
r

ß&-oto-(ria.

An Analysis of Transmission and
Storage Gains from Sliding

Checksum Methods

Richard Taylor and Rittwik Jana

DSTO-TR-0743

19990323 066

[] | APPROVED FOR PUBLIC RELEASE

© Commonwealth of Australia

DEPARTMENT, OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

An Analysis of Transmission and Storage Gains from
Sliding Checksum Methods

Richard Taylor* and Rittzvik Jana#

*Communications Division
Information Technology Division

Electronics and Surveillance Research Laboratory

DSTO-TR-0743

ABSTRACT

In a previous report we described, modelled and analysed a protocol "rsync" for
synchronising related files at different ends of a communications channel with a
minimum of transmitted data. This report identifies the extent of the gains that this
method may provide by performing experiments on large repositories of data. The
outcome is a new method of compressing large directories of data that together with
conventional methods provides major gains in compression factors. As is explained
in the report, these gains in compression are also indicative of the data transmission
gains available when mirroring a collection of files at a remote site using rsync.

RELEASE LIMITATION

Approved for public release

DEPARTMENT OF DEFENCE
 : u _

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

Published by

DSTO Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury South Australia 5108

Telephone: (08) 8259 5555
Fax: (08)8259 6567
© Commonwealth of Australia 1998
AR-010-672
November 1998

APPROVED FOR PUBLIC RELEASE

An Analysis of Transmission and Storage Gains from
Sliding Checksum Methods

Executive Summary

In a previous report we described, modelled and analysed a protocol "rsync" for
synchronising related files at different ends of a communications channel with a
minimum of transmitted data. This protocol is suitable for supporting such activities as
collaborative writing of documentation and synchronisation of distributed databases
in the situation where no one location is aware of the differences and similarities
between their files and remote related files.

Rsync may be particularly useful in synchronising databases that have significant
disconnections or outages, resulting in an inefficiency or inability to synchronise data
based on large numbers of missed updates. In this situation Rsync may be used to
efficiently synchronise databases without any version control or common reference
point. Another major application of Rsync is in maintaining web pages which are
regularly being changed at the server and have to be synchronised with the clients.
Thus the changes to client files are identified and only updates to files are sent from
the server. This is achieved without the need for the server to maintain any records of
client files or to store old versions. The characteristics of Rsync make it a good match to
the paradigm of high computing - low bandwidth, as well mobile information systems
with dynamic operational status. This makes Rsync an attractive tool for tactical C3
environments.

The power of this method as a tool to minimise the use of bandwidth depends on the
likelihood and extent to which transmitted data is similar to data already held by the
receiver. This report investigates the gains that this method may provide by
performing experiments on large repositories of data.

By building on the sliding checksum method of rsync, a novel method of compressing
large data repositories is developed. The report shows how this method can be used
together with conventional compression methods to produce major gains in
compression factors. The experimental data presented indicates that the compression
factor may be doubled with these methods in comparison to conventional methods,
depending on the application types.

These gains in compression are also indicative of the data transmission gains available
when mirroring a file structure at a remote site using the rsync protocol.

Authors

Richard Taylor
Communications Division

Richard Taylor is Head of the Network Integration Group of the
Defence Science and Technology Organisation's (DSTO)
Communications Division. A PhD in Mathematics from the
University of Melbourne, Richard has worked at the Telecom
Research Laboratories in Victoria, and has over 9 years experience
in the fields of communication reliability and security.

Rittwik Jana
Information Technology Division

Rittwik Jana is a Professional Officer with the Intelligence
Systems Group of the Defence Science and Technology
Organisation's (DSTO) Information Technology Division. His
main research interests include transmission of imagery over low
bandwidth communication channels. He is currently pursuing a
PhD in telecommunications at the Australian National
University.

Contents

1. INTRODUCTION 1

2. BACKGROUND - THE RSYNC PROTOCOL 1

3. HOW RZIP WORKS 2

4. SLIDING CHECKSUMS 3

5. EXPERIMENTAL TESTING 4

6. CONCLUSIONS 8

7. REFERENCES 8

DSTO-TR-0743

1. Introduction

In a previous report we described, modelled and analysed a protocol called rsync [1]
for "synchronising" related files at different ends of a communications channel with a
minimum of transmitted data. This protocol is suitable for supporting activities such as
collaborative writing of documentation and synchronisation of distributed databases
in the situation where no one location is aware of the differences and similarities
between their files and remote related files. The key concept in the rsync protocol is the
use of sliding checksums to efficiently identify similarities between data sets. Note that
the extent of the utility of this method as a tool to minimise use of bandwidth depends
on the likelihood and extent to which transmitted data is similar to data already held
by the receiver.

In this report we use the sliding checksum method of rsync to identify similarities in
large repositories of data, which has two major outcomes,

• providing a novel method of compressing large data repositories, "Rzip", which
can be used together with conventional compression methods to produce major
gains in compression factors,

• as a measure of the possible utility of rsync in terms of transmission savings.

To understand how the second outcome follows, consider a situation where a large
directory of data is developed over time at one location a and is required to be
duplicated at another location ß. Thus new files when completed are added to the
directory at a and need to be sent to ß. In this case the compression achieved by Rzip
of the directory at time t provides an indication (neglecting the checksum and other
overheads of Rsync) of the total data that would need to be transmitted up to time t for
location ß to be up to date.

This report analyses the behaviour of the algorithm under varying conditions and in
particular a comparative study is made with a standard compression algorithm
GnuZip (or Gzip), which uses Lempel-Ziv (LZ77) coding.

2. Background - The Rsync protocol

The aim is to update File B (the old version) with File A (the current version). There are
three important transactions that occur during the execution of the algorithm, as
shown by the arrows in Figure 1.

DSTO-TR-0743

• Step 1: a notifies ß that an rsync operation is to be initiated from File A to File B.
• Step 2: ß partitions File B into non-overlapping fixed size blocks each of size b

bytes. For each of these blocks a simple 32 bit checksum and a much stronger 128
bit checksum (MD5 see [2], [3]) is calculated. These checksums are consolidated
into a table and sent back to a.

• Step 3: a scans through File A and calculates checksums for all blocks of length b
bytes at all offset positions. These checksums are used to determine blocks of data
in File B(in any position) that match blocks in File A. 32 bit checksums are
calculated and checked first, if a match is found within the received table then the
128 bit checksum is calculated and checked to be surer of the match.

• Step 4: a sends ß a sequence of instructions for constructing a copy of A. Each
instruction is either a reference to a block of data or literal data. Literal data is sent
only for those blocks of A which are different to any of the blocks in B.

The algorithm may be better understood with reference to Figure 1 (see [1], [4] for
more details):

Source:
File A

(current
version)

Computer a ©

Destination:
FileB

(old version)

Computer ß

Figure 1 - Information flow during rsync operation.

3. How Rzip works

In this section we outline the algorithm and highlight some of the potential areas that
can be optimised for speed. In simple terms the algorithm works by identifying
repeated blocks in the data and noting that pointers to repeated blocks may be stored
rather than the data itself. The challenge is to identify repeated blocks efficiently at
whatever byte offset they may occur.

There are two principal phases of execution. In the first pass, the data is partitioned
into non overlapping fixed size blocks, each of size b bytes (typically in the range 100
to 1000 bytes). For each of these blocks a 64 bit checksum is calculated. These
checksums are consolidated into a table and sorted. In the second pass, 64 bit
checksums are calculated for all blocks at all byte offset positions. For each byte offset
"sliding" checksums are efficiently calculated by an incremental method, and searched
for in the sorted table. If a match is found within the table, its offset location is
registered in another table, the rows of which correspond to the block numbers of the
sorted table. In general, redundancy in the file occurs if there is a match with the
sorted table such that the corresponding blocks do not overlapp. By noting all the
redundancies it is possible to determine the overall compression factor. The offset

DSTO-TR-0743

locations of repeated blocks may be used as the basis of a compression method by
using pointers to repeated data blocks. The details of the algorithm to estimate the
compression factor in a file are outlined below:

1. Set redundancy R to 0. R is a measure of the amount of repeated data identified by
the algorithm in the form of repeated blocks.
2. Partition file into non overlapping fixed size blocks of size b bytes.
3. Calculate 64 bit checksums for each block and store them in a sorted table.
4. Start at the beginning of the file again and calculate checksum for first block.
5. Shift block one byte, and calculate checksum.
6. Search for checksum in the sorted table.
7. If the search is successful AND this is the first time this checksum has been found,

note the offset position of the block. Go to 4.
8. If search is successful AND this is at least the second time this checksum has been

found AND the current block does not overlap the previous matching block,
increment R by b (at this point a block that occurs previously in the file has been
identified). Shift the block by b bytes and calculate checksum. Go to 5.

4. Sliding Checksums

The computationally intensive component of the algorithm is Step 4, since checksums
are calculated and matched within a table for every byte offset in the file. In order to
make these computations feasible, we use checksums that are simple to compute, and
in particular can be updated quickly as the block offset is incremented (or "slides"). In
a previous report [4] we have designed checksums that are both strong as block
fingerprints, and can be updated for each new block offset with just one multiplication
together with elementary operations (add, subtract, assign, and shift).

It is important to note that the length of the checksum required to provide a given level
of confidence that the checksum provides a unique fingerprint of the data blocks varies
significantly with the file size. We have estimated (see [4]) that in a file of size Y bytes,
with block size b bytes, and checksum size n bits then under certain statistical
assumptions the probability p of at least one "collision" (different blocks with the same
checksum) may be bounded by

x Y-J
2"

If for example we have a file of 1 Gigabyte (Y=109 bytes), a block size of 400 (b=400),
and checksums of 64 bits (n=64) then p is upper bounded by 1.35xl0"4.

DSTO-TR-0743

In this report we have utilised the following four 16 bit functions from [4],

Dl(k,l)=XI+3X,_l +32Xl_2+...+3"-,Xk mod[216 -1],

D2(k,l)=X,+ 5XM + 52X,_2+...+5"-1 Xk mod[216 - 3],

D3(k, l) = X,+ 7XM + 72 X,_2+...+lb'] Xk mod[216 - 5],

DMk,i) = x, +nxl_l +n2x,_2+...+nh-1xk mod[216 -n

The corresponding sliding updates may be evaluated as,

D\{k +1, / +1) = 3Dl(Jk,/) + X;+I - 3* Xk+l mod[216 -1],

D2(k +1, / +1) = 5£>1(*. /) + XM - 5b Xk+l mod[216 - 3],

D3(k +1, / +1) = lD\(k, I) + XM - lh Xk+X mod[216 - 5],

DA{k +1, / +1) = llD\(k, I) + XM - \lb Xk+i mod[216 - 7].

The 64 bit checksum is created by concatenating Dl, D2, D3 and D4.

5. Experimental Testing

The algorithm was tested with three different data sets. The first consists of a large tar
file. This was generated from a common working directory visible to all the groups at
the DSTO C3 Research Centre in Fernhill Park, Canberra. For each of the groups within
the Centre a tar file was generated, consisting of all file types present (.docs, .ppt, .c,
.exe, .exel, .gif, etc). The second consists of all Microsoft Power Point files from all of
the groups concatenated into a large file with no compression. Similarly, the third
consists of all Microsoft Word files from all of the groups in one large file. All of the
data presented in Figures 2 and 3 corresponds to a block size b of 400 bytes.

Shown below in Figure 2 is an experiment where the original data is first processed
using Rzip, the output of which is then further compressed using a standard
compression algorithm GnuZip. This is compared with the result of compression with
GnuZip only. By preprocessing the data with Rzip one eliminates large blocks of data
which are identical, however they may be scattered throughout the file. This is the key
difference between Rzip and run-length coding schemes. In general run length
compression operates on a small window over which it allocates codewords to
frequently occurring symbols. We note that Rzip and GnuZip appear to have
somewhat orthogonal properties, so that they can work in series to maximise the
compression of the original data. This effect is dependent on the order of compression
however, as we have found that Rzip does not significantly compress a file that has
previously been compressed with GnuZip. It is important to note that the block size
can also be adaptively resized to take into account redundancies present at different

DSTO-TR-0743

levels. Thus for small window sizes Rzip will mimic standard compression algorithms
such as GnuZip.

A - 640Mb

GnuZip / \ RZip

Figure 2

In Figure 3 similar results are shown for data sets based on application type. The
compression figures shown are for all Microsoft PowerPoint files and all Microsoft
Word files across the C3 Research Centre.

DSTO-TR-0743

(^PPT -760Mb

GnuZip y

<^243.5MtT)

104.7Mb

RZip

"301.7Mb~^>

' GnuZip

Figure 3

The block size used in rsync and Rzip plays an important part in the efficiency of both
methods. Larger blocks mean that the hash tables constructed and used in both
methods are smaller which leads to efficiencies in both storage, processing and for
rsync transmission time. Of course this comes at the price that rsync and Rzip will
identify less repeated data, between and within data sets, as the block size increases.
Thus there is a compromise between block size and the overheads associated with
generating and transmitting checksums and location pointers.

Figure 4/Table 1 shows that as the block sizes increase, the redundancy (as measured
by block repetitions) identified by Rzip decreases surprisingly slowly. The files tested
were a 135 MByte file formed from the concatenation of a general directory of
Microsoft Powerpoint files, and a 150 MByte file formed from the concatenation of a
general directory of Microsoft Word files.

DSTO-TR-0743

Redundancy (MBytes) vs Block Size (bytes)

itu - I
—♦— Redundancy (Mbytes) Nigppt

\c\J - Original 135 MB

V) inn
—■— Redundancy (Mbytes)

ISGdoc Original 150 MB

R
ed

un
da

nc
y

(M
B

yt
e

i\i

 *>

.

 e
n

oo

 c

o

 o

 o

 o

 c

\ ■ ■
V^I ____ . B

-4 1
* *

0-
(3

 1 1 1 1 1 1 1

2000 4000 6000 8000 10000 12000 14000

Block Size (bytes)

Figure 4 - Redundancy asymptotes as block sizes increase

Block Size (bytes) Redundancy (Mbytes)
135 MByte ppt directory

Redundancy (Mbytes)
150 Mbyte doc directory

100 86.87 120.57
200 80.68 113.99
400 76.63 104.32
800 74.82 100.46
1600 73.02 93.35
3200 72.34 89.22
6400 69.40 84.33
12800 65.53 79.08

Table 1 - Redundancy asymptotes as block sizes increase

Computational Performance

The table below indicates the computational performance of Rzip in comparison to
Gzip in processing the data sets from Figure 4/Table 1. This indicates that the
computational requirement of Rzip is of the same order of magnitude as Gzip (note
that the Rzip code we have produced is not optimised for speed).

DSTO-TR-0743

Execution Time (minutes) Gzip Rzip
PPT file (135 Mbyte) 13 27
DOC file (150 Mbyte) 17 33

Table 2 - Computational performance of Gzip and Rzip

Adding to Rzip

Figure 4 suggests that it makes sense to modify Rzip in the following way so that new
data may be added to the compressed data generated by Rzip incrementally. Thus if in
Step 1 and 2 of Rzip the sorted checksum list is generated and stored in a file, then
when adding a new file to the stored compressed file it is only necessary to calculate
rolling checksums on the new file and compare with the sorted checksum list. The
sorted checksum list may then be updated and the new file added to the compressed
data as a combination of both pointers to repeated blocks and new data. Thus the large
amount of stored compressed data need not be read or processed in any way, but
rather the stored checksum list is used instead. As the size of the stored checksum list
is inversely proportional to the block size used, the bigger the blocksize while
combined with a good level of redundancy detection provides the best results in terms
of storage and speed. As an example a block size of 3200 bytes (see Figure 4), with
checksums of 64 bits and block location pointers of 32 bits generates a sorted checksum
list of 12/3200 = 0.00375 or (0.375%) of the original data.

6. Conclusions

The results of the tests presented in this report indicate that repositories of stored data
contain significant repetitions of large blocks. This fact may be taken advantage of to
make significant improvements to existing methods for both compressing and
transmitting data.

7. References

[l]Tridgell, A. and Mackerras P, "The rsync algorithm", Joint Computer Science
Technical Report Series, TR-CS-96-05, June 1996.

[2]R. L. Rivest, "The MD5 Message Digest Algorithm", RFC 1321, April 1992.
[3]B. Schneier, "One Way Hash Functions", Dr. Dobbs Journal, v. 16, no. 9, pp. 148 151,

September 1991.
[4] Taylor R., Jana R and Grigg M, "Checksum Testing of Remote Synchronisation

tool", DSTO Technical Report 0627, Novemeber 1997.

DISTRIBUTION LIST

An Analysis of Transmission and Storage Gains from Sliding Checksum Methods

Richard Taylor and Rittwik Jana

AUSTRALIA

. DEFENCE ORGANISATION

. Task Sponsor
Director General C3I Development

i. S&T Program
Chief Defence Scientist 1
FAS Science Policy r shared copy
AS Science Corporate Management >
Director General Science Policy Development
Counsellor Defence Science, London (Doc Data Sheet)
Counsellor Defence Science, Washington (Doc Data Sheet)
Scientific Adviser to MRDC Thailand (Doc Data Sheet)
Director General Scientific Advisers and Trials/Scientific Adviser Policy and

Command (shared copy)
Navy Scientific Adviser (Doc Data Sheet and distribution list only)
Scientific Adviser - Army (Doc Data Sheet and distribution list only)
Air Force Scientific Adviser
Director Trials

Aeronautical and Maritime Research Laboratory
Director

Electronics and Surveillance Research Laboratory
Director

Chief, Information Technology Division
Chief, Communications Division
Research Leader Military Information Networks
Head Network Integration
Co-Author(s): R. Jana

DSTO Library
Library Fishermens Bend
Library Maribyrnong
Library Salisbury (2 copies)
Australian Archives
Library, MOD, Pyrmont (Doc Data sheet)

Capability Development Division
DGMD (Doc Data Sheet)

DGLD (Doc Data Sheet)

d. Navy
SO (Science) - MHQ

e. Army
ABCA Office, G-l-34, Russell Offices, Canberra (4 copies)
SO (Science) - LHQ, 3 Bde, 1 Bde, HQ Training Command

f. Air Force
SO (Science) - AHQ

g. Intelligence Program
Defence Intelligence Organisation
DDI, Defence Signals Directorate (Doc Data Sheet only)

h. Acquisition and Logistics Program
PDJCSE
PDJISE
PD BCSS

i. Corporate Support Program (libraries!
OIC TRS, Defence Regional Library, Canberra
Officer in Charge, Document Exchange Centre (DEC) (Doc Data Sheet only)
DEC requires the following copies of public release reports to meet exchange

agreements under their management:
*US Defence Technical Information Centre, 2 copies
*UK Defence Research Information Center, 2 copies
*Canada Defence Scientific Information Service, 1 copy
*NZ Defence Information Centre, 1 copy
National Library of Australia, 1 copy

2. UNIVERSITIES AND COLLEGES

Australian National University Library
Australian Defence Force Academy

Library
Head of Aerospace and Mechanical Engineering

Deakin University, Serials Section (M list), Deakin University Library
Senior Librarian, Hargrave Library, Monash University
Librarian, Flinders University

3. OTHER ORGANISATIONS

NASA (Canberra)
AGPS
State Library of South Australia
Parliamentary Library, South Australia

OUTSIDE AUSTRALIA

4. ABSTRACTING AND INFORMATION ORGANISATIONS
INSPEC: Acquisitions Section Institution of Electrical Engineers
Library, Chemical Abstracts Reference Service
Engineering Societies Library, US
Materials Information, Cambridge Scientific Abstracts, US
Documents Librarian, The Center for Research Libraries, US

5. INFORMATION EXCHANGE AGREEMENT PARTNERS
Acquisitions Unit, Science Reference and Information Service, UK
Library - Exchange Desk, National Institute of Standards and Technology, US

SPARES (6 copies)

Total number of copies: 60

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF

DOCUMENT)

2. TITLE

An Analysis of Transmission and Storage Gains from Sliding
Checksum Methods

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

Document (U)
Title (U)
Abstract (U)

4. AUTHOR(S)

Richard Taylor and Rittwik Jana

5. CORPORATE AUTHOR

Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury SA 5108

6a. DSTO NUMBER
DSTO-TR-0743

6b. AR NUMBER
AR-010-672

6c. TYPE OF REPORT
Technical Report

7. DOCUMENT DATE
November 1998

8. FILE NUMBER 9. TASK NUMBER
ADF96/295

10. TASK SPONSOR
DGC3ID

11. NO. OF PAGES 12. NO. OF
REFERENCES
4

13. DOWNGRADING/DELIMITING INSTRUCTIONS 14. RELEASE AUTHORITY

Chief, Communications Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFFICE,
DEPT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600
16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CASUAL ANNOUNCEMENT Yes
18. DEFTEST DESCRIPTORS

Data synchronisation, Computing tools, Communications

19. ABSTRACT

In a previous report we described, modelled and analysed a protocol "rsync" for synchronising related
files at different ends of a communications channel with a minimum of transmitted data. This report
identifies the extent of the gains that this method may provide by performing experiments on large
repositories of data. The outcome is a new method of compressing large directories of data that
together with conventional methods provides major gains in compression factors. As is explained in
the report these gains in compression are also indicative of the data transmission gains available when
mirroring a collection of files at a remote site using rsync.

Page classification: UNCLASSIFIED

