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PREFACE 

Astrophysical and Geophysical Flows as Dynamical Systems was the theme of the 1998 
GFD Summer Program. With Antonello Provenzale at the helm we sailed headlong into the 
nonlinear world of astrophysical and geophysical fluid mechanics. Simultaneously, Charles 
Tresser gave several energetic presentations surrounding the dynamics of circle maps. 

Unfortunately our third planned speaker, John David Crawford, fell ill just prior to the 
program and could not participate. Sadly, John David passed away later in the summer. We will 
remember him at GFD from the excellent lectures he gave at the cottage during the summer of 

1993. 

In a departure from usual practice, and in an effort to lend more coherence to the, at 
times, very wide ranging topics discussed at Walsh, GFD '98 included three "theme weeks." The 
first, championed by Steve Meacham, organized a week long series of lectures on climate 
dynamics. Alastair Rucklidge subsequently gathered together several experts on bifurcation and 
pattern theory. Lastly, Diego del Castillo-Negrete organized the "Mixing Week." These themes, 
and especially the third, proved so popular that we doubled the total number of visitors to the 
program. 

In tandem to the extensive seminar schedule, the Fellows progressed significantly in their 
projects; their reports reflect the impressive progress made. Overall, I believe that 1998 was a 
particularly productive summer. 

Of the participants, Steve Meacham and Eric Chassignet deserve special mention for the 
maintainance of the computer network. Mike Shelley was voted by the Fellows to be the most 
helpful "tool" amongst the staff.   Jean-Luc Thiffeault and Joe Biello were especially appreciated 
by the Fellows and greatly assisted with the preparation of the GFD proceedings. Lastly, I am 
indebted to Lee Anne Campbell, the real organizer of the summer. It is also my pleasure to 
acknowledge the support of the Woods Hole Oceanographic Institution, especially John 
Farrington and the Education Office, and the National Science Foundation and the Office of 
Naval Research for the financial backing of the program. 

Finally, this summer saw the election of Philip J. Morrison to the GFD Steering 
Committee. I emphasize that this decision was not solely due to his expertise at softball. 

N. J. Balmforth 
Director 
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Lecture 1 

Fundamentals 

1.1    Introduction 

Even though our limited perceptions provide us with only a brief glimpse of the Universe, 
the main lesson that we learn from our observation is that the world is complicated. Very 
complicated. Every part of the universe interacts with the other parts; the responses of each 
component are never proportional to the applied forces, and the feedbacks of one subsystem on 
another cannot be discarded. As a result, processes are unpredictable, and chaotic behavior is 
a common occurrence. Disorder and turbulence become rife. Yet from the chaotic background, 
coherent structures sometimes emerge, patterns form, and local order is generated. 

In the face of the wealth of phenomena, the myriad of details and the richness of quality 
and quantity, the quest for scientific understanding might seem to be a hopeless endeavour. 
Perhaps it is a fundamental human flaw that leads us to challenge this point of view. But 
challenge it we do. And at end of our struggles, perhaps we will find some comfort in judging 
how far we have come, and how infinitely further we could continue. At the very least, it may 
cure the crisis of mid-life. Thus, even if it may be pointless to try to describe what can happen 
in the universe, in these lecture notes, for reasons obscured to all but the fellows, we begin to 
do so. 

There are indeed several ways of approaching the overwelming complexity of nature. One 
is simply to observe the natural world, and make quantitative measurements. This is what is 
often done in astrophysics and geophysics, where little or no control can be obtained on the 
system under study. But this approach is always limited if we have no scientific framework 
with which we can rationalize the observations. 

The other approaches seek to establish some foundation on which to build our understand- 
ing. But to build such a foundation, we must meet head-on the complexity of the problems 
we seek to explain, and this constitutes an impossible undertaking: we cannot study the full 
complexity of things by a unique approach, and sometimes we do not even know whether there 
is a meaningful "universal law" behind the observations (as in biological evolution or human 
psychology). 

Instead, we progress like ancient Romans; we divide, then conquer. Put more scientifically, 



we begin by isolating some natural phenomenon, separating parts of a whole that should 
probably stay together. Moreover, we simply ignore most of the physical ingredients and deal 
only with those parts that can be couched as mathematical problems. Then we formulate 
idealized problems that model what we deem to be the most essential pieces of the selected 
phenomena. Finally, we attempt to solve those simple models. In other words, we conjure 
incomplete images of the real world, then disect them. 

More troubles, however, arise. For many systems, we do not have a clean mathematical 
formulation of the problem (such as in problems of landscape evolution, or earthquake dy- 
namics, or sociology). In other instances, even though we deal with problems that can be 
couched in terms of mathematical equations, we are not always able to solve them in their 
full generality. This is especially true in geophysics (and sometimes in astrophysics), where we 
believe that fluid mechanics offers a formalism to understand the atmosphere and oceans: the 
Navier-Stokes equations have been known for two centuries, but we have yet to solve them. 
Thus, even our attempts to divide and conquer run into trouble. 

These fundamental difficulties lead to a division in scientific ideology regarding how one 
should approach the idealized problems. As Ed Spiegel pleasantly puts it, one ideology suggests 
a method that is championed by the "slobs", the other to methods advocated by the "bores". 

The first methodology involves efforts to incorporate as much as possible. The tools are 
numerical simulation and big computers; the results are GCMs, numerical climate models, 
galaxies of point particles, and stars made of treacle. In these hi-tech approaches, researchers 
invent a new, virtual world, wherein they perform sophisticated numerical simulations that 
incorporate as many aspect of reality as possible - and parametrize those which are left out. 
But with the mass of the included details comes an unweildiness, an inability to truly assess 
the robustness of solutions, and even at times to correctly solve the equations. 

The second ideology could be described as escapism. We abstract even more from the 
physics, idealize yet further, until we arrive at a problem that, though totally divorced from 
reality, can be solved precisely and elegantly. The solutions may not be relevant to the problem 
that motivated the mathematical analysis, but it is pretty, inexpensive and very alluring. 

Of course, this description makes mockery of the two approaches. But there are dangers 
in the two ideologies, and perhaps this mockery will make the reader aware of their respective 
pitfalls. From a different perspective, both methodologies amount to true attempts to learn 
about the real world. And any serious explanation should no doubt consist of both. There are 
settings in which one may be more useful than the other, and instances in which real progress 
can only be made when the two methods are used in concert. 

As in true Walsh Cottage Tradition, the lecture notes that follow are devoted to an ap- 
proach that more closely follows the second ideology. In particular, we shall explore a few 
simplified - in fact, always oversimplified - models of various geophysical and astrophysical 
processes, mainly using concepts from dynamical system theory. In such an effort, we do not 
expect to find quantitative correspondence between the models and reality, but we aim at 
understanding some aspects of some of the main processes at work, possibly estimating their 
respective roles and importance. And, perhaps surprisingly, from time to time we hope that 
we succeed in understanding something of the complicated Universe that surrounds us. 



1.2    Some elementary dynamical systems theory 

There are many books devoted to the properties of dynamical systems (e.g. Drazin 1992; Ott 
1993; Ott et al. 1994). Here, we simply mention some of the relevant concepts which will be 
used in the rest of the lectures. 

A dynamical system is a mathematical model or law, 

Xt M-Xi+(5t = $ft(Xt), (1.1) 

where Xt is a vector of variables that completely describes the state of the system at time t, 

xt^(x?\x?\xl5\...,xlN\ xte >N (1.2) 

and Xt+st is the state of the system at time * + 5t. The particular choice of state variables 
is dictated by the nature of the system. For example, in thermodynamics of ideal gases we 
might choose temperature, pressure and volume as dynamical variables. 

X t+dt 

x. 

Figure 1.1: A trajectory in phase space 

The state of the system at any time may be represented by a point in phase space; that is, 
an iV-dimensional space spanned by the N dynamical variables. The number of degrees of 
freedom (DOF) of a system is defined by the dimensionality of its phase space (N). 

Example:  The logistic map    One of the most commonly used examples of a chaotic dy- 
namical system is the logistic map (see Fig. 1.2): 

Xn+i   =   4aXn(l — Xn), 

0 < Xn < 1   ,   0 < a < 1. (1.3) 

This system has been used in applications as diverse as describing insect population outbreaks 
and the generation of pseudo-random numbers. The behavior of the system depends on the 
value of the parameter a, which determines the height of the parabola (c.f. oi, o2, a3 in Fig. 



1.2). An important characteristic of this system is that, for sufficiently large a, the time series 
of Xn is chaotic and two points with similar initial conditions may not remain close under 
iteration of the map. That is, there is sensitive dependence on initial condition. 

X n+1 

Figure 1.2: La mappa logistica. The logistic map. The dotted lines show sample evolution 
sequences. For smaller values of a, such as ai, the system iterates to X = 0. For larger a 
(like 02) the system converges to the nontrivial fixed point. At the largest values of a (as), 
the system is chaotic, with initial close trajectories from nearby initial conditions diverging 
exponentially quickly. 

1.2.1    Linear versus nonlinear dynamics 

A crucially important feature of the logistic map that is essential in creating complicated 
dynamics is nonlinearity. This highights the fact that nonlinear systems are fundamentally 
different from linear ones. 

A linear system may be considered to have outputs which are proportional to its inputs. 
This leads to a relatively simple range of dynamical behaviour. By contrast, a nonlinear system 
does not in general obey this law of proportionality. In other words, the evolution law of a 
nonlinear system cannot be expressed in terms of a linear transformation of a previous state: 
X.t+st = f(Xt) 7^ M • X4, for some matrix or linear operator (M). 

For nonlinear systems, the principle of superposition does not, in general, hold. That is, 
if we are given two solutions Xt and Yt of a nonlinear system, aXt + ßYt is not necessarily a 
solution. 

Nonlinear systems may exhibit many types of temporal evolution, depending on the struc- 
ture of the system. The behaviour can be a simple as the relaxation to an equilibrium or a 
fixed point, for which X(i + 5t) = X(t). Linear systems can also display this behaviour, but 



a key difference in a nonlinear system is that there can be multiple equilibria. 
Another simple solution to a nonlinear system is a periodic orbit. These reflect oscillations 

of the system and are again familiar from linear dynamics. But the evolution of a nonlinear 
system can be substantially more complicated. Notably, it can be chaotic. 

1.2.2 Determinism and randomness 

An important distinction between dynamical systems surrounds whether the dynamics is com- 
pletely deterministic, or whether the evolution proceeds at least partly as a result of stochastic 
effects. 

For deterministic dynamical systems, if we are given an initial state Xt, then the state 
at some later time, Xt+st, is uniquely determined via the evolution law. This property of 
uniqueness implies that for deterministic systems, trajectories in phase space may never cross 
at finite time. 

For stochastic dynamical systems, only the probability P(Xt+st) may be determined from 
the knowledge of Xt, and trajectories in phase space may cross. It is sometimes useful to 
consider deterministic dynamical systems as stochastic ones simply because we do not possess 
a full description of all the variables, or if the system has many degrees of freedom and it proves 
more expedient to eliminate some variables and treat the system as if it were stochastic. 

1.2.3 Types of Dynamical Systems 

Dynamical systems come in many different shapes and forms, and it is often convenient to 
introduce some sort of classification scheme. So we do here. 

The simplest types of dynamical systems are those for which the evolution law takes the 
form of a simple algebraic operation. Such an operation arises when we consider systems in 
which time is discrete. Then, 

Xt+i = /(Xt) (1-4) 

where X €RN, and /(Xt) is a known algebraic function. Such dynamical systems are often 
called "maps of the interval" if there is a single dependent variable, or "maps of the plane" (for 
two such variables), or simply "maps". The logistic map that we have already encountered is 
one of the canonical examples of a one-dimensioanl map. Discrete-time systems are not always 
maps of RN into itself. Cellular automata and games of life are also discrete-time dynamical 
systems. 

When the time variable is continuous, the evolution law of the dynamical system takes the 
form of a set of differential equations. Then we deal with continuous-time dynamical systems, 
the simplest examples of which are governed by ordinary differential equations: 

^ = X = P(X), (1.5) 

with X G RN and F(X) again a prescribed function. Typically we solve the system as an 
initial-value problem with the image in mind of the system evolving from some known initial 
state. Much of lecture 2 will be concerned with these kinds of systems. 



ODEs of the form (1.5) are finite dimensional; the solutions can be envisioned as orbits 
within a space of N—dimensions. More complicated continuous-time dynamical systems have 
infinite dimension. Two commonly encountered examples of such systems are delay-differential 
equations and partial-differential systems. 

The evolution law for delay-differential equations contains the entire history of the trajec- 
tory: 

^= /"K[X(*V]< (1-6) 
at      Jo 

where K[X(t),t] is a known kernel. Such models usually arise in systems with long-term 
memory. 

Partial differential equations (PDEs) may be expressed as 

?£ = K[iü,VU,-], (1-7) 

where V is the gradient operator in the spatial variables. Along with the spatial dimen- 
sions come a variety of boundary conditions. An example relevant to these lectures is two- 
dimensional Navier-Stokes flow: 

| + [^] = ^VV (1.8) 

where o> = V2ip is vorticity and ip is the stream function. 
Solutions to continuous-time dynamical systems can be described as trajectories in the 

phase space that begin from a single point characterizing the initial condition. The set of 
all possible trajectories can be thought of as defining a velocity field, u = dX/dt in the 
phase space. For this reason, continuous-time dynamical systems are sometimes referred to as 
"flows". 

Finally, stochastic systems are described by equations where a random term enters the 
dynamics. A classic example is the linear Langevin equation (or Ornstein-Uhlenbeck process) 

du = ~dt + ^dW, (1.9) 

where T is a decorrelation time for the random variable u, a2 is the variance of u and dW 
is a random white noise term characterized by (dW) = 0 and (dW(t)dW{t')) = 2dtö{t - 
t'). Here, (...) indicates ensemble average. System (1.9) generates a time series u{t) with a 
gaussian amplitude distribution p(u) and exponentially decaying autocorrelation, (u{t)u(t + 
r)) oc exp(-r/T). Given the present state of such a stochastic system, say «(0), we cannot 
determine its future state precisely. We can just determine the probability of a future state 
given the present one, i.e., P[u\u(0)]. Nonlinear stochastic processes are also possible. First- 
order (in time) nonlinear processes take the general form 

dv = f{v)dt + g(v)dW, (1.10) 

where dW is still a white-noise process (Wiener process). For such a model, the probabil- 
ity distribution p(v) is not necessarily gaussian. We shall encounter one of these nonlinear 
stochastic systems in Lecture 3. 
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1.2.4    Conservative dynamical systems 

A dynamical system is called conservative if there is a quantity E(Xt) which is constant during 
the evolution: 

E = 0. (1-11) 

This implies that the system dynamics takes place on a manifold with dimension N-1, defined 

by E = constant. 
Conservative systems are referred to as Hamiltonian systems if they can be written in the 

form, 

H = E 
• _ ÖH 
1j — dPi 

Pj —        dqj 

,3 = 1,-, 
N 
2' 

(1.12) 

where q and p are canonically conjugate variables. For such a system, the number of degrees 
of freedom is traditionally defined as JV/2, i.e., as the number of pairs of canonically conjugate 

variables. 
Dynamical systems of the form X = F(X) preserve phase-space volume if 

V-P = 0. (1-13) 

To see this, let us take the Taylor expansion of a solution X(i + h) for small h: 

X(t + h) = X{t) + h-K{t) + o{h). (1.14) 

Note that o{h) refers to terms with powers of h greater than one, including fractional powers. 
The time evolution of a volume element is described by the determinant of the Jacobian matrix 
aal-'ff) ■ This is given by 

detJ   =   det 

=   det \ Sij + h 

fdXj(t + h)\ 
\ dXj(t)  ] 

=   l + h V-F + o(/i). 

For example, in two-dimensional flow, after discarding terms o(h), 

detJ   = 

1 + dXi n ax2
n 

dXin 1 + dF2 

dX2 
h 

(1.15) 

(1.16) 

l + h 
dXi -H) -ti 2

 dFx dF2 

8X2 dXi 

l + h\W[ + M)- (1.17) 



Thus if V • F = 0 then det J = 1 and the phase space volume does not change. 
The existence of a conserved quantity, E, and volume preservation in phase space are 

independent properties of dynamical systems. However, many conservative systems of physical 
interest are also characterized by preservation of volumes in phase space. If the system does 
preserve volume, then the associated velocity field of the flow, u = dx/dt, is incompressible. 

1.2.5    Dissipative dynamical systems 

Dissipative systems are those for which the volume of phase space occupied by a set of initial 
conditions is not conserved, and, in fact, decreases over the course of time: V • F < 0. In other 
words, the flow of the dynamical system is contracting. Provided the system is bound, then 
this contraction implies that, as t -> oo, the motion becomes confined to a set A with zero 
volume in phase space and dimension D < N. This set is an "attractor" of the system. 

Two useful concepts are the following: 
Invariant Set: An invariant set A is one which maps to itself under the flow: A -» A. 
Attracting Set: An invariant set A is an attracting set (an attractor) if there exists a set B 

with non-zero measure, A C B, such that B -> A. B is called the basin of attraction of A. 
In dissipative systems there can be many qualitatively different types of attractors. The 

most commonly encountered attractors are: 
• Fixed points 
• Limit cycles 
• Quasi-periodic motion 
• Chaotic (strange) attractors 

1.3    Dust Grains in a Stratified Atmosphere 

We now use the simple example of a dust grain in a stratified atmosphere to illustrate some 
of the concepts introduced above. Imagine an infinitesimally small particle in a stably strat- 
ified atmosphere (Fig. 1.3). The density of the ambient fluid is p(z), and the particle is at 
equilibrium at z = C, where p(C) = pp. The motion of the particle satisfies 

5       PM^Ä (1.18) 
Pp 

which can be written in the form, 

z   =   v 

v   =    °-(p(z)-pp). (1.19) 
pp 

This is a continuous-time dynamical system with a two-dimensional phase space. 



Z A 

P(C)= Pp 

Figure 1.3: An illustration of a dust grain moving in a stratified atmosphere. 

1.3.1    Linear stratification 

Suppose that p{z) = a{z - C) + p{C), where a is a constant, and that p(C) 
may choose C = 0 with no loss of generality. Then Eq. (1.19) becomes 

pp. 

z   = 

v   = 

V 
ga 

pp' 

Then we 

(1.20) 

This is a linear system and is equivalent to the simple harmonic oscillator. 
If the atmosphere is stably stratified, a is negative and we have stable oscillations. The 

flow in phase space is shown in figure 1.4; this type of picture, which shows the character of 
typical orbits, is called a phase portrait. The stable oscillations appear as closed circles in the 
phase portrait. There is a single equilibrium point at z = v = 0. Because of the shape of the 
orbits surrounding this equilibrium, it is called an elliptic fixed point. 

When a is positive, the atmosphere is unstably stratified and the particle trajectory exhibits 
exponential divergence from the fixed point; the phase portrait is shown in Fig. 1.5. The 
point z = 0, v = 0 is now a saddle point; because of the hyperbolic shape of nearby orbits, it 
is referred to as a hyperbolic fixed point. 

The fixed points of the system are the positions of static equilibrium for the dust particle. 
These points are the solutions Xf to F(X/) = 0. For our illustrative example, X = (z, v), and 
the fixed point is given by (i,ti) = (0,0): 

v   =   0 

p(z) -pp   =   0. (1.21) 

Hence, for a linear stratification, p(z) = pp + az, and the fixed point is zf = 0 (linear systems 
can only ever have a single fixed point). 

The linear stability of a fixed point can be examined via linear perturbation analysis, in 
which one studies the evolution from an infinitesimal displacement from the fixed point. In 



Figure 1.4: Elliptic fixed point 

A  V 

Figure 1.5: Hyperbolic fixed point 
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general, suppose that X = F(X) has a fixed point at X/. Consider a point close to X/ given 
by X = X/ + £. Then, £ = F(X/ + £) which may be expanded in a Taylor series as 

€  =  F(x/)+(f|)^ + ..- 

—^     £ (1-22) 

where (9F/ÖX) is the Jacobian of F. This is a linear system; the eigenvalues of the Jacobian 
matrix determine whether the infinitesimal perturbation grows or decays.   In other words, 
stability is only ensured if all the eigenvalues of the Jacobian have negative real part. 

For the example above, 

z     =     Zf + C 

v   =   vf + e, (1-23) 

and 

C  =  o 
e = 9-c (1-24) 

Thus the fixed point is stable if a < 0, or unstable if a > 0, exactly as indicated above. Indeed, 
since the system is linear in this case, linear stability theory provides information also about 
the global stability of the fixed point. This example is also rather trivial for precisely this 
reason. Nonlinear stratifications, however, lead to less trivial dynamics. 

1.3.2    Nonlinear stratification 

Let us now parameterize the density as p(z) = p0 + az + n/zz. Then 

■    I   h.z + llft (1.25) 
Pp        Pp 

which is a nonlinear system. The fixed points satisfy 

v   =   0 

z(a + jz2)   =   0, (1-26) 

the solutions of which are v = 0, and z = z0 = 0 or z = zxfi = ±y/-ah- It is clear that zh2 

exist only if a and 7 have opposite signs. 
Phase portraits of the system are shown in Figs. 1.6 and 1.7. In the first case, a > 0 and 

7 < 0. and there are two elliptic fixed points and one saddle. Orbits either circulate around 
one of the two elliptic fixed points, or with larger amplitude around all three. There are two 

11 



Figure 1.6: Phase space portrait for the nonlinear atmospheric stratification with a > 0 and 

7<0. 

special orbits that connect the origin to itself; these are called "separatrices" or "homoclinic 
orbits", and correspond to trajectories that begin at the origin for t -> —oo, then circulate 
around one of the elliptic fixed points before returning to the origin for t -> oo. 

In the second example, a < 0 and 7 > 0, and there are two hyperbolic fixed points beside 
the elliptic fixed point at the origin. The special orbits that connect the two saddle points are 
again separatrices; they are also referred to as "heteroclinic orbits". There are only unbounded 
orbits in this case when the initial condition lies inside the separatrices. 

In contrast to the single fixed point of the linear case, the nonlinear system therefore 
has multiple equilibria. The stability of the fixed points can again be examined using linear 
stability theory. For the fixed point z0, 

c      9 nc 
? = — <*?> 

Pp 
(1.27) 

the same result as was obtained for the case of linear stratification. For the fixed points z\^i 
we expand £ as: 

3" 

£    = 
9_ 

Pp 
a 

a 

7 
+ £    +7   ± 

7 

±l±a 
Pp 

29„t  af. 
PP 

— + a£ qF a 
7 

 3a£ + 
7 

(1.28) 

The linear stability of the fixed points z\$. is thus determined by the value of a.  If a < 0, 
ZQ is stable and zi)2 are unstable. If a > 0, z0 is unstable and zi)2 are stable. This parallels 
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Figure 1.7: As in Figure 1.6, except for a < 0 and 7 > 0. 

the conclusions one draws from the phase portraits in Figs. 1.6 and 1.7. Note that at leading 
order, 7 does not play a role in the stability result. 

1.3.3 Parameter variation 

Suppose that in the above example we fix 7 < 0 and vary the parameter a. For a < 0, there 
is only a single fixed point, namely that at the origin. According to equation (1.27), this fixed 
point is stable. But when a > 0, we have three equilibria and a situation like that shown in 
the phase portrait 1.6. Here the origin is unstable, and the two nontrivial fixed points are 
stable. In other words, when a passes zero, there is a change in the equilibrium points of the 
system. This is an example of a bifurcation; that is, a change in the system properties. The 
particular bifurcation displayed in this example is called a "pitchfork" bifurcation (Fig. 1.8), 
in which a fixed point loses stability and sheds two new, stable fixed points. 

1.3.4 Conservative and Dissipative Systems 

The equations (1.19) also form a conservative system. In particular, the energy, 

H = E=\v2-^- [ \p(z) - pp]dz, 
* Pv J 

(1.29) 

z   = 

is conserved: H = 0. This system is also Hamiltonian, since the equations may be obtained 

from 
dH 
dv 
JdH_ 

dz' 
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Figure 1.8: "Pitchfork" or "trident" bifurcation of the dust grain example with 7 < 0. For 
a < 0 there exists only one stable fixed point. As a increases beyond 0, three solutions exist: 
two stable fixed points, z\ and z2, and one unstable solution, ZQ. 

Figure 1.9: Attracting spiral point (focus) for a dissipative nonlinear system 

where the Hamiltonian H is just the energy.   Note that z and v are canonically conjugate 
variables. 

In the presence of friction, the system becomes dissipative: 

z = —{p{z) - pp) - (J.Z, 
Pp 

(1.31) 

where fiz is a Stokes drag. In this case, E < 0, energy is not conserved, and the phase space 
volume shrinks. An example of such a case is shown in Fig. 1.9. This displays a phase portrait 
in which there is an attracting spiral point at the origin. In other words, all of the oscillations 
of the conservative system disappear under the dissipative perturbation leaving only a stable 
spiral point where the elliptic fixed was once located. If such a damped system is forced, 
however, the asymptotic state may be a state of motion, such as a limit cycle. 
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1.4    Bifurcations 

One of the key concepts of dynamical systems theory is a bifurcation. Basically, this term 
means simply that as we vary one of the intrinsic properties of the system, a transition takes 
place in the dynamical behaviour. The threshold at which the transition occurs is the point 
of bifurcation. Before the bifurcation there is one type of dynamical behaviour, and beyond it 
there is another. 

In the flow of fluids down a pipe, for example, we might vary the viscosity or the forcing 
pressure gradient. Either way, we have a control parameter, the Reynolds number, that we 
vary in order to observe changes in the fluid dynamics. For low Reynolds number, the flow is 
laminar. But beyond a certain threshold, the fluid motion becomes turbulent, and this is one 
example of a bifurcation. 

Another example is in fluid convection. Here we confine a fluid between two plates and 
impose a vertical temperature gradient (see lecture 2). As we ramp up this gradient by heating 
the two plates to a stronger and stronger temperature difference, we observe a bifurcation - 
the onset of fluid convection. 

In dynamical systems theory, bifurcations are classified. One of the most important features 
of nonlinear systems is that many bifurcations are universal. That is, many transitions have a 
common form, independently of the physical system in which they take place. Thus, from an 
understanding of the most common types of bifurcations, we can understand many behavioural 
transitions. 

It is presumably from such simple dynamics that we ultimately build up to the extensive, 
violently unstable systems in which we observe turbulent cascades over many scales of motion, 
and the emergence of coherent structures. More specifically, turbulence is usually thought to 
originate as a result of a bifurcation sequence that leads from a simple, regular or laminar 
flow to the turbulent state. Part of this sequence is the famed "transition to chaos". But the 
sequence itself, is merely a succession of known types of bifurcations. 

The main types of bifurcations encountered in low-order dynamical systems that we shall 
mention in these lectures are the following: 
Pitchfork bifurcation: We have already encountered this type of bifurcation. It corresponds 
to a situation in which an equilibrium point changes its stability by shedding two new ones. 
In the example considered earlier, the original equilibrium lost stability, and the two new fixed 
points were stable. This situation is called a supercritical pitchfork bifurcation. When the 
new equilibria are unstable, they co-exist with the stable equilibrium, and the pitchfork is 
subcritical. 
Hopf bifurcation: In the simplest form of a Hopf bifurcation, a fixed point loses stability 
by shedding a limit cycle. That is, the equilibrium loses stability to perturbations that take 
the form of growing oscillations. In a supercritical Hopf bifurcation, the growing oscillations 
saturate on a nearby limit cycle. But for subcritical Hopf bifurcations, an unstable limit cycle 
collides with the stable fixed point, leaving it unstable beyond the bifurcation. 
Period doubling bifurcation: A limit cycle may undergo a bifurcation where its basic 
period doubles, and the system "makes two turns" on nearby loops before returning to the 
initial position. A period-doubling bifurcation is revealed by the appearance of sub-harmonics 
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in the power spectrum of the system. A celebrated scenario of transition to chaos is based 
on a sequence of period doubling bifurcations, during which the basic period T is modified as 
T _). 2T -> AT -» ... -> 2nT until chaotic behavior (associated with n -» oo) is met. 

1.5    Poincare and stroboscopic maps 

When the dimension of the dynamical system becomes larger than two, it is no longer possible 
to visualize the behaviour of typical orbits in terms of simple phase portraits like those shown 
in figures 1.6 and 1.7; projections of the solution onto a plane often obscures the structure of 
the attractor. Instead, we must develop other tools; one such tool is the Poincare section. 

Consider a simple flow of the form: 

^ = F(X),    X = (x,y,z). (1.32) 

The Poincare section (Fig. 1.10) of such a flow is formed by finding the intersections of a 
trajectory with a given surface or "manifold" in the phase space. This manifold is the "surface 
of section". It is sometimes useful to further take only those intersections with the same 
directionality with respect to the manifold. (Clearly, one requires the selected manifold to 
be nowhere tangent to the trajectory.) The set of intersection points is the Poincare section. 
Given these points, we may then associate a dynamical law that maps one intersection point 
into the following one. This is the "Poincare map" on the particular surface of section. 

The Poincare map (1.33) reduces a system from continuous to discrete time, and from 
dimension N to dimension N - 1. Thus, one goes from X = F(X), X G RN, to £n+i = /(£n), 
£n € M.N~l, where £n is the n-th intersection of X(t) with the selected manifold: 

X(t)->£n, n = l,2,---, XeRN, ^GK*-1 (1-33) 

Another type of map is the stroboscopic map, obtained by reducing the trajectory to a 
series of snapshots taken at equal intervals of time. In this case, one goes from X = F(X) 
to r)n+i = g(r)n) where r\n = X(t0 + nAt). For stroboscopic maps, the dimensionality of the 
system is not reduced. 
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(a) 

(b) 

Figure 1.10: Poincare section and map. Panel (a) shows the trajectory of a solution to the 
Lorenz equations (see lecture 2), with a Poincare section determined by the maxima of z: 
xy - Sz/3 = 0. The values of z determined from each intersection with this manifold, Zn, are 
plotted as a map, Zn+1 = Zn+1(Zn) in panel (b). The stars in panel (a) show the intersection 

points. 
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Lecture 2 

Multiple equilibria, limit cycles and 
strange attractors 

In this lecture we introduce some of the classic low-order geophysical models exhibiting multiple 
equilibria, limit cycles and chaos. 

2.1    Energy-balance models of the global climate 

The global climate shows variability on many different time scales. Indirect observations (using 
the ratio of oxygen isotopes 160 and 1S0 in deep-sea sediment cores) provide an indication of 
past temperatures. In the quaternary period the average temperature has fiuctated by several 
degrees on timescales of hundreds of thousands of years, coinciding with periods of widespread 
glaciation and deglaciation. These and other evidences indicate that the global climate is 
capable of producing internal fluctuations and amplifying external forcings. 

Simple models have been proposed in order to develop some understanding of the global 
climate (see, for example, Ghil & Childress 1987 for a review). We now derive the simplest 
of these models, which includes only the energy balance between incoming solar radiation and 
its re-radiation back into space from the Earth's surface. 

Prom the first law of thermodynamics we have 

AE = Qin - Qout = cAT, (2.1) 

where AE is the change in the internal energy of the system, induced by difference between 
the incoming energy Qin and the outgoing energy Qout. The change in internal energy has 
been parameterized as AE = cAT where AT is the change in the temperature of the system 
and c is the specific heat. In the time At we have 

c~rr = Fin ~ Fouti (2-2) 

where Tin^ut = Qi™ut are the incoming and outgoing heat fluxes. By taking the limit At ->• 0 
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we obtain 

c— = Tin — Tout- (2-3) 
at 

The incoming flux Tin is at short wavelengths, whilst the outgoing flux is at longer wavelengths, 
primarily in the infrared. 

The total incident power per unit area of solar radiation is referred to as the "solar con- 
stant", 5. At the top of the atmosphere, S = lM8kW/m2 (with a variation of 3.5% due to 
the ellipticity of the Earth's orbit). This incoming radiation is partly absorbed, and partly 
reflected back into space. The proportion reflected is given by the albedo parameter a. This 
parameter varies with both position and time because land, sea, ice and clouds all reflect light 
differently. However, for simplicity, we take a global, average value: a=0.3. 

The total solar energy reaching the Earth per unit time is nR2S (where R is the radius of 
the Earth), giving on average a flux of ■KR

2
S/A-KR

2
 = \S at the top of the Earth's atmosphere. 

The total absorbed flux is therefore Tin = \S(1 - a)f(<f>) « 240f(<f>)W/m2, where /(</>) is a 
latitude correction accounting for geometrical projection. 

. The outgoing flux can be found by using a modification of Stefan-Boltzmann law, giving 
Tout - g{T)oTA, where g(T) is a 'greyness' correction to account for the fact that the Earth 
is not a perfect black body. 

If we assume a local equilibrium (Tin = Tout) we obtain 

\s(l-a)f(<f>)=g(T)aTi. (2.4) 

This expression predicts equilibrium temperatures of 270K at the equator, 170K at the north 
pole and lbOK at the south pole. The average temperature predicted by (2.4) is significantly 
underestimated due to the omission of the atmospheric greenhouse effect, which raises global 
temperatures by inhibiting the transmission of thermal radiation from the surface into space. 
This simple calculation also predicts a much larger difference between polar and equatorial 
temperatures than that seen on the Earth - this is due to neglecting the mean transport of heat 
from the tropics to the polar regions by atmospheric and oceanic circulation. The difference 
between the observed values of Tin and Tout as a function of latitude (see Figure 2.1) provides 
means of estimating the meridional heat transport of the ocean and atmosphere, as shown in 
Figure 2.2. More sophisticated analyses have estimated the proportions of this transport due 
to the oceanic circulation and the mean and fluctuating atmospheric circulation. 

2.1.1    The effect of temperature-dependent albedo 

We now consider the globally averaged energy balance, at first ignoring, for simplicity, the 
greyness factor. The energy balance in stationary conditions then becomes 

\s{l-a) = oT\ 

which has the unique, physically meaningful solution, 

[5(1 -a)   ' 
T0 = 

4cr 
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Figure 2.1: Sketch of observed dependence of radiation balance on latitude (redrawn from Ghil 

& Childress 1987) 

Figure 2.2: Sketch of atmospheric and oceanic heat transport versus latitude, deduced from 
local radiation imbalances (redrawn from Ghil & Childress 1987) 
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Figure 2.3:   Fixed points of a simple energy-balance climate model (redrawn from Ghil k 

Childress 1987) 

The average albedo a depends, however, on temperature. When the temperature is low and 
ice covers a large fraction of the Earth, the albedo is larger than for an ice-free Earth. Denoting 
by a/ and a; the albedos corresponding to a minimal and maximal ice cover respectively, we 
can approximate the ice-albedo feedback as 

a{T) =ai,     T< Tu 

and 

a(T) =af,     T> Tf 

T-Ti 
a(T) = ai + (a/-ai)jT-r^1   Tt<T<Tf, 

where T, is the temperature below which ice has its maximum extend, and Tf is the temper- 
ature above which ice has its minimal extent. 

The dependence of albedo on temperature can result in multiple equilibria, in contrast to 
the case of a constant albedo in which only one equilibrium is possible. The energy balance can 
be solved graphically by plotting Tout and Tin as functions of T and looking for intersections 
of the two curves (see figure 2.3, where a greyness correction to Tout has also been included). 
The number of fixed points depends on the values of the parameters chosen. When we have 
three fixed points as in figure 2.3, a linear stability analysis shows that point 2 is unstable and 
points 1 and 3 are stable. The instability of point 2 is due to the positive feedback between 
ice and albedo: a small temperature increase will reduce the extent of ice cover, reducing the 
albedo and increasing the temperature still further. 

This example demonstrates the existence of multiple equilibria even for very simple nonlin- 
ear models. Note that the phase space of the above model is one-dimensional, as the dynamics 
is fully described by the global temperature T. For one-dimensional dissipative systems with 
continuous time and without an explicit time-dependent external forcing (i.e., an autonomous 
ordinary differential equation), stationary equibria (fixed points) are the only possible attrac- 

tors. 
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Figure 2.4: Idealized model of an ice sheet (redrawn from Ghil & Childress 1987). 

2.1.2    Ice-sheet dynamics 

The simple model described above displays multiple equilibria but it does not have any time- 
dependent behavior in its asymptotic states. In order to obtain self-sustained oscillations (i.e., 
limit cycles) in an autonomous system, at least a phase space of at least two dimensions is 

required. 
In order to produce self-sustained climatic oscillations, we thus need a second dynamical 

variable to be coupled with global temperature. One way to achieve this is to include the 
dynamics of the ice sheets. Consider an idealized ice sheet as shown in figure 2.4. 

The air temperature is assumed to decrease with altitude and with latitude, leading to 
accumulation of ice above the 0°C isotherm and ablation below it. The ice sheet is bounded 
on the northern side by the ocean, which is assumed to prevent the growth of the ice sheet 
on that side. Thus we shall consider only the variation in the extent L of the ice sheet to the 
right of the midpoint. If the height h of the ice sheet above ground varies with north-south 
position y according to 

h(y) = \HL-\y\)K 

then the volume of ice is 

i    i   fL (        \y\\K        4   1    3 
V = 2cL\*L2        (1_y)   dy = -\2L2cL, 

where CL measures the longitudinal extent of the ice sheet. 
The rate of change of ice volume can be written as V = a A - a'A', where A = cLLT is the 

area with accumulation at the rate a, and A' = cL(L - LT) is the area with ablation at the 

rate a'. This gives 
V = cLa'[eLT-{L-LT)}, 

where e = %. This expression can be used to find the rate of change of the extent of the ice 

sheet: 
a' 

2A2Lf 
T[(l + e)LT-L] 

where LT is a given function of L and of the (fixed) slope of the 0°C isotherm. 
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The Variation in ice cover influences the energy balance through changes in albedo. The 
global average albedo can be written as 

a = 7(a0 + am) + (1 - l)a0c{T), 

where 7 is the fraction of the earth's surface covered by land, and ao and aoc are the albedo 
of the land and ocean, respectively. The quantity /x represents the fraction of land covered by 
ice, and a\ is the correction to the albedo of the land due to the presence of ice. 

The precipitation is supposed to increase with temperature, resulting in an increase in e, 
the ratio of accumulation and ablation rates. The positive feedback of T on e is a crucial but 
delicate point of this model. The hypothesis behind this choice is that increased temperatures 
produce both a more active hydrological cycle (more precipitation) and more melting of the 
ice sheet, but the ratio of the two effects is such that more ice is formed than melted when 
increasing T. The real dependence of e on T is, of course, very complicated, and at high 
temperatures e is clearly decreasing for increasing T. The choice e ~ T should thereby be 
taken as a local approximation to e{t) in the small range of temperature where the model is 
applied. The system of equations which results from coupling the energy balance model of the 
previous section with the ice model is 

cf = Q{1 - 7(«o + am) - (1 - l)a0C(T)) - agTA 

(2.5) 
c'L = M[^ + <T)}LT{L,T)-L}. 

It is clear from the first equation that T a, so T L since a ~ L. The second equation 
shows that L ~ e. Since e grows with T (an increase in temperature leads to increased 
precipitation and more accumulation) we have L ~ T. These equations can be combined to 
yield T T, the equation for an oscillator. Using parameters appropriate to the earth, this 
system shows oscillations with a period of a few thousand years and an amplitude of a few 
degrees Celsius. Note that these temperature fluctuations have a period much shorter than 
the glacial-interglacial time scale, and thus describe other forms of climate variability. The 
amplification of external disturbances by climate variability on the glaciation time scales will 
be reconsidered in lecture 4. 

On more general grounds, we recall that autonomous, two-dimensional dissipative dynam- 
ical systems with continuous time may display only stationary equilibria or limit cycles at 
asymptotically large times (the dynamics is deterministic implying that orbits cannot cross at 
any time, but the phase space is a plane, so points or closed curves are the only non-intersecting 
geometrical objects with dimension less than 2). More complicated attractors, such as quasi- 
periodic motions and chaotic behavior, require at least three dimensions in phase space if the 
system dynamics is described by ordinary differential equations (ODEs). In the following sec- 
tion, we introduce a classic three-dimensional dynamical system displaying chaotic behavior. 

2.2    Rayleigh-Benard convection 

We now discuss a classic example of a chaotic low-dimensional dynamical system, namely, the 
Lorenz (1963) model for Rayleigh-Benard convection. 
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Figure 2.5: Fluid layer contained between two rigid horizontal plates kept at different temper- 

atures. 

Consider the behaviour of a layer of viscous fluid under gravity, contained between rigid 
horizontal plates (see figure 2.2). The plates are separated by a distance D and maintained at 
temperatures Ti and T2 at the top and bottom, respectively. 

For a fluid with coefficient of thermal expansion a > 0 we have denser fluid overlying less 
dense fluid when T2-Ti > 0. The flow which results from this heating depends on the Rayleigh 

number Ra=9aD3^T2~Tl\ where g is the acceleration due to gravity, u is the kinematic viscosity 
of the fluid and K is its thermal conductivity. The behaviour of this system as a function of 
Ra is illustrated in figure (2.2). For small Ra, heat is transferred between the plates purely 
by conduction and there is no motion in the fluid (case (a)). If the Rayleigh number exceeds a 
critical value the conductive solution becomes unstable and steady convection cells are formed, 
as shown in case (b). With a further increase of Ra the cells start to oscillate (case (c)) and 
further increases lead to quasiperiodic and/or chaotic motion. When Ra is sufficiently large 
the convection becomes turbulent, as illustrated in case (d). 

2.2.1    Derivation of the Lorenz model 

The Navier-Stokes equations for an incompressible fluid of density p in a gravitational field g 

are 

p^ + p(u.V)u = -Vp + /iV2u + gAp (2.6) 
ot 

and 

V • u = 0, (2-7) 

where u is velocity, p is pressure, p, is viscosity and Ap = p-po is the local difference in density 
from the reference value p0. The quantity Ap can be expressed in terms of the difference AT 
from the temperature at which Ap = 0: 

Ap = -p0aAT. (2-8) 

This system of equations is closed by the heat equation 

^ + (u-V)T = KV2T, (2.9) 
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Figure 2.6: Transition to turbulent motion in a fluid layer between two rigid boundaries as 
the Rayleigh number Ra is increased, (a): conduction only; (b): steady convection; (c): 
time-dependent convection; (d): turbulent convection. 
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where K is the thermal difiusivity. 
Next we use the Boussinesq approximation to simplify equation (2.6). This assumes that 

Ap < p, so we can replace p by p0 on the left-hand side of (2.6), retaining the density variations 
only in the third (buoyancy) term on the right-hand side. The resulting equation is 

^ + (u-V)u = --Vp + *A72u-gaAT, (2.10) 
dt po 

where v = ß/pQ is the kinematic viscosity and the equation of state (2.8) has been incorporated 
into the final term. Taking the curl of (2.10) yields an equation for the vorticity w = V x u: 

— + (u • V) w = (w • V) u + vV2u, - aV x (gAT). (2.11) 
dt 

If we choose Cartesian coordinates so that g = (0,0, -g) and assume that all the fields 
are independent of y, then the vorticity has a non-zero component only in the y direction, 
u= (0,w. 0), and (2.11) becomes the scalar equation 

^ + {u-V)u = v^u,-g<*^. (2.12) 
dt ox 

where now the velocity is zero in the y direction, i.e. u = (u,0,w). Note that the assumption 
of two-dimensionality eliminates the first term (vortex stretching) on the right hand side of 
(2.11). Since the velocity is now two-dimensional and incompressible, it can be written in 
terms of a streamfunction ip as u = dip/dz and w = -dip/dx. The scalar vorticity is related 
to il> by the Poisson equation u = V2^, allowing the vorticity equation (2.12) to be written in 
terms of ip as 

^_^VV] = ,W-^, (2-13) 

where [a, b] = f^ff ~ %H is the two-dimensional Jacobian operator. _ 
We now write the temperature field T in terms of a background profile T which depends 

only on z and a perturbation 9: 

T{x,z,t)=T(z) + 9(x,z,t). 

The heat equation (2.9) then takes the form 

de     r    m     di>&T       „2.       d2T 
dt     l     J     dx dz dz2 

In the absence of convection (ip = 0), a linear temperature profile is a stationary solution of 
the equations of motion. Thus, if we assume a linear background temperature profile of the 

form, 
T = T2 + ^^z, 
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the equation for 6 becomes 

The governing equations for this system are (2.13) and (2.14). 
Conditions of no slip and no normal flow at the upper and lower boundaries imply that 

xj; = VV = 0 on z = 0,D. The temperature at the top and bottom boundaries is fixed, so 
9 = 0onz = 0,D. 

2.2.2    Expansion in Fourier Modes 

Given a nonlinear system of partial differential equations: 

dtu) = LUJ + N(UJ), 

where L and N are linear and nonlinear operators respectively, the variable w can be written 
as a combination of the eigenmodes §j{x) of the linear operator (constant in time): 

w = 53aj(t)$j(x) 
j 

and the dynamics is described by the time dependence of the expansion coefficients a,j(t): 

which is a set of an infinite number of coupled ordinary differential equations. 
As an example, the method is applied to a modified Burgers equation: 

du       du du       d2u 

with periodic boundary conditions u(0,t) =u(27r,t).  The eigenmodes of the linear operator 
are the Fourier modes einx and the equation becomes: 

oo oo oo oo 

n=-oo Z=-oo"i=-oo n=-oo 

Considering I + m = n, the exponential term einx can be eliminated and the sum can be split 
into an infinite number of equations: 

00 

an + incan + £ ia(n - l)aian-i = -vn an. 
l=—oo 

From a numerical perspective, only a finite number of these equations can be solved and so a 
truncation of the higher order modes is usually performed. 
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2.2.3    The Lorenz '63 model 

It is possible to obtain a simple dynamical model for Rayleigh-Benard convection by expanding 
equations (2.13) and (2.14) in terms of three Fourier modes. As mentioned above, we assume 
no slip and no normal flow boundary conditions, i.e., ip = V2ip = 0onz = 0,D. The thermal 
boundary condition is 6 = 0 on z = 0, D. If we assume ip and 6 to be periodic in x, then they 
can be represented in terms of infinite Fourier sums. By retaining only the first Fourier mode 
for the stream function tf> and the first two modes for the temperature 0, we may write the 
variables as 

^ = 
(l + a2)ky/2 

X sin(7ra£) sin«), 

6 = Racr^    T2)U/2Ycos(Trag) sin«) - Zsin(2<)], 
irRa 

where f = X/D, ( = Z/D, a is the aspect ratio of the unstable perturbation, and Racr = 
7r4(l + a2)3/a2 is the critical Rayleigh number at which the conductive solution becomes 
unstable to convection. 

By substituting the truncated Fourier expansions of ip and 6 into equations (2.13) and 
(2.14) we obtain three coupled ordinary differential equations for the coefficients X, Y and Z 

of the expansion: 

r X = -aX + oY 

Y=-XZ+RX-Y (2.15) 

Z = XY - bZ, 

where the differentiation refers to the nondimensional time r = 7r2(l + a2)kt/H2, R=Ra/Racr 

is a normalised Rayleigh number, b= 4/(1+a2) is related to the aspect ratio of convective cells, 
and a = u/k is the Prandtl number. X is proportional the intensity of the convective motion, Y 
is proportional to the difference in temperature between the upgoing and downgoing currents, 
and Z describes the horizontally averaged deviation from the linear temperature profile. This 
is a dissipative system, since its divergence is negative: 

dxX + dyY + dzZ = -a-l-b<0, 

implying that the volume of the attractor in the three-dimensional phase space is zero. 
Fixed points are given by the system: 

f X-Y = 0 

-XZ + (R - 1)X = 0 

XY - bZ = 0. 

(2.16) 
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Figure 2.7: Lorenz attractor with R = 28, a = 10, b = 8/3. Shown is the path of the orbit in 
the phase space (X,Y, Z). 

For R < 1 there is only one fixed point X0, X0 = Y0 = Z0 = 0, corresponding to a linear 
(conductive) temperature profile, with no convection.   

For R > 1 there are two additional fixed points Xi and X2, X\ = Y\ = y/b(R— 1), 
Zi = R - 1, and X2 = Y2 = -y/b{R-l), Z2 = Ä - 1, corresponding to steady convection in 

parallel rolls. 
By a linear stability analysis it can be shown that X0 is the only stable fixed point for 

R < 1; at R = 1 there is a pitchfork bifurcation in which X0 becomes unstable and Xi and 
X2 appear as new, stable equilibria. If a > b + 1, Xi and X2 become unstable through a 
subcritical Hopf bifurcation at R = Rc = "{^-? ■ The consequence of the disappearance of 
the stable fixed point is chaotic motion (see Sparrow, 1982). In the phase space the attractor of 
the system (figure 2.7) is a "strange" object, with a non-integer fractal dimension (see below). 
Roughly speaking, the trajectory of the solution follows a path in phase space that spirals 
away from one unstable fixed point (say, Xi), then loops in close to the other unstable fixed 
point (X2). It then spirals away from this second unstable focus until it loops back to the 
neighbourhood of the first unstable fixed point. The switching between orbiting around one 
unstable fixed point and the other follows an irregular, aperiodic sequence. 
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Figure 2.8: Time series of X from the Lorenz system with R = 28, a = 10, b = 8/3. 

The time dependence of the X variable is shown in figure 2.8. Note the irregular transitions 
from positive to negative values of X, corresponding to the system orbiting around one or the 
other unstable fixed point. 

Trajectories started from nearby points on the strange attractor diverge rapidly from one 
another, though they remain on the attractor. This sensitivity to initial conditions makes 
prediction of the trajectory impossible in practice even though the system is deterministic. 
This is the origin of the popular vision of the "butterfly effect" in weather prediction. 

2.3    Properties of strange attractors 

Strange attractors are intimately associated with chaotic dynamics and unpredictability in 
dissipative systems. Roughly speaking, a strange attractor is a collection of an infinite number 
of unstable periodic orbits that is, in some sense, globally attractive. Geometrically, these 
objects are very complicated. Chaotic motion can crudely be thought of as the motion of the 
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Figure 2.9: Fractal Structure of a Strange Attractor 

trajectory of the system as it meanders through this collection of unstable orbits, wandering 
close to one orbit at one time, then switching to the neighbourhood of another in an apparently 

random fashion. 
There are two basic properties of strange attractors that lead to measures that can be used 

to characterize these objects. The properties are: 

• Sensitive dependence on initial conditions. This sensitivity can be quantified by a "Lya- 
punov exponent", the exponential rate of divergence of neighbouring trajectories in phase 
space (evidently, for chaos, this exponent must be positive). 

• Fractal structure. Fractals can be characterized by a "Hausdorff dimension" which is 
not integer and is (usually) larger than the "topological dimension". This feature is 
associated with the self-similarity (self-affinity) of such geometrical structures. 

We discuss these properties more completely below. 
In the lectures, we use the term strange attractor to indicate a chaotic attractor with 

sensitive dependence on initial conditions. Although there are non-fractal chaotic attractors, 
as well as fractal non-chaotic attractors, in most systems chaotic attractors have a fractal 
nature. A pictorial image of this structure is shown in figure 2.9. 

2.3.1    Lyapunov exponents 

Here, we encounter for the first time the issue of predictability in dynamical systems. Given 
a deterministic dynamical system, we can calculate a future state, say X(i), from the knowl- 
edge of its state at a given time, say X0 = X(0), by (analytically or numerically) solving the 
equations of motion. However, often the initial conditions are known only with finite preci- 
sion. Thus, we are interested in knowing how an initial error, or perturbation, on the initial 
conditions, say <5o, will evolve in time. 

Systems dominated by stationary equilibria or limit cycles are characterized by the fact 
that the initial error increases at most linearly with time, and thus predictability is assured 
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for long times. In the case of a globally attracting fixed point, the system will always tend to 
the fixed point itself, and the initial error will decrease with time. On a limit cycle, on the 
other hand, there is a phase error that may grow at most linearly with time, leading to a slow 
loss of knowledge about the exact phase of the oscillation. 

Now suppose that we consider a system with two stable equilibria and an unstable saddle 
point between them, such as the double-well oscillator pictured in figure 1.7 of lecture 1. In the 
vicinity of the unstable fixed point, a small perturbation on the initial conditions may force 
the system to tend toward one or the other fixed point, thus leading to unpredictability of the 
final state even for small initial perturbations. This happens, however, only for a very small, 
special region of phase space, the vicinity of the unstable point, and elsewhere the dependence 
on initial condition is much less extreme. 

The key feature of the saddle point that leads to the system behaving in this way is the 
"division" of the phase space by the orbits that emerge or converge to the saddle point. These 
special trajectories are the "unstable" and "stable manifolds" of the saddle point (the set of 
all points that either diverge from, or converge to, that equilibrium). These particular orbits 
demark the directions of flow in phase space near the saddle. Importantly, at the locations 
where these manifold intersect, it takes only a slight change in initial condition to produce a 
very different evolution (namely, a perturbation for which the initial condition hops across one 

of the manifolds). 
Systems undergoing deterministic chaotic dynamics, such as the Lorenz '63 model discussed 

above, are also characterized by "sensitive dependence on initial conditions." In these systems, 
the attractor itself contains infinitely many unstable elements (limit cycles). Like the saddle 
point considered above, each of the unstable cycles possesses intersecting stable and unstable 
manifolds that again partition the direction of flow in phase space. Thus, in the vicinity 
of each cycle, there must be a sensitive dependence on the initial condition. But the main 
difference between the two-well oscillator and the chaotic system is that the unstable cycles 
form the dense skeleton of the strange attractor. Hence there are intersecting manifolds densely 
populating the attractor and there is sensitivity to the initial state throughout the object. 

For strange attractors, then, small initial perturbations can amplify exponentially fast and 
destroy the predictability of the system after a finite time. This behavior can be taken as a 
definition of deterministic chaos. 

A quantitative way of defining sensitive dependence on initial conditions is based on the 
concept of Lyapunov exponents. If we consider a solution X of an n-dimensional dynamical 
system (such as X = F(X)), the evolution of an infinitesimally small perturbation 6(t) can be 
considered linear to first order, and the governing equation becomes 

6 = fjU (2-17) 
9X 

Each one of the n eigenvalues of the matrix || gives an estimate of the growth rate of an 
infinitesimal initial perturbation aligned with the corresponding eigenvector of the matrix. 
The maximum Lyapunov exponent is then defined as 

,.      1,   S(t) 
^max = hm   hm - In — 

t->oo <5o-»oo t OQ 
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x' (t)=x(t)-K3x(t) 

Figure 2.10: Divergence of nearby trajectories in phase space for a chaotic system. 

and it measures the fastest long-time growth rate of an infinitesimal error on the initial con- 

ditions. 
Since a generic initial perturbation will have components along all the eigenvectors of the 

matrix dF/<9X, the fastest growth will in general dominate and the infinitesimal error will 
approximately grow as 5{t) = Soe**™'* where S0 = S(t = 0), leading to rapid divergence of 
nearby trajectories (figure 2.10). 

A dynamical system is generally considered to be chaotic if Amax > 0. Note that the 
presence of the two limits in the previous definition is very important and cannot be neglected 
nor inverted: the perturbation must be infinitesimal in order to be considered linear, and the 
average on an infinite time is necessary as the Lyapunov exponent is a measure of the average 
error growth over the entire trajectory. Locally, the growth rate can be very different and may 
depend on the part of the attractor spanned during the evolution. For this reason, even if the 
maximum Lyapunov exponent is useful for the definition of a chaotic system, in practice it 
does not always give a good indication of how rapidly infinitesimal errors will grow at short 
times, as this may depend on the initial location on the attractor and on the initial direction 
of the error. Nor does it describe how finite errors grow. 

2.3.2    Fractal Dimension 

Due to the instabilities associated with sensitive dependence on initial conditions, most phys- 
ically interesting strange attractors have a fractal nature. What is a fractal? A fractal is an 
object whose "fractal dimension", or better, "Hausdorff dimension" DH is strictly larger than 
its topological dimension DT- A fractal set is characterized by some form of scaling; that is, 
fragments of the sets, when suitably rescaled, display the same properties of the whole set, on 

every scale. 
One way to introduce the fractal dimension of a set is the notion of box-counting. By 

splitting the phase space domain where the set is contained into square boxes of length e one 
can count the number of boxes containing at least one point of the set, N(e) (see figure 2.11). 
The box-counting dimension is then defined as: 

D° = HriTn- (2-18) 
e-^o log(l/e) 

This dimension coincides with the topological dimension for simple geometrical objects such 
as points, lines or planes but may be different for more complex objects. 
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Figure 2.11: The notion of box-counting dimension. The object is divided into square boxes 
and the number of points is counted in each box. The lengths of the boxes are then successively 
reduce to generate data to compute D0 via equation (2.18). Such a set of points could be 
generated by taking a Poincare section of a strange attractor like that in figure 2.9. 

An example of the latter is the Cantor set, which is obtained by taking a segment with 
unit length, cutting it in thirds, removing the middle third, and repeating the operation on the 
remaining two disconnected thirds, and so on forever (see figure 2.12). At the beginning, we 
have one segment with length e0 = 1, N(e0) = 1. At the first step, we have two segments with 
length €i = 1/3, iV(ei) = 2. At the second step, we have four segments with length e2 = 1/9, 
N{e2) = 4. At the n-th step, we have T segments with length en = 1/3". It is easy to see 
that the fractal dimension of the Cantor set is 

Do = lim 
log2n _ log 2 
log3n ~ log 3' 

(2.19) 

Since the topological dimension of the cantor set is DT = 0, it is clear that this set is a fractal. 
An extension of the box-counting dimension leads to the multifractal (or Renyi) dimensions 

Dq. One can define a partition function 

Nbox 

(2.20) 

i=l 

where pj{e) = IL^ is the fraction of points found in the j-ih box. For q = 0, B counts the 
number of non-empty boxes; thus one retrieves the definition of the box-counting dimension. 
For arbitrary q, the asymptotic scaling of B is B(e,q) ~ e^'1^ at small e. One should note 
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Figure 2.12: The Cantor Set 

that Dq is a monotonically non-increasing function of q. The most frequently encountered 
multifractal dimension is D2, since it is the simplest one which is sensitive to statistics and 
that can also be explicitly calculated in experiments. 

2.3.3    Conceptual implications of deterministic chaos 

The discovery that even very simple mathematical models can lead to unpredictable behavior 
has. of course, several conceptual implications. Probably, the two most important ones are: 

• The presence of unpredictability in deterministic systems does not require random exter- 
nal influences or quantum fluctuations, and it is an intrinsic property of many dynamical 
systems; 

• An observed irregular and unpredictable behavior does not necessarily imply the pres- 
ence neither of a large number of degrees of freedom in the system dynamics, nor of 
randomness, as three nonlinearly coupled variables can generate it. 

This "hope for simplicity in unpredictability" has triggered many attemps to discover whether 
an observed "random" dynamics was really due to turbulent-like behavior or to the presence 
of a low-dimensional (in phase space) strange attractor. Some of these attempts are described 
in the next Lecture. 
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Lecture 3 

Time Series Analysis and Phase 
Space Reconstruction 

Ever since the discovery of deterministic chaos and strange attractors, researchers have de- 
veloped methods of nonlinear time series analysis based on dynamical system theory, with 
the aim of detecting the possible presence of low-dimensional chaos in measured time series. 
This lecture is devoted to introducing some of the techniques used to characterize chaos from 
measured data. Thorough introductions to these subjects are given by Ott et al (1994) and 
Kantz and Schreiber (1997). 

3.1    Phase Space Reconstruction 

To properly describe the dynamics of a system, one needs to have access to its phase space. 
However, experimental measurements rarely provide direct information on the whole ensemble 
of phase-space variables of the system. The typical outcome of an experiment, or of observa- 
tion, is a time series of a scalar variable, h(t),t = tn = nAt, 1 < n < N, whose relationship 
to the phase-space variables is not known a priori. In such a situation, the first thing to do 
is to try to reconstruct an approximation to the phase space of the system. One interesting 
approach to this problem has been proposed, in the early 80's, by Takens (1981) and Packard 
et al. (1981). This is now known as the procedure of time embedding, and it is briefly recalled 
below. 

3.1.1    Time embedding 

First, we suppose that our measured time series is a smooth function of all the phase space 
variables, h(t) = /(X(i)). We also note that, in principle, the same information is provided 
by the set of M phase-space variables, X = (Xi,X2,...,XM) and by the derivatives up to 
order M - 1 of any of them; that is, by (X,-, dXj/dt, d2Xj/dt2,..., dM-1XJldtM~1), given the 
generic situation that Xj interacts with all the other variables in phase space. The extension 
to the experimental case is then obtained by realizing that a similar information is provided 
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by the signal h(t) and its time derivatives; that is, by {h,dh/dt,d?h/dt2,...). Since, however, 
we deal with a signal measured at discrete time intervals, the first derivative is really (h(t) - 
h(t - T))/T. Takens and Packard et al. then suggested to use the time-delayed variables 
(h(t),h(t-T), h(t-2r),...) as an approximate representation of the phase space of the system. 
This approach is called time embedding, and the space spanned by h and its time-delayed 
values is called the embedding space. The dimensionality of this space is called the embedding 
dimension. Schematically, this procedure can be depicted as follows: 

(X = (X1,X2,...,XM)) (3-1) 

(Xj,Xj,Xj,...) (3-2) 

(h(t)Mt)Mt),-) (3-3) 
^ h =   h{t)-h(t-T) 

ZM = (h(t), h(t - r), h(t - 2r),..., h(t - (M - l)r)). (3.4) 

For time series of infinite length and finite variance, Takens (1981) has demonstrated that 
there is a diffeomorphic equivalence between X and Zjw (that is, they have a smooth functional 
relationship). In this case, the specific value of the time delay is not important. For time series 
with finite length, the above approach is necessarily heuristic, and the choice of the value of 
the time delay r becomes important. 

In general, the procedure followed in the analysis of a time series is based on the definition 
of a hierarchy of embedding spaces of increasing dimension. In each of these spaces, some 
relevant dynamical measures are computed (such as the dimension of the supposedly existing 
attractor, the maximum Lyapunov exponent, and so on), until a saturation in the value is 
reached. That is, saturation is achieved when the value of the chosen dynamical quantity does 
not change for a further increase of the embedding dimension, M, beyond a saturation value, 
Ms. In this case, the value of Ms is thought to provide information on the dimensionality of the 
"true" phase space of the system, and the value of the dynamical quantity that we computed 
(provided we have selected a quantity which is invariant under phase-space coordinate changes) 
approximates its true value. While this expectation is justified for long time series generated 
by low-dimensional dynamical systems, the embedding approach has often been applied to 
short time series of unknown origin. In this case, troubles can easily be encountered, and false 
results are often obtained, as discussed in the next section. 

3.1.2    Choice of the time delay 

An important step in the procedure of time embedding is the choice of the time delay T. For a 
time series of finite length, measured with a finite sampling time, too small a value of the time 
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delay results in a crowding of points along the diagonal of the reconstructed space, and the 
dynamics cannot be properly unfolded. On the other hand, too large a value of r leads to a 
lack of correlation between the different variables in the reconstructed space, with a resulting 
loss of information. Thus, one needs to choose r in a range such that the dynamics is unfolded 
but the values h{t),h(t - T), ... are not fully decorrelated. Traditional choices of r are: 

• To/4 if there exits a dominant period To in the signal. 

• The first zero of the autocorrelation function, 

R{s) =  lim 1 /   h(t)h{t + s)dt, (3.5) 
T-s-oo 1  J0 

where h(t) denotes the signal under study. 

• The first minimum of the mutual information function, 

hi,h,2 

Pj0{hi,h2;T) 

p(hi)p(h2) . 
(3.6) 

(Fräser & Swinney 1986), where p(h) is the (empirical) probability of observing the value 
h and pj0(hi,h2;r) is the joint probability of observing the value hi at some time and 
the value h2 a time delay r afterwards. 

In general, it is important to verify that the results of the analysis do not depend too 
sensitively on the exact choice of r; that is, they should hold over a sufficiently large range 
of values of the time delay, centred on the "optimal" value defined by one of the methods 
mentioned above. 

3.1.3    Correlation Dimension 

Once one has reconstructed a (pseudo) phase space with dimensionality M, one way to quantify 
the dynamics underlying a given time series is to measure the dimension of the data set in the 
reconstructed space. Grassberger & Procaccia (1983) developed a simple algorithm to get an 
estimate of the attractor dimension. First, we compute the correlation integral, 

where 6 is the Heaviside step function and N' is the number of points in the reconstructed 
(vector) time series Z, N' = N - (M - \)m where m = r/At and At is the sampling interval. 

We are then interested in the behavior of CM(r) as r tends to zero. If the system dynamics is 
governed by a low-dimensional attractor, then the correlation integral has a small-scale power- 
law behavior, CM{r) oc ru(M\ Below saturation, the value found for the correlation exponent 
u{M) generally depends on M, the embedding dimension.  As M is increased, however, for 
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Figure 3.1: Different behavior of the correlation dimension for chaos and white noise 

systems dominated by an attractor with finite (and possibly small) dimensionality, the value of 
v(M) approaches a finite limit £>2, called the correlation dimension, which provides an estimate 
of the fractal dimension of the attractor. Fixed points and limit cycles are characterized by 
dimension of respectively zero and one, while quasi-periodic motion has a dimension equal to 
the number of independent (incommensurate) frequencies. Strange attractors, associated with 
chaotic motion, are usually characterized by a non-integer dimension. 

The value of D? gives important information on the number of excited degrees of freedom 
in the system. In particular, phase-space dynamics characterized by a small value of the 
correlation dimension may be described by a system of a few (usually, at most 2D2 + 1) coupled 
ordinary differential equations. Note, however, that a (reliable) detection of a finite and small 
value of D2 only indicates that a description in terms of a low-dimensional deterministic model 
should be possible. No information is provided on how the appropriate collective degrees of 
freedom can be identified. 

Conversely, white noise is associated with a non-convergent value of the correlation dimen- 
sion (see figure 3.1). Thus, if in the analysis of a measured time series no convergence in v{M) 
is observed for increasing M, it is generally assumed that the number of excited degrees of 
freedom in the system is large: in this case, a stochastic model might be more appropriate. 

Two remarks are in order here. Curves plotted on log-log coordinates have often the 
tendency to look like power laws, even though the power-law behavior is that of the tangent 
to the curve rather than of the curve itself. For this reason, it is usually better to plot the 
local logarithmic derivative of the correlation integral, vM(r) = dlogCM(r)/dlogr, versus 
logr, to verify whether there is a sufficently extended scaling interval where vM(r) is constant, 
uM[r) = v(M). A practical way of obtaining vM{r) is, for example, by taking the local 
least-square fit of log CM(r) versus logr over three consecutive points. 

The second remark concerns the statistical requirements for a reliable estimate of the 
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correlation dimension. This issue has been discussed by several papers (Smith 1988, Eckmann 
& Ruelle 1992), with conflicting estimates on the minimal number of points that is required to 
reliably detect a dimension D2. Here, we simply say that, on average, Nmin « 1002 points are 
required in order to safely detect a correlation dimension D2. When a convergent correlation 
dimension D2 is detected with less than Nmin points, there is the danger that the convergence 
of D2 has been forced by lack of statistics rather than by low-dimensional dynamics. 

3.2    Finite dimension from stochastic processes 

If a measured time series is produced by low-dimensional (chaotic) dynamics, saturation of 
the correlation dimension for increasing embedding dimension is observed. On the other hand, 
in the analysis of measured data one does not know whether the system is low-dimensional. 
Indeed, this is exactly one of the questions the analysis should answer, and it is not possible 
to assume the presence of low-dimensional chaos a priori. However, in the early days of phase- 
space reconstruction and analysis (i.e., in the early 80's), the detection of a finite and small 
value of the correlation dimension was considered a safe indication of the existence of low- 
dimensional chaos. In this way, several works claimed the presence of strange attractors in the 

most diverse systems. 
Later on, some studies (Osborne & Provenzale 1989; Provenzale et al 1992) revealed that 

the sole detection of a finite value of the correlation dimension from a measured time series is 
not enough to infer the presence of low-dimensional chaos, since there are stochastic processes 
that provide a spurious convergence of the correlation exponent under time-embedding. 

These stochastic processes are, in general, characterized by power-law power spectra and 
self-similar behavior over an extended range of scales. One example is provided by the Gaussian 
stochastic process defined by 

JV/2 

s(ti) = ^2 AjCOs(wjti + (j)j), (3-8) 

where A2- oc to~a and fa are random uniformly distributed phases. In this case, the correlation 

dimension is given by v = v{a) = ^ for 1 < a < 3 (see figure 3.2). 
A second popular example is the linear Ornstein-Uhlenbeck (OU) process: 

ds = -7 s(t)dt + <n1,2dW, (3-9) 

where 7 = l/Td is the inverse of the signal decorrelation time Td, a2 is the variance of the 
signal and dW is a gaussian-distributed random increment with (dW) = 0 and (dW2) = 2dt{& 
Wiener process). Equation (3.9) generates a scalar time series, s{t), that is gaussian distributed 
and becomes stationary at large times. The power spectrum of s{t) is P(w) oc [1 + (w/7)2]"1, 
which is of power-law form, P{u) « w~2 at high and intermediate frequencies, and it becomes 
constant at low frequency. 

Another example is provided by a nonlinear stochastic process, that may be written as 

dS = (1/2 - S{t))dt + (2S{t)fl2dW. (3.10) 
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Figure 3.2: Correlation dimension, v(a), of the Gaussian stochastic process (3.8). 

The time series generated by this process has a power spectrum that is very similar to that gen- 
erated by the OU process (see figure 3.3), but it is characterized by well-defined intermittency 
properties and correlated Fourier phases (ref). 

The apparent value of the correlation dimension, as computed from time-embedding of s{t) 
or S{t), depends in this third example on the length T of the time series. For very long series, 
T ->• oo, the correlation exponent v(M) grows without bound with M, due to the stationarity 
of the signals. For time series with intermediate length, however, full stationarity has not 
yet been reached, and the value of the correlation exponent converges to a finite value uc for 
growing M. This value is related to the approximate self-similarity of the signals, and has 
nothing to do with the true phase-space dimensionality of the system (which is unbounded since 
the process is stochastic). This behavior is due to a failure of the time-embedding procedure, 
which cannot reconstruct the true phase space of the system due to the non-stationarity of the 
time series. Such a behavior has been observed in several instances, since for many measured 
time series the record is not long enough to ensure full stationarity. Note also that the time 
series S{i) generated by the nonlinear process provides a positive answer to nonlinearity tests, 
showing that nonlinearity and a finite estimate of the correlation dimension from a measured 
signal (with finite length) is not enough to infer the presence of low-dimensional chaos. 

In past years, other stochastic processes have also been shown to induce a spurious conver- 
gence of the correlation exponent. This demonstrates the impossibility to distinguish practi- 
cally between a low order, deterministically chaotic system and a stochastic one, using just the 
above developed tools. For this reason, various other methods have been developed that allow 
us to recognize some of these "false positive" results. Some of these methods are described 

below. 
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(a) linear stochastic process (b) nonlinear stochastic process 

Figure 3.3: Time series for the stochastic processes (3.9) and (3.10), shown in panels (a) and 
(b) respectively. Panels (c) and (d) show the corresponding Fourier power spectra, and (e) 
and (f) show histograms displaying the approximate probability distributions of the temporal 
derivative of the signal. 
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3.3    Distinguishing chaos from noise 

The reason why one cannot detect differences between chaos and noise in the previous cases is 
because of the intrinsically fractal nature of the noise. The fractal curves encountered above 
have a fractal dimension completely defined by the spectral slope and thus exhibit saturation. 
On the other hand, the reconstructed space is not the real phase space of the system, due, 
for example, to non-stationarity of the signal, or to an insufficient length of the time series. 
Therefore, by computing the value of the correlation dimension one cannot distinguish between 
differentiate strange attractors and non-differentiable fractal stochastic curves if they have 
the same dimension. 

In order to solve this problem several methods have been proposed. Most of these methods 
are based on the concept of "surrogate data." That is, we generate a synthetic time series that 
has all but one of the properties of the measured signal, in order to verify whether the value 
of the correlation dimension, or the Lyapünov exponents, depends on the modified property. 

3.3.1    Phase randomization 

One of the most common tests is that based on the randomization of Fourier phases. This test 
is the simplest and less refined one of the many available surrogate data techniques; however, 
it has proven to be quite useful on many occasions. The phase-randomization test allows us to 
verify whether an observed convergence of the correlation exponent is due to the presence of a 
self-similar stochastic process. In the case of self-similar stochastic processes, the convergence 
of the correlation exponent is related to the power-law form of the power spectrum; that is, 
to the properties of the second-order moment. By contrast, the finite value of the correlation 
dimension for a low-order deterministic system is due to close returns in phase space; these 
are in turn related to the distribution of the Fourier phases of the signal. 

Based on this observation, it has been suggested (Theiler et al. 1992; Osborne et al. 
1986) to test the origin of an observed convergence in the correlation exponent by generating 
a synthetic time series having the same power spectrum as the measured data, but random 
Fourier phases. This surrogate signal has a gaussian distribution with the same second-order 
moment as the time series under study. If the correlation exponent converges also for this 
surrogate signal, then the origin of the convergence in the original time series cannot be related 
to its phase-space structure, and the hypotesis of low-dimensional chaos has to be rejected. 
The test does not, however, unambiguously identify low-dimensional chaos: if the surrogate 
signal does not generate a convergent value of the correlation exponent, one cannot conclude 
that the system is governed by low-dimensional chaos; in this case, other surrogate data tests 
have to be applied before any safe conclusion might be reached. 

3.3.2    Method of close returns 

This method uses one of the main properties of strange attractors. It is well known that the 
phase-space trajectories of a low-dimensional dynamical system return close to their initial 
positions from time to time, whereas this is not the case for stochastic systems. Consequently, 
one can plot the separation in space against the separation in time for these two different types 
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Figure 3.4: Separation in Space .vs. 
from Provenzale et al. 1992. 

Separation in Time for the Lorenz attractor.  Adapted 

of systems. Then, the existence of these close returns will yield a non-monotonic graph and a 
further piece of evidence of the presence of a strange attractor. 

Plots of separation in space against separation in time are displayed in figures 3.4 and 
3.5. The close returns in the Lorenz model clearly distinguish it from the nonlinear stochastic 
process. 

In general, surrogate data tests have been applied to many apparent detections of low- 
dimensional chaos from measured data, and most of the time series measured outside controlled 
laboratory conditions have not survived a careful scrutiny of the results. For example, the light 
curve of the optical, violently variable quasar 3C 345 is seemingly characterized by a low value 
of the correlation dimension when analyzed improperly (e.g. Provenzale et al. 1994). This 
indicates that the simple view of a low-dimensional attractor in most physical systems is 
unsatisfactory. Instead, we must search for richer dynamical possibilities, although we do not 
necessarily need to abandon approaches based on "simple" models. Some of these approaches 
- chaos outside the ivory tower - are discussed the next lectures. 
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Figure 3.5: Separation in Space .vs. Separation in Time for the nonlinear stochastic process 
(3.10). Adapted from Provenzale et al. 1992. 
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Lecture 4 

Externally Driven Chaos 

4.1    Out of the ivory tower 

In the first two lectures, we have seen how three-dimensional dynamical systems (such as the 
Lorenz 63 model) are capable of generating multiple equilibria, periodic and quasiperiodic 
oscillations and chaotic trajectories without any external forcing mechanism. 

Do these models have anything to do with reality? This is indeed an eternal question in 
dynamical systems theory, and for the simplified approaches described in these notes. At first, 
simplified models were introduced mainly as metaphors, without claiming a direct link with 
specific phenomena. Later on, researchers became excited by their simplicity, and tried to 
literally interpret natural events in terms of low-order, autonomous dynamical systems: Like 
Frankenstein's monster, modelling by low-order dynamical systems took on a life of its own. 
More recently, many methods of time series analysis have become available, some of which 
are reviewed in Lecture 3. The main outcome of the application of such analyses, however, 
has been a realization that natural phenomena (outside controlled laboratory conditions) are 
seldomly described by low-order, autonomous dynamical systems. So seldomly in fact, that 
should one find a genuine low-order, dissipative chaotic system in nature, the discovery should 
be suitably celebrated (for example, by a bottle of properly aged Barolo). 

Given this inability of low-order models to explain natural phenomena, what should we 
do instead? We have first to remember that our little dynamical system is really just a 
metaphor. When motivated by a specific problem, we can write a simplified model that 
provides a mathematical framework to formulate relevant questions. Typically, the model is 
only appropriate to address the issues for which it has been fabricated. It is a serious mistake 
to push it beyond its limits, or to use it for completely different questions. 

But, once we appreciate the limits, we may press further afield and we need not be so 
conservative; we must only be ready to modify the metaphors when appropriate. For example, 
most natural systems are driven by external forcings, are coupled with each other, and have 
different coexisting time scales. In dealing with these new physical ingredients, it is neither 
expedient nor feasible to resort to sophisticated models. Instead, it is more sensible to explore 
these processes by exploiting appropriate simple models. Thus, in the coming three lectures, 
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we lose our virginal low dimensionality, leave the ivory tower (which lies in ruin around us 
anyway), and build metaphors for forced and coupled systems. Perhaps, in doing so, we 
move no closer to reality, but we can nevertheless discover and explore new possibilities and 
intriguing mechanisms. 

4.2    A metaphor for large-scale atmospheric motions 

In the following, we introduce another three-dimensional dynamical system, namely the model 
that Lorenz (1984) proposed as a simplified description of midlatitude atmospheric dynamics. 
After a brief discussion of the model behavior, we explore what happens when the model is 
subject to external periodic forcing. 

4.2.1     Chaos in the midlatitudes 

In 1735 Hadley proposed that the large scale circulation of the atmosphere consisted of air rising 
at the equator, travelling aloft away from the equator before sinking at the poles (Hadley, 1735). 
However, this picture neglects the effects of the Coriolis force which leads to geostrophic balance 
at mid-latitudes. In fact, due to rotation, such a cell (now called the Hadley circulation) would 
produce easterly winds at midlatitudes, the opposite of what is observed. Thomson (1857) 
and Ferrel (1859) modified this picture and introduced a second circulation cell which is now 
called the Ferrel cell (see Figure 4.1). With this modification, westerlies at midlatitudes and 
easterlies (trade winds) at low latitudes are recovered. 

The circulation described by this simple picture is zonally symmetric. However, it is not 
actually observed. Rather, strong transient perturbations dominate the atmospheric circula- 
tion, especially at midlatitudes. These perturbations take the form of strong cyclones (storms) 
that induce irregularities which completely dominate any ordered zonal pattern such as the 

Ferrel cell. 
In the past, two possible reasons for the lack of zonal symmetry have been proposed. One 

possibility is that a zonally symmetric circulation is not a solution of the equations of motion, 
and the basic state is fundamentally asymmetrical. Alternatively, a second possibility is that 
the Ferrel cell is a solution to the equations, but it is unstable to asymmetrical perturbations; 
these growing perturbations spawn the mid-latitudes cyclones. 

To address this specific issue, Lorenz proposed a simple model for large scale circulation 
in one hemisphere (Lorenz, 1984). The model equations are 

dX 
dt 
dY_ 
dt 
dZ_ 
dt 

-Y2-Z2-aX + aF (4.1) 

XY-bXZ-Y + G (4.2) 

bXY + XZ-Z. (4.3) 

In these equations X represents the intensity of the symmetric westerly wind, which (in the 
usual thermal wind balance) is proportional to the average meridional temperature gradient 
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Figure 4.1:  A schematic representation of the atmospheric circulations proposed by Hadley 
and by Thomson and Ferrel. 
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between Equator and Pole. The variables Y and Z are Fourier amplitudes characterixing a 
chain of large-scale eddies. The eddies transport heat poleward at a rate proportional to Y2 

and Z2, which reduces the pole-equator temperature diference and, thence, the wind. The 
term aF represents the symmetric forcing, due to the Equator-Pole difference in solar heating, 
and G is a longitunally dependent (nonsymmetric) forcing term that models the temperature 
differences between continents and oceans. If we ignore the nonlinear coupling terms, then the 
equations predict that X relaxes to F and Y relaxes to G. 

The solutions to the system of equations are bounded: 

X2 + Y2 + Z2<Emax     t->oo, (4.4) 

for some constant Emax. Furthermore, the phase space divergence can be calculated: 

ÖX     dY     dZ . , ov (A -v 
 1 h -— = -a-2 + 2X. (4.5) 
8X     dY     dZ 

Thus it can be seen that the phase space volume contracts only if X < 1 + a/2. Since the 
phase space volume does not contract everywhere in phase space, attractors may have finite 
volume. 

The fixed points of the system are given by 

(l-X)G 
1-2X + (1 + 62)X2' 

bXG 

(4.6) 

(4.7) 
1 - 2X + (1 + b2)X2 

and 

a(F - X)(l - 2X + (1 + b2)X2) -G2 = 0. (4.8) 

From equations (4.6)-(4.8) it can be seen that if G = 0 then the fixed points are X = F, 
Y = Z — 0. This solution corresponds to the symmetric Hadley circulation. In this case, if 
F < 1 the solution is stable, whereas if F > 1 the solution is unstable and eddies are produced 
by the instability of the symmetric state. For cases when G ^ 0 there can be multiple equilibria 
as shown in Figure 4.2. For small values of G, there is only one solution which is similar to the 
Hadley circulation (point A). For intermediate values of G there are three equilibria. One of 
these is similar to the Hadley circulation (point B), the second is unstable (point C) and the 
third corresponds to an asymmetric, non-Hadley circulation (point D). This final state could 
be described as "blocked"; that is, a strongly nonzonal circulation whose structure is locked 
into place as a result of the nonsymmetrical thermal forcing between land and sea (entering 
through G). This asymmetric circulation is reminiscent of blocking by topographic forcing 
(Charney & DeVore 1979). For large values of G, only this latter equilibrium exists (point E). 

Thus, even such a simple model shows that midlatitude disturbances can be produced by 
either instability of a symmetric, Hadley-like circulation (G = 0,F > 1) or as fundamental, 
non-Hadley states (e.g., case E). 
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Figure 4.2: The equilibria curve for the Lorenz 84 model plotted in the G - X plane, where 
X is the strength of the zonal flow.and G is the strength of the zonally asymmetric forcing. 

An interesting feature of this model is that it produces multiple steady states (as many 
other models before it). This multiplicity of attractors, sometimes called intransitivity, extends 
also to more complicated solutions such as limit cycles and chaotic attractors: For the case 
G = 0 and F > 1, equations 4.1-4.3 have a stable, attracting periodic solution: 

X = l, (4.9) 

Y(t) = y/a{F - 1) cos(ta - 0o) (4.10) 

Z{t) = ^a(F - 1) sin(W - <fo). (4.11) 

This solution undergoes period doubling as G is increased. For G = 0.8, there are two coexist- 
ing attractors; both are limit cycles (see Figure 4.3). Therefore, for these parameters values, 
the model has two stable "climate" states. At larger values of G, the two attractors merge 
and the model behaves chaotically, as shown in Figure 4.4. 

4.2.2    Periodic driving of an intransitive system 

The model discussed above does not contain any external forcing, and still it is capable of 
producing an internal (periodic or chaotic) variability. On the other hand, the real atmosphere 
has significant external forcings at diurnal and annual periodicities, and it is therefore of 
interest to explore how an external, periodic forcing modifies the internal variability of the 
model. 

For linear systems, periodic forcing introduces a periodic response except at resonance 
when the frequency of the driver coincides with an internal frequency of the driven system. 
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40 SO 60 
Time (days) 

Figure 4.3: Time series of X, Y and Z for the two stable periodic solutions that exist when 
G = 0.8. The solution shown by solid lines is the "weak" attractor, and that by dotted lines 
is the "strong" one. Note that one time unit of the model corresponds to 5 days, and that 
a = 0.25, b = 4 and F = 8. 
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Figure 4.4: Time series of the aperiodic behavior of X, Y and Z when G = 1, a — 0.25, 6 = 4 

and F = 8. 

For nonlinear systems, even a simple periodic driving may generate a vart range of new and 
interesting effects. 

A particularly interesting case is when one of the control parameters of the system (e.g., F 
or G in the Lorenz 84 model) is paramterically driven. Notably, if the parameters are driven 
through a point of bifurcation of the the unforced system, then "switching" can occur as the 
system turns "on" and "off" (this idea recurs in the next lecture). For example, take the Lorenz 
84 model in the vicinity of a transition from periodicity to chaos, and vary F periodically such 
that its extreme values correspond to periodic or chaotic behavior in the undriven system. 
In this case, the system undergoes transitions between these two regimes, switching between 
regular cycling and chaos. Sometimes, the timescale for switching can be lengthy, and this 
introduces a simple form of low-frequency (interannual) variability into the model. However, 
this behavior strictly depends on the fact that the system is close to a bifurcation. 

Another interesting case, with richer dynamics, is obtained when the system is intransitive, 
and has at least two attractors. In the simple case of multiple steady states, periodic driving 
can precipitate regular transitions of the system from one equilibrium to the other. Clearly, 
the driver must have a sufficient amplitude as to force the system to cross the potential barrier 
between the two equilibria (equivalently, for a simple oscillator, to modify the form of a double 
potential well and allow the system to roll from one equilibrium to the other). 

Even more interesting is when the undriven system has time-dependent multiple states, 
such as periodic oscillations or chaotic attractors. This case was considered by Lorenz (1990), 
who studied a situation where the system is forced to move through a bifurcation between 
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Figure 4.5: The variations in X for the case when G = 1, A = 0.25, 6 = 4, and F - 
7+2 cos(27rf/T), with r corresponding to 12 months. The time series are divided into successive 
yearly segments and offset downwards. 

periodicity and chaos, with the addition feature that the periodic dynamics is intransitive (as 

in figure 4.3). 
Lorenz's motivaton was climatological, and the periodic perturbaton modelled the seasonal 

cycle. More specifically, Lorenz used the model described above, but with F parameterically 
forced to represent the variation in the Equator-Pole temperature difference from summer to 
winter. Lorenz identified the chaotic, transitive regime found at larger values of F (figure 4.4) 
with winter and the periodic, intransitive regimes at lower F with summer (figure 4.3). The 
summer regime has a so-called "weak" attractor which has a small basin of attraction and 
a small oscillation amplitude (the solid lines in figure 4.3), and a "strong" attractor with a 
larger basin and larger oscillations (the dotted lines in figure 4.3). An example with A = 0.25, 
b = 4.0, G = 1.0 and F = 7.0 + 2.0cos(27rf/T), where T corresponds to 12 months is shown in 

Figure 4.6. 
As suggested above, this system changes from a chaotic behavior in winter to a periodic 

dynamics during summer. However, during summer the system can approach either the weak 
or the strong periodic attractor, depending on the conditions encountered at the end of the 
winter. During winter the system loses almost all memory of its state in the previous summer, 
and at the end of the winter it lies at a point on the chaotic attractor which is practically inde- 
pendent of the conditions at the beginning of the winter. Thus, the probability of approaching 
the weak or the strong attractor in the following summer depends chiefly on how the winter at- 
tractor is distributed within the basins of the two summer limit cycles. This produces irregular 
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sequences of weak and strong summers, which generate significant low-frequency variability. 
The interesting dynamics generated by this model is due to both the passage of the sys- 

tem through a bifurcation, and, even more importantly, to the intransitivity of the summer 
dynamics. We are thus faced with a dynamically "bimodal" system where the choice between 
the two possible states is dictated by a chaotic process. Presumably, we could have obtained 
similar effects by considering a purely intransitive dynamics where, at periodic intervals, an 
external random noise resets the system and forces it to choose again one of the two possible 
states. The interest of the Lorenz 84 model, however, is that this process is obtained in a very 
simple and self-consistent, deterministic way. 

4.3    A stochastically forced model of the thermohaline circula- 
tion 

We next consider another type of external forcing, namely, random white noise acting on a 
low-order dynamical system. This case is quite important as most systems are subject to 
the influence of unresolved "turbulent" dynamics that can alter the simple behavior of the 
unforced model. In particular, we consider the effects of random noise acting as a driver in the 
equations of motion. We have encountered a simple example of this in Lecture 3, when dealing 
with the (linear and nonlinear) Langevin equation. In that case, the deterministic dynamics 
was extremely simple. By contrast, here we consider situations where the deterministic part 
has an interesting behavior even without external noise. Note, also, that the case of dynamical 
noise is more relevant and much more complicated than pure additive noise superposed onto 
a signal produced by a low-order system, as happens, for example, if there is a random error 
in taking measurements. 

As a specific example, we consider the noise-driven dynamics of a simple box model of the 
thermohaline circulation of the ocean, following Cessi (1994). Again, most of the interesting 
effects are due to the intransitive nature of the unforced model. 

The oceanic thermohaline circulation (THC; see Whitehead 1995, for a review) is due 
to the joint effect of temperature and salinity on water density. Consider, in particular, a 
simple model of an ocean that extends from the Tropics to high latitudes. If, over some 
extensive region of ocean, the water is denser at the surface than at the bottom, then fluid 
sinks and drives a convection current through the entire ocean. This circulation can maintain 
itself if there is a suitable influx or outflux of the two components contributing to the local 
density (heat and salt). Such fluxes are provided by differential solar heating, evaporation 
and precipitation. 

The density p of sea water may be approximately expressed as 

p-po = as(S-So)-aT(T-To), (4.12) 

where T is temperature, S is salinity, and p0 is a reference density with salinity 50 and 
temperature T0. Thus, density increases on lowering the temperature, or in raising the salinity. 

At high latitudes, surface cooling may be very effective.   In the Atlantic, this happens 
in the Labrador Sea, for example.   In the Mediteranean, cooling takes place in the Gulf of 
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Lyon south of Marseille and in the northern Adriatic Sea. Thus, cold water sinks at these 
high latitudes, and a "direct" circulation is established with warm surface water flowing from 
the tropics to high latitudes, and cold bottom water flowing toward the Equator. This is the 
circulation pattern observed today in the Atlantic and the Pacific, with the Gulf Stream being 
part of the northward "conveyor belt" transporting heat at high latitudes. 

On the other hand, intense evaporation at low latitudes generates salty water at the surface 
in the tropics, and precipitation and the melting of ice produces fresh surface water at higher 
latitude. If the evaporation or flux of fresh water is large enough, then the contribution of 
salinity to density may become more important than that of temperature. In this case, the 
surface water becomes denser at low latitudes, and sinking occurs in the tropics. Then, the 
surface flow becomes Equatorward, and it is composed of fresh, cold, high-latitude water. The 
bottom flow is a warm and very salty current flowing towards high latitudes. This type of 
circulation, "inverted" with respect to that observed today, may have dominated the oceanic 
circulation in some periods of the past, such as intervals of deglaciation characterized by a 
large amount of fresh water produced in high-latitude seas from melting glaciers. 

In the early sixties, Stommel (1961) proposed a simple low-order model for the thermohaline 
circulation. This model reduces the oceanic pool to two homogeneous boxes, representing 
respectively the high-latitude and the tropical halves of the original pool. In such a box model, 
box 1 represents the tropical ocean and box 2 is the high-latitude ocean. The variables of the 
model are Ti,r2,5i,52, where Tj is the temperature and Sj the salinity of box j, for j = 1 
and 2. 

The evolution of the system is then modelled by the following equations: 

f - -MTi-^HQ(Ap)AT (413) 
d

~dW   =   -^2 + 0+^(AP)AT (414) 

d~o¥ =   m-So ~ ^(A')A5 (415) 

ll   =   -^-S0 + \Q(AP)AS, (4.16) 

where A denotes the difference between the two boxes: 

AT = TX-T2,        A5 = 5!-52,        Ap = as AS - aTAT. (4.17) 

In equations 4.11 and 4.14, rr is the time scale on which the temperature in boxes 1 and 2 
relaxes towards T0 4- 0/2 and T0 - 0/2 respectively. F{t) models the concentrating effect of 
evaporation in the tropics, or the dilution by precipitation and melting in high-latitude regions; 
H is the depth of the ocean. This model differs from the original Stommel model in that 
different "boundary" conditions for salinity are used. In the Stommel model, both temperature 
and salinity have restoring boundary conditions. Here, restoring boundary conditions are 
retained for temperature, while for salinity a fixed salinity flux (F(t)) is imposed. 
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The quantity Q{Ap) is the water flux due to the density difference Ap between the two 
boxes. In the past, various forms of Q{Ap) have been proposed. These include: 

(«)        Qi = rd-\ (4-18) 

where rd is another relaxation time. This is a constant water flux, independent of Ap, and 
generates linear equations with at most one stable equilibrium. 

(«)       Q2 = rd-1 + ^|Ap|, (4.19) 

where v is another parameter. This form of the flux is appropriate for connecting capillary 
pipes, and was the form originally proposed by Stommel. Recent analyses of ocean circulation 
models have made the suggestion that this may provide an appropriate parameterization of 
the water flux (Rahmstorf 1996). 

(m)       Q3 = r^ + -(Ap)\ (4"2°) 

a form of the flux based on simple theories of turbulence. 
In this model, it is convenient to introduce new variables given by the temperature and 

salinity differences, AT and AS. One then obtains, for the evolution of AT and AS: 

— = --(AT-6)-Q(Ap)AT (4.21) 
dt rr 

and 

^ = *gls0 - Q(Ap)AS. (4.22) 
dt Ja 

These are the basic equations of the THC two-box model. We next introduce the following 
nondimensional variables: 

_ AT        _ asAS 
X~   0      y~  aT0 

On substituting these variables, with the choice Q = Q3, into equations (4.21) and (4.22), we 
find the following equations: 

dx 

y=—--     t' = r^t. (4.23) 

and 

where 

--a{x-l)-x(l + n2(x-y)2) (4.24) 
dt 

$=p(t)-y(l + /*
2(x-y)2), (4-25) 

dt 

a=rA 2.= 9Td(«rg)2        and       p=asSoT,F{t) ^ 
Tr v aTon 
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Equations (4.25)-(4.26) are the nondimensional equations of the THC box model. 
In general, the diffusive time scale rd is much larger than the relaxation time rr, and so 

the value of a is usually very large. This allows us to simplify the equations still further: On 
assuming a » 1, the above equations become 

x = l + Oia'1) (4.27) 

and 

% = -[1 + /zV - l)]y+p(t) + 0{a~l). (4.28) 
at 

For the case of constant salinity flux p, Eq. (4.28) can be written in the form of an 
overdamped oscillator with potential V(y;p): 

dy__9V 
dt dy' 

(4.29) 

where 

fH='!(T-T4)+r" (4-30) 

describes a double-well potential. Thus, the system has two stable equilibria: one corresponds 
to a direct, temperature-driven circulation, and the other to an inverted, salinity-driven circu- 
lation. The two equilibria are separated by a potential barrier and, in the absence of external 
forcing, the system settles to one of the two steady circulations. 

The presence of external noise may, however, induce transitions from one equilibrium state 
to the other. Cessi explicitly considered the case of a random perturbation superposed on the 
mean salinity flux. In this case we write p{t) = p + p'(t), where p is the mean and p'(t) is the 
perturbation in the salinity flux. Here, p' is modelled described by white noise. The system 
discussed above now behaves like a particle in the time-independent potential, V(y;p), subject 
to a Brownian force, p'{t). 

If p' is large enough, the presence of the potential V{y;p) plays a minor role, and the 
particle undergoes almost unconstrained Brownian motion. On the other hand, if p' is so 
small that the perturbed particle cannot cross the potential barrier between the two wells of 
V{y;p), then the resulting motion takes the form of a noisy fluctuation around one of the two 
stable equilibrium points. For intermediate stengths of p', the particle still feels the potential, 
but it is now able to randomly jump from one well to the other. The resulting motion is a 
random fluctuation between the two equilibria, with a significant fraction of time spent around 
each fixed point and intermittent jumps from one state to the other. This case was studied in 
detail by Cessi, and illustrates how random dynamical noise may induce irregular fluctuations 
from one attractor to another. Of course, the noise should be of large enough amplitude to 
force the system to cross the potential barrier between different attractors. 
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4.4    Stochastic Resonance 

In the models described above, if the amplitude of the periodic forcing or noise is too small, 
then the system does not cross the barriers between the unperturbed attractors. However, if 
both kinds of perturbations are present, then interesting new effects can arise even when both 
are sub-threshold. More specifically, for an oscillator with a double potential well, a resonance 
can occur between the periodicity of the forcing and the (probabilistic) escape rate from each 
potential well induced by the noise (Benzi et al. 1981; McNamara & Weisenfeld 1989; Bulsara 
& Gammaitoni 1996). This phenomenon has been named stochastic resonance. 

To illustrate this phenomenon, consider the equation, 

ll=W+F(t) + Asm(u>0t), (4.31) 
at ox 

where F is a white noise term with the properties {F) = 0 and (F(t)F(t')) = 2D5(t-t'). Here 
(..) means ensemble average and 6{t - t') is a Dirac delta function. 

For a potential with a given shape, U, the noise induces occasional escapes from the well. 
This is characterized by the Kramers escape rate and depends on the noise amplitude, D. 
Stochastic resonance occurs when the periodicity 2-K/UQ of the forcing matches the escape 

time. 
The resonance can be visualized by imagining a quartic potential U with two wells, whose 

shape is periodically modified by the forcing. At certain phases of the modulation, one of 
the wells is lower than the other. At that specific time, it is "easier" for the system to pass 
from the higher equilibrium to the lower. Half a period afterwards, the opposite situation is 
encountered, and the system is more likely to switch back. If the amplitude of the noise is 
such that the escape time is similar to the period of the oscillation of the potential well, one 
observes the birth of a noisy periodicity at the frequency of the forcing. As a result, the system 
becomes an amplifier, capable of enhancing a small (sub-threshold) external periodic forcing 
through its noise-driven internal dynamics. 

The idea of stochastic forcing was originally introduced by Benzi et al. (1982) and Nicolis 
(1982) as a mechanism for cycles of glaciation, and has been explored further in hundreds of 
papers since then. The main motivation for this explanation arises from various records of 
past climatic variability (e.g., the ratio 6l80/6160 in sea sediment cores; see Ghil & Childress 
1987) which indicate that glaciations during the last million years possess broad periodicities 
at about 100,000, 40,000 and 20,000 years. Interestingly, similar periodicities are present in 
the variations of the Earth's orbital parameters, suggesting a direct orbital forcing on the 
terrestrial climate. However, by itself, the variation due to orbital changes is definitely too 
small to account for the large temperature difference between glacial and interglacial periods. 
Thus, if we want to insist on this explanation, an amplification mechanism is needed. 

Stochastic resonance has been proposed explicitly as such a mechanism. In this context, 
the potential wells are associated with the multiple equilibria of the global climate due to the 
ice-albedo feedback (see Lecture 2), the periodic forcing is the variation of the Earth's orbit, 
and the white noise is provided by high-frequency temperature fluctuations in the atmosphere 
and oceans. To see how the model works, consider the energy balance equation introduced in 
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Lecture 2: 

c^r = Q(t)[l - a(T)] - ag{T)T\ (4.32) 
at 

where the solar forcing Q is now taken to be time-dependent: 

Q(t) = Q0(l + Acosu0t) . (4.33) 

Variations in eccentricity of the Earth's orbit have a period of 2-K/UQ « 100,000 years and an 
amplitude of A« 10~3 in units of the mean solar constant, Q0- For constant solar forcing 
(A = 0), equation (4.32) has three equilibrium solutions, Ti, T2 and T3. If the system is located 
at one of the stable fixed points, is far from any bifurcations and adjusts rapidly to changes in 
Q, then the temperature variations through the eccentricity cycle can be computed from the 
equilibrium curve, T = T(Q), found from equating the right-hand side of (4.32) to zero. For 
A = 10~3 and T = Tx or T3, this predicts a variation of about 0.1°C, which is much smaller 
than the inferred difference in the mean global temperatures between glacial and interglacial 

periods. 
The addition of white noise, however, may cure the problem, as it can lead to stochastic 

resonance. It is not difficult to see that the addition of a white-noise term with appropriate 
amplitude to the right-hand side of equation (4.32) is the standard setup of stochastic reso- 
nance. Provided the resonance is of sufficient quality, this can force the system to jump from 
one stable equilibrium to the other, with an amplified, noisy periodicity of 100 kyr. 

To conclude, may we say that stochastic resonance is the right explanation for glaciation 
cycles? Clearly, it is not easy to answer this question. Stochastic resonance is a very important 
concept, which can be extended to more general situations including non-periodic external 
forcing, coloured noise, and high-frequency chaotic dynamics replacing stochastic noise. The 
main problem with this type of resonance, however, is that the noise amplitude must be 
rather finely tuned to the shape of the potential and to the amplitude and period of the 
driver in order to obtain significant amplification. For example, stochastic resonance has been 
invoked in several biophysical and physiological amplification mechanisms; here, however, one 
can imagine that the system has evolved to a state in which amplification is optimized (e.g., 
natural selection could have tuned the shape of the potential). In the climatic case, however, 
there is no reason why the resonance should be there a priori, and it would be a fortunate 
coincidence if the amplitude of the noise induced by weather variability were resonating with 
the shape of the climatic potential and the periodicity of the orbital variations. Of course, 
more work is needed in order to understand whether some form of resonance can be observed 
in more complicated dynamical systems with less stringent requirements. 
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Lecture 5 

Chaos driving Chaos 

In Lecture 4 we have explored some examples of what can happen when a nonlinear dynamical 
system is driven by external periodic forcing, noise, or a combination of both. Here, we briefly 
consider the case of a nonlinear system, call it system B, which is driven by another nonlinear 
system (the driver), which we call system A. A particularly interesting situation is when 
there is no feedback of the driven system on the driver. Such systems are often more easily 
understood than systems that drive each other. Mathematically, the global system formed by 
A plus B is said to have a skew-product structure. An example of this is provided by the solar 
forcing on terrestrial climate, where the Sun is the driver, the climate is driven, and most 
people think that there is no feedback of the Earth's climate on the solar output. 

5.1     On-off intermittency 

In driven-driver systems with skew-product structure, many interesting things can happen. 
Among these, we concentrate on the phenomenon called on-off intermittency, which produces 
bursting behavior in the output of the driven system (see e.g. Platt, Spiegel & Tresser 1993a). 
A second possible phenomenon is synchronization, which we consider in the next lecture. 

Consider the general system 

X = F(X,Y) 

and 

Y = G(Y), 

with XeKfc,Y£ Hn~k. The dimensionality of the whole system is n. We suppose that the 
global system has an invariant manifold in the subspace X = 0. That is, if X = 0 initially, then 
it will remain so, whatever the vaue of Y. We also suppose, however, that the stability of the 
manifold X = 0 depends on the value of Y. More specifically, we briefly ignore the evolution 
equation for Y and consider Y to be a constant parameter in the equation determining X. 
Then, the invariant object, X = 0, has stability characteristics depeding on the value of Y. 
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Figure 5.1: Effect of the variations of the driver Y on the dynamics of X. The variable Y 
controls the stability of the invariant manifold X = 0 of the driven system; where Y is positive, 
X = 0 is unstable, and where it is negative, the invariant manifold is stable. 

The important feature of the system is that there is a region of the phase space for Y for which 
X = 0 is stable, the region <S say. But if Y lies outside this region, then X = 0 is unstable: 

YeS=>X = Qis stable 

Y£S=>X = 0is unstable. 

Now let Y evolve according to its own equation. The driver is set up such that the 
trajectory of the solution, Y(t) wanders through the phase space, with some periods of time 
spent largely in <S, then other intervals mainly outside this region. This means that the driver 
alternates between periods in which it typically stabilizies the invariant manifold, and intervals 
over which it destabilizes X = 0. As a result, the variable X may spend long periods of time 
in the proximity of X = 0, and undergo sudden bursts of activity far from X = 0 when the 
driver makes that manifold unstable. 

In the simplest case, X = 0 is a fixed point, but in general the invariant manifold can 
contain an attractor of whatever dimensionality less than k. On-off intermittency thus provides 
a simple mechanism for bursting away from an attractor in low-dimensional systems. Figure 
5.1 illustrates the behaviour. 

A simple example of on-off intermittency is provided by the map, 

X{n + 1) = R(n) X(n) [1 - X(n)} (5.1) 

in which we vary the control parameter, R{n), according to another logistic map: 

R(n) = aY{n) + b (5.2) 
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Figure 5.2: On-off intermittency in the coupled maps (5.2)-(5.3). Panel (a) shows a short time 
series of Xn\ the dotted lines indicate the corresponding signal of Yn. In (b) we display Xn 

against Xn+i, and in (c) a power spectrum obtained from averaging spectra from ten different 
realizations of the system. 

and 

y(n + l)=4Y(n)[l-F(n)] (5.3) 

with a = 3.95 and b = 0.05. Figure 5.2 shows a time series of X{n), which shows the bursty 
behavior typical of this form of intermittency. Time series of this kind are characterized by a 
red power spectrum (i.e., a spectrum with ever-increasing variance at low frequencies Balmforth 
et al. 1999; see figure 5.2c). 

5.2    A model of the intermittent solar cycle 

On-off intermittency has been proposed as a possible mechanism for the alternation between 
active and inactive periods in the solar dynamo (Platt, Spiegel & Tresser 1993b). 

Sunspots are formed where strong magnetic fields inhibit fluid convection and the flow of 
heat in the turbulent solar envelope; where the fields pierce the solar photosphere, the mag- 
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netized fluid appears dark. The spots persist for timescale of order weeks, and understanding 
their origin is one of the most challenging problems in solar physics. 

One of the most surprising aspects of sunspot phenomemology is the soiar cycle: the 
number of sunspots observed on the solar surface varies roughly periodically with a timescale 
of eleven years or so. Though this eleven-year cycle appears to have existed for centuries, it 
does not appear to have maintained a constant amplitude. Notably, during the "Maunder 
Minimum" in the seventeenth century, there was a significant shortage of sunspots. 

To rationalize the appearance of the Maunder Minimum (and other apparent declines in 
the solar activity) we turn to another metaphor. This time we interpret the Minimum in terms 
of the "off" period of an intermittent, low-order dynamical system. The particular system we 
choose is that described by Platt, Spiegel & Tresser. There are crude physical arguments 
supporting this model; at the risk of sounding ridiculous, we repeat some of these. 

The solar cycle is basically a magnetohydrodynamical phenomenon. Our image behind 
the cycle is one in which magnetic flux is amplified by dynamo action in the convective solar 
envelope, then is swept into localized tubes by the action of turbulemt eddies. These tubes 
contain sufficient flux to impede the fluid flow and maintain their structure in the face of 
the turbulence. Upto this point, the image is plausible and largely agreed upon by solar 
physicists; beyond it, however, the image becomes sketchy and more controversial. The tubes 
are transported around by large-scale convective cells and ultimately expelled beneath the 
convection zone. Here, they build up in a thin zone between the radiative interior and the 
convective envelope where there is a high degree of shear due to the differential solar rotation. 
This is the solar tachocline. Here too, there is dynamo action due to the differential rotation. 
But it is the evolution of this magnetic layer on a longer timescale that may be responsible for 
producing the solar cycle. 

To model the magnetic tachocline we take a nonlinear oscillator such as might be expected 

from a simple dynamo process: 

x = ßx - ojy - (x2 + y2)x (5.4) 

and 

y = ux + ßy - {x2 + y2)y, (5-5) 

where w is the frequency of the oscillator, and ß is its growth rate, x and y could be, for exam- 
ple, the time-dependent amplitudes of a spatial mode as in the Galerkin projection described 

in lecture 2. 
If ß were constant, the oscillator models the magnetic content of the tachocline and its 

amplification through the action of differential rotation. But there is also the magnetic flux 
tubes that are expelled from the convection zone above, and "rain down" onto the tachocline. 
We account for this effect by adopting a time-dependent form for ß that includes a term 
modelling the fluctuating process which adds to the field. In particular, we describe the 
turbulent convective dynamo by the Moore-Spiegel model (Moore & Spiegel 1966): 

X = AX - X3 - BX + Z (5.6) 
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Z = -S[Z - CX{X2 - 1)], (5.7) 

where A, B,S and C axe parameters. Again, X(t) and Z(t) could be the amplitudes of Galerkin 
modes. Then, we define 

ß = ßo(X-X0), (5-8) 

where ßo and X0 are constants.   This form for ß is then fed into the oscillator equations 

(5.4M5.5). 
A solution to our model system (5.4)-(5.8) is shown in figure 5.3. This shows how the 

activity in x2(t) bursts intermittently in the fashion of the on-off mechanism. Note that the 
dimensionless time unit corresponds to several years; the duration of the quiescent phases is 
of order 50 years. 

Notably, outbursts are closely correlated with the periods over which X(t) takes positive 
values. Evidently, in this model, the Maunder minimum and it predecessors should have a 
rough periodicity given by the timescale on which the Moore-Spiegel oscillator crosses from 
one side of the "bowtie" to the other (about 50 of the dimensionless time units). This feature 
of the model is not actually consistent with observations, calling, perhaps, for some further 

parameter tuning. 
A simple modification of this model, that provides a more realistic alternance between 

active periods and "Grand Minima" (quiescent phases such as the Maunder Minimum), is ob- 
tained by breaking the skew-product structure of the system and introducing a small feedback 
of (x,y) on (X,Z) (Claudia Pasquero, Thesis of Laurea, 1996). This specific example indi- 
cates that, often, a richer behavior is found in systems which do not have a pure skew-product 
structure, but rather allow for a small feedback of the driven system on the driver. In these 
systems, the basic mechanism of on-off intermittency is still present, even though it is slightly 
modified by the presence of the (small) feedback. In the words of Ed Spiegel, these are systems 
with "broken asymmetry." 

5.3    In search for the motor 

We now return to pure skew-product nonlinear systems, and consider their properties from 
the point of view of time series analysis. In particular, we can imagine a situation where 
we measure only the output of the driven system B (thus considering what one might call a 
non-generic variable), and try to reconstruct some of the properties of the whole system, or of 
its individual constituents, A (the driver) and B. 

Among the possible questions, we concentrate on the following one: Given that we have 
measured the output of the driven system, what can we say about the properties of the 
driver? In this context, we consider the driven system as a nonlinear dynamical filter acting 
on the driver, and we want to extract the characteristics of the driver embedded in the driven 
behavior. An example of this situation is when we attempt to extract from analysis of climatic 
data the hidden solar forcing. 

In general, this question does not have a simple or unique answer, as the possibility of 
detecting a sign of the driver in the dynamics of the driven system depends on the nature of 
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Figure 5.3: Intermittent solution of the system (5.4)-(5.8), with A = 0.7, B = 0, C = -0.5, 
S = 0.03, u) = 2, ß0 = 1 and X0 = -0.15. Panel (a) shows a time series of x2{i) (solid 
lines) and X(t) (dotted lines), and panel (b) shows a phase portrait in (X,X,x)-space; the 
projection of the Moore-Spiegel attractor is also displayed. 
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both systems, and on the strength of the driving. Thus, we qualify the above question, and 
explore whether we can at least distinguish between stochastic and deterministic driving in a 
system undergoing on-off intermittency (Platt, Spiegel k Tresser 1993a; von Hardenberg et al. 
1997). 

To this end, consider a simple tent-like map 

Xn+1 = {*u-x) xn>i (5-9) 

where ß is the control parameter. This map has a fixed point at xn = 0; it is stable for p, < 1 
and unstable otherwise. For \x > 1 there is another fixed point at x\ = [if{p. + 3), which is 
stable for \x < 3 and unstable otherwise. 

Now, let us suppose that the control parameter is not constant, but varies according to 
another dynamics, which pushes it across the bifurcation sequence of the driven system. The 
dynamics of the control parameter is described by 

fi = ayn (5-10) 

where a is a coupling constant. For the driver yn, we take either a stochastic model, 

yn= white noise, (5-H) 

or a low-dimensional dynamical system, 

yn+l = 2y„(mod 1). (5.12) 

In both cases, the driven map displays on-off intermittency, with long periods of quiet 
behavior intermixed with spikes of strong activity. Figure 5.4 shows two time series of the xn 

variable, for the deterministic driver (panel a) and the white noise driver (panel b). In general, 
the amount of bursting is controlled by the value of a, and it is possible to find (different) 
values of a such that signals produced by the deterministically and the stochastically driven 
maps are apparently indistinguishable. 

The indistinguishability extends also to simple calculations of the correlation dimension 
D2, the Lyapunov exponents, or other dynamical measures obtained from a time embedding 
of the output of the driven system. For example, using a = 2.88 for the white noise and 
a = 3.5 for the deterministic driver gives the same correlation dimension in the embedded 
output signal. In other words, standard techniques do not appear to be able to distinguish 
stochastic and determinisitic, on-off signals. Worse still, the application of surrogate data 
tests (phase randomization, etc) is also of limited help, as the two signals remain apparently 
indistinguishable. 

However, a clear (albeit qualitative) difference between the stochastic and deterministic 
drivers can be seen by plotting xn+i vs xn (panels (c) and (d) of figure 5.4; see also figure 
5.2). The stochastic driver has a power-law divergence in the density of points near the 
origin and a uniform distribution of points far from the origin, while the deterministic driver 
has complicated large-scale structures in addition to the density divergence around x = 0. 
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Figure 5.4: On-off intermittency in the coupled maps (5.9)-(5.12). The first two panels show 
short time series of xn for (a) stochastic and (b) deterministic driving. Panels (c) and (d) 
show the same results plotted on the {xn,xn+i) plane, a = 3. 
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The strong clustering of points near the origin is a result of the off periods, present for both 
stochastic and deterministic driving, and it strongly influences the dimension determination. In 
fact, the approximate power-law distribution of points near the origin in phase-space induces a 
spuriously small value of the correlation dimension, that wipes out the dynamically significant 
differences between the stochastic and the deterministic driving which are present in the other 
portions of phase space. 

To distinguish properly between the two drivers, one needs to reduce the effect of the points 
near the origin. To this goal, Hardenberg et al. have proposed to modify the definition of 
distance in phase space, in order to "spread" the points clustered near x = 0 and consequently 
allow for the dynamical differences to appear. With this modification, it was then shown that 
the correlation dimension takes the correct value, allowing for a distinction between the two 
types of driver. This result was achieved, however, only after a close scrutiny of the data, as 
the "automatic" procedures employed did not provide the correct results. This story indicates 
that one has to be careful when analysing the dynamics generated by on-off intermittent signal, 
as standard methods can give misleading results. Nevertheless, in this specific case, the other 
side of the coin is that a careful analysis of the reconstructed dynamics gives information on 
the nature of the driver, even if though it is processed by a bursting, nonlinear dynamical 

filter. 

5.4    More intermittency 

In this lecture we have explored some of the properties of systems undergoing on-off intermit- 
tency. However, "intermittency" is an abused term in nonlinear dynamics. For this reason, 
we now briefly mention some of the main usages of this term. 

The most elementary, and general, definition of intermittency is in terms of the probability 
distribution of extreme fluctuations. For an intermittent system, large fluctuations (extreme 
events) are much more probable than for a gaussian process. In this sense, a system with slowly- 
decaying tails in the probability distribution of the dynamical quantities that characterize it can 
be called intermittent. Thus, an intermittent signal has non-gaussian probability distributions 
(for example, with exponential or power-law tails), and it cannot be generated by a linear 
process. The linear Orstein-Uhlenbeck process discussed in Lecture 3 is non-intermittent, 
while its nonlinear extension, also discussed there, is "intermittent." (This is evident from the 
probability distributions displayed in that lecture; figure 3.3.) Note, however, that a simple 
nonlinear change of variables may make a linear signal to appear intermittent. Thus, this 
definition of intermittency does not distinguish between signals produced by a truly nonlinear 
dynamical system and linear signals that have been nonlinearly transformed. 

A more quantitative measure of intermittency is provided by the study of the (possibly) 
multifractal properties of the signal. Multifractality can be uncovered by evaluating the struc- 
ture functions of order m: 

Sm(r) = <\x(t + r)-x(t)\m>t 

where x(t) is the time series under study and < .. >t indicates a time average along the signal. 
The parameter m defines the order of the moment.   For a signal characterized by scaling 
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properties (a fractal signal), one has that 

Sm(r)«T« 

at small r. Moreover, for a multifractal, intermittent signal, C(m) increases more slowly than 
m, and so ((m)/m is a decreasing function. Thus, detecting decreasing values of CM/m 

for increasing m is a sign of intermittency. One must keep in mind, however, that statistical 
errors and limitations become stronger and stronger as the order of the moment increases, and 
spurious positive results can be easily found (see e.g. Provenzale et al. 1993). 

Another way of quantifying intermittency is by the evaluation of the generalized dimen- 
sions, Dq. For a multifractal signal, the generalized dimensions, Dq, decrease with increasing 
q. Various definitions of the generalized dimensions are possible; here, we use the simplest and 
most intuitive one. To this end, first define a probability measure, p(t), from the measured 
signal x{t). For example, one may use p(t) = x{t) for a signal produced by one of the intermit- 
tent maps discussed above, or p{t) = {dx/dt)2 for a signal provided by a velocity measurement 
in a turbulent flow. The choice of the measure is crucial, and it should be dictated by the 
physics of the system under study. Unfortunately, many details of the results depend on the 
choice of the measure. Definitions which do not employ a measure are possible, and used in 
several contexts. Here, however, for simplicity we stick to the definitions based on a measure 

p(t). 
Once we choose a measure, we then define 

rti + ± fV + f 
i(A)= / p(t)dt 

2 

and 

L 

i=l 

where time is been divided into L segments of duration A. Note also that the above definition 
is not correct for q = 1, in this case one should use 

L 

B(A,l) = $>i(A)]]ogPi(A) 
z=i 

If the chosen measure is self-affine, then in the limit A -» 0 one finds that 

B(A,q) ~ A(«-
1

>
I>
' 

where the Dg's are the generalized fractal dimensions, and q is the order of the moment. 
If the measure is almost always non-zero on the time axis (so the measure "fills" the line), 

then Do = 1- This implies that the chosen measure has no fractally-distributed "holes" on the 
time axis. For monofractal, non-intermittent measures, Dq = D0 for all q. In contrast, for an 
intermittent measure the generalized dimensions Dq decrease with increasing q. 
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For example, the linear Ornstein-Uhlenbeck process of Lecture 3 generates signals with 
Dq « 1 for all q, when the measure p(t) = (dx/dt)2 is used. By contrast, the nonlinear version 
of the process generates multifractal signals which are intermittent: Do = 1 and Dq < Dq> 
for q > q'. For this process, therefore, the simple definition of intermittency based on the 
distribution of the dynamical variable coincides with the more sophisticated definition based 
on the multifractal nature of the signal. 

In the dynamical systems folklore, at least another definition of intermittency has been 
introduced (Pomeau k Manneville 1980). This type of intermittency is observed when the 
system is close to a bifurcation. A particularly visible example arises for a one-dimensional 
map near a saddle-node bifurcation. Figure 5.5 shows one such example; this is the logistic 
map, with parameter r set to be just below the point at which the period-3 orbit appears 
in a saddle-node bifurcation. As shown in the first panel, the third iterate of the map then 
contains three points that are very close to the diagonal; these points touch the diagonal and 
develop into equilibria as we pass through the saddle node on raising r. Whenever the system 
passes close to one of these points, it spends a significant amount of time in that "bottleneck". 
As a result, one observes long periods of quiescent behavior with occasional bursting away 
from the region where the curve representing the map and the 45° line almost intersect. This 
behavior, however, is strictly associated with an incipient saddle-node (or other) bifurcation 
and requires a very fine tuning of parameters. It is therefore less generic than the on-off 
intermittent bursting discussed above. 
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Figure 5.5: Pomeau-Manneville type I intermittency in the logistic map, xn+i = rxn(l - xn) 
with r = 3.827. Every third iteration is shown which illustrates the close passage of the 
trajectory (the dashed lines) to the points that, for larger r, develop into the period-3 orbit. 
The first panel shows the map, and the second a magnification around the middle "bottleneck". 
The third panel shows part of the time series. 

71 



Lecture 6 

Coupled Chaos 

In lecture 5 we have studied the situation where one system (the driver) forces another (the 
driven). We now turn to the general issue of the dynamics of coupled systems. 

There are many instances in which such dynamics are relevant to geophysics and astro- 
physics. For example, oceanographers often account for the atmosphere in terms of only a 
simply wind forcing in their circulation models, and meteorologists occasionally ignore the 
ocean altogether. But, as every climate dynamicist appreciates, the two are intimately cou- 
pled, and many phenomena in the global climate arise as a result of the coupling. 

In this lecture we focus on some consequences of coupling that can be explored using simple 
dynamical systems. The possible synchronization of dynamically similar systems is the first 
such consequence that we discuss. The second issue we raise is, given that the system we 
consider is composed of coupled elements with complicated internal dynamics, how much can 
we say about the full system if we have information from only one of its subsystems. It turns 
out that a full reconstruction is impossible. Then we follow on to explore systems with widely 
different timescales, and describe tools that attempt to distinguish between fast and slow 
dynamics. These tools have some degree of success and lead us to hope that it might prove 
possible to "filter out" the faster dynamics in favour of understanding the slower processes 
that are at work in real applications. 

These latter issues have obvious application to weather prediction, where we attempt to 
forecast the future of a complicated, coupled system with many timescales given information 
from only certain observing "sites" on certain subsystems. 

6.1     Synchronization of Coupled Systems 

In 1673, Huygens observed the phase-locking of two clocks. He attributed this synchronization 
to a weak coupling of the clocks. However, the phenomenon occurs in much more general 
situations, and with whole arrays of coupled systems. For example, one of the most spectacular 
(and also frequently cited) properties of populations of coupled nonlinear oscillators is the 
convergence to mutual synchrony which is observed in many contexts, ranging from firefly 
communities and networks of neurons to charge density waves. 
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These examples invariably involve simple oscillators for which coupling opens up the pos- 
sibility of synchronization in phase; the oscillators, in fact, need not even be identical. But the 
systems that we hope to explore in geophysics and astrophysics are composed of much more 
complicated subsystems. In fact, the subsystems we would typically like to couple together 
are chaotic. But, can chaotic systems synchronize? 

One of the hallmarks of chaos is the sensitivity to the initial condition of the system. This 
means that two identical systems with slightly different initial states will diverge from one 
another in phase space exponentially quickly. This idea conveys the impression that chaotic 
systems are difficult to control and, in particular, if we couple two together, the systems are 
unlikely to follow identical orbits. In fact, this is not the case; chaotic systems can synchronize. 

To illustrate the point consider two identical dynamical systems that, in isolation, are 
described by the equation x = f(x). We may coupled the systems together in various ways, 
some of which will be mentioned shortly. However, for the moment, we introduce one of the 
simplest form of coupling: 

ii = f (xi) + e(x2 - xi)        and       x2 = f (x2) + e(xi - x2). (6.1) 

Here, e measures the strength of the coupling. 
Clearly, if e = 0, the two systems are uncoupled and freely evolve. Provided the two 

systems are chaotic, there is no reason to believe that they will synchronize. However, xi = x2 

is nevertheless a solution. In fact, this is a solution for all e; that is, it is an invariant manifold. 
We call this object the synchronization manifold of the coupled system, and it is described 
by an orbit of the uncoupled equations. Note that the synchronization manifold must be an 
invariant manifold of the full system, or synchronization is not possible. This means that 
non-identical systems do not normally synchronize. 

For e sufficiently small, the coupling is too weak to affect appreciably each subsystem and 
so they must again evolve almost independently. The sensitivity to initial condition implies 
that the two susbsystems diverge from one another if they are initially close. Hence the 
synchronization manifold is in this sense unstable. 

At large coupling strength, on the other hand, the largest terms in the equations are the 
coupling terms, and so (as Ed Spiegel puts it) "they must be zero". In other words, there are 
no terms in the equations that can balance the strong coupling other than the time derivative: 

xi ~ e(x2 - xi)        and       x2 ~ e(xi - x2). (6.2) 

This simplified system predicts a relaxation to the synchronization manifold. Equivalently, 
when e is large, we siave the subsystems to one another and adiabatically eliminate one variable 
in favour of the other (to use the terminology of amplitude expansions). 

Thus even chaotic systems can synchronize. This remains the case even for very different 
forms of coupling as some of the examples to follow indicate. Before describing these examples, 
we first formalize the definition of stability of the synchronization manifold. 

Consider the coupled systems, 

xi =F(xi,x2;e)        and       x2 = F(x2,xi;e). (6.3) 
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This generally expresses the form of two symmetrically coupled systems with coupling strength 
e. We consider an orbit in the synchronization manifold, xi = x2 = x, and then perturb the 
system around this trajectory: 

xi = x + ui       and       x2 = x + u2, (6.4) 

with |ui| < 1 and |u2| < 1. By substituting these forms into the system (6.3) and linearizing, 
we arrive at 

üi = Fiui + F2u2       and       u2 = F2ui + Fxu2, (6.5) 

where 

dF(x2,xi;e)l _„       „   _ fdF(x2,xi;e) 
Fi 

Thus, 

9xi 
and       F2 = 

JXl=X2=X 
dx.2 

(6-6) 
Xl=X2=X 

üi + u2 = (Fi + F2)(ui + u2) (6.7) 

and 

üi -Ü2 = (Fi -F2)(ui -u2). (6.8) 

The formulation of the stability problem in terms of the sums and differences effectively orga- 
nizes the perturbation in terms of a component that preserves the synchronization and one that 
destroys it. The second component therefore describes perturbations away from, or transverse 
to, the synchronization manifold. 

Both linear systems (6.7) and (6.8) are not straightforward to solve: the coefficients em- 
bodied in Fi ± F2 involve the variables describing the synchronized, chaotic trajectory. Thus 
we can only make sense of stability in terms of a temporal average. In fact, the system (6.7) 
corresponds to the stability of the orbit inside the synchronization manifold, and therefore is 
identical to the system that one must solve to compute the Lyapunov exponents, A, of the 
uncoupled system. 

Likewise, the solution of the transverse stability equation (6.8) is understood in terms of 
exponents much like Lyapunov exponents: 

uj_ = Ui — u2 ~ exp At       as t -> oo. (6.9) 

The synchronization exponent, A, is sometimes called the transverse stability or Lyapunov 
exponent, or the conditional Lyapunov exponent. Provided the leading exponent, Ai say, is 
negative, the synchronization manifold is stable in the sense of a linearized perturbation and 
an infinite-time average. 

The organization into synchronized and transverse perturbations follows also for systems 
that are not coupled symmetrically. Hence, we may define transverse stability exponents 
whatever the form of coupling.  These dictate the stability of the synchronization manifold. 
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However, since we can only understand the stability exponents in terms of the limits of infinite 
time and infinitesimal perturbation, there are some limitations on how useful these exponents 
really are in predicting synchronization: sometimes systems can desynchronize due to finite 
time and amplitude effects even in situations in which the stability exponents predict that the 
synchronization manifold is stable (Pecora et al. 1997). 

We next describe some specific examples of synchronizing chaotic systems. These illustra- 
tions all involve cases in which the subsystems can synchronize exactly. That is, situations 
for which xi — X2 -» 0 as t -» 00. However, more general forms of synchronization are also 
possible. For example, systems can synchronize upto an amplitude scaling, a phase lag, or 
some particular functional relationship. There are also weaker forms of synchrony in which 
the phase of the oscillators shows some degree of synchrony, but the amplitudes remain un- 
synchronized; this is called "phase synchronization" (Rosenblum et al., 1996). With these 
generalized definitions, it becomes possible to synchronize non-identical chaotic elements. 

Complete replacement 

The most commonly cited example of chaotic synchronization involves a special form of cou- 
pling that involves the complete replacement of a variable in one subsystem with the cor- 
responding variable from another (Pecora & Carroll 1990). This coupling is quite different 
from that used above because one system evolves independently of the other, and we must 
throw away the equation for the replaced variable, which is now redundant. This one-way 
coupling scheme is also called "master-slave" synchronization, and is an example of a system 
with skew-product structure. 

By way of example, we couple two Lorenz '63 systems {xi,yi,zi} and {#2,2/2,^2} via the 
complete replacement x2 -> x\. This produces the system, 

i\ = -cr{yi - xi) 
yi = -xizi + rxi - yi 
h = xiyi - bzi (6.10) 
y2 = -X1Z2 + rxi - j/2 
z2 = x\y2 -bz2- 

Alternatively, we may write the system in terms of the Lorenz equations and two equations 
for the differences, Ay = y2 — y\ and Az = z2 — z\\ 

Ay   =   -ziAs-Ay ^611) 
A2   =   x\Ay — bAz. 

A pictorial representation of the synchronization manifold, given by Ay = Az = 0, is 
displayed in figure 6.1. Parameter values are the usual r = 28, a = 10 and b = 8/3. The solid 
lines show a solution that converges to the synchronizes manifold, suggesting that this object 
is stable. 

In fact, the coupled system always synchronizes: equations (6.11) can be combined into 
the relation, 

\±{Al + Al) = -Al-bAl (6.12) 
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Figure 6.1: A projection of the synchronization manifold for two Lorenz '63 systems coupled 
through the complete replacement of the x-variable of one subsystem. The solid line shows a 
sample orbit converging to synchrony. 
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The right-hand side of this expression is always negative, provided one of Ay and Az is finite 
(and b is positive). This indicates the differentiated quantity on the left must decrease in time 
to its minumum value, which is Ax = Ay = 0. Thus, synchronization is the fate of the system. 
(This argument amounts to the identification of a Lyapunov functional.) 

Coupled Rossler systems 

Both the coupled Lorenz systems and the example used to introduce the concept of chaotic 
synchronization exhibit synchronization, but this behaviour is by no means automatic. More- 
over, for different forms of coupling, it is not necessarily the case that the systems synchronize 
for sufficiently large coupling strength. 

For example, two Rössler systems can be coupled as follows: 

&i = -{yi + zi) 
yi = xi + ayi 
zi = b + zx{xi-c) (613) 
x2 = -{V2 + Z2) + a{xi -x2) 
2/2 = x2 + ay2 

z2 = b + z2{x2-c) 

(cf. Pecora et al. 1997). This is a form of diffusive coupling (as used in the introduction to 
this lecture), but it appears only in one of the equations. 

The stability of this diffusively-coupled system is determined by the equation, 

(6.14) 
—a -1 

-1    \ 
(   X_L 

1 a ° yx 
z 0 x — c J \*± 

where x± = x\ — x2 and so on. 
The leading transverse Lyapunov exponent is shown in figure 6.2 as a function of coupling 

strength a; where this is negative, the system is predicted to synchronize. As indicated by the 
figure, the synchronization manifold is unstable for small values of the coupling parameter a, 
but successful synchronization is achieved for intermediate values of a. This is perhaps not so 
surprising. More interestingly, we see that with stronger coupling, A becomes positive once 
more and the systems desynchronize. 

In the limit of large a, the leading order balance in the equation for x2 requires that 

xi =x2. Thence, 

(6.15) 

In other words, the diffusive coupling is equivalent to complete replacement. Complete repace- 
ment of x in coupled Rossler systems is known not to be successful for synchronization at these 
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yi =   xi+ ayi 
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Figure 6.2: Strength of the leading transverse Lyapunov exponent A as a function of coupling 
strength parameter a for a = 0.2, b = 0.2 and c = 9. 

parameter values. Hence, in this regard, the ultimate rise of A to positive values at larger a 
is expected. 

Synchronization in coupled maps 

In the two previous examples, the coupled system contained two elements with skew product 
structure; one system evolved independently of the other. Now we relax this constraint and 
consider a model with arbitrarily many elements that are coupled to either the whole ensemble 
(global coupling) or to two neighbouring elements (local coupling). Thus, we consider the 
global synchronization of a lattice. The particular model we choose is a coupled-map lattice 
which has been used by Kaneko and co-workers to explain many phenomena (Kaneko 1993). 

The elements of the lattice are one-dimensional chaotic maps whose uncoupled form is 
xn+i = f(xn). With global coupling of all the elements, the lattice equations become 

xB+i(») = (1 - e)/ [xn(i)} + - J^f ixnU)) > (6.16) 

where i and j are lattice indices, L is the number of elements in the lattice, and e (0 < e < 1) is 
the coupling strength. This kind of model is considered in detail in Jacobson's report elsewhere 
in this volume. 

For strong coupling, the chaotic lattice synchronizes globally (Kaneko, 1989; Ding & Yang, 
1997). This is illustrated in figure 6.3 for a lattice described by f(x) = 1 - ax2 (the logistic 
map again). 

However, below a critical coupling strength, ec, the system desynchronizes. This threshold 
value depends on the largest Lyapunov exponent, A, of the uncoupled map: 

-A e, = 1 - e (6.17) 

For coupling values just under the critical threshold, the lattice displays on-off intermittent 
desynchronization (Fig 6.4). 
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Synchronization of a coupled map lattice 

Ti     0 

Figure 6.3: The synchronization of a globally coupled map lattice for a = 1.9 and e = 0.5 from 
random initial conditions lying in the range [-1,1]. 
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Figure 6.4:  The value of d = \ YA=\ k(0 ~ 5I M a function of n for 10° globally-coupled 
logistic maps with a = 1.9. The coupling parameter e is 0.41, slightly less than ec = 0.43. 
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One can also locally couple the map elements: 

arn+1(t) = (1 - 6)/ [*„(*)] + | (/ [xn(i - 1)] + / [xn(i + 1)]). (6.18) 

This two-way, nearest-neighbour coupling is equivalent to a discretized diffusion across the 

lattice. 
In contrast to the global coupling case, the transverse Lyapunov exponents for local cou- 

pling are found to depend on the lattice size L. Synchronous chaos is only found in systems 
consisting of fewer than a critical number of elements Lm, with the maximum system size de- 
pending on the behavior of the individual map. Specifically, the leading transverse Lyapunov 
exponent can be shown to be 

A = A + ln[l - e + e cos(27r/L)] (6.19) 

(Ding & Yang, 1997), which imples that the maximal lattice size is given by the largest integer 

L < Lm, where 

Lm = 2TT cos 
_i / e_A - 1 + e (6.20) 

For example, when a - 2, A = In 2 and the maximal system size is at most 6 (occuring for 

e = l). 
The origin of this limitation is that desynchronization sets in through a "long-wave" in- 

stability. Hence the only option for stable synchrony is to exclude the unstable range of 
wavenumbers by introducing a minimum wavenumber via the finite dimension of the lattice. 
When this is not possible, the coupled map lattice shows a wide range of spatio-temporal 
complexity as shown, for example, in figure 6.5 (see also Kaneko, 1993). 

This figure shows anything but synchronization. But neither does it show a collection of 
chaotically evolving, independent elements. Instead there is a mixture of spatially local order 
and confined regions of chaos. This is, of course, how one would like to imagine the spatially 
extensive natural systems that we deal with, which is why coupled map lattices and their 
relatives remain so popular. 

A model of interhemispheric teleconnections 

Finally, we turn to a GFD application of the synchronization theory (Duane, 1997). The 
meteorlogical basis of this model is an observed correlation between weather systems in the 
midlatitudes of the northern and southern hemispheres. Such correlations have been termed 
"teleconnections" by Bjerknes (1966). One of the important properties of such teleconnections 
is that they may be mediated by atmospheric Rossby waves. As a result, the connection 
between the hemispheric midlatitudes cannot be strong: Rossby waves propagating in mid- 
latitudes, where winds are predominantly westerly, cannot traverse the equatorial regions 
because they become evanescent in regions of eastward flow (this can be understood from the 
linear dispersion relation of Rossby waves, see Duane's article). Nevertheless, the equatorial 
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Figure 6.5: Evolution of a locally coupled map lattice for a = 1.5 and e = 0.5. Panel (b) is a 
continuation of (a). 
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eastward winds are observed to be occasionally interrupted by localized weather patterns with 
internal, westward flow. Rossby waves then propagate through the narrow "ducts" that these 
patterns create, coupling the two midlatitudinal regions. 

An important property of this coupling is that it takes a finite amount of time for the 
Rossby waves to propagate through the ducts. Thus one hemisphere does not immediately 
experience the effect of conditions in the other, but there is a delay. 

We attempt to rationalize the correlation suggested by observations in terms of chaotic 
synchronization. We consider two Lorenz '63 systems {x, y, z} and {»1, j/i, 21} coupled through 
an auxiliary variable s: 

x = a(y — x) 
y = r(x — s) — y — (x — s)z 
z = -ßz + (x-s)y £6_21j 

x\ = cr(yi - xi) 
2/1 = r{xi + s)-yi- (xi + s)z1 

z\ = -ßzi + (xi + s)yi. 

If we select 

s = c(x- xi), (6.22) 

where c is the coupling strength (0 < c < 1), then the system (6.21) synchronizes. This 
simple model suggests that an explanation of this kind is possible. But (6.22) assumes that 
the coupling takes immediate effect. 

One can generalize the model to allow a time lag in the coupling. In particular, one can 
replace (6.22) with the differential equation, 

8 = T[-s + c(x-xi)], (6.23) 

where T is the time scale on which s relaxes. In the limit of T ->■ 00, one adiabatically 
eliminates s through the relation (6.22), and so the system reduces to the case above. 

For the more general situation using (6.23) with T finite, a range of synchronization results 
is found. For sufficiently large T, the systems still synchronize (as verified by a direct compu- 
tation of the trasverse stability exponent, see figure 6.6), but as T is reduced, the stability of 
the synchronization manifold is lost. Instead, the system displays on-off intermittent desyn- 
chronization (figure 6.6, panels (b) and (c)). This sort of desynchronization is characterized by 
episodic bursts of wild departure from the synchronization manifold, after which the system 
returns to synchrony for some macroscopic length of time. This kind of behavior is the result 
of the synchronization manifold becoming slightly unstable as the time lag is increased. A 
trajectory of the coupled system may wander near or on the manifold for long periods of time 
before encountering conditions which cause it to desynchronize. 

Though perfect synchrony can be lost for the time-lagged coupling, there remains a close 
correlation between the two subsystems as a result of the on-off intermittency. Duane observes 
similar effects in more complicated, though still relatively low-order, atmospheric models. In 
fact, the observed correlation between weather patterns at midlatitude in either hemisphere is 
far from precise (decribed further by Duane). But whether this reflects an origin that can be 
described by the on-off synchronization of two coupled, low-order systems is far from clear. 
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Figure 6.6: Synchronization of the coupled Lorenz systems (6.21) and (6.23). Panel (a) shows 
the transverse stability exponent against relaxation rate V. Panels (b) and (c) illustrate the 
intermittent synchronization that appears when the synchronization manifold loses stability, 
for T = 5 and T = 2 respectively. The other parameters are c = 1, r = 28, a = 10 and b = 8/3. 
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Figure 6.7: Coupling scheme for the seven Lorenz '84 systems. 

6.2    Reconstructing the dynamics of coupled systems 

We now turn to the issue of reconstruction. In particular, we ask the fundamental question 
of whether the dynamics of the full network can be inferred from a finite-length time series 
of just one variable from one subsystem. To answer the question we turn to metaphorics: we 
use a relatively simple network of coupled low-order dynamical systems to assess conventional 
reconstruction techniques. 

We take a model proposed by Lorenz (1991; see also von Hardenberg et al, 1997) . that 
consists of seven elements coupled through the network illustrated in figure 6.7. The coupling 
scheme represents some kind of cascade through subsystems of different scales, and can be 
extended to much larger systems. The cascade is meant to reflect some sort of analogy with 
turbulence (but it is clearly ludicrous to imagine that there is any real correspondence). 

Each uncoupled element is a Lorenz '84 system, with parameters set such that individually 
each subsystem is chaotic. The equations of motion for the jth system are 

ZJ)-a(Xj 
■bZj)-{Yj 

-F) + Uj 
G) + Vj ■forj = {l,2,---,7}, (6.24) 

Zj   =   Xj{bYj + Zj)-Zj + Wj 

in which the coupling variables are 

U2j 

U2J+1 
Vj 

=   -cYj 
=   -cZi .forj = {l,2,3}, (6.25) 

c(X2j - 1) 
c(X2j+i - 1) 

0.25, b = 4, F = 8 and G = 1.  We allow the coupling and the parameters are set to a 
strength, c, to vary. 

Poincare sections for three different values of c are shown in figure 6.8. For small coupling, 
the section looks similar to the uncoupled case. But as the coupling strength increases, the 
section becomes less reminiscent of a low-order dynamical system; the appearance becomes 
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Figure 6.8: Poincare maps in an X, Y plane for one member of the networked Lorenz systems 
of Fig. 6.7 and Eqs. (6.24) and (6.25). An isolated system (c = 0) is depicted in the left 
panel. In the middle panel, the systems are weakly coupled (c = 0.1). The right panel shows 
a map for strongly coupled systems (c = 1.0). Adapted from von Hardenberg (1996; Thesis of 

La urea). 

"noisier". This is presumably reflecting the fact that as we increase the coupling, the signal 
from each element becomes more characteristic of the entire system rather than an individual 
member. However, for low coupling strength, the signal from one of the subsystems has a 
strong, low-dimensional character and is relatively weakly influenced by the remainder of the 
high-dimensional network. This feature of the signal spells disaster for standard dimensional 
reconstruction techniques as we now illustrate. 

The correlation dimension D2 of one Lorenz '84 subsystem with these parameters values 
is estimated to be D2 ~ 2.19. However, the coupled system has a dimensionality of something 
more like 15. We attempt to estimate this high dimensionality by taking the output from the 
seventh subsystem, Z7(t), as shown in figure 6.7. This signal provides synthetic data to test 
the reconstruction. 

The standard time-embedding techniques using the time series of Z7 lead to estimates of 
the correlation dimension as a function of the embedding dimension as shown in figure 6.9. 
This correlation dimension displays a slow convergence with embedding dimension and may 
seem to indicate rather lower values of D2, especially for low coupling strengths (L>2 « 5 is 
suggested for c = 0.1); this is the effect of the superficial, low-dimensional character of the 
time series. This character masks the "jitter" due to the coupled network and hides the true 
dimensionality. The jitter actually leads to the very slow rise of D2 beyond the initial levelling 
off. The correct conclusion to draw from figure 6.9 is that the computation simply does not 
converge. 

This result implies that standard dimensional estimates may be misleading if the system in 
question is weakly coupled to other nonlinear systems. More specifically, one should exercise 
some care in interpretting the plots of £>2; the apparent convergence at low values is totally 
false, and the method simply fails to give an answer. 

If we construct a signal using the output from more than one subsystem, the standard 

85 



27 series, N=1e5, M=7 

6 8 10 
embedding dimension 

Figure 6.9: Correlation dimension estimates versus embedding dimension for the system 
(6.24),(6.25) with three values of the coupling coefficient c. The time delay is 0.025. Adapted 
from von Hardenberg (1996; Thesis of Laurea). 

reconstruction techniques fare better. For example, if we use the signal Y,i=i zitt) (cf- Lorenz, 
1991), the estimated correlation dimension clearly shows no convergence as a function of 
embedding dimension over the range shown in figure 6.9. Hence, given more information about 
the network, it seems likely that we will not be deceived into hypothesizing the existence of 
low-dimensionality. 

However, there is a serious problem in taking the reconstruction any further. Basically, 
the coupled system has so large a dimension that the time series that is actually needed to 
estimate D2 is prohibitively long for any application or reasonable computation (as mentioned 
in lecture 3, we estimate that the length of time series needed for the current example is 
2.5 x 1013 if the measurements are spaced apart by time intervals of 0.025, the delay used for 
the embedding in figure 6.9). 

All this raises the question of how useful reconstruction really is. Clearly, for a complicated 
(possibly coupled) system, it is simply useless and prone to lead to spurious results. Some 
other method for exploring the underlying dynamics is evidently necessary. 

Despite this failure, the structure of figure 6.9, with its two characteristic slopes separated 
by a "knee" is intriguing, and possibly conveys some information. Perhaps, as speculated by 
Lorenz, the shape can be used to measure some property of the inividual subsystem. But 
exactly what is not clear. Some systems consisting of many elements do show what one could 
describe as "extensive" properties: statistical measures such as correlation dimension scale 
approximately linearly with system size, suggesting that each subsystem can be described by 
a characteristic dimension. Perhaps this characteristic dimension can be extracted from figure 

6.9 in some fashion. 
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6.2.1    Filtering a fast subsystem 

Given the failure of reconstruction to estimate the correlation dimension, we consider it a 
bleak possibility that we might ever rebuild the structure of a complex system from a limited 
sampling of its dynamics. This calls for a change of perspective. The one we adopt is suggested 
by the arguments mentioned above, namely that in "extensive" systems, the subsystems are 
characterized by certain properties: Even though we cannot reconstruct the entire system, can 
we ignore most of its complicated components and instead determine the dynamics of a single 
subsystem? 

This alternative approach has the advantage that, if successful, we can then "filter" out 
the most complicated ingredients of the problem (that we might never understand anyway), 
and focus on the pieces that might elementally control the phenomenon in question. Indeed, 
a frequently encountered feature of natural systems is variability on multiple timescales, with 
the fastest timescales corresponding to turbulence. Yet we commonly believe that it is the 
slower (or longer) scales that describe the essential features of many geophysical and astro- 
physical phenomena, with turbulence playing a more minor role (such as providing the source 
of damping via energy cascade to the dissipation scale). Can we isolate these slower scales and 
understand them independently of the turbulence? 

A partial answer to this question comes from looking at a simple system consisting of two 
coupled elements with different timescales. In particular, by using tools such as the "finite- 
size" Lyapunov exponent, we can estimate some properties of the slow subsystem even if the 
faster subsystem is not resolved or stochastic (Boffetta et al. 1998). 

Finite-Size Lyapunov Exponents (FSLE) 

We define the finite-size Lyapunov exponent (Aurell et al. 1996) in terms of the growth of a 
finite error in a trajectory lying on the attractor of the system. Let Tr (6) denote the time taken 
for an error with initial size 5 to grow to a size rS. For example, T2(S) is the "error-doubling 
time" if we start with error 6. Then, the FSLE is given as 

A<ä> = wWtor- (6'26) 

where the angular brackets denote an ensemble average over many realizations. 
Evidently, when S -)■ 0 and the initial error becomes infinitesimal, X(5) -> Xmax, the lead- 

ing, conventional Lyapuonv exponent. But as 5 becomes large, the error becomes comparable 
to the size of the attractor itself. At this stage, the error can no longer continue to amplify ex- 
ponentially; it becomes constrained by the attractor's geometry. Thus we expect the finite-size 
Lyapunov exponent to behave in the manner illustrated in figure 6.2.1. 

In practice, the exponent is computed by taking two systems that in phase space are 
initially 6 apart, and evolving them foward in time until the difference between them exceeds 
rS. This introduces a further technicality concerning the direction of the initial error, and not 
just its size, 6. If we begin from some arbitrary finite error in the initial point in phase space, 
then there is also an immediate convergence to the attractor. But the finite-size Lyapunov 
exponent is a measure of error growth on the attractor itself, and so the initial relaxation 
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5 

Figure 6.10: The FSLE as a function of 8 

should be filtered out somehow. This amounts to taking the initial error to be aligned with 
the most unstable direction. Practically, we begin the computation of the two orbits from an 
error of size Smin < 8, and then begin the construction of X(8) once the error amplifies through 
8. Provided the relaxation to the attractor is sufficiently rapid, 8 is then aligned as required. 

Coupled maps 

We illustrate the finite-size Lyapunov exponents using a pair of coupled maps: 

xs(n + 1) = (1 - e)fa (xs) + eg [xs, xf] mod 1                            (6.27) 

xf(n + 1) = (1 - e)ff{xf) + eg [xa,xf] mod 1                            (6.28) 

fs = e
Xsxs mod 1 

ff = eXfxj mod 1 

g = cos[2ir(xs + Xf)}.                                                    (6-29) 

Two sample orbits to this system, starting from nearby initial conditions, are shown in figure 

We compute two trajectories for these maps from an initial condition of 8(1) — 8min — 10 . 
This generates a sequences of growing errors, 8(1) -> 8(2) -> 5(3)..., from which locate values 
of 8 and rS, then read off their integral temporal separation. The ensemble average of repeated 
computations of this kind then provides the data needed to compute X(8). An example of X(8) 

is shown in figure 6.12. 
For small 8, the exponent falls close to the Lyapunov exponent of the fast subsystem, A/. 

Evidently, the doubling of a small error is controlled by the fast subsystem. However, for larger 
errors, the exponent converges to values nearer the Lyapunov exponent of the slow subsystem, 
\s. This reflects the dominance of the slow dynamics in controlling the larger error growth. 
There is a natural explanation of this effect: as 8 grows from the original, initial error, Smin, 
the slow subsystem barely evolves over the periods over which small errors amplify. Hence the 
error grows mainly due to the effect of the chaotic dynamics of the fast subsystem. Eventually, 
however, the error in the fast subsystem reaches a maximum due to geometrical constraints. 
At this stage, the growth of the error becomes dominated by the slower growth of the other 

subsystem. 
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Figure 6.11: Time series of (a) xf and (b) xs for the coupled maps (6.27)-(6.29). In panel (c) 
we show the growth of an error of 10~9 for ten realizations of the system. The error growth 
is divided into three regimes; for n < 10, there is an initial relaxation onto the attractor. For 
10 < n < 42 the error grows roughly exponentially with the larger Lyapunov exponent, A/. 
Finally, for n > 42, the error develops according to the slow dynamics with exponent As. 
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Figure 6.12: FSLE as a function of 6 for the coupled maps (6.27)-(6.29), with r = 2, Xs = 0.1 
and A; = 0.5, and e = 2 x 10~3. Errors are measured in terms of the differences in xs between 
two solutions, and 104 realizations were used to compute the ensemble average of T2(<5). Note 
that the system is driven by the fast subsystem for small values of S and by the slow subsystem 
for larger values. The case shown by triangles indicates the results if the initial perturbation is 
not aligned with the unstable direction; that is, if 5X = 10~5, the smallest value of S for which 
we plot A. (Adapted from Boffetta et al. 1998.) 
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The effect is illustrated in panel (c) of figure 6.11, which shows error development for ten 
realizations of the coupled system. The initial relaxation to the attractor is evident for n < 10. 
Subsequently, the error amplifies roughly exponentially, first with the Lyapunov exponent of 
the fast subsystem, and then with that of the slow subsystem. 

Also shown in Fig. 6.12 are results computed by taking initial perturbations that were 
not aligned with the unstable direction. This gives a qualitatively different graph in which 
the convergence to Xf at small 6 is not apparent. Here, then, the relaxation from the initial 
condition masks the error growth due to the fast subsystem. 

Nevertheless, in both cases shown in the figure, the large-error growth is dominated by 
the dynamics of the slow subsystem and this can be extracted easily from the results. This 
gives us hope that we can, with suitable technology, filter the fast subsystem, and measure 
quantities such as Xs directly. However, from an experimental perspective, the extraction of 
information pertaining to the fast subsystem is probably impossible: it is unlikely that under 
experimental conditions we can resolve the growth of a small error, even if we could unmask 
the small-£ behaviour of X(S) from the obscuration due to intial relaxation. 

The situation becomes even worse when the fast subsystem has high dimension. We illus- 
trate this in figure 6.13 which shows the results for X{5) when we replace the fast subsystem 
in (6.28) by stochastic noise. For the stochastically forced system, the exponent rises to ever 
higher values as we lower 5. At larger error, however, we still observe the dominance of the 
slow system and can again measure Xs- 

Computing the FSLE from a Time Series 

Experimentally, we do not have access to the equations or solutions from controlled initial 
conditions. Instead, we must measure some characteristic quantity and build a phase space 
through an embedding procedure. Then we can attempt to construct finite-size Lyapunov 
exponents by finding segments of the time series in which the system passes through the same 
neighbourhood of phase space. That is, we locate two portions of the trajectory that fall close 
to each other. These segments are analogous to solutions with close-by initial conditions, and 
we may then define error growth from the differences in the subsequent evolution. 

By way of illustration, consider the coupled Lorenz equations, 

x8   =   -a(xs-ys) (6.30) 

ys   =   -xsys + {r + ezf)xs-ys (6.31) 

zs   =   xsys - bzs (6-32) 

and 

x'f = —aa(xf — yf) (6.33) 

y'f = a(-Xfyf + rxf - yf) (6.34) 

if = a(xfyf -bzf). (6.35) 

Thus the fast subsystem acts to perturb the Rayleigh number of the slow subsystem, much as 
one might envision experimental noise or small-scale turbulence. 
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Figure 6.13: Finite-size Lyapunov exponents for the map (6.27) with Xf a random variable 
uniformly distributed in [0,1] (shown by filled triangles). Again, r = 2, Xs = 0.1, and e = 
2 x 10-3. Errors are measured in terms of the differences in xs between two solutions, and 104 

realizations were used to compute the ensemble average of T2(6). For comparison, the filled 
squares show the computation for the deterministic version of the system. (Adapted from 
Boffetta et al. 1998.) 
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Figure 6.14: The FSLE as a function of 6 obtained from the time series for the coupled Lorenz 
system with e = 0.05, r = 45.92, a = 16 and 6 = 4. The parameter a = 5 and so Xs « 1.5 and 
Xf = 5AS ss 7.5. The filled triangles show results for a three dimensional embedding with time 
delay of 0.02 and 5 x 105 points. The filled squares show the result from directly computing the 
exponent from initial-value solutions to the equations. (Adapted from Boffetta et al. 1998.) 

The factor of a on the right-hand side of (6.33)-(6.35) can be removed on rescaling time in 
those equations, in which case we recover the Lorenz model for the fast subsytem. Thus, given 
the Lyapunov exponent of the Lorenz model, As (which is also the exponent for the uncoupled 
slow subsystem), we can immediately read off the fast subsystem's exponent: Xf = aXs. 

We now evolve the system and generate synthetic data from the output of the slow sub- 
system. With the usual embedding procedures and the identification of segments of the time 
series that can be used to monitor error growth, we compute the finite-size Lyapunov expo- 
nents shown in figure 6.14. Also shown is the exponent computed directly from solutions to 
the equations. 

Because the experimental procedure necessarily involves an embedding, the results for X(8) 
depend on the dimension of the embedding space, M. Importantly, as shown in figure 6.14, 
we appear to be able to resolve the convergence to Xs once the embedding dimension exceeds 
that of the slow subsystem. From a practical perspective, this suggests that the procedure is 

useful. 
There is also some suggestion that X(S) converges to Xf at small 6, when the embedding 

space is as large as that of the full system (in figure 6.14, the emdebbing space is too small 
to observe convergence at small 5).   But this again is obscured by our inability to aligne 6 
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with the direction of maximum error growth. And if the fast system is of high dimension, it 
is unlikely that time series will ever be of sufficient length to achieve this convergence. Hence 
this facet of the construction is not that useful. 

6.3    Prediction and the utility of FSLEs 

If we knew all of the properties of a system at a particular instant, then we could, in principle, 
evolve the system forwards in time and determine its state at any future moment. Practically, 
however, we do not know every detail of a system and our computations are imprecise. This 
means that there is always an uncertainty in the initial position of our system, be it either 
from our ignorance or our impecision. This uncertainty constitutes an error in following the 
system that amplifies and eventually wrecks our prediction of the future state. In other words, 
predictability is determined by the initial uncertainty and how this error grows. 

For chaotic systems, we measure predictability in terms of a "prediction time", t„(6), that 
depends on the initial error, 5, and a tolerance, a, that we allow in the observations. From 

our definition (6.26), we estimate 

t   =— In- (6.36) ta     X(S)     <5' ^      ' 

with r = a/5. Therefore, the finite-size Lyapunov exponents can be interpreted alternatively 
as giving the prediction time. 

Previously, some studies used the leading, conventional Lyapunov exponent in place of 
\{S) in the estimate of the prediction time in (6.36). However, the usual Lyapunov exponent 
measures the growth rate of an error averaged over all time, or equivalently over the whole 
of the attractor. But the development of an error varies significantly over the attractor and 
therefore at different instants in time (in fact, errors can still magnify even for systems with 
negative Lyapunov exponents). Consequently, the conventional Lyapunov exponent is not 
always very useful in estimating the predictability time; it is more naturally determines by the 

finite-size exponents. 
These remarks were essentially made by Lorenz (1996) in the context of predictability of 
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atmospheric motions. Lorenz used the model equations, 

^   =   -X^XM-Xu+ti-Xu-^YYi* (6-37) 
dt b j=l 

%&■   =   -dbYj+1*<yj+2jk-Yj+1*)-cYjJt + jXk (6.38) 

with 

Jfe = 1,...,K 

j = 1,...,J 

Xk-K = Xk+K = Xk 

Yj-J,k = Yj,k-1 

Yj+j,k   =   Yjt+i, 

where h, c and b are all parameters. Rough meaning is given to the variables in these equations 
by identifying the index k as referring to a set of longitudinal sectors at a given latitude, and 
j as reflecting a finer subdivision of each sector. Thus, the quantities Xk refer to some slowly 
varying atmospheric quantity, whilst the variables Y^ represent some small-scale fields. 

The growth of errors in the system (6.37)-(6.38) follows a pattern much like the coupled 
maps or Lorenz systems used above: the growth of a small error is dominated by the fast 
dynamics of the small-scale subsystems; larger error development is controlled by the large- 

scale subsystems. 
Lorenz likened the dynamics of this coupled system to more complicated models of at- 

mospheric phenomena such as the El Nino Soutern Oscillation (ENSO). The role of the slow 
system is played by the upper layer of the ocean, as Xk models sea-surface temperature; this 
responds rather slowly to atmospheric forcing due to the ocean's high heat capacity. But the 
atmospheric weather systems that migrate overhead, and which constitute the other part of 
the coupled climate system, vary much more quickly and on shorter scales; these are the fast 
subsystems. 

The important feature of the coupled system is that the large-error growth, being dom- 
inated by slow dynamics, is relatively mild. Thus, although the prediction time of the at- 
mospheric systems may be very short, there is some hope for predictability of the slower 
subsystems. ENSO itself is often characterized by sea surface temperatures, and models that 
attempt to predict the onset of these events exploit that data. Thus part of the success of 
those models may hinge on the predictability of the slow scales. Essentially, what may happen 
is that the atmospheric weather patterns are filtered out; they influence the dynamics of the 
large scales only through a weakly coupled, random forcing. 
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Lecture 7 

Coherent Structures 

Until now, we have discussed aspects of the dynamics of low-dimensional deterministic systems, 
extending our understanding to coupled and forced models. Chaotic behavior, unpredictability 
and.bifurcations have been some of our companions in the journey. 

Another crucial issue in nonlinear dynamics, that has been discarded until now, concerns 
the formation of "order," or of "structures," from the disordered background filling the uni- 
verse. Why individual, ordered structures exist, is not a trivial question. It is so nontrivial, 
that nobody really knows the answer. Although some people - from time to time - have claimed 
to have discovered the deep truth underlying the formation of coherent patterns, no fully sat- 
isfactory answer to this question is available. For example, it is not even clear whether there 
are a few universal mechanisms of pattern formation, that are active in different systems. Or 
whether every specific case is different from any other, and each mechanism has its individu- 
ality and does not play any role in other context. Nonetheless, the issue of pattern formation 
is perhaps one of the deepest, and the one that touches us most directly in all science. After 
all, we are coherent patterns ourselves (at least sometimes), possessing the curious attitude to 
order our perceptions of the world around us, and to try to order and control the world itself... 

7.1    Types of coherent structures 

In nature, there are several different types of coherent patterns. For example, mechanisms 
of pattern formation are present in many reaction-diffusion systems (see the lecture notes by 
Fauve in a previous GFD volume for a thorough discussion of this issue). 

Here, we are concerned with simple coherent structures that are present in fluid systems, 
such as rapidly rotating fluids and magnetofluids. In this context, a coherent structure is a 
localized, individual fluid state that persists for times much longer than a local dynamical time 
(to be properly defined). Often, these coherent structures are associated with the presence of 
an external ordering field, that makes the system anisotropic and induces an inverse cascade 
(from small to large scales) of some relevant dynamical quantities. The structures that form are 
often stationary solutions of the equations governing the system dynamics, and they usually 
live as localized entities emerging from a turbulent background. 
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Some examples of such coherent structures are: 

• Localized nonlinear waves (e.g. solitons) arising from equations like the Korteweg-de- 
Vries equation, rjt + cqx+ ar)r]x + bqxxx = 0, or the sine-Gordon equation, 4>tt - c$xx = 
a sin <f>. Here, subscripts indicate partial derivatives. 

• Coherent jets, that are formed either as free fluid streams (e.g., the jet stream in the 
high atmosphere), or as boundary currents due to the presence of differential rotation 
and rigid boundaries (e.g., the Gulf Stream). 

• Coherent vortices, which form spontaneously in rotating turbulent flows, and contain 
most of the energy and circulation of the system. 

• Coherent flux tubes, which emerge as coherent concentrations of current in anisotropic 
magnetohydrodynamical flows. 

This lecture and the following one are devoted to the discussion of coherent vortices and flux 
tubes. Coherent vortices are spectacular entities whose presence is revealed in any turbulent 
fluid flow that is subject to strong rotation, or in any conducting fluid immersed in an external 
magnetic field. Geophysical and astrophysical examples of energetic coherent vortices include 
the Great Red Spot on Jupiter, and similar spots on other giant gaseous planets; Gulf Stream 
rings arising from meandering instabilities of that jet; Meddies, mesoscale Mediterranean ed- 
dies generated by the instability of the salty outflow from the Mediterranean Sea into the 
Atlantic Ocean; atmospheric blocking, a big coherent vortex bound to the topography; mid- 
latitude atmospheric cyclones; the winter stratospheric polar vortex; "plasmoids" generated 
in the magnetopause of the Earth; galaxies in the intergalactic turbulence and star systems 
in interstellar space; starspots, coherent magnetic flux tubes whose best-known example is 
provided by Sunspots; and, possibly, coherent vortices on accretion disks. 

7.2    The quasi-geostrophic approximation 

To be specific, and stay simple, we study the dynamics of coherent vortices in the framework of 
the quasi-geostrophic (QG) approximation for a barotropic fluid. This approximation provides 
a simplified description of large scale oceanic flows and of shallow-layer atmospheric motions, 
provided nonadiabatic effects and baroclinicity can be neglected. 

To derive the barotropic QG approximation, we first discuss the standard shallow-water 
system (for a thorough derivation see Pedlosky 1987). Call H the average vertical extent of 
the fluid layer, and L a typical horizontal scale of motion. For large-scale geophysical flows, 
H is usually much smaller than L, as the thickness of the dynamically active fluid layer is at 
most a few kilometers while the horizontal size of motion may reach hundreds or thousands of 
kilometers. In fact, we can define "large-scale" flows as those for which 5 = H/L < 1. 

In the limit of 6 -> 0, for a layer of constant density p, the shallow-water approximation 
can be introduced. This approximation assumes hydrostatic support in the vertical direction 
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and then explicitly factors out the dependence on z. The equations of motion then become 

du       du       du      . dr] /-,,>. 

dv       dv       dv dr) (7 „,, 
lH+Ute+Vdy- + fu = -gdy-' (7"2) 

p = pg(h — z) + po (7-3) 

and 

., ,fdu , dv\       dh0       dh0 (7As ^(/l0_z)(_ + _) +U— + V—, (7.4) 

where v = {u,v,w) is velocity, p is pressure, g is the acceleration of gravity, and / is the 
Coriolis parameter. Also, r}{x,y,t) is the free surface, and h0{x,y) describes the topography 

of the bottom. 
The shallow-water potential vorticity is defined as 

a    = ^±1 (7.5) 

where w = vx - uy is the relative vorticity, and h = H + TJ - h0 is the total layer depth. The 
potential vorticity gsw is conserved in the absence of forcing and dissipation: 

D  (u + f 
Dt\    h 

= 0, (7.6) 

where D/Dt is the material (Lagrangian) derivative. 
In the limit of strong rotation, circulations at the Coriolis frequency are faster than any 

other motions in the system and / < U/L. Hence the Rossby number e = U/fL < 1 {U 
being a velocity scale). The shallow water equations can then be expanded in powers of e. 
This produces the quasi-geostrophic approximation and corresponds to filtering the fast modes 

of the system (gravity waves). 
We expand the shallow-water expression for potential vorticity and keep only terms of 

0(e): 

q' = u,'-^2+h'0, (7.7) 

where the primed variables are dimensionless (e.g., w = Uu'/L). Here R2 = (LR/L) , where 
LR = VgH/f is the barotropic Rossby radius of deformation. Furthermore, we assumed 
h'Q = h0/H to be of the order of the Rossby number. 
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To a similar order of approximation, the expression for D/Dt becomes D/Dt = d/dt+u-V 
where u is the shallow-water geostrophic velocity, and is given by u = (-di/;/dy,d^/dx). The 
geostrophic stream-function ip is related to the free-surface elevation r\ by 

* = J, (7-8) 

which in dimensionless form becomes tp' = rf'. Hence, the potential vorticity q' can be expressed 

as 

</ = Vy-|!r + W. (7.9) 

Then conservation of potential vorticity in the (barotropic) QG approximation can be stated 

as: 

f^+ [</>',</] = 0 (7.10) 

where [A,B] is the Jacobian operator AxBy - AyBx. 
In the above discussion, we have considered the Coriolis parameter / to be constant. But 

this frequency actually varies with latitude. On a spherical planet, the local value of the 
Coriolis parameter is / = 2ft sin ^ where ft is the rotation rate of the system and <j> is the 
local latitude. If we consider motions which do not extend over a broad range of latitudes, 
then it is justified to take a reference value for <j> (say, <£0) and to take f = f0 = 2ft sin 0O as a 
constant. For motions with large scale meridional extent, however, the variation of the Coriolis 
parameter with latitude can no longer be discarded. The first order approximation used to 
correct for this effect is the so-called "beta-plane" approximation. By Taylor-expanding / and 
keeping only the first order term, one obtains 

/ = 2ft sin (f>o + 20 cos 0o(^ - <£o) = fo + ßy (7-H) 

with ß = 2ft cos (po/Re and y = Re{4> - <M- Here Re is the radius of the Earth. 
In the quasi-geostrophic approximation it is assumed that ß < fo/L. More specifically, the 

dimensionless ß parameter, defined as ß' = ßL2/U, is assumed to be of the order of the Rossby 
number. One can then rewrite the potential vorticity as q' = VV - ip'/R? + ß'y' + h0'. The 
conservation of potential vorticity reads (for convenience, from now on we skip the primes) 

I (vV " |>) + [4>, V2V + ho] + /?§£ = 0. (7.12) 

If there is neither topography (ho = 0), beta-effect (ß = 0, also called the /-plane), nor 
free surface (L « LR, i.e. jg -»• 0) the QG equation reduces to the two-dimensional Euler 

equation, 

JU72V+[V,V2</>] = 0. (7-13) 

We organize our discussion of coherent structures by first considering the dynamics of 
turbulence in the dissipative version of the two-dimensional Euler equation. Then we continue 
on to describe the modifications introduced when we deal with the added ingredients in the 
QG approximation. The discussion spans two lectures. 
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7.3    2D Turbulence 

The two-dimensional Euler equations admit an infinite number of conserved quantities. Two 
quadratic invariants that are of particular importance are the kinetic energy, 

E = 1/2 f (V*l>)2dxdy, (7.14) 

and the enstrophy, 

2dxdy . (7.15) 1/2 /(v2V02 

The Euler equations are non-dissipative (i.e., conservative). In most systems, however, dis- 
sipation is present, and to be consistent with a dissipative world we have to include this physics 
in the QG approximation. The standard form is a Newtonian dissipation term, DN = ^V2w, 
that is added to the right-hand-side of the Euler equation. Alternatively, Rayleigh friction 
takes the form DR = -KOJ (this represents, for example, bottom friction). Hyperviscosity 
provides a general expression for dissipation, Ds = (-1)

S
~

1
USV

2S
LL>, and includes both the 

standard Newtonian case (5 = 1) and Rayleigh friction (s = 0). In numerical simulations, a 
hyperviscous dissipation with s > 1 is often used. This approach, although artificial, attempts 
to confine the effects of dissipation to very small scales, and so allows us to reach higher values 
of the (equivalent) Reynolds number. 

The equations for freely-decaying (i.e., dissipated but not forced) 2D turbulence then read 

|-VV + [^ V2V>] = (-I)*- V V2sV2V- (7.16) 

For this version of the problem, energy and enstrophy are are no longer exactly conserved, 
but they are almost so for sufficiently small viscosity. (In fact, one may show that the energy 
dissipation vanishes in the limit for v -4 0; for this reason, energy is sometimes called a "rugged 
invariant" of the system.) 

The approximate conservation of energy and enstrophy in two-dimensional, nearly inviscid 
systems has some important consequences, which are best appreciated in the comparison with 
3D turbulence. 

In nearly inviscid three-dimensional turbulence, energy is the only approximate invariant, 
which we may write as 

E= fs(k)dk, (7.17) 

where £(k) is the spectral energy density. The image of 3D turbulence is then associated 
with the celebrated "cascade" of energy to small length scales; energy injected into the system 
at long wavelengths becomes channeled down to small wavelengths by nonlinear interactions. 
Thus, the large "energy-bearing eddies" feed motions of increasing fine scale until energy is 
ultimately dissipated on the "dissipation scale". The range of motion between these two limits 
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ENSTROPHY CASCADES TO SMALLER SCALES 
WHILE ENERGY CASCADES TO LARGER SCALES 

■r\     r\ 
EO.ZO 

E1.Z1 

E2.Z2 

kO 

Figure 7.1: Energy and Enstrophy Cascades in 2D Turbulence 

is the "inertial range". For isotropic turbulence, one finds that £ ~ A;-5/3 in the Kolmogorov 
scaling suitable for the inertial range. 

In two dimensions, on the other hand, enstrophy is also approximately conserved, and it 
may be written as 

Z = f Z(k)dk = f k2S(k)dk. (7.18) 

Now, consider a fluid element of scale k0 transfering energy and enstrophy into the scales hi 
and fc2 (see figure 7.1). Energy and enstrophy conservation require that 

(7.19) 

Thus 

S(k0) = £{ki) + £(k2)       and       k2
0£(k0) = k2£(h) + k2

2£{k2). 

v.2 _ 1.2 

K0      Kl 

(7.20) 

For example, if h = k0/2 and k2 = 2k0, then we observe that S(k{) = A£{k2). In other 
words, more energy is transfered to larger scales than to smaller ones. But similar arguments 
indicate that Zx = k2£(ki) = kl£{k2)/A = Z2/4, and so enstrophy is channeled primarily in 
the opposite direction. 

Thus, the simultaneous conservation of energy and enstrophy induces a "direct" cascade 
(i.e., from large to small scales) of enstrophy and an "inverse" cascade (from small to large 
scales) of kinetic energy (see e.g. Kraichnan k Montgomery 1980). This suggests that in a two- 
dimensional fluid (or, a fluid which is subject to strong rotation), larger and larger structure 
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forms, in association with the flow of energy to small wavenumbers. Indeed, numerical sim- 
ulation and laboratory experiments have revealed the formation of strong, long-lived vortices 
that contain most of the energy and the enstrophy of the system and live much longer than 
typical circulation times (defined, for example, as the typical rotation time of a particle inside 
a vortex). The qualitative appearance of 2D turbulence is thus a random, low-energy back- 
ground turbulent field intermittently punctuated by strong individual vortices (McWilliams 

1984 and 1990). 
Simulation and experiments have also offered us a picture of the typical evolution of freely- 

decaying 2D turbulence. Beginning from a random vorticity field (with energy localized over a 
narrow band in wavenumber) there is a brief phase of strong energy dissipation, followed by a 
period of vortex generation, during which small vortices are generated by the inverse cascade. 
After the first burst of vortex formation, the dynamics becomes characterized by vortex-vortex 
interactions. Three significant types of interaction occur: long-range interactions between well- 
separated, isolated vortices (that can be approximately modelled by systems of point vortices), 
temporary dipolar pairing between neighbouring vortices of opposite sign, and strong inelastic 
interactions between closely spaced vortices of the same sign. The inelastic interaction between 
vortices of similar sign frequently leads to vortex mergers. Consequently, the number of vortices 
decreases and their typical sizes increase. This generates a vortex population with a broad 
distribution of size and circulation. At very late times, for systems with zero average vorticity 
in periodic or bounded domains, the inverse energy cascade and mergers ultimately result in a 
single vortex dipole with the largest spatial scale allowed. This dipole is usually characterized 
by a very small "nonlinearity", [ip, V2ip] « 0, and it decays slowly due to dissipation. 

Figure 7.2 shows the vorticity field in a representative numerical simulation of freely- 
decaying 2D turbulence. The vorticity is shown at intermediate times when many vortices are 
still present. 

7.4    Properties of individual vortices 

Broadly speaking, a coherent vortex is a region of circulating flow that keeps its identity for 
times much longer than the local eddy turnover time Tz, which can be defined as Tz « Zv 

where Zv is the local average enstrophy. Although the formation of coherent vortices has often 
been associated with the inverse energy cascade, there is - up to now - no fully satisfactory 
explanation of why coherent vortices form in rapidly rotating fluids. The formation of coherent 
vortices is probably the most important topic of 2D turbulence; it is reassuring that new 
generations of fluid mechanicians still have room to study interesting issues. 

Given that we do not know why vortices form, we can nevertheless study what their 
properties are. But first we need a sensible definition of the vortices themselves; simply 
identifying persistent circulating motions as vortices is not a very precise definition. 

One way of parameterizing the complex structure of 2D turbulence is based on the definition 
of the Okubo-Weiss parameter, Q, which measures the relative contribution of the squared 
strain S2 and of the squared vorticity u2. More specifically, Q = Q(x,y,t) = S2 - w2, where 
52 = Sn

2 + Ss
2, Sn = dxu - dyv and Ss = dxv + dyu; here Sn and Ss are the normal and 
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shear components of strain, respectively. 
Regions dominated by rotation are called elliptic, and are characterized by Q < 0. Regions 

that are dominated by strain and deformation are termed hyperbolic and have Q > 0. The 
value of Q can be thought of as defining the behavior of advected particles in the frozen velocity 
field: regions with Q > 0 are characterized by local exponential divergence of nearby particles, 
while regions with Q < 0 are characterized by an approximately constant separation between 
nearby particles. Of course, this does not bear any direct information on the chaotic or regular 
nature of the trajectories of advected particles in the evolving field, but the idea is occasionally 

useful. 
The relevance of the Okubo-Weiss parameter Q may be further understood by applying 

the divergence operator to the incompressible Navier-Stokes equation in the limit of vanishing 
viscosity, or for a statistically stationary situation where forcing and damping balance each 

other. One obtains in this case 

V2p = -l-Q (7-21) 

where p is the pressure. This diagnostic equation is valid for all time and it provides a link 
between the value of Q and the local nature of the flow field. 

Based on the values of Q, three main regions can be identified in 2D turbulence: 

• Vortex cores, which are characterized by strong negative values of Q. 

• Strain cells surrounding the vortices, which are characterized by large positive values of 

Q- 

• The background, where Q fluctuates between small positive and negative values. De- 
pending on the sign of Q, the background field may be further divided into non-coherent 
elliptic and hyperbolic patches. 

The core of coherent vortices is thus characterized by the strong dominance of rotation 
over strain, and is is associated with a region where Q assumes strongly negative values. The 
edge of a coherent vortex can then be defined as the innermost contour for which Q = 0. 

Prom a Lagrangian viewpoint, there is a significant difference between a vortex core and 
the external field. Inside vortex cores, the fluid motion is essentially laminar and particle 
trajectories are regular. This can be quantified by considering the relative dispersion between 
pairs of nearby particles, which is defined as the average, squared distance between two particles 
that were initially released close to one another. Inside a vortex, nearby particles display a very 
small relative dispersion along the radial direction (Provenzale, 1999). Along the azimuthal 
direction, though, the differential rotation of the vortex induces a relative dispersion that 
grows linearly in time. Outside vortices, on the other hand, one observes exponentially growing 
separations between nearby particles. 

Coherent vortices in barotropic turbulence can therefore be interpreted as islands of regular 
Lagrangian dynamics in a chaotic background. It is interesting to note that these regular 
islands are not fixed in space and time; they wander chaotically through the turbulent field 
and have finite lifetime. The lack of chaoticity inside the vortices indicates that Lagrangian 
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transport is very weak there. Instead, mixing occurs on a diffusive time scale determined by 
the combined action of viscosity and differential rotation inside the vortex. 

Another important property of coherent vortices is that their boundaries act as relatively 
impermeable barriers to mixing: there is almost no exchange of particles across the periphery 
of an isolated vortex. Thus, particles inside a coherent vortex tend to remain there for long 
times, and to be transported with the vortex motion. 

This behavior of coherent vortices can be understood by noting that a strong vorticity 
gradient is present at the vortex edge. In two-dimensional turbulence, relative vorticity is a 
material invariant when forcing and dissipation are absent. In the presence of forcing, dissi- 
pation or weak three-dimensional effects, vorticity is not exactly conserved and fluid particles 
can cross contours of constant vorticity. But if the perturbing effects are weak, particles can- 
not significantly change their vorticity "label". Thus, regions of uniform or gently variable 
vorticity can be easily traversed by fluid particles, but regions of large vorticity gradient act 

as transport barriers. 
Thus, mixing in vortices can be very slow and particles often become bound there. To some 

degree this remains true even during vortex interactions, because the cores of the interacting 
vortices can remain relatively intact during the interaction. However, mixing can be accelerated 
by strong vortex interactions which substantially disrupt the structure of the core. This 
happens, for example, in vortex mergers; when one vortex is much larger than the other it 
tears the weaker vortex apart into sheared filaments (see the next lecture). Any particles that 
were contained in the weaker vortex become thrown out into the chaotic background, or are 
entrained into the surviving structure. 

The general picture of 2D turbulence that emerges is thus a low-energy background field, 
over which strong vorticity concentrations move and interact with one another. These co- 
herent structures dominate the dynamics of the system, and undergo both long-range, elastic 
interactions and strongly inelastic processes such as straining and merging. These coherent 
vortices keep their identity for long times, and can be defined as regions of laminar motion 
where fluid particles are trapped, even though they are immersed in a turbulent sea of disor- 
ganized motion. The vortices themselves follow chaotic trajectories in the flow, and from time 
to time they release the fluid entrained in them during strong interactions. 
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Figure 7.2: Numerical simulation of freely decaying, two-dimensional turbulence. Shown is 
the vorticity at time t = 10. The simulation began from an initially random vorticity field 
characterized by the energy spectrum E(k) = E0k

6/(2k0 + k)18 and random Fourier phases. 
Here k0 = 30 and E0 is a normalization factor which is fixed by requiring the initial average 
energy E/L2 = j? / E(k)dk = 0.5. Boundary conditions are periodic, in a square box with 
size L = 27T. For this simulation, a pseudospectral code with standard 2/3 dealiasing and 
resolution 5122 grid point has been used. The time integration is performed by a third-order 
Adams-Bashforth scheme and dissipation is provided by a biharmonic term D = -i/2V

4V2^ 

with IA> = 5 • 10-8. 
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Lecture 8 

Dynamics of Coherent Vortices 

The coherent vortices that spontaneously emerge in rotating fluids do not live in isolation, as 
they interact both with each other and with the turbulent background that surrounds them. 
We now consider some of the processes that affect the life of a vortex, and explore the properties 
of an ensemble of vortices in 2D turbulence. A simplified, low-order model based on a point- 
vortex approximation will also be discussed. Then, we explore the fate of coherent vortices 
in baroclinic fluids on a rotating planet with a free surface, and in magnetohydrodynamics 

(MHD). 

8.1    When vortices collide 

As described in the previous lecture, the coherent vortices of 2D turbulence experience both 
long-range elastic interactions when they are widely separated, and strong inelastic interactions 
when they become close to each other. The long-term evolution of freely-decaying turbulence 
is largely dictated by the inelastic processes, in particular, by vortex merging. 

Most of our knowledge of what happens when vortices collide comes from numerical simu- 
lation. A particularly important case is the interaction of vortices with the same sign. When 
such vortices come within a critical distance of each other they occasionally merge into one 
object, or sometimes survive as separate entities. On other occasions, a vortex becomes torn 
asunder by the other, and the victor entrains part of the remnants in a vortical feast. But 
essentially, interaction is a complicated phenomenon with intricate details and many outcomes 

(Dritschel 1995). 
We can crudely classify interactions of this kind according to the ratio of the vortex radii, 

R2/R1, and by the initial distance that separates them, A. When the vortices have about 
the same strength, and Ri « -R2, the interaction is largely symmetrical. Then, if their initial 
separation is not too large, the vortices wrap around each other to form a new entity. Simulta- 
neously, filaments are shed from the newly created vortex that preserve its balance of angular 
momentum. This is "complete merger". If the initial separation is larger, however, the two 
vortices survive, but parts of their structure are stripped off during the interaction. These 
filaments can become lost in the background, or wind around the interacting vortices, adding 

106 



to their strength. 
For larger disparities in the size of the vortices, straining out can occur. This means that the 

straining field created by the larger of the two vortices is large enough to significantly distort 
the structure of the weaker vortex whilst the larger vortex remains relatively undisturbed. If 
the initial separation is not that great, the smaller vortex is completely destroyed; for larger 
separations, a remnant sometimes remains intact. 

In both cases, the surviving vortices can entrain the fluid stripped off their competitors. 
If the entrained fluid is quite large, we might call this "partial merger". Both this cannibal- 
ization and the complete mergers lead to the gradual attrition of smaller vortices in favour of 
larger ones. Thus, inexorably, the number of vortices decreases in time as their size increases; 
ultimately only a few remain, to be dissipated by viscosity and friction. 

Usually, mergers occur relatively quickly, and the whole process lasts only a few eddy 
turnover times. However, even if a complete merger happens, the fluid particles belonging to 
the two individual vortices do not truly mix until much later times; the filamentation created 
by interaction remains distinct until the fluid eventually intermingles through viscous diffusion. 

8.2    Evolution of vortex statistics 

Due to the processes of merging and straining, the total number N(t) of vortices present in 
a 2D turbulent field varies with time. In particular, due to mergers and straining out, N(t) 
decreases. Note that it is not immediately obvious that vortex interactions should act in 
this way: if the vorticity filaments shed by the merging vortices were underwent a secondary 
instability that "wraps them up", then new vortices could be generated. In principle, there 
is no obvious reason why this seeding of new vortices might overwhelm the effects of mergers 
and straining and lead to statistics in which N(t) increased with time. However, there are 
some crude scaling arguments, described below, that suggest otherwise, and which agree with 
what is seen in numerical simulation and with experiments. 

First, let us assume that only the energy remains constant during a merging process. Since 
the domain size is constant, the number of vortices in the domain must be inversely propor- 
tional to the square of the average distance A between two vortices. Then, by dimensional 
arguments, we take A to be proportional to the product of time and a speed determined from 
the (constant) energy: A = ty/M. Consequently, 

N(t) a -L a JL (8-1) 

Thus, N{t) oc r2. 
However, direct numerical simulation of 2D turbulence suggest, in fact, that the num- 

ber of vortices decreases much more slowly than this. Low-resolution simulations (Weiss & 
McWilliams 1993) indicate that the number of vortices decreases as a power law, N(t) oc i_?, 
with £ « 0.72. This result can be rationalized by supposing that energy is not the only con- 
served quantity during a merging process. Suppose instead that the peak vorticity, Cext, is 
also constant during merger. The energy per unit area is given by e = £xta

2, where a is the 
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average radius of the vortices. The total energy is then given by 

E = Ngxta\ (8-2) 

Now suppose that N(t) can be written in the form, 

N(t) = r2g(t/r), (8.3) 

where I = VE/Cext and r = Q^f If the function 9 has power-law form, g oc t~t, then, in order 
to satisfy (8.2), the average vortex radius, a, and circulation, T, must be given by 

a<xt^      roc£exta
2at«/2. (8.4) 

This argument does not provide the form of N(t), but it does predict the time dependence of 
a(i) and T(t), given N(t). Should we observe such scalings in the numerical simulation, then, 
presumably, the argument is self-consistent and roughly correct. 

The above relationships were indeed observed from the numerical simulations at times 
beyond the era of vortex formation (Weiss et al. 1993). A repetition of the simulations at much 
larger Reynolds number and higher resolution has provided similar results, indicating that the 
scaling behavior seems to be a robust property of freely-decaying 2D turbulence (Bracco et al, 
in preparation). It remains to identify what theoretical arguments could justify a power-law 
form of N(t), and to understand what determines the value of the scaling exponent, £. 

8.3    Systems of point vortices 

Systems of point vortices represent an extreme form of vortex-dominated flows. Here, vorticity 
is concentrated in point-like singularities which move due to their mutual advection, and the 
fluid between the singularities is completely passive. The description of 2D turbulence in terms 
of point vortices can be obtained by discarding viscosity and supposing that the vorticity is 
concentrated in a set of singular points, ideally representing the intense coherent structures 
discussed above. As we indicate below, the partial differential equations describing the motion 
of the fluid are then replaced by ordinary differential equations determining the positions of 
the point vortices (see Aref (1983) for a review). Note that, in this approach, the individual 
vortices do not have internal degrees of freedom, and are characterized by their (constant) 
circulation and (evolving) position. More complex expansions, based for example on modelling 
each vortex as a constant elliptical patch of vorticity, have also been introduced. 

Formally, point vortices are singular solutions of the two-dimensional Euler equations. In 
a system of N point vortices, the vorticity distribution is given by 

w(x) = £iy(x-x,). (8-5) 

The stream function due to a point vortex centred at x,- with a circulation Tj is given by 

VVi = ry(x-Xj). (8.6) 
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If G(x, XJ) is the solution of V2G = <5(x - x,) (that is, the Green function of the Laplacian in 
the relevant geometry), then 

^■(x) = rJ-G(x,xi). (8-7) 

The Eulerian velocity components at x due to the jih vortex are then 

«*M ~l£ —rjsjGC*.*) <8'8> 
and 

^(x) = +^ = +r^G(X'Xj)- (8-9) 

In the point-vortex approximation, each vortex moves due to the velocity field generated by 
the other vortices. Thus, the coordinates of the ith vortex, (xi,yi), evolve according to 

^i = -Vr,^ (8.10) 

and 

dt *rf.      dyi 

£ = +£r,$g, (,n) 

where Gy = G(XJ,XJ). 
A system of point vortices is a Hamiltonian system. The Hamiltonian is given by 

H(xi) = - 
1         N 

?iTjG(xi Xj) 

and the evolution of (x$ ,yi) is obtained from 

dxi        dH 
1 dt          dyi 

and Lj dt 
dH 
dxi 

(8.12) 

(8.13) 

Note that, in equation (8.13), the canonically conjugate variables are x, and y»- That is, the 
space coordinate yi plays the role usually performed by linear momentum. 

Each vortex represents a degree of freedom in the Hamiltonian system (two dimensions in 
phase space, in the terminology of Hamiltonian dynamics, not dissipative dynamical systems); 
with N vortices, there are JV degrees of freedom and 2N dimensions in phase space. Note, also, 
that the form of the point-vortex Hamiltonian is quite peculiar, as there is no kinetic term and 
only the interaction energy (related to the distance between vortices) enters its expression. 

A system of point vortices can have several invariants of the motion, other than the energy. 
Clearly, the total circulation J^jTj is constant, but this does not constitute a dynamical 
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invariant (circulation is automatically conserved by the point-vortex form of the vorticity). 
Linear momenta for point vortices are traditionally defined as 

P = J2^iVi       and       Q = J2?ixi- (8-14) 
i i 

Similarly, angular momentum is defined as 

i 

Depending on the boundary conditions used, linear and angular momenta can be invariants 
of the system. The existence of these conserved quantities introduces important constraints 
on the dynamics of point vortices. If the system has iV0 independent conserved quantities, 
the motion of N < N0 vortices is regular and the maximum Lyapunov exponent in the 2N- 
dimensional phase space is zero. But the motion of N > N0 point vortices is in general chaotic, 
with a positive maximum Lyapunov exponent (see Aref, 1983). 

On the infinite plane, the Green's function is 

G(xi,xj) = ij:lnr2, (8.16) 

where 

»* = (*i-*;)2 + (w-w)2- (8-17) 

Substitution of equation (8.16) into equations (8.10) and (8.11) gives 

dxj ^ ^—^ 1 j yi — yj /g -.g-. 

dt ~    *rf. 2TT    r?, 

and 

f = +£|^- («9) 

For this system, in the case of a non-zero total circulation, there are three independent 
conserved quantities, namely the energy, the angular momentum, and one component of the 
linear momentum. Thus, if the number of point vortices is less than or equal to three, the 
motion is regular; but if there are more than three vortices, chaotic motion is possible and is 
generally observed for generic initial conditions. 

Vortices having the same sign undergo a bounded motion on the infinite plane. In this 
case, vortices cannot get too far or too close to each other due to the simultanous conservation 
of energy and angular momentum. By contrast, if vortices on the infinite plane have opposite 
signs, unbounded motion can occur, due to the formation of dipoles that travel off to infinity. 
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Another important case is that of periodic boundary conditions (motion on a torus). In 
this case, angular momentum is not conserved. For a periodic domain the Green's function is 
given by (Weiss & McWilliams 1991) 

G(xi,xj)=   J2   ln coshfof - Xj - 2-Km) - cos(yj - yj) 
cosh(27rm) 

^    Xj)\ (8.20) 
2TT V 

The velocity of the ith vortex is then determined by substituting equation (8.20) into equations 
(8.10) and equation (8.11). This gives 

dxi,=_   y*   T    sp    smjyj - yj)  ^ 2^ 
dt Z^i     3   Z_^   C0SUXi - x, - 27rm) - cos(y* - yj) 

and 

dyi _   y^   r    v^    sia(xi - XJ)  (8.22) 
dt ~   2-j     i2_j   cosh^ _ y, _ 2-Km) - cos(xi - Xj)' 

j=l,jyti      m=—co 

Systems of N vortices on the periodic domain have been used to model the properties of 2D 
turbulence, primarily in studying the trajectories of individual vortices subject to long-range 
elastic interactions with the other vortices. In systems of a large number of point vortices, 
the motion of each individual vortex can be decomposed into periods of quasi-random motion, 
associated with the mean velocity field generated by the vortex ensemble, and rare, but long, 
quasi-ballistic flights generated by the temporary coupling of two opposite-sign vortices into a 
dipole. A dipole travels rapidly across the domain, until it is destroyed by a close encounter 
with another vortex (Weiss et al., 1998). . 

The main drawback of point-vortex systems as models of turbulence is the absence of 
inelastic interactions such as vortex mergers, which play a crucial role in the evolution. An 
attempt to introduce a parameterization of mergers was given by Carnevale et al. (1991). In 
this approach, it is assumed that the vortices evolve according to (8.10)-(8.11) whilst they are 
all well separated. But if two same-sign vortices come within a certain distance of each other, 
then they "merge" according to the following prescription: Consistent with indications from 
numerical simulation of 2D turbulence (as discussed in the previous section), it is assumed 
that during a merger both energy and peak vorticity are conserved. By contrast, circulation is 
not conserved during the merger because of dissipation. Therefore, during the merging of two 
same-sign vortices with equal amplitude (the case considered by Carnevale et al), the peak 
vorticity, £, and vortex radii, a, satisfy 

Cs = Ci = C2 (8-23) 

and 

4 = 4 + 4, (8.24) 
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where the subscript 3 refers to the vortex created by the merging of vortices 1 and 2.  The 
critical distance below which two vortices, with radii ai and 02, merge is fixed at 

dc = 3.3 («43*) , (8.25) 

which is suggested from simulations. 
By using this approach, Carnevale et al. were able to reproduce the statistical behavior of 

the population of extended vortices in 2D turbulence. Because the system takes the form an 
evolving population of point vortices interrupted by instantaneous mergers, Carnevale et al. 
coined the term "Punctuated Hamiltonian Dynamics" to describe it, much as biologists refer 
to one possible scenario for the evolution of species. But, leaving aside this pleasant analogy, 
we learn that the point-vortex metaphor, with its artifice of merging appears to reproduce 
some of the gross aspects of two-dimensional turbulence. 

8.4    Effects of a free surface, ß, and baroclinicity 

We now discuss the fate of coherent vortices when the effects of the free surface, planetary 
rotation and baroclinicity cannot be neglected. 

Let us first consider the role of the free surface and the 0-effect in a barotropic fluid. We 
recall the equation for barotropic quasi-geostrophic (QG) turbulence: 

ft+bP,q]=D, (8-26) 

where the potential vorticity q is given by 

g = VV-^+/?y (8-27) 

and D = (-1)
S-1

Z/V
2S

V
2

T/> is the dissipation term. 
The potential vorticity equation (8.26) describes the evolution of q as a result of the velocity 

field prescribed by ip. But that streamfunction is related to the potential vorticity through 
(8.27). However, as we have seen for freely decaying two-dimensional turbulence, the dynamics 
is dominated by the interaction of coherent vortices. Thus the kinds of solutions that we are 
interested in are those for which q is approximately composed of a sum of well separated, 
localized vortices: 

q £*■ (8-28) 

Each of the qj closely corresponds to the solution for an isolated vortex. In that circumstance 
we can approximately write tp as a sum over the streamfunctions associated with each of these 
vortices: 

1&~X>*. (8-29) 
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Thus, an approximate equation for the motion of the jth vortex is given by 

if we ignore dissipation, and because the vorticity of the objects is more localized than the 
streamfunction. This equation describes how the vortex evolves under the combined influence 
of the others; the right-hand side models vortex interactions. Importantly, the interaction is 
mediated by the streamfunctions, and so to understand the effects of the free surface and ß 
we must explore how the corresponding terms modify $. But 

xß= I /*G(x,x')9(x',i)dx', (8.31) 

where G(x,x') denotes the Green function of the Laplacian. Hence, the key to understanding 
the new terms lies in how they modify the structure of the Green function. 

If the Rossby deformation radius, R, is infinite and ß = 0, equations (8.26) and (8.27) 
reduce to those for 2D turbulence with q = V2ip. In this case the Green's function for the 
system is a solution to 

V2G = 5(x-Xj) = <5(r), (8.32) 

for which G a lnr on the infinite plane (see equation (8.16)). If R is finite (but ß still zero), 

then 

V2G-^ = J(r). (8.33) 
R* 

This Green function has the form G ex lnr for r < R, and G oc exp(-r/fi) for r > R. The 
exponential decay of the Green's function at large r reflects a "shielding" effect by the free 
surface. As a result, vortex interactions become spatially more localized (see, for example, 
the report by Mockett elsewhere in this volume). For the same reason, the presence of a free 
surface slows down the inverse cascade at scales larger than R; at the larger scales, nonlinear 
couplings are weakened. At scales smaller than R, on the other hand, the dynamics remains 
basically that of 2D turbulence. Coherent vortices thus form and grow by merging until 
they reach a scale of order R. After this stage, the evolution becomes very slow because the 
different vortices interact much more weakly with each other. This is illustrated in figure 8.1, 
which shows the result of a numerical simulation. This picture should be compared with the 
corresponding figure 7.2 in lecture 7. The comparison shows that vortices in the fluid with a 
free surface are more numerous and smaller, as expected from the reduction in interactions 
and therefore mergers. 

The latitudinal variation of the planetary rotation, modelled by ß ^ 0, has a more sig- 
nificant influence (see, for example, Rhines 1975 and 1979; McWilliams 1984). In particular, 
the ß-term introduces an upper scale Lß = (£///?)1/2, above which the inverse energy cascade 
is actually inhibited. (Here, U is again a typical velocity scale which is determined by the 
dynamics.) The essential reason behind this arrest of the cascade is that, on sufficiently long 
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scales, the /3-effect dominates any nonlinearity, and the fluid equations become practically 
linear. These linear equations describe Rossby waves. 

The length Lß is called the Rhines scale, and above it Rossby waves dominate the dynamics; 
usually, coherent vortices cannot grow larger than Lß. Even below the Rhines scale, /3-plane 
vortices live for shorter times than their /-plane counterparts. This is because, in general, 
isolated monopoles on the /3-plane emit Rossby waves and undergo zonal and meridional 
motion. Thus they decay through radiation, even without viscosity. Nevertheless, coherent 
vortices still form and persist for relatively long times. As such, they still exert a significant 
influence on the dynamics of the flow. 

A representative simulation with ß ^ 0 and r -» oo is shown in figure 8.2. This picture is 
to be compared with figures 7.2 and 8.1. The most obvious feature of the case with ß is that 
there are significantly fewer vortices, but there is also large-scale structure that we associate 
with the Rossby waves. 

When we add both ß and finite R at the same time, there is in some sense a mixture of the 
two effects of these terms: there is both shielding and Rossby-wave radiation. Interestingly, 
the free surface can partially shield the destructive effects of differential planetary rotation, 
leading to vortices that can live for very long times in fluids with both ß and a free surface. 
But otherwise, the overall dynamics remains much the same. 

Finally, we briefly discuss the role of baroclinic effects. For baroclinic QG flow another 
form of potential vorticity must be used. The conservation of QG potential vorticity in a 
stratified flow takes the form 

ft+i^q]=D (8.34) 

and 

Q 
*±+*± + ±fL±i,t (8.35) 
dx2     dy2     dz JV2 dz *■      ' 

where N is the Brunt-Vaisala frequency given by 

N2 = _liE_ (8.36) 
pdz 

For constant JV, the z coordinate can be rescaled as z' = {N/f)z so that q can then be written 

as 

q = V|DV (8-37) 

where Vf^ is the three-dimensional Laplacian. In this system, the Green's function for the 
infinite plane takes the form G oc 1/r. Once again this leads to interactions that are more 
localized than in two-dimensional turbulence, and prolongs the run down of a freely decaying 
system. 

The dynamics of stratified QG turbulence has been numerically studied by several authors 
(e.g.    McWilliams 1989; McWilliams & Weiss 1994; McWilliams, Weiss & Yavneh 1994). 
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The simulations show that an initially random vorticity field organizes itself into well-defined 
coherent vortices, similarly to what happens in 2D turbulence. The vortices initially take the 
form of three-dimensional, ellipsoidal vorticity concentrations, reminiscent of ocean structures 
(for example, the Meddies). These vortices undergo long-range elastic interactions with each 
other, and occasional inelastic interactions (such as mergers and straining), much like their 
two-dimensional counterparts. A new feature present in this system, however, is that vortices 
on different vertical levels tend to align into columnar structures, when they become sufficiently 
close to each other. As a result, freely-decaying systems display some tendency to evolve to a 
final state composed of two tall columns of opposite vorticity, somehwat analogous to the final 
dipolar state observed for 2D turbulence. Although the stratified case has been explored less 
thoroughly than the barotropic one, one can safely conclude that, here too, there is a robust 
tendency to form coherent vortices, which then dominate the system evolution. 

8.5    Magnetic vortices 

Up to now, we have considered a purely hydrodynamical situation, where electromagnetic 
forces do not play any role. In most astrophysical flows, however, magnetic effects cannot 
be discarded. In keeping with the attitude of staying as simple as possible (and sometimes 
even simpler than that), here we mention the issue of vortex formation in two-dimensional 
incompressible magnetohydrodynamics. 

If the conducting fluid is incompressible, and it is subject to a strong constant magnetic 
field along z (the ordering field that we discussed in Lecture 7), one can make the following 
approximations to the full equations of MHD: 

dz ->■ 0,    w = 0,    Bz = constant 

where w is the fluid velocity and Bz is the magnetic field in the z direction. Thus, the only 
dynamical variables left are the velocity, u = {u,v), and magnetic field, B^ = (Bx,By), in the 
(x, y) plane. Both u and Bh are divergenceless, and can be expressed as 

dip dip ,R „Rv 
u = - — , v = — {o.6b) 

ay ox 

and 

da _ da 
"dji '   y" ä? * = —,* = £. (8-39) 

where ip is the stream function and a is the magnetic potential. The vorticity is given as usual 
by u> = V2ip. Analogously, the only relevant component of the current, j = V x B, is that in 
the z direction, and is given by j = V2a. 

The evolution equations for the flow take the form, 

dtV
2ip + [ip, VV] - [a, V2a] = vV2V2tp 
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and 

dta + [tp, a] = T?V
2
O, 

where we have introduced a Newtonian viscosity v and a resistivity rj. These equations are 
intriguing. Imagine, for example, if we discarded the term [a, V2a] in the first equation (the 
Lorentz force). Then, one is left with standard 2D turbulence, with the addition of a passive 
scalar field a which is advected by the flow, with no feedback on the flow itself. This is similar 
to the kinematic dynamo problem in which one studies whether a given velocity field can 
amplify an embedded, passive magnetic field. However, by turning on the term [a,V2a], the 
skew-product asymmetry is broken and the advected field a feeds back on the advecting field. 
In fact, this term amplifies rapidly in turbulent fluids, and the system becomes dominated by 
the magnetic effects. 

For zero viscosity and resistivity, 2D-MHD has three quadratic invariants, namely the total 
energy (E), the square of the magnetic potential (A), and the cross-helicity (H). These are 

E=l- f(u2 + v2)dxdy + ^ j(B2
x + B^dxdy, 

I* dxdy 

and 

H =     uBx + vBydxdy. 

Note that, in this system, enstrophy is not conserved. This induces severe modifications in the 
turbulent cascades. In particular, in 2D-MHD, energy flows from large to small scales (as in 
3D turbulence), and it is the magnetic potential that undergoes an inverse cascade from small 

to large scales. 
Numerical integrations of 2D-MHD have indicated the formation of strong vorticity sheets 

(Biskamp et al. 1990), but no kinetic vortices. However, the current field develops localized 
structures that one might call "magnetic vortices". In other.words, the current plays a similar 
role to that played by vorticity in the simpler hydrodynamical case (Kinney et al. 1995). 

The details of the dynamics of 2D-MHD are very complex, depending, for example, on 
the initial ratio between kinetic and magnetic energy and on the cross-correlation between the 
fluid velocity and the magnetic field. Nevertheless, it is clear that coherent structures do play 
a crucial role in this system as well. But here, we deal with coherent magnetic flux tubes 
rather than with vortices, and these magnetic coherent structures are reminiscent (to the eye 
of the believer) of the coherent magnetic flux tubes associated with sunspots. 
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Figure 8.1: Numerical simulation of freely decaying, two-dimensional turbulence with R — 0.2 
and ß = 0. Shown is the vorticity field at t = 10. The numerical scheme is described in the 
caption to figure 7.2. 
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Figure 8.2: Numerical simulation of freely decaying, two-dimensional turbulence with ß = 10 
and i? —► oo. Shown is the vorticity field at t = 10. The numerical scheme is described in the 
caption to figure 7.2. 
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Lecture 9 

Floats, Balloons, and Planets 

With a final effort, we consider what happens to particles that are transported by a fluid flow. 
If the tracers are passive (that is, they do not feed back on the advecting fluid), then we are 
in the presence of another skew-product system, where the driver is the Eulerian flow and the 
driven system is represented by the advected tracers. 

9.1    Chaotic advection 

How can we model the motion of a particle advected by a flow? Let us first suppose that 
the particle under study is passive, point-like and it has a vanishing inertia with respect to 
the advecting fluid. That is, it is a passive fluid particle. The equations of motion for such 
a particle are obtained by equating the Lagrangian velocity and the Eulerian fluid velocity at 
the particle position, i.e. 

^=V(t) = u(x,t), (9.1) 
at 

where x(i) = (x{t),y{t)) is the particle position at time t, V(i) is its Lagrangian velocity, 
and u(x, t) is the Eulerian velocity at point x and time t. For simplicity, we have assumed a 
two-dimensional velocity field. 

For two-dimensional incompressible flows, such as those discussed in Lectures 7 and 8, 
the Eulerian velocity may be expressed in terms of a stream function ip(x,y,t). In this case, 
equation (9.1) becomes 

dx _ _dj)_       dy = (ty ,9 2^ 
dt ~    dy   '    dt      dx 

Equation (9.2) formally defines an Hamiltonian system with one degree of freedom, de- 
scribed by the canonically conjugate variables x and y. Here, the stream function ip plays the 
role of the Hamiltonian and the phase space of the system is the physical plane (x, y) (see 
e.g. Ottino, 1989). For stationary stream functions, system (9.2) is integrable, the particles 
follow the streamlines and particle trajectories are regular. When the stream function is time- 
dependent (for example, periodic in time), the system becomes non-integrable. In this case, 
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chaotic particle trajectories are in general expected and the Lagrangian motion may become 
highly irregular even if the Eulerian dynamics is simple. This type of behavior is known as 
chaotic advection, and it has been shown to be of some use in the description of particle ad- 
vection in flows dominated by one or a few structures, such as an isolated vortex, a simple jet 
or a single wave train. 

One classic example of chaotic advection in a two-dimensional flow was studied by Solomon 
and Gollub (1988). They considered a time-dependent stream function representing simplified 
convection cells 

if) = .A cos a; cos (y+ 5 sin fit). 

If the stream function ip is constant in time (B = 0) particles are constrained to stay within the 
cell in which they start. For B ^ 0 it is found that particles cross cell boundaries and undergo 
dispersion processes similar to those observed in turbulent flows. At short times, the mean 
square displacement A2 =< [x(i) - x(0)|2 > of a particle ensemble increases as t2 (ballistic 
motion), while on long times the motion becomes Brownian-like and A2 oc t. Examples of 
anomalous diffusion, with A2 oc ta with a ^ 1 at large times have also been reported. 

Chaotic advection has been studied in several other flows of geophysical interest, ranging 
from modulated travelling waves (Weiss & Knobloch 1989), to models of the Gulf Stream 
(Samelson 1992) and low-resolution general circulation models of the atmosphere (Pierrehum- 
bert & Yang 1992). The main lesson that we can learn from this approach is that even simple 
Eulerian flows can generate unpredictable, Brownian-like particle trajectories and strong par- 
ticle dispersion. This leads to potentially serious difficulties when trying to relate Eulerian 
and Lagrangian statistics, and to reconstruct Eulerian flows from Lagrangian measurements. 
Also, we see that we do not need turbulent flows and high-dimensional stochastic processes to 
generate particle dispersion, as a simple time-periodic wavetrain can generate it. 

9.2    Dynamics of advected impurities 

In the previous section we have assumed that the advected particles have vanishing inertia 
with respect to the advecting fluid. Complications arise when the advected particles have 
finite relative inertia or size, as in the case of dust grains, gas bubbles and the floats and 
balloons used as Lagrangian tracers in the ocean and the atmosphere. In this case, Newton's 
laws have to be used, and we must equate the particle acceleration to the force per unit mass 
acting on the particle. The simplest expression for the equations of motion of an advected 
particle with finite inertia (an impurity) then becomes 

d2x      .Du        (dx       \       ,       „, 

5 = p-l 

where 

5 = 
PP 
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is the ratio of fluid density p/ to the density of the impurity pp, 

7 = £^V
2
BO-' 

is the coefficient of the Stokes drag term, and 

D    a + uV . m   at 
For two-dimensional incompressible flows, 

» = («>«) ; u==-^' v = ~dx" 

The left-hand-side of equation (9.2) represents particle acceleration. The first term on 
the right-hand-side represents the force that the fluid would exert on a fluid particle placed 
at the position of the impurity, weighted by relative inertia. The second term is the Stokes 
drag, and it models the friction that the fluid exerts on a particle moving with a velocity that 
is different from the local fluid velocity. Here, a is the radius of the particle, L is a typical 
length scale of the flow, and Re is the Reynolds number. 7-1 represents the time constant for 
the equilibration of the velocity of the tracer with the flow velocity. Finally, the third term 
represents the buoyancy force acting on the impurity. 

This system has been considered by Stommel (1949) as a simplified model for the fall of 
heavy particles in a two-dimensional vertical plane. Consider x in the horizontal direction 
and y pointing vertically downward. Thus, g = {0,g). By discarding the particle acceleration 
d2x/di2 and considering very heavy particles, S -> 0, the system reduces to 

dx _ _<ty      dy _ dip 
~dt ~ ~~dy  '   dt~ dx     9 

which can be recast in a stream function form by introducing <f> = i/; + gx. 
For example, iiip = ipo sin x sin y, it can be shown that, depending on their initial position 

and velocity, some of the heavy particles can be trapped forever in recirculation regions of the 
flow. However, as shown by Maxey (1987), this result is spurious: if one includes the particle 
acceleration, no permanent trapping is possible and the fate of all heavy particles is to fall, 
sooner or later. 

For horizontal flows, buoyancy is absent and particles are not constrained to fall under grav- 
ity. In such cases, the dynamics of the particles can depend crucially on whether they are light 
(6 > 1), or heavy {5 < 1). For example, Crisanti et al (1992) studied fluid laden with particles 
of finite 5, using the model streamfunction of Solomon & Gollub: tp = A cos x cos (y + B sin ttt). 
When B = 0 and the flow is steady, they showed that light particles converge to the ellip- 
tic fixed points at the center of the advection cells. Heavy particles, on the other hand, are 
pushed outside regions of closed streamlines (as their inertia is larger than that of fluid parti- 
cles) and undergo chaotic motion associated with a strange attractor in the four-dimensional 
phase space, (x,y,dx/dt,dy/dt).  For time-dependent stream functions (B ± 0), the picture 

121 



is more complicated and light particles can also display chaotic dynamics. In general, how- 
ever, it remains true that heavy particles are pushed outside coherent structures with closed 
streamlines. 

Note that system (9.2) is dissipative, and thus phase-space volumes shrink with time. This 
implies that the long-term evolution of the system takes place on a set of measure zero in the 
full phase space. This is a major difference with respect to the dynamics of fluid particles, 
described by a Hamiltonian system for which the Liouville theorem holds. Note, also, that 
system (9.2) is an extension of the model used for fluid particles, to which it reduces for 6 = 1 
and a -» 0 (though this is a singular limit as the order of the equation changes). 

Finally, we recall that even though interesting results can be obtained with a simple system 
such as (9.2), the equations of motion for finite-size, finite-inertia particles are extremely 
complicated, as they depend, for example, on the shape of the particle itself. It is only in the 
case of very small spherical particles, that the equations of motion take a manageable form 
that can be derived from Newton's second law of motion (see Maxey & Riley (1983) for a fairly 
complete discussion of the dynamical equations for small spherical impurities in non-rotating 
systems and Tanga et al (1996) for the rotating case). Even in this case, however, terms known 
as the added mass, the Basset history term, the Faxen corrections, and the lift all participate 
in reminding us that the world is more complicated than we would like. Insisting in the Walsh 
cottage tradition of not dealing too heavily with the accidenti, we have decided not to talk 
about these complications here. 

9.3    Dust in the spots 

The presence of an overall rotation of the system induces new effects in the dynamics of heavy 
impurities. In a rotating frame, the equations of motion for an advected impurity become 

§ - sWt " *(£ - u) + s<i - *) - » * (f - *») + PlMi - fl»,        (M) 
where we have introduced the relative Coriolis and centrifugal accelerations which are present 
in a rotating reference frame; here Q is the angular velocity of the system. 

As a consequence of rotation, when heavy particles are spinning inside a coherent vortex 
in a rotating reference frame, they are subject to two main opposing forces: the centrifugal 
force, which pushes the heavy particles outside the region of closed isolines, and the Coriolis 
force, which - for an overall cyclonic rotation of the reference frame - pushes the particles 
to the right of the direction of motion. Thus, the Coriolis force pushes heavy impurities out 
of cyclonic vortices and it pushes them toward the center of anticyclonic vortices. Thus, in 
rotation-dominated systems for which the Coriolis force is stronger than the centrifugal term, 
heavy impurities can concentrate in the cores of anticyclonic vortices (Tanga et al. 1996, 
Provenzale 1999), in complete contrast to the nonrotating case for which heavy impurities are 
always ejected from coherent vortices, 

Can all this be of some use in explaining the formation of planets? First, we must mention 
how people think of planet formation. The nebular hypothesis by Kant and Laplace was based 
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on the conjecture that the solar system formed from a flattened gas cloud. Until now, this 
has survived as a basically correct explanation, and it has been further elaborated by realizing 
that stars condense from an interstellar medium composed by gas and an admixture of solid 
particles called interstellar dust. As the central star contracts, it leaves around it material 
that contains a significant portion of the initial angular momentum of the system. In this 
nebula, centrifugal forces balance the stellar gravity in the radial direction and a disk forms. 
This is a Keplerian disk, because it is dominated by the gravity of the central star. The disk 
is dusty, and the dust settles toward the midplane, until it forms - in a process whose details 
are still poorly understood - small protoplanetary objects called planetesimals. Later on, the 
planetesimals start feeling the gravity of each other, cluster together to form larger objects, 
and the true planets are finally formed. 

A crucial problem in this scenario, however, is to reconcile the time scales for growth 
by accumulation of objects of the size of Jupiter, and the estimated lifetime of the gaseous 
nebula itself. In particular, there is a lack of standard mechanisms for building planetesimals 
between the centimeter-sized grains formed by agglomeration and sticking, and the larger 
objects capable of efficiently triggering gravitational instability. 

At this point, vortices enter the scene, much as the Cavalry always appeared in old, po- 
litically incorrect movies. Since coherent vortices are so common in rotating fluids, we could 
imagine that there are vortices in the rotating nebula. This hypothesis seems natural to fluid 
dynamicists, but has not been appreciated by astrophysicists, as they claimed that the strong 
shear present on Keplerian disks can easily destroy any incipient coherent structure. And, 
apart from the shear, there are several other effects (compressibility, magnetic fields, and so 
forth) that can complicate the picture. 

In an attempt of dealing with just one problem at a time, Bracco et al (1998) have explored 
whether coherent vortices can survive in incompressible Keplerian disks. That is, whether the 
Keplerian shear is really able to prevent the formation of vortices. The system dynamics is 
governed by the standard equation for barotropic turbulence: 

I- V2V + [rl>, V2^] = *>V2V2</>, (9-4) 
at 

where a Newtonian viscosity has been added. The initial conditions at time t = 0 are given by 

</> = fe>+ </>', (9-5) 

where VipKep oc r-3/2 represents the unperturbed Keplerian disk, and tp' is a perturbation to 
the Keplerian flow. 

Numerical simulation of this system indicates that weak perturbations are destroyed by the 
shear of the Keplerian flow. If the initial perturbations are large enough, however, coherent 
vortices can form even in the presence of the strong shear (see figure 9.1). Interestingly enough, 
only anticyclonic vortices can form, since cyclonic vortices are more readily destroyed by the 
shear. This is at least partly because the local, Keplerian vorticity gradient is negative (if we 
consider a local Cartesian coordinate system centerd at some particular radius). But cyclonic 
vortices rotate against this Keplerian background and so become sheared out. Anticyclones, 
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however, are reinforced by the background, and so they may survive if they are of sufficient 

initial strength. 
In general, the presence of vortices is also determined by the interplay of two limiting space 

scales. The smaller one, Lv, is the scale associated with dissipative effects; below it, vortices 
cannot form as the nonlinear terms are overwhelmed by dissipation. The larger scale, Lout, 
is determined by the shear; above Lout, vortices are destroyed by the shear. Thus, vortices 
can exist only in the range between these two scales, and this requires that Lv < Lout. In 
conclusion, it is possible to obtain coherent anticyclonic vortices on Keplerian disks only if 
there are large enough initial perturbations on the Keplerian flow and the viscosity is small 
enough. Given this, coherent vortices happily form, and lead to what have been called spotted 

disks, by analogy with sunspots. 
Given that vortices can form on (barotropic) Keplerian disks, the remainder of the metaphor 

for planet formation in vortices follows naturally. The dust grains in the solar nebula are very 
heavy, being characterized by 5 « 10-8. For these impurities, the concentration mechanism 
discussed above is at work, and, if the rotation of the nebula is sufficiently rapid, the Coriolis 
force can overcome the centrifugal force of the vortices; as a consequence, the dust grains are 
pushed into the cores of the anticyclonic vortices (Barge & Sommeria 1995, Tanga at al 1996, 
Bracco et al 1998). Potentially, this leads to a relatively rapid accumulation of matter into 
vortex cores, and the birth of planetesimals. 

Explicit numerical simulation of dust grain dynamics verifies this image; see figure 9.2. 
Moreover, the computations confirm that the process effectively concentrates the heavy parti- 
cles and therefore expedites the formation of planetesimals. Hence, we can say that the spots 
on the disk are dusty. 

The fact that vortices may have played a role in the formation of the solar system is, of 
course, appealing to the palate of the nonlinear dynamicist. However, the world is as usual 
more complicated than we depict it, and in this discussion we have for example discarded 
important effects such as compressibility of the gas in the disk and magnetic fields. But, 
just as a note, we report that preliminary simulations based on the (compressible) thin-layer 
aproximation indicate that vortices should be able to form in weakly compressible disks as 

well (Bracco et al. 1999). 

Conclusion 

We started these lecture notes by considering the motion of a dust grain in a stratified atmo- 
sphere. And we concluded them, by discussing the dynamics of dust grains in the primordial 
solar nebula. In the process of passing from dust to dust, we have enjoyed an exploration 
of some intriguing mysteries. Nothing more should be desired, nor expected. And it is not 
allowed in such a short summer program. 
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Figure 9.1: Vorticity field evolving from a perturbed Keplerian disk in the incompressible, 
barotropic approximation. A pseudo-spectral code with Newtonian viscosity v = 5x 10-5 and 
resolution 5122 grid points has been used. The initial mean kinetic energy of the Keplerian 
disk is EKep = 0.5 and the mean perturbation energy is E' = 4 x 10~3EKep- The time shown 
is t = 8. (Adapted from Bracco et al) 
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Figure 9.2:  Distribution of dust grains in the perturbed Keplerian disk shown above.   The 
particles were initially released uniformly in the disk. (Adapted from Bracco et al.) 
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Effects of Discreteness in Solitonic Excitations: 
A Future Challenge or just Numerical Observations? 

P. Kevrekidis 

Abstract 

In this study we will focus on the significant effects of discreteness in solitons as they 
appear in a number of physical applications (material dislocations , charge density waves 
fiuxons in arrays of Josephson junctions and many others). We will primarily be interested 
in the discrete version of the Sine-Gordon equation and on the kink and breather-like 
solutions of it (however we will give extensions of our results to other systems such as 
the <f>4 or the double sine-Gordon (DSG)).Numerical Results will be presented that will 
explicitly demonstrate the vital role of discreteness in altering the continuum- like picture 
and in producing entirely new features in the problem such as internal shape modes of the 
solutions , pinning due to the Peierls-Nabarro barrier , emission of radiation or Brownian 
motion of the kink when driven by the fluctuations.We will also attempt to investigate the 
stability of these structures (kinks and breathers) using the Evans functions and Nyquist 
Theory techniques as well as to trace the very rich dynamics of the interactions of such 
structures (i.e. k-k or k-jfe interactions as well as breather-breather or breather-image 
collisions). In view of the dramatic effects of discreteness in the continuum description 
we are going to introduce an appropriate technique for discretizing continuum systems for 
computational purposes.Whenever possible the results of our numerical simulations will be 
compared with the relevant existing theories. 

The full report is available on the web at http://www.whoi.edu/gfd/. 
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Data Assimilation in Chaotic Systems 

Mark S. Roulston 

1    Introduction 

Data assimilation is a crucial component of numerical weather prediction (NWP) schemes. It 
is the method by which the initial conditions for the model are determined. NWP models 
are obviously not perfect models of the atmosphere but if they were then the accuracy of the 
initial conditions would be the sole factor determining the forecast skill of the model. 

Data assimilation involves using time series of observations over the recent past to estimate 
the state of the system at the present moment. Simply using the observations taken at the 
present moment is not enough because firstly these observations will contain errors and sec- 
ondly these observations are incomplete. That is, there is not an observation of every relevant 
variable at every model gridpoint. 

Data assimilation methods can be placed into two categories. Sequential methods such as 
nudging integrate the model forward in time with extra non-physical forcing terms which push 
the model towards the observations. If the model is linear (which NWP models are not) then it 
can be shown that the optimal nudging scheme takes the form of a Kaiman filter. Variational 
methods seek to minimize a cost function which is the measure of the misfit between the model 
and observations over the assimilation period. Variational methods are regarded as the "next 
generation" of assimilation schemes and they are now used operationally. 

An important distinction between sequential schemes and the variational method is that 
the model is used as a strong constraint and thus the trajectory that results from assimilation 
(called the analysis) must be a valid trajectory of the model. This is not so in sequential 
methods in which observations are essentially blended with the model. This means that if the 
aim of assimilation is to validate the model the variational method is to be preferred. In this 
paper only variational based assimilation schemes will be considered. 

In section 2 the adjoint method will be described. The Lorenz model will then be used to 
illustrate the problem of multiple minima when assimilating into strongly nonlinear models. 
The problem of data assimilation in strongly nonlinear systems has been addressed by several 
researchers [Stensrud and Bao, 1992, Miller et al., 1994, Pires et al, 1996, Evensen, 1997]. As 
with this previous work the Lorenz model will be used as a simple example. However, the 
previous work has assumed that the system and the model are identical. In this work the case 
when the model is not an exact copy of the system will also be considered. The Quasi Static 
Variational Algorithm (QSVA) [Pires et al., 1996] will be explained and simple but effective 
improvement to this method will be outlined. The modified and standard QSVA algorithms 
will be compared in section 5. 
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2    Variational data assimilation and the adjoint method 

As the name suggests variational data assimilation uses a variational method to find the model 
state at time t = 0 which leads to the best fit between the model and observations over the 
period 0 < t < T. "Best fit" is usually means the minimum mean square error but other cost 
functions (or objective functions) can be used. The computational efficiency of the variational 
method is greatly aided by the existence of a means to calculate the gradient of the cost function 
in the space of initial conditions which is only slightly more computationally expensive than 
calculating the cost function itself. This is done by integrating the model equations forward 
in time and then integrating the adjoint version of the model backwards in time. 

Consider a time-discrete dynamical model, M, which can be written as 

xt+i = M(p,xt) (1) 

where p is a vector of model parameters and xt is the state of the model at time t. An objective 
function, J, which is a measure of the misfit between the model and the actual observations is 
now introduced. The goal is to minimize the objective function, J, under the constraint given 
by Eq. 1. This can be done using the method of undetermined multipliers. Thus the function 
that must be minimized is 

T 

L = J + Y,K(xt+i-M(p,xt)) (2) 
t=o 

where At is the vector of undetermined multipiers and a prime denotes the transpose. Differ- 
entiation of Eq. 2 with respect to Xt recovers the original model equation. Differentiation of 
Eq. 2 with respect to xt gives 

"-(«Sa*))'*.,.;^ (3) 

Eq. 3 can be rearranged to give 

Vl_(«*fesiyA,+0, (4) 
where 

Gt = -^ (5) 
oxt 

Eq. 4 is sometimes called the adjoint equation. Notice that it can be solved by integrating it 
backwards in time forced by the forcing function Gte The initial condition for A is \N = 0. 
It will be shown below that this initial condition will result in the vector Ao being equal to 
the negative of the gradient of the objective function with respect to the initial condition, xo- 
First J is differentiated with respect to the initial condition, Xo, to obtain 

lr-S(S)'G< (6) 
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The matrix of partial derivatives in Eq.   6 must now be evaluated.   This can be done by 
induction as follows. 

dxt _ 0M(p,xt_i) _ 9M(p,xt_i) dxt-i ^ 

9xo dxo 9x*-i        <5*o 

Taking the transpose of Eq. 7 gives 

In the last step the matrix Mt has been introduced for convenience. This matrix is defined as 

M, = I^^IL ) (9) 

T 
dJ =-^M'1^...Mi_iGt (10) 

4l_fdM(p,xt)\' 

Substitution of Eq. 8 into Eq. 6 gives 

dJ 

^        t=o 

It will now be shown that A0 is equal to the negative of the expression given in Eq. 10. First 
Eq. 4 is rewritten as 

Xt-i = M't\t + Gt (11) 

Thus Xt-2 can be expressed as 

\t-2 = M't_1\t-i + Gt (12) 

Substituting for Xt-i in Eq. 12 using Eq. 11 gives 

At_2 = M't-t (M't\t + Gt) + Gf_i (13) 

This process can be continued to obtain an expression for Ao- 

T 8J X0 = J2 M'.M'^MUGt = -g- (14) 

where the last step can be made by comparison with Eq. 10. Once the undetermined multi- 
pliers have been determined the gradient of the cost function with respect to the parameters, 
p, can also be calculated. 

dL     y. ,aM(p,xf) , 5* 
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The gradients with respect to the initial conditions and the parameters can be combined to 
give VJ = [—\o,dL/dp] enabling the best combination of parameters and initial condition to 
be found. For this work the optimization was performed with an iterative Newton method from 
the IDL package. However, this requires the storage of the Hessian matrix. Real NWP models 
have around 104 variables and thus the Hessian matrix is unfeasibly large. Conjugate-gradient 
methods are usually employed for such large models [Navon and Legier, 1987]. 

In the above derivation a general cost function was used. A specific cost function, namely 
the mean square error, will now be considered. Let H be the observation matrix which relates 
the state of the system, x, to the observations that would be made if the system were in the 
state x. That is, if the system is in state x the vector of observations is given by Hx. If yt is 
the vector of actual observations at time t then the mean square error cost function is given 

by 

J=I^(yi-Hxi)'(yi-Hxi) (16) 
2i=o 

Thus Gt is given by 

Gt = -|^ = H'(yt-Hxt) (17) 
oxt 

To keep computational expense down when the adjoint method is used with large NWP models 
the forward model described by Eq. 1 is linearized about the basic trajectory. If the basic 
trajectory is written as xt and the deviation from this trajectory is written as x't then the 
linearization of Eq. 1 can be written as 

xj+1 = L(xt)x't (18) 

The linear model L is referred to as the Tangent Linear Model or TLM. The adjoint model 
given by Eq. 4 is also linearized about the trajectory xt. The linearized adjoint model will be 
referred to as the ADJM. 

3    The Lorenz model 

As with previous work in this area the Lorenz model will be used as toy nonlinear system with 

which to test ideas. 
The equations of the Lorenz model can be written in matrix form as 

**    =   -a(X-Y) (19) 
at 

—   =   rX-Y-XZ (20) 
dt 
d4-   =   XY-bZ (21) 
dt 
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where o, r and b are parameters of the model. The Lorenz model can be written in discrete 
form as 

Xt+i 

Yt+i 
Zt+i 

1 — or    +or        0 
rr       1 — T    —Xtr 
Ytr 0       1 - br 

Xt 

Yt 

Zt 

(22) 

where r is the length of the time step used in integrating the model. The TLM of Eq. 22 
is given by 

-^4+1 

zt+i 

I — or +OT               0 X't 
(r-Zt)r 1-T      l-XtT Y; 

Ytr Xtr      1-br [z[ 
(23) 

Where an overbar denotes the trajectory about which the model is linearized and a prime 
denotes the deviation from this trajectory. 

Using Eq. 9 the adjoint form of Eq. 22 is 

M'f = 
I — or   (r — Zt)r     Ytr 

or 1 — T        Xtr 
0 -Xtr       1-br 

(24) 

To illustrate a major problem in variational assimilation in chaotic systems a set of "ob- 
servations" was generated using the Lorenz model by running it with the standard parameters 
(o = 10,r = 28,6 = 8/3) and taking the X component only as the observed variable, this 
corresponds to H = [1,0,0]. The MSE cost function defined in Eq. 16 was then calculated as 
a function of error in the initial value of the Y coordinate. The results when the cost function 
was evaluated over periods of 1, 2, 4 and 10 dimensionless time units are shown in Fig. 1. 
For short periods the cost function is smooth and has a single, global minimum in the vicinity 
of the true initial condition. However, as the time period is increased local minima appear 
and the cost function becomes pathological for longer assimilation periods. Clearly finding 
the global minimum of the cost function when the assimilation time is 10 units is a daunting 
task. There are methods, such as simulated annealing and genetic algorithms, which could be 
tried but exploiting the option of controlling the cost function would seem to be the best line 
of attack. 

4    Quasi Static Variational Assimilation 

Quasi Static Variational Assimilation (QSVA) was introduced by Pires et al. [Pires et al., 1996]. 
The QSVA algorithm can be outlined as follows:- 

1. Start with an initial guess of the state of the system and let the initial assimilation time be 
n = A. 
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ASSIMILATION TIME= 1.00000 ASSIMILATION TIME=2.00000 

-1 0 
ERROR IN Y(0) 

ASSIMILATION TIME=4.00000 

4000 

</) 2000 

2.5x10 

2.0x10   - 

5.0x10' 

0 1 
ERROR IN Y(0) 

ASSIMILATION TIME= 10.0000 

-1 0 1 
ERROR IN Y(0) 

-1 0 1 
ERROR IN Y(0) 

Figure 1: The MSE cost function in the Lorenz model as a function of error in the initial 
value of the Y coordinate. The function becomes increasingly pathological as the assimilation 
period is increased. 
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2. Minimize the MSE over the assimilation period t = 0 to t = n to produce a new estimate 
of the state of the system at time t = 0. 
3. Increase nton + A and repeat step 2 until n = T. 

The aim of the QSVA algorithm is to keep the estimate of the state of the system at time 
t = 0 in the basin of the global minimum, even as the local minima appear. In this algorithm A 
is a preset parameter. How should A be chosen? In their experiments with the Lorenz model 
Pires et al. used a value of A = 0.2/r where r is the model time step. The most efficient value 
of A will depend on the particular system under consideration and also the region of phase 
space which the system is in at the time. In some regions of their phase space nonlinear systems 
can be well approximated by linear models and in these regions assimilation can be performed 
over relatively long periods. In other regions the assimilation period must be increased more 
slowly to remain in the basin of the global minimum. Thus a simple modification of the QSVA 
algorithm is proposed. In the modified algorithm A can be adapted so this modified algorithm 
will be refered to as Adaptive Quasi Static Variational Assimilation or AQSVA. The criteria 
for choosing the assimilation period will be that the model can "shadow" the observations over 
the assimilation period. The shadowing time Ts will be taken to mean that ||Hxt - yt|| < e 
for all t < Ts. 

The AQSVA algorithm is as follows:- 

1. Start with an initial guess of the state of the system. Integrate the model until either 
t = T in which case Ts = T or until ||Hxt - yt\\ > e in which case Ts is the shadowing time. 
2. Minimize the MSE over the period t = 0 to t = Ts to produce a new estimate of the state 
of the system at time t = 0. 
3. Unless Ts = T or Ts is no longer increasing return to step 1. 

The parameter e must be chosen. It should be large enough to allow for experimental noise 
but it should be small enough such that the tangent linear model is valid. Since the TLM has 
a single quadratic minimum in the MSE cost function. 

5    A comparison of QSVA and AQSVA 

A series of numerical experiments was performed to compare the accuracy and efficiency of 
the standard QSVA algorithm and the modified AQSVA version. The Lorenz equations with 
parameters a = 10, r = 28 and b = 8/3 were used as the system. The Lorenz equations were 
also used as the model into which the observations were assimilated. A perfect model and 
imperfect model were considered. Perfect model refers to the case when the parameters of 
the model were the same as those for the system while in the imperfect case the value of r 
in the model was changed from 28 to 30. In all the experiments only the X variable of the 
system was "observed". In some of the experiments noise was added to the observed values 
of X. This noise was uncorrelated and Gaussian with a standard deviation of 0.2. The full 
assimilation period in each experiment was 5.00 time units. 
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Perfect model/noise free QSVA AQSVA Standard 
Computational expense 
Shadowing time 
Error in XQ 

36316 
5.00 
10~5 

16460 
5.00 

3 x 10~4 

41300 
0.42 
4.3 

Table 1: Perfect model without observational noise. 

Perfect model/noise s.d. = 0.2 QSVA AQSVA Standard 

Computational expense 
Shadowing time 
Error in XQ 

54912 
5.00 
0.12 

17674 
4.94 
0.12 

42700 
1.17 
5.8 

Table 2: Perfect model with observational noise. 

The results of the experiments are shown in Tables 1-4. Each table was constructed by av- 
eraging the results of 10 experiments with different initial conditions. All the initial conditions 
lay on the attractor of the system. As well as the QSVA and AQSVA algorithms standard 
MSE minimization was also included in the experiments. That is when an attempt was made 
to minimize MSE over the entire assimilation period from the initial first guess. The compu- 
tational expense of each of the methods was measured in terms of integration steps. That is, 
forward integration steps of the TLM plus backward integration steps of the ADJM. 

In the case of perfect models the accuracy of the AQSVA algorithm is comparable with the 
QSVA algorithm. Although the accuracy of the final estimate for the initial condition is slightly 
worse when using AQSVA this inaccuracy is much less than the inaccuracy in this estimate 
caused by adding noise to the observations. Both algorithms can find model trajectories that 
shadow the observations to the end of the assimilation period with the exception of one of the 
ten AQSVA cases without noise. Standard MSE minimization always performs very poorly. 
This isn't suprising given the fact that for an assimilation period of 5 time units the cost 
function has many local minima in which the optimization algorithm can become trapped. 
The most important difference between QSVA and AQSVA is the computational expense. 
AQSVA is typically about half as expensive as QSVA. 

For the imperfect model making a direct comparison between the QSVA and AQSVA 
algorithms is complicated by the fact that they are essentially attempting to do different 
things. While the QSVA algorithm is trying to minimize the MSE over the entire assimilation 

Imperfect model/no noise 
Computational expense 
Shadowing time 
Error in XQ 

QSVA 
109940 

0.11 
9.28 

AQSVA 
25402 
1.58 
2.60 

Standard 
46000 
0.25 
3.90 

Table 3: Imperfect model without observational noise. 
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Imperfect model/noise s.d. =0.2 QSVA AQSVA Standard 
Computational expense 
Shadowing time 
Error in XQ 

125028 
0.11 
27.6 

15683 
1.39 
2.66 

48400 
0.30 
4.34 

Table 4: Imperfect model with observational noise. 

period the AQSVA algorithm stops as soon as shadowing breaks down. This difference is 
reflected in the shadowing times which the algorithms achieve. QSVA shadowing times are 
never very long because in its efforts to fit the model to observations at later times the algorithm 
sacrifices a good fit for earlier times. The AQSVA algorithm does not make this sacrifice and it 
thus achieves shadowing times an order of magnitude longer than QSVA. AQSVA also obtains 
better estimates for the state of the system at the beginning of the assimilation period. Again 
AQSVA is several times cheaper computationally than QSVA. In the imperfect model case the 
computational saving of AQSVA is even higher than for the perfect model because AQSVA 
never assimilates to the end of the assimilation period. 

The reason for the cheapness of AQSVA compared to QSVA can be explained as follows. 
In some parts of phase space the model is close to linear and thus MSE can be minimized 
over relatively large time periods without secondary minima becoming a problem. However, 
in QSVA the value of A is determined by the regions of phase space where the model is most 
nonlinear and where the assimilation period must be increased slowly. If this limiting value of 
A is used in all regions of phase space the algorithm is less efficient than AQSVA where the 
value of A can be varied, taking a large value when the model is well approximated by the 
TLM and a small value when it is not. 

When data assimilation is being used to obtain an estimate of the state vector at time 
t = T to initialize a forecast it is of no use if the AQSVA algorithm stops short of t = T. 
In this case the AQSVA can be run from the point when shadowing breaks down, using the 
estimate of the state vector at t = Ts as the initial estimate for the next run of the AQSVA 
algorithm. This procedure can be repeated until a sequence of discontinuous trajectories has 
been constructed which shadow the observations for the complete assimilation period. 

6    AQSVA in a system with dynamical noise 

In the previous section imperfect model was taken to mean that the parameters of the model 
were not the same of those of the system. Another way in which a model can be imperfect is 
by lacking extrinsic forcing terms which are present in the system. To investigate this effect 
stochastic forcing terms were added to the Lorenz equations of the system. Thus the system 
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became 

<™L   =   -a(X-Y)+Wx(t) (25) 
at 

^-   =   rX-Y - XZ+ WY{t) (26) 
at 

^   =   XY-bZ + Wz(t) (27) 
at 

where WX,Y,Z represent uncorrelated gaussian noise with zero mean and variance w2 = 25.0. 
Again the 'x coordinate of the system was the observed variable. The AQSVA algorithm was 
then used to find a shadowing trajectory of the model which had the same parameters as the 
system but lacked the stochastic forcing terms. A typical result is shown in Fig. 2. 

The thin solid line is the X coordinate of the system with stochastic forcing. The dashed 
line is the X coordinate of the model when the actual initial condition is used. Note that in 
this case the trajectoroy of the model deviates from the observations after about 3 time units. 
The thicker solid line is the trajectory found using the AQSVA algorithm. This trajectory 
shadows the stochastically forced system for about 6 time units even though the forcing terms 
were missing. The reason for this is that in the Lorenz system the relatively small forcing 
terms are only important when the system is close to a decision point in phase space. At such 
a point a small perturbation can determine which of the two unstable fixed points the system 
will orbit. A slight change in the state of the system at t = 0 can "fake" the effect of this 

forcing. 

7    An alternative cost function 

As described above one of the main problems with the MSE cost function in strongly nonlinear 
systems is the existence of many local minima in addition to the global minimum. Perhaps an 
alternative approach to the problem is to use a different cost function. The length of time for 
which the model can shadow the observations would seem to be a reasonable measure of the 
validity of the model. The shadowing time, Ts, can be written as follows. 

i=0 fc=0 

where U is the Heaviside step function and rk = ||yfc - Hxfc||. 
Note that the step function is zero if the distance between the model and observations 

exceeds e. Also note that each term in the sum over time contains a product of all the 
step functions up to that time, thus if any term is zero all the terms that follow it are zero. 
Equation 28 does not have a continuous derivative which can be used to force the adjoint 
equation. The step function can be replaced by a smooth approximation of a step function, 
/C. A pseudo-shadowing time can now be defined as 

143 



TIME 

Figure 2: Assimilation in the presence of dynamical noise. The thin solid line is the X coor- 
dinate of the system with dynamical noise. The dashed line is the X coordinate of the model 
with identical parameters to the system and initialized with the same initial state but without 
the stochastic forcing terms. The thick solid line (which overlies the thin solid line until about 
6 time units) is the X coordinate of the model without the dynamical forcing terms after the 
thin solid line was assimilated into it. 
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T     i 

^=En^2-^) (29) 
i=0 k=0 

If the cost function is defined as J = -T* the forcing term for the adjoint equation is given 

by 

G* = - 
dJ      2H'(yt - Hxt) 

3-x.t £(e2 

A possible form of the function /C is 

*(*) = < " 

art}e2_r2 .=tk=0 

z<-ß 

(30) 

z>+ß 
(31) 

In numerical experiments using the Lorenz model the alternative cost function described 
by Eqs. 30 and 31 did not produce estimates of the initial state as accurately as AQSVA. 
This may be because the model used was always very similar to the system, even in the 
"imperfect" model experiments. The pseudo-shadowing cost function may be an effective way 
to maximize shadowing time in models which are not structurally the same as the systems 

they are modeling. 

8    Summary 

The QSVA algorithm introduced by Pires et al. [Pires et al., 1996] has been slightly modified 
to include adaptive increments in the assimilation time determined by the models ability 
to shadow observations. The adaptive QSVA (AQSVA) algorithm was compared with the 
conventional QSVA using the Lorenz equations as a simple system-model combination. The 
AQSVA method was found to be more computationally efficient than standard QSVA. 

An alternative to the MSE cost function based on shadowing time was proposed although 
it was not determined what practical advantages this pseudo-shadowing cost function may 
have over AQSVA. 
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Towards a Non-Linear Model for Spicules 

Aaron C. Birch 

1 Introduction 

Spicules are approximately 7,000 km high jets of hot plasma seen on the sun extending 
from the chromosphere into the lower corona. Each jet lasts roughly ten minutes and then 
disappears. These jets have been previously discussed in the literature (for example, see 
[Hasan and Venkatakrishnan, 1981], [Athay, 1984], and [Umurhan et al., 1998]); there is no 
consensus on the driving mechanism. This paper follows the approach of Umurhan, Tao, 
and Spiegel ([Umurhan et al., 1998]) who suggested that spicules are a non-linear effect of 
overstable acoustic modes. 

There are two main parts to this work. The first is to write down an eigenvalue equation 
that can be numerically solved to obtain frequencies and growth rates for the various oscillation 
modes, considered as infinitesimal perturbations to a background state, of a chromosphere-like 
layer. The second part is to use the results of the linear stability problem to derive a non-linear 
equation to describe the time evolution of the layer. 

The main outline of the paper is as follows: Section 2 contains a brief outline of the basic 
structure of the sun and spicules. Section 3 describes the time scales involved in the problem. 
The basic equations that will be used to describe the plasma are introduced in Section 4 and 
linearized in Section 5. Section 6 contains a discussion of the energy equation and Newton's 
law of cooling. Section 7 discusses the various background atmospheres around which the 
linearization is done. The boundary conditions for the problem are described in Section 8. 
Results for the case of the isothermal and polytrope background are shown in Sections 9 and 
10. Sections 11 and 12 develop the amplitude equation. The remaining sections discuss the 
conclusions and possibilities for future work. 

2 A Brief Review of Spicules and The Sun 

The sun has radius of 7 x 105 km. The inner 20% by radius is where the nuclear burning takes 
place and is responsible for energy generation. The region below 70% of the solar radius is 
called the radiative zone, in this region energy is carried outwards by radiation. Above the 
radiative zone and extending to the surface is the convection zone, where as the name implies 
energy is carried outwards mainly by convection. The top of the convection zone, known as 
the photosphere, produces most of the visible light we see. At the top of the photosphere the 
temperature, which decreases steadily outwards from the core, reaches its minimum of about 
6,000 K. Above the photosphere is the chromosphere, a layer roughly 4,000 km thick, in which 
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the temperature increases with height from the photospheric value to approximately 10,000 
K while the density and pressure are steadily decreasing. At the top of the chromosphere the 
temperature starts increasing very rapidly with height, up to the two million degrees of the 
corona. 

The surface of the photosphere shows two main spatial scales of convection. The smaller of 
these scales is the granule scale, which is 1000 km. Granules are up-drafts of hot plasma, with 
thin boundaries of down-going cooler plasma. The larger length scale is due to supergranules, 
each of which contains approximately 1,000 granules. Supergranules, like granules, consist of 
a widespread warm up-welling surrounded by thin lanes of cooler down-drafts. The flow due to 
the supergranular structure sweeps granules, as well as magnetic flux, towards the boundaries 
between supergranules. As a result the magnetic field above the supergranule lanes can be up 
to 2000 G, compared to the usual background of a few gauss. Spicules tend to occur above 
these supergranule lanes. As a result, it is suggested that the formation of spicules is related 
to the presence of the magnetic field. 

Spicules can be seen in Ha, the 660 nm spectral line of hydrogen, images of the solar limb 
as well as of the disk. In limb images they appear as extended, much taller than they are 
wide, bright regions. They are seen to extend to heights of 7,000 to 10,000 km above the 
photosphere and last for roughly ten minutes (e.g. [Suematsu et al, 1995]). 

3    Time Scales 

The time scales involved in the problem determine what physics needs to be included when 
describing the chromosphere. As only the fundamental modes of waves in a chromosphere-like 
layer are considered the length scale is taken to be the height of the chromosphere, 4,000 km. 
The sound speed is approximately 10 *f. 200 G is taken as the magnetic field strength. The 
important times are the sound speed transit time, the Alfven wave transit time, and resistive 
diffusion time, the viscous damping time, and the rotation period. In the expressions for these 
times L is the length scale, cs is the sound speed, ca is the Alfven speed, and rj is the resistivity. 
The expressions and values for these times are then: 

L 
TS0Und = — = 400S 

TAlfven = — = 200s 
Ca 

L2 7 
Tresist = — = 10 'years 

V 

Tsound is the time for a vertically pressure perturbation to cross the layer, TAlfven is the 
time for a vertically propagating magnetic field disturbance to cross the layer. The resistive 
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diffusion time Tresist is the time scale for the decay of magnetic field due to finite conductivity. 
Because the resistivity of the chromosphere is so small compared to the length scale in the 
problem, the resistive diffusion term will be neglected in the MHD equations in the next 
section. The viscous diffusion time is the time for a velocity perturbation to decay in the 
absence of other effects. It is not clear what value to use for the viscosity, perhaps turbulent 
viscosity is important. The rotation period is a approximately a month, so rotation is not a 
large effect on waves with periods of minutes, of order the sound or Alfven wave transit times. 

4    MHD equations 

The standard ideal MHD equations are used_to describe the plasma.JD is the density, P is the 
pressure, v is the velocity, J is the current, B is the magnetic field, E is the electric field, T is 
the temperature. These quantities are functions of time and space. Cv is the heat capacity at 
constant volume and is considered fixed. R is the gas constant. The equations are: 

^ + V.(pS)=0 (1) 

p^ = -VP + pgz + -JxB (2) 
at c 

| = -Vxi (3) 
at 

CvP^ + PV-v = Q(T,p) (4) 

P = RpT (5) 

j = ±VxB (6) 
47T 

E = -vxB (7) 

Equation 1 is the usual continuity equation, expressing the fact that there are no sources 
or sinks of mass in the problem. Conservation of momentum is expressed by Equation 2. 
The forces on the right hand side are the pressure gradient, gravity, and the Lorentz force. 
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Gravity is assumed to act only the in the +z direction. Equation 3 is the usual Faraday's Law. 
Conservation of energy is given by Equation 4, the function Q gives the rate at which energy 
is injected into (or removed from) the fluid at a given point and is in principle a function 
of temperature and density. The equation of state is assumed to be that for an ideal gas 
and is given in Equation 5. Equation 6 is the pre-Maxwell prescription for the current. The 
displacement current is assumed to be negligible, so this set of equation is not expected to be 
valid at high frequencies. The final equation gives the electric field in terms of the magnetic 
field. It arises from Ohm's law and the infinite conductivity assumption of Ideal MHD. If 
the conductivity a is infinite then in the frame of reference moving with the fluid the current 
J = a(E + v x B) must be zero, from which a relation between E and B is obtained. Once Q 
is specified this set of equations, along with boundary conditions and initial conditions, gives 
a complete description of the time evolution of the system. 

5    Linearization 

In order to study the linear stability problem the MHD equations must be linearized around a 
background state. In this work only the two dimensional plane-parallel problem is studied, x 
describes the horizontal direction, z describes the vertical. The background state is assumed 
static. Gravity and the background magnetic field are assumed to be constant and in the z 
direction. The background pressures is given by PQ, the density by p0, and field by BQZ. The 
variables P, p,0,v = (17, W), B = (Bx, Bz) describe the perturbations to the pressure, density, 
temperature, velocity, and magnetic field respectively. The perturbations are assumed to have 
the form f{z) expi{kx - ut). The linearized equations, given below, along with a prescription 
for boundary conditions and a background state then constitute a linear eigenvalue problem 
for the complex frequency u. 

-icop + Wp' + po(ikU + W) = 0 

. ikP        IBQ 2TT  l   TT"\ 
-%OJU = h (—A (7 + U ) 

p0       Anpou) 

P'        p 
-iujW = \-g— 

Po       Po 

CvPü{-iu6 + WTQ') + P0{ikU + W) = Q{0, p, T0, p0) 

P__ P_     o_ 
P0 ~ po + To 

150 



The real part of u> gives the frequency of the mode and the imaginary part is the growth 
rate. The linearization makes it clear the the magnetic field causes only a force in the horizontal 
direction and is only due to motions in the horizontal direction. Motion along the background 
field is not affected at all. Note now that the function Q, which originally was a function of 
the total T and p must now be considered a function of both the background and perturbation 
values of these quantities. In order to further simplify these equations a form of Q must be 
chosen. 

6 Heating Function 

As mentioned earlier the function Q describes that rate at which heat is added or removed 
from the plasma as a function of its temperature and density. The chromosphere, to a good 
approximation, is optically thin (e.g. [Syrovat-skii and Zhugzhda, 1968]). Optically thin per- 
turbations can be described by Newton's law of cooling: Q(0,p) = -qpoCv9 ([Spiegel, 1957]). 
In general q is a function of the background state. For this work only the case in which q is a 
constant is considered. For q constant and no flow the non-linearized heat equation is: 

§ = -,(T-T„) 

For the case q > 0 deviations in the temperature T from the background value T0 decay 
with a time scale of -. If q < 0 then any temperature perturbation is unstable, growing 

exponentially with time scale =±. In general, though not always, q > 0 has the effect of 
damping waves that produce temperature perturbations, and q < 0 increases the growth rate 
of waves that produce temperature perturbations. 

7 Background State 

In addition to the function Q the background state also must be specified. The full problem 
of heating in the chromosphere is unsolved. As a result it is not clear what the appropriate 
background model is. For lack of a better model, the three simplest temperature profiles are 
examined: a constant, a linear function of depth, and a quadratic function of depth. All three 
of these background temperatures can be obtained from the diffusion equation, with constant 
thermal conductivity n and heating rate h, 

""a? = h 

For the case h = 0 a. linear temperature profile is obtained, of which the constant profile is 
a special case. For nonzero h a parabolic profile is obtained. In all cases gravity is assumed to 
be constant and the equations of state is that of an ideal gas. A further assumption, for the 
sake of simplicity, is that the background state is in hydrostatic equilibrium. This assumption 
is probably not good for the chromosphere. 
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7.1    Isothermal Atmosphere 

For the case of T constant, 

dP gP 
-d-z=9P=Rf 

With the definition of the scale height H = &f-, P(z) has the form Pexp f, where P is 
9 

the pressure at z = 0. The scale height H is the distance it takes for the density and pressure 
to increase by a factor e. It is reasonable the this distance increases with temperature and 
decreases with increasing strength of gravity, g. It can be shown that this atmosphere is always 
convectively stable. 

7.2    Polytrope Atmosphere 

Suppose T = ßz + a. For ß ^ 0, a can be made zero by choice of coordinates. Then: 

dP gP 
= gp = 

dz      *r     Rßz 

The solution of which is P{z) = Pijr;)^ • Here ? is the value of P at z = z$' Zs has the 

units of length and is put in only to make the units look correct. The definition of m = ^ — 1 

is commonly used. With this definition P(z) = P{j;)m+l and p(z) = p(^)m. This atmosphere 
is known as a polytrope and can be either convectively stable or unstable depending on the 
relationship between m and 7 = ^. For m < ^ the atmosphere is unstable, while for 

m > ~ZT it is not. The instability arises from the combination of the stratification with 
gravity. 

7.3    Constant Heating 

For the case of h ^ 0 the temperature has the form =£z2 + ßz + a. Again by change of 
coordinates a. can be made zero. By the same method as in the previous two sections the 

pressure profile of this atmosphere is found to be P(z) = P{jzs^)^- This atmosphere 

is more interesting then the previous two. In the other cases the temperature and pressure 
both increase with depth. With constant non-zero heating there is the possibility of having 
the temperature decrease with depth. This feature makes this atmosphere more like the 
chromosphere than the previous two. 

8    Boundary Conditions 

Boundary conditions must be specified in order to complete the formulation of the linear 
stability problem. The linearized version of the equations are fourth order in space. As a 
result four boundary conditions are required.   The traditional boundary condition that the 
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vertical velocity, W, vanish on the top and bottom of the layer is used. This condition ensures 
that the mechanical part of the energy flux across the boundary is zero. 

Two more boundary conditions are required. Limits on the possible boundary conditions 
on the magnetic field can be found be requiring that the Poynting vector S = E x B at the 
boundary be parallel to the boundary. The result of the calculation is that for k ^ 0 either 
Bx or Bz must be zero on the boundary. The physical meaning of these boundary conditions 
requires some discussion. 

The basic problem of selecting boundary conditions for this problem is that the boundaries 
do not correspond to clear physical boundaries, but rather have been selected arbitrarily. In 
order to deduce the physical meaning of the various boundary conditions on B it is necessary 
to make assumptions about what is outside the layer in which the eigenvalue problem is to be 

solved. 

8.1 Bx = 0 

For the case k ^ 0 the boundary condition Bx = 0 is equivalent to U' = 0 which is a 
statement of no stress on the boundary. In particular U is allowed to be nonzero on the 
boundary. Another point of view is that if the magnetic perturbation to the field outside the 
layer is required to be vertical, then Bx = 0 on the boundary implies that no surface currents 
are allowed, as can be seen by the standard Ampere's law argument. In order to maintain 
V • B = 0 there would have to be a vertical perturbation to the field outside the layer to match 
the perturbation inside. 

8.2 Bz = 0 

The boundary condition Bz = 0 is equivalent to considering the outside of layer to be a perfect 
conductor with fixed field B0z in it. As a result of V • B = 0, Bz must vanish at the boundary. 
A consequence of this condition is that for k ^ 0 the horizontal velocity must vanish at the 
boundary. The can be understood in terms of fine pinning. Any horizontal motion along the 
boundary would drag field lines with it, this motion is therefore not allowed as the field lines 
are stuck into the boundary and cannot move. 

9    Polytrope Atmosphere 

The problem of the stability of adiabatic motions {q = 0) in a polytrope atmosphere without 
magnetic field is well understood (e.g. [Lamb, 1925]). The adiabatic problem with magnetic 
field has been studied in the case of a complete polytrope, i.e. a polytrope that extends 
from z = 0 to z = oo (e.g. [Bogdan and Cally, 1997]) as well as for a generic polytrope 
layer (e.g. [Kaplan and Petrukhin, 1965]). The case without magnetic field but including 
heat transfer by conduction rather than Newton's law of cooling has been previously studied 
(e.g. [Lou, 1990]), as has the case of particular spatially dependent cooling times i (e.g. 
[Macdonald and Mullen, 1997], [Spiegel, 1964]). There are few generalizations than can be 
obtained from these studies besides that the existence of unstable modes depends sensitively 
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on the exact form of heat transfer that is used. In this study only the case where the cooling 
time is independent of depth is considered. 

9.1    Non-Dimensionalization 

For the polytrope background atmosphere it is convenient to non-dimensionalize the MHD 
equations by scaling the pressure, density and velocity perturbations by the background pres- 
sure, density, and adiabatic sound speed at the bottom of the layer. The length scale, zs, is 
the distance from the height where the density is zero to the bottom of the layer. In all of the 
calculations for polytrope atmospheres shown here the layer is chosen to extend from z = 0.1 
to z = 1. A result of this scaling is that the dimensionful frequency is given by ^— where c 
is the adiabatic sound speed. For the values assumed for the chromosphere this implies that 
the dimensionful frequency is ^ Hz times the dimensionless frequency. The dimensionful 
horizontal wavenumber is given by j- where k is the dimensionless horizontal wave number. 

9.2    Results 

The results of numerical calculations, done in terms of the dimensionless variables, of the 
frequencies and growth rates for the fundamental acoustic and gravity modes are shown for 
a sample stable polytrope in Figure 1 and for an unstable polytrope in Figure 2, in both 
cases without magnetic field. The first figure shows that both the acoustic and gravity wave 
branches have zero growth rate as one would expect for a stable atmosphere. The gravity 
wave frequency goes to zero with decreasing wavenumber. The acoustic wave has a minimum 
frequency, this would be this case even in an infinitely thick layer though the actual minimum 
would be different. The second figure shows that the acoustic mode has zero growth rate 
and has a dispersion relation much like that for the stable atmosphere. The gravity mode 
is completely different, however. The gravity mode is not oscillatory in time at all, rather it 
grows exponentially. 

If magnetic field is added to the problem, but the adiabaticity of the oscillations is main- 
tained, a new set of features arises. The most striking feature of the magnetized polytrope, 
with boundary conditions Bx = 0 on the top and bottom of the layer, is that the mag- 
netic field can make unstable polytropes behave in a stable way. Kaplan and Petrukhin 
([Kaplan and Petrukhin, 1965]) argued that stabilization ofthe transverse mode by the mag- 
netic field only occurs, in the adiabatic case, for £*±i < 7 + |^- This claim has not been 
investigated here. One example where the magnetic fields makes the layer stable is shown 
in Figure 3. The dotted line represents the more longitudinal mode and the solid the more 
transverse mode. Growth rates are not shown because they are all zero. The modes are iden- 
tified by their k = 0 behavior. At k = 0 the equations separate into two decoupled eigenvalue 
problems, one for U(z),B(z) and one for W{z),P{z). The first eigenvalue problem describes 
the vertically propagating Alfven mode, which is transverse and causes no density or pressure 
perturbations. The second eigenvalue problem describes the vertically propagating acoustic 
mode, which is unaffected by the magnetic field. By starting at k = 0 with one of these 
solutions and moving up in A; the behavior of each branch can be calculated. 
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The ability of the magnetic field to completely suppress convective instability is likely due 
to the reversibility of fluid parcel motions. For nonzero q as well as B0 the unstable polytrope 
regains its instability. This is shown in Figure 4, again using the boundary conditions Bx = 0. 
This figure has a number of important features. As in previous plots the dashed line is for the 
longitudinal mode and the solid line for the transverse mode. The transverse mode is unstable 
for large k while the longitudinal mode is unstable for small k. this is a general feature that 
appears in many of the calculations shown in this paper. Another feature is that the modes 
come very close to crossing. As a result, resonance between the modes, despite their different 
physical characteristics, might be an important effect. 

10    Isothermal 

Adiabatic oscillations in an isothermal atmosphere in the absence of magnetic field have been 
studied and well understood (e.g. [Lamb, 1925]). The isothermal atmosphere is always convec- 
tively stable and supports three types of modes: the acoustic, Lamb, and the gravity waves. 
With the addition of the magnetic field there are only two fundamental modes, a mostly 
transverse and a mostly longitudinal mode. 

The problem of the isothermal atmosphere with a constant magnetic field and Newton's 
law of cooling has been previously studied (e.g. [Babaev et al., 1995]). Babaev and coworkers 
considered the case of an infinite isothermal atmosphere and found analytic solutions to the 
linear stability problem. They found that all the modes were stable and discussed the damping 
rates in the limits of strong and weak magnetic field. 

10.1 Non-Dimensionalisation 

For the numerical calculations with isothermal atmosphere background, pressure and density 
perturbations are scaled by the values of background pressure and density at the middle of the 
layer. The velocity perturbations are scaled by the adiabatic sound speed. The scale height is 
used as the length scale. The calculations were done on a layer that extends from z = -0.5 to 

z = 0.5. 

10.2 Results 

The results of the calculations for the isothermal atmosphere are qualitatively similar to those 
of [Babaev et al., 1995] in that for q > 0 there are no unstable modes, as long as the boundary 
conditions on B are either Bx = 0 or Bz = 0. For q < 0, all modes are overstable. For the 
case q < 0 the fundamental longitudinal mode is most unstable for k = 0 while the transverse 
mode is most unstable for some finite k which depends on the parameters of the problem. The 
transverse mode is always marginally stable for k = 0 as the vertically propagating transverse 
mode does not produce temperature perturbations. 
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11    General Form of The Amplitude Equation 

As a result of the unrealistic nature of the background atmospheres considered in this work no 
attempt was made at the derivation of a detailed amplitude equation. Instead the procedure 
of Fauve ([Fauve, 1991]) is followed in order to derive a schematic amplitude equation. 

Consider the isothermal atmosphere with a background magnetic field. For q = 0 the 
fundamental longitudinal mode is marginally stable. For q > 0 the fundamental longitudinal 
mode is overstable with maximum growth at k — 0. Define e = -q as the control parameter, 
which will be useful later. The amplitude A(k, t) is then introduced through the equation: 

rl>(x,z,t)= J' A{k,t)eikx(i>k{z)dk (8) 

Where (j>k{z) = {vk(z), Bk(z), Pk{z)) describes the velocity, magnetic field, and density per- 
turbation eigenfunctions associated with the fundamental longitudinal mode with horizontal 
wavenumber k. ip(x,z,t) then describes the behavior of these fields in time as well as space. 
It is important to note that the effect of modes other than the fundamental longitudinal mode 
is ignored. The other modes could be easily included. With the simplifying, but incorrect, 
assumption that <f>k{z) = (/>o{z) Equation 8 becomes: 

ifi(x,z,t) = (j>o{z) IA(k,t)eikxdk = fa{z)A{x,t) 

Thus if the amplitude A(x, t) is known, the behavior of our physical fields can be found by 
multiplying by the eigenfunction for k = 0. 

Fauve explains that for the case of overstable modes with most unstable wave number k 
the lowest order non-linear equation for the time evolution of A(k, t) is 

aA(fe'*> = (iw(fc) +r,(k))A(k,t) + a\A(k,t)\2A(k,t) 

Here u>(k) is the mode frequency as a function of k and rj(k) is the growth rate. The 
Fourier transform of this equation gives the time dependence of the amplitude A(x,t). The 
Fourier transform of the linear part is straightforward and gives a linear operator involving 
even power of 3X, as only even powers of k can appear by symmetry. The non-linear part is 
quite complicated. In order to proceed without working out the details, the Swift-Hohenberg 
argument ([Manneville, 1990]) is used to show that: 

With this assumption: 

f \A(k,t)\2A{k,t)eikxdk « \A(x,t)\2A(x,t) 

^ß- = L(dx
2)A(x,t)+a\A(x,t)\2A(x,t) 

eft 
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12    Particular Form of the Amplitude Equation 

In the previous section the general form of the amplitude equation was derived. In this section 
the linear operator L{dx

2) is obtained from the Fourier transform of iu(k) + rj{k). In order 
facilitate this computation a function of the form e<5+j^fe is fit to the numerical results for the 
growth rate. In addition the frequency is assumed constant, equal to u0. This approximation 
could easily be relaxed. The calculation that needs to be done then is: 

/ 
(iu)0 + e8+ zTö)A{k, t) exp ikxdk 

1 + pAr 

which gives: 

(iuo + e5)A(x, t) + enC{x, t) 

with 

{l-ß&)C(x,t) = A(x,t) 

The complete form of the amplitude equation is then, (explicitly noting that a is order e 

^EA = (iu,0 + eS)A(x,t) + eKC(x,t) + ea\A(x,t)\2A{x,t) 
at 

with 

{1 - ßA)C{x,t) = A{x,t) 

13    Conclusions 

The general eigenvalue problem for the growth rates of normal modes of 2D MHD with New- 
ton's law of cooling in a layer with a variety of boundary conditions has been set up and 
solved for both isothermal and polytrope backgrounds with constant vertical magnetic field. 
The linear stability of the different modes depends strongly on the boundary conditions as 
well as the background atmosphere. 

For the particular case of the boundary condition Bz = 0 and an isothermal background 
atmosphere it was found the modes are always stable for q > 0 and unstable for q < 0. An 
amplitude equation was developed for the overstable fundamental acoustic modes for the case 
q < 0. The amplitude equation was derived with the assumption that the only important 
branch is the fundamental acoustic branch and by making a Swift-Hohenberg type simplifica- 
tion of the Fourier Transform of the nonlinear term. 
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14 Future Work 

This work is far from complete. Viscosity of any sort has not been included. It is likely 
that introducing a finite viscosity would reduce the growth rates or perhaps even damp the 
large horizontal wave number modes. This would introduce a new horizontal length scale 
into the problem and would alter the amplitude equation significantly. The expansions in the 
eigenfunctions may have to be done around finite k instead of k = 0. 

The issue of resonance between modes was not treated in the work, and may be an im- 
portant effect. For many choices of parameters there appears to be nearly a mode crossing 
between the longitudinal and transverse waves. 

A vast improvement in the realism of the problem could be made through the use of a more 
accurate background atmosphere. For both the polytrope and the isothermal atmosphere the 
temperature either increases with pressure and density or remains constant. The temperature 
of the chromosphere decreases with increasing density and pressure. 
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m=5,1/(gamma-1)=3.6, Convectively Stable 
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Figure 1: The dispersion relation for the fundamental acoustic, in the dashed line, and gravity 
mode, in the solid line, are shown for the m = 5, 7 = 1.28, non-magnetic polytrope atmosphere. 
The layer extends from z = .1 to z = 1. The atmosphere is stable and the oscillations are 
adiabatic so the growth rate is zero for both branches. 
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m=1.5,1/(gamma-1)=3.6, Convectively Unstable 

Figure 2: The dispersion relation for the fundamental acoustic, in the dashed line, and grav- 
ity mode, in the solid line, are shown for the m = 1.5, 7 = 1.28, non-magnetic polytrope 
atmosphere. The layer extends from z = .1 to z = 1. The atmosphere is unstable and the 
oscillations are adiabatic so the growth rate is zero for the acoustic mode and positive for the 
gravity modes. The gravity modes have zero frequency and thus are not oscillatory in time 
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m=1.5,1/(gamma-1)=3.6, B0=6, Bx=0, Convectively Unstable 

Figure 3: The dispersion relation for the fundamental longitudinal, in the dashed line, and 
transverse mode, in the solid line, are shown for the m = 1.5, 7 = 1.28 magnetic polytrope. 
The layer extends from z = .1 to z = 1 and the magnetic boundary conditions are Bx = 0 on 
top and bottom. For this plot q = 0 so the oscillations are adiabatic.The growth rates are not 
shown because they are zero. Without magnetic field this atmosphere would be unstable, but 
the transverse modes are stabilized by the magnetic field. 
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m=1.5,1/(gamma-1)=3.6, B0=6, q=1, Bx=0, Convectively Unstable 

Figure 4: The dispersion relation for the fundamental longitudinal, in the dashed line, and 
transverse mode, in the solid line, are shown for the m = 1.5, 7 = 1.28 magnetic polytrope. 
The layer extends from z = .1 to z = 1 and the magnetic boundary conditions are Bx = 0 on 
top and bottom. For this plot q = 1 so the oscillations are non-adiabatic. The finite cooling 
time makes fluid motions irreversible so the transverse modes are unstable. Even though this 
atmosphere is convectively unstable the transverse modes have an oscillatory component. In 
addition for the given BQ and q the longitudinal mode is unstable for k < 1. 
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Isothermal, B0=2,q=-.01 

x10 

Figure 5: The dispersion relation for the fundamental longitudinal, in the dashed line, and 
transverse mode, in the solid line, are shown for the isothermal atmosphere. The layer extends 
from z = -0.5 to z = 0.5 and the magnetic boundary conditions are Bz = 0 on top and bottom. 
For this plot q is small and negative. The background magnetic field is 2 which corresponds 
roughly to real magnetic field of 60 gauss. The modes in this diagram almost cross, which 
results in small features in the growth rate near the close approach of the frequencies. 
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Isothermal, B0=6,q=-.01 

x10 
-3 

Figure 6: The dispersion relation for the fundamental longitudinal, in the dashed line, and 
transverse mode, in the solid line, are shown for the isothermal atmosphere. The layer extends 
from z = —0.5 to z = 0.5 and the magnetic boundary conditions are Bz = 0 on top and bottom. 
For this plot q is small and negative. The background magnetic field is 6 which corresponds 
roughly to real magnetic field of 180 gauss. In contrast with the previous diagram, for a weaker 
field, the modes don't come close to crossing. This is a result of the higher frequency for the 
k = 0 Alfven mode. 
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Dispersion and Reconstruction 

Carolyn R. Mockett 

1 Introduction 

Since the 1970's physical oceanographers have been using neutrally buoyant floats to make 
Lagrangian measurements of ocean circulation. Today the use of floats is becoming more 
and more common, and these measurements are regularly used to make maps of the Eulerian 
flow. Yet the relationship between Eulerian and Lagrangian statistics has been not been fully 
explored. One can approach this relationship from two directions. The first is given a certain 
Eulerian flow field, what can one say about the Lagrangian float trajectories? The inverse of 
this is given the Lagrangian float trajectories what can one say about the Eulerian flow? 

There has been work on the dispersion of passive particles in 2-D turbulence. But there 
has not been a full exploration of the effects of ß and the free surface on dispersion, both of 
which are factors in large scale flow in the ocean. In addition what are the direct and indirect 
effects of vortices on dispersion with ß and a free surface? An improved understanding of 
dispersion in different types of flow will assist in better understanding float data. 

The inverse question of starting from the Lagrangian data and attempting to reconstruct 
the Eulerian field is a broad topic. A simple place to start is to add a zonal flow to a turbulent 
background and test various factors that effect how well one succeeds in recovering the mean 
from Lagrangian measurements. 

2 The Model 

To explore both of these questions a series of numerical experiments have been carried out 
that integrated the equivalent barotropic quasigeostrophic equation in dimensionless form. It 
is given by: 

The vorticity q is given by q = V2ip - Ftp, where V2ip is the relative vorticity and Ftp is the 

free surface term. F = {L/LR)
2
 where L is the length scale of the domain and LR = ^ f> is 

the Rossby radius of deformation. The Rossby radius gives a length scale at which the effects 
of rotation become important. There is no forcing so the field is freely decaying, and a hyper 
viscosity is used with /x = 5 x 10-7. 

The numerical integration is done on a doubly periodic square lattice (0,27r; 0,2n) with 
128x128 resolution. The code is pseudo-spectral with standard 2/3 dealiasing. Pseudo-spectral 
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means that the derivatives are done in spectral space while the the products are done in physical 
space. A 3rd order Adams-Bashforth scheme is used for the time-integration. 

To calculate the float trajectories one needs to integrate x = -§jjf, y = §£. Again 3rd 
order Adams-Bashforth scheme is used for the time integration and the spatial interpolation 
of position between grid points is done with cubic spectral splines. 

All the runs are started with a random Gaussian vorticity field with narrow band wave 
number spectrum. The initial kinetic energy spectrum is given by E{k) = pf^ym, where 

k0 = 15, and E0 is fixed such that the total energy E = J E{k)dk = 0.5. The initial field 
then freely evolves. As energy cascades to larger scales vortices form. They interact, and 
merge, and with time there are fewer and fewer vortices since there is no forcing. Since these 
flows are freely decaying one must worry about their stationarity. The hope is that the flow 
is sufficiently stationary over the time period analyzed, during which the total energy only 
decreases by about 2%. One can also argue that there is no reason to believe the ocean itself 

is stationary. 
After the vortex formation period, a 32x32 uniform grid of floats are put in the flow and 

passively advected. Each float measures position (x,y), velocity (u,v), the stream function 
ip, and vorticity V2ip - Ftp every dt = .1, from t = 0 to t = 40. Since there are periodic 
boundaries, the trajectories are unfolded before calculating dispersion statistics. Therefore 
the final area of the unfolded float trajectories can be much larger than the original 128x128 
domain. The Eulerian velocity field is recorded on the same uniform grid where the floats 
were initially seeded. In order to have the same amount of data in the Eulerian data set as 
the Lagrangian, the Eulerian velocities are also recorded every dt = .1 for the same length of 

time. 
The dimensional and non-dimensional scales this model corresponds to are U ~ .2m/s, Un ~ 

.6 , L ~ 400fern, Ln = 2n , Lß ~ 150fcm, Ln
ß ~ 2, LR ~ 70km,Ln

R ~ 1, and T ~ Mays,Tn = 1. 

A superscript n refers to non-dimensional. The Rhines scale, Lß = yj% gives an (upper) esti- 

mate of the scale at which Rossby waves dominate over vortices. 

3    Part I: Dispersion 

3.1    Definitions 

In order to explore the dispersion of floats there are certain statistics that are useful. To begin 
with absolute dispersion measures the mean square displacement of an ensemble of floats at a 
given time. It is defined as 

A{t)2 = {(x(t)-x(0))2) 

where (...) is an average over an ensemble of floats and :r(0) is the initial position of a float. 
One can also define the dispersion coefficient by 

A2 
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Taylor(1921) obtained two limits for D(t) in isotropic, homogeneous,stationary turbulence 

D <xt    when t -> 0 

D = Const,     when t ->■ oo 

This first limit is called ballistic diffusion, while the second is Brownian diffusion. Single 
particle diffusion is a good measure of the mean displacement of floats. But if one wants to 
know more specifically how floats are dispersing, it is useful to define a PDF of displacement. 
This is given by 

v(d) - "W 
NAd 

where n{d) is the number of floats that have been displaced a distance between d and Ad, N 
is the total number of floats, and Ad is the width of the bin. 

Another useful tool is the power spectrum. Given 

rT 
5(i/) = f   u'(t)i 

Jo 
e-i27TUtdt 

where u'(t) = u{t) - u{t) is for a given float or Eulerian velocity time series, and u(t) is the 
mean of that time series, v is the frequency. The power spectrum P{v) is given by: 

Piy) = ^[SV)-SHy)\ 

The spectrum was calculated for each float and then averaged over all floats. The same was 
done with the Eulerian data. 

As a word of caution, note that all the previously defined statistics have been developed 
for statistically stationary processes. Since our turbulence is decaying, strictly speaking we are 
out of the domain of applicability of the methods and their use must be considered heuristic. 
However, the energy decay is very slow and as a good approximation the dynamics may be 
considered stationary. 

Previously it has been demonstrated that the form of dispersion for passive particles in 
vortices is different from those in the background (Elhmaidi et al. 1993). To distinguish 
between these two regions one can use the Okubo-Weiss parameter Q(x, y, t) = S2-u2, where 
52 is the sum of the squares of the normal and shear components of strain, and u is the 
vorticity. The only problem is that strain and vorticity are very difficult to measure in the 
ocean with floats. Rupolo et al (1996) used low and high kinetic energy (KE) as a proxy to 
distinguish between floats in and out of vortices. Since the goal of this project is to explore 
dispersion of floats, high and low KE will be used to make this distinction. The 200 floats 
with the highest kinetic energy and with the lowest kinetic energy will be used for the high 
KE floats, and the low KE floats respectively. 
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3.2    The Four Cases Considered 

To examine the effects of ß and a free surface on dispersion the natural thing to do is look at 
four different cases: Case 1 (ß = 0,F = 0), Case 2 {ß = 5,F = 0), Case 3 (ß = 0,F = 30), Case 
4 ( ß = 5,-F = 30). In order to start each case with the same kinetic energy Ftp was subtracted 
from the initial relative vorticity field used to start Cases 1 and 2 to obtain a new vorticity 
field to start Cases 3 and 4. However, since the fields evolved differently Cases 3 and 4 have 
half the kinetic energy of Cases 1 and 2. Therefore one cannot compare the magnitude of the 
absolute dispersion between these two pairs, but one can compare the form of the dispersion. 

3.2.1    Case 1: ß = 0, F = 0 

With F = 0 there is no physical limit on the size of the vortices and there are long spatial 
correlations . This makes it a difficult case to study since quickly the vortices grow and form 
large scale flow (Figure 1 b) which can bias the dispersion. Regardless of these difficulties 
this case presented the main features of the dispersion are as one would expect. There are 
comparable displacements in x and y as is evident from the dispersion coefficients (Figure 2 
c). Also from the plot of the dispersion coefficient one can see that there is ballistic dispersion 
at small t, while relatively Brownian dispersion at large times. From the spectrum (Figure 3 
a,b) one can see that there is more energy in high frequencies {v » 1) in the Lagrangian data 
than in the Eulerian data. This reflects that floats travel more rapidly through different parts 
of the flow than the rate at which the flow changes at a given point and the general process of 
formation of small space and time scales in advected tracers even for smooth Eulerian flows. 
When the floats are divided into high KE and low, the high KE floats have much more energy 
at high frequencies than the low KE floats. This is due to the fact the high KE floats are in 
the vortices. In addition there is a -1/4 slope to the high KE floats previously observed for 
high KE floats in the ocean (Rupolo et al. 96), which is a possible sign of anomalous diffusion 

(diffusion that is not Brownian). 

3.2.2    Case 2: ß = 5, F = 0 

The first thing that is evident when one looks at the contours of vorticity of this case (Figure 1 
c,d) is the lack of vortices. The presence of ß allows Rossby waves, which have been shown 
to alter both the dispersion directly and through their inhibition of the formation of vortices 
(McWilliams 84). If ß is large enough Rossby waves can eliminate vortices. The Rhines scale 
gets smaller as ß increases, so the spatial scale over which Rossby waves dominate decreases. 
This case clearly is dominated by Rossby waves. From Figure 4 a,b one can see that there 
is much greater x-displacement than in Case 1 because of the waves. There also is a greatly 
repressed y-displacement since now for a float to move north or south it must cross contours 
of planetary vorticity. In order to conserve potential vorticity a north-south displacement 
requires a change in the free surface or relative vorticity to balance the change in planetary 
vorticity. From (Figure 4 c) one can see from the plot of the dispersion coefficient a long 
ballistic period until almost t=l, 
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To compare Eulerian statistics to Lagrangian, the energy spectrum (Figure 5 a,b) provides 
a good comparison. The strong peaks from the waves which are clearly visible in the Eulerian 
spectrum are absent in the Lagrangian. Since the floats travel with the waves they do not 
detect them. 

It should also be noted that because there are no vortices there is little difference between 
high and low kinetic energy floats as seen in their spectrum (Figure 5 c,d )■ In this case, the 
only difference is that the low KE floats display some indication of the Rossby wave peaks. 
Thus statistics for high and low KE floats appear to differ significantly only in the presence of 
vortices. 

3.2.3 Case 3: ß = 0, F = 30 

With the addition of the free surface the inverse cascade of energy to scales larger than LR is 
slowed down. In addition interaction between vortices at distances larger than LR is shielded, 
and the dynamics become more localized. This can be seen in Figure 1 e,f. The vortices are 
O(LR) so their movement is very slow. The slowness of the vortex movement is most evident 
when looking at the trajectories of the high and low KE floats (Figure 7 a,b). The high KE 
floats are trapped in vortices and confined to small areas, while the low KE floats are dispersing 
through this field of almost stationary vortices. As a consequence the x and y displacement 
(Figure 7 c) of the high KE floats is repressed by about 1/2 compared to the mean of all floats, 
and almost all of the energy is at high frequencies (Figure 8 c). For low KE floats there is a 
greater x, y-displacement (Figure 7 d) than the mean. On the plot of the dispersion coefficient 
(Figure 7 f) one also notes that there is a longer ballistic dispersion until almost t = 1. 

For this case the Eulerian and float spectrum (Figure 8 a,b) are especially different. In fact 
the Eulerian spectrum has not yet leveled off. This is due to the slow motion of the vortices. 
For the Eulerian time series one vortex can come by and skew the mean such that the time 
series with the mean removed has long sections of essentially constant velocity and one or a 
few large jumps. As a consequence the Eulerian spectrum does not level off. With enough 
time several vortices would come by and the mean would begin to make sense. For this reason 
the memory in the Eulerian flow is especially long. 

3.2.4 Case 4: ß = 5, F = 30 

This final case is the most interesting since it combines both the effects of ß and the free 
surface, and is the most applicable to actual ocean dynamics. For this case the ^-displacement 
(Figure 9 a) is twice as large as Case 3 (ß = 0,F = 30). There also is an interesting skew 
PDF of x-displacement (Figure 9 c). The cause of this becomes very clear when the high KE 
floats are examined separately. The y-displacement (Figure 9 b) on the other hand is 2/3 less 
than Case 3 since now ß is present. But interestingly the y-displacement is almost twice that 
of Case 2 (ß = 5, F = 0) even though Case 2 has more kinetic energy. Therefore one can 
conclude that vortices must contribute to y dispersion. 

For the high KE floats there is a smaller ^-displacement by 2/3 than the mean, and large 
net westward displacement (Figure 10 c). The vortices are clearly traveling westward and are 
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responsible for this behavior. This can also be seen in the PDF of x-displacement which has 
westward migration with time (Figure 10 e). The low KE floats on the other hand have a 
comparable x-displacement to the mean and a slight net Eastward displacement (Figure 10 c). 
There is also noticeably longer ballistic period. Both have similar y displacements. 

3.3    Conclusions of Part I 

There are large differences between Eulerian and Lagrangian statistics. In particular there 
is a much longer memory in the Eulerian field, as indicated by the large power in the low- 
frequency components of the spectrum, which is a reflection of the different characteristics of 
each method of measurement. By comparing Case 2 with the other three one can also see 
that coherent structures alter the overall dispersion. Not only do they alter the dispersion but 
there are different dispersion properties for floats in vortices and those in the background in 
all three cases with vortices. In particular vortices decrease the ballistic period. This was seen 
by Elhmaidi et al. 1993 in two dimensional turbulence (Case 1) but it also evident with ß and 
F. Separating the floats into those in and out of vortices allows one to see which are dispersing 
more. By comparing the displacement of low KE floats to high KE it appears that vortices 
contribute to dispersion by the flow they set up, but it is not the particles in the vortices 
(high KE) that disperse the most. It is the particles outside them (low KE) that do. This is 
evident from Case 3 and Case 4. For these turbulent flows high and low KE is a good proxy 
for distinguishing between floats that are in or out of vortices. 

Finally the addition of ß alters the dispersion. It greatly represses dispersion in y, and 
causes vortices to travel westward as well as the particles they have trapped. Vortices do 
assist in over coming the effects of ß since there is more y dispersion in Case 4 than Case 
2, even though Case 2 has more kinetic energy. The Rhines scale also plays an important 
role in dispersion on the /?-plane. Dispersion in the x becomes almost ballistic again after a 
displacement near the Rhines scale, while y dispersion is essentially halted. 

4    PART II: Reconstructing the Mean Flow 

The second half of this research approaches the relationship between Eulerian and Lagrangian 
measurements from the other direction. What factors contribute to how well one can recon- 
struct the mean Eulerian flow from float data? Although there are numerous things one could 
test, one can begin with the spatial resolution of initial position of the floats, how often each 
float measures the flow, and the ratio of the kinetic energy of the mean flow to the kinetic 
energy of the eddies KE vatio=KEJet/KEEddy One can also explore the error that is in- 
duced by how the velocity is determined, whether it is directly measured or inferred from float 
trajectories as is done with ALACE floats (Davis et al., 96). 

In order to add a mean flow, a simple sinusoidal vorticity field is added to the initial 
vorticity field of Case 4 (ß = 5,F = 30). The resulting velocity field is a jet in the center of 
the domain traveling eastward and westward flow along the top and bottom of the domain. The 
jet and the turbulent background are then allowed to freely evolve together before the floats 
are added. The resulting mean zonal velocity is no longer a sinusoid. The jet has extracted 
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some of the kinetic energy from the eddy field. Figure 11 shows example stream lines for two 
different strength jets. The first set of stream lines (a,b) is the most energetic case examined, 
KE ratio=1.4. The vortices are confined to the regions of minimum velocity. One can see from 
the second set (c,d) when the KE ratio=.312 there are is a much more substantial spatial and 
temporal variability in jet. The KE of the jet is determined from the mean Eulerian flow \u\, 

where üf is averaged over all the Eulerian data. The eddy KE is found by subtracting this 
estimate of the KE of the jet from the total KE of the domam,KEEddy = KErotai ~ KEjet. 

4.1 Perfect Data 

With the numerical model the floats act as perfect roving current meters measuring the exact 
Eulerian velocity at varying locations over time as they follow a fluid parcel. So the compar- 
ison between Eulerian data and Lagrangian is purely an issue of resolution (temporally and 
spatially) since both are making exact measurements. Both Eulerian and Lagrangian velocity 
measurements are binned in 128x8 rectangles to reconstruct the mean flow averaged over x. 
All the unfolded trajectories outside the initial 128x128 domain are discarded. Floats are not 
allowed to wrap around and continue to measure the field. This was done to emphasize one 
of the drawbacks of floats,that they can leave the area of interest. 

Figure 12 shows two reconstructions for two different strength jets. The floats reconstruct 
the flow quite well, even with as few as 16 floats. But in the less energetic jet there appears 
to be a systematic underestimate of the peaks of the jet regardless of the number of jets. This 
is evident in all of the runs at the lower energies. 

4.2 Imperfect Data 

Since the "perfect" data works very well, we now explore what happens when the velocity is 
inferred from the float position data. There is a type of float used by oceanographers that are 
ballasted to sink to certain depth and travel with the flow untracked on the order of weeks, 
after which they surface and relay their location to a satellite, and then submerge again. The 
velocity is inferred from the where the float went down and where it next resurfaces and the 
time in between. 

To mimic this type of flow measurements one can reconstructed u and v from trajectories 
in a similar manner using a centered difference scheme: 

u(x.) - *(*+!) -*(*-!) 
1 l) ~ 2At 

Ky%> 2 At 

At = .1, .4,1,2 were used. The data is thinned temporally, such that X(i+i) and Z(j_i) are 
2At apart. A At = 1 is between once and twice an eddy turn over time depending on the 
strength of the mean flow. Measurements are then analyzed the same way as the "perfect" 
data. 
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To approximate the two-week period the ALACE floats are submerged, a At = 2 is used 
since a non-dimensional time unit is about three days and a centered difference has a time 
separation of 2At. In Figure 13 one can see that the underestimate of the peaks of the jet 
is now significant. To ensure this was not due to the lack of data, there also is a plot of the 
"perfect" data thinned temporally by At = 2 to compare it to. The thinned "perfect" data 
actually slightly over estimates the peaks. Therefore one can conclude that this method of 
reconstructing the mean velocity is introducing some type of systematic error. 

4.3 Energy of mean flow vs. energy of eddies 

To explore whether the ratio of the kinetic energy of the mean flow to the kinetic energy of 
the eddies is a key factor, several runs were done with the magnitude of KE ratio varying from 
1.4 to .18 . The rms error between the the Lagrangian velocity and Eulerian divided by the 
total rms velocity of the Eulerian mean is then plotted as a function of the KE ratio. This 
was calculated with all 1024 floats, 256 floats, 64 floats, and 16 floats. 

For the most energetic jet there is an increase in error since the floats move quickly through 
the domain and there are less measurements, but as the KE ratio of the flow decreases below 
.7 the error begins to increase again and reaches forty percent. One will also note that with 
the "perfect" data (Figure 14 a)the number of floats does not seem to matter much, all the 
error curves lie close together. 

The same procedure is applied to the reconstructed velocities. For At = .1 (Figure 14 b 
)the plot looks similar to the "perfect" data, but now there is a spreading of the error lines 
of different number of floats. For At = 1 (Figure 14 d) the whole curve flattens out and the 
error from the way the velocity field was reconstructed masks the error determined by the KE 

ratio . 

4.4    Conclusions of Part II 

Overall there is an underestimate of the jet strength when using float data especially as the KE 
ratio decreases. As the KE ratio decreases it becomes much more difficult to detect the mean 
and the error can rise to forty percent. The underestimate is particularly evident when the 
velocities are reconstructed from the trajectories using a centered difference. The longer At 
one uses to reconstruct the velocity field, the larger the underestimate. In addition the number 
of floats becomes much more important when the velocity is reconstructed from trajectories 
since each measurement contains a certain level of error. In fact if the data is "perfect" one 
can do basically as well with only 16 floats as 1024 floats. 

5    Future Work 

For the study of dispersion: 
To improve the stationarity of the statistics all fours case should be re-run at higher 

resolution (512x512), so the friction can be decreased. This will cause less decay of the total 
energy and potential vorticity. One can also do runs that explore relative dispersion in all four 
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cases by seeding pairs of floats close together. This is something that is being done with floats 
in the ocean now. It would be interesting to compare the numerical data set with a real one. 
For the exploration of flow reconstruction from Lagrangian data: 

Since reconstructing the velocities from float trajectories causes a systematic underestimate 
of the jet peaks the next thing to look at would be the effects of other imperfections in float 
measurements, like drift, finite size of a float, etc... One could also look at how well Lagrangian 
float measurements compare to the Eulerian ones with a north-south mean flow, and more 
complicated mean flows. 
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Figure 2: CASE 1 a) the solid line is the mean x-displacement, and the dashed are plus and 
minus A, the rms. b) the solid line is the mean y-displacement,and the dashed are plus and 
minus A, the rms. c) The dispersion coefficient, solid line -in x, dashed line - in y. 
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Figure 4: CASE 2 a) the solid line is the mean x-displacement, and the dashed are plus and 
minus A, the rms. b) the solid line is the mean y-displacement,and the dashed are plus and 
minus A, the rms. c) The dispersion coefficient, solid line -in x, dashed line - in y. 
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Figure 6: CASE 3 a) the solid line is the mean x-displacement, and the dashed are plus and 
minus A, the rms. b) the solid line is the mean y-displacement,and the dashed are plus and 
minus A, the rms. c) The dispersion coefficient, solid line -in x, dashed line - in y. 
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Pandora's Lattice: 
Family-Synchronized States in a 

Globally Coupled Logistic Map Lattice 

Andrew R. Jacobson 

1    Introduction 

The system of interest in this study is a lattice of N globally coupled one dimensional maps. 
The lattice evolution is described by 

N 
e 

xn+l(i) = (1 - e)f[xn(i)} + - J2 /MJ)L (!) 
i=i 

where i and j are indices of maps within the lattice, n and n + 1 are iteration indices, the 
coupling strength is e, and f(x) is the map function. xn(i) is the nth iteration of the ith map 
in the lattice. The coupling strength e varies between zero and one. 

All the lattices discussed in this study are constructed using logistic maps of the form 

f(xn) = 1 - ax\. (2) 

For reference, a bifurcation diagram for this form of the logistic map is shown in Figure 1. 
This map has the property that any condition on the interval [ -1 1] will remain on that interval 
under iteration of the map. 

We should especially note that since the coupling term is constructed of equal contributions 
from each map in the lattice, there is no spatial dependence in this system. 

2    Strong Coupling Limit 

As the coupling strength approaches unity, we expect the lattice to tend to a fully-synchronized 
state. In this limit, all the maps take on the same value and follow the same evolution, which 
is that of a single, uncoupled logistic map. 

There is a threshold coupling value for the lattice above which the system will synchronize. 
This critical coupling value, ec, may be computed using linear stability analysis. To do so, we 
rewrite the iV-dimensional lattice evolution (1) in matrix form as xn+i = C f (xn), where the 
coupling matrix C is given by 
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Figure 1: Logistic map bifurcation diagram. 
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The coupling matrix C may also be written as (1 - e)IN + ^1/v, where IN is the JV x JV 
identity and IN is an JV x JV matrix of all ones. 

The Jacobian matrix at iteration n is J„ = CF'(xn), with 

F'(xn) = 

/  /'[*«(!)]     f'[xn(l)] 
f[xn(2)]     f'[xn(2)} f[*n(2)) 

\f'[Xn(N)]     f'[xn(N)]     ••■     f'[xn(N)]  ) 

A small perturbation 5x to the synchronized state xt = x therefore evolves according to 

/ Sxn+i(l)  \ 
Sxn+\{2) 

V Sxn+i(N) ) 

«n 
Sxn(2) 

V Sxn(N) ) 

(4) 
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The leading eigenvector of the Jacobian matrix lies entirely within the synchonization 
manifold and represents the evolution of the manifold itself. The Lyapunov exponent corre- 
sponding to this mode, Ai, is that of the uncoupled logistic map. As reported by Kaneko 
[Kaneko, 1990] and Ding and Yang [Ding and Yang, 1997], the remaining N - 1 eigenvectors 
represent growth transverse to the manifold. Their Lyapunov exponents are degenerate and 
related to the exponent of the uncoupled map: A2 = A3 = • • • = Ai + ln(l + e). 

This leads to a simple criterion for the appearance of full synchronization within the system. 
For the synchronization manifold to be attracting, we require that Ai+ln(l+e) have an absolute 
value less than unity. In chaotic regions of the logistic map, Ai > 1, and the value of the critical 

coupling strength is 

6c = l-eAl. (5) 

3    Existence of Other Global Attractors 

One application of globally coupled map lattices that is frequently mentioned is to arrays of 
Josephson junctions. In 1989, Weisenfeld and Hadley [Weisenfeld and Hadley, 1989] published 
a paper in which they report on a mutiplicity of coexistent stable solutions in coupled arrays of 
Josephson junctions. They found a large number (order of (JV-1)!) of stable limit cycles within 
such a system, and remarked on how small white noise perturbations may induce the system 
to jump from one basin of attraction to another. They called this phenomenon "attractor 
crowding", and showed that it may also be found in a system of coupled circle maps. 

Shortly thereafter, Kaneko [Kaneko, 1989, Kaneko, 1990] reported finding similar results 
in a globally coupled logistic map lattice. In addition, he found a rich variety of "family"- 
synchronized solutions. These stable solutions are global attractors for which the N maps 
are partitioned into k groups with Nk members each. Each of these groups is a "family", 
and within each family, all the maps are synchronized to one another. The term "clustering" 
has been used in the literature to describe these types of solutions. We wish to avoid the 
connotation of spatial proximity associated with this term, however. 

An example of such an attractor in which the lattice falls into a two family attractor is 
depicted in Fig. 2. The 100 maps are partitioned unequally into the two families; the larger 
family has 91 members and the smaller has 9 members. Note also that as expected, the 
members of the smaller family are located haphazardly within the lattice. This is solely a 
result of the randomly chosen initial conditions. 

3.1    Coexistent Global Attractors 

One of the interesting features of the system (1) is that there can be mutiple global attractors 
coexisting at the same parameter values (Fig. 3). In practice, a lattice falls into one basin 
of attraction or another depending on the initial values of the maps. There is evidence that 
some of the basins of attraction fill a considerable portion of phase space. At a = 1.9 and for 
coupling strengths of around e = 0.385, we find that randomly-initialized lattices fall robustly 
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Figure 2: Transition to a two-family attractor for the globally coupled logistic map lattice at 
map parameter value a=1.9, lattice size iV=100 and coupling strength e = 0.385. The maps 
of the lattice were initialized with random values. In this attractor, the larger family has 91 
members, and the smaller family has 9. (left) Lattice-iteration diagram showing map values 
as a function of iteration before and after transition to the global attractor. To show contrast 
between families, the lattice mean at each iteration has been removed, (right, top) Time 
series of raw map values for map 1, which becomes a member of the smaller family, (right, 
bottom) Time series for map 2, a member of the larger family. 

into one of three categories of two-family attractors: (i) iVi = 90, iV2 = 10, period 3, (ii) 
Ni = 91, N2 = 9, period 3, (iii) JVi = 92, JV2 = 8, chaotic. The attractor of Fig. 2 is of type 
(ii), and the attractor of Fig. 3 is of type (iii). The third return map of the chaotic attractor 
(Fig. 3, left panel) has an apparently fractal nature reminiscent of that of the Henon map; as 
the figure is succesively enlarged, more and more lines become evident. 
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Figure 3: A second two-family attractor for a map lattice identical to that of Fig. 2. This at- 
tractor is chaotic. The larger family has 92 members, and the smaller family has 8. (left) Third 
return map for larger family. (right,top) Time series of raw map values for map #1, which 
becomes a member of the smaller family, (right, bottom) Time series for map #2, a member 
of the larger family. 
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4    Phase diagram 

One of the prinicipal results of this summer's work is a refinement of the "phase portrait" pre- 
sented by Kaneko [Kaneko, 1989, Kaneko, 1990]. This new diagram (Fig. 4) was created with 
50 randomly initialized runs at each of 1570 points in the map parameter-coupling strength 
plane. The map parameter a was varied between 1.4 and 1.98 in steps of 0.02; the coupling 
strength e was varied from 0.1 to 0.5 in steps of 0.075. There is a rectangular window at 
e > 0.3 and a < 1.42 for which results were not computed. 

.5- •  ••>:':'■'>■. :<;•:•,■■■■ 
J •• *.'■'.■'■■'. ■.•'/.••• ■■•■'*-':.-.■ 

Figure 4: Number of families in statistically-stationary final states as a function of coupling 
strength e and map parameter a. A dot at a given point means that some number of the runs 
at the corresponding a and e values had final states with that number of families. Note that 
the vertical axis is logarithmic. Methodology is described in the text. 

For each run, the lattice was initially iterated 300,000 times. The lattice was then further 
iterated until a measure of statistical stationary was achieved, up to a maximum of another 
500,000 iterations. The quantity which was monitored for stationarity was the mean of the 
lattice map values at each iteration. The first three statistical moments of both a short- and 
long-term running series of this quantity were computed. The two series were 75,000 and 
300,000 iterations long respectively. For each moment, the short-term and long-term values 
were compared. If all three pairs of moments were equivalent to within a certain threshold, 
the lattice was determined to be in a state of statistical stationarity. About a quarter of the 
runs never achieved this measure of stationarity. Of the 5445 runs resulting in 100-family final 
states, 1220 failed to achieve stationarity. 

Two maps were considered to be in the same family if the cumulative squared difference 
in map values summed over the 1000 iterations following the run to stationarity was less than 
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1 x 10-6. 
This method was chosen rather heuristically to see whether lattices with subcritical cou- 

pling (e < ec) would robustly converge to family-synchronized solutions. The plateaus in 
Fig. 4, such as the set of 3-family solutions, suggest a perspective which contrasts with that 
of Kaneko [Kaneko, 1989, Kaneko, 1990], who drew analogies between the phase portraits of 
conventional thermodynamics and the final states of a globally-coupled logistic map lattice. In 
those works, Kaneko used a 200-map lattice with 500 randomly-initialized runs at each point, 
but with a much smaller time series of iterations. After discarding the first 2000 iterations, he 
categorized each final state using the next 500. Unfortunately, it appears that such systems 
can exhibit transients which are much longer than 2500 iterations. 

The boundary between one-family and two-family states in Fig. 4 approximately follows 
the critical coupling threshold (5) for chaotic regimes of the logistic map. However, there are 
runs which converge to fully-synchronized states at sub-critical coupling values, and regions 
in which stable solutions with both one and two families appear to fill a significant fraction of 

phase space volume. 
The period-three window around a ~ 1.76 is clearly evident in the appearance of a tongue 

of fully-synchronized states extending to relatively low coupling values. Note also the "island" 
of one family states at e ~ 0.15. This region of map parameter space will be explored in more 

detail in Section 4.1. 
The lines that define the boundaries of a given plateau generally run diagonally across 

the e-a plane. This is a manifestation of a sort of competition between the synchronizing 
or stabilizing influence of increased coupling and the destabilizing influence of increased map 
parameter. In the direction transverse to these boundaries, toward higher map parameter or 
lower coupling strength, there is a generally smooth increase in the number of families. This 
trend accelerates rapidly until a sort of "wall" is encountered. At this point, the number 
of families increases quickly until the limit of full desynchronization is reached. The abrupt 
changes and the complexity of the results in this region of rapid desynchronization suggest 
that a more finely-grained exploration of parameter space might help to uncover hidden detail 
and structure. 

4.1    Two-dimensional Sections 

A more refined study of the distribution of stationary final states was performed for three 
representative map parameter values: a = 1.9, a = 1.76, and a = 1.5. For these sections, 200 
independent runs with randomly-chosen initial conditions were used, and an empirical attempt 
was made to distinguish between different solutions. Each stationary state was categorized 
by the number of families in the solution, and by information about each of its families. 
Each family time series of 1000 iterations was characterized by its mean, its variance, and its 
periodicity if it had one. 

For most of the parameter space domain explored in this manner, the number of distinct 
solutions found is nearly as large as the number of initial conditions used. If the methods 
used to distinguish between solutions work as intended, then this is good evidence of attractor 
crowding [Weisenfeld and Hadley, 1989].   There is a tendency for there to be fewer unique 
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solutions at higher values of the coupling strength. 
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Figure 5: Two-dimensional slice through the parameter space of Fig. 4 at a = 1.5. The size 
of the symbol as given by the key is the number of randomly-initialized runs out of 200 which 
manifested the given number of families in their stationary final states. For clarity, runs with 
100-family results have been portrayed with the smallest symbols. 

0        0.05       0.1       0.15       0.2       0.25       0.3       0.35 
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Figure 6: Same as Fig. 5 but at a = 1.9. 

The existence of simultaneous stable solutions and the general trend for a greater number 
of families as the coupling strength is reduced is evident in Fig. 5. It is surprising to see that 
after the complete desynchronization limit is reached at e = 0.04, there is a window at e = 0.01 
in which a host of family-synchronized solutions becomes apparent once more. In this window, 
solutions with 4-7 families and 26-30 families are apparently more prevalent. 

The same general features are evident at a = 1.9 (Fig. 6). The critical coupling value of 
0.4225 [Ding and Yang, 1997] is empirically confirmed here; of the 200 runs at e = 0.43, all 
had fully-synchronized stationary states. The desynchronization wall occurs near the higher 
coupling value of e = 0.19, and the window of low-coupling family-synchronized solutions 
occurs between e = 0.04 and e = 0.05. Once more, there is evidence for a bimodal distribution 
of number of families in final states in this window, with peaks at around k = 3 and k = 60. 
A conjecture concerning the existence of this window at low coupling values will be presented 
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in Sec. 5. 

3.25 
coupling parameter 

Figure 7: Same as Fig. 6 but at a = 1.76. This is in the period-three window of the uncoupled 

logistic map. 

A section through the period-three window (Fig. 7) reveals features which appear to be 
qualitatively different. As one would expect, at zero coupling only three-family solutions are 
found. At e = 0.01, there are a few three-family solutions, with the remainder being completely 
desynchronized. There is a peculiar structure to the desynchronization wall between e = 0.13 
and e = 0.16, in which some preference for 60-70 family solutions is shown. Fully-synchronized 
solutions persist to much lower coupling strengths, and the "island" of one-family states (Sec. 4 
and Fig. 4) is clearly evident. Of the three sections which were analyzed in this fashion, this is 
the only one for which fully-synchronized solutions coexist with final states having three and 

more families. 
It should be noted that during this study, we never found a solution in which member 

families had differing periodicities. For instance, if one family was period-12, all members 
were. If one was chaotic, all families were chaotic. 

5    Simplified Dynamics 

To develop a better understanding of the dynamics at play here, it is instructive to retreat 
momentarily from the full complexity of the 100-dimensional lattice of fully chaotic maps. 
In this section, we discuss the dynamics of much smaller lattices of non-chaotic maps. In 
particular, we will be dealing with regions of the logistic map in which uncoupled maps fall 
uniquely onto stable period-two or period-four attractors. 

5.1    Period-Two Maps 

From about a = 0.74 to a = 1.24, the uncoupled logistic map manifests a single stable 
solution, that of a period-two oscillator (Fig. 1). There is also an unstable fixed point at 
(_1 + yi + 4a)/2a. Considering both stable and unstable solutions, there are three periodic 
points of the map.   Bifurcation diagrams can be constructed for a lattice with some given 
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Condition Map 1 Map 2 

1 •^low -^low 
2 -^low ■^fixed 
3 ^low ^high 
4 ^fixed •^fixed 
5 ■Xfixed -^high 
6 ^high -^high 

Table 1: Combinations of initial conditions for two-map lattice in the period two window. 

number of maps by considering all the unique possible combinations of solutions as a function of 
number of periodic points and number of maps. Since position within the lattice is unimportant 
for globally-coupled systems, we are interested in the number of unique combinations and not 
the number of permutations. For instance, with the three periodic points coded as Xhigh, 
Xfixed, and Xlow, there are six unique combinations for a two-map system (Table 1). 

Each combination forms an initial condition for the tracing of one branch of a bifurcation 
diagram. The procedure involves starting just above e = 0 with the maps partitioned according 
to one combination of the periodic points. Since the coupling strength is non-zero, we expect 
that the values of the periodic points will have shifted by some small amount. Using Newton's 
method for zero finding with initial guesses given by the uncoupled periodic points, we deter- 
mine the actual values of the periodic points for that branch at the given coupling strength. 
The Jacobian matrix is also computed, and from its eigenvalues we determine whether the 
particular solution is stable or unstable at that coupling strength. The procedure is continued 
for an incrementally larger value of e with the just-determined periodic points as the initial 

guesses. 
In Fig. 8(a), we see the results of tracing all six possible branches. The results from both 

maps in the lattice are plotted. The solid horizontal lines at the top and bottom represent 
fully-synchronized states, in which both maps are oscillating in phase between the two stable 
periodic points. The top line corresponds to condition #6 of Table 1 and the bottom line to 
condition #1. The horizontal dashed line in the center of the plot represents condition #4, the 
fully-synchronized condition in which both maps are started at the fixed-point. The two stable 
curving branches represent condition #3, in which one map is initialized at each of the two 
periodic points. This is an out-of-phase state. As the coupling strength is increased, the maps 
feel each other to a greater extent and consequently, the periodic points are drawn together. 
Eventually, this solution becomes unstable. The remaining unstable curving branches represent 
conditions #2 and #5, for which one map is initialized at the fixed point and the other at one 
of the two periodic points. 

The diagram becomes more involved in Fig. 8(a), for which we have four maps in the lattice 
and more than twice as many possible combinations of initial conditions. Of the 15 branches 
traced in this diagram, only 9 are new. There are six combinations which effectively reduce 
to a two-map lattice.   Two more stable branches are generated, depicted by the solid lines 
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0.15 02 0.25 0.3 0.15 02 0.25 

(a) Two-map lattice (b) Four-map lattice 

1.15 02 0.25 0.3 OS ft» 

(c) Five-map lattice (d) Ten-map lattice 

Figure 8: Bifurcation diagrams for lattices of varying size when the map parameter a = 1.2 is 
in the period-two window. Stable solutions are depicted with a solid line, unstable solutions 
with a dashed line. In all cases, the horizontal axis represents coupling strength e. 

terminating at around e = 0.12. These represent the partitioning of one map into one periodic 
point and three into another. We see already the emergence of multiple stable solutions. 

With five maps, an equipartition solution is not possible. The stable out-of-phase solutions 
shown in Fig. 8(c) are of two sorts: a partitioning of 1:4 into the periodic points, and a 2:3 
partitioning. The 1:4 solution becomes unstable at a lower coupling value than the more 
balanced 2:3 solution. 

Finally with the ten maps of Fig. 8(c) we see one way in which attractor crowding might 
develop. As the number of maps increases, the number of stable solutions at low e increases. 
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5.2    Period-Four Maps 

Between a = 1.24 and a = 1.36, the uncoupled logistic map is characterized by a single stable 
period-four solution (Fig. 1). The fixed point of the map persists as an unstable solution, and 
the period-two points are also solutions. This means that there are seven initial conditions in 
which to partition the maps to find each branch of the bifurcation diagram. 

The bifurcation diagrams of Fig. 9 are characterized by a compression and repetition of 
the period-two map bifurcation diagrams. This additional complexity yields a further set of 
stable solutions at low coupling strengths. 

Ar^- 
0.1 0.15 02 02& OJ OJS 02S 03 OJi 

(a) Two-map lattice (b) Four-map lattice 

Figure 9: As in Fig. 8, but for map parameter a = 1.3 in the period-four window. 

6    Stability of Two-Family Solutions 

When a lattice assumes a stable family-synchronized solution, its dynamics are vastly simpli- 
fied. The dynamics of an JV-map lattice evolving as k families may simply be written as a 
fc-dimensional map. For instance, let k = 2 with families x and y of size Nx and Ny respec- 
tively. If we define Nx/N = a and Ny/N = 1 - a, then the system evolution at iteration i 
may be written as 

where the mean field is 

(1 - e)f(Xi) + eSi 

(1 - e)/(y<) + *Si, 

af(xi) + (l-a)f(yi). 

(6) 

This leads to the determination of criteria for the linear stability of a two-family system. 
A perturbation £(n) to each map x{n) and a perturbation 77(771) to each map y{m) evolve 

according to 
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£(n)i+i      = (1 - e)f'(xi)Z{n)i + ea{ 

V(m)i+i      = (1 - e)f'(Vi)T)(m)i + eau 

with (7) 

n=l m=l 

If all the maps within each family are subject to the same perturbation (i.e., £(n) = £ and 
77 (n) = 77), then the problem reduces to that of dynamics within the synchronization manifold. 
The more intriguing question, however, involves the remaining stability exponents, which are 
transverse to the synchronization manifold and thus describe the linear stability of the two- 
family state. If we assume that Oi is identically zero, then we can search for two cases: either 

E^=i £(n) = ° and *7(m) = °> or £(n) = ° and Sm=i ??(m) = °- The fi"*case sives 

e(«)i+i/e(n)i = (i-«)/'(*o. <8) 

and the second 

r,(m)i+1/v(m)i = (l-e)f{yi). (9) 

The stable regime of one particular two-family solution is depicted in Fig. 10. The initial 
solution is period-three. The bifurcation which occurs from e = 0.334 to e = 0.321 is shown in 
detail in Fig. 11. 
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(a) Larger Family (b) Smaller Family 
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Figure 10: Bifurcation diagram for a particular solution as a function of coupling parameter 
e. This is a two-family (10 and 90 members) period-three solution generated at a = 1.9 and 
e = 0.388. At each successive value of the coupling parameter, the lattice was initialized with 
the stationary final state of the lattice from the previous coupling parameter value, (a) Larger 
family, (b) Smaller family. For e > ec at about 0.4225, the lattice is fully synchronized and 
only one family exists. 
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Hill's Horseshoes: 
Chaos in a Forced System 

Claudia Pasquero 

1    Introduction 

To describe the basic mechanism of the ocean circulation, Stommel [Stommel, 1961] proposed 
a simple model that takes in account of the difference in density at different latitudes: he 
considered a box at the equator with temperature TE and salinity SE and a box at the pole 
with temperature Tp and salinity Sp. 

Due to the different incoming heat fluxes and the different evaporation rates, a water 
flux (that he supposed to occur in pipes connecting the two boxes) that reduces the gradients 
between the two boxes is necessary. In terms of the adimensionalized difference in temperature 
x and salinity y, the equations that describe this model are: 

x = r(l -x) - \q\x 
< 

k y = v-\q\y 

where q = ft(x-Ry) is the adimensionalized water flux, considered proportional to the den- 
sity difference between the two boxes (which is given in terms of x and y through a linear 
equation of state); v describes the constant salinity flux at the surface of the ocean and r is 
related to the relaxation time scale of the ocean to the atmospheric temperature. (A constant 
salinity flux and a restoring temperature are often referred to as "mixed boundary condition"). 

This system is equivalent to a second order differential equation for the flux q: 

9 = ~-(T + 3M|«|)9 
dq 

where the potential is: 

V{q) = ß2l + ,T\«f-,{T-„R)\f-rR»q 

and the term containing the first time derivative of the flux can be considered as a nonlinear 
dissipation. Since the shape of the potential is a double well (fig. 1), it is clear that there are 
three fixed points, and that only two of them (qs and qT) are stable. (The same approach to 
the Stommel model is described in [Thual and McWilliams, 1992]). 

203 



Figure 1: Potential of the Stommel model: qs, qi and qx are three steady states for the water 

flux q. 

More complicated potential (with a larger number of steady states) can be obtained by 
including different features, like a vertical structure in the boxes or the effect of the surface 
wind-driven circulation." Since variability in the intensity of the water flux has been proposed 
to explain some obervational data from the ocean and multiple equilibria have been obtained 
in numerical models, we address a question on the way the various states can interact. This 
kind of variations can be due to an internal variability or to an external forcing acting on 
the system. In this study we only deal with this second case: we will consider a double well 
potential whose shape changes periodically in time and we will study the different kinds of 
possible solutions. 

2    A forced system 

We are intersted in a system such as: 

x "f-^ 
V = V(x,X), where  A = A(i) 

(1) 

One of the systems that can be described in this way is the well known three dimensional 
model of the Rayleigh-Benard convection due to Lorenz [Lorenz, 1963]: Marzec & Spiegel 
[Marzec and Spiegel, 1978] showed that it can be described as the motion of an idealized 
dissipated particle in a simmetric double well potential V{x) = \-\\ that varies in time: 
X = -eg(x,X). Poyet [Poyet, 1980] showed that in the limit of small e, the variation of A 
becomes periodic in time. 
Since we are interested in a variation in the potential that is due to an external forcing that 
does not receive any feedback from the system in consideration, we will use the same kind of 
skew-product coupling and let A vary in time as a periodic function: 

X(t) = Ao + Aisinwi 
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V(x) 

sin(wt)=0 

■..$in(wt)=+1 

Figure 2: Variation of the shape of the potential subjected to the periodic forcing described 
in the main text: the stability properties of the fixed points change with time, every half a 

period of the forcing. 

Therefore, the second order equation (1) becomes 

x = -x3 - (Ao + Ai smu)t)x - /JLX (2) 

This equation is a particular case of a general class of equations that have an explicit depen- 
dence of time (Hill's equations) and in particular it is a non linear damped Mathieu equation. 
The non dissipative case (/x = 0) describes the separatix crossing problem in a Hamiltonian sys- 
tem. The linear case (without the x3 term) has solutions that, in some "resonance tongues" in 
the parameter space (A0, Ai), are unbounded (the amplitude of the periodic solutions grows to 
infinity), both in non dissipated and dissipated cases. Hsu [Hsu, 1977] and Fauve [Fauve, 1991] 
studied the non linear equation in the case of small amplitude forcing (Ax <C A0). We want 
to focus on the case of large amplitude fluctuations of the forcing (Ai > A0) such that A can 
vary sign with time, leading to variations in the stability properties of the fixed points (for 
this reason we can consider A0 = 0), and, eventually, chaotic behavior. 

3    Numerical results 

In order to integrate numerically equation (2), we write it as a system of two first order 

equations: 

x = y 

y y = -xs - \{t) x-ny 
(3) 

where x and y can be seen as the position and the velocity of the idealized particle in the 

potential, respectively. 
In fig. 3 time series of the x variable for different values of the parameters are plotted. If 

the time scale of the forcing is very large, the system has time to react to the "adiabatic" 
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Figure 3: Time series of the x variable obtained integrating system (3) with Ao = 7, Ai = 100, 
H = 0.3 and a. u = 0.05, b. u = 0.15, c. w = 0.8, d. w = 1.5, e. a; = 4, f. u> = 15 
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Figure 4: Bifurcation diagram when varying the time scale of the forcing to. A0 

/i = 0.3 

7, Ai = 100, 

variations and the solution will be periodic, passing from the middle fixed point to one of the 
two others, in a regular way, every At = ir/uj. 

When the frequency of the forcing, compared to the dissipative time scale, increases, the 
oscillations of the solution around each fixed point will have larger amplitude and at a certain 
value (when the two time scales become comparable) chaotic motion appears, leading to irreg- 
ular alternance of the position of the solution in the phase space between the two simmetric 
wells, according to the phase at the time in which the middle point looses its stability. If the 
forcing frequency becomes very large (such that u/p >~ 100) the chaotic regime ends and the 
solutions become again periodic: in this case the system does not have time to react to the 
forcing because it has a strong inertia and it feels only a mean potential without fluctuations. 
In the large regime where chaos occurs (as it can be seen in the bifurcation diagram, fig. 4) 
there are windows where periodic behavior is restored and period doubling bifurcations may 

occur. 
In fig. 3 attractors corresponding to these different type of solutions are shown: on the 

vertical axis the temporal dependence, through A, is stressed. The motion along that axis is 
independent on the behavior of the solution, and in this sense the plot in fig. 3 are not attractors 
in the phase space but, more properly, projections of a four dimensional autonomous system 
phase space, where the variation of A is written in term of an oscillator, using a new variable 

v. 
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Figure 5: Trajectories in x,y,X space by integration of the system (3) with A0 = 7, Ai = 100, 
H = 0.3 and a. w = 0.15, b. w = 0.825, c. u = 1.2 
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The approach of the autonomous system is not useful in our case because these two new 
differential equations represent by themselves a Hamiltonian system and the linearization 
around its fixed point (A = 0, v = 0) is not a good approximation when, as in our case, the 
oscillations have a finite amplitude and therefore the trajectory in its phase space is far from 

the origin. 

4    Shil'nikov theory 

Since the plots of our attractors remind the structure of the Shil'nikov homoclinic orbit, let's 
try to see if we can use the same approach to study our system. 

Theorem (Shil'nikov [Shil'nikov, 1965]): 

consider the system 

x = px - uy + P{x, y, z) 

y = ux + py + Q(x,y,z) 

z = \z + R(x, y, z) 

where P,Q,R are Cr functions (1 < r < oo ) vanishing together with their first derivatives 
at the origin 0 = (0,0,0). Let us assume that one of the orbits, denoted by T0, leaves the 
origin and returns to it as t -»• +oo. Then, if A> -p>0 every neighbourhood of the orbit T0 

contains a denumerable set of unstable periodic solutions of saddle tipe. 
In other words, if the dynamics in the neighbourhoods of a fixed point of a system can 

be described in term of an oscillation towards it along the stable manifold (x,y plane) and an 
exponential divergence from it on the unstable direction (z) (see the sketch of a homoclinic orbit 
approaching the fixed point in fig. 4a), the exact law, derived by the linear approximation, 
that describes the dynamics in that region tell us (see [A. Arneodo and Tresser, 1981] and 
[A. Arneodo and Tresser, 1985]) that a line on the Poincare section on the plane S0 orthogonal 
to the local stable manifold will be deformed in a spiral on the plane Ex orthogonal to the 
local unstable manifold. When reinjecting points from Si to E0 with a rigid motion (defined 
by an arbitrary translation and rotation) it can be seen that the initial fine has been folded in 
a spiral. This motion can be represented by a two dimensional map of S0 into itself: for each 
line it is a topological horseshoe. Arneodo et al. [A. Arneodo and Tresser, 1985] showed that 
this map, in the limit of infinite dissipation, can be reduced to a one dimensional map and 
that the number of unstable periodic solutions increases as approaching the homoclinc orbit. 

This theorem proves the existence of infinitely many periodic orbits in a large class of three 
dimensional differential equation. It is a usefool approach because the linearized system can 
be solved analitically, but in our case it cannot be straight used because of the lack of an 
unstable direction: therefore, the linearization of the system around the fixed points simply 
represents a rigid rotation, and nothing more, as we can see in the next section. 
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Figure 6: a. Homoclinic orbit, b. The sections S0 and Si. 

5    Linear Stability Analysis 

The full system is: 

x = y 
(4) 

y = —fiy — x3 — a sin cot X 

In order to find its steady states, we set the time derivatives to zero: the point z0 = (xo, yo) = 
(0,0) is always a fixed point, while to other fixed points zia = {±V-asmcot; 1) appears only 

when sin cut < 0. 
The linear stability analysis around the fixed point z0 shows that its stability properties 

change with time. The linearized version of system (4) around z0 is: 

(5) 

The eigenvalues that describe the evolution of a linear perturbation close to this point can 
be found by solving the characteristic equation: 

-A 

-a smut 

1 

-ß — A 
A2 + /iA + a sin cot = 0 

Therefore the eigenvalues are 

**—fi±e,/i-^-B<- 

The real part of the eigenvalues is negative for sinwi > 0 and the fixed point is stable (while 
it is unstable for smut < 0). Let's study the behaviour of the solution in his vicinity (when 
it is stable). The eigenvetors corresponding to A+ and A_ are z+ = (1, A+) and z- = (1, A_), 
respectively. Let's notice that they are function of time. 
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Any vector z(t = t0) = (x{t0),y(t0)) can be written as a linear combination of the two 
eigenvectors calculated at the same time to 

z(t = i0) = c+(l,A+) + c_(l,A_) 

and the constants c+, c_ can be easily determined: 

C++C- = x(to) 
< 

A+c+ + A_c_ = y(t0 

'   „    — 3/(to)-A-a:(to) 
c+ ~        X+-X- 

_  -y(to)+X+x{to) 
c- - X+-X- 

Assuming that the dissipation \i is small {\i2 < a) we can consider the eigenvalues as 

\± = -^± iu(t), where u(t) = fJjf sinwt -1, therefore the coefficients c+ and c_ are 

conjugates and they can be written as 

x{t0) _,_-y{to)-x(to)n/2 
1v 

and c_ = c. 
dz 
dt Since ^ = \±z±, the general solution is 

z(t) -zo = (x(t) - xQ,y{t) - y0) = cz+ex+ + cz„ex~ 

and it can be seen that the imaginary parts vanish while the real parts of the equation gives: 

yjtp) + x{t0)n/2 

+ y(to) + x{t0)n/2 0 Yl     C cos /   V 
v  )\ Jto 

{r)dT 

-H/2 
+ x(t0)(°)]sinj\(T)dT^ (6) 

As a first approximation, instead of /£ u{r)dr we can use a mean frequency, easily obtained 
from the shape of the potential: since sm(wt) is varying from zero to 1 and back to zero when 
z0 is stable, let's use its mean value 1 in the linearized equation and remove the dissipation 

term: we obtain 
x = —ax 

that is the equation for a linear oscillator whose frequency is yfä. 
With this approximation system (6) becomes 

' x(t) = e~^2 [x{t0) cos y/ä(t - t0) + y(t0)+x(t0)ß/2 
sin V^(t - h)] 

y(t) = e-^2 [y(t0) cos yfi{t - to) - (^°H^°WV + *(*(>)) v^sin yß{t -10)] 
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And finally, since fi < a, 

x{t) = e-^/2 ^(to) cos yfi(t - to) + ^ sin ^ß(t _ to)] 

y(t) = e~^2 [y{t0) cos y/ä~{t - t0) - a;(i0) Vösin y/ä(t - t0)] 

(7) 

The same procedure can be applied to zij2: the linearization around these two fixed points 

leads to: 

x = y 

y = —/iy + 2a sin wi x 

The linear stability analysis of these fixed points gives: 

-A 1 

(8) 

2asina;t   — \i — A 

Therefore the eigenvalues are 

= A  + /iA — 2a sin u)t = 0 

up, 8a  . 

As expected, since sinut < 0, the points are stable (when they exist!). 
We can derive the solutions around these points following exactly the same procedure as 

before, the only difference being that we need to replace v with v' - %yj-l - j? sincvt. 
To obtain the approximated frequency of the oscillations around these fixed points we write 
the non dissipative linearized equation when sin art = —1: 

x = —2ax 

that is a linear oscillator with frequency y/2a~. 
The system that describes the approximated solutions around 21,2 is: 

x{t) = 2:1,2 + e' -lit/2 :(t0) cos V2a"(t - *o) + ^ sin V^(t - i0)] 

w y(t) = e~^2 [y{t0) cos V2o(* - *o) - a;(t0)V^äsinv^ä(< - to)] 

(9) 
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X 1 

Figure 7: Sketch of a time series: in the time interval between U and tT the linear approxima- 
tion around the fixed point {x0 = 0) is not valid 

6    Construction of a two dimensional map 

To connect the two systems (7 and 9) we need to integrate each of them for the period in 
which the solution is close to them, that, in first approximation (supposing that the solution 
quick passes from one to the other) can be considered half of the period of the variation of 
the potential: 7r/w. But the relative motion is simply a rigid rotation plus an exponential 
contraction determined by the dissipative term. Clearly it does not represent the complicated 
behaviour that we saw in the numerical results. The missing key is due to the fact that we 
cannot consider the jump between one state to the other to be instantaneous: according to 
the initial state at the time in which the stability properties vary (any time that sinwi is equal 
to zero), the linear approximation is valid for a different time interval. In fig. 6 a time series 
has been sketched: at the time U, smart becomes negative and the position of our idealized 
particle in the potential is pretty far from the origin, therefore, before its behavior being well 
represented by the linear approximation around z0, it has to go closer to the origin. At the time 
ti+i the phase is such that the value of x is quite small, and it is in a range where the linear 
approximation is already valid. In order to keep this crucial difference, we define a threshold 
xT (here it is the middle point between x0 and xt) in the position of the particle, and we apply 
the linearized version of our system in the time interval At = TT/U - tT in which |x| < xT- In 
a rude approximation, we calculate tT by considering an exponential decay towards the stable 

fixed point: 
x(tT) =xT = x^e-^-^l2- 

The corresponding velocity will be 

y(tT) = y(ti)e-^-ti)/2- 
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The same procedure is applied in the neighborhoods of Zip. when, at the time U + n/u>, 
the middle state becomes unstable, the "delay" time is given by 

fj, XT 

and the corresponding velocity is 

where Xi+\ and m+i are position and velocity at time tj+i- 

The full two dimensional map is therefore: 

tT = max(0,lln^) Ai = *-ir 
Xn,eff = Xne-^'2 yn,eff = VifT1**12 

( xn+l = e-^/2 

yn+i = e-»W 

Xn pffC0SVäAt + y^Lsin^m\ n,eff*X2-l--jr*™-2-\ (w) 

yn,eff COS ^2 Xn,effVa sm     2~J 

tT = max(0, J/nJsagaal) At=^-tT 

Xn+l,eff = (Sl,2 + Xn+l)e-ßtTl2 Vn+l,eff = Vn^   ^l2 

f xn+2 = xh2 + e->"'* [(xn+l,eff - xv) cos ^ + &±£* sin ^] 

{ yn+2 = e-^l* [yn+1,eff cos ^ - (xn+l,eff - x1)2) v^sin ^] 
(11) 

In this map, we will decide whether use xi or x2 at any iteration according to the sign of 
the outgoing value Xi+\ from the map that decsribes the behavior close to ZQ. 

In fig. 8a. the spiral has been obtained by putting a straight line in the map (10), while 
fig. 8b. represents a successive iteration trough the map (11). 

If we pick an initial condition and we let the system evolve according to the described 
equations, we will obtain a time series that represents the variation of the position x every 
half a period 7r/w. It can be seen (fig. 9) that, with different parameters values, we can obtain 
solutions corresponding to steady soltutions, limit cycles or chaotic motion exactly as in the 
full system. The general behavior of the solutions of the full system is therefore well detected 
by this approximation. In fig. 10a, b the stroboscopic map for a particular choice of the pa- 
rameters corresponding to chaotic motion is shown: the position in the phase space (x, y) is 
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Figure 8: Effect of a. map (10) on a straight line y = 4x and b. map (11) on the spiral shown 

in panel a. 

taken every period 2TT/U, when sinwt becomes negative and positive respectively. 
a. 

If we consider the two spirals in fig. 106 as a one dimensional line, we can label each point 
on them with a different value of a parameter a that describes the curve: in fig. 6 the return 
map of the interval of the a-axis into itself is shown: the line an+x = a„ cuts the graph of 
the map many times with a slope greater than one; hence these intersections correspond to 
unstable periodic orbits. With other parameters the number of intersections can increase, and 
our impression is that, if we are able to demonstrate that it becomes infinit, the birth of chaos 

can be anticipated. 
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Forecasting improvement via optimal choice of sites for 
observations: a toy model 

Sarah Dance 

1    Introduction 

Oceanic and atmospheric processes can be described as nonlinear dynamical systems. These 
systems often display a chaotic sensitivity to initial conditions, i.e. trajectories which have 
close initial conditions in phase space may diverge rapidly in forward time. Since no observable 
can be measured exactly, it is not possible to know the true state of the system at any given 
time. Hence, even using a perfect model, it would seem that trying to predict future states 
accurately is futile. However, it is certainly not true that all directions in phase space are 
unstable to perturbations. By identifying the most unstable directions and improving the 
accuracy of measurements at the corresponding locations in physical space, a strategy for 
forecast improvement can be developed. 

Storm tracks are an example of a nonlinear system displaying regions of perturbation 
growth and damping. In the winter, for example off the East coast of the USA, there are 
large air temperature gradients between the land and the sea. These give rise to large density 
gradients and the area becomes unstable to baroclinic instabilities. Further downstream, 
density gradients are much smaller so perturbations are dissipated. Intuitively, at least some 
unstable directions in phase space may be expected to correspond to unstable regions in 

physical space. 
Another example of a natural nonlinear system displaying chaotic dynamics is the ocean 

circulation. The western boundary current and its offshore extension are unstable to small per- 
turbations which grow and form eddies. These eddies affect the flow downstream. Away from 
the boundaries and strong interior fronts the system is often stable and the eddies dissipate. 

In the ocean, observations are very scarce due to the difficulty in making them. Predictabil- 
ity techniques, such as those described later, could be of particular use here in choosing the 
optimal sites for these measurements. There is also a choice of the kind of measurements to be 
made. For example, is it better to use lagrangian floats or make a series of observations at a 
fixed location? Perhaps more sophisticated predictability techniques could be used to answer 

this question. 
The aim of this project was to identify an optimal measurement strategy in a toy model 

with some qualitatively similar features to a natural system. Unstable directions in phase space 
were found using different techniques. Simulated forecasts were then carried out based on an 
approximate system and additional observations of the true system taken at locations deter- 
mined using information about the most unstable directions. These forecasts were compared 
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with each other, with the evolution of the true system, and with the evolution of the approxi- 
mate system unconstrained by additional observations. This work examines a system described 
by a nonlinear one -dimensional PDE; Lorenz and Emmanuel [Lorenz and Emmanuel, 1998] 
carried out a similar analysis using coupled ODEs. 

2    The Model PDE 

The model PDE is given by 

ut + ßuux + Xu + aux + v (x) uxx + [iuxxx + ^uxxxx = 0 (1) 

for 0 < x < 2it with periodic boundary conditions and 

v(x) = VQH{X) where H(x) = < 
1   if 0 < x < ?f 
0   if ^ < x < 2TT 

This is a modified version of Benney's equation. Here there are two extra terms: a lin- 
ear advection term and a damping term. A spatial dependence in the coefficient of uxx has 
been introduced so that there is an area in the domain which is unstable to perturbations 
and damping elsewhere. Benney's equation can be used to describe motion of thin liquid 
films and has also arisen in plasma instabilities. It has been shown to admit pulse-like solu- 
tions [Balmforth et al, 1997]. 

Fig. 1 shows a sample trajectory of the system (1) obtained by numerical integration. 
There are two regimes evident: a vigorous regime (e.g. from t = 0 to t = 15 or t = 25 to 
t = 35) where there are large disturbances in the unstable region, and a quiet regime (e.g. 
near t — 20 or t = 40) where the disturbances are much smaller. Nonlinear effects cause some 
disturbances to move to the left. 

An energy equation for (1) is given by 

1   g     f2n r2ix/b f-2-K 

-— I     u2dx = u0 /        (ux)2dx-'Y /     (uxx) dx 
2 at J0 Jo Jo 

Note that the only positive contributions to the right-hand-side come from the interval 
[0,27r/5] where v — v>0. 

The parameter values used throughout the rest of this discussion are: A = 6.4 x 10-2, ß = 
2.0, vo = 1-7 x 10~2, a = 5.0 x 10~2, \i = 1.0 x HT5, 

7 = 8.3 x 10~5 

These parameters were chosen so that growth was significant in the unstable region of the 
domain and was damped as the disturbances moved into the stable region. The damping was 
sufficiently small to allow perturbations to grow again on re-entering the unstable region. 

Simple estimates of the intrinsic time-scales of the system may be obtained by considering 
a linearisation about the zero state. Assuming v = VQ over the whole domain, trying a solution 
of the form u a e^x+(^-^)t and neglecting nonlinear terms gives: 

a = —\ + v\? — 7&4, u = ak — ßk3 
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Figure 1: A segment of a trajectory of equation (1) The equation was solved numerically using 
a 200 point grid. Here the x-axis is labelled by grid point. Each curve represents the state of 
the system at a particular instant in time. Time progresses into the paper, with each curve 
separated by 0.5 time units. The u(x) scale is on the left. 

For the chosen parameters a(k) has a maximum at k = -^102 ~ 10. So in the growing 
region of the domain, for a wavenumber k = 10, estimates of the growth rate and phase speed 
are a = 0.8 and c = 0.05 respectively. 

3    Predictability Techniques 

In this section the techniques used to find the unstable directions are described. These methods 
include an empirical approach (Ensemble vector analysis) and more quantitative techniques 
based on a linearised system (Singular vector and Lyapunov vector analysis). The discussion 
takes place in a general setting with the system described by 

X = f(X) 

with X € C/°Pen C Rn,/ : U ->• Rn 

3.1    Ensemble Vectors 

Ensemble vectors (EV) provide one way of estimating the most unstable directions along a 
given trajectory as given by an empirical approach. Note that this name is not in common 
use in the predictability literature. Fig. 2 shows a chosen fiducial (reference) trajectory in 
phase space. Let this trajectory be given by Xref{t). To find an ensemble vector take a ball 
of initial conditions of a given (small) radius 5 around the reference initial condition, Xre/(0). 
Pick an ensemble of points randomly distributed on this ball and flow them forward under 
the full nonlinear PDE (1) for time topt, the optimisation time, {t^t is generally taken to 
be the same as the forecast period.) The hope is that the trajectory the furthest away from 

221 



Figure 2: A fiducial trajectory is shown as a solid line. The evolution of a ball of initial 
conditions about the reference initial condition is depicted, with the arrows representing the 
instantaneous maximum growth directions. Two other trajectories with initial conditions a 
distance 6 from the fiducial initial condition are shown as dotted and dashed lines. 

the reference trajectory at optimisation time has experienced growth aligned with the most 
unstable direction. Let this trajectory be given by X{t). The ensemble vector is defined by 

EV = K(X (topt) - Xref (top*)) 

where K is a normalising factor, chosen so that \\EV\\ = 1. 
Note that for the purposes of this project the Euclidean norm was used to measure distances 

in phase space. Any other norm could have been used. It is clear that the unstable directions 
calculated are norm dependent. There is some debate over which norm is the best measure of 
trajectory divergence, see [Smith, 1995]. 

3.2    Singular Vectors and Lyapunov Vectors 

These techniques are based on linearising the system about a reference trajectory. 
Recall 

X = f(X) 

with X G U°Ven C Rn, / : U -»• Kn. 
Consider a small perturbation x of the state X. For sufficiently small times t the evolution 

of the perturbation can be described by the linear approximation 

x = Df{X{t))x 

This equation can be written in integral form 

x(t) = L{t,t0)x(t0). 

Given an inner product <-,->, define the perturbation norm at time t by 

l|s(*)H2 = (*(*),*(*)> = (x(to),L*Lx(t0)) 

(2) 
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where L* is the adjoint of L. In the case that L is a real matrix, L* = LT, the transpose of L. 
L*L is often referred to as the Oseledec operator. It is clearly a symmetric operator. It fol- 

lows that all its eigenvalues of are real and there exists an orthonormal basis of eigenfunctions 
Vi which satisfy 

L*Lv{ {t0) = ofvi (t0) 

Note that the eigenvalues may be repeated and the basis of eigenfunctions may not be unique. 
At a future time t, these eigenfunctions evolve to Vi (t) = Lvi (to) and 

LL*Vi (t) = afvi (t) 

Assuming that the basis of eigenfunctions is complete (in the tangent space of perturba- 
tions), any perturbation can be written as a linear combination of eigenvectors. 

x(*) = ^2civi(t) 
i 

It follows that 

I N*)ll2 \      2 max      "  v "'       = a{ 
*(t0)*o\\\x(t0)fJ 

where a\ is the largest eigenvalue of L*L. (For simplicity, we have assumed that the eigenspace 
corresponding to o\ is one dimensional.) 

Maximum energy growth over the interval (to,*) is associated with the largest eigenvalue 
and the corresponding eigenvectors of L*L and LL*: vi(t0) at initial time and vi(t) at opti- 
misation time. 

It is useful to have a name for these eigenvectors. In the predictability literature there are 
many conflicting definitions in use. In order to avoid any confusion here, define 

Singular vectors (SV) as the eigenvectors of L*L e.g. vi(t0) is the initial perturbation 
which will have grown the most at optimisation time. 

Lyapunov vectors(LV) as the eigenvectors of LL* e.g. vi(t) = Lvi(t0) represents the ori- 
entation at time t, of the vector which experiences maximum growth over the chosen 
optimisation time t. 

3.2.1    Relationship to 'Normal' Mode Analysis 

Normalised eigenmodes & of Df(X(t)) with eigenvalues A* give rise to solutions ^eAi(f_to) 

of the linear perturbation equation (2). Operator L is not usually normal so that in general 
(&> 0) ^ sij If the initial disturbance is a linear combination of the eigenmodes then the fastest 
growing eigenmode will eventually dominate the solution, so for sufficiently large t 

LV = eigenmode x phase factor. 

It is possible to have decaying eigenmodes, but transient growth in the Lyapunov vectors. 
This is due to the lack of orthogonality in the eigenmodes. An example of this phenomenon 
is given in [Smith et al., 1997]. 
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Figure 3: Panel (a) shows the initial condition (I) from the vigorous regime. Panel (b) shows 
the initial condition (II) from the quiet regime. 

4    Results - unstable directions 

Equation (1) was solved numerically using fourth-order Runge-Kutta time-stepping and cen- 
tered differences in space on a 200 point grid. The linear forward tangent propagator L was 
calculated by linearising the numerical scheme about a fiducial trajectory and computing its 
effect on basis vectors. The SV and LV were calculated using matlab. 

An alternative calculation for systems with a large number of variables is to code the 
adjoint model (see [Talagrand and Courtier, 1987]) and then use a power method to calculate 
the eigenvectors and eigenvalues. This was attempted here, but the results were found to be 
very bad due to the slow convergence of the power method. 

Two sets of initial conditions were used to generate the fiducial trajectories (see Fig. 3): 
I) a representative from the vigorous regime of the equation and II) a representative from the 
quiet regime. 

A plot of first singular exponents i.e. log(oi/£), is given in Fig. 4. Panel (a) (initial 
condition I) appears to indicate that the rescaled first singular value is asymptoting to some 
constant, although this is not so clear from Panel (b) (initial condition II). This constant is less 
than the simple scale estimate in Section 2, mainly because here the unstable region occupies 
only part of the domain. The differences between Panel (a) and Panel (b) indicate that the 
transient growth rate is highly dependent on the region of phase space from which the initial 
condition is taken. The following theoretical asymptotic relation links the first singular value, 
CTI to the first Lyapunov exponent, h (see [Palmer, 1996] for further details). 

li =    lim 
topt—^OO 

 logO"! 
*opt 

The SV and LV are given in Figs. 5, 6,   7 and 8.  Note that the unstable directions are 
localised to the unstable region of the domain. For the initial condition coming from the more 
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Figure 4: Rescaled singular values for (a) initial condition I, (b) initial condition II. These 
values provide an estimate of the fastest growth rates. 

vigorous regime (I) the basic forms of the SV and LV do not change over time. The peaks 
broaden, but remain in the same location in physical space. For the initial condition coming 
from the quiet regime (II) the SV and LV show more variation with time. This may be due 
to faster movement of smaller disturbances through the unstable region, or to differences in 
evolution of the distinct steep gradients initially present in and near the unstable region. 

Fig. 9 shows EV for both initial conditions, chosen from ensembles of six randomly dis- 
tributed initial conditions a distance 6 from the fiducial trajectory. Unlike the SV and LV the 
EV are not localised. Since the ensembles contained only six members there is no guarantee 
that the EV are in fact aligned with the most unstable directions. A larger sample and hence 
more computational work would be needed in order to find the EV with a greater probability 
of alignment with the true maximal growth direction. 

5    Forecasting 

Starting from an exact initial condition for a fiducial trajectory, an initial condition for a 
forecast trajectory is obtained by perturbing the value at each grid point with white noise 
of a specified maximum amplitude. Grid points are chosen at which to make 'additional 
measurements' using information obtained via the predictability techniques described earlier. 
The exact details of this choice are explained in Fig. 10. At the chosen grid points the perturbed 
initial condition is reset to the exact values of the fiducial initial condition. The system is then 
integrated forward to obtain a forecast trajectory. A forecast time of 5.0 time units was chosen 
since this is approximately the time taken for a large peak to grow to maximum amplitude in 
the growing region of the domain. 

As a comparison, another strategy was also used to reset points. This was done by picking 
points randomly from the unstable region of the domain. 
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Figure 5: Singular vectors for initial condition I a) optimisation time 0.3, b) optimisation time 
0.5, c) optimisation time 1.0, d) optimisation time 5.0 

-02 

-0.3 

Figure 6:  Singular vectors for initial condition II a) optimisation time 0.3, b) optimisation 
time 0.5, c) optimisation time 1.0, d) optimisation time 5.0 
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Figure 7: Lyapunov vectors for initial condition I a) optimisation time 0.3, b) optimisation 
time 0.5, c) optimisation time 1.0, d) optimisation time 5.0 

50    100    150    200      ' 0     SO    100    150    200 

50    100    150   200 50    100    150    200 

Figure 8: Lyapunov vectors for initial condition II a) optimisation time 0.3, b) optimisation 
time 0.5, c) optimisation time 1.0, d) optimisation time 5.0 
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Figure 9: Ensemble vectors with optimisation time 0.3 a) initial condition I, b) initial condition 

II 
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Figure 10: The plot on the top left shows an example singular vector. The absolute values 
of the components of this vector were taken (top right) and sorted by size. The grid points 
corresponding to the largest were selected (the first six are marked as x). At these grid points 
the values of the perturbed initial condition were reset to the exact values (bottom left) as 
given by the true initial condition (bottom right). 
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Figure 11: Variation of error with number of points reset. Note that the error is measured in 
Euclidean norm so that the true trajectory would be represented by the zero line on this plot. 
The 'dumb' trajectory corresponds to the perturbed initial condition with no points reset. 
Maximum initial pointwise perturbation size = 1.0 x 10~ 

A brief experiment was carried out to determine the number of points to fix in order to 
achieve a reasonable improvement over the forecast from the 'dumb' trajectory (the perturbed 
trajectory with no points reset to their exact values). The results for initial condition I with 
maximum initial pointwise perturbation 1.0 x 10-2 using the singular vector with optimisation 
time 0.3 as point resetting guide are given in Fig. 11. 

For the initial condition from the vigorous regime it was found that six points were nec- 
essary to give a good result (Fig. 12). Note that since the SV did not change much with 
optimisation time, the first six points selected for resetting were identical for experiments us- 
ing the SV associated with different optimisation times. The same is true for the LV. All the 
strategies employed offered an improvement over the dumb trajectory. The strategy employing 

the SV gave the best results. 
With a larger noise amplitude of 1.0 x 10_1 the results from resetting points using SV were 

still good initially. However, Fig. 13 shows that eventually the errors become comparable with 
those for the dumb trajectory. This is after 5 or 6 e-folding times (approximated using the 
growth rates given in Fig. 4 so the perturbed trajectory will be so far away from the fiducial 
trajectory in phase space that the linear approximation is no longer relevant. Here SV are no 

longer valid tools. 
For the initial condition from the quiet regime (II) it was more difficult to get good results. 

Fig. 14 shows results from resetting twelve points at initial time. One explanation for this 
disparity of results between the two initial conditions is that it is easier to follow the movement 
of a peak along a trajectory than it is to predict which small perturbation will grow in a 
transition between the quiet and the vigorous regimes of the equation. 
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Figure 12: Forecasting results with initial condition I, time against error measured in Euclidean 
norm. Maximum pointwise initial perturbation size = 1.0 x 10~2 
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Figure 13: Forecasting results with initial condition I, time against error measured in Euclidean 
norm. Maximum pointwise initial perturbation size = 1.0 x 10-1 
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Figure 14:  Forecasting results with initial condition II, time against error measured in Eu- 
clidean norm. Maximum pointwise initial perturbation size = 1.0 x 10-2 

5.1    Climatology 

Suppose there is no data from the present time. A climatology can be constructed by aver- 
aging all past data. The climatology and results obtained using the climatology as the initial 
trajectory are given in Fig. 15. The results are fairly poor. One contributing factor is that 
the climatology initial condition lies in a different region of phase space to the other initial 
conditions studied here. 

6    Conclusions 

The form of the SV and LV depends on 

1. the initial conditions 

2. the optimisation time 

Further study needs to be done in order to make this dependence more precise. For example, 
it has been suggested that the peak of the singular vector might correspond to the largest 
gradient in the initial condition. This hypothesis has not yet been tested. 

In a more realistic scenario it would be necessary to calculate the most unstable directions 
from a noisy set of data rather than from the true initial conditions. The noisy data is likely 
to be less smooth than the true initial condition. If the unstable directions do have a strong 
dependence on the gradients in the initial condition then smoothing algorithms will have to 
be employed. 

In general, singular vectors produced the best forecasting results. The common sense 
approach of picking random points in the unstable region also seemed to work quite well. The 
quality of the forecasting results is dependent on the fiducial trajectory - whether the initial 
condition lay in the vigorous or the quiet regime. The results indicate that in the quiet regime 
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Figure 15: a) shows the initial condition for the climatology, b) and c) show forecasting results 
with six points reset using SV and random selection in the unstable region (R) as point picking 
guide, b) shows the results with initial condition I, c) shows the results with initial condition 

II 

the most unstable direction changes rapidly along the fiducial trajectory, thus making it much 
harder to predict which perturbations will grow the most in the transition to the vigorous 
regime. This would suggest that having more accurate measurements for more than just the 
initial time would also be an interesting variant of the technique to study. 

For practical applications it may be the case that a more accurate forecast is required only 
at certain locations in physical space (for example an oil rig in the middle of the ocean). For 
such instances forecast improvement may be offered by using a weighted norm to calculate the 
unstable directions (these will be different from those calculated using the Euclidean norm). 

The SV and LV are only a valid tool for time-scales when the perturbed trajectories are still 
sufficiently close to the fiducial trajectory. The development of techniques which can follow 
the evolution of the most unstable directions over longer time-scales would be very valuable. 
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Mathematical and Analog Modeling 
of Lava Dome Growth 

Amy Shen 

1    Introduction 

Lava domes are masses of solid rock that are formed when molten lava erupts slowly from a 
vent. The traveling distance and speed of a lava flow depends on the effusion rate, the fluidity 
of the lava, the volume erupted, the channel geometry, and the obstructions in the path of 
flow. Between 1980 and 1986, Mount St. Helens built a lava dome approximately 1,000 feet 
high and 3,500 feet in diameter. The burning, crushing, and other effects associated with lava 
flows can cause extensive damage. As lava domes spread slowly, they typically do not endanger 
human life, however, they can destroy pennant structures. 

Lava domes are the simplest type of lava flow. If the lava is sufficently viscous, it will pile 
up above the vent to form a dome. Usually such lava is composed of high-silica andesite and 
dacite. To minimize the damage of lava flows to human resources, numerous studies have been 
performed over the past 100 years. The central goal of these studies is to predict flow growth 
and the eruption state. Due to the difficulty of obtaining field measurements, labarotary 
simulation provides a good alternative approach to obtaining data. As lava often shows a non- 
Newtonian behavior with a finite yield stress, appropriate materials for these laboratory studies 
should posses such rheological characteristics. For isothermal studies, slurries, consisting, for 
example, of water and kaoline, have been used with some success. However, more realistically, 
the role of cooling at the lava surface exerts an important influence on flow structure and 
morphology. Griffiths, Fink and other resarchers5-9 studied the morphology of the dome 
surface in recent years, and in so doing, took the surface cooling and the solidification of the 
lava into account. In particular, experiments and a scaling analysis that yielded approximate 
radius and height profiles evolving with time were performed.2,7,8 

The work presented here is based on the hypothesis that the flowing lava can be modeled 
as a Bingham fluid. Following some theoretical preliminaries, an isothermal model is presented 
and a thin layer theory is applied. Analytical and experimental results are then compared. 
The results from the isothermal model proposed here fit quite well with our experimental 
data. Later, the surface cooling of the flow is taken into account through a depth averaged 
temperature field. Analytical and numerical results show some qualitatively different flow 
features compared to the isothermal case. Further, spreading of kaoline and PEG600 wax 
mixture, which is a slurry that has a highly temperature dependent viscosity and yield stress 
under cold water is studied in the laboratory. 
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2    Theoretical Preliminaries 

We consider a lava flow that occupies a region U of three-dimensional Euclidiean space. The 
basic variables of the theory are 

Q mass density, 
v particle velocity, 
T Cauchy stress tensor, 
g gravitational acceleration, 
e specific internal energy, 
q heat flux vector, 
7] specific entropy, 
9 (absolute) temperature. 

We assume that the medium is incompressible, so that 

divv = 0; (1) 

this being the case, it is useful to introduce the extra stress S and the pressure, defined so 

that 

S = T+pl,       p = -±trT. (2) 

Clearly, S, so defined, is traceless. 
The basic variables satisfy the field equations 

QV = -gradp + divS + gg, 

S = ST, 

ge = S-D-divq       (D = |(gradv + graduT)), J 

(3) 

which express linear momentum balance, angular momentum balance, and energy balance, as 
well as the field inequality 

OT>-div(|), (4) 

which expresses entropy imbalance. Note that / denotes the material time-rate of a field /. If 
we introduce the specific free energy 

tl> = e-6ri, (5) 

the entropy inequality (4) can be rewritten in the form 

Q(ip + rt6)-S-D + -q-grad6<0. (6) 
u 
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We assume that if) and 77 are determined constitutively via the relations 

,/, = ${0) = c0(l - log 
0o' 

Q 
and       rj = fi{0) =clog—, (7) 

where c = constant > 0 denotes the specific heat and 0O > 0 is a given base temperature. 
Granted these assumptions, a simple calculation shows that 

i> + 770 = 0, 

whereby the inequality (6) reduces to 

-SD + -g-grad0 < 0. 
0 

(8) 

(9) 

Next, we suppose that the strain-rate D and the dissipative contribution S to the stress obey 
a Bingham thermo-visco-plastic relation 

0 
D= I 

if  \S\   <   Sy(d), 

U^(|S|-S#))S   X\S\>8y{9), 
(10) 

with /i(0) > 0 the reciprocal mobility and sy(6) > 0 the yield stress, and, further, that the 
heat conduction is of Fourier type, so that 

q = —Kgrad0, (11) 

with K = constant > 0 the thermal conductivity. With these assumptions, it transpires that 

S D - -q-gradO 
a 

0 
K|grad0|2 if |S| < sy(6), 

■(\S\- sy(0))\S\2 + £K|grad0|2    if \S\ > sy(6) 
} > 0,       (12) 

from which we conclude that the reduced entropy inequality (9) is guaranteed to hold in all 
processes. 

For |5| > Sj,(0), the choice (10) implies that 

«»W)P. 

Hence, provided |5| > sy(0), the Unear momentum balance (3)i takes the form 

sy(9), 
gv = -gradp + gg + div ((/i(0) + T^r)^) 

(13) 

(14) 

and the angular momentum balance (3)2 is satisfied trivially. Further, from the definition (5) 
of i/} and the relations (7) determining ip and r\ in terms of 0, we have that 

e = C0, (15) 
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whence, bearing in mind (11) and (13), the energy balance (3)3 simplifies to 

QC6 = «div(gradö) + W)\D\2 + sy{6)\D\). (16) 

For |5| < sy(6), consistent with the requirement D = 0 imposed by (10), the velocity field 
v must be uniform (and, thus, in particular, obey divu = 0), viz., 

v = constant, (17) 

while the temperature 6 field is determined from the heat equation 

gcö = Kdiv(gradö). (18) 

The condition \S\ = sy{6) merely determines the boundaries between regions of viscous 
flow, where the governing partial differential equations are the condition of incompressibility 
(1), the linear momentum balance (14), and the energy balance (16), and regions of plastic 
flow, where the velocity field is constant and the sole partial differential equation is the heat 

equation (18). 

3    Isothermal Case 

A conventionally held belief is that lava domes exhibit a finite yield stress that controls their 
shape and explosivity. To explore this effect, we study an isothermal process in which an 
incompressible viscoplastic material spreads over a horizontal plate. 

3.1    Governing Equations 

Consider an incompressible Bingham thermo-visco-plastic material extruded from a point 
source onto a horizontal plate. Assume that, throughout this process, the temperature field re- 
mains uniform in space and time-independent, viz. 6 = 6* = constant. Define s* = sp(0*) and 
^ _ ^(0+) xhen, assuming that the stress power terms of the energy balance are negligible, 
the governing equations in the viscous zone are 

divv = 0, 

QV = -gradp + div N/J* + Tjki)D) + 09, 
(19) 

while the surface separating the viscous and plastic zones is determined simply by the equation 

\S\ = a., (2°) 

and, the governing equations in the plastic region are 

divu = 0, 1 ,    v 
(21) 

QV = -gradp + Qg, 
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with the velocity field v uniform in the vertical direction. We choose cylindrical coordinates 
(r,i?,z), with origin 0 centered at the source of extrusion and the positive z-axis oriented 
vertically (opposing gravity), and we let u, v, and w denote the r, 9, and z components of v. 

We assume that no slip may occur at the base z = 0, so that 

u{r, 0, 0, t) = v(r, 0,0, t) = w{r, 0,0, t); 

further, the surface z = h(r, 0, t) is material, whereby 

ht(r, 0, t) + u(r, 0, h(r, 0, t), t)hr (r, ■&, t) + -v(r, #, h{r, 0, t), t)h# (r, t?, t) 

(22) 

and free of traction, so that 

T(r,0,/i(r,0,i),t)n(r,0,t)=O, 

= w(r,0,h{r,4,t),t),    (23) 

(24) 

with 

-hr(r,-&,t)er + -h#(r,ti,t)etf + ez 

Jl +H*{r,0,t) + ^hl(r,#,t) 
(25) 

the outward unit normal on the dome surface. 
Let H and L denote, respectively, the characteristic height and characteristic radius of 

the extruded layer and restrict attention to that portion of the extrusion process in which H 
remains small compared to L. We may then define the nondimensional parameter 

e= —<1. 
Li 

(26) 

Let U denote the characteristic fluid velocity in the viscous zone. We then consider a scaling 
with 

r — Lf,        ■& = ■&,        z = Hz, 
U~ 

(27) 

and 

u(r, ■&, z, t) =    Uü(f, ■&, z,i),^ 

v(r,4,z,t)=    Uv{r,#,z,i), 

w(r, ti, z, t) —   eUw(r, &, z, i) 

p(r,ti,z,t) = ggHp(r,0,z,i),, 

with g = \g | the magnitude of the gravitational acceleration 

(28) 
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Further, we suppose that 

U = 
Q9H* 

M* 
(29) 

Inserting the foregoing expressions in the equations (19) that hold in the viscous zone 
and dropping the superposed tildes on the dimensionless variables yields the dimensionless 
expression of the constraint of incompressibility 

1 d(ru)     1 dv     dw_ _ 
r   dr        r dd      dz 

and the dimensionless equations enforcing momentum balance 

(30) 

2F2( 
du du     v du dus dp     dSr 

dt+UTr+-rdl + W^) = -^ + 
dr       dz 

r?,dv       dv     v dv        dv,        1 dp     dS$z 

+ e ^!h~ + r~dTh 

2(dSr$     1 dS$$ 

dt 

,dw 

" dr ' rdß 

dw v dw 
dr     r d$ 

e2F2(::zr+u— + -:7^ + w 

dz 

dw 

r d$       dz 

'        d$ 
l + 62( 

+ e2( 

dSr 

dr 
+ r  di"^ 

+ ldS#Z      ,      dS; 
dr       r  dfl 

+ 
dz 

L)J 

(31) 

with 

F = (32) 

the dimensionless Froude number, the components Srr, Sr#, STZ, Sw, S#z, and Szz of the extra 
stress S, are given by 

B,du 

Sr# = 

OTZ = 

$■&■& = 2 

S#z = 

bZz = & 

1 + t>*' 
B^,dv     v     1 du-. 

2dw, 

E'Kdr 

B^,du B-.fdu 
1 + ^)(^- + e 

dr ). 

BsAdv «N 

E/Xrdv r' 

B v, 1 dw      9dw, 1 + -)(-^+eV)' E'Krd$ 

B.dw 
E' dz 

dr 
B.dw 

1
 
+
 T?)ä7' 

(33) 

where E is defined as 

E = {(uz + eV)2 + 2eV + 2e2(ur + -)2 + 2e2(- + ^) 1/u   ,   v#\2 

2W#   2 
vx2\l/2 

HVz + e^? + e^+Vr^?) (34) 
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and 

B = 
y/2s*L (35) 

(36) 

is the dimensionless Bingham number. 
We now assume that u, v, w, p and h possess regular expansions of the form 

u = uo + eu\ + 0(e2), ^ 

v = vo + evi + 0(e2), 

w = wo + ew\ + 0(e2), 

p = p0 + epi + O(e2), 

h = hQ + eh1 + 0(e2), t 

in which case the relations (33) imply that the stress components admit regular expansions of 

the form 

Srr = (Srr)0 + e{Srr)1 + O{e2), ) 

Sr» = (Sn?)o + e(S„>)i + 0(e2), 

5rz = (5r2)o + e(5r2)i+o(e2), 

Sm = (SM)O + e{S<H>)i + 0(e2), 

S#z = (S**)o + e(5fe)i + 0(e2), 

Szz = (5zz)o + e(5„)i + 0(e2). ) 

At leading order, equations (31) give 

dpo     d{Srz)o 1 dpo _ a(5^)o öp = -1. 
dr dz    '        r 00 dz    ' Ö* 

Then, applying the boundary conditions, we obtain 

po(r,0,z,t) =-(Mr, 0, *)-•«), 

while (38) i)2 yield 

,    ,    „   x       s0^o(r,0,z) 
(S„)o(r,<W) = -(^o(r,0,t) -*) K-£—t, 

,    ,    „   N       xlö/io(r,0,z) 
(5^)o(r,0,z,t) = -(feo(r,0,t) -z)-    °^ 

Alternatively, writing 

(37) 

(38) 

(39) 

(40) 

(41) 
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the relations (40) can be expressed as 

B x 3UQ 

^>o = (1+i^if'    <*'>° = <1+]|)§r (42) 

Assume now, that the interface between viscous region and the plastic region can be rep- 
resented as a surface z = Y(r,tf,t). The limiting value of the stress in the viscous zone must 
equal the yield stress, so that 

V(S„(r,iM))2 + (S*z(r,<M))2 = B; 

further, the velocity field must obey 

duo(r,z,d,t) 
dz 

duQ{r,z,ti,t) 
z=Y(r,ti,t) dz z=Y(r,V,t) 

= o, 

which yields 

r(r,<M)=Mr,<M) 
&M42      1 (dh0{r,ti:t).2 

Or      '    ' r2V      dd 

As immediate consequences of the foregoing, we find that, for 0 < z < Y(r, d, t), 

(a) Height and yield surface 

Figure 1: B = 0.1, ws = 0.1, initial-value problem: h{r,t = 0) = O.OOle r/5 

(43) 

(44) 

(45) 
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auoM,,,t) = ( t))gfto&M)  1 
oz 'or 

dvoW,z,t) _ , . .ldhpjr^t) 
(46) 

On the other hand, for Y(r,#,t) <z< ho(r,0,t), we have that 

Mr,*,t) = -\hor(r,&,t)Y2(r,#,t) (47) 

We integrate the constraint (30) of incompressibility over the vertical coordinate z from 
z = 0 to z = h(r,<&,t) and using (46), insert the expansions in the resulting equation, giving, 

to the leading order 

afcta+i|(rJf^A^*)+i±(Jf^.*,^*) 
= tu,(r,0,t),    (48) 

where ws(r,#,t) = to(r,0,O,t) is the velocity on vertical direction at z = 0. If the slurry 
is ejected from a source hole with radius r0, then at r = r0, the velocity must vanish while 
at r = 0 the velocity must attain its maximum value; here we choose ws to both # and t 
independent with the form: 

w. ,(r,i?,i) =w0{r-ro¥ (49) 

(a) Approximate similarity scaling 

0.03 
h=r#5 

Radius and haight 

Figure 2: Same conditions as that of figure 1. 

We assume also that the govering equations are independent of temperature field 0 at 
leading order, such that h0 = h0(r,t), Y = Y(r,t), etc. 
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Therefore, we obtain evolution equation for the leading order height h0 of the dome, 

^#^ + ~(rÄo(r,t)fi(r,t)) = ws(r,t), 
dt r or 

(50) 

with 

h0(r,t)ü(r,t) = (jh0{rul(r,z,t)dz) = -iy2(r,t)^^(3Äo(r,t) -Y(r,t)), (51) 

and the height Y{r,t) of yield surface being 

Y(r,t) = hQ(r,t) +-^^, 
dr 

(52) 

Figure 1(a) shows how h0 evolves with time along the radial direction. The dotted line is the 
yield surface. Figure 1(b) shows the depth averaged velocity field along the radial direction. 
From Figure 2(a), an approximate similarity solution is found with h{r,t) = rx/5/(r/i2/5), 
which has been proposed previously2 from the real lava field measurements and some scaling 
analyses. 

3.2    Laboratory simulation 

3.2.1    Material 

Real lava is known to have a finite yield stress. The simplest substance possessing this char- 
acteristic is a slurry. Two slightly different slurries were used in these experiments. The first 
of these, which we call material #1, is a 1 : 1 by weight mixture of kaoline and de-ionized 
water. The second slurry, which we call material #2 is a 1.2 : 1 by weight mixture of kaoline 
and de-ionized water. A dial-reading viscometer (Brookfield Laboratory Viscometer company) 
was used to measure the yield stresses and apparent viscosities. For these slurries, which dis- 
play Non-newtonian response, the measured viscosity is called the apparent viscosity. The 
measured material properties of these materials appear in Table 1. 

Table 1 

Property 
Material #1 

kaoline + water 
1 : 1 by weight 

Material #2 
kaoline + water 
1.2 : 1 by weight 

Material #3 
kaoline + peg 600 wax 

1 : 1.25 by weight 

Density g (g/cm0) 1.36 1.48 1.44 

Apparent viscosity r\ (P) 200 300 30 

Yield stress sy (dyne/cm'') 437 2000 55 

Specific heat c (J/kgxK) - - 1.78 x 10J 

Apparent viscosity r\ (P) - - 1.44 x 10  ' 

Solidification temperature 9S (K) - - 290 
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3.2.2    Experimental apparatus 

Our experimental apparatus is depicted in Figure 3. The kaoline/water slurry was mixed 
2 days ahead of the experiment and, once again, immediately prior to the experiment, was 
thoroughly mixed again using a power mixer so that no slump would occur. Operations are 
conducted at a room temperature of 20°C and a relative humidity of 30%. The slurry is placed 
in an acrylic circular cylinder 90 cm long and 11 cm in diameter. One end of the cylinder was 
connected via a pipe and micropump through a flow meter to a water bucket; the other end 
of cylinder was connected with a plastic hose (3 cm in diameter) to a horizontal aluminuum 

Figure 3: Overview of the experimental apparatus 

plate which has a 3 cm hole in diameter in the center. Ejection of the slurry was controlled 

Figure 4: Snap shot of top and side view of the growing dome, note the sprial texture on the 
surface. 

by pumping water into the cylinder behind the piston. When filter papers were placed on the 
smooth aluminuum plate, there was barely any change in the flow structure, which shows that 
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the no-slip boundary condition on the base is a valid approximation. Each run lasted between 
10 and 40 minutes, depending on the flow rate and the slurry used; each run was stopped 
when the slurry stored in the cylinder was fully ejected. 

A dome around 40 cm in diameter was obtained with each run. A CCD camera was placed 
1.5 m above the top of the plate; further, a mirror placed at a 45°C angle to the edge of the 
plate enabled the CCD camera to include both a side-view and a top-view in the same frame. 
Measurements of dome radius and height were later taken from the videotapes by transfering 
the video frames to a computer. During this experiment, the slurry was in direct contact with 
air upon eruption from the source hole. Some interesting surface texture was observed during 
the dome growth, (cf. Figure 4). In particular, two intersecting sets of slip lines were observed. 
This surface texture became distinct away from the center of the dome. 

3.3    Data analyis and comparison 

From the measurement of the experimental data, we can find the corresponding dimensionless 
Bingham number and flow rate appearing in equation (52) and then, solving the resulting 
equation (50) numerically, we can compare the experimental data with the predications from 
our mathematical model. Clearly, the results from mathematical model for the isothermal 
problem fit very well with the experimental measurements, (cf. Figure 5). The error in Figure 
5(6) is a systematic underestimate of the dome height, an underestimate, is likely due to errors 
in the measurement of apparent viscosity and yield stress. 

Height profiles with b = 0.18, ws = 0.34 

Height profiles with b = 0-78, ws = 0.4 

Numerical 
Experimental! 

Figure 5: Comparsion of experimental data and predication from the mathematical model. 
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4    Thermal Effects 

To account for the effect of surface cooling, we now consider the full thermo-visco-plastic 
model. To provide insight regarding the basic physics of dome formation with surface cooling, 
we first discuss the results of laboratory simulations. 

4.1    Laboratory simulation 

4.1.1 Material 

A mixture of PEG600 wax (polyethylene glycol wax) with kaoline powder (1.25 : 1 by weight) 
was chosen, we call it material #3, (see table 1 for the detailed properties). PEG600 has a 
solidification temperature slightly lower than the room temperature and its density is greater 
than that of water. Further, the viscosity of material #3 is temperature dependent. 

4.1.2 Apparatus 

The basic setup from the isothermal experiment is retained. In addition, a 60 x 60 x 20 cm 
acrylic box was built above the aluminium plate. During the experiment, this box was filled 
with circulating cold water the temperature of which was controlled by the refrigating bath 
system. Before and after each run, the injection hole was plugged from above to separate the 
slurry from the cold water. The shape and surface texure of the dome under cooling displayed 

ii. / • _ _ VtTSSs 

Figure 6: Snap shot after slurry is ejected into an ambient water bathing at temperature 7.5° C 

dependence on the ambient water temperature and the flow rate of the slurry. When the 
ambient water temperature was higher than 10°C, the extruded slurry grew symmetrically 
throughout the experiment, except that some rims of small fingers developed at the flow 
front. In particular, when the ambient water temperature was lower than 10°C, Further, the 
surface cooled immediately once the slurry was ejected from the source and the dome structure 
became asymmetric with three to six lobes developing (cf. Figure 6). Clearly the shape and 
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morphology of the dome is much more complicated in the presence of sin-face cooling, which 
reflects more closely the circumstances prevailing during the growth of real lava domes. 

4.2    Governing Equations 

With thermal effects included, (30) and (31) remain valid, however, the relation (33) deter- 
mining the stress components become temperature dependent. Recall that for \S\ > sy(0), 

the choice (10) implies that 

S=(ß(Ö) + S-j$-)D- (53) 

Here, we assume that the reciprocal mobility has the spedific form 

ß{e) = ^e-^-^ (54) 

and that the yield stress is constant, viz., 

s{0) = s* (55) 

Consider, now, the energy balance (16) with the boundary conditions: 

0,(r,0,O,t) =0,        K0,(r,0,Mr,iM),t) = -a(0(r,0,AM,t),t) -*o) (56) 

Where a is the cooling rate. Substitute (54) and (55) into the energy balance equation 
(16), and non-dimensionalizing using the same scaling in equation (3.9)-(3.11) of the isothermal 
problem, we arrive at the non-dimensional form: 

9 = -div(gradö) + M*Le-«'-K>tä + Buz) (57) 
QC QcH20* 

where 0* is the characteristic temperature. The second term on the right hand side of (57) 
is of order 0(e). This indicates that the heat generated by the viscous force is very small. 
Further, assuming that governing equations are independent of #, we have 

8 = Kß„ + ~{r6r)t (58) 
r or 

with R the dimensionless diffusivity. We introduce the depth averaged temperature field 0 

through 

rh(r,t) 
h{r,t)0{r,t) = (/    0{r,t)dz). (59) 

Jo 

We integrate (58) over the vertical coordinate z from z = 0 to z = h(r, t) and apply the 
boundary conditions to find, that after dropping bars, 

K d 
h0t = -ws{0 - 0V) -0a- hü9r + -fr(rher) (60) 
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where 6V is the temperature of the slurry at the vent. Furthermore, the height evolution equa- 
tion can be derived as in the isothermal case, the only differnece being due to the temperature 
dependence of the viscosity. 

1 d{rhu) 

(61) 
ht = w. 

r    dr 

As before, 

hü = -\y\Zh-y)hre<e-e°\ 
o 

y(r,t) = hp(r,t) +-gj^ä 
dr 

(62) 

The coupled system of two partial differential equations consisiting of (60) and (61) was solved 
numerically. There are two noteworthy limiting cases of the governing equations (60) and (61). 

(a)  Thermal c^g«, 5k = ld-08a = 0.0001 

Figure 7: Height and termperature field with smaller cooling rate. 

If the cooling rate is small, i.e. a = 10-4, the temperature field 6 is approximately the vent 
temperature 6V. Once the slurry moves past the source, the convection term hv,6r is balanced 
by the cooling term a6, therefore, we have: 

u9T -» - 

9 -> 0„       as       r < ro 

a6 
h 

as 
(63) 

r > ro 
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Since the diffusitivity is very small in this case, the temperature field will eventually reach 
a steady state after enough time steps. It is found that the temperature field does affect the 
shape of the dome height, (cf.Figure 7). 

The other interesting limiting case is when the cooling rate is considerably larger, i.e 
a = 10-1. Prom (60), the cooling term is approximately balanced with the source term 
because h and ü are both small. Therefore, from (60), we have 

ws0o 

where ws = WQ{T — r^Y 

a + ws 

(a)  Thermal cas«, 5k = ld-08a = 0.1 

(64) 

Figure 8: Height and termperature field with larger cooling rate. 

0->0„ as 

0-+O       as 

r < ro 

r > TQ 

(65) 

Comparing Figures 7 and 8, the only parameter changes is the cooling rate. For higher cooling 
rates, the height of the dome grows more slowly; meanwhile, the dome grows more rapidly 
along the radial direction. This explains some aspects of what is observed in the thermal 
experiments. 

5    Conclusion and future work 

We formulated a continuum model. From our isothermal study, it was found that results 
from this model agree fairly well with those obtained from experimental simulations.   The 
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modeling is sucessful in several aspects. First of all, granted an accurate measurement of 
the viscosity and yield stress of the material, the height evolution equation (3.32) gives a 
very good predication for the dome growth during the isothermal experiment. Secondly, an 
approximate similarity solution for equation (3.32) was found, a solution that compares well 
with the previous field measurements and experimental data. 

For the thermal problem, a simplified model was proposed that enables us to explain 
qualatively of the relation between cooling rate and the dome growth. Two limiting cases 
were considered and studied numerically, showing that with larger cooling rate, the dome 
grows more slowly in the vertical direction, which is consistent with what we have observed 
in our experiments. On the other hand, for the real lava dome, the diffusivity is rather small. 
Therefore the diffusion term in the energy equation should be neglected; Within the molten 
lava, initially, the temperature will be constant everywhere, but once the lava surface cools, 
a thin thermal boundary layer will initially form and travel from the surface to the molten 
part of lava. Originally, this layer is very thin and lies in the plug region. Consider the 
energy balance equation (16). No depth averaged fields were used here. Since K is small, 
both the diffusion term and the heat generated by the viscous force term are negligible at 
leading order and equation (16) becomes 0 = 0. At this stage, the thermal boundary layer is 
so thin that the velocity in this layer equals the plug velocity which is negligible; therefore, the 
temperature field remains constant and the growth of lava domes will not be effected by this 
thin thermal boundary layer. When the thermal boundary layer becomes thicker, especially 
when its thickness gets close to or exceeds the thickness of the plug region, the temperature 
field in the entire domain will be substantially changed and the viscosity and yield stress will 
also change. The velocity field will then be effected, since the flow is controlled by coupled 
partial differential equations (1), (14), (16) deduced from the mass, momentum and energy 
balances. The dome growth will become very complicated. Since, under this circumstance, it 
is very difficult to model the problem, further studies are needed. 

For the thermal experiment, nonaxisymmetry is observed when surface begins to cool. 
Physically, we can explain this as followings. Since the dome is initially symmetric when the 
slurry is ejected from the source onto a horizontal surface, given a small perturbation to the 
height, the dome height of some portions will be increased while that of others will be decresed; 
for those portions with increased height, the cooling rate becomes smaller compared with that 
of the initial state; material then becomes more viscous and this portion of the material can 
flow out easily; meanwhile, in the portions with decreased height, the cooling rate becomes 
larger which makes the material less viscous and more plastic like, hence this poriton is in 
stead dammed-up. That's how nonaxisymmetric structure eventually develop. 

Also, realistically, surface cooling and solidification are both important factors in the flow 
morphology. If "lobes" observed in the thermal experiment are caused by the solidification of 
the material, we assume that they are very superficial and fragmented; hence the associated 
forces are small, thereafter, solidification factor is not considered here. 

Instability analyis and flow morphology studies will be the direction for the future work. 

250 



6    Acknowledgements 

I would like especially thank Neil Balmforth for introducing this project to me and for help- 
ful discussions, encouragement throughout the summer; I also owe thanks to Bill Young and 
Richard Craster for interesting discussions, to Jack Whitehead for letting me use his wonderful 
lab, and to John Salzig for building the laboratory apparatus for me—without him, my exper- 
iments would have been impossible. Thanks also go to Jeff Parsons lending me a viscometer 
from MIT and to George Veronis, to Joe Keller for teaching me the basic lessons in softball, 
and to the Maury Lane residents for all the fun and food we shared. Finally, thanks to all the 
GFD staff and fellows, whose company made for a great summer. 

References 
[1] G. Hulme, "The interpretation of lava flow morphology," Geophys. J. R. astr. Soc. 39, 361 (1974). 

[2] S. Blake, "Viscoplastic models of lava domes," in IAVCEI Proceedings in Volcanology, Vol.2, edited by J. 
Fink (Springer-Verlag, 1989). 

[3] C. R. J. Kilburn, "General patterns of flow field growth: Aa and blocky lavas ," Journal of Geophysical 
Research, 96, 19,721 (1991) 

[4] M. Dragoni, S. Pondrelli k A. Tallarico, "Longitudinal deformatioon of a lava flow:  the influence of 
Bingham rheology," Journal of Volcanology Geothermal Research, 52, 247 (1992) 

[5] J. Fink k R. Griffiths, " A laboratory analog study of the surface morphology of lava flows extruded from 
point and line sources," Journal of Volcanology Geothermal Research, 54, 19 (1992) 

[6] M. V. Stasiuk, C. Jaupart k R. S. Sparks, "Influence of cooling on lava-flow dynamics," Geology, 21, 335 
(1993) 

[7] R. Griffiths k J. Fink, "Effects of surface cooling on the spreading of lava flows and domes," J. Fluid. 
Mech., 255, 667 (1993) 

[8] R. Griffiths k J. Fink, "Solidifying Bingham extusions: a model for the growth of silicic lava domes," J. 
Fluid. Mech., 347, 13 (1997) 

[9] J. Fink k R. Griffiths, "Morphology, eruption rates, and rheology of lava domes: Insights from laboratory 
models," Journal of Geophysical Research, 96, 19,721 (1991) 

251 



Chaos in the 'Sliced Cone' Model of 
Wind-driven Ocean Circulation 

Andrew Kiss 

1 Introduction 

Recent analytical and numerical results by Salmon [Salmon, 1992] and Becker and Salmon 
[Becker and Salmon, 1997] have shown that the barotropic flow in simple /3-plane models of 
wind-driven ocean circulation is dramatically altered when the vertical boundaries usually 
employed in such models are replaced by continental slopes on which the depth goes gradually 
to zero at the boundaries. The sloping topography acts to guide the barotropic flow and moves 
the western boundary currents away from the lateral boundaries and onto the lower part of 
the slope. This produces a vorticity distribution which is more prone to instabilities than in 
the case of vertical sidewalks and diminishes the role of lateral viscosity at the boundary in 
dissipating potential vorticity, leaving Ekman friction as the dominant dissipation mechanism. 

The 'sliced cone' model was introduced by Griffiths and Veronis [Griffiths and Veronis, 1997] 
to investigate the effect of sloping sidewalks on homogeneous wind-driven flow on a simulated 
/3-plane in the laboratory. This model is a variant of Pedlosky and Greenspan's 'sliced cylin- 
der' model [Pedlosky and Greenspan, 1967] in which the vertical sidewalk have been replaced 
by an azimuthally uniform slope around the perimeter of the basin. The presence of closed 
geostrophic contours provides a "short cut" for the western boundary current of the interior 
Sverdrup flow, allowing the current to delay dissipation of the potential vorticity imparted by 
the wind until just before it rejoins the interior flow. 

The laboratory results showed that the flow can become unsteady when the wind stress 
forcing is anticyclonic and exceeds a critical strength. The fluctuations are periodic for mod- 
erately supercritical forcing, but become aperiodic under relatively strong forcing. This paper 
presents an analysis of the time dependence displayed by numerical simulations of the flow in 
this apparatus as a function of forcing strength. 

2 The 'sliced cone' model 

The laboratory model employed by Griffiths and Veronis [Griffiths and Veronis, 1997] utilized 
a basin of the form shown in Figure 1, filled with water and bounded above by a rigid horizontal 
lid. The base of the apparatus rotates with a constant angular velocity Qk about a vertical 
axis, whilst the rigid lid has a slightly different angular velocity (1 + e) Ük in order to simulate 
a spatially uniform wind stress curl. The sidewall has a 45° slope relative to the horizontal 
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and this cone is intersected by a plane with slope 1:10 which forms the central part of the 
bottom boundary. Figure 1 shows that in this geometry the geostrophic contours (contours 
of constant depth) are circles near the rim and D-shaped curves when they cross the interior. 
All geostrophic contours are closed curves, in contrast to the 'sliced cylinder' in which all 
geostrophic contours are blocked by the vertical sidewalls. The potential vorticity gradient 
imposed by the shallow slope in the interior is analogous to the potential vorticity gradient 
of a /3-plane and allows us to identify directions in the apparatus with various points of the 
compass, as shown in the figure (note that the apparatus rotates in the northern hemisphere 
sense). The width 2a of the apparatus is 97.3 cm and the depth H at the center is 12.5 cm. 

Figure 1: Perspective diagram of the 'sliced cone' model used in the laboratory and numerical 
experiments. The curves are contours of constant depth (geostrophic contours), and the com- 
pass directions are defined in terms of the potential vorticity gradient imposed by the sloping 

bottom in the interior. 

The type of flow seen in this apparatus depends on e and the Ekman number E = jgp, 
where v is the kinematic viscosity of the fluid (water in our case). We can also define a Rossby 
number by Ro = |e|. A linear analysis (Ro=0) based on an expansion in powers of E* was 
presented in [Griffiths and Veronis, 1998]. This analysis showed that the zeroth order flow is 
along geostrophic contours, and is therefore about ten times faster on the slope than in the 
interior due to the order of magnitude difference of the bottom slopes in these regions. The 
£l-order correction introduces the effect of wind forcing in the interior, resulting in a cross- 
contour Sverdrup flow which gives a northwest-southeast tilt to the streamlines in the interior 
but relatively little change to the slope current. At the next order a Stewartson E* layer at 
the junction between the rapid slope current and the slow interior flow makes the azimuthal 
velocity continuous in this region. 

The laboratory study by Griffiths and Veronis [Griffiths and Veronis, 1997] showed that the 
sign of e has a dramatic effect on the stability of the flow at finite Ro, through a mechanism 
clarified by the numerical investigation of [Kiss and Griffiths, 1998].   When e > 0 (cyclonic 
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forcing) the circulation was steady for all values of Ro and E investigated. Under anticyclonic 
forcing (e < 0) the slope current enters the interior as a jet when Ro is large, and the flow 
becomes unstable for large enough Ro and small enough E. The laboratory results showed 
that there are four main regimes as a function of Ro and E for anticyclonic forcing. For small 
Ro the asymptotic state after spin-up is a steady circulation (apart from some extremely small- 
amplitude fluctuations seen in the laboratory which the numerical model used here did not 
reproduce). The flow becomes unstable at a critical value of Ro, which depends on the value 
of E. For large Ro the only instability which appears is a pinching-off of cyclonic eddies from 
the cyclonic meander in the western boundary current jet. At small E the situation is more 
complicated: the first instability to appear is a growing wave in the anticyclonic shear layer 
at the the west of the interior, in which anticyclonic eddies appear at the west and grow as 
they are advected northwards until they dissipate when they collide with the southern edge 
of the jet. At larger values of Ro the cyclonic loop in the jet also becomes unstable and sheds 
cyclonic eddies. Initially both the cyclonic and anticyclonic instabilities are periodic, but at 
large Ro the flow for any E appears to become chaotic. 

These laboratory observations raise interesting questions as to the nature of the transi- 
tions between these regimes, and the route to chaos in this system. This research project 
was a numerical investigation of these transitions, using the techniques of dynamical sys- 
tems theory in an approach similar to that of [Jiang et al., 1995, Meacham and Berloff, 1997, 
Berloff and Meacham, 1997]. The behavior of the system under anticyclonic forcing was stud- 
ied as a function of Ro at a fixed value of E (1.5075 x 10~5). This value was chosen in order to 
study the more interesting situation in which both cyclonic and anticyclonic eddy shedding can 
appear. In the next two sections the formulation and implementation used in the numerical 
model are discussed; the rest of this paper is devoted to a presentation and discussion of the 
methods used and the results obtained. 

2.1    Formulation 

The equations of motion for this system (relative to coordinates rotating with angular velocity 
fik) are: 

dut + Ro(u-V)u + 2kxu = -Vp + EV2u (1) 

and 

V • u = 0, (2) 

where k is the unit vector in the z direction (vertical), p is the pressure divided by the 
density and we have scaled the velocity u, time t and length by U = \eüH\, |fi_1| and H, 
respectively. The importance of advection and viscosity are parameterized by the Rossby 
number Ro = ^ = |e| and Ekman number E = j^, respectively, where v is the kinematic 
viscosity of the fluid. Gravitational and centrifugal accelerations are not relevant to this 
system, since there is no free surface and no stratification. 
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We shall separate the vertical and horizontal components of the velocity by writing u = 
u + kto, where k • uH = 0. For the parameters used in this study it is a very good approx- 
imation to assume (outside the Ekman layers) that uH is independent of z and horizontally 
nondivergent, so we have 

uH=kxVHV, (3) 

where ip is the streamfunction and VH denotes the horizontal gradient operator. 
Taking the vertical component of the curl of the momentum equation 1 yields an equation 

for the vertical vorticity (: 

d(t + Ro J(V>, 0 = (2 + Ro 0 dwz + EV2 C, (4) 

where 

C = V2</> (5) 

and J{a, b) = daxdby - daydbx is the two-dimensional Jacobian operator. The assumption 
that. duHz = 0 implies (via 2) that 0 = 0, allowing us to find dwz by using steady, linear 
Ekman matching conditions1 for w at the top and bottom boundaries. Since the bottom slope 
is not small, a coordinate-free form of equation (4.9.32) in [Pedlosky, 1987] (valid where the 
radius of curvature of the bottom topography is much larger than the Ekman layer thickness) 
was used to find w on the bottom boundary. Combining this with the upper Ekman matching 

condition yields 

dwz = ^^(CT-(l + <r)C-saj(s^J(M,h))-^^, (6) 

where (T = 2^ is the vorticity of the lid, 1 - h is the scaled fluid depth, s = \VHh\ is the 

bottom slope and a = (l + s2)*. On the sloping sidewall we have dh6 = 0 (where 6 is the 
azimuthal coordinate) and 6 has the form 

where r is the radial coordinate. In the interior the bottom slope is so small that its effect on 
the bottom Ekman layer can be neglected, giving 

*»=ÄK'-ac)-^sf (8) 

The no-slip boundary condition gives 

rj, = dißr = 0       at r = p (9) 

Steady, linear Ekman matching is valid for flows which axe nearly steady over one rotation pe- 
riod [Beardsley, 1975b] and have Ro « E* [Bennetts and Hocking, 1973]. The latter criterion is violated 
for the more strongly forced results presented here, but the close similarity of the calculated flows to those seen 
in the laboratory suggests that the error involved in using linear Ekman conditions is insignificant. Thus it was 
felt that using the much more complicated nonlinear Ekman conditions was not justified for our purposes. 
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2.2    The numerical model 

The numerical experiments were conducted with a highly efficient sliced-cylinder code devel- 
oped by Page [Page, 1982] and described in detail in his PhD thesis [Page, 1981]. The algorithm 
is the same as that presented by Beardsley [Beardsley, 1975a], which was in turn based on the 
refinement by Israeli [Israeli, 1970] of a scheme proposed by Pearson [Pearson, 1965]. For this 
study the code was modified to include the effect of the sloping sidewalls on the bottom Ekman 
layer. The code solves 4 and 5, where dwz is found by using 7 on the slope2 and 8 in the interior. 
This system generalizes that analyzed in [Griffiths and Veronis, 1998] by including advection, 
lateral viscosity and time dependence. Spatial derivatives are calculated using second-order 
centered differences on a polar grid, except at the origin where an integral treatment is used. 
The vorticity equation 4 is solved using the alternating-direction implicit method, and a fast 
Fourier transform in 9 is used to solve the Poisson equation 5 for x/>. Since the nonlinearity in 4 
couples it to 5, these equations are solved iteratively within each timestep until both tp and C 
converge. This in-timestep iteration also serves to converge (, at the boundary to a value which 
is consistent with the no-slip boundary condition 9, using optimal relaxation. The algorithm 
is unconditionally stable for zero Ro and retains its stability for all reasonable values of Ro. 
The numerical results reported here were obtained using 160 grid points in the radial direction 
and 512 in the azimuthal direction (with no stretching in either direction) and a timestep of 

10 1—3 jp— ö E"2 « | rotation periods, giving good spatial and temporal resolution. A comparison of 
numerical and laboratory results for the northward velocity under cyclonic forcing is shown in 

Figure 2. 

3    Methods 

Although some use was made of sequences of snapshots of the V and C fields, the primary 
diagnostic we used to study the time dependence of the computed flows was the basin integral 
of the kinetic energy, K{t) = - fj ip{t)({t)dA. Another quantity plotted in the following 

section is the normalized fluctuation in K, K'(t) = K{^K, where K is the time-average of K 
in the statistically steady state. Time series of K' calculated at each time step were analyzed 
by several techniques: 

3.1 Power spectra 

Power spectra of the time series allowed identification of the primary frequencies present, and 
provided a means of discriminating between quasiperiodic and chaotic time series. 

3.2 Delay coordinates 

The spatial resolution used in the model implies that this numerical system has a phase 
space with over 80000 dimensions. However as we shall see the trajectory of the state vec- 
tor is confined to a manifold with a much smaller dimension than that of the full phase 

2 7 is not evaluated on the lateral boundary itself (where 1 - h vanishes) because this is where 9 is imposed 
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Figure 2: Laboratory and theoretical results from [Griffiths and Veronis, 1997] 
and [Griffiths and Veronis, 1998] compared with numerical results for the northward 
component of the normalized velocity as a function of position along the line y = 0, for 

cyclonic forcing. 

space. The technique of delay-space reconstruction allows a trajectory to be extracted from 
the time series which has the same topological properties as the trajectory in the full phase 
space [Takens, 1981]. The delay-space trajectory is constructed by forming the time-dependent 
n - dimensional vector X(t; T), whose components are Xt = K'(t - (t - l)r), where r is a fixed 
delay time. The topological properties of the trajectory are independent of the choice of r, 
but in order to obtain a trajectory which is not too contorted it is best to choose r so that 
Xi and Xi+i are neither strongly correlated nor strongly uncorrelated. The delay used in the 
results presented here was 7.52 days, about a quarter of the shortest period (25 to 31 days). 
Trajectories were produced using embedding dimensions n of 2 or 3. 
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3.3    Poincare sections 

We found Poincare sections to be a useful diagnostic tool for studying the structure of phase 
space trajectories and the manner in which the system converged to its final state. They were 
constructed by choosing a plane of interest in delay space (say, Xk = c for some component k) 
and recording the position at which the trajectory passed through the plane in the direction 
of increasing Xk- The set of these intersection points comprises a Poincare section of the 
trajectory. The results presented here used c = 0, the asymptotic mean value of K'. 

4    Results 

Numerical results were obtained for many different Rossby numbers, concentrated about values 
of Ro corresponding to transitions between regimes. The numerical model was integrated until 
the system reached a statistically steady state (at least several hundred days, and longer when 
close to a bifurcation) and the integration was continued to obtain a long time series in order 
to study the time dependence of the asymptotic state. The results are summarized in Figure 3, 
which shows the time average K of the asymptotic basin-integrated kinetic energy as a function 
of Ro. It is clear that there are several transitions between regimes, which take place abruptly 
at critical values of the Rossby number. The most interesting region, in which the behavior 
changes from periodic to quasiperiodic and ultimately to chaotic, takes place over a relatively 
small range of Ro. Over some of this range there is a second branch of solutions. The details 
of these regimes and the transitions between them are discussed below. 

4.1 Fixed point (steady flow) 

For Ro < Roi « 8.5 x 10~3 the flow converges to a steady state of the form shown in Figure 4, 
in which flow is closely aligned with depth contours on most of the slope and is driven across 
depth contours by the wind stress in the interior. These regions are joined by a region of 
strong anticyclonic vorticity at the bottom of the slope where dissipation of vorticity by the 
bottom Ekman layer allows flow across depth contours. The inertial overshoot where the slope 
current rejoins the interior at the west becomes more pronounced as Ro is increased. A time 
series of the normalized energy perturbation K' at Ro = 1.0 x 10-3 is shown in Figure 5. At 
this Rossby number the flow converges directly to the steady state without oscillations. Closer 
to the transition to unsteady flow the convergence is oscillatory (see Figure 6). The power 
spectrum of the extremely small-amplitude decaying oscillation at Ro = 7.5 x 10~3 shows that 
the oscillation frequency is around 0.027 cycles per day. This spectral peak has been labeled 
A for future reference. 

4.2 Limit cycle (periodic flow) 

When Roi < Ro < Ro2 « 2.64 x 10~2, the flow is unsteady and displays a periodic train of 
growing anticyclonic waves in the anticyclonic shear layer at the west. Close to the bifurcation 
point the oscillations in K' have an extremely small amplitude, as shown in Figure 7 for 
Ro = 10-2. The frequency at Ro = 10-2 is 0.032 cycles per day, close to that of the decaying 
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Figure 3: Time average K of the basin-integrated kinetic energy as a function of Ro. a) the 
complete range of Ro investigated; b) a closeup of the transition from a limit cycle to chaos, 
showing the presence of two branches for a range of Ro. 
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Figure 4: Contours of ip (left) and ( (right) for Ro = 5 x 10 3. Contours of anticyclonic C axe 
dashed and the grey ellipse marks the bottom of the slope. North is at the top and the mean 
flow is clockwise. 
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Figure 5: Time dependence of K' with Ro = 1.0 x 10 -3 
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Figure 6: Time dependence of K' with Ro = 7.5 x 10~3. Top: time series; middle: power 
spectrum of time series (the zero frequency peak has been suppressed); bottom left: delay- 
space trajectory for the time series. 
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Figure 7: Time dependence of K' with Ro = 1.0 x 10-2. Top: time series; middle: power 
spectrum of time series (the zero frequency peak has been suppressed); bottom left: delay-space 
trajectory for the time series; bottom right: Poincare section of the delay-space trajectory. 

oscillation at Ro = 7.5 x 10~3. The other peaks in the power spectrum are harmonics of this 
fundamental frequency, as they must be for a periodic oscillation. The phase - space trajectory 
in Figure 7 has the form of a limit cycle; the Poincare section (which has axes scaled to fit the 
range of the intersection points) shows that convergence to this invariant set does not involve 
any oscillations. These observations of time series for Ro in the vicinity of Roi provide strong 
evidence that the onset of time-dependence takes place by a supercritical Hopf bifurcation at 
Ro — Ro\. 

The physical nature of the instability which occurs at Ro\ can be seen by computing the av- 
erage streamfunction field over one period and subtracting this from the instantaneous field at 
a given time. Mean and perturbation streamfunctions at Ro = 9.5 x 10~3 are shown in Figure 8. 
The perturbation streamlines are inclined into the mean velocity gradient in a manner consis- 
tent with extraction of energy from the mean flow, as discussed by Pedlosky [Pedlosky, 1987]. 
This barotropic instability is associated with the cross-flow extremum of the potential vorticity 
q - (2 + Ro()/{l - h) at the bottom of the slope, as discussed in [Kiss and Griffiths, 1998]. 
The positive perturbations in xj) coincide with regions of increased anticyclonic vorticity, and 
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Figure 8: Contours of tj) averaged over one oscillation (left) and the difference in ij) from this 
field at one time (right; the contour interval has been reduced by a factor of 30). Ro = 
9.5 x 1CT3; contours of negative t/> are dashed and the grey ellipse marks the bottom of the 
slope. North is at the top and the mean flow is clockwise. 

hence to maxima in the vorticity waves seen in the anticyclonic shear layer. The waves grow as 
they are advected northwards with the flow until they reach the end of the outflow region from 
the slope current, where they die out. Each kinetic energy peak corresponds to an anticyclone 
reaching its maximum amplitude before being advected into the region where it decays. 

As Ro is increased towards Ro2 the amplitude of the anticyclonic perturbations becomes 
larger, until they are sufficiently strong to produce closed contours of ip, resulting in a northward- 
traveling train of anticyclonic eddies. The vorticity of the anticyclones acts to stretch out the 
jet when they arrive at its southern edge, making it extend southeastwards into the interior 
and intensifying its cyclonic meander. The jet then retracts back to its former length as each 
anticyclone dissipates, before being stretched again by the arrival of the subsequent anticy- 
clone. When Ro is large enough, these periodic perturbations to the jet result in a cyclonic 
eddy pinching off from the cyclonic loop in the jet as each anticyclone dissipates. This process 
is shown in Figure 9, which shows snapshots of C, at a local maximum and the following local 
minimum of K. 

Figure 10 shows the time behavior at Ro = 2.62 x 10~2, just before the second bifurcation. 
The frequency has increased to 0.039 cycles per day, and the oscillation has a much larger 
amplitude but is still periodic. However in contrast to the case of Ro = 10"2, the convergence 
to the limit cycle is now oscillatory, the decaying oscillation having a frequency of about 0.017 
cycles per day. This new spectral peak will be denoted B. 

263 



Figure 9: Contours of C at two different times for Ro = 2.5 x 10-2. Left: at a local maximum 
of K; right: at the subsequent minimum of K. Contours of negative C are dashed. Note 
how the strong anticyclone wraps a tongue of cyclonic vorticity around itself, which sheds a 
cyclonic eddy when the anticyclone dissipates. An animation of this sequence can be viewed 
at http://rses.anu.edu.au/gfd/link/AK/WHOIGFD.html 

4.3    Torus (quasiperiodic or phase-locked flow) 

A very slight increase in Ro from Ro = 2.62 x 10-2 to Ro = 2.64 x IGT2 produces a transition 
from periodic to quasiperiodic flow, giving a trajectory which is a torus, as shown in Figure 11. 
The oscillation denoted B is now no longer decaying, and appears as a peak in the power 
spectrum at a frequency which is indistinguishable from that of the decaying oscillation at 
Ro = 2.62 x 10-2. The winding number of the trajectory on the torus is B/A = 0.433. The 
numerous other peaks in the spectrum are cross-harmonics of A and B, as indicated in the 
figure. Once again, this transition seems to have taken place by a Hopf bifurcation. As for 
strongly forced periodic flow, relative maxima and minima of K' correspond respectively to 
the arrival of a large anticyclone at the southern side of the jet, and the subsequent shedding 
of a cyclone. This basic cycle has a period 1/A, but is amplitude-modulated by the second 
period 1/B, giving rise to the cross-harmonics of A and B in the power spectrum. 

As Ro increases, the Poincare section becomes an increasingly distorted loop, and the 
amplitude of the peak with frequency A-2B becomes larger. At Ro = 2.70 x 10-2 these long- 
period fluctuations are periodic, but at Ro = 2.75 x 10"2 the fluctuations appear to become 
aperiodic (although a longer time series would be needed to confirm this). Figure 12 shows 
the time dependence of the kinetic energy at Ro = 2.75 x 10~2, in which the peak at A - IB 
has become large, corresponding to the conspicuous variations with a period of about 500 days 
visible in the time series. 
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Figure 10: Time dependence of K' with Ro = 2.62 x 10-2. Top: time series; middle: power 
spectrum of time series (the zero frequency peak has been suppressed); bottom left: delay-space 
trajectory for the time series; bottom right: Poincare section of the delay-space trajectory. 
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Figure 11: Time dependence of K' with Ro = 2.64 x 10~2. Top: time series; middle: power 
spectrum of time series (the zero frequency peak has been suppressed); bottom left: delay-space 
trajectory for the time series; bottom right: Poincare section of the delay-space trajectory. 

266 



x10' 

1500 2000 2500 3000 3500 
Time (days) 

4000 4500 

-1.5 

-3 

f • 

K'(t) 

5000 

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 
Frequency (cycles per day) 

X10"3 

Figure 12: Time dependence of K' with Ro = 2.75 x 10-2. Top: time series; middle: power 
spectrum of time series (the zero frequency peak has been suppressed); bottom left: delay-space 
trajectory for the time series; bottom right: Poincare section of the delay-space trajectory. 
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Figure 13: Time dependence of K' with Ro = 2.75 x 10-2, on branch 2. Top: time series; 
middle: power spectrum of time series (the zero frequency peak has been suppressed); bottom 
left: delay-space trajectory for the time series. 

4.4    The second branch 

The numerical results show that there is an additional branch of solutions (which will be 
referred to as branch two) over at least the range 2.74 x 10-2 < Ro < 2.85 x 10-2, as can be 
seen in Figure 3. Figure 13 shows a kinetic energy time series for a flow on branch two with 
Ro = 2.75 x 10-2 (the same value as in Figure 12). The time series is periodic, and now the 
fundamental frequency is A/3. This is not simply a case of B being locked on to A/3, since 
the trajectory does not lie on the torus of branch one. 

A numerical run which has converged to a final state on branch two can be used as an 
initial condition for a run at a different value of Ro, allowing this branch to be traced out over 
a range of Ro. Following this procedure it was found that the branch could not be extended for 
Ro < 2.74 x 10~2 (where it actually seems to be a torus). Further numerical experiments are 
required in order to understand the disappearance of this branch at lower values of Ro. As Ro 
is increased the attractor for this branch seems to remain qualitatively similar to that seen at 
Ro = 2.75 x 10~2, until at Ro = 2.83 x 10-2 it appears that a period-doubling bifurcation has 
occurred and the basic period becomes A/6 (see Figure 14). The behavior of this attractor at 
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Figure 14: Time dependence of K' with Ro = 2.83 x 10~2, on branch 2. Top: time series; 
middle: power spectrum of time series (the zero frequency peak has been suppressed); bottom 
left: delay-space trajectory for the time series; bottom right: Poincare section of the delay- 

space trajectory. 

larger Ro has not been sufficiently investigated for conclusions to be drawn about the ultimate 

fate of this branch. 

4.5    The path to chaos 

The attractor corresponding to the first branch appears to go through several changes for Ro 
between about 2.75 x 1(T2 and 2.90 x 10~2. At Ro = 2.79 x 10~2 it was found that integrations 
started from initial conditions on branch one at lower Ro result in a trajectory which quickly 
leaves the branch one set and converges to the same branch two attractor which is obtained if 
initial conditions on branch two are used (see Figure 15). 

It is tempting to conclude from Figure 15 that the attractor for branch one has become 
unstable for this Rossby number, leaving the branch two attractor as the only possible final 
state. However this explanation is less convincing in the fight of the results shown in Figure 16 
of a run at Ro = 2.80 x 10~2 started from an initial condition on branch one. Integrations 
started from branch two show convincingly that the second branch is an attracting limit cycle 
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Figure 15: Time dependence of K' with Ro = 2.79 x 10~2 for an integration started from 
branch 1 initial conditions, but which results in a final state on branch 2. Top: time series; 
bottom : delay-space trajectory for the time series. 

at this Rossby number, yet the trajectory shown in Figure 16 seems unable to converge to the 
second branch attractor. The trajectory remains mostly in the vicinity of the torus seen at 
lower Ro, but displays intermittent excursions on trajectories close to the branch two attractor. 
It is possible that the system would eventually settle on the branch two attractor, but there 
is no indication that this will happen from the time series of 5000 days shown Figure 16. 

At Ro = 2.85 x 10-2, a run initialized on branch one appears to switch erratically between 
the two types of behavior (see Figure 17). The second branch was actually discovered by taking 
the V and C fields at a time when the trajectory was following type two behavior and using 
this as an initial condition for a run at lower Rossby number. The alternation between these 
two types of behavior is very intriguing and further numerical experiments at intermediate 
values of Ro are needed to understand it fully. It is possible that the original attractors have 
become joined by a heteroclinic orbit involving an unstable periodic orbit. In order to follow 
up this possibility it would be necessary to solve for the unstable periodic orbit which remains 
after the second Hopf bifurcation, and trace its location in phase space as Ro increases. 

At larger Ro the trajectory appears to be less closely bound to either of the original at- 
tractors, perhaps indicating that they have both become more strongly unstable. At Ro = 
3.0 x 10-2 the trajectory bears no obvious resemblance to either original attractor (see Fig- 
ure 18). The power spectrum has become broad-band (a hallmark of chaos) but the peak at 
A can still be discerned. Runs at Ro = 4.0 x 10~2 and Ro = 5.2 x 10-2 were also chaotic, with 
broad-band power spectra. 
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Figure 16: Time dependence of K' with Ro = 2.80 x 10~2 for an integration started from 
branch 1 initial conditions. Top: time series; middle: power spectrum of time series (the zero 
frequency peak has been suppressed); bottom left: delay-space trajectory for the time series; 
bottom right: Poincare section of the delay-space trajectory. 
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Figure 17: Time dependence of K' with Ro = 2.85 x 10~2 for an integration started from 
branch 1 initial conditions. Top: time series; middle: power spectrum of time series (the zero 
frequency peak has been suppressed); bottom left: delay-space trajectory for the time series; 
bottom right: Poincare section of the delay-space trajectory. 
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Figure 18: Time dependence of K' with Ro = 3.0 x 10-2 for an integration started from 
branch 1 initial conditions. Top: time series; middle: power spectrum of time series (the zero 
frequency peak has been suppressed); bottom left: delay-space trajectory for the time series; 
bottom right: Poincare section of the delay-space trajectory. 

273 



5 Conclusions 

The numerical results reported here show that the sliced cone model can display a great 
richness of complicated behavior including multiple attracting states and a transition to chaos. 
These results are of particular interest because the model can be realized in the laboratory, 
allowing the study of low-dimensional chaos in a real physical system. In particular these 
results show that the transitions from a fixed point to a limit cycle and then to a torus take 
place via Hopf bifurcations. At larger Rossby number the behavior of the system becomes 
more complex. A second solution branch appears which coexists with the original branch at 
moderate Ro. As Ro increases the time series appear to become intermittent when started from 
the original branch, switching erratically between oscillations characteristic of each branch. 
These transitions become more frequent at larger Ro, until at Ro ^ 2.9 x 10~2 the delay space 
trajectory bears little resemblance to either branch and the behavior seems to be chaotic for 
all larger values of Ro. 

6 Future work 

There remain several interesting avenues for future study of this system. These include an elu- 
cidation of the mechanism by which the flow becomes chaotic (which could involve interaction 
with unstable periodic orbits or unstable fixed points), and the extent of the second branch 
as a function of Rossby number. Much longer time series are needed to better understand 
the chaotic dynamics above Ro « 2.85 x 10-2. A sufficiently long time series may show that 
the Poincare map is a fractal set, and allow the fractal dimension of the chaotic attractor 
to be calculated. Longer time series could also clarify whether the erratic behavior seen for 
2.80 x 10~2 < Ro< 2.85 x 10-2 is truly chaotic or a chaotic transient. 

The behavior of the system as a function of E is yet to be studied using these techniques, 
and it would be interesting to discover more about the suppression of the anticyclonic insta- 
bility as E is increased. 

The insights provided by this numerical approach to the sliced cone also open up new lines 
of enquiry using the laboratory apparatus. It would be interesting to look in the laboratory 
for some of the features of the numerical results, such as the second branch and the intricate 
dependence of the flow behavior on Ro in the transition from a toroidal attractor to chaos. If 
time series could be obtained from the flow in the laboratory, the same delay-space techniques 
could be applied to laboratory data, allowing a detailed comparison with the numerical results. 
However this would be technically demanding, since the variations in velocity and pressure are 
very difficult to detect. 
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Decadal Oscillations in the 
Mid-Latitude Ocean-Atmosphere System 

Bianca Gallego 

1    Introduction 

Climate variability at decadal time scales has been an emerging area of interest in recent 
years. Evidence reported in [1, 2, 3] suggests that the North Pacific ocean-atmosphere system 
exhibits variability of an oscillatory nature at the time scale of a few decades; it is hypothesized 
that the ocean-atmosphere coupling plays an important role in the generation of this decadal 
variability. Similar oscillatory modes have also been observed in the Atlantic [4]; however 
in this case the existence of a strong thermohaline circulation makes unclear the role of the 
wind-driven flow in the generation of the oscillations. 

The North Pacific decadal oscillations have also been found in various coupled GCMs 
(Global Climate Models) (e.g. [5, 3]). The sea surface temperature anomalies 1) are large- 
scale, extending almost across the entire Pacific basin, and 2) have dipolar structure, with the 
positive and the negative anomalies flipping signs every half-period. 

In this work, an idealized model for the large-scale, coupled dynamics of the mid-latitude 
wind-driven oceanic circulation and the atmosphere has been derived. In this model, the ocean 
and the atmosphere are coupled through wind stress and heat fluxes at the air-sea interface. 
The equations axe based on global heat and global momentum balances, along the same fines as 
in [6]. However, the model is significantly simpler than in [6], and allows a good understanding 
of the physics involved. In particular, it is able to capture the sustained oscillations at decadal 
time scales, consistent with the above mentioned observations and numerical models. 

2    The Model 

The geometry of the model consists of an oceanic box with 0 < x < Lx as the zonal coordinate, 
0 < y < Ly as the meridional coordinate and -H < z < 0 as the vertical coordinate. The 
atmospheric box representing the troposphere has the same meridional extent. 

In what follows the heat and mechanical balances of the atmospheric and oceanic parts are 
considered, which lead to the set of equations that describe the model. 

2.1    Oceanic Mechanical Balance: Potential Vorticity Equation 

The quasi-geostrophic equivalent barotropic potential vorticity equation on a mid-latitude beta 
plane is considered. After integrating in z and neglecting the relative vorticity term (whose 
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contribution is small for large-scale motions), the ocean flow is governed by, 

at   cdx   PwHdy+   dx*- [) 

Here, V represents the depth averaged streamfunction, R is the deformation radius, c = ßR2 

is the speed of the long Rossby waves, pw is the sea-water density, rs represents the zonal 
component of the atmospheric surface wind stress and 6 « Lx is the width of the western 
boundary layer. 

Taking rs to be constant in x, rs = ?s(y,t), where the overbar stands for zonal average, 
and imposing the boundary conditions ip = 0 at x = 0, Lx, the solution of (1) can be expressed 
in the form: 

if, = ^/(x, y, t) - V/(0, y, t) exp(-x/<5) + 0{S). (2) 

Here, ipi is the depth-averaged streamfunction in the interior and is determined by the wind- 
stress curl through the relation, 

** = 4? f     in*'- (3) 
pwH Jt_Lx=* dy 

c 

Therefore, the zonally averaged meridional velocity in the interior has the form: 

„        l/1-££*__.*     /*     £*-. (4, 
Lx Js     9x LxpwH Jt_kx. dy 

Note that vj at a given time t, is fully determined by the wind stress curl at the times from 
j_ Lz. to the actual time t, where *f represents the time that it takes a Rossby wave to cross the 
basin. This equation represents the baroclinic response of the ocean to an imposed wind-stress 
through propagation of Rossby waves from the eastern boundary. In this idealized formulation, 
the time that it takes the ocean to adjust to a given wind stress is given by the Rossby wave 
crossing time ^ and is of the order often years. If the wind stress undergoes changes at shorter 
time scales, the ocean-atmosphere system finds itself in a dynamical situation in which the 
ocean is continuously trying to be in Sverdrup balance with the overlying wind. In doing so, 
Rossby waves are continuously being generated in the eastern boundary and moving westward 
carrying with them information about the wind that was blowing at the times they were 
formed. Therefore, this is the equation that contains the memory of the system. 

The following section details how to determine this wind-stress curl, ^-. 

2.2    Atmospheric Momentum Balance: Zonal Momentum Equation 

The natural way of representing large-scale, mid-latitude, atmospheric dynamics in a simple 
fashion, is to consider the modification by the baroclinic eddies of the mean zonal flow. Specif- 
ically, we consider the zonally averaged x-momentum equation, which for quasi-geostrophic 
motions on a mid-latitude beta plane is given by, 

du _     dfcV)   ,   1 8f ,,, 
Tt=}oV--dy- + 7a~d-Z- 

(5) 
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The overbar stands for the zonal average and the prime stands for the departure from the 
average, f0 and pa are the Coriolis parameter and atmospheric density respectively and the 
last term represents vertical transfer of zonal momentum by the stress, f. Integrating over the 
vertical direction and assuming steady equilibrium, one finds: 

Jo 

d(u'v')J      _ (f, pa     a       dz = TS. (6) 
dy 

This equation represents the zonally and vertically averaged momentum budget for the at- 
mosphere. The zonally averaged wind stress is balanced by the horizontal convergence of 
momentum flux by the eddies in the entire troposphere. 

Using the definition of quasi-geostrophic potential vorticity, 

q = fo + ßy + vx-uy + ^z(^9) (7) 

where q and 9 represent potential vorticity and potential temperature respectively and S is 
the static stability of the atmosphere which is taken to be constant for simplicity, it is possible 
to relate the zonally averaged eddy fluxes of momentum, heat and potential vorticity. The 
relation between these three fluxes is given by, 

ft(iV) = V.Ä_P = Ä + 4(|«), (8) 

where FE-P is the Eliassen-Palm flux. This relation allows the wind stress curl to be expressed 
in terms of 9 and q, which, unlike the momentum it, are conserved following the particle 
trajectories. This is a desired property when considering the parameterization of eddy fluxes. 

2.2.1    Parameterization of Eddy Fluxes 

The classical way of parameterizing eddy fluxes uses an analogy with molecular diffusion, 
considering them proportional to the mean gradients. Thus, the eddy flux divergence is pa- 
rameterized as: 

dy ay1 

?m . _*<« ao) 
dy dy1 

where the parameter k represents the eddy diffusivity, i.e. the rate of change of mean square 
displacement of 9 and q by baroclinic eddies. In the present model this parameterization is 
simplified by considering relaxation to the planetary average, that is, 

djq'v') 
dy 

d(0V) 
dy 

=   v{q-qA) (n) 

= v{fl-eA). (12) 
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The subscript "A" stands for the meridional average and v is the eddy relaxation rate. Fol- 
lowing [7] and having in mind the fact that eddy activity is higher near the surface, v is taken 
of the form: v = v0exp(-z/d). For the purpose of the present work, this parameterization is 
qualitatively similar to the classical diffusion analogy, while being simpler. 

Because large scales are the focus of this work, relative vorticity is neglected compared to 
planetary vorticity and vortex stretching, similarly as in the ocean momentum budget. 

Finally, considering the change with height of the atmospheric density pa = p0exp(-z/D), 
and defining the effective eddy scale-height: ^ = ^ + \, the equation for the wind-stress curl 
is given by: 

^ = dePou0 (ß{y - ^) + A& - M) • (13) 

The boundary conditions are no net wind stress: J0 
y fs = 0, in addition to fs = 0 at 

y — 0,Ly. The requirement of no net wind stress determines the constant d. The wind stress 
curl as expressed in the previous equation depends on the zonally average surface potential 
temperature 6S. Finding an expression for this variable is, therefore, the next step in the 
derivation of the model. 

2.3    Atmospheric Heat Balance: Potential Temperature Equation 

The zonally averaged thermodynamic energy equation for the atmosphere is: 

dö _   i d{Pae^)   d(flv) |    i   QQ (14) 

dt        pa     dz dy        Cpapa dz 

where Cpa represents specific heat and Q is the diabatic heat flux. Since the typical time 
scales of atmospheric potential temperature changes, in response to variations in the sea surface 
temperature, are of the order of weeks, and therefore, much shorter than the typical time scales 
of evolution of the latter (of the order of years), it is reasonable to neglect the time derivative of 
9 and assume that the atmosphere adjusts instantaneously to the ocean. Integrating vertically, 
the remaining equation gives a balance between the horizontal heat flux divergence by eddies 
in the troposphere and the net diabatic heat fluxes at the vertical boundaries, that is, 

Cpaj°° Pa^p-dz = F-r\{9s-fs). (15) 

Here F represents the net radiative incoming flux at the top of the atmosphere and it is given 
by the difference between the net incoming solar radiation, FSOLAR and the outgoing long- 
wave radiation, FLONG-WAVE- The first one is a prescribed function of latitude chosen to 
be, 

FSOLAR = F0 + F1 (y) = F0 + FlCos(^-), (16) 
L,y 
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the latter is estimated by linearizing the gray Stefan-Boltzmann law and is given by, 

FLONG-WAVE = A + B9S. (17) 

The second term of the right hand side of (15) denotes the exchange of heat flux at the 
air-sea interface. It is a typical bulk formulae equation which represents relaxation to the 
zonally averaged sea surface temperature fs with A being the bulk transfer coefficient and r 
being the fraction of the earth's surface that is covered by oceans. 

Using the eddy flux parameterization in (12), the final expression for the zonally averaged 
atmospheric potential temperature is, 

(6S - 6sA) = (1 - a)    (fa - 9sA) + -{ (18) 

where 0 < a < 1, is given by a = 1 - cpauoPlde+B+T\ and contains the contribution from the 
baroclinic eddies. 

The next and final step needed to close the system is to find an expression for the sea 
surface temperature as a function of the known variables. 

2.4    Oceanic Heat Balance: Upper Ocean Heat Content Equation 

It is assumed, for simplicity, that the temperature T of the model oceanic layer is independent 
of depth (T = TS). The vertically integrated heat balance equation is: 

|r + a£T)+^r)= _xj       +<vtiT_ (19) 
at        ox dy        OpWpwh 

Where e is the heat diffusivity coefficient and (u, v) is now the oceanic wind-driven velocity. 
Note that, except from the western boundary layer balance, this is the only equation where a 
viscous or diffusive term has been introduced explicitly. In the absence of this term, the warm 
waters that are transported poleward by the subtropical gyre and the cold waters that are 
transported equatorward by the subpolar gyre would meet somewhere in the middle forming 
a discontinuous front. Therefore, this term, represents the only way of direct communication 
between the gyres which in the present formulation mostly "feel" each other through the 
atmosphere. 

Since the atmospheric model only "sees" the zonally averaged oceanic temperature, the 
natural way to proceed is to separate T into its zonally averaged part, T and its departure from 
the average, T'. The upper ocean heat content (19) can then be split into the two equations: 

f + ?p=       *      (_of+£(!^))+£ff (20) 
dt dy CpwpwHK r\ dy2 

&r     or'    &T'    df   d(Jr) A    ^,  d2r . 
dt dx        dy        dy        dy CpwpwH dy2 

Here (18) has been used to write 9S as a function of T, and a new variable T has been introduced 
for convenience.  It represents the zonally averaged oceanic temperature after removing the 

281 



meridionally averaged value of the atmospheric surface potential temperature, so that T = 

f - esA. _ 
The first thing to notice is that the relaxation rate for T is smaller than that for T by 

the factor a(< 1). This is because the atmospheric potential temperature depends on T not 
on T'. Therefore, on the time scales over which f changes, T" rapidly reaches equilibrium. 
The next step is to look for an expression that diagnostically relates T' to T. In the limit 

v_ <K c 
x HJ the term «§£ balances the relaxation term Cp~pwHT'■ This approximation is 

not strictly'valid in the range of parameters used later, however it is qualitatively correct. 
This diagnostic relation allows to express the advective term in the T equation in the 

following way, 

d(Jr) _   CPWPWH d -gar ,22x 
dy A       dy[V  dy} 

so that the effect of meridional advection by the gyres on thezonally averaged temperature is 
down mean gradient temperature diffusivity proportional to v2.     

Moreover, it can be shown that the largest contribution to v2 comes from the western 
boundary layer velocity, VBL, so that at first order in 6, v2 can be expressed as, 

v2 = j-fX dx{Vl
2 + vBL

2 + 2vivBL) - V
2

BL - V-\f- (23) 

The final expression for the evolution of the oceanic temperature is, 

m - -^XA-^
1
^ 

= CW^H [-aT+ -7x—) +edy2 (24) 

with boundary conditions of no normal heat flux, f^ = 0 at y = 0, Ly. Here A = j^. 
This last equation, together with (4), (13) and (18) compose the closed set of equations of 

the model. 

2.5    Final set of equations 

In order to simplify the notation, the following redefinition of variables will be used from here 
on: T = f,9 = 9s- 9~sA, T = TS, and v = vj. The system of equations is non-dimensionalized 

using, 

y   =   Lyy* (25) 

t   =   a-H*    (* = ?r^-Jr) (26) 

(ß,T)   =    ?\(9*,T*) (27) 
rX 
dtp0v0L. v (28) y„* 

PwH 
T   =   dePou0ßLy

2T*. (29) 
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The set of equations in their non-dimensional form are given by, 

e 
Or 

dy 

V 

8T        d.2&T. 

=   (l_a)[T+ /(i/)] 

= y~2+70 

t0 Jt-t0 
Qv 

d2T 
=   -aT+(l-a)f(y) + a-^ 

(30) 

(31) 

(32) 

(33) 

where 

f(y) 

7 

V- 

a 

to 

=   cos (ivy) 

fo    Ft 
SdrXßLy 

dep0v0x   1 
{pwHa' A 

e 

(34) 

(35) 

(36) 

(37) 

(38) 

a(Lyy 
Lx =   —a 
c 

where t0 is the non-dimensional delay time given by the ratio of the Rossby wave crossing time 
and the oceanic temperature decay time, and the asterisks have been dropped. 

Combining (30), (31) and (32) into a single equation for the velocity v as a function of the 
temperature T, one finds, 

v = -(y- -)-7(l- a)/(y)-7(l-«)r /     T^t')dt'- l0  Jt-to 
(39) 

This relation, given v at t = 0, can also be expressed as: 

S = "7(1 " dt        n -a){T(y,t)-T(y,t-t0)) (40) 

The final model set of equations is reduced to the equations (33) and (39). The advantages 
of this formulation are: 

• Simplicity (only one dimension in space, and only two dependent variables, v and T) 

• No need to resolve the boundary layer explicitly 
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Figure 1: Latitudinal dependence of various physical magnitudes at a given time 
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Figure 2: Streamfunction at a given time 
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Lx = 0.825 x 10'm 
Ly = 107m 
H = 103m 
A = 0.015 
D = 104 m 

Po 

a pa 

1.25kg m-3 

: 1000kg m-3 

= lOOOJA^kg- 

"xkg- Cpw = 4000JK 
= 10 -6, 

B = 2A75Wm-2K-1 

Fi = 125Wm-2 

A = 23Wm-2K-1 

r = 0.3 

5 = 5 x 10~3 ÜC m"1 

/3 = 2 x lO-^m-1« 
/„ = 10-4s-x 

R = 2.8 x 104m 
a = 3 x 10-3 

Table 1: Parameter values 

3    Results and Discussion 

The system of equations presented in the previous section is solved numerically using Crank- 
Nicholson scheme for the integration of the temperature equation, centered differential scheme 
for the spatial derivatives and the trapezoidal rule to solve the integral in time for the velocity 
equation. At each time step, t + dt, the knowledge of the temperature field at times from t -10 

to t is required. The radiative equilibrium temperature is used as the initial guess and it is 
assumed that the previous history of the temperature field, when unknown, is constant in time 

and equal to the initial condition. 
A Hopf bifurcation is found when moving in the parameter space increasing the importance 

of the non linearity with respect to the diffusivity. This corresponds to an increase in the ratio 
ä in (33). The results presented below have been obtained at a point in the parameter space 
near the bifurcation point and inside the region of sustained oscillations. 

A list of the parameter values used in this calculation is presented in table 1. 
Figure 1 shows a snapshot of the oceanic temperature and its meridional gradient,of the 

wind-driven oceanic velocity and of the oceanic heat flux, as well as the atmospheric poten- 
tial temperature and wind stress fields as a function of latitude for a given time. They all 
have realistic values, although the equator to pole oceanic temperature difference, the oceanic 
velocity and the wind stress are weaker than observed. A contour plot of the corresponding 
oceanic streamfunction is presented in figure 2. Note that in this figure (and from here on), 
the displayed meridional extent is the central region between the two minima of wind stress, 
where the subpolar and subtropical gyres are enclosed. 

3.1    The oscillations 

The evolution of the oceanic temperature and velocity fields during about 3/2 of an oscillation 
period is presented in figure 3. Their corresponding anomalies are shown in figure 4. The basic 
features of the oscillations are: 

• They are decadal oscillations with a period of about 40 years (slightly more than twice 
the delay time (17 years)). 

• They are large-scale, extending over most of the basin. 
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Figure 3: Time evolution of oceanic temperature and velocity 
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Figure 4: Time evolution of oceanic temperature and velocity anomalies 
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Figure 5: Time evolution of normalized oceanic temperature and velocity anomalies at latitude 
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Figure 6: Time evolution of oceanic meridional temperature gradient and heat flux anomalies 
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• They are small in amplitude, with a root meansquare variance of about 1% in the oceanic 
temperature and about 10% in the oceanic velocity. 

• They are characterized by temperature anomalies, which are antisymmetric about the 
zero wind stress curl line, and which flip signs in each phase of the oscillation. 

• The oceanic temperature and velocity fields are 90 degrees out of phase. 

Figure 5 shows the time evolution of the temperature and the velocity anomalies (normal- 
ized by their mean values), at a fixed latitude (y = 3500fcm) in the subtropical gyre. Consider 
the point in time in which there are no temperature anomalies and the circulation in the gyres 
is weakest. This corresponds to point A in figure 5. As time goes on, the subtropical gyre be- 
comes warmer while the subpolar gyre becomes colder, (point B in figure 5). As a consequence, 
the meridional temperature gradient is reinforced, which causes an increase in the wind-stress 
curl. If the ocean responded instantaneously, the resulting stronger circulation in the gyres 
would advect temperature opposing to the temperature gradient anomaly until equilibrium is 
reached. However, in the presence of a lag time, the velocity in the gyres depends not only on 
the actual, increased wind-stress but also on the wind-stress which was forcing the ocean in 
the past 17 years. At that time, there was a negative temperature anomaly in the subtropical 
gyre and a positive one in the subpolar gyre and therefore a reduced wind-stress curl. The 
reduced velocity allows the temperature anomaly to grow until about 10 years later, when the 
effect of the increased temperature spins up the gyre. Thus, it is not until some years, that the 
oceanic circulation anomaly starts changing sign in response to the variations in temperature 
(point C in figure 5). As the circulation becomes stronger, it begins to reduce the temperature 
anomaly and eventually changes its sign. Then, the second phase of the oscillation starts, 

(point D in figure 5). 
Note that the storage term in the oceanic temperature equation plays an important role. In 

its absence an initial perturbation in meridional distribution of oceanic temperature would be 
"instantaneously" damped through heat transport and fluxes at the air-sea interface, arresting 
the oscillations. Also note that this would not be the case if, in the delay equation (40), the 
temperature modes at time (t - t0) had a larger amplitude than those at time t. 

The evolution of the oceanic meridional temperature gradient and of the oceanic heat flux 
anomalies are shown in figure 6. 

4    Conclusions and Future Work 

• An idealized model for the coupled large-scale dynamics of the midlatitude atmosphere 
and the wind-driven ocean circulation has been derived. 

• In this model, the ocean and the atmosphere are coupled through wind stress and heat 
fluxes at the air-sea interface. 
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• 

• 

The formulation can be reduced to two equations. One describes the time evolution of 
the oceanic temperature and the other represents the transient oceanic velocity response 
to the wind-stress curl. 

Sustained oscillations at decadal time scales have been found which resemble those found 
in the observations and in the results of more comprehensive numerical models. They 
have small amplitude and large-scale meridional extent. 

These oscillations owe their existence to the time lagged response of the ocean to changes 
in the wind stress curl associated with Rossby wave propagation. An adjustment time 
of the oceanic temperatures to changes in the circulation is also required. 

Areas of future work could include: 

• Further exploration of the parameter space. 

• Analysis of the solutions in comparison with observations as well as with results from 

coupled GCMs. 

• Addition of an asymmetric component in the radiative forcing. Can we obtain chaotic 

behavior?. 

• Multiple equilibria?. Equations (33) and (39) can be simplified further by considering 
the spatial extension in Fourier series of T and v and retaining only the mode that is 
directly forced by radiation. As a result, the system is reduced to two ordinary differential 
equations in time. A calculation of the steady states of this system for different parameter 
values led to multiple equilibria for sufficiently small values of A, i.e. for the case of a 
narrow western boundary layer. An exploration of the possible existence and causes of 
multiple equilibria in the non-truncated system could be a next step. 

• Teleconnections. The mechanisms by which the ocean basins communicate with each 
other through the atmosphere are still not well understood. The model presented here 
can be expanded to represent two ocean basins (which would have different delay times) 
so that it can be used to explored these mechanisms. 
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