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ABSTRACT 

The purpose of this technical report is to document the theoretical and practical aspects of 

the attitude dynamics of the Petite Amateur Navy Satellite (PANSAT). PANSAT is an 

experimental, small, low cost, communications satellite that was designed and built by 

officer students supported by the Space Systems Academic Group at the Naval 

Postgraduate School in Monterey, California. The satellite was deployed during the 

STS 95 mission into a low-Earth orbit providing an altitude of about 300 nautical miles 

and an inclination of 28.5° on October 30, 1998. The dynamics of the non-stabilized 

spacecraft are modeled by the equations of rotational motion incorporating environmental 

torques and considering several reference systems. The initial state of motion and 

attitude as launched from the Space Shuttle as well as telemetry data received after 

deployment are investigated in order to obtain an understanding on the satellite's actual 

dynamics and attitude. Visualization tools are provided to display the attitude of 

PANSAT at time of deployment and the roll-rate relative to the Sun. 
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I.   INTRODUCTION 

A. PURPOSE AND SCOPE 

The purpose of this report is to document the theoretical and practical aspects of 

the attitude dynamics of the Petite Amateur Navy Satellite (PANSAT). PANSAT is an 

experimental, small, low cost, communications satellite that was designed and built by 

officer students supported by the Space Systems Academic Group (SSAG) at the Naval 

Postgraduate School (NPS) in Monterey, California. The dynamics of the spacecraft are 

modeled by the equations of rotational motion incorporating environmental torques and 

considering several reference systems. The initial state of motion and attitude as 

launched from the Space Shuttle as well as telemetry data received after deployment are 

investigated in order to obtain an understanding on the satellite's actual dynamics and 

attitude. 

Chapter II provides the modeling of the rotational motion of the spacecraft in 

orbit and examines the effects of external torques, which leads to the equations of motion. 

The third chapter describes the orbital mechanics required to observe the dynamics of the 

spacecraft by providing various reference systems, orbit classifications, and coordinate 

transformations. Chapter IV investigates the initial conditions at the time of PANSAT's 

deployment. Chapter V discusses and analyzes the dynamics and attitude of the 

spacecraft based on solar panel data. Last but not least, the sixth chapter presents the 

conclusion. Several appendices follow containing further information on celestial and 

satellite mechanics, pictures showing the deployment of PANSAT, solar panel data 

obtained from the spacecraft, attitude and roll-rate visualization tools, and software 

source code. 

B. PANSAT BACKGROUND 

PANSAT is a small satellite for digital store-and-forward communications using 

direct sequence spread spectrum techniques. The objectives of the project are to enhance 

the education of officer students through the development and operation of a satellite and 
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to serve as a proof of concept of low cost, spread spectrum, digital over-the-horizon 

communications. The store-and-forward capability allows NPS and amateur radio 

operators to send and receive messages during several short communication windows 

every day, each four to eight minutes in duration. 

The entire satellite structure weighs approximately 125 pounds and has a diameter 

of about 19 inches. PANS AT is a 26-sided polyhedron, a configuration chosen to 

maximize solar panel area and thus power generation. The satellite was launched into a 

low-Earth orbit (LEO) as a secondary payload by means of the Space Shuttle Hitchhiker 

Program. The LEO providing an altitude of about 300 nautical miles and an inclination 

of 28.5° will offer an orbit lifetime in excess of four years. Since PANSAT has neither a 

propulsion system nor an attitude control system, it tumbles throughout its orbit. 

The long mission life requires regular charging and discharging cycles of the 

nickel-cadmium batteries depending on the motion of the satellite in orbit and its attitude 

with respect to the Sun. Furthermore, communications with the ground station located at 

NPS in Monterey strongly depends upon the attitude due to a non-uniform antenna 

pattern. Some solar panels are equipped with current sensors to monitor the output 

current of these panels. This data is transmitted to the ground station and utilized for the 

determination of the attitude dynamics of PANSAT. 



II. MODELING THE DYNAMICS OF THE SPACECRAFT 

In order to investigate the rotational motion of PANSAT, a dynamics model is 

required. This is done be taking the basic equations of classical mechanics and applying 

them specifically for PANSAT. Furthermore, an estimation of the external torques 

follows, because the motion of a spacecraft is influenced by them. Using the adopted 

dynamics equations and the dominant torques leads finally to the desired equations of 

rotational motion. 

A.       THE BASIC MECHANICAL EQUATIONS 

The classical mechanical equations are given by the differential vector equations 

of the linear momentum, the angular momentum and the kinematical relationship 

dB     d /       \   _ .... 
— = — (mv) = F, (2.1) 

— = M, (2.2) 
dt 

dL    dFL . 
— = + wxL, (2.3) 
dt     dt 

where B is the linear momentum of a particle, L is the angular momentum (or moment of 

momentum), m is the mass and V is the absolute velocity of a (momentarily) arbitrary 

particle dm.    F is the resulting external force and M the resulting external torque. 

Equation (2.3) expresses the relationship of a time derivative d/d t of an arbitrary vector 

(here the angular momentum) in an inertial reference system and the time derivative of a 

rotating coordinate system. The latter system rotates with an angular velocity U). 

Since the system of above equations is of 12th order and the linear motion in the 

orbit and the rotational motion are coupled, it is a challenging problem to calculate the 

motion of a satellite. Because in this case the rotational motion is only of interest, it is 

desired to simplify the system of equations (2.1) - (2.3). 

Comparing the dimensions of the spacecraft and its distance from the center of 

Earth and neglecting terms of second order or higher, the orbital and rotational motion 



can be solved separately [Ref. 11]. This is feasible because the satellite is only 50 cm in 

diameter and its altitude is about 550 km, therefore (6380km + 550km)/0.5m«1. 

Hence, the rotational motion of PANSAT can be determined by Equation (2.2) under 

consideration of the kinematical relationship, Equation (2.3). 

The angular momentum can also be calculated by the inertia tensor I and the 

angular velocity id 

Lcm =lcmiü. (2.4) 

Equation (2.4) is referred to the center of mass, cm., because the reference system 

is accelerated, i.e., not an inertial one. 

Applying Equation (2.4) on Equation (2.2) and considering (2.3), the following 

result can be reached 

lcm w + tox(lcmu))= Mcm . (2.5) 

Presuming a principal axis system, the components of Equation (2.5) can be 

written as follows 

l,Q),-(l2-l3)ca2(Jü3=M,, 

l2cb2 - (/3 - lA )<w3ö>1 = M2, (2.6) 

M>3 -ft -l2)a),co2 = M3. 

Equation (2.6) are known as Euler's equations, where Mi, M2 and /W3 are the 

external torques about the principal axes. They are discussed in the succeeding section. 

B.       ESTIMATION OF EXTERNAL TORQUES 

The motion of a spacecraft in its orbit is strongly influenced by external torques, 

which results in attitude changes. The external torque depends on the geometry of the 

satellite, its mass and the mass distribution, the attitude, and the state of motion [Ref. 12]. 



External torques have different causes and can be summarized as follows 

[Ref. 12] 

• Aerodynamic torques, 

• Gravity gradient torques, 

• Solar-pressure torques, 

• Magnetic Torques, 

• Electrical Torques, 

• Statistical Torques. 

These individual portions of M were investigated in the past (e.g., [Ref. 4,11,12]) 

and, thus, are only described briefly in order to estimate their influence on the motion of 

PANSAT. 

For a classification of altitudes, orbits are naturally separated by the radiation 

environment and the Earth's atmosphere. Therefore, altitudes below 1000 km are 

referred to as low-Earth orbits, while geosynchronous orbits (GEO) are well above the 

Van Allen Belts. Mid-range altitudes are relatively exceptional due to the region's 

increased radiation environment [Ref. 1]. 

Environmental torques tend to have a simple dependence on vehicle position 

[Ref. 4]. Aerodynamic torques are significant in altering the attitude of satellites in LEO. 

They decrease exponentially with altitude according to the simplest model atmospheres. 

Gravity gradient torques and magnetic torques vary as a , where eis the distance to the 

gravitational center, the center of Earth, or magnetic center, respectively; magnetic 

torques are caused by interactions of ferromagnetic materials in the satellite with the 

magnetic field of the Earth. Solar-pressure torques are essentially constant for Earth 

orbits, varying inversely as the square of the distance from the Sun. Existence of a radial 

electrical field can cause interactions with the spacecraft, leading to electrical torques. In 

general, they are much smaller than aerodynamic or magnetic torques. Last but not least, 

statistical torques are provoked by collisions with meteoroids. Because the probability of 

such an event is low, particularly in the vicinity of the Earth, they are not taken into 

account. 



Apparently, the strongest influences on the satellite's motion are caused by 

interactions with the atmosphere and the gravitational field of the Earth. This is because 

PANSAT is deployed in a low-Earth orbit with an altitude of approximately 550 km. 

However, the spacecraft has body-mounted solar panels instead of large deployable solar 

arrays making the momentum arm short for solar-pressure torques. Magnetic and 

especially electrical fields caused in the satellite are considered small, because the 

structure consists mainly of aluminum and those fields are not used for stabilizing the 

spacecraft. Therefore, the main sources of torques acting on PANSAT, the atmospheric 

and gravity gradient torque, are estimated in the following sections. 

1.        Aerodynamic Torque 

Aerodynamic torques are primarily influenced by the orbit altitude and spacecraft 

configuration. They are defined as follows [Ref. 7] 

Ma=rxFa, (2.7) 

where r is the displacement vector measured from the center of mass to the center of 

pressure and Fa is the aerodynamic force. It is given by 

Fa=±pv2ACD, (2.8) 

where 1/2 p V2 is referred to as the dynamic pressure with p as the atmospheric density 

and v the velocity; A is the cross-sectional area, to which the force and the velocity 

vector is perpendicular to, and CD the drag coefficient. 

In the following part, the different coefficients of Equations (2.7) and (2.8) are 

determined for an estimation of the torque. 

Although the overall behavior of atmospheric density is well established, there are 

many diverse physical processes that occur in the thermosphere. Therefore, the density 

does not only vary with altitude, but also with temperature, which is affected by solar 

activity, measured by the F10.7 index (solar flux index), and a day-to-night rhythm, 

known as diurnal variations. Inspection of altitudes between 500 and 600 km reveals that 

the density variations between solar maximum and minimum are roughly one order of 



magnitude, while the maximum daytime density may be five times greater than the 

nighttime minimum [Ref. 1]. 

Tables of the observed and predicted solar flux index show that in 1997/98 a solar 

minimum occurs and the next solar maximum will occur in 2001/02 [Ref. 6]. Therefore, 

the atmospheric density is interpolated from the 500 and 600 km solar minimum and 

daytime values for an altitude of 550 km [Ref. 1] 

p=2.0-10-13kg/m3+(3.9-10-14-2.0-10-13)kg/m3550"500 

'       . ;  y/      600-500. 
= 1.2-10-13kg/m3@550km 

Since the orbit of PANS AT is circular as a first-order approximation, its velocity 

can be calculated from the two-body equation of motion [Ref. 1] 

" = J? (2.9) 
where /(is the Earth's gravitational constant and cris the distance of the spacecraft from 

the center of the Earth. Using an altitude of 550 km (the values of the geocentric 

gravitational constant and Earth's radius can be found in Appendix E), the velocity in 

question is 

(3.986-1014m3/s2 

6928 -103m      • 
= 7590 m/s 

The determination of the atmospheric drag coefficient for any given body is quite 

difficult. For spacecrafts above 200 km, it is conventional to use a coefficient of 2.2 for a 

spherical body [Ref. 15]. 

The spacecraft has a highly symmetric structure consisting of a 26-sided 

polyhedron and the launch vehicle interface (LVI) at the bottom (Figure 1.1). For an 

estimate of the aerodynamic torque, the largest cross-sectional area is taken. In this case, 

the axis of symmetry is normal to the direction of motion. The center of pressure is 

assumed the center of the cross-sectional area. 
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Figure 1.1: Schematic of PANSAT Showing the Geometrical Axes and   ' 

Identifying the Solar Panels 

The cross-sectional area of the polyhedron is calculated as 0.1580 m2 and of the 

LVI as 0.0107 m2, given an overall area of 0.1687 m2. The center of the overall cross- 

sectional area lies on the geometrical axis of symmetry, Y1. Therefore, only the location 

of the center of the area on this axis needs to be determined. This is done by applying 

Steiner's law on the areas 

yoA-AOA=yPH-APH + yLvrALVI. (2.10) 

Solving Equation (2.10) for yoA, it can be determined to be (with respect to the 

X, Y, Z-frame) 

f 0.268- 0.1580 + 0.025 0.0107 ^ 
YOA = 

25.3 cm 

0.1687 
m 



Finally, the 'center of pressure' for this cross-sectional area, where the LVI and 

the main body are facing to the forward direction of motion, is 

xcp =0, 

ycp=25.3cm, 

2cp=0. 

• The 'center of mass' of the spacecraft, as determined experimentally at NASA 

Goddard Space Flight Center (GSFC), Greenbelt, MD, is given with respect to the 

X, Y, Z-system as 

xcm=0.1cm, 
yC.m. = 23 2 cmi 

z°-m- = -0.2 cm. 

Neglecting the small values of the X and Z axis, the displacement of the center of 

pressure to the 'center of mass' in that given area is r = 2.1 cm. 

With these parameters, the aerodynamic force is calculated by using 

Equation (2.8) in scalar form 

Fa = -1.2 ■ 1CT13 kg/m3 75902 m2/s2 0.1690 m2 2.2 
2 ' 

= 1.29-10"6N 

and the aerodynamic torque in question by applying Equation (2.7) in scalar form 

Ma=2.M0-2m-1.29-10-*N 

= 2.7-10"8Nm 

This is a worst-case value based on the current conditions in space. It may be one 

order higher for increased solar activity, which is expected in the next few years. 

2.        Gravity Gradient Torque 

In this section, the gravity gradient torque acting on a spacecraft in the central 

symmetric gravitational field of the Earth is estimated. The following considerations are 

based on some simplifications. The Earth's oblateness and its impact on the gravity field 

1 The center of the body fixed coordinate frame X, Y, Z shown in Figure 1.1 is located at the base of 
the LVI. 
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is neglected. The second major assumption is that the equations are based on a two-body 

problem, neglecting the influence of the Sun and the Moon. 

In considering the coordinate system for the determination of the gravity torque, 

there is a natural orientation of the body where the gravity torque is zero. It serves as a 

logical reference position and deviation of the body from this reference results in a 

gravity torque.   This reference system is known as the orbit-plane coordinate system. 

The 'center of mass' of the spacecraft is taken as the origin. Axis O3 points toward nadir, 

the 'center of Earth', and O2 is the negative orbit normal.   Axis O1 is directed in the 

forward direction of the orbital motion and completes the right-handed Cartesian system. 

Negative 
orbit normal 

..... O, 
Forward 
direction    1 

To center of Earth 

Figure 1.2: Transformation of Orbit-plane Axes to Body Axes 

The body fixed axes B1, B2, and B3 are defined by the following sequence of 

three individual rotations.  In the nominal orientation, the body and the orbit-plane axes 

are coincident. First, allow a rotation £3 about O3. The angle £2 rotates about the newly 

displaced axis 2 and the final rotation £1 about the final position of axis 1 completes the 

10 



sequence, as shown in Figure 1.2. Therefore, the angles Q , which are called Euler 

angles, define the deviations of the body axes from the orbit-plane axes2. 

The following gravity gradient torque equations are derived from Newton's 

gravity law for a principal axis system with its origin located at the 'center of mass' 

[Ref. 7] 

MgA = 7^3- fe - k )sin 2£ cos2 £,, 

M9,2 =ri('3-',)sin2(2 cos£, (2.11) 

3K 
M9,3 = -^T (^ ~ 72 )S'n 2^2 S'n £ . do 

where Mgj are the components of the gravity gradient torque, and /, are the principal 

moments of inertia. It should be noted that the angle £3 does not enter the above 

equations since a rotation about axis 3 produces no gravity torque. 

In the worst-case, the biggest gravity torque occurs about axis 2 due to the highest 

difference of the moments of inertia (see Appendix C). For estimation purposes, the 

satellite's altitude is taken as 550 km and the direction cosines are assumed as 

|sin2^2 cos £| = 1 leading to 

-,,       3-3.986-1014m7s2 ,    0   „     .       2 M2 =— —+—(0.98-1.42)kgm2 
9 2(6928-103)m3 . 

|Mg2| = 7.9-10_7Nm 

Thus, the gravity gradient torque is approximately one order higher than the 

aerodynamic torque and thus the dominant torque in altering the attitude of the 

spacecraft. 

C.       EQUATIONS OF ROTATIONAL MOTION 

In order to obtain the final equations of rotational motion, the jangles introduced 

in the last section are applied on Equation (2.6) and the external torques are given by 

Equation (2.11). Hence, the equations of motion are 

2 Further treatment on these coordinate systems and Euler angles is given in Chapter III. 
11 



Af 1" ('2 - '3 )U* = ^r ft " '2 )sin 2£ cos2 <T2, 

'«f2 - & - A )t3C1 = fr & - A )sin 2<T2 cos £, (2.12) 

US* - ft - /2)£& = |^ ft " k )s'n 2C2 sin £ • 

As discussed earlier, this nonlinear 6th order system of differential equations can 

be solved independently from the translation^ motion in the orbit, i.e., in the body fixed 

coordinate system. In the next chapter, various references in space and their coordinate 

transformations required in this report are introduced. 

12 



IILORBITAL MECHANICS 

In this chapter, topics involved in orbital mechanics, which are used in this report, 

are presented. Several reference systems in space are introduced and coordinate 

transformations between them are given. A brief discussion on elliptical orbits is 

included even as the orbit of the spacecraft can be treated as circular. This is necessary 

because the tracking data of the satellite obtained from Air Force Space Command 

contains elliptical elements. Last but not least, the sun position vector, called solar 

vector, is determined, because the sun is the only celestial object used to obtain the 

attitude of the spacecraft. 

A.  REFERENCE SYSTEMS IN SPACE 

To investigate the dynamics of a satellite in space there are different reference 

systems required. When describing the attitude and motion of the spacecraft many 

possible references exist. The three basic choices of coordinate systems are those fixed 

in inertial space, those fixed relative to the body of the spacecraft, and those defined 

relative to the orbit and not fixed to either the spacecraft or inertial space [Ref. 2]. 

Furthermore, in order to investigate the attitude with respect to the ground station, an 

observer-fixed reference system rotating with the Earth is adopted. 

1.        Inertial Systems 

The most common inertial coordinate system for studying the motion of Earth- 

orbiting satellites is the geocentric system defined relative to the rotation axis of the Earth 

(via S2) and using the equator as a fundamental plane, as shown in Figure 3.1. The origin 

of the coordinate frame is the center of the Earth. The essential reference axis S3 is 

directed to a point fixed in space, known as vernal equinox3, while the first one completes 

3 The vernal equinox refers to the Northern Hemisphere, when the line of equinoxes does pass through 
the sun occurring on or about March 21. The position of the line of equinoxes on the celestial sphere is 
also called the First Point of Aries. The vernal equinox has separated by nearly 30° from the constellation 
from which it took originally its name. Therefore, the name First Point of Aries is not used here. 

13 



the right-handed system, so that S! = S2 x S3.  The third axis is commonly called the 

line of equinoxes. It is the intersection between the ecliptic and equatorial plane, which 

the Earth passes twice a year. This occurs on or about the first day of spring and autumn. 

^ North pole 

Geocenter 

Y 
Vernal 

equinox 

Figure 3.1: Geocentric Inertial Reference System [Ref. 7] 

Inertial reference systems imply that Newtonian mechanics hold. They require 

that the coordinate system either is in the state of absolute rest or moves unaccelerated in 

space. Unfortunately, the geocentric inertial coordinate system4 is not truly inertial 

because it is not fixed to the mean positions of the stars in the vicinity of the Sun. The 

equatorial plane of the Earth and the ecliptic are not actually fixed relative to the stars, 

which is caused by gravitational forces of the Moon, the Sun and the planets. This 

precession of the equinoxes results in a shift of the position of the vernal equinox relative 

to the fixed stars at a rate of 0.014° per year. Because of this slow drift, geocentric 

inertial coordinates require a corresponding date to accurately define the position of the 

vernal equinox. An inertial coordinate system can be almost achieved by referring it to a 

particular epoch; B1950, J2000, and True-of-Date (TOD) are commonly used. The 

standard epoch used throughout this report is J2000. Nevertheless, NASA still uses the 

old B1950 system, i.e., the attitude information at PANS AT deployment is referred to 

this epoch. Therefore, further treatment is given in Appendix B and in Chapter IV. 

4 Also known as ECI coordinates (Earth-Centered Inertial). 
14 



2.        Orbit-plane System   . 

The orbit-plane reference system, briefly introduced in Section Ü.B.2., is a 

coordinate system that maintains its orientation relative to the Earth as the spacecraft 

moves in its orbit. These coordinates are also known as roll, pitch, yaw (RPY)5, and are 

illustrated in Figure 3.2. The origin is the 'center of mass' of the spacecraft. In this 

system, the axis O3 is directed toward the nadir (i.e., toward the center of Earth), the 

second axis is directed toward the negative orbit normal, and O1 completes the right- 

handed system, so that the unit vectors fulfil the relation 01 = 02 x 03. Thus, in a 

circular orbit, O1 will be along the velocity vector. 

Figure 3.2: Orbit-plane Axes [Ref. 7] 

Figure 3.3 depicts the relationships between the orbit-plane system and the 

geocentric inertial system for a circular orbit. The angles £1, £2, £3, define the orientation 

of the orbit with respect to the Earth. They are defined as right-handed rotations about 

their respective axes. The angle %\ is known as the right ascension of the ascending node 

(RAAS) and gives the orientation of the line of nodes on the equatorial plane. The 

inclination £> inclines the orbit with respect to the equator, and £3 , the argument of 

perigee, gives the position of the satellite in the orbit referred to the line of apsides. 

5 RPY systems can be also defined as spacecraft-fixed coordinates rather than orbit-defined 
coordinates. The latter system is frequently called LVLH (Local Vertical/Local Horizontal) in the literature. 
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Line of apsides 

Equatorial plane 

Line of nodes 
S3(T) 

Figure 3.3: Definition of a Circular Orbit with respect to Geocentric Axes 

3. Body-fixed Reference Systems 

There are different choices in defining body-fixed coordinates. For the purpose of 

analysis of satellite dynamics, it is useful to define principal axes as body axes and using 

the 'center of mass' as the origin of the coordinate frame. They are designated by B;, 

/=1,2,3. 

Furthermore, geometrical axes X, Y, Z are used in designing the satellite. The 

origin is located at the baseplate of the LVI and the directions are shown in Figure 1.1. 

X', Y\ Z' is a body-fixed coordinate system using the same axis directions, but its origin 

is moved into the 'center of mass' of the spacecraft. The latter body coordinate system is 

useful in evaluating the telemetry data concerning the attitude with respect to the Sun. 

Additional information about transformations between those body-fixed systems is given 

in Appendix C. 

4. Observer-fixed Systems 

Observer-based systems are necessary in order to determine "look angles" to view 

the satellite from a ground station. Because PANSAT is a tumbling satellite, it is desired 
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to determine the attitude with respect to the ground station to observe the impact on the 

transmission quality. 

Allowing the geocentric coordinate system to rotate with the Earth, one can obtain 

the Earth-Centered, Earth-Fixed, ECEF, coordinate system, designated by F,, /= 1,2,3. 

Like for the geocentric inertial coordinate system, the fundamental plane is defined by the 

equator. The main difference is that the primary axis is always aligned with a particular 

meridian, here the Greenwich meridian.   This system is required as a step to reach a 

system fixed to the site of the viewer. 

S2(N) 
A 

2 

Observer 

Local 
meridian 

Greenwich 
meridian 

S3(T) 

Figure 3.4: Topocentric Horizon Reference System 

A truly observer-based coordinate system is the topocentric, i.e., local, horizon 

reference system, H,, /'= 1,2,3. This system rotates with the site and is shown in 

Figure 3.4. The local horizon forms the fundamental plane, which is normal to the axis 

pointing to zenith, H3. This line defines also the geodetic (geographic) latitude. The 

second axis points east from the site and is undefined for the North or South Pole. 

Finally, the axis Hi points due south from the site. 
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B.  SATELLITE STATE REPRESENTATIONS 

To define the state of a satellite in space six quantities are needed. This can be 

done using either a state vector, usually associated with position and velocity vectors, or 

an element set, typically used with scalar magnitude and angular representations of the 

orbit [Ref. 3]. 

Either set of quantities completely specifies the two-body orbit. The classical 

orbital elements and the two line elements belong to the second class and are discussed in 

this section after a short introduction to elliptical orbits. 

1.        Elliptical Orbit 

As observed by Kepler, all satellites move in elliptical orbits around the Earth. 

PANS AT's orbit can be approximated by a circle, but the orbital elements are provided in 

a general form. Therefore, relationships to describe the motion in such an orbit are given 

in the following. 

Geometry of a Ellipse 

The polar equation of an ellipse with the origin at one focus is [Ref. 9] 

a = Az^L, (3.1) 
1 + ecosz 

where the angle r is measured from the line joining the occupied focus and the curve's 

closest point of approach to that focus. The semi-major axis is denoted by a and the 

eccentricity by e. If the semi-minor axis is b, the eccentricity is defined by 

•-f^- (32) 

The special case e = 0 yields a circular orbit (a = b = o ). 

The angle Tis known as true anomaly. In the case of the Earth, the closest point a 

satellite can get to its focus is called perigee (t = 0) and the point farthest away apogee. 

Kepler's Equation 

Kepler's equation for elliptical orbits is derived from observations of the planets 

under the assumption of two-body motions. It may be stated as follows [Ref. 10] 
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M = n(t -1)= M0 + n(t -10)= E- esin E, (3.3) 

where Mis the mean anomaly, which is essentially defined by n(t-T), n is the mean 

motion which can be determined from the given orbit period To by 

2n      IK n (3.4) 

In this equation, the mass of the satellite is neglected compared to the mass of the 

Earth. Mo is the value of M at a particular time, the epoch, and E is called the eccentric 

anomaly (Figure 3.5). Kepler's equation is a useful link to relate the relative position of 

the satellite in the ellipse (through E) to time, which is directly proportional to the mean 

anomaly M. 

Projection 

Apogee 

onto circle 

Satellite 

^ Perigee 

Geocenter 

--^Auxiliary circle 

Figure 3.5: Geometry of an Ellipse 

To determine the position of the satellite, the following equations are required to 

calculate an angle referred to the focus, the true anomaly. The solution of equation (3.3) 

can be obtained by a series expansion in powers of e, which was derived by Plummer 

[Ref. 10] 

E = M + 2±*Mj,(!s)t (3.5) 
;'=1 

where J,(/e) are Bessel functions of the first kind and /is an index. 
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The distance from the center of the Earth to the 'center of mass' of the spacecraft 

at any particular time is calculated as follows 

o =a(l-ecosE). (3.6) 

In order to avoid singularities in determining the true anomaly, an approximation 

for numerical calculations is used. The relationship gives the true anomaly as a function 

of the mean anomaly [Ref. 9] 

1   2     5    A .   ,.      2(5     11   o ,   17    A r = M+d 2--ed + — e 
I      4        96 / 

+ 0 

4    24        192 

,3 

J 

(13    129   A 
v12    192     , 

sin2/W 

•     (3.7) 

e2 sin3M + ... 

2.        Classical Orbital Elements 

The most common element set one encounters in working with satellite states are 

the classical orbital elements. Figure 3.6 shows some of these classical orbital elements. 

The semi-major axis a and the eccentricity e describe the scale and the shape, 

respectively, of the elliptical orbit. The position with respect to the Earth, the geocentric 

inertial axes, is stated by the inclination £2, the right ascension of the ascending node £1, 

and the argument of perigee £3. The true anomaly gives the location of the spacecraft on 

the ellipse referred to the line to pericenter. 

For convenience, the argument of perigee and the true anomaly can be combined 

to the angle £3. As a result, the coordinate transformation matrices remain identical for 

circular and elliptical orbits. 
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Figure 3.6: Classical Orbital Elements 

3.        Two Line Elements 

Two line elements (TLE) are orbital tracking data that is intended to be used by 

satellite tracking programs like the Satellite Tool Kit (STK). They contain the classical 

orbital elements in a compact form to compute the position of the satellite at any 

particular moment in time based on its previous location and known velocity. They are 

updated and provided by the U.S. Air Force Space Command. 

The first six values represent the independent quantities required for calculations, 

while the remaining variables (mean motion rate, mean motion acceleration, and £T, a 

drag-like parameter) are needed to describe the effect of perturbations on satellite motion. 

The time is based on UTC. They contain the following variables 

n,   e,   £,   £,,   4,   M, 

£,   £,   ß*,   UTC. 
2     2 

Further treatment on this subject can be found in [Ref. 3]. 
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C.       COORDINATE TRANSFORMATIONS 

When referring position or velocity vectors from one coordinate system to 

another, coordinate transformations have to be carried out. The most common one 

transforms a set of reference axes in inertial space to a set in the spacecraft. Alternative 

parameterizations for this transformation with its advantages and disadvantages are. 

described below. The transformations to different required reference frames, as 

introduced in the last section, are shown afterwards. 

1.        Parameterization of Attitude 

To define the attitude of a rigid body, an orthogonal, right-handed triad U, V, w of 

unit vectors is necessary, which satisfies the relationship u x v = w . Specifying the 

components along the three axes of the coordinate frame will fix the orientation 

completely. This requires nine parameters, which can be regarded as the elements of a 

3x3 matrix, called the attitude matrix T 

T = 
^ "2 "3" 

*1 Vz "3 

w, w2 w3 

(3.8) 

where u = [u1   uz   u3J, v = [v1    v2   v3J,  w = [w,   w2   w3J.    Each of these 

elements is the cosine of the angle between a body unit vector and a reference axis. For 

this reason, T is often referred to as the direction cosine matrix [Ref. 2]. 

The direction cosine matrix, DCM, is a coordinate transformation that maps 

vectors from a reference frame to the body frame. It can be shown that a proper real 

orthogonal matrix transformation preserves the length of vectors and the angles between 

them, and thus represents a rotation. The product of two proper real orthogonal matrices 

T"=T'T represents the results of successive rotations by T and T in that order. An 

useful property of an orthogonal matrix is that the transpose and inverse are identical. 

Thus, TT maps vectors from the body frame to the reference frame [Ref. 2]. 

The direction cosine matrix is the fundamental quantity specifying the orientation 

of a rigid body.   It is free of singularities and contains no trigonometric functions 

22 



allowing fast computations. However, it requires nine elements and, therefore, carries six 

redundant parameters. That is why other parameterizations are discussed below. 

Euler Angles 

Euler angles allow a parameterization with three independent rotation angles, 

which is the minimum number of parameters to specify the orientation of a rigid body in 

space. They are useful for analysis and their geometrical significance is more apparent 

than the other parameter sets. In order to describe a complete rotation, the three rotation 

angles correspond with the three degrees of freedom of a rigid body. Unfortunately, 

singularities can appear for some angles. Nevertheless, Euler angles are needed for 

dynamic analysis and, therefore, are used throughout this report. 

In order to transform a triad from one reference frame to another, three finite 

rotations about the three orthogonal axes are required. Each individual rotation is 

represented by a rotation matrix, given in Table 3.1. To describe a complete rotation 

sequence, allow first a rotation about axis 3 with rotation angle 1, then about axis 1 with 

angle 2, and finally about axis 2 with the angle 3. This arbitrary sequence of rotations is 

called a 3-1-2 sequence. The direction cosine matrix for the overall rotation sequence is 

obtained by multiplying the three matrices for the single-axis rotations, with the first 

rotation matrix on the right and the last on the left 

T3_1_2(ö1,ö2)a3)=T2(a3)T1(o!2)T3(o!1). (3.9) 
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Table 3.1: Matrices Representing Finite Rotations about Each Axis of a 

Cartesian Coordinate System [Ref. 7] 

Axis of Rotation Sketch Matrix Representation 

X'a         X3 

\ 
< 

\ \ \ "10            0 

1 \ \ \ \ \ \ 

X'= 0    cos a,     sin a, 

0   — sin ^   cos or. 

X 

\ \ \ \ \ \ 1 «— 
x. 

X',      xi 

* > 
V, 

\ \ cosor2   0   -sinor2 

2 \ \ \ \ \ \ 

X'= 0       1        0. 

sinor2    0    cosar2 

X 

t \ 
I \ 
I \ \ ^^-» 
 \ 
          a-, \ 

X2 
r -^ 

X'       *z 
< 

t cosflr3     sinar3    0 

3 
I 
1 \ \ \ \ 

X'= -sin a,   cos flr3   0 

0           0       1 

X 

\ \ \ \ \ \ 

x3 
r r-i 

Notes: 

1.X    is a fixed vector on the original position of the axis set, 

2. X'    is the same vector on the rotated position of the axis set, 

3. os    is a rotation in the positive sense about the \th axis. 
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Quaternions 

A parameterization of the direction cosine matrix in terms of quaternions6, four in 

number, has proved to be quite useful in spacecraft work [Ref. 2]. 

A quaternion is a four-element complex number that is defined as follows 

Q = 

<7i 

<73 

,°4. 

q 

°4. 
(3.10) 

where q is the vector [a,    q2    q3 J and q$ is a scalar. Quaternions are not independent 

parameters and satisfy the constraint equation 

q?+q2+q2+q2=l. (3.11) 

Quaternions are physically defined using Euler's Theorem which states that "the 

most general displacement of a rigid body with one point fixed is a rotation about some 

axis" [Ref. 2]: 

a, =e1sin<&/2, 

a, =e9 sin 0/2, W2      2 ' (3.12) 
g3=e3sin<D/2, 

g4=cos<I>/2, 

where e is the axis of rotation, the eigenaxis, and O the angle of rotation, the eigenvalue. 

The direction cosine matrix can be expressed in terms of quaternions by 

2 - Qz2 ~ Q32 ' <74
2 2(0,02 + g3q4) 2(q,q3 + g2g4) 

2(0^2 + g3g4)       - q,2 + g2
2 - g3

2 + g4
2 2(g2g3 + q,q4) 

2(^^3 + 02^4) 2(q2q3 + q^qA) " <7i2 ~ q2
z + q3

2 + q4\ 

= (g4
2-q2)E + 2qqT-2g4Q 

where Q is the skew-symmetric matrix and defined as follows 

T(Q)= 
,(3.13) 

' Also called Euler symmetric parameters. 
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_       0     -q3     q2 

Q=    <73       0     -q,   . (3.14) 

The great advantages of using quaternions to describe an attitude are that these 

parameters are more compact than a direction cosine matrix, do not involve trigonometric 

functions for the calculation of the DCM, and avoid singularities. 

2.        Orbit-plane Reference System 

Transforming the body fixed axes B/ to the orbit-plane axes O/, a rotation 

sequence 3-2-1 using the Euler angles £3, £>, £1 is required. The rotation matrices are 

provided in Table 3.1. Hence, the overall transformation matrix Teo is as follows7 

*BO — 

csC2 

0 

0 -sn£2 

1 0 

Sn£2     0      CSC2 

csC3     sn£3   0 

- sn£3   cs£3   0 

0 0      1 

1       0 0 

0     cs£,     sn£, 

0   - sn£,   cs£, 

csC2csC3 cs£2sn£3 -sn£2 

sn£,sn£2cs£3 - cs^sn£3   sn^sn£2sn£3 + cs£,cs£3   sn^cs£2 

csC,sn£2cs£3 + sn£,sn£3   cs^sn£2sn£3 - sn^cs£3    cs£,cs£2 

(3.15a) 

B = Tß00. (3.15b) 

To obtain the Euler angles of the 3-2-1 sequence from the direction cosine matrix 

elements of Tea the following equations can be applied 

I, = arctan[Teo(2,3)/Teo(3,3)], (3.16a) 

£2=arcsin[-TBO(l,3)], (3.16b) 

C3 = arctan[Teo(l,2)/Teo(l,l)]. (3.16c) 

The angles are determined up to a twofold ambiguity except at certain values of 

the angle £2. In this case, the singular values of £2 are odd multiples of 90° [Ref. 2]. 

7As needed for formatting purposes, sine and cosine functions are abbreviated by sn and cs, 
respectively. 
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To express the angular velocities about the body axes in terms of Euler angles, the 

matrix given below must be applied. This is because the Euler angles are independent 

quantities to describe the orientation of body-fixed axes with respect to reference axes, 

but the rotations about the three axes are coupled. Therefore, the angular velocities 

lüßflß. referred to the orbit-plane axes are [Ref. 7] 

(jj BB,B, £2 cos £ + £3 sin £ cos £2 

- ^2 sin ^ + ^3 cos ^ cos ^2 

(3.17) 

3.        Geocentric Inertial Reference System 

A 2-3-2 rotation sequence is adopted to transform the geocentric inertial axes S/ 

into the orbit-plane axes 0/ (Table 3.1). To change the directions of the orbit-plane axes 

2 and 3 following their definitions, another transformation matrix is applied. As 

mentioned in the last section, £3 = £3 + f is valid for elliptical orbits, while £3 = £3 is 

taken in the case of a circular orbit. Hence, the final matrix is given as 

'OS 

1 0 0 

0-10 

0    0-1 

cs%3   0   -sn%3 cs^2     sng2   0 
- sng2   cs£>   0 

0 1 

cs^   0   - sn^ 

0      1       0 
sn£   0    cs^ 

- sn&cs£2cs£3 - cs^sn£3 

-sn&sn& 

sn^cs%2snt;3 - cs^cs£3 

0 
0     1       0 

sn%3   0    cs%3 

cs£,cs£2cs£3 - sn^sn£3      sn^2cs^3 

cs^sn^2 - csg2 

- cs^csZ2sn£3 - sn&csg3   - sn^2sn^3 

(3.18a) 

0 = TosS. (3.18b) 

The 2-3-2 Euler angles can be obtained from the above direction cosine matrix 

elements by 

^=arctan[-Tos(2,3)/Tos(2,l)], . (3.19a) 

£2 =arccos[-Tos(2,2)], (3.19b) 

£ = arctan[- TOS(3,2)/TOS(1,2)]. (3.19c) 
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<»o.s = 

Note that Equation (3.19b) leaves a twofold ambiguity in &, corresponding to 

sin £2 being positive or negative. Once this ambiguity is solved, £1 and £3 are 

determined uniquely by the signs and magnitudes of Tos(l,2), T0S(2,1),T0S(2,3), and 

Tos(3,2), with the exception that when £2 is a multiple of 180°, only the sum or 

difference of £1 and £3 is determined [Ref. 2]. 

The angular velocities of the orbit-plane system referred to geocentric inertial 

axes are determined from projections of the angular velocity vector d^/df along the 

orbit-plane axes O,. The result is [Ref. 7] 

"i1sin£,cos|3-4sin|3 

£cos£,+|3      _   . (3.20) 
_£ sin & sin £, +4 cos £, _ 

Further transformations are necessary to refer the angular velocities of the 

spacecraft to geocentric inertial axes, because the motion of the satellite in its orbit, 

described by the angular velocities of the orbit-plane axes, and the body axes rotations of 

the satellite are superimposed. Therefore, the angular velocity vector of the orbit-plane 

axes referred to the orbit-plane axes is 

w„=Tosu>0iS, (3.21) 

and along the body axes 

wae/=Taoa>fl. (3.22) 

The desired angular velocities of the spacecraft referred to geocentric inertial axes 

along body axes are given by the following fundamental kinematical relationship 

ü) = wB = ü)SRß. + wRiß;. (3.23) 

4.        Observer-fixed Reference System 

For conversion from the geocentric inertial axes to those in the topocentric 

horizon system, H,, a 2-1 rotation sequence according to Table 3.1 is applied. 

The first rotation angle Cfo is between the observer's meridian and the line of 

equinoxes. The relationships to determine this angle, which involve time considerations 
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to a large extent, are given in Appendix A . Using only this rotation matrix, the result is 

a transformation to the ECEF coordinate system. The geodetic (geographic) latitude of 

the observer (fa is required for the last rotation. Furthermore, the directions of the axis 

need to be changed to meet the definition of axis directions for the topocentric horizon 

system. The complete transformation may be stated as follows 

'HS ~ 

"0 0 11 

1 0 0 

0 1 OJ 

1 0 0 csa0 0 -SA7flf( 

0 sncp0 cs<p0 0 1 0 

0 -cs<p0 sn% sna0 0 csa0 

snq)QsnaQ   - cs%   sn%csa0 

csan -snan 

cs(p0sna0     snq>0     csg>0csaQ 

H = THSS 

(3.24a) 

(3.24b) 

D. SOLAR VECTOR 

The determination of the solar vector, frequently called Sun position vector, and 

the beta angle, which is the angle between the solar vector and the orbital plane, is the 

objective in this section. It is required later because the attitude determination of 

PANS AT relies on the position of the Sun with respect to the spacecraft. 

The geometry of the solar vector is shown in Figure 3.7. Its solution rests on 

determining the ecliptic longitude (the ecliptic latitude is 0°) and the range. 

In this appendix, the rotation angle OQ is renamed to ÖLST following the common name in sidereal 
time considerations. 
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Figure 3.7: Sun-Earth Geometry for the Solar Vector 

At first, the longitude of the Sun can be calculated using the following formula 

[Ref. 3] 

ASM = 280.4606° + 36,000.7701 T^, (3.25) 

where TUTI is the number of Julian centuries from the epoch J2000 (using Equation (A.3) 

in the appendix9). The mean anomaly is computed by [Ref. 3] 

Ms = 357.5277° + 35,999.0503 7^. (3.26) 

After reducing both XS,M and Ms to the range of 0° to 360°, the ecliptic longitude 

of the Sun is given by the following equation [Ref. 3] 

Aec/=>lSiM+1.9147° sin(Mj+0.0200° sin(2Ms). (3.27) 

Finally, the solar vector in question referred to the geocentric inertial axes is 

determined to be 

rs,e — °S,E 

sin Aec, COSE 

sin A^, sin £ 

cos X. 'eel 

(3.28) 

9 To be precise, the JD of the particular date and time should be used instead of JD0. Since the Earth 
moves slowly in its orbit, the accuracy would not suffer for the purposes in this report. 
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where CTS,E is the distance from the Earth to the Sun and can be approximated by 1 AU, 

and s is the obliquity of the ecliptic which can be assumed as time independent. 

Moreover, the beta angle, which is the angle between the orbit plane and the line 

to the Sun, can be calculated as follows [Ref. 13] 

sin ß = sin e cos £2 sin Aec, - cos £ sin £, cos £ sin Aecl + sin £, sin £ cos A^. (3.29) 
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IV. INITIAL CONDITIONS AT DEPLOYMENT 

The determination of the initial attitude and roll-rate of PANSAT at the time of 

deployment is provided in this chapter. Because PANSAT uses only one celestial body 

for attitude determination, the initial attitude is the only absolute attitude, which can be 

used as a reference. Furthermore, it is observed that the ejection mechanism introduced a 

spin about the axis aligned with the separation vector. 

A.       DETERMINATION OF ATTITUDE 

The attitude data provided by Johnson Space Center, JSC, is examined in this 

section. NASA defines its reference systems different from those introduced in 

Chapter III. Therefore, a brief introduction is given. 

The ECI frame, called M50 (mean equinox of 1950), uses the same origin, the 

center of the Earth, the same fundamental plane, the equator, and the same axis directions 

like the geocentric inertial system; however, the naming of the axes is different. The X 

axis is pointing towards the vernal equinox, the z axis is aligned with the Earth's rotation 

axis and y completes the right-handed system (compare to Figure 3.1). 

The LVLH coordinate system follows the definition given in the last chapter. The 

x axis (roll) points to the forward direction, y (pitch) is the negative orbit normal, and z 

(yaw) points to nadir. The origin of the frame is the 'center of mass' of the orbiter 

(Figure 3.2). 

The body axes of the orbiter shown in Figure 4.1 are defined as follows: the roll 

axis x is parallel to the centerline of the cargo bay and points toward the nose; the yaw 

axis z is parallel to the orbiter plane of symmetry and is perpendicular to X, it points 

positive down with respect to the orbiter fuselage. Finally, the y axis (pitch) completes a 

right-handed system and points toward starboard of the orbiter. 

33 



CENTER CF MASS 

Figure 4.1: Body Axes of the Orbiter [Ref. 16] 

To transform from one reference frame to another, PYR sequences are used 

(according to Table 3.1: 2-3-1). This is true for transformations from M50 to LVLH and 

from LVLH to body. Thus, the overall rotation matrix is 

'PYR — CSCXc 

0   - snaR 

0 CSCCy snaY 0 CSGCp 0 -snap 

snaR -snaY csaY 0 0 1 0 

?   csaR 0 0 1 snap 0 CSCXp 

csoCpCsa Y snc Xy  < 

- csaRcsaPsnaY + snaRsnap     csaRcsaY 

snaRcsapsnaY + csaRsnaP 

- snaPcsaY 

csaRsnaPsnaY + snaRcsaP 

snaRcsaY   - snaRsnapsnaY + csaRcsap 

(4.1) " 

where a/? is the roll angle, OCP is the pitch angle, and ay the yaw angle. 

PANS AT was deployed in space on October 30, 1998, approximately 23 and a 

half hours after lift-off of the space shuttle at Cape Canaveral, FL. The classical orbital 

elements at the time of deployment, GMT 303/18:45:33, MET 00/23:25:5910, are as 

follows 

10 GMT - Greenwich Mean Time, day of year/hh:mm:ss (see Appendix A for more information); 
MET - Mission Elapsed Time, day/hh:mm:ss. 
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semi - major axis: a = 6941.5 km, 
eccentricity: e = 0.0016, 

inclination: £, = 28.60°, 
argument of perigee: £3 = 11.67°, 

RAAN: £=150.83°, 
true anomaly : T = 320.60°, 

mean anomaly: M = 320.72°. 

The rotation angles for the M50 to LVLH transformation at deployment are given 

as 

a„ =280.46°, 

aP =151.33°, 

aY = 56.39°, 

and for the LVLH to orbiter body system transformation 

afl=141.6°, 

aP=96.1° 
aY =359.9°. 

For convenience, the attitude data given above is transformed into the variables of 

the coordinate systems used in this report. 

At first, allow a transformation of the B1950 epoch to the J2000 standard epoch 

by using the following transformation matrices 

' OS.J2000 ~ 'PYR ' J2000.B1950     ' M50.S ' (4-2) 

where the TPYR matrix is given with Equation (4.1) and using the rotation angles for the 

M50 to LVLH transformation; 7'j2ooo,Bi9so can be found in Appendix B; and Tmo.s must 

be applied in order to use the geocentric inertial coordinates instead of the M50 

coordinates. This matrix is determined to be 

"C 
W =10   0. (4.3) 

"0 0 1" 
1 0 0 
0 1 0 
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Applying Equation (3.19) on the direction cosine matrix los,J2000 and inspecting 

the quadrants of the sine and cosine functions of £ and £3, the following result can be 

reached 

£=180° -28.09° = 151.91°, 

£, = 28.46°, 

f3 = 360° - 28.28° = 331.72°. 

These are the desired angles of the classical orbital elements referred to the J2000 

standard epoch. 

Furthermore, the jangles are determined for the transformation of the orbit-plane 

axes to the body axes of the orbiter. Equation (3.16) is applied on the direction cosine 

matrix TPYR that uses the Euler angles for the LVLH to body transformation given above. 

Observation of the quadrants of the sine and cosine functions yield 

£, =360°- 37.5° = 322.5°, 
£,=84.1°, 
C3 =180° + 0.9° = 180.9°. 

To resolve the attitude of PANSAT with respect to the orbit-plane coordinate 

system, its orientation in the orbiter needs to be known. PANSAT was integrated into the 

canister in the payload bay so that the axis of symmetry Y' was aligned with the orbiter's 

Z axis, but pointing into the negative direction; the Z' axis pointed towards the tail and, 

therefore in the negative direction of the orbiter's x axis; and last but not least, the 

PANSAT's X' axis was directed to the starboard side. Therefore, the transformation 

matrix, which takes the body axes of the orbiter to the geometrical axes of PANSAT, is 

obtained to 

Tx-X = 

0    1 0" 
0    0 -1 

-1   0 0 

(4.4) 

The Euler angles of the orbit-plane to geometrical axes transformation are 

determined from the following direction cosine matrix 

'xo = *X'x *PYR > v+.->) 

where Tpy/? uses the angles for the LVLH to orbiter body transformation. 
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Applying   Equation (3.16)   on   Tx.0   and   examining   the   quadrants   of  the 

trigonometric functions as usual, the desired jangles are determined to be 

^=360°-4.7° = 355.3°, 

<T2=3.6°, 

£,=360°-51.8° = 308.2°. 

Figure 4.2: Initial Attitude of PANSAT with respect to Orbit-plane Axes11 

These Euler angles give the attitude of PANSAT at deployment with respect to 

the orbit-plane frame, as shown in Figure 4.2. At this time, the symmetric axis of 

PANSAT is pointing towards the Sun in order to obtain the maximum energy for the 

solar panels. This knowledge can be used to verify the attitude data. Hence, the 

following sequence transforms the Y' axis of PANSAT to the geocentric inertial 

reference system 

Y's = Tos
TTBO

TY', (4.6) 
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where the vector Y' is [O   1   Oj, TBO is given by Equation (3.15) and, using the 

rotation angles for the orbit-plane to geometrical axes transformation as shown above, 

and Tos given by Equation (3.18) uses the J2000 classical orbital element angles as 

determined. This yields the result 

"- 0.555" 
-0.237 

-0.797^ 

Comparing this vector to the solar vector at the time of deployment, 

Equation (3.28) is resolved and the solar vector normalized so that this result can be 

reached 

Y'  = 

rS,En  ~ 

-0.554 

-0.240 

-0.797 

It shows that the axis of symmetry of the satellite, Y', was indeed coaligned with 

the vector to the Sun as PANSAT was deployed into its orbit. 

B.       INITIAL STATE OF MOTION AT DEPLOYMENT 

In this section, the deployment of PANSAT is examined concerning the initial 

state of motion at the time of separation. This is done by observing photo and video 

material provided by NASA. 

PANSAT was launched into low-Earth orbit via the Shuttle under the Hitchhiker 

program utilizing a Get Away Special (GAS) canister. The canister was located at the 

IEH-3 bridge on the port side of the centerline of the cargo bay (the configuration is 

shown in Figure E.3). A NASA standard Ejection Mechanism for GAS payloads was 

used to deploy the spacecraft. 

There are two high-resolution photographs, Figures E. 1 and E.2 (Appendix E), 

available with a At of 2 s showing PANSAT as it separates from the orbiter. They were 

11 Panels equipped with current sensors are shown in magenta color, while dark blue is used for the 
others. 
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taken through the window of the crew compartments located at the port side of the cargo 

bay. Obviously, a spin about the geometrical axis of symmetry is introduced by the 

spring of the Ejection Mechanism. In order to investigate that, the location of the 

observer, who took the pictures, with respect to the symmetric axis is determined. By 

knowing the dimensions of the satellite and measuring them on the pictures, the angles 

between the vector to the observer and the normal vector of the panel facing the viewer, 

SP11, can be determined. Referring the difference in the angles to the difference in time 

between the pictures, the angular velocity is obtained. 

In order to follow this procedure, the scale factors of the pictures need to be 

determined. This can be done by observing lengths on the pictures, lm, and referring them 

to the true value, It, as follows 

fs = 1,/L ■ (4-7) 

Since the spacecraft is at the same height as the observer, the scale factor for the 

first picture is determined by using the distance from the baseplate of the launch vehicle 

interface to the top panel. This results in a scale factor of fSi = 48.6 cm/7.7 cm = 6.3 n. 

For the second picture, Figure E.2, the diameter at the bottom of the LVI is taken, 

because PANSAT has already gained height relative to the observer. This yields a scale 

factor of fSM = 24.1 cm/3.6 cm = 6.7. 

The angle between the plane of the picture, to which the vector to the observer is 

perpendicular, and the visible side panels, is determined by applying a sine or cosine 

function on the measured horizontal length of the panel (multiplied by the scale factor) 

and the true distance (Figure 4.3). This is done for different panels to obtain a more 

reliable result. For SP10 and SP13, the equation is 

^.=arcsin(/,mi//hJ, (4.8) 

12 - The first picture taken at f|, Figure E.l, is denoted by the index I, while the second picture taken 
at t2, Figure E.2, is denoted by the index II. 
- Note that the actual measured length depends on the print out. 
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where Sis the desired angle, //,,„, is the measured horizontal length of side panel, lh,t is its 

true length (= 18.1 cm), and / is an index for the panel. In the case of SP12, the required 

angle is determined using a cosine function 

^12=arccos(/^2//wJ. (4.9) 

To camera 

Figure 4.3: Geometry Showing a Top View of PANSAT to Determine the Initial 

Spin about Y'13 

Applying Equation (4.8) for SP13, an angle of 

<513l = arcsin(0.50 • 6.3/18.1)= 10.0°    is    obtained    for    the    first    picture    and 

<513ll = arcsin(0.90 • 6.7/18.1)= 19.5° for the second one.   Because the plane of this 

solar panel is parallel to the normal vector of SP11, it is also the angle between the 

observer and this normal vector (or the 71 axis). The difference in the angles is calculated 

13 The lines shown parallel to the camera vector can be assumed parallel, because the camera distance 
is long compared to the dimensions of the spacecraft (16 m » 0 44 cm). 
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as      A<513=9.5°. In     the     case     of     SP10,     the     first     angle     is 

<510l =arcsin(l. 65 -6.3/18.1) =35.1°     and    the    angle    two    seconds    later    is 

<510ll = arcsin(l .15 • 6.7/18.1)= 25.2°, which leads to a delta angle of A<510 = 9.9°. 

From Equation (4.9), the angles for SP12 are determined to be 

<512l = arccos(2.20 • 6.3/18.1)= 40.0°    and    <512ll = arccos(2.50 • 6.7/18.1)= 29.5°, 

which gives a difference of A<512 = 10.5°. 

The mean value of the these three delta angles is 

AysA*ia+A*1g+A*0=ia()o> 
3 

Referring this value to the sampling period of the pictures and observing the 

direction of the spin, the angular velocity about the axis of geometry at the time of 

deployment is determined to be 

o)BRX = 10.0°/2 s = 5 °/s = 0.83 rpm. 

This angular velocity is a good estimate but contains uncertainties due to the 

measurements of the lengths in the pictures. Furthermore, another error is added because 

the time the pictures were taken is only known in seconds and a higher precision is not 

available. 

Parallel to picture ^ 
plane 

Camera 

Figure 4.4: Determination of Angular Separation to Plane of Camera 

To get more confidence in this result, the ejection velocity is determined from the 

pictures and compared to the value specified by NASA.   The first picture, Figure E.l, 

shows that PANSAT is at the same height as the camera, while the second picture, 

41 



Figure E.2, shows that it has gained a certain additional height. It can be determined by 

observing the LVI, which is shown in Figure 4.4. The angle /is 

f 
y = arcsin 'm.LVI 

V /f-tw J 

= arcsin (0.55-6.7^ 

v 24.1 
= 8.8°. (4.11) 

Considering the distance of the canister from the end of the cargo bay, where the 

windows and the observer are located14, which is given as 15.8 m, the vertical distance 

PANSAT traveled in two seconds is 

d = 15.8 mtan(8.8°)= 2.45 m, 

corresponding to an ejection velocity of 

v = ^m = 1.22 m/s = 3.73 ft/s. 
2s ' 

Referring to the technical specifications of the ejection mechanism, it is supposed 

to provide a nominal ejection velocity of 3.7 ft/s, and a worst-case delta v of 3.3 ft/s 

should one of the springs fail. Because this did not happen, the relative error of the 

estimated ejection velocity is about one percent and, therefore, negligible. 

Because the camera is not fixed to the orbiter, it is subject to change. Observing 

the distance of the tail marking the centerline of the orbiter and the symmetric axis of 

PANSAT, it shows that the camera moved slightly to the port side. This is approximately 

4 cm in 2 s. Since the observer is about 16 m away from the spacecraft, this change in 

the camera's position can be neglected. 

Besides the angular spin introduced by the Ejection Mechanism, the orbiter and, 

thus, PANSAT were rotating as well. The angular velocities of the orbiter with respect to 

the inertial M50 frame are given as 

coR =-0.001 °/s, 
(üP = 0.001 °/s, 
ct)Y =-0.001 °/s. 

Even referring these angular velocities to the orbit-plane coordinate system, 

which superimposes them with the orbit motion, leads only to a slight increase.  Hence, 

14 It is supposed that the camera is directly behind the window in the crew compartment of the orbiter. 
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these angular velocities are negligible for determining the initial roll-rate. However, it 

should be kept in mind that over long periods of time small angular rates can become 

noticeable due to torques acting on the spacecraft. Furthermore, it cannot be verified on 

the pictures if there was a tip-off moment at deployment, which would lead to additional 

energy. This can be done by examining the telemetry data. 
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V. DYNAMICS OBSERVED FROM SOLAR PANEL DATA 

The outer surface of PANSAT is almost fully covered with eighteen solar panels. 

Seventeen square panels are equipped with silicon solar cells and one gallium-arsenide 

panel is attached to the LVI at the bottom of the spacecraft. Current sensors to monitor 

the output current of the panels were designed into eight of them. Furthermore, tempera- 

ture measurements from all solar panels and the internal components are available. 

In this chapter, this data is evaluated in order to observe the spacecraft's 

dynamics. The solar panel currents give the location of the Sun with respect to the 

spacecraft. They are examined and used for the determination of the rotational motion 

and the attitude of the spacecraft. 

A.       EVALUATION OF STATUS SNAPSHOT DATA 

As discussed in Chapter IV, a spin about the minor axis was introduced at 

deployment. The telemetry data, which is stored in the satellite and downloaded to the 

ground station, is subject to aliasing. This is because the sampling period of the 

telemetry data is given as Ts= 121 s, while the angular velocity about the axis in 

question is approximately 5 7s leading to a period for a complete rotation of 7= 72 s. 

The sampling theorem of Shannon states that the sampling frequency must be at least 

twice as high as the highest frequency in a signal to avoid aliasing. The sampling period 

Ts and the sampling frequency fs are linked by the following formula 

Ts= — = —, (5.1) s     f       of 

where fn is the Nyquist frequency in Hz, the highest frequency in a signal. Using the 

above rotation period based on the initial spin, the sampling period needed is determined 

to be Ts = 36 s instead of 121s. Therefore, the present sampling period generates 

undersampled telemetry records and cannot be used to observe the rotational motion of 

the spacecraft. 

To accomplish the determination of the roll-rate, the method of using status 

records is adopted.    When the spacecraft is in sight of the ground station, status 
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information at that instant time (also called status "snapshots") can be received on 

demand. It contains almost the same information as the telemetry records. Taking status 

records repeatedly during a pass of the satellite, i.e., the spacecraft is in view of the 

ground station, a complete set of status information for a time window of a few minutes 

can be obtained. Since PANSAT is a tumbling spacecraft with antennas having a non- 

uniform radiation pattern, the transmission quality depends strongly on the attitude. This 

leads to the effect that the status samples are not equidistant as a result of the roll-rate and 

the attitude with respect to the ground station. The following analysis is based on these 

status samples. 

1.        Solar Panel Currents 

As a first step, the elementary roll-rate of PANSAT can be observed by looking at 

the solar panel current curves. The solar panels, which are equipped with current sensors, 

are as follows: 4,5,7,9,11,13,14, 16 (Figure 1.1). 

Figures 5.1 and 5.2 show that the spacecraft is spinning about the geometrical axis 

of symmetry, though this axis is not directed to the Sun. This is because the cover panel 

currents - the cover (CV) panels are located at the side of the spacecraft - change in 

sequence. First, a peak occurs on panel SP7, afterwards SP9, then SP11, and then SP13 

and, subsequently, the cycle is repeated. The phase shift from panel to panel can be best 

seen in Figure 5.1. When the phase shift in the CV panel currents occurring from panel 

to panel is suppressed, the correspondence in the curves can be seen and understood 

especially in areas with fewer sample points (Figure 5.3). It should be noted that the 

currents of the adjacent panels of SP4 and SP13 as well as SP9 and SP14 are in phase 

showing consistency of the curves. Since the spacecraft is rotating and the vector to the 

Sun can be assumed to be fixed in space for that short period of time, it is a positive spin 

about Y'. Observation of Figure 5.2 reveals a period of the spin of about 60 s and, hence, 

an angular velocity of 360°/60 s = 6 °/s = 2/3 rpm. 

This spin axis is not pointing to the Sun, because the amplitude of the top (TP) 

panel current is lower than the amplitude of the peaks of the CV panel currents (in such a 

case, the side panel currents are zero). The angle between the symmetrical axis and the 
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Sun line can be estimated by comparing the amplitude of the currents of SP9 and SP14. 

Both panels are adjacent to each other similar to SP4 and SP13 (except that SP4 is on the 

lower deck of the spacecraft); however, the normal vector of panel SP9 is perpendicular 

to the axis of symmetry, while the angle between the normal of SP14 and Y' is 45°. 

Observing the first three samples (Figure 5.2) reveals that the amplitudes of the peak 

values of /g and lu are approximately the same. This is also true for the Sun incidence 

angle being the angle between the normal to the panel's surface and the solar vector, 

because its cosine is proportional to the output current of the panel. Therefore, the Sun 

incidence angle of SP14 is about 22.5° giving an angle of the symmetrical axis and the 

Sun line being the line from the spacecraft to the Sun of about 67°. 

<300 
5 200 
~J00 
-    0 
<300 
E200 
-«.100 

<300 

-V 

5 300 
c200 
-«100 

 1 m "     . rr.          :.i. .    .  i i. 

"* -* ^. ©Ö^-^^^0  
■ ■ ■ ■• • • ■ • ■ ■ "^j>w*J—-©«w?©-- 1                        1   -                  c -V-f' 

0 

1 1    1 

20 40 
■   111   111 

60                    80                    100 
tins  

120 

11           11 
56   7        S   9 10 111213 1415 1617 18       19      20212223      24 25 

Number of Sample 

Figure 5.1: Solar Panel Currents (1998-11 -17_06-29-17)15 

Figure 5.2 shows that the axis of symmetry of the spacecraft has shifted with 

respect to the Sun line. This is indicated by observation of the currents of SP9 and SP14 

15 The format of the date/time stamp is as follows: yyyy-mm-dd_hh-mm-ss; Pacific Standard Time, 
PST, is used (UTC- 8 hours). It belongs to the first sample taken. 
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at t ~ 65 S and t ~ 120 s, because the Sun incidence angle of SP14 is increased and the 

one of SP9 decreased. The amplitude of the top panel current for these samples is 

increased as well compared to samples 2 and 3. Therefore, the angle between the Sun 

line and the symmetrical axis is lowered on these observed sample points. This angle is 

increased at f «35 s and t~95s indicated by the current curves of SP13 and SP16. 

The peak currents of the lower deck panel SP4, which is in phase with SP13, may prove 

that. 

The change in this angle mentioned above indicates that the spin is obviously not 

the only rotational motion of the spacecraft. Since the deviation of the principal axes 

from the geometrical axes is negligible as a first-order approximation (see Appendix C), 

nutation occurs implying that there are angular velocity components in the other two 

axes16. Using Figure 5.2, the period of the top panel current is determined to be 

approximately 80 s, corresponding to an angular velocity of 4.5 °/s. This is the period of 

the nutation, because the top panel current relative to the CV panel currents provide the 

location of the minor axis, which is changing with respect to the Sun. Hence, in 

considering the snapshot data time window, the rotational motion of the spacecraft 

consists of two major parts: the spin about Y' and the nutation17. 

By investigating the current curves, some random errors seem to be introduced. 

The top panel current curve does not have a sinusoidal shape. The current curves should 

be sinusoids because the satellite rotates smoothly in space and following the Law of 

Cosines, the current of a panel changes as function of the cosine of the Sun incidence 

angle. The sudden drops in amplitude of one or a few samples are the result of 

shadowing of solar cells by the four dipole antennas. They are mounted on the triangular 

sections of the upper deck (see Figure 1.1). Because the angle between the symmetrical. 

16 In satellite dynamics, nutation is defined as rotational motion for which the instantaneous rotation 
axis is not aligned with a principal axis. In the case for which a geometrical axis is not parallel to a 
principal axis, this misalignment causes the geometrical axis to rotate about the angular momentum vector. 
This rotation is referred to as coning [Ref. 2]. 

17 Besides these mentioned rotations, other rotational motions are caused by the satellite's movement in 
its orbit and the Earth, which turns around the Sun. In the considered time frame of about 2 minutes, these 
effects can be neglected. 
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axis and the Sun line is about 65°, the antennas shade some areas of the top panel 

(Figures F.l and F.2 in the appendix). It happens only when a triangle is facing the Sun, 

i.e., between two peaks of the side panel current. The effect of shadowing is well 

understood. If one portion of one solar cell is shadowed, the output current is reduced. 

Since all 32 cells making up an array are connected in series, the output current of all the 

other non-shadowed cells is limited as well. That is why the loss of area equivalent to the 

drop in current is usually greater than the real shadowed area by the antenna. 

Another visible effect has its origin in the acquisition of the measurements. The 

values of the panel currents are identical at sample number 20 and 21; therefore, it 

appears like a systematical error (Figure 5.2). Obviously, the measurements are taken too 

fast, so the measurement system could not obtain the new values. All measurements18 are 

sampled and converted to digital information. This process takes approximately 17.4 ms 

per A/D sample. Because there are 108 samples per cycle, the system needs 1.9 s to 

acquire all measurements19. This is the reason for the observed effect, because the 

sampling period of these samples is 2 s and thus in the range of the mentioned time lag. 

Considering snapshot data of November 9, 1998 (see Appendix G for data plots), 

systematical errors occur in the solar panel current curves of the side panels, because 

there are currents reaching values up to 45 mA on panels opposite of the illuminated one. 

By observing the peaks of /g, /u and h&, the angle between the solar vector and the 

symmetrical axis is between 45° and 67.5°. The pictures in Appendix F show that parts 

of the antennas reach slightly over the side panel planes. Furthermore, they are bent so 

that Sun's rays may be reflected onto the surface of a panel pointing to the opposite 

direction of the Sun. 

IS e.g., battery cell voltages, battery currents, spacecraft bus voltage, solar panel currents, and 
temperatures of panels and internal components. 

19 The spacecraft bus voltage and the solar panel current measurements, which give the power output 
of the panel, are taken at the end of the cycle providing a time difference between the first and last 
measurement of the panel currents of about 240 ms. 
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Figure 5.2: Solar Panel Currents (1998-11-17_06-29-17) 
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Figure 5.3: CV Panel Currents, Phase Shift Suppressed (1998-11-17_06-29-17) 
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Reflections caused by the LVI can also be observed on some status records (e.g., 

December 14, 1998; see Figure G.56 in the appendix). The sides of the LVI are under a 

30° angle with respect to the axis of symmetry. Thinking of the attitude of the spacecraft 

with respect to the Sun, the current peaks of SP9, SP14 and SP16 reveal a Sun line/axis 

of symmetry angle between 22.5° and 45°. Because SP4 is attached with a 45° angle 

with respect to the axis of symmetry, it should not receive any illumination producing 

current. Observing its output current shows that current is generated and suggests that 

reflections, caused by the LVI, could account for this current. 

2.        Panel Temperatures 

In this section, the solar panel temperatures are examined using data of November 

17, 1998, 6:29:17 PST as an example. The panel temperatures are a function by the 

attitude of the spacecraft with respect to the Sun and, therefore, its rotational motion, the 

Sun exposure, eclipse cycles as well as conduction and radiation within the satellite. 

140 

Figure 5.4: Temperatures of Panels Equipped with Current Sensors 

(1998-11-17_06-29-17) 
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Figure 5.4 depicts the solar panel temperatures of those panels that are equipped 

with current sensors. As estimated in the last section, the upper half of the spacecraft is 

directed toward the Sun. The temperatures are the highest of the panels facing the most 

area to the Sun. These are the upper deck panels and the top panel. The CV panel 

temperatures are significantly lower, because they obtain less illumination from the Sun 

and conduction between the panels is limited due to small cross sectional areas. The 

lowest temperatures occur on the gallium arsenide panel at the bottom and the lower deck 

(LDCK) panel SP4. Remarkably, the temperature of SP5 is higher than SP4, although 

the former panel does not obtain any illumination at all. This is because the bottom panel 

is part of the LVI block, onto which Sun's rays are shining and where higher conduction 

of heat takes place. The overall temperature difference between the panels is 

considerably small (about 9 °C), which indicates that the heat transfer within the satellite 

is insignificant. 

At the time the status snapshots were taken, the Sunrise occurred on the ground. 

It indicates that the satellite left the penumbra shadow only recently. The steady rise in 

all temperatures is a result of the eclipse/Sun transition. It can be best seen in Figure 5.5, 

where the upper deck (UDCK) panel temperatures surround the increasing top panel 

temperature curve. The local cycles in the UDCK panel temperatures are caused by the 

spin of the satellite about its geometrical axis of symmetry. Observation of the period of 

the cycle reveals a value of roughly 60 s corresponding to the value determined from the 

panel currents. Hence, the thermal time constant and thermal mass are considerably low 

allowing the use of the temperatures to support the rotational rates determined from the 

current sensors. 

Because the peaks of the UDCK panel temperatures are higher than the 

corresponding value of the top panel temperature, they are under a smaller angle directed 

to the Sun than the top panel. This is also proven in the last section, where the currents 

are examined. 

The observed measurement acquisition problem is confirmed by the temperature 

samples showing the same effect (Figure 5.5). 
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On some panel temperature plots, the heat transfer from other internal 

components can be observed. As an example, the snapshot data of 12/14/1998 starting at 

16:35:41 PST is taken (plots can be found in Appendix G). Especially the top panel 

temperature curve shows the influence of peak temperature of the electrical power system 

(EPS), the mass storage (MS), and the temperature multiplexer (TMUX), which are 

directly underneath SP16 and mounted to the upper equipment plate. This also suggests 

that there is good conduction and radiation within the satellite structure. 

140 
fins 

Figure 5.5: Temperatures of UDCK and TP panels (1998-11-17_06-29-17) 

B.       ANALYSIS OF ROTATIONAL MOTION 

The rotational motion of PANSAT is very complex. As observed from the solar 

panel data, its motion consists of a spin and nutation. In addition, precession of the 

angular momentum vector occurs because external torques react on the spacecraft. 
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The precession can be estimated by the angular momentum equation (2.2). The 

time differentials are approximated by differences, so that the change in angular 

momentum in scalar form is 

AL=MAt. (5.2) 

The gravity gradient torque is the primary torque as determined in Chapter II. 

Since the gravity gradient torques are smaller about the other body axes and change with 

the attitude of the spacecraft with respect to the 'center of gravity' of the Earth, a value of 

10"7 Nm is used rather than the worst-case value determined. Applying Equation (5.2) 

gives the change in angular momentum during a day as 

AL = 10"7Nm-86,400 s 

= 0.01Nms 

over a week as 

AL = 10-7Nm-604,800 s 

= 0.06Nms 

and over a period of a month as 

AL = 10-7Nm- 2,592,000 s 

= 0.26Nms 

In order to compare these values with the angular momentum at the time of 

deployment, the following equation is used 

L = ->//1
2ß)1

2+/2
26)2

2 + /3
2ö?32. (5.3) 

Since the spacecraft is rotating with 5 7s about the geometrical axis of symmetry 

assumed to be coaligned with the minor axis, the angular momentum is determined to be 

L = 7(0.98 kg m2 • -0.087 rad/sj 

= 0.09Nms 

At the time of deployment, the angular momentum vector is aligned with the 

symmetrical axis with a magnitude as determined above, because the spacecraft is only 

spinning about this axis. 

If a spacecraft is initially spinning about a principal axis, as in the case of 

PANSAT, a torque applied parallel or antiparallel to the angular momentum vector will 
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cause an increase or a decrease in the magnitude of L without affecting its direction. A 

torque component perpendicular to L will cause the direction of L to change without 

altering its magnitude. This change in direction of an angular momentum vector due to 

an applied torque is called precession. 

Assuming that the torque in Equation (5.2) is applied perpendicular to the angular 

momentum vector, the angle between the initial and the precessed vector over a day is 

given as 

/0-01W. Aor = arctan 
0.09, 

Therefore, precession cannot be neglected because gravity gradient torques are 

acting on PANSAT. 

In order to analyze the rotational motion of the spacecraft, the solar vector needs 

to be determined. To accomplish that, curve-fitting methods are required due to errors in 

the current curves. 

1.        Curve Fitting of Panel Currents 

As discussed in Section V.A., errors having random or systematical 

characteristics appear in the solar panel current curves. Furthermore, the samples are not 

taken equidistant so that curves are weakly validated in some regions. Because this data 

is used to compute the solar vector, which is done in the following section, the current 

curves need to be smoothed out. 

This can be done by adopting the knowledge about the origin of these curves. 

They are all sinusoids because they change proportionally with the cosine of the 

incidence angle. Hence, it is appropriate to fit a sine function to the data given as follows 

/, = a0 + b0sm(cot + c0), (5.4) 

where ao, b0, and Co are respectively the vertical shift, amplitude, and phase shift. The 

radian frequency cois given by 2n/T, where the period Tis determined from the raw 

curve. 

In order to accomplish the goal of fitting Equation (5.4) to the current curves, a 

weighted least squares method is used [Ref. 25, 27].    This estimation algorithm 
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minimizes the square of the error between the measured value and the fitted curve. The 

discrete loss function Jean be stated as follows 

• (2*    T2 
»in — + cn J(a0,b0,c0)=

y^wi /m,,-ao-60sin [T /J 
-»mm, (5.5) 

where W, is the weight for the \ih sample. The weights are determined manually by 

observing the current curves, because it is difficult to model them mathematically. Imj is 

the \th measured value of the current. 

The desired parameters are determined by its first partial differential of the loss 

function, which is the necessary criterion for a minimum20. This leads to three equations 

w =o,i^=o,^=o, 
da, dbn 3Cn 

(5.6) 
•*0 "^0 ""O 

which must be solved numerically, because the problem is not linear in Co.   This is 

programmed in MAPLE; the code is given in Appendix J. 

Equation (5.4) provides satisfactory results for the estimation of the top panel 

current curve. Since the side panel currents are not only influenced by the spin about the 

minor axis but also by the nutation, above equation is not appropriate in this case. 

Because the current curve of SP16 is a function of the nutation, it is added to the 

estimation equation using another sine function 

/, = ao + b0 sin(öj t+c0)+d0 + e0 sin(<a 161 + f0 ). (5.7) 

Hence, the loss function is extended as follows 

IV 

J(b0,d0,e0)=^wi 
/=i 

L,,-3o-b0s\n 
2JI 

■ + cn d0 - e0 sin 
2Jü    . 

-\2 

'16 M 

->min 

The partial differential equations are given as 

^=0,^ = 0,^ = 0. 
db, ddn Ben 

(5.8) 

(5.9) 

-\2J ~l2j -\2 J 
20 The sufficient criteria for a minimum -—- > 0, T > 0, r- > 0 are not determined explicitly; the 

3a„ 
results show that it is fulfilled. 

'db0*      X
2 
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The loss function, Equation (5.8), is only solved for the parameters bo, do, and eo, 

while the other variables are determined by using Equations (5.4) - (5.6). Applying them 

to the particular side panel current leads to ao and Co, and applying them to SP16 yields 

/b. It can be done because these variables are not affected by superposition of the second 

sine function. Otherwise, it is almost impossible to obtain reasonable results. 

The determined values of these parameters of the trigonometric functions are 

summarized in Appendix H. Additionally, the plots of the fitted current curves for each 

snapshot data are provided there. 

2.        Solar Vector from Currents 

In order to calculate the vector from the spacecraft to the Sun, the incidence angle 

for a particular panel needs to be determined first. The following power equation follows 

from, the first law of thermodynamics applied specifically to a solar panel 

U0utl0ut=VldAScosT, (5.10) 

where the left side in Equation (5.10) is the electrical power output being the product of 

the output panel current and the output voltage, while the power input by radiation from 

the Sun is on the right side degraded by the efficiency 77 and the inherent degradation Id- 

The factor Id contains effects caused by the design and the assembly of single solar cells 

into complete arrays, the shadowing of cells, and the operating temperature of the panel 

[Ref. 1]. The radiation input of the Sun on a surface normal to the Sun's rays is given by 

S, the solar constant at 1 AU, and the active panel area is given by A Finally, COS T is 

referred to as cosine loss, where T is the Sun incidence angle. Life degradation effects 

caused by radiation, thermal eclipse cycling and micrometeoroid strikes are neglected in 

Equation (5.10). 

Above equation reveals that the output current of an array is proportional to the 

Sun incidence angle. This relationship is used in the last section. It can be expressed as 

follows 

cosrSP=CSP/SP, (5.11a) 

where CSP is the proportional factor defined as 
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C* = SAU7l     ■ (5Hb) 0
 ™SP 'ISP 'd,SP 

Because all panels are connected in parallel, their output voltage, denoted by the 

spacecraft bus voltage, is the same for each. With the exception of the gallium-arsenide 

panel21, all other panels have identical dimensions making the active cell area equal. 

Furthermore, the efficiency factor and the inherent degradation can be assumed to be the 

same for different panels, since they are made of silicon with an efficiency of 

approximately 14%. The temperature differences between the panels used to determine 

the solar vector is small; shadowing is neglected. Therefore, the proportional factor CSP 

can be assumed as the same at a sample point for different panels. 

For the determination of the solar vector, Sun incidence angles of three solar 

panels are required, as shown in Figure 5.6. The solar vector is referred to the 

geometrical system, because the normal vectors of the solar panels are aligned with its 

axes. If needed, a transformation of the solar vector to the principal axes, the body axes 

of PANSAT, can be carried out using the direction cosine matrix given by Equation (C.4) 

in the appendix. 

21 The gallium-arsenide panel has a different efficiency and active cell area. It is designed to obtain 
some power if the bottom of the spacecraft is facing the Sun. Since it only produces current when the 
spacecraft bus voltage drops below 15.7 V, this case has never been observed yet. Thus, it does not cause 
problems in the above application. 
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cm. 

Figure 5.6: Solar Vector in the Geometrical Coordinate System 

From observation of Figure 5.6, the solar vector can be calculated by the 

following equation 

rs,x-=|>'s,x-|[cosri3   cosri6   cosT77. (5.12) 

Applying Equation (5.1 la) on Equation (5.12) and normalizing the vector gives 

rsx —' 
lPl3 'l3 ^16 Ae Crtf (5.13) 

J(c,3i*T+(c,6i,6T+(c7i7y' 
As discussed earlier, the factors CSP are considered to be the same at a sample 

point, so that the final result can be reached 

['13      A.      IjY -        _    l'13      '16 
'S,X' — 

VC+C+z/ 
(5.14) 

Equation (5.14) allows calculating the solar vector directly from the currents, 

which are taken as estimates from the least squares algorithm of Section V.B.1. For the 

calculation of the solar vector in different quadrants of the geometrical coordinate 

system, Equation (5.12) given for the eight quadrants can be found in Table 5.1. 

Equation (5.14) can be easily derived from Equation (5.12) as shown above. 
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The solar vector is computed using the estimated panel currents provided by the 

least squares fit. The two highest current values are taken leaving only two choices for 

the quadrant of the solar vector, by inspecting Table 5.1. SP4 and SP14 are ignored. The 

most likely quadrant is the one with the higher remaining current value. These three 

currents are applied on Equation (5.14) under consideration of Table 5.1. This 

computation of the solar vector is carried out in MATLAB; the code is provided in 

Appendix J. 

Table 5.1: Calculation of Solar Vector from Sun Incidence Angles: ,22 

Quadrant Solar Vector xsx 
I, above rs,r=|rs,r|[c°sr13  cosr16  cosr77 

I, below rs,x- — rsx.|[cosr13   cosr16   -cos^J 

II, above rs.x=|rs,x|[-cosr9  cosr16  cosr7f 

II, below rs.v =|rs.x|[-cosr9   cosr16   -cos^J 

III, above rs,x'=^,x'|[-cosr9  -cosrs  cosr77 

III, below rs.x'=|rs.r|[-cosr9   -cosr5   -cosl^j 

IV, above rsx = \rs.x- |[cos r13  - cos r5  cos r7 J 

IV, below rs,x- = is.x'|[c°sr13  -cosr5  -cosr,J 

3.        Energy considerations 

The energy of a rigid body consists of potential energy and kinetic energy, which 

is made up of translational and rotational energy. When this body moves under the action 

of conservative forces23, the sum of the kinetic and the potential energy remains constant 

[Ref. 19]. Hence, it may be stated as follows 

E=T+U, (5.15) 

where Eis the total energy, Tis the kinetic energy and l/the potential energy. 

22 The following convention is used for the classification of quadrants: the quadrant I is defined by the 
positive directions of the X',Y', and Z' axes. Quadrants II, III, and IV are given by turning 
counterclockwise about Y' starting at quadrant I. 'Above' and 'below' is referred to the X' - Z' plane. 
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The kinetic energy of a rigid body in scalar form is given as 

T = -mv2+-(l,a)? + l2co2
2+l3a)3

2), (5.16) 

where the first term is the translational energy and the second the rotational energy. In 

this equation, v is the velocity of the center of mass, CO, denotes the angular velocities, m 

the mass of the rigid body, and // the principal moments of inertia. 

It is shown in Chapter I, that the translational and rotational motion can be 

considered uncoupled since the distance from the Earth's center to the center of mass of 

PANS AT is large compared to the spacecraft's dimensions. Therefore, the rotational 

energy can be assumed as constant as long as energy dissipation is negligible. This 

approximation is true specifically for PANSAT, because the structure can be assumed as 

rigid, magnetic fields are insignificant and the antennas are small. As a result, the sum of 

the translational and potential energy should remain constant. 

The potential energy can be calculated from the following equation taking the 

center of the Earth as a reference [Ref. 8] 

U = mgrEU—^-1 (5.17) 
I     a j 

where g is the acceleration at the Earth's surface. 

For the calculation of the translational energy, the orbit velocity is required. The 

so-called vis viva equation for an elliptical orbit is given as [Ref. 2] 

(5.18) 
V 

To get an idea how large the energies involved in the motion of this spacecraft 

are, the potential and kinetic energies are calculated. For November, 17, 14:29 UTC, the 

following required orbital elements obtained from STK are given 

a = 6938.3 km, 

e = 0.0011, 

t = 338.2°. 

23 A conservative force satisfies the statement that the work of the force is independent of the path 
followed and is equal to (minus) the change in potential energy [Ref. 19]. 

61 



Using Equation (3.1) with these parameters, the distance from the spacecraft's 

'center of mass' to the 'center of Earth' is calculated as 6931.2 km. The potential energy 

using Equation (5.17) is 

U, = 56.9 kg-9.81-^--6378.1-103m 
5 

/ 
1- 

6378.0 
6931.2 

= 284.1MJ 

Applying Equation (5.18), the velocity of the satellite in its orbit is 

3 / 
v, =.,13.986-1014^ 

1 \ 

6931.2    6938.3 
•1(Tdm 3^,-1 

= 7587.3 
m 

The translation^ energy is determined from the first term in Equation (5.16) 

7"/ra„s,i=^56.9kg 7587.3— 
v / 

= 1637.8 MJ 

Finally, the sum of the potential and the translational energy, is calculated as 

F=1921.9MJ. 

This value is subject to change, because the atmospheric drag, unlike other 

perturbation forces caused by the Earth's oblateness and third-body interactions, is a 

nonconservative force and takes energy continuously away from the orbiting satellite. 

Thus, the semi-major axis and the period are gradually decreasing. The orbit velocity is 

increasing, however, because Kepler's third law24 must be satisfied [Ref. 6]. 

The rotational energy at this time is determined from the angular velocities of the 

spin and the nutation as observed in Section V.A.I. It is assumed that the angular 

velocity of the nutation occurs about both X' and 71. Hence, the rotational term of 

Equation (5.16) provides the result 

24 Kepler's third law of planetary motion states that the squares of the periodic times of the planets are 
proportional to the cubes of the semi-major axes of their orbits [Ref. 19]. 
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Trot = \ h -42 +1 -3°)kg m2 • (0.079 rad/s)2 + 0.98 kg m2 • (0.105 rad/s)2 ] 

= 27.8mJ 

giving a difference of 11 orders of magnitude with respect to the translational energy. 

This suggests that the assumption of considering the rotational energy being 

independently from the orbital motion is appropriate. 

At the deployment of PANSAT, a spin of 5 7s about the symmetrical axis is 

observed, which gives the rotational energy as 

7rof =-0.98 kg m2-(0.087 rad/s)2 

= 3.7mJ 

Comparing this value to the rotational energy 18 days later, it shows an increase 

in energy that violates laws of physics. It also indicates that the above assumption taking 

the angular velocity of the nutation for both body axes 1 and 2 is not appropriate. 

The only explanation for an increase in the rotational energy in this quantity is a 

tip-off moment at deployment of PANSAT, i.e., the impulsive force of the spring was not 

directed through the 'center of mass' of the spacecraft causing a non-central impact. The 

delta translational energy of the satellite caused by the spring is calculated by using the 

separation velocity as determined in Chapter IV 

A7fra„s=-56.9kg-1.2z^ 

= 41.0J 

Even this value is three orders of magnitude higher than the rotational energy 

indicating that a small misalignment of the separation vector can cause an increased 

rotational energy. Since the force was supposedly aligned with the axis of symmetry of 

the satellite and the 'center of mass' is some millimeters off, the impact was not central. 

Furthermore, the release of the spacecraft by the moment clamp could also provoke tip- 

off rates. Such an amount of energy becomes noticeable after a longer period of time as 

observed from the status snapshot data. 

Figure 5.7 shows that the angular velocities of both spin and nutation increased 

after deployment and have dropped to about half the magnitude after reaching a 
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maximum on about the 20th day. A decline in this quantity cannot be caused by an 

energy dissipation with this particular spacecraft configuration. It rather suggests that 

there is an angular velocity about another axis, which cannot be observed from the solar 

panel currents. This is discussed in detail in the following section. 

Figure 5.7: Angular Velocities Determined from Panel Currents 

4.        Examination of Angular Velocities 

As observed in the last sections, cases may appear when the angular velocity 

cannot be determined unambiguously. It is always true when the solar vector referred to 

the spacecraft's geometrical axes is parallel to a normal vector of a solar panel's surface 

and a rotation about this axis occurs. However, this case is unlikely since PANSAT is a 

tumbling satellite changing its attitude with respect to the Sun constantly. 

One component of the angular velocity cannot be determined from the solar panel 

data: the component of the angular velocity which is parallel to the Sun line. This is also 

true when the instantaneous axis of rotation is aligned with the Sun vector.  But this is 
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more questionable because the rotational motion consists of a spin, nutation and 

precession provoking the angular momentum vector to change not only in magnitude but 

also in direction. 

Summarizing these facts, methods of determining the missing angular velocity 

component need to be discussed. The missing component is the major problem in 

analyzing the state of rotational motion. 

Assuming an arbitrary angular velocity vector U), it can be transformed into the 

geometrical system as follows 

(Os, 

CO? 

= U)l 

cos S„ sin aa 

sin^ 

cos <L cos or., 

(5.19) 

where or© is the azimuth in the X', Z'-plane starting at the Z' axis and 8® is the elevation 

angle from this plane to the vector. Transforming these components into a Sun directed 

coordinate system by another azimuth and elevation angle so that the transformed Z' axis 

is aligned with the solar vector (see Figure 5.6), gives the following direction cosine 

matrix 

0)YS 

CO r,s. 

10 0 

0   cos(-£s) sin(-£s) 

0   -sin(-£s) cos(-£s) 

cos ac 0 

cosors   0   -sin#s 

0       1        0 

sinas    0    cosas 

6>x, 

CDr 

CO-r 

- sin a* 

- sin Ss sin as   cos Ss   - sin Ss cos as 

cos £s sin a«. smSs    cos£scosars 

0)x 

0>v 

CO? 

(5.20) 

The azimuth for this transformation can be determined from the solar vector as 

follows 

as = arctan •SX' (1) 
,«W(3). 

(5.21) 

and the elevation angle as 

<5s=arcsin[rsx,(2)]. (5.22) 

The angular velocity about X' of the Sun directed system, can be calculated from 
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a)x,s=-^L, (5.23) 
's 

where A<5S is the change in the elevation angle between two samples and Ts is the 

sampling period. The negative sign is added because in fact the spacecraft rotates with 

respect to the Sun and not the Sun with respect to the geometrical system as the 

definitions imply. 

The difference of the azimuth referred to the sampling period leads to another 

angular velocity 

coY=-^-, (5.24) 
's 

which is referred to the geometrical frame. 

As discussed earlier, the angular velocity about the Z' axis in either system 

undetectable. 

The introduced angular velocity vector d) is defined by the three unknown 

parameters co, a^ and <5^ If they can be determined, the angular velocity vector will be 

known and will allow calculating of the missing component. 

To accomplish this, there are only two equations to determine these three 

unknown parameters. These are 

^x-.s =tfj(cosascos<5a,sinaw-sinöscosäÄcosa<B), (5.25) 

and 

coY =G)S\n6m. (5.26) 

As discussed, the component about the X' axis is referred to the system directed 

to the Sun and the one about Y' to the geometrical axes. A transformation of each of 

them to the other system is impossible, because the component about the third axis is 

needed in the equation. 

For November, 17, 1998 at 6:29:17 PST, the azimuth and elevation are 

determined from the solar panel currents using Equations (5.21) and (5.22), respectively. 

The currents are based on the curve fitted data, which is provided in Appendix H. The 

angles are shown in Figure (5.8).    The azimuth is decreasing continually, which is 
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essentially a positive spin about the systematical axis. The roughly sinusoidal change in 

the elevation angle is caused by the nutation. This angle changes about 10°. Therefore, it 

is not caused by a misalignment of the geometrical and the principal axes known as 

coning, because those angles are much smaller (see Appendix C). These results meet the 

observations from the last sections. 

100 
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Figure 5.8: Azimuth and Elevation of Sun in Geometrical System 

(1998-11-17_06-29-17) 

Figure (5.9) depicts the angular velocities G)KS
25 and ar as computed from 

Equations (5.23) and (5.24). They are basically affected by the spin and the nutation, 

because precession can be neglected for this short amount of time. It can be seen that 

they are not constant.   This is why the desired parameters cannot be determined by 

25 Every time the solar vector leaves a quadrant of the geometrical system for another one, the angular 
velocity, which is calculated from two samples in two different quadrants in this case, is ignored. This is 
because the error in the current is increased for lower magnitudes and, therefore, the curve fitting provides 
an overlap or a gap in the curves leading two a wrong angular velocity value (see Figure H.2). 
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applying a least squares algorithm on Equations (5.25) and (5.26), which requires these 

parameters as being constant. 
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Figure 5.9: Angular Velocities of Spacecraft (1998-11-17_06-29-17) 

The equations of motion, Equation (2.12), reveal that the angular velocities are 

only constant when the motion can be assumed torque-free and the moments of inertia are 

symmetric, i.e., Ixx =lzz (respectively, l2=l-[) causing an angular momentum vector 

fixed is space. Since the moments of inertia are not symmetric and gravity gradient 

torques are acting on the spacecraft, this assumption is not appropriate in this case. The 

moments of inertia about the X' and Y' axes are approximately nine percent off and, 

therefore, cannot be modeled symmetrically. However, Appendix C shows that the 

moments of inertia lyy., lXT, and ly? are fully negligible. The change in the angular 

momentum vector as estimated above also suggests that the torque cannot be neglected. 

It is very difficult to determine the missing angular velocity component. Since the 

initial impact is unknown and, therefore, the entire amount of rotational energy at 

deployment as well, it cannot be used to calculate the desired component using energy 
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equations. Technical specifications of the Ejection Mechanism could help to estimate the 

tip-off moment in favor of determining the entire rotational energy and the.state of 

motion. 

For this complex motion, it is impossible to resolve the equations of rotational 

motion symbolically. This is because the nonlinear terms must be kept in these equations 

due to the unsymmetrical moments of inertia and the presence of external torques being a 

driving moment for the spin axis. However, they could be solved for two special cases. 

The first takes the external torque into account (and eventually assume them constant) 

and sets the moments of inertia equal, /x.x. = lzz, and the second neglects the torque and 

takes the unsymmetrical moments of inertia into account. The combination of both 

calculations would lead to the involved motion of PANSAT. Numerical computations 

using Runge-Kutta algorithms could resolve the required transformation angles, am and 

da, and the magnitude of the angular velocity co, which change with time, in order to 

determine the missing angular velocity component. 

C.       ATTITÜDE DETERMINATION 

The determination of the attitude is an important goal to reach because it does not 

only influence the power state and battery charging of the satellite and, therefore, the 

lifetime, but it also affects the transmissions to the ground station due to a disturbed 

antenna pattern. Knowing the absolute attitude of the spacecraft would allow displaying 

it with respect to other reference frames. Additionally, it would allow analyzing the 

attitude with regard to stability aspects. An unstable attitude of the spacecraft is 

preferred, because a stable one could not be favorable concerning the communications. 

Last but not least, the attitude could be predicted using estimation algorithms in order to 

plan ahead communications with the satellite. 

Since the sensors allow only tracking of one celestial body, the Sun, a three-axis 

attitude determination is impossible. It can only be determined with respect to the Sun 

and even then, the attitude is not solved unambiguously, because the orientation angle 

about the solar vector cannot be resolved. 
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Figure 5.10: Angles Regarding Attitude with respect to the Sun 

Figure (5.10) shows the angles between the geometrical axis of symmetry of the 

spacecraft and the Sun line vs. the beta angle. The former angle can be determined from 

n/2-6s, where the elevation angle is computed by Equation(5.22), while the beta 

angle on the vertical axis is calculated by Equation (3.29) from orbital tracking data 

determined by STK using TLEs. It links the data to a reference on the orbital plane, the 

orbit-plane axes system. However, it is clear from above discussion that the orientation 

of the symmetrical axis with respect to this system cannot be determined unambiguously. 

Having both angles for one set of status snapshots as shown in Figure 5.10 defines a cone 

in the orbit-plane system where the Y' axis is located. 

Observing these angles obtained from snapshots in a daily sequence shows that 

they change almost linearly suggesting that the symmetrical axis stays in roughly the 

same orientation for a period over a few days. However, the effect of precession can be 

seen as a shift in the angles over longer periods of time. 
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The gradual increase in the delta of the angle between the symmetrical axis and 

the Sun line from November, 9, until November, 14, indicates that the effect of nutation, 

i.e., the nutation angle, has risen. It may verify a transfer of rotational energy from the 

minor axis to the major axis, which could lead to a stable attitude. Figure 5.7 also seems 

to verify this because the spin has declined after reaching a maximum on November, 19. 

Since the rotational energy can be assumed conserved, the non-detectable angular 

velocity must have increased since then. 

More status data will provide a clearer picture and could help finding a correlation 

between the spacecraft based and the orbit-plane based Sun location in order to determine 

the attitude of the spacecraft. This can be achieved by calculating the solar vector by 

Equation (3.28) and determining the symmetrical axis/Sun line angle, which defines a 

cone of the Y' axis about the solar vector with respect to the orbit-plane system. 

A single-axis attitude determination estimating the solar vector could be used to 

obtain and predict the attitude of PANSAT referred to the Sun. From that, a rough 

orientation of the satellite with respect to the observer, the ground station, could be used 

to evaluate communications with the satellite. A cone of possible positions of the axis of 

symmetry would be obtained, similar to that with respect to the orbit-plane system as 

described earlier. This could be done by using a Kaiman filter. However, it requires 

more data to reach reasonable results. 

Furthermore, the knowledge of the complete state of initial conditions at 

deployment would allow solving the equations of motion. To accomplish this the tip-off 

moment needs to be determined as described in the last section. The equations of motion 

provide the state of motion and the attitude of the spacecraft, which could be correlated to 

the data from the status snapshots. However, it must be noted, that errors in the initial 

conditions build up making it impossible to achieve reasonable results. 
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VI. RESULTS AND CONCLUSION 

The objective of this report is to examine the attitude dynamics of PANSAT from 

current telemetry data. To accomplish this, a dynamics model is provided describing the 

rotational motion of the satellite under the action of environmental torques. The 

estimation of the external torques reveals that the gravity gradient torque is dominant 

being approximately one order of magnitude higher than the aerodynamic torque, while 

further torques can be neglected due to the orbit altitude and spacecraft configuration. 

Therefore, the gravity torque enters the equations of rotational motion. 

Two high-resolution pictures taken at deployment show a positive spin about the 

geometrical axis of symmetry being (almost) aligned with the minor axis of the 

spacecraft. Observation reveals an angular velocity of 5 7s, which originated from the 

Ejection Mechanism. This result is verified by the separation velocity determined to be 

close to NASA specification. Further examination of angular velocities from status data 

indicates a tip-off moment introduced during separation. 

Visualization tools have been developed to display the attitude of PANSAT, e.g., 

at deployment with respect to the orbit-plane axes. This attitude is calculated from data 

provided by NASA. In addition, the roll-rate of the spacecraft can be shown relative to 

the Sun. 

The rotational motion of the satellite is very complex and is composed of a spin, 

nutation, and precession. Spin and nutation can be clearly observed from solar panel data 

providing the location of the Sun, while the change in the angular momentum vector is 

estimated by investigating the dominant external torque. The spin of the spacecraft is 

manifested by panel temperature measurements as well. 

A disadvantage of using the solar panels as a sensor to determine the angular 

velocities is that the component of the angular velocity aligned to the Sun line cannot be 

determined. Specifically for PANSAT, the rotational energy is assumed constant in the 

absence of energy dissipation. However, inspection of angular velocities determined 

from panel currents shows increases and major decreases in energy violating basic laws 
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of physics. This confirms the missing angular velocity component and suggests a tip-off 

rate at deployment. 

Analytical methods to determine this component fail because the angular 

velocities are not constant due to the presence of gravity gradient torques. Furthermore, 

the principal moments of inertia are unsymmetrical, i.e., they are all different. However, 

the principal axis directions can be assumed as aligned with the geometrical axes of the 

spacecraft. Due to the two mentioned reasons the equations of motion cannot be 

simplified. 

The concept of attitude determination from the Sun location allows only resolving 

the attitude of the spacecraft relative to the Sun.. The initial attitude of the spacecraft at 

deployment is the only reference attitude allowing transformations to other coordinate 

systems. Since the mission life depends significantly on the attitude of the satellite to the 

Sun and, additionally, the transmissions to the ground station are affected by the attitude 

as well, it is desired to resolve the attitude problem. 

This could be done by determining the rotational state of motion in order to obtain 

the missing angular velocity component and the tip-off moment. To accomplish this the 

equations of motions could be solved for special cases and the solutions could be 

combined to meet the involved motion of PANSAT. Using the complete state of initial 

motion and attitude, the equations of motion could be solved numerically in order to 

obtain the unambiguous rotational motion and the attitude. These simulations could be 

correlated to the data obtained from the solar panel currents. 

Furthermore, one-axis attitude determination methods using the solar vector as the 

estimated parameter would be helpful in predicting the attitude with respect to the Sun, 

because an orientation directing the LVI to the Sun could cause serious power generation 

problems. Knowledge of the attitude and roll-rate is also useful to resolve the stability 

problem, because a stable attitude could be unfavorable regarding the communications. 

Summarizing the results, the motion of the satellite in space can be completely 

described qualitatively. A quantitative determination of the attitude and complete state of 

rotational motion is mathematically complex and requires more data. The concept of 

using the Sun location as parameter in determining the attitude and roll-rate has limited 
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applications for the purpose of attitude control; however, it has been demonstrated that 

using solar panel data yield meaningful information in the field of spacecraft dynamics. 
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APPENDIX A. TIME CONSIDERATIONS 

Julian Dates 

Julian dates (JD) are a convenient method in astrodynamics to preserve the date 

and time information in one variable. It is the continuous amount of time measured in 

days from the epoch January 1,4713 B.C., 1200. 

To find the Julian date from a known date and time, the day number of the year 

and the fraction of day from 0 UT must be added to the JD for January 0.0 UT of that 

year listed in the upper half of Table A.2. Julian Dates can also be found in current 

editions of "The Astronomical Almanac" issued by the U.S. Naval Observatory in the 

United States or by the Royal Greenwich Observatory in Great Britain, respectively. 

Table A.1: Numbers of Days a Month to Determine Day of Year26 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
31 28 31 30 31 30 31 31 30 31 30 31 

Table A.2: Julian Date at the Beginning of Year until 2000 and Relevant 

Standard Epochs 

Date and Time of Epoch Julian Date 
1998, Jan 0.0 UT 
1999, Jan 0.0 UT 
2000, Jan 0.0 UT 

2,450,813.5 
2,451,178.5 
2,451,543.5 

Standard epoch, 1900 Jan 0.5 UT 
Standard epoch, B1950.0 = 1950 Jan 0.923 
Standard epoch, J2000.0 = 2000 Jan 1.5 

2,415,020.0 
2,433,282.423 
2,451,545.0 

Sidereal Time 

Sidereal time is based on the rotation of the Earth relative to the stars. It is 

defined as the hour angle of the vernal equinox relative to the local meridian, which is 

measured positively in the counter-clockwise direction when viewed from the North Pole. 

Hence, sidereal time is needed to relate a reference in inertia! space, the vernal equinox, 

26 In the case of a leap year occurring every four years, the February has 29 days instead of 28. To 
prove a leap year, it must be divisible by 4, while centuries (year ending with two zeros) need to be evenly 
divisible by 400. Therefore, the year 2000 will be a leap year. 
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to a point fixed on Earth as required for a coordinate transformation between the 

geocentric inertial system and the topocentric horizon system in Chapter HI. 

Following the definition of the sidereal time27, the sidereal time associated with 

the Greenwich meridian is termed Greenwich Sidereal Time, 6GST or GST. The sidereal 

time at a particular longitude is called Local Sidereal Time, 6LST or LST The following 

relationship is used to convert between GST and LST at a particular longitude /I28, i.e., 

the longitude of the observer, 

6 LST =6GST + ^- (A.1) 

In order to determine the location of the Greenwich meridian with respect to 

vernal equinox, the Greenwich mean sidereal time at midnight 6GSro, (0 h 0 min 0 s) 

UTA, using the epoch of J2000 as a basis, can be calculated using the following empirical 

formula [Ref. 3] 

eGST0 = 1.753369 + 628.3319717^ +6.8-10-6 T^2, (A.2) 

where 6GS70 is in radian measure and 7uri is the number of Julian centuries elapsed from 

the epoch J2000. The quantity of 6GST0 is reduced to a result within the range of 0 to 2K. 

The Julian centuries are calculated using the following relationship 

JD0 -2,451,545.0 
™ 36,525 

JDo is the Julian day number for the date of interest, i.e., the JD at 0 h 0 min 0 s 

of the day. 

To complete the calculation, the elapsed 1/71 time on the day of interest must be 

added [Ref. 3] 

6GST= ^570+^^71 (A-4) 

27 Because of inaccuracies with the concept of sidereal time (precession of the equinox, change in 
apparent locations of the stars, and polar motion), the mean sidereal time refers to a mean equinox that 
moves only with secular motion (precession). The apparent sidereal time, which refers to the true equinox 
and is connected to the mean equinox by the equation of equinoxes, is only needed for high accuracy 
calculations. Thus, sidereal time (LST, GST) is considered to be mean sidereal time in this report. 

28 Longitudes are regarded as positive east of Greenwich and as negative west of the Greenwich 
meridian. 
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where O)E is the Earth's mean angular rotation in radians per solar second (Appendix D) 

and UT\ is the universal time in solar seconds. 

Solar Time and Universal Time 

Solar time is based on the interval between successive transits of the Sun over a 

local meridian, which establishes the basic solar day. Introduction of a Fictitious Mean 

Sun avoiding the variation in the Sun's apparent motion along the celestial equator leads 

to the mean solar time, which is used as primary reference for timekeeping. Mean solar 

time refers to an equinox that has only secular motions [Ref. 3]. 

The mean solar time at Greenwich is defined as universal time UT Because the 

Fictitious Mean Sun is defined mathematically as a function of sidereal time, UT is 

derived from sidereal time. Correction of L/TO for polar motion making time 

independent of station location proceeds to l/7"1. 

The most commonly used time system is coordinated universal time UTC, which 

is derived from atomic time. UTC is the basis of civil time keeping systems and is 

designed to follow UT1 within ±0.9 s. Thus, meeting a sufficient precision, differences 

between UT\ and UTC can be neglected in this report. 

29 Since the solar day is measured relative to the Sun, an observer on Earth has to revolve once and 
observe the Sun at the same location. Therefore, a sidereal day is slightly shorter than a solar day because 
the stars remain essentially in the same location over time. 
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APPENDIX B. TRANSFORMATION OF STANDARD EPOCHS 

In this appendix, a brief discussion follows on the B1950 and J2000 systems and 

the conversion between them. 

The geocentric inertial system is "fixed" in inertial space by using the vernal 

equinox as a reference and the Earth's equator as fundamental plane. However, both are 

subject to change due to perturbations by the Moon, the Sun and the planets. The 

equinox precesses as a result of the change in the ecliptic's orientation caused by the 

planets. Furthermore, the Earth is not spherical producing a precession of the polar axis 

and, therefore, the equatorial plane due to the gravitational fields of the Sun and the 

Moon. In addition, the Moon is mainly responsible for the small oscillations in the 

Earth's rotation axis, called nutation. Hence, the geocentric frame is not inertial unless it 

is fixed to a specified time. 

The B1950 system relies on the Besselian year and is no longer considered 

precise. The J2000 system is referred to the J2000 epoch and accounts for the equinox's 

and equator's motion precisely. Therefore, it is considered as the best realization of an 

ideal, inertial frame at a fixed epoch. 

Many modern books and tracking programs provide orbit information in the 

J2000 epoch; thus, a transformation from B1950 to J2000 is given using a matrix 

operation. It is usable for any position or velocity vectors X [Ref. 3] 

(B.la) 

(B.lb) 

"0.999926   -0.011181 -0.004859" 

T/2000,B1950 — 0.011181     0.999937 -0.000027 

0.004859   -0.000027 0.999988 

X         -T               X yvJ2000         ' J2000,B1950 ^ SI 950 

81 



[This page is intentionally left blank.] 

82 



APPENDIX C. PRINCIPAL AXES COORDINATE SYSTEM 

For studying the dynamics of the satellite, a principal axes coordinate system is 

required. Its center coincides with the center of mass of the spacecraft and the axis 

directions are given by the eigenaxes. The transformation from the geometrical axes of 

PANSAT as introduced in Section III.A.3. to those principal axes is carried out below. 

Furthermore, the data required is provided. 

The mass of the satellite and the location of the 'center of mass' were measured at 

NASA Goddard Space Flight Center, GSFC, Greenbelt, MD. The mass is determined to 

be 56.9 kg and the coordinates of the 'center of mass' referred to the X, Y, Z-system30 are 

as follows 

xcm =0.1 cm, 

ycm =23.2 cm, 

z°m =-0.2 cm. 

Unfortunately, only two of six moments of inertia were determined at GSFC 

(referred to cm.) 

Ix,x, =1.299 kg mz, 

lyy. =0.976 kg m2. 

Comparing these measurements to the data based on the CAD model of the 

satellite reveals significant differences. This is because the masses of cabling, screws, 

and the added mass in the support cylinder are not taken into account in the CAD model 

in addition to the error resulting from discretization of geometrical objects and their 

masses. The mass based on that model is given as 45.5 kg being significantly lower than 

the measured value. 

The moments of inertia referred to the 'center of mass' determined from the CAD 

model are as follows 

30 This body-fixed system is shown in Figure 1.1. 
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Ix.x. =1.066 kg m2, 

lyy =0.792 kg m2, 

/zz,= 1.160 kg m2, 

lxy, =-0.001 kg m2, 

\rz =0.003 kg m2, 

lxz =0.003 kg m2. 

Considering the relative error of the measured moments of inertia and the CAD 

values, it is calculated by the following formula [Ref. 26] 

Ax_xm-xt (C.1) 

where Ax/x is the relative error, xm is the measured value, and Xt is the true value. By 

using above data, they are determined to31 

A/ X'X' 

X'X' 

AA YV 

YV 

= 0.219 = 21.9%, 

= 0.232 = 23.2%. 

Both errors are close suggesting that the screws and cables, which are not taken 

into account in the CAD-based calculation of the moments of inertia, can be taken as 

uniformly distributed. Hence, one can assume that the missing moments of inertia differ 

about the same value. This leads to an estimate about the Z' axis of lzz = 1.42 kgm2 

assuming a mean relative error derived from above values of 0.225, while the impact on 

Ixv, IY'Z', IXT can be neglected due to their small magnitude. 

In order to determine the principal moments of inertia by solving the eigenvalue 

problem, it is useful to compile the moments of inertia into an inertia tensor I' 

l'= 
'XX'      'XV 'X'Z 

'Y'X'       'YV       'Y'Z 

'ZX' 'ZY' 'ZZ 

(C.2) 

31 The moments of inertia determined at GSFC are assumed as the true values, while the CAD based 
values are taken as measured in Equation (C.l). 

84 



where lx,r = lTX,, lx,z = lzx,, and lrz = lzr. The eigenvalue problem is solved by the 

following equation 

-/v 

\v-x El = 
'X'X'      X 'X'Y' 'xz 

'Y'X' 'Y'Y'      X lyZ 

• TV ~ 'TV- 'TT 

= 0, (C.3) 

,ZX, ,Zy, 

where E is the identity matrix. The eigenvalues X represent the desired principal 

moments of inertia, while the eigenvectors e,- define the principal axes. The calculation is 

carried out with MAPLE; the source code is part of Appendix J. 

Applying Equation (C.3) to the approximated data given above and arranging the 

eigenvalues in order of quantity, the principal moments of inertia are as follows 

lA =1.42kgm2, 

/2=1.30kgm2, 

/3 =0.98 kg m2, 

and the corresponding eigenvectors are 

e, =[-0.025   -0.007   1.000f, 

e2= [-1.000   -0.003   -0.025J", 

e3 = [0.003 -1.000 -0.007]7". 

Eigenvector ei represents axis Bi, e2 represents B2, and e3 represents B3. The 

coordinate transformation leads to a change in the direction of the coordinate axes. Axis 

Bi points in the positive direction of Z\ B2 in the negative direction of X', and B3 in the 

negative direction of Y' (Figure D.l; O marks the center of the X, Y, Z-system). The axes 

Bi, B2, and B3 form a right-hand Cartesian system. The rotation angles between these 

principal axes and the axes of the X', Y\ Z'-system are as follows 

7]x, =0.007 rad = 0.4°, 

7]Y. = 0.024 rad = 1.4°, 

rjz= 0.003 rad = 0.20°. 

As a first-order approximation, these values can be neglected and, therefore, the 

body axes taken as aligned with the geometrical axes. 
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Figure C.1: Principal Axes Bi, B2, B3 of PANSAT 

For completeness, the transformation matrix from the geometrical axes X', Y\ 21 

to the body axes Bi, B2, B3 is determined by applying a 3-2-1 rotation sequence with the 

Euler angles T)x; T]Y, and r\z (Table 3.1).   Due to the change in the axis directions, 

another matrix is added leading to the desired DCM 

■ex' 

0 0    1" "1 0 0 CSTJy. 0 - snTjy CST}Z sn?]z   0 

-1 0    0 0 CSTJX, -SP7]X. 0 1 0 -snr}z CSTJZ    0 

0 -1   0 0 -snj]x. csrjx, srnjy, 0 CSTJy. 0 0      1 

(C.4a) 

B = T X' 3X' ** (C.4b) 
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APPENDIX D. SPACEFLIGHT CONSTANTS 

Spaceflight constants and the geographic location of Monterey required by 

observer-based coordinate transformations are presented in this appendix. 

Table D.1: Spaceflight Constants 

Geocentric gravitational constant, K                      3.986 1014 

Equatorial radius, rE                                               6378.14 103 

Astronomical Unit, 1 AU                                         1.496 1011 

Solar constant, S                                                   1358 
Earth's mean angular rotation, coE                         7.292116 10"5 

Acceleration of gravity at the Earth's surface, g      9.81 

m /s 
m 
m 
W/m2 at 1 AU 
rad/solar s 

m/s2 

Table D.2: Location of Monterey, CA 

Geodetic latitude, #>                                               36.60° N 
Longitude, X                                                           121.88°W 
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APPENDIX E. PICTURES OF DEPLOYMENT 

This appendix provides the pictures that are used to determine the initial state of 

motion of the spacecraft at deployment. 

Figure E.1: PANSAT at Deployment, t = U (#S95E5039) 
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Figure E.2: PANSAT at Deployment, t = f, + 2 s (#S95E5040) 
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Figure E.3: Payload of Orbiter Containing Canister with PANSAT 
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APPENDIX F. PICTURES OF PANSAT AT INTEGRATION 

The following pictures were taken at GSFC as the fully assembled spacecraft was 

integrated into the canister. They show the antennas after being bent for safety reasons. 

Figure F.1: Side View of PANSAT 

Figure F.2: Top View of Assembled Spacecraft 
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APPENDIX G. SOLAR PANEL SNAPSHOT DATA 

Solar panel data based on status snapshots are provided in this appendix. It is 

used to observe the spacecraft's attitude and rotational motion with respect to the Sun 

(see Chapter V). 

Plots of solar panel currents and temperatures are presented in the following. An 

overview of the snapshot data available is given in Table G. 1. 

Table G.1: Date and Time of Provided Snapshot Data 

Index Date                  Time (PST) Number of Time Window 
i of First Sample Samples N NTS ins 

1 11/09/1998 10:24:38 27 179 
2 11/17/1998 06:29:17 27 123 
3 11/18/1998 06:23:44 20 190 
4 11/19/1998 06:19:52 14 135 
5 12/05/1998 17:16:15 49 258 
6 12/06/1998 17:11:03 26 223 
7 12/07/1998 17:07:17 21 161 
8 12/08/1998 15:22:02 24 126 
9 12/09/1998 15:17:07 34 209 
10 12/14/1998 16:35:41 32 211 
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Figure G.1: Solar Panel Currents (/'= 1, see Table G.1) 
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Figure G.2: Solar Panel Currents, in one Plot (/'= 1) 
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Figure G.3: CV Panel Currents, Phase Shift Suppressed (/'= 1) 

Figure G.4: Temperatures of Panels Equipped with Current Sensors (/= 1) 
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Figure G.5: Temperatures of UDCK and TP panels (/= 1) 
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Figure G.6: Temperatures of Components in the Upper Deck (/= 1) 
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Figure G.7: Solar Panel Currents {1=2, see Table G.1) 
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Figure G.8: Solar Panel Currents, in one Plot (/*= 2) 
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Figure G.9: CV Panel Currents, Phase Shift Suppressed (/= 2) 
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Figure G.10: Temperatures of Panels Equipped with Current Sensors (/= 2) 
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Figure G.11: Temperatures of UDCK and TP panels (/ = 2) 
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Figure G.12: Temperatures of Components in the Upper Deck (/" = 2) 
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Figure G.13: Solar Panel Currents (/'= 3, see Table G.1) 
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Figure G.14: Solar Panel Currents, in one Plot (/'= 3) 
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Figure G.15: CV Panel Currents, Phase Shift Suppressed (/'= 3) 

Figure G.16: Temperatures of Panels Equipped with Current Sensors (/' = 3) 
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Figure G.17: Temperatures of UDCK and TP panels (/ = 3) 

Figure G.18: Temperatures of Components in the Upper Deck (/= 3) 
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Figure G.19: Solar Panel Currents (/= 4, see Table G.1) 

350 

fins 
_i_i '''''' 

Number of Sample 
4  5      6  78  91011   .12      13 

Figure G.20: Solar Panel Currents, in one Plot (/ = 4) 
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Figure G.21: CV Panel Currents, Phase Shift Suppressed (/ = 4) 
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Figure G.22: Temperatures of Panels Equipped with Current Sensors (/'= 4) 
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Figure G.23: Temperatures of UDCK and TP panels (/' = 4) 
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Figure G.24: Temperatures of Components in the Upper Deck (/ = 4) 
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Figure G.25: Solar Panel Currents (/'= 5, see Table G.1) 
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Figure G.26: Solar Panel Currents, in one Plot (/'= 5) 
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Figure G.27: CV Panel Currents, Phase Shift Suppressed (/'= 5) 
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Figure G.28: Temperatures of Panels Equipped with Current Sensors (/'= 5) 
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Figure G.29: Temperatures of UDCK and TP panels (/= 5) 
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Figure G.30: Temperatures of Components in the Upper Deck (/= 5) 

110 



<300 

|300 
1200C 
~<o100 
-"   0 

^^e^'a-'-v.-^e;.^.' 

—&" 
^E-ii^e®-" - ^-■ss- 

50 100 150 200 

678    9    10111214 

Number of Sample 
IS 1918     19 Ml 22 

Figure G.31: Solar Panel Currents (/= 6, see Table G.1) 
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Figure G.32: Solar Panel Currents, in one Plot (/'= 6) 
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Figure G.33: CV Panel Currents, Phase Shift Suppressed (/ = 6) 
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Figure G.34: Temperatures of Panels Equipped with Current Sensors (/= 6) 
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Figure G.35: Temperatures of UDCK and TP panels (/'= 6) 
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Figure G.36: Temperatures of Components in the Upper Deck (/= 6) 
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Figure G.37: Solar Panel Currents (/'= 7, see Table G.1) 
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Figure G.38: Solar Panel Currents, in one Plot (/'= 7) 
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Figure G.39: CV Panel Currents, Phase Shift Suppressed (/= 7) 

Figure G.40: Temperatures of Panels Equipped with Current Sensors (/ = 7) 

115 



26.5 

25.5 

24.5 

23.5 

180 

Figure G.41: Temperatures of UDCK and TP panels (/= 7) 
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Figure G.42: Temperatures of Components in the Upper Deck (/= 7) 
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Figure G.43: Solar Panel Currents (/'= 8, see Table G.1) 
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Figure G.44: Solar Panel Currents, in one Plot (/'= 8) 
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Figure G.45: CV Panel Currents, Phase Shift Suppressed (/'= 8) 
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Figure G.46: Temperatures of Panels Equipped with Current Sensors (/'= 8) 
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Figure G.47: Temperatures of UDCK and TP panels (/ = 8) 
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Figure G.48: Temperatures of Components in the Upper Deck (/'= 8) 
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Figure G.49: Solar Panel Currents (/'= 9, see Table G.1) 
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Figure G.50: Solar Panel Currents, in one Plot (/= 9) 
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Figure G.51: CV Panel Currents, Phase Shift Suppressed (/'= 9) 
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Figure G.52: Temperatures of Panels Equipped with Current Sensors (/= 9) 
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Figure G.53: Temperatures of UDCK and TP panels (/= 9) 

21 

20.5 

20 

19.5 

19 

r^^Hi      v~fcw -vr—   . 
EPSL 
EPSS 
MSA 
MSB 
TMUXA 
TMUXB 

 $— 

„ 

250 
fins 

Figure G.54: Temperatures of Components in the Upper Deck (/= 9) 
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Figure G.55: Solar Panel Currents (/= 10, see Table G.1) 
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Figure G.56: Solar Panel Currents, in one Plot (/= 10) 
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Figure G.57: CV Panel Currents, Phase Shift Suppressed (/'= 10) 
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Figure G.58: Temperatures of Panels Equipped with Current Sensors (/= 10) 
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Figure G.59: Temperatures of UDCK and TP panels (/'= 10) 
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Figure G.60: Temperatures of Components in the Upper Deck (/'= 10) 

125 



[This page is intentionally left blank.] 

126 



APPENDIX H. DATA REGARDING CURVE FITTING OF CURRENTS 

This appendix contains the data to calculate the estimated solar panel currents 

with Equation (5.7), see Table H.2. It is determined by a least squares fit described in 

Chapter V using the weight factors of Table H.l in Equations (5.5) and (5.8). 

Furthermore, the plots of the estimated panel currents are provided for each status data of 

Table G.l. 

Table H.1: Weight Factors for Weighted Least Squares Method 

Index* Panel Weight Factors iv, 
1 SP7 

SP9 
SP11 
SP13 
SP16 

0,0,0,0,1, 0,1,1,1,1, 10,10,1,1,1, 0,0,0,0,0, 1,1,1,10,10, 1,0,0 
1,1,0,0,0, 0,0,0,0,0, 1,1,1,1,1, 10,1,1,0,0, 0,0,0,1,1, 1,1,1 

1,1,1,1,1, 0,0,0,0,0, 0,0,0,0,0, 1,1,1,1,1, 1,0,0,0,0, 0,1,1 
0,1,1,1,10, 10,1,1,1,1, 1,1,0,0,0, 0,0,0,1,1, 10,1,1,1,0, 0,0,1 
1,1,1,1,1, 0,0,0,0,1, 1,1,1,0,1, 1,0,1,1,1,  1,1,1,1,1, 1,1,1 

2 SP7 
SP9 

SP11 
SP13 
SP16 

1,1,0,0,0, 1,1,1,10,10, 0,0,0,0,0, 0,0,0,0,0, 1,1,10,10,1, 1,0,0 
1,1,1,0,0, 0,0,0,0,1, 1,1,1,1,1, 0,0,0,0,0, 0,0,0,1,1, 1,1,1 
0,0,1,1,0, 0,0,0,0,0, 1,1,1,0,10, 10,0,1,1,0, 0,0,0,0,0, 1,1,1 
0,0,0,1,1, 1,1,1,1,0, 0,0,0,0,1, 1,1,1,1,0,  1,1,1,0,0, 0,0,0 
1,1,1,0,1, 1,0,1,1,1, 0,0,0,1,1, 1,0,0,1,0, 0,0,0,1,0, 1,1,1 

3 SP7 
SP9 

SP11 
SP13 
SP16 

1.1.3.1.0, 1,1,1,0,0, 0,0,0,0,0, 1,1,1,3,1, 0 
0,0,0,1,0, 0,1,1,1,1, 1,0,0,0,0, 0,0,0,0,1, 0 
0,0,0,0,0, 0,0,1,1,1, 1,1,1,1,1, 1,0,0,0,0, 0 
0,1,0,0,1, 1,0,0,0,0, 0,2,0,1,0, 1,1,1,0,0, 0 
1.1.1.1.1, 0,0,1,0,0, 0,2,0,0,0, 1,0,0,1,1, 1 

4 SP7 
SP9 

SP11 
SP13 
SP16 

0,0,1,1,0, 0,0,0,0,0, 0,0,1,1,0 
0,1,0,1,1, 1,1,1,1,0, 0,0,0,0,1 
0,2,0,0,1, 1,1,1,1,1, 1,1,0,0,0 
1,1,1,0,0, 0,0,0,1,1, 1,1,1,1,0 
0,1,1,0,0, 1,1,1,1,0, 0,0,1,1,0 

5 SP7 

SP9 

SP11 

SP13 

SP16 

0,0,0,1,1, 1,1,1,1,1, 1,1,0,0,0, 0,0,0,0,0, 1,1,1,0,0, 0,0,0,0,0, 1,1,1,1,1, 
1,1,1,0,0, 0,0,0,0,1, 1,1,1,0,0 
0,0,0,0,0, 0,0,0,1,1, 1,1,1,1,1, 1,0,0,0,0, 0,1,1,1,1, 1,1,1,0,0, 0,0,0,0,1, 
1,1,1,1,1, 1,1,1,0,0, 1,1,1,1,1 
1.1.1.1.0, 0,0,0,0,0, 0,1,1,1,1, 1,1,1,1,1, 0,0,0,0,1, 1,1,1,1,1, 0,0,0,0,0, 
0,0,0,1,1, 1,1,1,1,0, 0,0,1,1,1 
1.1.1.1.1, 1,1,1,0,0, 0,0,0,0,0, 0,1,1,1,1, 1,1,0,0,0, 0,0,1,1,1, 1,1,1,1,1, 
0,0,0,0,0, 0,0,0,1,1, 1,0,0,0,0 
0,0,1,1,0, 0,0,1,1,0, 1,1,0,0,0, 10,1,1,1,1, 1,1,1,1,1, 1,1,1,0,10, 0,0,0,1,1, 
1,1,1,1,1, 0,0,1,1,1, 10,0,1,1,1 

6 SP7 
SP9 

SP11 
SP13 
SP16 

0,1,1,0,0, 1,1,1,1,1, 1,1,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0 
1,0,1,1,0, 0,0,0,1,1, 1,1,1,1,1, 0,1,0,0,0, 0,0,1,0,0, 0,0 
1,0,0,1,1, 0,0,0,0,0, 0,0,0,1,1, 1,10,1,1,0, 0,0,1,1,1, 1,1 
0,1,1,1,1, 1,1,1,1,0, 0,0,0,0,0, 0,1,1,1,10, 1,1,0,1,1, 1,1 
1,0,0,1,1, 0,1,1,1,0, 0,1,0,0,0, 1,1,1,1,1, 1,0,1,1,1, 0,0 

32 The index is referred to Table G.l that gives the timestamp for the snapshot data. 
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7 SP7 
SP9 

SP11 
SP13 
SP16 

0,0,0,1,1 
0,0,0,0,1 
1,1,1,0,0 
1,1,1,1,0 
1,1,1,1,0 

1,0,0,0,0, 0,0,1,1,0, 0,0,0,0,0, 1,1 
1,1,10,0,0, 0,0,0,1,1, 1,1,0,0,0, 0,0 
0,1,1,1,1, 1,1,0,0,1, 1,1,1,1,1, 0,0 
1,1,1,1,1, 0,1,1,1,1, 1,1,0,0,1, 1,1 
1,1,1,1,1, 0,1,1,1,1, 1,1,0,0,1, 1,0 

8 SP7 
SP9 

SP11 
SP13 
SP16 

1,1,1,1,1 
0,1,1,1,1 
0,0,0,0,0 
0,0,0,0,0 
1,1,1,1,1 

1,0,0,0,0,  1,1,1,1,1, 1,1,0,0,0, 0,0,0,0,0 
1,1,0,0,0, 0,0,0,0,0, 0,1,1,1,1,  1,0,0,0,0 
0,1,1,0,0, 0,0,0,0,0, 0,0,0,0,0,  1,1,1,1,0 
0,0,1,1,1, 1,1,1,1,1, 1,0,0,0,0, 0,1,1,1,1 
1,1,1,1,1, 1,1,1,1,1, 1,1,1,1,1. 1.1,0,1.0 

9 SP7 
SP9 

SP11 
SP13 
SP16 

1,1,1,0,0 
1,1,10,1, 
0,0,0,1,1 
0,0,0,0,0 
1,1,1,1,1 

0,0,0,0,0, 0,0,0,1,0, 0,1,10,1,1, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0 
1, 1,0,0,0,0, 0,0,0,0,0, 0,0,1,1,1, 1,1,0,1,1, 1,0,0,0,0, 0,0,0,0,0 

1,1,1,1,1, 1,0,0,0,0, 0,0,0,0,0, 1,1,1,1,1, 1,0,1,1,1, 1,10,1,1,1 
0,1,1,1,1, 1,1,1,0,0, 1,1,0,0,0, 0,0,0,0,0, 0,1,1,1,1, 1,1,1,1,1 
1,1,1,1,1, 1,1,1,1,1, 1,1,1,1,1. 0,1,1,1,1, 1,1,1,1,1, 1,1,1,1,1 

10 SP7 
SP9 

SP11 
SP13 
SP16 

0,0,0,0,0 
1,1,1,1,1 
1,1,1,1,1 
0,0,0,0,0 
1,1,1,1,1 

0,0,0,0,0, 0,0,0,1,1, 0,1,1,1,1, 1,0,0,0,0, 0,0,0,1,10, 1,1,0 
0,0,0,0,0, 0,0,0,0,0, 0,0,0,1,1, 1,1,1,1,1, 1,0,0,0,0, 0,0,0 
10,0,1,1,1, 1,1,1,0,0, 0,0,0,0,0, 0,1,1,1,1, 1,1,1,0,0, 0,0,1 
1,1,1,1,1, 1,1,1,10,1, 1,1,1,0,0, 0,0,0,0,0, 0,1,1,1,1, 0,0,0 
1,0,0,0,0, 0,0,1,1,1, 1,1,1,1,1, 1,0,0,0,1, 1,1,1,1,1, 1,1,1 
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Table H.2: Parameters for Estimated Sine Function 

Index Panel T a0 bo Cb do e0 /b 
1 SP7 88 0.0379 0.2287 -1.9626 0.0020 0.0135 -7.2803 

SP9 87 0.0191 0.2669 -3.5644 -0.0031 0.0080 -7.2803 
SP11 88 -0.0211 -0.2824 -8.2818 0.0033 0.0113 -7.2803 
SP13 87 0.0306 0.2387 -0.4164 -0.0058 0.0167 -7.2803 
SP16 116 0.1949 0.0322 -7.2803 0 0 0 

2 SP7 59 -0.0257 0.3140 2.7382 -0.0044 -0.0082 -2.6115 
SP9 59 -0.0328 -0.3277 -1.9363 0.0029 -0.0179 -2.6115 

SP11 59 -0.0031 -0.2947 -3.5570 -0.0021 -0.0030 -2.6115 
SP13 60 -0.0270 0.2700 -1.7698 0.0541 -0.0051 -2.6115 
SP16 79 0.1511 0.0349 -2.6115 0 0 0 

3 SP7 59 0.0149 -0.2949 -7.9227 -0.0001 -0.0106 -7.1391 
SP9 60 -0.0471 -0.3734 -3.0005 0.0004 0.0005 -7.1391 

SP11 59 0.0070 0.3174 -7.9994 -0.0008 -0.0021 -7.1391 
SP13 59 0.0263 -0.2918 -6.3863 -0.0098 -0.0107 -7.1391 
SP16 80 0.0983 0.0436 -7.1391 0 0 0 

4 SP7 58 -0.0468 -0.3963 2.7894 -0.0045 -0.0159 -8.0386 
SP9 58 -0.0469 0.3528 -8.2841 0.0089 -0.0138 -8.0386 

SP11 59 -0.0352 0.3663 -3.2968 -0.0047 -0.0064 -8.0386 
SP13 59 0.0055 -0.3210 -1.7698 0.0007 -0.0013 -8.0386 
SP16 82 0.0251 0.0470 -8.0386 0 0 0 

5 SP7 68 -0.0002 0.3185 -7.5591 -0.0040 0.0137 0.3220 
SP9 68 -0.0136 0.3253 -9.1364 0.0031 0.0121 0.3220 

SP11 68 -0.0177 -0.3184 -7.5301 -0.0004 0.0046 0.3220 
SP13 69 0.0003 -0.3065 -2.6938 0.0047 0.0295 0.3220 
SP16 91 0.0779 -0.0604 0.3220 0 0 0 

6 SP7 70 -0.0147 0.3154 -2.4085 0.0026 -0.045 -7.8698 
SP9 70 0.0269 -0.2739 -7.1403 -0.0009 0.0170 -7.8698 

SP11 70 -0.0139 -0.3140 -2.3899 -0.0022 0.0147 -7.8698 
SP13 69 0.0367 0.2704 -0.9101 -0.0156 0.0357 -7.8698 
SP16 93 0.1386 -0.0546 -7.8698 0 0 0 

7 SP7 72 -0.0406 0.3124 -1.2401 -0.0062 -0.0066 -8.4109 
SP9 72 -0.0226 0.3218 -2.7804 -0.0217 0.0313 -8.4109 

SP11 72 0.0153 -0.2704 -7.5021 -0.0010 -0.0069 -8.4109 
SP13 72 -0.0599 0.3508 0.3049 -0.0181 0.0331 -8.4109 
SP16 97 0.1857 -0.0496 -8.4109 0 0 0 

8 SP7 73 -0.0147 -0.2138 -2.4325 0.0009 -0.0126 -7.4717 
SP9 74 0.0248 0.2423 -0.5700 -0.0183 0.0499 -7.4717 

SP11 74 0.0353 0.2836 4.0005 -0.0794 0.0384 -7.4717 
SP13 73 0.0275 -0.2356 -7.1352 -0.0001 0.0049 -7.4717 
SP16 97 0.2165 -0.0407 -7.4717 0 0 0 

9 SP7 79 0.0376 -0.1909 -1.3349 -0.0009 -0.029 -7.5302 
SP9 79 0.0308 -0.2038 -2.9486 -0,0028 -0.0167 -7.5302 

SP11 79 0.0186 0.1891 -7.6524 -0.0004 -0.0334 -7.5302 
SP13 79 -0.0277 0.2565 -2.9015 -0.0103 -0.0364 -7.5302 
SP16 105 0.2467 0.0398 -7.5302 0 0 0 

10 SP7 129 0.0024 0.1795 -8.2615 0.0008 -0.0143 0.0902 
SP9 130 0.0417 0.2033 2.7509 0 0 0.0902 

SP11 127 -0.0008 -0.1981 -8.3025 0.0040 -0.0144 0.0902 
SP13 129 -0.0176 0.2024 -6.7735 -0.0100 -0.0231 0.0902 
SP16 167 0.2455 0.0330 0.0902 0 0 0 
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Figure H.1: Solar Panel Currents after Curve Fitting (/= 1) 
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Figure H.2: Solar Panel Currents after Curve Fitting (/'= 2) 
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Figure H.3: Solar Panel Currents after Curve Fitting (/= 3) 
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Figure H.4: Solar Panel Currents after Curve Fitting (/' = 4) 
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Figure H.5: Solar Panel Currents after Curve Fitting (/'= 5) 
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Figure H.6: Solar Panel Currents after Curve Fitting (/= 6) 
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Figure H.7: Solar Panel Currents after Curve Fitting (/'= 7) 
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Figure H.8: Solar Panel Currents after Curve Fitting (/= 8) 
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Figure H.9: Solar Panel Currents after Curve Fitting (/'= 9) 
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Figure H.10: Solar Panel Currents after Curve Fitting (/'= 10) 
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APPENDIX I. VISUALIZATION OF ATTITUDE AND ROLL-RATE 

The visualization tools provided in this report are briefly described in the 

following. 

In order to display the attitude and rotational motion of PANSAT, the spacecraft 

is modeled using the vector coordinates of the solar panels and the LVI. The surface 

areas are color coded to simplify analysis of the attitude displayed as follows: solar 

panels equipped with current sensors are designated by magenta, all the other panels are 

designated by dark blue, and the triangles are marked by a light blue color. The 

geometrical axes fixed to the spacecraft are shown as well. 

The attitude of the spacecraft at deployment being the only reference attitude is 

visualized with respect to the orbit-plane axes. This is done by using the Euler angles to 

transform the orbit-plane axes to the satellite's geometrical axes as determined in 

Section IV.A. and applied on Equation (3.15). The resulting DCM is required to 

transform the geometrical axes displayed and the vector coordinates of the model into the 

new orientation. The result is presented in Figure 4.2. The MATLAB source code can 

be found in Appendix J. 

Furthermore, the roll-rate of PANSAT is displayed relative to the Sun. As 

discussed in Chapter V, the angular velocity component parallel to the Sun line cannot be 

detected and, therefore, is missing in the visualization as well. The solar vector 

computed from the estimated solar panel currents utilizing least square methods is used to 

determine the azimuth and elevation angle of the Sun in the geometrical coordinate 

system of PANSAT from Equations (5.21) and (5.22). These angles are determined 

ambiguously by observing the quadrant of the solar vector in order to transform the 

geometrical axes to a Sun directed system; the direction cosine matrix is given by 

Equation (5.20). This is done for every sample in order to animate the attitude relative to 

a fixed Sun's ray. Additionally, lighting is added to the scene. The source code is 

provided in the next appendix. 

The spin and the nutation, which are examined from the solar panel currents in 

Section V.A.I., can be easily recognized by using this roll-rate display. 
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APPENDIX J. SOFTWARE SOURCE CODE 

This appendix contains the software source code for visualization of data and for 

calculations in this report. The software is written in MATLAB version 5.2 and MAPLE 

V Release 5. The following source code files are included: 

Filename Description Pages 
DEPLOY.M Determination of attitude at deployment 138-140 
DISPALLP.M Display of status snapshot data 141-146 
DISPFITP.M Display of solar panel currents after least squares fit 147-151 
DISPRR.M Display of data to evaluate roll-rate and attitude 152-153 
DETSOLVX.M Computation of solar vector from panel currents 154-155 
DETSANG.M Determination of location of Sun in geometrical frame 156-158 
DETATTP.M Determination of data required for attitude evaluation 159-165 
DISPATTD.M Display of attitude of PANSAT at deployment 166-170 
DISPATTS.M Visualization of roll-rate relative to the Sun 171-176 
DEPLOY.MWS Verification of the attitude of PANSAT at deployment 177-179 
BODYAXES.MWS Determination of principal moments of inertia and axes 180-181 
CURVFIT.MWS Curve fitting of solar panel currents 182-183 
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DEPLOY.M 
function DEPLOY(); 

% DEPLOY 
% 
% Determination of Initial Attitude of PANSAT at Deployment 
% from Orbiter (data provided by NASA JSC) 
% 
% 
% (c) 1998 by Grasi 

%%%%%%%%%%%%%%%%%%%% 
% Initial attitude % 
%%%%%%%%%%%%%%%%%%%% 

% data @ MET 0/23:25:59 

% Geocentric inertial to orbit-plane (M50 to LVLH) 
fprintf('Geocentric inertial to orbit-plane\n'); 

q(l) = -.3200; % vector x component 
q(2) = .5349; % vector y component 
q(3) = -.7789; % vector z component 
q(4) = .0699; % scalar 

flag = q(l)A2 + q(2)A2 + q(3)A2 + q(4)A2; 
if round(flag) -= 1 

break 
end 

% Transformation of quaternions to DCM 
T_LVLH_M50 = [2* (q(l) /v2+q(4) ~2) -1, 2* (q(l) *q(2) +q(3) *q(4) ) , 2* (q(l) *q(3) -q(2) *q(4) ) , 

2*<q(l)*q(2)-q(3)*q(4)),2*(q(2)'s2+q(4r2)-l,2*<q(2)*q(3)+q(l)*q(4));... 
2*(q(l)*q(3)+q(2)*q(4)),2*(q(2)*q(3)-q(l)*q(4)),2*(q(3)A2+q(4)Ä2)-l] 

T_M50_S = [0,0,1;1,0,0;0,1,0] 

T_OS = T_LVLH_M50 * T_M50_S 

% Determination of euler angles from DCM 
xil = atan(-T_OS(2,3)/T_OS(2,l)); 
xi2 = acos(-T_OS(2,2)); 
xi3_ = atan(-T_OS(3,2)/T_OS(l,2)); 

fprintf('OBSERVE QUADRANTS! (angles are not unambigious)\n'); 
fprintf('xil: %f\n',xil * 180/pi); 
fprintfCxi2: %f\n',xi2 * 180/pi); 
fprintfCxi3: %f\n',xi3_ * 180/pi); 

% Tranformation of orbit-plane axes to geocentric Axes 
xil=150.82*pi/180, xi2=28.60*pi/180, xi3_=332.23*pi/180 % determined by... 

% observing signs of sin/cos 

T_OS_l = [cos(xil),0,-sin(xil);0,1,0;sin(xil),0,cos(xil)]; 
T_OS_2 = [cos(xi2),sin(xi2) ,0;-sin(xi2),cos(xi2) ,0;0,0,1]; 
T_OS_3 = [cos(xi3_),0,-sin(xi3_);0,1,0;sin(xi3_),0,cos(xi3_)]; 
T_OS_4 = [1,0,0;0,-l,0;0,0,-1]; 

T_OS_ = T_OS_4 * T_OS_3 * T_OS_2 * T_OS_l 

% Orbit-plane to body (LVLH to body (ORBITER)) 
fprintf('Orbit-plane to body (ORBITER)\n'); 

q(l) = .6322; % vector x component 
q(2) = .2436; % vector y component 
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q(3) = -.7017; % vector z component 
q(4) = .2206; % scalar 

flag = q(l)A2 + q(2)A2 + q(3)A2 + q(4)A2; 
if round(flag) -= 1 

break 
end 

% Transformation of quaternions to DCM 
T_BOrbO = [2*(q(l)A2+q(4)A2)-l,2*(q(l)*q(2)+q(3)*q(4)),2*(q(l)*q(3)-q(2)*q(4); 

2*(q(D*q(2)-q(3)*q(4)),2*(q(2)A2+q(4)A2)-l,2*(q(2)*q(3)+q(l)*q(4));... 
2*(q(D*q(3)+q(2)*q(4)),2*(q(2)*q(3)-q(l)*q(4)),2*(q(3)A2+q(4)A2)-l] 

% Determination of Euler angles from DCM 
zetl = atan(T_B0rb0(2,3)/T_B0rb0(3,3)); 
zet2 = asin(-T_BOrbO(l,3)); 
zet3 = atan(T_B0rb0(l,2)/T_B0rb0(l,l)); 

fprintf('OBSERVE QUADRANTS! (angles are not unambigious) \n'),- 
fprintf('zetl: %f\n',zetl * 180/pi); 
fprintf('zet2: %f\n',zet2 * 180/pi); 
fprintfCzet3: %f\n',zet3 * 180/pi); 

% Transformation of orbit-plane axes to body axes (orbiter) 
zetl=322.52*pi/180, zet2=84.10*pi/180, zet3=180.88*pi/180 % determined. 

% by observing signs of sin/cos 

T_BOrbO_l = [cos(zet3),sin(zet3),0;-sin(zet3),cos(zet3),0;0,0,1] 
T_BOrbO_2 = [cos(zet2),0,-sin(zet2);0,1,0;sin(zet2),0,cos(zet2)] 
T_BOrbO_3 = [1,0, 0;0, cos(zetl),sin(zetl);0,-sin(zetl),cos(zetl)] 

T_BOrbO_ = T_BOrbO_3 * T_BOrbO_2 * T BOrbO 1 

% Orbit-plane to geometrical PANSAT (LVLH to geometrical) 
fprintf('Orbit-plane to geometrical (PANSAT)\n'); 

q(l) = .6322; % vector x component 
q(2) = .2436; % vector y component 
q(3) = -.7017; % vector z component 
q(4) =. .2206; % scalar 

flag = q(l)A2 + q(2)A2 + q(3)A2 + q(4)A2; 
if round(flag) -= 1 

break 
end 

% Transformation of quaternions to DCM 
T_B0rbO = [2*(q(l)A2+q(4)A2)-l,2*(q(l)*q(2)+q(3)*q(4)),2*(q(l)*q<3)-q(2)*q(4)); 

2*(q(D*q(2)-q(3)*q(4)),2*(q(2)A2+q(4)A2)-l,2*(q(2)*q(3)+q(l)*q(4));... 
2*(q(l)*q(3)+q(2)*q(4)),2*(q(2)*q(3)-q(l)*q<4)),2*(q(3)A2+q(4)A2)-l]; 

T_X_BOrb = [0,1,0;0,0,-1;-1,0,0]; 
T_X_0 = T_X_BOrb * T_BOrbO 

% Determination of Euler angles from DCM 
zetl = atan(T_X_0(2,3)/T_X_0(3,3)); 
zet2 = asin (-T_x_0 (1,3)),- 
zet3 = atan(T_X_0(l,2)/T_X_0(l,l)); 

fprintf('OBSERVE QUADRANTS! (angles are not unambigious)\n'); 
fprintf('zetl: %f\n',zetl * 180/pi); 
fprintfCzet2: %f\n',zet2 * 180/pi); 
fprintfCzet3: %f\n',zet3 * 180/pi); 

% Transformation of orbit-plane axes to geometrical axes 
zetl=355.28*pi/180, zet2=3.61*pi/180, zet3=308.23*pi/180 % determined. 

% by observing signs of sin/cos 
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T_X_0_1 = [cos(zet3),sin(zet3),0;-sin(zet3),cos(zet3),0;0,0,1] 
T_X_0_2 = [cos(zet2),0,-sin(zet2);0,1,0;sin(zet2),0,cos(zet2)] 
T_X_0_3 = [l,0,0;0,cos(zetl),sin(zetl);0,-sin(zetl),cos(zetl)] 

T_X_0_ = T_X_0_3 * T_X_0_2 * T_X_0_1 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Transformation between standard epochs % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%■%%%%%%%%%%%% 

fprintf('Transformation between epochs J2000 and B1950\n\n'); 

% Transformation matrix 
T_J2000_B1950 = [.999925679,-.011181483,-.004859004; ... 

.011181483,.999937485,-.000027163;... 

.004859004,-.000027170,.999988194]; 

% Geocentric inertial to orbit-plane: J2000 

fprintf('Geocentric inertial to orbit-plane: J2000\n'); 

q(l) = -.3200; % vector x component 
q(2) = .5349; % vector y component 
q(3) = -.7789; % vector z component 
q(4) = .0699; % scalar 

flag = q(l)A2 + q(2)A2 + q(3)*2 + q(4)A2; 
if round(flag) -= 1 

break 
end 

% Transformation of quaternions to DCM 
T_LVLH_M50 = [2*(q(l)A2+q(4)^2)-l,2*(q(l)*q(2)+q(3)*q(4)),2*(q(l)*q(3)-q(2)*q(4)); 

2*(q(l)*q(2)-q(3)*q(4)),2*(q(2)A2+q(4)"2)-l,2*(q(2)*q(3)+q(l)*q(4));... 
2*(q(l)*q(3)+q(2)*q(4)),2*(q(2)*q(3)-q(l)*q(4)),2*(q(3)Ä2+q(4)"2)-l] 

T_M50_S = [0,0,1;1,0,0;0,1,0] 

T_0S = T_LVLH_M50 * T_J2000_B1950.' * T_M50_S 

% Determination of Euler angles from DCM 
xil = atan(-T_OS(2,3)/T_OS(2,D); 
xi2 = acos(-T_OS(2,2)); 
xi3_ = atan(-T_OS(3,2)/T_OS(l,2)); 

fprintf('OBSERVE QUADRANTS! (angles are not unambigious)\n'); 
fprintf('xil: %f\n',xil * 180/pi); 
fprintfCxi2: %f\n',xi2 * 180/pi); 
fprintfCxi3: %f\n',xi3_ * 180/pi); 

% Tranformation of orbit-plane axes to geocentric axes 
xil=151.91*pi/180, xi2=28.46*pi/180, xi3_=331.72*pi/180 % determined by... 

% observing signs of sin/cos 

T_OS_l = [cos(xil),0,-sin(xil);0,l,0;sin(xil),0,cos(xil)]; 
T_OS_2 = [cos(xi2),sin(xi2),0;-sin(xi2),cos(xi2),0;0,0,1]; 
T_OS_3 = (cos(xi3_),0,-sin(xi3_);0,1,0;sin(xi3_),0,cos(xi3_)]; 
T_OS_4 = [1,0,0;0,-1,0;0,0,-1]; 

T_OS_J2000 = T_OS_4 * T_OS_3 * T_OS_2 * T_OS_l 

End of DEPLOY.M 
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DISPALLP.M 
function DISPALLPO 

% DISPALLP 
% 
% Display of Status Snapshot Data Concerning the Determination of 
% PANSAT's Roll-rate (solar panel currents and temperatures) 
% 
% 
% (c) 1998 by Grasi 

% Load status data 

if c == 1 
file = 'g:\pansat\data\status\1998-ll-09\all_1998-ll-09_10-24-38.mat' 

% Parameters for phase shift suppression 
t_ps = [NaN,NaN,-22,-45,22,0,NaN,NaN]; 

elseif c == 2 
file = 'g:\pansat\data\status\1998-ll-17\all_1998-ll-17_06-29-17.mat' 

% Parameters for phase shift suppression 
t_ps = [NaN,NaN,-30,-45,0,-15,NaN,NaN]; 

elseif c == 3 
file = 'g:\pansat\data\status\1998-ll-18\all_1998-ll-18_06-23-44.mat' 

% Parameters for phase shift suppression 
t_ps = [NaN,NaN,-30,-45,0,-15,NaN,NaN]; 

elseif c == 4 
file = 'g:\pansat\data\status\1998-ll-19\all_1998-ll-19_06-19-52.mat' 

% Parameters for phase shift suppression 
t_ps = [NaN,NaN,-30,-45,0,-15,NaN,NaN]; 

elseif c == 5 
file = 'g:\pansat\data\status\1998-12-05\all_1998-12-05_17-16-15.mat' 

% Parameters for phase shift suppression 
t_ps = [NaN,NaN,0,-17,34,17,NaN,NaN]; 

elseif c == 6 
file = 'g:\pansat\data\status\1998-12-06\all_1998-12-06_17-ll-03.mat' 

% Parameters for phase shift suppression 
t_ps = [NaN,NaN,0,-17,34,17,NaN,NaN] ,- 

elseif c == 7 
file = 'g:\pansat\data\status\1998-12-07\ali_1998-12-07_17-07-17.mat' 

% Parameters for phase shift suppression 
t_ps = [NaN,NaN, -17,-35,18,0,NaN,NaN] ,- 

elseif c == 8 
file = 'g:\pansat\data\status\1998-12-08\all_1998-12-08_15-22-02.mat' 

% Parameters for phase shift suppression 
t_ps = [NaN,NaN,-17,-35,18,0,NaN,NaN]; 

elseif c == 9 
file = 'g:\pansat\data\status\1998-12-09\all_1998-12-09_15-17-07.mat' 

% Parameters for phase shift suppression 
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t_ps = [NaN,NaN,+20,0,-20,-40,NaN,NaN]; 

elseif c == 10 
file = 'g:\pansat\data\status\1998-12-14\all_1998-12-14_16-35-41.mat'; 

% Parameters for phase shift suppression 
t_ps = [NaN,NaN,-30,+60,+30,0,NaN,NaN]; 

end 

load(file); 

% Needed variables 
N = size(time(:,1) ,1)-1 
t = time(l:N,l)-time(l,l); 
tE = t(N) 

nB = 1, nE = N; 

% Extract filename from file string 
sB = findstr(file,'all'); 
sE = length(file); 

filename = file(sB:sE); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Plot solar panel currents % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

scr_sz = get(0,'ScreenSize'); 
figure('Position',[scr_sz(4)/10 scr_sz(4)/10 scr_sz(3)/1.2 scr_sz(4)/1.2J); 
set(gca,'Position',[.130 .122 .775 .822]); 
pos = get(gca,'Position'); 

% SP4 
subplot(8,l,l) ; 
plot(t,isolar(nB:nE,l)*le3,'kv-'),- 

set(gca,'Position',get(gca,'Position') + [0,.01,0,.01]); 
axis([0 tE 0 350]) 
set(gca,'YTick',[0;100;200;300],'XTickLabel', " ); 
grid; 
ylabel('\itl\rm_{4} in mA'); 
title(['Solar Panel Currents of PANSAT (',filename,')'],'Interpreter','none'); 

% SP5 
subplot(8,1,2); 
plot(t,isolar(nB:nE,2)*le3, 'g.-') ; 

set(gca,'Position',get(gca,'Position') + [0,.01,0,.01]); 
axis([0 tE 0 350]) 
set(gca,'YTick',[0;100,-200,-300],'XTickLabel', " ); 
grid; 
ylabel('\itl\rm_{5} inmA'); 

% SP7 
subplot(8,1,3) ; 
plot(t,isolar(nB:nE,3)*le3, 'b*-') ; 

set(gca,'Position',get(gca,'Position')   +   [0,.01,0,.01]); 
axisüO tE 0 350]) 
set(gca,'YTick',[0;100;200;300],'XTickLabel', " ); 
grid; 
ylabel('\itl\rm_{7} in mA'); 
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% SP9 
subplot(8,l,4); 
plot(t,isolar(nB:nE,4)*le3,'rd-'); 

set(gca,'Position',get(gca,'Position') + [0,.01,0,.01]); 
axis([0 tE 0 350]) 
set(gca,'YTick',t0;100;200;300],'XTickLabel',"); 
grid; 
ylabel('\itl\rm_{9} inmA'); 

% SP11 
subplot(8,1,5); 
plot(t,isolar(nB:nE,5)*le3,'bp-'); 

set(gca,'Position',get(gca,'Position') + [0,.01,0,.01]); 
axis([0 tE 0 350]) 
set (gca, 'YTick', [0;100;200,-300], 'XTickLabel', " ) ; 
grid; 
ylabel('\itl\rm_{ll}  inmA'); 

% SP13 
subplot(8,l,6); 
plot(t,isolar(nB:nE,6)*le3,'rs-'); 

set(gca,'Position',get(gca,'Position')   +   [0,.01,0,.01]); 
axis([0 tE 0 350]) 
setfgca, 'YTick', [0;100;200;300], 'XTickLabel'', " ) ,- 
grid; 
ylabel('\itl\rm_{13}   inmA'); 

%  SP14 
subplot(8,1,7); 
plot(t,isolar(nB:nE,7)*le3,'kÄ-'); 

set(gca,'Position',get(gca,'Position')   +   [0,.01,0,.01]); 
axis([0  tE 0  350]) 
set(gca,'YTick',[0;100;200;300],'XTickLabel', " ); 
grid; 
ylabel('\itl\rm_{14} in mA'); 

% SP16 
subplot(8,1,8); 
plot(t,isolar(nB:nE,8)*le3,'go-'); 

set(gca,'Position',get(gca,'Position') + [0,-01,0,-01]); 
axis([0 tE 0 350]) 
set(gca,'YTick',[0;100;200;300]); 
grid; 
xlabel('\itt\rm in s'); 
ylabel('\itl\rm_{16} in mA') ,- 

% Create second Xaxis 
c = get(gcf,'Color'); 

axes('Position',pos - [0,-07,0,.818],'Color','none','XColor','k','YColor'.c), 
xlabel('Number of Sample'); 

x = t / t(N) ; 
for i = 1:N 

if i < 10 
s(i,l:2) = [num2str(i) ' ']; 

else 
s(i,l:2) =num2str(i); 

end 
end 
set (gca, 'XTick' ,x, 'XTickLabel' ,s, 'FontSize' ,7),- 
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% All panel currents in one plot 

scr_sz = get(0,'ScreenSize'); 
figure('Position',[scr_sz(4)/10 scr_sz(4)/10 scr_sz(3)/1.2 scr_sz(4)/1.2]); 
set(gca,'Position',[.130 .122 .775 .822]); 
pos = get(gca,'Position'),- 

.plot(t,isolar(nB:nE,l)*le3,'kv-', t,isolar(nB:nE,2)*le3,'g.-',... 
t,isolar(nB:nE,3)*le3,'b*-',t,isolar(nB:nE,4)*le3,'rd-',... 
t,isolar(nB:nE,5)*le3,'bp-',t,isolar(nB:nE,6)*le3,'rs-',... 
t,isolar(nB:nE,7)*le3,'kÄ-',t,isolar(nB:nE,8)*le3,'go-'); 

axis([0 tE 0 350]) 
grid; 
xlabel C\itt\rm in s'); 
ylabel('\itl_{i}\rm in mA'); 

legend('SP4', 'SP5','SP7'.,'SP9', 'SP11', 'SP13', 'SP14', 'SP16'); 
title(['Solar Panel Currents of PANSAT (',filename,')'],'Interpreter','none'); 

% Create second Xaxis 
c = get(gcf, 'Color') ,- 

axes('Position',pos - [0, .07,0,.818],'Color','none','XColor','k','YColor',c); 
xlabel('Number of Sample'); 

x = t / t (N) ; 
for i = 1:N 

if i < 10 
s(i,l:2) = [num2str(i) ' ']; 

else 
s(i,l:2) =num2str(i); 

end 
end 
set(gca,'XTick',x,'XTickLabel',s,'FontSize',7); 

% CV panel currents in.one plot (phase shift suppressed) 

scr_sz = get(0,'ScreenSize'); 
f igureC Position', [scr_sz (4)/10  scr_sz(4)/10    scr_sz (3) /1.2  scr_sz(4)/1.2]); 
set(gca,'Position',[.130   .122   .775   .822]); 

plot(t+t_ps(3),isolar(nB:nE,3)*le3,'b*-',t+t_ps(4),isolar(nB:nE,4)*le3,'rd-',.. 
t+t_ps(5),isolar(nB:nE,5)*le3,'bp-', t+t_ps(6),isolar(nB:nE,6)*le3,'rs-'); 

axis([0 tE 0 350]) 
grid; 
xlabel('\itt\rm in s'); 
ylabel('\itl_{i}\rm in mA'); 

legend('SP7','SP9','SP11', 'SP13'); 
title(['Solar Panel Currents of PANSAT (phase shift adjusted) (',filename,')'], 

'Interpreter','none'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Plot solar panel temperatures % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Panel temperatures of panels equipped with current sensor 

scr_sz = get(0,'ScreenSize') ; 
figure!'Position',[scr_sz(4)/10 scr_sz(4)/10 scr_sz(3)/1.2 scr_sz(4)/1.2]); 

plot(t,thermistors(nB:nE,36),'kv-',t,thermistors(nB:nE,50), 'g.-', . .. 
t,thermistors(nB:nE,38),'b*-',t,thermistors(nB:nE,40),'rd-' 
t,thermistors(nB:nE,42),'bp-',t,thermistors(nB:nE,44),'rs-',... 
t,thermistors(nB:nE,45) , 'kA-',t,thermistors(nB:nE,47),'go-'); 
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grid; 
xlabeK'\itt\rm in s'); 
ylabeK'\it\theta_{i}\rm in \circC); 

legend('SP4','SP5', 'SP7','SP9','SP11','SP13','SP14','SP16'); 
title(['Solar Panel Temperatures of PANSAT (',filename,')'],'Interpreter','none'); 

% Panel temperatures of UDCK panels (SP14, SP15, SP17, SP18 and SP16) 

scr_sz = get (0, 'ScreenSize') ; 
figure('Position',[scr_sz(4)/10 scr_sz(4)/10 scr_sz(3)/1.2 scr_sz(4)/1.2]) ; 

plot(t,thermistors(nB:nE,45),'kA-',t,thermistors(nB:nE,46),'g*-'; ... 
t,thermistors(nB:nE,48),'bd-',t,thermistors(nB:nE,49),'rp-' 
t,thermistors(nB:nE,47),'go-'); 

grid; 
xlabeK'\itt\rm in s'); 
ylabel('\it\theta_{i}\rm in \circC); 
legendCSP14', 'SP15', 'SP17', 'SP18', 'SP16') ; 
title(['Solar Panel Temperatures of PANSAT (',filename,')'],'Interpreter','none'); 

% Temperatures of MSA, MSB, TMUXA, TMUXB, EPS 

scr_sz = get (0,'ScreenSize'),- 
figure!'Position',[scr_sz(4)/10 scr_sz(4)/10 scr_sz(3)/1.2 scr_sz(4)/1.2]); 

plot(t,thermistors(nB:nE,23),'k*-',t,thermistors(nB:nE,24),'gd-' 
t,thermistors(nB:nE,27),'bp-',t,thermistors(nB:nE,28),'rs-',... 
t,thermistors(nB:nE,31),'k.-',t,thermistors(nB:nE,32),'go-'); 

grid; 
xlabeK'\itt\rm in s'); 
ylabel('\it\theta_{i}\rm in \circC); 
legendCEPSL','EPSS','MSA','MSB','TMUXA','TMUXB'); 
title(['Temperatures of Components of PANSAT (',filename,')'],'Interpreter', 'none') ; 

break 

% save variables 

if c == 1 
fid = fopen('g:\pansat\data\status\1998-ll-09\all_1998-ll-09_10-24-38_cf.txt','W 

elseif c == 2 
fid = fopen('g:\pansat\data\status\1998-ll-17\all_1998-ll-17_06-29-17_cf.txt','W 

elseif c == 3 
fid = fopen('g:\pansat\data\status\1998-ll-18\all_1998-ll-18_06-23-44_cf.txt','W 

elseif c == 4 
fid = fopen('g:\pansat\data\status\1998-ll-19\all_1998-ll-19_06-19-52_cf.txt','w' 

elseif c == 5 
fid = fopen('g:\pansat\data\status\1998-12-05\all_1998-12-05_17-16-15_cf.txt','w' 

elseif c == 6 
fid = fopen('g:\pansat\data\status\1998-12-06\all_1998-12-06_17-ll-03_cf.txt', 'W 

elseif c == 7 
fid = fopen('g:\pansat\data\status\1998-12-07\all_1998-12-07_17-07-17_cf.txt','W 

elseif c == 8 
fid = fopen('g:\pansat\data\status\1998-12-08\all_1998-12-08_15-22-02_cf.txt', 'W 

elseif c == 9 
fid = fopen('g:\pansat\data\status\1998-12-09\all_1998-12-09_15-17-07_cf.txt','W 

elseif c == 10 
fid = fopen('g:\pansat\data\status\1998-12-14\all_1998-12-14_16-35-41_cf.txt;,'W 

end 

for i = 1:N 
fprintf(fid,'%d %f %f %f %f %f %f %f %f\n',t(i),isolar(i,:)); 
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end 
fclose(fid); 

End of DISPALLP.M 
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DISPFITP.M 
function DISPFITPO 

% DISPFITP 
% 
% Display of Solar Panel Currents after Curve Fitting 
% 
% 
% (c) 1998 by Grasi 

if c == 1 

file = 'g:\pansat\data\status\1998-ll-09\allJL998-ll-09_10-24-38.mat' 

% Parameters for phase shift suppression 
t_ps = [NaN,NaN,-22,-45,22,0,NaN,NaN],- 

% Parameters after curve fitting 
T= [NaN,NaN,88,87,88,87,NaN,116]; 
aO = [NaN,NaN,.0379,.0191,-.0211,.0306,NaN,.1949]; 
bO = [NaN,NaN,.2287,.2669,-.2824,.2387,NaN,-.0322]; 
CO = [NaN,NaN,-l.9626,-3.5644,-8.2818,-.4164,NaN,-7.2803]; 
dO = [NaN,NaN,.0020,-.0031,.0033,-.0058,NaN,0]; 
eO = [NaN,NaN,.0135,.0080,.0113,.0167,NaN,0]; 

elseif c == 2 

file = 'g:\pansat\data\status\1998-ll-17\all_1998-ll-17_06-29-17.mat' 

% Parameters for phase shift suppression 
t_ps = [NaN,NaN,-30,-45,0,-15,NaN,NaN]; 

% Parameters after curve fitting 
T= [NaN,NaN,59,59,59,60,NaN,79]; 
aO = [NaN,NaN,-.0257,-.0328,-.0031,-.0270,NaN,.1511]; 
bO = [NaN,NaN,.3140,-.3277,-.2947,.2700,NaN,.0349]; 
cO = [NaN,NaN,2.7382,-1.9363,-3.5570,-1.7698,NaN,-2.6115]; 
dO = [NaN,NaN,-.0044,.0029,-.0021,.0541,NaN,0]; 
eO = [NaN,NaN,-.0082,-.0179,-.0030,-.0051,NaN,0]; 

elseif c == 3 

file = 'g:\pansat\data\status\1998-ll-18\all_1998-ll-18_06-23-44.mat' 

% Parameters for phase shift suppression 
t_ps = [NaN,NaN,-30,-45,0,-15,NaN,NaN],- 

% Parameters after curve fitting 
T= [NaN,NaN,59,60,59,59,NaN,80]; 
aO = [NaN,NaN,.0149,-.0471,.0070,.0263,NaN,.0983]; 
bO = [NaN,NaN,-.2949,-.3734,.3174,-.2918,NaN,.0436]; 
cO = [NaN,NaN,-7.9227,-3.0005,-7.9994,-6.3863,NaN,-7.1391]; 
dO = [NaN,NaN,-.0001,.0004,-.0008,-.0098,NaN,0]; 
eO = [NaN,NaN,-.0106,.0005,-.0021,-.0107,NaN,0]; 

elseif c == 4 

file = 'g:\pansat\data\status\1998-ll-19\all_1998-ll-19_06-19-52.mat' 

% Parameters for phase shift suppression 
t_ps = [NaN,NaN,-30,-45,0,-15,NaN,NaN]; 

% Parameters after curve fitting 
T= [NaN,NaN,58,58,59,59,NaN,82]; 
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aO = [NaN,NaN,-.0468,-.0469,-.0352,.0055,NaN,.0251]; 
bO = [NaN,NaN,-.3963,.3528,.3663,-.3210,NaN,.0470]; 
CO = [NaN,NaN,2.7894,-8.2841,-3.2968,-1.7698,NaN,-8.0386]; 
dO = [NaN,NaN,-.0045,.0089,-.0047,.0007,NaN,0]; 
eO = [NaN,NaN,-.0159,-.0138,-.0064,-.0013,NaN,0]; 

elseif c == 5 

file = 'g:\pansat\data\status\1998-12-05\all_1998-12-05_17-16-15.mat'; 

% Parameters for phase shift suppression 
t_ps = [NaN,NaN,0,-17,34,17,NaN,NaN]; 

% Parameters after curve fitting 
T= [NaN,NaN,68,68,68,69,NaN,91]; 
aO = [NaN,NaN,-.0002,-.0136,-.0177,.0003,NaN,.0779]; 
bO = [NaN,NaN,.3185,.3253,-.3184,-.3065,NaN,-.0604]; 
cO = [NaN,NaN,-7.5591,-9.1364,-7.5301,-2.6938,NaN,.3220]; 
dO = [NaN,NaN,-.0040,.0031,-.0004,.0047,NaN,0]; 
eO = [NaN,NaN,.0137,.0121,.0046,.0295,NaN,0]; 

elseif c == 6 

file = 'g:\pansat\data\status\1998-12-06\all_1998-12-06_17-ll-03.mat'; 

% Parameters for phase shift suppression 
t_ps = [NaN,NaN,0,-17,34,17,NaN,NaN]; 

% Parameters after curve fitting 
T= [NaN,NaN,70,70,70,69,NaN,93]; 
aO = [NaN,NaN,-.0147,.0269,-.0139,.0367,NaN,.1386]; 
bO = [NaN,NaN,.3154,-.2739,-.3140,.2704,NaN,-.0546]; 
cO = [NaN,NaN,-2.4085,-7.1403,-2.3899,-.9101,NaN,-7.8698]; 
dO = [NaN,NaN,.0026,-.0009,-.0022,-.0156,NaN,0]; 
eO = [NaN,NaN,-.0045,.0170,.0147,.0357,NaN,0]; 

elseif c == 7 

file = 'g:\pansat\data\status\1998-12-07\all_1998-12-07_17-07-17.mat'; 

% Parameters for phase shift suppression 
t_ps = [NaN,NaN,-17,-35,18,0,NaN,NaN]; 

% Parameters after curve fitting 
T = [NaN,NaN,72,72,72,72,NaN,97]; 
aO = [NaN,NaN,-.0406,-.0226,.0153,-.0599,NaN,.1857]; 
bO = [NaN,NaN,.3124,.3218,-.2704,.3508,NaN,-.0496]; 
cO = [NaN,NaN,-l.2401,-2.7804,-7.5021,.3049,NaN,-8.4109]; 
dO = [NaN,NaN,-.0062,-.0217,-.0010,-.0181,NaN,0]; 
eO = [NaN,NaN,-.0066,.0313,-.0069,.0331,NaN,0]; 

elseif c == 8 

file = 'g:\pansat\data\status\1998-12-08\all_1998-12-08_15-22-02.mat'; 

% Parameters for phase shift suppression 
t_ps = [NaN,NaN,-17,-35,18,0,NaN,NaN]; 

% Parameters after curve fitting 
T = [NaN,NaN,73,74,74,73,NaN,97]; 
aO = [NaN,NaN,-.0147,.0248,.0353,.0275,NaN,.2165]; 
bO = [NaN,NaN,-.2138,.2423,.2836,-.2356,NaN,-.0407]; 
cO = [NaN,NaN,-2.4325,-.5700,4.0005,-7.1352,NaN,-7.4717]; 
dO = [NaN,NaN,.0009,-.0183,-.0794,-.0001,NaN,0]; 
eO = [NaN,NaN,-.0126,.0499,.0384,.0049,NaN,0]; 

elseif c == 9 

file = 'g:\pansat\data\status\1998-12-09\all_1998-12-09_15-17-07.mat\- 
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% Parameters for phase shift suppression 
t_ps = [NaN,NaN,+20,0,-20,-40,NaN,NaN]; 

% Parameters after curve fitting 
T = [NaN,NaN,79,79,79,79,NaN,105]; 
aO = [NaN,NaN, .0376,.0308, .0186,-.0277,NaN, .2467],- 
bO = [NaN,NaN,-.1909,-.2038,.1891,.2565,NaN,.0398); 
cO = [NaN,NaN,-1.3349,-2.9486,-7.6524,-2.9015,NaN,-7.5302]; 
dO = [NaN,NaN,-.0009,-.0028,-.0004,-.0103,NaN,0]; 
eO = [NaN,NaN,-.0029,-.0167,-.0334,-.0364,NaN,0]; 

elseif c == 10 

file = 'g:\pansat\data\status\1998-12-14\all_1998-12-14_16-35-41.mat' 

% Parameters for phase shift suppression 
t_ps = [NaN,NaN,-30,+60,+30,0,NaN,NaN] ; 

% Parameters after curve fitting (CURVFIT10.MWS) 
T = [NaN,NaN,129,130,127,129,NaN,167]; 
aO = [NaN.NaN,.0024,.0417,-.0008,-.0176,NaN,.2455]; 
bO = [NaN,NaN,.1795,.2033,-.1981,.2024,NaN,.0330]; 
cO = [NaN,NaN,-8.2615,2.7509,-8.3025,-6.7735,NaN,.0902]; 
dO = [NaN,NaN,.0008,0,.0040,-.0100,NaN,0]; 
eO = [NaN, NaN,-. 0143,0.,-. 0144, -.0231, NaN, 0] ; 

end 

% Load status snapshot data 
load(file); 

% Needed variables 
N = size(time(:,1),1); 
t = time(l:N,l)-time(l,l); 
tE = t(N); 

% Fit two sine curves in CV current curves (influence of TOP panel current) 
for j = 1:8 

for 1 = 1:N 
cur(l,j) = a0(j) + b0(j).*sin(2*pi./T(j).*t(l) + c0(j)) + d0(j)... 

+ e0(j).*sin(2*pi./T(8).*t(l) + c0(8)); 
end 

end 

t_ = 0:tE; 
N_ = length(t_); 
cur_ = zeros(N_,8); 

for j = 1:8 
for 1 = 1:N_ 

cur_(l,j) = a0(j) + b0(j) .*sin(2*pi./T(j) .*t_(l) +c0(j)) +d0(j)... 
+ e0(j) .*sin(2*pi./T(8) .*t_(l) +c0(8)); 

end 
end 

% Extract filename from file string 
sB = findstr(file,'all'); 
sE = length(file); 

filename = file(sB:sE); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Plot solar panel currents % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% All panel currents in one plot 
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scr_sz = get(0,'ScreenSize'); 
figure('Position',[scr_sz(4)/10 scr_sz(4)/10 scr_sz(3)/1.2 scr_sz(4)/1.2J); 
set(gca,'Position',[.130 .122 .775 .822]); 
pos = get(gca,'Position'); 

plot(t,isolar(:,l)*le3,'kv-',t,isolar(:,2)*le3,'g.-',t,isolar(:,3)*le3,'b*-',.. 
t,isolar(:,4)*le3,'rd-',t,isolar(:,5)*le3,'bp-',t,isolar(:,6)*le3,'rs-',... 
t,isolar(:,7)*le3,'kA-',t,isolar(:,8)*le3, 'go-'); 

axis([0 tE 0 360]) 
grid; 
xlabel('\itt\rm in s'); 
ylabel('\itl_{i}\rm in mA'); 

legend('SP4','SP5', 'SP7','SP9','SP11','SP13','SP14','SP16'); 
titlet['Solar Panel Currents of PANSAT (',filename,')'],'Interpreter','none'); 

% Create second X axis 
c = get(gcf,'Color'); 

axes('Position',pos - [0,.07,0,.818],'Color','none','XColor','k','YColor',c); 
xlabel('Number of Sample'); 

x = t / t (N) ; 
for i = 1:N 

if i < 10 
s(i,l:2) = [num2str(i) ' ']; 

else 
s(i,l:2) = num2str(i) ; 

end 
end 
set(gca,'XTick',x,'XTickLabel',s,'FontSize',7); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Solar panel currents after curve fitting % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% CV + TOP panel currents in one plot (after curve fitting) 
scr_sz = get(0,'ScreenSize'); 
figure('Position', [scr_sz(4)/10 scr_sz(4)/10 scr_sz(3)/1.2 scr_sz(4)/1.2]); 
set(gca,'Position',[.130 .122 .775 .822]); 
pos = get(gca,'Position'); 

plot(t,cur(:,3)*le3,'b*',t,cur(:,4)*le3,'rd',t,cur(:,5)*le3,'bp',... 
t,cur(:,6)*le3,'rs',t,cur(:,8)*le3,'go',... 
t_,cur_(:,3)*le3,'b-',t_,cur_(:,4)*le3,'r-',t_,cur_(:,5)*le3,'b-',... 
t_,cur_(:,6)*le3, 'r-', t_,cur_( :',8) *le3, 'g-') ; 

axis([0 tE 0 360]) 
grid; 
xlabel('\itt\rm in s'); 
ylabel('\itl_{i}\rm in mA'); 

legendCSP7', 'SP9', 'SP11', 'SP13', 'SP16'); 
title(['Currents after Curve Fitting (',filename,')'],'Interpreter','none'); 

% Create second X axis 
c = get(gcf,'Color'); 

axes('Position',pos - [0,.07,0,.818],'Color','none','XColor','k','YColor',c); 
xlabel('Number of Sample'); 

x = t / t(N) ; 
for i = 1:N 

if i < 10 
s(i,l:2)   =   [num2str(i)   '   ' ] ,- 

else 
s(i,l:2)   = num2str(i); 
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end 
end 
set(gca,'XTick',x,'XTickLabel',s,'FontSize',7); 

End of DISPFITP.M 
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DISPRR.M 
function disprr 

% DISPRR 
% 
% Display of Data to Determine Roll-rate and Attitude 
% Information of PANSAT 
% 
% 
% (c) 1998 by Grasi 

%%%%%%%%%%%%%% 
% Data given % 
%%%%%%%%%%%%%% 

% UT required 
tel_date = [1998 10 30 18 45 34;1998 11 09 18 24 38;1998 11 17 14 29 17; 

1998 11 18 14 23 44;1998 11 19 14 19 52;1998 12 06 01 16 15; 
1998 12 07 01 11 03;1998 12 08 01 07 17;1998 12 08 23 22 02; 
1998 12 09 23 17 07;1998 12 15 00 35 41;1998 12 16 00 31 17] 

T_side = [72,88,59,59,58,68,70,72,73,79,129,127]; 

T_top = [NaN,116,79,80,82,91,93,97,97,105,167,181]; 

N = length(T_top); 

% Moments of inertia (based on CAD model) 
11 = 1.160; 
12 = 1.066; 
13 = .792; 

%%%%%%%%%%%%%%%%%%%%%%% 
% Calculation of time % 
%%%%%%%%%%%%%%%%%%%%%%% 

for j = 1:N 

% Universal time 
UT = (tel_date(j,4) + tel_date(j,5)/60 + tel_date(j,6)/3600) % in hours 

% Determination of Julian Date 
dam = [31 28 31 30 31 30 31 31 30 31 30 31]; % days a month 

% Check for leap years... 
% (leap years must be divisible by 4, 2000 by 400;... 
% since 2000 is a leap year, no different algorithm necessary) 

if rem(tel_date(j,l)/4,l) == 0 
dam(2) = 29 

end 

% Calculate day of year 
i = 1:(tel_date(j,2)-l); 
doy = tel_date(j,3) + sum(dam(i)); 

tab_JD_Jan00_UT = [1997, 50448.5,-1998, 50813.5; 1999, 51178.5,-2000, 51543.5],- 

for i = l:size(tab_JD_Jan00_UT(:,l),1) 
if tel_date(j,l) == tab_JD_Jan00_UT(i,1) 

JD_JanO0_UT = tab_JD_Jan0O_UT(i,2) + 2400000; 
end 

end 

JD_UTl(j) = JD_Jan00_UT + doy + UT/24 % Julian Date for tel_date 
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end 

t = JD_UT1(:) - JD_0T1(1) 

%%%%%%%%%%%%% 
% Roll-rate % 

w_side = 360./T_side; 

w_top = 360./T_top; 
w_top(l) = 0; 

scr_sz = get(0,'ScreenSize'); 
figure('Position',[scr_sz(4)/10 scr_sz(4)/10 scr_sz(3)/1.2 scr_sz(4)/1.2]); 
set (gca, 'Position', [.130. .122 .775 .822]); 

plot(t,w_side,'bd-',t,w_top,'r.-'); 

grid; 
xlabel('\itt\rm in days'); 
ylabel('\it\omega\rm in \circ7s'); 

legend) '\it\omega_{side}\rm', '\lt\omega_{top}\rm') ; 
title('Rotational Motion of PANSAT'); 

%%%%%%%%%%%%%%%%%%%%% 
% Rotational energy % 
%%%%%%%%%%%%%%%%%%%%% 

T_rot = 1/2*((11+12)*(2*pi./T_top).A2 + 13*(2*pi./T_side).^2); 

scr_sz = get(0,'ScreenSize'); 
figure('Position',[scr_sz(4)/10 scr_sz(4)/10 scr_sz(3)/1.2 scr_sz(4)/1.2]), 
set (gca,'Position', [.130 .122 .775 .822]),- 

plot(t,T_rot*le03,'bd-'); 

grid; 
xlabel('t in days'); 
ylabel('T_{rot> in mJ'); 

title('Rotational Energy'); 

End of DISPRR.M 

153 



DETSOLVX.M 
function rSX_ = DETSOLVX(outp,isolar) 

% DETSOLVX 
% 
% Determination of Solar Vector from Solar Panel Data with 
% respect to Geometrical Axes of PANSAT 
% 
% usage: DETSOLVX(outp,isolar) 
% 
%        outp = 0: no display of currents 
%        outp = 1: display of currents 
%        isolar  : solar panel currents matrix 
% 
% returns matrix of solar vector rSX_ 
% 
% 
% (c) 1998 by Grasi 

% Relationship between logical numbers and MATLAB's arrays numbers 
SP = [4;5;7;9;11;13;14;16]; 

% Number of samples 
N = size(isolar(:,l),l); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Display solar panel current measurements % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

if outp == 1 
fprintf (.'\nSolar Panel Currents (in mA)'); 
for 1 = 1:N 

fprintf C\n l=%d: \1); 
for j = 1:8 

fprintf('I%d=%.If, ',SP(j),isolar(1,j)*le3); 
end 

end 
fprintf('\n\n'); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Determine solar vector % 
%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Initialize arrays 
cur = zeros(1,8); % array for currents 
val = zeros(l,3); % vector for solar vector elements at a sample point 

for 1 = 1:N 
% Initialize arrays 
cur = zeros(1,8); % array for currents 
val = zeros(1,3); 

cur = isolar(1,:); 
cur(l) = 0; % SP4 and SP14 are not taken into account! 
cur(7) = 0; 

% Determine two highest current values 
for j = 1:2 

[Y I] = max(cur); 
cur(I) = 0; % set zero due to second loop 

switch I 
case 2, val(2) = -Y; % SP5 (-Y_), 2nd element in vector 
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case 3, val(3) = Y; % SP7 (+Z_), 3rd element in vector 
case 4, val(l) 
case 5, val(3) 
case 6, val(1) 
case 8, val(2) 

-Y; % SP9 (-X_), 
-Y; % SP11 (-Z_) 
Y; % SP13 (+X_), 
Y; % SP16 (+Y_), 

end 
end 

% Which element is left? 
for j = 1:3 

if val(j) == 0 
h = j; 

end 
end 

1st element in vector 
3rd element in vector 

1st element in vector 
2nd element in vector 

% Match third current to corresponding quadrant 
switch h 

case 1, poss = [4,6] 
case 2, poss = [2,8] 
case 3, poss = [5,3] 

end 

% 1st element: SP9 (-) or SP13 (+) 
% 2nd element: SP5 (-) or SP16 (+) 
% 3rd element: SP11 (-) or SP7 (+) 

if cur(possd)) > cur(poss(2)) % take current with higher value 
val(h) = -cur (poss (1)) ,• % always negative 

else 
val(h) = cur(poss(2)); % always positive 

end 

% Normalize solar vector 
rSX_(l,:) = val / norm(val,2); 

end 

End of DETSOLVX.M 
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DETSANG.M 
function DETSANG(); 

% DETSANG 
% 
% Determination of Azimuth and Elevation of Solar Vector 
% in Geometrical System 
% 
% 
% (c) 1998 by Grasi 

%%%%%%%%%%%%%% 
% Data given % 
%%%%%%%%%%%%%% 

% Files containing status data 

if c == 1 

file = 'g:\pansat\data\status\1998-ll-09\all_1998-ll-09_10-24-38.mat'; 

% Parameters after curve fitting 
T = [NaN,NaN,88,87,88,87,NaN,116]; % period 
aO = [NaN,NaN,.0379,.0191,-.0211,.0306,NaN,.1949]; % shift along y axis (1st sine) 
bO = [NaN,NaN,.2287,.2669,-.2824,.2387,NaN,-.0322]; % amplitude 
cO = [NaN,NaN,-1.9626,-3.5644,-8.2818,-.4164,NaN,-7.2803]; % phase shift 
dO = [NaN,NaN,.0020,-.0031,.0033,-.0058,NaN,0]; % shift along y axis (2nd sine) 
eO = [NaN,NaN,.0135,.0080,.0113,.0167,NaN,0]; % amplitude 

elseif c == 2 

file = 'g:\pansat\data\status\1998-ll-17\all_1998-ll-17_06-29-17.mat'; 

% Parameters after curve fitting 
T= [NaN,NaN,59,59,59,60,NaN,79]; 
a'O = [NaN, NaN, -.0257, -.0328, -.0031, -.0270, NaN, .1511] ; 
bO = [NaN,NaN,.3140,-.3277,-.2947,.2700,NaN,.0349]; 
cO = [NaN,NaN,2.7382,-1.9363,-3.5570,-1.7698,NaN,-2.6115]; 
dO = [NaN,NaN,-.0044,.0029,-.0021,.0541,NaN, 0] ; 
eO = [NaN,NaN,-.0082,-.0179,-.0030,-.0051,NaN,0]; 

elseif c == 3 

file = 'g:\pansat\data\status\1998-ll-18\all_1998-ll-18_06-23-44.mat'; 

% Parameters after curve fitting 
T= [NaN,NaN,59,60,59,59,NaN,80]; 
aO = [NaN,NaN,.0149,-.0471,.0070,.0263,NaN,.0983]; 
bO = [NaN,NaN,-.2949.-.3734,.3174,-.2918,NaN,.0436]; 
cO = [NaN,NaN,-7.9227,-3.0005,-7.9994,-6.3863,NaN,-7.1391]; 
dO = [NaN,NaN,-.0001,.0004,-.0008,-.0098,NaN,0] ; 
eO = [NaN,NaN,-.0106,.0005,-.0021,-.0107,NaN,0]; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Calculate required variables % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Load status data 
load(file); 

% Extract filename from file string 
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sB = findstrtfile,'all'); 
sE = length(file); 

filename = file(sB:sE) 

% Needed variables 
N = 0; t = 0; tE = 0; 

N = size(time(:,1),1); 
t = time(1:N,1)-time(1,1); 
tE = t(N) ; 

% Or more samples! 
Ts = 3; 
t = 0:Ts:tE; 
N = length(t) 

% Calculate currents at sample points 
cur = zeros(N,8); 
for j = 1:8 

for 1 = 1:N 
cur(l,j) = a0(j) + bO(j).*sin(2*pi./T(j).*t(l) + c0(j)) + d0(j)... 

+ e0(j).*sin(2*pi./T(8).*t(l) + c0(8)); 
end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Determine solar vector % 
%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Determine solar vector from solar panel currents 

rSX_ = detsolvX(0,cur); % referred to geometrical axes of PANSAT 

% Calculate azimuth and elevation 

for 1 = 1:N 
aS(l,l) = atan(rSX_(l,l)/rSX_(l,3)) ,- 
dS(l,l) = asin(rSX_(l,2)); 

end 

aS*180/pi 
dS*180/pi 

% Plot 
scr_sz = get(0,'ScreenSize'); 
figure('Position',[scr_sz(4)/10 scr_sz(4)/10 scr_sz(3)/1.2 scr_sz(4)/1.2]); 
set(gca,'Position',[.130 .122 .775 .822]); 

plot(t,aS*180/pi, 'kd-',t,dS*180/pi, 'bo-') ,- 

grid; 
xlabeK'\itt\rm in s'); 
ylabeK'Angles in \circ'); 
legendC\it\alpha_{S}','\it\delta_{S}'); 
title(['Azimuth and Elevation of Solar Vector in Geometric Frame ' '('.filename,')'], 

'Interpreter','none'); 

% Angular velocities from azimuth and elevation of PANSAT 

for 1 = 1:N-1 
if sign(aS(l+l)) == sign(aSd)) 

wY_(l,l) = -(aS(1+1) - aS(l))/Ts; 
else 

wY_(l,l) = NaN; 
end 

157 



wX_S(l,l) = -(dS(l+l) - dS(l))/Ts; 
end 

wY_*180/pi 
wX_S*180/pi 

% Plot 
scr_sz = get(0,'ScreenSize'); 
figure«'Position',[scr_sz(4)/10 scr_sz(4)/10 scr_sz(3)/1.2 scr_sz(4)/1.2]) ; 
set(gca,'Position',[.130 .122 .775 .822]); 

plot(t(l:N-l),wX_S*180/pi,'bo-',t(1:N-1),wY_*180/pi,'rd-'); 

grid; 
xlabel('\itt\rm in s'); 
ylabeK'Angular Velocities in \circ/s'); 
legendC \it\omega\rm_{X' ',\itS}', '\it\omega\rm_{Y' '}') ; 
titlet['Angular Velocities about two Axes referred to the Sun ' '('»filename,')'], 

'Interpreter','none'); 

End of DETSANG.M 
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DETATTP.M 
function DETATTPO; 

% DETATTP 
% 
% Determination of Attitude of PANSAT 
% Relate Angle between Symmetrical Axis and Solar Vector 
% to Beta Angle 
% 
% 
% (c) 1998 by Grasi 

nB = 1; 
nE = 10; 

%%%%%%%%%%%%%% 
% Data given % 
%%%%%%%%%%%%%% 

for c = nB:nE 

% Files containing status data 

if c == 1 

file = 'g:\pansat\data\status\1998-ll-09\all_1998-ll-09_10-24-38.mat'; 

% Given orbital elements (98-ll-09_18-25-00) 
tel_date = [1998 11 09 18 25 00]; % start date and time for telemetry records (UT) 

. % (format: year month day hour minute second) 
xil = 86.5*pi/180; % right ascension of the ascending node in rad 
xi2 = 28.44*pi/180; % orbit inclination in rad 
xi3 = 113*pi/180; % argument of perigee 
tau = 355*pi/180; % true anomaly 

% Parameters after curve fitting 
T = [NaN,NaN,88,87,88,87,NaN,116]; % period 
aO = [NaN,NaN,.0379,.0191,-.0211,.0306,NaN,.1949]; % shift along y axis (1st sine) 
bO = [NaN,NaN,.2287,.2669,-.2824,.2387,NaN,-.0322]; % amplitude 
cO = [NaN,NaN,-1.9626, -3.5644, -8.2818, -.4164,NaN,-7.2803]; % phase shift 
dO = [NaN,NaN, .0020,-.0031, .0033,-.0058,NaN,0],- % shift along y axis (2nd sine) 
eO = [NaN,NaN,.0135, .0080, .0113,.0167,NaN,0]; % amplitude 

elseif c == 2 

file = 'g:\pansat\data\status\1998-ll-17\all_1998-ll-17_06-29-17.mat'; 

% Given orbital elements (98-ll-17_06-29-17) 
tel_date = [1998 11 17 14 29 00]; % start date and time for telemetry records (UT) 

% (format: year month day hour minute second) 
xil = 35.2*pi/180; % right ascension of the ascending node in rad 
xi2 = 28.45*pi/180; % orbit inclination in rad 
xi3 = 133*pi/180; % argument of perigee 
tau = 338*pi/180; % true anomaly 

% Parameters after curve fitting 
T= [NaN,NaN,59,59,59,60,NaN,79]; 
aO = [NaN,NaN,-.0257,-.0328,-.0031,-.0270,NaN,.1511]; 
bO = [NaN,NaN,.3140,-.3277,-.2947,.2700,NaN,.0349]; 
cO = [NaN,NaN,2.7382, -1.9363,-3.5570,-1.7698,NaN,-2.6115]; 
d0 = [NaN,NaN,-.0044,.0029,-.0021,.0541,NaN,0]; 
eO = [NaN,NaN,-.0082,-.0179,-.0030,-.0051,NaN,0]; 
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elseif c == 3 

file = 'g:\pansat\data\status\1998-ll-18\all_1998-ll-18_06-23-44.mat'; 

% Given orbital elements (98-ll-18_06-23-44) . 
tel_date = [1998 11 18 14 24 00]; % start date and time for telemetry records (UT) 

% (format: year month day hour minute second) 
xil = 28.7*pi/180; % right ascension of the ascending node in rad 
xi2 = 28.45*pi/180; % orbit inclination in rad 
xi3 = 143*pi/180; % argument of perigee 
tau = 327*pi/180; % true anomaly 

% Parameters after curve fitting 
T= [NaN,NaN,59,60,59,59,NaN,80] ; 
aO = [NaN,NaN,.0149,-.0471,.0070,.0263,NaN,.0983] ; 
bO = [NaN,NaN,-.2949,-.3734,.3174,-.2918,NaN,.0436]; 
cO = [NaN,NaN,-7.9227,-3.0005,-7.9994,-6.3863,NaN,-7.1391]; 
d0 = [NaN,NaN,-.0001,.0004,-.0008,-.0098,NaN,0]; 
eO = [NaN,NaN,-.0106,.0005,-.0021,-.0107,NaN,0]; 

elseif c == 4 

file = 'g:\pansat\data\status\1998-ll-19\all_1998-ll-19_06-19-52.mat' ; 

% Given orbital elements (98-ll-19_06-19-52) 
tel_date = [1998 11 19 14 20 00]; % start date and time for telemetry records (UT) 

% (format: year month day hour minute second) 
xil = 22.1*pi/180; % right ascension of the ascending node in rad 
xi2 = 28.46*pi/180; % orbit inclination in rad 
xi3 = 134*pi/180; % argument of perigee 
tau = 342*pi/180; % true anomaly 

% Parameters after curve fitting 
T= [NaN,NaN,58,58,59,59,NaN,82]; 
aO = [NaN,NaN,-.0468,-.0469,-.0352,.0055,NaN,.0251] ; 
bO = [NaN,NaN,-.3963,.3528,.3663,-.3210,NaN,.0470]; 
cO = [NaN,NaN,2.7894,-8.2841,-3.2968,-1.7698,NaN,-8.0386]; 
dO = [NaN,NaN,-.0045,.0089,-.0047,.0007,NaN,0]; 
eO = [NaN,NaN,-.0159,-.0138,-.0064,-.0013,NaN,0]; 

elseif c == 5 

file = 'g:\pansat\data\status\1998-12-05\all_1998-12-05_17-16-15.mat'; 

% Given orbital elements (98-12-06_01-16-00) 
tel_date = [1998 12 06 01 16 00]; % start date and time for telemetry records (UT) 

% (format: year month day hour minute second) 
xil = 274.4*pi/180; % right ascension of the ascending node in rad 
xi2 = 28.46*pi/180; % orbit inclination in rad 
xi3 = 67*pi/180; % argument of perigee 
tau = 349*pi/180; % true anomaly 

% Parameters after curve fitting 
T= [NaN,NaN,68,68,68,69,NaN,91]; 
aO = [NaN,NaN,-.0002,-.0136,-.0177,.0003,NaN,.0779]; 
bO = [NaN,NaN,.3185,.3253,-.3184,-.3065,NaN,-.0604] ; 
cO = [NaN,NaN,-7.5591,-9.1364,-7.5301,-2.6938,NaN,.3220]; 
dO = [NaN,NaN,-.0040,.0031,-.0004,.0047,NaN,0]; 
eO = [NaN,NaN,.0137,.0121,.0046,.0295,NaN, 0]; 

elseif c == 6 

file = 'g:\pansat\data\status\1998-12-06\all_1998-12-06_17-ll-03.mat'; 

% Given orbital elements (98-12-07_01-ll-00) 
tel_date = [1998 12 07 01 11 00]; % start date and time for telemetry records (UT) 

% (format: year month day hour minute second) 
xil = 267.9*pi/180; % right ascension of the ascending node in rad 
xi2 = 28.46*pi/180; % orbit inclination in rad 
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xi3 = 72*pi/180; % argument of perigee 
tau = 347*pi/180; % true anomaly 

% Parameters after curve fitting 
T= [NaN,NaN,70,70,70,69,NaN,93]; 
aO = [NaN,NaN,-.0147,.0269,-.0139,.0367,NaN, .1386]; 
bO = [NaN,NaN, .3154, -.2739, -.3140, .2704,NaN, -.0546] ,- 
CO = [NaN,NaN,-2.4085,-7.1403,-2.3899,-.9101,NaN,-7.8698]; 
dO = [NaN,NaN,.0026,-.0009,-.0022,-.0156,NaN,0]; 
eO = [NaN,NaN,-.0045,.0170,.0147,.0357,NaN,0]; 

elseif c == 7 

file = 'g:\pansat\data\status\1998-12-07\all_1998-12-07_17-07-17.mat'; 

% Given orbital elements (98-12-08_01-07-00) 
tel_date = [1998 12 08 01 07 00]; % start date and time for telemetry records (UT) 

% (format: year month day hour minute second) 
xil = 261.4*pi/180; % right ascension of the ascending node in rad 
xi2 = 28.46*pi/180; % orbit inclination in rad 
xi3 = 78*pi/180; % argument of perigee 
tau = 347*pi/180; % true anomaly 

% Parameters after curve fitting 
T= [NaN,NaN,72,72,72,72,NaN,97]; 
aO = [NaN,NaN,-.0406,-.0226,.0153,-.0599,NaN, .1857] ; 
,b0 = [NaN,NaN,.3124,.3218,-.2704,.3508,NaN,-.0496]; 
cO = [NaN,NaN,-1.2401,-2.7804,-7.5021,.3049,NaN,-8.4109]; 
dO = [NaN,NaN, -.0062, -.0217, -.0010, -.0181, NaN, 0] ,- 
eO = [NaN,NaN,-.0066,.0313,-.0069,.0331,NaN, 0] ; 

elseif c == 8 

file = 'g:\pansat\data\status\1998-12-08\all_1998-12-08_15-22-02.mat'; 

% Given orbital elements (98-12-08_23-22-00) 
tel_date = [1998 12 08 23 22 00]; % start date and time for telemetry records (UT) 

% (format: year month day hour minute second) 
xil = 255.3*pi/180; % right ascension of the ascending node in rad 
xi2 = 28.46*pi/180; % orbit inclination in rad 
xi3 = 76*pi/180; % argument of perigee 
tau = 335*pi/180; % true anomaly 

% Parameters after curve fitting 
T = [NaN,NaN,73,74,74,73,NaN,97]; 
aO = [NaN,NaN,-.0147,.0248,.0353,.0275,NaN,.2165]; 
bO = [NaN,NaN,-.2138,.2423,.2836,-.2356,NaN,-.0407]; 
cO = [NaN.NaN,-2.4325,-.5700,4.005,-7.1352,NaN,-7.4717]; 
dO = [NaN, NaN, .0009, -.0183, -.0794, -.0001, NaN, 0] ,- 
eO = [NaN,NaN,-.0126,.0499,.0384,.0049,NaN,0]; 

elseif c == 9 

file = 'g:\pansat\data\status\1998-12-09\all_1998-12-09_15-17-07.mat'; 

% Given orbital elements (98-12-09_23-17-00) 
tel_date = [1998 12 09 23 17 00]; % start date and time for telemetry records (UT) 

% (format: year month day hour minute second) 
xil = 248.8*pi/180; % right ascension of the ascending node in rad 
xi2 = 28.46*pi/180; % orbit inclination in rad 
xi3 = 83*pi/180; % argument of perigee 
tau = 332*pi/180; % true anomaly 

% Parameters after curve fitting 
T= [NaN,NaN,79,79,79,79,NaN,105]; 
aO = [NaN,NaN, .0376, .0308, .0186,-.0277,NaN, .2467],- 
bO = [NaN,NaN,-.1909,-.2038,.1891,.2565,NaN,.0398]; 
cO = [NaN,NaN,-1.3349,-2.9486,-7.6524,-2.9015,NaN,-7.5302]; 
dO = [NaN,NaN,-.0009,-.0028,-.0004,-.0103,NaN,0]; 
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GO = [NaN,NaN,-.0029,-.0167,-.0334,-.0364,NaN,0]; 

elseif c == 10 

file = 'g:\pansat\data\status\1998-12-14\all_1998-12-14_16-35-41.mat' ; 

% Given orbital elements (98-12-09_23-17-00) 
tel_date = [1998 12 15 00 35 00]; % start date and time for telemetry records (UT) 

% (format: year month day hour minute second) 
xil = 215.6*pi/180; % right ascension of the ascending node in rad 
xi2 = 28.45*pi/180; % orbit inclination in rad 
xi3 = 115*pi/180; % argument of perigee 
tau = 343*pi/180; % true anomaly 

% Parameters after curve fitting 
T = [NaN,NaN,129,130,127,129,NaN,167]; 
aO = [NaN,NaN,.0024,.0417,-.0008,-.0176,NaN,.2455]; 
bO = [NaN,NaN,.1795,.2033,-.1981,.2024,NaN,.0330]; 
cO = [NaN,NaN,-8.2615,2.7509,-8.3025,-6.7735,NaN,.0902]; 
dO = [NaN,NaN,.0008,0,.0040,-.0100,NaN,0]; 
eO = [NaN,NaN,-.0143,0,-.0144,-.0231,NaN,0]; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Calculate required variables % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Load status data 
load(file); 

% Extract filename from file string 
sB = findstr(file,'all'); 
sE = length(file); 

filename = file(sB:sE) 

if c == nB 
filenameB = filename; 

elseif c == nE 
filenameE = filename;- 

end 

date_stamp(c,:) = filename(5:sE-sB-3); 
date_stamp(c,ll) = ';'; 

% Needed variables 
N = 0; t = 0; tE = 0; 

N = size(time!:,1),1); 
t = time(l:N,l)-time(l,l); 
tE = t(N); 

% Or more samples! 
t = 0:tE; 
N = length(t) ,- 

% Calculate currents at sample points 
cur = zeros(N,8); 
for j = 1:8 

for 1 = 1:N 
cur(l.j) = a0(j) + bO(j).*sin(2*pi./T(j) .*t(l) + c0(j)) + d0(j) 

+ eO(j).*sin(2*pi./T(8).*t(l) + c0(8)); 
end 

end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Determine solar vector and angle of sun cone % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Determine solar vector from solar panel currents 

rSX_ = detsolvX(0,cur); % referred to geometrix axes of PANSAT 

% Determine angle of sun cone... 
% (i.e., angle between solar vector and symmetric (Y_) axis of PANSAT) 

a_SY = zeros'(N,l) ; 

Y_ = [0,1,0]; 

for 1 = 1:N 
a_SY(l,l) = acos(dot(rSX_(l,:),Y_)/norm(rSX_(l,:),2)); 

end 

a_SY_max = max(a_SY)*180/pi 
a_SY_min = min(a_SY)*180/pi 
a_SY_mean = mean(a_SY)*180/pi 

% Plot 
scr_sz = get(0,'ScreenSize'); 
figure('Position',[scr_sz(4)/10 scr_sz(4)/10 scr_sz(3)/1.2 scr_sz(4)/1.2]); 
set(gca,'Position', [.130 .122 .775 .822]),- 

plot(t,a_SY*180/pi,'k-') ; 

grid; 
xlabel Ct in s'),- 
ylabeK'Angle in deg'); 
legendCGeom - Y'");   • . 
titlet['Angle Geometrical and Solar Vector' '(',filename,')'],... 

'Interpreter', 'none') ,- 

a_SY_(1,c) = max(a_SY); 
a_SY_(2,c) = min(a_SY); 
a_SY_(3,c) = mean(a_SY) ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Calculation of beta angle % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Universal time 
UT = (tel_date(4) + tel_date(5)/60 + tel_date(6)/3600) % in hours 

% Determination of Julian Date 
dam = [31 28 31 30 31 30 31 31 30 31 30 31]; % days a month 

% Check for leap years... 
% (leap years must be divisible by 4, 2000 by 400;... 
% since 2000 is a leap year, no different algorithm necessary) 

if rem(tel_date(l)/4,l) == 0 
dam(2) = 29 

end 

% Calculate day of year 
i = 1:(tel_date(2)-l); 
doy = tel_date(3) + sum(dam(i)),- 

tab_JD_Jan00_UT =   [1997, 50448.5,-1998, 50813.5;1999, 51178. 5;2000, 51543 .5] ; 

for i = l:size(tab_JD_JanO0_UT(:,l),l) 
if tel_date(l)   == tab_JD_Jan00_UT(i,1) 
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JD_JanOO_UT = tab_JD_JanOO_UT(i,2) + 2400000; 
end 

end 

JD_UT1 = JD_Jan00_UT + doy + UT/24 % Julian Date for tel_date 

T_UT1 = (JD_UT1 - 2451545.0)/36525; % Julian centuries (J2000) 

% Determine beta angle from orbital elements 
lam_M_sun = 280.4606184 + 36000.77005361*T_UT1; % mean longitude of the sun in deg 
M_sun = 357.5277233 + 35999.05034*T_UT1; % mean anomaly for the sun in deg 

lam_M_sun_ = mod(lam_M_sun,360); 
M_sun_ = mod(M_sun,360)*pi/180; 

lam_eclip = (lam_M_sun_ + 1.914666471*sin(M_sun_) + .019994643*sin(2*M_sun_))*pi/180; 
% ecliptic longitude in rad (= angular seperation vernal equinox/sun) 

eps = 23.44*pi/180; % obliquity of the ecliptic 

bet = asin(sin(eps)*cos(xi2)*sin(lam_eclip) - cos(eps)*sin(xi2)*cos(xil)... 
*sin(lam_eclip) + sin(xi2) *sin(xil) *cos (lam_eclip)),- 

bet*180/pi 

for 1 = 1:3 
bet_a(l,c) = bet; 

end ' 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Calculation of solar vector % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Normalized solar vector referred to geocentric inertial axes 
r2_S = [sin(lam_eclip)*cos(eps);sin(lam_eclip)*sin(eps);cos(lam_eclip)] 

% Sum of argument of perigee and true anomaly 
xi3_ = mod(xi3 + tau,2*pi); 

% Tranformation of orbit-plane axes to geocentric axes 
T_OS_l = [cos(xil),0,-sin(xil);0,l,0;sin(xil),0,cos(xil)]; 
T_0S_2 = [cos(xi2) , sin(xi2),0;-sin(xi2),cos(xi2),0;0,0,1]; 
T_OS_3 = [cos(xi3_),0,-sin(xi3_);0,1,0;sin(xi3_),0,cos(xi3_)]; 
T_OS_4 = tl,0,0;0,-l,0;0,0,-l]; 

T_OS = T_OS_4 * T_OS_3 * T_OS_2 * T_OS_l; 

% Normalized solar vector referred to orbit-plane axes• 
r2_0 = T_OS * r2_S 

% Determine angle to each orbit-plane axis 
01 = [1,-0,-0]; 
02 = [0;1;0]; 
03 = [0;0;1]; 

vecl = [r2_O(l);r2_O(2);0]; 
vec2 = [r2_O(l);r2_O(2);0]; 
vec3 = [r2_O(l);0,;r2_O(3) J ; 

ang_r2_01 = acos(dot(vecl,01)/(norm(vecl,2)))*180/pi 
ang_r2_02 = acos(dot(vec2,02)/(norm(vec2,2)))*180/pi 
ang_r2_03 = acos(dot(vec3,03)/(norm(vec3,2)))*180/pi 

end % for-loop (c) 

% Plot 
scr_sz = get(0,'ScreenSize'); 
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figure('Position',[scr_sz(4)/10 scr_sz(4)/10 
set(gca,'Position',[.130 .122 .775 .822]); 

L)*180/pi,bet_a(:,l)*180/pi,'b.- 
*180/pi,bet_a(:,2)*180/pi,'ro-' 
*180/pi,bet_a(:,3)*180/pi,'gx-' 
*180/pi,bet_a(:,4)*180/pi,'k+-' 
*180/pi,bet_a(:,5)*180/pi,'b*-' 
*180/pi,bet_a(:,6)*180/pi,'rs-' 
*180/pi,bet_a(:,7)*180/pi,'gd-' 
*180/pi,bet_a(:,8)*180/pi,'kv-' 
*180/pi,bet_a(:,9)*180/pi,'bp-' 
)*180/pi,bet_a(:,10)*180/pi,'r~- 

scr_sz(3)/1.2 scr_sz(4)/1.2])i 

plot(a_SY. _(:,1 
a_SY_( ,2)* 
a_SY_( ,3)* 
a_SY_( ,4)* 
a_SY_( ,5)* 
a_SY_( ,6)* 
a_SY_( ,7)* 
a_SY_( ,8)* 
a_SY_( ,9)* 
a_SY_( ,10) 

.,date_stamp(4,:), . 
),date_stamp(8,:),... 

grid; 

legend(date_stamp(l,:),date_stamp(2,:),date_stamp(3 
date_stamp{5,:),date_stamp(6,:),date_stamp(7 
date_stamp (9,:), date_stamp (10,0,4); 

xlabel('Angles between Axis of Symmetry and Solar Vector in \circ'); 
ylabeK'Beta Angles in \circ'); 
title(['Angles Geom. Axis/Solar Vector vs. Beta Angle (',filenameB,' 

filenameE,')'],'Interpreter','none'); 

End of DETATTP.M 
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DISPATTD.M 
function DISPATTDO; 

% DISPATTD 
% 
% Display of Attitude of PANSAT at Deployment with respect to 
% Orbit-plane Reference Frame 
% 
% 
% (c) 1998 by Grasi 

%%%%%%%%%%%%%% 
% Data given % 
%%%%%%%%%%%%%% 

% PANSAT deployment at GMT 303/18:45:33, MET 0/23:25:59; 

% Zeta angles for geometrical axes of PANSAT 

zetl = 355.3*pi/180; 
zet2 = 3.6*pi/180; 
zet3 = 308.2*pi/180; 

%%%%%%%%%%%%%%%%%%% 
% Graphic display % 
%%%%%%%%%%%%%%%%%%% 

% Axes visibility 
vis_ax_B = 'on'; 
vis_txt_B = 'on'; 

vis_ax_0 = 'on'; 
vis_txt_0 = 'on'; 

% Display orbit-plane axes 
BtoO = 'on'; 

% Visibility of PANSAT's model 
vis_PANSAT = 'on'; 

% Visibility of graph 
vis_graph = 'off; ' 

% Location of camera 
v_az = 3*37.5; % both angles in deg 
v_el = .5*15; 

% Figure 
scr_sz = get(0,'ScreenSize'); 
figure('Position',[scr_sz(4)/10 scr_sz(4)/10 scr_sz(3)/1.2 scr_sz(4)/1.2]); 

% Define model of PANSAT (data given in X_, Y_, Z_ - coordinates) 

% cm. is assumed to be located in center of geometry of 26-sided polyhedron, 
% i.e., dimension and mass of LVI is not considered for the visualization 

% Definition of color for panels 
pan_sens = [.96 .16 .53]; % solar panel's equipped with current sensor (deep pink) 
pan_std = [ .08 .02 .4]; % standard solar panel, without current sensor (navy blue) 
pan_base = [.96 .16 .53]; % solar panel at base plate, SP5 (deep pink) 
pan_lvi = [.83 .63 .09]; % LVI (gold) 
tri_ldck = [.23 .73 1]; % triangles at lower deck (deep sky blue) 
tri_udck = [.23 .73 1]; % triangles at upper deck (deep sky blue) 
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% Vertices of model (polyhedron and lvi) 
vertx = [-9.3 -21.8 9.3;9.3 -21.8 9.3;9.3 -21. 

-9.3 -9.3 21.8;  9.3 -9.3 21.8,-21.8 -9.3 9 
9.3 -9.3 -21.8;-9.3 -9.3 -21.8;  -21.8 -9. 
-9.3 9.3 21.8,-9.3 9.3 21.8;21.8 9.3 9.3;21. 
-9.3 9.3 -21.8;-21.8 9.3 -9.3;-21.8 9.3 9.3 
9.3 21.8 -9.3;-9.3 21.8 -9.3]*le-2; % in m 

vertx_lvi = [0 -26.9 11.7;8.3 -26.9 8.3;11.7 -. 
0 -26.9 -11.7;-8.3 -26.9 -8.3;-11.7 -26.9 0 
6.4 -21.8 6.4;9.1 -21.8 0;6.4 -21.8 -6.4;0 
-9.1 -21.8 0;-6.4 -21.8 6.4]'le-2; % in m 

8 -9.3 
.3,-21. 
3 -9.3 
8 9.3 
;-9.3 

26.9 0 
;-8.3 
-21.8 

-9.3 - 
-9.3 

-21.8 
-9.3;9. 
21.8 9. 

;8.3 -2 
-26.9 8 
-9.1;-6 

9.3; 21.8 
-9.3;... 
-9.3 9.3 
3 9.3 -2 
3;9.3 21. 

6.9 -8.3; 
.3;0 -21. 
.4 -21.8 

l.i 
9.3; 

8 9.1;. 
-6.4;.. 

% Faces of model 
facs_rec =[126 5;4 1 12 11,-3 4 10 9;2 3 8 7;1 2 3 4;6 7 15 14,-5 6 14 13;. 

12 5 13 20;11 12 20 19;10 11 19 18;9 10 18 17;8 9 17 16;7 8 16 15;... 
19 20 21 24;13 14 22 21;21 22 23 24;15 16 23 22;17 18 24 23],- 

facs_tri =[15 12;2 7 6,-3 9 8;4 11 10;20 13 21;14 15 22;16 17 23;18 19 24]; 
facs_lvi = [1 2 10 9;2 3 11 10;3 4 12 11;4 5 13 12;5 6 14 13;6 7 15 14,-... 

7 8 16 15;8 1 9 16]; 
facs_lvi_base = [1 2 3 4 5 6 7 8;9 10 11 12 13 14 15 16]; 

% Color of faces 
• col_rec = [pan_std;pan_std;pan_std,-pan_sens,-tri_ldck;pan_std;pan_sens;. . . 

pan_std;pan_sens;pan_std;pan_sens;pan_std;pan_sens,-pan_sens;pan_std;. .. 
pan_sens;pan_std;pan_std] ; 

col_tri = [tri_ldck;tri_ldck;tri_ldck;tri_ldck;tri_udck;tri_udck;... 
tri_udck;tri_udck]; 

col_lvi = [pan_lvi,- pan_lvi; pan_lvi; pan_lvi; pan_lvi; pan_lvi; pan_lvi; pan_lvi ] ; 

% Handles 
yel =[1 .95 0]; % darker yellow 
h_rec = patch('Vertices',vertx,'Faces',facs_rec,'FaceVertexCData' ,col_rec,... 

'FaceColor', 'flat', 'EdgeColor' ,yel, 'LineWidth',2, 'Visible' ,vis_PANSAT) ,- 
h_tri = patch( 'Vertices', vertx, 'Faces', facs_tri, 'FaceVertexCData' ,col_tri, ... 

'FaceColor', 'flat', 'EdgeColor',yel, 'LineWidth' ,2, 'Visible' ,vis_PANSAT) ,- 
h_lvi = patch('Vertices',vertx_lvi,'Faces',facs_lvi,  

'FaceVertexCData',col_lvi,'FaceColor','flat','EdgeColor', yel, . .. 
'LineWidth',2,'Visible',vis_PANSAT); 

h_l_base = patch('Vertices',vertx_lvi,'Faces',facs_lvi_base,  
'FaceVertexCData',pan_base,'FaceColor','flat','EdgeColor' ,yel, ... 
'LineWidth',2,'Visible',vis_PANSAT); ' 

% Body fixed axes of PANSAT (geometrical) 
le_B = 1.0;  % length in m 
h_Bl = lineCXData', [0 le_B], 'YData' 

'LineWidth',1,'Visible',vis_ax_B) 
h_B2 = lineCXData', [0 0] , 'YData', [0 

'LineWidth',1,'Visible',vis_ax_B) 
h_B3 = lineCXData', [0 0],'YData', [0 

'LineWidth',1,'Visible',vis_ax_B) 

h_Bl_t = text(le_B+.1,0,0,'X\prime' 
h_B2_t = text(0,le_B+.l,0,'Y\prime' 
h_B3_t = text(0,0,le_B+.l,'ZXprime' 

[0 0],'ZData',[0 0],'Color','b', 

le_B],'ZData',[0 0],'Color', 'r', 

0],'ZData',[0 le_B],'Color','g', 

Color','k','Visible',vis_txt_B); 
Color','k','Visible',vis_txt_B); 
Color', 'k', 'Visible' ,vis_txt_B) ,- 

% Orbit-plane axes 
le_0 = 1.2; % length in m 
h_01 = lineCXData', [0 le_0],'YData' 

'LineWidth',2,'Visible',vis_ax_0) 
h_02 = lineCXData', [0 0], 'YData', [0 

'LineWidth',2,'Visible',vis_ax_0) 
h_03 = lineCXData', [0 0] ,'YData', [0 

'LineWidth',2,'Visible',vis_ax_0) 

[0 0],'ZData',[0 0],'Color' 

le_0],'ZData',[0 0],'Color' 

0],'ZData',[0 le_0],'Color' 

h_01_t = text(le_0+.1,0,0,'0_{1}','Color', 
h_02_t = text(0,le_O+.l,0,'0_{2}','Color', 

'k','Visible',vis_txt_0) , 
'k','Visible',vis_txt_0); 

167 



h_03_t = text(0,0,le_O+.l,'0_{3}#,'Color','k', 'Visible',vis_txt_0) 

% Change appearance of axes 
axis('square'); 
axis([-.5 1.1-.5 1.1-.5 1.1]); 

.view(v_az,v_el),- 

set(gcf,'Color','w'); 

set(gca,'Color','w','XColor','k','YColor','k','ZColor','k',... 
'XGrid','off','YGrid','off,'ZGrid', 'off', 'Visible' ,vis_graph, 
'XLabel',text('String','x'),'YLabel',text('String','y'),... 
'ZLabel',text('String','z')); 

set(gca,'CameraUpVectorMode','manual','CameraUpVector',[0 0 -1]) ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Determine attitude of PANSAT % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Tranformation of orbit-plane axes to body axes 
T_BO_l = [cos(zet3),sin(zet3),0;-sin(zet3),cos(zet3),0;0,0,1] 
T_BO_2 = [cos(zet2),0,-sin(zet2);0,l,0;sin(zet2),0,cos(zet2)] 
T_BO_3 = [l,0,0;0,cos(zetl),sin(zetl);0,-sin(zetl),cos(zetl)) 

T_BO = T_B0_3 * T_B0_2 * T_BO_l; 

%%%%%%%%%%%%%%%%% 
% Show attitude % 
%%%%%%%%%%%%%%%%% 

% Obtain coordinates of axes and labels 

% Get current coordinates of patches of PANSAT model 
X_rec = get(h_rec,'XData'); 
Y_rec = get(h_rec, 'YData') ,- 
Z_rec = get(h_rec,'ZData'); 

X_tri = get (h_tri,'XData'),- 
Y_tri = get(h_tri,'YData'); 
Z_tri = get(h_tri,'ZData'); 

X_lvi = get(h_lvi,'XData'); 
Y_lvi = get(h_lvi,'YData'),- 
Z_lvi = get(h_lvi,'ZData'); 

X_l_base = get(h_l_base,'XData') 
Y_l_base = get(h_l_base,'YData') 
Z_l_base = get(h_l_base,'ZData') 

% Get current coordinates of body axes 
X_B1 = get(h_Bl,'XData'); 
Y_B1 = get(h_Bl,'YData'); 
Z_B1 = get(h_Bl,'ZData'); 

X_B2 = get(h_B2,'XData'); 
Y_B2 = get(h_B2,'YData'); 
Z_B2 = get(h_B2,'ZData'); 

X_B3 = get(h_B3,'XData'); 
Y_B3 = get(h_B3,'YData'); 
Z_B3 = get(h_B3,'ZData'); 

% Get current position of body axes labels 
POS_Bl_t = get(h_Bl_t,'Position'); 
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P0S_B2_t = get(h_B2_t,'Position'),- 
P0S_B3_t = get(h_B3_t,'Position'); 

% Display of transformation of body axes to reference axes 

% DCM 
if strcmp(BtoO,'on') == 1 

A = T_BO.'; 
end 

% Transformation of axes 
Bl = A * [X_B1(2);Y_B1(2);Z_B1(2)] 
B2 = A * [X_B2(2) ;Y_B2(2);Z_B2(2)] 
B3 = A * [X_B3(2);Y_B3(2);Z_B3(2)] 

set(h_Bl,'XData', [0 Bl(l) ],'YData', [0 Bl (2) ], 'ZData', [0 BK3)]); 
set(h_B2,'XData',[0 B2(1)],'YData',[0 B2(2)],'ZData',[0 B2(3)]); 
set(h_B3,'XData',[0 B3(1)],'YData',[0 B3(2)],'ZData',[0 B3(3)]); 

% Transformation of labels 
Bl_t = A * POS_Bl_t.'; 
B2_t = A * P0S_B2_t.'; 
B3_t = A * POS_B3_t.'; 

set(h_Bl_t,'Position',Bl_t) 
set(h_B2_t,'Position',B2_t) 
set(h_B3_t,'Position',B3_t) 

% Transformation of vertices of PANSAT model 
for i = l:size(X_rec(l,:),2) % columns 

for j = l:size(X_rec(:,l),1) % rows 
rec = A * [X_rec(j,i);Y_rec(j,i);Z_rec(j,i)]; 
X_rec_(j , i) = rec(1); 
Y_rec_(j,i) = rec(2); 
Z_rec_(j,i) = rec (3); 

end 
end 

for i = l:size(X_tri(l,:),2) % columns 
for j = l:size(X_tri(:,1),1) % rows 

tri = A * [X_tri(j,i);Y_tri(j,i);Z_tri(j,i)]; 
X_tri_(j,i) = tri(l); 
Y_tri_(j,i) = tri(2); 
Z_tri_(j,i) = tri(3); 

end 
end 

for i = l:size(X_lvi(1,:),2) % columns 
for j = l:size(X_lvi(:,1),1) % rows 

lvi = A * [X_lvi(j,i);Y_lvi(j,i);Z_lvi(j,i)]; 
X_lvi_(j,i) = lvi(l); 
Y_lvi_(j,i) = lvi(2); 
Z_lvi_(j,i) = lvi(3); 

end 
end 

for i = l:size(X_l_base(l,:),2) % columns 
for j = l:size(X_l_base(:,1),1) % rows 

l_base = A * [X_l_base(j,i);Y_l_base(j,i);Z_l_base(j, i) ]; 
X_l_base_(j,i) = l_base(1); 
Y_l_base_(j,i) = l_base(2); 
Z_l_base_(j,i) = l_base(3); 

end 
end 

set(h_rec,'XData',X_rec_,'YData',Y_rec_,'ZData',Z_rec_): 
set(h_tri,'XData',X_tri_,'YData',Y_tri_,'ZData',Z_tri_); 
set(h_lvi,'XData',X_lvi_,'YData',Y_lvi_,'ZData',Z_lvi_); 
set(h_l_base,'XData',X_l_base_,'YData',Y_l_base_,'ZData',Z_l_base_); 
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drawnow 

End of DISPATTD.M 
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DISPATTS.M 
function DISPATTS(); 

% DISPATTS 
% ■ 

% Display of Roll-rate of PANSAT with respect to the Sun 
% (Note that the Angular Velocity Component Aligned with the 
% Solar Vector Cannot Be Detected!) 
% 
% 
% (c) 1998 by Grasi 

%%%%%%%%%%%%%% 
% Data given % 
%%%%%%%%%%%%%% 

c = 1 

% Files containing status data 

if c == 1 

file = 'g:\pansat\data\status\1998-ll-09\all_1998-ll-09_10-24-38.mat'; 

% Parameters after curve fitting 
T = [NaN,NaN,88,87,88,87,NaN,116]; % period 
aO = [NaN,NaN,.0379,.0191,-.0211,.0306,NaN, .1949]; % shift along y axis (1st sine) 
bO = [NaN,NaN,.2287,.2669,-.2824,.2387,NaN,-.0322]; % amplitude 
cO = [NaN,NaN,-1.9626,-3.5644,-8.2818,-.4164,NaN,-7.2803]; % phase shift 
dO = [NaN,NaN,.0020,-.0031,.0033,-.0058,NaN,0]; % shift along y axis (2nd sine) 
eO = [NaN,NaN,.0135,.0080,.0113,.0167,NaN,0]; % amplitude 

elseif c == 2 

file = 'g:\pansat\data\status\1998-ll-17\all_1998-ll-17_06-29-17.mat'; 

% Parameters after curve fitting 
T = [NaN,NaN,59,59,59,60,NaN,79]; 
aO = [NaN,NaN,-.0257,-.0328,-.0031,-.0270,NaN,.1511]; 
bO = [NaN,NaN,.3140,-.3277,-.2947,.2700,NaN,.0349]; 
cO = [NaN,NaN,2.7382,-1.9363,-3.5570,-1.7698,NaN,-2.6115]; 
dO = [NaN,NaN,-.0044,.0029,-.0021,.0541,NaN,0]; 
eO = [NaN,NaN,-.0082,-.0179,-.0030,-.0051,NaN,0]; 

elseif c == 3 

file = 'g:\pansat\data\status\1998-ll-18\all_1998-ll-18_06-23r-44.mat'; 

% Parameters after curve fitting 
T= [NaN,NaN,59,60,59,59,NaN,80]; 
aO = [NaN,NaN,.0149,-.0471,.0070,.0263,NaN,.0983]; 
bO = [NaN,NaN,-.2949,-.3734,.3174,-.2918,NaN,.0436]; 
cO = [NaN,NaN,-7.9227,-3.0005,-7.9994,-6.3863,NaN,-7.1391]; 
dO = [NaN,NaN,-.0001,.0004,-.0008,-.0098,NaN,0]; 
eO = [NaN,NaN,-.0106,.0005,-.0021,-.0107,NaN,0]; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Calculate required variables % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Load status data 
load(file); 
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% Needed variables 
N = 0; t = 0; tE = 0; 

N = size(time(:,l),1); 
t = time(l:N,l)-time(l,l); 
tE = t(N); 

% Or more samples! 
Ts = 3; 
t = 0:Ts:tE; 
N = length(t) 

% Calculate currents at sample points 
cur = zeros(N,8); 
for j = 1:8 

for 1 = 1:N 
cur(l,j) = a0(j) + b0(j).*sin(2*pi./T(j).*t(l) + c0(j)) + d0(j) 

+ e0(j).*sin(2*pi./T(8).*t(l) + c0(8)); 
end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Determine solar vector % 
%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Determine solar vector from solar panel currents 

rSX_ = detsolvX(0,cur); % referred to geometrical axes of PANSAT 

% Calculate azimuth and elevation of Sun in geometrical frame 

for 1 = 1:N 

aS(l,l) = atan(abs(rSX_(l,l)/rSX_(l,3))); % azimuth 

% Determine .azimuth angle ambiguously by observing quadrants 
if sign(rSX_(l,D) == 1 & sign(rSX_(l,3)) == -1 

aS(l,l) = pi - aS(l,l); • 
elseif sign(rSX_(l,D) == -1 & sign(rSX_( 1,3)) == -1 

aS(l,l) = pi + aS(l,l); 
elseif sign(rSX_(l,D) == -1 S. sign(rSX_(l,3)) == 1 

aS(l,l) = 2*pi - aS(l,l); 
end 

dS(l,l) = asin(rSX_(l,2)); % elevation 
end 

%%%%%%%%%%%%%%%%%%% 
% Graphic display % 
%%%%%%%%%%%%%%%%%%% 

% Visibility of PANSAT's model 
vis_PANSAT = 'on'; 

%• Visibility of graph 
vis_graph = 'off; 

% Visibility of Sun line 
vis_sun_l = 'on'; 

% Visibility of lighting 
vis_li = 'on'; 

% Axes visibility 
vis_ax_B = 'on'; 
vis_txt_B = 'on'; 
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% Location of camera 
v_az = 0.5*37.5; % both angles in deg 
v_el = 4*15; 

% Figure 
scr_sz = get(0,'ScreenSize'); 
figure)'Position',[scr_sz(4)/10 scr_sz(4)/10 scr_sz(3)/1.2 scr_sz (4)/1.2]),- 

% Define model of PANSAT (data given in X_, Y_, Z_ - coordinates) 

% cm. is assumed to be located in center of geometry of 26-sided polyhedron, 
% i.e., dimension and mass of LVI is not considered for the visualization 

% Definition of color for panels 
pan_sens = [.96 .16 .53]; % solar panel's equipped with current sensor (deep pink) 
pan_std = [.08 .02 .4]; % standard solar panel, without current sensor (navy blue) 
pan_base = [.96 .16 .53]; % solar panel at base plate, SP5 (deep pink) 
pan_lvi = [.83 .63 .09]; % LVI (gold) 
tri_ldck = [.23 .73 1],- % triangles at lower deck (deep sky blue) 
tri_udck = [.23 .73 1]; % triangles at upper deck (deep sky blue) 

% Vertices of model (polyhedron and lvi) 
vertx = [-9.3 -21.8 9.3;9.3 -21.8 9.3;9.3 -21.8 -9.3;-9.3 -21.8 -9.3;... 

-9.3 -9-3 21.8;   9.3 -9.3 21.8;21.8 -9.3 9.3;21.8 -9.3 -9.3;... 
9.3 -9.3 -21.8;-9.3 -9.3 -21.8;   -21.8 -9.3 -9.3;-21.8 -9.3 9.3;... 
-9.3 9.3 21.8;9.3 9.3 21.8;21.8 9.3 9.3;21.8 9.3 -9.3;9.3 9.3 -21.8;... 
-9.3 9.3 -21.8;-21.8 9.3 -9.3;-21.8 9.3 9.3;-9.3 21.8 9.3;9.3 21.8 9.3;... 
9.3 21.8 -9.3;-9.3 21.8 -9.3]*le-2; % in m 

vertx_lvl = [0 -26.9 11.7;8.3 -26.9 8.3;11.7 -26.9 0,-8.3 -26.9 -8.3;... 
0 -26.9 -11.7,--8.3 -26.9 -8.3;-11.7 -26.9 0;-8.3 -26.9 8.3;0 -21.8 9.1;... 
6.4 -21.8 6.4,-9.1 -21.8 0;6.4 -21.8 -6.4,-0 -21.8 -9.1;-6.4 -21.8 -6.4;... 
-9.1 -21.8 0;-6.4 -21.8 6.4]*le-2; % in m 

% Faces of model 
facs_rec =[126 5;4 1 12 11;3 4 10 9;2 3 8 7;1 2 3 4;6 7 15 14,-5 6 14 13;... 

12 5 13 20;11 12 20 19;10 11 19 18,-9 10 18 17;8 9 17 16;7 8 16 15;... 
19 20 21 24,-13 14 22 21,-21 22 23 24;15 16 23 22;17 18 24 23]; 

facs_tri =[15 12;2 7 6;3 9 8,-4 11 10,-20 13 21;14 15 22;16 17 23;18 19 24]; 
facs_lvi = [1 2 10 9,-2 3 11 10,-3 4 12 11,-4 5 13 12;5 6 14 13; 6 7 15 14;... 

7 8 16 15;8 1 9 16]; 
facs_lvi_base = [1 2 3 4 5 6 7 8;9 10 11 12 13 14 15 16]; 

% Color of faces 
col_rec = [pan_std,-pan_std,-pan_std;pan_sens;tri_ldck;pan_std;pan_sens;  

pan_std;pan_sens;pan_std;pan_sens;pan_std;pan_sens;pan_sens;pan_std; . . . 
pan_sens;pan_std,-pan_std] ; 

col_tri = [tri_ldck;tri_ldck;tri_ldck;tri_ldck;tri_udck;tri_udck;... 
tri_udck;tri_udck]; 

col_lvi = [pan_lvi;pan_lvi;pan_lvi;pan_lvi;pan_lvi;pan_lvi;pan_lvi;pan_lvi]; 

% Handles 
yel =[1 .95 0]; % darker yellow 
h_rec = patch('Vertices',vertx,'Faces',facs_rec,'FaceVertexCData',col_rec,... 

'FaceColor','flat','EdgeColor',yel,'LineWidth',2,'Visible',vis_PANSAT); 
h_tri = patch('Vertices',vertx,'Faces',facs_tri,'FaceVertexCData',col_tri 

'FaceColor', 'flat', 'EdgeColor' ,yel, 'LineWidth' ,2, 'Visible' ,vis_PANSAT) ,- 
h_lvi = patch!'Vertices',vertx_lvi,'Faces',facs_lvi,  

'FaceVertexCData',col_lvi, 'FaceColor','flat','EdgeColor',yel,... 
'LineWidth',2,'Visible',vis_PANSAT); 

h_l_base = patch('Vertices',vertx_lvi,'Faces',facs_lvi_base,... 
'FaceVertexCData',pan_base,'FaceColor', 'flat','EdgeColor',yel,  
'LineWidth',2,'Visible',vis_PANSAT); 

% Lighting properties of model 
set(h_rec, 'FaceLighting', 'flat', 'EdgeLighting', 'flat', 'BackFaceLighting', 'lit') ,- 
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set(h_tri,'FaceLighting','flat','EdgeLighting','flat','BackFaceLighting','lit') , 
set(h_lvi,'FaceLighting','flat','EdgeLighting','flat','BackFaceLighting', 'lit') , 
set(h_l_base,'FaceLighting','flat','EdgeLighting','flat',... 

'BackFaceLighting','reverselit'); 

material dull; % dull or shiny for best results 

% Body fixed axes of PANSAT (geometrical) 
le_B =0.8;  % length in m 
h_Bl = lineCXData',[0 leJB],'YData',[0 0],'ZData 

'LineWidth',1,'Visible',vis_ax_B) 
h_B2 = lineCXData', [0 0], 'YData', [0 

'LineWidth',1,'Visible',vis_ax_B) 
h_B3 = lineCXData', [0 0],'YData', [0 

'LineWidth',1,'Visible',vis_ax_B) 

h_Bl_t = text(le_B+.1,0,0,'XXprime', 
h_B2_t = text(0,le_B+.1,0,'Y\prime', 
h_B3_t = text(0,0,le_B+.l,'Z\prime', 

le_B],'ZData' 

[0 0],'Color' 

[0 0],''Color' 

0],'ZData',[0 le_B],'Color','g', 

Color','y','Visible',vis_txt_B) 
Color','y','Visible',vis_txt_B) 
Color','y','Visible',vis_txt_B) 

% Sun's ray 
le_S = 1.2; % length in m 
h_l_S = lineCXData', [0 0],'YData', [0 0],'ZData', [0 le_S], 

'LineWidth',2,'Visible',vis_sun_l); 
'Color' 

% Add lighting 
h_li = lightCColor','W,'Position',-[0 0 1],... 

'Style','infinite','Visible',vis_li); 

% Change appearance of axes 
axis('square'); 
axis([-.5 1.1 -.5 1.1 -.5 1.1]); 

view(v_az,v_el); 

set(gcf,'Color','k'); 

set(gca,'Color','k','XColor','w','YColor','w','ZColor','w',... 
'XGrid', 'off, 'YGrid', 'off , 'ZGrid', 'off, 'Visible',vis_graph, ... 
'XLabel',text('String','x'),'YLabel',text('String','y'),... 
'ZLabel',text('String','z'),... 
'Title',text('String','Petite Amateur Navy Satellite','Color','y' 
'FontName','Arial','FontSize',17,'FontWeight','bold')); 

setfgca,'CameraUpVectorMode','manual','CameraUpVector',[-1 0 0]); 

for 1 1:N 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Determine attitude of PANSAT % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% DCM for transformation of geometrical axes to Sun directed system 
T_XS_X_1 = [cos(aS(1)),0,-sin(aS(l));0,l,0;sin(aS(l)),0,cos(aS(l))]; 
T_XS_X_2 = [l,0,0;0,cos(dS(D) ,-sin(dS(D) ;0, sin(dS (1)), cos (dS (1)) ] ; 

T_XS_X_ = T_XS_X_2 * T_XS_X_1; 

%%%%%%%%%%%%%%%%% 
% Show attitude % 
%%%%%%%%%%%%%%%%% 
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% Obtain coordinates of axes and labels for animations 

if 1 == 1 

% Get current coordinates of patches of PANSAT model 
X_rec = get(h_rec,'XData'); 
Y_rec = get(h_rec,'YData') 
Z_rec = get(h_rec,'ZData') 

X_tri = get(h_tri,'XData') 
Y_tri = get(h_tri,'YData') 
Z_tri = get(h_tri,'ZData') 

X_lvi = get(h_lvi,'XData') 
Y_lvi = get(h_lvi,'YData') 
Z_lvi = get(h_lvi,'ZData') 

X_l_base = get(h_l_base,'XData') 
Y_l_base = get(h_l_base,'YData') 
Z_l_base = get(h_l_base,'ZData') 

% Get current coordinates of body axes 
X_B1 = get(h_Bl,'XData'); 
Y_B1 = get(h_Bl,'YData'); 
Z_B1 = get(h_Bl,'ZData'); 

X_B2 = get(h_B2,'XData'); 
Y_B2 = get(h_B2,'YData'); 
Z_B2 = get(h_B2,'ZData'); 

X_B3 = get(h_B3,'XData'); 
Y_B3 = get(h_B3,'YData'); 
Z_B3 = get(h_B3,'ZData'); 

% Get current position of body axes labels 
POS_Bl_t = get(h_Bl_t,'Position'); 
P0S_B2_t = get(h_B2_t,'Position'); 
P0S_B3_t = get(h_B3_t,'Position'); 

end % if 

% Display of transformation of body axes to reference axes 

% DCM 
A = T_XS_X_; 

% Transformation of axes 
Bl = A * [X_B1(2);Y_B1(2);Z_B1(2)]; 
B2 = A * [X_B2(2),-Y_B2(2);Z_B2<2)]; 
B3 = A * [X_B3(2) ;Y_B3(2);Z_B3(2)]; 

set(h_Bl,'XData',[0 Bl(1)],'YData',[0 Bl(2)],'ZData',[0 Bl(3)]) 
set(h_B2,'XData',[0 B2(1)],'YData',[0 B2(2)],'ZData',[0 B2(3)]) 
set(h_B3,'XData',[0 B3(1)],'YData',[0 B3(2)],'ZData',[0 B3(3)]) 

% Transformation of labels 
Bl_t = A * POS_Bl_t.'; 
B2_t = A * POS_B2_t.'; 
B3_t = A * POS_B3_t.'; 

set(h_Bl_t,'Position',Bl_t) 
set(h_B2_t,'Position',B2_t) 
set(h_B3_t,'Position',B3_t) 

% Transformation of vertices of PANSAT model 
for i = l:size(X_rec(l,:),2) % columns 

for j = l:size(X_rec(:,l),1) % rows 
rec = A * [X_rec(j,i);Y_rec(j,i);Z_rec(j,i)]; 
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X_rec_(j,i) = rec(l) 
Y_rec_(j,i) = rec(2) 
Z_rec_(j,i) = rec(3) 

end 
end 

for i = l:size(X_tri(l,:),2) % columns 
for j = l:size(X_tri(:,l),1) % rows 

tri = A * [X_tri(j,i);Y_tri(j,i);Z_tri(j,i)]; 
X_tri_(j,i) = tri(l)• 

end 
end 

Y_tri_(j,i) 
Z_tri_(j,i) 

tri(2) 
tri(3) 

for i = l:size(X_lvi(l,:),2) % columns 
for j = l:size(X_lvi(:,l),1) % rows 

lvi = A * [X_lvi(j,i);Y_lvi(j,i);Z_lvi(j,i)]; 
X_lvi_(j,i) = lvi(l); 

lvi<2J; Y_lvi_(j,i) 
Z_lvi_(j,i) = lvi (3) 

end 
end 

for i = l:size(X_l_base(l,:),2) % columns 
for j = l:size(X_l_base(:,l),1) % rows 

l_base = A * [X_l_base(j,i);Y_l_base(j, i);Z_l_base(j,i)]; 
X_l_base_(j,i) = l_base(l); 
Y_l_base_(j,i) = l_base(2); 

l_base(3); Z_l_base_(j,i) 
end 

end 

set(h_rec, 'XData',X_rec_,'YData',Y_rec_,'ZData',Z_rec_); 
set(h_tri,'XData',X_tri_,'YData',Y_tri_,'ZData',Z_tri_); 
set(h_lvi,'XData',X_lvi_,'YData',Y_lvi_,'ZData',Z_lvi_); 
set(h_l_base,'XData',X_l_base_,'YData',Y_l_base_,'ZData',Z_l_base_); 

drawnow 

end % for-loop (1) 

End of DISPATTS.M 
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DEPLOY.MWS 
DEPLOY.MWS, MAPLE V RELEASE 5 
Attitude of PANSAT at deployment 
(c) 1998 by Grasi 
> restart; 
> with(linalg): 
> 
> # data based on PANSAT deployment at MET 0/23:25:59, UT 303:18:45:33 
> 
> # ECI (M50) to Orbiter (body) 
> roll:=evalf(280.45*Pi/180): # roll <+X sense) 
> pitch:=evalf(151.33*Pi/180): # pitch 
> yaw:=evalf(56.39*Pi/180): # yaw 
> 
> Tl:=matrix(3,3,[cos(pitch),0,-sin(pitch), 0,1, 0,sin(pitch),0,cos(pitch)]): 
> T2:=matrix(3,3,[cos(yaw),sin(yaw),0,-sin(yaw),cos(yaw),0,0,0,1]): 
> T3:=matrix(3,3,[1,0,0,0,cos(roll),sin(roll),0,-sin(roll),cos(roll)]): 
> T_0rbiter_ECI:=evalm(T3 &* T2 &* Tl); 
> 
> v_Orbiter:=matrix(3,l,[0,0,-1]): 
> v_ECI:=evalm(transpose(T_Orbiter_ECI) 
> &* v_Orbiter); # solar vector M50 
> 
> 
> # ECI (M50) to LVLH 
> roll:=evalf(117.93*Pi/180): # roll (+X sense) 
> pitch:=evalf(208.34*Pi/180): # pitch 
> yaw:=evalf(333.18*Pi/180): # yaw 
> 
> Tl:=matrix(3,3,[cos(pitch),0,-sin(pitch),0,1,0,sin(pitch),0,cos(pitch)]): 
> T2:=matrix(3,3,[cos(yaw),sin(yaw),0,-sin(yaw),cos(yaw),0,0,0,1]) 
> T3:=matrix(3,3,[1,0,0,0,cos(roll),sin(roll),0,-sin(roll),cos(roll)]): 
> T_LVLH_ECI:=evalm(T3 &* T2 &* Tl) ; 
> 
> 
> # ECI (M50) to LVLH 
> Omega:=evalf(150.83*Pi/180): 
> i:=evalf(28.60*Pi/180): 
> omega:=evalf(11.67*Pi/180): 
> tau:=evalf(320.60*Pi/180): 
> om_tau:=omega+tau: 
> 
> Tl:=matrix(3,3,[cos(Omega),sin(Omega),0,-sin(Omega),cos(Omega),0,0,0,1]): 
> T2:=matrix(3,3,[1,0,0,0,cos(i),sin(i),0,-sin(i),cos(i)]): 
> T3:=matrix(3,3,[cos(om_tau),sin(om_tau),0,-sin(om_tau),cos(om_tau),0,0,0,1]): 
> T_:=matrix(3,3,[0,1,0,0,0,-1,-1,0,0]): 
> T_LVLH_ECI:=evalm(T_ &* T3 &*  T2 &* Tl); 
> 
> 
> # LVLH to Orbiter (body) 
> roll:=evalf(141.63*Pi/180): # roll (+X sense) 
> pitch:=evalf(95.93*Pi/180): # pitch 
> yaw:=evalf(359.91*Pi/180): # yaw 
> 
> Tl:=matrix(3,3,[cos(pitch),0,-sin(pitch),0,1,0,sin(pitch),0,cos(pitch)]): 
> T2:=matrix(3,3,[cos(yaw),sin(yaw),0,-sin(yaw),cos(yaw),0,0,0,1]) : 
> T3:=matrix(3,3,[1,0, 0, 0,cos(roll), sin(roll),0,-sin(roll),cos(roll)]): 
> T_Orbiter_LVLH:=evalm(T3 &* T2 &* Tl); 
> 
> v_Orbiter:=matrix(3,l,[0,0,-1]): 
> v_ECI:=evalm(transpose(T_LVLH_ECI) &* transpose(T_Orbiter_LVLH) &* v_Orbiter);.# solar 
vector M50 
> 
> # Orbiter to PANSAT (geometrical) 
> T_X_Orbiter:=matrix(3,3,[0,1,0,0,0,-1,-1,0,0]): 
> v_X_:=matrix(3,l,[0,1,0]): 
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> v_ECI:=evalm(transpose(T_LVLH_ECI) &*  transpose(T_Orbiter_LVLH) &* 
transpose(T_X_Orbiter) &* v_X_); # solar vector M50 
> 
> 
> # Solar vector at time of deployment 
> epsilon:=evalf(23.44*Pi/180): 
> JD_UT1:=2451117.2816; # GMT 303/18:45:33 @ deployment 
> T_UT1:=(JD_UT1-2451545.0)/36S25; 
> lambda_M_sun:=280.4606+36000.7701*T_UT1: 
> M_sun:=357.5277+35999.0503*T_UT1: 
> lambda_M_sun_:=lambda_M_sun+360: 
> M_sun_:=(M_sun+360)*Pi/180: 
> lambda_ecl:=evalf((lambda_M_sun_+1.9147*sin(M_sun_)+.0200*sin(2*M_sun_))*Pi/180); # 

J2000 
> 
> 
rS_E:=sigma2*matrix(3,l,[sin(lambda_ecl)*cos(epsilon),sin(lambda_ecl)*sin(epsilon),cos(la 

mbda_ecl)]); # J2000 
> T_ECI_S:=matrix(3,3,[0,0,1,1,0,0,0,1,0]): 
> rS_ECI:=evalm(T_ECI_S &* rS_E); # J2000 
> 
> # Transformation of epochs 
> T_J2000_B1950:=matrix(3,3,[.999925679,-.011181483,-.004859004, 
> .011181483,.999937485,-.000027163, 
> .004859004,-.000027170,.999988194]): 
> 
> evalm(inverse (T_J2000_B1950) &* rS_ECI) ,- # solar vector B1950 
> 
> 
> # Beta angle (J2000) 
> epsilon:=23.44*Pi/180: 
> i:=28.46*Pi/180: 
> 
> beta:=arcsin(sin(epsilon)*cos(i)*sin(lambda_ecl)- 
cos(epsilon)*sin(i)*cos(Omega)*sin(lambda_ecl)+sin(i)*sin(Omega)*cos(lambda_ecl)) : 
> evalf(%*180/Pi); # beta angle J2000 
> 
> 
> # Geocentric inertial to geometrical PANSAT (J2000) 
> xil:=evalf(151.91*Pi/180) : 
> xi2:=evalf(28.46*Pi/180): 
> xi3_:=evalf(331.72*Pi/180): 
> 
> Tl:=matrix(3,3,[cos(xil),0,-sin(xil),0,l/0,sin(xil),0,cos(xil)]): 
> T2:=matrix(3,3,[cos(xi2),sin(xi2),0,-sin(xi2),cos(xi2),0,0,0,1]): 
> T3:=matrix(3,3,[cos(xi3_),0,-sin(xi3_),0,1,0,sin(xi3_),0,cos(xi3_)]): 
> T_OQ:=diag(l,-l,-l): 
> 
> T_OS:=evalm(T_OQ &* T3 &* T2 &* Tl); 
> 
> zetal:=evalf(355.28*Pi/180): 
> zeta2:=evalf(3.61*Pi/180) : 
> zeta3:=evalf(308.23*Pi/180): 

> T_3:=matrix(3,3,[cos(zeta3),sin(zeta3),0,-sin(zeta3),cos(zeta3),0,0,0,1]) 
> T_2:=matrix(3,3,[cos(zeta2),0,-sin(zeta2),0,1,0,sin(zeta2),0,cos(zeta2)]) 
> T_l:=matrix(3,3,[1,0,0, 0,cos(zetal),sin(zetal),0,-sin(zetal),cos(zetal)]) 
> 
> T_X_0:=evalm(T_l &* T_2 &* T_3); 
> 
> T_X_S:=evalm(T_X_0 &* T_OS); 
> 
> v_S:=evalm(transpose(T_X_S) &* v_X_); # solar vector J2000 
> v_S:=evalm(transpose(T_J2000_B1950) &* transpose(T_X_S) &* v_X_); # solar vector B1950 
> 
> 
> # Solar vector referred to orbit-plane axes   (J2000) 
> r2_0:=evalm(T_OS &* r2_S); 
> 
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> r2_0_:=matrix(3,l,[.7777618040, .6229351894,0]): 
> Ol:=vector([1,0,0]): 
> evalf(angle(convert(r2_Ow,vector),Ol)*180/Pi); # beta angle (J2000) 
> 
> # Axis Y_ referred to orbit-plane (should be pointing to sun) 
> Y_:=matrix(3,l,[0,1,0]): 
> 02:=evalm(transpose(T_X_0) &* Y_); 
> evalf (angle(convert (02,vector) ,01) *180/Pi),- # beta angle (J2000) 
> 

End of DEPLOY.MWS 
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BODYAXES.MWS 
BODYAXES.M,  MAPLE V RELEASE 5 
Determination of Principal Axes of PANSAT by Solving Eigenvalue Problem 
(c) 1998 by Grasi 
> 
> restart; 
> with(linalg): with(plots): 
> 
DETERMINATION OF BODY AXES 
> 
Data given 
Coordinates of center of mass (cm.) referred to PANSAT's X, Y, Z-System as determined at 
NASA GSFC 
> xs:=.le-2; 
> ys:=23.2e-2; 
> zs:=-.2e-2; 
> 
Moments of inertia (referred to X_,Y_,Z_-system; based on CAD model) 
> Ix_:=1.299; 
> Iy_:=.976; 
> Iz_:=1.421; 
> Ixy_:=-.001; 
> Iyz_:=.003; 
> Izx_:=.003; 
> 
Inertia tensor (referred to X_,Y_,Z_-system) 
> Iyx_:=Ixy_: Izy_:=Iyz_: Ixz_:=Izx_: 
> I_:=matrix([[Ix_,-Ixy_,-Ixz_],[-Iyx_,Iy_,-Iyz_],[-Izx_,-Izy_,Iz_]]); 
> 
Transformation to principal moments of inertia (eigenvalue problem) 
Eigenvalues (correspond to principal moments of inertia) 
> EW:=eigenvals(I_); 
> 
Eigenvectors (correspond to principal axes) 
> EV:=eigenvects(l_); 
> 
Arranging eigenvalues in order of quantity and relate eigenvectors to eigenvalues 
> lam:=[seq(EV[i][1],i=l..3)]: 
> ew:=-sort(-lam); 
> for i from 1 to 3 do 
> for j from 1 to 3 do 
> if ew[i] = EV[j][l] then 
> ev[i]:=normalize(EV[j][3][1]); ■ 
> print(ev[i]); 
> fi; 
> 0d; 
> Od; 
> 
Plot of principal axes system (correspond to body axes Bl, B2, B3) 
> data_ev:=seq(eval<ev[i]),i=l..3); 
> p_ev:=pointplot3d([data_ev],color=cyan,shading=none): 
> datal:=seq([ev[l][l]*j,ev[l][2)*j,ev[l][3]*j],j=0..1): 
> pl:=pointplot3d([datal],style=line,color=blue): 
> data2:=seq([ev[2][l]*j,ev[2][2]*j,ev[2][3]*j] , j=0..1): 
> p2:=pointplot3d([data2], style=line,color=re<3): 
> data3:=seq([ev[3][l]*j,ev[3][2]*j,ev[3][3]*j], j=0..1) : 
> p3:=pointplot3d([data3],style=line,color=green): 
> pl_0:=pointplot3d([-xs,-ys,-zs],color=red): 
> 
display(p_ev,pi,p2,p3,pl_0,axes=normal,scaling=constrained,labels=[X_,Y_,Z_],orientation= 
[30,80]); 
> 
display(p_ev,pi,p2,p3,pl_0,axes=normal,sealing=constrained,labels=[X_,Y_,Z_],orientation= 
[0,90]); 
> 
display(p_ev,pi,p2,p3,pl_0,axes=normal,scaling=constrained,labels=[X_,Y_,Z_],orientation= 
[90,90]); 
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display(pi,p2,p3,pl_0,axes=normal,scaling=constrained,labels=[X_,Y_,Z_],orientation=[90,0 
]); 
> 
Calculation of rotation angles (between X_,Y_,Z_-system and body axes) 
> theta_xl:=angle (vector ([ev[l][2],ev[l][3]]),vector([0,1])): 
> theta_x2:=angle(vector([ev[3][2],ev[3][3]]),vector)[-1,0]) ] 
> theta_x: = (theta_xl+theta_x2)12;  evalf(%*180/Pi); 
> 
> theta_yl: 
> theta_y2: 
> theta_y:= 
> 
> theta_zl: 
> theta_z2: 
> theta_z:= 

=angle(vector([ev[l][l],ev[l][3]]).vector([0,1])) 
=angle(vector![ev[2][1],ev[2][3]]),vector([-1, 0]) 
(theta_yl+theta_y2)/2; evalf(%*180/Pi) ; 

=angle(vector([ev[3][1],ev[3][2]]).vector([0,-1]) 
=angle(vector([ev[2][l],ev[2][2]]),vector([-1,0]) 
(theta_zl+theta_z2)/2; evalf(%*180/Pi) ; 

End of BODYAXES.MWS 
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CURVFIT.MWS 
CURVFIT.MWS, MAPLE V RELEASE 5 
Curve Fitting of Solar Panel Currents Using Least Squares Methods 
(c) 1998 by Grasi 
> 
> restart; 
> with(linalg) : with(plots): 
> 
Load file 
> fn:=fopen('_cf.txt',READ): 
> N:=; # number of samples 
> for i from 1 to N do 
> lst_[i]:=fscanf(fn,'%d %f %f %f %f %f %f %f %f); 
> od: 
> fclose(fn); 
> 1st:=convert(lst_,array): 
> 
Input parameters (period, weights) 
> n_cur:=; # current of interest 
> # SP7 (n_cur =3) 
> T[4]: = : 
> W4:=matrix(l,N,[]): 
> 
> # SP9 (n_cur = 4) 
> T[5]:=: 
> W5:=matrix(l,N,[]): 
> 
> # SP11 (n_cur =5) 
> T[6]:=: 
> W6:=matrix(l,N,[]): 
> 
> # SP13 (n_cur = 6) 
> T[7]:=: 
> W7:=matrix(l,N, []) : 
> 
> # SP16 (n_cur = 8) 
> T[9]:=181: 
> W9:=matrix(l,N,[]): 
> 
> W:=matrix(9,N,0): 
> copyinto(W4,W,4,1) : 
> copyinto(W5,W,5,1): 
> copyinto(W6,W,6,1): 
> copyinto(W7,W,7,1) : 
> copyinto(W9, W, 9,1) : 
> 
> for k from 1 to N do 
> y_[k]:=lst[k][n]: 
> t_[k]:=lst[k][1]: 
> od: 
> 
> 
> n:=n_cur+l: 
> y:=convert(y_,array); 
> t:=convert(t_,array); 
> 
> f:=; # one (f = 0) or two (f = 1) sines to fit 
> 
Least squares algorithm 
> if f = 0 then 
> J:=sum(W[n,j]*(y[j]-aO-bO*sin((2*Pi/T[n))*t[j]+cO))Ä2,j=l--N) : 
> eql:=diff(J,aO): 
> eq2:=diff(J,b0) 
> eq3:=diff(J,c0) 
> 
> elif f = 1 then 
> a0:=; c0:=; f0:=; # determined by fitting one sine (f = 0) 
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> 
> J:=sum(W[n,j]*(y[j]-aO-bO*sin((2*Pi/T[n])*t[j]+cO)-dO- 
eO*sin((2*Pi/T[9])*t[j]+fO))A2,j=l..N): 
> eq2:=diff(J,bO): 
> eq4:=diff(J,dO): 
> eq5:=diff(J,eO): 
> fi: 
> 
> if f = 0 then 
> sol:=fsolve({eql,eq2,eq3},{aO,bO,cO}); 
> elif f = 1 then 
> sol:=fsolve({eq2,eq4,eq5},{bO,dO,eO}); 
> fi; 
> 
Plot results (fitted current) 
> data_t:=seq(t[i] ,i=l. .N): 
> data_y:=seq(y[i],i=l..N): 
> 
> dat_pll:=seq([data_t[k],data_y[k]],k=l..N): 
> pll:=plot([dat_pll],style=line,color=red): 
> dat_pl2:=seq([W[n,k]*data_t[k],W[n,k]*data_y[k]],k=l..N): 
> pl2:=plot([dat_pl2],style=point,color=black): 
> dat_pl3:=seq([data_t[k],data_yf[k]],k=l..N): 
> pl3:=plot([dat_pl2],style=point,color=blue): 
> 
> if f = 0 then 
> 
> data_yf:=seq(subs(sol,aO)+subs(sol,bO)*sin(2*Pi/T[n]*t[j]+subs(sol,cO)),j=l. .N) : 
> 
pl4:'=plot (subs (sol,aO)+subs(sol,bO)*sin(2*Pi/T[n]*q+subs (sol, cO)) ,q=l. -t[N] ,color=blue) : 
> elif f = 1 then 
> 
data_yf:=seq(subs(sol,aO)+subs(sol,bO)*siri(2*Pi/T[n]*t[j]+subs(sol,cO))+subs (sol,dO)+subs 
(sol,eO)*sin(2*Pi/T[9]*t[j]+subs(sol,fO)), j=l..N): 
> 
pl4:=plot(subs(sol,aO)+subs(sol,bO)*sin(2*Pi/T[n]*q+subs(sol, cO))+subs(sol,dO)+subs(sol,e 
0)*sin(2*Pi/T[9]*q+subs(sol,fO)),q=l..t[N],color=blue): 
> 
> fi: 
> 
> d:=0; 
> if d = 0 then 
> display(pll,pl2,pl3,pl4); 
> elif d = 1 then 
> display (pll, pl4) ,- 
> fi; 

End of CURVFIT.MWS 
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GLOSSARY OF SYMBOLS 

Latin Symbols 

a semi-major axis 

a0 vertical shift (of a sine) 

A area 

b semi-minor axis 

bo amplitude (of a sine) 

B body axis 

B* ballistic coefficient and perigee density 

B body axis vector 

linear momentum vector 

Co phase shift (of a sine) 

C proportional factor 

CD drag coefficient 

d differential 

distance 

do vertical shift (of a sine) 

d partial differential 

e eccentricity 

eo amplitude (of a sine) 

e eigenvector 

axis of rotation 

E eccentric anomaly 

total energy 

E identity matrix 

f frequency 

fs sampling frequency 

scale factor 

m 

m2 

m 

m-1 

Ns 

1 

1 

m 

rad 

J 

Hz (s-1) 

Hz (s-1) 

1 
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h phase shift (of a sine) 

F external force 

F Earth-Centered, Earth-Fixed (ECEF) axis 

F external force vector 

ECEF axis vector 

9 acceleration at the Earth's surface 

H topocentric horizon axis 

H vector 

/ index 

/ moment of inertia 

current 

Id inherent degradation 

1 inertia tensor 

J Bessel function 

loss function 

JD Julian Date 

K Earth's gravitational constant 

1 length 

L angular momentum 

L angular momentum vector 

m mass 

M external torque 

mean anomaly 

M vector of external torque 

n mean motion 

h mean motion rate 

h mean motion acceleration 

N upper boundary (in a sum) 

number of samples 

0 orbit-plane axis 

N 

N 

m/s2 

kgm2 

A 

1 

kg m2 

days 

m3/s2 

m 

Nm s 

Nm s 

kg 

Nm 

rad 

Nm 

s-1 

s"2 

s3 

1 

1 

186 



0 vector of orbit-plane axes 

<h vector component of a quaternion 

Q2 vector component of a quaternion 

<7s vector component of a quaternion 

QA scalar part of a quaternion 

q vector part of a quaternion 

Q quaternion 

Q skew-symmetric matrix 

r radius 

r displacement vector from cm. to c.p. 

position vector 

rs solar vector 

S solar constant 

S geocentric inertial axis 

s vector 

t time 

T period 

kinetic energy 

TUTI number of Julian centuries 

t direction cosine matrix (DCM) 

Ts sampling period 

To orbit period 

u unit vector component 

u unit vector (first axis direction) 

U voltage 

potential energy 

UT universal time (mean solar time at Greenwich) 

UTC coordinated universal time 

UTQ universal time (uncorrected) 

UT\ universal time (corrected for UTO) 
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m 

m 

m 

m 

W/m2 

s 

s 

J 

s 

s 

V 

J 

hh:mm:ss 

hh:mm:ss 

hh:mm:ss 

hh:mm:ss 



v        velocity m/s 

unit vector component 

Y velocity vector m/s 

unit vector (second axis direction) 

w        unit vector component 

weight factor 1 

W        unit vector (third axis direction) 

X        coordinate variable m 

coordinate axis (M50, LVLH or orbiter) 

X vector 

X        x axis of a coordinate system fixed to the satellite 

X        vector 

X'       x axis of a coordinate system fixed to satellite with origin at cm. 

X'       vector 

y        coordinate variable m 

coordinate axis (M50, LVLH or orbiter) 

yt        true value 

Y y axis of a coordinate system fixed to the satellite 

Y vector 

Y'       y axis of a coordinate system fixed to satellite with origin at cm. 

Y'        vector 

z        coordinate variable m 

coordinate axis (M50, LVLH or orbiter) 

Z z axis of a coordinate system fixed to the satellite 

Z        vector 

71        z axis of a coordinate system fixed to satellite with origin at cm. 

Z'       vector 

Greek Symbols 

a       Euler angle °, rad 
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azimuth °, rad 

ob angle between observer's meridian and line of equinoxes °, rad 

fi beta angle (angle between orbit-plane and Sun line) °, rad 

7 angle °, rad 

r sun incidence angle °, rad 

s angle °, rad 

elevation °, rad 

6 mean angle °, rad 

A delta (difference in sth.) - 

£ obliquity of the ecliptic °, rad 

i deviation angle of orbit-plane axis from body axis °, rad 

? vector °, rad 

£ uncoupled angular velocity of body axis °/s, rad/s 

K vector °/s, rad/s 

C uncoupled angular acceleration of body axis °/s2, rad/s2 

i vector 7s2, rad/s2 

r\ rotation angle (for coordinate transformation) °, rad 

efficiency 1 

0 temperature °C 

e angle in equatorial plane rad 

A   . eigenvalue - 

longitude °,rad 

t Euler angle to transform geocentric inertial to orbit-plane axis °,rad 

6 right ascension of the ascending node (RAAS) °, rad 

& orbit inclination °, rad 

6 argument of perigee °, rad 

£ = & + T °, rad 
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Ä change in right ascension of the ascending node (RAAS) 7s2, rad/s2 

(2 
change in orbit inclination °/s2, rad/s2 

& change in argument of perigee °/s2, rad/s2 

la = 4 7s2, rad/s2 

tf 3.1415... - 

P atmospheric density kg/m3 

<J distance from center of Earth to satellite (cm.) m 

T true anomaly rad 

fl> geodetic (geographic) latitude 7s, rad/s 

<D angle of rotation (eigenvalue) rad 

CD angular velocity 7s, rad/s 

radian frequency rad/s 

Ü)E Earth's mean angular rotation rad/solar s 

Q) angular acceleration 7s2, rad/s2 

U) angular velocity vector 7s, rad/s 

Superscripts 

cm. center of mass 

C. p. center of pressure 

F referred to inertial system 

T transpose (of a vector, matrix) 

' referred to cm. 

rotated position of an axis/vector 

" rotated position of an axis/vector after two successive rotations 

Subscripts 

a aerodynamic (force, torque) 

Bj along body axes 
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BO transformation from orbit-plane axes to body axes 

BR body axes referred to orbit-plane axes 

BX' transformation from geometrical axes (ref. to cm.) to body axes 

B1950 B1950 epoch 

CV cover (panel) 

eel ecliptic 

E (referred to) Earth 

ECI Earth-centered inertial 

EPS electrical power system 

f fitted (estimated) value by a least squares method 

9 gravity-gradient (force, torque) 

GST Greenwich sidereal time 

h horizontal 

HS transformation of geocentric inertial to topocentric horizon system 

i index 

J2000 J2000 epoch 

LOCK lower deck (panel) 

LST local sidereal time 

LVI launch vehicle interface 

LVLH local-vertical, local horizontal 

m measured 

MS mass storage 

M50 ECI system referred to mean equinox of 1950 

n normalized 

N Nyquist 

0 orbit 

orbit-plane (reference system) 

OA overall 

OS transformation of geocentric inertial to orbit-plane axes 

Out output 
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p pitch 

PH polyhedron 

PYR pitch-yaw-roll (sequence) 

rot rotational 

R reference system 

roll 

S solar, Sun 

sampling 

(referred to) geocentric inertial system 

SCB spacecraft bus 

SP solar panel 

t true 

trans translational 

TMUX temperature multiplexer 

TP top (panel) 

UDCK upper deck (panel) 

L/T1 universal time (corrected of UTO) 

X' (referred to) geometrical axes 

Y yaw 

r (referred to) geometrical axes 

z (referred to) geometrical axes 

0 at 0 h 0 min 0 s 

CO (referred to) angular velocity 

I Figure E.l 

II Figure E.2 
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