N

EERE g N -

Computer Science

Layered Learning in Multi-Agent
Systems

Peter Stone

December 15, 1998
CMU-CS-98-187

S
\‘

020 11506661

gt

. % . &#® DISTRIBUTION STATEMENT A
= F R hsE Approved for Public Release
IV Distribution Unlimited

T™ITC QUALTTY ThraRT™voOmmT 9

Layered Learning in Multi-Agent
Systems

Peter Stone

December 15, 1998
CMU-CS-98-187

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Thesis Committee:
Manuela M. Veloso, Chair
Andrew W. Moore
Herbert A. Simon
Victor R. Lesser (University of Massachusetts, Amherst)

Copyright (©) 1998 Peter Stone

The work has been supported through the generosity of the NASA Graduate Student Research Pro-
gram (GSRP). This research is also sponsored in part by the Defense Advanced Research Projects Agency
(DARPA), and Rome Laboratory, Air Force Materiel Command, USAF, under agreement numbers F30602-
95-1-0018, F30602-97-2-0250 and F30602-98-2-0135 and in part by the Department of the Navy, Office of
Naval Research under contract number N00014-95-1-0591. Views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of NASA, the Defense Advanced Research Projects Agency
(DARPA), the Air Force Research Laboratory (AFRL), the Department of the Navy, Office of Naval Re-
search, or the U.S. Government.

Preceding Pag Saiank DISTRIBUTION STATEMENT A
Apprpved for Public Release
Distribution Unlimited

Keywords: Multi-agent systems, machine learning, multi-agent learning, control learning,
hierarchical learning, reinforcement learning, decision tree learning, neural networks, robotic
soccer, network routing

gy
- C\
L Samegie
\:\’\4 ellon School of Computer Science
\,\4\’ |
DOCTORAL THESIS
in the field of
COMPUTER SCIENCE
Layered Learning in Multi-Agent Systems
PETER HERALD STONE
- Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
ACCEPTED: |
Nerada NV dow 12) 15 |48
m/ THESIS COMM l.lAlR DATE
= mm ! 7’/[&/ Za_nm
APPROVED:

12{ 'E(/,f/ /2 - - 54
) \

DEAN DATE

Abstract

Multi-agent systems in complex, real-time domains require agents to act effectively both au-
tonomously and as part of a team. This dissertation addresses multi-agent systems consisting

- of teams of autonomous agents acting in real-time, noisy, collaborative, and adversarial envi-

ronments. Because of the inherent complexity of this type of multi-agent system, this thesis
investigates the use of machine learning within multi-agent systems. The dissertation makes
four main contributions to the fields of Machine Learning and Multi-Agent Systems.

First, the thesis defines a team member agent architecture within which a flexible team
structure is presented, allowing agents to decompose the task space into flexible roles and
allowing them to smoothly switch roles while acting. Team organization is achieved by
the introduction of a locker-room agreement as a collection of conventions followed by all
team members. It defines agent roles, team formations, and pre-compiled multi-agent plans.
In addition, the team member agent architecture includes a communication paradigm for
domains with single-channel, low-bandwidth, unreliable communication. The communica-
tion paradigm facilitates team coordination while being robust to lost messages and active
interference from opponents.

Second, the thesis introduces layered learning, a general-purpose machine learning
paradigm for complex domains in which learning a mapping directly from agents’ sensors
to their actuators is intractable. Given a hierarchical task decomposition, layered learning
allows for learning at each level of the hierarchy, with learning at each level directly affecting
learning at the next higher level.

Third, the thesis introduces a new multi-agent reinforcement learning algorithm, namely
team-partitioned, opaque-transition reinforcement learning (TPOT-RL). TPOT-RL is de-
signed for domains in which agents cannot necessarily observe the state changes when other
team members act. It exploits local, action-dependent features to aggressively generalize its
input representation for learning and partitions the task among the agents, allowing them to
simultaneously learn collaborative policies by observing the long-term effects of their actions.

Fourth, the thesis contributes a fully functioning multi-agent system that incorporates
learning in a real-time, noisy domain with teammates and adversaries. Detailed algorithmic
descriptions of the agents’ behaviors as well as their source code are included in the thesis.

Empirical results validate all four contributions within the simulated robotic soccer do-
main. The generality of the contributions is verified by applying them to the real robotic
soccer, and network routing domains. Ultimately, this dissertation demonstrates that by
learning portions of their cognitive processes, selectively communicating, and coordinating
their behaviors via common knowledge, a group of independent agents can work towards a
common goal in a complex, real-time, noisy, collaborative, and adversarial environment.

Acknowledgements

I would like to thank many people for their support, encouragement and guidance during
my years as a graduate student here at CMU.

First and foremost, this dissertation represents a great deal of time and effort not only
on my part, but on the part of my advisor, Manuela Veloso. She has helped me shape
my research from day one, pushed me to get through the inevitable research setbacks, and
encouraged me to achieve to the best of my ability. Without Manuela, this dissertation
would not have happened.

I also thank my other three committee members, Andrew Moore, Herb Simon, and Victor
Lesser for valuable discussions and comments regarding my research.

Almost all research involving robots is a group effort. The members of the CMU ro-
bosoccer lab have all contributed to making my research possible. Sorin Achim, who has
been with our project almost from the beginning has tirelessly experimented with different
robot architectures, always managing to pull things together and create working hardware
in time for competitions. Kwun Han was a partner in the software development of the
CMUnited-97 team, as well as an instrumental hardware developer for CMUnited-98. Mike
Bowling successfully created a new software approach for the CMUnited-98 robots. He also
collaborated on an early simulator agent implementation. Patrick Riley put up with many
demands and requests in a short period of time as he helped me create the CMUnited-98
simulator software. And Manuela has heroically managed all of these projects while also
staying involved in the low-level details. I have been proud to share CMUnited’s success
with all of these people.

Many other people at CMU have helped shape my research. Members of the PRODIGY
group, including Jim Blythe, Jaime Carbonell, Eugene Fink, and Xuemei Wang, encouraged
me in the early states of my research. Members of Reinforcement Learning group, especially
Justin Boyan, Rich Caruana, Astro Teller, Belinda Thom, and Will Uther, have also provided
me with comments and suggestions along the way. Mike Bowling and Tucker Balch helped
me specifically with the writing of this thesis.

Outside of CMU, I owe thanks to other members of the robotic soccer community. First,
Alan Mackworth deserves special credit for originally recognizing the challenges of this do-
main. He and his student, Michael Sahota, were very helpful in our initial forays into this
domain. Among many others, I thank Hiroaki Kitano and Minoru Asada for their endless
efforts in promoting robotic soccer and making the international RoboCup competitions pos-
sible. Special thanks go to Itsuki Noda, who created the soccer server, and who has been
very receptive to suggestions for its continued development. Without Noda’s soccer server,
my research surely would have followed a different course. I also thank Steve Chien for

5

inviting me to work with him at JPL during the summer of 1995.

On a more personal note, I have been lucky to have many close friends who have helped to
make my time as a graduate student enjoyable. Astro Teller has been a friend and confidant
throughout the entire process here. Belinda Thom and Justin Boyan also stand out as people
with whom I spent many enjoyable hours away from the office.

My parents, Russell and Rala Stone, and my sister Mira have always been, and continue
to be, there for me at all times. And most of all, my wife Tammy has been incredibly
supportive, understanding, and encouraging as she has gone through the entire graduate
experience with me.

Contents

1 Introduction
1.1 Motivation e
1.2 Objectives and Approach,
1.2.1 Thesis Question
1.2.2 Approach
1.3 Contributions
1.4 Reader’s Guide to the Thesis
2 Substrate Systems
21 Overview.
2.2 The RoboCup Soccer Server
2.2.1 Opverview of the Simulator
2.2.2 The Simulated World
2.2.3 Agent Perception
224 Agent Action
225 SampleTrace
226 Summary e e e e e
2.3 The CMUnited-97 Real Robots
2.3.1 Overall Architecture
2.3.2 The Image Processor I
2.3.3 Agent Perception and Action,
2.4 Network Routing
2.4.1 Agent Perception and Action
24.2 Example Network
3 Team Member Agent Architecture
3.1 Periodic Team Synchronization (PTS) Domains
3.2 Architecture Overview
3.3 Teamwork Structure
331 Roles. e
3.3.2 Formations
3.3.3 Set-Plays
3.4 Communication Paradigm
3.4.1 Message Targeting and Distinguishing

7

19
19
20
20
21
22
23

3.4.2 Robustness to Active Interference
3.4.3 Multiple Simultaneous Responses
3.4.4 Robustness to Lost Messages
3.4.5 Team Coordination
3.5 Implementation in Robotic Soccer
3.5.1 Action Cycle and World Model
3.5.2 Teamwork Structure
3.5.3 Communication Paradigm
3.6 Results.
3.6.1 Teamwork Structure
3.6.2 Communication Paradigm
3.7 Transfer to the Real Robots
3.8 Discussion and Related Work
3.8.1 Teamwork Structure
3.8.2 Communication Paradigm

Layered Learning

4.1 Principles e
4.2 Instantiation in Simulated Robotic Soccer
4.2.1 Implemented Learned Layers.
4.2.2 Future Learned Layers
4.3 Discussiono e
4.3.1 On-line and Off-line Learning

4.3.2 Framing within the Team Member Agent Architecture

4.3.3 Error Propagation
4.4 Related Work e
4.4.1 RoboticSoccer
4.4.2 Layered Architectures
4.4.3 Hierarchical Learning

Learning an Individual Skill

5.1 Ball Interception in the Soccer Server
5.2 Trainingo e
53 Results. e
5.3.1 Number of Training Examples
5.3.2 Effect of Noise in the Simulation
5.3.3 Comparison with other Methods
5.4 Discussiono e e e e e e e e e
55 Related Work
Learning a Multi-Agent Behavior
6.1 Decision Tree Learning for Pass Evaluation
6.1.1 Setup and Training
6.1.2 Results. '

6.1.3 Summary

CONTENTS

CONTENTS
6.2 Using the Learned Behaviors
6.3 ScalinguptoFull Games.
6.3.1 Receiver Choice Functions (RCFs)
6.3.2 Reasoning about Action Execution Time
6.3.3 Incorporating the RCF in a Behavior
634 Results.
6.3.5 Summary
6.4 Discussion e
6.4.1 Pass Evaluation within Layered Learning
6.4.2 Confidence Factors for Agent Control
6.5 Related Work
7 Learning a Team Behavior
7.1 Motivation
7.1.1 PassSelection
7.1.2 Reinforcement Learning for Pass Selection
72 TPOT-RL o
7.2.1 State Generalization
7.2.2 Value Function Learning
7.2.3 Action Selection.
724 Summary e e
7.3 TPOT-RL Applied to Simulated Robotic Soccer
7.3.1 State Generalization Using a Learned Feature

7.3.2 Value Function Learning via Intermediate Reinforcement

7.3.3 Action Selection for Multi-Agent Training
734 Results.
7.4 TPOT-RL Applied to Network Routing
7.4.1 State Generalization
7.4.2 Value Function Learning
7.4.3 Action Selection
744 Experimental Setup
745 Results.
7.5 Discussion e
7.5.1 Pass Selection within Layered Learning
752 TPOT-RL
76 Related Work
8 Competition Results
81 Pre-RoboCup-96
82 MiroSot-96.
83 RoboCup-97
8.3.1 Simulator Competition
8.3.2 Small-Robot Competition

84 RoboCup-98

10 CONTENTS

8.4.1 Simulator Competition 174
8.4.2 Small-Robot Competition 176
8.5 Lessons Learned from Competitions, 176
85.1 Hazards e 177
85.2 Benefits 178 -
9 Related Work 181
9.1 MAS from an ML Perspective 0 181 v
9.1.1 Homogeneous, Non-Communicating MAS 183
9.1.2 Heterogeneous, Non-Communicating MAS 187
9.1.3 Homogeneous, Communicating MAS 192
9.1.4 Heterogeneous, Communicating MAS 194
9.1.5 Summary e e e e e e 199
9.2 Robotic Soccer 200
9.2.1 Foundations e 202
9.2.2 The Competition Years 203
0.2.3 SUMMATY o v ot e e e e e e e e e 206
10 Conclusions and Future Work 209
10.1 Contributions e e e e e e e e e e 209
10.2 Future Directions« i i e 210
10.2.1 Robotic Socecer L e 210
10.2.2 Contributed Algorithms 211
10.3 Concluding Remarks 214
A List of Acronyms 215
B Robotic Soccer Agent Skills 217
B.1 CMUnited-98 Simulator Agent Skills 217
B.1.1 Kicking e 217
B.1.2 Dribbling 219
B.1.3 Smart Dribbling. o o 220
B.1.4 Ball Interception 220
B.15 Goaltendif . . . - v v it e 221)
B.16 Defending e 221
B.1.7 Clearing e 222
B.2 CMUnited-97 Small-Robot Skills 223
B.2.1 Non-holonomic Path Generation 223
B.2.2 BallHandling 224
B.2.3 Obstacle Avoidance oo 225
B.2.4 Goaltending 225

B.2.5 Run-time Evaluation of Collaborative Opportunities. 226

CONTENTS

C

CMUnited-98 Simulator Team Behavior Modes
C.1 Conditions o e
C.2 Effects o,

CMUnited Simulator Team Source Code

11

229
230
231

233

List of Figures

2.1
2.2

2.3
24
2.5
2.6
2.7

2.8

2.9
3.1

3.2
3.3
3.4
3.5

3.6
3.7
3.8
3.9
3.10

4.1

5.1
5.2
5.3

9.4

The soccer server display.
A sample period of the server-client interface over the course of 3 simulator
cycles at times t-1, t,and t+1.
The locations and names of the visible markers in the soccer server.
The visible range of an individual agent in the soccer server.
A trace of the soccer server’s input and output to one client.
The CMUnited-97 robot team that competed in RoboCup-97.
The CMUnited-97 robot architecture with global perception and distributed
aCtiON. L e e e
An example of a still image of our initial CMUnited-96 robot implementation
captured by the framegrabber. o000
An example of the packet routing problem.

A functional input/output model of the team member agent architecture for
PTS domains.o
Behaviors in the team member agent architecture.
A team of agents smoothly switching roles and formations over time.

The agent’s object type hierarchy.
An example of a simplified top-level external behavior for a robotic soccer
player. . . . e
Different positions with home coordinates and home and max ranges.

A sample corner-kick set-play.
Two different defined formations.

A sample task decomposition within the layered learning framework in a col-
laborative and adversarial multi-agent domain.,

The challenge of ball interception.
The range of training situations for learning ball interception.
The defender’s performance when using NNs trained with different numbers
of positive examples.
The defender’s performance when using NNs and moving straight with differ-
ent amounts of ball noise. L

41
45

73
74

14

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

7.1
7.2
7.3

7.4
7.5
7.6

7.7
7.8
7.9

7.10

7.11

7.12

7.13
7.14

9.1
9.2
9.3
9.4
9.5

B.1
B.2

LIST OF FIGURES

The pass evaluation training process, part 1. 117
The pass evaluation training process, part 2. 117
The pass evaluation training process, part 3. 118
The pass evaluation training process, part 4. 118
The pass evaluation training process, part 5. 119
The trained decision tree.o 121
An illustration of the implemented play sequence. 124
Player positions used by the behaviors in this section. 126
The differences in cumulative goals as the runs progress. 131
The differences in cumulative games won as the runs progress. 132
An example of when it might be useful to pass backwards. 137
The action space used in this chapter. e 145
The component 7, of the reward function R; based on the circumstances under

which the ball goes out of bounds. o 148
Total goals scored by a learning team playing against a randomly passing team.150
The results after training of 3 different runs against the OPR team. 151
The results after training of 5 different TPOT-RL runs against the switching

TEAIML. . . . i e 152
The results after training of 2 different runs against the OPR team. 154
The network architecture used for our experiments. 158

Average delivery time of packets in a network with the top-heavy traffic pat-
tern when using three different routing strategies: RAND, SHRT, and TPOT-

Average number of hops for packets in a network with the top-heavy traffic
pattern when using three different routing strategies: RAND, SHRT, and
TPOT-RL. o e e e e e e 160
Average delivery time of packets in a network with the top-heavy traffic
pattern when using three different routing strategies: QROUT, HAND, and
TPOT-RL. e e e e e e 161

Average number of hops for packets in a network with the top-heavy traffic

pattern when using three different routing strategies: QROUT, HAND, and

TPOT-RL. . . . o e e e e e e e e e 161
Fixed policies running in the top-heavy and bottom-heavy traffic patterns. . 162
Fixed policies running in the top-heavy, bottom-heavy, and switching traffic

PALLEINS. o . o e e e e e 163
The general multi-agent scenario. 183
MAS with homogeneous, non-communicating agents. 184
MAS with heterogeneous, non-communicating agents. 187
MAS with homogeneous, communicating agents. 193
MAS with heterogeneous, communicating agents. 194
The turnball skill. o 218

Basic kicking with velocity prediction. 218

LIST OF FIGURES 15

B.3
B4
B.5
B.6
B.7
B.8
B.9

The basic dribbling skill. 219
The weights for smart dribbling. 220
Positioning for defensive tracking and marking. 222
Measuring the expected success of aclear. 223
Single-agent behaviors to enable team collaboration 224
Obstacle avoidance through dynamic generation of intermediate targets. . . . 225
Goaltending. L 226

B.10 Run-time pass evaluation based on the positions of opponents. 227

-

List of Tables

1.1

2.1
2.2
2.3
24

2.5

2.6
2.7

3.1
3.2
3.3
3.4
3.5

3.6

4.1
4.2
4.3

4.4

5.1

6.1
6.2

Correspondence between the thesis contributions and the dissertation chapters. 24

A comparison of the experimental domains used in this thesis. 26
The soccer server agents’ sensors. 38
The soccer server agents’ commands. 40
Soccer server version 4 parameters along with their default values used in this

thesis. e 43
Challenges for the soccer server agents. 44
The functional layers of the robot architecture with their inputs and outputs. 46

A high-level view of our algorithm for locating a given robot in a still frame

used by the CMUnited-96 vision-processing software. 48
The characteristics and challenges of the type of communication environment
considered in this section. 62
Results when a flexible team plays against a rigid team. 83
Results when only using flexible positions and only using set-plays. 83
Comparison of the different formations. 83
The number of responses that get through to agents when responses are de-
layed and when they arenot. 85
The time it takes for the entire team to change team strategies when a single
agent makes the decision. L oL 85
The key principles of layered learning. 93
Examples of different behavior levels in robotic soceer. 94
The learning methods used for the implemented layers in the simulated robotic
soccer layered learning implementation. 96
The proposed learning methods for the future layers in the simulated robotic
soccer layered learning implementation. 97

The defender’s performance when using a NN, a one-dimensional lookup table,

and an analytic method to determine the TurnAng;,. 112
The training procedure for learning pass evaluation. 116
The complete list of 174 continuous and ordinal features available to the de-

cision tree. L e e 120

18

6.3

6.4
6.5
6.6

6.7
6.8
6.9

7.1
7.2

8.1

8.2
8.3
8.4
8.5
8.6
8.7
8.8

9.1
9.2

9.3

9.4

9.5

LIST OF TABLES

The results of 5000 trials during which the passer uses the DT to choose the

TECEIVET. . v v v v v v e e e e e e e e e e e e e e e e e e 122
Specification of three RCFs: PRW, RAND, and DT. 127
The ordered preference lists of the positions when using the PRW RCF. . . . 128
The complete behavior used by the players in game situations to test the

different RCFs. e 129
OPR and OPL behavior specifications. 131
The results of using different RCFs. 131
The effect of reasoning about action-execution time within an RCF. 132
A sample Q-table for a single agent when [U] =3 and |[A]=2. 142
The resulting Q-tables when U = {ug,u,us}, A = {ag,a1}, and (a) W =

{ugyusfyor (b) W={ug}. oo 144
The research techniques used by the various CMUnited teams which we en-

tered in competitions.o Lo e 170
The scores of CMUnited-96’s games in the simulator league of Pre-RoboCup-96.170
The score of CMUnited-96’s game in the robot league of MiroSot-96. 171

The scores of CMUnited-96’s games in the single robot league of MiroSot-96. 172
The scores of CMUnited-97’s games in the simulator league of RoboCup-97. 173
The scores of CMUnited-97’s games in the small-robot league of RoboCup-97. 174
The scores of CMUnited-98’s games in the simulator league of RoboCup-98. 175
The scores of CMUnited-98’s games in the small-robot league of RoboCup-98. 176

Issues arising in the various MAS scenarios as reflected in the literature. . . . 182
The issues and techniques for homogeneous, non-communicating multi-agent
systems as reflected in the literature. 184
The issues and techniques for heterogeneous, non-communicating multi-agent
systems as reflected in the literature. 188
The issues and techniques for homogeneous, communicating multi-agent sys-
tems as reflected in the literature. o oo 193

The issues and techniques for heterogeneous, communicating multi-agent sys-
tems as reflected in the literature.o oL 195

Chapter 1

Introduction

Multi-Agent Systems (MAS) is the subfield of Artificial Intelligence (AI) that aims to provide
both principles for construction of complex systems involving multiple agents and mecha-
nisms for coordination of independent agents’ behaviors. While there is no generally accepted
definition of “agent” in Al, for the purposes of this dissertation, an agent is an entity with
perceptions, goals, cognition, actions, and domain knowledge, situated in an environment.
The ways it acts, or its mappings from perceptions over time to actions, are called its “be-
haviors.”

When a group of agents in a multi-agent system share a common long-term goal, they
can be said to form a team. Team members (or teammates) coordinate their behaviors by
adopting compatible cognitive processes and by directly affecting each others’ perceptory
inputs including via communicative actions. Other agents in the environment that have
goals opposed to the team’s long-term goal are the team’s adversaries.

This thesis contributes several techniques for generating successful team behaviors in
real-time, noisy, collaborative and adversarial multi-agent environments. As of yet, there
has been little work within this type of multi-agent system.

Because of the inherent complexity of this type of multi-agent system, Machine Learn-
ing (ML) is an interesting and promising area to merge with MAS. ML has. the potential
to provide robust mechanisms that leverage upon experience to equip agents with a large
spectrum of behaviors, ranging from effective individual performance in a team, to collabora-
tive achievement of independently and jointly set high-level goals. Using a hierarchical task
decomposition, multiple ML modules can be combined to produce more effective behaviors
than a monolithic ML module that learns straight from sensors to actuators.

By learning portions of their cognitive processes, selectively communicating with each
other, and coordinating their behaviors via common knowledge, a group of independent
agents can work together towards a common goal in a complex, real-time, noisy, adversarial
environment.

1.1 Motivation

The line of research addressed in this dissertation was originally inspired by the Dynamite
test bed [Barman et al. 93]. Their successful implementation of two non-holonomic robots

19

20 CHAPTER 1. INTRODUCTION

pushing a ping-pong ball towards opposite goals on a walled field was the first real robotic
soccer system. While limited to a single robot on each team in 1994, Dynamite demonstrated
the feasibility of creating robotic soccer agents for studying real-time, collaborative and
adversarial multi-agent systems. Inspired by their success, we set out to create a robotic
soccer system with several robots on each team. In so doing, it was immediately clear that
the research issues introduced by the extension from single to multiple robot teams would
be numerous and challenging.

Dynamite operates in a real-time, noisy, adversarial domain. This thesis focuses on a
domains with those same three characteristics plus an additional one:

Real-time domains are those in which success depends on acting in response to a dynami-
cally changing environment.

Noisy domains are those in which agents cannot accurately perceive the world, nor can
they accurately affect it.

Collaborative domains are those in which a group of agents share a common goal.

Adversarial domains are those in which there are agents with competing goals.

While no previous system has addressed a domain with all of these characteristics, there
have been previous systems examining each of these characteristics individually. Pengi [Agre
and Chapman 87] is a real-time system in which an agent in a video game environment
must act quickly in response to a dynamically changing environment. All robotic domains
(e.g. [Brooks 86, Arkin 87]) are noisy as real-world sensors perceive the world imperfectly and
robotic actuators are typically unreliable. Collaborative environments have been examined
in the field of MAS [Grosz 96, Sycara et al. 96, Cohen et al. 99], and adversarial domains
have been considered in AI game playing systems such as for checkers [Samuel 59| and
chess [Newell and Simon 72]. However these adversarial domains are turn-taking as opposed
to real-time, they are not noisy, and there are no collaborative agents.

Some of these four domain characteristics have also been considered in combination. Sev-
eral multi-agent robotic systems [Arkin 92, Mataric 94a, Parker 94] consider collaborative,
noisy environments. Dynamite, mentioned above, operates in a real-time, noisy, adversar-
ial environment. In this thesis, I consider real-time, noisy, collaborative and adversarial
multi-agent domains, using simulated robotic soccer with multiple agents on each team as a
representative test bed. The challenges that arise in this domain have motivated my thesis
research.

One of the first observations made was that creating all of the behaviors and agent
interactions directly would be an impossible task in such a complex multi-agent domain.
Thus, a primary research goal of this thesis is the investigation of whether and how ML
techniques can be used to create a team of cooperating agents.

1.2 Objectives and Approach

1.2.1 Thesis Question

The principal question addressed in this thesis is:

1.2. OBJECTIVES AND APPROACH 21

Can agents learn to become individually skilled and to work together
in the presence of both teammates and adversaries in a real-time, noisy
environment with limited communication?

More specifically, the thesis contributes an agent structure enabling the use of ML tech-
niques to improve an agent’s behavior in domains with the following characteristics:

e A need for real-time decision-making;

e Sensor and actuator noise with hidden state.

e Several independent agents with the same well-defined high-level goal: teammates
e Several agents with a conflicting well-defined high-level goal: adversaries

Note that the intermediate or low-level goals of teammates and adversaries can differ inde-
terminately.
The agents are assumed to have at their disposal the following resources:

e Sensors of the environment that give partial, noisy information;

e The ability to process the sensory information and use it to update a world model;
e Noisy actuators that affect the environment;

e Low-bandwidth, unreliable communication capabilities.

This thesis contributes a successful method—using machine learning—of equipping such
agents with effective behaviors in such a domain.

1.2.2 Approach

The general approach to answering the thesis question has been to create an existence proof:
a full-fledged functioning multi-agent system that incorporates learning in a real-time, noisy
environment with both teammates and adversaries.

Robotic soccer is a domain which fits the above characteristics while being both accessible
and suitably complex. Insofar as the main goal of any test bed is to facilitate the trial and
evaluation of ideas that have promise in the real world, robotic soccer proved to be an
excellent test bed for this thesis. All of the thesis contributions were originally developed in
stmulated robotic soccer. However, some were then applied in either real robotic soccer or
in network routing.

An initial assumption was that, due to the complexity of the environment, agents in
domains with the above characteristics would not be able to learn effective direct mappings
from their sensors to their actuators, even when saving past states of the world. Thus, the
approach taken was to break the problem down into several behavioral layers and to use ML
techniques when appropriate. Starting with low-level behaviors, the process of creating new
behavior levels and new ML subtasks continues towards high level strategic behaviors that
take into account both teammate and opponent strategies.

22 CHAPTER 1. INTRODUCTION

~ In the process, a key advantage of such an approach surfaced: learning low-level behaviors
can facilitate the learning of higher level behaviors. Either by creating the behavioral com-
ponents that make up the new learned behavior or by manipulating the input space of the
new learned behavior, previously learned behaviors can enable the creation of increasingly
complex learned behaviors. This new approach to multi-agent machine learning is called
layered learning.

Layered learning assumes that the appropriate behavior granularity and the aspects of the
behaviors to be learned are determined as a function of the specific domain. Layered learning
does not include an automated hierarchical decomposition of the task. Each layer is learned
by applying or developing appropriate ML algorithms. The thesis methodology consisted of
investigating several levels of learning to demonstrate the effectiveness of combining multiple
machine learning modules hierarchically.

1.3 Contributions

This thesis makes four distinct contributions to the fields of MAS and ML.

Team Member Agent Architecture. The team member agent architecture is suitable
for domains with periodic opportunities for safe, full communication among team mem-
bers, interleaved with periods of limited communication and a need for real-time action.
This architecture includes mechanisms for task decomposition and dynamic role assign-
ment as well as for communication in single-channel, low-bandwidth communication
environments. It is implemented in both simulated and real robotic soccer.

Layered Learning. Layered learning is a hierarchical ML paradigm that combines mul-
tiple machine learning modules, each directly affecting the next. Layered learning
is described in general and then illustrated as a set of three interconnecting learned
behaviors within a complex, real-time, collaborative and adversarial domain.

Team-Partitioned, Opaque-Transition Reinforcement Learning (TPOT-RL).
TPOT-RL is a new multi-agent reinforcement learning method applicable in domains in
which agents have limited information about environmental state transitions. TPOT-
RL partitions the learning task among team members, allowing the agents to learn
simultaneously by directly observing the long-term effects of their actions in the en-
vironment. TPOT-RL is demonstrated to be effective both in robotic soccer and in
another multi-agent domain, network routing.

The CMUnited Simulated Robotic Soccer System (CMUnited). The CMUnited
simulated robotic soccer team is a fully implemented and operational team of sim-
ulated robotic agents. Coupled with the detailed descriptions and source code in the
appendices, CMUnited’s algorithmic details presented throughout the thesis should
enable future researchers to build upon CMUnited’s successful implementation.

While the last of these contributions is inherently domain-specific, for each of the first
three contributions, this thesis provides a general specification as well as an implementation

1.4. READER’S GUIDE TO THE THESIS 23

within a complex domain: simulated robotic soccer. In addition, opportunities for general-
ization to other domains are discussed, illustrated, and implemented.

1.4 Reader’s Guide to the Thesis

Following is a general description of the contents of each chapter as well as guidelines as to
which chapters are relevant to which contribution. Since CMUnited is described throughout
the entire thesis, all chapters are relevant and it is not mentioned in the guidelines.

Chapter 2 introduces the domains used as test beds within the thesis: simulated and real
robotic soccer as well as network routing. The simulated robotic soccer domain is used
as an example throughout the thesis and all contributions are implemented in this
domain. The team member agent architecture is also implemented in the real robotic
soccer domain, while TPOT-RL is also implemented in network routing.

Chapter 3 describes the team member agent architecture. It is defined generally and then
implemented in both simulated and real robotic soccer. This architecture is used within
the implementations of both layered learning and TPOT-RL.

Chapter 4 introduces the general layered learning method. The implementation of lay-
ered learning described in Chapters 5-7 also contribute to the complete description of
layered learning.

Chapter 5 describes a learned, individual robotic soccer behavior. It is presented as the
first learned layer in our layered learning implementation.

Chapter 6 presents a learned multi-agent behavior built upon the individual behavior from
Chapter 5. This second learned layer in our layered learning implementation also serves
as the basis for the team learning algorithm described in Chapter 7, namely TPOT-RL.

Chapter 7 introduces the novel multi-agent reinforcement learning algorithm, TPOT-RL.
TPOT-RL builds upon the multi-agent behavior described in Chapter 6 to create a
team-level collaborative and adversarial behavior. This team-level behavior is the high-
est implemented learned layer in the simulated robotic soccer implementation of the
layered learning paradigm. The chapter also includes a description and implementation
of TPOT-RL in network routing, demonstrating its generalization to other multi-agent
domains.

Chapter 8 provides general results of the implemented robotic soccer systems in interna-
tional competitions. While focussed evaluations are provided in several of the previous
chapters, anecdotal evidence of the success of the overall approach is provided in this
chapter.

Chapter 9 provides an extensive survey of work related to the research in this thesis. While
several chapters contain their own related work sections describing the research most
relevant to their contents, this chapter surveys the field of MAS from a machine learning
perspective, and presents a broad overview of robotic soccer research around the world.

24 CHAPTER 1. INTRODUCTION

Chapter 10 summarizes the contributions of this thesis and outlines the most promising
directions for future work.

Table 1.1 summarizes the relevance of each chapter to the thesis contributions.

Chapter
Contribution 2|3|4’5|6[7[8]9|10
Team Member Agent Architecture || « | * | — | — | — | = |+ |+ | +
Layered Learning x| 4| x| x| x| x|+ |+ |+
TPOT-RL x|+ | ==+ x|+|+|+
CMUnited * ok [k [k | x| x| x| x| +
x : essential; + : relevant; — : irrelevant

Table 1.1: Correspondence between the thesis contributions and the dissertation chapters.

Chapter 2

Substrate Systems

The innovations reported in this thesis are designed primarily for real-time, noisy, collab-
orative and adversarial domains. As such, simulated robotic soccer—the RoboCup soccer
server [Noda et al. 98] in particular—has served as an ideal research test bed. However, the
positive results achieved are not limited to this domain. Throughout the thesis, the extent
to which each result generalizes is discussed. In addition, some of the techniques developed
in simulated robotic soccer have been applied in two other domains with some similar char-
acteristics: real robotic soccer and network routing. This chapter compares and contrasts
these three domains while specifying their details as they are used for empirical testing.

2.1 Overview

As the main test bed, all the contributions of this thesis are originally developed and imple-
mented in simulated robotic soccer. It is a fully distributed, multi-agent domain with both
teammates and adversaries. There is hidden state, meaning that each agent has only a partial
world view at any given moment. The agents also have noisy sensors and actuators, meaning
that they do not perceive the world exactly as it is, nor can they affect the world exactly
as intended. In addition, the perception and action cycles are asynchronous, prohibiting the
traditional Al paradigm of using perceptual input to trigger actions. Communication oppor-
tunities are limited; the agents must make their decisions in real-time; and the actions taken
by other agents, both teammates and adversaries, and their resulting state transitions are
unknown. We refer to this last quality of unknown state transitions as opaque transitions.
These italicized domain characteristics are appropriate for the development of all four thesis
contributions as presented in Section 1.3. A

In order to test the generality of our simulator results, we transfer some of our techniques
to our real robot system. In particular, portions of the team member agent architecture are
implemented in the real robot system as well as in simulation. The real robot system is
a completely different domain from the simulator. First, at the most basic level, the I/O
is entirely different. While the simulator deals with abstract, asynchronous perceptions
and actions, the robotic system processes real-time video images via an overhead camera
and outputs motor control commands synchronously (i.e. triggered by perception) via radio.
Second, the agents all share the same perception of the world, which makes the robotic system

25

26 CHAPTER 2. SUBSTRATE SYSTEMS

not completely distributed. However, functionally the robots are controlled independently:
each is controlled by an independent function call using a turn-taking methodology. They
can also be controlled by separate processes with a common sensory input stream. Three
other differences of the robots from the simulator are the absence of communication among
teammates (which is possible, but not used in our system), the absence of hidden state
(agents have a full world view via an overhead camera), and a resulting full knowledge about
the state transitions in the world. These domain differences prevent the use of identical
agent programs in the two domains, but they do not limit the applicability of the flexible
teamwork structure.

While developed within the context of robotic soccer, the multi-agent algorithms pre-
sented in this thesis generalize beyond robotic soccer as well. To support this claim, we
implement one of our algorithms in a different domain, namely network routing. We believe
several other multi-agent domains are also similar to robotic soccer. It is part of our future
work to continue to identify other such multi-agent domains (see Chapter 10).

Although network routing differs from robotic soccer in a lot of ways, in an abstract
sense it is very similar. Even though our network routing simulator does not involve commu-
nication, noisy sensors and actuators, or adversaries, it retains the essential characteristics
motivating the development of TPOT-RL: a distributed team of agents operating in real-time
with opaque transitions. As reported in Chapter 7, TPOT-RL is successfully implemented
in network routing as well as in robotic soccer.

Table 2.1 summarizes the domain comparison. The remainder of this chapter provides the
domain specifications of simulated robotic soccer, real robotic soccer, and network routing
as used experimentally in this thesis. I use this chapter to describe in detail the aspects of
the domains that are not part of the thesis contributions: the substrates upon which the

contributions are built.

l | Simulator | Robots | Network routing |
Distributed perception yes no yes
Distributed action yes yes yes
Asynchronous perception/action yes no no
Teammates yes yes yes
Adversaries yes yes no
Hidden state yes no yes
Noisy sensors yes yes no
Noisy actuators yes yes no
Communication yes no no
Real-time yes yes yes
Opaque transitions yes no yes

Table 2.1: A comparison of the experimental domains used in this thesis.

2.2. THE ROBOCUP SOCCER SERVER 27

2.2 The RoboCup Soccer Server

The RoboCup soccer server [Noda et al. 98] has been used as the basis for successful inter-
national competitions [RoboCup 97] and research challenges [Kitano et al. 97]. As one of the
first users, I helped to test and tune it over the course of its development, and participated
in its first test as the basis for a competition (Pre-RoboCup-96 at IROS-96). Experiments
reported in this thesis are conducted in several different versions of the simulator ranging
from version 1 to the current version 4. This section describes the current simulator.

The soccer server is a complex and realistic domain. Unlike many AI domains, the
soccer server embraces as many real-world complexities as possible. It models a hypothetical
robotic system, merging characteristics from different existing and planned systems as well
as from human soccer players. The server’s sensor and actuator noise models are motivated
by typical robotic systems, while many other characteristics, such as limited stamina and
vision, are motivated by human parameters.

In this section I describe version 4 of the soccer server in detail. While not as detailed as
the soccer server user manual [Andre et al. 98a], this section defines all of the concepts and
parameters that are important for the thesis.

Section 2.2.1 gives a high-level overview of the simulator. Section 2.2.2 defines the envi-
ronment including the field and all of the objects recognized by the simulator. Sections 2.2.3
and 2.2.4 specify the perceptions and actions available to agents in the simulator. Sec-
tion 2.2.5 gives a detailed illustrative trace of the interactions between the server and a
client over a period of time. Section 2.2.6 summarizes the challenging characteristics of this
simulated robotic soccer domain.

2.2.1 Overview of the Simulator

The simulator, acting as a server, provides a domain and supports users who wish to build
their own agents (also referred to as clients or players). Client programs connect to the
server via UDP sockets, each controlling a single player. The soccer server simulates the
movements of all of the objects in the world, while each client acts as the brain of one player,
sending movement commands to the server. The server causes the player being controlled
by the client to execute the movement commands and sends sensory information from that
player’s perspective back to the client.

When a game is to be played, two teams of 11 independently controlled clients connect
to the server. The object of each team is to direct the ball into one of the goals at the ends
of the field, while preventing the ball from entering the other goal.

The server’s parameters that are relevant to this thesis are listed, along with their default
values and descriptions, in Table 2.4. Refer to this table as the parameters are alluded to in
the text of this section.

The simulator includes a visualization tool, pictured in Figure 2.1. Each player is repre-
sented as a two-halved circle. The light side is the side towards which the player is facing.
In Figure 2.1, all of the 22 players are facing the ball, which is in the middle of the field.
The black bars on the left and right sides of the field are the goals.

The simulator also includes a referee, which enforces the rules of the game. It indicates

28 CHAPTER 2. SUBSTRATE SYSTEMS

Figure 2.1: The soccer server display. Each player is represented as a two-halved circle. The light
side is the side towards which the player is facing. All players are facing the ball, which is in the
middle of the field. The black bars on the left and right sides of the field are the goals.

changes in play mode, such as when the ball goes out of bounds, when a goal is scored, or
when the game ends. It also enforces the offsides rule. Like in real soccer, a player is offsides
if it is in the opponent’s half of the field and closer to the opponent’s goal line (the line along
which the goal is located) than all or all but one of the opponent players when the ball is
passed to it. The crucial moment for an offsides call is when the ball is kicked, not when
it is received: a player can be behind all of the opponent defenders when it receives a pass,
but not when a teammate kicks the ball towards it!.

One of the real-world complexities embraced by the soccer server is asynchronous sensing
and acting. Most Al domains use synchronous sensing and acting: an agent senses the
world, acts, senses the result, acts again, and so on. In this paradigm, sensations trigger
actions. On the other hand, both people and complex robotic systems have independent
sensing and acting rates. Sensory information arrives via different sensors at different rates,
often unpredictably (e.g. sound). Meanwhile, multiple actions may be possible in between
sensations or multiple sensations may arrive between action opportunities.

The soccer server uses a discrete action model: it collects player actions over the course
of a fixed simulator cycle of length simulator_step, but only executes them and updates
the world at the end of the cycle. If a client sends more than one movement command
in a simulator cycle, the server chooses one randomly for execution. Thus, it is in each
client’s interest to try to send at most one movement command each simulator cycle. On the
other hand, if a client sends no movement commands during a simulator cycle, it loses the
opportunity to act during that cycle, which can be a significant disadvantage in a real-time
adversarial domain: while the agent remains idle, opponents may gain an advantage. Each
cycle, the simulator increments the simulated time counter by one.

1Tn real soccer, an offsides call is actually subjective based on the referee’s opinion of whether the player
in an offsides position is gaining an advantage by being there. The soccer server artificially operationalizes
the offsides rule, making it an objective call.

2.2. THE ROBOCUP SOCCER SERVER 29

Figure 2.2 illustrates the interactions between the server and two clients over the course
of 3 simulator cycles at times t-1, t, and t+1. The thick central horizontal line represents
the real time as kept by the server. The top and bottom horizontal lines represent the time-
lines of two separate clients. Since they are separate processes, they do not know precisely
when the simulator changes from one cycle to the next. The dashed arrows from the server
towards a client represent perceptions for that client. The solid arrows from a client towards
the server represent movement commands sent by that client. These arrows end at the
point in time at which the server executes the movement commands, namely the end of the
simulator cycle during which they are sent.

Client 1 sends movement commands after every perception it receives. This strategy
works out fine in cycle t-1; but in cycle t it misses the opportunity to act because it receives
no perceptions; and in cycle t-+1 it sends two movement commands, only one of which will
be executed.

Client 2, on the other hand, successfully sends one movement command every cycle.
Note that in cycle t it must act with no new perceptual information, while in cycle t+1,
it receives two perceptions prior to acting and one afterwards. Ideally, it would act after
receiving and taking into account all three perceptions. However, it does not know precisely
when the simulator cycle will change internally in the soccer server and it cannot know
ahead of time when it will receive perceptions. Thus, in exchange for the ability to act every
simulator cycle, it sometimes acts with less than the maximal amount of information about
the world. However, as each simulator cycle represents only a short amount of real time
(simulator_step msec), the world does not change very much from cycle to cycle, and the
client can act accurately even if it takes some of its perceptions into account only before its
subsequent action.

I Client 1

[}
Cyde t-1 :\t t+1] 1 \|t+2
- i Server

' Client 2

'
' '
1 |
)
1 '
1 1
'
' |
Y L]

Figure 2.2: A sample period of the server-client interface over the course of 3 simulator cycles
at times t-1, t, and t+1. The thick central horizontal line represents the real time as kept by the
server. The top and bottom horizontal lines represent the time-lines of two separate clients. The
dashed arrows from the server towards a client represent perceptions for that client. The solid
arrows from a client towards the server represent movement commands sent by that client. These
arrows end at the point in time at which the server executes the movement commands, namely the
end of the simulator cycle during which they are sent.

Asynchronous sensing and acting, especially when the sensing can happen at unpre-
dictable intervals, is a very challenging paradigm for agents to handle. Agents must balance
the need to act regularly and as quickly as possible with the need to gather information about
the environment. Along with asynchronous sensing and action, the soccer server captures
several other real-world complexities, as will become evident throughout the remainder of
this section.

30 CHAPTER 2. SUBSTRATE SYSTEMS

2.2.2 The Simulated World

This section paraphrases a similar section in the soccer server user manual [Andre et al. 98a).

Field and Objects

The soccer server is a two-dimensional simulation. There is no notion of height for any
object on the field. The field has dimensions field_-length x field_width with the goals
of width goal_width, all of which are parameters defined in Table 2.4. There are up to 22
players on the field at a time along with 1 ball, all of which are modeled as circles. There
are also several visible markers, including flags and side lines, distributed around the field
as illustrated in Figure 2.3.

{Egt150) (fhgr 130) {fagt110) (thgt0) (fhgtrio) (ERgt r30) (thgt 50}
® | ® ® ® ® L ®
(Elgt 140) (Ergt120) (Ehgt r20) (Ekgt rd0)
.~
(hg1t30) @ (Ehgly (lLine 1) [fhget) (Ehgrt) @ (herta)
(Englt20) @ @ (frerd (thgary @ lim/' @ (fkgrt20)
(line 1) {line 1)
(fhglt10) @ @ (fhertin)
thggly) (fhggry
fhgpl fhge
he1) @ @aun @ o Pk (thgrr) @ (goaln @ @ (bgr0)
(Ehggrd) (thggrd)
(fhglb10) @ @ (Berd i)
(fhg1d20)@ ® (Fugr1d) {fhgor b) @ @ (fhard20)
(frg1130) @ . @ (fhgrd30)
(fhgld} A (line b) ‘[fhgc b) (Ebgrd)
(fhgd 140) {Ehgd 120) (Ekgt 3 20) o (Ebgt b 40) o
(Elgd 150) (fkgb130) (Ekgb 110) (flagh 0) (Flgtd10) (Ekgt b 30) (Ehgt b50)

Figure 2.3: The locations and names of the visible markers in the soccer server. This figure
originally appeared in the soccer server user manual [Andre et al. 98a]

The players and the ball are all mobile objects. At the simulator cycle for time ¢, each
object is in a specific position (p%,p!) and has a specific velocity (v;,v;). Each player is also
facing in a specific direction 6. These positions are maintained internally as floating point
numbers, but player sensations are only given to one decimal place. Thus, the perceived
state space with the server parameters we use has more than 10°%% = 10198 states: each of
the 22 players can be in any of 680 x 1050 x 3600 positions. Taking into account the ball,
velocities, and past states, the actual state space is much larger than that.

Object Movement

As described in the user manual:

In each simulation step, the movement of each object is calculated in the following

2.2. THE ROBOCUP SOCCER SERVER 31

manner:
(up ™ uy™) = (vg,vy) + (ag,) : accelerate (2.1)
(a0, = (Fopy) + (w5 wyt) s move
(Wi, ol = decay x (ubt',ul™) : decay speed
(@t ai™) = (0,0) : reset acceleration

where, decay is a decay parameter specified by ball_decay or player_decay.

(al, ay) is the object’s acceleration, which is derived from the Power parameter

in dash (if the object is a player) or kick (if a ball) commands as follows:

(at,at) = Power x (cos(f"),sin(6"))

) Y
In the case of a player, its direction is calculated in the following manner:
6 = 0"+ Angle

where Angle is the parameter of turn commands. In the case of a ball, its
direction is given in the following manner:

+ _ t . .
gball = 0kicker + Direction

where e‘i)all and Qf{i cker 2T€ the directions of the ball and kicking player re-

spectively, and Direction is the second parameter of a kick command [Andre et
al. 98a].

The commands and their parameters referred to above are specified precisely in Sec-
tion 2.2.4.
Collisions
As described in the user manual:

If at the end of the simulation cycle, two objects overlap, then the objects are
moved back until they do not overlap. Then the velocities are multiplied by —0.1.
Note that it is possible for the ball to go through a player as long as the ball and
the player never overlap at the end of the cycle [Andre et al. 98a].

Noise

The soccer server adds evenly distributed probabilistic noise to all objects’ movements. In
particular, as described in the manual:

noise is added into Equation 2.1 as follows:

(uit, ity = (v}, v}) + (a, a}) + (Frmax, Frmax)

32 CHAPTER 2. SUBSTRATE SYSTEMS

where 7#max is a random number whose distribution is uniform in the range
[-max, max]. rmax is a parameter that depends on the velocity of the object as

follows:

rmax = rand-|(v},})|

where rand is a parameter specified by player_rand or ball_rand.

Noise is added also into a Power parameter in a turn command as follows:
Angle = (1+47.,n4q) - Angle

[Andre et al. 98a]

Stamina

The soccer server prevents players from constantly running at maximum velocity
(player_sp-max) by assigning each player a limited stamina. The stamina is modeled in

three parts.

e stamina € [0,stamina max| is the actual limit of the Power parameter of a dash
command.

e effort € [effort_min, 1.0] represents the efficiency with which the player can move.
e recovery € [recovery.min, 1.0] represents the rate at which stamina is replenished.

A player’s stamina has both replenishable and non-replenishable components. The re-
plenishable components are stamina and effort; recovery is non-replenishable.
The stamina parameters listed in Table 2.4 are used as follows:

e If a player tries to dash with power Power, the effective power of its dash is affected
by stamina and effort while stamina is subsequently decremented:
— effective_dash_power = Min(stamina,Power) x effort.
— stamina = stamina — effective_dash_power.

e On every cycle, effort is decremented if stamina is below a threshold, and incremented
if it is above a threshold:

— if stamina < effort_dec_thr x stamina max and effort > effort.min, then
effort = effort — effort_dec.

— if stamina > effort_inc_thr x stamina_max and effort < 1.0, then effort
= effort + effort_inc.

e On every cycle, recovery is decremented if stamina is below a threshold:

— if stamina < recover_dec_thr X stamina max and recovery > recover_min,
then recovery = recovery — recover_dec.

2.2. THE ROBOCUP SOCCER SERVER 33

e On every cycle, stamina is incremented based on the current value of recovery:

— stamina = stamina + recovery X stamina_inc.

— if stamina > stamina max, then stamina = stamina_max.

2.2.3 Agent Perception

Agents receive three different types of sensory perceptions from the server: aural, visual,
and physical. This section describes the characteristics of the sensory information, which
are summarized in Table 2.2.

Aural information

The soccer server communication paradigm models a crowded, low-bandwidth environ-
ment. All 22 agents (11 on each team) use a single, unreliable communication channel.
When an agent or the referee speaks, nearby agents on both teams can hear the mes-
sage immediately. There is no perceptual delay. They hear a message in the format
(hear Time Direction Message) where:

e Time is the current simulator cycle;
e Direction is the relative direction from whence the sound came;
e Message is the message content;

Note that there is no information about which player sent the message or that player’s
distance.

Agents have a limited communication range, hearing only messages spoken from within
a distance specified by the parameter audio_cut_off_dist. They also have a limited com-
munication capacity, hearing a maximum of hear_inc messages in hear_decay simulation
cycles. Thus communication is extremely unreliable. Using the parameters in Table 2.4, if
more than 1 agent speaks over the course of 2 simulation cycles, a player will miss hearing
all but 1 of the messages. Messages from the referee are treated as privileged and are always
transmitted to all agents.

In short, the characteristics of the low-bandwidth communication environment include:

e All 22 agents (including adversaries) on the same channel;
e Limited communication range and capacity;
e No guarantee of sounds getting through;

e Immediate communication: no perceptual delay.

34 CHAPTER 2. SUBSTRATE SYSTEMS

Visual information

As described in the user manual:
Visual information arrives from the server in the following basic format:

(see Time ObjInfo Objlnfo ...)
Time indicates the current time.
ObjlInfo is information about a visible object in the following format:
(ObjName Distance Direction DistChng DirChng FaceDir)
ObjName = (player Teamname UNum)

| (goal Side)

| (ball)

| (flag ¢)

| (flag [1lclr]l [tIbl)

| (flag p [1lr] [tlclbl)

| (flag [tlv] [1lr] [10/20/30]140(50]1)

| (flag [11r] [tlbv] [10/20{30])

| (flag [1lrltIb] 0)

| (1ine [1lrltlIb]l)

Distance, Direction, DistChng and DirChng are calculated by the following way:

Dre = Pzt — Pzo
DPry = Dyt — Pyo

Urg = Uzt — Paxo
Uy = Uyt — Pyo
Distance = /pZ, + P2,
Direction = arctan (pry/Prz) — Go
ers = Pro/Distance
€y = Dry/Distance
DistChng = (Urg * €rz) + (Ury * €ry)

DirChng = [(—(vrg * €ry) + (Ury * €15))/ Distance] * (180 /)

where (put, pyt) is the absolute position of a target object, (pzo, Pyo) is the absolute
position of the sensing player, (v, v,:) is the absolute velocity of the target
object, (v, Vyo) is the absolute velocity of the sensing player, and a, is the
absolute direction the sensing player is facing. In addition, (py4, Pry) and (Vrs, vry)
are respectively the relative position and the velocity of the target, and (e, ery)
is the unit vector that is parallel to the vector of the relative position. Facedir is
only included if the observed object is another player, and is the direction of the
observed player relative to the direction of the observing player. Thus, if both
players are facing the same direction, then FaceDir would be 0.

2.2. THE ROBOCUP SOCCER SERVER 35

The (goal r) object is interpreted as the center of the goal. (flag c) is a virtual
flag at the center of the field. (flag 1 b) is the flag at the lower left of the field.
(flag p 1 b) is a virtual flag at the lower inside corner of the penalty box on the
left side of the field. The remaining types of flags are all located 5 meters outside
the playing field. For example, (flag t 1 20) is 5 meters from the top sideline and
20 meters left from the center line. In the same way, (flag r b 10) is 5 meters
right of the right sideline and 10 meters below the center of the right goal. Also,
(flag b 0) is 5 meters below the midpoint of the bottom sideline.

In the case of (line ...), Distance is the distance to the point there the center
line of the player’s view crosses the line, and Direction is the direction of line.

All of the flags and lines are shown in Figure 2.3. [Andre et al. 98a]

The frequency, range, and quality of visual information sent to a particular agent are
governed by the integer server parameters send_step and visible_angle; and the player pa-
rameters view_quality € {high,low}, view_width € {narrow, normal,wide}, and the floating
point number view_angle. A player can directly control its view_quality and view_width
via its actuators. By default, view_quality = high, view_width = normal and view_angle
= visible_angle. In that case the agent receives visual information every send_step msec.

However, the agent can trade off the frequency of the visual information against its quality
and width via its view mode = {view_quality,view_width}. By using low view_quality—
in which case it receives angle information, but no distances to object—the agent can get
sights twice as frequently: every send_step/2. Similarly, the agent can get sights twice as fre-
quently by switching to a narrow view_width, in which case view_angle = visible_angle/2.
On the other hand, the player can use a wide view_width (view_angle = visible angle X
2) at the expense of less frequent visual information (every send_step X 2 msec). With
both view_width = narrow and view_quality = low, visual information arrives every
send_step/4 msec.

The meaning of the view_angle parameter is illustrated in Figure 2.4. In this figure, the
viewing agent is the one shown as two semi-circles. The light semi-circle is its front. The
black circles represent objects in the world. Only objects within view_angle®/2, and those
within visible_distance of the viewing agent can be seen. Thus, objects b an g are not
visible; all of the rest are.

As object f is directly in front of the viewing agent, its angle would be reported as 0
degrees. Object e would be reported as being at roughly -40°, while object d is at roughly
20°. :

Also illustrated in Figure 2.4, the amount of information describing a player varies with
how far away the player is. For nearby players, both the team and the uniform number
of the player are reported. However, as distance increases, first the likelihood that the
uniform number is visible decreases, and then even the team name may not be visible. It is
assumed in the server that unum_far_length < unum too_far_length < team far_length
< team_too_far_length. Let the player’s distance be dist. Then

o If dist < unum_far_length, then both uniform number and team name are visible.

36 CHAPTER 2. SUBSTRATE SYSTEMS

@ Client whose vision perspective is being illustrated

visible_distance b@ _--"" ‘
< - LR \
g' ’a ", - \‘ \\ \\ ‘l
\. 4 c. I (I |
)
g / 1 |
\view_angle , |1 ;
\ . .
\ ! r ! field_width
far_length ‘=~ - =)
unum_far_length '~ -~ ’ 7 y
‘\ de - 7,7 J
unum_too_far_length v - --""-" ., {@®
team_far length ¥ = ~ e
\ -,
\ 7
team_too_far_length \ _ - -~ Y
—- field_length —

Figure 2.4: The visible range of an individual agent in the soccer server. The viewing agent is
the one shown as two semi-circles. The light semi-circle is its front. The black circles represent
objects in the world. Only objects within view_angle®/2, and those within visible distance of
the viewing agent can be seen. unum far_length, unum too_far_length, team far length, and
team_too_far_length affect the amount of precision with which a players’ identity is given.

e If unum_far_length < dist < unum too_far_length, then the team name is always
visible, but the probability that the uniform number is visible decreases linearly from

1 to 0 as dist increases.
e If dist > unum_too_far_length, then the uniform number is not visible.

If dist < team_far_length, then the team name is visible.

o If team_far_length < dist < team_too_far_length, then the probability that the team
name is visible decreases linearly from 1 to 0 as dist increases.

If dist > team_too_far_length, then neither the team name nor the uniform number
is visible.

For example, in Figure 2.4, assume that all of the labeled black circles are players. Then
player ¢ would be identified by both team name and uniform number; player d by team
name, and with about a 50% chance, uniform number; player e with about a 25% chance,
just by team name, otherwise with neither; and player f would be identified simply as an
anonymous player.

Finally, the precision of information regarding an object’s distance decreases with its
distance. As written in the user manual:

In the case that an object in sight is a ball or a player, the value of distance to

2.2. THE ROBOCUP SOCCER SERVER . 37

the object is quantized in the following manner:
d = Quantize(exp(Quantize(log(d),0.1)),0.1)
where d and d’ are the exact distance and quantized distance respectively, and
Quantize(V, Q) = rint(V/Q)-Q

This means that players can not know the exact positions of very far objects. For
example, when the distance is about 100.0, the maximum noise is about 10.0,
while when the distance is less than 10.0, the noise is less than 1.0.

In the case of flags and lines, the distance value is quantized in the following
manner.

d = Quantize(exp(Quantize(log(d),0.01)),0.1)
[Andre et al. 98a]

This visual paradigm creates a huge amount of hidden state for each individual agent.
In addition, with the parameters identified in Table 2.4, by default, the agents receive visual
information less frequently (every 150 msec) than they can act (every 100 msec). Thus,
unless they are to miss many action opportunities, the agents must sometimes choose more
than one sequential action from a given state.

With these parameters, play occurs in real time: the agents must react to their sensory
inputs at roughly the same speed as human or robotic soccer players. Our own robots have
been able to act between 3 and 30 times per second. Human reaction times have been
measured in the 200-500 msec range [Woodworth 38].

Physical information

Upon request from an agent, the server also sends physical information about the agent.
Such sense_body information includes:

e the agent’s current stamina, effort, and recovery values;
e the agent’s current speed;
e the agent’s current view_quality and view_width values.

The agent’s speed is given as a magnitude only: it must infer the direction of its movement
from visual cues.
Table 2.2 summarizes types of sensory information available to soccer server agents.

2.2.4 Agent Action

Agents can send several different types of commands to the simulator as their actuators:
they change the world in some way. This section describes the characteristics of the different
commands which are summarized in Table 2.3.

38 CHAPTER 2. SUBSTRATE SYSTEMS

Name | When received | Information type | Limitations |
see every send_step msec | visual limited angle, precision
(default) decreases with distance
hear instantaneously when | aural limited distance
a nearby agent (or the and frequency
referee) speaks
sense_body | upon request physical none

Table 2.2: The soccer server agents’ sensors.

Communication

Agents can “say” any text string up to 512 ascii characters in length. Both teammates and
opponents will hear the complete message subject to the range and frequency constraints
described in Section 2.2.3.

An agent can speak as often as it wants. But since teammates can only hear one message
every 2 cycles, it is useless to speak more frequently than that.

Movement

The agent has just four actuators for physically manipulating the world: turn, dash, kick,
and catch. The server only executes one of these commands for each player at the end of
each simulator cycle. If an agent sends more than one such command during the same cycle,
only one is executed non-deterministically. Since the simulator runs asynchronously from
the agents, there is no way to keep perfect time with the server’s cycle. Therefore any given
command could be missed by the server. It is up to the agent to determine whether a given
command has been executed by observing the future state of the world.

The movement commands are all parameterized with real number arguments indicating
the Angle and/or Power associated with the action. As always, angles are relative to the
direction the agent is currently facing (6).

The details of the movement commands are as follows:

Turn(Angle): -180 < Angle < 180 indicates the angle of the turn. Rotation efficiency is
reduced for moving players. That is, the higher a player’s speed, the smaller a fraction
of Angle the agent will actually turn according to the equation:

actual_angle = Angle/(1.0 + inertia_moment % player_speed)

Dash(Power): -30 < Power < 100 indicates the power of the dash. Agents only move
in the direction they are facing, either forwards or backwards. To move in another
direction, they must first turn. Dashing efficiency is reduced for players with low
stamina as indicated in Section 2.2.2. A dash sets the acceleration in Equation 2.1
for one simulation cycle. It does not cause a sustained run over time. In order to
keep running, the agent must keep issuing dash commands. Power is multiplied by the
server parameter dash_power_rate before being applied in Equation 2.1.

2.2. THE ROBOCUP SOCCER SERVER , 39

Kick(Power, Angle): 0 < Power < 100 indicates the power of the kick, -180 < Angle <

180,

the angle at which the ball is accelerated. Like the dash, the kick sets the ball’s

acceleration in Equation 2.1. There are four points about the kick model of the server
that should be understood.

A kick changes the ball’s velocity by vector addition. That is, a kick accelerates
the ball in a given direction, as opposed to setting the velocity. Thus multiple
kicks on successive cycles can move the ball faster than a single kick.

An agent can kick the ball when it is within kickable_area which is defined
as ball _size + player_size + kickable margin). The ball being within
kickable_area is a precondition for successfully executing a kick.

The ball and the player can collide as indicated in Section 2.2.2. Thus in order
to smoothly kick the ball, a player must take care to avoid kicking the ball into
itself.

The actual power with which the ball is kicked depends on its relative location to
the player. As presented in the user manual:

Let dir_diff be the absolute value of the angle of the ball relative to
the direction the player is facing (if the ball is directly ahead, this would
be 0). Let dist_ball be the distance from the center of the player to
the ball. Then the kick power rate is figured as follows:
kick_power_rate * (1-.25 * dir_diff / 180 -
.25 * (dist_ball - player_size - ball_size) / kickable_area)

This number is then multiplied by the Power parameter passed to the kick com-
mand before applying Equation 2.1.

According to this paradigm, the strongest kick occurs when the ball is as close as
possible to the player and directly in front of it. The power decreases as distance
and/or angle increases. [Andre et al. 98a)

Catch(Angle): -180 < Angle < 180 indicates the angle of the catch. Only the goaltender
can catch, and only within its own penalty box. These conditions are preconditions of
the catch command. A catch is only effective if the ball is within a rectangle of size
catchable_areaw X catchable area_l with one edge on the player and extending
in the direction indicated by Angle. The ball being in such a position is another
precondition for successfully executing a catch.

Perception control

| The two remaining commands available to agents directly control the type of perception
| information they receive from the server. The sense_body command requests physical in-

formation from the server. The change_view command specifies a view_quality (low/high)
and a view width (narrow/normal/wide). As described in Section 2.2.3, higher quality and
greater width lead to less frequent visual information.

The sense_body command can be executed up to 3 times per simulator cycle (by con-
vention), while change view can be executed once per cycle.

40 CHAPTER 2. SUBSTRATE SYSTEMS

Table 2.3 summarizes all of the actuators available to agents in the soccer server. The
types and ranges of the arguments are shown along with when the commands are executed
by the server. In the table, “cycle” refers to a simulation cycle of length simulator_step.
As described in the text, only kick and catch have preconditions.

Argument When Frequency
Syntax meaning Type Range executed limit
say(z) message to be | ascii < 512 characters instantly teammates only
broadcast text hear 1 every
2 cycles
turn(z) angle to turn | float -180 < z < 180 end of cycle
dash(z) power to dash | float -30 <z <100 end of cycle | 1 of these
kick(z,y) power to kick, | float 0 <z <100, end of cycle | per cycle
angle to kick | float -180 < y < 180
catch(z) angle to catch | float -180 < z <180 end of cycle
sense_body/() instantly 3 per cycle
change view(z,y) | view quality discrete | high/low instantly 1 per cycle
view width discrete | narrow/normal/wide

Table 2.3: The soccer server agents’ commands. In the table, “cycle” refers to a simulation cycle
of length simulator_step.

2.2.5 Sample Trace

Figure 2.5 illustrates the format of the interface between the server and a specific client. In
the pictures, the white arrow and text are added for reference purposes: they are not part of
the actual display. The input/output trace below the pictures is given from the perspective
of the client labeled “CLIENT.”

In Figure 2.5(a) the client is about to run to the ball and kick it towards the goal.
Figure 2.5(b) shows the resulting scene after the kick. In the input/output trace below
the pictures, as specified earlier in this section, dashes are followed by a power (they are
always in the direction that the player is facing), turns are followed by an angle, and kicks
are followed by a power and an angle. Sensory information from the server comes in the
form of “hear,” “see,” and “sense_body” strings representing aural, visual, and physical
information respectively. In all cases, the number after the type indicator (“hear,” “see”,
or “sense_body”) indicates the elapsed time in the match. Aural information then indicates
whether it is the referee speaking or else from what angle the sound came. Visual information
includes the distances followed by angles of the visible objects. If an object is close enough,
two additional numbers indicate the object’s relative velocity. In the case of other players, a
fifth number indicates the relative direction that the player is facing. Sense_body information
indicates the client’s physical parameters.

Since the client’s vision is limited to 45° on either side of the direction it is facing (the
black semi-circle is the back of the player, the light semi-circle is the front), not all objects
are visible at each sensory step. For example, at the beginning of the trace in Figure 2.5
(time 94), the client sees two teammates and two opponents (one of which is indicated by
“player opponent 1”). However by the end of the trace (time 112), it is no longer able to

2.2. THE ROBOCUP SOCCER SERVER 41

(a) (b)

**-> (dash 100.00)

(see 94 ((goal r) 15.3 27) ((flag r t) 47.9 8) ((flag p r t) 34.8 -15) ((flag p r ¢) 16.4 -34 0 0)
((flag g £ t) 21.8 19) ((ball) 8.2 0 0 0) ((player CMUnited) 40.4 -8)

((player CMUnited 2) 16.4 -37 0 0 117) ((player Opponent 1) 16.4 15 0 O -148)
((player Opponent) 44.7 0) ((line t) 47.5 89))

**-> (sense_body)

(sense_body 95 (view.mode high normal) (stamina 1280 1) (effort 1.0) (recovery 1.0) (speed 0.39))

*~> (dash 100.00)

(see 96 ((goal r) 13.6 31) ((flag r t) 46.1 8) ((flag p r t) 33.1 -16) ((flag p r c) 14.9 -39 -0.298 -0.9)
((flag g T t) 19.9 20 -0.398 0.5) ((ball) 6.7 -2 -0.402 0) ((player CMUnited) 36.6 -8)
((player CMUnited 2) 14.9 -41 -0.298 -0.9 117) ((player Opponent 1) 14.9 17 -0.298 0.5 -148)
((player Opponent) 40.4 0) ((line t) 45.6 89))

*%-> (dash 100.00)

*¥-> (sense_body)

(sense_body 97 (viewmode high normal) (stamina 1120 1) (effort 1.0) (recovery 1.0) (speed 0.44))

**-> (dash 100.00)

(hear 103 -70 shoot the ball) (see 104 ...((ball) 1.8 6 0.108 5.4) ...)

*¥-> (say shooting now)

*%-> (kick 100.00 65.40)

(hear 104 self shooting now)

x-> (sense_body)

(sense_body 105 (viewmode high normal) (stamina 980 1) (effort 1.0) (recovery 1.0) (speed 0))
**%-> (turn 31.76)

(see 106 ...((ball) 4.1 14 1.23 7) ...)

*%-> (turn 14.00)

;*-> (dash 100.00)

(see 112 ((goal r) 6.8 12) ((flag r t) 38.5 ~32) ((flag g r t) 12.3 -14 -0.246 0) ((ball) 7.4 2 0.74 1.5)
((player Opponent 1) 7.4 -18 -0.148 -0.2 107) ((player Opponent) 33.1 -44) ((line r) 8.2 -40))

(hear 113 referee goal_1.1) ’

(hear 113 referee kick_off._r)

Figure 2.5: A trace of the soccer server’s input and output to the client controlling player 3

(indicated “CLIENT”). The player starts in the position shown in (a), moves to the ball and shoots

it towards the goal, ending in the position shown in (b). Commands from the player are indicated

with “x*->” preceding them.

42 CHAPTER 2. SUBSTRATE SYSTEMS

see the teammates. Similarly, by the end of the trace, it is no longer able to see the center
of the penalty area: (flag p r c).

The method of communication is illustrated by the message from teammate number 2
that is heard at time 103 (“shoot the ball”), and by the spoken response “shooting now.”
Two messages from the referee at time 113, indicating the successful goal and the subsequent
restart, are also present at the end of the trace. The capacity limits on hearing do not apply
to messages from the referee.

Both the sensors and the actions in the simulator are noisy. Notice that even though
the player begins by facing directly at the stationary ball (the ball’s angle is 0) and dashes
straight toward it, the ball does not remain directly in front of the player: in the subsequent
visual string, the ball’s angle is -2. Also notice that the nearby players (CMUnited 2 and
Opponent 1) are identified by team and number. The players that are farther away are
only identified by team name. Although not apparent from this trace, when players are far
enough away, even their team may not be visible.

The trace in Figure 2.5 begins at elapsed time 94 and continues through 113. Each time
increment occurs in 100 msec of real time and visual sensor information arrives every 150
msec. The entire trace, from the moment pictured in Figure 2.5(a) until the ball enters the
goal in Figure 2.5(b), occurs in about 2 seconds.

2.2.6 Summary

The parameters governing the operation of the soccer server as referred to in this section are
summarized in Table 2.4. Their default values are also given.

All of the simulator features described in this section combine to make it a very chal-
lenging and realistic environment in which to conduct research. Table 2.5 summarizes the
challenges that agents must face.

2.3 The CMUnited-97 Real Robots

While originating from similar motivations, robotic soccer with real robots is quite a different
domain than the soccer server. Robotic soccer with real robots is the subject of an entirely
separate research challenge from the simulator challenge [Asada et al. 98]. Whereas the soccer
server provides an abstract sensor and actuator interface, the real robots must perceive the
world via real NTSC video images, and they move by controlling the speeds of real motors.
Therefore the sources and types of noise differ from the evenly distributed, probabilistic
models incorporated into most simulations (including the soccer server). Although it is
quicker and easier to get to the point of creating basic behaviors in simulation?, it is also
easy to ignore real-world complexities that may be abstracted away by the simulator. As
presented in Chapter 3, the robots are used in this thesis to validate the team member agent
architecture which was first implemented in the soccer server.

2 After downloading the soccer server, it took about 3 days to create a simple go-to-the-ball-and-shoot
behavior. It took at least 6 months of development before we were able to create such a behavior using the

real robots.

2.3. THE CMUNITED-97 REAL ROBOTS 43

Parameter Name Default | Explanation
Value

field_width 68 Width of the field.

field_length 105 Length of the field.

goal_width 14.02 Width of the goal.

simulator_step 100 Milliseconds in each simulation cycle.

unum_far_length 20 Distance below which players’ uniform numbers and the ball’s velocity are always
visible.

unum_too_far_length | 40 Distance above which players’ uniform numbers and the ball’s velocity are never
visible.

team far_length 40 Distance below which players’ uniform colors are always visible.

team_too_far_length | 60 Distance above which players’ uniform colors are never visible.

player_size 0.8 Radius of a player.

player_decay 0.4 Decay rate of player speed. If this is 1.0, a player keeps its speed, and if this is 0.0,
a player loses all of its speed in one simulation cycle.

player_rand 0.1 Amount of noise added in player’s movements and turns.

player_speed_max 1.0 Maximum speed of a player during 1 simulation cycle (i.e. the player can achieve a
maximum speed of 10 m/sec when simulator_step=100).

ball_size 0.085 Radius of the ball.

ball_decay 0.96 Decay rate of the ball speed.

ball_rand 0.05 Amount of noise added in the movement of the ball.

ball_speed_max 2.7 Maximum speed of the ball during 1 simulation cycle (i.e. the ball can achieve a
maximum speed of 27 m/sec when simulator_step=100).

stamina_max 2000.0 Maximum stamina of a player.

stamina_inc_max 20.0 Amount of stamina that a player gains in a simulation cycle.

recover_dec_thr 0.3 Decrement threshold for player’s recovery.

recover_dec 0.0002 Decrement step for player’s recovery.

recover_min 0.5 Minimum player recovery.

effort_dec_thr 0.3 Decrement threshold for player’s effort capacity.

[effort_dec 0.005 Decrement step for player’s effort capacity.
effort_inc_thr 0.6 Increment threshold for player’s effort capacity.
| "effort_inc 0.01 Increment step for player’s effort capacity.

effort_min 0.6 Minimum value for player’s effort capacity.

audio_cut_dist 50.0 Maximum distance a message said by a player can reach.

hear_max 2 Maximum hearing capacity of a player. A player can hear N(= hear_inc) messages
in M(= hear_decay) simulation cycles.

hear_inc 1 Minimum hearing capacity of a player.

hear_decay 2 Decay of hearing capacity of a player.

inertia.moment 5.0 Inertia moment of a player. It affects its turns.

kickable_margin 1.0 The area within which the ball is kickable is: kickable_area = kickable_margin +
ball_size + player_size.

catchable_area_l 2.0 Goaltender catchable area length.

catchable_area_w 1.0 Goaltender catchable area width.

catch_probability 1.0 The probability for a goaltender to catch the ball.

dash_power_rate 0.01 Rate by which the Power argument in the dash command is multiplied.

kick_power_rate 0.016 Rate by which the Power argument in the kick command is multiplied.

visible_angle 90 Angle of view cone of a player in the standard view mode.

send_step 150 Length of the interval for sending visual information to a player in the standard view
mode (milliseconds).

Table 2.4: Soccer server version 4 parameters along with their default values used in this thesis.
This table is adapted from the parameter table in the soccer server user manual [Andre et al. 98a].

Building a fully functioning robot system can be a frustrating process full of false starts
and dead ends. The CMUnited-97 real robots [Veloso et al. 98b, Veloso et al. 99c¢] are
the culmination of more than two years of development. After building one preliminary
version [Achim et al. 96], we were able to build CMUnited-97, an autonomous team of robots
that won the RoboCup-97 small-robot competition at IJCAI-97 in Nagoya, Japan [Veloso et
al. 98a]. The CMUnited real robot team is an on-going effort. In 1998, the team entered and
won the RoboCup-98 small-robot competion with CMUnited-98, a different team of robots

44 CHAPTER 2. SUBSTRATE SYSTEMS

e Sensing and acting is asynchronous.

e The players’ vision is limited, giving them a partial view of the world with lots of
hidden state.

e The players can communicate by speaking a message that is audible to all nearby
players.

e All players are controlled by separate processes, enforcing a distributed approach.
e Each player has limited stamina;
e There are many sources of noise:

— Noise in actuator parameters;
— Noise in object motion;

— Noise in visual perceptions.
e Percepts sent to the agent or commands from the agent may be lost:

— There is no guarantee that any sent commands are ever executed;
— The agent must verify whether commands are executed from the sensory infor-
mation it receives.
e Everything happens in real time:
— Visual information arrives at 150 msec intervals (with high view_quality and
normal view_width);
— Aural information arrives asynchronously whenever it is issued;

— Agents can act (physically) at most once every 100 msec.

Table 2.5: Challenges for the soccer server agents.

and mostly different software [Veloso et al. 99a]. This section describes the CMUnited-97
robots since they are the ones used for the research reported in this thesis.

The robots are no bigger than 180 cm? in area (footprint) and operate on a field with -
the same size and surface as a ping-pong table. Their object is to push an orange golf ball
into one of the goals at the ends of the field. A team consists of up to 5 robots playing at
one time. Figure 2.6 shows a picture of the CMUnited-97 robotic agents on the field. One
of the 6 robots was used as a reserve in case any of the others temporarily malfunctioned.

2.3.1 Overall Architecture

The architecture of our system addresses the autonomous robotic control task by viewing
the overall system as the combination of the robots, the camera, an image processor, and

2.3. THE CMUNITED-97 REAL ROBOTS 45

Figure 2.6: The CMUnited-97 robot team that competed in RoboCup-97. One of the 6 robots
was used as a reserve in case any of the others temporarily malfunctioned.

several clients as the minds of the small-size robot players. Figure 2.7 sketches the building
blocks of the architecture.

Action Client Object

Code Module Positions
& Coaching/
v

Raw Vision

Client
Module
Perceiving/

Transmitti -
Robot-specific (CQQ ransmitting Client
/QQQ Interface Module

Action code

o)
/ lj * / @] Module

Figure 2.7: The CMUnited-97 robot architecture with global perception and distributed action.

The complete system is fully autonomous consisting of a well-defined and challenging
processing cycle:

e The overhead camera with framegrabber grabs still images of the field.

e The image processor finds the ball’s and the robots’ locations and orientations in the
still images.

e The client control modules use the objects’ position information to produce control
information. Each control module controls one robot. Actions are abstract commands
indicating how the robots should move.

e The wireless communication link transmits the control information from the host com-
puter to the robots. Each robot has an identification binary code that is used on-board
to detect commands intended for that robot. The abstract commands from the control
modules are converted to a sequence of motor control bytes.

46 CHAPTER 2. SUBSTRATE SYSTEMS

e The robot hardware receives the motor commands and moves the physical robots.

Table 2.6 summarizes the inputs and outputs of the five components of the complete robot
architecture.

| Functionality | Entity , Input ’ Output

vision camera/framegrabber | continuous visual data | still frames

perception image processor still frames robots’ and ball’s
coordinates

skills and client control robots’ and ball’s abstract commands

strategy modules coordinates

communication | radio link abstract commands motor commands

movement robots motor commands robot movement

Table 2.6: The functional layers of the robot architecture with their inputs and outputs.

The remainder of Section 2.3 is organized as follows. In Section 2.3.2, I describe our
development of a preliminary image processor as well as the portions of the current image
processor developed principally by Han [Han and Veloso 97] that are relevant to understand-
ing the sensing capabilities of the robot agents. Then, in Section 2.3.3, I precisely specify
the perception and abstract actions that are the inputs and outputs of the client control
modules. Details of the other hardware components (the camera, framegrabber, radio link
and the physical robots) can be found in [Achim et al. 96]. The client control modules are
part of this thesis work and are therefore described in detail in a later chapter (Section 3.7).

2.3.2 The Image Processor

In this section I describe the preliminary image processor that I developed as part of our
initial CMUnited-96 robot implementation [Achim et al. 96]. Then I describe the portions
of the CMUnited-97 vision system developed principally by Han [Han and Veloso 97] that
are relevant to understanding the sensing capabilities of the robot agents.

The robots need sensory information describing the positions of the robots and the ball
on the field. The vision system provides this sensory information by way of an overhead
camera, framegrabber, and image processor. The fact that perception is achieved by a video
camera that overlooks the entire field offers an opportunity to get a complete, global view
of the world state. Although this setup may simplify the sharing of information among
multiple agents, it presents a challenge for reliable and real-time processing of the movement
of multiple moving objects—in our case, the ball, five agents on our team, and five agents
on the opposing team.

The CMUnited-96 Vision System

In our initial robot implementation [Achim et al. 96] which we entered in the MiroSot-96
competition [Kim 96], I was the principal developer of the image processor. In that system,
we use a standard camcorder mounted above the field. It produces NTSC video output that
is then processed by the framegrabber.

2.3. THE CMUNITED-97 REAL ROBOTS 47

The framegrabber takes raw, continuous image data and converts it into digital frames
at a maximum rate of 30 frames per second. The framegrabber produces still images such
as the one shown in Figure 2.8. The format is a 320 x 240 array of pixels, each having a red,
green, and blue value ranging from 0-255.

R TSRS S e e

Figure 2.8: An example of a still image of our initial CMUnited-96 robot implementation captured
by the framegrabber. Each robot has two different color patches so that we can detect both position
and orientation. Each shade in this greyscale image is a different color in reality

Fast image processing to discover the positions and orientations of the objects on the
field is a significant challenge. Our method is color-based. By knowing the color of the ball
and coding each robot with two different colors, one per half as shown in Figure 2.8 (each
shade in the greyscale image is a different color in reality), it is possible to scan the image
for pixels that are within a certain threshold distance from these colors.

Once one such pixel is found, the center of a color region is found by computing the
center of gravity of all the pixels in a local region that match that color within a threshold.
For example, the ball is orange. Thus, to find the ball, the entire image can be scanned for
a pixel that is close to orange. Then, in a small region around that pixel, the coordinates of
all of the orange pixels are averaged to indicate the center of the ball. For the robots, the
centers of the two halves are found in the same way, making it trivial to compute the centers
and orientations of the robots.

Ope important technique for speeding up the image processing is to rely on the assump-
tion that objects will not move very far from frame to frame. Thus we can search for
objects in a small region around their previous locations. Our image processing algorithm is
summarized in Table 2.7.

While we use several techniques to speed up the CMUnited-96 vision processing, it still
does not operate at frame rate: while the images are grabbed 30 times/sec, we can only
process them roughly 7 times/sec. The ability to operate reliably at frame rate is a significant
improvement in the CMUnited-97 vision system.

48 CHAPTER 2. SUBSTRATE SYSTEMS

To find robot R, consisting of colors C'1 and C2, at time T

e Find a pixel of color C'1 near the location of robot R at time T — 1. (At time 0, the
entire image must be scanned.)

e Find the center of gravity of all Cl-colored pixels near that pixel.
e Find the center of gravity of all C2-colored pixels near that pixel.

e Use the two centers of gravity to compute the center and the orientation of the robot.

Table 2.7: A high-level view of our algorithm for locating a given robot in a still frame used by
the CMUnited-96 vision-processing software.

The CMUnited-97 Vision System

In contrast to the robots detected by the algorithm laid out in Table 2.7, the CMUnited-97
robots are all marked with the same two colors. Thus there is the added challenge of
keeping track of which robot is which. Our current image processor, developed principally
by Han, successfully keeps track of five individual identical-looking teammates as well as five
opponents. The ball’s position and velocity are calculated at frame rate using a Kalman-Bucy
filter [Han and Veloso 97].

2.3.3 Agent Perception and Action

This section specifies the perception and action capabilities of the CMUnited-97 robot team
which is used as a substrate system in this thesis. The cognition component comprising the
client control modules is described in Section 3.7 since it is an implementation of the team

member agent architecture.

Perception

While the agents all get the same sensory information from a centralized image processor,
the control decisions are made in a distributed manner. The agents are controlled either one
at a time by the same process, or by completely separate processes all receiving the same

visual information.
Visual information arrives at the framegrabber’s processing rate: 30 frames/sec. The
vision system sends sensory information to each of the agents in the following form:

e 5 teammates: absolute (z,y,0) position and orientation coordinates.

e 5 opponents: absolute (z,y) position coordinates. Orientation markers are team-
dependent and thus cannot be reliably detected.

e Ball: absolute (z,y) position coordinates as well as (dz, dy) velocity information.

2.4. NETWORK ROUTING 49

Position information is accurate to within about lcm and orientation information is
accurate to within about 10 degrees, but the noise does not follow any regular distribution.
Since the camera always sees the entire field, there is no hidden state.

The field is 274cm in length and 153cm in width. Therefore, each of the 10 robots can
be in any of 274*153 possible positions, with the 5 teammates having any of 36 possible

- orientations. In addition, the ball can be in the same number of positions. Not considering

the continuous ball velocity and the past states of the world, the perceived state space has
(274 % 153)'! > 10 different states. Of course, the actual state space is infinitely large since
the robot positions and orientations can vary continuously.

‘ Action

The output of the client modules is abstract commands indicating how the robots should
move. Note that the two motors on the robots can be controlled separately. The motors
have encoders which enable precise control [Achim et al. 96]. Two types of commands are
available:

Distance mode: Each motor moves a specified distance in a specified direction. Used for
precise on-the-spot-turns.

Velocity mode: Each motor accelerates to a specified velocity. Used for continuous straight
or curved movement.

The communication link converts the abstract commands to a stream of motor control
bytes which can then be executed by the motor controllers on the robots. The commands
are executed reliably and can be sent at the vision system’s frame rate: 30 times/sec. Thus
perception and action are synchronous with sensations triggering actions.

2.4 Network Routing

Network routing is a domain with enough similar characteristics to robotic soccer that the
new TPOT-RL algorithm is effective, but enough differences to validate its generalizability.
As a domain for the experiments reported in Chapter 7, we use a modified version of a
publicly available packet routing simulator [Boyan and Littman 94].

In this simulator, a network at time ¢ consists of:

o A set of nodes N = {ng,...,nm_1},|N| = m. Each node n; consists of a queue of
packets K, C K, |K,,| = ki, at time ¢t. As packets are introduced into and removed
from the queue, K,,, and consequently #;,,, changes over time.

o A set of links L C {{n;,n;}|n;,n; € N} connecting pairs of nodes. From any node n;,
L,, C N is the set of links from n;: L,, = {n € N|{n,n;} € L}. |Ly,| = l,.

2

o A set of packets K = {ko,...,k,_1},|K| = 2 at time t. Each packet k; is introduced
at a source node k;,,,... € N and travels towards its destination node k;,,,, € N. The
packet also stores the time at which it left its source, k and when it arrives, the

Istime)

50 CHAPTER 2. SUBSTRATE SYSTEMS

time at which it reaches its destination k;,,, ... ki ,, € L is an ordered list of links
along which k; has traveled from £;,,,,.. to its current position along with the times at
which it has traversed each link. As packets are introduced into and removed from the
network, K, and consequently z;, changes over time.

e A node capacity Cyoqe indicating the maximum number of packets allowed in a node’s
packet queue: Vi, Ky, < Choge.

e A network capacity Ce indicating the number of packets that can be active at one
time in the network: z; < Che.

Two other parameters affecting the simulation are #; which is the time it takes a packet to
traverse a link and ¢, which is the time it takes for a node to process one packet. If at time
t, packet k enters the queue K, at node n;, it will stay there for £, ,,t, seconds.

As described by its authors, the network routing simulator is ...

...a discrete event simulator to model the motion of packets through a local
area network. Packets are periodically introduced into the network at a random
node with a random destination. Multiple packets at a node are stored in an
unbounded FIFO queue; however, we set a limit on the total number of packets
active in the network at a time.... In unit time, a node takes the top packet in
its queue, examines its destination, and chooses a neighboring node to which to
send the packet. A packet sent directly to its destination node is removed from
the network immediately [Littman and Boyan 93]. '

At any give time, the state space can have up to Cy.; packets with a source, destination,
and current location all in N (|N| = m). Thus the instantaneous size of the state space is:

|S] = (m?) = (2.2)

In addition, each packet has traversed some subset of the |L| links in the network, and the
agents internal states’ keep track of network statistics over time, thus increasing the effective
size of the state space indefinitely.

The packet routing problem can be viewed as a multi-agent collaborative problem by
modeling each node as having an independent agent which makes the routing decisions at
that node. When a node gets a packet, its agent must decide to which neighboring node
it should forward the packet. This decision certainly depends on the packet’s destination
and might also depend upon the node’s perception of the current state of the network. The
team’s goal is to route packets efficiently so that nodes do not reach their queue capacities
and so that packets arrive at their destinations as quickly as possible.

This formulation of network routing is a team problem: all the agents are trying to work
together to achieve optimal network performance. While neither the sensors nor the actua-
tors are noisy, there is no explicit inter-agent communication, and there are no adversaries,
the overall task is similar to robotic soccer in that unpredictable changes in network traffic,
like unpredictable changes in opponent behaviors, can dynamically change the task charac-
teristics. In addition, teammates’ actions and their resulting state transitions are unknown.
This last quality is that of opaque transitions and is a key characteristic enabling the effective
use of the TPOT-RL algorithm.

2.4. NETWORK ROUTING 51

2.4.1 Agent Perception and Action
Perception

When faced with the decision of where to send a particular packet k; at time ¢, the sensory
information available to an agent at a given node n; is:

® ki, the packet’s source;

® ki.oo the‘packet’s destination;

® ki .. the time the packet left its source;

® £, the links traversed (with times) by the packet;

e Kin;, the queue of packets waiting to be processed.

In addition, the agent can keep track of the traffic along its links. Since it either sends or
receives every packet that travels along one of these links, it can keep local traffic statistics
over time. Finally, the agent gets periodic overall network performance statistics as the
feedback of the team’s performance.

Action

The actions the agent can take are straightforward: the agent at node n; can send packet k;
to a neighboring node along any of the links in L,;. Sensing and acting are synchronous in
this domain: actions are triggered by a perception that the world has changed.

2.4.2 Example Network

Figure 2.9 illustrates our simulation of the packet routing problem. Nodes are represented
as circles and links are lines. Suppose that node A receives a packet destined for node B
along link 1. It must then decide whether to forward it along link 2, link 3, or possibly back
along link 1. ’

@ @ @ C
B

Figure 2.9: An example of the packet routing problem. Nodes are represented as circles and links
are lines. In this case, node A is receiving a packet destined for node B along link 1 and must
decide along which link to route it.

52 CHAPTER 2. SUBSTRATE SYSTEMS

This simulator is meant to be a test bed for learning experiments rather than a realistic
simulation of network routing. Nonetheless, it has been used by researchers other than the
simulator’s creators to test reinforcement learning approaches [Subramanian et al. 97].

Chapter 3

Team Member Agent Architecture

In order to create a coherent team of agents, the entire agent architecture must be designed
with the team in mind. “Collaboration must be designed into systems from the start; it
cannot be patched on. [Grosz 96]”

A multi-agent system which involves several agents that collaborate towards the achieve-
ment of a joint objective is viewed as a team of agents. Most proposed teamwork structures
(e.g. joint intentions [Cohen et al. 99], shared plans [Grosz 96)) rely on agents in a multi-agent
system to negotiate and/or contract with each other in order to initiate team plans. How-
ever, in dynamic, real-time domains with unreliable communication, complex negotiation
protocols may take too much time and/or be infeasible due to communication restrictions.

Simulated robotic soccer provides a time-critical environment in which agents in a team
alternate between periods of limited and unlimited communication. Before games and at
half-times, the team can effectively communicate with no limitations: each agent can be
given the entire internal decision-making mechanisms of all of its teammates. However, as
described in Section 2.2, during the course of a game, the agents must act independently in a
dynamic, real-time, low-bandwidth communication environment: if the agents take the time
to fully synchronize while playing, they may miss critical action opportunities and concede
an advantage to the opponents.

These domain characteristics motivate the introduction of the concept of periodic team
synchronization (PTS) domains. In PTS domains, during the limited communication pe-
riods, agents need to act autonomously, while still working towards a common team goal.
Time-critical environments require real-time response and therefore eliminate the possibil-
ity of heavy communication among team agents. However, in PTS domains, agents can
periodically synchronize in a safe, full-communication setting.

In this chapter, I describe our general team member agent architecture suitable for cre-
ating teams of agents in PTS domains [Stone and Veloso 99b]. This architecture includes a
mechanism for defining pre-determined multi-agent protocols accessible to the entire team,
called locker-room agreements. Within this team member agent architecture and using the
locker-room agreement, we define our flexible teamwork structure that allows for task decom-
position and dynamic role assignment in PTS domains [Stone and Veloso 99a]. In addition,
we define a communication protocol in service of the locker-room agreement that is suitable
for use during low-communication periods in a class of PTS domains: domains such as the

53

54 CHAPTER 3. TEAM MEMBER AGENT ARCHITECTURE

soccer server with single-channel, low-bandwidth communication environments [Stone and
Veloso 98b].

The team member agent architecture described in this chapter defines a complete agent,
including perception, cognition, and action. It is fully implemented as a simulated robotic
soccer team.

This chapter is organized as follows. Section 3.1 expands upon the introduction of PTS
domains and the two main contributions of this chapter: a flexible teamwork structure and a
low-bandwidth communication paradigm. Section 3.2 presents the general agent architecture
within which both the flexible teamwork structure and the low-bandwidth communication
paradigm are situated. Sections 3.3 and 3.4 formally present the teamwork structure and
the communication paradigm respectively. Section 3.5 gives details of our full implementa-
tions of both main contributions of this chapter within the simulated robotic soccer domain.
Section 3.6 presents extensive empirical results testing the effectiveness of these implemen-
tations. Section 3.7 describes the implementation of the team member agent architecture
and flexible formations within a second domain, namely real robotic soccer, and Section 3.8

is devoted to discussion and related work.

3.1 PTS Domains

We define periodic team synchronization domains as domains with the following character-
istics:

e There is a team of autonomous agents A that collaborate towards the achievement of
a joint long-term goal G.

e Periodically, the team can synchronize with no restrictions on communication: the
agents can in effect inform each other of their entire internal states and decision-
making mechanisms with no adverse effects upon the achievement of G. These periods
of full communication can be thought of as times at which the team is “off-line.”

e In general (i.e. when the agents are “on-line”):

— The domain is dynamic and real-time meaning that team performance is adversely
affected if an agent ceases to act for a period of time: G is either less likely to be
achieved, or likely to be achieved farther in the future. That is, consider agent a;.
Assume that all other agent behaviors are fixed and that were a; to act optimally,
G would be achieved with probability p at time ¢. If a; stops acting for any period
of time and then resumes acting optimally, either:

* G will be achieved with probability p’ at time ¢ with p’ < p; or
* G will be achieved with probability p at time ¢ with ¢ > ¢.

— The domain has unreliable communication, either in terms of transmission relia-
bility or bandwidth limits. In particular:

* If an agent‘ai € A sends a message m intended for agent a; € A, then m
arrives with some probability ¢ < 1; or

3.1. PERIODIC TEAM SYNCHRONIZATION (PTS) DOMAINS 35

* Agent a; can only receive x messages every y time units.

In the extreme, if ¢ = 0 or if x = 0, then the periods of full communication are interleaved
with periods of no communication, requiring the agents to act completely autonomously. In
all cases, there is a cost to relying on communication. If agent a; cannot carry on with its
action until receiving a message from a;, then the team’s performance could suffer. Because
of the unreliable communication, the message might not get through on the first try. And
because of the dynamic, real-time nature of the domain, the team’s likelihood of or efficiency
at achieving G is reduced.

The soccer server provides a PTS domain since teams can plan strategies before the
game, at halftime, or at other breakpoints; but during the course of the game, communi-
cation is limited. Its communication protocol involves a single, low-bandwidth, unreliable
communication channel for all 22 agents (see Chapter 2).

In PTS domains, teams are long-term entities so that it makes sense for them to have
periodic, reliable, private synchronization opportunities in which they can form off-line agree-
ments for future use in unreliable, time-critical environments. This view of teams is com-
plementary to teams that form on the fly for a specific action and keep communicating
throughout the execution of that action as in [Cohen et al. 99]. Instead, in PTS domains,
teams define coordination protocols during the synchronization opportunity and then dis-
perse into the environment, acting autonomously with limited or no communication possible.

It has been claimed that pre-determined team actions are not flexible or robust to fail-
ure [Tambe 97]. In the context of PTS domains, a key contribution of our work is the
demonstration that pre-determined multi-agent protocols can facilitate effective teamwork
while retaining flexibility. We call these pre-determined protocols locker-room agreements.
Formed during the periodic synchronization opportunities, locker-room agreements are re-
membered identically by all agents and allow them to coordinate efficiently.

In this chapter, I present the team member agent architecture, an agent architecture suited
for team agents in PTS domains. The architecture allows for an agent to act collaboratively
based on locker-room agreements.

A first approach to PTS domains is to break the task at hand into multiple rigid roles,
assigning one agent to each role. Thus each component of the task is accomplished and
there are no conflicts among agents in terms of how they should accomplish the team goal.
However such an approach is subject to several problems: inflexibility to short-term changes
(e.g. one robot is non-operational), inflexibility to long-term changes (e.g. a route is blocked),
and a lack of facility for reassigning roles.

We introduce instead formations as a teamwork structure within the team member agent
architecture. A formation decomposes the task space defining a set of roles with associated
behaviors. In a general scenario with heterogeneous agents, subsets of homogeneous agents
can flexibly switch roles within formations, and agents can change formations dynamically.

Within these PTS domains and our flexible teamwork structure, several challenges arise.
Such challenges include:

e how to represent and follow locker-room agreements;

e how to determine the appropriate times for agents to change roles and/or formations;

56 CHAPTER 3. TEAM MEMBER AGENT ARCHITECTURE

e how to ensure that all agents are using the same formation; and

e how to ensure that all roles in a formation are filled: since the agents are autonomous
and do not share memory, they could easily become uncoordinated.

Also within the team member agent architecture, we introduce a communication paradigm
appropriate for agents in PTS domains with single-channel, low-bandwidth, unreliable com-
munication during the dynamic, real-time (on-line) phases of operation. Not all PT'S domains
have such communication environments, but agents operating in those that do can implement
this communication paradigm within their locker-room agreements.

In a nutshell, the contributions of this chapter are: the introduction of the concepts of
PTS domains and locker-room agreements; the definition of a general team member agent
architecture for defining a flexible teamwork structure; the facilitation of smooth transi-
tions among roles and entire formations; a method for using roles to define pre-compiled
multi-step, multi-agent plans; and techniques for dealing with the obstacles to inter-agent
communication during the low-communication periods of PTS domains with single-channel,
low-bandwidth, unreliable communication during the “on-line” periods.

In addition to simulated robotic soccer, there are several other examples of PTS domains,
such as hospital/factory maintenance [Decker 96b], multi-spacecraft missions [Stone 97],
search and rescue, and battlefield combat [Tambe 97]. There are also several other domains
with similar communication requirements to the ones considered here. For example, aural
communication in crowded settings is one. Both people and robots using aural sensors
(e.g. [Fujita and Kageyama 97]) must contend with multiple simultaneous audible streams.
They also have a limit to the amount of sound they can process in a given amount of time,
as well as to the range within which communication is possible. Another example of such
a communication environment is arbitrarily expandable systems. If agents are not aware of
what other agents exist in the environment, then all agents must use a single universally-
known communication channel, at least in order to initiate communication.

3.2 Architecture Overview

The team member agent architecture is suitable for PTS domains. Individual agents can
capture locker-room agreements and respond to the environment while acting autonomously.
Based on a standard agent paradigm, our team member agent architecture allows agents to
sense the environment, to reason about and select their actions, and to act in the real world.
At team synchronization opportunities, the team also makes a locker-room agreement for
use by all agents during periods of limited communication. Figure 3.1 shows the functional
input/output model of the architecture.

The agent keeps track of three different types of state: the world state, the locker-room
agreement, and the internal state. The agent also has two different types of behaviors:
internal behaviors and external behaviors.

The world state reflects the agent’s conception of the current state of the real world, both
via its sensors and via the predicted effects of its actions. This conception can be
represented as a belief state in terms of probability distributions or confidence values.

3.2. ARCHITECTURE OVERVIEW 57

Locker-Room TEAM MEMBER
Agreement AGENT

ARCHITECTURE

External
Behaviors) ~

s '{ Interpreter State | Predictor

Internal

7
4
4
-

R e e

1 1
1 Sensor Information Action Primitives ¢

e e . Real |@------=-------"
World

Figure 3.1: A functional input/output model of the team member agent architecture for PTS
domains.

The world state is updated as a result of interpreted sensory information. It may also
be updated according to the predicted effects of the external behavior module’s chosen
actions. The world state is directly accessible to both internal and external behaviors.

The locker-room agreement is set by the team when it is able to privately synchronize.
It defines the flexible teamwork structure and the inter-agent communication protocols,
if any. It is identical for all team members. The locker-room agreement is accessible
only to internal behaviors.

The internal state stores the agent’s internal variables. It may reflect previous and current
world states, possibly as specified by the locker-room agreement. For example, the
agent’s role within a team behavior could be stored as part of the internal state. A
window or distribution of past world states could also be stored as a part of the internal
state. The agent updates its internal state via its internal behaviors.

The internal behaviors update the agent’s internal state based on its current internal
state, the world state, and the team’s locker-room agreement.

The external behaviors reference the world and internal states, and select the actions to
send to the actuators. The actions affect the real world, thus altering the agent’s future
percepts and predicted world states. External behaviors consider only the world and
internal states, without direct access to the locker-room agreement.

Internal and external behaviors are similar in structure. They are both sets of condi-
tion/action pairs where conditions are logical expressions over the inputs and actions are
themselves behaviors as illustrated in Figure 3.2. In both cases, a behavior is a directed
acyclic graph (DAG) of arbitrary depth. The leaves of the DAGs are the behavior types’
respective outputs: internal state changes for internal behaviors and action primitives for
external behaviors. One leaf is illustrated in Figure 3.2.

58 CHAPTER 3. TEAM MEMBER AGENT ARCHITECTURE

Behavior(args)
if (condition) then Behavior(args)
if (condition) then Behavior(args).
L

Behavior(args) ecee
if (condition) then Behavior(args)

if (condition) then Behavior(args)
[]

L]
if (condition) then Behavior(args)
Behavior{args)

Ff (condition) then Primitive(args

L J
if (condition) then Behavior(args) « o o & |if (condition) then Primitive(ars

if (condition) then Primitive(args

Figure 3.2: Behaviors in the team member agent architecture. Both internal and external behav-
iors are organized in directed acyclic graphs.

This notion of behavior is consistent with that laid out in [Mataric 94al]. In particular,
behaviors can be nested at different levels: selection among lower-level behaviors can be
considered a higher-level behavior, with the overall agent behavior considered a single “do-
the-task” behavior. There is one such top-level internal behavior and one top-level external
behavior; they are called when it is time to update the internal state or act in the world,
respectively.

The following section introduces the teamwork structure that builds upon this team
member agent architecture. The teamwork structure is designed for use in PTS domains. It
exploits the locker-room agreement and the behavior definitions of the team member agent

architecture.

3.3 Teamwork Structure

Common to all players, the locker-room agreement includes the team structure used by team
members while they are acting in a time-critical environment with limited or no communi-
cation. In this section, I present our teamwork structure. It defines:

1. Flexible agent roles with protocols for switching among them;
2. Collections of roles built into team formations; and
3. Multi-step, multi-agent plans for execution in specific situations: set-plays.

The teamwork structure indirectly affects the agents’ external behaviors by changing the
agents’ internal states via internal behaviors.

3.3.1 Roles

A role, r, consists of a specification of an agent’s internal and external behaviors. The
conditions and arguments of any behavior can depend on the agent’s current role, which is
a function of its internal state. At the extreme, a top-level external behavior could be a
switch, calling an entirely different behavior sub-graph for each possible role. However, the
role can affect the agent’s overall behavior at any level of its behavior graph: it could affect
just the arguments of a behavior deeply embedded in the behavior graph.

3.3. TEAMWORK STRUCTURE | 59

Roles may be rigid, completely specifying an agent’s behavior. Or they may be flezible,
leaving a certain degree of autonomy to the agent filling the role. For example, consider an
agent that has access to a clock and that can blow a whistle. Role r could rigidly specify
that the agent filling it must blow a whistle on the hour every hour. On the other hand, role
r could leave some flexibility to the agent that fills it, specifying that no fewer than 25% but
no more than 75% of the times that the hour changes, the agent must blow a whistle. In
this case, the agent must stay within a parametric range in order to successfully fill the role,
but on every given hour change, it can choose for itself what to do. By specifying ranges
of parameters or behavior options, the agent filling role r can be given an arbitrary amount
of flexibility. In this sense, a role can be thought of as a “soft constraint” on an agent’s
behavior. '

A role in the robotic soccer domain, can be a position such as a midfielder. In the
hospital maintenance domain, a role could specify the wing of the hospital whose floors the
appropriate agent should keep clean, while in the web search domain, it could specify a server
to search.

3.3.2 Formations

We achieve collaboration between agents through the introduction of formations. A forma-
tion decomposes the task space defining a set of roles. Formations include as many (possibly
redundant) roles as there are agents in the team, so that each role is filled by one agent.
In addition, formations can specify sub-formations, or units, that do not involve the whole
team. A unit consists of a subset of roles from the formation, a captain, and intra-unit
interactions among the roles.

For a team of n agents A = {ai, ay,...,a,}, any formation is of the form

F={R,{U,Us,...,Us}}

where R is a set of roles R = {r,79,...,7,} such that ¢ # j = r; # r;. Note that there are
the same number of roles as there are agents. However, it is possible to define redundant
roles such that the behavior specification of r; is equivalent to that of r; (i # j). Each unit
U; is a subset of R: U; = {ry,7s,...,Tik} such that 7, € R, a # b = 1;5 # 13 and 14 is
the captain, or unit leader. The map A — R is not fixed: roles can be filled by different
homogeneous agents. A single role may be a part of any number of units and formations.

Units are used to deal with local problem solving issues. Rather than involving the entire
team in a sub-problem, the roles that address it are organized into a unit. Captains are
unit-members with special privileges in terms of directing the other unit members.

Roles and formations are introduced independently from the agents that are to fill them.
The locker-room agreement specifies an initial formation; an initial map from agents to roles;
and run-time triggers for dynamic changing of formations. At any given time, each agent has
an opinion as to what formation the team is currently using. Agents keep mappings A — R
from teammates to roles in the current formation. All this team structuring information is
stored in the agent’s internal state. It can be altered via the agent’s internal behaviors.

Since agents are autonomous and operating in a PTS domain, during the periods of
limited communication there is no guarantee that they will all think that the team is using

60 CHAPTER 3. TEAM MEMBER AGENT ARCHITECTURE

the same formation, nor that they have accurate maps A — R. In fact, the only guarantee
is that each agent knows its own current role. Thus, in our implementation of the teamwork
structure, we create robust behaviors for team agents which do not depend upon having
correct, up-to-date knowledge of teammates’ internal states: they degrade gracefully. When
limited communication is available, efficient low-bandwidth communication protocols can
allow agents to inform each other of their roles periodically. Figure 3.3 illustrates a team of
agents smoothly switching roles and formations over time.

Locker-Room Agreement

F1 = {r2,r4,r5,r6,{r4,r5} }
F2 = {r1,r3,r5,r6,{r5,r6} }

O @ Team Formation = F2
A~ R ={(alx5),(a2,r6),(a3,rl),(a4,r3)}

- — e m e m et —— ;. ——————

© @ Time Team Formation = F2
A R = {(al,r5),(a2,r3),(a3,r6),(ad,rl)}
O Team Formation = F1

A — R = {(al,r5),(a2,r4),(a3,r6),(a4,r2)}

Figure 3.3: A team of agents smoothly switching roles and formations over time. Different roles
are represented as differently shaded circles. Formations are possibly overlapping collections of
roles. Units within the formations are indicated within a dotted enclosure. The definitions of all
roles, formations, and units are part of the locker-room agreement and are known to all agents.
An agent’s current role is indicated by the shaded circle in its head and its current formation is
indicated by an arrow to the formation. The agents first switch roles while staying in the same
formation; then they switch to an entirely new formation.

3.3.3 Set-Plays

As a part of the locker-room agreement, the team can define multi-step, multi-agent plans
to be executed at appropriate times. Particularly if there are certain situations that occur
repeatedly, it makes sense for the team to devise plans for those situations ahead of time.
We define a set-play as the combination of:

e A trigger condition indicating the set of states in which the set-play is activated; and

o A set of set-play roles Ry, = {spri,...,sprm}, m < n defining the actions to be taken
by the participants in the set-play. Each set-play role spr; includes:

— A set-play behavior to be executed; and

3.4. COMMUNICATION PARADIGM 61

— A termination condition indicating the set of states in which an agent should
cease filling the set-play role and resume its normal behavior.

The set-plays are defined in the locker-room agreement so that they are known to all
agents on the team. Note that a set-play need not involve the entire team: m < n. The
locker-room agreement also includes a general function to map roles in a formation to roles
in a set-play: R — R,,. Thus set-play roles are not assigned to pre-determined agents;
instead they are filled by whichever agent is filling the appropriate role in the team’s current
formation.

3.4 Communication Paradigm

The teamwork structure defined in Section 3.3 is designed to be appropriate for all PTS
domains. In the subclass of PTS domains with single-channel, low-bandwidth, unreliable
communication during the periods of limited communication, such as the soccer server, the
communication paradigm defined in this section is also appropriate. The communication
paradigm further illustrates the use of the locker-room agreement within the team member
agent architecture. Recall that PTS domains may have no communication possible during
the “on-line” periods. In those cases, of course, the communication paradigm presented here
does not apply.

Domains with single-channel, low-bandwidth, unreliable communication raise several
challenges for inter-agent communication. The locker-room agreement can be used to make
inter-agent communication more efficient and reliable. The five challenges addressed by our
communication approach are:

1. Team members need some method of identifying which messages on the single channel
are intended for which agent.

2. Since there is a single communication channel, agents must be prepared for active
interference by hostile agents. A hostile agent could mimic messages it has previously
heard at random times.

3. Since the communication channel has low bandwidth, the team must prevent itself
from “talking all at once.” Many communication utterances call for responses from
all team members. However, if all team members respond simultaneously, few of the
responses will get through.

4. Since communication is unreliable, agents must be robust to lost messages: their be-
haviors cannot depend upon receiving communications from a teammate.

5. Teams must determine how to maximize the chances that they are using the same
team strategy (formation) despite the facts that each is acting autonomously and that
communication is unreliable.

The characteristics and challenges of this communication environment are summarized in
Table 3.1.

CHAPTER 3. TEAM MEMBER AGENT ARCHITECTURE

Communication Environment | Challenges
e Many agents, teams e Message targeting and distinguishing
¢ Single-channel e Robustness to active interference
e Low-bandwidth e Maultiple simultaneous responses
e Unreliable e Robustness to lost messages
e Team coordination

Table 3.1: The characteristics and challenges of the type of communication environment considered
in this section.

In order to meet these challenges, we specify that a team uses messages with the following
fields, all of whose syntax and semantics are defined within the locker-room agreement:

e The <team-identifier> identifies messages from within the team as opposed to another
team in an adversarial environment.

e The <unique-team-member-ID> is a different sequential integer assigned to each team
member.

e The <encoded-time-stamp> is a security code that can be used to verify a message’s
authenticity.

e The <time-stamped-team-strategy> indicates the current formation that the sender
believes the team is using.

e The <selected-internal-state> contains portions of the sender’s internal state.

e The <message-type> and <message-data> contain the semantic content of the indi-
vidual message. The messages can use any syntactic and semantic codes (KQML [Finin
et al. 94] and KIF [Genesereth and Fikes 92] for example). The locker-room agreement
also includes a mapping from message type to response requirements.

e The <target> indicates the intended recipient(s) of the message. It could be intended
for a single team member identified either by <unique-team-member-ID> or by role
within the team’s current formation; for a unit of the current formation; or for all team

members.

In addition to this protocol which is defined within the locker-room agreement, some in-
ternal state variables need to be devoted to communication. When an agent hears a message,
it interprets it and updates the world state to reflect any information transmitted by the mes-
sage. It also stores the content of the message as a special variable last-message. Further-
more, based on the locker-room agreement, an internal behavior then updates the internal
state. If the message requires a response, three variables in the internal state are manipulated
by an internal behavior: response, response-flag, and communicate-delay. response is
the actual response that should be given by the agent as determined in part by the locker-
room agreement. All three of these variables are then referenced by an external behavior to

3.4. COMMUNICATION PARADIGM 63

determine when a response should be given. For example one condition-action pair of the top-
level external behavior might be: if (response-flag set and communicate-delay==0)
then say(response).

These message fields and internal state variables are components of our novel communi-
cation paradigm and represent contributions of our team member agent architecture. The
remainder of this section details how these particular message fields and internal state vari-
ables can be used to meet the challenges summarized in Table 3.1.

3.4.1 Message Targeting and Distinguishing

Since there is a single communication channel, agent a; hears messages sent by all agents
whether or not they are intended for it. -Messages sent by agents from another team are

- completely ignored. Messages sent by a teammate are identified by the <team-identifier>

field. Since all team members know the locker-room agreement, agents monitor all messages
from teammates to determine their teammates’ internal states, even if the content of the
message is intended for another teammate.

Agents can distinguish messages that are intended for them by checking the <team-
identifier> and <target> fields. An agent a; pays attention to a message from a member
of the same team that is targeted to a;, to the entire team, or to some subset of the team
that includes a;. The <target> field could identify an individual agent either by its unique
ID number or by the role that it is currently playing. Thus, a message could be sent to the
agent playing a particular role without knowing which agent that is. Similarly, a message
could be targeted towards all agents in a unit of the team’s current formation.

3.4.2 Robustness to Active Interference

The only further difficulty related to an agent distinguishing which messages are intended
for it arises in the presence of active interference. Consider a hostile agent h which hears a
message that is directed to a; at time ¢. h has full access to the message since all agents use
the same communication channel. Thus if A remembers the message and sends an identical
message at time u, agent a; will mistakenly believe that the message is from a teammate.
Although the message was appropriate at time ¢, it may be obsolete at time v and it could
potentially confuse a; as A intends.

This potential difficulty is avoided with the <encoded-time-stamp> field. Even a simple
time stamp is likely to safeguard against interference since h is not privy to the locker-room
agreement: it does not necessarily know which field is the time stamp. However, if h discovers
which field is the time stamp by noticing that it always matches the time of the message, it
could alter the field based on the time elapsed between times ¢t and u. Indeed, if there is a
globally accessible clock, h would simply have to replace ¢ with « in the message. However,
the team can safeguard against such interference techniques by encoding the time-stamp
using an injective function chosen as a part of the locker-room agreement. This function
can use any of the other message fields as arguments in order to make decryption as difficult
as possible. The only requirement is that a teammate receiving the message can invert the
function to determine the time at which the message was sent. If the time at which it was

64 CHAPTER 3. TEAM MEMBER AGENT ARCHITECTURE

sent is either too far in the past or in the future (according to the locker-room agreement),
then the message can be safely ignored. In particular, the locker-room agreement has a
variable message-lag-tolerance encoding this time. If a message sent at time ¢ arrives at
time v with u — ¢ > message~lag-tolerance, then the message is ignored.

By observing enough messages and comparing them with the actual time, it is theoreti-
cally possible for hostile agents to crack simple codes and alter the <encoded-time-stamp>
field appropriately before sending a false message. However, the function can be made arbi-
trarily complex so that such a feat is intractable within the context of the domain. If secrecy
is critical and computation unconstrained, a theoretically safe encryption scheme can be
used. The degree of complexity necessary depends upon the number of messages that will
be sent after the locker-room agreement. With few enough messages, even a simple linear
combination of the numerical message fields suffices.

3.4.3 Multiple Simultaneous Responses

The next challenge to meet is that of messages that require responses from several teammates.
However, not all messages are of this type. For example, a message meaning “where are you?”
requires a response, while “look out behind you” does not. Therefore it is first necessary for
agents to classify messages in terms of whether or not they require responses as a function of
the <message-type> field. Since the low-bandwidth channel prevents multiple simultaneous
responses, the agents must also reason about the number of intended recipients as indicated
by the <target> field. Taking these two factors into account, there are six types of messages,
indicated here as al,a2,a3,bl,b2, and b3:

Response requested
Message Target no | yes
Single agent al bl
Whole team a2 b2
Part of team a3l b3

When hearing any message, the agent updates its internal belief of the other agent’s status as
indicated by the <time-stamped-team-strategy> and <selected-internal-state> fields. How-
ever, only when the message is intended for it does it consider the content of the message.
Then it uses the following algorithm in response to the message:

1. If the message requires no response (types al-3), the agent simply updates its internal
state.

2. If the message requires a response then set response to the appropriate response
message, response-flag = 1 and

o If the agent was the only target (type bl), respond immediately:
communicate-delay = 0;

e If the message is sent to more than one target (types b2 and b3), set
communicate-delay based on the difference between the <unique-team-member-
ID> of the message sender and that of the receiver. Thus each teammate responds
at a different time, leaving time for teammate messages to go through.

3.4. COMMUNICATION PARADIGM 65

An internal behavior keeps decrementing communicate-delay as time passes. An external
behavior uses the communication condition-action pair presented above:

if (response-flag set and communicate-delay==0) then say(response)
where say is an actuator primitive. Players also set the communicate-delay variable in
the event that they need to send multiple messages to the same agent in a short time. This
communication paradigm allows agents to continue acting in real-time while reasoning about
the appropriate time to communicate.

3.4.4 Robustness to Lost Messages

In order to meet the challenge raised by unreliable communication leading to lost messages,
agents must not depend on communication to act. Communication is structured so that it
helps agents update their world and internal states. But agents do not stop acting while
waiting for communications from teammates. As brought up in [Tambe 96a], such a case
could cause infinite looping if a critical teammate fails to respond for any reason. As well as
continuing to act while waiting for communicate-delay to expire, agents ensure that they do
not rely on inter-agent communication by continuing to act while waiting for responses from
teammates. They also maintain world and internal states without help from teammates.
Communication can improve the reliability of an agent’s world state by elucidating some
of an agent’s hidden state; but communication is not necessary for an agent to maintain a
reasonable approximation of the world state.

3.4.5 Team Coordination

Finally, team coordination is difficult to achieve in the face of the possibility that autonomous
team members may not agree on the <time-stamped-team-strategy> or the mapping from
teammates to roles within the team strategy. Again, there are no disastrous results should
team members temporarily adopt different strategies; however they are more likely to achieve
their goal G if they can stay coordinated.

One method of coordination is via the locker-room agreement. Agents agree on globally
accessible environmental cues as triggers for switches in team strategy. Another method of
coordination which complements this first approach is via the time stamp. When hearing
a message from a teammate indicating that the team strategy is different from the agent’s
current idea of the team strategy, the agent adopts the more recent team strategy: if the
received message’s team strategy has a time-stamp that is more recent than that on the
agent’s current team strategy, it switches; otherwise it keeps the same team strategy and
informs its teammate of the change. Thus changes in team strategy can quickly propagate
through the team.

In particular, suppose that agent a; hears at time ¢ that the team formation is Fy. It
then hears a message from agent a; indicating that the team formation was set to F; at
time u. If ¢ < u, then F, is a more recent team decision and it updates its notion of the
team’s formation to F;. However, if u < ¢, it is agent a; that has an obsolete view of the
formation. a; then sends a message to a; indicating in the <time-stamped-team-strategy>
field that the formation was set to F} at time ¢, thus causing a; to update its notion of the

66 CHAPTER 3. TEAM MEMBER AGENT ARCHITECTURE

team’s formation. In the event that ¢ = u, the locker-room agreement must specify an order
of precedence among roles in order for the agents to determine which agent’s idea of the
current formation to regard as correct.

Depending on the available bandwidth in the particular apphcatlon the <selected-
internal-state> can also be used to facilitate team coordination by helping to keep the team
members up-to-date regarding the mapping A — R, and perhaps regarding object locations
that might be hidden to individual agents.

3.5 Implementation in Robotic Soccer

Robotic soccer is a very good example of a PTS domain: teams can coordinate before
the game, at half-time, and at other break points, but communication is limited during
play. In addition, as described in Chapter 2, the soccer server models a single-channel,
low-bandwidth, unreliable communication environment.

This section provides a detailed description of a specific implementation of the team mem-
ber agent architecture, the teamwork structure, and the communication approach presented
in Sections 3.2-3.4. The implementation is that of the CMUnited-98 simulated robotic soccer
team.

The implementation is described in great detail. In particular, Section 3.5.1 presents the
low-level action cycle, skills, and world model of CMUnited-98 agents. Further details, par-
ticularly implementation details of the skills, are available in Appendix B. The low-level de-
tails presented in Section 3.5.1 are important for gaining an understanding of the basic agent
perception and action capabilities. In the context of the team member agent architecture,
they represent the interpreter, the world state, the predictor, and the external behaviors.
These portions of the agent architecture are concerned principally with issues relating to an
individual agent. On the other hand, the teamwork structure and communication paradigm
implementations, presented in Sections 3.5.2 and 3.5.3, deal with collaborative, team issues.
They are defined within the locker-room agreement, internal behaviors, and internal state.

3.5.1 Action Cycle and World Model

This section defines the portions of the CMUnited-98 simulated robotic soccer agent im-
plementation that relate to an individual agent. In the context of the team member agent
architecture presented in Section 3.2, this section covers the interpreter, the world state, the
predictor, and the external behaviors.

Timing Actions
CMUnited-98 agents are capable of perception, cognition, and action. By perceiving the
world, they build a model of its current state. Then, based on a set of behaviors, they
choose an action appropriate for the current world state.

A driving factor in the design of the agent architecture is the fact that the simulator

operates in fixed cycles of length simulator_step (100 msec). As presented in Section 2.2,
the simulator accepts commands from clients throughout a cycle and then updates the world

3.5. IMPLEMENTATION IN ROBOTIC SOCCER 67

state all at once at the end of the cycle. Only one action command (dash, kick, turn, or
catch) is executed for a given client during a given cycle.

Therefore, agents (simulator clients) should send exactly one action command to the
simulator in every simulator cycle. If more than one command is sent in the same cycle,
a random one is executed, possibly leading to undesired behavior. If no command is sent
during a simulator cycle, an action opportunity has been lost: opponent agents who have
acted during that cycle may gain an advantage. In the team member agent architecture,
sending an action corresponds to executing the top-level external behavior.

Since the simulator updates the world at the end of every cycle, it is advantageous to try
to determine the state of the world at the end of the previous cycle when choosing an action
for the current cycle. As such, the basic agent loop during a given cycle ¢ is as follows:

e Assume the agent has consistent information about the state of the world at the end
of cycle t — 2 and has sent an action during cycle t — 1.

e While the server is still in cycle ¢ — 1, upon receipt of a sensation (see, hear, or
sense_body), process the sensation in the interpreter and store the new information in
temporary structures. Do not update the world state.

e When the server enters cycle ¢ (determined either by a running clock or by the receipt
of a sensation with time stamp ¢), use all of the information available (temporary
information from sensations and predicted effects of past actions) to update the
world state to match the server’s world state (the “real world state”) at the end of
cycle £ — 1. Then choose and send an action to the server for cycle ¢: execute the
top-level external behavior. ‘

e Repeat for cycle t + 1.

While the above algorithm defines the overall agent loop, much of the challenge is involved
in updating the world state effectively and choosing an appropriate action. The remainder
of this section goes into these processes in detail.

The World State

When acting based on a world model, it is important to have as accurate and precise a model
of the world as possible at the time that an action is taken. In order to achieve this goal,
CMUnited-98 agents gather sensory information over time, extracting its meaning via the
interpreter, and process the information by incorporating it into the world state immediately
prior to acting.

There are several objects in the world, such as the goals and the field markers which
remain stationary and can be used for self-localization. Mobile objects are the agent itself, the
ball, and 21 other players (10 teammates and 11 opponents). These objects are represented
in a type hierarchy as illustrated in Figure 3.4.

Each agent’s world state stores an instantiation of a stationary object for each goal,
sideline, and field marker; a ball object for the ball; and 21 player objects. Since players
can be seen without their associated team and/or uniform number, the player objects are

68 CHAPTER 3. TEAM MEMBER AGENT ARCHITECTURE
Object

Stationary Mobile
Object Object

Ball Player
Figure 3.4: The agent’s object type hierarchy.

not identified with particular individual players. Instead, the variables for team and uniform
number can be filled in as they become known.

Mobile objects are stored with confidence values within [0,1] indicating the confidence
with which their locations are known. The confidence values are needed because of the large
amount of hidden state in the world: no object is seen consistently. While it would be a
mistake to only remember objects that are currently in view, it is also wrong to assume that
a mobile object will stay still (or continue moving with the same velocity) indefinitely. By
decaying the confidence in unseen objects over time, agents can determine whether or not
to rely on the position and velocity values [Bowling et al. 96].

All information is stored as global coordinates even though both sensor and actuator
commands are specified in relative coordinates (angles and distances relative to the agent’s
position on the field). Global coordinates are easier to store and maintain as the agent
moves around the field because the global coordinates of stationary objects do not change
as the agent moves, while the relative coordinates do. It is a simple geometric calculation to
convert the global coordinates to relative coordinates on demand as long as the agent knows
its own position on the field.

The variables associated with each object type are as follows:

Object :

e Global (z,y) position coordinates
e Confidence within [0,1] of the coordinates’ accuracy

Stationary Object : nothing additional

Mobile Object :

e Global (dz, dy) velocity coordinates
e Confidence within [0,1] of the coordinates’ accuracy

Ball : nothing additional

Player :
e Team
e Uniform number
e Global 6 facing angle
e Confidence within [0,1] of the angle’s accuracy

Updating the World State

Information about the world can come from

3.5. IMPLEMENTATION IN ROBOTIC SOCCER 69

e Visual information;

e Audial information;

e Sense_body information; and

e Predicted effects of previous actions.

Visual information arrives to the interpreter as relative distances and angles to objects
in the player’s view cone. Audial information could include information about global ob-
ject locations from teammates. Sense_body information pertains to the agent’s own status
including stamina, view mode, and speed.

Whenever new information arrives at the interpreter, it is stored in temporary structures
with time stamps and confidences (1 for visual information, possibly less for audial informa-
tion). Visual information is stored as relative coordinates until the agent’s exact location is
determined. :

When it is time to act during cycle ¢, all of the available information is used to best
determine the server’s world state at the end of cycle ¢ — 1. If no new information arrived
pertaining to a given object, the velocity and actions taken are used by the predictor to
predict the new position of the object and the confidence in that object’s position and
velocity are both decayed.

When the agent’s world state is updated to match the end of simulator cycle ¢ — 1, first
the agent’s own position is updated to match the time of the last sight; then those of the
ball and players are updated.

The Agent Itself: Since visual information is given in coordinates relative to the agent’s
position, it is important to determine the agent’s exact position at the time of the
sight. When updating the world state to match the end of simulator cycle ¢ — 1, there
may have been visual information with time stamp ¢ — 1 and/or ¢ (anything earlier
would have been incorporated into the previous update of the world state at the end
of cycle t — 1).

If the latest visual information has time stamp ¢ — 1, then the agent’s own position
is not updated until after the other objects have been updated since their coordinates
are given relative to the old agent position. On the other hand, if the latest visual
information has time stamp ¢, or if there has been no new visual information since the
last world-state update, the agent’s status can be updated immediately.

- In either case, the following process is used to update the information about the agent:

o If new visual information has arrived:

— The agent’s position can be determined accurately by using the relative co-
ordinates of one seen line and the closest stationary object.

e If no visual information has arrived:

— Bring the velocity up to date, possibly incorporating the predicted effects of
any actions (a dash) taken during the previous cycle.

CHAPTER 3. TEAM MEMBER AGENT ARCHITECTURE

— Using the previous position and velocity, predict the new position and veloc-
ity.

e If available, reset the agent’s speed as per the sense_body information. Assume

velocity is in the direction the agent is facing.

e Bring the player’s stamina up to date either via the sense_body information or
from the predicted action effects.

The Ball: As the key focus of action initiative in the domain, the ball’s position and velocity
drives a large portion of the agents’ decisions. As such, it is important to have as
accurate and up-to-date information about the ball as possible.

The ball information is updated as follows:

e If there was new visual information, use the agent’s absolute position at the
time (determined above), and the ball’s temporarily stored relative position to
determine the ball’s absolute position at the time of the sight.

e If velocity information is given as well, update the velocity. Otherwise, check if
the old velocity is correct by comparing the new ball position with the expected
ball position.

e If no new visual information arrived or the visual information was from cycle t—1,
estimate its position and velocity for cycle ¢ using the values from cycle ¢t — 1. If
the agent kicked the ball on the previous cycle, the predicted resulting ball motion
is also taken into account.

e If the ball should be in sight (i.e. its predicted position is in the player’s view cone),
but isn’t (i.e. visual information arrived, but no ball information was included),
set the confidence to 0.

e Information about the ball may have also arrived via communication from team-
mates. If any heard information would increase the confidence in the ball’s posi-
tion or velocity at this time, then it is used as the correct information. Confidence
in teammate information can be determined by the time of the information (did
the teammate see the ball more recently?) and the teammate’s distance to the
ball (since players closer to the ball see it more precisely).

Ball velocity is particularly important for agents when determining whether or not
(or how) to try to intercept the ball, and when kicking the ball.. However, velocity
information is often not given as part of the visual information string, especially when
the ball is near the agent and kickable. Therefore, when necessary, the agents attempt
to infer the ball’s velocity indirectly from the current and previous ball positions.

Teammates and Opponents: The biggest challenge in keeping track of player positions
is that the visual information often does not identify the player that is seen (see Fig-
ure 2.4). One might be tempted to ignore all ambiguously-specified players. However,
for strategic planning it is very useful to have a complete picture of the player positions
around the field.

3.5. IMPLEMENTATION IN ROBOTIC SOCCER 71

In general, player positions and velocities are determined and maintained in the same
way as in the case of the ball. A minor addition is that the direction a player is facing
is sometimes available from the visual information.

When a player is seen without full information about its identity, previous player posi-
tions can be used to help disambiguate the identity. Knowing the maximum distance
a player can move in any given cycle, it is possible for the agent to determine whether
a seen player could be the same as a previously identified player. If it is physically
possible, the agent assumes that they are indeed the same player.

Since different players can see different regions of the field in detail, communication
can play an important role in maintaining accurate information about player locations.

From the complete set of player locations, an agent can determine both the defensive
and offensive offsides lines. It is particularly important for forwards to stay in front of
the last opponent defender in order to avoid being called offsides. Forwards periodically
look towards the opponent defenders in order to increase the reliability of their location
information.

Agent Skills: Low-Level External Behaviors

Once the agent has determined the server’s world state for cycle ¢ as accurately as possible,
it can choose and send an action to be executed at the end of the cycle. That is, it must
execute its external behavior. At the top level, it first chooses its behavior mode or its local
goal within the team’s overall strategy. The behavior mode determines the subgraph of
the external behavior to be executed. The subgraphs contain several low-level skills which
provide the agent with basic capabilities. The output of the skills are primitive movement
commands.

The skills available to CMUnited-98 players include kicking, dribbling, ball interception,
goaltending, defending, and clearing. The implementation details of these skills are described
in Appendix B.

The common thread among these skills is that they are all predictive, locally optimal
skills (PLOS). They take into account predicted world states as well as predicted effects of
future actions in order to determine the optimal primitive action from a local perspective,
both in time and in space.

One simple example of PLOS is each individual agent’s stamina management. The
server models stamina as having a replenishable and a non-replenishable component. Each
is only decremented when the current stamina goes below a fixed threshold. Each player
monitors its own stamina level to make sure that it never uses up any of the non-replenishable
component of its stamina. No matter how fast it should move according to the behavior the
player is executing, it slows down its movement to keep itself from getting too tired. While
such behavior might not be optimal in the context of the team’s goal, it is locally optimal
considering the agent’s current tired state.

Even though the skills are predictive, the agent commits to only one action during each
cycle. When the time comes to act again, the situation is completely reevaluated. If the
world is close to the anticipated configuration, then the agent will act similarly to the way

72 CHAPTER 3. TEAM MEMBER AGENT ARCHITECTURE

it predicted on previous cycles. However, if the world is significantly different, the agent will
arrive at a new sequence of actions rather than being committed to a previous plan. Again,
it will only execute the first step in the new sequence.

Behavior Modes: The Top-Level External Behavior

Given all of the individual skills available to the CMUnited-98 agents, it becomes a significant
challenge to coordinate the team so that the players are not all trying to do the same thing
at the same time. Of course one and only one agent should execute the goaltending behavior.
But it is not so clear how to determine when an agent should move towards the ball, when

it should defend, when it should dribble, or clear, etc.
A player’s top-level external behavior decision is its behavior mode. Implemented as

a rule-based system, the behavior mode determines the abstract behavior that the player
should execute. For example, there is a behavior mode for the set of states in which the
agent can kick the ball. Then, the decision of what to do with the ball is made by way of a
more involved decision mechanism represented as a subgraph of the external behavior. On
each action cycle, the first thing a player does is re-evaluate its behavior mode.

The behavior modes include:

Goaltend: Only used by the goaltender.
Localize: Find own field location if it’s unknown.
Face Ball: Find the ball and look at it.

Handle Ball: Used when the ball is kickable.

Active Offense: Go to the ball as quickly as possible. Used when no teammate could get
there more quickly.

Auxiliary Offense: Get open for a pass. Used when a nearby teammate has the ball.
Passive Offense: Move to a position likely to be useful offensively in the future.

Active Defense: Go to the ball even though another teammate is already going. Used in
the defensive end of the field.

Auxiliary Defense: Mark an opponent.

Passive Defense: Track an opponent or go to a position likely to be useful defensively in
the future.

The detailed conditions and effects of each behavior mode are described in Appendix C.
However, they will also become more clear as the role-based flexible team structure is de-
scribed in Section 3.5.2.

The remainder of this section details the implementations of both main contributions
of this chapter: the flexible teamwork structure and the communication paradigm. Both
implementations are unified within the CMUnited simulated robotic soccer system, building
upon the action cycle and world state model presented here.

3.5. IMPLEMENTATION IN ROBOTIC SOCCER 73

3.5.2 Teamwork Structure Implementation

One approach to task decomposition in the soccer server is to assign fixed coordinate positions
to agents.! Such an approach leads to several problems: i) short-term inflexibility in that
the players cannot adapt their positions to the ball’s location on the field; ii) long-term
inflexibility in that the team cannot adapt to opponent strategy; and iii) local inefficiency
in that players often get tired running across the field back to their positions after chasing
the ball. Our formations allow for flexible teamwork and combat these problems. (The term
“position” is often used to denote the concept of “role” in the soccer domain. In this section
I use the two terms interchangeably.)

This section describes the CMUnited simulator team implementation of the teamwork
structure presented in Section 3.3. In the context of the team member agent architecture
in Section 3.2, it covers the locker-room agreement, the internal behaviors, and the internal
state.

Domain Instantiations of Roles and Formations

Figure 3.5 shows a simplified top-level external behavior used by a team agent. The agent’s
top priority is to locate the ball. If the ball’s location is known, it moves towards the ball or
goes to its position (i.e. to assume its role), depending on its internal state. It also responds to
any requested communications from teammates. The sub-behaviors of the top-level behavior
are all behavior modes.

External Behavior: Play Soccer()

If (Ball Lost) Face Ball()

If (Ball known AND Chasing) Handle Ball(args1)

If (Ball known AND Not Chasing) Passive Offense(args2)
If (Commuincate Flag Set) Communicate()

Figure 3.5: An example of a simplified top-level external behavior for a robotic soccer player.

The referenced “handle ball” and “passive offense” behaviors may be affected by the
agent’s current role and/or formation. Such effects are realized by references to the internal
state either at the level of function arguments (argsl, args2), or within sub-behaviors. None
of the actions in the condition-action pairs here are action primitives; rather, they are calls
to lower level behaviors.

The definition of a position includes home coordinates, a home range, and a mazimum
range, as illustrated in Figure 3.6. The position’s home coordinates are the default location
to which the agent should go. However, the agent has some flexibility, being able to set its
actual home position anywhere within the home range. When moving outside of the max
range, the agent is no longer considered to be in the position. The home and max ranges of
different positions can overlap, even if they are part of the same formations.

A formation consists of a set of positions and a set of units (as defined in Section 3.3.2).
The formation and each of the units can also specify inter-position behavior specifications

1One of the teams in Pre-RoboCup-96 used and depended upon these assignments: the agents passed to
the fixed positions regardless of whether or not there was a teammate there.

74 : CHAPTER 3. TEAM MEMBER AGENT ARCHITECTURE

Midfielder,
Left
I
k j < ® Home Coordinates
Géalie, _3 Home Range

Figure 3.6: Different positions with home coordinates and home and max ranges.

for the member positions, as illustrated in Figure 3.7(a). In this case, the formations specify
inter-role interactions, namely the positions to which a player should consider passing the
ball. We use decision tree learning to enable players to decide where to pass from among
these options (see Chapter 6). Figure 3.7(b) illustrates the units, the roles involved, and
their captains. Here, the units contain defenders, midfielders, forwards, left players, center
players, and right players.

——————————————————————————————

-] S U
R
B R GO T I S i
. 3@ Vﬂ' SEERS ST ' L'
C77) =Unit O = Unit Captain

o —»
(a) (b)

Figure 3.7: (a) A possible formation (4-3-3) for a team of 11 players. Arrows represent passing
options. (b) Positions can belong to more than one unit.

Since the players are all autonomous, in addition to knowing its own role, each one has its
own belief of the team’s current formation along with the time at which that formation was
adopted, and a map of teammates to positions. Ideally, the players have consistent beliefs
as to the team’s state, but this condition cannot be guaranteed between synchronization
opportunities.

For example, consider the passive offense behavior in Figure 3.5. This external behavior
references the agent’s internal state via a series of function calls. Specifically, the agent is to
move to some location within the home range of its current position in the team’s current
formation:

TargetLocation € HomeRange(MyPosition(CurrentFormation())) (3.1)

where HomeRange (p) returns the home range of position p; MyPosition(f) returns a player’s
own current position in formation f; and CurrentFormation() returns the player’s own
opinion of the team’s current formation. Thus the internal behaviors that determine the
player’s current position and formation affect its external behavior. Notice that by specifying

3.5. IMPLEMENTATION IN ROBOTIC SOCCER 75

a range of possible locations, the role leaves some flexibility to the autonomous player: it
can choose which specific TargetLocation to move to within the range.

Different roles can also have entirely different external behaviors. As presented in Sec-
tion 3.3.1, each role could have an entirely different external behavior subgraph.

Our teamwork structure for PTS domains allows for several significant features in our
simulated soccer team. These features are: (i) the definition of switching among multiple
formations with units; (ii) flexible position adjustment and position switching; (iii) and
pre-defined, special-purpose plays (set-plays).

Dynamic Switching of Formations

We implemented several different formations, ranging from very defensive (8-2-0) to very
offensive (2-4-4).> The full definitions of all of the formations are a part of the locker-room
agreement. Therefore, they are all known to all teammates. However during the periods of
full autonomy and limited communication, it is not necessarily known what formation the
rest of the teammates are using. Three approaches can be taken to address this problem:

Static formation: the formation is set by the locker-room agreement and never changes;

Run-time formation switch: during team synchronization opportunities, the team sets
globally accessible run-time evaluation metrics as formation-changing indicators.

Communication-triggered formation switch: one team member decides that the team
should switch formations and communicates the decision to teammates.

Both run-time formation switches and communication-triggered formation switches are
internal behaviors. The run-time triggers and communication protocols are defined in the
locker-room agreement. When a run-time evaluation metric indicates that the formation
should change, or when a heard communication triggers a formation change, an internal
behavior changes the player’s opinion of the team’s formation in its internal state.

This change in internal state can then affect external behaviors. For example, a switch in
formations changes the output of the CurrentFormation() function in Equation 3.1. The
outputs of MyPosition() and HomeRange() are also altered: the new formation consists of
a different collection of roles with different home ranges. Thus the passive offense external
behavior changes as a result of the formation switch.

The CMUnited simulator team uses run-time formation switches. Based on the amount
of time left relative to the difference in score, the team switches to an offensive formation if it
was losing near the end of the game and a defensive formation if it was winning. Specifically,
the team starts out in a 4-4-2 formation. If AMinutes is the number of minutes left in the
game, and AScore is the difference in score (AScore > 0 if the team is winning; AScore < 0
if the team is losing), then the team uses the following run-time algorithm:

o If AScore < 0 and —AScore > AMinutes, then switch to a 3-3-4 formation;

2Soccer formations are typically described as X-Y-Z where X, Y, and Z are the number of defenders,
midfielders, and forwards respectively. It is assumed that the eleventh player is the goaltender [LaBlanc and
Henshaw 94].

76 CHAPTER 3. TEAM MEMBER AGENT ARCHITECTURE

e If AScore > 0 and AScore > AMinutes, then switch to a 8-2-0 formation;
e Otherwise switch to (or stay in) a 4-4-2 formation.

Since each agent is able to independently keep track of the score and time, the agents are
always able to switch formations simultaneously.

Communication-triggered formation switches have also been implemented and tested.
Details are presented in the context of the communication paradigm implementation (Sec-

tion 3.5.3).

Flexible Positions

As emphasized throughout, homogeneous agents can play different positions. But such
a capability raises the challenging issue of when the players should change positions. In
addition, with teammates switching positions, a player’s internal player-position map A — R
could become incorrect and/or incomplete. The locker-room agreement provides procedures
to the team that allow for coordinated role changing. In CMUnited’s case, the locker-room
agreement designates an order of precedence for the positions within each unit. Unless their
pursuit of the ball leads them from their position, players only switch into a more important
position than their current position.

By switching positions within a formation, the overall joint performance of the team can
be improved. Position-switching has the potential to save player energy and to allow them
to respond more quickly to the ball. However, switching positions can also cause increased
player movement if a player has to move across the field to occupy its new position. Players
must weigh the possible costs and benefits before deciding to switch positions.

Like switching formations, switching positions can change external behaviors via their
references to the internal state. In Equation 3.1, switching positions changes the value re-
turned by MyPosition(), thus also affecting the value of HomeRange (): the player executing
the passive offense external behavior chooses its location from a different range of possible
positions.

In addition to having the flexibility to switch to a different position, CMUnited-98 agents
also have flexibility within their positions. That is, the external behavior references the
internal state to determine a range of possible locations that are determined by the player’s
current position. However, within this range, the role does not specify the player’s precise
location. For example, in the passive offense external behavior (equation 3.1), the player
must choose its TargetLocation from within the home range of its current position.

In the CMUnited multi-agent approach, the player positions itself flexibly such that it
anticipates that it will be useful to the team, either offensively or defensively. The agents
can exercise this flexibility within its external behaviors in three ways:

e Opponent marking;

e Ball-dependent positioning;

e Strategic positioning using attraction and repulsion (SPAR).

3.5. IMPLEMENTATION IN ROBOTIC SOCCER 77

When marking opponents, agents move next to a given opponent rather than staying at
the default position home. The opponent to mark can be chosen by the player (e.g. the closest
opponent), or by the unit captain which can ensure that all opponents are marked, following
a preset algorithm as part of the locker-room agreement. The low-level agent behavior used
when marking an opponent is specified in Appendix B (Section B.1.6).

When using ball-dependent positioning, the agent adjusts its location within its range
based on the instantaneous position of the ball. For example, when the ball is on the same
side of the field as the agent, the agent tries to move to a point on the line defined by its
own goal and the ball. When the ball is on the other side of the field, the player adjusts its
position back towards its own goal.

Ball-dependent positioning is an improvement over rigid roles in which agents stay in a
fixed home position. However, by taking into account the positions of other agents as well
as that of the ball, an even more informed positioning decision can be made. The idea of
strategic position by attraction and repulsion (SPAR) is one of the novel contributions of
the CMUnited-98 software. It was developed jointly in simulation and on the CMUnited-98
small-robot platform [Veloso et al. 99b).

When positioning itself using SPAR, the agent uses a multi-objective function with at-
traction and repulsion points subject to several constraints. To formalize this concept, we
introduce the following variables:

e P - the desired position for the passive agent in anticipation of a passing need of its
active teammate;

e 7 - the number of agents on each team;

e O; - the current position of each opponent, i =1,...,n;

e T; - the current position of each teammate, i =1,...,(n — 1);
e B - the current position of the active teammate and ball;

e G - the position of the opponent’s goal.

SPAR extends similar approaches of using potential fields for highly dynamic, multi-
agent domains [Latombe 91]. The probability of collaboration in the robotic soccer domain
is directly related to how “open” a position is to allow for a successful pass. Thus, SPAR
maximizes the distance from other robots and minimizes the distance to the ball and to the
goal according to several forces, namely:

e Repulsion from opponents, i.e. maximize the distance to each opponent:
Vi, max dist(P, O;)

e Repulsion from teammates, i.e. maximize the distance to other passive teammates:
Vi, max dist(P, T;)

o Attraction to the active teammate and ball: min dist(P, B)

o Attraction to the opponent’s goal: min dist(P, G)

78 CHAPTER 3. TEAM MEMBER AGENT ARCHITECTURE

...................

eBall

Figure 3.8: The four possible rectangles, each with one corner at the ball’s location, considered
for positioning by simulator agents when using SPAR.

This formulation is a multiple-objective function. To solve this optimization problem,
we restate the problem as a single-objective function. As each term may have a different
relevance (e.g. staying close to the goal may be more important than staying away from
opponents), we want to apply a different weighting function to each term, namely fo,, /1,
fB, and fg, for opponents, teammates, the ball, and the goal, respectively. Our anticipation
algorithm then maximizes a weighted single-objective function with respect to P:

max(i fo,(dist(P,0;)) + %fﬂ(dist(P,fZ})) — fe(dist(P, B)) — fg(dist(P,G)))

=1 =1

In our case, we use fo. = fr, = z, fgp = 0, and fg = z®. For example, the last term of
the objective function above expands to (dist(P, G))>.

One constraint in the simulator team relates to the position, or role, that the passive
agent is playing relative to the position of the ball. The agent only considers locations that
are within one of the four rectangles illustrated in Figure 3.5.2: the one closest to the position
home of the position that the agent is currently playing. This constraint helps ensure that
the player with the ball will have several different passing options in different parts of the
field. In addition, players do not need to consider moving too far from their positions to
support the ball.

Since this position-based constraint already encourages players to stay near the ball, we
set the ball-attraction weighting function fg to the constant function y = 0. In addition to
this first constraint, the agents observe three additional constraints. In total, the constraints
in the simulator team are:

e Stay in an area near one’s home position;
e Stay within the field boundaries;
e Avoid being in an offsides position;

e Stay in a position in which it would be possible to receive a pass.

3.5. IMPLEMENTATION IN ROBOTIC SOCCER 79

This last constraint is evaluated by checking that there are no opponents in a cone with
vertex at the ball and extending to the point in consideration.

In our implementation, the maximum of the objective function is estimated by sampling
its values over a fine-grained mesh of points that satisfy the above constraints.

Using this SPAR algorithm, agents are able to anticipate the collaborative needs of their
teammates by positioning themselves in such a way that the player with the ball has several
useful passing options.

Pre-Planned Set-Plays

The final implemented improvement facilitated by our flexible teamwork structure is the
introduction of set-plays, or pre-defined, special-purpose plays. As a part of the locker-room
agreement, the team can define multi-step, multi-agent plans to be executed at appropriate
times. Particularly if there are certain situations that occur repeatedly, it makes sense for
the team to devise plans for those situations.

In the robotic soccer domain, several situations occur repeatedly. For example, after
every goal, there is a kickoff from the center spot; and when the ball goes out of bounds,
there is a goal-kick, a corner-kick, or a kick-in. In each of these situations, the referee
informs the team of the situation. Thus all the players know to execute the appropriate
set-play. A particular referee’s message is the trigger condition for each set-play. Associated
with each set-play role is a set-play behavior indicating a location on the field as well as
an action to execute when the ball arrives. The player in a given role might pass to the
player filling another role, shoot at the goal, or kick the ball to some fixed location. The
termination condition for each role is either the successful execution of the prescribed action
or the passage of a specified amount of time from the beginning of the set-play.

The locker-room agreement specifies that the roles in the current team formation are
mapped to the set-play roles in the way requiring the least movement of agents from their
position homes. That is F' — R, is chosen to minimize

> Dist(r, spr)

spre€Rsp

where Dist(r, spr) is the distance from the home location of role r to the home location of
its associated set-play role spr. This assignment of roles to set-play roles is part of each
agent’s internal behavior.

For example, Figure 3.9 illustrates a sample corner-kick set-play. The set-play designates
five set-play roles, each with a specific location, which should be filled before the ball is put
back into play. Based on the home positions of the current formation, each individual agent
can determine the best mapping from positions to set-play locations, i.e. the mapping that
requires the least total displacement of the 5 players. If there is no player filling one of the
necessary formation roles, then there must be two players filling the same role, one of which
must move to the vacant role. In the event that no agent chooses to do so, the set-play
can proceed with any single set-play role unfilled. The only exception is that some player
must fill the set-play role responsible for kicking the ball back into play. A special-purpose
protocol is incorporated into the set-play behaviors to guarantee such a condition.

80 CHAPTER 3. TEAM MEMBER AGENT ARCHITECTURE

Once the set-play roles are filled, each player executes the action associated with its
set-play role as an external behavior. As illustrated by the role starting the corner-kick in
Figure 3.9, a player could choose among possible actions, perhaps based on the opponent
positions at the time of execution. No individual player is guaranteed of participating in
the play. For example, the uppermost set-play position is there just in case one of the other
players misses a pass or shoots wide of the goal: no player will pass directly to it. Each
player leaves its set-play role to resume its former role either after successfully kicking the
ball, or after a pre-specified, role-specific amount of time.

Figure 3.9: A sample corner-kick set-play. The dashed circles show the positions in the team’s
current formation and dashed arrows indicate the locations of the set-play roles—black circles—
that they would fill. Solid arrows indicate the direction the ball is to be kicked as part of each

set-play role.

The set-plays significantly improved CMUnited’s performance. During the RoboCup-97
and RoboCup-98 simulator competitions, several goals were scored as a direct result of set-

plays.

3.5.3 Communication Paradigm Implementation

In our teamwork structure, players are organized into team formations with each player
filling a unique role. However players can switch among roles and the entire team can change
formations. Both formations and roles are defined as part of the locker-room agreement, and
each player is given a unique ID number. It is a significant challenge for players to remain
coordinated, both by all believing that they are using the same formation and by filling all
the roles in the formation. Since agents are all completely autonomous, such coordination is
not guaranteed.

In PTS domains with limited communication (as opposed to no communication) possible
during the dynamic, real-time periods, inter-agent communication can help the team stay
coordinated. Communication protocols defined in the locker-room agreement combine with
heard messages to trigger internal behaviors that alter the agent’s internal state.

This section describes the CMUnited simulator team implementation of the communica-
tion paradigm presented in Section 3.4. All of the agent messages are of the format:

~ (CMUnited <Uniform-number> <Encoded-stamp> <Formation-number>
<Formation-set-time> <Position-number> <target> <Message-type>
[<Message-data>])

3.5. IMPLEMENTATION IN ROBOTIC SOCCER 81

For example, player 8 might want to pass to player 6 but not know precisely where player 6
is at the moment. In this case, it could send the message (CMUnited 8 312 1 0 7 ———-> 6
Where are you?). “CMUnited 8” is the sender’s team and number; “312” is the <Encoded-
stamp>, in this case an agreed-upon linear combination of the current time, the formation
number, and the sender’s position number; “1 0” is the team formation player 8 is using
followed by the time at which it started using it; “7” is player 8’s current position; “---->
6” indicates that the message is for player 6; and “Where are you?” is a message type
indicating that a particular response is requested: the recipient’s coordinate location. In
this case, there is no message data.

All teammates that hear such a message update their internal states to indicate that
player 8 is playing position 7. However only player 6 sets its response and response-flag in-
ternal state variables. In this case, since the target is a single player, the communicate-delay
flag remains at 0. Were the message targeted towards the whole team or to a subset of the
team, then communicate-delay would equal:

e IF (my number > sender number)
((my number — sender number — 1) X 2) X communicate-interval

e ELSE (((sender number — my number — 1) x 2) + 1) x communicate-interval

where communicate-interval is the time between audible messages for a given agent
(hear_decay = 2 simulator cycles in the case of the soccer server). Thus, assuming no
further interference, player 8 would be able to hear responses from all targets.

Once player 6 is ready to respond, it might send back the message (CMUnited 6 342 1 0
5 =-=--> all I’m at 4.1 -24.5). Notice that player 6 is using the same team formation
but playing a different position from player 8: position 5. Since this message doesn’t require
a response (as indicated by the “I’m at” message type), the message is accessible to the
whole team (“----> all”): all teammates who hear the message update their world states
to reflect the message data. In this case, player 6 is at coordinate position (4.1, —24.5).

Were player 8 not to receive a response from player 6 before passing, it could still pass to
its best estimate of player 6’s location: should the message fail to get through, no disaster
would result. Such is the nature of most communication in this domain. Should there
be a situation which absolutely requires that a message get through, the sending agent
could repeat the message periodically until hearing confirmation from the recipient that the
message has arrived. However, such a technique consumes the single communication channel
and should be used sparingly.

Notice that in the two example messages above, both players are using the same team-
formation. However, such is not always the case. Even if they use common environmental
cues to trigger formation changes, one player might miss the cue. In order to combat such a
case, players update the team formation if a teammate is using a different formation that was
set at a later time as detailed in Section 3.4. For example, if player 6’s message had begun
“(CMUnited 6 342 3 50 ...” indicating that it had been using team formation 3 since
time 50, an internal behavior in player 8 would have changed its internal state to indicate
the new team strategy.

Other examples of message types used in our implementation of simulated robotic soccer
players include:

82 CHAPTER 3. TEAM MEMBER AGENT ARCHITECTURE

e Request/respond ball location

Request /respond teammate location
e Inform pass destination

e Inform going to the ball

Inform taking/leaving position

3.6 Results

Although the flexible teamwork structure and communication paradigm implementations are
merged into a single robotic soccer system, we are able to isolate the effects of each contri-
bution through controlled testing. This section presents empirical results demonstrating the
effectiveness of both main contributions of this chapter: the flexible teamwork structure and
the low-bandwidth communication paradigm.

3.6.1 Teamwork Structure Results

The flexible teamwork structure improves over a rigid structure by way of three character-
istics: flexible positioning within roles, set-plays, and changeable formations. We tested the
benefits of the first two characteristics by playing a team with flexible, changeable positions
and set-plays against a “default team” with rigid positions and no set-plays. The behaviors
of the players on the two teams are otherwise identical. The advantage of being able to
change formations—the third characteristic—depends on the formation being used by the
opponent. Therefore, we tested teams using each defined formation against each other.

Standard games in the soccer server system last 10 minutes. However, due to the large
amount of noise, game results vary greatly. All reported results are cumulative over several
games. Compiled statistics include the number of 10-minute games won, the total cumulative
goals scored by each team, average goals per game, and the percentage of time that the ball
was in each half of the field. The last statistic gives a rough estimate of the degree to which
each team was able to control the ball.

Flexible Positions and Set-Plays

In order to test the flexible teamwork structure, we ran a team using ball-dependent flexible
positions with set-plays against one using rigid positions and no set-plays. Both teams used
a 4-4-2 formation. As shown in Table 3.2, the flexible team significantly outperformed the
default team over the course of 38 games.

Further experimentation showed that both aspects of the flexible team contribute sig-
nificantly to the team’s success. Table 3.3 shows the results when a team using flexible
positions but no set-plays plays against the default team and when a team using set-plays
but rigid positions plays against the default team, again over the course of 38 games. Both
characteristics provide a significant advantage over the default team, but they perform even
better in combination.

3.6. RESULTS

| (Game = 10 min.) || Flexible and Set-Plays | Default |
Games won 34 1
Total goals 223 82
Avg. goals 5.87 2.16
Ball in own half 43.8% 56.2%

Table 3.2: Results when a flexible team plays against a rigid team. The flexible team won 34 out
of 38 games with 3 ties.

Only Flexible Positions Only Set-Plays

| (Game = 10 min.) || Flexible | Default | | (Game = 10 min.) || Set-Plays | Default ||
Games won 26 6 Games won 28 5
Total goals 157 87 Total goals 187 108
Avg. goals 4.13 2.29 Avg. goals 4.92 2.84
Ball in own half 44.1% | 55.9% Ball in own half 47.6% 52.4%

Table 3.3: Results when only using flexible positions and only using set-plays. Each individually
works better than using neither.

Formations

In addition to the above tests, we tested the various formations against each other, as
reported in Table 3.4. Each entry shows the goals scored for and against when a team using
one formation played against a team using another formation over the course of 24 10-minute
games. The right-most column collects the total goals scored for and against the team using
that formation when playing against all the other teams. In all cases, the teams used flexible
positions, but no set-plays.

| formations || 4-3-3 | 4-4-2 [3-5-2 [8-2-0 | 3-34 | 244 | totals |
4-3-3 68-60 | 68-54 | 24-28 | 59-64 | 70-65 || 289-271 (51.6%)
4-4-2 60-68 68-46 | 22-24 | 51-57 | 81-50 || 282-245 (53.5%)
3-5-2 54-68 | 46-68 13-32 | 61-72 | 75-73 | 249-313 (44.3%)
8-2-0 28-24 | 24-22 | 32-13 27-28 | 45-36 | 156-96 (61.9%)
3-3-4 64-59 | 57-51 | 72-61 | 28-27 87-69 || 308-267 (53.6%)
2-4-4 65-70 | 50-81 | 73-75 | 36-45 | 69-87 293-385 (43.2%)

Table 3.4: Comparison of the different formations. Entries in the table show the number of
goals scored. Total (and percentage) cumulative goals scored against all formations appear in the
right-most column. '

~ The results show that the defensive formation (8-2-0) does the best in terms of the
percentage of goals scored for versus those allowed against. However the total goals scored
when using the defensive formation is quite low. On the other hand, the 3-3-4 formation
performs well with a high goal total.

This study allowed us to devise an effective formation-switching strategy for the RoboCup
competitions. For example, our RoboCup-97 team [Stone and Veloso 98a] used a 4-4-2
formation in general, switching to an 8-2-0 formation if winning near the end of the game,
or a 3-3-4 formation if losing. This strategy, along with the flexible teamwork structure as a

84 CHAPTER 3. TEAM MEMBER AGENT ARCHITECTURE

whole, and the communication paradigm, helped us to perform well in the RoboCup-97 and
RoboCup-98 tournaments (see Chapter 8).

3.6.2 Communication Paradigm Results

While contributing to the overall success of the CMUnited simulator team, our communica-
tion paradigm is also demonstrably effective in controlled experimentation. In this section, I
report results reflecting the agents’ robustness to active interference, their ability to handle
messages that require responses from multiple team members, and their ability to maintain
a coordinated team strategy.

Robustness to Interference

Relying on communication protocols involves the danger that an opponent could actively
interfere by mimicking an agent’s obsolete messages: since there is a single communication
channel, opponents can hear and mimic messages intended for teammates. However, the
<Encoded-stamp> field guards against such an attempt. As a test, we played a commu-
nicating team (team C) against a team that periodically repeats past opponent messages
(team D). Team C set the <Encoded-stamp> field to <Uniform-number> *(send-time +
37). Thus teammates could determine send-time by inverting the same calculation (known
to all through the locker-room agreement). Messages received more than a second after the
send-time were disregarded (message-lag-tolerance = 1 sec). The one-second leeway ac-
counts for the fact that teammates may have slightly different notions of the current global
time.

In our experiment, agents from team D sent a total of 73 false messages over the course of
a 5-minute game. Not knowing team C’s locker-room agreement, they were unable to adjust
the <Encoded-stamp> field appropriately. The number of team C agents hearing a false
message ranged from 0 to 11, averaging 3.6. In all cases, each of the team C agents hearing
the false message correctly ignored it. Only one message truly from a team C player was
incorrectly ignored by team C players, due to the sending agent’s internal clock temporarily
diverging from the correct value by more than a second. Although it did not happen in the
experiment, it is also theoretically possible that an agent from team D could mimic a message
within a second of the time that it was originally sent, thus causing it to be indistinguishable
from a valid message. However, in this case, the content of the message is presumably still
appropriate and consequently unlikely to confuse team C.

Handling Multiple Responses

Next we tested our method of handling multiple simultaneous responses to a single message.
Placing all 11 agents within hearing range, a single agent periodically sent a “where are
you” message to the entire téam and recorded the responses it received. In all cases, all
10 teammates heard the original message and responded. However, as shown in Table 3.5,
the use of our method dramatically increased the number of responses that got through to
the sending agent. When the team used communicate-delay as specified in Section 3.5,
message responses were staggered over the course of about 2.5 seconds, allowing most of

3.7. TRANSFER TO THE REAL ROBOTS 85

the 10 responses to get through. When all agents responded at once (no delay), only one
response (from a random teammate) was heard.

Number of Responses || Response Time (sec)

Min | Max Avg Min | Max | Avg

No Delay 1 1 1.0 00 | 0.0 0.0
Delay 6 9 8.1 0.0 | 2.6 0.9

Table 3.5: The number of responses that get through to agents when responses are delayed and
when they are not. When the team uses communicate-delay as specified in Section 3.5, an average
of 7.1 more responses get through than when not using it. Average response time remains under
one second. Both experiments were performed 50 times.

Team Coordination

Finally, we tested the team’s ability to maintain coordinated team strategies when changing
formations via communication. One player was given the power to toggle the team’s forma-
tion between a defensive and an offensive formation. Announcing the change only once, the
rest of team had to either react to the original message, or get the news from another team-
mate via other communications. As described in Section 3.5, the <Formation-number> and
<Formation-set-time> fields are used for this purpose. We ran two different experiments,
each consisting of 50 formation changes. In the first, a midfielder made the changes, thus
making it possible for most teammates to hear the original message. In the second experi-
ment, fewer players heard the original message since it was sent by the goaltender from the
far end of the field. Even so, the team was able to change formations in an average time of
3.4 seconds. Results are summarized in Table 3.6.

Entire Team Change Time (sec) Heard From
Decision-Maker || Min | Max | Avg Var Decision-Maker
Goaltender 0.0 | 23.8 | 34 17.8 46.6%
Midfielder 00 79 | 13 2.8 80.6%

Table 3.6: The time it takes for the entire team to change team strategies when a single agent
makes the decision. Even when the decision-making agent is at the edge of the field (goaltender)
so that fewer than half of teammates can hear the single message indicating the switch, the team
is completely coordinated after an average of 3.4 seconds.

3.7 Transfer to the Real Robots

As described in Chapter 2, the CMUnited-97 real robot platform differs from the soccer
server platform in many ways, including agent perception and action capabilities. In addi-
tion, the robots do not have any inter-agent communication abilities. Nonetheless, the real
robot soccer domain is a PTS domain and many components of the CMUnited simulator
implementation described in Section 3.5 are directly transferable to the CMUnited-97 small-
robot software. In particular, the teamwork structure transfers very easily and has been used

86 CHAPTER 3. TEAM MEMBER AGENT ARCHITECTURE

successfully [Veloso and Stone 98]. Since the robots do not use inter-agent communication,
the communication paradigm is not appropriate for transfer.
The specific software components that transfered from the simulation to the real robot

implementations include:
e The world model,;
e Skill functionalities;
e Behavior modes;
e Team structure including the locker-room agreement

The objects in the world are defined according to the same type hierarchy depicted in
Figure 3.4 and the same information is stored about each object. The one exception is that
opponent orientation is not discernible by the small-robot vision system.

Since the movement capabilities and action command syntax of the robots differ greatly
from those of the simulated agents, the low-level agent skill implementations are entirely dif-
ferent. However, the functionalities of the skills are similar. For example, like the simulated
agents, the real robots also have ball-interception and goaltending skills. The implementation
details of the robots’ skills are provided in Appendix B.

With slightly less complex behaviors than the simulated agents, the robots need fewer
behavior modes. However, they still choose one of several behavior modes as the top-level
action decision. The default position-holding behavior occurs when the robot is in an inactive
state. However, when the ball is nearby, the robot changes into an active state. In the active
state, the robot moves towards the ball, attempting either to pass it to a teammate or to
shoot it towards the goal based on an evaluation function that takes into account teammate
and opponent positions. A robot that believes itself to be the intended receiver of a pass
moves into the aquziliary state in which it tries to intercept a moving ball towards the goal.
There is also a special goaltend mode for the goaltender. The CMUnited-97 decision function
sets the robot that is closest to the ball into the active state; other robots filling a forward
role (if any) into the auxiliary state; and all other robots (other than the goaltender) into
the inactive state.

Most significantly within the context of this chapter, the team structure implementation
described in Section 3.5.2 transfered directly to the real robot software. Changing nothing in
the code except for the actual formation configurations (to accommodate teams of 5 rather
than teams 11), the robots are instantly able to benefit from the advantages of the teamwork

structure:
e Dynamic formations;
e Flexible positions; and
e Set-plays.

As in the simulator implementation, the formation defines a set of roles, or positions, with
associated behaviors. It is specified within the locker-room agreement, a part of the team

3.8. DISCUSSION AND RELATED WORK 87

member agent architecture described in Section 3.2. The robots are dynamically mapped
into the positions. Each robot is equipped with the knowledge required to play any position
in each of several formations.

Positions are defined as flexible regions within which the player attempts to move towards
the ball. For example, a robot playing the “right-wing” (or “right forward”) position remains
on the right side of the field near the opponents’ goal until the ball comes towards it. Positions
are classified as defender, midfielder, or forward based on the locations of these regions. They
are also given behavior specifications in terms of which other positions should be considered
as potential pass-receivers.

In the CMUnited-97 small-robot team, only the ball-dependent flexible positioning is
implemented. However, the subsequent CMUnited-98 software was used in conjunction with
the simulator to develop the SPAR flexible positioning algorithm [Veloso et al. 99b].

At any given time each of the robots plays a particular position on the field. However,
each robot has all of the knowledge necessary to play any position. Therefore the robots
can—and do—switch positions on the fly. For example, robots A and B switch positions
when robot A chases the ball into the region of robot B. Then robot A continues chasing
the ball, and robot B moves to the position vacated by A.

The pre-defined positions known to all players are collected into formations, which are
also commonly known. An example of a formation is the collection of positions consisting of
the goaltender, one defender, one midfielder, and two attackers. Another possible formation
consists of the goaltender, two defenders and two attackers. For illustration, see Figure 3.10.

u 7 u

7 Y 7

Figure 3.10: Two different defined formations. Notice that several of the positions are reused
between the two formations.

The CMUnited-97 robots only used a single set-play: on a kickoff, one robot would pass
the ball up the wing to another robot which would then shoot towards the goal. However,
the concept of set-plays was originally developed in a previous real-robot soccer implementa-
tion [Achim et al. 96]. In that case, our 3-robot team was equipped with about 10 set-plays
for several different restart situations.

3.8 Discussion and Related Work

This chapter has presented a team member agent architecture appropriate for PTS domains.
While the implementation described here is in robotic soccer, it is easy to see how the
architecture would apply to other sports, such as American football. In that case, the syn-
chronization opportunities are more frequent, but formations can change during the course

88 CHAPTER 3. TEAM MEMBER AGENT ARCHITECTURE

of a game, roles are defined with some flexibility so that agents can adjust to opponent
behaviors on the fly, and agents must communicate efficiently both between plays on a drive
and during plays.

There are several other examples of non-sports-related PTS domains. Having successfully
developed and deployed an autonomous spacecraft [Pell et al. 98], NASA is now interested in
multi-spacecraft missions, or constellations [Stone 97]. Since spacecraft pointing constraints
limit the communication both between the spacecraft and ground control, and among the
spacecraft, the spacecraft must be able to act autonomously while still working towards
the constellation’s overall goal. Using interferometry missions—in which several spacecraft
coordinate parts of a powerful imaging instrument to view distant objects—as an example,
the locker-room agreement could be used to define several formations to be used for viewing
objects that are at various distances or in different parts of the sky. Depending on the
relative locations of these objects, the various spacecraft might interchange roles as they
image different objects.

Search and rescue scenarios could also be formulated as PTS domains. If several robotic
agents are trying to locate victims in a remote disaster sight, they may have to act quickly
and autonomously. Nonetheless, before beginning the search, they could define several for-
mations corresponding to different geographical areas of focusing their search. Within these
formations, agents would need to be assigned flexible roles given that the precise situation
may not be known or may change unexpectedly. The agents might also agree, as part of
their locker-room agreement to switch formations either after a certain time or as a result of
some limited communication, perhaps from a unit captain.

Other PTS domains that could be applications for the team member agent architecture
are hospital /factory maintenance [Decker 96b] and battlefield combat [Tambe 97]. While in
this thesis network routing is used to generalize the TPOT-RL algorithm (see Chapter 7),
it could also be formulated as a PTS domain if the network nodes are permitted to freely
use network bandwidth during periods of otherwise low usage. They could then exchange
policies and feedback with regards to network performance.

The remainder of this section summarizes the previous work most closely related to the
teamwork structure and communication paradigm as presented in this chapter.

3.8.1 Teamwork Structure

Two popular multi-agent teamwork structures, joint intentions [Cohen et al. 99] and shared
plans [Grosz 96), consider a team to be a group of agents that negotiate and/or contract with
each other in order to initiate a team plan. Both of these teamwork structures as well as
STEAM [Tambe 97|, another teamwork structure based on joint intentions and shared plans,
include complex communication protocols for forming and disbanding a team in pursuit of
a goal. The team forms dynamically and stays in close communication until the execution
of the plan is completed. In contrast, the teamwork structure presented in this chapter
supports a persistent team effort towards a common high-level goal in the face of limited
communication.

The concept of the locker-room agreement facilitates coordination with little or no com-
munication. Taking advantage of the property of PTS domains that the team and its long-

3.8. DISCUSSION AND RELATED WORK : 89

term goal are persistent, our teamwork structure eliminates the need for the overhead inher-
ent in previous paradigms.

Although it has been claimed that pre-determined team actions are not flexible or robust
to failure [Tambe 97], the locker-room agreement provides a mechanism for pre-defining
team actions with enough flexibility to succeed. In particular, set-plays are pre-determined
team actions that can be executed without the need to negotiate or use extensive inter-agent
communication: the locker-room agreement provides enough flexibility that the agents are
able to seamlessly assume the appropriate roles.

While I use the term “formation” to refer to the largest unit of the teamwork structure,
soccer formations are not to be confused with military-type formations in which agents must
stay in precise relative positions. Despite this dual usage of the term, I use it because
formation is a standard term within the soccer domain [LaBlanc and Henshaw 94]. For an
example of a multi-agent system designed for military formations, see [Balch and Arkin 95].

Castelfranchi [95] classifies different types of commitments in multi-agent environments.
In this context, locker-room agreements can be viewed as C-commitments, or commitments
by team members to do the appropriate thing at the right time, as opposed to S-commitments
with which agents adopt each other’s goals. In the context of [Conte et al. 99], the creation
of a locker-room agreement is norm acceptance while its use is norm compliance. Within the
framework presented in [Miiller 99], the architecture is for interactive software and hardware
multi-agents.

As mentioned in Section 3.2, the concept of behavior in the context of our team member
agent architecture is consistent with that laid out by Mataric [Mataric 94a]. There, “behav-
ior” is defined as “a control law with a particular goal, such as wall-following or collision
avoidance.” Behaviors can be nested at different levels with selection among lower-level
behaviors consisting of a higher-level behavior. Similarly, internal and external behaviors
in our system maintain team coordination goals, physical positioning goals, communication
goals, and environmental information goals (such as knowledge of where the ball is). These
behaviors are combined into top-level internal and external behaviors.

3.8.2 Communication Paradigm

Most inter-agent communication models assume reliable point-to-point message passing with
negligible communication costs. In particular, KQML assumes point-to-point message pass-
ing, possibly with the aid of facilitator agents [Finin et al. 94]. Nonetheless, KQML perfor-
matives could be used for the content portions of our communication scheme. KQML does
not address the problems raised by having a single, low-bandwidth communication channel.

When communication is reliable and the cost of communication relative to other actions is
small, agents have the luxury of using reliable, multi-step negotiation protocols. For example,
in Cohen’s convoy example [Cohen et al. 99], the communication time required to form and
maintain a convoy of vehicles is insignificant compared to the time it takes the convoy to
drive to its destination. Similarly, message passing among distributed information agents is
typically very quick compared to the searches and services that they are performing. Thus,
it makes sense for agents to initiate and confirm their coalition while guaranteeing that they
will inform each other if they have trouble fulfilling their part of the joint action.

CHAPTER 3. TEAM MEMBER AGENT ARCHITECTURE

With only a single team present, a situation similar to the one considered here is examined
in [Maio and Rizzi 95]. In that case, like in the soccer server, messages sent are only heard
by agents within a circular region of the sender. Communication is used for cooperation and
for knowledge sharing. Like in the examples presented in the soccer domain, agents attempt
to update each other regarding their own internal states when communicating. However,
the exploration task considered there is much simpler than soccer, particularly in that there
are no opponents using the same communication channel and in that the nature of the task
allows for simpler, less urgent communication.

Although communication in the presence of hostile agents is well studied in military
contexts from the standpoint of encryption, the problem considered here is not the same.
While any encryption scheme could be used for the message content, the work presented
here assumes that the adversaries cannot decode the message. Even so, they can disrupt
communication by mimicking past messages textually: presumably past message have some
meaning to the team that uttered them. Our method of message coding based on a globally
accessible clock circumvents this latter problem.

Even when communication time is insignificant compared to action execution, such as in
a helicopter fighting domain, it can be risky for agents to rely on communication. As pointed
out in [Tambe 96a], if the teammate with whom an agent is communicating gets shot down,
the agent could be incapacitated if it requires a response from the teammate. This work
also considers the cost of communication in terms of risking opponent eavesdropping and
the benefits of communication in terms of shifting roles among team members. However, the
problems raised by a single communication channel and the possibility of active interference
are not considered.

Another approach that recognizes the danger of basing behaviors upon multi-step com-
munication protocols is ALLIANCE [Parker 94]. Since a primary goal of this work is fault-
tolerance, only broadcast communications are used. Agents inform each other of what they
are currently doing, but never ask for responses. In ALLIANCE, the team uses time-slice
communication so that each agent periodically gets exclusive use of the single communication
channel.

A possible application of our communication method is to robots using audio commu-
nication. This type of communication is inherently single-channel and low-bandwidth. An
example of such a system is the Robot Entertainment Systems which uses a tonal lan-
guage [Fujita and Kageyama 97]. Agents can communicate by emitting and recognizing a
range of audible pitches. In such a system, the number of bits per message would have to
be lowered, but the general techniques presented in this chapter still apply.

Another example of such a communication environment is arbitrarily expandable sys-
tems. If agents aren’t aware of what other agents exist in the environment, then all agents
must use a single universally-known communication channel, at least in order to initiate
communication.

Chapter 4

Layered Learning

As described in Section 3.2, our agents build up a world model and then use it as the basis
for behaviors that respond effectively to the environment. Internal behaviors update the
internal state while external behaviors produce executable actuator commands. Spanning
both internal and external behaviors, layered learning [Stone and Veloso 98¢] is our bottom-
up hierarchical approach to agent behaviors that allows for machine learning at the various
levels.

The introduction and implementation of layered learning is one of the main contribu-
tions of this thesis. Layered learning is a machine learning paradigm defined as a set of
principles for the construction of a hierarchical, learned solution to a complex task. This
chapter lays out the principles of layered learning (Section 4.1) and gives an overview of the
implementation which is detailed in Chapters 5-7 (Section 4.2). In Section 4.3, I discuss
some of the general multi-agent learning issues that arise within layered learning and within
our implementation in particular. Section 4.4 presents related work.

4.1 Principles

Layered learning is defined by four principles. In this section, I identify, motivate, and specify
these four principles.

Principle 1: Motivated by robotic soccer, layered learning is designed for domains that
are too complex for learning a mapping directly from an agent’s sensory inputs to
its actuator outputs. We assume that any domain that fits the description in Sec-
tion 1.2.1—limited communication, real-time, noisy environments with both team-
mates and adversaries—is too complex for agents to learn direct mappings from their
sensors to actuators.

Instead, the layered learning approach consists of breaking a problem down into several
behavioral layers and using machine learning (ML) techniques at each level. Layered
learning uses a bottom-up incremental approach to hierarchical task decomposition.
Starting with low-level behaviors, the process of creating new ML subtasks continues
until reaching high-level strategic behaviors that deal with the full domain complexity.

91

92 CHAPTER 4. LAYERED LEARNING

Principle 2: The appropriate behavior granularity and the aspects of the behaviors to be
learned are determined as a function of the specific domain. The task decomposi-
tion in layered learning is not automated. Instead, the layers are defined by the ML

opportunities in the domain.

Layered learning can, however, be combined with any algorithm for learning abstraction
levels. In particular, let A be an algorithm for learning task decompositions within
a domain. Suppose that A does not have an objective metric for comparing different
decompositions. Applying layered learning on the task decomposition and quantifying
the resulting performance can be used as a measure of the utility of A’s output.

Figure 4.1 illustrates an abstract layered learning task decomposition within a col-
laborative and adversarial multi-agent domain. Learning can begin with individual
behaviors, which facilitate multi-agent collaborative behaviors, and eventually lead to
full-team collaborative and adversarial behaviors.

High Lerl Goals

(Adversarial Behaviors

AN
AY

(Team Behaviors

=3, Machine Learning
4" Opportunities

(Multi-Agent Behaviors

(Individual Behaviors

(World Model

AR

Environment

Figure 4.1: A sample task decomposition within the layered learning framework in a collaborative
and adversarial multi-agent domain. Layered learning is designed for use in domains that are too
complex to learn a mapping straight from sensors to actuators. We use a hierarchical, bottom-up

approach

Principle 3: Machine learning is used as a central part of layered learning to exploit data
in order to train and/or adapt the overall system. ML is useful for training behaviors
that are difficult to fine-tune manually. It is useful for adaptation when the task details
are not completely known in advance or when they may change dynamically. In the
former case, learning can be done off-line and frozen during actual task execution. In
the latter, on-line learning is necessary: since the agent needs to adapt to unexpected
situations, it must be able to alter its behavior even while executing its task. Like
the task decomposition itself, the choice of machine learning method depends on the

subtask.

4.1. PRINCIPLES 93

Principle 4: The key defining characteristic of layered learning is that each learned layer
directly affects the learning at the next layer. A learned subtask can affect the sub-
sequent layer either (i) by providing a portion of the behavior used during training
or (ii) by creating the input representation of the learning algorithm. In general, ma-
chine learning algorithms—e.g. neural networks, Q-learning [Watkins 89], and decision

- trees [Quinlan 93]—require an input and output representation, a target mapping from
inputs to outputs, and training examples. The goal of learning is to generalize the tar-
get mapping from the training examples which provide the correct outputs for only a
portion of the input space.

When using ML for behavior learning (as opposed to classification), training examples
are generated by placing an agent in a situation corresponding to a specific instance of
the input representation; allowing it to act; and then giving some reward, or indication
of the merit of the action in the context of the target mapping. Thus previous learned
layers can (i) provide a portion of the behavior used during training by either deter-
mining the actions available or affecting the reinforcement received. Previous learned
layers can also (ii) create the inputs to the learning algorithm by affecting or determin-
ing the agent’s input representation. Both possibilities are illustrated in our simulated
robotic soccer implementation described in Section 4.2.

If each learned layer in a task decomposition directly affects the learning at the next
layer, then the system is a layered learning system, even if the domain does not have
identical properties to those considered in this thesis. Without this characteristic, the
approach does not fall within the realm of layered learning.

In summary, layered learning is a machine learning paradigm designed to allow agents to
learn to accomplish a goal in a complex environment. Layered learning allows for a bottom-
up definition of agent capabilities at different levels in a complex domain. Machine learning
opportunities are identified when data is available or the task is unpredictable and hand-
coded solutions are too complex to generate. Individual learned behaviors are organized,
learned, and combined in a layered fashion, each facilitating the creation of the next. The
principles of the layered learning technique are summarized in Table 4.1.

1. A mapping directly from sensors to actuators is not tractably learnable.
2. A bottom-up, hierarchical task decomposition is given.

- 3. Machine learning exploits data to train and/or adapt. Learning occurs separately at
each level. ’

4. The output of learning in one layer feeds into the next layer.

Table 4.1: The key principles of layered learning.

94 CHAPTER 4. LAYERED LEARNING

4.2 Instantiation in Simulated Robotic Soccer

One tempting way to approach any new agent-based domain is to try to learn a direct
mapping from the agent’s sensors to its actuators. However, a quick consideration of the
robotic soccer domain is enough to convince oneself that it is too complex for such an
approach: the space of possible sensory inputs is huge, there are many possible actions, and
there is a large amount of hidden state. Such complexity is an important characteristic of
the domain for the purposes of this thesis, since robotic soccer is meant to represent other
domains which are too complex for the straightforward approach.

Table 4.2 illustrates a possible set of learned behavior levels within the simulated robotic
soccer domain that correspond to the abstract task decomposition represented in Figure 4.1.
We identify a useful low-level skill that must be learned before moving on to higher-level
strategies. Then we build upon it to create higher-level multi-agent and team behaviors.
Using our own experience and insights to help the agents learn, we acted as human coaches
do when they teach young children how to play real soccer. Section 4.2 gives an overview of
our layered learning implementation in the simulated robotic soccer domain and discusses
how the implementation could be extended further.

[Layer | Strategic level | Behavior type | Example |l
1 robot—ball individual ball interception
2 one-to-one player multi-agent pass evaluation
3 one-to-many player team pass selection
4 team formation team strategic positioning
5 team-to-opponent adversarial strategic adaptation

Table 4.2: Examples of different behavior levels in robotic soccer.

4.2.1 Implemented Learned Layers

Our implementation consists of three learned subtasks, each of which is described more fully
along with extensive empirical tests later in the thesis:

1. Ball Interception — an individual skill (Chapter 5).

First, the agents learn a low-level individual skill that allows them to control the
ball effectively. While executed individually, the ability to intercept a moving ball is
required due to the presence of other agents: it is needed to block or intercept opponent
shots or passes as well as to receive passes from teammates. As such, it is a prerequisite
for most ball-manipulation behaviors. We chose to have our agents learn this behavior
because it was easier to collect training data than to fine-tune the behavior by hand!.
Since the skill does not need to change during the course of play, we are able to use
off-line learning, specifically a neural network with four inputs.

1The learning was done in an earlier implementation of the soccer server in which agents did not receive
any velocity information when seeing the ball. Thus the ball interception skill described in Appendix B was

not applicable.

4.2. INSTANTIATION IN SIMULATED ROBOTIC SOCCER 95

2. Pass Evaluation — a multi-agent behavior (Chapter 6).

Second, the agents use their learned ball-interception skill as part of the behavior for
training a multi-agent behavior. When an agent has the ball and has the option to
pass to a particular teammate, it is useful to have an idea of whether or not the pass
will actually succeed if executed: will the teammate successfully receive the ball? Such
an evaluation depends on not only the teammate’s and opponents’ positions, but also
their abilities to receive or intercept the pass. Consequently, when creating training ex-
amples for the pass-evaluation function, we equip the intended pass recipient as well as
all opponents with the previously learned ball-interception behavior. Again, we choose
to have our agents learn the pass-evaluation capability because it is easier to collect
training data than to construct it by hand. Working under the assumption that the
concept would remain relatively constant from game to game, we again use an off-line
learning algorithm, namely the C4.5 decision tree training algorithm [Quinlan 93]. De-
cision trees are chosen over neural networks because of their ability to ignore irrelevant
attributes: in this case, our input representation has 174 continuous attributes.

3. Pass Selection — a collaborative and adversarial team behavior (Chapter 7).

Third, the agents use their learned pass-evaluation capability to create the input space
for learning a team behavior. When an agent has the ball, it must decide to which
teammate it should pass the ball>. Such a decision depends on a huge amount of
information including the agent’s current location on the field, the current locations
of all the teammates and opponents, the teammates’ abilities to receive a pass, the
opponents’ abilities to intercept passes, teammates’ subsequent decision-making capa-
bilities, and the opponents’ strategies. The merit of a particular decision can only
be measured by the long-term performance of the team as a whole. In this sense,
Q-learning, a reinforcement learning method for maximizing long-term discounted re-
ward, seemed applicable. However, Q-learning is known for working poorly with large
input representations. Therefore, we drastically reduce the input space with the help
of the previously learned decision tree: rather than considering the positions of all
of the players on the field, only the pass evaluation for the possible passes to each
teammate are considered. Nonetheless, due to the multi-agent and opaque transition
characteristics of the task, Q-learning still does not apply directly. Instead, we create
TPOT-RL, a new multi-agent reinforcement learning method motivated by Q-learning.
In this case, since the learned behavior is meant to adapt to a dynamically changing
environment (changing in part because teammates are learning their decision-making
policies simultaneously), we need an on-line learning method, which TPOT-RL is.

The learning methods used for each of the above behaviors are summarized in Table 4.3.
Possible implementations of the last two layers in Table 4.2 are future work and are described
in Section 4.2.2.

The three learned layers described above illustrate the principles of the layered learning
paradigm as laid out in Section 4.1:

21t could also choose to shoot. For the purposes of this behavior, the agents are not given the option to
dribble.

96 CHAPTER 4. LAYERED LEARNING

| Layer || Learned behavior | Learning method | Training type |

1 ball interception neural network off-line
2 pass evaluation decision tree off-line
3 pass selection TPOT-RL on-line

Table 4.3: The learning methods used for the implemented layers in the simulated robotic soccer
layered learning implementation.

e The decomposition of the task into smaller subtasks enables the learning of a more
complex behavior than would be possible if learning straight from the agents’ sensory
inputs (see Section 4.4 for supporting evidence).

e The hierarchical task decomposition is constructed in a bottom-up, domain-dependent
fashion.

e Machine learning methods are chosen or created to suit the subtask in question. They
exploit available data to train difficult behaviors (ball interception and pass evaluation)
or to adapt to changing/unforeseen circumstances (pass selection).

e Learning in one layer feeds into the next layer either by providing a portion of the
behavior used for training (ball interception — pass evaluation) or by creating the
input representation (pass evaluation — pass selection).

4.2.2 Future Learned Layers

This section carries the robotic soccer example of layered learning beyond its implementation
in this thesis, describing how the principles of layered learning could be used to create
additional, higher-level learned layers. In particular, I discuss how to implement the last two
layers in Table 4.2—strategic positioning and strategic adaptation—on top of the currently-

implemented learned layers.
The strategic positioning and strategic adaptation behaviors build upon two character-

istics of the implementation of the pass-selection learning that are not described above:

e When using TPOT-RL, the simulated robotic soccer agents stay in a fixed formation
and do not switch positions.

e TPOT-RL training is done against a fixed opponent.

In contrast, the following new behaviors would facilitate the learning of the agent positioning
which best suits the pass-selection algorithm and the learning of which learned policy to use
against a new opponent.

4. Strategic Positioning — a team behavior.

The team of agents could use their pass-selection behavior as part of the training
behavior for creating another team behavior. As described in Chapter 3, the team can
play in any of a number of different formations. Each player also has some flexibility
within its position. Our training of the pass-selection behavior uses players in an

4.3. DISCUSSION 97

arbitrarily chosen fixed formation. However, there is no reason to believe that this
formation is the best for learning against a particular opponent. If allowed to use the
TPOT-RL learning algorithm while simultaneously adjusting their formation, the team
may be able to perform even better. The position adjustments could be done using
observational reinforcement learning (RL), another on-line algorithm [Andou 98].

5. Strategic Adaptation — an adversarial behavior.

Finally, the agents comprising the team could use their combined strategic-
positioning/pass-selection behaviors as the input representation for strategic adap-
tation. The previous behavior is trained against a fixed opponent. However, there are
many different possible opponent strategies. By training the strategic-positioning/pass-
selection behavior against a variety of opponents, several different policies could be
learned. Then, the opportunity arises to try to match the current opponent with the
most similar past opponent as quickly as possible so that the previously learned policy
can be adopted. A possible off-line learning approach to this problem would be to
characterize teams by a set of performance statistics (e.g. average player location) over
the course of a fixed time period. Based on this representation, a memory-based algo-
rithm could be used to match teams with the previously seen opponents that behave
most similarly. Then during games, after the fixed evaluation period has identified a
similar past opponent, the pass-selection policy that was learned against this similar
opponent team could be adopted by the agents.

The learning methods proposed for both of the above behaviors are summarized in Table 4.4.
Again, just as is the case for the implemented behaviors, these new behaviors follow the
principles of layered learning as laid out in Section 4.1.

| Layer | Learned behavior | Learning method | Training type |

4 strategic positioning | observational RL on-line
5) strategic adaptation memory-based off-line

Table 4.4: The proposed learning methods for the future layers in the simulated robotic soccer
layered learning implementation.

4.3 Discussion

In this section I discuss some issues pertaining to layered learning and our implementation
thereof as they relate to multi-agent learning in general. I begin by bringing up several issues
related to the relative merits of, and appropriate times for, off-line and on-line learning. I
also frame the above implementation within our team member agent architecture and discuss
the possible propagation of errors among the learned behaviors in a layered learning system.

4.3.1 On-line and Off-line Learning

As illustrated in Section 4.2, the type of learning used at each layer in layered learning
depends upon the subtask characteristics. We use neural networks and decision trees to learn

98 CHAPTER 4. LAYERED LEARNING

ball interception and pass evaluation. These off-line approaches are appropriate for fixed
tasks that can be trained outside of game situations. In fact, off-line learning is necessary for
such basic skills due to the fact that no individual gets enough training examples in game
situations to learn them on-line.

This off-line learning of basic skills is similar to chunking [Newell 90], something done
by human experts in many domains. Performing tasks closely related to simulated robotic
soccer, human athletes spend a good deal of time acquiring basic skills so that they can
execute them “automatically” during competition. For example, human soccer players, like
our robotic soccer agents, learn to control and pass a ball through hours and hours (over
many years) of practice outside of game situations.

Similarly, it has been documented that chess experts, rather than reasoning from first
principles all the time, learn to recognize common patterns of pieces on the board [Newell
and Simon 72]. Their chunking allows them to quickly eliminate or focus on certain lines of
play so that they can efficiently evaluate their options on a given move.

Unlike human learners, when AI agents use off-line learning, there is the opportunity
for them to share their learned knowledge with other team members. Rather than each
individual agent needing to learn a particular skill, a single agent can do the learning and
transfer knowledge to teammates. In fact, we use this method of knowledge sharing for both
the ball-interception and pass-evaluation layers.

In PTS domains (see Chapter 3) such as robotic soccer, even on-line learning can be
shared to some extent. While the agents may learn different things due to their different
experiences during execution, they can still share their experiences completely at the periodic
team synchronization opportunities. This approach is the one we take for the learned pass-
selection behavior: each agent learns a policy while staying in a fixed position within a fixed
formation. However, when given the opportunity, the agents share their learned policies so
that they can subsequently switch positions freely.

This sharing of all learned information leads to completely homogeneous agents. It is in
contrast with attempts to promote behavioral diversity in learning teams of agents [Balch
98]. While it is important that not all agents in a team are doing exactly the same thing at
the same time, there is no need to enforce difference in behavior capabilities or knowledge.
Rather than using heterogeneous agents, we have our agents decompose and share their task
via their flexible team formations. Although at any given time each agent fills a different
role, each agent is capable of switching to any other role.

Two other common issues related to on-line multi-agent learning are exploration ver-
sus exploitation and the escalating arms race problem. On-line behavior learning methods,
whether or not they involve multiple agents, must contend with the tradeoff between explo-
ration and exploitation. Exploration is acting sub-optimally given the available information
in order to gather additional information. On the other hand, exploitation is always taking
the best available action given the current state of knowledge at the cost of possibly miss-
ing new opportunities. Particularly in simulated robotic soccer, where games last only 10
minutes, agents can only afford to explore on-line briefly. In fact, even our on-line pass-
selection training is executed over the course of several games against a fixed opponent using
Boltzmann exploration: a probabilistic exploration method that gradually increases the rate
of exploitation. And the proposed strategic adaptation learning method is executed off-line

4.3. DISCUSSION 99

with only a brief (perhaps one minute) on-line period to gather performance statistics for the
current opponent. In order to adapt on-line within the course of a single game, the learning
method must be capable of almost immediate exploitation.

The escalating arms race problem is a phenomenon occurring in on-line multi-agent
learning systems with concurrently adapting opponents. As one team changes its strategy
to counteract the current opponent strategy, the opponent simultaneously alters its strategy
to improve its own performance. In this way, the target concept to be learned constantly
shifts and neither team is able to converge to a stable strategy. Our layered learning imple-
mentation sidesteps this issues by training against fixed opponents. We have not attempted
to learn against another adaptive team.

4.3.2 Framing within the Teamn Member Agent Architecture

In the context of the team member agent architecture presented in Chapter 3, the imple-
mented ball-interception and pass-selection layers are external behaviors, directly affecting
the agent’s actions. On the other hand, the pass-evaluation layer affects the agent’s internal
state: it is an internal behavior. Strategic positioning and strategic adaptation are also
internal behaviors as they affect aspects of the formation and overall strategy which are
components of the internal state via the locker-room agreement.

4.3.3 Error Propagation

An issues that is often raised in regards to layered learning is the problem of error propa-
gation. That is, since the learning at each layer affects the learning at subsequent layers, if
something goes wrong, how can we determine which layer is to blame? Or conversely, if the
team performs well, which layer deserves the credit? While this question is worth careful
examination, such an examination is not a part of this thesis. When testing the effectiveness
of each new learned layer, we isolate it by comparing agent performance with and without
the new layer. Thus we validate that the learning does indeed improve performance. How-
ever any particular error that does occur with the new layer could be due to that layer or to
any previous layer.

One often overlooked fact with regard to error propagation is that each additional layer
does not necessarily add to the overall error rate. Instead, it is possible for higher-level
behaviors to learn to overcome errors in the underlying layers. For example, in our robotic
soccer implementation, the pass-evaluation function may be able learn which passes will be
likely failures for the ball-interception function and therefore degrade the predicted likelihood
of completing the pass. Similarly, the pass-selection routine may be able to compensate for
faulty evaluations by the pass-evaluation layer by, for example, requiring higher success
confidences for passes in critical situations.

A detailed study of error propagation and compensation within layered learning imple-
mentations is a promising area for future research.

100 CHAPTER 4. LAYERED LEARNING
4.4 Related Work

In this section, I briefly discuss some of the most related work to layered learning along three
dimensions. (Related work for the thesis as a whole is discussed in detail in Chapter 9.) First,
I substantiate my claim that robotic soccer is too complex a domain for learning straight
from sensors to actuators. Second, I present other layered architectures. Third, I bring some
other hierarchical learning approaches to attention.

4.4.1 Robotic Soccer

One of the principles of layered learning as laid out in Section 4.1 is that it is to be used
in domains that are too complex for learning a mapping directly from sensors to actuators.
In general, we assume that any domain that fits the description in Section 1.2.1—limited
communication, real-time, noisy environments with both teammates and adversaries—is such
a domain. In particular, empirical evidence indicates that robotic soccer is such a domain:
layered learning enables the creation of more successful behaviors than could be achieved if
using the agents’ sensors as the input representation for a single, all-encompassing learned
behavior.

This evidence is based on two attempts to do just that—learn straight from the agents’
sensors—in the same robotic soccer domain. First, Luke et al. [98] set out to create a
completely learned team of agents using genetic programming [Koza 92]. However, the
ambition was eventually scaled back and low-level player skills were created by hand as the
basis for learning. The resulting learned team won two of its four games at the RoboCup-97
competition, losing in the second round. In that same competition, our CMUnited-97 team,
using layered learning, made it to the semi-finals (fourth round) and, although never directly
matched against the genetic programming team, was qualitatively clearly a better team.

The following year, at RoboCup-98, another genetic programming attempt at learning
the entire team behavior was made [Andre and Teller 99]. This time, the agents were
indeed allowed to learn directly from their sensory input representation. While making some
impressive progress given the challenging nature of the approach, this entry was unable to
advance past the first round in the tournament.

Given the complex nature of the robotic soccer domain, our initial inclination was that
it would be impossible to create successful behaviors by learning straight from sensors to
actuators: the space of possible sensory inputs is huge, there are many possible actions, and
there is a large amount of hidden state. Combined with the anecdotal evidence provided
by the two generally unsuccessful attempts at such learning, we feel confident in our claim
that layered learning’s decomposition of the robotic soccer task into smaller subtasks enables
the creation of more complex and successful learned behaviors than are possible if learning
straight from the agents’ sensory inputs.

For a further discussion of other learning approaches within the robotic soccer domain,
see Chapter 9 (Section 9.2).

4.4. RELATED WORK 101

4.4.2 Layered Architectures

The layered learning approach is somewhat reminiscent of Brooks’ subsumption architec-
ture [Brooks 86] which layers reactive control modules, allowing high-level controllers to
override lower-lever ones. Each control level is capable of controlling the robot on its own up
to a specified level of functionality. Brooks implements his approach on real robots, building
controllers for simple tasks such as avoiding collisions and wandering around.

Mataric brings the subsumption architecture to a multi-agent learning domain, building
controllers on top of a set of learned basis behaviors [Mataric 95]. Mataric’s basis behaviors
are chosen to be necessary and sufficient for the learning task, while remaining as simple and
robust as possible. Since Mataric’s robots were to learn social behaviors such as flocking and
foraging, they were equipped with basis behaviors such as the ability to follow each other
and the ability to wander without running into obstacles.

While layered learning also makes use of multiple behavior layers, the robotic soccer
task is much more complex: the agents must be able to generalize across situations, handle
adversaries, and achieve complex goals. In order to move quickly to high-level behaviors,
the commitment to have every layer be completely able to control the robot is abandoned.
Instead, many situation-specific (but as general as possible) behaviors are produced which
are then managed by higher-level behaviors. In addition, the robotic soccer behaviors are
not entirely reactive, building upon the agents’ internal state which changes over time.
Nevertheless, the idea of building higher levels of functionality on top of lower levels is
retained. It is in producing the situation-specific behaviors that ML techniques are used.

Also building on top of the subsumption architecture, the ALLIANCE systems was built
to deal with “loosely-coupled, largely independent tasks” for heterogeneous robots [Parker
94]. Example tasks are box pushing, janitorial service (dust, empty trash, clean floors), and
hazardous waste cleanup. ALLIANCE assumes that the robots have the abilities to do each
of the low-level tasks; it provides the coordination mechanism. The L-ALLIANCE variant
learns some of the system parameters indicating, for instance, how good each robot is at
performing each task. Like in Mataric’s work, the learning in L-ALLIANCE is at the level
of choosing among hard-wired behaviors: the learning does not cross multiple layers in the
architecture. In addition, the tasks considered are neither real-time nor adversarial.

As opposed to the purely reactive subsumption architecture, three-layer architectures
include behaviors that refer to an agent’s internal state. The three layers are the controller,
which executes purely reactive behaviors mapping sensors to actuators; the sequencer, which
references past world states in order to select which reactive behavior to use at a given time;
and the deliberator, which predicts future states in order to do time-consuming computations
such as “planning and other exponential search-based algorithms” [Gat 98].

INTERRAP [Mueller 96] is a recent example of a three-layer architecture which is de-
signed for multi-agent systems. In INTERRAP, the highest layer includes collaborative
reasoning using a BDI [Rao and Georgeff 95] model to consider other agents’ goals and in-
tentions and to resolve conflicts. INTERRAP does not include any machine learning. Indeed,
learning is not a consideration in three-layer architectures in general [Gat 98].

The layers in layered learning are orthogonal to the layers in a three-layer architecture.
Layered learning could easily be used within a three-layer approach with learned layers in-

102 CHAPTER 4. LAYERED LEARNING

tersecting the controller, the sequencer, and the deliberator in any way. While our team
member agent architecture is not a three-layer approach since there are no purely reactive
behaviors (even the lowest-level skills rely on predictions of future world states based on cur-
rent and past states), robotic soccer could be implemented within the three-layer paradigm
while retaining the same learned layers: ball interception would be a part of the controller;
pass evaluation and pass selection would be part of the sequencer; and strategic positioning
and strategic adaptation would be part of the deliberator.

Layered learning can be used within existing layered architectures or within most other
robotic architectures. As long as there are behaviors which build upon each other in some
ways, then learning in one behavior can be used to facilitate or influence learning in subse-

quent behaviors.

4.4.3 Hierarchical Learning

The original hierarchical learning constructs were devised to improve the generalization of a
single learning task by running multiple learning processes. Both boosting [Shapire 90] and
stacked generalization [Wolpert 92] improve function generalization by combining the results
of several generalizers or several runs of the same generalizer. These approaches contrast
with layered learning in that the layers in layered learning each deal with different tasks.
Boosting or stacked generalization could potentially be used within any given layer, but not
across different layers.

More in line with the type of hierarchical learning discussed in this thesis are hierarchical
reinforcement learning algorithms. Because of the well-known “curse of dimensionality”
in reinforcement learning—RL algorithms require time that is polynomial in the number
of states [Dietterich 98]—RL researchers have been very interested in hierarchical learning
approaches. As surveyed in [Kaelbling et al. 96], most hierarchical RL approaches use gated
behaviors:

There is a collection of behaviors that map environment states into low-level
actions and a gating function that decides, based on the state of the environ-
ment, which behavior’s actions should be switched through and actually exe-
cuted. [Kaelbling et al. 96]

In some cases the behaviors are learned [Mahadevan and Connell 91], in some cases the
gating function is learned [Maes and Brooks 90], and in some cases both are learned [Lin
93]. In this last example, the behaviors are learned and fixed prior to learning the gating
function. On the other hand, feudal Q-learning [Dayan and Hinton 93] and the MAXQ
algorithm [Dietterich 98] learn at all levels of the hierarchy simultaneously. A constant
among these approaches is that the behaviors and the gating function are all control tasks
with similar inputs and actions (sometimes abstracted). In the RL layer of our layered
learning implementation, the input representation itself is learned. In addition, none of the
above methods has been implemented in a large-scale, complex domain.

In all of the above RL approaches, like in layered learning, the task decomposition is
constructed manually. However, there has been at least one attempt at the challenging
task of learning the task decomposition. Nested Q-learning [Digney 96] generates its own

4.4. RELATED WORK 103

hierarchical control structure and then learns low-level skills at the same time as it learns to
select among them. Thus far, like other hierarchical RL approaches, it has only been tested
on very small problems (on the order of 100 states in this case).

The hierarchical RL research mentioned in this section is all done with single learning
agents. For a full discussion of multi-agent learning approaches, see Chapter 9 (Section 9.1).

Chapter 5

Learning an Individual Skill

As presented in Chapter 4, the initial layer in our simulated robotic soccer layered learn-
ing implementation is an individual skill, namely ball interception. In this chapter, I de-
scribe our ball-interception learning, the initial learning experiments in the RoboCup soccer
server [Stone and Veloso 96¢, Stone and Veloso 98c]. First, in Sections 5.1 and 5.2, I moti-
vate the choice of ball-interception as our initial learned layer and describe the experimental
setup. Then, in Section 5.3, I present our detailed empirical results demonstrating the effec-
tiveness of the learned behavior. Sections 5.4 and 5.5 are devoted to discussion and related
work.

As the experiments reported in this chapter were carried out in an earlier version of the
soccer server—version 2—there were some differences from the current version 4 as described
in Chapter 2. For example, when seeing an object, the agents only received information
pertaining to its distance and angle from the agent: never velocity information. I point out
this and other differences between server versions when they are relevant to the text.

5.1 Ball Interception in the Soccer Server

Just as young soccer players must learn to control the ball before learning any complex
strategies, robotic soccer agents must also acquire low-level skills before exhibiting complex
behaviors. In multi-agent systems in general, it is crucial that the agents are individually
skilled: the most sophisticated understanding of how to act as part of a team is useless
without the ability to execute the necessary individual tasks. Therefore, we defined an
individual skill as the lower abstraction level to be learned in the layered learning approach.

The low-level skill we identified as being most essential to our soccer server agents was
the ability to intercept a moving ball. This skill is ubiquitous in all soccer-type frameworks.
Intercepting a moving ball is considerably more difficult than moving to a stationary ball
both because of the ball’s unpredictable movement (due to simulator noise) and because the
agent may need to turn and move in such a direction that it cannot see the ball, as illustrated
in Figure 5.1.

Intercepting a moving ball is a task that arises very frequently in the soccer server. Unless
the ball has decelerated completely without an agent collecting it, this skill is a prerequisite
for any kicking action. It is used by agents filling all the different roles: goaltenders and

105

106 CHAPTER 5. LEARNING AN INDIVIDUAL SKILL

defenders must intercept shots and opponents’ passes, while midfielders and forwards must
frequently “intercept,” or receive, passes to them from teammates.

Ball interception is a difficult task in the soccer server because of the noise in the ball’s
motion and because the agents have limited sensing capabilities. As presented in Section 2.2,
each agent has a limited visible angle and it gets sensory information at discrete intervals
(send_step = 250 msec in soccer server version 2). Often when an agent is trying to intercept
the ball, the ball is moving roughly in the direction of the agent, the condition which causes
the difficulty illustrated in Figure 5.1. The ball can move past the agent as it goes to where
the ball used to be. But if the agent turns to move to where the ball will be, it may lose
sight of the ball. Since the ball’s motion is noisy, the agent cannot predict its motion while

it is not visible.

Figure 5.1: The challenge of ball interception. If the defender moves directly towards the ball
(left arrow), it will miss entirely. If the defender turns to move in the appropriate direction (right
arrow), it may no longer be able to see the ball.

There were two possible methods for equipping our agents with the ability to intercept
a moving ball:

Analytically estimating the ball’s velocity from its past positions (recall that velocity in-
formation was not directly available), and predicting its future motion based on this

velocity.

Empirically collecting examples of successful interceptions, and using a supervised learning
technique to create a general ball-interception behavior.

We implemented both approaches. For the empirical approach, we used neural networks
(NNs) as the supervised learning technique.

As it turns out, the two approaches were roughly equal both in effort of implementation
and in effectiveness (see Section 5.3). As the initial learning experiment in our layered

5.2. TRAINING _ 107

learning implementation, we preferred the empirical approach for its appropriateness to our
machine learning paradigm. Isolating a situation that requires this skill, we drilled the
agents, providing the appropriate reinforcement, until they were able to learn to execute this
skill reliably.

5.2 Training

In order to train the ball-interception behavior, we focus on a specific instance of the behavior:
a defender blocking a shot from an opponent. The training setup is as follows:

e The defender starts at a distance of 4 in front of the center of the goal, facing directly
away from the goal.

e The ball and shooter are placed randomly at a distance between 20 and 30 from the
defender.

e For each training example, the shooter kicks the ball directly towards the defender
with maximum power (Power = 100).

e The defender’s goal is to save the shot. A save is a successful ball interception; a goal
is an unsuccessful attempt in which the ball enters the goal; a miss is an unsuccessful
attempt in which the ball goes wide of the goal.

Due to the noise in the simulator, the ball does not always move directly at the defender: if
the defender remains still, the ball hits it only 35% of the time. Furthermore, if the defender
keeps watching the ball and moving directly towards it, it is only able to stop the ball 53%
of the time.

The defender’s behavior during training is more complex than the shooter’s. As we are
using a supervised learning technique, it must first gather training data by acting randomly
and recording the results of its actions. As its input representation for learning, the defender
notices the ball’s distance at time ¢ (BallDist;), the ball’s relative angle at time ¢ (BallAng;),
and the ball’s distance at the time when the previous visual information string was received
(BallDist,_y). As no explicit velocity information is available in version 2 of the soccer server,
BallDist;_; serves as an indication of the ball’s rate of movement. It would have been possible
to base the velocity estimate on several past ball positions. However, we found that a single
previous position was sufficient to allow the agent to learn to intercept the ball. Figure 5.2
illustrates the experimental setup, indicating the starting positions of both agents and the
ball. _

The defender’s goal is to determine its turn angle TurnAng; or the angle it should turn at .
time ¢ relative to the ball’s angle in order to intercept the ball. The defender acts randomly
during training according to the following algorithm:

e While BallDist, > 14, Turn(BallAng;)

e When BallDist; < 14, set TurnAng; = Random Angle between -45° and 45°.

108 CHAPTER 5. LEARNING AN INDIVIDUAL SKILL

Figure 5.2: The range of training situations for learning ball interception. At the beginning of
each trial, the defender starts at a distance of 4 from the goal, while the ball and shooter are placed
randomly at a distance between 20 and 30 from the defender. BallDist is the distance from the
defender to the ball. When the defender is looking straight at the ball, as in this figure, BallAng

=0.

Collect the features of the training instance: BallDist;, BallAng;, BallDist;_;, and
TurnAng,.

e Turn(BallAng: + TurnAng,).
e Dash forward.

Gather classification as a successful training instance (save) or an unsuccessful instance
(goal or miss).

Until the ball is within a given range (14), the defender simply watches and faces the ball,
thus ensuring that all of the world features used for training are known. Then, once the
ball is in range, the defender turns a random angle (within a range) away from the ball and
dashes. This procedure of gathering data does not produce a successful training instance
on every trial: only the saves correspond to the correct mapping from world features to the
agent’s action. Since the defender acts randomly during training, it often misses the ball
(76% of the time). However, it can learn based on the successful training examples.

Our domain is characterized by an agent not always knowing the effects of its actions due
to a large amount of hidden state in the world. If the defender is not facing the ball at the
end of a trial, it does not know the ball’s location, and therefore it does not know whether
its interception attempt was successful or not. In order to automate the training process, we
use an omniscient, omnipotent centralized agent. The centralized agent classifies each trial
as a failure when the ball gets past the defender (a goal or miss) or as a success when the
ball starts moving back towards the shooter (a save). Only saves are considered successful

5.3. RESULTS 109

training instances and thus used for training. At the end of the trial, the centralized agent
resets the positions of the defender, the shooter, and the ball for another trial.

The goal of learning is to allow the defender to choose the appropriate turn angle
(TurnAng;) based upon BallDist;, BallAng;, and BallDist,_;. In order to learn the TurnAng;,
we chose to use a Neural Network (NN). NN’s are appropriate for the task because of their
ability to learn continuous output values from continuous inputs.

After a small amount of experimentation with different NN configurations, we settled on
a fully-connected net with 4 sigmoid hidden units and a learning rate of 107%. The weights
connecting the input and hidden layers used a linearly decreasing weight decay starting at
.1%. We used a linear output unit with no weight decay. We trained for 3000 epochs. This
configuration proved to be satisfactory for our task with no need for extensive tweaking of
the network parameters.

5.3 Results

5.3.1 Number of Training Examples

In order to test the NN’s performance, we ran 1000 trials with the defender using the output
of the NN to determine its turn angle. The behaviors of the shooter and the centralized
agent are the same as during training. Thus, the testing examples are drawn from the same
distribution as the training data. The results for NNs trained with different numbers of
training examples are displayed in Figure 5.3. The misses are not included in the results since
those are the shots that are far enough wide that the defender does not have much chance
of even reaching the ball before it is past. The figure also records the percentage of shots
on-goal (Saves+Goals) that the defender saved. Reasonable performance is achieved with
only 300 training examples, and examples beyond about 750 do not improve performance.
The defender is able to save almost all of the shots despite the continual noise in the ball’s
movement.

5.3.2 Effect of Noise in the Simulation

In order to study the effect of noise in the ball’s movement upon the defender’s performance,
we varied the amount of noise in the soccer server (the ball_rand parameter). Figure 5.4
shows the effect of varying noise upon the defender when it uses the trained NN (trained
with 750 examples) and when it moves straight towards the ball. The default ball_rand
value in the soccer server is .05. The “straight” behavior always sets TurnAng=0, causing
the defender to go directly towards where it last saw the ball. Notice that with no ball
noise, both the straight and learned behaviors are successful: the ball and the defender move
straight towards each other. As the noise in the ball’s motion increases, the advantage of
using the learned interception behavior becomes significant. The advantage of the NN can
also be seen with no noise if the shooter aims slightly wide (by 4 degrees) of the goal’s center.
Then the defender succeeds 99% of the time when using the NN, and only 10% of the time
when moving straight towards the ball.

110 CHAPTER 5. LEARNING AN INDIVIDUAL SKILL

Shot Outcomes vs. Number of Training Examples

100 T T T T T T T T
90 4
80 | ¢ e
; Saves ——
” Saves/On.goal |
(9] i - .
% 6o aves/On-goal -]
& 50t]
o
e 40 g
30 1
20 |]
10 b b .
0 I 1 1 1 1 1] 1 1
0 500 100015002000250030003500400045005000
Number of Training Examples
Training Saves
Examples | Saves(%) Goals(%) Goals+Saves(%)
100 57 33 63
200 73 18 80
300 81 13 86
400 81 13 86
500 84 10 89
750 86 9 91
1000 83 10 89
4773 84 9 90

Figure 5.3: The defender’s performance when using NNs trained with different numbers of training
examples. A “save” is a successful interception of the ball, a “goal” is a failed attempt. The last
column of the table indicates the percentage of shots that were “on goal” that the defender saved.

5.3.3 Comparison with other Methods

From an examination of the weights of the trained NN, it is apparent that the NN focuses
primarily upon the ball’s angle (BallAng;). Consequently, we were curious to try a behavior
that simply uses a lookup table mapping BallAng; to the typical output of the NN for that
BallAng;. We identified such outputs for BallAng; ranging from -7 to 7. Using this one
dimensional lookup-table, the defender is able to perform almost as well as when using the
full NN (see Table 5.1).

We also were curious about how well the NN would compare to analytical methods. As a
basis for comparison, we used a behavior constructed by another student in the project whose
goal was to create the best possible analytic behavior!. The resulting behavior computes
the ball’s motion vector from its current and previous positions and multiplies this vector
by 3, thus predicting the ball’s position two sensory steps (500 msec) into the future. The

'We thank Michael Bowling for creating this behavior. Michael Bowling joined the robotic soccer project
as a full-time graduate student in 1998. He now focuses on the real robots [Veloso et al. 99a).

5.3. RESULTS 111

On-goal Save Percentage vs. Noise

100 = :
NN ——
00 Straight -+ |
% 80
S 70t
o
60 |
50 | R
40 - : : :
0 0.02 0.04 0.06 0.08 0.1
Noise in the ball’'s motion
Saves
Noise Behavior | Saves(%) Goals(%) Goals+Saves(%)
0 NN 100 0 100
Straight 100 0 100
.05 NN 86 9 91
Straight 53 35 60
.06 NN 75 13 86
Straight 47 35 57
07 NN 68 14 83
Straight 40 36 53
.08 NN 99 16 78
Straight 34 36 49
.09 NN 53 17 75
Straight 32 33 50
1 NN 49 18 73
Straight 28 32 47

Figure 5.4: The defender’s performance when using NNs and moving straight with different
amounts of ball noise. A “save” is a successful interception of the ball, a “goal” is a failed attempt.

defender’s TurnAng; is then the angle necessary to move directly towards the end of the
lengthened vector. In particular, if (x4, y:) is the ball’s current position, and (z;_y,y;1) was
its position at the time of the previous visual input (250 msec in the past), then the agent
aims at the point (z¢—1, yi—1) + 3((x4,¥:) — (z¢—1,%:-1)). Table 5.1 shows the results of the
lookup table and analytic methods as compared to the learned NN.

112 CHAPTER 5. LEARNING AN INDIVIDUAL SKILL

Defender
Behavior | Saves(%) Goals(%) Saves/(Goals+Saves) (%)
NN 86 9 91
Lookup Table 83 8 91
Analytic 82 13 86

Table 5.1: The defender’s performance when using a NN, a one-dimensional lookup table, and an
analytic method to determine the TurnAng;.

5.4 Discussion

In this chapter I presented the initial layer of our layered learning implementation. We used
a supervised learning technique to allow agents to learn a useful individual skill in a multi-
agent domain. In addition to the successful learned method, we investigated other methods
of achieving the same behavior functionality, verifying that the learning approach compares
favorably with the other options.

Ball interception is a ubiquitous skill in robotic soccer. Not only our agents in the soccer
server, but also all other agents in any real-time robotic soccer domain must be able to
intercept the ball. Another ball-interception method for the soccer server that relies on
knowing the instantaneous ball velocity is used by the AT Humboldt-97 team [Burkhard et
al. 98]. It is similar to our own hand-coded ball-interception skill for version 4 of the soccer
server described in Appendix B (Section B.1.4). Also in Appendix B (Section B.2.2), there
is a description of the ball-interception behavior used by our real robotic agents.

As mentioned above, the learning described in this chapter is done in an early imple-
mentation of the soccer server in which agents do not receive any velocity information when
seeing the ball. Thus the ball interception skill described in Appendix B is not applicable.
Although we eventually hand-coded the ball interception skill for use in the new version
of the server, the next learned layer—to be described in Chapter 6—uses the learned ball-
interception behavior described in this chapter as part of its training behavior. Thus, the
two layers link as advocated by the principles of layered learning.

Also in line with the principles of layered learning, the ball-interception subtask is an
important initial skill for which it is possible to gather training data. Within the context of
layered learning, the subtask is given as part of the task decomposition. We chose the NN
machine learning method in order to exploit data to learn a continuous action parameter
from three continuous features of the world state as inputs. Both of these choices—the
subtask itself and the ML method—are heuristic choices. Other options may have worked
equally well.

5.5 Related Work

Although the learned ball-interception described in this chapter was the first learning research
conducted in the soccer server, individual behaviors had been previously learned in other
robotic soccer systems. This section discusses these other early robotic soccer learning

5.5. RELATED WORK 113

systems?.

Prior to conducting the research reported in this chapter, we used neural networks to
teach an agent to shoot a moving ball into a goal in a simulator based closely upon the
Dynasim system [Sahota 96]. The simulator models the non-holonomic wheeled Dynamite
robots [Sahota et al. 95]. In this scenario, we were able to use one neural network to time
the agent’s approach towards the ball, and another to aim the ball. The learned behavior
successfully enabled the agent to redirect a moving ball with varying speeds and trajectories
into specific parts of the goal. By carefully choosing the input representation to the neural
networks so that they would generalize as much as possible, the agent was able to use
the learned behavior in all quadrants of the field even though it was trained in a single
quadrant [Stone and Veloso 98d).

Learning was applied in both simulated and real robotic, to hit a stationary ball into the
goal using the concept of learning from easy missions [Asada et al. 94a]. By first placing
the ball directly in front of the goal and then gradually moving it farther away, thus making
the task harder, the learning time was reduced from exponential to linear in the size of the
state space within an RL framework. The robots achieved 70% success in simulation and
40% success in the real world.

Another early example of learning an individual skill in the RoboCup soccer server in-
volved using a neural network to enable an agent to learn when to shoot and when to
pass [Matsubara et al. 96]. An agent was given the ball near the opponent’s goal with a
goaltender blocking the way and a teammate nearby. Based on the positions of the ball, the
goaltender, and the teammate, the agent with the ball learned when it was best to shoot
directly at the goal and when it was best to pass.

In a similar setup, using the same Dynasim-based simulator mentioned above, we used
memory-based learning to allow an agent to learn when to shoot and when to pass the
ball [Stone and Veloso 96a]. This learning was of an individual skill since the goaltender and
the teammate used deterministic, fixed behaviors.

2A full discussion of related robotic soccer systems, including more recent learning approaches, appears
in Chapter 9 (Section 9.2).

Chapter 6

Learning a Multi-Agent Behavior

In this chapter I present a learned multi-agent behavior, the second layer in our layered
learning implementation of simulated robotic soccer agents. Pass evaluation—the estimation
of whether or not a pass to a particular teammate will succeed—is a necessary but difficult
capability with which to equip our agents. However, by collecting data and using it to train
the agents, a successful evaluation function can be constructed [Stone and Veloso 98c|. As
prescribed by the principles of layered learning, this training process incorporates the learned
ball-interception skill (see Chapter 5).

Chapter 6 is organized as follows. Section 6.1 describes the motivation for, training of,
and testing of the learned multi-agent behavior. Section 6.2 verifies that the off-line training
can be successfully used in a real-time game situation. In Section 6.3 I describe our use
of the learned pass-evaluation capability in a full team behavior. Sections 6.4 and 6.5 are
devoted to discussion and related work.

6.1 Decision Tree Learning for Pass Evaluation

6.1.1 Setup and Training

Once young soccer players have learned how to control a ball, they are ready to use their skill
to start learning how to make decisions on the field and playing as part of a team. Similarly,
our simulated robotic soccer agents can use their learned ball-interception skill to exhibit a
more complex behavior: passing. Passing requires action by two different agents. A passer
must kick the ball towards the receiver, who must collect the ball. Since the receiver’s task is
identical to that of the defender in Chapter 5, the agents can (and do) use the same trained
neural network.

Although the execution of a pass in the open field is not difficult given the receiver’s
ball-interception skill, it becomes more complicated in the presence of opponents that try
to intercept the pass. In this section, we assume that the opponents are equipped with the
same learned ball-interception skill as the receivers. The passer is faced with the task of
assessing the likelihood that a pass to a particular teammate will succeed. For example, in
Figure 6.1 teammate 2 may be able to receive a pass from the passer, while teammates 3
and 4 are much less likely to be able to do so. The function that our agents learn evaluates

115

116 CHAPTER 6. LEARNING A MULTI-AGENT BEHAVIOR

whether or not a pass to a given teammate is likely to succeed.

When deciding whether or not to make a pass, there are many world state features that
may be relevant. When many features are available for a machine learning task, it can be
very difficult to determine which ones are predictive of the target concept. Therefore, we use
a learning method that is capable of determining for itself the features on which to focus.
In particular, we use the C4.5 decision tree (DT) training algorithm [Quinlan 93].

In order to gather training data, like for the ball-interception behavior, we again define a
constrained training scenario and use an omniscient, omnipotent agent to monitor the trials.
The training process is illustrated in detail in Figures 6.1-6.5 including their accompanying
captions. Table 6.1 specifies the training procedure.

1. The players are placed randomly within a region (Figure 6.1).
2. The passer announces its intention to pass (Figure 6.1).
3. The teammates reply with their views of the field when ready to receive (Figure 6.2).

4. The passer chooses a receiver randomly during training, or with a DT during testing
(Figure 6.3).

5. The passer collects a large number of features of the training instance (see below).
6. The passer announces to whom it is passing (Figure 6.4).

7. The receiver and four opponents attempt to get the ball using the learned ball-
interception skill (Figure 6.5).

8. The training example is classified as a success if the receiver manages to advance the
ball towards the opponent’s goal; a failure if one of the opponents clears the ball in the
opposite direction; or a miss if the receiver and the opponents all fail to intercept the
ball (Figure 6.5).

Table 6.1: The training procedure for learning pass evaluation.

Rather than restricting the number of features in the input representation used for learn-
ing, we capitalized on the DT’s ability to filter out the irrelevant ones. Thus, we gather a
total of 174 features for each training example, half from the passer’s perspective and half
from the receiver’s. The features from the receiver’s perspective are communicated to the
passer before the passer has to decide to which player to pass.

The complete list of features—all continuous or ordinal—available to the DT are
defined in Table 6.2. All of the features starting with “passer” are from the passer’s
perspective; features starting “receiver” are from the receiver’s perspective. For example,
receiver-players-dist8-ang12 is the number of players that the receiver sees within a
distance of 8 and angle of 12 from the passer. The features are defined in the following

terms. If x and y are players, then:

e dist(x,y) = the distance between players x and y;

6.1. DECISION TREE LEARNING FOR PASS EVALUATION 117

1 Passer: 3 Teammates: 4 Defenders: o

+2 other players per team

Figure 6.1: The pass evaluation training process, part 1. At the beginning of a trial, the passer
is placed behind the ball. 3 teammates and 4 opponents are placed randomly within the region
indicated by the dashed line, while 2 other players from each team are placed randomly on the
field. In this and the following figures, the players involved in the play are enlarged for presentation
purposes. When the passer sees that it has the ball, it announces its intention to pass. Its goal is
to assess the likelihood of a pass to a given teammate succeeding.

Figure 6.2: The pass evaluation training process, part 2. When the teammates are facing the ball,
they tell the passer what the world looks like to them. The passer can use the transmitted data
to help it assess the likelihood that each teammate would successfully receive a pass. The data
includes distances and angles to the other players as well as some statistics regarding the numbers
of players within given distances and angles.

118 CHAPTER 6. LEARNING A MULTI-AGENT BEHAVIOR

[Sample Decision Tree Output]

—® Teammate 2 : Success with confidence 0.8
Teammate 3 : Failure with confidence 0.6
Teammate 4 : Success with confidence 0.3

Figure 6.3: The pass evaluation training process, part 3. During training, the passer chooses
its receiver randomly. During testing, it uses a DT to evaluate the likelihood that a pass to each
of the teammates would succeed. It passes to the one most likely to successfully receive the pass

(Teammate 2 in this case).

Figure 6.4: The pass evaluation training process, part 4. After choosing its receiver, the passer
announces its decision so that the receiver knows to expect the ball and the other teammates can
move on to other behaviors. In our experiments, the non-receivers remain stationary.

6.1. DECISION TREE LEARNING FOR PASS EVALUATION - 119

kick off 8751

Figure 6.5: The pass evaluation training process, part 5. Finally, the receiver announces the result
of the pass.

e ang(x,y) = the angle to player y from player x’s perspective;

o rel-ang(x,y,z) = [ang(x,y) — ang(x.z)};
o rel-dist(x,y,z) = |dist(x,y) — dist(x,z)|.

Even though the training examples do not include full teams of players, the features are
defined such that they could be used in a game situation. The players whose positions are
unknown create missing feature values.

Along with the ability to ignore irrelevant features, another strength of decision trees
is their ability to handle missing features. Whenever fewer than the maximum number
of players are visible, some features are missing. In addition, if the potential receiver is
unable to successfully communicate the data from its perspective, all of the features from
the receiver’s perspective are missing. }

The goal of learning is to use the feature values to predict whether a pass to the given
teammate will lead to a success, a failure, or a miss. For training, we use standard off-the-
shelf C4.5 code with all of the default parameters [Quinlan 93]. We gathered a total of 5000
training examples, 51% of which were successes, 42% of which were failures, and 7% of which
were misses.

Training on this data produces a pruned tree with 87 nodes giving a 26% error rate on
the training set. The resulting tree is shown in Figure 6.6. The first node in the tree tests
for the number of opponents within 6 degrees of the receiver from the passer’s perspective.
If there are any such opponents, the tree predicts that the pass will fail. Otherwise, the tree
moves on to the second node which tests the angle of the first opponent. Since the passer
sorts the opponents by angle, the first opponent is the closest opponent to the receiver in
terms of angle from the passer’s perspective. If there is no opponent within 13 degrees of
the receiver, the tree predicts success. Otherwise it goes on to deeper nodes in the tree.

Each leaf in the tree shown in Figure 6.6 includes a classification (“S” for success or
“F” for failure—no misses are shown) followed by two numbers in parentheses: (N/E). As

120 CHAPTER 6. LEARNING A MULTI-AGENT BEHAVIOR

¢ Distance and Angle to the receiver (2 features):

— passer-receiver-distance = dist(passer,receiver).
— passer-receiver-angle = ang(passer,receiver).

e Distance and Angle to other teammates sorted by angle from the receiver (18 features):

— Sort the 9 other teammates such that Vij, if i<j, then
rel-ang(passer,teammate-i,receiver) < rel-ang(passer,teammate-j,receiver).

— For i=1-9, passer-teammate(i)-distance = dist(passer,teammate-i).

— For i=1-9, passer-teammate (i) -angle = ang(passer,teammate-i).

¢ Distance and Angle to opponents sorted by angle from the receiver (22 features):

— Sort the 11 opponents such that Vi, if i<j, then

rel-ang(passer,opponent-i,receiver) < rel-ang(passer,opponent-j,receiver).
— For i=1-11, passer-opponent (i)-distance = dist(passer,opponent-i).
— For i=1-11, passer-opponent (i) -angle = ang(passer,opponent-i).

e Distance and Angle from the receiver to teammates sorted by distance (20 features):

— Sort the 10 teammates (including the passer) such that Vi,j, if i<j, then
dist(receiver,teammate-i) < dist(receiver,teammate-j).

— For i=1-10, receiver—teammate (i) -distance = dist(receiver,teammate-i).

— For i=1-10, receiver-teammate (i) -angle = ang(receiver,teammate-i).

e Distance and Angle from the receiver to opponents sorted by distance (22 features):

— Sort the 11 opponents such that Vi,j, if i<j, then

dist(receiver,opponent-i) < dist(receiver,opponent-j).
— For i=1-11, receiver-opponent (i) -distance = dist(receiver,opponent-i).
— For i=1-11, receiver-opponent (i) -angle = ang(receiver,opponent-i).

e Player distribution statistics from the passer’s (45 features) and receiver’s (45 features) perspectives:

— For i=1-6, passer-teammates~ang(i) =
|{keteammates | rel-ang(passer,k,receiver) < i A dist(passer,k) < dist(passer,receiver)}|.
— For i=1-6, passer-opponents-ang(i) =
|{kcopponents |rel-ang(passer,k,receiver) < i A dist(passer,k) < dist(passer,receiver)}|.
— For i=1-6, passer-players-ang(i) = passer-teammates-ang(i) + passer-opponents-ang(i).
— For i=1-3, j=1-3, passer-teammates-dist (4i)-ang(4j)=
|{k€teammates | rel-ang(passer,k,receiver) < 4i A rel-dist(passer k,receiver) < 4j}|.
— For i=1-3, j=1-3, passer-opponents-dist (4i)-ang(4j)=
|{k€opponents | rel-ang(passer,k,receiver) < 4i A rel-dist(passer,k,receiver) < 4j}|.
— For i=1-3, j=1-3, passer-players-dist (4i) ~ang(4j)=
passer-teammates-dist(4i)-ang(4j) + passer-opponents-dist(4i)-ang(4j).
— For i=1-6, receiver-teammates-ang(i) =
|{keteammates | rel-ang(receiver k,passer) < i A dist(receiver,k) < dist(passer,receiver)}|.
— For i=1-6, receiver-opponents-ang(i) =
|[{k€opponents |rel-ang(receiver,k,passer) < i A dist(receiver,k) < dist(passer,receiver)}|.
— For i=1-6, receiver-players-ang(i) =
receiver-teammates-ang(i) + receiver-opponents-ang(i).
— For i=1-3, j=1-3, receiver-teammates-dist (4i)-ang(4j)=
[{kcteammates | rel-ang(receiver k,passer) < 4i A rel-dist(receiver k,passer) < 4j}|.
— For i=1-3, j=1-3, receiver-opponents-dist (4i)-ang(4j)=
|{k€opponents | rel-ang(receiver k,passer) < 4i A rel-dist(receiver,k,passer) < 4j}|.
— For i=1-3, j=1-3, receiver-players-dist (4i)-ang(4j)=
receiver—teammates-dist(4i)-ang(4j) + receiver-opponents-dist (4i)-ang(4j).

Table 6.2: The complete list of 174 continuous and ordinal features available to the decision tree.

6.1. DECISION TREE LEARNING FOR PASS EVALUATION 121

C4.5 [release 8] decision tree interpreter

Decision Tree:

passer-opponents-angé > 0 : F (1266.0/251.3)
passer-opponents-ang6 <= 0 :
| passer-opponenti-angle > 13 : S (1054.6/290.5)
passer-opponenti-angle <= 13 :
| passer-teammates-angf <= 0 :
| passer-receiver-distance <= 22 :
| | passer-opponenti-distance <= 20.9 :
| passer-players-dist8-angl2 <= 3 : S (162.0/72.9)
| passer-players-dist8-angl2 > 3 : F (15.0/5.8)
passer-opponenti-distance > 20.9 :
| passer-opponent2-distance <= 21.1 :
| passer-opponents-dist12-ang8 <= 1 :
[| passer-teammates-dist8-ang8 <= 1 :
| | | passer-opponents-dist12-ang4d <= 0 :
| | | | passer-receiver-distance <= 20.3 : S (52.2/8.6)
| | | passer-opponents-disti2-angd > O :
[| | | passer-opponents-dist4-angl2 <=1 : S (60.5/20.0)
passer-opponent2-distance > 21.1 :
| | receiver-teammates-dist8-angl2 <= 1 : S (704.3/139.6)
asser-receiver—-distance > 22 :
passer-opponentl-distance <= 23.1 :
| passer-opponents-disti2-angl2 <= 0 :
| receiver-players-dist8-angl2 <= 1 : S (87.5/44.7)
passer-opponents-disti2-angl2 > 0 :
| passer-opponents-disti2-ang8 > 0 : F (191.0/63.0)
| passer-opponents-disti2-ang8 <= 0 :
[| passer-opponents-dist4-angi2 > 1 : S (14.0/6.8)
I
I

|
I
I
I
I
I
I

I
I
I
I
I
[| passer-opponents-dist4-angl2 <= 1 :
| | | passer-teammatel-distance <= 19.5 : S (15.0/6.8)
| | | | passer-teammatel-distance > 19.5 : F (234.0/91.7)
passer-opponenti-distance > 23.1 :
| passer-opponents-dist12-angl2 <= 1 : S (665.9/259.2)
| passer-opponents-disti2-angl2 > 1 :
[| passer-players-dist4-angl2 <= 1 : F (11.0/5.6)
I passer-players-dist4-angl2 > 1 :
[| passer-opponents-dist4-ang8 <= 0 : S (49.0/19.9)
| | passer-opponents-dist4-ang8 > 0 :
] | | passer-opponent2-distance <= 23.1 : F (85.0/26.5)
I | | passer-opponent2-distance > 23.1 :
I | | | passer-opponents-distl2-angl2 <= 2 :
| |] I | receiver-opponent3-angle <= 48 : F (9.6/2.2)
| | | | | | receiver-opponent3-angle > 48 : S (108.4/43.0)
asser-teammates-ang6 > 0 :
passer-teammates-angb > 0 : F (21.0/7.0)

I
|
|
I
| I
I I
b I
I I
I I
I |
Il I
o [
I [
b I
(. I
[[
| | P
| I
I [
I l
oo I
I [
I I
P I
I [
I [
I I
o I
I [
I [
. |
Il [I
I [1
[I I
[I I
I I I
I [I
I [I
I I
|

[

I
I
I
I
|
I
I
I
I
|
I
I
I
|
I
I
|
|
!
I
I
|
!
I
I
I
!
I
I
I
I
I
I
|
I
p
I

Figure 6.6: The trained decision tree. Some subtrees with fewer cases covered have been removed °
for purposes of presentation. The features are described in Table 6.2. Predictions are indicated as
“S” for success and “F” for failure. The numbers in parentheses indicate the predicted error rates
for unseen cases at each leaf.

CHAPTER 6. LEARNING A MULTI-AGENT BEHAVIOR

122

explained in [Quinlan 93, page 42], “N is the number of training examples covered by the
leaf. E is just the number of predicted errors if a set of N unseen cases were classified by the
tree.” Fractional values of N arise when activations are split among branches of the tree due
to missing attributes. C4.5 uses N and E to associate a confidence factor € [0, 1] with each
predicted classification [Quinlan 93).

We use C4.5’s confidence factors to define a function ®(passer,receiver) — [—1,1]. As-
sume that for a pass from passer to receiver the DT predicts class x with confidence v € [0, 1].

Then
v if kK = S (success)

0 if Kk = M (miss)
—v if k = F (failure)

®(passer, receiver) =

6.1.2 Results

In order to test the DT’s performance, we ran 5000 trials with the passer using the DT to
choose the receiver in Step 4 of Table 6.1. All other steps including the placement of players,
and consequently the example distribution, are the same during testing as during training.
Since the DT returns a confidence estimate in its classification, the passer can choose the
best receiver candidate even if more than one is classified as likely to be successful: it passes
to the teammate with maximum ®(passer, teammate).

We compiled results sorted by the DT’s confidence in the success of the pass to the
chosen receiver (see Table 6.3). The largest number of passes were classified as successes
with confidence between .7 and .8, with another large portion classified as successes with
confidence between .8 and .9. Overall, the success rate of 65% is much better than the 51%
success rate obtained when a receiver is chosen randomly. However, this result is obtained
under a condition of forced passing: the passer is required to pass the ball during all trials.
In a game situation the passer would be given the option to dribble or shoot instead. Notice
that if the passer wants to be fairly sure of success, it could pass only when the DT predicted
success with confidence greater than .8. The resulting 79% success rate approaches the limit
imposed by the success rate of the ball-interception skill. When the testing is repeated with
no opponents to intercept the ball, the success rate is 86%.

® (passer,receiver)
(success predictions) (failure predictions)
Total | .8-9 .7-8 .6-7 | —6-(—7) —.7-(—8) —.8-(—.9)
(Number) (5000) | (1050) (3485) (185) (34) (3) (39)
Success (%) 65 79 63 58 44 33 13
Failure (%) 26 15 29 31 53 67 79
Miss (%) 8 5 8 10 3 0 8

Table 6.3: The results of 5000 trials during which the passer uses the DT to choose the receiver.
Overall results are given as well as a breakdown by the passer’s confidence prior to the pass. The
passer is forced to pass even if it predicts failures for all 3 teammates. In that case, it passes to the
teammate with the lowest likelihood of failure. Results are given in percentages of the number of
cases falling within each confidence interval (shown in parentheses).

6.2. USING THE LEARNED BEHAVIORS 123

With all the different features describing each training example, it is not obvious how to
construct an analytic heuristic for the passer to use when choosing a receiver. For comparison
purposes, we defined a heuristic by which the passer always passes to the closest of the three
teammates.

Over 5000 trials, the closest teammate heuristic produces a success rate of 64%. Although
this number compares favorably with the overall DT success rate, it is significantly lower
than the 79% success rate the passer can achieve with the DT when given the option of
not passing. Furthermore, the closest teammate heuristic gives no way of estimating the
likelihood that a pass will succeed. It simply postulates that given a choice, the passer
should pass to the closest teammate. Since the likelihood estimation is the true goal of our
learning in this section, there is a clear advantage to using the DT method. As shown in
Section 6.3, when deciding whether to pass, dribble, or shoot, the knowledge of whether or
not a given pass is likely to succeed is extremely useful.

6.1.3 Summary

In this section, I demonstrated that a higher-level decision can be built upon the low-level
skill learned in Chapter 5. Using a DT, our agents learn to judge the likelihood that a pass
to a given receiver will be successfully received. This judgment represents the second layer
in our layered learning implementation.

Before moving on to the third layer in Chapter 7, I first present some experiments that
demonstrate the effectiveness of the learned ball-interception and pass-evaluation capabili-
ties in game situations. Since they are both trained and tested off-line in limited types of
situations, their applicability to more realistic scenarios has not yet been established. Sec-
tion 6.2 presents the initial verification that encourages us to proceed. Section 6.3 presents
extensive results demonstrating the utility of the learned behaviors in full game situations.

6.2 Using the Learned Behaviors

Once able to judge the likelihood that a pass will succeed, a human or simulated soccer
player is ready to start making decisions in game-like situations. When considering what to
do with the ball, the player can pass to a strategically positioned teammate, dribble, or shoot.
To verify that the second level of our layered learning implementation can be incorporated
into game-like situations, we implemented a play sequence that uses the passing decision
described in Section 6.1.

In Figure 6.7 which illustrates the play sequence, the teammates executing the play
sequence are shown as white circles and labeled A-G; opponents are shown as black circles.
The play sequence is as follows:

e Player A starts with the ball in front of it and dribbles towards the opponent’s goal.

e When it approaches within 15 of an opponent, it stops dribbling and prepares to pass
to one of the two closest teammates: players B and C.

CHAPTER 6. LEARNING A MULTI-AGENT BEHAVIOR

e In accordance with the protocol laid out in Table 6.1, it announces its intention to pass
and gets responses from the two nearest players. It then uses the DT to decide which
teammate is more likely to successfully receive the pass. In Figure 6.7, player A passes
to teammate B (®(A,B) > ®(A,C)).

e Player B and the adjacent opponent then both try to intercept the ball using the
trained ball-interception skill. If the opponent gets the ball, it kicks it back towards
the left goal and the play starts over. However, if player B gets the ball, it immediately
kicks the ball to player D (if player A had passed to player C, the ball would have been
sent to player E and the play would have continued symmetrically).

e Since player D is not covered, it can easily collect the ball and begin dribbling towards
the goal. Using the same behavior as player A, player D stops dribbling when it
approaches within 15 of a defender and chooses between passing to teammates I and
G. Again, it uses the trained DT.

e If player F or G is able to get to the ball before the opponents, it immediately shoots
towards the goal.

O Teammate e Opponent

Figure 6.7: An illustration of the implemented play sequence. Players are emphasized for improved
visibility. Teammates are labeled A—G. Every player uses at least one of the two learned behaviors:
ball interception and pass evaluation.

We ran this play sequence several times in order to verify that the learned behaviors
are both robust and reliable. Since the opponents are all equipped with the same ball-
interception skill as the receivers, the opponents are sometimes able to break up the play.
However, the fact that the attacking team can sometimes successfully string together three
passes and a shot on goal when using the learned behaviors demonstrates that these behaviors
are appropriate for game-like situations.

Indeed, in the following section, the learned behaviors are incorporated into a full team
of soccer-playing agents. The power of the learned pass evaluation is tested by comparing
teams that use it against teams that do not.

6.3. SCALING UP TO FULL GAMES 125

6.3 Scaling up to Full Games

As presented in Chapter 5 and above, the ball-interception and pass-evaluation behaviors are
both trained and tested in limited, artificial scenarios which do not reflect the full range of
game situations. In this section I extend these basic learned behaviors into a full multi-agent
behavior that is capable of controlling agents throughout an entire game [Stone and Veloso
98e]. This multi-agent behavior is designed for the purposes of testing: it is not the same as
the CMUnited-98 behavior specification laid out in Section 3.5.

Since the two learned behaviors defined thus far only apply when a player is in the vicinity
of the ball, the player needs to have some other mechanism for acting when it does not have
the ball. In addition, when it does have the ball, it must decide when to pass it: in some
cases it may have enough time to execute the ideal pass; however, in other cases it may have
to release the ball immediately in order to avoid losing it to an opponent player.

This section is organized as follows. Section 6.3.1 defines the mechanism by which the
player with the ball chooses its action, either with the aid of the learned DT or without.
In Section 6.3.2, I explain how our agents reason about the time available to execute a
pass. Section 6.3.3 presents the full multi-agent behavior including behavior specifications for
occasions when the player does not have the ball. Section 6.3.4 demonstrates the effectiveness
of the learned pass-evaluation function in the context of full game situations via extensive
empirical testing. '

6.3.1 Receiver Choice Functions

Recall that the DT estimates the likelihood that a pass to a specific player will succeed.
Thus, for an agent to use the DT in a game, the DT must be incorporated into a full receiver
choice function (RCF). We define an RCF to be a function that determines what the agent
should do when it has possession of the ball—when the ball is within kickable_area (see
Section 2.2)—and it has the opportunity to choose a receiver to which to pass. The input
and output of a receiver choice function are as follows.

Input. The input of an RCF is the agent’s perception of the current state of the world. This
perceived state includes both the agent’s latest sensory perception and remembered
past positions of currently unseen objects (see Section 3.2).

Output. The output of an RCF is an action from among the options dribble, kick, or pass,
and a direction, either in terms of a player (i.e. towards teammate number 4) or in
terms of a part of the field (i.e. towards the goal).

First, the RCF identifies a set of candidate receivers given the current world state. Then,
the RCF selects a receiver or else indicates that the agent should dribble or kick the ball.
The set of candidate receivers is determined in part by the player’s position, or role.
Each player is assigned a particular position on the field, and the team remains in a constant
formation (see Chapter 3). Throughout this section, the team being tested uses the 4-3-3
formation illustrated by the black team in Figure 6.8. The positions in this formation are
a goaltender (G), a sweeper (S), three defenders—Ileft (LD), center (CD), and right(RD)—
three midfielders (LM, CM, and RM), and three forwards (LF, CF, and RF). The arrows

126 CHAPTER 6. LEARNING A MULTI-AGENT BEHAVIOR

emanating from the players indicate the positions to which each player considers passing
when using the RCFs. The options are also apparent in Table 6.5. The position on the left
of the field (LD, LM, and LF) consider symmetrical options to their counterparts on the
right of the field. The goaltender (G) has the same options as the sweeper (S).

Figure 6.8: Player positions in the 4-3-3 formation used by the behaviors in this section. The black
team, moving from left to right, has a goaltender (G), a sweeper (S), three defenders—left (LD),
center (CD) right(RD)—three midfielders (LM, CM, and RM), and three forwards (LF, CF, and
RF). The arrows emanating from the players indicate the positions to which each player considers
passing when using the RCFs. The players on the left of the field (top of the diagram) consider
symmetrical options to their counterparts on the right of the field. The goaltender has the same
options as the sweeper. The white team has the same positions as the black, except that it has no
players on its left side of the field, but rather two in each position on its right.

When a player is near its default position, it periodically announces its position to team-
mates; when a player leaves its position to chase the ball, it announces this fact and is no
longer considered “in position.” The agents determine which players are in which positions
by listening to their teammates’ announcements.

Notice that Figure 6.8 is the same as Figure 3.7, except that an opposing team is also
depicted. The white team has the same positions as the black, except that it has no players
on its left side of the field. Instead, it has two players in each position on the right side of

the field.
Table 6.4 defines three RCF's, one of which uses the DT; the others are defined for the

purposes of comparison.

e The PRW—prefer right wing—RCF uses a fixed ordering on the candidate receivers for
each of the positions on the field. In general, defenders prefer to pass to the wings rather
than forward; midfielders prefer to pass forward rather than sideways; and forwards
tend to shoot. All players in the center of the field, as indicated by the name, prefer
passing to the right rather than passing to the left. The ordered preference lists D, of
the different positions r are specified in Table 6.5. The RCF simply returns the most
preferable candidate receiver according to this fixed ordering. Again, if no receivers are
eligible, the RCF returns “dribble” or “kick.” This RCF was our initial hand- coded
behavior for use in games (at Pre-RoboCup-96).

6.3. SCALING UP TO FULL GAMES 127

Let agent oo € A have the ball at time ¢ and be using the RCF. Assume agent « is in position
(role) p € R (recall from Chapter 3 that A is the set of agents and R is the set of roles
in the team’s current formation). First, the RCF determines the set of candidate receivers
Ca: € A. Each position 7 € R has a set of candidate receiver roles C, C R, as indicated in
Figure 6.8. For example, Ccyy = {LM,RM,LF,CF ,RF}. At time ¢, o’s mapping from agents
A — R specifies which agent is playing which position. Let a,; be the agent playing position
r at time ¢.

1. Start by setting Cor = {a,4|r € C,}.

2. Any potential receiver that is too close (closer than d,;,) or too far away (farther
than d.,) according to a’s world state at time ¢ is eliminated from consideration: set
Cot = {a € Copldmin < dist(a,a) < dyar}- We use dpin = 10 and dypqp = 40.

3. Any player that is out of position (because it was chasing the ball) is eliminated from
consideration. Let A" C A be the set of agents that are currently away from their
home positions as determined by the periodic announcements from all teammates. For
instance, these agents might be chasing the ball. Set Cy; = C,; — A

4. IF Ji € opponents such that dist(c, i) < dpmin THEN let C' C C,; be the set of
agents to which o cannot kick the ball directly without the ball hitting a: C' = {a €
Co.|(lang(a, a) — ang(c, ball)|) > Cang}. We use cang = 130. Set Cpy = C,y — C'.

After having determined the set of candidate receivers C,;, the RCF specifies which candi-
date receiver, if any, should receive the pass.

5. IF C,; = 0 THEN
e IF 3i € opponents such that dist(e,) < dpin, THEN return kick to the oppo-

nent’s goal.

e ELSE return dribble to the opponent’s goal.
6. ELSE (C,; # 0) THEN pass according to which RCF is being used:

PRW (Prefer Right Wing): Use a fixed ordering on the receivers D, C R = (d;,ds, . ..)
as specified in Table 6.5. Return pass to ¢ € C,; such that ¢ = ag,; A Vag;: €
Ca,t,j 2 i
RAND (Random): Choose randomly among the receivers. Return pass to some ¢ € Cogp-
DT (Decision Tree): Set Coy = {a € Cot|®(,a) > 0}.
IF C,: = 0 THEN return kick or dribble as in Step 5.
ELSE return pass to ¢ € C,, such that Vb € Cy 4, ®(a, ¢) > &(a, b).

Table 6.4: Specification of three RCFs: PRW, RAND, and DT.

e The RAND—random—RCF is the same as the PRW RCF except that it chooses
randomly from among all candidate receivers.

128 CHAPTER 6. LEARNING A MULTI-AGENT BEHAVIOR

e As suggested by its name, the DT—decision tree—RCF uses the DT described in
Section 6.1 to choose from among the candidate receivers. In particular, as long as the
DT predicts a pass to at least one candidate would be successful, the DT RCF indicates
that the passer should pass to the teammate with the highest success confidence,
breaking ties randomly. If the DT does not predict that any pass would succeed, the
RCF specifies that the agent with the ball should dribble or kick the ball forwards
(towards the opponent goal or towards one of the forward corners).

Lr |D |
G | (RD,RM,LD,LM,CM)
S | (RD,RM,LD,LM,CM)
LD | (LM,LF,CM)

CD | (RM,LM,CM)

RD | (RM,RF,CM)

LM | (LF,CF,RF)

CM | (RM,RF,CF,LM,LF)
RM | (RF,CF,LF)

LF | (CF)

CF | —

RF | (CF)

Table 6.5: The ordered preference lists of the positions in the 4-3-3 formation when using the PRW
RCF. D, is the preference list for position 7. The positions are indicated as labeled in Figure 6.8.
The CF position has no passing options: it always dribbles or shoots.

6.3.2 Reasoning about Action Execution Time

In the experiments reported in this chapter, the agents are not equipped with the turnball
behavior described in Appendix B (Section B.1.1). Thus, when a player is between the ball
and the teammate to which it wants to pass, it must move out of the ball’s path before
passing, which empirically takes between 5 and 15 simulator cycles. If there is an opponent
in the vicinity, it may be able to steal the ball in that time.

Therefore, the RCF definition (Table 6.4) includes reasoning about the available time to
execute an action. In particular, if there is an opponent within d,,;,, there is a danger of
losing the ball before being able to pass or shoot it. In this situation, it is to the passer’s
advantage to get rid of the ball as quickly as possible.

This priority is manifested in the RCFs in two ways:

e In Step 4 of Table 6.4, when there is an opponent within d;,, the RCFs only consider
passing to players to whom the agent can pass immediately. As mentioned above, this
concept is not purely reactive: the positions of opponents that are outside an agent’s
field of view are remembered.

e In Step 5, when an opponent is within d,,;,, the agent kicks the ball away (or shoots)
rather than dribbling. The point of dribbling the ball (kicking the ball a small amount

6.3. SCALING UP TO FULL GAMES 129

in a certain direction and staying with it) is to keep the ball for a little longer until a
good pass becomes available or until the player is in a good position to shoot. However,
if there is an opponent nearby, dribbling often allows the opponent time to get to the
ball. In this situation, as indicated in Step 5 of Table 6.4, the RCF causes the player
to kick the ball forward (or shoot) rather than dribbling.

Thus, the RCF considers whether there is enough time to execute an action without
an opponent stealing the ball. The ability to reason about how much time is available for
action is an important component of the RCFs and contributes significantly to their success
in game situations (see Section 6.3.4).

6.3.3 Incorporating the RCF in a Behavior

In Section 6.3.1, the method of using a DT as a part of an RCF is described in detail.
However, the RCF is itself not a complete agent behavior: it only applies when the ball
is within kickable_area of a the player. This section situates the RCF within a complete
behavior that can then be used throughout the course of a game. Again, this behavior is not
the same as the CMUnited-98 implementation presented in Section 3.5: it is a preliminary
version of the full-fledged CMUnited-98 implementation. The complete behavior is laid out
in Table 6.6.

Let a be the agent using this behavior, and ball-dist = dist(«,ball).
1. IF confidence in the ball’s location (see Section 3.5.1) < .5 THEN face the ball.
2. IF ball-dist < dcpase Or Va € teammates, ball-dist < dist(a,ball) THEN:

o IF ball-dist > kickable_area THEN move to the ball, using the trained NN
when appropriate;

e ELSE pass, dribble, or kick the ball as indicated by the RCF.
3. ELSE: (ball-dist > dcpese and Ja € teammates, ball-dist > dist(a,ball))

e Move within a’s home position using ball-dependent flexible positioning (see Sec-
tion 3.5.2).

Table 6.6: The complete behavior used by the players in game situations to test the different
RCFs.

When using this behavior, the player’s first priority (Step 1) is always to find the ball’s
location (only objects in front of the player are seen). If it does not know where the ball
is, it turns until the ball is in view. When turning away from the ball, it remembers the
ball’s location for a short amount of time; however after about three seconds without seeing
the ball, its confidence in the ball’s location decays enough that it assumes that it no longer
knows where the ball is (see Section 3.5.1).

Once the ball has been located, the agent can carry on with its behavior. As indicated
in Step 2 of Table 6.6, the agent chases the ball when either of two conditions is met:

130 CHAPTER 6. LEARNING A MULTI-AGENT BEHAVIOR

e When the ball is within dgp,se, the agent always goes towards the ball. We set depose =
10.

e The agent chases the ball whenever it thinks that it is the closest team-member to the
ball.

In the second case, notice that the agent may not actually be the closest player to the ball if
some of its teammates are too far away to see and if they have not announced their positions
recently. However, if a player mistakenly thinks that it is the closest player, it will get part
of the way to the ball, notice that another teammate is closer, and then turn back to its
position. ’

As required for use of the DT, every player is equipped with the trained neural network
(see Chapter 5) which can be used to help intercept the ball. Whenever the ball is within
kickable_area, the agent uses its RCF to decide whether to dribble, kick, or pass, and to
where. Every team member uses the same RCF.

Finally, as described in Section 6.3.1, each player is assigned a particular position on
the field. Unless chasing the ball, the agent goes to its position, moving around within the
position’s home range using ball-dependent flexible positioning (Step 3).

6.3.4 Results

In this section I present the results of empirically testing how the behaviors specified in
Section 6.3.3 perform. Since the behaviors differ only in their RCFs, I refer below to,
for example, “the complete behavior using the DT RCF” simply as “the DT RCF.” Also
presented are empirical results verifying the advantage of reasoning about action-execution
time.

In order to test the different RCF's, we created a team formation that emphasizes the ad-
vantage of passing to some teammates over others. When both teams use the standard 4-3-3
formation (that of the black team in Figure 6.8), every player is covered by one opponent.
However, this situation is an artificial artifact of using the ball-dependent player-positioning
algorithm. In reality, the players—using SPAR (Section 3.5.2)—have the ability to move to
open positions on the field. For the purposes of these experiments we use a simpler behavior
than the full CMUnited-98 implementation: the players only use ball-dependent positioning.
In order to reflect the fact that some players are typically more open than others, we test the
RCFs against the OPR—only play right—formation which is illustrated by the white team in
Figure 6.8. We also use the symmetrical OPL—only play left—formation for testing. These
behaviors are specified in Table 6.7.

During testing, each run consists of 34 five-minute games between a pair of teams. We
tabulate the cumulative score both in total goals and in games won (ties are not broken) as
shown in Table 6.8. Graphs record the differences in cumulative goals scored (Figure 6.9)
and games won (Figure 6.10) as the runs progress.

In order to test the effectiveness of the DT RCF, we compared its performance against
the performance of the PRW and RAND RCFs when facing the same opponent: OPR. While
the DT and RAND RCF's are symmetrical in their decision making, the PRW RCF gives
preference to one side of the field and therefore has an advantage against the OPR strategy.

6.3. SCALING UP TO FULL GAMES 131

e The opponent behaviors are exactly the same as the RAND behavior except that the
players are assigned to different positions:

OPR (only play right): As illustrated by the white team in Figure 6.8, two players
are at each position on the right side of the field, with no players on the left side

of the field.

OPL (only play left): Same as above, except all the players are on the left side of the
field.

Table 6.7: OPR and OPL behavior specifications.

RCF (vs. OPR) || Games (W — L) | Overall Score
DT 19 -9 135 - 97
PRW 11-14 104 - 105
PRW (vs. OPL) 8- 16 114 - 128
RAND 14 - 12 115 - 111

Table 6.8: The results of using different RCFs. Results are cumulative over 34 five-minute
games: ties are not broken. Unless otherwise indicated, the opponent—whose score always ap-
pears second—uses the OPR formation.

Cumulative Goal Difference vs. Game Number
50 . T . T . T

40 r DTvs.OPR —

PRW vs. OPR -

30 I PRWvs. OPL -

8 RAND vs. OPR -

c

(]

5 20

=

0 0t

[

o ;

© 0 foifr
A0t T T
-20

0 5 10 15 20 25 30 35
Game Number

Figure 6.9: The differences in cumulative goals as the runs progress.

Thus we also include the results of the PRW RCF when it faces the symmetrical opponent:
OPL. From Table 6.8 and Figures 6.9 and 6.10 it is apparent that the DT RCF is an effective
method of decision making in this domain.

In order to test the effectiveness of the reasoning about action-execution time, we compare
the performance of the standard DT RCF against that of the same RCF with the assumption
that there is never an opponent within d,,;, (“No-rush DT”): even if there is, the RCF ignores
it. This assumption affects Steps 4 and 5 of the RCF specification in Table 6.4 as described in
Section 6.3.2. Both RCF's are played against the OPR behavior. As apparent from Table 6.9,

CHAPTER 6. LEARNING A MULTI-AGENT BEHAVIOR

Cumulative Victory Difference vs. Game Number

15
DT vs. OPR —
PRWvs. OPR —
10 PRWvs, OPL -~
© RAND vs. OPR -
5
5 °F
=
o - \
g ok
L
>
-5 L |
-10 L .) , ‘

0 5 10 15 20 25 30 35
Game Number

Figure 6.10: The differences in cumulative games won as the runs progress.

the reasoning about action-execution time makes a significant difference.

RCF (vs. OPR) || Games (W — L) | Overall Score
Standard DT 19-9 135 - 97
No-rush DT 13 -16 91 — 108

Table 6.9: The effect of reasoning about action-execution time within an RCF. No-rush DT is the
same RCF as the standard DT RCF except that there is no reasoning about action-execution time.
The Standard DT RCF performs significantly better.

6.3.5 Summary

This section demonstrated that, even though trained in a limited, artificial scenario, the
learned pass-evaluation capability trained in Section 6.1.1 generalizes successfully to full
games. The players can successfully use it to choose which pass to make from among several
options. Combined with some basic reasoning about the action-execution times of different
options—necessitated by the real-time nature of this domain—the DT-based control function
outperforms both random and hand-coded alternatives. The success of this multi-agent
behavior encouraged us to incorporate it into a learned full team behavior as presented in

Chapter 7.

6.4 Discussion

In this section I discuss two aspects of the learned pass-evaluation capability presented in
this chapter. First, I discuss how it fits within the layered learning context. Then I discuss
the use of the decision tree confidence factors for agent control.

6.4. DISCUSSION 133

6.4.1 Pass Evaluation within Layered Learning

The pass-evaluation capability described in this chapter is the second layer of our robotic
soccer layered learning implementation. Its choice and implementation follow the principles
of layered learning as laid out in Section 4.1:

o It is easier to gather data and to exploit it for training a pass-evaluation function than
it is to code such a function by hand. Especially since the question of whether or not
a pass will succeed depends on the abilities of players to receive the ball, there is no
obvious heuristic that could be used.

e We choose the learning method—the C4.5 decision tree training algorithm—based on
the task characteristics. We identify 174 features with potential predictive power for
pass evaluation, many of which are frequently unknown. Therefore, the abilities of
C4.5 to identify the most relevant features and to handle missing feature values are
very important. In addition, the fact that C4.5 provides confidence factors along with
its predictions turns out to be very useful.

e The previous learned layer—ball-interception—is used as part of the training behavior:
both the intended receiver and all of the opponents use the trained neural network when
* trying to intercept the moving ball.

Just as this multi-agent behavior builds upon the interception skill, higher-level learned
behaviors can be built upon the knowledge of when a pass will succeed. Such knowledge can
contribute to the decision of to which player to pass or of whether to pass, dribble, or shoot.

The behavior defined in Section 6.3 uses the DT as a part of a hand-coded high-level
multi-agent behavior. However, the decision function is highly constrained by the limited
number of passing options allowed to each player. A behavior that learns completely how
to map the classifications and confidence factors of the DT to passing/dribbling/shooting
decisions may perform better.

Indeed, in Chapter 7, such a learned behavior is created. It uses the learned pass-
evaluation function as the input representation to a reinforcement learning algorithm. The
result is a completely learned RCF with no limitations on the passing options: players can
pass backwards as well as forwards.

6.4.2 Confidence Factors for Agent Control

Although Decision Trees are widely used for classification tasks, they are typically not used
for agent control. Nevertheless, the DT RCF uses the confidence factors associated with
classifications to differentiate between pass options at a fine-grained level. Rather than just
classifying each option as a likely success or likely failure, the RCFs choose the option with
the highest confidence of being a success.

The experiments reported Section 6.3.4 indicate that the confidence factors provided
by standard DT software can be used for effective agent control. To my knowledge, this
is the first successful use of DT classification confidence factors for agent control. As DT
confidence factors are effective tools in this domain, they are potentially useful for agent
control in general..

134 CHAPTER 6. LEARNING A MULTI-AGENT BEHAVIOR

6.5 Related Work

The DT RCF is not the only instance of using tree-like structures for agent control. Specif-
ically, in a multi-agent planning context, operator success probabilities have been stored in
COBWEB trees [Garland and Alterman 96]. This multi-agent, case-based planning system
derives operator success probabilities from the results of past operator executions and uses
the success probabilities to guide an agent’s future planning choices. If an operator fails to
achieve its intended effect due to the non-cooperation of other agents, an agent can adapt
by instead using an operator (or operators) that allows it to achieve its goal on its own.

While the COBWEB tree is built with the explicit aim of estimating the success prob-
ability of an operator, the DT trained in this chapter was originally intended simply to
classify the results of passes into three discrete classes. This classification task is the type of
task that DT training algorithms such as C4.5 are typically used for. The confidence factors
embedded in the C4.5 algorithm have not been used for control tasks before.

Chapter 7

Learning a Team Behavior

This chapter serves a dual purpose. It presents the third and final implemented learned layer
in our simulated robotic soccer layered learning implementation, and it simultaneously intro-
duces a separate contribution of this thesis, namely the team-partitioned, opaque-transition
reinforcement learning (TPOT-RL) algorithm [Stone and Veloso 99¢]. TPOT-RL is a new
machine learning method used to train collaborative and adversarial team behaviors. In the
robotic soccer context, we use TPOT-RL to learn pass selection, taking advantage of the
learned pass-evaluation capability described in Chapter 6 to construct the input representa-
tion for learning.

This chapter is organized as follows. In Section 7.1, I introduce the new collaborative
and adversarial robotic soccer behavior and motivate the need for a new multi-agent learning
algorithm in order to train it. Section 7.2 formalizes the TPOT-RL algorithm in domain-
independent terms and Section 7.3 applies it to simulated robotic soccer with extensive
empirical testing. In Section 7.4, TPOT-RL is applied in a different multi-agent domain—
network routing—in order to verify the generality of the new algorithm. Sections 7.5 and 7.6
are devoted to discussion and related work respectively.

7.1 Motivation

In this section, I motivate the need for a new RL algorithm in order to continue our layered
learning implementation in the simulated robotic soccer domain. I do so by first describing
the task to be learned (Section 7.1.1); then showing that existing RL algorithms cannot be
used for this task (Section 7.1.2). I formally define the TPOT-RL algorithm in Section 7.2.

7.1.1 Pass Selection

Once young soccer players have learned how to judge whether a particular pass will succeed,
they are ready to learn how to act strategically as part of a team. Based on experience, they
can start to estimate the long-term effects of their actions within the context of a game in
which the true goal is to help one’s team to beat the opponents. Similarly, our simulated
robotic soccer agents cooperate to achieve the team’s goal of beating the opponents by
learning pass selection, a team behavior. Good pass selection requires an understanding of

135

136 CHAPTER 7. LEARNING A TEAM BEHAVIOR

the long-term effects of local decisions given the behaviors and abilities of teammates and
opponents.

In Section 6.3.3, I presented a full team behavior based upon the first two learned layers of
our layered learning implementation; i.e. ball interception and pass evaluation. Specifically,
the learned pass evaluation function was incorporated into the DT (decision tree) receiver
choice function (RCF), that determines to which teammate an agent should pass when it
has possession of the ball. In the DT RCF, the learned pass-evaluation capability is used
in a heuristic, hand-coded function: the potential receivers are limited to those that are at
least as close to the opponent’s goal as the agent with the ball (C,), and the agent always
passes the ball to the potential receiver to which it can pass with the highest confidence of
success according to the trained DT (maximum &®(passer,receiver)).

While the DT RCF was useful for verifying that the pass-evaluation capability can be
used in full-game situations, in reality the choice of where to pass is much more complicated
than allowed for by the DT RCF. For one thing, there may be situations in which the best
pass is to a receiver that is farther away from the goal than the passer. For another, the
receiver that is most likely to successfully receive the pass may not be the one that will
subsequently act most favorably for the team.

Figure 7.1 illustrates a situation in which the player with the ball, agent b, may want to
pass backwards (to the left in the figure). Agent b and its teammates are attacking the right
goal. The white arrows emanating from the ball indicate potential passes and their labels
indicate the predictions by the DT as to whether or not they will succeed: “S” for success
and “F” for failure. In this situation, the DT predicts that all three possible forward passes,
to teammates f, g, and h, will fail. However, there are two predicted-successful backwards
passes to teammates ¢ and d. If agent b’s goal is simply to complete a pass to a teammate,
it should clearly pass to teammate c or d.

However, in the context of the team’s high-level task of kicking the ball into the oppo-
nent’s goal, the choice is not so clear:

e Suppose that the opponents are very bad at intercepting the ball. Then the pass to
teammate g may be best for the team. Recall that the decision tree is trained off-
line in an artificial situation and does not adjust its predictions based on the current
opponent. Thus despite the DT’s prediction, teammate g may be able to receive the
pass. Since it is closest to opponent’s goal, the team might be best off if agent b passes
forwards to teammate g.

e Suppose instead that the opponents are good at intercepting the ball but that team-
mate ¢ has a poor decision-making policy. Despite the appearance that its best option
would be to pass to teammate f, agent ¢ instead decides to pass to teammate e, which
would likely result in the opponents stealing the ball. Again, the team might be better
off if agent b passes forwards to teammate f, g, or h despite the DT’s prediction.

e On the other hand, suppose that the opponents are good at intercepting the ball and
that teammate ¢ has a good decision-making policy: it would pass to teammate f after
receiving the ball. Then the team will probably be best off in the long run if agent b
passes passes backwards, away from the goal, to teammate c.

7.1. MOTIVATION 137

Teammates: 4 —» Opponents: @ ~&—

Figure 7.1: An example of when it might be useful to pass backwards. The white arrows emanating
from the ball indicate potential passes and their labels indicate predictions by the trained DT as to
whether or not they will succeed: “S” for success and “F” for failure. The teammates are attacking
the right goal; the opponents, the left.

In short, when learning an RCF, the local pass-evaluation information, while helpful, is
not enough on which to base a decision. The agent needs to learn strategic information which
depends on the behaviors of teammates and opponents and which can only be measured by
its team’s long-term success at achieving its collective goal against an opponent team in
a real game. Therefore, as opposed to both lower-level learned behaviors (ball interception
and pass evaluation), the pass-selection behavior must be trained on-line in a game situation
against a particular opponent.

~ When choosing an ML method for learning an RCF, there are five other task character-
istics that are important.

e The pass-selection decision depends on a huge amount of information, including the
agent’s current location on the field, the current locations of all the teammates and op-
ponents, the teammates’ abilities to receive a pass, the opponents’ abilities to intercept
passes, teammates’ subsequent decision-making capabilities, and the possibly-changing
opponents’ strategies. As presented in Section 2.2, the simulated robotic soccer domain
has more than 10'% states.

e The agents must learn with limited training examples. When running with two full
teams of agents, the soccer server is computationally intensive. To run at full speed,
the server and the clients must be distributed across at least two 266 MHz computers.
And in real games, empirically each agent gets the ball, and therefore the opportu-
nity to collect a training example, about once a minute on average. With additional
computational power, the simulation can be sped up somewhat. But unlike most sim-
ulations, and more like real robotic domains, training data is relatively difficult and
time-consuming to collect.

138 CHAPTER 7. LEARNING A TEAM BEHAVIOR

e The merit of a particular decision can only be measured by the long-term performance
of the team as a whole and thus only becomes clear over time.

e Since the expected reward for taking a particular action depends on teammates’ be-
haviors, this expected reward changes as teammates simultaneously learn to improve
their behaviors. In ML terms, the task to be learned is said to be a shifting concept.

e Asthe teammates each stay in a different geographical region of the field (their positions
within the team formation—see Chapter 3), the learning task is partitioned among the
teammates: each agent only learns how to act when located in a specific part of the

field.

In addition to the above task characteristics, recall one important domain characteristic
from the presentation of simulated robotic soccer in Chapter 2 that has a bearing on the
choice of ML algorithm. In simulated robotic soccer there are opagque transitions: when an
agent takes an action (passes the ball), the resulting state transition as well as the subsequent
actions taken by other agents—both teammates and adversaries—and their resulting state
transitions are often unknown.

In summary, the characteristics of an ML algorithm needed for learning pass selection

are:
1. on-line;
2. capable of dealing with a large state space despite limited training;
3. capable of learning based on long-term, delayed reward;
4. capable of dealing with shifting concepts;
5. works in a team-partitioned scenario; and

6. capable of dealing with opaque transitions.

7.1.2 Reinforcement Learning for Pass Selection

Although no previously existing ML algorithm has all of the above characteristics, some of
the ones that come closest are reinforcement learning (RL) algorithms. RL is an effective
paradigm for training an agent to act in its environment in pursuit of a goal. RL techniques
rely on the premise that an agent’s action policy affects its overall reward over time. A policy
is defined as an agent’s mapping from the state it is in to the action it will take. In the
robotic soccer context, an RCF can be thought of as a policy over the set of states in which
an agent has possession of the ball. Throughout this chapter, the RCF is the only part of
the agents’ policies being learned or otherwise varied in any way.

As surveyed in [Kaelbling et al. 96], standard RL algorithms are on-line learning algo-
rithms that can learn control policies for Markov decision tasks based on long-term, delayed
reward. Whether model-based (e.g. prioritized sweeping [Moore and Atkeson 93]) or model-
free (e.g. TD(A) [Sutton 88] and Q-learning [Watkins 89]), these RL techniques rely on a

7.2. TPOT-RL 139

single agent being able to observe the environmental state transitions in order to propagate
reward back from states that generate reward to previous states. In addition, these tech-
niques require time that is polynomial in the number of states. This “curse of dimensionality”
typically limits them to relatively small state spaces with abundant training opportunities!.

In contrast, motivated by the presentation in Section 7.1.1, we restrict our attention to
domains with the following characteristics:

o There are multiple agents organized in a team: they have a common long-term goal.

e There are opaque state transitions: agents cannot observe state transitions when they
or other agents act and therefore cannot build a model of transitions in the domain.

e There are too many states and/or not enough training examples for traditional RL
techniques to work.

o The target concept can change during the course of learning, for example as a result of
other agents in the environment changing their policies. Thus, the Markov property,
that the effect of an action depends only on the current state of the world, does not
hold.

e There is long-range reward available: agents can notice the long-term effects of their
actions by directly observing the environment.

e There are action-dependent features available. By “action-dependent,” we mean that
the feature value depends both on the current world state and the action being consid-
ered: in a given state, each possible action has its own action-dependent classification.

As opposed to the ultimate learning goal of determining the long-term reward to be
expected when executing an action, action-dependent features classify the predicted
short-term effects of actions based on local state information.

In order to enable teams of agents to learn in such domains, we introduce team-partitioned,
opaque-transition reinforcement learning (TPOT-RL). Like previous RL methods, TPOT-
RL allows agents to learn on-line and from delayed rewards. TPOT-RL extends RL to work
in domains with the above characteristics.

7.2 TPOT-RL

This section presents TPOT-RL in detail. Like Q-learning, TPOT-RL learns a value function
that maps state-action pairs to expected rewards. TPOT-RL includes three main adaptations
to the standard RL paradigm:

e The value function is partitioned among the team, with each agent only learning for
states from which it can act. All agents are trained simultaneously with a gradually
decreasing exploration rate and an increasing exploitation rate.

1One notable exception is TD-Gammon [Tesauro 94], which achieved champion status in backgammén
using RL. It dealt successfully with backgammon’s large state space by introducing hand-crafted features
and allowing for an extremely large amount of training.

140 CHAPTER 7. LEARNING A TEAM BEHAVIOR

e Action-dependent features are used to produce an aggressively generalized feature
space, which is used as the input representation for learning. While other RL ap-
proaches aggregate states to reduce the size of the learning task (e.g. [McCallum 96]),
action-dependent features enable the creation of a particularly small but informative

feature space for learning.

e Long-term, discounted rewards are gathered directly from the rewarding states in the
environment rather than being propagated back through intermediate states, as the
state-transition probabilities are not known. While other RL approaches have learned
based on reward from eventual rewarding states (e.g. TD(1) [Sutton 88]), none has
been applied in a multi-agent scenario and they generally do not discount reward based
on the time between an action and the eventual reward.

Formally, a policy is a mapping from a state space S to an action space A such that the
agent using that policy executes action a whenever in state s. At the coarsest level, when
in state s, an agent compares the expected, long-term rewards for taking each action a € A
and chooses an action based on these expected rewards. These expected rewards are learned

through experience.
Designed to work in real-world domains with far too many states to handle individually,

TPOT-RL exploits action-dependent features to create a small feature space V. V is used
as a component of the input representation of the learned value function @ : V x A — R.
In short, the policy’s mapping from S to A in TPOT-RL can be thought of as a 3-step

process:

State generalization: The state s is generalized to a feature vector v using the state
generalization function f: S — V.

Value function learning: The feature vector v is used as an input to the learned value
function @ : V x A — R, which estimates the expected reward for taking each possible

action.

Action selection: An action a is chosen for execution and its long-term, observed reward
is used to further update Q.

While these steps are common in other RL paradigms, each step has unique characteristics
in TPOT-RL. State generalization, value function learning, and action selection in TPOT-RL
are further specified in Sections 7.2.1, 7.2.2, and 7.2.3 respectively.

7.2.1 State Generalization

f : S+ V maps the current state of the world, s, to the feature vector used for learning,
v. f relies on a unique approach to constructing V. Rather than discretizing the various
dimensions of S, it uses an action-dependent feature function.

The action-dependent feature function

e:SxAU

7.2. TPOT-RL 141

evaluates each possible action a; € A based on s. U is a discrete set of features reflecting
expected short-term effects of actions. Unlike @, e does not produce the expected long-term
reward of taking an action; rather, it classifies the likely short-term effects of the action. For
example, since state transition probabilities are unknown, e might predict the transition to
be caused by executing action a; based on s.

In the multi-agent scenario, other than one output of e for each action, the feature space
V also involves one coarse component that partitions the state space S among the agents.
The partition function

P:S—M

breaks the state space into | M| disjoint partitions to be divided among the teammates, with
|M| > m where m is the number of agents in the team. In particular, if the set of possible
actions in state s is A = {ag, a1,...,a,_1}, then

f(s) = (e(s,ap),e(s,a1),--.,e(s,an_1), P(s)), and so
Vv = UM x M.

Thus, |V| = |[U|l4 % |M]. Since the goal of constructing V is to create a feature space that
is smaller than the original state space, the ranges of the action-dependent feature function
and partition function, U and M respectively, are ideally as small as they can be without
abstracting away the useful information for learning.

This state generalization process reduces the complexity of the learning task by con-
structing a small feature space V' which partitions S into |M| regions. Each agent need learn
how to act only within its own partition(s). Nevertheless, for large sets A, the feature space
can still be too large for learning, especially with limited training examples. Our particular
action-dependent formulation allows us to reduce the effective size of the feature space in the
value-function-learning step. Choosing features for state generalization is generally a hard
problem. While TPOT-RL does not specify the function e, our work illustrates effective
choices of e.

7.2.2 Value Function Learning

As we have seen, TPOT-RL uses action-dependent features. When using action-dependent
features, we can assume (heuristically) that the expected long-term reward for taking action
a; depends only on the feature value related to action a;. That is,

Q(f(s),a:) = Q(f(s), ai) (7.1)
whenever e(s, a;) - e(s’,a;) and P(s) = P(s'). Recall that

f(s) = (e(s,a1), ...,e(s,an-1), P(s))
f(&) = (e(s'a1),....e(s, an-1), P(5))

Another way of stating this same assumption is that Q(f(s),a;) depends upon e(s, a;) and
is independent of e(s, a;) for all j # 1.

142 CHAPTER 7. LEARNING A TEAM BEHAVIOR

Without this assumption, since there are |A| actions possible for each element in V, the
value function Q has |V'|x|A| = |U|4 x| M| *|A| independent values. Under this assumption,
however, the Q-table has at most |U|' x | M| |A| entries: for each action possible from state
s, only one of the |A| action-dependent feature values e(s, a;) comprising f(s) is relevant.
Therefore, even with only a small number of training examples available, we can treat the
value function @) as a lookup-table without the need for any complex function approximation.
To be precise, Q stores one value for every possible combination of a € A, e(s,a) € U, and
P(s)e M.

For example, Table 7.1 shows the entire feature space for one agent’s partition of the
state space when |U| = 3 and |A| = 2. U = {ug, u1,us}, A = {ao,a1}. ¢g;; is the estimated
value of taking action a; when e(s,a;) = u;. Since this table is for a single agent, P(s)
remains constant.

There are U]l = 3% different entries in feature space with |[A| = 2 Q-values for each
entry: one for each possible action. |U|I4lx | M| is much smaller than the original state space
for any realistic problem, but it can grow large quickly, particularly as |A| increases. However,
as emphasized by the right side of Table 7.1—which is simply a condensed representation
of the left side—under the assumption described above, there are only 3 * 2 independent
Q-values to learn, reducing the number of free variables in the learning problem from 18 to
6, or by 67%, in this case.

[els,a0) e(s,a1) [Q(F (), 00) Q(f(s),a) |

Up Ug qO,o ql,o

Ug Uy Qo0 a9,

up Us Qoo a, e(s,a;) | Q(f(s),a0) Q(f(s),a1) |
Uy Ug Q.1 q.0 R Uo qy0 4,

Uy Uy 4o, 4, Uy 45,1 q,,

Uy Uz 4o, q,, Usg o0 4, ,

U2 Up I 910

U2 Uy qO,z ql,1

Ug U2 q(),z ql,z

Table 7.1: A sample Q-table for a single agent when |U| = 3 and |A| = 2: U = {uo, u1,us},
A = {ag,a1}. g;, is the estimated value of taking action a; when e(s,a;) = u;. Since this table is
for a single agent, P(s) remains constant. The table on the right emphasizes that there are only 6
independent g values in the table on the left.

The Q-values learned depend on the agent’s past experiences in the domain. In particular,
after taking an action a while in state s with f(s) = v, an agent receives reward r and uses
it to update Q(v, a) from its previous value Q(v, a) as follows:

Q('U’ a) = Q(U, a) + a(r - Q(’U, (L)) (7'2)

where a is the learning rate. Since state transitions are opaque, the agent cannot use the
dynamic programming (and Q-learning) approach of updating the value function based on
the value of the state that results from executing action a. Instead, the reward r is derived

7.2. TPOT-RL 143

from the observable environmental characteristics—those that are captured in S—over a
maximum number of time steps t;;, after the action is taken. The reward function

R : Stim 1y R

returns a value at some time no further than ¢, in the future. The reward is discounted
based on the amount of time between acting and receiving the reward. During that time,
other teammates (or opponents, if any) can act in the environment and affect the action’s
outcome, but the agent may not be able to observe these actions. In practice, the range of
R is [~ Qmazs Qmaz] where Qpa, is the reward for immediate goal achievement. In order to
associate the eventual reward with the action it took, the agent must keep track of the last
action taken a; and the feature vector v at that time.

Notice from Equation 7.2 that in TPOT-RL, the updated action value depends only on
the previously stored action value in the same state as opposed to chains of learned state
values. That is, when updating Q(v, a) TPOT-RL doe not reference any Q(v’,a’) such that
v # v' or @ # o/ If the actual value of executing action a from state s with f(s) = v
changes, the agent can adjust by simply executing a in such a state several times: no other
states-action pairs need to be updated first. Therefore, TPOT-RL is able to adopt relatively
quickly to shifting concepts.

The reward function, including ¢, and @z, is domain-dependent. One possible type
of reward function is based entirely upon reaching the ultimate goal. In this case, an agent
charts the actual (long-term) results of its policy in the environment. However if goal achieve-
ment is infrequent, a reward function based on intermediate reinforcement, which provides
feedback based on intermediate states towards the goal, may be needed.

7.2.3 Action Selection

As in all RL techniques, the issue of exploration vs. exploitation is important for TPOT-RL.
Particularly since the target concept can shift due to teammates learning and changing their
policies, or due to changes in policies of opponents (if any), it is important for agents to
gather information about the value of actions that are currently considered sub-optimal by
the value function. Any standard exploration heuristic, such as the randomized Boltzmann
exploration strategy [Kaelbling et al. 96], could be used.

Informative action-dependent features can be used to reduce the free variables in the
learning task still further at the action-selection stage if the features themselves discriminate
situations in which actions should not be used. For example, suppose we can define a set
W C U such that if e(s,a) ¢ W, then a should not be considered as a potential action from
state s.

Formally, consider W C U and B(s) C A with B(s) = {a € Ale(s,a) € W}. When in
state s, the agent then chooses an action from B(s) instead of from the entire action set
A, either randomly when exploring or according to maximum Q-value when exploiting. In
effect, W acts in TPOT-RL as an action filter which reduces the number of options under
consideration at any given time. Again, any standard exploration heuristic can be used over
the possible actions in B(s). Of course, exploration at the filter level can also be achieved
by dynamically adjusting W.

144 CHAPTER 7. LEARNING A TEAM BEHAVIOR -

For example, Table 7.2, illustrates the effect of varying |W|. Notice that when W # U,
it is possible that B(s) = 0: Va; € A, e(s,a;) ¢ W. In this case, either a random action
can be chosen, or rough Q-value estimates can be stored using sparse training data. This
condition becomes rarer as |A| increases. For example, with |U| =3, |W| =1, and |4| =2
as in Table 7.2(b), 4/9 = 44.4% of feature vectors have no action that passes the W filter.
However, with |U| = 3, |[W| =1, and |A| = 8 only 256/6561 = 3.9% of feature vectors have
no action that passes the W filter. If |U| = 3, |W| = 2 and |A| = 8, only 1 of 6561 feature
vectors fails to pass the filter. Thus using W to filter action selection can reduce the number
of free variables in the learning problem without significantly reducing the coverage of the
learned Q-table. However, there is always the danger that the best possible action from a
particular state could be filtered out: an informed, heuristic choice of W is required.

” 6(8,(10) 6(370‘1) ’ Q(f(s)aG’O) Q(f(3)7al) ” ” 6(8,&0) e(saal) ’ Q(f(s):aﬁ) Q(f(s)aal) ”

Ug Ug 9,0 910 Uo Ug - I
Ug U1 o0 - Ug U1 - -
Uo U2 Qo0 4,2 Ug U2 - 4,2
U1 Ug — Q10 U1 uo — —
U1 U1 - - U Uy - -
ul U2 - g2 U1 U2 - q
U2 Up 9,2 90 U2 Uo 0,2 -
U2 U1 9,2 - U2 Uy 90,2 -
U2 U2 Go.2 9. U2 U2 Go,2 G0
(a) (b)

Table 7.2: The resulting Q-tables when U = {ug,u1,uz2}, A = {ag,a1}, and (a) W = {ug,u2}, or
(b) W = {uz}.

7.2.4 Summary

By partitioning the state space among teammates, by using action-dependent features to
create a coarse feature space and to filter actions, and with the help of a reward function
based entirely on individual observation of the environment, TPOT-RL enables team learning
in complex multi-agent, non-stationary environments even when agents cannot track state

transitions.
In order to apply TPOT-RL to particular learning problems, as we do in Sections 7.3

and 7.4, the following functions and variables must be specified within the domain:
e The action-dependent feature function e and its range U.

The partition function P and its range M.

The reward function R including variables Qmqa, and Ziim,.

The learning rate a.

The action-filtering set W C U.

7.3. TPOT-RL APPLIED TO SIMULATED ROBOTIC SOCCER 145

In the two TPOT-RL implementations reported in Sections 7.3 and 7.4, the specifications
of these variables are all indented for emphasis.

7.3 TPOT-RL Applied to Simulated Robotic Soccer

In this section, I describe our application of TPOT-RL to a complex multi-agent learning
task, namely pass selection in simulated robotic soccer. Pass selection is the third layer in
our layered learning implementation.

In the soccer domain, we apply TPOT-RL to enable each teammate to simultaneously
learn a high-level action policy, or receiver choice function (RCF). The RCF is a function
that determines what an agent should do when it has the opportunity to kick the ball. When
it does not have the ball, the agent acts according to a manually created behavior as defined
in Section 6.3.3.

As presented in Section 6.3.1, the input of the RCF is the agent’s perception of the
current world state; the output is a target destination for the ball in terms of a location on
the field, e.g. the opponent’s goal. In our experiments reported in this section, each agent
has 8 possible actions in A: it can pass towards either of the two goals, towards any of the
four corners of the field, or to either side of the midfield line. Notice that in this case, the
agents consider passing to locations on the field rather than to actual players. Nonetheless,
the trained pass-evaluation DT can be used as if there were a teammate in the proposed
field location. The action space is illustrated in Figure 7.2.

o0 oe|o 00
© °

o —h -¢— O

Figure 7.2: The action space used in this chapter. The black and white dots represent the players
attacking the right and left goals respectively. Arrows indicate a single player’s (the player from
which the arrows emanate) action options when in possession of the ball. The player kicks the ball
towards a fixed set of markers around the field, including the corner markers and the goals.

We extend the definition of ® first presented in Section 6.1.1 to cover the action space
used in this section as follows. Assume that for the action a € A (a kick to a location on the
field), the DT predicts class x with confidence v € [0,1] when the agent is in state s. The
DT is evaluated as if there were a teammate at the kick destination corresponding to action

146 CHAPTER 7. LEARNING A TEAM BEHAVIOR

a. Then?
v if Kk = S (success)

®(s,a) = 0 if Kk =M (miss)
—v if K = F (failure)

The two previously-learned behaviors (see Chapters 5 and 6) are both trained off-line in
limited, controlled training situations. They can be trained in such a manner due to the
fact that they only involve a few agents: ball interception only depends on the ball’s and
the agent’s motions; passing only involves the passer, the receiver, and the agents in the
immediate vicinity. On the other hand, deciding where to pass the ball during the course
of a game requires training in real games since the value of a particular action can only
be judged in terms of how well it works when playing with particular teammates against
particular opponents. For example, as presented in Section 7.1.1, passing backwards to a
defender could be the right thing to do if the defender has a good action policy, but the
wrong thing to do if the defender is likely to lose the ball to an opponent.

Although our trained DT accurately predicts whether a player can execute a pass, it
gives no indication of the strategic value of doing so. But the DT reduces a detailed state
description to a single continuous output. It can then be used to drastically reduce the
complex state and provide a useful state generalization. In this work we use the DT to
define the crucial action-dependent feature function e in TPOT-RL. Thus, in the context of
our layered learning implementation, the new learned layer (pass selection) uses the previous
layer (pass evaluation) as part of its input representation.

7.3.1 State Generalization Using a Learned Feature

As is the case throughout this thesis and as illustrated in Figure 7.2, the team formation is
divided into 11 positions. Thus,

M = the team’s set of positions (roles) (|M| = 11)
P(s) = the player’s own current position

Using the layered learning approach, we use the previously trained DT to define e, which is
the main component of the input representation used to learn Q). In particular, we use ® to
cluster actions into two sets indicating predicted success or failure:

U = {Success, Failure}

ea(s,a) = Success if ®(s,a) > C

2™ 7 1 Failure if ®(s,a) < C

In our experiments, we use C = .734 as the threshold for clustering action. We find that
this threshold clusters the predictions into classes of roughly equal size.

2In Chapter 6, the parameter s was implicit for consistency of notation within the chapter. Similarly,
for notational consistency within this chapter, the fact that ® is evaluated from the perspective of the
“passer”—the agent that is acting—is implicit.

7.3. TPOT-RL APPLIED TO SIMULATED ROBOTIC SOCCER 147

According to these definitions, |U| = 2 and V = U® x {PlayerPositions} so |V| =
[U|41 % | M| = 28 11. Under the assumption that Q(s,a;) depends only on e(s, a;), the total
number of independent Q-values is |U| * |M]* |A| =2 %8 x 11.

This feature space is immensely smaller than the original state space, which has more than
10'% states (see Section 2.2). Since e indicates the likely success or failure of each possible
action, at action-selection time, we only consider the actions that are likely to succeed:

W = {Success}

. Therefore, each agent learns |IW || A| = 8 Q-values, with a total of 88 (|WW|x| A|*|M|) learned
by the team as a whole. Even though each agent only gets about 10 training examples per
10-minute game and the reward function shifts as teammate policies improve, such a learning
task is tractable.

In addition to eg, we define two other action-dependent feature functions for the purpose
of comparison: '

® ¢, is a random function, returning Success or Failure randomly.

® ¢, is a hand-coded heuristic pass-evaluation function based on one defined in Ap-
pendix B (Section B.2.5) that we successfully used on our real robot team.

7.3.2 Value Function Learning via Intermediate Reinforcement

As in any RL approach, the reward function plays a large role in determining what policy
is learned when using TPOT-RL. One possible reward function, R, is based entirely upon
reaching the ultimate goal. In the soccer domain, we define R, in terms of goals scored. If
a goal is scored t time steps after action a is taken (¢ < tj;,,), then the reward is =Qmq./t
depending on whether the goal is scored for or against. In this way, an agent charts the actual
(long-term) results of its policy in the environment. Notice that the reward is discounted
based on how long after acting the rewarding state is achieved.

Although goals scored are the true rewards in this domain, such events are very sparse.
In order to increase the feedback from actions taken, it is useful to use an intermediate
reinforcement function, which provides feedback based on intermediate states towards the
goal [Mataric 94a]. Without exploring the space of possible such functions, we created one
reward function R; using intermediate reinforcement.

Like Ry, R; gives rewards for goals scored. However, agents also receive rewards if the
ball goes out of bounds, or else after a fixed period of time ¢, based on the ball’s average
lateral position on the field. In particular, when an agent takes action a; in state s such
that e(s, a;) = u, the agent notices the time ¢ at which the action was taken as well as the
z-coordinate of the ball’s position at time t, z;. The reward function R; (like R,) takes as
input the observed ball position over time ¢, (a subset of S%m) and outputs a reward r.
Since the ball position over time depends on other agents’ actions, the reward is stochastic
and non-stationary. Under the following conditions, the agent fixes the reward r:

1. if the ball goes out of bounds (including a goal) at time ¢ + ¢, (t, < tim);

2. if the ball returns to the agent at time ¢ + ¢, (¢, < t;m);

148 CHAPTER 7. LEARNING A TEAM BEHAVIOR

3. if the ball is still in bounds at time ¢ + ;.

In case 1, the reward r is based on the value r, as indicated in Figure 7.3:

o
"I (6 1) * to/tum (7:3)

Thus, the farther in the future the ball goes out of bounds (i.e. the larger ¢,), the smaller
the absolute value of r. This scaling by time replaces the discount factor used in Q-learning.

We use:

tim = 30 seconds (300 simulator cycles)
Qmam = 100
6 = 10
25 Kick-in against 1
attack direction
——
Goal Y Goal
against for
-100 0.0\ 100
Corner- -10 10 Corner-
kick Goal-kick Goal-kick | K<k
against for against for
=25 25
1 25
Kick-in for

Figure 7.3: The component 7, of the reward function R; based on the circumstances under which
the ball goes out of bounds. For kick-ins, the reward varies linearly with the z-position of the ball.

In cases 2 and 3, the reward r is based on the average z-position of the ball over the time
t to the time t+1, or t+1;,. Over that entire time span, the agent samples the z-coordinate
of the ball at fixed, periodic intervals and computes the average z,,, over the times at which
the ball position is known. Then if z,, is the z-coordinate of the opponent goal (the right
goal in Figure 7.3) and z;, is the z-coordinate of the learner’s goal:

Tog—Tt

Tt— wavg :
¢ Ti—ig lf xa’ug S Ty

x Zova Tt Gf g0 > T
7‘——{ b 9 (7.4)

Thus, the reward is the fraction of the available field by which the ball is advanced, on
average, over the time-period in question. Note that a backwards pass can lead to positive
reward if the ball then moves forward in the near future and conversely, a forwards pass can
lead to a negative reward. The use of parameter ¢ in both Equations 7.3 and 7.4 insures that
intermediate rewards cannot override rewards for attaining the ultimate goal, Q4 Which is
the maximum value of r, in Equation 7.3.

7.3. TPOT-RL APPLIED TO SIMULATED ROBOTIC SOCCER 149

When using either R, or R;, the reward r is based on direct environmental feedback. R,
passes discounted reward back to the agents only when the world enters a state with which
some reward is associated. R; is a domain-dependent intermediate reinforcement function
based upon heuristic knowledge of progress towards the goal.

Notice that R; relies solely upon the agent’s own impression of the environment. If it
fails to notice the ball’s position for a period of time, the intermediate reward is affected (the
agents always notice when the ball goes out of bounds or into a goal via an aural message
from the referee). However, agents can track the ball much more easily than they can deduce
the internal states of other agents as they would have to do were they to determine future
team state transitions.

Finally, after taking action a; and receiving reward r, Q(e(s, a;), a;) is updated according
to equation 7.2 with the learning rate

a=.02

Thus, even though we average all reward values achieved as a result of taking an action in
a given state, each new example accounts for 2% of the updated Q-value: rewards achieved
further in the past are weighted less heavily.

7.3.3 Action Selection for Multi-Agent Training

One characteristic of some multi-agent domains that makes them non-stationary is the fact
that multiple agents are concurrently learning. Thus, from each individual’s perspective,
the environment is not a stable system. In order to deal with this challenge, we adopt two
action strategies:

e Bach agent stays in the same state partition throughout training;

e Exploration rate is very high at first and gradually decreases simultaneously for all
agents;

By having each agent remain in the same partition throughout training, we are, in effect,
distributing training into |M| partitions, each with a lookup-table of size |A| * |U|. After
training, each agent can be given the trained policy for all of the values of M, enabling the
agents to move through the entire state space. Were each agent required to learn the policies
of all positions, training would take at least |M| times longer®.

As in all RL paradigms, the tradeoff between exploration and exploitation is potentially
problematic. Especially since rewards in our case are stochastic and feature values encode
large numbers of states, early exploitation runs the risk of ignoring the best possible actions
in certain states. As a result, when in state s, our agents choose the action with the highest
Q-value—action a; such that V5, Q(f(s), a;) > Q(f(s), a;)—with probability p, and a random
action with probability 1 — p. In all of our training runs, p gradually increases from 0 to .99.

3Training would likely take even longer than that. Since teammates would all be learning more slowly as
well, it would take longer for the agents to receive informative reinforcement values.

150 CHAPTER 7. LEARNING A TEAM BEHAVIOR

7.3.4 Results

Empirical testing demonstrates that TPOT-RL can effectively learn multi-agent control poli-
cies with few training instances in a complex, dynamic domain. Unless otherwise noted, for
all experiments reported in this section:

e The learning agents start out acting randomly and with empty Q-tables: Vv € V,a €
A,Q(v,a) = 0.

e Over the course of learning, the probability of acting randomly, p, decreases linearly
over periods of 40 games from 1 to .5 in game 40, to .1 in game 80, to .01 in game 120
and thereafter.

e The learning agents use the intermediate reward function R;.

Figure 7.4 plots cumulative goals scored by a learning simulated soccer team playing
against an otherwise equally-skilled team that passes to random destinations over the course
of a single long run equivalent in time to 160 10-minute games. As apparent from the
graph, the team using TPOT-RL learns to vastly outperform the randomly passing team.
Other than the pass decisions, the behaviors of the agents on the randomly passing team
are identical to those on the learning team. During this experiment, |U| = 1, thus rendering
the function e irrelevant: the only relevant state feature is the player’s own position on the

field.

Cumulative Goals vs. Game Number
450 T L Ll 1 T T T

400 + Learning — 1
350 + Random -——- -

300 | -
250 | .
200 | .
150 |]
100 |

50 _— - .

o i L Il I 1 L 1
0 20 40 60 80 100120140160
Game Number

Goals

Figure 7.4: Total goals scored by a learning team playing against a randomly passing team. The
independent variable is the number of 10-minute games that have elapsed.

A key characteristic of TPOT-RL is the ability to learn with minimal training exam-
ples. During the run graphed in Figure 7.4, the 11 players get an average of 1490 action-
reinforcement pairs over 160 games. Thus, players only get reinforcement an average of 9.3
times each game, or less than once every minute. Since each player has 8 actions from which
to choose, each action is only tried an average of 186.3 times over 160 games, or just over
once every 10-minute game. Under these training circumstances, very efficient learning is

clearly needed.

7.3. TPOT-RL APPLIED TO SIMULATED ROBOTIC SOCCER 151

TPOT-RL is effective not only against random teams, but also against goal-directed,
hand-coded teams. For testing purposes, we construct an opponent team which plays with
all of its players on the same side of the field, leaving the other side open as illustrated by
the white team in Figure 7.2. The agents use a hand-coded RCF which directs them to pass
the ball up the side of the field to the forwards who then shoot on goal. The team switches
from one side of the field to the other every 5 minutes of simulation (half of a game). We
call this team the switching team. Note that the switching team is similar to a team that
switches between the OPR and OPL (only play right/left) strategies defined in Chapter 6.
The only difference is that the switching team uses a goal-directed, rather than a random,
RCF.

Were the opponent team to always stay on the same side of the field, as is the case with
the goal-directed OPR team, the learning team could advance the ball up the other side
of the field without any regard for current player locations. Thus, TPOT-RL could be run
with |U| = 1, which renders e inconsequential. Indeed, we verified empirically that TPOT-
RL is able to learn an effective policy against the OPR team using |U] = 1. As shown in
Figure 7.5(b), after 160 games of learning, the learning team is able to beat the OPR team
by a cumulative score of 259-124 over the course of 40 test games. As a point of comparison,
Figure 7.5(a) shows the result of always shooting towards the opponent goal—a reasonable
heuristic—when playing against the OPR team.

] Leamning team [] OPR team

350
Always Full =~ Reduced
300 Shoot Training Training 1

250 | .
200 | y
150
100 f
50
o

Goals: 40 post-learning games

(@ (b) ©

Figure 7.5: The results after training of 3 different runs against the OPR team (always shown as
the white bar). (a) shows the result of always executing the shoot action. (b) and (c) show the
results when training for 160 and 80 games respectively when using TPOT-RL with |U| = 1.

Also against the OPR team, we tested the effect of training time on the effectiveness of
the learned policy. The results can be seen by comparing Figures 7.5(b) and 7.5(c). These
two trials are identical except that the latter used an accelerated training schedule: The
exploration rate was decreased over 20-game intervals for a total of 80 games rather than
40-game intervals for a total of 160 games. The reduced training leads to worse performance
over 40 subsequent test games. The purpose of this experiment was to verify the need for on

152 CHAPTER 7. LEARNING A TEAM BEHAVIOR

the order of 160 training games to adequately evaluate TPOT-RL’s performance. Further
testing indicated that training beyond 160 games does not significantly affect performance.
All other trials reported below use 160 games of training.

Exploiting the Previously Learned Features

Against the switching team, an agent’s best action depends on the current state: in general,
the agent should pass away from the side of the field on which the opponents are located.
Thus an action-dependent feature function that discriminates among possible actions dy-
namically can help TPOT-RL. Figure 7.6 compares TPOT-RL with different functions e
and different sets W when learning against the switching team.

] Learning team [| Switching team

(/)]
[Ul=2, e=¢ _
% 200 /\A/i UI=2,
& Wi=1 [WI=2 IWI:Z’ :%:21
e= -
g 150 I IU|=1 r e >
g =ep
3
% 100 |]
(o}
Q
g
¥ 50
L)
©
o]
S 9

@ ® ©© @O @O

Figure 7.6: The results after training of 5 different TPOT-RL runs against the switching team.

With |U| = 1 (Figure 7.6(a)), the learning team is unable to discriminate among states
in which passes are likely to succeed or fail since each agent has only one Q-value associated
with each possible action®. With |U| = 1, it loses 139-127 (cumulative score over 40 games
after 160 games of training).

In contrast, with the previously trained DT classifying passes as likely successes or failures
(es) and with filtering out the failures (W = {Success}), the learning team wins 172-113
(Figure 7.6(b)). Therefore the learned pass-evaluation feature is able to usefully distinguish
among possible actions and help TPOT-RL to learn a successful action policy. The DT
also helps learning when W = U (Figure 7.6(c)), but when W = {Success} performance is
better.

Figure 7.6(d) demonstrates the value of using an informative action-dependent feature
function e. When a random function e, is used, TPOT-RL performs noticeably worse than
when using eg. For e, we show |W| = 2 because it only makes sense to filter out actions
when e contains useful information. Indeed, when e = e, and |W| = 1, the learning team
performs even worse than when |W| = 2 (it loses 167-60). The DT even helps TPOT-RL

4Notice that whenever |U| = 1, it must be the case that W =U.

7.4. TPOT-RL APPLIED TO NETWORK ROUTING 153

more than a hand-coded heuristic pass-evaluation function (e;) based on the one defined in
Appendix B (Section B.2.5) that we successfully used on our real robot team (Figure 7.6(e)).

Final score is the ultimate performance measure. However, we examined learning more
closely in the best case experiment (e = eg, W = {Success}—Figure 7.6(b)). Recall that the
learned feature provides no information about which actions are strategically good. TPOT-
RL must learn that on its own. To test that it is indeed learning to advance the ball towards
the opponent’s goal (other than by final score), we calculated the number of times each
action is predicted to succeed (es(s,a) = Success) and the number of times it was actually
selected by TPOT-RL after training. Throughout the entire team, the 3 of 8 (37.5%) actions
towards the opponent’s goal were selected 6437/9967 = 64.6% of the times that they were
predicted to succeed. Thus TPOT-RL learns that it is, in general, better to advance the ball
towards the opponent’s goal.

Verifying that the filter is eliminating action choices based on likelihood of failure, we
found that 39.6% of action options were filtered out when e = ep and |W| = 1. Out of
10,400 action opportunities, it was never the case that all 8 actions were filtered out: in all

cases, B(s) # 0.

Comparing Reward Functions

The reward function R;, used in all the experiments reported above, is engineered to increase
the amount of reinforcement information available to the agents as opposed to the extremely
sparse reinforcements available from goals scored (R,). Nevertheless, while not as effective
as R;, Ry does provide enough reinforcement for agents to learn effective policies. Using the
same 160-game training paradigm and using |U| = 1, a team learning with R, is able to
beat the OPR team (Figure 7.7(a)), though by considerably less than the team using R; in
otherwise identical circumstances (Figure 7.7(b)—the same trial as shown in Figure 7.5(b)).
Therefore, the intermediate reinforcement reward function, R; is a key component to achiev-
ing successful results with TPOT-RL.

7.4 TPOT-RL Applied to Network Routing

Section 7.3 demonstrates that TPOT-RL can be used to learn effective behaviors in one
team-partitioned, opaque-transition domain. However, in creating TPOT-RL, we intend
it as a new general multi-agent learning algorithm. This section demonstrates that it can
indeed apply beyond simulated robotic soccer.

We identify network routing as another team-partitioned, opaque transition domain.
As presented in Section 2.4, in our formulation of network routing, each network node is
considered as a separate agent. The agents act as a team as they try to cooperate in sending
packets through the network as efficiently as possible. The domain is team-partitioned since
each agent learns only a policy at its own node: the function P partitions the state space
based, in part, on the node at which each agent is situated. Prior research indicates that
distributed network control is advantageous even in high-speed networks (such as ATM
networks) in which centralized control is possible [Horikawa et al. 96].

154 CHAPTER 7. LEARNING A TEAM BEHAVIOR

350
3 [] OPR team
£ 300 | . .
> [Leamning team
2 250 | R;
£
g 200 R, -
B 150 | -
o
< 100 | .
= 50 | .
(o)
S o

@@ (b

Figure 7.7: The results after training of 2 different runs against the OPR team. (a) shows the
result of learning with the R, reward function. (b) shows the result of training with the R; reward
function. In both cases, |U| = 1.

Network routing is opaque-transition because agents cannot see a packet’s route after
sending it along a link. Like in robotic soccer, agents’ actions are chained, with each agent
able to affect which agent will act mezt, but with no control beyond that. Agents get no
short-term reward for their actions and cannot track the transitions in the environment.

Nonetheless, the team of agents can learn to effectively route packets by observing local
state information (network traffic). The action-dependent feature function e in our imple-
mentation of TPOT-RL for network routing provides useful local information that correlates
with the long-term reward: e returns the amount of recent network traffic on the links lead-
ing from an agent’s node. In our experiments, we assume that the agents get intermittent
long-term performance statistics transmitted back to them. Thus they are able to learn to
collaborate. -

Aside from being team-partitioned and opaque-transition, network routing is also similar
to robotic soccer in that the world changes dynamically in a manner beyond the team’s
control. In robotic soccer, opponents can change their strategies; in network routing the
distribution of packets introduced into the network can change.

In this section, I present in detail our application of TPOT-RL to network routing, a
second multi-agent learning task. In Sections 7.4.1-7.4.3, I provide the algorithmic details
of our implementation of TPOT-RL. Section 7.4.4 specifies our experimental methodology
including the parameters used in the network routing simulator and Section 7.4.5 presents de-
tailed empirical results demonstrating the effectiveness of TPOT-RL in the network routing
domain.

7.4.1 State Generalization

As defined in Section 7.2.1, the function f : S +— V generalizes the state space based on two
components: an action-dependent feature function e : S x A — U and a coarse partitioning
function P : § + M. Given a state s € S from which the agent at node n; is faced with the

7.4. TPOT-RL APPLIED TO NETWORK ROUTING 155

decision of routing packet k;:

M = NxN (|M|=m?
P(S) = (ni? kjdest)

Recall that, as defined in Section 2.4, m is the number of nodes in the network: |N| = m.
Using this partitioning function P, the agent at node n; learns to act only in the cases that
P(s) = (ni, kj,,,,) for some j: the space is partitioned evenly among the m agents, with each
getting m partitions.

The action-dependent feature function e : § x A — U is defined as follows. A is the set
of actions available and is represented in terms of the nodes to which a packet can be sent.
Thus A = N. However, the agent at node n; may only use the actions in L,, C N—the set
of links from node n;. The elements of

U = {high,low}

reflect the network activity over a particular link in the last activity_window time units.
An agent can store the link activity along all of the links from its node since it is either the
sender or the recipient of all packets sent along these links.

Define 7(s, a,activity_window) as the number of packets sent along the link correspond-
ing to action a in the last activity_window time units divided by activity_window. Then
if action a is the act of sending a packet along link [,

es,a) = high if 7(s,a,activity_window) > C
) low if 7(s,a,activity_window) < C

We use activity_window = 100 and C' = .5. Notice that e is an action-dependent function
since it depends on the proposed action of sending a packet along link [. It is also based
entirely upon local information available to agents that maintain internal state, collecting
traffic statistics over time.

Like in the robotic soccer example, this state generalization drastically reduces a huge
state space to the point that agents can store Q-values in a lookup table. In our implemen-
tation, according to Equation 2.2, the entire state space in our experiments has more than
10%9% states (m = 12,Cper = 1000). However, with |U| = 2, |4] < 3, and |M| = m? the total
number of Q-values for the team to learn is at most 6m?, with each agent learning no more
than 6m values. In our experiments reported below, m = 12. Therefore each agent must
learn only 72 Q-values.

7.4.2 Value Function Learning

As per equation 7.2, agents learn Q)(v, a)—the value of taking action a when in a state s such
that f(s) = v—by receiving a reward r via a reward function R. In this case, if v indicates
that node n is trying to send a packet k£ on its way to node kgest (P(S) = (1, kgest)), then
Q(v,a) is meant to estimate the time that it will take for the packet to reach node kgs;.
Thus agents aim to take actions that will lead to minimal r.

156 CHAPTER 7. LEARNING A TEAM BEHAVIOR

Unlike the soccer domain, in which agents can observe the ball’s progress over time,
network routing does not provide much opportunity for intermediate reinforcement. R is
almost entirely based on the actual time that the packet k£ takes to travel from node n; to
its destination kgeg;.

When k successfully arrives at kges:, the agent at node kg can examine the times at
which it left each node along its path from £gpyrce @s stored in kpeen. From this information,
it can deduce the time taken from each node along the path given the action taken at that
node. Then periodically, every update_interval seconds, the nodes in the network update
each other on the long-term results of their actions.

Thus, after the agent at node n; sends a packet k; along link [at time #j,;, the agent
at node n; receives reward r equal to the time it took for the packet to eventually reach its

destination k;, ,:

7= Kigyime = bkl
In this case, the goal of each node is to minimize its reward r. Notice that this formulation
of the reward function R is entirely goal oriented—in general, there is no opportunity for
the agent at node n; to observe a packet’s progress on the way to its destination.

However, there is one exception. Especially at the early stages of learning when actions
are mostly random, a packet often returns to a node from whence it came at some interval
t later than it last left the node. In this situation, the agent at the node in question infers
that the previous action a taken on this packet was ineffective and generates an intermediate
reward signal r = Q(v, a) + ¢, thus increasing the cost estimate Q(v, a).

To put a bound on the timing of rewards, the reward r is bounded by Q... That is, if
a node takes longer than @, to arrive, 7 = Qnqaz- A node can assume that the packet did
not arrive in this time if it has not heard about its arrival after Q..+ update_interval
simulated seconds. Therefore, ¢, = Qmaz+ update_interval. In our experiments, we use

Qmez = 2000
update_interval = 10
tim = 210

Finally, just as in the robotic soccer implementation of TPOT-RL, after the agent
at node n takes action a on a packet k destined for node kg and receives reward r,
Q((e(s,a), (n, keest)), a) is updated according to equation 7.2 with the learning rate

a = .02

Thus, again, even though we average all reward values achieved as a result of taking an
action in a given state, each new example accounts for 2% of the updated Q-value: rewards
achieved further in the past are weighted less heavily.

7.4.3 Action Selection

In our network routing implementation of TPOT-RL, Q-values are all initialized to low
values (0 or the shortest path length between nodes) before learning and agents always

7.4. TPOT-RL APPLIED TO NETWORK ROUTING 157

choose the action with the lowest Q-value. Thus, each action is tried at least once, but
there is no deliberate exploration. We find this total exploitation strategy to be effective,
presumably because as unsuccessful actions are repeated, their costs increase due to network
congestion, thus naturally causing agents to try the other alternatives periodically. However,
should exploration become necessary, we could easily switch to a probabilistic action-selection
strategy as we use in the robotic soccer implementation.

We do not experiment with action filtering in this domain, finding that it is not necessary
to achieve good results. Thus, in all of our experiments,

wW=U

7.4.4 Experimental Setup

In this section I lay out the details of our experimental setup for testing the effectiveness of
TPOT-RL in the network routing domain. The detailed empirical results are then reported
in Section 7.4.5.

All of the experiments use a network architecture (node and link patterns) as shown in
Figure 7.8. The nodes are numbered for reference in the text. Packets are injected into
the network at random intervals according to a Poisson distribution at an average rate of ¢
per simulated second. In our experiments, we use ¢ = 3. We create three different traffic
patterns within this network by controlling the distributions of sources and destinations of
injected packets. Our traffic patterns are controlled by two variables: ps, the probability
that a new packet is destined for node 6 (see Figure 7.8); and f;, the frequency with which
the traffic patterns switches (i.e. number of simulated seconds between pattern switches). In
our experiments, we use pg = .25 and f; = 10,000. The three traffic patters we define are:

Top-heavy: With probability ps, the injected packet has node 6 as its destination and a
random source; with probability 1 — pg, the injected packet has source and destination
chosen randomly (without replacement) from the set of nodes {1,2,3,4,5}.

Bottom-heavy: With probability pg, the injected packet has node 6 as its destination and
a random source; with probability 1 —ps, the injected packet has source and destination
chosen randomly from the set of nodes {7,8,9,10,11}.

Switching: Every f, simulated seconds, the traffic pattern switches between the top-heavy
and bottom-heavy patterns.

As laid out in Section 2.4, there are several parameters governing the timing and capac-
ities of network traffic. We use Cj0q. = Crer = 1000, ¢, = t; = 1.0.

In our experiments, we test several different packet routing strategies under the different
traffic patterns defined above. I define the strategies in terms of what the agent at node n
does when trying to route packet k to its destination kg5 It must choose from among the
possible links in L,,.

Random (RAND): k is sent along a random link [€ L,,.

158 CHAPTER 7. LEARNING A TEAM BEHAVIOR

1 ,2 ’3 ‘4

Figure 7.8: The network architecture used for our experiments. The nodes are numbered for
reference in the text.

Shortest (SHRT): £ is sent along the link that would get it to kg in the fewest number
of hops. Shortest paths are precomputed and stored based on the network topology. If
more than one link would lead along paths of the same shortest length, one such link
is chosen randomly.

Hand-coded (HAND): We created a policy by hand designed to work well with the top-
heavy traffic pattern. ~

e When kg = 6, if n € {7,8,9,10,11}, k is sent along the shortest path to-
wards node 6 (along the bottom of the network in Figure 7.8). Otherwise,
(n €{0,1,2,3,4,5}) k is sent to a node in the set {6,7,8,9,10,11} from where it
can then continue along the shortest path to node 6. Note that in all cases k can
be sent to a node in this set in one hop.

e When kg € {1,2,3,4,5}, k is sent along the shortest path (along the top of the
network).

e Similarly, when kg.s: € {7,8,9,10,11}, k is sent along the shortest path (along
the bottom of the network).

We expect this policy to do fairly well with the top-heavy traffic pattern since the
traffic is distributed fairly evenly among the top and bottom portions of the network.
Packets headed for node 6 (ps = 25% of the packets) use the bottom, while other
packets use the top of the network.

Q-routing (QROUT): This strategy is the Q-routing algorithm introduced in [Littman
and Boyan 93]. We use exactly the same implementation for testing. There are two
variants. One that starts with all Q-values initialized to 0, and another that initializes .
all Q-values to be the shortest distance between nodes. In the former case, the policy
at the beginning is equivalent to RAND; in the latter, it is equivalent to SHRT. In both
cases, the Q-values can change freely during learning. We use the default learning rate
of n=10.7.

TPOT-RL: This strategy is the one described in detail in Sections 7.4.1-7.4.3. Like
QROUT, TPOT-RL can be initialized with Q-values at 0 or with the length of the

7.4. TPOT-RL APPLIED TO NETWORK ROUTING 159

shortest path between nodes. In the latter case, the initialization is immediately over-
written by the first real reward signal. However, the initialization guides the initial
agent decisions.

In addition, stored Q-routing and TPOT-RL policies can be loaded and used exclusively
with no further learning allowed. We use this technique for testing purposes.

A major difference between Q-routing and TPOT-RL is that when using Q-routing,
neighboring nodes send back their own value estimates after every packet transfer. Thus Q-
routing generates a considerable amount of additional traffic. On the other hand, we assume
that agents do not know anything about the network beyond their own nodes and links.
Performance statistics are propagated through the network in batches periodically, allowing
for a tradeoff between overhead packets and learning rate. However, unlike Q-routing agents,
TPOT-RL agents are unable to use dynamic programming.

7.4.5 Results

This section presents detailed empirical results verifying the effectiveness of TPOT-RL in
the network routing domain. First I present comparisons of the different routing strategies
in a top-heavy traffic pattern. Then I describe the effects of testing the resulting policies on
the bottom-heavy traffic pattern. Finally, I present our results from training policies on the
switching traffic and testing their generalization across the three traffic patterns.

Top-Heavy Traffic

First, we tested the five different routing strategies under top-heavy network traffic condi-
tions. I chart both the average delivery time of the packets and the average number of hops
per packet. Results are tabulated over intervals of 100 simulated seconds. Because of the
difference in scales of the performance of, on the one hand RAND and SHRT, and on the
other hand HAND, QROUT, and TPOT-RL, I break the results into two sets of graphs.
Figures 7.9 and 7.10 compare the results of using the RAND, SHRT, and TPOT-RL routing
strategies in terms of average delivery time and average number of hops respectively. Notice
that as the network fills up, the RAND performs worse and worse in both respects. By defi-
nition, SHRT produces the minimum possible number of hops per packet, but again exhibits
a continual increase in average delivery time as the nodes’ packet queues lengthen.

In this and all other TPOT-RL runs, unless specified otherwise, update_interval = 10,
Qmaz = 2000, and |U] = 1: like in robotic soccer, under constant conditions, TPOT-RL can
be effective even without the help of action-dependent features.

Figures 7.11 and 7.12 are drawn on a much smaller y-axis scale, as the HAND, QROUT,
and TPOT-RL strategies all vastly outperform the other two (at least in terms of average
delivery time). In these runs, QROUT and TPOT-RL are both initialized with the shortest
paths to eliminate the big spike that would otherwise throw off the scale at the beginning of
the graphs as the algorithms begin acting randomly. When these algorithms start out with
Q-values initialized to 0, the right hand parts of the curves look qualitatively the same.

Again, the average number of hops does not correlate with the average delivery time, the
real measure of interest. TPOT-RL outperforms both HAND and QROUT by sending some

CHAPTER 7. LEARNING A TEAM BEHAVIOR

| 2000 r T T T T
m | e |
l_
> ' N
2 o
‘© 1000 | me
[
o
o
S ‘1,
§ sl -
o ————————————————————————— 1 ‘

0 5000 10000 15000 20000 25000 30000
Simulator Time

Figure 7.9: Average delivery time of packets in a network with the top-heavy traffic pattern when
using three different routing strategies: RAND, SHRT, and TPOT-RL.

20 L I s |
Q
o
T 15 | RAND - 1
S SHRT -
2 TPOT-RL —
£
E 10 |
s
(=]
@
g
z 5¢ 1
0 : ; .

0 5000 10000 15000 20000 25000 30000
Simulator Time

Figure 7.10: Average number of hops for packets in a network with the top-heavy traffic pattern
when using three different routing strategies: RAND, SHRT, and TPOT-RL.

packets along longer, but less congested paths. The remainder of the results in this section
are presented only in terms of average packet delivery time.

Bottom-Heavy Traffic

Figure 7.13 illustrates the results of running policies designed for top-heavy traffic under
bottom-heavy conditions. The solid bars show average traffic delivery time for SHRT, HAND,
QROUT, and TPOT-RL under top-heavy traffic. These numbers are the same as the end-
results shown in Figures 7.9 and 7.11. As noticed above, the HAND, QROUT, and TPOT-RL
strategies all perform well, having been designed or trained for these conditions.

7.4. TPOT-RL APPLIED TO NETWORK ROUTING 161

Average Delivery Time

2 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000
Simulator Time

Figure 7.11: Average delivery time of packets in a network with the top-heavy traffic pattern
when using three different routing strategies: QROUT, HAND, and TPOT-RL.

3.1 T T T T T

3 HAND - 1

29 ET

28 |]
27t]
26 |

25 |

Average Number of Hops

2.4 HrrT

2.3 1 i L 1 1
0 5000 10000 15000 20000 25000 30000
Simulator Time

Figure 7.12: Average number of hops for packets in a network with the top-heavy traffic pattern
when using three different routing strategies: QROUT, HAND, and TPOT-RL.

However, when the resulting policies are tested under bottom-heavy traffic conditions,
none of them perform well. In these runs, shown with hollow bars, the policies from the ends
of the previous runs are used with no additional learning. Of course the SHRT and HAND
policies, which do not learn, are constant throughout both runs.

I use a logarithmic scale on the y axis in Figure 7.13 in order to accommodate the large
discrepancy in values while still illustrating the differences.

162 CHAPTER 7. LEARNING A TEAM BEHAVIOR

. top-heavy D bottom-heavy

1000
SHRT HAND Q-ROUT TPOT-RL

)

E

= 100 |

bl

[

2

©

(]

o

&

§ 10 | 7
<

1 I

(@) (b) (c) (d)

Figure 7.13: Fixed policies running in the top-heavy and bottom-heavy traffic patterns. The
QROUT and TPOT-RL policies are both trained under top-heavy conditions. Note the log scale
on the y axis.

Switching Traffic

While we would not expect a policy trained exclusively under top-heavy network traffic
conditions to generalize to bottom-heavy conditions, we would like a policy trained under
switching conditions, since it includes periods of both of the other traffic patterns, to gen-
eralize across all three. Figure 7.14 shows the results of HAND, QROUT, and two variants
of TPOT-RL under all three traffic patterns. In all of the learning cases, the policy is
first trained under switching network traffic for 30,000 simulated seconds and then fixed for
testing. In all cases, the solid bar shows results for top-heavy traffic, the hollow bar for
bottom-heavy traffic, and the striped bar for switching traffic. Again, I use a logarithmic
scale on the y axis for presentation purposes.

The two TPOT-RL runs differ only in the set U used. When |U| = 1, no difference is
made based on local traffic conditions: routing decisions are based entirely upon the packet’s
destination. When |U| = 2, agents can implement different policies based on different
local traffic conditions. Note that Q-routing always routes packets based solely on their
destinations.

Figure 7.14 clearly shows the advantage of TPOT-RL. Since HAND is designed explicitly
for top-heavy traffic, it fails as expected in other conditions (Figure 7.14(a)). Similarly,
QROUT is forced to adapt to one traffic pattern at the expense of the other (Figure 7.14(b)).
In this case, it clearly optimizes its performance under bottom-heavy conditions, sacrificing
its performance under top-heavy conditions, and thus under switching conditions as well.

On the other hand, TPOT-RL with [U| = 1 (Figure 7.14(c)) finds a middle ground in
which the network performs fairly well under all traffic conditions, but never as well as is
possible. It is when |U| = 2 (Figure 7.14(d)) that TPOT-RL can take advantage of its
action-dependent feature function to find correlations between local information and long-

7.5. DISCUSSION 163

. top-heavy D bottom-heavy H]]] switching

HAND Q-ROUT

1000

o
E
= 100 |
el
o
=
g TPOT-RL
® 1UI=1
g 10 TPOT-RL |
o IUI=
< MW
1 IH‘“E[L
(©) (d)

Figure 7.14: Fixed policies running in the top-heavy, bottom-heavy, and switching traffic patterns.
The QROUT and TPOT-RL policies are both trained under switching conditions. Note the log
scale on the y axis.

term reward. In this case, TPOT-RL is able to perform well under all traffic conditions with
a single policy.

This last result repeats the result reported in the simulated robotic soccer domain in
Section 7.3.4. Namely, TPOT-RL is capable of learning an effective policy under dynamic
conditions in a team-partitioned, opaque-transition domain.

7.5 Discussion

As mentioned at the outset, this chapter serves a dual purpose. First, it represents the final
layer in our layered learning implementation in the simulated robotic soccer domain. Second,
it defines a new multi-agent learning technique that generalizes outside of the robotic soccer
domain.

7.5.1 Pass Selection within Layered Learning

Pass selection represents the third and highest-level behavioral layer within our layered
learning implementation. Its implementation follows the principles of layered learning as
laid out in Section 4.1:

e Pass selection is a behavior that must be adaptable. Since it depends on the behaviors
of teammates and opponents, agents must be able to adjust their decisions based on
the empirical results of past decisions. Thus, pass selection is an appropriate behavior
for learning because of the possibility of exploiting data to adapt to a shifting concept.

164 CHAPTER 7. LEARNING A TEAM BEHAVIOR

e We chose the machine learning method for pass selection based on the task character-
istics. As presented in Section 7.1, no pre-existing machine learning method is suitable
for learning pass selection in simulated robotic soccer. Therefore, we introduce a new
multi-agent reinforcement learning algorithm, TPOT-RL, to accomplish this task.

Low-level learning in complex domains can be well-defined with easy-to-isolate prob-
lems that allow agents to gather extensive training examples. However, when learn-
ing high-level multi-agent behaviors, training opportunities can be sparse and agents
cannot be trained in isolation since agent policies are interdependent. Although RL
typically suffers from the “curse of dimensionality,” the use of TPOT-RL to learn a
successful pass-selection behavior indicates that it can be used to learn complex multi-
agent behaviors with few training examples in very large state spaces.

e The previous learned layer—pass evaluation—is used as part of the input space for
TPOT-RL. In particular, the trained DT for pass evaluation is used to define the
crucial action-evaluation function e when using TPOT-RL for learning pass selection.
The previously-trained DT gives an indication of the likelihood that a given pass will
succeed based on the configuration of teammates and opponents, but regardless of the
receiver’s position on the field. The trained RCF then maps the collection of feature
values (decision tree classifications) to a Q-value for each action. A key assumption
is that the Q-value of a particular action does not depend on the feature values for
the other actions. The Q-values indicate the long-term strategic value of taking a
particular action given the predicted short-term effect of that action in the current

state.

In this chapter, TPOT-RL is used to learn pass selection, the third layer of our layered
learning implementation. When learning pass selection, the team of agents uses a fixed
formation against a fixed opponent. As presented in Section 4.2.2, our layered learning im-
plementation could be extended by incorporating pass selection within higher-level learned
behaviors. For example, the team might learn to adjust its formation against a fixed op-
ponent. It might also learn to switch among pass selection policies when facing different

opponents.

7.5.2 TPOT-RL

TPOT-RL is an effective technique for enabling a team of agents to learn to cooperate
towards the achievement of a specific goal. It is an adaptation of traditional RL methods
that is applicable in complex, non-stationary, multi-agent domains with large state spaces
and limited training opportunities. TPOT-RL enables teams of agents to learn effective
policies with very few training examples even in the face of a large state space with large
amounts of hidden state.

In short, TPOT-RL applies in domains with the following characteristics:

e There are multiple agents organized in a team.

e There are opaque state transitions.

7.6. RELATED WORK 165

e There are too many states and/or not enough training examples for traditional RL
techniques to work.

e The target concept is non-stationary.
e There is long-range reward available.
e There are action-dependent features available.

There are several such domains. As seen in Sections 7.3 and 7.4, simulated robotic soc-
cer and network packet-routing are two such team-partitioned, opaque-transition domains.
Other domains to which TPOT-RL could potentially be applied are information networks,
distributed logistics, and rescue missions. For example, an information agent may broadcast
a message without any knowledge of who will receive and react to it.

In all of these team-partitioned, opaque-transition domains, a team of agents works to-
gether towards a common goal, but each individual agent only executes a portion of the
actions along the path to the goal. Agents can control their own destinies only intermit-
tently and at irregular intervals. While not in full control of the team’s goal achievement,
they must still learn how to act so as to help their team achieve its goal. These domains
are in contrast with, for example, grid world domains in which a single agent moves from
some initial location to some final goal location; domains where agents take actions in par-
allel though also possibly in coordination—two robots executing tasks in parallel; and game
domains where the rules of the game require that an agent and its opponent alternate actions.

One main contribution of this thesis is the adaptation of the RL paradigm to a non-
stationary, opaque-transition multi-agent domain with a huge state space and extremely
limited training examples. TPOT-RL succeeds in this challenging domain by:

e Partitioning the value function among multiple agents.
e Training all agents simultaneously with a gradually decreasing exploration rate.
e Using action-dependent features to aggressively generalize the state space.

o Gathering long-term, discounted reward directly from the environment.

7.6 Related Work

The use of machine learning in multi-agent systems has recently been receiving a good deal
of attention. For a detailed discussion, see Chapter 9. This section highlights some of the
prior RL research that is most related to TPOT-RL.

TPOT-RL mixes characteristics of different RL approaches. From a team perspective,
there are a series of action opportunities resulting in state transitions and occasionally leading
to rewards. In this sense, it is similar to Q-learning. However, from an individual agent’s
perspective, since transitions are opaque, TPOT-RL is more like a Monte Carlo system in
which actions are rewarded for their eventual outcomes without any regard for the path of

166 CHAPTER 7. LEARNING A TEAM BEHAVIOR

states traversed between the action and the reward. In this sense, TPOT-RL is similar to
TD(1) [Sutton 88] °.

One method of dealing with large state spaces in RL is approximation of the function
Q. There has been much research into function approximation techniques in which the
value function is a neural network or perhaps a decision tree (e.g. [Boyan and Moore 95—
see [Kaelbling et al. 96] for a survey). In contrast to TPOT-RL’s construction of a small
feature space prior to learning, function approximators generalize large state spaces during
learning.

When using a feature space V, the definition of V can have a huge effect on the nature
of Q. For example, in [Salustowicz et al. 98], a grid-like discretization is used for V. Since
too many states result for a lookup-table, a neural network is used as the value function
approximator. This approach is shown not to work very well, and the authors conclude
that a more complex function approximator might work better. In contrast, we take the
approach of using a smaller feature space and the simplest possible evaluation function: a

lookup-table.

One RL application that has some similar characteristics to simulated robotic soccer is
distributed elevator control [Crites and Barto 96]. In this domain, a team of RL agents—
each responsible for one of four elevator cars—in a large, partially hidden, continuous state
space. Since the four agents learn simultaneously, the reinforcement to each individual agent
is non-stationary: it depends on the policies of the other agents. Crites and Barto report
very good results in comparison with heuristic control policies.

Elevator control as presented in [Crites and Barto 96] differs in two main ways from the
problems with which we are concerned. First, the approach is not team-partitioned since
each agent learns to operate in the entire state space. Second, it is not opaque-transition.
After taking an action in a state, an elevator agent knows the subsequent state that it enters
and is able to update its value function based on the value of this subsequent state.

TPOT-RL is able to learn with very few training examples. Prioritized sweeping [Moore
and Atkeson 93] is another method for learning with limited training examples. However,
like many other RL techniques, it relies on being able to store trajectories of state transitions
in the environment.

Even the partially observable Markov decision process (POMDP) [Kaelbling et al. 94]
framework, which is designed for problems with hidden state, relies on agents having some
knowledge of state transitions: POMDPs assume that the agent knows when the system
has transitioned to a new state and a new action can be taken. Thus reward can still
be propagated back through the state-action trajectory. Without access to future action
opportunities agents must accumulate their rewards directly from the environment.

Although the use of the environment for reward accumulation is a necessity in this do-
main, it has also been shown to be an advantage in similar situations. Searching in stochastic
policy space and using an average payoff for evaluating observation-action pairs can produce
successful policies without relying on the Markov property [Singh et al. 94]. As in our case,
the work reported there involves a domain in which several states are in the same observation
class due to the use of coarse features.

STD(1) is equivalent to a form of Monte Carlo learning [Singh and Sutton 96].

7.6. RELATED WORK 167

The intermediate reinforcement in the reward function R is similar to progress estima-
tors [Mataric 94a]. Progress estimators use the short-term real-world effects of actions as
intermediate rewards to help robots reach their ultimate goal location. Mataric’s conditions
also play a similar role to the features used here, reducing the size of the domain of the value
function. This work was done using a reactive approach, as opposed to our more deliberative
approach which takes into account past world states and agents’ internal states.

Previous multi-agent reinforcement learning systems have typically dealt with much sim-
pler tasks than the one presented here. Littman uses Markov games to learn stochastic
policies in a very abstract version of 1-on-1 robotic soccer [Littman 94]. There have also
been a number of studies of multi-agent reinforcement learning in the pursuit domain with
four predators chasing a single prey in a small grid-like world. For example, Tan [93] com-
pares situations in which predator agents are allowed to share reinforcement information
and/or policies; Arai [97] provides agents with reinforcement for enabling successful actions
by teammates; and Ono [97] equips each predator agent with different behavior modules
based on how many teammates are closer than it is to the prey. Even the relatively complex
backgammon [Tesauro 94] and elevator control [Crites and Barto 96] domains have much
smaller state space than the simulated robotic soccer domain.

In another predator-like task, Zhao and Schmidhuber [96] use a single run to deal with
the opponents’ shifting policies and ignore the opponents’ policies just as we do. The effects
of opponent actions are captured in the reward function.

In robotic soccer, a reinforcement learning approach has been used for strategic position-
ing [Andou 98] in the soccer server. Introducing observational reinforcement learning, this
system allows players to notice where the ball has traveled most often in the past and to
adjust their positions such that they are closer to the ball’s path in the future.

Within network routing, Q-routing [Boyan and Littman 94] is discussed in detail above
as it is one of the benchmarks against which we compare TPOT-RL. Another approach
to network routing in the same simulator is inspired by an ant metaphor [Subramanian et
al. 97]. Ants crawl backwards over the network to discover link costs and shortest paths.
This system rests on the assumption that link costs are the same for packets going in either
direction. It also adds an overhead cost of sending the ant packets through the network.

Similarly inspired by the ant metaphor, AntNet [Caro and Dorigo 98] agents traverse a -
routing network and write information at the nodes reflecting their experience of the current
network status. Within the framework presented in [Caro and Dorigo 98], TPOT-RL is a
distributed, adaptive, non-minimal (i.e. packets do not necessarily always go along minimal
cost paths), and optimal (i.e. the objective is to optimize the entire network’s performance
as opposed to any individual packet’s traversal time) routing algorithm.

Chapter 8

Competition Results

In Chapters 3-7, I presented the main contributions of this thesis along with extensive
controlled experiments empirically validating each individual contribution. However, since
the overall goal is to a create a complete team of agents that can operate in an adversarial
environment, it is also interesting and informative to note how the team performs against a
wide range of previously-unseen adversaries.

This chapter documents our experiences at several robotic soccer competitions in which
we have participated over the years. Since competitions are not controlled experiments, their
results are not presented as scientific validation of our individual techniques. Such validation
is presented in the previous chapters. However, I believe that competition results provide
useful evaluations of complete systems. In addition, I believe that qualitative evaluations
and anecdotes from these competitions teach some valuable lessons and provide insights into
the strengths and weaknesses of various approaches.

We named all of the teams that we entered in competitions “CMUnited.” In this chapter,
I differentiate among the teams based on the year and platform in which they competed.
For example, the “CMUnited-96 simulator team” competed in the simulator competition
in 1996; the “CMUnited-97 small-robot team” competed in the small-robot competition in
1997.

No individual team that we entered in a competition embodies all of the research con-
tributions of this thesis. The team member agent architecture is used in several of the
teams, while TPOT-RL is used in none: it requires more training against an opponent than
is possible in competitions. Throughout this chapter, I indicate which techniques are used
by each team and Table 8.1 summarizes the correspondence between teams and techniques.
Although set-plays (Section 3.3.3) and SPAR (Section 3.5.2) are presented in Chapter 3 as
part of the flexible teamwork structure, they are given separate entries in the table since
they are both used outside of the teamwork structure by at least one team.

Sections 8.1-8.4 provide match results and anecdotes from 4 competitions in which we
participated. Section 8.5 concludes with the most important lessons learned from these
competitions.

169

170 CHAPTER 8. COMPETITION RESULTS

Team Learned | Learned
CMUnited Member Ball Pass
Team Agent Comm. | Teamwork | Set- Intcpn. Eval.

(vear/platform) | Arch. | Paradigm | Struct. | Plays | SPAR | (NN) (DT)

96 /simulator -

96 /robots +

97 /simulator + + + + + +

97/robots + + +

98 /simulator + + + + + +

98/robots + +

Table 8.1: The research techniques used by the various CMUnited teams which we entered in
competitions.

8.1 Pre-RoboCup-96

The first robotic soccer competition of any sort was held on November 5-7, 1996 in Osaka,
Japan [Kitano 96]. In conjunction with the IROS-96 conference, Pre-RoboCup-96 was meant
as an informal competition to test the RoboCup soccer server in preparation for RoboCup-97.
Most of the entrants were from the Tokyo region and were in frequent contact with the
developer of the soccer server.

At the time of the competition, we had only begun our agent development, having created
nothing more than the learned ball-interception behavior described in Chapter 5. In last-
minute preparation for the event, we developed a static team formation and a fixed, hand-
coded receiver choice function (RCF) similar to the prefer right wing (PRW) RCF defined
in Section 6.3.1. The player closest to the ball always moved towards it and then passed to
a pre-determined teammate, with one designated player shooting towards the goal.

We were aware at the time that our CMUnited-96 simulator team implementation was
preliminary, but we entered the competition in order to attain a feeling for what areas needed
the most attention, and to help test the soccer server. Table 8.2 shows the results of the
games in which CMUnited-96 participated.

Opponent Affiliation Score
(CMU-Opp.)

Oota Tokyo Institute of Technology, Japan 4 - 1

ETL Electrotechnical Laboratory, Japan - 0

Ogalets Tokyo University, Japan
Waseda Waseda University, Japan - 4
[TOTAL | 16 - 27 |
Table 8.2: The scores of CMUnited-96’s games in the simulator league of Pre-RoboCup-96.
CMUnited-96 won 2 of its 5 games, finishing in 4th place out of 8 teams. *The last game was

lost by one goal in overtime.

7

Sekine Tokyo Institute of Technology, Japan 1 - 13
1
3

8.2. MIROSOT-96 171

An important lesson learned at this competition was that it is very important to be able
to get to the ball quickly and efficiently. The two top teams, Ogalets and Sekine, each had
several players quickly moving towards the ball, thus increasing the likelihood that they
would retain possession. Our preliminary strategy of having a single player moving slowly
and deliberately towards the ball proved to be ineffective. The trained neural network was
good at blocking the ball, but there was no incentive built into the training regime to get
to the ball quickly. We learned at this competition that robot soccer teams must have
either very efficient ball-interception, or several players moving towards the ball at once. In
later competitions, we aimed to improve ball-interception efficiency, while also occasionally
sending multiple players towards the ball.

8.2 MiroSot-96

The first robotic soccer competition involving real robots was held immediately after
Pre-RoboCup-96, on November 9-12, 1996 in Taejon, South Korea [Kim 96]. Called
MiroSot-96, 19 robotic teams competed in this tournament. As a single elimination tour-
nament, it provided for only a single game for many of the teams, including CMUnited-96,
which was matched in its first game against the eventual runner-up.

MiroSot-96 required smaller robots than the ones described in Section 2.3 (7.5¢cm® max-
imum). In addition, there were only three allowed per team. The robots we used in this
competition were a preliminary version of those described in Section 2.3 [Achim et al. 96]. Al-
though they did not use the team member agent architecture or any of the machine learning
techniques described in this thesis, they did include complex set-plays.

Table 8.3 shows the result of our single game at the MiroSot-96 competition. The Miro
team ended up losing in the finals 20-0 to the team from NewtonLabs, USA.

Opponent Affiliation Score
(CMU-Opp.)
| Miro | Korean Advanced Institute of Science and (KAIST) 3 - 7 |
] TOTAL 3 -7 |

Table 8.3: The score of CMUnited-96’s game in the robot league of MiroSot-96. CMUnited-96
lost its only game.

The winner of MiroSot-96, NewtonLabs, dominated at this tournament due mostly to
the speed of its vision system and robots [Sargent et al. 97]. At this tournament we learned
the importance of the vision component of robotic soccer systems.

In addition to the 3-robot competition, MiroSot-96 also included a single robot com-
petition: each team was allowed just a single robot on the field. In this competition, the
CMUnited-96 robot lost in the finals by one goal. Table 8.4 shows the results of the two
games in which it competed.

172 CHAPTER 8. COMPETITION RESULTS

Opponent Affiliation Score
(CMU-Opp.)
Rogi University of Girona, Catalonia, Spain 4 - 2
Lami Federal Institute of Technology, Switzerland 4 - b
” TOTAL 8§ - 7 |

Table 8.4: The scores of CMUnited-96’s games in the single robot league of MiroSot-96.
CMUnited-96 won 1 of its 2 games, finishing in 2nd place out of 4 teams.

8.3 RoboCup-97

RoboCup-97 was the first formal RoboCup championship. It was held on August 23-29, 1997
in Nagoya, Japan in conjunction with the IJCAI-97 conference [Kitano 98]. At RoboCup-97,
we entered both the simulator competition and the small-robot competition.

8.3.1 Simulator Competition

The RoboCup-97 simulator competition was the first formal simulated robotic soccer compe-
tition. With 29 teams entering from all around the world, it was a very successful tournament.

It was in preparation for this competition that the team member agent architecture,
including both the flexible teamwork structure and the inter-agent communication paradigm,
described in Chapter 3 was developed. In addition to the team member agent architecture,
the CMUnited-97 simulator team which entered this competiti