 
appreciable. 

Some preliminary calculations have also been performed for the d97ti resonance condition. 
For this case the electromagnetic stresses are about six orders of magnitude greater than those 
of the nonresonance case and an I0 = 1 x 10~7 was used. Even for this small of incident 
intensity, the first iteration showed that the droplet distortion would cause the droplet to be 
shifted away from resonance. More extensive calculations of droplet distortion at resonance 
are still in progress. 

VI. Future Work 

A partial list of future work is as follows. 
1.) Organize the material in Sec II concerning the influence of beam waist and resonance 
mode on the localization principle, write up in manuscript form, and submit for publication. 
2.) The boundary matching method was used for the surface perturbation effects on res- 
onance Q and focus beam resonance excitation investigation. Since it was subsequently 
discovered that even small surface perturbations (i.e., e < 0.005) could create significant 
effects, a simpler/faster perturbation method might be used instead of the rigorous (but 
slower) boundary matching method. 
3.) With regard to the effects of surface perturbations on resonance Q and focused beam 
resonance excitation, further systematic calculations are needed to a.) develop a better un- 
derstanding of the grating effect, b.) investigate the effects of additional types of surface 
roughness, c.) investigate the effects at higher size parameters, and d.) compare with (or 
suggest) corresponding experimental measurements. 
4.) The electromagnetically-induced droplet distortion work is still very much in its infancy 
and much more can be done including a.) consider the possibility of using the perturba- 
tion method instead of the boundary matching method for determining the electromagnetic 
fields of the distorted droplet (at least for the cases where the surface distortion is slight, 
b.) automate the iteration procedure (at this point, several decision steps of the iteration 
procedure are performed by the user), c.) revise the finite difference procedure to relax the 
e2 << 1 assumption, d.) perform systematic calculations for droplets at resonance, e.) seek 
experimental confirmation of the predicted results, and f.) write up the initial work into 
manuscript form and submit for publication. 
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Table I. Size parameter (a0), resonance Q, and van de Hulst's localization principle prediction 
(r0/a) for eight different resonance modes. Plane wave propagating in the +z-axis direction 
with electric field polarization in the -fx-axis direction. Relative index of refraction of n 
= (1.332,0.000) for all resonance modes except the rf97)2* mode where a relative index of 
refraction of n = (1.500,0.000) is assumed. 

resonance 
mode ao Q ro/a 

^97,1 78.557854283 1.419E+09 1.24112 

d94,2 81.25576849 1.207E+06 1.16299 

dgi,3 83.0653044 1.160E+04 1.10154 

dg7,2* 78.254645969 3.550E+09 1.24593 

C97.1 79.0183692517 1.006E+09 1.23389 

d-136,2 114.2196079147 6.61 E+09 1.19507 

d-142,3 123.681366193 7.92E+07 1.15215 

d-180,5 158.199397181 7.330E+08 1.14097 
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FIG 7. Electromagnetic stress distribution, F(9), in the y-z plane for plane wave incidence 
(left-to-right) on a spherical particle at nonresonance (a = 80). Electric field polarization in 
the x-axis direction. 

FIG 8. Electromagnetic stress distribution, F(0), in the x-z plane for plane wave incidence 
(left-to-right) on a spherical particle at nonresonance (a = 80). Electric field polarization in 
the x-axis direction. 

13 



/x™x% 

^"^»ywMvww^ 

FIG 9. Electromagnetic stress distribution, F(0), in the y-z plane for plane wave incidence 
(left-to-right) on a spherical particle at resonance (d97<1). Electric field polarization in the 
x-axis direction. 

FIG 10. Electromagnetic stress distribution, F(0), in the x-z plane for plane wave incidence 
(left-to-right) on a spherical particle at resonance (d97,i). Electric field polarization in the 
x-axis direction. 
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FIG 11. Electromagnetic stress distribution, F(9), in the y-z plane for focused beam in- 
cidence (left-to-right, focal point positioning at the surface of the droplet) on a spherical 
particle at resonance ((£97,1). Electric field polarization in the x-axis direction. 

FIG 12. Electromagnetic stress distribution, F(0), in the x-z plane for focused beam in- 
cidence (left-to-right, focal point positioning at the surface of the droplet) on a spherical 
particle at resonance (^97,1). Electric field polarization in the x-axis direction. 
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FIG 13. Calculated geometry of a nonresonance droplet (a = 80). IQ = 0.05, Ap0 = 1.979, 
and 7 = 8.95 x 10-3. The value of e has been doubled to assist in visualization of the shape 
distortion. 
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FIG 14. Calculated geometry of a nonresonance droplet (or = 80). I0 = 0.10, Ap0 = 1.967, 
and 7 = 1.19 x 10-2. The value of e has been doubled to assist in visualization of the shape 
distortion. 
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and the focused beam excitation of microsphere resonance" 

A paper accepted for publication (with optional minor revisions) 
in the Journal of the Optical Society of America A. 



"The effects of surface perturbations on the quality (Q) 
and the focused beam excitation of microsphere resonance" 

John P. Barton 
Department of Mechanical Engineering 
College of Engineering k Technology 

University of Nebraska-Lincoln 
Lincoln, Nebraska 68588-0656 

Abstract 
A previously developed theoretical method for determining the electromagnetic fields for 
arbitrary monochromatic light incident upon an irregularly-shaped particle, the boundary 
matching method, was used to investigate the effects of small surface perturbations on the 
quality (Q) and the focused beam excitation of resonances in microspheres. Axisymmetric 
particles with periodic surface roughness and irregular surface roughness were considered. 
For a given resonance, the resonance Q was found to be relatively unaffected by the presence 
of the surface perturbations until the surface perturbation amplitude (e) reached a threshold 
value, beyond which the Q decreases rapidly with increasing e. For the perfect sphere, focused 
beam excitation of the resonance is most efficient with the beam focused outside the surface 
of the sphere, at a location consistent with the prediction of van de Hulst's localization 
principle. However, calculations indicate that for conditions where the surface perturbation 
amplitude is large enough to appreciably decrease the resonance Q, focused beam excitation 
of the resonance is most efficient with the beam focused just inside the particle surface. 

1. Introduction 
Solutions to the classical problem of the electromagnetic interaction of a monochromatic 
plane wave with a homogeneous, perfectly spherical particle, known as Lorenz-Mie theory, 
suggests that a micron-sized particle, in the absence of significant absorption, is capable of 
sustaining resonances of extremely high quality (resonance quality factor = Q = WoUo/Pioss 
where UJ0 = the angular frequency, U0 — the electromagnetic energy stored, and P/oss = 
the electromagnetic power loss due to absorption and scattering). For example, calculations 
indicate that a 30 micron diameter spherical particle with a relative index of refraction of 
1.332 and an illuminating wavelength of approximately 0.5 microns can exhibit first-order 
resonances with Q values exceeding 1024. (See Appendix A for details.) In fact, such high 
Q values have not been experimentally observed, either for solid (fused-silica) spheres1'2 or 
for liquid droplets.3-5 Maximum experimentally observed Q values have been less than 1010. 
Absorption alone is not sufficient to explain the lowered Q values, and the additional lowering 
of the resonance Q has been attributed to increased surface scattering due to the presence 
of small shape distortions and surface irregularities of the particle.1-5 

Theoretical calculations for a focused laser beam incident upon a perfect sphere have also 
predicted, consistent with the van de Hulst's localization principle,6 that resonances should 
be most effectively excited by focusing the laser beam at a location outside the surface of 
the sphere, the location of optimum resonance excitation being equal to approximately7'8 

r0/a = (I + 1/2)/a0 (1) 
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where a is the radius of the sphere, / is the principal mode number of the resonance, and 
a0 = 2wa/\ext is the particle size parameter for the resonance. In a recent publication,9 

it was reported that efforts to experimentally verify the excitation localization principle, as 
expressed by Eq. (1), were not successful for the case of quartz (i.e., solid) spheres, and 
for the case of liquid droplets the excitation localization principle was observed for some 
resonances, but not observed for others. Theoretical calculations, to be further discussed 
and expanded upon here, suggested that the presence of surface roughness, even to the order 
of molecular scale roughness, would explain the lack of experimental confirmation of the 
excitation localization principle. 

In this paper, a previously developed theoretical method for determining the electro- 
magnetic fields associated with the interaction of arbitrary monochromatic light with an 
irregularly-shaped homogeneous particle, referred to as the boundary matching method,10 

is used to systematically investigate the effects of small surface perturbations on the Q and 
the focused beamed excitation of resonances in microspheres. In Ref. 10, as a demonstra- 
tion of the applicability of the boundary matching method, preliminary calculations were 
presented showing the effects of a single localized axisymmetric surface deformation on one 
particular microsphere resonance. In the following, the effects of roughness distributed over 
the entire surface of the sphere is considered for several different types of resonances. Other 
researchers, using various approaches, have also considered the effects of surface perturba- 
tions on the quality of microsphere resonance,11-15 but their presented results were limited to 
low order (e.g., near prolate or near oblate) surface distortions and not the higher-order dis- 
tributed surface roughness considered here. In addition, these researchers did not consider, 
as is presented in this paper, the possible effects of surface perturbations on the excitation 
localization principle. 

2. Theoretical Development 
A detailed description of the boundary matching method can be found in Ref. 10. Only 
a general overview and prerequisite essentials are given here. The electromagnetic inter- 
action of a known incident monochromatic field (plane wave, focused beam, etc.) with a 
homogeneous irregularly-shaped particle located within a homogeneous infinite medium is 
considered. Both the particle and the surrounding medium are nonmagnetic (p = 1), and an 
implicit time dependence of exp(-«*;i) is assumed. A spherical coordinate system, (r,6,<j>), 
with the coordinate origin located near the center of the particle is utilized. All equations 
are nondimensionalized with spatial quantities nondimensionalized relative to a characteris- 
tic radius, a, associated with the particle. The electromagnetic field components, E and H, 
are nondimensionalized relative to a characteristic electric field value, Eo, associated with 
the incident field. The particle geometry is described by the particle radial shape function, 
r, which is assumed to be a single valued function of angular position, (6, <j>). The incident 
field, designated by the superscript (i), is assumed known and the internal particle field, 
designated by the superscript (w), and the scattered field, designated by the superscript 
(s), are to be determined. The internal and scattered fields are each expressed in terms of 
general series expansions over appropriate products of spherical wave functions.10 The series 
expansions for the field components of the internal field, of interest here, are as follows, 
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where f = r/a, I is the integer radial index, m is the integer angular index, tpi is the Riccati- 
Bessel function of the first kind, l/m is the spherical harmonic function, eext is the dielectric 
constant of the external medium, and a — 2Tra/\ext is the particle size parameter where Xext 

is the wavelength in the external medium. The upper limit of the radial index summation, 
L, is chosen sufficiently large so as to obtain the level of desired accuracy. 

At the surface of the particle (r = r(0, (f>)), the tangential components of the electric 
and magnetic fields are continuous, 

and 

hx(E^ + E^) = hxE^ 

h x (H® + #(s)) = h x HM 

(8) 

(9) 

where n is a unit vector perpendicular to, and outwardly directed from, the particle surface. 
Eqs. (8) and (9) are functions of (0, <ft) only, and can be expanded in spherical harmonics, and 
then matched mode-by-mode. The result is a set of simultaneous linear, algebraic equations 
that can be solved for the series coefficients of the scattered (a;m, 6;m) and internal (c/m, a"/m) 
fields. Once the series coefficients have been determined, the series expansions can be used to 
calculate the electromagnetic field components anywhere internal or external to the particle. 

In general, the incident illumination (e.g., either a linearly polarized plane wave or 
focused Gaussian beam) is assumed to propagate parallel to the x-z plane with an angle of 
Ou relative to the y-z plane and with the direction of electric field polarization at an angle 
of <j>M relative to the x-z plane (see Fig. 1) . For focused beam illumination, the beam 
waist radius, t&o = wo/a, and the position of the focal point relative to the coordinate origin, 
(£0, i/o,zo) — (zo/a> 3/0/0,^0/0), must also be specified. 
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For the external excitation of resonances, the presence of a particle resonance is ev- 
idenced by a sharp increase in the electromagnetic energy stored within the particle, U, 
where16 

U = ^rf [R^eXtn
2)\E\2 + \H\2}dV  . (10) 

167T JV 

For a perfectly spherical particle (r = 1), Eqs. (2)-(9) can be used to substitute for E and 
H and Eq. (10) can be integrated analytically. One then finds (see Eqs. (18) and (19) in 
Ref. 16), 

U = E E[<3|qro|
2 + A|4n|2] (11) 

Z=l mz=-l 

where G\ and D\ depend upon a, n, and eexU but not on the character of the incident field. 
According to Eq. (11), each internal field series coefficient contributes to U independently of 
the others, and, indeed, each resonance can be associated with the increase in magnitude of 
a particular series coefficient, either a c,m coefficient for electric wave (TM) resonances or a 
dlm coefficient for magnetic wave (TE) resonances where the value of I is the principal mode 
number of the resonance and the value of m is the azimuthal mode number of the resonance. 
For a spherical particle, for a given electric wave or magnetic wave resonance of principal 
mode number, I, the azimuthal (i.e., m) resonance modes are degenerate (occur at the same 
frequency), and U can be equivalently expressed as 

U = yt[Cl\cl\
2 + Dl\dl\

2) (12) 

where 

|c/|2 = £ M2 (i3) 
TO= — / 

and 

W =  £ \dlm\2  . (14) 
m=—l 

Near a resonance, the |q|2 and \d\\2 terms follow a Lorentzian profile, and the resonance 
quality factor, Q, can be determined using 

0 = 7T„ (15) 

where a0 is the size parameter for the peak value and Aa is the full-width-half-maximum 
(FWHM) for the particular |c,|2 or \dt\

2 term. Since each resonance term contributes inde- 
pendently to U, Eq. (15) can be used to determine the resonance quality independent of the 
type of incident field (plane wave, focused beam, etc.) being used to excite the resonance. 
One qualifying assumption associated with the use of Eq. (15), however, would be that 
the power (originating from the incident field) going in to the particular resonance term is 
constant over the width of the resonance (Aa), which, in general, is a very good assump- 
tion, particularly for high Q resonances where Aa is small. (If the assumption is not valid, 
then the profile of |Q|

2
 or \di\2 at resonance will not follow a symmetric Lorentzian profile, a 

criterion that can be checked at the time of calculation.) 
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In addition, for the perfectly spherical particle, as shown in Ref. 16, the internal field 
series coefficients (c/m, dim) are directly related, mode-by-mode, to the corresponding incident 
field coefficients {Alm, Bim). That is, the value of qm is directly proportional to Aim and the 
value of dim is directly proportional Blm and there is no cross-coupling of terms (see Eqs. 
(12) and (13) in Ref. 16). For a perfectly spherical particle, a clm mode resonance will be 
excited only by the presence of a Aim mode component of the incident field and, likewise, a 
dim mode resonance will be excited only by the presence of a Bim mode component of the 
incident field. However, for the irregularly-shaped particle, this may well not be the case, 
since the simultaneous solution of the field equations permits a cross-coupling of terms and 
the excitation of a resonance may be obtained from incident field components of differing 
modes. 

Also, as can be seen by eliminating Atm and B\m from Eqs. (10)-(13) in Ref. 16, for the 
perfectly spherical particle, the value of the a\m scattered field series coefficient is directly 
proportional to the corresponding mode c/m internal field coefficient and the h\m scattered 
field coefficient is directly proportional to the corresponding mode dtm internal field series 
coefficient. This implies, for a perfectly spherical particle, that a particular mode resonance 
(c/m or dim) can only scatter into the same corresponding mode {alm or fe/m). Again, for the 
irregularly-shaped particle, this may not be the case. Because of the cross-coupling of terms, 
a particular mode resonance may scatter into any mode, which provides additional possible 
mechanisms for scattering losses not available for the perfect sphere resonance. 

As was already demonstrated in Ref. 10 (refer to Figs. 13 and 14 in Ref. 10), the 
presence of a small surface deformation can create a shifting (change of a0) and decay 
(increase of Aa) for a given resonance term. The question now arises as to whether the 
procedure for identifying and determining the quality of resonances for a spherical particle is 
applicable for irregularly-shaped (i.e., nonspherical) particles. First, without the symmetry 
of the spherical particle, the azimuthal resonance modes of irregularly-shaped particles are 
not necessarily degenerate and each azimuthal mode will need to be individually identified 
and analyzed (i.e., Eq. (15) will be applied to |c/m|2 and |d;ro|

2, not to |q|2 and |d,|2). 
Second, and more importantly, the total electromagnetic energy, as given by Eq. (10), 
for an irregularly-shaped particle with r(6, <f>) ^ 1, is unlikely to lead, as was the case for 
the spherical particle, to the series form of Eq. (11). For a general irregularly-shaped 
particle the contribution of each internal field series coefficient to U would not necessarily be 
independent one from the other, and the quality of a resonance would have to be assessed 
using Eq. (15) on U, and not on individual terms. An exception would be, as considered 
here, spherical particles with small surface perturbations (in this case, less than 0.005 of a). 
Under these conditions, an evaluation of Eq. (10) from 0 < r < a, leading to Eq. (11), would 
provide a good approximation for U. The spherical integration would include most of the 
particle volume (> 99%) but would omit the parts of the particle where the perturbations are 
positive and would include parts of the surroundings where the perturbations are negative. 
Since the perturbation amplitudes are a fraction of a wavelength, the field energy would 
not be expected to vary appreciably over this region and, thus, the electromagnetic energy 
contributions of the included and excluded parts should be approximately equal, and the 
deviation from the correct value of U should be small. In addition, if the error in U using Eq. 
(11) is approximately constant over Aa, then the values of a0 and Aa will be unaffected and 
Q will be accurately determined, regardless of the error. In any event, for the calculations 
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that follow, Q values will be determined by applying Eq. (15) to individual |c/m|2 and \dlm\2 

terms. 

3. Surface Perturbation Effects on Q 
Though the boundary matching method is applicable for general three dimensional particle 
geometries, the computational effort is significantly reduced if the particle is axisymmetric 
about the z-axis,10 and only such axisymmetric geometries are considered. In addition, the 
resonances will be excited using a linearly polarized (electric field polarization parallel to 
the x-z plane, fod = 0°) plane wave with end-on (6bd = 0°) incidence. For the axisymmetric 
particle with plane wave end-on incidence, only the \m\ = 1 azimuthal modes are excited 
(i.e., all series coefficients with \m\ ^ 1 are zero) so that, for a given magnetic wave or electric 
wave resonance at a particular principal mode number, only the single \m\ = 1 azimuthal 
mode (the m = +1 and the m = — 1 azimuthal modes are degenerate) will be observed. 

For the initial calculations, surface roughness is modeled by assuming a corrugated 
particle geometry such that, 

r(9) = l + ecos(N0), (16) 

where e is the surface perturbation amplitude and N is an integer. A corrugated particle with 
N=20 is shown in Fig. 1. A relative index of refraction of n = n = 1.332 (nonabsorbing), an 
external dielectric constant of eext = 1, and size parameters of the order of 80 were chosen so 
as to approximately model the experimental conditions of Ref. 9 (0.5145 micron argon-ion 
wavelength illumination of 10-16 micron diameter water droplets). Six different types of 
spherical particle resonances were identified for investigation: d\7, d|4, d\x, Cg7, c|4, and c^ 
where the d indicates a magnetic wave (TE) resonance, the c indicates an electric wave (TM) 
resonance, the subscript is the principal mode number of the resonance, and the superscript 
is the resonance order (i.e., order of occurrence; first, second, or third for that particular 
principal mode number). The perfect sphere ao and Q values for these six resonances are 
given in Table 1. 

Figure 1 provides the calculated magnetic wave resonance Q values for a N=20 corru- 
gated particle as a function of surface perturbation amplitude (e). As can be seen in Fig. 
1, for each of the three magnetic wave resonances, the presence of the surface perturbation 
has a minimal influence on the resonance quality (Q) until a certain threshold value of sur- 
face perturbation amplitude (c) is obtained. Beyond this threshold value, the resonance Q 
decreases with increasing e. (The results for the three electric wave resonances, not shown 
here, were similar.) For the high-Q d\7 resonance, the threshold e value is about 2 X 10-6, 
for the mid-Q d\A resonance the value is about 2 x 10"3, and for the low-Q d%1 resonance the 
value is about 1 x 10~3. 

To investigate the influence of N (the number of cycles of perturbations around the 
circumference of the particle) on the Q versus e results, Q's were calculated with e = 1 x 10~3 

for a range of N values from 20 to 40. The results for the three magnetic wave resonances are 
given in Fig. 3. As shown in Fig. 3, there is an apparent "grating" effect, with certain N and 
resonance mode combinations being (in a relative way) strongly Q-spoiling and others (in a 
relative way) weakly Q-spoiling. For the conditions of Fig. 2, the N=20 case was strongly 
Q-spoiling for the d\7 resonance, weakly Q-spoiling for the d\± resonance, and strongly Q- 
spoiling for the d\x resonance. 

In order to counteract the grating effect demonstrated in Fig.   3, calculations were 
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performed for a more irregular "combined" surface roughness particle where 

e 
r = 1 + -==[-cos(180) + cos(3O0) + cos(420)]  . (17) 

V3 

The Q versus e results for the combined surface roughness particle are given in Fig. 4. (A 
cross section of the particle described by Eq. (17) is also shown in Fig. 4.) In comparing 
Fig. 4 with Fig. 2, it can be observed that for the combined surface roughness particle the 
threshold value of e increases for the d\7 resonance, decreases (by over an order of magnitude) 
for the d|4 resonance, and stays approximately the same for the dgX resonance. 

In Ref. 12, Lai et al. suggest that the surface perturbation effect on resonance quality 
can be modeled in general using 

1/Q = 1/Qsp + de + C2e
2 + C3e

3 +  (18) 

where Qsp is the Q for the perfect sphere. Lai et al.12' also present arguments that the 
dominate term on the right-hand-side of Eq. (18) should be the second-order term so that, 

l/<3 ~ l/QsP + <V    • (19) 

Equation (19) was used with the calculated Q values at c = 1 X 10~3 to determine C2 

for each of the six different resonances (magnetic wave and electric wave) for both the 
N=20 corrugated particle and for the combined surface roughness particle. The results are 
presented in Table 1. For ten of the twelve cases, Eq. (19) was found to accurately model 
the Q versus e results. This is demonstrated by the dashed lines of Figs. 2 and 4, which were 
evaluated using Eq. (19) along with the Q3p and C2 values of Table 1. The two exceptions 
were the d|4 and c|4 resonances for the N=20 corrugated particle. For these two cases, the 
surface perturbation effect was weakly Q-spoiling and the calculated C2 values based on Eq. 
(19) were relatively small (see Table 1). For the N=20 corrugated particle dg4 resonance, the 
Q versus e relationship was much better modeled retaining the fourth-order term, instead of 
the second-order term, such that 1/Q ft* l/Q3p + C^4 where C4 = 13,960. This curvefit is 
shown by the dashed-dot line of Fig. 2. For the N=20 corrugated particle c|4 resonance, a 
modeling of the Q versus e relationship required retaining both the second-order (C2) and 
fourth-order (C4) terms. In general, it appears that Eq. (19) is an appropriate model for 
most conditions, the exceptions being those cases which are weakly Q-spoiling, in which case 
the fourth-order term must also be included. 

4. Surface Perturbation Effects on Focused Beam Resonance Excitation 
In order to investigate the effects of surface perturbations on the excitation localization 
principle, calculations were performed assuming focused beam, instead of plane wave, illu- 
mination. A linearly polarized fundamental Gaussian (i.e., TEMoo mode) beam propagating 
in the z-axis direction {9u = 0°) with a beam waist diameter such that aw0 = 12.2122 (e.g., 
a 2wQ = 2 fim beam waist diameter at Xext = 0.5145 urn) was assumed. The fifth-order 
corrected Gaussian beam model of Ref. 17 was used to the determine the required electro- 
magnetic field components for the incident beam. For the magnetic wave (TE) resonances, 
the resonances are most efficiently excited with the incident electric field parallel to the sur- 
face of the particle.7 Thus, for the magnetic wave resonances, the direction of the incident 
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electric field was oriented in the x-axis direction (fod = 0°) and the focal point of the beam 
was translated along the y-axis (x0 = 0, z0 = 0). For the electric wave (TM) resonances, 
the resonances are most efficiently excited with the incident electric field perpendicular to 
the surface of the particle, and the focal point of the beam was again translated along the 
y-axis, but now with the direction of the incident electric field in the y-axis direction (<f>bd 

= 90°). For the off-center focused Gaussian beam calculations all m-mode terms contribute 
(not just the |m|=l terms as was the case for the plane wave illumination of Sec. 3) so, 
consistent with the degenerate perfect sphere condition, |q|2 and \di\2 were appropriately 
used to indicate the energy of the particular resonance. 

Figure 5 shows a plot of the relative energy of the 97th principle mode (/ = 97), 1st 
azimuthal mode (m = 1) magnetic wave resonance versus focal point positioning (y0 = 
j/o/a) for the perfect sphere (e = 0) and for N=20 corrugated particles of three different 
surface perturbation amplitudes. The data for the perfect sphere demonstrates the excitation 
localization principle where the focal point location for the maximum resonance excitation is 
located outside the surface of the sphere at a position approximately given by Eq. (1). (For 
the d\7 resonance, rQ/a = 1.24.) However, the calculations indicate that the presence of even 
a small amount of surface roughness (in this case, e = 1 x 10~5 which, for a 12 micron diameter 
particle would correspond to a surface perturbation amplitude of less than one angstrom, 
which is smaller than one molecule of water), the position for maximum resonance excitation 
moves to a location just inside the surface of the particle. A similar effect was observed for 
all six types of resonances (magnetic and electric wave resonances of first, second, and third 
order) for the N=20 corrugated particle, the combined roughness particle described by Eq. 
(17), and various other N-valued corrugated particles. As an additional example, Fig. 6 
shows the results for the combined surface roughness particle at the d|4 resonance. For these 
conditions, the focal point location for maximum resonance excitation moves just inside the 
surface of the particle when the surface perturbation amplitude attains a value of about 
e = 5 x 10"4. 

The general trend appears to be that when the surface perturbation amplitude is large 
enough to significantly reduce the Q of the resonance (e.g., see Figs. 2 and 4), then the 
focal point position for optimum resonance excitation shifts from the position outside the 
particle, as predicted by the excitation localization principle expressed by Eq. (1), to a 
position just inside the surface of the particle. Apparently, the same surface perturbations 
that are increasing surface scattering and lowering the Q of the resonance are also scattering 
the incident light so as to channel increased power into the resonance. From a mathematical 
viewpoint, as discussed in Sec. 3, the surface perturbations allow a cross-coupling of the 
incident field, internal field, and scattering field series coefficients, which, for a given mode 
resonance, provides both increased mechanisms for scattering (increased losses and a low- 
ering of the resonance Q) and increased mechanisms for channeling incident power into the 
resonance (a shift of position of optimal resonance excitation to the surface of the particle). 

The calculated results are consistent with the experimental observations of Ref. 9. 
For the quartz sphere, optimum resonance excitation always occurred at the surface of the 
particle, suggesting that the inherent surface roughness of the particle was, at least for the 
particular resonances investigated, greater than the threshold value. For the liquid droplet, 
optimum resonance excitation occurred according to Eq. (1) for the d\A and d\x resonances 
but occurred at the surface of the particle for the high-Q d\7 resonance.   According to 
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Fig. 4, this would suggest that the surface roughness amplitude of their droplets would 
lie somewhere between 2 X 10"5 (large enough to spoil the d\7 resonance) but below about 
2 x 10"4 (not large enough to spoil the d\A resonance). For the experimental conditions of 
Ref. 9 (water droplets with 0.5145 fim wavelength illumination), this would correspond to 
a surface roughness amplitude somewhere between approximately 1 and 10 angstroms. 

5. Conclusions 
The boundary matching method was systematically used to investigate the effects of surface 
perturbations on microsphere resonance Q and the excitation localization principle. For a 
given resonance mode, the presence of a distributed surface perturbation has a negligible 
effect on the resonance Q until a threshold value of surface perturbation amplitude (e) is 
reached, after which the Q decreases with increasing e. The Q as a function of e relationship 
was found to follow the simple second-power model suggested by Lai et al.12 for most cases, 
however, for conditions that were weakly-Q spoiling, it was found necessary to include an 
additional fourth-power term. The excitation localization principle was found to fail when the 
surface roughness amplitude is large enough to cause a significant lowering of the resonance 
Q. In this case, for focused beam excitation of the resonance, the resonance was found to 
be most efficiently excited with the focal point of the beam located at a position just inside 
the surface of the particle. Apparently, for these conditions, the internal resonance mode 
is being pumped predominately by surface scattering due to the presence of the surface 
perturbations. 
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APPENDIX A 
For a perfectly spherical particle with a relative index of refraction of 1.332 (no absorption), 
the first-order, 240th principal mode number, magnetic wave (TE) resonance {dx

240) occurs 
at a size parameter of a0 = 2ira/Xext = 188.16400070000720377166 with a resonance quality 
of Q0 = 1.86 x 1024. 
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Table 1. Size parameters (a), quality factors (Q), and Gi modeling constants for each of the 

six resonances for the perfect sphere, the e = 0.001 corrugated (N=20), and the e = 0.001 

combined surface roughness particles. 

resonance 
mode Ctsp Qsp <X20 C2.20 Ctcomb C2,comb 

d97 78.557854283 1.419E+09 78.5569 72.57 78.55996 10.57 

dg4 81.2557685 1.207E+06 81.256966 0.014 81.2574 44.01 

dgi 83.06530 1.159E+04 83.0645 34.49 83.066 16.07 

i 
C97 79.018369252 1.007E+09 79.0200 52.77 79.02007 5.24 

z. 
C94 81.6683833 8.12E+05 81.66942 0.175 81.6696 20.27 

C91 83.40505 7.41 E+03 83.4048 19.37 83.405 8.11 
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Fig. 1. Geometrical arrangement for the boundary matching method solution. 
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Fig. 2. Resonance quality (Q) as a function of perturbation amplitude (e) for each of the 

three magnetic wave resonances. Corrugated particle with N = 20. 
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Fig.   3.   Resonance quality (Q) as a function of N for each of the three magnetic wave 

resonances. Corrugated particle with e = 0.001. 
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