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Abstract  

The third U.S. Army Conference on Applied Statistics was hosted by George Mason University 
(GMU) during 22-24 October 1997 at the recently opened Johnson Center on campus. The 
conference was cosponsored by the U.S. Army Research Laboratory (ARL), the U.S. Army Research 
Office (ARO), the U.S. Military Academy (USMA), the U.S. Army Training and Doctrine Command 
(TRADOC) Analysis Center-White Sands Missile Range, the Walter Reed Army Institute of 
Research (WRAIR), and the National Institute for Standards and Technology (NIST). The U.S. 
Army Conference on Applied Statistics is a forum for technical papers on new developments in 
statistical science and on the application of existing techniques to Army problems. This document 
is a compilation of available papers offered at the conference. 
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FOREWORD 

The third U.S. Army Conference on Applied Statistics was hosted by George Mason University (GMU) 
during 22-24 October 1997 at the recently opened Johnson Center on campus. The conference was 
cosponsored by the U.S. Army Research Laboratory (ARL), the U.S. Army Research Office (ARO), the 
U.S. Military Academy (USMA), the U.S. Army Training and Doctrine Command (TRADOC) Analysis 
Center-White Sands Missile Range (TRAC-WSMR), the Walter Reed Army Institute of Research 
(WRAIR), and the National Institute for Standards and Technology (NIST). The U.S. Army Conference 
on Applied Statistics is a forum for technical papers on new developments in statistical science and on 
the application of existing techniques to Army problems. The Army faces far-ranging challenges that 
encompass many topics in which probability and statistics have a contribution to make. The purpose 
of this conference is to promote the practice of statistics in the solution of these diverse Army problems. 

The third conference was preceded by a short course, "Virtual Reality and Scientific Visualization," 
given by Professors Edward Wegman and Dan Carr. Several opportunities were afforded conference 
participants to see and work with the scientific visualization tools at GMU. Distinguished speakers 
spoke during invited general sessions: Prof. Thomas Hettmansperger, Perm State University; 
Prof. Jeffrey Birch, Virginia Tech; Prof. Lyle Ungar, University of Pennsylvania; Prof. Judea Pearl, 
University of California, Los Angeles; Prof. Donald Berry, Duke University, Prof. Carey Priebe, Johns 
Hopkins University; Prof J. David Cooke, University of Western Ontario; and Dr. Eric Lagergren, NIST. 
Topical methodological areas included, for example, nonparametric methods, experimental design, 
neural networks, fuzzy control, statistical process control, genetic algorithms, robust design, density 
estimation, and new advances in statistical software for data visualization. Application areas included, 
for example, the digitized battlefield, animation of dust behavior for incorporation in simulation models, 
communication among robot scouts on the battlefield, chemical discrimination, parts inventory control, 
camouflage effectiveness, terrain modeling, and mine-field detection. A highlight of the conference was 
the awarding of the Army Wilks award to William Jay Conover of Texas Tech for years of substantive 
contribution to statistical methodology and the practice of statistics in the Army. 

The Executive Board for the conference recognizes Dr. Robert Launer, ARO, Dr. Mark Vangel, NIST, 
and Mr. David Webb, ARL, for assisting with conference details; Dr. Jock Grynovicki for oversite of 
the Army Wilks Award; Dr. Barry Bodt, ARL, for general conference adrninistration and proceedings; 
and Prof. Edward Wegman, GMU, for hosting the conference and handling all local arrangements. 
Special thanks are due Ms. Patricia Joyce, GMU, who assisted in handling many on-site details. 

Executive Board 

Barry Bodt (ARL) Robert Bürge (WRAIR) David Cruess (USUHS) 

Paul Deason (TRAC-WSMR) Eugene Dutoit (AIS) Jock Grynovicki (ARL) 

Robert Launer (ARO) Carl Russell (JNTF) Douglas Tang (WRAIR) 

Deloras Testerman (YPG) David Webb (ARL) Mark Vangel (NIST) 

Edward Wegman (GMU) 
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A CALIBRATION STUDY OF THE MOBILE ARMY CAMOUFLAGE EVALUATION (MACE) 
SYSTEM USING HUMAN CAMOUFLAGE EFFECTIVENESS JUDGMENTS 

Kragg P. Kysor, Jock 0. Grynovicki, and Michael G. Golden 
U.S. Army Research Laboratory - Human Research and Engineering Directorate 

Aberdeen Proving Ground, MD 21005 

ABSTRACT 

The purpose of this report is to provide the results of a calibration study performed by the the Human 
Research and Engineering Directorate (HRED) in accordance with a Technical Program Annex (TPA) agreement 
between the Natick Research, Development, and Engineering Center (NRDEC) and HRED. This report describes 
the objectives, methodological approach, apparatus, experimental design, data collection procedures, and the 
results of the study. 

INTRODUCTION 

The human perception of camouflaged targets is influenced by a number of variables. Examples include 
the type of camouflage pattern, the type of background, the density of the background, as well as the type and 
direction of illumination. Typically, evaluations of prototype camouflage patterns are performed in field trials 
through the use of numerous groups of observers who rate the effectiveness of various patterns against different 
backgrounds. Large field studies are difficult to conduct as they involve the problem of finding suitable test sites, 
the performance of many test observations, unpredictable weather, and variations in foliage resulting from the 
change of seasons. Hence, the Natick Research, Development and Engineering Center (NRDEC) developed the 
Mobile Army Camouflage Evaluation (MACE) system as a cost effective means of automating the process of 
evaluating camouflage effectiveness. The benefit of this research for the Department of Defense is to reduce the 
time and cost of field testing existing and proposed camouflage patterns by providing a portable computerized 
system that simulates human perception and judgment of camouflage effectiveness in field settings. 

The MACE system has the capability of providing the U.S. Army with a field-portable device to 
objectively evaluate candidate camouflage ensembles. The system assesses camouflage effectiveness by using 
optically-filtered and digitized video images that are subsequently processed by computer algorithms in an attempt 
to model human visual perception as it relates to camouflage phenomena. To calibrate the MACE device, the 
Human Research and Engineering Directorate (HRED) of the Army Research Laboratory (ARL) assisted NRDEC 
personnel in conducting a calibration study This report presents the MACE measurements correlated with the 
soldiers' ratings of camouflage effectiveness hi order to calibrate MACE measures as predictors of soldier 
performance. 

Overview 

The MACE system consists of hardware and software for analyzing digitized video images of 
camouflaged targets and their backgrounds. The purpose of the MACE system is not to search for targets, but to 
measure the camouflage effectiveness of a target against its background simulating human perception. The system 
collects 18 basic optical measures (Kilian, 1992) of a target and its background. Each of these optical measures 
consists of three levels of measurement related to the CIELAB color description coordinates as standardized by the 
Commission Internationale de L'Eclairage of 1931. These levels are designated by "L*" (lightness level), "A*" 
(red-green scale value), and "B*" (yellow-blue scale value). Consequently, the total number of measures or 
variables acquired for a single MACE system observation is 54 (i.e., 18 basic optical measures x 3 levels L, A, & 
B). However, presently, the 54 variables are treated as having equal importance in predicting human performance. 
It is likely that there are differences in the predictive values of these various variables. Consequently, empirical 
data had to be obtained to determine these differential weights. 



Objective 

The objective of the study was to calibrate the MACE system by determining the relative importance of 
each of the 54 MACE variables in predicting human subjective ratings of camouflage effectiveness. Specifically, 
weighting coefficients for MACE system variables will be based upon soldier ratings of the effectiveness of five 
different camouflage patterns correlated with the MACE system variables of the target ensemble patterns and their 
associated backgrounds. 

Additionally, the study sought to quantify the effect of the direction of illumination on the human observer 
ratings of camouflage effectiveness of the candidate ensembles. The research hypothesis was that there would be 
differences in the human judgments of the camouflage effectiveness of the various ensembles when the camouflage 
targets and background are front lit versus back lit. The statistical null hypothesis was that there would be no 
difference in human judgments when the camouflage targets and background are front lit versus back lit. 

METHOD 
Apparatus 

MACE System-The MACE system (Kilian, 1992) studied used a video camera, a series often optical 
filters, and a computer to digitally store an image containing the camouflaged target and its background. Each of 
the ten filters sampled a different wavelength from the electromagnetic spectrum (380 run to 740 nm). For each 
image stored, an outline of the camouflaged target portion of the image was made and then the digitized pixel 
information within the target outline was stored separately from the background information portion. Next, 54 
variables were computed that were thought to differentiate the target from the background. These variables were 
based on features such as light reflectance, spectral wavelength, and texture. During the study, the MACE 
equipment was operated and maintained by NRDEC personnel. 

Targets—The calibration study compared five candidate camouflage patterns. The patterns were 
woodland, olive drab, desert, solid gray, and black. Though one would expect the woodland pattern to be most 
effective against a wooded background, the traditional olive drab continues to show its concealment value under 
certain conditions (Bensel, Ramsley, & Bushnell, 1977). The solid gray ensemble has been proposed for use in 
built-up and urban areas but may also be effective in wooded situations. The desert pattern may also be effective in 
the woods where there is sparse foliage and bright sunlight with a dried grassy background. The black pattern, 
intended for night use, may also be effective in dense and shaded wooded areas. 

Target Backgrounds—The backgrounds of the target ensembles consisted of homogeneous grass, trees, 
and their associated foliage. The tree trunks and branches were brownish-gray while the foliage consisted of 
clusters of mostly green leaves. 

Observation Stations—An observation station, consisting of 10 individual observer cubicles, was provided 
for the test participants to view the pairs of camouflage ensembles. The individual observation cubicles were used 
(as opposed to a group observation and judgment situation) to obtain independent test participant judgments of the 
camouflage effectiveness of the ensembles. The test participants sat in the cubicles which blocked their vision 
down range. When signaled, the test participants stood to observe the camouflage target ensemble pair for 10 
seconds and then were seated. 

Test Site Layout —The overall test site layout is presented in Figure 1. The Figure shows a distance of 30 
meters from the MACE apparatus and the test observers to the target camouflage ensembles. The distance between 
the observer and the target was considered critical to the calibration process. It is a generally accepted principle 
that the details of an image of an object are less discriminated as the distance between the observer and the object 
are increased. Likewise, the MACE system resolution decreases as a function of distance. Preliminary 
investigations at Natick showed a target filled one-half of the vertical extent of the MACE computer monitor 
height when the MACE to target distance was approximately 13 meters. It did not seem reasonable to expect the 
MACE system to provide optimal data when the target height was less than 20% of the MACE display height. The 
size of the target area that is represented by one MACE camera pixel is approximately one centimeter at 20 meters 
and two centimeters at 40 meters. However, at a distance of 40 meters and beyond, the target height would be less 
than 20% of the MACE display height and so small that only large areas of contrast would be discriminated. Thus, 
it was decided that a distance of 30 meters be used to provide a level of sensitivity at which the MACE system 
could adequately discriminate the detail that is found in woodland and desert camouflage patterns. 
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Figure 1. Diagram of test area (overhead view) showing relationship of the left and right camouflage 
patterned target ensemble positions (TPs) to the MACE system and the ten observation positions (OPs) 
backgrounds. The view of the target ensembles and their backgrounds, as seen by the test observers and the 
MACE system video camera, is shown in Figure 2. 

Left and right target ensembles, spaced 10 meters apart, were presented to correspond with two tree 
foliage backgrounds that were homogeneous. Front lit illumination occurred when the sun position at the test site 
(see Figure 1) was in the west and the resulting shadows, from the observer's viewpoint, were behind the target 
patterns and the corresponding backgrounds. Back lit illumination occurred when the sun was in the east and the 



resulting shadows were in front of the target patterns and backgrounds. The view of the target ensembles and their 
backgrounds, as seen by the test observers and the MACE system video camera, is shown in Figure 2. 
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Figure 2. The diagram shows a simulated MACE system computer video image display of two target camouflage 
ensembles with similar foliage backgrounds. The white outline around each target shows the background 
area of interest (AOI) that was used for acquiring the data to compute the MACE system variables' values. 
A reflectance board with eight light levels was used to standardize the MACE video camera input. 

Test Participants 

Ten male enlisted U.S. Army soldiers (ages ranging from 19 to 35 years) participated as judges of the 
camouflage effectiveness offered by the five camouflage patterns. Each candidate observer was tested for visual 
acuity and color deficiency. Only candidates whose visual acuity was measured at 20/20 or better (corrected or 
uncorrected) were selected to participate in the study. 

Test Participant Procedure 

Each test participant was given a response sheet at the beginning of each trial. The test participant placed 
a check mark in one box of a sequence of seven boxes corresponding to a 7-point rating scale (l=least blending, 
4=mcderate blending, 7=most blending) that indicated the degree that he perceived that the left-sided target 
camouflage ensemble pattern blended with the background. Similarly, he rated the right-sided target ensemble 
pattern. 



MACE Data Acquisition Procedure 

The MACE system data was obtained simultaneously with the collection of the test participant data. A 
reflectance board was located at the base of the target camouflage ensembles to calibrate the MACE apparatus for 
standardized video data input. If necessary, MACE filters were changed to adjust for the variation in lighting 
conditions at the time of the data acquisition. 

Experimental Methodology 

Experimental Conditions-The experimental conditions for the study were the type of camouflage 
(Woodland, Olive Drab, Desert, Solid Gray, and Black), sun illumination condition (Front lit and Back lit), and 
target-background position (Left and Right). The same group of soldier test participants was used under all the 
experimental treatment conditions which resulted in a repeated measures 2x5x2 design (Direction of 
Illumination x Camouflage Pattern x Left-Right Target-background Position). These experimental conditions for 
obtaining the soldier camouflage effectiveness judgments and MACE measurements are presented in Table 1. 

Table 1 

Experimental Conditions for Obtaining the Soldier Camouflage Effectiveness Judgments 
and MACE System Measurements 

Direction of Illumination 

Front-Lit Back-Lit 

Camouflage Pattern Camouflage Pattern 

*W     0     D     G     B WODGB 
R/LR/LR/LR/LR/L R/LR/LR/LR/LR/L 

♦Camouflage Codes: W=Woodland 0=01iveDrab D=Desert  G=Gray B=Black 
Position Codes: R=Right  L=Left 

Dependent Variable—The dependent variable was the human camouflage effectiveness response obtained 
from the soldier participant observer. This measure was a rating, on a 7-point scale (l=least blending, 4=moderate 
blending, 7=most blending), of the camouflage effectiveness of each ensemble pattern against the background. 

A paired comparison method was used to obtain the human response measure for this study. The paired 
comparison method is "a procedure in which objects are compared with each other in pairs, each with each, till all 
combinations are given" (English & English, 1958). This method was chosen because it allowed the test 
participant to concentrate on the immediate perceptual task and not rely on memory as is required by some other 
methods. 

The paired comparisons of five test ensembles resulted in ten combinations of pairs. However, to control 
for variations in the local background, each pair of camouflage ensembles was presented twice; that is, once with a 
member of the paired combination viewed on the left position and once with the member viewed on the right 
position (see Figures 1 & 2). Because each pair of ensembles was presented twice (left and right positions) the 
number of paired combinations was doubled to 20 presentations. The presentation of these 20 pairs of ensembles 
was randomized within each session to control for biased responses that may result from learned expectancies 
resulting from systematic patterns of ensemble presentations. The time between left and right presentations was 
approximately 100 minutes. The result of this paired comparison procedure allowed the computation of group 
average ensemble pattern ratings of camouflage effectiveness from the ten test participants for each trial of the ten 
ensemble pair presentations. 



Predictor Variables~The predictor variables are the MACE basic system variables related to light 
reflectance, spectral wavelength, and texture. Each of the basic variables resulted in three measures at three levels 
of analysis related to lightness (black-white scale(L)), and color; i.e., a red-green scale value(A) and a yellow-blue 
scale value(B). A list of the MACE system variables is presented in Table 2. The Bhattacharyya distance measure 
is described by Fukunaga (1990). The texture variables are based on the reports by Haralick, Shanmugam, and 
Dinstein (1973) and Connors and Harlow (1980). 

Table 2 

List of Mobile Army Camouflage Evaluation (MACE) System Variables 

Var. Stem L A B 
No. Abbrev. Name of Basic Variable (Prefix) 

Lightness and Color Measures 
(Prefix + Stem) 

1. MEA Mean (pixels) LMEA AMEA BMEA 
2. VAR Standard Deviation LVAR AVAR BVAR 
3. SKE Skewness LSKE ASKE BSKE 
4. KUR Kurtosis LKUR AKUR BKUR 
5. MIN Minimum Value LMIN AMtN BMIN 
6. MAX Maximum Value LMAX AMAX BMAX 
7. BAT Bhattacharyya Distance 

Texture Measures 

LBAT ABAT BBAT 

8. A2M Angular 2nd Moment LA2M AA2M BA2M 
9. ENM Entropy LENM AENM BENM 

10. CSM Cluster Shade LCSM ACSM BCSM 
11. CPM Cluster Prominence LCPM ACPM BCPM 
12. LCM Linear Correlation LLCM ALCM BLCM 
13. I1M Info Measure of Correlation I LI1M AI1M BUM 
14. I2M Info Measure of Correlation II LI2M AI2M BI2M 
15. SGM Angular 2nd Moment of SGLDM LSGM ASGM BSGM 
16. ESM Entropy of SGLDM LESM AESM BESM 
17. S2M 2nd Moment of SGLDM LS2M AS2M BS2M 
18. ISM Inverse 2nd Moment of SGLDM LISM- AISM BISM 

Note. The abbreviation of a MACE system variable consists of a prefix, a stem, and a suffix. The prefix is the 
letter L, A, or B indicating lightness (L), red-green scale (A), or yellow-blue scale (B) variable. The stem is a 
three-character abbreviation of the basic MACE system name (see Table 2). The suffix designation, used later in 
the report, is a one-character number indicating a quadratic (2) or cubic (3) transformation of the MACE system 
variable. 



Data Analyses 

Ensemble Camouflage Effectiveness Ratings. The 10 test observers viewed each of the camouflage ensemble 
pairs 20 times during the course of the 10 sessions. Each observer rated the camouflage ensemble, on a 7-point 
scale, for the degree that the ensemble blended with the background. A "1" on the scale indicated low camouflage 
effectiveness, a "4" indicated moderate camouflage effectiveness, and a "7" indicated high camouflage 
effectiveness. 

MACE Predictor Weights and Ensemble Camouflage Effectiveness Ratings. The MACE system variables were 
considered as independent or "predictor" variables and the soldier ensemble effectiveness rating was considered as 
the dependent or "outcome" variable. The variables that contributed most to the explanatory variance were studied 
to try to understand the underlying psyche-physical processes involved. This subset of variables was then 
considered as a smaller set of predictor variables to simplify the complexity of the multivariate interrelationships. 
The determination of the relative weighting coefficients for the MACE system factors was accomplished by 
multiple regression analyses. It is acknowledged that the camouflage effectiveness ratings are ordinal level 
measurements as opposed to the more desired interval level measurements for multiple regression analyses. 
However, at this early stage of machine perception research, the multiple regression method was felt to be 
sufficiently robust to allow the identification of the relative importance of the MACE system variables. 

In an attempt to validate the multiple regression prediction equations within the parameters of the study, a 
portion of the data was randomly deleted and the remaining data used to develop the equations. The Pearson 
correlation coefficient between the observed and predicted responses was obtained to ascertain the reliability of the 
weighting coefficients. 

Experimental Treatments. The mean ensemble 7-point camouflage effectiveness ratings for the individual 
ensemble patterns were computed for the front and back lit illumination conditions and the left and right target- 
background positions. The statistical significance of differences between the means was detemined by analyses of 
variances. If there were no significant differences, then the predictor weights would be assumed to be valid for the 
experimental treatment conditions used. However, if there were significant differences, then further analyses and 
studies focusing on the specific treatment conditions would be indicated. 

RESULTS 

Effect of Camouflage Pattern, Light Direction, and Target-Background Position 

The raw data for the 54 MACE system variables and soldier observer ratings of camouflage effectiveness 
were obtained from the total of 345 trials. The mean ratings for each camouflage pattern are presented, 
graphically, in Figure 4. The resulting rank order for the five camouflage patterns against a woodland background 
was (1) woodland, (2) olive drab, (3) black, (4) gray, and (5) desert. The mean ratings for each camouflage pattern 
were further analyzed by the effect of light direction (front and back) and target-background position (left and 
right). These data are presented graphically in Figure 5. It can be seen that there is virtually no effect of light 
direction or target-background position on the soldier response ratings. 
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Figure 4. Soldier rating of camouflage effectiveness. (l=least blending, 4=moderate blending, 7=most blending). 
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Figure 5. The effect of the position of the target (left or right side) by direction of lighting (front lit vs. 
back lit) and by camouflage ensemble pattern on the mean camouflage effectiveness rating. 



Relative Importance of the MACE System Variables 

In order to determine the relative importance of the MACE system variables in predicting the soldier 
rating responses, the stepwise technique of the multiple regression analysis method was used (SPSS Release 4.0 for 
Sun 4). Prior examination of the raw data indicated that some of the relationships between the MACE system 
variables and the human response variable (rating) were nonlinear; therefore, quadratic and cubic transformations 
of the raw data were also used in the subsequent multiple regression analyses. Thus, the 54 L, A, and B variables 
(Table 2) and their quadratic and cubic transformations resulted in a total of 162 MACE system candidate 
predictor variables. When the 162 candidate predictor variables were correlated with the soldier ratings of 
camouflage effectiveness, 120 of these candidate variables were found to be statistically significant. Stepwise 
multiple regression analyses considering the entire pool of 162 candidate variables resulted in an optimum subset 
of 16 predictor variables with a multiple R of 0.95 (F(16)=189.7, j?<.01). The beta coefficients show that variables 
relating to the overall lightness difference between the target and background contributed most of the explanatory 
variance. The next most important variables were those relating to the yellow-blue color scale. 

The stepwise progression of the multiple R is presented in Figure 6. The pattern of the growth curve of 
the multiple R as variables are selected by the stepwise method shows an initial correlation of .827, a rapid increase 
as the next few variables are considered, and finally, a leveling of the curve as the maximum number of 
statistically significant variables is achieved (a multiple R of .95 for the 16 specific predictor variables). 

Obtaining an Efficient Prediction Model 

To minimize the effect of multicollinearity that results from the use of too many predictor variables, a 
parsimonious subset consisting of the first 6 variables of the 16 specific predictor variables was chosen as a 
candidate model for prediction of human performance from the MACE system. These 6 predictor variables; i.e., 
LMEA2, LMEA3, BMEA, BVAR BMEA3, and LMAX produced a multiple R6 of .93 (F(6y=332.6,p<M) which 
is almost as high as the multiple Rj$ of .95 obtained when the 16 variables are used. The weighting coefficients 
for the subset of 6 variables is presented in Table 3. 
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Figure 6. The effect of the number of predictor variables and type of variable (lightness, color, or texture) 

on the size of the multiple correlation. 



To test the reliability of this parsimonious six-variable predictor model, the original raw data set of 345 
observations was divided into two parts. The first part consisted of 305 observations that formed a prediction data 
subset (Group 1) that was used to obtain a new set of predictor weighting coefficients for the six variables. The 
second part consisted of the remaining 40 observations (Group 2) that were previously randomly selected from the 
345 observations. The new set of weighting coefficients obtained from Group 1 was then applied to the same six 
variables of the 40 observations of Group 2. The prediction equations were then solved for the Group 2 
observations which yielded predicted camouflage ensemble ratings for this verification group that were compared 
with the actual ratings of this group. The Pearson correlation coefficient obtained from the comparison of the 
predicted and actual ratings was an r of 0.90. The correlation and regression between the predicted and actual 
soldier camouflage ratings for this parsimonious six-variable predictor model is shown in Figure 7. The close fit 
suggests that this parsimonious version is an efficient and useful model for predicting human ratings of camouflage 
effectiveness. 
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Figure 7. Plot shows the correlation between the predicted and the actual soldier camouflage effectiveness ratings. 

The model is based on six MACE system predictor variables (LMEA2, LMEA3, BMEA, BVAR, 
BMEA3,LMAX). Forty cases plotted. Correlation = .90  R Squared = 81   S.E. of Est.=.54 
2-tailed Sig.=.000    Intercept (S.E.)= -. 15 (.35)   Slope (S.E.)= 1.07 (.08) 

TABLE  3 

Weighting Coefficients of Six Parsimonious Predictor Variables to Obtain an Efficient Model. 

Step MultR     Rsq      Variable    Type B Beta SigT 

1 .836 .698 LMEA2 L - .003120 -3.479084 -19.7 .000 
2 .879 .773 LMEA3 L 3.18050E-05 2.422736 13.6 .000 
3 .905 .818 BMEA B .081652 .717738 14.8 .000 
4 .919 .845 BVAR B - .027090 - .164391 -5.7 .000 
5 .928 .862 BMEA3 B - 2.55107E-05 - .259992 -6.6 .000 
6 .933 .870 LMAX L - .006124 -.134595 -4.3 .000 

(Constant)   4.625755 67.9 .000 

Note. MultR = Multiple correlation coefficient; Rsq = the Multiple correlation coefficient squared (explained 
variance); Type: (L) lightness scale, (A) red-green scale, (B) yellow-blue scale; B = the raw data weighting 
coefficient (slope); Beta = the standardized weighting coefficient; T = slope / standard error of the slope; Sig T = 
the statistical significance of T. 
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The Relative Contribution of Lightness, Color, and Texture Information to the Predictive Models 

While the parsimonious six-variable predictor model appeared useful, it was noted mat most of the 
higher-weighted variables were related to lightness and the yellow-blue color scale whereas the lesser-weighted 
variables tended to be measures of texture. Consequently, two additional stepwise multiple regression analyses 
were performed to assess the relative contribution of the basic lightness and color variables versus the texture 
variables. The results of these analyses are also shown in Figure 6. It can be seen that the stepwise multiple 
regressions based on the lightness and color variables alone produce virtually the same predictive information as 
when the lightness, color, and the texture variables are used together. In contrast, the multiple regressions based 
on texture variables alone, are markedly below those based exclusively on the lightness and color variables. From 
this finding, it was determined that a model based solely upon the lightness and color variables could serve as a 
useful model for predicting human ratings of camouflage effectiveness. 

To further test the effectiveness of a model based on lightness and color variables without the effect of 
texture, a second model was produced. The variables chosen for this model were the first six variables obtained 
from the multiple regression analysis that was done considering only lightness and color related variables. These 
six variables were LMEA, BMEA, BBAT, BVAR, BBAT2, and ABAT2. The weighting coefficients for this 
lightness and color model are shown in Table 4. The multiple R obtained from these six variables was .92. The 
reliability of the coefficients obtained from these six variables was an r of .86. Thus, further evidence was found to 
suggest mat the parsimonious six-variable predictor model which, also, contains only lightness and color variables 
(see Table 3) is an effective and useful model for predicting human ratings of camouflage effectiveness. 

TABLE  4 

Weighting Coefficients of Six Predictor Variables to Obtain a Model Based on only Light and Color Variables 
(versus Texture Variables) 

Step MultR Rsq Variable Type B Beta T SigT 

1       .843 .711 LMEA L - .076475 -1.226763 -26.0 .000 
2      .891 .794 BMEA B .072358 .636039 13.3 .000 
3      .909 .827 BBAT B - 2.475205 - .370344 -5.2 .000 
4      .920 .846 BVAR B - .030880 - .187390 -6.3 .000 
5      .922 .850 BBAT2 B 1.283458 .176110 2.5 .012 
6      .924 .854 ABAT2 A .564369 .080290 2.8 .005 

(Constant)    5.560999 72.1 .000 

Note. MultR = Multiple correlation coefficient; Rsq = the Multiple correlation coefficient squared (explained 
variance); Type: (L) lightness scale, (A) red-green scale, (B) yellow-blue scale; B = the raw data weighting 
coefficient (slope); Beta = the standardized weighting coefficient; T = slope / standard error of the slope; Sig T = 
the statistical significance of T. 
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DISCUSSION 

The results of the various statistical analyses described herein indicate that, of the L (lightness scale), A 
(red-green scale), and B (yellow-blue scale) variables, the most predictive were those involved with the lightness 
scale, followed by those concerned with the yellow-blue color scale. The importance of the lightness scale 
variables suggests that a target nay be camouflaged to a large extent simply by the closeness of its reflected gray- 
scale light level pattern to the overall background gray-scale pattern. As for the role of the yellow-blue color scale 
variables, given the woodland background used in this study (which exhibited more of the colors in the yellow-blue 
scale than the red-green scale) it is reasonable to find that the human rating of high camouflage effectiveness 
would be associated with camouflage ensemble colors patterns most similar to the colors in the woodland 
background. 

It was interesting, however, to discover that the texture variables were less highly weighted than were the 
variables involved with lightness and color. This finding leads one to consider how the distance factor may play a 
role. Generally, the ability of a viewer to discern the details of an object are related to the distance between the 
viewer and the object (Gibson, 1950). The viewing distance recommended by the developers of the MACE system 
for the apparatus was 20-100 meters (Goodell & Kilian, 1992). However, to provide some camouflage effect, we 
felt that 20 meters would be too close; i.e., the target object would look artificial and be too easy for the soldier 
raters to discern. On the other hand, at the longer distances, the image of the target pattern on the MACE 
computer display would involve so few pixels, the opportunity for the MACE system computer algorithms to 
discriminate among the patterns would be minimal. Consequently, the distance of 30 meters was chosen as being 
just fer enough away to provide some camouflage effect of the target patterns, yet would still provide the MACE 
system sufficient target pattern pixels to allow the computer algorithms to analyze textural differences. While the 
30 meter distance selected appeared optimum it may still not have allowed the textural variables to contribute 
sufficient information to discriminate among the patterns used. 

In conclusion, the objectives of this study were to determine whether or not the MACE system variables 
could discriminate among a range of camouflage patterns and correlate with human judgments of camouflage 
effectiveness. The results of the investigation provided a combination of 16 weighted MACE system variables that 
correlated highly with the soldiers' pattern ratings. Further analyses yielded an even smaller number of MACE 
system variables (the six-variable parsimonious predictor model), which involved only lightness and color 
variables, and provided virtually the same predictive information as the 16 variable model. It was also suggested 
that the MACE system could be further enhanced to exploit camouflage texture information at close ranges which 
might further increase the system's performance in predicting human perception of camouflage effectiveness and 
perhaps lead to the development of improved camouflage textural patterns. These possibilities deserve further 
investigation. Overall, based on the results of this study, the MACE system concept, as a cost-effective means of 
automating the process of evaluating camouflage effectiveness, appears promising. 
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With One Observation per Cell 
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ABSTRACT 

The analysis of variance procedure produces no estimate of interaction when 
there is insufficient repetition within cells to estimate error.  An example of 
this is the two-way layout with one observation per cell. Johnson and Graybill 
presented a method for that situation which allows the identification of those 
cells which may contain interaction. The identified cells are excluded from a 
subsequent analysis of variance. 

In this paper, an alternate method is presented for the identification of those 
cells in a two-way layout with one observation per cell with interaction, 
which also produces an estimate of the interaction or overall deviation from 
additivity. The method produces n (= at) "t-statistics", one for each cell, for 
determining the significance of the estimates.   Although not necessary, it is 
prudent to assume that the number of cells which contain interaction is small. 

INTRODUCTION. 

The two-way analysis of variance for data which may contain interaction has 
produced a small body of interesting literature. Tukey1 was the first to 
propose a method for determining whether interaction exists in this situation. 
Tukey's method involves the insertion of a single parameter into the model 
which requires only one degree of freedom for testing for no interaction.   Let 

yij = ji + ai + Tj + XcxiTj + £ij 

where i = 1»2,..., a;     j = 1, 2,..., t; 

ey are NID( 0, oL);    and Y a{ = YTJ = 0. 

In this model, X is a "global" interaction coefficient which does assume a 
certain structure. Several variants of this model have been proposed and 
studied, while other authors have studied the problem of identification of the 
specific cells which contain interaction.  A review of this literature may be 
found in Johnson and Graybill2. 

Johnson and Graybill2»3 produced a satisfactory solution to this problem. After 
applying Tukey's test to determine whether or not interaction does exist, 

* The research for this paper was partially completed while the author was at the 
University of South Carolina, Columbia, South Carolina. 

Approved for public release;  Distribution is unlimited. 
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they estimate the interaction in all possible 2x2 contrasts, and declare a cell to 
contain interaction if it is contained in a large number of those contrasts 
which produce a significant statistic.  This is a significant step, but the total 

number of 2X2 contrasts is (2) (2) •  This quantity is always larger than 
n = at for a > 3, and t > 3, and can be much larger than n for even moderately 
large a and t. Since each of the n cells is contained in (a - l)(t - 1) distinct 2x2 
contrasts, judgement is required to determine if a particular cell should be 
declared "significant" or not. The simultaneous inference problem is avoided 

by the examination of all of the (*) (2) statistics. Furthermore, no follow- 

up analysis is required since all of the information is provided in orie 
application of their method. Their method does not produce an estimate of the 
size of the interaction. This is not a strong criticism, but some sort of estimate 
of the non-additivity would be useful. 

In this paper, a method is proposed which makes no assumptions about the 
structure of the interaction. It produces individual estimates and associated 
"t-statistics" for interaction in each of the n = at cells of the two way layout. 
The issue of simultaneous inference is not completely eliminated since some 
follow-up analysis may be desired if the total number of cells containing 
interaction is large.  That is, the t-statistic in a given cell is computed with the 
error estimate based on the observations in all of the other cells.  If several 
cells are discovered to contain interaction, it might be desirable to conduct a 
final test based on the removal of all of these cells. 

THE GENERAL CASE 

A general solution to the problem is presented here, after which several 
special cases will be examined. The general notation is that of Graybill4. To 
motivate additional notation, notice the following design matrix.  This matrix 
represents a 3x3 array with one observation per treatment combination in 
which cells (1,1) and (1,2) include interaction. That is, two observations 
involve interaction.  Notice the 2x2 identity matrix in the upper right hand 
comer of this matrix, and notice the 5x2 matrix of O's just below it.  The model 
which would generate this design matrix is: 

(i + 

(i + a 

ai + Tj H] + Eij 
1 + TJ + ey 

i,j = 1,1 or 1,2 
otherwise 

|i    ax a2 a3    Tj   x2   X3    Yn  Yß 

1 1 0  0 1 0 0 
1 1 0  0 0 1 0 
1 1 0 0 0 0 1 
1 0 1   0 1 0 0 
1 0 1   0 0 0 1 
1 0 0  1 1 0 0 
1 0 0  1 0 0 1 

1   0 1 
0 1 
0 0 
0 0 
0 0 
0 0 
0 0 

More generally, let yy , i = 1, 2,..., a and j = 1, 2,..., t represent n = at 
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observations of which q involve interaction.   (Later, restrictions on the sizes 
of a, t, and of q relative to a and t which will allow testing will be apparent.) 
Let r represent the set of the cells in which interaction occurs.  Then 

n 
y   =   H   +    Cl}   +   Tj   + 

y  =   |1   +   C4  +   Tj 
Mj + £ij 

yii = |i + a{ + tj + ey 

i,j e r 

It will be convenient to represent these models in matric form as follows.  Let 

y represent the vector of observations and let y =   y
Y   , where yp contains 

those observations in y which involve no interaction, and yy contains those 

observations in y which involve interaction.    Let ß' - represent the pxl 
vector with components (\i, ava2,~«a, xl,x2, ...xt). where p = (a +1 + 1) and 
let Y represent the vector of all interaction parameters in the model, where q 
is the total number of these parameters. Let ^ be the qxp matrix which 
corresponds to those observations which involve the interaction parameter, y, 
and let X« be the (n-q)xp matrix corresponding to those observations which do 
not involve the interaction parameter. Then the design matrix, in partitioned 
form, appears as follows (where 0 is an (at-q)xq matrix of O's and I q is the qxq 

identity matrix): 

The model may be represented as, 

yß 

Xß 

*Y 

0 

X, ß '«?][!] +   E 

where e represents the vector of errors.   A formal manipulation results in the 
following, 

XX = 
XyXy+XßXß        Xy 

^      Jq J 

and the normal equations are: 

x;Vx^ßx;irp-| rx; 4 
L^ß 

The conditional inverse or c-inverse of x'X denoted by (X X)   is: 

"(X^Cp)     Ay 
(XX) 

(XpXp) 

Finally, (X'X)CX'is: 
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(x'xrx' = 

and, 

o     (XpXÄ 

Iq  -X^XßXß) Xp 

Then, the least squares estimator of ß and Y are: 

^-(XpXpjSCpyp 

Y^yY-^CXpXpjScpyp 

^yy-^ß- 

Thus the algorithm is a 2-stage operation consisting in obtaining estimators of 
ß using only those observations which contain no interaction, and then insert 
these into the formula for obtaining the estimate for y • 

The estimate of the error variance is obtained in the usual way. Let e 

represent the vector [ M and ß represent the corresponding vector of 

estimates.  Then, substituting y = y Y - X^ into the r.h.s. of the first equality 
immediately following, the result is: 

(y-xä)'(y-X$) = 

[yPJ 
- 'ql 

1   o J '*1 A 
. Y . 

■ 

.   ■ 

yßJ 
- . xß   ° . 

[*1 A 
. Y  . - 

r o 1 i r   o 
— 7r¥ y F' tf 

* 

= (yp-Xpfe'(yp-Xpfe 

The error variance is, therefore,  estimated only with those observations 
which are not effected by interaction.  Note that 
(I (n   v - XpCXpXpjScp) is symmetric and idempotent.  Since the rank of Xßis q 
less than the rank of X then 

°Sa-l)(UVyß-Xßfe'(yß-Xßfo 

=
 (a-l)(1t-l)-qyß(I(n-q)-X^XßXß)Cxß)yß' 

Assuming that the errors are NID(0, a2I), then ö2is distributed as a chi-square 
random variable with (a-D(t-l)-q degrees of freedom, and £zis the UMVUE of 
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a2. An examination of the degrees of freedom indicates that in a 2x2 layout, it 
would be impossible to estimate an interaction coefficient.  In a 3-level layout, 
there are enough degrees of freedom to simultaneaously estimate the 
interaction coefficients associated with no more than 3 cells.   In general, this 
"saturation" limit is (a-l)(t-l)-l. 

It is important to point out that the linear forms y =yy - XyfXJiXß) Xpyß are 

independent pf the quadratic form yß (I (n.q) - xß(X(^ß) ^p> yp • To see this> 

write both forms as functions of y. If y is written as By, then 

B = 
. °(n-q)xq    °(n-q)x(n-q) 

7 1 * 
If the quadratic form for cr is represented as (a_i)(t_i).qy A V >then 

A = 
°qxq °qx(n-q) 

. °(n-q)xq   ^n-qf^ßV^ß • 

It is easily seen that A and B are conformable and that BA = 0. Thus, from a 
well known theorem on the independence of linear and quadratic forms (see 
Theorem 4.5.1, p. 137, in Graybill4) the linear forms representing  y  are 
independent of the quadratic form Ö2. The result is that, given normal and 
independent errors, the components of y  are normally distributed and 
independent of Ö2 and that t-statistics can be constructed to test for the 
presence of interaction. Before doing that, the moments of y  are required. 

It is easily seen that y is unbiased for y by substituting (2.6) into (2.5) and 
using (2.2), Then, Cov [y ] = £ [(y - y )(y - y )'] = Cov [B y] = a2 [B B*], and 

[BB] = 
Iq+. X^XJ^Cß) Ay      0qx(n_q) 

°(n-q)xq        °(n-q)x(n-q) 

Thus, 
CoV[y]=o2(Iq-fXY(X^ß)CX;). 

TWO SPECIAL CASES 

The algorithm is based on the examination of each cell individually for the 
presence of interaction.  The cells which are believed to contain interaction 
are simply treated as missing cells in the following ANOVA procedure.  The 
formal estimates are given below. 

Suppose that the observations yy  arise from the two-way classification model 
with one observation per cell, i assumes the values 1, 2,..., a and j assumes the 
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values 12   .. t, and where exactly one of the n - at cells is effected by 
Tnleracuon.  Designate that cell a, cell (K,L) where 1 * K « a and .1 * L « t. 

The previous results produce normal equations and the parameter estimates. 

The customary dot notation is used: y^Yyy andyL=-yL. The superscript O 

refers to summation within the row or column which contains the cell with 

O        xv     •  v£- —vP • while v°refers to the overall sum 
interaction:  y^=     2/Kj '  yK.~t-l yK-' *•• 

j=l, j#L 
except for the (K,L)-th cell;  y°= ^ y°; etc.    The estimators are based on the 

a t 
conditional inverse using the usual constraints, V«j= ^Tj = °- 

i=l      i=l 

4-<yK.-#♦:$)<&-# 

A - <n- y°) - ah) (yK.-^ - =<5Tjüft-#; "K 

A7 1 V/       A     A  A\2 
"'-(a-lXt-D-l.Zyii-''-^ 

i,J*K,L 

A at '? 
The moments of YKL are:   £ [yjaJ = YKL - aild VtMr tVH>(a-l)(t-l) ° " 

From the results of part 2, fo and S2 are independent so that a test for a 
non-zero value of YKL is the student's t with (a-l)<t-lH degrees of freedom. 

Under the null hypothesis,  YKLis zero, and the test is two-sided. 

A 
YKL      

t = 
A . /      at 
° V(a-l)(t-l) 
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In the following example, it will be of interest to simultaneously test two cells 
for significance. Suppose that there are two cells which contain interaction. 
The estimates differ formally, depending upon whether the two cells are 
either in the same row or column or in distinct rows and distinct columns. 

Suppose the cells are in the same column. Call the cells (K,M) and (L,M). The 
solution to the normal equations produce the following estimates: 

»K = (yK. - y°)+S(MJ ^°
U

 ' ^- 

V<y.,- y°)- *fc>o£-#- W2)^-y°)-di)^^0) 

W (yLM-?0) -£<*.- ft -&<?*- y°)-^^-y°) 

V*ir[YKM]"^tW = (t-lHa-2) °2'and Cov^AKM.VLM] = (t-l)(a-2) a ' 

If the two cells which contain interaction are in the same row, then the 
estimates can easily be obtained from the estimates given above by an 
£ ^change of indices a and t.  The parameter "^« £%*%$?£ 
occupy distinct rows and columns are much more complicated to write out. 

The solutions to the two previous cases and all others ^e greatly ^Jftedby 
proceeding as follows. The normal equations are reduced to full rank by first 
substituting u into the other equations. Then, the normal equations are 
arranged so that the coefficients of the cells ^ich contain mteraction are 
listed first beginning on the left, followed by the other coefficients.  This 
produces a "reduced" X'X equation of the following form: 

= [     Aqxq °qx(a-tt-q)     1 
I B(a+t-q)xq  l (art-q)x(a-rt-q) J' 

where A contains only the coefficients of the c^artd the tj corresponding to • 
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the cells which contain interaction, 0 contains the coefficients of all other 04 
and TJ , and B is a rank 1 matrix each row of which contains the additive 

coefficients of \i • Then, 
A"1     0 

R"1- 
-BA"1   1 

The a- and xi which involve interaction can be solved as a set and then 
substituted into the equations for the 04 and x]. This saves a lot of labor. 

AN EXAMPLE 

Johnson and Graybill3 produced an analysis of data in a 3x5 layout with one 
observation per cell which originally appeared in Black5. In their analysis 
first Tukey's test is used to determine if, in fact, interaction is present.  It it is 

found to be present, then k«  (2) (2)   tests for significance among all 

possible 2x2 contrasts of the cells in the layout are conducted   Apparently 
then, those cells which are contained in a large number of  significant 
contrasts are declared to contain interaction. Those cells are treated as 
Ss Ing observations in a »conventional ANOVA   Since each eel is contained 
in (a-l)(t-l) of the contrasts, some of the cells which do not contain 
Steractton will appear in some of the "significant" contrasts.  Thus, some 
j^dgemem is involved in deciding which cells are the significant ones   The 
datl in their example is given in table 1 below.  In theif ^^ ^^ 
was determined to be significant since all of the 8 ^"W^Ä^S?, 2 U 
contained that cell produced significant statistics.   The contrast for cell (2,1) 
and ceH (3 Sralso produced one significant statistic, but that was apparently 
Q^temined to be due to statistical variation. The mean squared error when 
cell (1,1) was removed from the analysis was 6,228.34 

1. YIELD IN kg/ha OF SPRING WHEAT 

Phosphorous in kg/ha 
Nitrogen in Total 

kg/ha     0       22 45 90 180  
0     1984 2550 2706 2740 2954 12934 
45    1776 2843  3306 3305  3386 14616 
90    1797 2761  3240 3227 3332 14357 

TOTAL 5**7 8154 9252  9272 9672 41907 

In our analyis, a t-test was conducted on each cell to ^^e^^^ 
present. No preliminary test for nonadditivity was conducted. The results are 
given in table 2. The t-statistics were based on 7 degrees of freedom. 
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2. ANALYSTS OF SPRING WHEAT DATA 

Cell Interaction t-statistic Mean 
Estimate Squared 

Error 

634.999 5.875* 6228.344 
73.125 0.279 36542.84 

-320.625 -1.372 29117.84 
-269.375 -1.109 31421.64 
-118.125 -0.455 35887.12 
-385.750 -1.760 25612.87 

-8.250 -0.031 35945.07 
173.625 0.681 34653.43 
159.250 0.621 35018.02 
61.125 0.233 36665.57 

-249.250 -1.014 32216.87 
-64.875 -0.248 36629.58 
146.999 0.571 35303.84 

10.125 0.424 36026.25 
57.000 0.217 36702.71 

(1,1) 
(1,2) 
(1,3) 
(1,4) 
(1,5) 
(2,1) 
(2,2) 
(2,3) 
(2,4) 
(2,5) 
(3,1) 
(3,2) 
(3,3) 
(3,4) 
(3,5) 

The test indicated that only the (1,1) cell contains interaction which agrees 
with the original analysis^ The statistic 5.875 for cell (1,1) corresponds to a p- 
value of about 0.0003 with 7 degrees of freedom. 

It may be argued that other cells which produce a large (even if not highly 
significant) statistic should be checked for significance with cell (1,1) 
removed, since the error estimate would be reduced, resulting in a higher 
value of the statistic for that cell. In this example, cell (2,1) produced the next 
highest t-statistic (-1.76 ) with error estimate 25 612.87 . The error estimate is 
lower that that produced by the other cells which were in the range 30,000 to 
36 000   Then if cell (1,1) is removed from the analysis, a reduction in the 
error estimate could produce a significant t-statistic.  There is a compensating 
effect namely that the removal of the observation in cell (1,1) would reduce 
the overall average in the first column which would tend to reduce the 
interaction estimate in cell (2,1). 

As an illustration, the special case estimate given in previously i<s used to 
produce »revised" estimates for cells (1,1) and (2,1), which are presented m 
table 3   This is not the recommended procedure because the correlation 
between cells (1,1) and (2,1) is neglected. A better test is described later. 

3. REVISED ESTIMATES OF CELLS (1.1) AND (2,1) 

Cell Interaction t-statistic Mean 
Estimate Squared 

Error 

(1,1) 5895 4.536* 6755.66 
(2,1) -91-00 --700 6755.66 
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This analysis confirms the original conclusions. The estimate for cell (1,1) is 
highly significant and cell (2,1) is not significant. 

As stated previously, a better procedure is to conduct a test which takes full 
advantage of the correlation between cells (1,1) and (2,1). Based on the results 
of Section 3, the joint distribution of the estimates Y n and y2l are' assuming 
normal and independent errors, jointly normally distributed with means Yn 

and Y21 > variances ■$$% o2 and covariance  {t.1}\^2) °2 •   Since cell 
(1,1) has already been judged to contain interaction, the recommended        ^ 
procedure is to test the hypothesis that y21 is zero, given that Y u = 635 and Y u 

= 589.5. The appropriate distribution is the distribution of y 21 8iven Y n and 

Y1X. The conditional distribution of Y 211 ( Y u. Y u)is: 

1   / A \.        at 2x 
N(Y21 + iT(Yll"YH)' (a-l)(t-l)°  }' 

The appropriate values are: y2l = -^l; Y n = 635; YV 589.5 ; and S2 = 6,755. 
These produce the t-value -1.213. The appropriate degrees of freedon are 6. 
This result agrees with the previous conclusion. 
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ABSTRACT 

The dynamic link among the Geographic Information System (GIS) ArcView, the dynamic statistical 
graphics (DSG) program XGobi, and the statistical computing environment XploRe has been successfully 
used to explore and analyze all kinds of spatially referenced data — from forest health data over precipitation 
data to precision agricultural data. In this paper, we will focus on the exploration of satellite images using 
the linked ArcView/XGobi/XploRe software environment. 

INTRODUCTION 

Multispectral satellite image data, i. e., remote sensing data gathered through earth observation satellites 
attracted the attention of statisticians working in the field of dynamic statistical graphics (DSG) during the 
last decade. Many prototypes of software systems have been developed over time that focus on many 
interesting software features but yet lack the full functionality that is required to geographically explore 
satellite images. 

The ArcView/XGobi/XploRe software environment consists of the Geographic Information System (GIS) 
ArcView 3.0™, the dynamic statistical graphics (DSG) program XGobi [25], and the statistical comput- 
ing environment XploRe [13]. These three programs, linked together into one single environment, provide 
features such as linked brushing among multiple windows of different types (e. g., map views and statisti- 
cal plots), grand tour [1], [2], projection pursuit guided tour [6], and standard clustering and classification 
methods, that are very powerful when jointly used for the exploration and classification of satellite images. 

In the following sections we will look at examples from the literature where satellite images have been an- 
alyzed using dynamic statistical graphics. We describe the ArcView/XGobi/XploRe software environment, 
and we explain how it can be used for remote sensing data. We finish with a discussion and an overview on 
future directions. 

SATELLITE IMAGES AND DSG 

Various statistical methods have been developed for the classification of remote sensing imagery. Many of 
these methods are based on principal components and are widely used in the remote sensing community for 
non-supervised classification purposes. Other statistical approaches that are also well-acknowledged in the 
remote sensing community have been focused on the optimum band selection for supervised classification. 
However, most of these solutions ignore the visual capabilities of human beings, highly depend on probably 
incorrect ground truth, or omit potentially valuable information at an early stage of the analysis. 

Exploration of satellite images via DSG is mostly based on human interaction and visual capabilities. 
This approach helps to detect incorrect ground truth and it does not ignore any of the information that is 
available. Unfortunately, there exist only experimental software solutions within the statistical community 
so far that support this approach. Some examples of the exploration of satellite images through DSG follow. 

In [4], a Landsat 2 multispectral scanner (MSS) image of the confluence of the Rio Solimöes and the 
Rio Negro near Manaus, Brazil, has been considered. The authors use the Data Viewer [3], [14], a program 
for the graphical data analysis, to explore the four-dimensional spectral data. The authors are capable to 
graphically confirm (through linked brushing and the grand tour) that the measurements on a transect across 

1 Approved for public release; distribution is unlimited. 
ArcView 3.0 is a trademark of Environmental Systems Research Institute, Inc. 
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the confluence (mixing) of the two rivers can be represented as a convex combination of the corresponding 
two water spectra. An earlier video [19] provides more details of this analysis. 

In [15], the simple image program MTID and XGobi have been linked together. The authors analyze 
Landsat Thematic Mapper (TM) images of the agricultural Parana State region. Based on their graphical 
analysis, a discrepancy between the images and the ground truth becomes immediately obvious. Probably a 
shift of the recorded ground truth in relation to the images has occurred. 

Scott [23] considers four-channel MSS data from NASA's Landsat IV satellite, taken from an agricultural 
scene in North Dakota on 5 different days in 1977. Scott displays trivariate scatterplots and contours of 
the transformed 20-dimensional data and he finds clusters that clearly discriminate between sunflowers and 
small grains. 

Salch and Scott [21] demonstrate a 2-dimensional density grand tour of a Landsat satellite image based 
on three groups of farm crops. The density grand tour reveals that at least one of the crops contributes to 
the multimodality of the densities. This is a feature that is also detected in other agricultural settings if one 
(or more) crop(s) has been planted at different points in time, thus yielding a wide variety of the underlying 
spectral measurements. 

Finally, Carr [5] presents a hexagon bin scatterplot matrix based on the seven spectral bands of a Landsat 
image at a Nevada test site. This binned scatterplot matrix shows areas of high and low concentrations of 
numbers of pairs of the seven spectral bands, almost perfect linear relationships between several pairs of 
bands, a cutoff of intensity values for the thermal band, and bivariate outliers. 

Unfortunately, in the last two examples the statistical plots are not directly linked to the original satellite 
image. Therefore, no immediate geographic conclusion can be drawn from the graphical statistical explo- 
ration of the data. 

THE ARCVIEW/XGOBI/XPLORE ENVIRONMENT 

The ArcView/XGobi/XploRe environment is a software environment where the Geographic Information 
System (GIS) Arc View 3.0, the dynamic statistical graphics (DSG) program XGobi [25], and the statistical 
computing environment XploRe [13] have been linked together, thus providing us with three different main 
concepts in one single environment. We can (1) display spatial locations ans concomitant variables on maps, 
(2) visualize these concomitant variables using interactively manipulated dynamic statistical graphics, and 
(3) conduct numerical statistical analyses. While ArcView's strengths are in (1) but it merely supports 
(2) and (3), XGobi's and XploRe's strengths are in (2) and (3), respectively. A link between these three 
programs does not only provide the sum of the features of the underlying programs but, in addition, we 
can gain further insight and understanding of our data through interaction and dynamic linking among the 
programs. See [27] and [26] for technical details of the software environment and possible applications for 
spatial data analysis such as real estate data and precision agricultural data. 

Remote Procedure Calls (RPCs) are the underlying Interprocess Communication (IPC) mechanism used 
for the communication among the three programs. More details on this IPC technology can be found in [24] 
and [9]. 

In addition to the publications on the entire ArcView/XGobi/XploRe environment, there exist several 
articles that focus on the preliminary Arc View/XGobi link. A description of the main features of this link 
(multivariate data, spatial cumulative distribution functions, variogram-cloud plots, spatially lagged scat- 
terplots, and multivariate variogram-cloud plots) and examples that range from forest health data over 
precipitation data to satellite images can be found in [7] and [8], for example. In [31], a comprehensive sum- 
mary on the technical details of the ArcView/XGobi link has been given. However, what has been stated 
there still holds for the entire ArcView/XGobi/XploRe environment. Recent developments on XploRe can 
be found in [17], [18], and [22]. 

EXPLORATION OF SATELLITE IMAGES THROUGH ARCVIEW/XGOBI/XPLORE 

In this section, we look at three different examples of remote sensing imagery. The first two examples only 
make use of the ArcView/XGobi link and have been described in more detail in [29] and [30] (Example 1) 
and [7] (Example 2). Example 3 is based on data presented in [11] and [12] and makes use of the full 
ArcView/XGobi/XploRe environment. 
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EXAMPLE 1: LAKE IC ARIA WATERSHED 

Figure 1: The ArcView map view (top) is linked with two XGobi views (bottom). The left XGobi shows the 
7 clusters obtained from a hierarchical cluster analysis. The right XGobi shows a scatterplot of the variables 
Icariacl and Icariac2. The two clusters brushed in the left XGobi fall on lake locations (circles) or areas 
with active vegetation (filled boxes) in the ArcView map view. They also form two of the corners of the data 
triangle in the right XGobi. 

This example shows three ranges of wavelengths of electromagnetic radiation (expressed through the 
variables Icariacl, Icariac2, and IcariacS) measured on April 22, 1990, by the SPOT earth observation 
satellite. The area under consideration relates to the Lake Icaria watershed in southwest Iowa (near Corning). 
Instead of using all 300,000 pixels of the scene that are available in ArcView, we took a systematic random 
sample (e. g., [10], Section 5.6.1) of 800 locations for further analysis in XGobi. 

At the time we analyzed this data, XploRe was not yet accessible through a link. It took the user five 
individual steps to create a new variable Clust that contains the result of a hierarchical cluster analysis. 
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To ease the access to analytical statistical methods we decided to add XploRe to the ArcView/XGobi link. 
Today, within the ArcView/XGobi/XploRe environment, these steps could be done by pressing a few buttons 
in Arc View to activate the required functionality within the other two programs. 

Figure 1 (a reprint from [29] and [30]) shows the Arc View view (top) and two XGobi views (bottom). 
We brushed two of the clusters in the dotplot of Clust (left XGobi). We see that these clusters are two of the 
corners of the data triangle in the scatterplot of the variables Icariacl and Icariac2 (right XGobi). In the 
ArcView view, these points fall on lake locations (circles) or areas with active vegetation (filled boxes). The 
next step of our interactive analysis might have been the brushing of the third corner of the data triangle 
in the right XGobi to see if these points also relate to a particular geographic region in the map view. An 
accompanying video [28] gives additional insight into this interactive and dynamic analysis. 

EXAMPLE 2: BORDER REGION BETWEEN VERMONT AND NEW HAMPSHIRE 
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Figure 2: The ArcView map view (left) shows the spatial region while the XGobi view (right) shows an 
interesting projection that permits to distinguish between two types of water. The cluster of points (marked 
with circles) detected in XGobi relates to the middle of the river and the small lake in the upper left corner 
of the ArcView map view. The remaining points (marked with x 's) that are widely spread in the XGobi view 
fall onto the smaller ponds and the southern border of the river. The XGobi variable panel indicates that 
bands 2, 4, and 5 are major contributors to this projection. 

While we only consider main classifications such as water and vegetation in Example 1, this example 
demonstrates that water is not always equal to water and a quarry can be separated from areas that look 
similarly in the visible satellite image. This time we have measurements from 6 spectral bands recorded 
by the Thematic Mapper (TM) instrument of the Landsat earth observation satellite. The area under 
consideration relates to the border region between the states Vermont and New Hampshire. In Figures 2 
and 3 we look at two very small segments of this area. The ArcView view in each of the two figures is based 
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Figure 3: The ArcView map view (left) shows the spatial region while the XGobi view (right) shows an 
interesting projection that permits to distinguish among quarry regions (marked with x 's), a clearcut area, 
and clouds. The XGobi variable panel indicates that bands 2 and 5 are major contributors to this projection. 

on bands 4, 3, and 2, only. For the XGobi views, we took random samples of points from known origin. 
The ArcView images have been processed with an image processing program after the analysis to yield a 
better gray scale representation. On a computer screen you would see red symbols on a mostly green/blue 
background. 

In Figure 2 samples of pixels from the water bodies have been taken. The big water mass that stretches 
diagonally across the ArcView view (left) relates to the Connecticut river. Three smaller water bodies are 
also visible. In the XGobi view (right) we see a concentration of circles that are clustered along a line and 
a large number of x's that are scattered in the plot. In the map view we see that the circles fall onto the 
middle of the river and the small lake in the upper left corner. These points may relate to factors such as a 
strong current, deep water, and no overgrown vegetation. Otherwise, the x's fall onto two smaller ponds and 
the southern border of the river. These points may relate to shallow water with algae or waterplants in the 
ponds or overgrown vegetation at the edge of the river. Note that there are no x 's at the northern border of 
the river — an indicator that there is no vegetation on this border. Most importantly, the visible ArcView 
view based on bands 4, 3, and 2 does not allow a distinction among different water bodies. However, the 
XGobi projection allows such a distinction since, as the XGobi variable panel indicates, band 5 which is not 
used in ArcView (in addition to bands 2 and 4) is a major contributor to this projection. 

In Figure 3 the ArcView view (left) shows a region where 2 clouds, a clearcut area, and two quarry 
regions have been classified as ground truth. In the XGobi view (right) we can distinguish three regions 
of points. We brushed the points from the quarry regions with an x in the ArcView view and notice that 
all these points fall into one of the three regions. However, there are additional points in this region that 
have not been marked. This might be an indicator for an addional quarry region that has been differently 
classified in the ground truth. Through brushing in XGobi we would also see where these points are located 
on the map. Note that once again bands 5 and 2 are major contributors to the XGobi view but band 5 is 
not a part of the ArcView view. 
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EXAMPLE 3: AGRICULTURAL SCENE FROM THE IMPERIAL VALLEY 
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Figure 4: The ArcView map view shows the reported crop information for an agricultural scene and the 
sampling locations which have been used for further analysis in XGobi and XploRe. Six crops are identified 
from the ground. For fields with no crops or mixtures of crops no information has been recorded. There are 
7 bands of remotely sensed information available for clustering and comparison with the ground truth. 

In this example we are looking at data from 7 bands recorded by a Landsat-4 TM instrument on Decem- 
ber 12, 1982. The scene under consideration represents a very small area of the Imperial Valley in California. 
In fact, we only consider 124 fields with known crop information provided by the Imperial Valley Irrigation 
Board. See [11] and [12] for additional details on the data and assessments of different classification tech- 
niques. Figure 4 shows the known crop types for the area under investigation. It is a reproduction within 
ArcView that is based on Figure 2 in [12]. We took a systematic random sample of 314 locations for further 
analysis in XGobi and XploRe. 

As usual, we make use of XGobi's grand tour feature to detect clusters. Figure 5 shows such a cluster 
in the XGobi view (right). The points that have been brushed (with an open box) fall all into fields of 
beets in the ArcView map view (left). The ArcView map suggests that some points in the beets fields have 
been missed through the XGobi classification. This is not the case. As Figures 3, 4, and 5 in [12] indicate, 
there seem to be streets bordering each field. The points that appear to be located within fields of beets 
according to the inprecise ground truth used in ArcView most likely fall onto streets, thus yielding quite 
different wavelength measurements (and therefore projections in the XGobi view) than points from the fields 
of beets. 

Before the next step we deleted points from XGobi and ArcView that have been classified as beets in the 
previous step, thus we are conducting a hierarchical analysis in this example. Figure 6 shows another cluster 
(brushed with an open box) in the XGobi view (right) that relates to fields of alfalfa in the ArcView map 
view (left). However, a large number of alfalfa points in the map is not highlighted. [12], again, provides an 
explanation: There are "new" and "old" alfalfa fields.  Unfortunately, this additional information was not 
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Figure 5: The ArcView map view (left) shows the spatial region while the XGobi view (right) shows an 
interesting projection that permits to distinguish between beets (open boxes) and other crops (filled circles). 
Points that appear to fall on beets fields but are not contained in the XGobi cluster have been circled in the 
ArcView map view. From additional sources we know that these points most likely fall onto streets dividing 
or surrounding the fields. 

available for our analysis. However, it seems to be very likely that our given projection in XGobi allows a 
distinction between "new" and "old" alfalfa fields. 

One should note that in Figure 6 we also brushed the single sampling point that falls into the broccoli 
field. In the XGobi view the corresponding filled box appears at one edge of the alfalfa cluster. It would be 
interesting to have a larger sample of points from the broccoli field and see if a distinction between alfalfa 
and broccoli is possible. 

In our interactive environment we would try to find additional clusters in XGobi that allow to distinguish 
among the other type of alfalfa, cotton fields, and fallow fields. Since we have only two sample points for 
onions, it is very likely that these will not be identified as an additional crop. Taking more sample points 
from this crop's field would probably help in clustering it. 

If we look at the XGobi variable panels in Figures 5 and 6, we see that each of the 7 bands has a 
non-neglectable influence on at least one of the visible projections. Any classification approach that tries to 
eliminate any of the bands will most likely produce a less precise classification. 

In addition to the visual approach in XGobi presented so far we make also use of XploRe's clustering 
capabilities to analyze this data set. XploRe supports two basic clustering methods, i. e., hierarchical 
clustering and partitioning clustering. Partitioning methods (kmeans in XploRe) require an initial partition. 
Other fc-means clustering methods, like adaptive &-means clustering, are also available in XploRe. 

In this example we make use of a hierarchical method. For this approach interpoint distances of cluster 
centers will be used to build additional clusters. We start with n clusters that contain one observation each 
and successively merge clusters together. XploRe allows different hierarchical methods like single linkage, 
complete linkage, average linkage, Centroid linkage, Ward method, and Lance- and Willams method. For 
a short overview of these methods see [16], for a more detailed overview see [20], and for an overview of 
methods implemented in XploRe see [13]. 

To use the hierarchical method we have to select a distance measure and one of the previously listed 
methods.   We choose the Euclidean distance and the Ward method.   The Ward method minimizes the 
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Figure 6: The ArcView map view (left) shows the spatial region while the XGobi view (right) shows an 
interesting projection that permits to distinguish between alfalfa (open boxes) and other crops (filled circles). 
Alfalfa fields that are not contained in the XGobi cluster have been circled in the ArcView map view. There 
are "new" and "old" alfalfa fields. The cluster in XGobi most likely relates to only one of these types. 
Broccoli (just one sample point represented by the filled box) has values similar to alfalfa. 

"within" cluster variances. The dendrograms in Figure 7 show the logarithm of the sum of the "within" 
cluster variances on the j/-axis. We see at which levels observations and clusters are merged together (bottom: 
all 313 observations2, top: one cluster). Since the variances of the clusters vary, we applied clustering on 
the original data and on the standardized data. Both dendrograms show a large increase of the sum of the 
"within" cluster variances if we merge the last two clusters. The dendrogram of the standardized variables 
shows also an increase of the sum of the "within" cluster variances if we have four clusters. 

Since we know the clustering based on ground truth, we can compare the results of the clustering algorithm 
(based on the original data) and the true groups as in Table 1. The Ward methods behave a little bit worse 
on the standardized data (not shown). However, Table 1 shows that with two clusters (left part) just group 
1 (beets) is somewhat separated from the other crops. An increase to four clusters (right part) shows that 
group 3 (alfalfa) is split into three of the four clusters. This is not surprising since we already know that 
there are different types of alfalfa. Group 1 (beets) is separated very well from the other crops. The first 
cluster does not only contain parts of group 3 (alfalfa) but also groups 2 (cotton) and 4 (fallow). Obviously, 
much more than four clusters are required to distinguish among these crops. This matches the results of [11] 
where a clustering method based on unsupervised signatures resulted in 19 clusters. Since groups 5 (onions) 
and 6 (broccoli) contain only 2 and 1 observations, respectively, it is basically impossible to detect these as 
separate clusters. 

Figure 8 shows some good bivariate projections based on the partition found in the data. The two cluster 
projection (left) shows a strong linearity within the data whereas the four cluster projection (right) shows 
how well the clusters are separated in the data. 

2From the dataset one observation was deleted since the measurement of all channels was zero. 
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Figure 7: The dendrograms for the original data (left) and standardized data (right) indicate how clusters 
are merged together. At the bottom we have all 313 observations and on top we have one cluster. On the 
y-axis we see the logarithm of the sum of the "within" cluster variances. 

Table 1: Comparison of clustering (based on the original data) and the ground truth based on two clusters 
(left part) and four clusters (right part). The numbers 1 to 6 on top of the table stand for the 6 crops, i. e., 
beets, cotton, alfalfa, fallow, onions, and broccoli. 
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Figure 8: Bivariate projections based on the partition found in the data. The two cluster projection (left) 
shows a strong linearity within the data whereas the four cluster projection (right) shows how well the clusters 
are separated in the data. 
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SUMMARY AND FUTURE DIRECTIONS 

In this paper we described the use of the ArcView/XGobi/XploRe software environment for the explo- 
ration and analysis of satellite images. Within this environment we are capable to detect interesting features 
of the remote sensing imagery due to its appearance in a series of dynamic plots in XGobi. We can also 
conduct an analytical statistical analysis of the data in XploRe. 

Further work can be directed towards two directions. First, one should consider how existing classification 
techniques of remote sensing imagery can be combined with the visual approach highlighted in this paper. 
What is the gain if we combine these methods, how many additional percent of pixels do we classify correctly? 

The work presented in this paper should not be misunderstood. We do not claim at all that the classifica- 
tion through dynamic statistical graphics presented here is better than any existing classification technique. 
But we are convinced that existing classification techniques combined with the graphical approach help to 
produce better classification results in an easy way. This should be further investigated. 

Direction two deals with possibilities for improvements of the software environment. For example, it is 
absolutely necessary to solve one restriction of this environment, i. e., the fact that only one of the graphical 
links is fully functional at a time. For example, if we brush points in the XGobi view, they are also brushed 
either in Arc View or in XploRe — but not in both other programs at the same time what one would expect 
from such a linked environment. A solution has been designed (see the part on "hierarchical" linked brushing 
in [31] and [26]) but it has not been implemented yet. 

There exist other possible extensions that would be particularly useful for the exploration of satellite 
images. As we have seen in all of our examples, we typically only use a very small subset of the pixels of a 
satellite image. So far, we used individually written AVENUE scripts in Arc View to do this sampling, e. g., 
systematic random sampling or stratified sampling based on ground truth such as water, road, or urban 
surfaces. An easily accessible collection of sampling mechanisms in this environment would be ideal. 

Also the concepts of "geographic brushing" through Arc View (e. g., brush all points that are at most 
1 km away from a known water source) and "statistical brushing" through XploRe (e. g., brush all points 
where the greenness index — a function based on measurements of some of the satellite bands — falls into 
a given range to show actively growing vegatation) would be additional useful extensions of this software 
environment for the exploration of satellite images and other geographically referenced data. 
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VISUAL EXPLORATION OF SPATIAL DATA WITH MANET 

Adalbert F.X. Wilhelm* 
Center for Computational Statistics 

George Mason University 
Fairfax, Virginia 22030 

ABSTRACT 

MANET is research software developed at the Department for Computeroriented Statistics and Data 
Analysis at the University of Augsburg. MANET offers visual exploration of data sets. It is based on 
the paradigm of linking low-dimensional views in a highly interactive environment. Two main features 
of MANET are the consistent treatment of missing data in visualization and the link between graphic 
representations of geographic space and the graphic representations of attribute space. This paper shows 
various examples how this link can be used to explore data with underlying geographic information. 

INTRODUCTION 

Spatial data are widely used to demonstrate new developments in interactive statistical graphics. This is 
not a mere coincidence but the consequence of the extent to which spatial data and interactive graphics 
can supplement each other. Spatial data are often characterized as being "data rich but theory poor"1 

and they often do not meet the standard assumptions necessary to perform a confirmatory analysis. 
Interactive graphics are based on the philosophy of exploratory data analysis (EDA) established by 
Tukey and his scholars. In EDA the data should speak for themselves or in Tukey's words "EDA is 
looking at data to see what it seems to say"2. The main goal in EDA is to detect patterns, to produce 
hypotheses and to identify potentially misleading or influential observations, such as outliers or leverage 
points. All these premises fit well to the analysis of spatial data. In addition, geographers are used to 
work with graphical representations of their data, like maps and cartograms. 

It is therefore not surprising that a series of work has been done that tries to connect interactive sta- 
tistical graphics and spatial data analysis. Three different branches of software developments accompany 
these efforts: integrating spatial ideas in interactive statistical software, integrating interactive graphics 
in spatial analysis software and linking Geographic Information Systems to dynamic graphics software. 
Examples for the latter are the XGobi/ArcView Link3 and the SpaceStat/ArcView Link4. The second 
approach is pursued in the development of CDV

5
, the first one in REGARD

6
 (formerly SPIDER)

7
 and in 

MANET
8
. 

Typically, integrated systems are considerably faster in execution than coupling approaches and they 
provide a more seamless environment which is so crucial for a highly interactive exploration. 

MANET has three components with a mainly spatial operational field (the polygon map, the trace 
function, and weighted plots) and it is strongly influenced by the experiences made with REGARD. 

Interactive statistical graphics resulted from the merge of static data representation used for ex- 
ploratory data analysis and inexpensive graphics-capable desktop computers. But interactive graphics is 
much more than just creating a graphic on the computer screen. The possibility of user interaction with 
instantaneous response opens a completely new way of looking at data. Whereas the goal in cartography 
and static graphics is to show in one plot as much information as possible, interactive graphics keep 
the displays simple by hiding information that is not essential for interpretation until it is specifically 

requested. 
As yet, there does not exist a precise definition of interactive statistical graphics. Often researchers 

use the notions dynamic graphics, direct manipulation graphics and interactive graphics interchangeably. 
Eick and Wills9 define "Interactive Graphical Methods as the class of techniques for exploring data that 
allow the user to manipulate a graphical representation of the data". Moreover they define "an Interactive 

•On leave from Universität Augsburg, Germany. 
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Graphic View as a pictorial representation of some form of data or information which the analyst can 
manipulate in real time"9. Current statistical software packages offer at least scatterplot brushing and 
3-D-rotation as the main interactive procedures, but a much bigger variety of features has been proposed 
in the literature and made available as prototypes. Interactive graphics are indispensable for acquisition 
of qualitative insights into the data sets, for studying model residuals as well as for revealing quantitative 
results. 

The principal concepts to make a single graphic interactive are: 

Changing Projection Views Paper and screen are restricted to two dimensions and the human eye- 
system is trained for the three-dimensional world only. Dimension reduction techniques are used to 
guarantee quick and easy perception. To regain some of the multi-dimensionality of the data set a 
rapid dynamic and smooth change of the projection views must be provided. 

Rescaling Perception of graphical displays strongly depends on the scale. Since there are no unique 
choices, statistical software should provide the user with tools to flexibly change plot scales. 

Interrogation Graphics should not be overloaded. On demand additional information must be available 
directly from graphics. 

Selection Selecting subgroups and focusing on specific data points helps to reveal structure in the data 
set. A wide variety of tools to select groups of points from graphical representations is needed to 
perform a sophisticated analysis. 

Linking Full interactivity is only achieved when selection is not restricted to a single display but prop- 
agated to other plots. This means that all displays are connected and that each view of the data 
shows each case consistently. Linking is the key concept of interactive statistical graphics, it builds 
up a relation between measurements of various variables, between different graphical representa- 
tions as well as between raw data and some models. These links can also perform different functions 
- the standard one is highlighting, color encoding or hiding are others. 

For all these interactions an instantaneous response is crucial. As Eick and Wills point out this means 
that a "response time of 50ms or less is required"9. 

Two different conceptual approaches exist for interactive statistical graphics: single window linking 
and multiple window linking. The first concept requires that all linked plots are arranged in one single 
window. Therefore, linking is often unnecessarily restricted to array arrangements of the same plot 
type, e.g. scatterplot matrices and trellis displays10. In the multiple window approach each display lives 
independently, but they all inherent selection information from the case labels. 

For spatial data the paradigm of multiple windows linking is very appealing. It seems quite natural 
to combine the geographic location in form of a map to the graphical representations of the variable 
measurements. But in fact, maps have only been added quite recently as an additional view of the data, 
see Monmonier1!, Haslett et al 7 and MacDougall^. 

Linking low-dimensional views is particularly helpful for the standard questions of exploratory data 
analysis, like searching for outliers and clusters, or investigating distributional properties like symmetry 
or modes. In contrast to high-dimensional rotating point clouds or parallel coordinate plots, linking 
low-dimensional views allows to use displays like histograms and boxplots that convey the marginal 
distributional properties much better. Interpretation of linked views is typically much easier than for 
complicated high-dimensional plots since the user controls the process of investigation. But still a lot of 
the multivariate structure can be found. 

INTERACTIVE MAPS 

The key tool to enhance interactive graphics software to the analysis of spatial data is to add a 
map tool. Data with point locations can simply be handled by drawing a scatterplot for longitude and 
latitude, but many spatial data sets are based on regions. MANET is able to deal with such data by 
drawing a polygon plot. How can we make a polygon map interactive? Changing projection views 
could be interpreted as using different projection techniques to map the threedimensional locations into 
planar coordinates. A less sophisticated approach is to allow different representations of the same map. 
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This is done in MANET where the user can switch between a filled polygon map, a hollow polygon map 
and a choropleth map, see Figure 1. Switching from one representation to another is easy and can be 
performed by simple mouse clicks. The filled representation is more effective in showing the global spatial 
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Figure 1: The default polygon map is a filled one (left). Changing plot parameters draws only the 
boundaries (center). Dragging and dropping a variable over the plot changes it to a choropleth map 

(right). 

distribution but it is highly affected by the size of the regions. Perception of spatial distributions shown 
in choropleth maps depends heavily on the scale used. In MANET two sliders are available to transform 
the data towards a more appropriate scaling. A preview of the color distribution makes it easy to find a 
transformation that results in a more informative choropleth map, see Figure 2. The distraction is here 
mainly caused by one outlier with a multi-million population: Chicago - that shows up as a white spot. 
The transformed map still shows Chicago as an outlier, but it shows the variability in the bulk of the data 
much better. In addition, a second outlier appears at the lower end of the population scale: Keweenaw, 
the county that is farthest north. 

Transformations can also be used to reverse the color table. The default assigns white for the highest 
values and black for the lowest, but depending on the context interpretation might be easier or the display 
might be more consistent with a reversed color table. 

The choropleth map is not restricted to continuous variables. Discrete variables are handled in the 
same way resulting in what is often called a chorochromatic or fc-color map. 

MANET treats the map as any other graphical data display. Therefore, all facilities for user interaction 
provided for statistical graphs, such as interrogation, are also available for the map. 

LINKING MAPS AND STATISTICAL GRAPHICS 

Scatterplot brushing is today a fairly well-known exploratory visual technique. But the idea of brushing 
is not restricted to scatterplot matrices only. There are quite a few software packages available that 
offer brushing for all kind of statistical graphics, like bar charts, histograms or box plots. From this 
point of view it is straightforward to link the geographic information displayed in a map to the attribute 
information displayed in a graphic. In MANET the polygon map is fully linked to all attribute displays. 
For any subsets of areas selected on the polygon map the distributions of the corresponding observations 
are highlighted in all non-spatial views. Similarly, for any subset of data selected in a statistical graph, 
such as a category in a bar chart, the corresponding areas are highlighted on the map. 

The basic application of that feature is to focus on interesting subsets and to compare their char- 
acteristics with either the entire data set or the complementary subset. Methodologically, there is no 
difference whether the selection is made on the map or on a statistical graph. In Figure 3 counties in the 
Midwest region in which a high proportion of elderly people is known to be poor are selected (see boxplot 
on the right). Immediately, the same counties are highlighted in all other plots. The boxplots for the age 
categories 0-17 and 18-59 show that poverty is - as expected - a family related problem that affects all 
generations. More surprisingly, however, is the fact that poverty has a specific spatial distribution. All 
the selected counties lie in the south of our region of investigation. 
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Figure 2: On the top is the default choropleth map and the corresponding frequency distribution. Chang- 
ing the sliders in the preview leads to an improved map shown on the bottom left. 

Subset selections can also be based on both geographic and attributive information at the same time. 
In MANET a series of selections can be composed with logical operations and all steps of such sequences are 
stored and can be changed individually. Thus, quite elaborate data queries can be performed graphically 
and various subgroups can be checked effectively13. 

Tracing is a special kind of generalized brushing proposed by Craig, Haslett, Unwin and Wills14. It 
computes statistics like the mean, the span, or the standard deviation, of specified variables for all points 
covered by the brush rectangle. As the brush moves over the window the computations are updated and 
the results are displayed in a new view in a time series plot format (see Figure 4). Tracing is particularly 
useful for classifying variables and detecting spatial dependence. Linking in trace plots does not reflect 
a one-to-one correspondence but either a one-to-m or a m-to-rn correspondence. Selecting a county in 
the map will highlight all calculations in the trace plot that use the county's measurements. Selecting a 
point in the trace plot will highlight all counties in the map that contribute to this value. In addition, all 
other points in the trace plot that also make use of the highlighted counties' measurements are selected. 

Spatially referenced area data is typically based on politically defined regions. Bar charts or his- 
tograms that reflect the number of regions falling in a particular class are often misleading and bear low 
information. Instead, some demographic figures, like total population or population density, might be 
more appropriate to use as weight for each bin area than the bare number of regions. In MANET weighting 
is possible for bar charts, histograms and mosaic plots and it is performed by simply multiplying each 
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Figure 3: On the left hand is a polygon map of the counties in Bavaria; on the right hand is the trace 
plot for four variables on kind of land usage. 
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Figure 4: On the left hand is a polygon map of the counties in Bavaria; on the right hand is the trace 
plot for four variables on kind of land usage. 

case of the displayed variable with the corresponding value of the weight variable. 
Weighted versions are available for histograms, bar charts and mosaic plots. The plotted areas do not 

reflect the number of counts in each class, as would be done by the standard plots of this type, but the 
areas reflect the amount of another variable measured at the objects that fall in a class, see Figure 5. In 
many surveys such weighted plots help to adjust results and to avoid false impressions that are mainly 
caused by a specific structure in the underlying sample space. 

CONCLUSION 

Linking low-dimensional views is an easy interpretable approach to analyze multivariate data. This 
approach can be straightforwardly extended to spatial data by adding a map to the plot toolbox. Highly 
interactive environments give full support to the human being who is still the best pattern recognizer. In 
contrast to linkages between GIS and statistical software, the development of integrated software is easier 
to use, it offers are more seamless transition from non-spatial to spatial problems, and - most important - 
it is much faster. In addition, low-dimensional views, like bar charts and histograms, are also familiar to 
researchers and analysts who are not specialized in statistics. Therefore, communication is much easier 
to clients when using these types of plots. Further information on the MANET-Project can be found on 
the World Wide Web under URL 
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Figure 5: On the left hand we show a standard bar chart where the area of the bars represents number of 
counties in certain states in the Midwest, whereas on the right hand the area reflects the total population 
in those counties. 

http://wwwl.math.uni-augsburg.de/ manet/ 

Future work will concentrate on extensions of the linking paradigm to different types of spatial location. 
Various data matrices have then to be connected together. In the hierarchical case the procedure is 
straightforward. Whenever a region is highlighted that is higher in the hierarchy all areas that are 
included in that region are highlighted too. If an area is highlighted the region containing it is partially 
highlighted either by using grey scale or by partitioning the region. 
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ABSTRACT 

This paper deals with the control of radio communications in a battlefield - in particular, of communications 
among scouting robots. It is assumed that the robots operate in groups and exchange over a common radio 
channel coded messages about their states, positions, tasks, and observations. Control of the communications is 
needed to reduce message collisions, and consists of a control of access to the channel. To reduce vulnerability 
the control should be distributed among the robots such that each robot independently controls its access in a 
manner that enhances the overall information throughput. Inputs for such a control are approximate statistics of 
the network status that are obtained by passive monitoring of the message traffic. The control rules are heuristic 
because the controlled process does not have a set point. These circumstances suggest the use of fuzzy-logic 
control procedures. The author has developed such control procedures and tested their behavior on a computer 
model of battlefield communications. 

INTRODUCTION 

A typical communications network in a battlefield consists of a moderate number of nodes that are 
broadcasting on a single low-bandwidth radio channel. Problems arise when more than one node tries to access 
the channel at the same time. The ensuing message collisions can cause a breakdown of communications just at 
those times when information exchange is important. 

To ensure smooth communication and to enhance the information throughput rate, a control of network 
access is mandatory. However, a hierarchical control is not practical in a battlefield environment for two 
reasons. First, the status of the network changes dynamically. Therefore, a regulating node must be constantly 
supplied with information about the present status. Such information gathering would use up broadcasting time, 
and the received information might be outdated on arrival. Second, the concentration of control in a single node 
makes the communications network more vulnerable. 

These difficulties can be avoided by using a distributed control where each node listens to the network traffic 
and makes independent decisions for accessing the network. This is possible because in a modern battlefield 
communication system, the nodes are computers and the communication is in digital form among these 
computers. That is, each node has ample computing power to analyze the network traffic and make decisions. 

.The inputs for the control procedures are obtained by passive listening that provides only approximate, albeit 
up-to-date, information about the network status. Therefore, the control rules must be of such type that allows 
approximate input. Also, the goal of the control is defined only approximately as "enhance the information 
throughput." The system has no set point, and control rales that are based on error terms are not applicable. This 
suggests the use of fuzzy-logic control rules. This paper describes such control procedures that have been 
developed at the U.S. Army Research Laboratory. 

Approved for public release; distribution is unlimited. 
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NETWORK ACCESS ALGORITHM 

We are seeking access control procedures with the following properties: 
1) All nodes have equal chances for access. 
2) Information throughput is enhanced. 
3) Priority messages have higher access chances. 

An algorithm that achieves these goals can be constructed around the following broadcast procedure. A monitor 
at each node constantly listens to the radio channel and informs the access manager program when the channel is 
free. At that time, t, the manager determines which message from its message queue should be broadcast, 
chooses a random time interval, A, from a prescribed access delay interval range (0,D), and sets a tentative 
broadcast time, t + A, for the message. If the channel is still free at the set time, then the message is broadcast. 
Otherwise, the manager aborts the procedure and waits for the next free time signal. 

Obviously, the procedure satisfies the first property if all nodes use the same access delay interval, D. The 
procedure would also prevent message collisions, if the response time of the nodes would be zero and the 
propagation speed of radio signals infinite. In practice, however, the response times are finite, and it is estimated 
that messages from different nodes will be broadcast simultaneously and collide if their set times t + A, differ by 
less than 0.5 s. (A typical message length is of the order of 1 to 10 s.) Collisions reduce the information 
throughput rate because collided messages must be repeated. The probability of collisions is reduced by 
increasing the size of the access delay interval D. On the other hand, a large D means long idle times for the 
network and the idle time is reduced by reducing D. Hence, there exists an optimal D that corresponds to a 
maximum throughput rate and somehow depends on the size and state of the network. The goal of the control 
procedure is to find, in real time, an optimal D from information that can be obtained by monitoring the network 
traffic. 

The third property is taken care of by reducing the global D for high-priority messages and increasing it for 
low-priority messages. The priorities are assigned automatically by the message-generating programs. (Typical 
information exchanged by scouting robots consists of data about the robots' positions, states, and current tasks; 
descriptions of observed targets; and changes of environments in the vicinities of the robots.) 

INPUT INFORMATION 

The state of a battlefield communications network is completely described by the number and state of the 
nodes, the message queue at each node, and the characteristics of external noise. However, the current values of 
these state parameters are not available to the access managers at the nodes. Instead, the network conditions 
must be inferred from approximate information that is obtained by listening to the network traffic. We have 
chosen three groups of network parameters that can be obtained by listening. These parameters represent time 
averages of observations during a listening time interval, L, prior to the reference time t. One group consists of 
the relative usage time of the radio channel during the time interval (t - L , t) in three usage categories. A 
second group consists of the relative number of network accesses during the same time interval in the three 
categories. A third group consists of average message lengths in the three categories. The categories of network 
usage time are: 

1. Idle time. 
2. Successful transmissions. 
3. Collided transmissions. 

For effective control, one also needs predictions about the expected status of the network. Such predictions can 
be obtained from the trends of the observed parameters that usually are obtained by numerical differentiation. 
However, in the present problem, simple numerical differentiation cannot be used because of the oscillatory 
character'of the data. Therefore, trend indicators were obtained by subtracting from the simple averages of the 
parameters corresponding weighted averages over the same averaging interval L with linearly decreasing 
weights. 
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The length L of the listening interval cannot be chosen arbitrarily. An excessively short length provides only 
useless data about the instant channel status, while an averaging over an excessively large L is not sufficiently 
responsive to changing trends of the averaged parameters. Therefore, the access controller also controls the 
listening and averaging interval L by adjusting it as necessary if network conditions change. 

CONTROL RULES 

The network access algorithm is controlled by the length D of the access delay interval. The choice of D is 
in turn influenced by the length L of the monitoring and averaging interval. The procedures for the control of 
these two access parameters were formulated in terms of fuzzy-logic rules. In this section, we provide a short 
description of these rules. A more detailed description and discussion is found in reference [2]. 

CONTROL OF MONITORING 

The proper size of the monitoring and averaging interval L was found by experiments to be about 40 to 50 
times the average length of transmitted messages. (These and other experiments were done with a computer 
model of battlefield networks [1].) To accommodate changing network conditions, L was controlled 
dynamically; that is, L was increased or decreased from its current value if it deviated significantly from the set 
value of 50 times the current message length. The deviation was expressed in terms of the dimensionless 
quotient 

Q=L/(50-a)-l , 0) 

where a is the average message length. The correction of Loid was expressed by a factor X as follows: 

Lnew-Loid-a+a.) • , (2) 

The control rules for the computation of the corrector X for given deviation Q are summarized in the following 
fuzzy-rule table. 

Q NL N Z P PL 

X PL P Z N NL 

Here, NL, N, Z, P, and PL denote fuzzy sets that define the categories "negative large," "negative," "zero," 
"positive," and "positive large," respectively. The first rule in the rule table is 

If  Q is   "negative large,"  then  make  X  "positive large." 

The other four table entries denote corresponding rules. The membership functions of the fuzzy sets that 
describe the categories were determined by numerical experiments with the battlefield network model. 

CONTROL OF ACCESS 

The access to the radio channel is regulated by the size of the access delay interval D. In principle, the size 
of D can be efficiently controlled by the simple algorithm 

D„ew = Dold-0+8) , (3) 

where 8 is an output of the control rules. In practice, this simple procedure must be modified to ensure that after 
an initialization time, all independent controllers indeed produce the same value of D, even when starting from 
different initial conditions. For clarity, we shall first describe the control rules in the context of Eq. (3) and 
discuss the modifications of the algorithm later. 

Let c - i be the difference between the relative uses of channel time for colliding messages and for idling, 
respectively, during the listening interval L. A common-sense rule for the governing of D is "increase D if 
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c - i > 0 and decrease D if c - i < 0." The rule table is as follows. 

c - 1 NL N PL 

NL N PL 

This set of rules turns out to be very effective, but it does not account for the possibly different message lengths. 
Thus a single collision involving a very long message can increase the average collision time, c, as much as 
many collisions involving short messages, but in each of theses cases, the proper control strategy is different 
Therefore, as a second input, the trend of the number of colliding accesses was used. Let Tc be the observed 
trend. Then the rule table is as follows. 

*c NL N Z P PL 

8 NL N Z P PL 

To make the control more responsive to extreme conditions, two more inputs were considered: "idle time over a 
threshold" and "collision time over a threshold." The rule table for the former was as follows. 

i-t; NL       N PL 

O O       O       NL       NL 

Here O indicates "no output"; that is, no rule is fired in these cases. These rules provide an acceleration of the 
reduction of D if i is unreasonably large. The corresponding rule table for the collision time over a threshold is 

as follows. 

NL N PL 

O O O PL       PL 

Experiments show, however, that the last two sets of rules have only a minor effect on the performance of the 
control if used in addition to the first two sets of rules. If used without the first two sets of rules, then the 
performance of the control was not as good as with the first two sets alone. 

The outputs from the rules were combined using the compositional rule of inference [3 - .6], and the fuzzy 
result was defuzzified using the center of gravity method [5]. A combination of rules in the form of two- 
dimensional rule tables was also tried and found to perform equally well. 

The described control works efficiently if all nodes start with the same initial value of D and have the same 
observational input. In practice, one can only assume that the monitored inputs are approximately equal for all 
nodes but the initial conditions can be quite different because different nodes might join the network at different 
times' Therefore, the updating formula (3) for D must be modified such that after an operation over a reasonable 
time (several minutes), differences among the nodes become negligible. One method to achieve this is to replace 
Eq (3) by an absolute output instead of the corrective one. However, experiments indicate that such a control is 
not efficient because absolute outputs cannot be easily adapted to changing network conditions. We now 
describe a replacement of Eq. (3) that was found satisfactory. 

First we separate in Eq. (3) the dimensional factor D from the nondimensional corrector F = 1 +8, and 
devise for F an updating procedure such that the factor drifts with time to a fixed value that is independent of its 
initial value Let At [s] be the difference between the current and previous times of network parameter readings. 
(Network parameters are updated at discrete times after the end of each activity - that is, at the end of each 
transmitted message - because only at those instants the average usage times and access numbers can be 
computed.) Let f be a fixed value of F to which the correction factor should drift with increasing time. Let 
e = exp(-At/60). Then the factor is updated as follows: 
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F„ew = [ f-(l-e) + Fold -e]-(l +8) . (4) 

One can show that the exponential factor in the formula has the effect that the starting value of F becomes 
insignificant after a few minutes. Hence, if all nodes would use the same f, then equalization among the nodes 
would result. Experiments show, however, that an a priori assignment of a unique value of f for all conditions is 
not desirable. Rather, to have efficient access control, its value should be allowed to vary typically between 
0.001 and about 80. We achieve equalization of f by assigning to it only a limited number of discrete values 
within this range. In particular, the access controllers assign to f values in steps of four according to the 
following algorithm: 

If  80ld > 0     and     8new > 0,     then   increase f; 
If  50ld < 0     and    8new < 0,     then   decrease f. 

Equalization of the factor f among the nodes occurs in short time because typically the control output 8 
continuously increases or decreases over more than 20 readings. 

A reasonable value for the dimensional factor Dold is, for instance, the average idle time. However, that 
average increases when D is increased and vice versa, thereby accelerating any corrections by the control. In 
extreme conditions, this results in a drift of D to zero or infinity. We avoid such excursions by using the 
logarithm of the average idle time instead of the average itself. The average idle time is also subject to smaller 
oscillations between readings that are not conducive to access control. These oscillations were reduced by using 
a weighted average of the current and previous reading of the average idle time. The weighting was again done 
with an exponential factor that reduces the influence of old readings. Let v = exp(-At/300). Then the effective 
value of the average idle time is computed by 

ieff-(ioW« + W)/(v+l) • <5> 

The final formula for the access delay time that replaces Eq. (3) is with these modifications > 

Dnew = [ 0.01 + log(l + ieff/ 4) ] • Fnew . (6) 

GRANULATION 

In all sets of rules, five categories of input and output were found to be sufficient. The membership functions 
that define the categories were assumed to be trapezoids. The utility programs that were developed and used for 
rule combinations and defuzzifications accept arbitrary forms of membership functions, but it was found that 
more general functions are not needed to achieve optimal control. Numerous experiments were carried out to 
determine optimal definitions of input/output categories under different conditions. Results of these experiments 
indicate that the best membership functions are robust in the sense that similar functions perform well for a wide 
variety of networks and that the corresponding minima are flat. If the control should be implemented in field 
equipment, then special fuzzy-logic chips would be used for the fuzzy-logic operations. The results of the 
numerical experiments will provide guidance for the design of such chips. 

Figure 1 shows the optimal categories for the rules involving the difference c - i and the trend xc, and 
Figure 2 shows the output categories of the control parameter 8. It is interesting to note slight asymmetries in 
the.granulations of the inputs. These asymmetries were not chosen arbitrarily but developed by the tuning 
process of the granulations. One of the effects of the asymmetries is that, in general, the collision time is kept at 
a fraction of the idle time. 

EXAMPLE 

Let the network consist of n nodes, and let us assume that the message generation rate is sufficiently high so 
that all nodes accumulate queues of messages for broadcasting. Further let the message generation stop at a 
preset time. Then a good measure for the performance of access control is the time that is needed to empty all 
queues. Using different control strategies with the same set of message queues, one can compare the control 
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Figure 2.  Granulation of control output. 

performances by comparing the corresponding completion times. We present an example of a network with four 
nodes. The information content, measured by the total length of all messages in a queue, was approximately 
equal for all nodes, but the average lengths of messages were different for different nodes. In Figure 3, the 
results of an experiment with fixed access delay time are compared with the results with controlled delay time. 
The left-hand graph shows curves of network usage times for a fixed access delay time D of 13 seconds. All 
queues are emptied in about 34 minutes. The graph shows that during that time the channel has been used for 
message transmissions about 17 minutes (dashed curve), for idling about 11 minutes (solid curve), and for 
colliding messages about 6 minutes (dotted curve). It is obvious that during the first 20 minutes the access delay 
time interval D was too short, causing many message collisions. On the other hand, during the last 10 minutes 
of the experiment, there were no new collisions (the dotted curve is flat), and a smaller D could be used to reduce 
the idle time. The right-hand graph shows the same network with a controlled delay time interval D. We 
observe that the dynamically adjusted D equalizes the collision and idle times and achieves a shorter completion 
time. In this experiment, the dynamically adjusted access delay time D was varied between less than 1 s and 
about 65 s. 

CONCLUSION 

The distributed control of battlefield communications has been found efficient, and the optimal parameters of 
the investigated control algorithm were found to vary little under very different conditions. This result makes the 
design of an efficient general fuzzy-logic control of battlefield communications possible. 
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ABSTRACT 

Real-time simulation of particle behaviors is very useful in training, education, art, advertising, and 
entertainment. There is no successful model for realistic dust behaviors generated by a traveling vehicle. In this 
paper, we use particle systems and behavioral simulation techniques to simulate these dust behaviors in real-time. 
First we analyze the forces and factors which affect the dust generation and the behaviors after dust particles are 
generated. Then we construct physically-based empirical models to generate dust particles and control the behaviors 
accordingly. After that, we further simplify the numerical calculations by dividing the dust behaviors into three 
stages, and establishing simplified particle system models for each stages. We employ motion blur, particle 
blending, texture mapping, and other computer graphics techniques to achieve the final results. Our major 
contribution includes analyzing dust behaviors in detail, constructing physically-based empirical models that 
correlate the behaviors to the dust generating forces and other factors, and that achieve simulations in real-time. 

INTRODUCTION 

In many virtual environments and distributed interactive simulations, it is desirable to simulate trucks, tanks, 
armored vehicles, bulldozers, and other ground moving objects. However, typically dust behaviors are not 
generated when these objects travel on an unpaved road. Dust behaviors caused by different factors (such as natural 
wind and a fast traveling vehicle) appear everywhere. Simulating physically realistic, complex dust behaviors is 
very useful in interactive graphics applications, such as computer art, advertising, education, entertainment, and 
training. However, due to the lack of modeling and simulation techniques and methodologies, there is currently no 
successful real-time simulation for realistic dust behaviors. As computers and their graphics systems become much 
faster and more powerful, many natural phenomena (such as the behaviors of fluids, terrains, trees, fireworks, 
volcanos, clouds, etc.) are simulated in real-time [1, 6, 5, 7, 8, 10, 11, 12, 13]. We believe it is appropriate now to 
include dust behaviors into real-time simulation. 

Hsu and Wong [3] introduced a dust accumulation model. Their model presents static appearance of dust 
accumulation without behavior and animation. Cowherd, Williams, and other researchers [2, 14] studied dust and 
the mechanisms of dust generation. Their purpose was to study and measure the density of the dust in the real 
battlefield instead of simulating the dust behaviors in graphics. Today, military training in graphics and distributed 
interactive simulation is one of the major topics for research and applications [4], and generating dust behaviors in 
real-time significantly increases the realism of the simulated training environment. 

In this paper, we introduce a method for simulating the dust behaviors caused by a fast traveling vehicle in real- 
time. The method is a combination of particle systems and behavioral simulation techniques. The Particle systems 
technique was first introduced to computer graphics by Reeves [8] in 1983, and is now widely used to simulate 
fuzzy or dynamic objects, such as fire, grass, explosions, clouds, water, trees, etc. These objects have no fixed shape 
and sometimes change their shapes or behaviors stochastically. They have ill-defined boundaries that make surface- 
based modeling impractical. It is apparent that dust behaviors behind a moving vehicle belong to this category. The 
Behavioral simulation technique uses a physically-based modeling method to calculate and update the object's 
state, and draw the object repetitively after each calculations to achieve the behavior animation in real-time. We 
also employ motion blur for small and fast moving particles, particle blending instead of hidden-surface removal, 
texture mapping, and other graphics techniques to achieve better performance and appearance of the final results. 

1.   Approved for public release; distribution is unlimited 
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In order to build up a physically-based realistic simulation, we first analyze the forces and factors which affect 
the dust generation and the behaviors after dust particles are generated, and then construct physically-based 
empirical models to generate dust particles and control the behaviors accordingly. However, the models are time- 
consuming and inefficient. Therefore, based on the models and analysis of the forces, we further simplify the 
numerical calculations by dividing the dust behaviors into three stages, and establishing simplified particle system 
models for each stages. The resulting models are satisfactory for real-time simulation as well as achieving realistic 
dust behaviors. Our major contribution includes analyzing dust behaviors in detail, constructing physically-based 
empirical models that correlate the behaviors to the dust generating forces and other factors, and that achieve 
simulations in real-time. Our work is a useful addition to many applications in simulated virtual environments, 
including military simulation and training. 

DUST BEHAVIORS 

In this section, we first discuss and analyze how dust particles are generated; then we introduce the factors 
which affect the dust behaviors, after that we analyze the forces acting on a dust particle and establish 
corresponding physically-based empirical models to calculate and update the dust behaviors. 

DUST GENERATION 

As a vehicle wheel passes over an unpaved surface, three basic forces are developed - vertical pressure, 
horizontal stress, and friction. Vertical pressure, which is due to the weight of the vehicle (WTcar), will produce 
ground surface vibration and/or deformation, crushing large particles into smaller ones. Horizontal stress and 
friction, which are largely due to the driving power which sustains the velocity (Vcar) and acceleration of the 
vehicle, will further comminute the particles and carry them on the surface of the tire. The slippage between the tire 
and the ground surface will lift particles of different sizes due to the adhesive and shear forces, and eject them at 
different places on the tire surface due to the centrifugal forces. 

The ground vibration and/or deformation will also eject fine particles. The dust particles are then either 
entrained in the turbulent air behind the vehicle or return to the ground depending on their properties and 
conditions. Bigger particles will fall back to the ground surface more rapidly while the fine ones will remain 
suspended in the air drifting with the current. Small stones and blocks of muds will fall back to the ground 
immediately after ejection from the tires, and will bounce up and down, also generating dust into the air. 

-*-       Turbulent air flow-  

Vehicle Body 

Figure 1: Dust generation process 

There are many other important factors that affect dust generation, such as the material and composition of the 
ground surface (Matp), the size and properties of the vehicle (Scar), and the conditions of the environment (Fenv). 

The material and composition of the ground surface (Matp) depend on the density (Dp) and moisture (MOp) of 
the ground surface, the average size (Sp), mass, and adhesion of each individual dust particle. If the ground is wet 
and the average size of the particles is large, then there will be fewer particles. If the dust density of the ground 
surface is high, then there will be more particles. We use the following equation to measure this parameter: 

D„ 
Mat„ = —   „ ...» 

P     ax ■ S + a2 ■ MO 
(1) 
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where ^ oc, = 1, and a, is the weight coefficient of the corresponding parameter, for i- 1, 2. The size and 
i = l 

properties of the vehicle (Scar) depend on the weight (WTcar), height (Hcar), and width (Wcar) of the vehicle. 
Heavier and bigger vehicle will generate more dust particles. We use the following equation: 

Sear=   ßl-|Wr|eflr + ß2-ffcflr+ß3-Wear (2) 

3 

where  £ ß; = 1, and   ß,   is the weight coefficient of the corresponding parameter, for i = 1, 2, 3. The 
j= l 

conditions of the environment (Fenv) including humidity, air pressure, and many other environment damping forces 
will also affect the dust generation. 

In summary, most dust particles are generated right behind the wheels. Some fine dust particles are lifted from 
the ground surface because of the turbulent wake behind the vehicle. Each particle is generated with its own initial 
mass, size, and velocity. The number of dust particles generated by the vehicle for each simulating frame is 
calculated as follows: 

NP = 

\ycar\(yi-Matp+y2-scar) 

\FeJ 
(3) 

where  Yy;= 1, and  yt   is the weight coefficient of the corresponding parameter, for i = 1,2. Once the 
;"= 1 

particles are entrained in the turbulent wakes behind the vehicle, their behaviors are affected by similar factors 
which will be discuss in the next section. 

FACTORS AFFECTING DUST BEHAVIORS 

There are numerous factors that affect the dust behaviors caused by a fast traveling vehicle. Here we 
summarize the important factors that have more serious effects on the dust behaviors. 

When a vehicle travels quickly, it produces a 3D volume behind where the atmosphere pressure is lower than 
that of the other areas. The turbulent wake is mostly inside this volume and generates vigorous dust behaviors. The 
shape and size of the 3D volume are mainly decided by the velocity, height, and width of the vehicle. At the same 
time, the properties of each individual dust particle will affect its own behaviors. These properties include the 
shape, size, mass, and initial conditions. Intuitively, a particle will fall back to the ground faster if it is heavier and 
smaller. In addition, the humidities, wind, and environmental damping forces have an effect on the dust behaviors 
also. We summarize the parameters which have the greatest influence on the dust behaviors in table 1 

Table 1: Parameters affecting the dust behaviors 

Items Parameters Description 

Vehicle Velocity — Vcar 

Height—Hcar. Width — Wcar 

Decide the size of the 3D volume behind a car where the tur- 
bulent wake is generated. 

Dust particle Size — Sp. Mass — mp Affect how an individual particle will react to the external 
forces 

Environ- 
ment 

Wind — Vair. Moisture — 
MOair 

Influence the dust behaviors in general. 
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DYNAMICS OF A DUST PARTICLE 

Computational fluid dynamics could be used to calculate the exact turbulent wake behind the vehicle. 
However, this approach is computationally complex and prohibits achieving simulation in real-time. In order to 
describe the dust behaviors caused by a fast traveling vehicle, here we simplify the dynamics of a dust particle, 
analyze all the important forces, correlate these forces with the parameters affecting the dust behaviors, and 
establish analytical models which can be used to simulate the dust behaviors in real-time. Here we first analyze the 
forces behind a traveling vehicle, then we study the effects of these forces on an individual particle. 

As the vehicle travels forward quickly, it produces a 3D volume behind the vehicle where the atmosphere 
pressure is smaller than that of the other areas. To simplify the situation for our analysis, let's assume that the 
vehicle does not turn, and the area affected by the vehicle is a box. That is, our particle systems' range is a box 
moving at the speed of the vehicle. The box's height and width are the same as those of the vehicle's (Hcar Wcar), 
and its length (L) depends on the vehicle's velocity. Because of the fast movement of the vehicle, different places 
within the box have different atmosphere pressures. The differences among the pressures will generate turbulent 
wakes, and the dust behaviors accordingly (Fig. 2). 

Fpret pressure (from top) 

Fattr (Attracting forces) 

I     Hn 

Fpres pressure (from left side) 

-U. 

Vehicle 

traveling 
Direction 

Figure 2: The pressures (forces) generated 

There are five kinds of forces acting on any particle inside the box area: 

The pressure or attraction force Faflr towards the rear side of the vehicle 
The atmosphere pressure force Fpres from the two sides of the box area 
The atmosphere pressure force Fpret from the top and bottom of the box area 
The atmosphere damping force Fair against the particles relative movement 
The dust particle's gravity F^ 

F^r is a function of the vehicle's velocity (Vcar), the size of the vehicle (Scar), and the distance between the 
dust particle and the rear side of the vehicle (0- As the vehicle moves ahead, / becomes larger, and therefore Fattr is 
reduced rapidly. Its direction is approximated by the direction which the vehicle travels. We have the following 
equation: 

= c 
v    ■ <? r car    '''car (4) 

where C, is a constant scale parameter. Fpres is a function of the vehicle's velocity (Vcar), the distance between 
the dust particle and the rear side of the vehicle (/), and the distance between the particle and the horizontal cross 
section in the center of the box (ds). As the vehicle moves ahead, / becomes larger, and therefore Fpres is reduced 
rapidly. Its direction is towards the center cross section and parallel to the ground, which is approximated by the 
direction of ds. We have the following equation: 
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where d, is a constant scale parameter. Fpret is similar to Fpres. It is a function of the vehicle's velocity (Vcar), 
the distance between the dust particle and the rear side of the vehicle (I), and the distance between the particle and 
the horizontal cross section in the center of the box (dt). Its direction is towards the center cross section and 
perpendicular to the ground, which is approximated by the direction of dt. We have the following equation: 

'„ - 4H±\ <® 
where ö2 is a constant scale parameter. Fair is a function of the particle's velocity (Vp), the particle's size (Sp), 

the environment wind (Vair), and the air moisture (MOair). Its direction is against the particle's movement in 
opposite to Vp. We have the following equation: 

Fair = (8, ■ Vair - 62 • Vp)(T!, • Sp + n2 • MOair) (7) 

where 5,, 52, r\x, and r\2 
are constant parameters. 

In summary, all the forces acting on a particle are shown in Fig. 3. Here we ignore the collisions among the 
dust particles. 

Car traveling 
Direction 

OFottr 

Particle Moving Direction 

F     +F    , grv T * pret 

Figure 3: Forces acting on a dust particle 

Let F_ be the force acting on a dust particle, P the position, Vp the velocity, Ap the acceleration, and mp the 
mass of the particle. Then a dust particle's behavior is described by the following equations: 

Fp = Fattr + Fpres + Fpret + Fgrv + Fair (8) 

Ap = F-L (9) 
P      mP 

Vp = V0 + ^Apdt (10) 

(lVDdt (ID 
Jin      P 

P = P0+     Vpdt 
J'o 

To simplify the calculation, we use Euler's method to approximate the particle's next state: 

V,. = V,._,+Ap-Af (12) 
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P,   =   />,._,+V;"Af (13) 

The algorithm to compute the solution to the dust behaviors then is as follows. For the known current state of a 
particle {Vu, Pw}, the next state {V,-.,, Pw}, after Af time, is calculated by Equation (12) and (13). These 
equations use functions (4) to (9). Equation (1) to (3) are used to generate a number of dust particles. We have 
frames of the dust behaviors as in Fig. 4. Changing the parameters and conditions, we can achieve different 
behaviors and appearances to suit the needs of the applications. The simulation is at about 8 framespersecond 

Figure 4: A frame of dust simulation 

SIMPLIFIED DUST PARTICLE SYSTEMS 

The above physically-based dust particle model is time-consuming for a large number of particles. There are 
too many factors in the equations, and the forces on each individual particle have to be calculated during the whole 
simulation period. There are redundant calculations because when the particles are further away from the vehicle, 
the forces Fattr Fpres and Fpret are all reduced to near zero. Based on the above analysis (equation 4-7), we can 
divide a dust particle's behaviors into three stages to further simplify the simulation. We consider that we have 
three different particle systems (models) working together to simulate the dust behaviors. The three stages are 
called turbulent vortex, inertial momentum, and airborne drift, respectively. 

TURBULENT VORTEX (THE FIRST STAGE) 

Once a particle is generated, the initial forces FattT, Fpres, and Fpret acting on it are very large (see Fig. 2, Fig. 
3, and equation 4-7). Fattr causes the particle to move in the forward direction, Fpret causes the particle to move up 
and down, and Fpres causes the particle to move left and right. All other forces are relatively small at this time. 
Suppose the particle is located in side 1 of the box area, because the particle has a side pressure force Fpres pointing 
towards side 2, the particle will move from side 1 to side 2. Once the dust particle goes across the center section 
into side 2, Fpres will change its direction, and the particle will accelerate and move back from side 2 to side 1. It is 
similar for Fpret but in a perpendicular direction. At this stage, the forces acting on the dust particles are relatively 
strong. Overall, depending on the initial velocity, the particle will behave as in a turbulent vortex shown in Fig. 5. 

Fattn Fpres *>* Fpretaie reduced 

Car traveling 
Direction 

Particle's initial position 

Figure 5: Dust particle traveling trace (the first step) 

Instead of calculating all the forces, we can simplify the model by just simulating the turbulent vortex with 
some random behaviors at this stage. Particles are rotating around the center of the vortex. Here we assume the 
center of the vortex is the center of the cross section in the box area (Fig. 2). Its height is Hcar/2. The angle of 
rotation (RotAngle) for each frame of simulation can be calculated by the following simplified equation: 
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RotAngle =       *0tP (14) 
.-.Tightness 
W 

where R = ds + dv which is the distance from the particle to the center of rotation (we use bold to represent 
vectors). Its initial value is a function of Np (equation 3). We use the following equation to adjust d for each 
simulation frame: 

1*1;   =|*|,-_,-(l+A|-) (15) 

Ar = dR + kr-=£- myRandom(-G5, 0,05) (16) 

where dR is a constant related to the initial velocity towards the center of the rotation, kj is a constant 
coefficient, mp is the mass of the particle, Sp is the size of the particle, function MyRandom(a, b, c) returns a random 

pick of the numbers enclosed, and G5 is a comprehensive weight parameter reflecting the vehicle's properties: 

_ 5,-^ + M^I (17) 
5     +IV    I °car T I r car\ 

2 

where £ 5, = 1, 5,  is the weight coefficient of the corresponding parameter, for i - 1, 2;   0 < 05 < 1  . The 

value Tightness is usually between 1.0 and 2.0. Higher Tightness causes RotAngle to fade away more quickly when 
the distance becomes larger. RotD is the distance the particle traveled at each time frame around the vortex circle, 
perpendicular to the center of vortex. We use the follow equation to calculate this value: 

RotDt = RotDi_x • (1 + AD) (18) 

AD = dD + k2 • ^ • myRandom(-tS, 0,05) (19) 
Sp 

where dD is a constant related to the initial velocity perpendicular to the center of the rotation, and k2 is small 
constant. A dust particle may be below ground as its rotating radius increases. In our simulation, we just remove 
those particles which hit the ground. 

The particle's translation distance (TransD) along the vortex axis is calculated as follows: 

TransD, = TransD;_ j ■ (1 + ATD) (20) 

ATD = dTD + k3 - -^ • myRandom(0, 05) (21) 
Sp 

where dTD is a constant related to the initial velocity parallel to the center of the rotation, and k3 is a small 
constant. 

TNRRTTAL MOMENTUM fTHE SECOND STAGED 

As the vehicle travels and time passes by, the forces F^, Fpres, and Fpret reduce rapidly, and finally disappear. 
At this moment, the particle will continue its movement at its current momentum. The forces F^ and Fair are the 
primary forces governing its behavior (acceleration.) We call this stage the Inertial Momentum stage. This stage 
will continue until dust particle's velocity is reduced such that the particle's velocity becomes a small constant. 
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Every dust particle has a lifetime parameter, which is used to decide when its motion enters from the first stage 
into the second stage, and from the second to the third. We use the following equation to simulate the dust particle 
movement at this stage. The initial velocity is calculated from the first stage's values. 

At = AOn^V..,) (22) 

V,. = V._!+A,.-Af (23) 

p. = />._,+V.. A* (24) 

VS 
where A is a function to calculate the acceleration. Here we use A(m, S, V) = — . When At becomes very 

small, we get into the drifting stage, as discussed in the next section. 

AIRBORNE DRTFT (THE THIRD STAGED 

When the total force on a particle becomes very small, the dust particle begins to drift with constant velocity. 
The forces acting on the particle are balanced. Most of the dust particles will drift with the wind and eventually fall 
back to the ground. In this stage, the particles stay in the air are those with very small mass quantities. We simply 
keep the constant velocity with some random disturbances. If a dust particle touches the ground, it is dead. If a dust 
particle drifts from the range of the particle systems to the outside area, it is considered dead. Dead particles are 
faded away after a few frames of simulations. 

RENDERING TECHNIQUES AND RESULTS 

MOTION BLUR 

We use motion blur to achieve better animation. We record every dust particle's several continuous positions. 
Each dust particle has a head pointer which is the current position, and a tail pointer which is the fading position. A 
particle is drawn a number of times into the buffer with bigger and bigger fading coefficients. The head is drawn at 
its current position with the particle's original color, and the tail is drawn at the earliest position with a much 
dimmer color. We let these smaller particles to have more blurring effect. That is, the smaller the dust particle is, 
the longer blur process will be. This simple technique seems to make the simulation more realistic. We also use the 
comprehensive parameter G5 (equation 17) to control the blurring process. Larger G5 value causes particles having 
more blurring effects. We can modify different parameter for blur according to the simulation applicable for certain 
application. 

BLENDING 

Dust particles can obscure other particles that are behind them, or they can be transparent and can cast shadows 
on other dust particles. We uses Reeves's method to deal with this situation. Every particle is treated as a point light 
source when it is displayed. Each particle adds a bit of light to the pixels that it covers. A particle behind another 
particle is not obscured but rather adds more light to the pixels covered. 

In order to speed up the rendering process, we restrict our rendering area to be the box area shown in Fig. 2. As 
the vehicle travels ahead, the box area moves ahead the same distance. Any dust particle outside the box area is 
treated as dead. This method allows us to have a background texture which is not updated. So we only need to 
calculate and render the dust particles within this box area. This approach reduces the number of dust particles 
needed and also reduces the memory volume needed. 

PARTICLES 

For each calculated particle, we generate a number of particles that have movement similar to this particle, with 
some random behaviors. This way we only calculate one particle, but a system of particles will behave accordingly. 
It saves time for calculating all the particles and enhances the richness of the picture at the same time. 
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RESULTS 

Fig. 6 and Fig. 7 are the simulation results under the same circumstances with different vehicle velocities (30 
miles/hour and 60 miles/hour.) The number of particles and the density of the dust are greatly affected by the 
vehicle's velocities. Fig. 8 and Fig. 9 are the simulation results with different dust densities. There are many other 
parameter which affect the simulation. In most cases, the simulation looks better with more dust particles, but the 
simulation is much slower because all the particles must be calculated in the particle systems. 

CONCLUSION AND FUTURE WORK 

We have introduced our approach to simulating dust behaviors behind a traveling vehicle. We have two 
primary goals: one is realism of the simulation, the other is real-time computation. In order to achieve realism, we 
analyze the forces and factors and construct physically-based empirical models to generate particles and control the 
dust behaviors accordingly. In order to achieve real-time, we further simplify the numerical calculations by dividing 
the dust behaviors into three stages, and establishing simplified particle system models for each stages. We employ 
motion blur, particle blending, texture mapping, and other techniques in computer graphics to achieve better results. 
Our work is a useful addition to many applications in simulated virtual environments. 

Our model is a physically-based empirical model. Using CFD to calculate the turbulent vortex behind a vehicle 
would yield an accurate physical model, which could be integrated into our work. The problem is that CFD models 
are too computationally complex. We have succeeded simulating fluid flows in real-time [1]. We hope to find a 
solution for dust behaviors also. Currently our vehicle is traveling in straight line. A logical extension will be to 
allow the vehicle to turn around. We are currently working on this. 

We plan to further consider the interaction between the dust particles and the environment. For example, when 
the vehicle passes by, the grass on the two sides of the road will swing back and forth. We plan also simulate the 
dust accumulation on the grasses. 

Figure 6: Vehicle Speed=30, Dust Density=40, BlurN=2 
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Figure 8: Vehicle Speed=30, Dust Density=10, BlurN=2 

/enicle s>peed=^u, Dust Density=c 
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ABSTRACT 

This paper discusses attempts to apply standard analytical methodologies to three 
complex systems: (1) Field Experimentation mechanisms at the Army's Combat 
Development Experimentation Center at Fort Hunter Leggett [1962 - 1967]: (2) The 
"Small Independent Action Force" activities in Vietnam [1969 - 1971]; and, (3) The 
Defense Acquisition Process [1983 - 1994]. The discussion below describes each of the 
analyses performed and the results obtained. The data collected indicates that the key 
element to devising means of achieving better system performance and solving problems 
associated with such complex systems is flexibility to act as required, rather than 
construction of rigid rules and regulations. Taken as a body of information, the work 
suggests that in order to understand large, complex, man-machine systems, and to permit 
definition of generalized, long term solutions to perceived problems we must go beyond 
the use of classical analytical methodologies. It may be that finding long lasting workable 
solutions to problems may require new analytical mechanisms developed around the 
concept of bounded change rather than singular solution. 

BACKGROUND 

Albert Einstein is cited as the author of the observation: "The thinking that got us 
to this point will not get us beyond it!" 

For those of us who grew up in a simpler time, the greatest utility in classical 
statistics was that it helped us predict the likely outcomes of events about which we were 
unable to create deterministic models: that is, there was uncertainty about the problem, the 
variabilities which affected the situation, and, the relationships among them. Because 
statistics had often provided methodology to project outcomes in such situations, we 
extended its use beyond such clear cut, well bounded events as "coin toss" and "dice 
throws" to more complex, and less structured situations. Then, having invented multi- 
variate analysis and cluster analysis methodologies, we used them (along with our standard 
statistical techniques) to address more complicated equipment reliability issues, and extend 
our practice further into the realm of social system design. 

We limited the scope of such inquiries to some extent by insisting on bounding the 
issues we did address. As Willis Willoughby (then head of reliability at NASA) said when 

1 Approved for public release; distribution is unlimited 
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he was presented with an analysis of the probability of sending a man to the moon and 
returning him safely, (of the order of .027), "That problem's outside the range of utility 
for standard statistical methodologies. - Let's get on with the job." 

Today, "statistical methods" are used as analytical tools in examining extremely 
complex systems. The usual goal is to attempt to predict "outcomes" in situations where: 
(1) very large numbers of variables are involved; (2) we are not certain of the relationships 
among those variables; and, (3) human decision making provides the variables sleeted, 
their initial and subsequent values. 

The following discussion describes some of the work that leads to the conclusions 
presented on page 6 et seq. 

CASE HISTORIES 

THE CDEC EXPERIENCE. 

In 1962,1 joined the Stanford Research Institute's CDEC Research Office as Chief 
of Instrumentation. My task was to devise, develop, install, and operate equipment 
capable of reporting the positions of everyone on the battlefield, and the events they 
experienced during experimentation. When the instrumentation was in place, we could 
analyze results and reach conclusions much more expeditiously. As we accumulated data 
from a number of field experiments, we noticed that there were elements of maneuver 
which were repeated in almost every one of them. Some examples were: (a) traversing a 
well known terrain area at different times of the day (or night); (b) simulating an attack on 
a high ground defended in one of several standard postures; or (c) sweeping an area to 
detect targets and their locations. We thought about creating a series of "set-piece" 
maneuvers; activities which could be performed repeatedly on selected terrains within the 
Hunter-Leggett Military Reservation, independent of a specific combat context. The idea 
was to construct experimental segments present in many of the combat field activities, 
replicate them sufficiently often to generate statistics about expected task performances, 
establish a data base of "standard field performance values for those combat tasks, and use 
the "statistical values" for those tasks instead of actually performing them in different 
experimental contexts. 

We attempted to implement the idea. We planned a set of experiments specifically 
for the purpose of developing some performance statistics about how troops performed a 
set of specific tasks under controlled circumstances. We selected five "standard" combat 
tasks and structured a set of missions around them. We built scenarios which required 
each task to be performed. But in each scenario the order of task performance was varied. 
Since we did not have an unlimited number of troops, we formed minimum building block 
units and constructed larger units by aggregating them. Squads of five soldiers were used 
as the smallest building block. Platoons and Companies were built from squads. The larger 
units were asked to perform missions made up of a sequence of set piece combat tasks. 

59 



WAS EINSTEIN RIGHT? 
Page 3 

The scenarios were constructed to require task performance in different sequences. 
Finally, each scenario was replicated by the various mixes of troops in different organized 
units a sufficient number of times to provide a bounded value set for each combat task. 
Figure 1 shows the notional experimental matrix to be used in establishing the data base. 
In Figure 1, the segment column indicate the tasks to be performed, and the sequence 
columns indicate the order of task performance. 

Figure 1 
THE CDEC "SET PIECE" NOTIONAL MATRIX 
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But when experiments containing "set-piece" elements were performed within a 
combat context, the data differed considerably from what had been anticipated as a 
"standard data set". It became very clear that (a) mission context had great effect on unit 
performance; and (b) terrain, mission context, and tactical assumptions of friendly and 
enemy force distributions formed sets of complex relationships which appeared to provide 
unique situational results. 

A contributing cause of result non-reproducibility was thought to arise from the 
nature of human beings. They learn from their experience. As Kant philosophized [1], and 
Damasio later observed experimentally and noted in his book "Descartes' Error" [2], we 
tend to see things within the context of our own experiences and the way we see them has 
an emotional component which determines how we record the experience in our brain. 
When we observe a segment of mission performance, what we observe depends upon all 
of the life experience precedent to that segment of activity. Thus, a major component of 
the effect we observe in any mission performance depends on our individual prior history - 
which includes the order of previous task performance, and our individual sense of mission 
continuity generated by those prior experiences as well as the emotional component of the 
incidents recorded. 

THE SMALL INDEPENDENT ACTION FORCES fSIAF) EXPERIENCE 

In 1968, the Defense Advanced Research Projects Agency (DARPA) authorized 
construction of a data base about activities of Small Independent Action Forces (SIAF) 
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operations in Vietnam. Analysis of SIAF operations had shown that small patrols of from 
5 to 9 troops operating for time periods of between 2 and 9 days exterior to larger 
organizations (companies, or battalions) were more successful in performing their missions 
than were similar sized units operating within, and under the control of larger force 
elements. Compared with traditional larger force elements, these units had fewer 
casualties, expended less ammunition, and reported higher numbers of enemy detections 
while remaining undetected themselves. There were four types of small units involved: (1) 
SEALS (Navy units), (2) Long Range Reconnaissance Patrol (Marine units; (3) Ranger 
units (Army); and (4) Special Forces units. The idea was to determine how small units 
made operational decisions during patrols with emphasis on how perceptions of enemy 
forces influenced those decisions. By doing so in both combat and non-combat situations, 
we hoped to provide a data base permitting construction and test of a combat model 
which would validate hypotheses based on lessons learned in the field. Over the period of 
16 months, our team reviewed 1,500 SIAF "after action reports" and collected data from 
an equal number of patrols. All of the services were about equally represented. 

Our first finding was that SIAF units had developed the mission time line shown in 
Figure 2. 

Figure 2 
SIAF UNIT MISSION TIME LINE 
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In Figure 2, boxes surround the each element of the SIAF mission. The data 
elements collected about each mission element are listed below each mission element box. 

When we collected data from returning patrols, we met the patrols as soon as they 
had finished their "mission completion chores". Using the model in Figure 2, we took 
minute by minute data about each patrol from the time they were alerted to expect an 
operational order, to their withdrawal from combat terrain. We were interested in how 
patrol routes were selected, speed of terrain traverse, reconnaissance methodology, target 
detections, tactical choice rationales and almost all of the minutiae embedded within the 
combat mission sequence. We also collected a full set of demographic characteristics 
about the individual squad members and their unique histories. At the end of our 12 month 
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in country data collection activity, we felt we could   construct a data base which we 
represented adequately the sum of experiences of small forces in Vietnam combat. 

To test the reproducibility of the SIAF experience in areas other than Vietnam, we 
established a field test site in the Hawaii National Forest on terrain similar to that reported 
by SIAF units in Vietnam. On the experimental terrain, we measured parameters of SIAF 
type performance achieved by Vietnam-veteran Army and Marine squads operating in the 
SIAF mode. 23 patrols operated within a set of simulated combat situations. We 
measured the patrol performance with special instrumentation borrowed from CDEC. We 
collected the same data about participants as we had collected in Vietnam. When we 
compared the set of test data from Hawaii with the Vietnam Interview data, we noted that 
velocity of movement over terrain for various kinds of terrain, and the ratio of target 
detection to numbers of target available for detection were heaviiy dependent upon the 
specific mission experience as it unfolded, and secondarily on terrain parameters. 

We then built a computer assisted game to use at the Army Special Forces School. 
Using Vietnam combat veterans as test subjects, we would simulate a SIAF patrol in a 
closed environment. Simulations began upon delivery of a mission operational order. Data 
was taken about how mission details were planned and executed. Pictures of the actual 
mission terrain were used to help patrol leaders make key decisions about movement and 
force tactics on that terrain. At each step of the way, the computer compared decisions 
and actions of the test troops with the data derived from Vietnam and from the test facility 
in Hawaii. 

When we compared the three sets of data, we reached an interesting set of 
conclusions. In general, performance varied with insertion method, order of mission task 
performance, perception of distributed enemy forces, and perceived operating 
environment (terrain, weather, stimuli, etc.). Details of unit performance were not 
duplicated even in similar environments, and when proceeding under similar operational 
orders. The specific findings were 

(1) for each of the three data bases, the decision rules which led to the observed 
results were different; 

(2) the consolidated data base inclusive of all three of the independently derived 
data sets could be bounded; but, 

(3) while a bound could be defined for the measured parameters (rate of 
movement over terrain, target detection ratio, range of detection, etc.), that 
bound was strongly dependent on the patrol's perception of: (a) enemy troop 
distribution; (b) numbers of enemy detections made from insertion to the 
time at which measurements were made; and (c) the terrain characteristics; 

(4) the boundaries which resulted from each data set result (i.e., the probability 
density functions) were different because the number of variabilities 
embedded in the observations were so large and depended so heavily on 
individual troop perceptions; and, 
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(5) because of the we had only a moving boundary and could not suitably 
integrate the data into a singular data base, we were unable to use the results 
to predict narrow bounds for future performance by similarly configured 
troops comprised of equal numbers of individuals with similar demographic, 
training, and combat histories. 

We also made some conjectures: 

(1) task performance may depend on decision chains: (short and long term 
learning effects) plus perceptions of what is, and has been, going on during 
the mission, test/experiment, or game, and 

(2) performance of the same mission sequences may not be reproducible in the 
same/similar environments. 

THE DEFENSE ACQUISITION PROCESS 

In 1983, when I became Professor of Engineering Management at the Defense 
Systems Management College, I began to study the process by which the Services 
purchased major weapon systems. The process at that time was described by the old 
Department of Defense Directive 5000.1. It proceeded from the establishment of an 
operational requirement through the delivery and operation of end weapon items to the 
fighting forces. Figure 3 shows the major steps in the process. 

Figure 3 
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Our initial plan had been to: (1) collect detailed anecdotal data on effect of 
perturbing events on acquisition process performance; (2) form a cause/effect data base of 
relationships and their effects on cost and time-line projections; and (3) Compare data 
base results with programs external to the data base to establish data utility. To implement 
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the plan, we began to gather statistics on elapsed time between: (1) definition of an 
operational requirement and formation of a group to explore competing system concepts; 
(2) establishment of the concept exploration group and selection of the concept to be 
developed; (3) selection of the concept to be developed and completion of the engineering 
prototype; and (4) narrative descriptions of events which affected those elapsed time 
intervals. 

We observed a broad range of elapsed time intervals for each of the acquisition 
process steps. When we explored the "reasons" why there was such performance diversity, 
we noted that many could be traced to decisions during process execution taken by those 
outside the direct acquisition activity chain. 

One major contributing factor involved how resource streams were allocated to the 
program. Specifically, gaining approval to proceed with concept exploration requires 
provision of pro-forma "program budget" and "time to complete" estimates for the entire 
development program (which might be expected to take up to 15 years). These estimates 
almost always assumed that: (1) resources would be available as required; (2) the 
concept/engineering/production/sustainment activities as stated were those which would 
ultimately be proven correct; and, (3) there were no unforeseen impediments either to the 
order in which all of the activities described were to be performed, or the time line 
projected for their performance. 

However, it was almost always the case that: (1) actual resource levels failed to 
meet planning (both in amount available and the dates of availability); and (2) the lack of 
timely resource availability or some previously unknown technical problems arose which 
prevented the forecasts from being implemented as planned in the initial assumptions. 

It also became clear that the point in time at which program resources became 
constrained, or technical assumptions proved to be in error were major factors in 
determining what happened along the time line from initial program authorization to 
ultimate operational deliveries. The effects observed on the outcomes of each succeeding 
process step were different depending mainly on those two factors. While it was possible 
to compute a boundary within which all observed times for step accomplishment fell, we 
did not know how to use that information to predict what would happen if resources were 
constrained by some arbitrary amount at some random point along the time-line of 
program execution. There were a great number of additional variables which depended 
upon the: (1) rate of change of the end requirement; (2) kind of program being pursued; 
and, (3) rate of technology advance during the development period. In short, there were 
so many variables involved that we simply could not collect data in sufficient amounts to 
permit us to do good statistical analysis. We decided to try another methodology. 

With approval, funding, and active assistance from the Undersecretary of Defense, 
Acquisition, we held a series of three day workshops to explore in detail the problems 
which affected the acquisition process for smart munitions and other kinds of weapon 
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systems. Each workshop had 10 participants. All participants were Program Managers or 
Deputy Program Managers from government (military and civilian) and contractors. Their 
senior staff members were available to provide additional details of pertinent information. 
During each workshop, participants would describe details of the perturbing events they 
experienced, the responses taken to those events, and effect of the events on program 
performance experienced. 

As we continued to explore the process, we found great diversity in the types of 
problems experienced during program performance; and we derived relationships among 
them. At the conclusion of our work, we created a data base from all of the workshop 
data. The data base enabled us to produce a relational model that showed us how 
problems experienced at some point in the process affected the outcomes at succeeding 
points along the time line of process performance. These relational models provided us 
with a good understanding of how an event might influence process performance in the 
context of the particular situation. But we also discovered that the same event (i.e., a 
budget cut of 10%), occurring at a different time in the process (i.e., concept exploration 
vs. engineering development); in different programs (i.e., a ground to air missile or an air 
to ground missile) even among those using the same technology, could produce very 
different results in terms of completion dates and costs for succeeding process steps. 

SOME TENTATIVE CONCLUSIONS 

We established some elements of similarity in each of the cases discussed above: 

(1) All of the processes (i.e. experimentation at CDEC, small force combat in 
Vietnam, and exercise of the Defense Acquisition Process) were complex., and were 
influenced by many variables which, in turn were of complex structure. 

(2) Process steps generally were describable as instances of repetitive task 
performance; the processes were made up of a set of fixed functional sequences; but the 
functional sequences were performed within the context of different complex situations: 
situations which themselves were composed of many inter-related factors capable of 
influencing the process outcome. 

(3) The temporal relationship between events which affected the process outcome 
and the point along the process time-line at which those events occurred was variable and 
often depended upon factors not necessarily embedded within the process. 

We found that in the situations discussed above, taking exactly the same action 
(e.g., absorbing a budget reduction of 10%) in different contexts (e.g., a "smart 
munitions" program or a new aircraft development program), and at different points along 
the process time-lines (e.g., in concept exploration or engineering development and test) 
produce situationally dependent singular effects. 
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The findings across all three cases led us to consider the question of whether 
applying classical mathematical methods to these kinds of issues requires making some 
fundamental assumptions unlikely to be present in the real world. For example, is it 
realistic to assume that: (1) there is "event reproducibility" across time and space; (2) the 
population of outcomes is bounded or stable; or, (3) there is "central tendency" in 
repeated sampling. Where there is absence of repeatability; when the dimensions of 
outcomes are unbounded; or when the numbers of samples required to generate acceptable 
levels of confidence are very high, we might re-consider the use of classical statistical 
approaches. It might be necessary to develop new mathematical concepts better suited for 
addressing the kinds of issues, involving large, complex systems which incorporate a 
multitude of human-machine interfaces. 

When such conditions are present it might be more appropriate to use perturbation 
and/or chaos concepts than to try and satisfy requirements for application of standard 
statistical methodologies so useful in situations which can be replicated reasonably well. In 
short, does the richness of situational and process complexity make each result observed 
non-repeatable, even though an effect observed can be assigned to what appears to be the 
same cause (a 10% funding reduction). We believe that this kind of problem construct can 
make it necessary to find limits of cause and effect rather than equations which link 
discrete cause to particular effect. 

Perhaps a good illustration can be found in Gleick's discussion of Foucault's 
Pendulum [3] which points out that while the exact path of the pendulum is not 
predictable, the boundaries within which that path will lie (i.e., trajectory bounds) are; and 
the focus around which all possible paths will reverse for a bounded set of initial and 
subsequent conditions (the "attractor") can be predicted While Gleick's illustration is 
relatively simple, there is no difficulty in finding additional complex situations in which one 
would like to predict an outcome. However, such situations appear to be characterized by 
non-repeatable "cause and effect" linkages within contexts of large numbers of variables 
which can effect the outcomes. 

There may be yet another difficulty in applying some standard statistical 
methodologies to complex processes: interactions among complex processes and complex 
environments may preclude the assumption of a "central tendency" in observations made 
over time. There may even be difficulties in application of chaos concepts in such 
circumstances. It may be that, overtime, the location of the attractor in the complex space 
of its existence, changes in response to changed values of parameters which determine its 
location. Such occurrence would preclude specifying fixed attractor loci. Thus, a "space 
within which" points will be found (with no preference about where in that space 
particular effects of particular causes will lie) might be all that can be postulated for each 
iteration of a particular complex process interacting with its environment. It may also be 
that as complex processes play out, the boundaries of attractor space change to 
accommodate changes in context (relationships among system components) of the system 
under study and the environment with which it interacts and is affected. 
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One possible illustration of this kind of situation may be the efforts of Motorola to 
achieve, and then maintain a reduction in its manufactured component rejection rate by 
tightly controlling the manufacturing processes such that "a six-sigma boundary" is 
experienced for all of its various manufacturing operations. In describing what was done 
and how it was accomplished, Motorola representatives said that while the effort had been 
very successful in providing tightly controlled manufacturing processes, they had also 
observed that the point about which the tight control was held (the mean value) would 
shift over time. They said that the shifting mean could not be assigned simply to changes in 
process tooling or to change in materials input to the process. Those parameters were 
capable of tight control. To the question, "What is causing the shift in mean value when 
the boundaries of repeatability are maintained so well?", the response was: "We don't 
know and haven't been able to find out!" One can hypothesize that in this case; (1) the 
attractor is the mean value of items produced by the process; (2) the boundary of possible 
values is six sigma; and, (3) the shifting mean is the system's response to change to the 
complex environment within which the process operates. 

There is a very real problem which arises if one cannot depend upon the analytical 
results drawn from observations of complex systems over time. It is linked to the way we 
have tended to "solve" problems in the past. Increasingly, we have attempted to make 
sweeping sets of constraints on allowable behavior when certain situations arise, (e.g., a 
law, or regulation). Such prohibitions create an inflexible set of boundaries which limit 
response even when the spectrum of allowable responses is inappropriate to the 
situation. 

The issue is not simply one of finding a set of appropriate responses in a static or 
fixed bounded situation; it is rather a problem of attempting to take appropriate action 
under conditions of change when the time constants of change for the system and its 
environment may be considerably different from the time constants of change for the 
system of constraints. The Defense Acquisition process is a good case in point. Title 10 of 
the United States Code provides the governance for how the acquisition process is carried 
out by members of the Defense Acquisition Corps. The Congress is responsible to make 
change to the U.S. Code through the Legislative process. In the absence of some very 
compelling reason, up to a year can elapse before a change can be made even when there 
is a feeling of urgency about the need to make change. The legislative mechanisms are 
designed for deliberative process, rather than for emergency actions. Emergency action 
rules are provided for in the operating regulations which result from legislation: but 
regulations are also slow to change even under extreme conditions of perceived need. It 
has taken more than 3 years to make any major changes in the acquisition process! 

In many instances, situations have arisen over the years which indicated the need to 
take actions forbidden under then existing rules and regulations. At those times, 
Acquisition Corps members had some choices: (1) doing something not really appropriate 
to the situation, but within the boundaries of permitted actions; or (2) doing something 
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"outside the rules" and taking action they believe appropriate in that specific situation. The 
dilemma between doing what is permitted and what is deemed "appropriate under extant 
regulation" can create considerable strain on the acquisition work force. Often, stepping 
outside the boundaries of permitted action may resolve the immediate issue, but it lays the 
individual open for post facto analyses in which breaking rules becomes more important 
than a successful outcome. If the outcome has been less than successful, the result of such 
inquiry is likely to be very bad for the individuals involved. 

The presumption that a body of statistical data can be developed which can 
provide the basis for structuring sets of "best appropriate actions" under all circumstances 
" has not been readily demonstrated in these three instances. 

A summary of the conjectures resulting from this work can be stated as follows: 

• The  processes   studied   in  this  work  are   sufficiently   complex  to   make   data 
reproducibility doubtful. 

• Outcomes appear to be singular and to depend heavily on decision chains influenced, 
but not predetermined, by perturbing events. 

• Like magnitude perturbations in similar circumstances produce different outcomes 
depending upon situational context. 

• In such processes, with their large numbers of independent variables,  and the 
uncertainties of variable dependencies, cause-effect linkages appear to be confounded. 

• Gaining sufficient data to develop confidence in predictions made from the data base 
may require a long time period. 

• If long time periods are required for data collection and analysis, the environment 
within which the process operates may undergo considerable change. 

• Half-life of collected data and the results obtained from it may be too short to test data 
base utility or prediction validity. 

A SUGGESTED FUTURE COURSE 

Suppose one were required to develop an approach to understanding complex 
systems in the world of non-repeatable cause-effect observations where a central tendency 
has been replaced by a temporary, changing central value which depends upon a 
continuing stream of changing relationships in the system/environment/context paradigm. 
How could one proceed? In a world which is rapidly becoming more and more 
interconnected, it seems reasonable to predict that future problems will be characterized 
by increasing numbers of interacting, rapidly changing variables which impact on the way 
we live, conduct our business, and make decisions for our future. Under those conditions, 
there will be greater need for tools which permit treatment of complexity in a timely, yet 
thorough manner. *©'■ 

The statistics of the future will require consideration of a set of new concepts 
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founded on characteristics of non-repeatable events which take place within changing 
environments. It may also be necessary to provide entirely new mechanisms to integrate 
and display the data which are necessarily involved in those situations. Even today, human 
beings are reaching the limits of cognitive capability when dealing with complex issues 
described by large amounts of information presented in traditional ways (e.g., matrices, or 
linear models). As the need grows to understand and integrate larger amounts of 
information, the limits of cognitive capacity will be stretched perilously. 

The task for those of us who strive to develop and apply analytical tools to difficult 
issues, is to consider expanding well beyond the envelope of traditional methodologies and 
finding ways to accommodate the needs of our future. In such a quest, we can again look 
to Einstein and ask whether he has anticipated the problem. He is known to have said 
often that: 

'Imagination is more important than knowledge!" 
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Abstract 

01well(1997b) developed methods for the control of processes which 
have low frequency events, usually failures. Here we illustrate the meth- 
ods by considering three types of isolated incidents: Driving Under the 
Influence (DUI) offenses from an armored division in Germany, Class A 
aviation accidents in the Department of Defense, and rapes in New York 
City. We then propose that these methods be adopted for key command 
interest items in the military. The implications of this proposal are briefly 
discussed. 

Keywords: Predictive distributions, short run, Poisson, military, acci- 
dents, rape. 

1    Introduction and Background 

Statistical Process Control (SPC) is a body of graphical techniques which sepa- 
rates usual variation from unusual variation in a process, based on a model. We 
will consider two types of charts in this paper, which identify isolated departures 
from the model and persistent departures from the model. These methods are 
self-calibrating: they learn from and adjust to the historical record, and can be 
implemented without the large training sets of data that characterize classical 

SPC. 
We propose to apply these methods to the management of sexual harassment 

data. No such data is available in useful form from military sources. To illustrate 
the methods, we turn to three data sets believed to be similar in nature to data 
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Military Academy, the Department of the Army, or the Department of Defense." 

70 



on sexual misconduct. They are rapes in a precinct in New York City; driving 
while under the influence (DUI) offenses in an Army division in Europe; and 
aircraft Class A aviation mishaps. These examples illustrate the methods and 
their generality, and provide scenarios for further illustrating how the methods 
are useful for turning data into meaningful information for the commander. 

The technical underpinning of these methods was presented in an earlier 
article (Olwell, 1997b). Here we focus on the applications and analysis. 

The military has a need for methods like this which can be applied to a range 
of problems, including but not limited to regular misconduct, sexual misconduct, 
accident rates, equipment failures, and suicides. In each case, leaders need to 
know if the variation in the processes can be classified as usual or unusual. Tra- 
ditional SPC methods frequently do not apply, because the extensive historical 
data needed to calibrate them is not available; or because policy changes make 
previous historical data less relevant to current processes. When investigation 
of sexual misconduct in the Army began, for example, there was no useful his- 
torical data available to calibrate traditional charts. Self—starting charts and 
methods such as these were needed. 

Similar situations occur in industry and other levels of government. 
Leaders find these charts easy to understand and interpret, as our experience 

with both uniformed and civilian military leaders and with the leaders of the 
New York City Police Department has shown. 

As a consequence of the Aberdeen scandals of Fall, 1996, the Army has 
been revisiting its methods for reporting and monitoring misconduct especially 
sexual misconduct. There is no central reporting mechanism as of this writing. 
Should data be collected, the methods of this paper were specifically designed 
for monitoring those reports and detecting both unusual reporting periods and 
persistent changes in the reporting process. 

No incident of misconduct, sexual or otherwise, is acceptable. It represents 
a failure, and must be addressed. However, the Army has procedures in place 
to deal with its usual levels of misconduct. Senior leaders who monitor these 
procedures need tools to distinguish usual levels from unusual levels, and to 
detect isolated or persistent changes from historical levels. Leaders hold ex- 
traordinary measures "in reserve," and must commit them wisely. It cheapens 
the effect of extraordinary measures to apply them when they are unwarranted. 
Worse, the measures themselves can cause shocks to the underlying system and 
destabilize it. On the other hand, failing to react to extraordinary events may 
allow a bad situation to become much worse. This dilemma is analogous to the 
decision to use an antibiotic: its frequent indiscriminate use markedly decreases 
its effectiveness, yet its omission may result in the death of a truly sick patient. 

The methods of this paper provide methods for determining when to im- 
plement extraordinary measures. We illustrate this point with our data sets, 
especially with the Class A aviation mishap data from 1997. 

In other words, we are arguing to apply the statistical thinking underly- 
ing the Deming philosophy to the management of data used to describe key 
command interest items in the military. Our contribution is to have developed 
methods which work for the application of Deming's ideas to short-run Poisson 
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data. 

2    Example — Class A Aviation accidents 

We turn to four examples to illustrate the methods. We note that there is 
no useful data on incidents of sexual harassment in the Army extant, at least 
for the purposes of these methods. We turn to similar examples. We examine 
aviation accidents, rapes in New York City, and lastly misconduct (albeit DUI) 
in a division in Germany. 

2.1 Example — Army Class A aviation mishaps 

A Class A aviation mishap in the military is one that involves a fatality or 
damage in excess of one million dollars. For Fiscal Year (FY) 1997, the number 
of Class A aviation accidents per week is given in Table 1. The weeks run from 
Sunday to Saturday, so 53 weeks are reported. We are interested in detecting 
unusual isolated weeks and persistent shifts from the usual accident rate. 

We note that this data would better analyzed by weighting for the number 
of flying hours each week, but that data was not available to the author. 

We will first apply the methods of this paper to the Army aviation data set, 
first with a weak prior and then with a strong prior. For our weak prior, we 
choose a = 1 and ß = 4. This corresponds to an expected rate of 0.25 incidents 
per week, with a great deal of uncertainty as to the true value. 

The charts for an isolated departure, persistent departure, and the posterior 
distribution at the end of the year are shown at Figures 1, 2, and 3. They 
behave much more reasonably. Interpretation of these charts shows that the 
first four weeks with accidents are signaled as unusual. After the first twenty 
weeks, enough evidence has accumulated about the underlying accident rate to 
see that one accident in a week is not an isolated model departure. 

We have set the persistent chart with a two-sided average run length of 
250. Against that criteria, there is not evidence of an upward shift, although a 
less sensitive threshold would signal an upward increase in the mean number of 
accidents. 

We compare these charts with those obtained using a strong prior, say a = 
10, and ß = 40, shown at Figures 4, 5, and 6. This prior corresponds to almost 
a year's worth of data. We see that the isolated chart (which now looks exactly 
like the original data plot) no longer displays a learning period, and that there 
is no evidence of a persistent upward shift. 

2.2 Example — DoD Class A aviation mishaps 

This example considers the Class A aviation mishaps for the entire Department 
of Defense for Fiscal Year 1997, with the data by week. The data was provided 
by the Assistant Deputy Under Secretary of Defense for Safety and Occupational 
Health, and appears in Table 2. 
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Week Number Week Number 
1 0 28 1 
2 0 29 1 
3 0 30 0 
4 0 31 0 
5 0 32 0 
6 0 33 0 
7 0 34 1 
8 0 35 0 
9 10 36 0 
10 1 37 1 
11 0 38 1 
12 0 39 1 
13 0 40 0 
14 0 41 1 
15 0 42 0 
16 1 43 0 
17 0 44 0 
18 1 45 0 
19 0 46 0 
20 0 47 0 
21 0 48 0 
22 2 49 0 
23 0 50 0 
24 0 51 0 
25 0 52 0 
26 0 53 1 
27 0 

Table 1: Data on the number of Class A aviation accidents by week for the 
United States Army, Fiscal Year 1997. Source: Assistant Deputy Undersecre- 
tary of Defense for Safety and Occupational Health, US Department of Defense. 
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Figure 1:  Predictive control chart for isolated departures with a weak prior 
applied to the Army aviation data. 
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Figure 2: Predictive cumulative sum control chart for persistent departures with 
a weak prior applied to the Army aviation data. 

74 



Figure 3: Posterior distribution for A after week 53 for the Army aviation data, 
with a weak prior distribution. 

Figure 4: Predictive control chart for isolated departures with a strong prior 
applied to the Army aviation data. 

75 



Figure 5: Predictive cumulative sum control chart for persistent departures with 
a strong prior applied to the Army aviation data. 
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Figure 6: Posterior distribution for A after week 53 for the Army aviation data, 
with a strong prior distribution. 
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Week N Week N Week N 
1 0 19 2 37 1 
2 2 20 2 38 1 
3 2 21 2 39 3 
4 1 22 3 40 0 
5 1 23 0 41 2 
6 0 24 1 42 0 
7 0 25 1 43 0 
8 2 26 1 44 1 
9 1 27 3 45 1 
10 3 28 1 46 2 
11 1 29 5 47 4 
12 0 30 1 48 0 
13 0 31 1 49 1 
14 0 32 1 50 1 
15 3 33 1 51 5 
16 1 34 2 52 1 
17 0 35 1 53 2 
18 2 36 1 

Table 2: Class A aviation incidents by week for FY97, with overlap since the 
weeks run Sunday to Saturday. Source: DOD. 

We note some obvious shortcomings in the data before we proceed to analyze 
it. First, it seems reasonable that the expected number of accidents would be 
proportional to the number of operating hours. Unfortunately, that data on 
operational hours was not provided. As a result, the analysis is not able to 
account for decreases due to reduced flying hours (such as usually occurs during 
the Christmas-New Year's holiday period.) The data does seem to be reasonably 
well fit by the Poisson distribution, however, based on the Poisson dispersion 
test. 

We proceed to analyze the data, obtaining the Figure 7 and 8. 
Analysis of these graphs indicates two weeks (29 and 51) with unusually large 

numbers of accidents. The second week, in September of 1997, coincided with 
increased press attention on military aviation mishaps. There was no evidence 
of a persistent increase in the underlying accident rate, however. 

This raises the issue of what an appropriate response to an isolated bad week 
should be. Is a DOD-wide stand down appropriate for an isolated week? Or 
should that extraordinary corrective measure be husbanded and used only when 
there is evidence of a persistent problem? Why was there not a stand down in 
response to week 29's accidents? 

The answers to these questions are informed by the analysis that the methods 
of this paper provide. 
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Figure 7: The chart for isolated departures for the Class A aviation data. Notice 
that weeks 29 and 51 have unusually high numbers of incidents. 

3    Example — Rapes in New York City in 1996 

3.1 Setting 
Our second example is provided by the New York City Police Department. 
Crime statistics for each precinct are collected weekly. We are interested in 
the number of reported rapes each week for a given precinct. We assume that 
the distribution of reported rapes follows a Poisson distribution. (A test of 
this assumption was made on the entire data set, using the "Poisson dispersion 
test" referenced in Perry and Mead [1979], with p-value 0.225.) We set a = .02, 
roughly corresponding to one false alarm per year while in control. We use a 
vague prior initially. 

The population of the precinct is assumed constant, as is the length of the 
reporting period. For ease, we have set riiU = 1, so A is the mean number of 
arrests per week in the precinct. 

The number of reported rapes is provided in Table 3. 

3.2 Initial charts 
The predictive control chart is included at Figure 9, and indicates that week 24, 
with six rapes, had an unusually high number of rapes. This would be cause for 
investigation by the precinct commander and his staff. 

The posterior distribution of A, after the 52 observations, is at Figure 11. 
Notice there is still a fair amount of uncertainty about the true mean rate of 
rapes. The point estimate for A = 2.28. The posterior distribution for A, after 
only 22 weeks, is given at Figure 12. After 22 weeks, the point estimate for 
A = 1.9545 = G22/H22. 

78 



Week N Week N 
1 1 27 2 
2 1 28 4 
3 3 29 3 
4 2 30 2 
5 1 31 4 
6 2 32 3 
7 5 33 4 
8 0 34 2 
9 1 35 2 
10 1 36 4 
11 5 37 1 
12 4 38 2 
13 1 39 1 
14 2 40 1 
15 3 41 4 
16 2 42 4 
17 2 43 0 
18 2 44 2 
19 2 45 0 
20 1 46 3 
21 1 47 4 
22 1 48 2 
23 4 49 3 
24 6 50 1 
25 3 51 2 
26 2 52 1 

Table 3: Number of reported rapes by week in the 75th Precinct, New York 
City Police Department, for 1996. Data provided by Detective Josef Falletta, 
NYCPD. 
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Figure 8: The chart for persistent departures for the Class A aviation data. 
There is no evidence of a persistent shift in the average number of accidents per 
week. 

3.3 Restarting the charts 

We illustrate in this section the ease of restarting the charts. 
Since we have warmer weather, an indication of a step change after week 

22, and an unusually large observation at week 24, we restart both charts from 
week 23. We have some history about the process from the first 22 weeks, so 
we will use an informed prior. 

We believe that the new A may be m — 2.5, plus or minus s = .5. We 
obtained this estimate from considering the increased average of weeks 23-28, 
but discounting week 24, which was possibly an outlier. We are unsure about 
the precision so we use a large value of s. Matching moments, we obtain a = 25 
and ß = 10. We use these new values for our prior distribution when we restart 
the charts. 

We could have validly held other beliefs about the parameters. 
For the rest of the year, we obtain the charts at Figures 14, 13, and 16. 

At the end of the year, we see that the new point estimate for A is given as 
A = 2.469, an increase of 26% over the rate for the first 22 weeks. 

In Figure 15, we see that there is no further step change in the reporting 
patterns. 

From Figure 13, it appears we underestimated the new value of A, but the 
chart adjusts quickly to a value closer to 3 than to 2.5. 

3.4 Analysis and comments 

The rate of reported rapes appears to have increased in week 23, and then held 
steady for the rest of the year. This suggests that there may be a seasonal com- 
ponent in the rape rates, related to the summer months. However, analysis of 
the city-wide data shows no corresponding city-wide increase, which eliminates 
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Figure 9: Predictive Control chart for isolated departures from the expected 
number of rapes per week in the 75th Precinct, NYCPD. There is only one 
signal, at week 24. 

the seasonal argument. Additionally, the city as a whole experienced a persis- 
tent and marked decrease in the reports of rape starting at week 40, and this 
precinct did not experience such a drop. We discuss this in the next section. 

The signal in week 24 may be due to the increase in A, not an isolated special 
cause. 

These methods only signal that there has been a change. They do not 
explain why — but they do give an indication of when the shift likely occurred, 
which is very useful for diagnostic work. The commander wants to know why 
shifts occurs. Modeling A as a function of other covariates - such as weather, 
overtime, number of officers on duty, unemployment - would be a useful exercise 
in Poisson regression. This would provide additional useful information to the 
precinct commander. 

3.5    City—wide charts 

Although not developed in this paper, Olwell (1997a) has developed similar 
predictive control charts for the normal distribution. The self-starting charts of 
Hawkins (1987) (Hawkins and Olwell, 1998) can also be used, and are equivalent 
to the predictive chart when the predictive chart has a vague prior distribution. 
We assume a vague prior, and consider the city-wide data. The sum of all the 
rapes in all of New York's precincts is well-modeled by the normal distribution, 
both for empirical and theoretical reasons. The charts for the mean for the 
city as a whole is shown in Figures 17 to support the earlier assertions that 
the phenomena affecting the 75th precinct are local and not city wide. From 
the chart we see that there was no city wide increase at week 23, when the 
75th precinct was experiencing an increase, and there was a city wide decrease 
beginning at week 43 which was not reflected in the Precinct. 

Comparisons such as this would be useful for the Army.   The analog is 
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Figure 10: Chart for persistent departures for the NYCPD data. This chart 
signals an upward shift in the average number of reported rapes in the precinct, 
beginning at week 23, and signaled at week 33. 

monitoring, say, division-level data and Army-level data simultaneously, and 
seeing if emerging trends were local or Army-wide. 

4    Example - DUIs in a division 

This military example is based on the number of incidents of Driving Under the 
Influence (DUI) for an armored division in Europe during the first six months 
of 1997. We assume that the number of incidents for a given reporting period 
follows a Poisson distribution, with mean proportional to the number of assigned 
soldiers and days in the reporting period. 

We believe that the true average number of incidents is about 10 per week. 
We obtained that number by looking at previous historical data, but we could 
have also obtained it by a formal elicitation of a prior using the methods of 
Section 2.3. We elicit a = 20 and ß - 2, which means that we believe the 
strength of our prior opinion is the equivalent of two weeks data. 

We select an ARL of 500 for the run lengths for both the isolated and 
persistent departure charts. The average population of the Division is 19,600 
soldiers, and the reporting period is seven days. From ANYGETH.exe, we 
obtain the decision intervals (h+, h~) and the values of k+ and k~ for the input 
screen. 

The preceding information is entered in the input screen shown in Figure 18. 

4.1    Analysis 

The isolated chart signals three unusually bad periods, at weeks 20, 21, and 
24. The persistent chart signals an upward increase in the average rate, and 
estimates that it began at period 19, the last time that S+ was on the horizontal 
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Figure 11: The posterior distribution for A after all 52 observations of the 75th 
precinct rape data. 
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Figure 12: The posterior distribution for A after the first 22 observations of the 
75th precinct rape data. 

axis. Clearly the Division has experienced a significant change in DUI behavior, 
and the leadership should investigate and react immediately. 

We know the process has changed, so we investigate why this might have 
occurred. We are greatly aided in the investigation by knowing about when the 
change occurred. In this case, this roughly corresponds to the time period when 
the troops of 1st AD were notified officially that they would be redeployed to 
Bosnia. 

In the meantime, we should restart the charts to monitor the process at its 
new level. We will want to know if the DUIs remain at this new average level, if 
they decrease, or if they further increase. The restarted chart will give us that 
information. 

83 



Probabiäy fa is fcrknbda 

I ]  I I  I  I 1  I  [[  I I  I  I I  1  I I  I I  I  I M  1 1  I 1 

Figure 13: The restarted plot of the posterior mean and 95% probability limits 
for A through observation 52 of the 75th precinct rape data, with informed prior. 
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Figure 14: The restarted predictive control chart for an isolated departure 
through observation 52 of the 75th precinct rape data, with informed prior. 

5    Organizational Implications 

There is a saying in the Army, "The unit does well those things the boss checks." 
Setting up a monitoring system using the methods of this paper can have many 
effects on an organization. They can be good and bad. 

Perhaps the best effect is that these tools focus leaders on the distinction 
between usual and unusual behavior. Over reaction to a process in control can 
send the process out of control. The methods provide graphical evidence of 
when extraordinary intervention is and is not warranted. This was illustrated 
in the discussion of the DoD aviation data. 

Second, these tools provide sharp methods for distinguishing between usual 
and unusual behavior, especially when there are small persistent changes. We 
saw that the senior leadership of the New York Police Department was unaware 
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Figure 15: The chart for a persistent change, restarted after week 23 for the 
75th precinct data. Note there is no evidence of a further change in the average 
number of reported rapes. 

of the persistent trends which had emerged in the number of reported rapes at 
precinct and city level in 1996, until these methods were applied to the data. 

Third, because the methods are spreadsheet based, they can be maintained 
easily and require no specialized software. This is a huge advantage, because 
organizations will be less resistant to using easily implemented methods. 

There are some implications which are of concern. We must continue to em- 
phasize that while the level of misconduct or accidents might be at a usual level, 
no misconduct or accident is ever acceptable. We continue to work vigorously 
to identify and eliminate the causes of these shortcomings. That is the function 
of the systems which the organization has in place already to deal with these 
issues. These tools identify learning opportunities and periods where extraor- 
dinary action is warranted. We must be vigilant to avoid sending the message 
that "usual" is "acceptable." It is not, if soldiers are being hurt. This really 
requires increased education for Army leaders in the power and limitations of 
applying statistical thinking to managing the Army. 

Secondly, we must be careful not to overburden subordinate units with re- 
porting requirements. There is a trade-off between the frequency of reports and 
the speed of detection of persistent shifts. However, there is an organizational 
cost to meeting reporting requirements, especially in the time of subordinate 
leaders — an already scarce commodity. 

Third, we must be sensitive to the effects of data collection. If we contin- 
uously ask female soldiers, "Have you been harassed today? Have you been 
harassed to day?", we can create a hostile working environment for both the 
questioners and the questioned. If we ask for additional demographic identifi- 
cation, such as race, we can further aggravate soldiers. 

Last, we must remind soldiers that the systems that are not being moni- 
tored are also important. Not charting may send the message that a process is 
unimportant, when it might just be unmeasurable. 
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Figure 16: The restarted posterior distribution for A for weeks 23-52, as of week 
52, of the 75th precinct rape data, with informed prior. Note the shift to the 
right when compared with Figure 12. 
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Figure 17: A self-starting control chart for the mean of a normal distribution 
applied to the NYCPD rape data for the entire city. 
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Figure 18: Input screen for Excel program for predictive Poisson control scheme 
for the Division DUI example. 

7    Conclusion 

Discrete events well modeled by the Poisson distribution with mean proportional 
to either time or number of items are everywhere in the Army. This paper has 
shown a method for monitoring their occurrence to detect unusual periods or 
persistent shifts in the underlying rate. 

These methods have application to misconduct and other social behavior, as 
well as to weapons systems, vehicles, aircraft, and tools, among others. They 
offer managers a means for monitoring the performance of these key pieces of 
equipment, when extensive historical data is missing or when the process does 
not stay stable for long periods of time. 

The unique ability of these methods to learn from the data, and to be 
restarted when necessary, make them well suited for an ever-changing Army. 
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Figure 19: Data screen for Excel program for predictive Poisson control scheme 
for the Division DUI example. 

The Excel-based implementation makes them accessible to soldiers without re- 
quiring special software. 

These methods are ready for implementation by the Army. They have been 
implemented into spreadsheet form for ease of use. As of January, 1998, they are 
being fielded with the operations research analysts supporting the 1st Armored 
Division in Bosnia. While they require some training in their setup and inter- 
pretation, the graphical output is easy to follow. The author hopes that they 
will soon be part of the leader tool kit for monitoring key command indicators 
in the entire Army. 
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Using Pearson and Spearman Statistics to Look for a Dependence 
Relationship between Two Variables 

Dr. Lome L. Hoffman, Department of Statistics, University of Central Florida 
Mr. Dan Corson, IMAGE intern from Florida A&M University 

Introduction 

The purpose of this study is to make data analysts acutely aware of the differences 
between two popular statistics: Spearman's rank correlation coefficient and Pearson's 
chi-square test for independence. Both of these statistics are used to reveal relationships 
between two variables x and y. Spearman's will uncover linear relationships, i.e. where y 
can be adequately predicted as a linear function of x. Pearson's chi-square is less stringent 
in that the relationship need not be linear. The simulations conducted and reported herein 
will reinforce the fact that Pearson's test can reveal a dependence between x and y while 
Spearman's will not. This occurs simply because the relationship is not a linear one. 

Both statistics are considered nonparametric since knowledge of the underlying original 
distribution of the data is not required in order to know their sampling distributions. See 
Practical Nonparametric Statistics. 2nd edition, W. J. Conover, John Wiley and Sons, New 
York, 1980, for a reference. The exact sampling distribution for Spearman's rank 
correlation coefficient in the case where x and y are continuous can be derived 
theoretically via a combinatorial argument (Conover, p. 252). For large sample sizes a 
normal approximation suffices. The exact distribution for Pearson's test can also be 
generated by viewing the contingency table (the frequency of occurrences as defined in a 
two-way classification table) as a realization from a multinomial distribution and 
considering all possible outcomes. For adequate sized cell counts in the classification 
(contigency) table a chi-square approximation suffices (Conover, p. 160). 

Recall that Spearman searches for relationships by relying on the rank of each x among 
all x's and of y among all y's and testing whether large x ranks pair with large y ranks 
(positive correlation) or large x ranks pair with small y ranks (negative correlation). 
Pearson's approach can be explained as one which slices up the 3-D histogram (the cell 
counts being the heights corresponding to the varying x columns and y rows) and then 
checks to see if those slices (near equivalent to conditional distributions) are 
proportionally identical 

Methodology 

We needed to choose a family of distributions which were capable of exhibiting 
non-linear dependence. A mixture of bivariate normals meets this criteria. We have 
restricted our attention to 

/(jc,j)=5/V2^*(l-A
2)*exp((-5/(l-A

2))*(x2-2*A^*y+/)) 

+5/j2*x*(l-p2
2)*exp((-5/(l-p2

2y)*(x2-2*p2*x*y + y2))       (1) 

-OO<JC<-H»    and    -«xjx-K». 
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That is, it is equally likely we sample an <x,y> pair from a normal with a zero-vector 
mean, variances of 1 and a covariance of rho(l) as to sample from a normal with 
zero-vector mean, variances of 1 and a co variance of rho(2). 

Using the suggested generation scheme in Multivariate Simulation. M.E. Johnson, John 
Wiley and Sons, New York, 1985, and SPSS software version 6.1 for Windows we 
generated 300 pairs for each investigation. We restricted ourselves to five cases 
consisting of setting rho(l) to .50 and rho(2) = -.75, -.50, .0, .50, .75 . We looked at 
k=10 runs of 300 pairs for each of the five cases. 

The required steps to generate this mixed bivariate normals are: 
1. Generate U, where U is from a uniform distribution on (0,1) 
2. Generate XI1 from a normal distribution with mean of 0 and variance of 1 
3. Generate X12 from a normal distribution with a mean of rho(l)*Xl 1 and a variance 

of(l-rho(l)**2) 
4. Generate X21 from a normal distribution with mean of 0 and variance of 1 
5. Generate X22 from a normal distribution with a mean of rho(2)*X21 and a variance 

of(l-rho(2)**2) 
6.X=XllifU<=l/2 

Y=X12 if U<=l/2 
X=X21 if U>l/2 
Y=X22 if U>l/2. 

The Spearman test statistic value is calculated in SPSS by using the BIVARIATE 
CORRELATION macro under the STATISTICS drop-down menu and selecting the 
Spearman option. The Pearson test statistic value is calculated by using the 
SUMMARIZE-DESCRIPTTVE-CROSSTABS macro under the STATISTICS 
drop-down menu after classifying the x and y values into these categories: 
Category is -2 if x< -1.0, category is -1 if-1.0<= x < 0.0, category 1 if 0.0<= x < 1.0 
and category 2 if x>=l .0 with an identical scheme for y. This creates a 2 by 2 contingency 
table with 16 cells for generating Pearson's chi-square test statistic. Note that this 
gridding decision is arbitrary and very well may affect the ability of Pearson's test statistic 
to discern independence. This concern is left to later research. 

The p-values reported herein are gleaned from the SPSS output which relies on the 
two-sided tail areas under the approximate normal distribution for Spearman and on a 
chi-square approximation for Pearson. 

Since we know the true original distribution (mixed bivariate normals) and have 
derived the conditional distributions and correlation associated with each then these 
simulations are conducted in order to assess the performance of these test statistics, both 
individually and in relationship to each other. (Note: here n=300. We could have varied 
this but believe it mimics studies we often see our colleagues in Education and Business 
conduct.) We run k=10 simulations for each of the five cases above. 

It is direct to show that the conditional distributions associated with f(x,y) are: 

f(y\x)=5/yl2*x*(l-pi
2)*exp((-5/(l-pl

2))*(y-pl*x)2)) 

*x*(l-p2
2)* exp((-.5 / (1 - p2

2)) *(y-p2* *)2) 
-     oo      <     y     <     +  oo ,j\ 
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And the correlation of x and y is 

ß) .5   *    p x  +  .5   *    p 2 

Recall that if the conditional distributions are not identical for each X then the 
definition of independence (P(Y=y|X=x) = P(Y=y)) is violated. 

In none of these cases is independence true and in only one case where rho(l)= 5 and 
rho(2) = -.5 is the correlation zero. This statement is reinforced below in the Results 
section by presenting the graphs of the conditional distribution for x= 0 and for x=l for 
each of the five cases, and by calculating the correlation of x and y. This means that both 
Spearman and Pearson should reject their respective hypotheses of HO: rho = 0 (except for 
the case where rho(l)= 5 and rho(2)= -.5) and reject HO: x and y are independent. 

Results 

The results will be presented case by case and then discussed collectively at the end. 
We summarize the rejection/acceptance activity in Table 1 and present the calculated 
correlation values in Table 2. For each case we show the following: 1) a 3-D wireframe 
plot and 2) a contour plot (both graphics generated by MENITAB for WINDOWS) plus 
3) graphs of the conditional distribution functions when x = 0 (dashed line) and x = 1 
(solid line) via SPSS plots. Table 1 reports the p-values from the k=10 runs for Spearman 
and reports the p-values from the k=10 runs for Pearson for the cases where rho(2) is 
-.75, -.50, and .0 (omitting the rho(2) = .50 and .75 since the p-values for these other two 
cases were all less than .0005). Included at the bottom of Table 1 for both Spearman and 
Pearson are the number of rejections of the HO hypotheses which occur using an alpha 
level of. 10. Note that the smallest expected cell count for all of the contingency tables 
was 4.3 and so the chi-square approximation should be adequate. Table 2 contains the 
Spearman correlation coefficients calculated from the 300 points for each of the k=10 runs 
for every one of the five cases. 

For the case where rho(l)=50 and rho(2)= -.75 the 3-D plot presents a shape which has a 
lop-sided four-leaf clover look to its cross-section slices (Figure 1). This is best 

Figure 1. 3-D plot with rho(2)= -.75 Figure 2. Contour plot with rho(2)= -.75 
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understood by viewing the contour plots (Figure 2). This realization is an obvious result 
of combining an equal mix of bivariate normals: one with its true regression line running 
through (0,0) and (1, 0.5) and the other one through (0,0) and (l,-.75).     The dependence 
between x and y is evident when one views two arbitrarily selected conditional 
distributions: one where x=l and the other when x=0. These are presented in Figure 3. 
The graphical evidence should lead us to expect that both Pearson's chi-square statistic 
(by noting the dissimilarity of the conditional distributions) and Spearman's correlation 
coefficient (by noting the slight domination of a downward sloping tendency in the 
contour plots) will uncover a dependency between x and y. Those values are presented in 
Tables 1 and 2 below. 

toy) 

%M 

Figure 3. Conditional distributions at x=0 
(dashed) and at x=l (solid) 
rho(2)= -.75 

—T 

Figure 4. 3-D plot with rho(2)= -.5 

For the case where rho(l)=.50 and rho(2)= -.50 the 3-D plot presents a shape which 
has a symmetric four-leaf clover look to its cross-section slices (Figure 4). The difference 
when comparing to the previous case is reinforced by viewing the contour plots (Figure 
5).   This graphical portrayal is an obvious result of combining an equal mix of bivariate 
normals: one with its true regression line running through (0,0) and (1,0.5) and the other 
one through (0,0) and (1 ,-.5).     The dependence between x and y is evident when one 
views two arbitrarily selected conditional distributions: one where x=l and the other when 
x=0. These are presented in Figure 6. In this case the conditional distributions are 
symmetric. This is easily confirmed by showing f(y|X=x) = f(y|X=-x) in equation 2. The 
graphical evidence should lead us to expect that Pearson's chi-square statistic will uncover 
a dependency between x and y. Since there appears to be no propensity for the values to 
cluster about any line we would expect Pearson's correlation coefficient to be near zero. 
Those test statistical values are presented in Tables 1 and 2 below. 
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Figure 5. Contour plot with rho(2)= -.50 Figure 6. Conditional distributions 
at x=0 (dashed) and at 
x=l (solid); rho(2)= -.50 

For the case where rho(l)=.50 and rho(2)= .0 the 3-D plot presents a shape which has 
an elliptical look to its cross-section slices (Figure 7). This difference from previous 
shapes is best seen in the contour plots (Figure 8). This graphical image occurs due to 
combining an equal mix of bivariate normals with circular cross-sections (the one with 
zero correlation) and the other bivariate normal with its regression line running through 
(0,0) and (1, .5). 

flfcyj 

Figure 7. 3-D plot with rho(2)= .0 Figure 8. Contour plot with rho(2)= .0 

The dependence between x and y is evident when one views those two arbitrarily selected 
conditional distributions. These are presented in Figure 9. In this case the conditional 
distributions exhibit dissimilarities: at x=l there is more chance of observing positive 
y-values (note the larger area to the right of y=0 than to the left) whereas when x=0 it 
appears equally likely one would observe a positive or a negative y-value. The graphical 
evidence points to a significant Pearson's chi-square statistic. Since there appears to be 
clustering about a line with positive slope then we would expect Pearson's correlation 
coefficient to be positive. Those test statistical values are presented in Tables 1 and 2 
below. 
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Figure 9. Conditional distributions at 
x=0 (dashed) and at x=l (solid) 
rho(2)= .0 
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Figure 10. 3-D plot with rho(2)= .50 

For the case where rho(l)=.50 and rho(2)= .50 the 3-D plot is merely the bivariate 
normal with a zero mean vector, variances of 1, and a correlation coefficient equal to .50 
(Figure 10). The distinction of previous shapes may now be best understood by 
comparing them to this 'non-mixed' bivariate normal (Figure 11). 

1 2 1 

Figure 11. Contour plot with rho(2)= .50 Figure 12. Conditional distributions 
at x=0 (dashed) and at 
x=l (solid); rho(2)= .50 

The dependence between x and y is evident when one views those two arbitrarily selected 
conditional distributions. It is also well understood theoretically since we know that the 
conditional distributions of a bivariate normal are also normal with a mean and variance 
equal to, respectively, (4) 

jUy+p*(cTy/crx)*(x-{ix)     ,<Jy(l-p2) 

So in this case when x=0 Figure 12 presents a normal with a mean of 0 and variance of .75 
and when x=l a normal with mean of .50 and variance of .75. Since the distributions are 
not identical we conclude that there is a dependence between x and y and should calculate 
a Pearson's chi-square statistic which is significant. Visually we see a clustering about a 
line with positive slope and thus expect Pearson's correlation coefficient to be positive and 
can be found in Table 2 below. 
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Figure 13. 3-D plot with rho(2)= .75 Figure 14. Contour plot with rho(2)= .75 

For the last case where rho(l)= 50 and rho(2)= .75 the 3-D plot appears extremely 
narrow (Figure 13). This concentrated clustering about a regression line with positive 
slope is quite evident in Figure 14. 
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Figure 15. Conditional distributions at x=0 (dashed) 
and at x=l (solid); rho(2)= .75 

The dependence between x and y is showcased by viewing those two arbitrarily selected 
conditional distributions. These are presented in Figure 15. In this case the conditional 
distributions exhibit dissimilarities: at x=l there is a very large chance of observing 
positive y-values (note the larger area to the right of y=0 than to the left) whereas when 
x=0 it appears equally likely one would observe a positive or a negative y-value. A 
significant Pearson's chi-square statistic should result. Since there appears to be clustering 
about a line with positive slope then we would expect Pearson's correlation coefficient to 
be positive (Table 2). 

97 



rho(2 )      -.75                -.50                   .0 
run Spear Pears Spear Pears Spear Pears 

1 0.059 0.003 0.989 0.032 0.000 0.015 
2 0.001 0.002 0.935 0.024 0.004 0.126 
3 0.001 0.000 0.255 0.884 0.003 0.000 
4 0.006 0.000 0.185 0.001 0.000 0.000 
5 0.210 0.000 0.298 0.043 0.007 0.075 
6 0.053 0.003 0.487 0.023 0.000 0.008 
7 0.264 0.000 0.858 0.067 0.000 0.005 
8 0.000 0.000 0.293 0.026 0.001 0.145 
9 0.059 0.003 0.128 0.051 0.000 0.000 

10 0.062 0.005 0.495 0.441 0.043 0.000 
#rejct 8 10 0 8|       10| 8 

rho(2) -0.750 -0.500 0.000 I  0.500 0.750 
run 

1 -0.109 -0.001 0.221 0.476 0.608 
2 -0.193 -0.005 0.167 0.416 0.570 
3 -0.197 -0.066 0.177 0.439 0.583 
4 -0.157 -0.077 0.264 0.414 0.561 
5 -0.073 -0.060 0.156 0.496 0.629 
6 -0.112 0.040 0.225 0.466 0.593 
7 -0.065 -0.010 0.301 0.529 0.654 
8 -0.223 0.060 0.193 0.474 0.612 
9 -0.109 -0.088 0.321 0.575 0.681 

10 -0.108 0.039 0.199 0.416 0.593 
ave -0.135 -0.017 0.222 0.470 0.608 
rho -0.125 0.000 0.250 0.500 0.625 

Table 1. Pearson and Spearman 
p-values when rho(l)= 5 
and rho(2) varies 

Table 2. Calculated rho values 
with theoretical rho 
value (at bottom) 

Conclusions 

In each of these cases involving mixtures of bivariate normals Spearman's rho does a 
fine job of estimating the true underlying correlation coefficient as exhhited in Table 2. 
This translates to excellence in testing where we see in Table 1 that Spearman mostly 
makes the correct decision on whether to accept or reject HO: rho = 0. Pearson does 
equally as well. Further investigations should delve into the particulars relating to the 
power of these tests. That was not our purpose here. 

Our purpose is to spotlight the data in Table 1 in the center columns associated with 
the mixture of bivariate normals with a correlation coefficient of zero (i.e. when rho(l)= .5 
and  rho(2)= - .5). Spearman concludes correctly that rho is zero (in 10 of 10 runs at 
alpha of .10) and Pearson concludes correctly that x and y are dependent (in 8 of 10 runs 
at alpha of. 10).   Note that based on Spearman some data analysts might erroneously 
report that x and y are 'independent' rather than correctly saying 'uncorrelated' as is true in 
this instance. This false deduction occurs due to an error in thinking. A data analyst may 
forget that linear dependence is not the only kind of dependence. In the other four cases 
we present here either Pearson or Spearman statistics adequately reflect the dependence 
characteristic inherent in the data, but in the case of our mixed bivariate normals with 
rho(l)= .5 and rho(2)= -.5 a researcher must pursue an avenue of investigation beyond 
merely asking about linear correlation in order to reveal a dependence relationship. This 
cautionary note was the impetus for this work of finding ready examples of non-linear 
dependence and the subsequent characterization of those distributions. 

98 



THE JOINT DISTRIBUTION OF THE MEAN 
AND AN EXTREMUM OF A NORMAL 
SAMPLE, WITH APPLICATIONS TO 

QUALITY CONTROL 

Mark G. Vangel 
National Institute of Standards and Technology 

Statistical Engineering Division 
Building 820, Room 353 

820 West Diamond Avenue 
Gaithersburg, MD 20899-0001 

Abstract 

In some industrial applications one compares a sample mean and minimum, or a mean 
and maximum, to reference values, and determines if the lot from which the sample was 
taken is acceptable, or if further investigation of this lot is indicated. Because the exact joint 
distribution of an extremum and the mean of a normal sample is complicated, establishing 
these reference values using statistical considerations typically involves crude approxima- 
tions or simulation, even under the assumption of normality. The purpose of this article is 
to use the saddlepoint method to develop a fairly simple and very accurate approximation 
to the joint cdf of the mean and an extremum of a normal sample. Tables for use in estab- 
lishing acceptance criteria are also provided, and the use of these tables is illustrated with 
an example. 

KEY WORDS: saddlepoint, control chart, acceptance testing 

INTRODUCTION 

Let Yi,i = 1,... ,n be an iid sample from a normal population, and denote the sample order 
statistics as Y^ < Y(2) < ... < Y(n). In some industrial applications, one compares Y^ and Y, 
or Y(n) and Y, to reference values, to determine if the lot from which the sample was taken is 
acceptable, or if this lot should be investigated further. 

1 The results of this article are potentially applicable in diverse industries. For example, 
emphasis has long been placed on checking sample means and minima of lots of various packaged 
goods (Brickenkamp et al., 1988; Croarkin and Yang, 1987). Also, the sample means and minima 
are used in the testing of batches of raw material by many manufacturers of composite materials. 
And means and maxima of power loss of sampled motors have been proposed for use in testing 
whether manufactured motors comply with labeled motor efficiencies (Stricklett and Vangel, 
1997). 

If these reference values are established using statistical considerations, then it is likely that 
either crude approximations or simulation will be employed, because the exact joint distribution 
of an extremum and the mean of a normal sample is complicated, with complexity increasing 
rapidly with n (Murty and Bissinger, 1982). The purpose of this article is to develop an ap- 
proximation for this joint cdf based on the saddlepoint method (see, e.g., Barndorff-Nielsen and 

■'Approved for public release; distribution is unlimited. 
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Cox, 1989, Section 4.3), which is very accurate and straightforward to compute. The use of this 
distribution in acceptance testing is illustrated with an example. 

AN APPROXIMATE JOINT CDF fOR Y{1) AND Y 

Assume that the random variables Yi are iid normal with mean fi and variance a2. Since we 
will assume that /i and a can be regarded as approximately known from previous data, we 
can, without loss of generality, employ the standardized sample X{ = (Yi - (j,)/cr, having order 
statistics X(q = (Y(;) - M)/C. 

Let Fxm(t) denote the cumulative distribution of X(1), and let Fx{t) be the cdf of X; that 

FXw (t) = Pr(X(1) < t) = 1 - (1 - *(*))", 

and 
Fx(t) = Pr(X < t) = $ {VKt) , 

where $(•) is the standard normal cdf. 
The primary objective of this paper is to develop and illustrate an approximation to 

*jc(1„*(*i.*2) = Pr(*(D ^ *i and X<t2). 

Let 4>(t) denote the normal density, and let 

4>{t) 
hit) 

$(*) 

be the normal hazard function.   In the Appendix, we derive the saddlepoint approximation 
FX{1),x(h,t2), for ii < t2, where 

N      £'„ *(yfiit2)A(t)dt + J~*{^ [h + ^W) - tj]} A(t)dt 

A(t)    =    /»-(""^(tjexp (n-1)2 

2n 
(A(t) - i)2 + (n - l)«(Ä(t) - t) 

■y/l-h2(t)+th(t), 

and where t* is the (unique) solution to the equation 

^^(h(*.)-*.)=*2-*i- (2) n 

The approximate cumulative distribution (1) satisfies the conditions of a bivariate cdf. The 
derivation appears in an appendix because it is fairly technical; however, the details are elemen- 
tary, and somewhat interesting. 

A contour plot of Fx    x(t1,t2) for sample size n = 5 is displayed in Figure 1.   Note the 
rather sharp 'corners' on the contours: if t2 » *i, then 

FX(1),x(ti,t2) ^ FXwj(ti,co) = Fx^ih), 

and if ti << t2, 
Fxw,x(tuh) « FXwtX(-oo,t2) = Fx(t2). 

When choosing reference values to be used for acceptance testing, one would typically try to 
make essential use of both the mean and the extremum; this corresponds to being near the corners 
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of the contours in Figure 1. One reasonable condition to impose is that, if Fx x(t\,t2) = a, 
then 

FX(1)(h) = Fx(t2) = a/2. (3) 

This ensures that if a future lot comes from the same population as the lots used to establish 
the acceptance criteria, then 

Pr (^(1) < ß + ho) = Pr (Y < y. + t2a) . 

The (ii,*2) pairs for which this is true are given by the equation 

t2 = *-1[l-(l-*(*i))n]/Vn. (4) 

For n = 5, (4) is displayed as the broken curve in Figure 1. 

THE ACCURACY OF THE APPROXIMATION 

The saddlepoint approximation used in the derivation of (1) is asymptotic in n, and hence 
can be expected to be accurate for large n. However, the saddlepoint method often leads 
to approximations which are reasonably accurate for all sample sizes, and this turns out to 
be the case for Fx x{t\,t2). As an example, if n = 3, t\ = -2.5, and t2 = -1.20404 
(which is the value given by (4)), then from a 1,000,000-replicate simulation, we have that, 
Fx(1)ijf (-2.5, -1.20404) « .005421 with an approximate 95% (binomial) confidence interval of 

.005274 < FXm^(-2.5,-1.20404) < .005567. 

For this example, P(-2.5, —1.20404) = .005226 is only slightly below the simulation uncertainty 
interval. 

Rather than performing a large simulation, we have relied on checking special cases (such as 
the above example), and on comparison with the exact result for n = 2. If n = 2, it is easy to 
show that 

FXm,x(h,t2) = 2 / J  $(2i2 - s)(l - *(x))4>(x)dx. (5) 
J — OO 

Contours of (5) are displayed in Figure 2, along with the corresponding contours of (1). Note 
that the approximation is quite accurate, even for this 'worst case' sample size. 

TABLES 

We provide tables for the following situations. 

1. One intends to reject a lot if either Y^ < \x — k\o or Y < ß — k2a; or else 

2. one plans to reject if either Y(n) > /J. + k\o or Y > /J, + k2a. 

We impose the condition that if an error of the first kind is made, then it is equally likely that 
we are required to reject because of a sample extremum as it is that we must fail because of the 
sample mean. That is, calculations for the tables employ the constraint (4). 

Tables 1 and 2 provide values ki and k2 such that 

Q(k1,k2) = FXll)(-k1) + Fx(-k2)-FXll)iX(-k1,-k2)=a, (6) 

and 
FX(1)(-h) = Fx(-k2)=a/2, 

where the probability (a) and sample size (n) correspond, respectively, to rows and columns in 
the tables. The tabulated function Q(k\,k2) has the property that, within the accuracy of the 
saddlepoint approximation, 

Q(ki,k2) « Pr (Yjn) > n + k\o or Y > fi + k2a) = Pr (Y^ < fj. — k-^cr or Y < fi — k2a) . 
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POWER 

To illustrate the power of an acceptance test based on the mean and an extremum, we let n = 5, 
a - .001, and we require that (3) holds under the null hypothesis. Denote the parameters of the 
normal distribution under the null hypothesis by (/ZO,CTO), and under the alternative by (//,CT). 

Using the function Q defined in (6), it is easy to show that the power of this test is 

7ri(o,6) = Pr[r(1) < ßo ~ ha0,Y < ß0 - k2a0] = Q[-b(a +kl),-b(a +k2)], (7) 

where a= (ß- ßo)/<x0, b = a0/cr, h - 3.7132, and k2 = 1.4687. We compare this function with 
the power of a test based on the mean alone, 

7T2(a,6)    =    Pr(? < n - za<r/y/n) (8) 

=    $ \-b{a\fn + za)] , 

where za = 3.0902 is a normal quantile. 
Contours of the power differences 

6(a, b) = 7Ti (a, b) - ir2 (a, b) 

are displayed in Figure 3. The only situation where the test based on the mean has appreciably 
more power than that which used both mean and an extremum is when CLK —k2, and b > 1. One 
can see from (7) that when a = -k2, then 7ri(a,&) depends on the data only through y(1). On 
the other hand, when b is substantially less than 1, S(a, b) can be large. So the use of the mean 
and an extremum is preferable to the use of the mean alone if, in addition to shifts in the mean, 
one is concerned about detecting increases in the standard deviation. (The use of an extremum 
also provides obvious protection against spurious extreme observations, but this more a matter 
of robustness than power.) 

An Example 

As an example of how the results of this paper can be used in practice, we consider the problem 
of testing incoming batches of raw material. Aerospace composite materials are often fabricated 
from large rolls of resin-impregnated graphite fiber. In order to determine whether a newly- 
arrived roll is a cause for concern, specimens are made, and various mechanical and chemical 
properties are tested. For strength properties, it has become common in this industry to require 
that both the average and minimum of the test data exceed certain critical values. Usually these 
threshold values are arrived at in a somewhat ad-hoc manner. We suggest here an alternative. 

Figure 4 displays actual compressive strength data for n = 5 specimens from each of the 23 
initial batches of raw material purchased for an aircraft application. The first four lots of raw 
material were used in initial qualification. The mean and standard deviation of these twenty 
values are x = 143.95 and s = 8.29, respectively. We assume that an acceptable probability of a 
Type 1 error is a = .001, and obtain the values ki = 3.7132 and k2 = 1.4687, from Tables 1 and 
2, respectively. The acceptance limits are then calculated as 

A1=x-k1s= 113.2 

and 
A2 = x - k2s = 131.8. 

Figure 4 show the data for all 23 lots, plotted against time. It can be seen that none of the 
means and minima of data from lots 5-23 fall below their respective acceptance limits; hence 
there is no indication provided to examine any of these lots further. 

CONCLUSIONS 
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A saddlepoint approximation to the joint distribution of the mean and an extremum leads to 
a bivariate lot-acceptance chart which should prove useful in industrial applications where one 
would like protection against very low or high individual values, as well as against shifts in the 
mean. The approximation has been shown to be accurate for all sample sizes, and with the 
provided tables it is easy to use. A power analysis suggests that tests based on the mean and 
an extremum are typically at least comparable in power to tests based on the mean alone, and 
they can be substantially more powerful in detecting increases in standard deviation, and robust 
against spurious extreme values. 

APPENDIX: DETAILS OF THE SADDLEPOINT APPROXIMATION 

The approach which we will use begins with the observation that 

Pr(X <t2\X{1) =ti)=Px E^iUi + ti 
<h 

where the {Ui}2=i are "^ truncated normal random variables, with support on the interval 
[ti, oo). Let U = Y^lZi Ui denote this sum. The cumulant generating function of Ui, and its 
first two derivatives, are easily shown to be 

K(t)    =   log[l-$(*!-t)]-log[l-$(*!)]+i2/2 
K'(t)    =    h(ti -t)+t, and 

K"{t)    =    fa -t)h{h -t)-h2(tt-t) + l. 

The saddlepoint approximation to the density of ?7 is 

Xs+(n-l)K(X) 

Ms) 
y/2n(n-l)K"(\)' 

where A is the (unique) root to the equation 

K'(X) =s/(n-l). 

(9) 

(10) 

The approximate equality symbol («) used above will appear in several places in this appendix. 
We take this opportunity to point out that the only approximation made in these derivations is 
the replacement of the true distribution of U with its saddlepoint approximation, as in (9). 

The joint density of X and X^ can be expressed as 

/x(1),tf(*i>*2) at-- 
■Tr(X<t2\X{1)=t1) /x(1)(*i) 

=   nfu(nt2 - h) [n0(tx)(l - Hh))^1] 

Substituting in (9), we have that 

X(nt2-t1) ^±[x2-(tl-\)2] 
fu(nt2 -h) 

^/2n(n - l)K"{\) (27r)("-1)/2^-1(ii - A) 
(1-«(ti))' 

-(n-l) 

SO 

fxw,x(h,h) 
n2e-\(nt2-t,) + 2=±[\2-(t,-\)2]-'- 

(2TT)("+
1
)/V(" - l)K"{\)hn-1(t1 - A) 

n2 exp {-f [t\ - 2{tx - \){t2 - h) + 2h{t2 - h)] } 

(2ff)(n+i)/a ^(n-WWh*-1 (h - A) 
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By subtracting U from both sides of (10), one can see that the saddlepoint A is the root of 
the equation 

h{tl-\)-{tl-\) = -^-(t2-t1). (11) 
n — i 

Thus, h - A is a function of t2 - h, which we denote q(t2 ~h). Since K"{\) is a function of 
ti - A alone, it can be regarded as a function of t2 - ii, say L(t2 - h). For the same reason, 
h(U - A) is also a function of t2 - i1; which we will denote h(t2 -h). 

This motivates the change of variables Z = X(1) and W = X-X{1), which has unit Jacobian 
and which leads to 

n2 exp [-§ (z2 + 2zw - 2wq(w))] 

fwAW'Z)    ~ (27r)("+1)/2yiH^-1(^) 
2   -n(z+H2/2-,«("<2+2™<?(™))/2 

=    ——   . (12) 
(27r)("+1)/2

x/L(«;)(n - l)hn~l(w) 

The approximate density (12) need not integrate to one. We thus modify it by dividing by 
the normalizing constant 

oo n3/2 ef [w2+2wq(w)] /•oo /-oo roo n3/2 62[w -t^wq^w^ 

7o i-oo Jo (2TT)"/
2
 v/L(ui)(n-l)/i"-1H 

(13) 

By definition, /i(£) - i = wn/(n - 1), and /i(£) - t is monotone.   This suggests the change of 
variable 

w = —(h(t)-t), (14) 
n 

with Jacobian 
dw = ^—\h2(t)-th(t)-l\dt. (15) 

n 
Now we can write (13) as an integral in t, eliminating the need to determine A: 

SP/->'"-1,W- -{h(t)-t)2 + (n-l)t(h(t)-t) 
2n 

■^l-h2(t) + th(t)dt. (16) 

Since 

Pr(X(1) < h and X <t2)    =    Pr(Z < h and W < t2 - tx) 

+ Pr(Z + W <t2 andW >t2-h), 

we can express the approximate cumulative distribution of X(1) and X as the following sum of 
two integrals in the (W, Z) plane: 

p   =    Pr(X(1) < ti and X < t2) (17) 
■   rt2-ti rti rco pt2-w      "I    j        n2e-n(z+w)2/2en(w2+2wq{w))/2 

*     7o        dWLdZ + LudWL    dZ\-n(2.)i^2V(n-l)L(W)h^(Wy 
where an obvious notation has been used to indicate the region of integration. As was the case 
in the derivation of c„, integration in z can be performed explicitly, after which (17) becomes 

„3/2 f    /•*2-ti %[w2+2wq(w)] 
p   =    — j-l  /  * \Vn~(h + w)} dw (18) 
P cn(2n)»/2 \J0 ^(n-l)L(w)h"-i(w)    [V   V 'j 

2+2wq(w)] 

l)L(w)hn-l{w) 

Finally, we make the same change of variable (14,15) as in (16) to derive (1). 
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Table 1: Constants for an Acceptance Test Using the Mean and an Extremum (Values for 
Extremum; ki) 

a Sample Size (n) 
23456789 10 

~5 0.7166 1.0254 1.2142 1.3498    1.4548      L54 1.6113 1.6724 1.7258 
.25 1.2887 1.5407 1.6972 1.8106     1.899     1.9711 2.0317 2.0838 2.1295 
.10 1.8167 2.0249 2.1561 2.252     2.3272    2.3887 2.4407 2.4856 2.525 
.05 2.1385 2.3239 2.442 2.5286    2.5967    2.6527 2.7 2.7411 2.7772 
.025 2.4208 2.5888 2.6965 2.7758    2.8384      2.89 2.9337 2.9717 3.0052 
.01 2.7526 2.9027 2.9997 3.0715    3.1283    3.1753 3.2153      3.25 3.2807 
.005 2.9805 3.1198 3.2103 3.2775    3.3309    3.3751 3.4127 3.4455 3.4745 
.0025 3.193 3.3232 3.4082 3.4716     3.522     3.5638 3.5995 3.6307 3.6582 
.001 3.4549 3.5751 3.6541 3.7132    3.7603    3.7995 3.8331 3.8623 3.8883 
.0005 3.6412 3.755 3.8301 3.8864    3.9314     3.969 4.0011 4.0292 4.0541 
.00025 3.8188 3.927 3.9987 4.0526 4.0958 4.1319 4.1628 4.1898 4.2138 
.0001 4.0421 4.1439 4.2117 4.2629 4.304 4.3384 4.3678 4.3936 4.4166 
.00005 4.2035 4.3011 4.3664 4.4157 4.4554 4.4886 4.5172 4.5422 4.5644 
.000025 4.3592 4.453 4.516 4.5637 4.6022 4.6344 4.662 4.6863 4.7079 
.00001 4.5573 4.6466 4.7069 4.7527 4.7897 4.8206 4.8473 4.8707 4.8915 

Table 2: Constants for an Acceptance Test Using the Mean and an Extremum (Values for Mean; 
k2) 

a Sample Size (n) 
2 3 4 5 6 7 8 9 10 

.5 0.1472 0.1591 0.1539 0.1473 0.141 0.1354 0.1303 0.1258 0.1217 

.25 0.6266 0.5421 0.4818 0.4382 0.4048 0.3782 0.3563 0.3379 0.3221 

.10 1.0539 0.8836 0.7744 0.6978 0.6403 0.5951 0.5583 0.5276 0.5016 

.05 1.3076 1.0868 0.9486 0.8525 0.7808 0.7246 0.679 0.6411 0.6089 

.025 1.5266 1.2626 1.0995 0.9866 0.9026 0.8369 0.7838 0.7396 0.7022 

.01 1.7804 1.4666 1.2747 1.1425 1.0443 0.9678 0.9059 0.8545 0.811 

.005 1.9528 1.6054 1.3941 1.2488 1.1411 1.0571 0.9893 0.933 0.8854 

.0025 2.1123 1.7341 1.5049 1.3475 1.2309 1.1401 1.0668 1.0061 0.9546 

.001 2.3076 1.8919 1.6408 1.4687 1.3413 1.2422 1.1622 1.0959 1.0397 

.0005 2.4457 2.0035 1.7371 1.5546 1.4196 1.3145 1.2298 1.1596 1.1002 

.00025 2.5768 2.1097 1.8287 1.6363 1.4941 1.3835 1.2943 1.2203 1.1578 

.0001 2.7411 2.2429 1.9436 1.739 1.5877 1.4701 1.3752 1.2966 1.2301 

.00005 2.8595 2.3389 2.0266 1.813 1.6553 1.5326 1.4337 1.3517 1.2824 

.000025 2.9734 2.4313 2.1065 1.8844 • 1.7204 1.5928 1.49 1.4048 1.3327 

.00001 3.1179 2.5487 2.2079 1.9751 1.8031 1.6694 1.5616 1.4723 1.3968 
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Figure 1:   Fx    x(ti,t2), for n = 5. The broken line is the locus of (£1,^2) pairs for which 

Fx{1)(ti) = Fx(t2). 
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Figure 2: Solid lines are contours of Fx.1)tx(ti,t-2), and broken lines are corresponding contours 
of-Fx(1),x(ii.i2),ibrn = 2. 
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Figure 3: Difference in power 7Ti(o, b) -7r2(a, b) between a test based on the mean and extremum, 
and a test based on the mean alone. The size is a = .001, n = 5, and (3) holds. 
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Figure 4: Example lot acceptance chart for compressive strength of a composite material (n 
5, a = .001). The first four lots were used to set up the limits. 
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APPROXIMATE QUANTILES FOR THE MULTIVARIATE STUDENTIZED RANGE 
IN THE CASE OF THREE UNEQUAL GROUPS1 

Otto Schwalb and James R. Thompson2 

Department of Statistics 
Rice University 

6100 Main Street MS-138 
Houston, TX 77005 

ABSTRACT 

In this paper, we develop equations which provide approximate quantiles for the multivariate studen- 
tized range in the case of three unequal groups. These equations are ready to use and are available via 
a website. In the equal groups case, our approximations are more accurate than existing approximations 
by a factor of ten. In the unequal groups case, there are no direct competitors to our approximations. 

INTRODUCTION 

The theory of multiple comparisons has a rich history in statistics. There is usually no debate about 
which multiple comparisons procedure is best for a given situation. In the multivariate case, for exam- 
ple, it is known that the T^ax procedure (the simplest case of which is originally due to Roy (1953) 
and generalizations of which are attributed to Krishnaiah (1969)) will always outperform the equivari- 
ant procedures (among which are the procedures based upon Roy's root, the Pillai-Bartlett trace, the 
Hotelling-Lawley trace, and Wilks' Lambda) in cases where there are a fixed number of contrasts speci- 
fied in advance and either confidence intervals or confidence regions (for particular parametric families) 
are desired. This claim is strong indeed and is perhaps not widely known, but it has been established for 
quite some time now. It requires more effort to demonstrate than just citing a few references here in the 
introduction (and some of the results required are fairly obscure), and so will be discussed below. That 
the T^ax procedure possesses such outstanding properties is completely analogous to the relationship 
between Scheffe's procedure and the studentized range procedure in ANOVA. The reason that the T^ax 

procedure has not received much attention seems to be due to the problems associated with obtaining 
its distribution in closed form. Siotani (1992) is one of the major investigators of the T^ax procedure. 
His breakthrough in providing an equation for approximate quantiles for the general case of equal groups 
(after the closed form solution has remained an unsolved problem for nearly 40 years) is remarkable 
and should hopefully serve to bring renewed attention to a procedure which is so useful and easy to 
understand. 

In this paper, we develop equations which provide approximate quantiles for the multivariate stu- 
dentized range in the case of one-way MANOVA with three unequal groups. The equations apply to the 
following situations: 

• quantiles: 0.8, 0.825, 0.85, ..., 0.925, 0.95, 0.975, 0.99 (e.g. for a significance level of a = 0.1, we 
desire the 1 - a = 0.9 quantile) 

• dimensions: 1, 2, 3, 4, 5 

• group sizes: arbitrary group sizes between 4 and 100 (subject to the restriction that the largest 
group be no more than 4 times the size of the smallest group). 

A JavaScript available at the web site: 
1 Approved for public release; distribution is unlimited. 
2Otto Schwalb is a graduate student in the Statistics Department, Rice University, 6100 Main Street, MS-138, Houston, 

TX, 77005 (E-mail:schwalb@stat.rice.edu). James R. Thompson is Professor, Department of Statistics, Rice University, 
6100 Main Street, MS-138, Houston, TX, 77005 (B-mail:thomp@stat.rice.edu). 
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allows the interested reader easy access to these quantiles. The importance of these approximate quantiles 
is that, until now, no quantiles have been available for the procedure in the case of unequal groups. Our 
approximations also apply to the case of equal groups, and, for the equal groups cases we consider, the 
accuracy of our approximations improves upon the accuracy reported by others by a factor of ten. 

Section 2 treats the theory associated with the T^ax procedure in the general case, as well as the 
special cases of two and three groups in 1-way MANOVA. Section 2 also demonstrates the claims made 
above concerning the performance of the T^ax procedure with respect to the equivariant procedures. 
In section 3, the practical utility of the procedure is demonstrated with an example using the Fisher- 
Anderson Iris data (1939). The example illustrates how the T^ax procedure is a strongly indicated choice 
in many realistic situations. Section 4 discusses the development of our equations. Most of the details are 
omitted from this section for the sake of brevity, but may be obtained from the first author. The details 
are straightforward, however. 

THEORY 

OVERVIEW 

The derivation of the T^ax procedure to follow is rather general, that is to say, very little of the theory 
to follow is specific to the 1-way case or the case of all pairwise comparisons. Parts of what follow can be 
found scattered throughout the literature, but the results are certainly not easy to find. For example, the 
results we synthesize on general confidence regions are very obscure. They are certainly beyond the reach 
of anyone who simply needs to use the procedures in an applied situation, but might have very little 
time to search the literature. Hopefully, the presentation here will make these results more accessible to 
a wider audience. 

The MANOVA setup starts with a matrix Y which is n x p and whose rows are each distributed 
independently as p-variate normal vectors with common unknown covariance matrix E. It is further 
assumed that E(Y) = Xß where X is a design matrix of order n x / and ß is the I x p matrix of 
unknown parameters. We assume that X has full column rank. We first define Roy's root and the related 
multivariate test statistics. We wish to test the hypothesis Ho : Cß = 0 where C is r x / and has full row 
rank. Define the hypothesis and error matrices (respectively) as 

H = ßTÖTW-1Cß   and   E = YT (I - X(XTX)-1XT) Y 

where ß = (XTX)-1XTY and W = C(XTX)-1CT. Let the eigenvalues of HE'1 be denoted by 
Ai > A2 > ... > Ap. Then Roy's root is Ai, the Hotelling-Lawley trace is X)f=i A», the Pillai-Bartlett 
trace is Y7i=i Ai/(1 + Aj), and Wilks' lambda is nf=i 1/(1 +At). These statistics can be defined in similar 
ways using the eigenvalues oiH(E + H)~1, which tends to make the notation in the literature sometimes 
confusing. In fact, Roy's root seems to be defined in different ways depending on the author. We follow 
Wijsman (1979) and Kres (1983) in defining Roy's root as Ai. For convenience, we will subsequently refer 
to these four statistics as the equivariant statistics. 

For the T^ax procedure, however, the hypothesis is stated in a different form as Ho : Lß = 0, 
where L is not required to have full row rank. The matrix Lß is an explicit representation of each 
and every contrast of interest for the problem at hand. Since anything of the form aTCß, Va £ 3?r, is 
protected by procedures based on the equivariant statistics, the family of linear combinations considered 
by those procedures is vast in comparison with the family of linear combinations considered by the T^ax 

procedure. It should be apparent that the null hypothesis considered by the T^ax procedure and the 
null hypothesis for the classical formulation are not equivalent. This might seem confusing, however, the 
problem of multiple comparisons deals with obtaining the best (usually in the sense of the smallest) set 
of confidence regions for a given parametric family. Within the classical framework then, we start with 
the hypothesis Ho : Cß = 0. Once a parametric family is specified (e.g. aTCß, Va € 3?r), the discussion 
of competing multiple comparison procedures follows next. Such a discussion cannot be carried out prior 
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to specifying the parametric family of interest (see Wijsman (1979) for instance). With these subtleties 
in mind, the T^ax procedure tests the null hypothesis that H0 : Lß = 0 vs Hi : Lß ^ 0 where L is a t x I 
matrix of contrasts. For example, in the case of 1-way MANOVA with 3 groups, / = 3 (the number of 
groups) and t = 3 (the number of pairwise comparisons). Applying a variation on the union-intersection 
approach (originally due to Roy (1953)), one sees that: 

t 

{Ho:Lß = 0}&f){H0i:L[it]ß = 0} 
i=i 

where L^ ] represents the ith row of the contrast matrix L (e.g. in the case of 1-way MANOVA with 3 
groups under the "cell means" formulation of the design matrix X, L[it ] = (1, —1, 0) compares group 1 
and group 2). Define 5j := L[it ]/3. As usual, the least squares estimators ß are a linear combination of Y. 

By the Gauss-Markov Theorem, the minimum variance unbiased estimators for the <Vs are 5f — L[it ]ß 
which are also linear combinations of Y. It is easily seen that 

Si ~ Np(5i,Wiill) 

where wu is the ith. diagonal element of L(XTX)~1LT. Let 8% = Si/y/wü and 6* = öi/^/wü. Then 

ö*~NP(S;,Z) 

so that 

i? = (ÄT-«?)T(^7)"
1(^-*, ') 

is distributed as Hotelling's T2 where E is the error matrix (defined above). The T^ax statistic is then 
defined as 

Tmax = ,15%-'i l<«<t 

The procedure rejects H0 if any of the t Hotelling T2,s exceed T^ax(a), where T^ax(a) denotes the 1 —a 
quantile of the distribution of T^ax, i.e. the value such that P(T^ax < T^ax(a)) = 1 - a. As will be 
discussed immediately, each T2 which exceeds T^ax (a) is flagged as a significant contrast. It should be 
noted here that we will speak of the comparison of If with T^ax(a), but our equations actually give 
values for Tmax(a) due to the conventions which are already established for the univariate studentized 
range, q(a), and the equal-groupsmultivariate studentized range, RMAX{O)- Thus, in practice, one would 
need to take square roots of the T2,s before comparing them to Tmax(a). 

The T^ax procedure has the intuitive appeal that it rejects iff T2 > T^ax(a) for some i,i = l,...,t, 
which occurs iff at least one of the p-dimensional confidence ellipsoids does not contain the 0-vector. 
That this follows is a simple consequence of the fact that T^ax(a) is chosen to satisfy 

PHAT? <Tlax{a),   i = l,...,t] = l-a 

which is the same as writing 

PHO[(^-<5:)
T
(^)   \s*-5*)<T2

max{a),   i = l,...,t] = l-a   . 

Beyond simply rejecting, however, each Tf which exceeds T^ax(a) will be flagged as significant. For 
example, if t = 3 and we are given data and find that Tf and T| exceed T^ax (a) but T| does not, then 
we would flag 5* and 5| as the culprits. The practical interpretation of this is subject to the limitations 
of any confidence statement as follows. If repeated samples are taken and the 3 ellipsoids are constructed 

113 



each time, then (1 - a) x 100% of the time all 3 of these ellipsoids will contain the true J*'s, i = 1,2,3. 
Equivalently, (1 — a) x 100% of the time, all 3 of the If's will reflect the location of the true <J,*'s, 
£ = 1,2,3, as indicated by their relationship to the T^ax(a) quantile. For example, if 6% and 6% were 
truly non zero, but <5g was zero, then, under repeated sampling, (1 — a) x 100% of the time we would 
find that I? > Tlax(a), T$ > T^ax(a), and If < Tlax{a). 

In addition to the procedure described above, one can also construct confidence intervals for all 
pairwise contrasts. Specifically, it can be shown - see Krishnaiah (1969, p 126) - that confidence intervals 
for the T^ax procedure are given by 

cTSi € cTSi ± ^Tlax(a) cTEcwü/(n -1)  ,   VceF 

Confidence intervals for the pairwise differences on each variable can be obtained by substituting cj = 
(0,•••,0,1,0,••-,0), where the 1 is in the jih position, for c in the previous equation. This leads to 
confidence intervals of the form 

öij € Sa ± y/T^Mejjm/in-l) ,    * = J';;;>*p (1) 

where <Jy is the jth component of 6i and e^ is the j'th diagonal element of E. Notice in constructing 
these intervals that whatever is to be gained over a \-d battery of univariate procedures (the expression 
"1-d battery" will be described below in the example using the Iris data) depends completely upon the 
distribution of T^ax. This follows since ejj is just the univariate SSE on the jth dependent variable. 
The covariance structure within the data is largely reflected in the off-diagonal elements of E, and the 
off-diagonal elements completely dominate the tilting of the p-dimensional ellipsoids. But the off-diagonal 
elements are not used in (1), hence important information is being ignored if one looks at confidence 
intervals (along the dimensions of the variables as given) alone. This particular issue lies at the heart of 
the example we give involving the Iris data (below). We will revisit it once we get there. 

CONFIDENCE INTERVALS 

For the case of a fixed number of contrasts specified in advance, Krishnaiah (1969, p. 131) demon- 
strates that the T^ax confidence intervals are smaller than those for Roy's root (analogous to the ellipsoid 
discussion below, the T^ax confidence intervals provide protection for the parametric family of afCßb, 
for the pre-specified 3fJr vectors a\,...,at and V6 € 5ftp). In turn, Wijsman (1979) demonstrates that 
the confidence intervals based upon Roy's root are the smallest among the class of all equivariant pro- 
cedures which provide protection for the parametric family aTCßb, Va € 3?r and V6 € ffl. This class 
of equivariant procedures includes those based on Wilks' Lambda, the Hotelling-Lawley trace, and the 
Pillai-Bartlett trace. Hence the confidence intervals based upon T^ax are always shorter than those 
based upon these equivariant procedures when the number of contrasts considered is fixed and specified 
in advance. 

CONFIDENCE REGIONS 

We start this section by stating (with a reference) why the T^ax ellipsoids are smaller than the el- 
lipsoids based upon Roy's root. We also illustrate the relationship between Roy's root and T^ax which 
dramatically emphasizes the conservative nature of Roy's procedure. After that, we cite the results which 
show that the Roy's root ellipsoids are the smallest (for all practical purposes) among the equivariant 
class of MANOVA procedures which provide protection for the parametric family aTCß, Vo € ffl. The 
conclusion then is that the T^ax ellipsoids will always be smaller than ellipsoids based on equivariant 
MANOVA procedures in all practical cases (provided we make additional mild restrictions to the equiv- 
ariant class under consideration; one such sufficient condition is that the confidence regions in p space 
be convex). 

The fact that the ellipsoids (for a fixed number of contrasts specified in advance) for the T^ax 

procedure are always smaller than the ellipsoids based on Roy's root is an immediate consequence of the 
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fact that T^ax(a)/(n - I) < Xa (see Krishnaiah (1969, p. 131)). In the presentation below, we illustrate 
the conservative nature of the equivariant procedures via a reexpression of the Roy's root ellipsoidal 
simultaneous confidence regions. For clarity here, we are using Xa to denote the I — a quantile of Roy's 
root (i.e. P(Ai < Xa) = 1 - a where we defined Ai at the beginning of the THEORY section); our Xa 

coincides with the AQ of Wijsman (1979) and Kres (1983). 
The ellipsoids for Roy's root are given by (see Wijsman (1979), equation (2.4)) 

{aTCß-aTCß)E-1(aTCß-aTCß)T <XaaTC(XTX)-1CTa ,   Vo 6 3?r (2) 

where the C matrix is the full rank version of the contrast matrix for Ho as described previously, and r 
is the rank of Ho (for the 1-way case r = 1 — 1). Now let A* = Xa(n — I). Rewrite (2) as 

1 /T^£ T si r*\    I & 

which is equivalent to 

where 

{arCß-aTCß)[~^\     (aTCß-aTCßf<X*a  ,   VaeW 

sup Tl < XI 

a'Cß - aLCß) I -^-)     (aTCß - aTCß)T 
a '    aTC(XTX)-iCTa v       H H' \n-l 

We have shown in a different section that the T^ax ellipsoids are given by 

®-WT(Sl)     tö-^)<7£a»   ,   1 = 1,.--,* 

which after some rearranging can be written 

aJC(XTX)-iCFa Sa^ß ~ a^Cß) (A)     (aJCß - aJCßf <Tlax{a)  ,   < = 1 *      (3) 

where af is a row vector in 5£r chosen so that afC = L^ ] (it is always possible to choose such an aj, 
since given L, one can choose C to be a matrix such that all the rows of L are in the span of C and C 
has full row rank). Rewrite (3) as 

max     X<TLx(*) 
o€{ai,Q2,...,a(} 

where 

And, expressed in this fashion, it becomes obvious that 

Tlax=       max       Tl< sup Ta
2    . (4) 

o€iOi,02,...,at} a€5Rr 

The relationship as expressed in (4) clearly shows that the T^ax procedure will always outperform 
Roy's procedure for the situation of a fixed number of contrasts specified in advance. It also emphasizes 
dramatically the conservative nature of the equivariant procedures, particularly when the number of 
contrasts t is very small. 
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Finally, Wijsman (1979) demonstrates that the simultaneous ellipsoidal confidence regions based upon 
Roy's root are the smallest among all equivariant procedures (which provide protection for the family 
aTCß, Vo G SR7") when p < I — r, where I is the space spanned by the columns of X and r is the number 
of constraints in the null hypothesis. For the case of 1-way MANOVA with 3 groups, for example, 1 = 3 
and r = 2, since the hypothesis testing in this case essentially asks whether the 3 p-variate location 
vectors for the groups can be adequately described by a single p-variate location vector plus noise (see 
the canonical form of the MANOVA model in Lehmann (1986)). Wijsman (1979) demonstrates further 
that the Roy's root ellipsoids are also the smallest in the equivariant class of procedures in the case where 
p > I — r, provided some very mild conditions are imposed upon the shapes of the confidence regions 
desired. Requiring the confidence regions to be convex is one example of such a mild condition. Another 
example is requiring the confidence regions to be connected and contain their "center" (i.e. contain the 
point estimate for the mean vector). From an applied point of view, it would be difficult to characterize 
these additional conditions as restrictions at all, and it would be fair to say that Wijsman's results bring 
a rich history of discussion on the subject to a close. 

THE CASE OF TWO GROUPS 

When there are two groups, there is only one contrast to consider. Let n, be the sample size of group 
i and n = ni + n2. Here T^ax = ni7i2/(ni + ri2)(xi — X2)T(n — 2)E~1(xi — £2), which one may easily 
verify is the 2-sample Hotelling's T2. Hence, T^ax(a,n,p) = p(n — 2)/(n — p— 1)FP;„_P_I(Q) and the 
quantiles are available in closed form. If T^ax > T^ax(a), then the procedure rejects. 

THE CASE OF THREE GROUPS 

In the case of three groups, there are 3 contrasts, and the distribution is no longer available in closed 
form although there has been a great deal of effort in that direction (see Siotani (1959) and (1992)). 
Using the "cell means" formulation of the design one is led to (XTX)~1 = diag(l/ni,1/112,1/713) and 
the contrast matrix 

L = 

which leads to 

/ 1/m + l/n2 1/m -l/n2      \ 
L(XTX)~1LT = 1/m 1/m + l/ns l/n3 

\        -I/TI2 l/l»3 l/«2 +1/«3 / 

So in this simple case, Wn = \/n\ + l/n2,1022 = l/^i +1/^3, and W33 = l/n2 +1/113. Also, £1 = ßi —ß2, 
82 = fJ-i — fJ-3, and 83 = fj.2 — ß3- It is also clear (this is similar to the general case already discussed) that 
61 = (xi — x2) ~ -Np((5i,«;ii£). Rewrite this as tfj ~ Np(Si, S) (where of := 61/y/wn). This yields 

n=* - Kf (jfj)" w -«= £«. - *)r (£7) "V*> 
Similarly for T% and T|. Then T^ax is just the largest of these 3 statistics. The procedure rejects, then, 
if any of the three If's exceed T^iax(a,ni,n2,ri3,p). Additionally (as explained above) each Tf which 
exceeds the T^ax(a) quantile is flagged as significant. As a point of reference it is helpful to note that if 
the group sizes are equal, then 

Tmax(a,ni,ni,ni,l) = -j= q(a,5,n-3) 
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Figure 1: Plotted are the fractions of the time (out of 10,000 resamples) when the given procedure found 
the (shifted) versicolor-virginica difference. 

where q(a, 3,n — 3) is the 1 — a quantile of the univariate studentized range with 3 groups and n — 3 
error degrees of freedom (n := rii + ni + ni). And also for the case of equal group sizes, it is helpful to 
note that 

Tm(a(tt,ni,ni,ni,p) = —= RMAx{a,m,i/,p) 

where RMAX is the multivariate studentized range as defined in Siotani (1992) with parameters m and 
v. Under Siotani's definition v = £\ rn — 3 and m = 3. 

PRACTICAL UTILITY OF THE T^ax PROCEDURE 

It is a characteristic of the MANOVA problem that no single procedure is going to be the best 
for all situations. With this in mind, it seems appropriate to demonstrate the practical utility of the 
Tmax procedure by comparing its performance with a reasonable competitor. The fact that the T^ax 

procedure will always outperform Roy's root and, in turn, the other equivariant test statistics (for the 
all pairwise comparisons situation) clearly rules out procedures based on those statistics as competition. 
It is clear that a battery of univariate procedures protected against type I inflation via the Bonferroni 
method is a reasonable competitor. The studentized range procedure is known to provide the shortest 
confidence intervals (of the available procedures) for all pairwise comparisons for equal groups in the 
univariate case, and it is a remarkable fact that the procedure is conservative when the groups are not 
equal. Thus a battery (across dimensions) of studentized range procedures will be used. It should be 
noted in passing that there are situations where the studentized range 1-d battery will find differences 
when the T^ax procedure does not, and vice versa. It should also be pointed out here that for all the 
cases covered by our approximations for T^ax, confidence intervals based on the studentized range 1-d 
battery will always be shorter than confidence intervals based on T^ax. Nonetheless, by comparing each 
Tf with T^ax(a) there are many situations where the T^ax procedure will find group differences when 
the Bonferroni-studentized range procedure will not, which this example will show. 

We consider the Fisher-Anderson Iris data (1939). This data set consists of 3 groups with 4 dimensions. 
There is no problem in declaring the setosa group to be different from the versicolor and virginica groups. 
It may be surprising that the 1-d studentized range battery also finds the versicolor-virginica difference 
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Figure 2: Histogram of all 4500 standard deviations for the validation runs. Overlaid on the plot are the largest 
18 standard deviations. 

quite easily, even at very high levels of significance. However, marginal plots of petal length and petal 
width clearly show these two groups to be different. Shifting the versicolor group closer to the virginica 
group provides a more interesting example for the procedures at hand. We shift the versicolor group by 
adding (1,0,1.5,0.5) to each observation where the coordinates are (sepal 1., sepal w., petal 1., petal w.). 
It might be even more surprising that the 1-d battery still finds the versicolor-virginica difference to be 
highly significant. 

Now suppose we took random samples without replacement of size no < 50 (say no = 45, for now) from 
each group (we stick with equal samples since this is where the univariate studentized range procedure 
is the most powerful) and each time applied (1) the 1-d battery and (2) the T^ax procedure. We can 
record whether each procedure finds the versicolor-virginica difference for each sample. We do this some 
large number of times. We can then repeat the whole setup for no = 40,35,30,..., etc. to get some idea 
of how the procedures perform as we decrease the sample size. 

We carry this out 10,000 times at each value of no and summarize the results in Figure 1. Even 
with only a subsample of 25 points from each group, the T^ax procedure suffers practically no loss 
in performance, declaring the versicolor-virginica difference about 98% of the time using the a = 0.01 
critical value. On the other hand, the 1-d battery declares the versicolor-virginica difference only about 
56% of the time using its (conservative) a = 0.01 critical value for subsamples of size 25 from each 
group. A rotating 3-d plot of the shifted data in software such as Xgobi illustrates dramatically how it 
is the covariance structure which separates the groups. The battery of 1-d tests is essentially blind to 
this type of multivariate structure. In all fairness, the T^ax procedure would be blind in the case where 
the difference in the groups is small along a single dimension and many redundant dimensions (which 
contribute no help through their covariance structure - independence as one example) with no differences 
are included. Nevertheless, this example using the Iris data demonstrates the practical utility of the T^ax 

procedure. 
Returning to an issue mentioned earlier, what lies at the heart of this example is the fact that 

-=g(a/4,3,n-3) <Tmax(a,ni,ni,ni,4) 

so that the intervals in (1) are always smaller for the 1-d battery of studentized range procedures than 
they are for the 7%ax procedure. Hence, the only way to outperform the 1-d battery is by taking advantage 
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of the multivaxiate structure as we have done here (i.e. in comparing the T^'s to T^ax(a) we are using 
the multivariate information which is contained in the off-diagonals of E). As mentioned above, for all 
the cases our equations cover, 

-T=q(a/P,3,n - 3) < Tmax{a,rii,ni,ni,p) 

so that the 1-d studentized range battery always leads to shorter confidence intervals than T^ax. This 
leads us to conjecture that in the 1-way case, the 1-d studentized range battery will always lead to shorter 
confidence intervals than T^ax. This conjecture is clearly of great relevance from a practical standpoint. 

DEVELOPING THE EQUATIONS 

The equations we developed are based upon Monte Carlo simulation of the quantiles of T^ax. It would 
have been possible of course to provide the reader with FORTRAN code which performs simulations of 
T^ax in a very general setting (e.g. for an arbitrary design X and an arbitrary contrast matrix L). 
However, it was decided that such a code would not be so widely used due to the fact that it requires the 
user to wait for a simulated quantile (the waiting time could be as much as an hour or so). To overcome 
this liability, it was decided to provide approximate quantiles in some format which does not require the 
user to wait. One immediately thinks of tables (of approximate quantiles) as a potential such format. 
One prohibitive difficulty of providing tables in a very general setting is that the completely general T^ax 

formulation is almost as general as the (multivariate) linear model. To make any headway at all in a 
table-type direction, one must consider particular cases of the general formulation of T^ax. 

The simplest case of T^ax is the case of one-way MANOVA. For the unequal groups case, however, 
one-way MANOVA is still too general, and one must restrict the generality even further to make any 
progress. Within one-way MANOVA, the natural place to start is 3 unequal groups, since quantiles for 
2 unequal groups are available in closed form (this was described above). For 3 groups of unequal sizes, 
there are really too many combinations of the group sizes to be able to construct a table (of approximate 
quantiles) within any reasonable number of pages. Based on this difficulty, it was decided that we should 
offer the user a set of equations rather than a lengthy table. Not only can the equations provide a more 
concise summary of the approximate quantiles, but they can also interpolate (approximate) quantiles at 
which no simulations have been performed. Further, the user is not required to wait at all. Thus, equations 
for approximate quantiles of T^ax seemed the appropriate format; this is the format we provide for the 
case of 3 unequal groups. 

The equations were developed as follows: (a) we chose a (large) grid, say G, of (ni,n2,n3) triples at 
which to perform simulations of T^ax and (6) after simulating quantiles at each point of Q, we fit (inter- 
polating) equations to these simulated quantiles. We will refer to the simulations used in constructing 
these equations as the model-building simulations. The fitting of these equations is described in the first 
subsection (ABRIDGED SUMMARY OF THE FITTING PROCESS) below. 

To obtain some idea of the accuracy of our equations, we performed additional simulations. These 
additional simulations will be referred to as the validation runs. In the validation runs, we performed a 
much larger number of simulations over a much smaller subset of points of Q. This is described in the 
second subsection (ASSESSING THE ACCURACY OF THE APPROXIMATIONS) below. 

ABRIDGED SUMMARY OF THE FITTING PROCESS 

It was necessary to restrict the approximations to the region (a) 4 < n« < 100, i = 1,2,3, and (b) 
maxi€{li2,3}("i) < 4mini€{li2,3}(n,) in order to reduce the number of (ni,n2,n3) triples considered to 
something manageable. Even with this reduction, 9357 (ni,n2,n3) triples (about 5,000 distinct points) 
were used in the model-building simulations. 

For a given dimension (recall that dimension corresponds to p), at least 100,000 simulations per point 
(or triple) were used, more simulations being required for the higher dimensions . Using an adaptive 
number of simulations was attempted but proved to be too slow and unstable. Thus the number of 
simulations per point had to be fixed for each dimension. 
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Figure 3: Histogram of the (absolute values) of all 4500 of the fitted values - the "exacf'values. Overlaid on 
the plot are the 14 largest absolute errors. 

It became clear from the inspection of many scatter plots that the function might be well approximated 
by a linear combination of terms like l/n±, l/ri2, etc. Least squares was used to fit equations for each 
quantile and each value of p. Thus 45 equations were fit (5 dimensions: p = 1,..., 5, and 9 quantiles: 
0.8,0.825,0.85,..., 0.925,0.95,0.975,0.99). The equations took the form 

3       k s -  \  s fc /     1     \ s ^ 

VTiax(nun2,n3) = a0 + ^I>« ( — )   +    51    !Ea^(^r)   +J2a' 
i=is=i    \n%J    i<io-<3»=i     \n^y    s=1 

nin2n3 
(5) 

where k denotes the order of the polynomial used (we eventually arrived at k = 4). This form was 
determined via a standard regression approach. A second order model was actually enough to remove 
all lack-of-fit; however, adding the third and fourth order terms provided enormous improvements in 
accuracy (accuracy is discussed below). It is well known that a Laurent series expansion can sometimes 
lead to a more parsimonious expression with fewer coefficients. While a second order Laurent series 
expansion provided similar regression results, the accuracy of those equations proved to be much worse 
than the fourth order model (5), not to mention the fact that the Laurent series expansion required just 
as many coefficients. 

ASSESSING THE ACCURACY OF THE APPROXIMATIONS 

To evaluate the accuracy of the fitted equations, 100 of the original 9357 points were chosen at random 
(subject to some restrictions requiring that more points be chosen from the region of the smaller sample 
sizes, due to the fact that the region of the smaller sample sizes is harder to fit). At each of these 100 
points, at least 1,000,000 simulations were performed (again, more simulations were performed for higher 
dimensions). Each point was replicated 10 times in order to provide an estimate of variability at each 
of the 100 points. As an example, one of the 100 random points chosen was (n\,n,2,nz) = (8,12,29). 
For p = 1, 1,000,000 simulations of T^ax were performed with (ni, 112,03) = (8,12,29). The 9 sample 
quantiles 0.8,0.825,..., 0.95,0.975,0.99 were recorded. This gave estimates of the true quantiles, call 
these estimates T^ax(a, 8,12,29, l)(i), a = 0.2,0.175,..., 0.025,0.01. We repeat this 9 more times to get 
Tlax(a,8,12,29,1)(2),...,Tlax(a, 8,12,29,1)(10), a = 0.2,0.175,...,0.025,0.01. Then (use a = 0.2 for 
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Figure 4: Histogram of 3*(standard deviation of "exact") + [fitted-"exact"|. Overlaid on the plot are the 10 
largest such values. 

example) we use the average of 7^^.(0.2,8,12,29,1)(1),... ,T^aa.(0.2,8,12,29,1)(10) as our estimate of 
the true quantile (we will refer to this average as the "exact" quantile). We use the standard deviation 
of 7£aa.(0.2,8,12,29,1)(1),..., T^ax(0.2,8,12,29,1)(10) divided by VW as an estimate of the standard 
deviation of the "exact" quantiles. 

The increase in the number of simulations per point with the increase in dimension was adequate to 
keep these standard deviations constant across dimensions. And, again for brevity, a histogram of the 
standard deviations of the "exact" quantiles for all 4500 validation points (i.e. 100 points x 9 quantiles 
x 5 dimensions) is given in Figure 2. The largest standard deviation is 0.002853, but it is clear from the 
histogram that performance is generally much better than that. These "exact" estimates will be referred 
to as the validation runs. 

To estimate the accuracy of the fitted equations, we calculate fitted-"exact" for each of the 100 
validation points. A histogram of the absolute values of these results is given in Figure 3. The largest 
absolute error (i.e. (fitted - exact|) is 0.0083. The absolute errors rarely exceed 0.006, which can also be 
observed from the figure. In fact, the absolute errors never exceed 0.006 for p = 1 and p — 2. To be very 
conservative, if we believed that the true quantile were as far as ±3 standard deviations from the "exact" 
quantile, then the furthest our fitted values could be from the truth would be 3*(standard deviation of 
"exact") + | fitted- "exact" |. A histogram of these values is given in figure 4. The largest such value is 
0.0151, but the performance is clearly better than that in general. 

We may use the same analysis as in the preceding paragraph on the results Siotani (1992) reports. 
Due to his definitions, we must rescale what he reports by y/2 (the rescaling is clearly indicated in the 
table below). Nevertheless, a direct comparison between his results and our results is appropriate. The 
worst case he does report is for p = 5 and a = 0.01; we reproduce this case here (the first four columns 
here are taken from Siotani's Table 1 and Table 3). 

v     fitted     "exact"    s.d. ("exact")    fitted-"exact" 3*W + V2 
10 14.359 14.31 0.297 0.049 0.6647 
20 8.340 8.339 0.077 0.001 0.1641 
60 6.551 6.548 0.051 0.003 0.1103 

The 0.6647 value in the last column of this table compares directly to our "worst case" value of 0.0151. 
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Giving Siotani more than the benefit of the doubt, 0.1641 is his second worst value which is still more 
than 10 times larger than our worst value of 0.0151. 

COMPUTING PLATFORM AND OTHER SOFTWARE 

The far majority of the computing for these simulations was done on 2 computers, named student 
and gauss. Student is a Silicon Graphics Indigo 2 High Impact Workstation, and Gauss is a Pentium Pro 
150 running FreeBSD 2.2. The running times were roughly 3 weeks for the validation runs and roughly 
2.5 weeks for the model building runs. The computer code for the simulations consisted of roughly 300 
lines of FORTRAN. The code calls a solve routine from LAPACK, as well as a few basic routines from 
the BLAS. The 45 separate regressions were carried out using ordinary proc reg in SAS, while diagnostic 
plots for the regressions (as well all of the plots in this paper) were done in Splus. The code used for 
the random number generators was written by Barry Brown, James Lovato, and Kathy Russell. It is all 
contained in the "randlib.f" library. The latest version (version 1.3) of the library is now available at 
http://odin.mdacc.tmc.edu/anonftp/source.html. 
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