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ABSTRACT 
A measure of performance of battle 

information systems, called "information 
gain," has been under development by 
faculty and cadets at the US Military 
Academy. It is based on decreases (and 
increases) in Shannon's entropy that result 
from receipt of data by a tactical 
commander. Such data might include, for 
example, reconnaissance reports, 
movements of the opposing forces and 
results of engagements. We have 
investigated the effects of target mobility on 
information loss when surveillance of a 
target is broken. This is based on a simple 
stochastic model of target movements, 
together with an approximation appropriate 
for implementation in a spreadsheet. We 
found the shapes of information loss curves 
are dependent on terrain features affecting 
the movement of the target, and that 
information is lost surprisingly rapidly once 
contact with the target is lost. 

INTRODUCTION 
As a result of studies concerning the 

architecture of the US Army's future force, 
known as "Force XXI" and "Army After 
Next," it has become apparent that 
information dominance is a critical 
requirement (TRADOC Pamphlet 525-5 
1994). Thus there is heightened interest in 
optimizing battlefield information systems 
and managing related information processes. 
It appears critically important to include 
measures of combat information in 
designing and evaluating combat systems 
and devising tactics for their use. 
Commonly used analytic measures are based 
on system throughput characteristics such as 
the volume or rate of messages, message 
quality or timeliness, system reliability, or 
characteristics of the data given in 
messages, such as detection rates. At the 
other end of the spectrum are the extraction 
of meaning from data received and its use in 
decision-making. The cognition of, and 
response to, information conveyed in a given 



Figure 1. Situational Awareness. 

set of data depends upon the receiving 
commander. This human process depends 
on the circumstances of the situation, as well 
as the personality, training, and experience 
of the commander. This is illustrated by the 
situational awareness pyramid (FM 100-6) 
shown in Figure 1. 

In recent years, several faculty members 
and cadet groups in the Department of 
Systems Engineering at the US Military 
Academy have been developing a model of 
information gain. It is at a level between 
dealing characteristics of the physical 
communications system and dealing with 
human cognition and response of the 
decision-maker, about mid-way up the 
pyramid shown in Figure 1. The approach is 
to measure the level of information a 
commander possesses at a given point in 
time by modeling the amount of uncertainty 
he has about his adversary, in terms of 
probability distributions over sets of possible 
enemy states. When the commander 
receives data from a source such as a 
reconnaissance   platform,   the   probability 

distributions are updated, using Bayes' 
formula or other means. The resultant 
"posterior" distribution is assumed to reflect 
the new state of the commander's 
uncertainty. The information gained as a 
result of the data received is measured by the 
decrease in Shannon's entropy from the 
prior to posterior distributions. This 
approach is not ad hoc; Barr and Sherrill 
(1996) show that, under seemingly 
reasonable assumptions, decrease in entropy 
is the unique appropriate measure of 
information gain. The information gain 
measure has been successfully applied in a 
variety of systems evaluations (Sherrill and 
Barr 1996, Marin and Barr 1997, Barr 1998). 

The work reported here is focused on 
determining effects of target mobility on 
information loss. If a target is detected at a 
certain location, the probability mass 
function of that target's location amounts to 
a "unit-spike" of probability over the target's 
location. If surveillance of a mobile target is 
interrupted, for example if line of sight with 
the target is lost, the probability spike begins 



to "melt," and probability "flows" to 
surrounding areas. But what is the precise 
nature of this process, and how does it relate 
to target movement capabilities and terrain 
attributes? And what is the shape of the 
information gain curve with this decrease? 
In the following sections of this report, we 
present results of an investigation of these 
questions. 

1.   THE INFORMATION GAIN 
MEASURE 
In this section, we introduce the 

information gain measure and discuss some 
of its properties. 

A slight extension of Shannon's 
development of entropy in a 
communications framework (Shannon 1948) 
provides a characterization of the 
information gain measure. Suppose a Blue 
commander's area of concern consists of a 
set of non-overlapping cells that may contain 
an enemy asset. Suppose p = (pi, p2,..., pn) 
is the prior probability distribution over n 
possible states, representing the Blue 
commander's uncertainty of Red's presence 
or location at some specific time, and 
suppose the uncertainty he has at some later 
time is represented by a posterior 
distribution, p*. Denote the information 
gained in resolving the uncertainty 
represented by p to that represented by p*, 
by 5(p, p*). Under several reasonable 
assumptions about the properties of the 
function 5, it follows the function must be of 
the form 

5(p,p*)=Xp*iln(p*i)-XPiln(pi)   (1) 

which is just the decrease in Shannon's 
entropy from the prior to posterior 
situations. A formal statement of this result 
is given in (Barr and Sherrill 1996), along 
with some elementary properties of the 
function 8. 

If a discrete system can be in state i with 
probability p,; i = 1,2,...,«, Shannon defined 
its entropy to be -X pz Info), where the sum 
is over all n states and the logarithm is to the 
base 2, so entropy is measured in bits. 
(Since zero is not in the domain of the 
logarithm function, we define 0-ln(0) to be 
0). Entropy is a measure of the dispersion of 
probability mass over points, without regard 
to what those points are. This distinguishes 
entropy from common statistical measures 
of dispersion such as variance. If a system 
can be in any of n possible states, the 
entropy of the system can range between 0 
(when the exact state of the system is 
known) and ln(n) bits (when the state of the 
system is uniformly distributed over the 
possible states). 

A simple interpretation of values of 
information gain can be based on the 
elimination of possible states by receipt of 
data. Suppose, for example, initially any of 
n states are equally likely, and data are 
received showing that in - m) of the states 
are not possible. The posterior would then 
be uniform over m states, so the information 
gain would be -ln(m) + ln(n) = ln(n/m) bits. 
For example, if the area of a "region of 
uncertainty" is halved by data from a 
reconnaissance report, the information gain 
is one bit. An information gain of n bits is 
equivalent to the gain realized in reducing an 
area of uncertainty to Yi its original size. 

2. THREE TARGET MOTION 
MODELS 

The posterior distribution of a target 
may be affected by the possible movements 
of the target, in addition to the receipt of 
data from sensors. In this section we 
describe three simple, yet plausible, models 
of target motion, and their effects on 
computation of changes in entropy. These 
models are the Square Uniform model, the 
Circular     Uniform     model,     and     the 



Exponential Cone model. All three models 
assume the target moves in accordance with 
certain simple stochastic properties. For 
demonstration purposes in this paper, the 
commander's area of concern has been 
divided into equally-sized square cells. 
Furthermore, our examples consider only 
one potentially mobile target which has been 
positively identified in a certain location. 
Thus the probability of finding the target in 
that cell is 1.0 at the moment when visual 
contact with the target is broken (which we 
call "time-0." 

a. Square Uniform Model 
Let us first consider the Square Uniform 

model of target movement. This model is 
based on the assumption that, one time 
increment after the target was last observed 
("time-1"), it is equally likely to be found in 
its last known cell as in any cell whose 
boundary touches that cell. At time-2, this 
probability distribution grows to a uniform 
distribution over the set of cells which 
includes the time-1 cells plus all those cells 
that border the time-1 cells. The effect of 
this algorithm is such that after n time 
increments, the size of the area of 
uncertainty has grown to a (2n+l) x (2n+l) 
square of cells. A uniform distribution of 
the target location at time-n would assign a 
probability of l/(2n+l)2 at each of these 
cells. Thus, the entropy at time-n would be 
2-ln(2n+l). 
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This model makes it easy to compute 
subsequent probability distributions and 
their associated information gains, but the 
target movements are not based on realistic 
physical movement characteristics. For 
example, it seems that a sequence of 
increasing circular shaped regions might 
provide a more realistic representation of 
target locations over time. It would seem 
impossible for a vehicle to travel to the 
extreme corners of the square in the same 
amount of time it could only reach the 
midpoint of an edge. Another weakness of 
the Square Uniform model is that it ignores 
vehicle movement speed, thus treating all 
mobile targets the same. Slower vehicles 
could cover less distance during a given time 
interval than faster vehicles, decreasing the 
number of cells to which the slower target 
could travel. 

b. Circular Uniform Model 
Let us consider a distribution that might 

represent more realistic movement qualities 
the square uniform model. In this case, we 
wish to limit the number of cells that could 
be reached in a given time by considering 
the potential distance, Dp, that a target could 
travel in the given time. One could create a 
circular pattern by assigning uniform 
probabilities to those cells within distance 
Dp from the time-0 cell. This model would 
have the effect of "chopping off the corners 
of the square uniform distribution as shown 
in Figure 3. 

Figure 2. Square Uniform Movement 
Characteristics 
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Figure 3. Circular Uniform Movement 
Characteristics 

A uniform distribution such as this 
would be appropriate under certain 
assumptions about a target's movement 
abilities. Appendix A contains a discussion 
of a target's random speed, direction, and 
time of movement. In the appendix, we 
show that a triangular distribution of target 
speed for a maximum length of time along 
with random direction (or equivalently, a 
triangular distribution of movement time at 
maximum speed along with random 
direction) could create the circular uniform 
distribution of target location at a given 
time. 

An algorithm to assign appropriate 
probabilities to cells in the region of interest 
can be defined as follows. After 
determining each cell's distance from the 
origin, a comparison with DP at any given 
time would establish whether or not the 
target could theoretically occupy that cell at 
the given time. Cells with distance greater 
than Dp from the origin would have zero 
probability of being occupied, and cells with 
distance less than or equal to Dp would have 
equal probabilities of being occupied. 

The circular uniform distribution seems 
to be a more realistic probability distribution 
than the square uniform distribution. The 
number of cells having positive probability 
with this approach occupies an area roughly 
30% smaller than that defined by the 
uniform square model. However, the 
limitations   imposed    on   the    stochastic 

properties of target movement in order to 
justify the circular uniform distribution seem 
rather restrictive. Perhaps we could discover 
an approach that treats target speed, 
direction, and time as independent random 
variables. 

c. Exponential Cone Model 
Rather than declaring a location 

probability distribution that we think should 
be applied to a target's movement, let us 
instead make a few plausible assumptions 
about a target's potential movement and 
work towards identifying the shape of the 
resulting distribution. As mentioned above, 
the circular uniform distribution arises when 
either of two rather bold assumptions about 
a target's movement speed and time of 
movement are imposed. Let us examine the 
shape of the target location distribution 
based on a more plausible set of 
assumptions about target movement. For the 
purposes of this paper, we shall assume a 
target's movement speed S is determined in 
accordance with a triangular distribution, 
S ~ Tri (0, a, a) (see Figure 4). Thus there is 
a movement likelihood of zero of moving at 
zero km/hr, increasing linearly to the 
greatest likelihood of moving at maximum 
speed a. We assume we know nothing of 
the target's intended direction 6, so 0 is 
uniformly distributed over the set of possible 
directions, G ~ U (0, 2n). Similarly, we 
shall assume there is an equal likelihood that 
the target begins moving at any time T. If 
we normalize the elapsed time so that t = 0 
at time-0 and t = 1 at the present time, then 
the assumption about the target's movement 
time can be written as T ~ U (0, 1). Finally, 
we assume S, 0, and T are mutually 
independent random variables. 
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With these assumptions about the 
target's movement characteristics, the 
bivariate distribution of target location at 
time-* is given by the following joint 
probability density function (see the 
derivation in Appendix B): 

fxAx>y)=— 
071 

1 1 

(2) 

The marginal distribution of distance of the 
target from the origin is 

an 
In 

Va2-x2+a   y[a2-x2 

H a 
(3) 

(The vertical asymptote at the origin is not a 
practical issue, since the probability model 
does not depend on behavior of the density 
function at isolated points. Since the cells 
have positive area, one can assume the 
likelihood of finding the target in its original 
cell is given by equation (3) with argument x 
equal to the distance to the closest edge of 
that cell). Since the shape of the marginal 
density given in (3) is like a curved cone, we 
call this the "exponential cone model." 

The exponential cone model seems to 
better represent typical target movement 
characteristics than do the models based on 
uniform distributions because we would 
expect there to be a greater likelihood of 
finding the target somewhere near cell-0. 
Also, intuitively, we would expect there to 

be a very small probability of finding the 
target at the maximum radius, as this would 
require the target to begin moving away 
from the origin at maximum speed at time-0. 
In Figure 5, we can see the exponential 
decay of likelihood as distance from the 
origin increases. Figure 5 shows that the 
location with greatest likelihood is the center 
of cell-0; the likelihood decreases 
monotonically to zero at the maximum 
radius of possible movement. 

Figure 5: Plot of the marginal density of target 
distance from cell-0. 

3. AN APPROXIMATING 
ALGORITHM: The Linear Cone Model 

In order to investigate information loss 
implications of the exponential cone model, 
it is convenient to develop a simple 
algorithm that generates target location 
likelihoods approximately in accordance 
with the exponential cone distribution. We 
would like for this algorithm to replicate as 
many of the features of the Exponential 
Cone model as possible, yet be simple 
enough to allow easy implementation in a 
spreadsheet. Possibly the easiest way to 
approximate the curve shown in Figure 5 is 
to use a linear approximation to the marginal 
distribution.   When this approximation  is 



rotated around the origin, the result is a 
"tent" shape which we shall call the Linear 
Cone model. 

The Linear Cone model has a maximum 
value at the origin and decreases linearly to 
zero at the maximum possible movement 
radius. Although it does not exactly match 
the shape of the Exponential Cone model, it 
provides a much better approximation than 
does the Circular Uniform model. Using 
sums of squares of the differences between 
the Exponential Cone model and the 
Circular Uniform and Linear Cone models, 
we found that the Circular Uniform model 
has a coefficient of fit of 0.47, while the 
Linear Cone model has a 0.61 coefficient of 
fit to the curve shown in Figure 5. Better 
approximations are certainly possible, but 
we shall see that the Linear Cone model 
admits a convenient algorithm. 

We can create the Linear Cone by 
tracking the total possible time that the 
target could have spent in a cell at any time 
after contact has been broken. The 
possibility of finding the target outside the 
radius of maximum possible movement is 
zero. Within this radius we shall determine 
the earliest time that it was possible for each 
cell to have been reached. Once it is 
possible for a cell to be occupied, it is a 
simple matter to subtract the earliest 
occupation time from the current elapsed 
time to find the maximum possible 
occupation time per cell. 

If we plot the maximum occupation 
time values for each cell, it is seen that a 
"Linear Cone" shape results. Figure 6 
shows an example of this idea. 

Figure 6: Elapsed Time Per Cell 

This figure was created using an algorithm 
that examines cells with zero probability 
adjoining those cells that have non-zero 
probability of being occupied. The 
somewhat octagonal shape is a result of the 
algorithm's calculation of the time required 
for a target to travel to an adjoining cell. 
This is a result of an assumption that the 
target travels to the center of each cell it 
could occupy. Ideally the shape should be a 
circular cone, but the octagon seems to be a 
reasonable approximation. With some 
refinement, the algorithm could more 
accurately replicate a circular cone. 

We can generate a probability mass 
distribution from possible cell times by 
making the probability of occupation 
proportional to the total possible time of 
occupation. If we divide each cell's possible 
time of occupation by the sum of all cells' 
possible occupation times, the result is a 
Linear Cone shaped probability distribution. 
Figure 7 shows the algorithm used to 
generate the Linear Cone. 
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Figure 7: Linear Cone Algorithm 

One of the key parts of this algorithm is 
contained in the second step. During this 
part of the algorithm, the time required for a 
target to move to the center of an adjoining 
cell is computed. This step determines the 
shortest time needed for the target to travel 
to adjacent cells (i.e. those cells sharing an 
edge with another cell) and diagonal cells 
(i.e. those cells sharing a corner). Travel 
time is based upon cell size and maximum 
target speed. 

By allowing for travel time in the 
algorithm, we can incorporate the effects of 
terrain trafficability. Trafficability values 
based upon terrain types can lengthen the 
time required to move between cells. For 
example, rough or steep terrain may slow a 
vehicle to half its maximum speed, while a 
cliff or river could effectively stop 
movement. Trafficability could be based 
upon vehicle type or terrain gradient values. 

4. RESULTS WITH SELECTED 
TERRAIN FEATURES 

The following examples show how the 
algorithm can be applied, taking various 
terrain features into account. In this section 
of the paper, we investigate various 
combinations of vehicle speeds and terrain 
types and their effects on location 
distribution and information loss. Vehicles 
with maximum movement speeds of 15, 30, 
and 45 kilometers per hour are examined on 
terrain that consists of Go terrain (speed is 
not degraded), Slow-go terrain (top speed is 
60% of maximum), and No-go terrain (top 
speed is 1% of maximum). The battlefield 
is divided into a 70 x 70 cell grid, resulting 
in a maximum entropy value of 
approximately     8.5. The     following 
discussion presents a summary of effects on 
information loss due to loss of contact in 
various terrain, assuming there is only one 
mobile target on the battlefield. 
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Figure 8: Information loss for go terrain 
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Figure 9: Information loss for target against a river. 

a. Go Terrain 
Figure 8 shows the effect of target speed 

on terrain with no trafficability constraints. 
As expected, the faster a target can travel, 
the higher the rate of information loss. 

b. River 
Figure 9 shows results for a scenario 

where the target was last seen next to a river. 
In this case, the posterior distributions of 
target location have a half-cone shape due to 
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Figure 11: Target motion constrained to roads. 

the limited movement ability in the direction 
of the river. Again we see that faster targets 

cause faster increases in the information loss 
function. 

10 
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Figure 12: Information loss in a mountainous area. 

c. Box Canyon 
Figure 10 shows a combination of go 

and slow-go movement values. The target 
was last observed on go terrain, surrounded 
on three sides by slow-go terrain. This 
scenario may represent a box canyon, in 
which a vehicle may either climb the sides 
or travel out the mouth of the canyon. We 
can see the effects of terrain as the "bulge" 
of the cone in the location probability 
distribution. 

d. Roads 
Figure 11 shows a road network 

surrounded by no-go terrain. In this case, 
the probability distribution of target location 
is concentrated on the roads. Although a 
vehicle could travel from its original 
location a distance analogous to that for all 
go terrain, the information loss is much 
lower for this case due to the limited number 
of cells that could possibly be occupied. 

e. Mountainous Terrain 
Figure 12 contains a random mixture of 

go, slow-go, and no-go terrain. This case 
shows the ability of the algorithm to create a 
probability distribution for a complicated 
piece of terrain, perhaps a mountainous area 
that has a network of roads, fields, ponds, 
and wooded areas. 

f. Combined Results 
Figure 13 shows combined results of the 

scenarios discussed above. Also plotted on 
this graph is the effect of using the Uniform 
Square model as discussed earlier in this 
paper. We can see that the Uniform Square 
model, if used, would tend to overestimate 
the rate of information loss for all scenarios. 
Additionally, we can see the wide range of 
entropy values that result from these 
scenarios. This leads to the conclusion that 
we cannot choose a model to represent 
information gain without regard to vehicle 
movement speed or terrain type. 

11 



Figure 13: Information loss summary for several terrain and target speeds. 

5. CONCLUSIONS 
The information gain measure appears to 

facilitate assessment of performance of 
battle information systems and to allow 
assessment of potential effects on situation 
awareness of factors such as movement of 
enemy units. Under somewhat crude 
assumptions about the stochastic movement 
behavior of an enemy unit, some effects of 
its mobility on information have been 
evaluated. Plotted against time, information 
loss provides insights into effects of changes 
in movement parameters such as target 
speed and terrain features. 

Much work remains to be done in this 
area, in our opinion. Further development is 
needed in the following areas: 
• Refine the target movement model and 

further investigate impacts of various 
parameters on information loss. 

• Develop a two-sided model, which plays 
Blue's information versus Red's 
information through time. It appears 
useful to use an "information ratio" to 
measure the relative performance of each 

side's information gain and denial of 
loss to the enemy. Roughly, such a 
ratio, viewed from Blue's perspective, 
would measure information gained over 
information given away. 
Investigate the effects of possible 
movement of targets into areas 
previously swept by Blue's sensors. 
Include effects of information about 
enemy intent. 
In connection with implementation in 
combat simulations, provide automatic 
generation of initial prior distributions, 
using terrain data and other 
characteristics of the battle area and 
enemy force. This should also allow 
automatic computation of terrain 
trafficability data for use in Bayesian 
updating. 
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APPENDIX A: NECESSARY 
CONDITIONS FOR CIRCULAR 
UNIFORM DISTRIBUTION 

APPENDIX B:   DERIVATION OF 
TARGET LOCATION DISTIBUTION 
MODEL 

Consider "circular uniform" model in polar 
coordinates. We know, in Cartesian 
coordinates, the uniform density is of the 

form/'   (x,y)=—^-;for x2 + y2<t2. 

Transformation from (x, y) to (R, 0): 

We know the transformation 

R = <Jx2 + y2 ; 0 = tan-1 \y   1 has inverse 

x = i?cos0, y = i?sinO, 

fRe(r,6) = f   (rcose,rsm6)\r\ = —rr 
71% 

-{i)j)-fMar) 
where 0 < 9 < 27t,    0 < r < x . 

So, we see ® ~ Uniform(0, 2vr) and 
R ~ Triangular, and so © andi? are 
independent. 

Consider independent continuous random 
variables S, T, and O, with distributions 
S ~ Tri (0, a, a),  T ~ U (0,1), and 
0 ~ U (0,2%). The probability density 
functions for these distributions are 

fs(s) = ^-,fT(f) = l,fmd 
a 

U(0) = l 
In 

Let D = ST, then the probability density 
function of D is: 

fD(d') = fjs^)fT{
d*/^ndS 

- f   2s i _2    Id* 
id* a2\s\       a     a2 

If L = D0, then in polar coordinates: 

{J,u an 
d* 

1- — 
a 

where0<9<27i, 0<d <a 

In rectangular coordinates: 

fX,Y fYy(x,y) = fQD(bm   1l,Jx2 + y2)-      l 

>fV 
1 

an 

1 1 

V*2 +: 2     a 

The marginal distribution of x is 

rV^W   i 
J-Jx2+y2 an V*2 + : 2     a 

2 

an 
In 

\a2-x2+a    \a2-x2 

where —a<x<a. 
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