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EXECUTIVE SUMMARY 

The Department of Defense has expressed heightened interest in managing 

information processes related to combat operations. This has highlighted the analytic 

community's need for information-related analysis methods, which begs the question of 

how to measure combat information. One measure, called "information gain," has been 

developed and applied at the US Military Academy in recent years. Information gain is 

based on modeling a tactical commander's uncertainty about his adversary's state 

(location of enemy units, for example) using probability distributions over the set of 

possible states. When data are received from an information source the probability 

distributions are "updated," using Bayes' formula and target movement characteristics. 

Information gain is defined to be the decrease in Shannon's entropy from the prior to the 

posterior situations. An impression can be gained of the growth in potential "situation 

awareness" of a commander by plotting cumulative information gain over time, as data 

from various sources are received. 

An issue related to the design architecture of certain sensor systems is the tradeoff 

between sensor dwell time and frequency of revisits of the sensor. We have implemented 

information gain analysis in a simple model of sensor coverage and target movement, and 

have examined the cumulative information gain over a sequence of time steps. The 

model is implemented in a simulation written in Visual Basic. It allows examination of 

the effects of changes in a variety of parameters of interest. We have examined effects 

on information gain of varying dwell times under a number of conditions. One result is 

an indication that larger dwell times may have an advantage over more frequent visits 

when targets are quite mobile. 

The author is indebted to the National Reconnaissance Office for support of this 

project. 
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INTRODUCTION 

As a result of studies concerning the architecture of the US Army's future force, 

known as "Century XXI" and "Army After Next," it has become apparent that 

information dominance is a critical requirement (TRADOC Pamphlet 525-5 1994). Thus 

there is heightened interest in optimizing battlefield information systems and managing 

related information processes (Sovereign 1996). It appears critically important to include 

measures of combat information in designing and evaluating combat systems and 

devising tactics for their use. Intuitively, most people believe information has value in 

combat, but it is not obvious how the underlying relationships might be quantified. 

Commonly used analytic measures are based on system throughput characteristics such 

as the volume or rate of messages, message quality or timeliness, system reliability, or 

characteristics of the data given in the messages, such as detection rates (Mac Willie 

1992). At the other end of the spectrum are the extraction of meaning from data received 

and its use in decision-making. The cognition of, and response to, information conveyed 

in a given set of data depends upon the receiving commander. This human process 

depends on the circumstances of the situation, as well as the personality, training, and 

experience of the commander. 

In recent years, we have developed a model of information gain at a level between 

dealing with characteristics of the physical communications system and dealing with 

human cognition and response of the decision-maker (Barr and Sherrill 1995, Sherrill and 

Barr 1997). We approach measuring the level of information a commander possesses at a 

given point in time by modeling the amount of uncertainty he faces, in terms of 

probability distributions over sets of possible enemy states. When the commander 

receives information about his adversary, the probability distributions are updated, using 

Bayes' formula or other means, to reflect the new state of the commander's uncertainty. 

The information gained as a result of the data received is measured by the decrease in 

Shannon's entropy from the prior to posterior distributions. This can be viewed as 

providing an upper bound on the increase in actual "situation awareness" of the 

commander, because the latter depends on his cognitive abilities to process the new 

information and fuse it with all available information. This approach is not ad hoc; in 

(Barr and Sherrill 1996) we show that, under seemingly reasonable assumptions, decrease 



in entropy is the unique appropriate measure of information gain. The measure has been 

successfully applied in a variety of systems evaluations (Sherrill and Barr 1996, Marin 

and Barr 1997). 

The work reported here is focused on determining information gains related to 

receipt of data about target locations in a given area of concern. We model the search 

process as a sequence of glimpses in a row of cells that partition the area of concern. The 

search pattern is cyclic. It starts at the "left" end of the row of cells, then progresses 

sequentially through adjacent cells on the "right." When the right end of the row is 

reached, search resumes at the left end, and the process is repeated. Dwell is modeled as 

a selected number of successive glimpses in each given cell before moving to search the 

adjacent cell. "Tracking" of a detected target during a dwell period is modeled by not 

allowing the target to move during the portion of a dwell period following its detection. 

Thus the sensor maintains line of sight (LOS) with a detected target during dwell periods. 

LOS is lost when the sensor moves to the adjacent cell. A detected target may be re- 

detected during a dwell period, strengthening the location information about that target. 

If a target is not present in a cell being scanned by the sensor, a "detection" may be 

declared, forming a false alarm. The sensor is assumed to have known operating 

characteristics (probabilities of detection and false alarm) for each search in each cell. 

Outcomes of sensor glimpses are independent, except for the case of tracking detected 

targets during dwell periods. 

The foregoing model is a crude representation of the following hypothetical 

situation. The area of concern is a valley whose width is less than the sensor footprint 

diameter. Cells are formed along the valley by successive non-overlapping sensor 

footprints. An unmanned aerial vehicle may travel up the valley, then orbit back to the 

starting point following a path outside the valley. This forms a sensor without dwell 

capability. A ground observer on a high point above the valley scans each cell for a 

given amount of time, following the same general cyclic pattern. This represents a sensor 

with possible dwell times. If the ground observer detects a target, he continues to track it 

for a time equal to the remainder of dwell period from the time of detection. 

Our goals in this report are as follows: 

•    To describe the basis of the information gain model (Section 1); 



• to document a Visual Basic program we developed to examine information gains 

under various conditions (Section 2 and the Appendix); and 

• to present some tradeoff indications from our model (Section 3). 

Because of the low level of resolution of our model, the tradeoff results we report are 

merely indicative of broad interactions among parameters such as dwell time and target 

movement probability. They suggest the existence of important tradeoffs, but only give 

very rough guidance to the conditions where break-even points occur for actual sensor 

systems in a real search environment. 

1. THE INFORMATION GAIN MEASURE 

In this section, we introduce the information gain measure and discuss some of its 

properties. We also describe the random walk we used to model target motion. 

A slight extension of Shannon's development of entropy in a communications 

framework (Shannon 1948) provides a characterization of the information gain measure. 

Suppose a "Blue" commander's area of concern consists of a set of non-overlapping cells 

that may contain an enemy asset. Suppose p = (pi, p2,..., pn) is the prior probability 

distribution over n possible states, representing the Blue commander's uncertainty of 

Red's presence or location at some specific time, and suppose the uncertainty he has at 

some later time is represented by a posterior distribution, p*. Denote the information 

gained in resolving the uncertainty represented by p to that represented by p*, by 

8(p,p*). Under several reasonable assumptions about the properties of the function 8, it 

follows the function must be of the form 

8(p,p*) = Sp*; ln(p*j) - Epilnfa) , (1) 

which is just the decrease in Shannon's entropy from the prior to posterior situations. 

A formal statement of this result is given in (Barr and Sherrill 1996), along with some 

elementary properties of the function 8. 

If a discrete system can be in state i with probability/?,; i=l,2,...,n, Shannon 

defined its entropy to be -Zpiln(pi), where the sum is over all n states and the logarithm is 

to the base 2, so entropy is measured in bits. (Since zero is not in the domain of the 

logarithm function, we define 0-ln(0) to be 0). Entropy is a measure of the dispersion of 

probability mass over points, without regard to what those points are. This distinguishes 



entropy from common statistical measures of dispersion such as variance and inter- 

quartile range. If a system can be in any of« possible states, the entropy of the system 

can range between 0 (when the exact state of the system is known) and ln(n) bits (when 

the state of the system is uniformly distributed over the possible states). 

Information gain does not depend on the labels used for outcomes in the sample 

space. This is entirely reasonable in our applications, because the labels of cells and the 

coordinate system of the battle area are inventions of the analyst; they are not inherently 

relevant to the gain in information about target location, for example. A simple 

interpretation of values of information gain can be based on the elimination of possible 

states by receipt of data. Suppose initially any of n states are equally likely, and data are 

received showing that (n - m) of the states are not possible. The posterior would then be 

uniform over m states, so the information gain would be ln(n/m) bits. For example, if the 

area of a "region of uncertainty" is halved by data from a reconnaissance report, the 

information gain is one bit. In general, an information gain of« bits is equivalent to the 

gain realized in reducing an area of uncertainty to l/2n its original size. 

The posterior distribution may be affected by the possible movements of targets, 

in addition to the receipt of data from sensors. In this report, we assume each target 

follows a simple symmetric random walk with reflecting barriers at each end of the row 

of cells. In each time cycle, a target remains stationary with probability q, and moves to 

the adjacent cell in either direction with probability (l-q)/2. At the end cells, the target 

can move only in the direction of its adjacent cell, with probability 1-q. This is an 

ergodic Markov chain, and its properties are well known (Goodman, 1988). For 

example, if there are a total of nc cells, the limiting distribution of target location is given 

by the mass function 

(l/2(nc-l), l/(nc-l), l/(nc-l),..., l/(nc-l), l/2(nc-l)). 

If it is assumed the tactical commander knows of this target behavior, it is reasonable to 

use this distribution as the initial prior. In this case, the initial entropy is 

log2(nc-l) + l/(nc-l). 

If a given target is not being tracked, the posterior distribution of its location, 

computed with receipt of data from the sensor, should be "decayed" to account for 

possible movement of the target. This is done using the one-step transition probabilities 



for the Markov chain.   Thus, location information following detection of a target in a 

certain cell, which provides relatively high probability the target is located in that cell, 

will be reduced in subsequent periods when line of sight (LOS) is lost, because the target 

may have moved from the cell. In particular, if p is the vector representing a given 

target's location mass function at a particular time when LOS has been lost, then the 

decay of information in the following single time step is represented by the location mass 

function p* after one step of the Markov chain. Letting nc denote the number of cells, p* 

is given by p* = p • P, where P is the nc x nc one-step transition matrix, 

P = 
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Target locations are assumed to be independent, so the total information gain over 

a given time step is the sum of the gains for the individual targets. As described above, 

the gain for each target is the result of sensor data regarding this target (consisting of 

either "target not seen" or "target detected") and possible target movement during the 

time interval. Sensor data are incorporated using Bayes' formula, and movement effects 

are incorporated using the random walk equations. 

2. DESCRIPTION OF THE SIMULATION MODEL 

In this section we describe and document the program we developed to facilitate 

evaluating information gain with the model discussed in Section 1. 



Since the sensor may generate random false alarms and the targets may move 

from cell to cell, it appears difficult to derive closed-form analytical expressions for 

expected information gains achieved as searching progresses. We have taken the 

approach of simulating sensor and target positions, and sensor results, over time. Time is 

measured in terms of a count of "searches" representing time intervals required for the 

sensors to complete one glimpse of a cell. The simulation is implemented in Visual 

Basic. The program simulates locations of targets with random starting locations and 

random walk behavior after each search (with no movement when a target is being 

tracked during a dwell period). The starting locations are generated independently, in 

accordance with the prior distribution specified by the user. The random walk is 

governed by the probability the target moves, set by the user. The program keeps track of 

which cell is being glimpsed at each search, and whether each target is in that cell. If a 

target is in the cell being glimpsed, there is a detection of the target by the sensor with 

probability specified by the user for this cell. If a target is not in the cell being glimpsed, 

there is a false "detection" of the target with probability specified by the user for this cell. 

Otherwise, there is no detection of the target for the cell (which is also information that is 

taken into account in computing information gain). 

The logic sequence of the program is as follows: 

a. input parameters for the search, including 

iter = number of iterations of the simulation, 

nc = number of cells in the region of interest, 

nt = number of targets moving amongst the cells of the region, 

P(0,J) = prior distribution of locations of targets, 

pd(J) = probability of detection in each cell J, 

pf(J) = probability of false alarm in each cell J, 

ns = number of searches per iteration, 

dc = dwell time of sensor, and 

1-q = probability target moves after each glimpse (when not being tracked); 

b. draw initial target locations, using the specified prior distribution; 

c. set the cell pointer (the cell now being searched); 



d. conduct a search of the chosen cell and update the location distribution for each target 

in accordance with data resulting from the search; 

e. decay the location distribution of each target to account for possible target 

movements; 

f. compute current entropy of the location distributions, and update statistical counters; 

g. move targets in accordance with random walk probabilities; 

h.   if fewer than ns searches have been completed for this iteration, goto step b above; 

i.   output summary statistics related to information gain, ask the user if another run is 

desired: if so, goto step a; if not stop. 

There are three uses of the random walk model of target locations in this analysis. 

• It enables the simulation to determine whether a claimed "detection" is an actual 

detection or a false alarm, depending on whether there is LOS with the target 

involved. LOS with a target exists when the sensor is looking in the cell containing 

the target. False alarms are associated with random targets for which there is no 

LOS, at a rate for each such target that makes the over-all false alarm rate in each 

search equal to the probability of false alarms specified by the user. 

• It provides the mechanism for decay of the location distribution of each target not 

being tracked, to account for possible movements of such targets. 

• The limiting Markov chain distribution provides a logical alternative to the 

assumption of a uniform prior distribution (or other prior distribution) for target 

locations. The prior is used to generate initial target positions, and to compute the 

initial entropy in the run. 

Input of parameters to the simulation and output of information gain statistics from 

the simulation use a link with an Excel workbook prepared in advance by the user. The 

path to the Excel file must be specified by the user on the Visual Basic (VB) input form 

displayed at run time (see Figure 1). All of the parameters, in their simplest form, can be 

input directly when the program is run, on the VB input form displayed. If the user 

wishes to assign different probabilities of detection of targets in different cells, then the 

nc-dimensional vector of probabilities must be placed in the Excel file read by the 

program, and the pd box in the VB input form set to blank. Similarly, if the user wishes 
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Figure 1. The VB input form. The user can set parameter values prior to each 
run. Default values are shown in the figure. To prepare for the first run, set the 
parameter values and click "go." For subsequent runs, click the "Another?" 
button (shown as a blank box in the figure), set parameters and click "go." The 
"completed" box indicates a running tally of iterations completed as a run is 
being conducted. 

to vary the probability of false alarm over cells, the vector of false alarm probabilities 

must be input via the Excel file and the pf box in the VB input set to blank. A similar 

scheme is used to input prior location distributions other than "uniform" and "limit" (the 

limiting distribution of the random walks of the targets). To choose uniform or limit 

prior distributions, the user should enter "uniform" or "limit," respectively, in the prior 

box of the VB input form. 

A "run" of the program consists of a simulation of "iter" iterations of "ns" 

searches for each of "nt" targets in "nc" cells. When the program has completed a run, 

and written data out to the Excel file as described below, the user is given an option to set 

new parameter values and make another run. This facilitates examination of the 

sensitivity of information gain to variations in parameters of interest. For example, many 

of the plots shown in the next section, showing comparisons of performance with five 

values of dwell time, were generated by selecting "Another" [run] when prompted. If the 

user clicks the "Another" box on the VB input form, he/she is prompted to set new 

parameter values (in our example, dwell time) and click "go" to produce another run with 

the new parameter values. The output to the Excel workbook is arranged to 

accommodate many runs, without overwriting output values. The user can then open the 

Excel file and analyze the output, make comparative plots, etc. 



To accommodate use of modular arithmetic for computing cell locations in case 

of "wrap around" at the end of the row of cells, the cells are numbered in the range 

[0, nc-1]. To input "custom" values for any of the three nc-dimensional vectors described 

in the preceding paragraph, they must be placed in Sheetl of the Excel workbook, in the 

following cells: 

cells in search area 
0    1         ...         (nc-1) 

parameter cells of Excel Sheetl 
detection probability 
false alarm probability 
prior distribution 

C3,D3,...,                X3 
C4,D4,...,                X4 
C5,D5,...,                X5 

If detection probability is the same for all cells, the common value can be entered in the 

pd box of the VB input form, and the vector need not be present in the Excel Sheetl. A 

similar comment holds for false alarm probabilities. If the user enters a prior distribution 

as "uniform" or "limit" in the VB form, the prior vector need not be present in the Excel 

Sheetl. If any of these vectors are input from the VB input form, the program writes the 

vectors to the Excel Sheetl in the locations specified above, to provide documentation of 

the input values for the run. When several runs are made in one session, only the most 

recent vectors are written to Sheetl. All other parameter values for each run are also 

recorded in the Excel Sheetl. 

Output from one run of the program consists of either one column vector or five 

column vectors of dimension ns = (number of searches), written to the Excel Sheetl, 

depending on the choice of the user (see Figure 1). The columns begin in row 15 of 

Sheetl, and extend to row 15 + ns -1. Descriptive headers for the columns are written to 

Sheet 1. If the user specifies 5-column output, the output is identified as follows: 

Column A: average (over iterations) of total entropy of the targets at each search; 

Column B: standard deviation of the total entropy at each search; 

Column C: average information gain from each search; 

Column D: average cumulative information gain at each search; and 

Column E: average cumulative information index (the information gain divided 

by the initial entropy) at each search. 



An example of output for a run with 5-column specification is shown in Table 1. The 

output in Sheetl has been truncated to the range B1..I18 to make the table fit the page. 

On Sheetl, the three top rows extend to the right to give numerical values for nc = 10 

cells, and the data columns extend downward to row 254 to cover values from each of the 

ns = 240 searches. Figure 2 below shows a plot of the five columns of data, to give an 

idea of the range of values obtained for each statistic reported. Note the standard 

deviation of entropy is nearly constant, at about 1.0 in this run. Note also that "steady 

state" is reached in this case after about 30 searches, which seems reasonable in light of 

the fact that three complete sweeps of the area of concern (10 cells) have been completed 

at that time. 

(detect) 0.9 0.9 0.9 0.9 0.9 0.9 
P(false) 0.05 0.05 0.05 0.05 0.05 0.05 

Prior 0.1 0.1 0.1 0.1 0.1 0.1 
iter=25 
ns = 240 
nt = 3 
nc= 10 
P(Mv)0.05 
dc=1 
run#1 
Entropy     Entropy Cum Gain 
Mean std dev      Info Gain   Cum Gain Index 

9.173022   0.806427   0.792762   0.792762   0.079548 
8.535983   1.062078     0.63704   1.429801    0.143471 

7.79889   1.066822   0.737092   2.166894   0.217433 
6.853439   0.953436   0.945451    3.112345   0.312303 

Table 1. Portion of output from a 5-column run, written to Excel Sheetl. Note 
that all parameter values for the run are written, documenting conditions for the 
run. 

10 
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Figure 2. Plot of values for 240 searches corresponding to the parameter settings 
shown in Table 1. Note the stability of the cumulative gain index (gray curve), at 
about 0.66, after only about three sweeps through the set of 10 cells. 

If the user specifies 1-column output, each run generates an ns-dimensional 

column of values of the cumulative information gain index at each search. The 

cumulative information gain index is a convenient measure for comparing results from 

different runs, because its values are constrained to the interval [-1,1], which may be 

interpreted as (1/100* of) the percentage cumulative gain relative to the initial entropy 

value. This facilitates comparisons when runs have different numbers of targets or 

different prior distributions, making the initial entropy values different. 

If the user does not wish to make additional runs, he or she should click "Stop!" 

to close the Excel file and stop the program. If the user chooses to make additional runs 

(by clicking "Another!" in the VB form), he or she is given the opportunity to change 

parameters in the form, then re-run the simulation. In this case, the columns of output in 

the Excel Sheet 1 are offset to the right, starting at Column G for the first re-run, at 

11 



Column N for the second re-run, etc., for 5-column output. The values of the parameters 

for each run are also written just above the first column of each set of columns containing 

the output for that run. In this way, one can compare information gain statistics obtained 

with variations in the values of the input parameters. We used this method to generate 

the plots of average cumulative information index versus search number shown in the 

next section of this report. 

When the program is run, the parameter-input form is displayed with default 

values for the parameters (Figure 1). The user may tab to any parameter text box (or 

click on the box) and change the value shown to any other feasible value. Here, 

"feasible" refers to requirements that probability inputs be real numbers between 0 and 1, 

the number of cells be an integer greater than 1, etc. We have included in the program 

only very basic error checking of user inputs, so it is advisable to input parameter values 

carefully. If an error of input is detected, the program prompts checking the offending 

parameter value, then continuing with the run without restarting the program. 

The run time for the simulation is roughly proportional to the number of iterations 

(iter) and the number of searches per iteration (ns); it increase exponentially with the 

number of targets (nt) and is less sensitive to the number of cells (nc). A "number of 

iterations completed" picture box in the VB input form shows the user how the 

simulation is progressing; this may be useful with runs having relatively large values of 

ns and nt. With a Pentium II processor running at 230 MHz we found the following 

example run times (where P(tgt moves) = .1, P(detect) = .9, P(false alarm) = .05 and Prior 

= uniform): 

with iter = 20, ns = 100, nt = 3 and nc = 12, the run time was 1/6 minute; 
with iter = 20, ns = 100, nt = 3 and nc = 120, the run time was 4/6 minute; 
with iter = 20, ns = 100, nt = 30 and nc = 120, the run time was 17 minutes; 
with iter = 20, ns = 1000, nt = 30 and nc = 120, the run time was 175 minutes. 

If the compiled version is used (running the .exe program), run times are about 40% 

shorter. 

Because of the stochastic nature of the outputs for each iteration, we recommend 

at least 20 iterations be performed in each run, if time permits (see Figure 3 below). The 

number of searches need not be larger than that required for the measures of interest to 

reach "steady state." This will depend on values of parameters such as P(tgt moves) and 

P(false alarm), and some experimentation may be necessary to determine an appropriate 

12 



value for a given set of input parameters. In Figure 3 we show plots of cumulative 

information index for 5 runs; two with iter = 2, two with iter = 20 and one with iter = 50. 

The effect of increasing sample size (iter) on stabilizing the cumulative information index 

is evident in the figure. Parameter values for these runs are shown in Table 2. 

P(detect) 0.9 0.9 0.9 0.9 0.9 0.9 
P(false) 0.05 0.05 0.05 0.05 0.05 0.05 

Prior 0.1 0.1 0.1 0.1 0.1 0.1 

iter=2 2 20 20 50 

ns = 240 240 240 240 240 

nt = 3 3 3 3 3 

nc= 10 10 10 10 10 
P(Mv)0.05 0.05 0.05 0.05 0.05 

dc=1 1 1 1 1 
run#1 2 3 4 5 

Table 2. Input for runs plotted in Figure 3. 

run 1 

III HI III II III I III II III III I III III III 111 III III III III III I III III 111 II III IIII III III II III III III III II III I 111 III 111 I III III III I III III III III III III II III III II III III IIII III III III 111 II III I 

— run 2 

— run 3 
— run 4 
— ..run 5 

T- CD T- CD T- 
CM    m    i^    o 

CD     T-     CD     T-     CD 
CM     lO     1^-     O     CM 
T- T- T- CM CM 

Search number 

Figure 3. Effects of increasing sample size (iter). Runs 1 (dark curve) and 2 had 
iter = 2, runs 3 and 4 had iter = 20, and run 5 (gray curve) had iter = 50. 
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3. ANALYSES OF DATA FROM SELECTED RUNS 

We have conducted runs with a number of variations in selected parameters, to 

provide insights into the effects of such variations. In this section, we present summaries 

of the results in plots of cumulative information index, usually in five 1-column output 

runs. The parameters for each run are shown in a table preceding the figure. The tables 

may truncate the vectors P(detect), P(false), and Prior; when these vectors have constant 

components the reader can determine the missing values. Brief commentary on each 

figure is given below the figure. 
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P(detect) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

P(false) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
Prior 0.055556 0.111111 0.111111 0.1 0.1 0.1 0.11 0.11 0.11 0.06 

iter=20 20 20 
ns = 100 100 100 
nt = 3 3 3 
nc= 10 10 10 
P(Mv)0.05 0.05 0.05 
dc=1 1 1 
run#1 2 3 

X 
0) •a £ 

> 

to 
3 
E 
3 
O 

LO 

IIIIMNIIIIMMIIIIIIINIimilimilllllhll 

CO 
LO 

en 
CO 

CO 
CO 

Search number 

Figure 4. Effects on cumulative information index of changing prior distribution. 

Run 1 was made with the limit distribution, run 2 with a uniform prior, and run 3 with a 

custom prior (values shown in the table above). Priors do not appear to have much effect, 

after one sweep of the cells, unless target movement probability is very low. 
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P(detect) 0.9 0.9 0.9 
P(false) 0.05 0.05 0.05 

Prior 0.05 0.05 0.05 
iter=25 25 25 25 25 
ns = 240 240 240 240 240 
nt = 5 5 5 5 5 
nc = 20 20 20 20 20 
P(Mv)0.05 0.05 0.05 0.05 0.05 
dc=1 2 4 8 12 
run#1 2 3 4 5 

0.9 0.9 0.9 0.9 
0.05 0.05 0.05 0.05 
0.05    0.05    0.05      0.05 

X o 
■a 
c 

o 
> 

3 
E 
3 
Ü 

1 
0.8 

0.6 
0.4 

0.2 
0 

yyi^^^xf^^^^ 
J.*^**-* 

 run 1 
 run 2 
- - -run 3 
 run 4 
. - - run 5 

CM CO o ^1- LO o 
CM 

Search number 

Figure 5. Effects of changing dwell time when target movement is low. 

Information accumulates best when there is no dwell (i.e., dc = 1), when target movement 

probability is low. 
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P(detect) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 
P(false) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Prior 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

iter=25 25 25 25 25 
ns = 240 240 240 240 240 
nt = 5 5 5 5 5 
nc = 20 20 20 20 20 
P(Mv)0.3 0.3 0.3 0.3 0.3 
dc=1 2 4 8 12 
run#1 2 3 4 5 

X 
o 

■D 
c 

d) 
> 

3 
E 
3 
Ü 

Search  number 

Figure 6. Effects of dwell time when target movement is large. 

Overall, there seems to be a slight advantage to larger dwell times when the probability of 

target movement is large (.3). Contrast this with the situation in Figure 5. 
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P(detect) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 
P(false) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Prior 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

iter=25 25 25 25 25 
ns = 240 240 240 240 240 
nt = 5 5 5 5 5 
nc = 20 20 20 20 20 
P(Mv)0.5 0.5 0.5 0.5 0.5 
dc=1 2 4 8 12 
run# 1 2 3 4 5 

X 
<D 
■o 
c 

o 
> 

« 
3 
E 
3 
Ü 

0.4 

0.3 

0.2 

0.1 

0 

m     o      m     o 
T- T- CM 

Search number 

Figure 7. Effects of dwell time when targets are very mobile. 

When probability of target movement is very large (.5), larger dwell times appear to give 

better cumulative information gain. Compare with Figures 5 and 6. 
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P(detect) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

P(false) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
Prior 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

iter=25 25 25 25 25 
ns = 240 240 240 240 240 

nt= 10 10 10 10 10 

nc= 10 10 10 10 10 
P(Mv)0.3 0.3 0.3 0.3 0.3 
dc=1 2 4 8 12 
run#1 2 3 4 5 

X 
0) 
•a 
c 

o 
> 

J2 
3 
E 
3 
Ü 

0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

0 

run 1 

LO 
N- LO CO 

CO 
CM 

Search  number 

Figure 8. Effects of dwell times in a field rich with very mobile targets. 

When there are many targets, relative to the number of cells, and probability of target 

movement is 0.3, systems with larger dwell times appear to give better cumulative 

information gain. Compare with Figure 6. The "cyclic" appearance of the curves is due 

to end-point effects related to the assumed search pattern and reflecting barriers for the 

target random walk. Note the period of the cycles is equal to the time of a complete 

sweep through the cells. For example, the curve for dc = 12 (gray curve) has a period of 

12(nc) = 120 in this case. 
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P(detect) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 
P(false) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

Prior 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
iter=25 25 25 25 25 
ns = 240 240 240 240 240 
nt=1 1 1 1 1 
nc = 20 20 20 20 20 
P(Mv)0.3 0.3 0.3 0.3 0.3 
dc=1 2 4 8 12 
run#1 2 3 4 5 

run 1 
— run 2 
... run 3 
— run 4 
— run 5 

CO     CD      CO     CM     lO      CO 
CM 

Search number 

Figure 9. Effect of dwell times in a target poor environment, with P(Mv) = 0.3 
and P(false) = 0.4. 

In a target poor environment, with poor sensor performance and very mobile targets, 

larger dwell times appear to give relatively superior cumulative information gains. 

Compare with Figure 8. 
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P(detect) 0.9 0.9 0.9 0.9 0.9 0.9 
P(false) 0.4 0.4 0.4 0.4 0.4 0.4 

Prior 0.1 0.1 0.1 0.1 0.1 0.1 

iter=25 25 25 25 25 

ns = 240 240 240 240 240 
nt=5 5 5 5 5 
nc= 10 10 10 10 10 
P(Mv)0.1 0.1 0.1 0.1 0.1 

dc=1 2 4 8 12 

run#1 2 3 4 5 

X o 
C 

o 
> 

J2 
3 
E 
3 
o 

0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

0 
m 
h- 

00 
CO 
CM 

Search number 

Figure 10. Effects of dwell times with high false alarm probability. 

Cumulative information gain has a low steady state value when false alarm rates are high 
(0-4). 
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P(detect) 0.9 0.9 0.9 0.9 0.9 0.9 
P(false) 0 0 0 0 0 0 

Prior 0.1 0.1 0.1 0.1 0.1 0.1 

iter=25 25 25 25 25 

ns = 240 240 240 240 240 
nt = 5 5 5 5 5 
nc= 10 10 10 10 10 

P(Mv)0.1 0.1 0.1 0.1 0.1 
dc=1 2 4 8 12 
run#1 2 3 4 5 

Figure 11. Effects of dwell times when there are no false alarms. 

Short dwell times appear best when the sensor cannot report false detection. Compare 

with Figure 10. 
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P(detect) 0.9 0.9 0.9 0.9 0.9 0.9 
P(false) 0.05 0.05 0.05 0.05 0.05 0.05 

Prior 0.1 0.1 0.1 0.1 0.1 0.1 
iter=25 25 25 25 25 
ns = 240 240 240 240 240 
nt = 3 3 3 3 3 
nc= 10 10 10 10 10 
P(Mv)0 0 0 0 0 
dc=1 2 4 8 12 
run#1 2 3 4 5 

0 
■D 
C 

© 
> 

W 
3 
E 
3 
Ü 

■ i in in mi in ■ im im in mi ■ in mi mi ii ■ im in nil ■ in ■ m in ■ mi in mi mi ti mi mi in in mi mi i mi in ■ ■ in mi in mi in mi ■ in ill in ■ ■ in in ■ in in in ■ 

run 1 
 run 2 
- - - -run 3 
 run 4 
 run 5 

CD        t- 
CM      m 

CD 
1^ 

CO T— CO T— CO 
CM LO N- o CM 
T— T— x— CM CM 

Search number 

Figure 12. Effect of dwell times with immobile targets. 

In case targets cannot move, increased dwell times appear to be of no value, in terms of 

cumulative information gain. 
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Conclusions 

The simple simulation we have developed can give insight into possible tradeoffs 

between dwell time and frequency of visit of a sensor. In our analysis, frequency of 

visit is constrained to simple multiples of dwell time, so the latter might more 

properly be called "dwell ratio." For example, when dwell time is set to 2, the 

dwelling sensor glimpses in each cell twice before moving to the adjacent cell, 

whereas the non-dwelling sensor moves after each glimpse. Therefore, the frequency 

of visit to a specific cell with the non-dwelling sensor is twice that of this dwelling 

sensor. 

It appears a dwelling sensor may have advantage when targets are very mobile. 

This is because the dwelling sensor is assumed to track a detected target during the 

dwell period, and such a target does not have information decaying because of 

movement. It is possible the beneficial effect of larger dwell in such cases is tracking 

ability, rather than dwell itself. If dwell times are too large, the performance of the 

sensor system is degraded. Here, "large" is measured relative to the number of cells 

in the area of concern; it also appears to depend on target mobility. If targets are 

relatively immobile and dwell times are very large, then it may take a long time for 

the sensor system to reach a cell occupied by a target, whereas the non-dwell sensor 

will cycle past the target more frequently. In addition, the tracking advantage of the 

dwelling sensor is degraded with a target that rarely (or never) moves. 

The documentation and user instructions we have supplied should allow others to 

perform experiments with the simulation we have developed. A listing of the Visual 

Basic code is given in the Appendix. The compiled version of the program does not 

require Visual Basic on the running machine, although Excel '97 is required. 
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APPENDIX: LISTING OF VISUAL BASIC CODE 

A. General Module: 
Private iter As Integer 
Private ns As Integer 
Private nt As Integer 
Private nc As Integer 
Private mp As Single 
Private q As Double 
Private de As Integer 
Private Li As Integer 
Private K As Integer 
Dim pd() As Single 
Dim pf() As Single 
Dim L() As Integer 
Dim LOSO As Integer 
Dim PO As Double 
Dim CPO As Single 
Dim PWO As Double 
Dim EntO As Double 
Dim EntsO As Double 
Dim IGainAvO As Single 
Dim CGainAVO As Single 
Dim CGainldxO As Single 
Dim I As Integer 
Dim PointC As Integer 
Dim Relook As Integer 
Dim avpd As Single 
Dim xlio As Excel.Workbook 
Dim OutCol As Integer 
Dim numeol As Integer 
Dim msg$ 

number of iterations 
number of searches per iteration 
number of targets 
number of cells 
probability target moves in each cycle 
non-move prob 
number of dwell cycles per cell 
iteration counter 
search counter 
probability of detection, given target present 
probability of false alarm 
locations of targets 
flag for LOS with detected target 
location probabilities for targets 
cdf of the prior 
nt x nc working array for decay 
entropy accumulator 
sum of squares counter 
information gain at Kth search 
cumulative gain at Kth search 
cumulative gain index 
target index 
cell to be searched 
counter for dwell cycles 
average detection prob 
get ready to open Excel file 
count of number of runs - 1 
output columns multiplier 
error message 

B. Subroutines 
Private Sub Commandl_Click() 
InitializeO 

If msg$ <> "" Then Exit Sub 
'overall initialize: read pd, pf, 
'stop if input not OK 

prior 

For Li = 1 To iter 
Ini tializel 
For K = 1 To ns 

Pointer 
DecayP 
Search 
Mover 
Entropy 

Next K 
Displaylt 

Next Li 

Output 

End Sub 

'start main driver 
'initialize iteration: zero D, F, set up L, P 
'search K in iteration Li 
'cell to search 
'modify P to account for movement probabilities 
'search cell, update D, F 
'stochastic movement of targets 
'compute entropy, update counters 

'compute stats, write to file 

'return to input form 
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Sub InitializeOO 'do initial housekeeping, input parameters 
msg$ = "" 'error message 
If OutCol = 0 Then 'first time, open file 
Set xlio = Get0bject(Text8.Text) 'excel input-output file 
End If 
Label9.Caption = ""        'take message off screen 
Text9.Text = "" 'hide any message 
Picturel.Cls 
Picturel.Print "0" 'iterations counter 
Picturel.SetFocus 'now set up Excel Sheetl headers 
xlio.Worksheets("Sheetl").Cells(l, 1) = "DWELL TIME vs.REVISIT FREQUENCY" 
xlio.Worksheets("Sheetl").Cells(3, 2) = "P(detect)" 
xlio.Worksheets("Sheetl").Cells(4, 2) = "P(false)" 
xlio.Worksheets("Sheetl").Cells(5, 2) = "Prior" 

If Option2.Value = True Then 
numcol =5 'set # output columns flag 

Else: numcol = 1 
End If 
X$ = "" 

iterx = CSng(Textl.Text)       'write user inputs to Excel Sheetl 
If iterx < 1 Or Int(iterx) <> iterx Then 

msg$ = "check iter" 
errmsg 

Else 
iter = Clnt(iterx) 

End If 
If OutCol = 0 Then X$ = "iter=" 
xlio.Worksheets("Sheetl").Cells(6, 1 + numcol * OutCol) = X$ & CStr(iter) 

nsx = CSng(Text2.Text) 
If nsx < 2 Or Int(nsx) <> nsx Then 

msg$ = "check ns" 
errmsg 

Else 
ns = Clnt(nsx) 

End If 
If OutCol = 0 Then X$ = "ns = " 
xlio.Worksheets("Sheetl").Cells(7, 1 + numcol * OutCol) = X$ & CStr(ns) 

ntx = CSng(Text3.Text) 
If ntx < 1 Or Int(ntx) <> ntx Then 

msg$ = "check nt" 
errmsg 

Else 
nt = Clnt(ntx) 

End If 
If OutCol = 0 Then X$ = "nt = " 
xlio.worksheets("Sheetl").Cells(8, 1 + numcol * OutCol) = X$ & CStr(nt) 

ncx = CSng(Text4.Text) 
If ncx < 2 Or Int(ntx) <> ntx Then 

msg$ = "check nc" 
errmsg 

Else 
nc = Clnt(ncx) 
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End If 
If OutCol = 0 Then X$ = "nc = " 
xlio.Worksheets("Sheetl").Cells(9, 1 + numcol * OutCol) = X$ & CStr(nc) 

q = 1 - CDbl(Text6.Text)       'prob tgt doesn't move 
If q < 0 Or q > 1 Then 

msg$ = "check move prob" 
errmsg 

End If 
If OutCol = 0 Then X$ = "P(Mv)" 
xlio.Worksheets("Sheetl").Cells(10, 1 + numcol * OutCol) = X$ & CStrd - q) 

dcx = CSng(Text5.Text) 
If dcx < 1 Or Int(dcx) <> dcx Then 

msg$ = "check dc" 
errmsg 

Else 
dc = Clnt(dcx) 

End If 
If Textll.Text <> "" And (CSng(Textll.Text) < 0 Or CSng(Text11.Text) > 1) Then 

msg$ = "check P(detect)" 
errmsg 

End If 
If Textl2.Text <> "" And (CSng(Textl2.Text) < 0 Or CSng(Textl2.Text) > 1) Then 

msg$ = "check P(F. Alrm)" 
errmsg 

End If 
If msg$ <> "" Then Exit Sub 
If OutCol = 0 Then X$ = "dc = " 
xlio.Worksheets("Sheetl").Cells(11, 1 + numcol * OutCol) = X$ & CStr(dc) 
If OutCol = 0 Then X$ = "run# " 
xlio.Worksheets("Sheetl").Cells(12, 1 + numcol * OutCol) = X$ & CStr(OutCol + 1) 

Randomi ze 
ReDim PW(nt. nc - 1) 
ReDim pd(nc - 1) 
ReDim pf(nc - 1) 
ReDim L(nt, nc - 1) 
ReDim L0S(nt, nc - 1) 
ReDim P(nt, nc - 1) 
ReDim CP(-1 To nc - 1) 
ReDim Ent(ns) 
ReDim Ents(ns) 
ReDim IGainAv(ns) 
ReDim CGainAV(ns) 
ReDim CGainldx(ns) 

'seed random number generator 
'dynamic arrays 

'cell counter range is 0 to nc-1, for modular arithmetic 

'P(0,.) retains copy of prior 
'CDF of custom prior, used to generate locations 

If Textll.Text = "" Then     'read pd from Excel Sheetl 
avpd = 0 'counter for average pd 

For j = 0 To nc - 1       'read pd 
pd(j) = xlio.Worksheets("Sheetl").Cells(3, 3 + j) 
If pd(j) < 0 Or pd(j) > 1 Then 
msg$ = " check pd on Sheetl" 
errmsg 

End If 
avpd = avpd + pd(j) 
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Next j 
avpd = avpd / nc       'average pd for false alarms in Search 

Else 'set pd from Forml, write to Excel Sheetl 
avpd = CSng(Textll.Text) 
For j = 0 To nc - 1 

pd(j) = avpd 
xlio.Worksheets("Sheetl").Cells(3, 3 + j) = pd(j) 

Next j 
End If 
If Textl2.Text = "" Then     'read pf from Excel Sheetl 
For j = 1 To nc - 1 

pf(j) = xlio.Worksheets("Sheetl").Cells(4, 3 + j) 
If pf(j) < 0 Or pf(j) > 1 Then 
msg$ = " check pf on Sheetl" 
errmsg 

End If 
Next j 

Else 'read pf from VB Forml, write to Excel Sheetl 
For j = 0 To nc - 1 

pf(j) = CSng(Textl2.Text) 
xlio.Worksheets("Sheetl").Cells(4. 3 + j) = pf(j) 

Next j 
End If 

If Textl3.Text = "uniform" Then  'set uniform prior 
Ent(O) = nt * Log(nc) / Log(2) 'initial entropy 
For j = 0 To nc - 1 

P(0, j) = 1 / nc 
xlio.Worksheets("Sheetl").Cells(5, 3 + j) - P(0, j) 

Next j 
Elself Textl3.Text = "limit" Then 'set prior for random walk 

Ent(O) = nt * (1 / (nc - 1) + Log(nc - 1) / Log(2)) 'initial entropy 
For j = 0 To nc - 1 

P(0, j) = 1 / (nc - 1) 
If j = 0 Then P(0. j) = 1 / (2 * (nc - 1)) 
If j - nc - 1 Then P(0, nc - 1) = 1 / (2 * (nc - D) 
xlio.Worksheets("Sheetl").Cells(5, 3 + j) = P(0, j) 

Next j 
Else 'read prior from Excel Sheetl, set initial entropy 

Ent(O) - 0 
For j = 0 To nc - 1 

■P(0, j) = xlio.Worksheets("Sheetl").Cells(5, 3 + j) 'read prior 
If P(0. j) < 0 Or P(0, j) > 1 Then 'from Excel Sheetl 
msg$ = "check prior on Sheet 1" 
errmsg 

End If 
If P(0, j) > 0.0000000001 Then Ent(0) = Ent(0) - P(0, j) * Log(P(0, j)) 

CP(j) = CP(j - 1) + P(0, j)    'CDF to generate initial locations 
Next j 

If CP(nc - 1) < 0.99999 Or CP(nc - 1) > 1.00001 Then 
msg$ = " check prior on Sheetl" 
errmsg 

End If 
Ent(0) = nt * Ent(0) / Log(2) 'total entropy, base 2 

End If 
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End Sub 

Sub InitializeK) 'zero LOS; draw L; set Priors 
For I = 1 To nt 

For j = 0 To nc - 1 
L0S(I, j) = 0       'start with no LOS 
L(I, j) = 0        'prepare to set locations 
P(I. j) = P(0, j)    'set priors 

Next j 
Next I 

If Textl3.Text = "uniform" Then  'draw locations 
For I = 1 To nt 

L(I, Int(nc * Rnd)) = 1     'random initial locations 
Next I 

Elself Textl3.Text = "limit" Then 'limiting distribution for random walk 
For I = 1 To nt 'set prior values 

L(I, Int((nc - 1) * Rnd)) = 1 'draw initial locations 
If L(I, 0) = 1 And Rnd < 0.5 Then 

L(I. 0) = 0 
L(I, nc - 1) = 1 

End If 
Next I 

Else 'custom prior from Excel Sheetl 
For I = 1 To nt      'now draw L 

xx = Rnd 
For j = 0 To nc - 1 

If xx <= CP(j) Then Exit For 'inverse CDF generation of location 
Next j 
L(I, j) = 1 

Next I 
If Textl3.Text = "uniform" Or Textl3.Text = "limit" Then 

For j = 0 To nc - 1  'write prior to Excel Sheetl 
xlio .Worksheets("Sheetl").Cells(5, 3 + j) = P(l, j) 

Next j 
End If 

End If 
End Sub 

Sub PointerO 'set cell pointer for search 
If K = 1 Then PointC = 0: Relook = 1: Exit Sub  'start in cell 0 
Relook = Relook + 1        'dwell counter 
If Relook > dc Then        'accomodate dwell time dc 

PointC = PointC + 1 
If PointC > nc - 1 Then PointC = 0 'cyclic search pattern 
Relook = 1 'restart dwell counter 
For I = 1 To nt        'LOS to old cell is lost 

L0S(I, (PointC - 1 + nc) Mod nc) = 0 
Next I 

End If 
End Sub 

Sub DecayPO 'decay using known random movement probs 
If K = 1 Then Exit Sub      'lag decay one cycle 
For I = 1 To nt 
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If LOSd, PointC) = 0 Then  'no decay when in view, else decay P 

For II = 1 To nt 
For Jl = 0 To nc - 1 
PWdl, Jl) = Pdl, Jl) 'copy current P 

Next Jl 
Next II 

Select Case nc 'random walk eqns 
Case 2 

P(I, 0) = q * PWd, 0) + (1 - q) * PWd, 1) 
P(I, 1) = (1 - q) * PWd, 0) + q * PWd, 1) 

Case 3 
P(I, 0) = q * PWd, 0) + (d - q) / 2) * PWd, 1) 
P(I, 1) = (1 - q) * PWd, 0) + q * PWd, 1) + (1 - q) * PWd, 2) 
P(I, 2) = (d - q) / 2) * PWd, 1) + q * PWd, 2) 

Case Is >= 4 
P(I, 0) = q * PWd, 0) + (d - q) / 2) * PWd, 1) 
Pd, 1) = d - q) * PWd, 0) + q * PWd. 1) + (d - q) / 2) * PWd, 2) 
For j = 2 To nc - 3 

Pd, j) = (d - q) / 2) * PWd, j - 1) + q * PWd, j) + (d - q) / 2) * PWd, j + 1) 
Next j 

P(I, nc - 2) = (d - q) / 2) * PWd, nc - 3) + q * PWd, nc - 2) + 
(1 - q) * PWd, nc - 1) 

Pd, nc - 1) = (d - q) / 2) * PWd, nc - 2) + q * PWd, nc - 1) 
End Select 
End If 

Next I 
End Sub 

Sub SearchO 'search PointC, update D, F, P 
For I = 1 To nt 

If Ld, PointC) = 1 Then    'looking at target 
If Rnd < pd(PointC) Then 'detection! 
LOSd, PointC) = 1 
If pf(PointC) = 0 Then Pd, PointC) = 1 'must be real detection 
Updated 

Else 
Updaten 'looking at tgt, but no detect 

End If 
Elself Rnd < 1 - (1 - pf(PointO) A (1 / (nt * avpd)) And LOSd, PointC) = 0 

Then 

Else 
Updated 

Updaten 
End If 

Next I 
End Sub 

'no "detection" 

Sub UpdatedO 
Sum = 0 
For j = 0 To nc - 1 

If j <> PointC Then 
Pd, j) = pf( PointC) * Pd, j) 

'update P with "detection" using Bayes' formula 
'normalization counter 
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Sum = Sum + P(I, j) 
Else 

P(I, PointC) = pd(PointC) * PCI. PointC) 
Sum = Sum + P(I. PointC) 

End If 
Next j 
For j = 0 To nc - 1 'normalize P(I,.) vector 

P(I. j) = PCI. j) / Sum 
Next j 

End Sub 

Sub UpdatenO 'update P with no "detection" using Bayes' 
formul a 

Sum = 0 'normalization counter 
For j = 0 To nc - 1 

If j <> PointC Then 
PCI, j) = (1 - pf(PointO) * PCI, j) 
Sum = Sum + PCI, j) 

Else 
PCI, PointC) = (1 - pd(PointO) * PCI, PointC) 
Sum = Sum + PCI, PointC) 

End If 
Next j 
For j = 0 To nc - 1 

PCI, j) = PCI, j) / Sum     'normalize vector 
Next j 

End Sub 

Sub Mover0 'stochastic movement of targets 
For I = 1 To nt 

For j = 0 To nc - 1        'determine where this tgt is 
If LCI, j) =1 Then Exit For 

Next j 
xx = Rnd 'move random variable 

If LOSCI, j) = 0 And xx >= q Then 'detected tgts can't move during dwell 
'(to model tracking); no move for this target if xx<q 

If j = 0 Then 'move tgt to the right 
LCI, 0) = 0 
LCI, 1) = 1 

El self j = nc - 1 Then     'move to the left 
LCI, nc - 1) = 0 
LCI, nc - 2) = 1 

Elself xx > (1 + q) / 2 Then 'move left or right with prob 1-q 
LCI. j - 1) = 1 
LCI, j) = 0 

Else 
LCI, j + 1) = 1 
LCI, j) - 0 

End If 
End If 

Next I 
End Sub 
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Sub EntropyO 'compute entropy and update counters 
Entrop = 0 
For I = 1 To nt 'cumulative (over L) entropy at search K 

For j = 0 To nc - 1 
If P(I, j) > 0.0000000000001 Then  'avoid underflow problems 
Entrop = Entrop - P(I. j) * Log(P(I. j)) 'base e 

End If 
Next j 

Next I 
Entrop = Entrop / Log(2)     'base 2 
Ent(K) = Ent(K) + Entrop     'cumulative sum 
Ents(K) = Ents(K) + Entrop * Entrop 'sum of squares 

End Sub 

Sub Output0 
For K = 1 To ns 

Ent(K) = Ent(K) / iter 
If iter > 1 And (Ents(K) 
Ents(K) = Sqr((Ents(K) 

Else 
Ents(K) = 0 

End If 
IGainAv(K) = Ent(K - 1) • 
CGainAV(K) = CGainAV(K - 
CGainldx(K) = CGainAV(K) 

Next K 

iter 
iter 

'compute and write out results 
'compute statistics 
'average for search K 

Ent(K) 
Ent(K) 

Ent(K)) 
Ent(K)) 

Ent(K) 
1) + IGainAv(K) 
/ Ent(0) 

0 Then 
CDbKiter D) 'std dev 

'average info gain due to Kth search 
'cumulative gain 
'cumulative index 

'one column output 
1 + OutCol) = "Cum. Gain" 
1 + OutCol) = " Index" 

If Optionl.Value = True Then 
xlio.Worksheets("Sheetl").Cells(13, 
xlio.Worksheets("Sheetl").Cells(14, 
For K = 1 To ns 
xl 1 o.Worksheets("Sheetl").Cells(14 + K. 1 + OutCol) = CGainldx(K) 

Next K 
Else 
xlio.Worksheets("Sheetl").Cells(13, 
xlio.Worksheets("Sheetl").Cells(14. 
xlio.Worksheets("Sheetl"). 
xlio.Worksheets("Sheetl"). 

'5 col output 
1 + 5 * 

"Sheetl") 
"Sheetl") 
Sheetl").Cells(13. 
Sheetl").Cells(14, 

xlio. Worksheets( 
xlio.Worksheets( 
xlio.Worksheets( 
xlio. Worksheets( 
For K = 1 To ns 
xlio.Worksheets("Sheetl") 
xlio.Worksheets("Sheetl") 
xlio.Worksheets("Sheetl") 
xlio.WorksheetsC'Sheetl") 
xlio .WorksheetsC'Sheetl") 

Next K 
End If 
Text9.Text = "Another!" 
Text9.SetFocus 

Cells(13. 
Cells(14, 
Cells(14. 
Cells(14. 

OutCol) 
OutCol) 
OutCol) 
OutCol) 
OutCol) 
OutCol) 
OutCol) 
OutCol) 

"Entropy" 
"Mean" 
"Entropy" 
"std dev" 
"Info Gain" 
"Cum Gain" 
"Cum Gain" 
"Index" 

Cells(14 + K, 1 + 5 * OutCol) = Ent(K) 
Cells(14 + K, 2 + 5 * OutCol) = Ents(K) 
Cells(14 + K, 3 + 5 * OutCol) = IGainAv(K) 
Cells(14 + K, 4 + 5 * OutCol) = CGainAV(K) 
Cells(14 + K. 5 + 5 * OutCol) = CGainldx(K) 

'display option for another run 

' *** write-out of matrices to Sheet 2*** 
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'For I = 1 To nt 
zeros 

' For J = 0 To nc - 1 
■ xlio.Worksheets("Sheet2").Cells(I 

' xlio.Worksheets("Sheet2").Cells(I 
'xlio.Worksheets("Sheet2").Cells(I 

' Next J 
'Next I 
■ *************** 

'write rows of L, D, F, P, filling rest with 

+ 11, J + 1) = L(I, J) 
+ 21, J + 1) = LOSCI. J) 
+ 1. J + 1) - P(I, J) 

End Sub 

Private Sub TextlO_Click() 
xlio.Save 
Set xlio = Nothing 
End 

End Sub 

'save output to file 
'release object 

Private Sub Text9_Click()       'user gets option to make another run 
Label9.Caption = "set parameters, click 'go'" 
OutCol = OutCol + 1 
Picturel.Cls 
Picturel.Print "0" 
Commandl.SetFocus 

End Sub 

Sub DisplayltO 
Picturel.Cls 
Picturel.Print CStr(Li); 
Picturel.SetFocus 

End Sub 

'display iterations completed 

Sub errmsgO 
If Left$(msg$, 1) = " " Then 
Label9.Caption = msg$ & "; fix, start over" 

Else 
Label9.Caption = msg$ & "; fix, click 'go'" 

End If 
Text9.Text = "ERROR!" 

End Sub 
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