
Approved for public release; distribution is unlimited.

CO
Ray Tracing for Ocean Acoustic Tomography CO

CO
(o

o
CO
o

L.. fc^J

by Brian D. Dushaw and John A. Colosi

Technical Memorandum

APL-UWTM3-98
December 1998

Applied Physics Laboratory University of Washington
1013 NE 40th Street Seattle, Washington 98105-6698

DARPA Grant MDA 972-93-1-003
ONR Grant N00014-97-1-0259

DTIC QUALITY INSPECTED I

Approved for public release; distribution is unlimited.

Ray Tracing for Ocean Acoustic Tomography

by Brian D. Dushaw and John A. Colosi

Technical Memorandum

APL-UWTM3-98
December 1998

Applied Physics Laboratory University of Washington
1013 NE 40th Street Seattle, Washington 98105-6698

DARPA Grant MDA 972-93-1-003
ONR Grant N00014-97-1-0259

.UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY.

ACKNOWLEDGEMENTS

This work is conducted as part of the Acoustic Thermometry of Ocean Climate
(ATOC) and North Pacific Acoustic Laboratory (NPAL) projects supported by DARPA
(Grant MDA 972-93-1-0003) and ONR (Grant N00014-97-1-0259), respectively. John
Colosi is grateful for a Young Investigator Award from the Office of Naval Research.
Matthew Dzieciuch made several constructive comments on this technical report and on
the development of the code. Bruce Cornuelle urged the inclusion of the effects of ocean
currents in the ray calculations. Bob Odom provided most of the discussion of finite-fre-
quency effects on rays passing near the ocean surface.

Questions concerning this report and its associated FORTRAN code may be
addressed to:

Brian Dushaw
Applied Physics Laboratory
College of Ocean and Fisheries Sciences
University of Washington
1013 N.E. 40th Street
Seattle, WA 98105-6698
(206) 543-1300
dushaw@apl.washington.edu

John Colosi
Applied Ocean Physics and Engineering Department
Woods Hole Oceanographic Institution
MS #11
Woods Hole, MA 02543
(508)289-2317
jcolosi@whoi.edu

ii TM 3-98

.UNIVERSITY OF WASHINGTON »APPLIED PHYSICS LABORATORY.

ABSTRACT

This report describes a new, flexible computer code in the FORTRAN computer
language to make ray calculations for ocean acoustic tomography. The Numerical
Recipes software package provided the basis for much of this computer code. The ray
equations are reviewed, and ray equations that include the effects of ocean current are
derived. Methods are derived for rapidly integrating those equations to obtain time front
and eigenray information for long-range, deep-water acoustic transmissions. These meth-
ods include a look-up table for sound speed, sound speed gradient, second derivative of
sound speed, and range-dependent information. Cubic spline methods are used to inter-
polate sound speed with depth and to obtain the derivatives of sound speed. The choice
of the step size increments used to integrate the equations is a critical aspect of the inte-
gration, affecting both the accuracy of the prediction and the speed of computation. A
predetermined, user-specified step size appears to allow more efficient calculations than
"adaptive step" methods. "Adaptive step" methods adjust the step size automatically to
maintain a given accuracy in the integration of the ray equations, while user-specified
step sizes allow one to use prior knowledge of the integration problem to achieve the
desired accuracy with much less computational overhead. Several integration methods
were explored, but the classical 4th order Runge-Kutta method appears to be the most
efficient and best method for this integration problem. Appendices describe detailed
aspects of the computer code, as well as the methods used for deriving eigenray informa-
tion and for parallelizing the ray calculations. The computer code is designed to be
unstable so that the user can easily modify it to his or her own porpoises.

TM 3-98 iii

.UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY.

TABLE OF CONTENTS
Page

Motivation 1

Ray Equations, or Equations of Motion 2

Look-Up Tables and Sound Speed Interpolation 4

Integration of the Differential Equations 6

Surface and Bottom Reflections 8

Benchmarking vs Accuracy 9

Conclusions *"

Appendix A. A Technical Summary and a Flow Chart of the Computer Code 12

Appendix B. Calculation of Eigenrays 14

Appendix C. Modifying the Code for Computations in Parallel 17

Appendix D. Input and Output Files and Other Operational Information 18

Appendix E. The Ray Equations in Terms of Sound Slowness 21

Appendix F. The Ray Equations with Current 22

References 26

iv TM 3-98

.UNIVERSITY OF WASHINGTON •APPLIED PHYSICS LABORATORY.

LIST OF FIGURES
Page

Figure 1. Step sizes determined by an adaptive ray trace and the predetermined
step size presently implemented in the code 28

Figure 2. Time front predictions associated with various step size scalings 29

Figure 3. Flow chart of ray trace code 30

Figure 4. Ray path increments and sound speed 31

TM 3-98

.UNIVERSITY OF WASHINGTON «APPLIED PHYSICS LABORATORY.

This is a blank page.

vi TM 3-98

.UNIVERSITY OF WASHINGTON «APPLIED PHYSICS LABORATORY.

MOTIVATION

Although numerous ray tracing codes are available, none satisfy all of the present
requirements of long-range ocean acoustic tomography. Ocean acoustic tomography is
described by Munk, Worcester, and Wunsch (1995). What is required for long-range
tomography is a fast, accurate, and flexible code. The requirement of flexibility necessi-
tates coding that can be easily modified by the user; thus FORTRAN is the preferred
computer language. Flexibility allows the user to easily implement his or her own algo-
rithms, such as a better search for eigenrays or an alternative (perhaps faster or more
accurate) integration routine. Issues of numerical accuracy in ray predictions are dis-
cussed in the section on integrating the ray equations. Finally, the requirement of speed
necessitates coding that can sometimes become opaque. This report therefore also
describes the methods employed to achieve computer code that is highly efficient.

The present and immediate goal of the authors of this report is to achieve fast,
accurate wavefront and eigenray travel time predictions at basin scale ranges (3-5 Mm)
in the North Pacific Ocean as part of the North Pacific Acoustic Laboratory and Acoustic
Thermometry of Ocean Climate projects (Dushaw 1999; Dushaw et al. 1999; Worcester
et al. 1998, Colosi et al. 1999). These projects require eigenray predictions for a half
dozen or so time series of sound speed sections derived from acoustic data obtained at
3-5 Mm range. For a single sound speed section, calculation of the time series of ray
travel times takes about 30 hours on a 200-MHz Pentium Pro computer, so the need for
the fastest possible code is evident.

Many of the ideas used in implementing the code to be discussed here originated in
the RAY code and associated technical report by Bowlin et al. (1992). Alas, this code is
in C. The new computer code described here uses the FORTRAN cubic spline and inte-
gration routines from Numerical Recipes (Press et al. 1992; Numerical Recipes here-
inafter); thus use of this code requires a license to use the Numerical Recipes software
($40).

CREDO: The code described here is meant to be easily modified by the user, and
so it will never be a stable ray code. The code is meant to be transparent and fast.
Metaphorically, if the Bowlin RAY code is a Fiat 2000 with a Fiat engine, the code
described here is a '67 Chevy Impala with JATO (Jet Assisted Take-Off) propulsion.*

*Urban Legend No. 37

TM 3-98

.UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY.

RAY EQUATIONS, OR EQUATIONS OF MOTION

According to Bowlin et al. (1992): The equations of motion for a ray traveling
through the ocean can be cast in Cartesian coordinates as follows:

de
dr

drc

c
tan<9-

dzc

c

dz _
dr''

= tan#

dt seed

dr~ = c

(la)

(lb)

(lc)

where 6 is the angle of the ray with respect to the horizontal r axis, and z is the vertical
coordinate [positive upward].

Bowlin et al. (1992) continue: For long range ocean acoustics, the curvature of the
Earth's surface makes non-Cartesian coordinates more suitable for ray tracing. Let new
z' axes lie along radii passing through the center of the Earth with z' = Oat sea level and
z = Re at the Earth's center, where Re is the radius of the Earth, and let the new r' be the
range measured along a circular arc at sea level The new equations of motion which
include the geometrical effects due to a spherical Earth are

^. = /^_^tan0_-L (2a)
dr' Je c c Re

*=/etan0 (2b)
dr

dt _ fesecd

~d?~ c
(2c)

where

f = — = (Re ~ Z^ (3)
h ~ dr' Re

TM 3-98

.UNIVERSITY OF WASHINGTON «APPLIED PHYSICS LABORATORY.

These are the equations that RAY integrates.... [These latter equations have z positive
downward.] However, the RAY code actually integrates not 8, but cos 8 and sin 8, thus
avoiding the calculation of the transcendental functions.

An alternate way to integrate these equations is to use the equations in Cartesian
coordinates (the equations above with Re—>oo and /«—>1) but apply the well-known
Earth flattening transformation (Aki and Richards 1980). This transformation is applied
once to the initial sound speeds and associated depths, and the subsequent integration in
the Cartesian coordinates is then mathematically equivalent to the above equations. Phys-
ically, this transformation is a stretching of depth and sound speed equivalent to the cur-
vature of the Earth's surface. If e = zlRe (z positive downward) then the Earth flattening
transformation is z = z * (1 + ell + e * e/3) and c = c * (1 + e + e * e). Since some com-
putation can be saved if this transformation is applied once before integrating the differ-
ential equations, this transformation together with the Cartesian differential equations is
preferred. Ray predictions using the two methods agree to within 1 ms at 3-Mm range,
and the integration of the Cartesian equations appears to be roughly 10% faster.

If cs = cos 8, sn = sin 8 and we apply the flat Earth transformation to z and c, the
equations above can be re-written as

(4a)
d cs
dr'

- sn \dz' I c
c dr'C sn

c cs

d sn
dr'

(d,c
cs\

d/C sn^
c cs,

dz
dr'

sn

cs

dt 1
dr'

■"

CCS

(4b)

(4c)

(4d)

No trigonometric functions need to be calculated while integrating these equations. Since
integration of these equations is most sensitive to the angle integration, the redundant
equations for angle (the equations for cs and sn) are actually helpful for the stability of
the integration. The above equations can be cast in only three equations, where the first
equation is for d(tan8)/dr, but this formulation involves a term sqrt(l+tan 0*tan 8) in the
integration for travel time (see Appendix B). This square root is computationally expen-
sive (for one test case it increased computation time by about 15%), perhaps more expen-
sive than integrating the additional differential equation. Similarly, it is important to code

TM 3-98

.UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY.

these equations using the smallest number of divisions; a division is about as computa-
tionally expensive as taking a square root.

For the open-ocean environment of the North Pacific, the term involving dcldr in
the above equations appears to be 5-6 orders of magnitude less than the other terms. Ray
predictions using Levitus sound speeds with and without the dcldr term were insignifi-
cantly different. As Bowlin et al. (1992) comment, if... an environment where dropping
the dcldr term [in Eq. 4] produces a significant change in the wavefront then it is very
likely that the linear range dependent model is inadequate for that environment even if
the dcldr term is included. This term is therefore commented out in the code for effi-
ciency purposes, but the user concerned with significant range dependence should con-
sider checking if this term is important or not.

LOOK-UP TABLES AND SOUND SPEED INTERPOLATION

It is clear that a fast code will necessarily rely on look-up tables for sound speed,
sound speed gradient, and other parameters. Depth is the obvious index to these look-up
tables, since with this index the sound speed values can be quickly obtained at arbitrary
depths during the integration. As pointed out by Bowlin et al. (1992), the rapid, accurate
calculation of sound speed, sound speed gradient, etc., at arbitrary depth and range is a
critical aspect of the ray prediction.

For the present code, we adopt cubic splines for interpolation of sound speed
{Numerical Recipes) and for the calculation of sound speed gradients. Splines have been
discussed in the context of calculating acoustic rays by Moler and Solomon (1970).
Cubic splines are mathematically the most natural and smoothest interpolation; their goal
in life is to minimize the second derivative of the interpolation (Parker 1994). The
smoothest possible interpolation is essential because of the sensitivity of the ray predic-
tions to sound speed gradient. In addition, cubic splines allow the sound speed gradient
to be calculated quickly and accurately.

We note again that it is essential that smoothly varying sound speeds be used for
ray predictions. It is therefore important for the user of any ray trace code to apply any
desired smoothing or interpolation—horizontally or vertically—prior to the ray predic-
tion. The code does not implement any smoothing of the user's sound speed profiles.
Such smoothing necessarily requires allowing some misfit to the sound speed values,
which can lead to biases in the sound speed profiles. Since the code described by Bowlin
et al. (1992) applies some smoothing to the sound speed profiles, Bowlin et al. discuss
this bias problem at length; it is perhaps a problem best left to the user of the code.

The cubic spline interpolation method is described by Numerical Recipes and
Parker (1994), so only the details appropriate to the present application are discussed
here. Typically, sound speed values for ray tracing are available at a small number of
depths, 30-100 say. The cubic spline method is used to interpolate those values, as well
as values for the first and second derivatives, to 3-m increments throughout the water

TM 3-98

.UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY.

column, and these values are used to fill a table of sound speed values. (To properly han-
dle surface reflected rays, the value for sound speed at the surface is repeated at 3 m
above the ocean surface.) For arbitrary depth z, the sound speed can be calculated by

where Cj = c(Zj), dz = z- int(z), and j = int(z) gives the index in the sound speed look-
up table. While this is an approximation for sound speed, it is sufficiently accurate for
ray tracing.

Sound speed gradient in the ray equations must be calculated carefully, since even
small errors in this quantity result in ray predictions with poor quality. With cubic
splines, the sound speed gradient at arbitrary depth z between the y'th and (j + l)th depths
is (Numerical Recipes)

dc c,+1 - Cj 3A2 - 1 / x „ 3B2 - 1
= -^ J- -— (zj+] - Zj) c'J+ —-— (zj+l - Zj) cj+l (6)

dz zj+i - Zj 6 6

where

As
z^~z t Bm Z~Zj =1-A (7)

Zj+i Zj Zj+\ Zj

However, the difference between adjacent depths in the table is a constant Az = 3 m, and
many of the terms in this equation are constant and so may be calculated prior to the inte-
gration. When a 1-m depth increment is used, the equations simplify even further at the
expense of a very large look-up table. Thus, the equation for the first derivative becomes
(positive z is downward)

dc A2c'J B2c'J+, — = L const, j (8)
dz 2Az 2Az J

where one half the second derivative and const.j are calculated ahead of time in the look-
up table.

, ci+\ ~ cj . Az(cy-c^i)
const.; = -J-— H (y) J Az 6

TM 3-98

.UNIVERSITY OF WASHINGTON »APPLIED PHYSICS LABORATORY.

The vertical gradient of sound speed can be calculated rapidly and accurately in this way.
Note that while the Taylor expansion approximation for c(z) in Eq. 5 is adequate, the
Taylor expansion approximation for dcldz is not.

Range dependence is implemented by assuming a constant horizontal sound speed
gradient and a constant horizontal gradient of the vertical gradient of sound speed. Thus,

c(rM, z) - c(rh z) .,_.
c(r, z) = c(rj, z) + (r- rj) -^ J— (10)

for an integration step at range r between the ;th and (j + l)th sound speed profiles. The
equation for the horizontal dependence of sound speed vertical gradient is similar. All
indications (Bowlin et al. 1992) are that these approximations for range dependence are
adequate. It is essential to implement at least a constant sound speed gradient between
sound speed profiles, however, because jumping from one profile to another in a discon-
tinuous fashion produces a multitude of false caustics in the time front.

The sound speed look-up table containing the information required to calculate
sound speed and sound speed gradient, including their range dependence, at arbitrary
depth and range may be constructed using a three-dimensional matrix of depth, range,
and six variables at those depths and ranges. We use 1835 depths at 3-m increments and
the ranges given by the initial set of sound speed profiles. The six variables at those
depths and ranges are sound speed, sound speed gradient, sound speed second derivative
with depth, horizontal derivative of sound speed, horizontal derivative of sound speed
gradient (assuming a constant gradient between profiles), and the constant term described
above for calculating sound speed gradient at arbitrary depth. With these variables, sound
speed and sound speed gradient can be calculated at arbitrary depth and range very effi-
ciently. This double precision table, if filled, uses about 13 Mbytes of computer memory
for 150 sound speed profiles.

INTEGRATION OF THE DIFFERENTIAL EQUATIONS

There are several well-known methods for integrating a coupled set of ordinary dif-
ferential equations such as Eq. 4. One of the most common is the Runge-Kutta method.
Applied to Eq. 4, this method involves a series of range steps. The derivatives of ray
angle, depth, and travel time with respect to range are calculated at each step. When
using any integration method, it is important to monitor truncation error or to otherwise
assure that the integration is accurate. Developing code that obtains acceptable errors in
the integration in a timely fashion is the essence of the difficulty of developing a ray inte-
gration code. The most stringent accuracy requirements occur in the integration of ray
angle. The nature of this difficulty can be shown by noting that the main term in Eq.
4,(l/c)dc/dzequals d(\n(c))/dz, and that sound speed varies by only about 5% in the
water column. Since ln(c) varies by even less, the errors in estimating the derivative

TM 3-98

.UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY.

rapidly wreck the integration.

The Numerical Recipes textbook describes an integration method involving "adap-
tive stepping." This technique involves measuring the truncation error at each step and
then modifying the step size such that the integration maintains a specified level of error.
This ensures both that the integration is accurate and that step sizes are not so small as to
involve unnecessary computation. Properly employed, an "adaptive step" method can
result in significant improvements in computation time.

In the present case, however, we already know a great deal about the ray tracing
problem, unlike a generic integration problem. For example, given the nature of the ray
tracing problem, it is probable that step sizes of 1 m are too small, and step sizes of
1000 m are too large. It thus appears that using adaptive stepping will not result in an
order of magnitude decrease in computation time as might be expected for an unknown,
generic integration problem. It is true that adaptive stepping gives a measure of trunca-
tion error, which is quite important. However, with experience the character of a pre-
dicted wave front can be used to decide if predetermined step sizes are sufficiently small,
or a few initial calculations can be made with different step sizes to test the convergence
of the integration. Once the parameters of the integration are determined, speed of com-
putation is the only remaining issue.

It is not presently known whether an adaptive stepping method can be developed
that will result in speedier computations than a user-specified stepping. It is certainly true
that the "adaptive stepping" method described in the Numerical Recipes textbook is more
computationally expensive than the user-specified stepping method that has been devel-
oped for the present ray tracing code. It may be that once the nature of the problem has
been well defined, adaptive step sizing is a computational overhead that is no longer
required. Once the step sizes have been defined for the problem, the step sizes do not
need to be recalculated every time. Figure 1 shows the step sizes determined by an adap-
tive step ray trace and the predetermined step size currently implemented in the code.
This predetermined step size is linear from the surface to a user-specified depth (1500 m
in Figure 1) and has a hyperbolic tangent (tanh) functional form below that depth. While
the predetermined steps are generally considerably smaller than the adaptively sized
steps, the code using the former is significantly faster than the code using the latter.

Besides the method used to derive the step sizes, a second issue is the method of
integration to be employed. The Numerical Recipes textbook lists several methods:
Classical 4th order Runge-Kutta, Cash-Karp Runge-Kutta, Bulirsch-Stoer, "predictor-cor-
rector," and "stiff problem" integration. The Cash-Karp Runge-Kutta method is a 5th
order method which also allows an estimate of truncation error using the difference
between 4th and 5th order Runge-Kutta results. Since one often needs to integrate
through mixed layers and other sharp features, the best integration method is probably
Runge-Kutta, because many of the other methods require the integration problem to be
relatively smooth. For a suitably chosen step size, the classical 4th order Runge-Kutta
and the Cash-Karp Runge-Kutta methods produce nearly identical results in the ray trace.
As pointed out in the Numerical Recipes textbook, higher order does not necessarily

TM 3-98

.UNIVERSITY OF WASHINGTON »APPLIED PHYSICS LABORATORY.

mean higher accuracy. The classical 4th order Runge-Kutta is much cheaper to calculate.
We tried to implement the Bulirsch-Stoer method, but it produced unsatisfactory results.
We did not try to implement any "predictor-corrector" methods.

At the present time we conclude that the most efficient way to make these calcula-
tions is to use the classical 4th order Runge-Kutta with a step size that is predetermined.
Several test cases of varying step sizes can be run initially to ensure that the integration is
accurate before proceeding with the optimal calculations. The main issue is to balance
speed and accuracy. We hold out the hope, however, that a more efficient adaptive step-
ping scheme may be devised. (The Bolin RAY code adopts 4th order Runge-Kutta and
predetermined step size as well. However, the step sizing is determined by the depth
spacing of the sound speed data that are input. As a result Bowlin RAY predictions using
sound speed profiles defined by many depths take longer to compute than predictions
using sound speed profiles defined by few depths. It is probably better to have the step
size vs accuracy issue explicitly recognized by the user of the code.)

Step sizing is critical. Unsuitably defined step sizing causes irregular wave front
predictions and can introduce biases to the time front. The user performing ray tracing
for the first time on a particular problem is urged to try several step sizing definitions to
ensure that the desired accuracy is obtained. It is far more difficult to derive eigenrays if
the time front is irregular and rough. For adaptive step sizing the scaling of the variables
in the problem is critical. High accuracy is needed at every step to avoid the accumula-
tion of errors during the integration. This means that the scaling of the variables needs to
be proportional to the step size. Small step sizes are required where d cos 6ldr ~ 0 (i.e.,
where dc/dz ~ 0) or where the sound speed changes rapidly. Thus small step sizes are
usually required near the sound channel axis or near the surface.

Other methods of integration have not yet been tested. It may well be that faster,
more efficient methods than Runge-Kutta integration could be found. There is surely a
mathematical analysis of the ray tracing problem that would point to the optimal method,
but this is beyond the means of the authors.

SURFACE AND BOTTOM REFLECTIONS

Surface reflections are handled in a simple way in the code. The code determines
at every step if a surface reflection is to occur in the next range step. If h is a range step
to take after reaching a depth z„, then the depth of the ray after this step can be approxi-
mated by zn+i « zn + dz/dr h. If z„+, is above the ocean surface, we can analytically
solve for a new, shorter step size such that the ray will arrive exactly at the surface after
this step. This works best (the approximate integration for the depth z„+1 has less error)
when very small step sizes are taken near the surface. Once this has been done, we need
merely change the sign of the ray angle and continue with our calculation.

Because the step size derived to arrive exactly at the surface is approximate, the
integration will occasionally produce a ray that passes infinitesimally above the ocean

8 TM 3-98

.UNIVERSITY OF WASHINGTON »APPLIED PHYSICS LABORATORY.

surface. To ensure that the calculation can proceed without mishap in this case, the sound
speed table includes a value for sound speed at 3 m above the ocean surface. The user
can specify a tolerance for missing the ocean surface. In general, depth errors of several
centimeters or more in the surface reflection will not significantly affect the ray tracing
results.

Bottom reflections are handled in a manner similar to surface reflections, with a
few complications. The bottom is modeled as line segments between the depths specified
in the input bathymetry file, and the ray reflects specularly. By simple geometry, if the
incident angle is 0, the reflected angle is 6, and the angle of the bottom with respect to
the horizontal is <t>, then 0 = - 6 + 2</>. The angle <f> is the arctangent of the slope of the
bottom.

The complexities arise in determining when the ray is approaching the ocean bot-
tom and in solving for the step size required for the ray to reach the bottom exactly with-
out overshooting. Suppose the segment of ocean bottom is modeled as B(r) = mr + b,
where m is the bottom slope and b is a line intercept, and suppose the ray path is z(r).
The sign of z-mr-b therefore determines which side of the bottom the ray is. Similarly
to the surface reflection procedure, the sign of (z + hdz/dr)-m(r + h)-b is a test of
whether the ray will cross the bottom on the next step of size h. This equation can also
be used to solve for the step size h for the ray to exactly strike the bottom. However,
because much larger step sizes are used near the ocean bottom than near the surface, the
approximate integration by dzldr does not work very well. The code uses the constant
ray slope approximation to determine when the ray is near the bottom, and then iterates
step size to obtain the step size required to put the ray at the ocean bottom within a user-
specified tolerance. In practice, a look-up table of range, depth, bottom slope, twice bot-
tom angle, and the value of an intercept of the line segment is used to determine which
segment of the bottom the ray is approaching and to calculate the reflection point and new
ray angle.

This code does not model the finite frequency effects on ray paths with small slope
that pass near the surface (Murphy and Davis 1974; Odom 1998). The geometric ray the-
ory described in this memorandum is an infinite frequency approximation which permits
rays to make an arbitrarily close approach to the surface without being influenced by it.
Only when the geometric rays actually contact the surface are they reflected. A finite fre-
quency ray contains energy which decays exponentially above the geometric turning
point, as shown by predictions using acoustic modes. The length of the exponential tail is
frequency dependent with lower frequency rays having longer tails, thus more energy
above the geometric turning point. Because of the exponential tail, the finite frequency
ray senses the surface sooner than the corresponding geometric ray. The result is that the
finite frequency ray turns at a shorter range from the source than the geometric ray with
the same launch angle. This effect can cause significant changes to ray travel times and
ray paths in very long range acoustic transmissions. In one example from the Eastern
Pacific, the travel times were affected by 1-2 ms per surface interaction, but the rays have
to be grazing the surface in just the right way for an effect of this magnitude

TM 3-98

.UNIVERSITY OF WASHINGTON »APPLIED PHYSICS LABORATORY.

(M. Dzieciuch personal communication 1999, Worcester et al. 1998). However, it is diffi-
cult to model the near-surface interaction with rays in a general way, particularly for
broad-band acoustic transmissions. For the time being, those concerned about this effect
may make an empirical assessment of its magnitude by comparing ray and mode or
parabolic equation predictions.

BENCHMARKING VS ACCURACY

The speed of a ray prediction depends on the accuracy required by the user. Thus,
it is virtually impossible to compare the speeds of various ray codes, unless one has a
means of ensuring that the various predictions are to the same accuracy. The table below
shows computation times for 5000 rays when using an early version of the ray code. The
calculations are for a 3-Mm range, range-dependent sound speed section. For these cal-
culations, the Step Size Scale is a scaling factor that is applied to the step size function
shown in Figure 1. The table shows that the computation time depends linearly on the
step size.

Step Size Scale 0.5 1.0 2.0 4.0
Computation Time (min.) 32.0 16.5 8.75 4.5

Figure 2 shows that the time front predictions associated with these various step
size scalings deteriorate considerably as step size is increased. By comparison, an adap-
tive step size prediction took about 1 hour, the Bowlin RAY prediction (Figure 2) took
34.0 minutes, and the Colosi prediction (Figure 2) (paranoid for accuracy) took over
5 hours. While for all of these predictions the location of the individual ray arrivals may
vary, all of the time fronts agree within milliseconds. The shape and absolute travel times
of time fronts appear to be fairly robust.

The lesson here is that the user of a ray code needs to balance his or her desire for
accuracy against the speed of computation.

The astute reader will have noticed in Figure 2 occasional gaps in the time fronts,
particularly in the earliest part of the arrival pattern. These gaps apparently result from
the ray approximation; similar predictions using the parabolic equation do not show these
gaps. In the ray approximation, rays which pass near a surface layer will either travel into
that surface layer or miss it altogether, even though the launch angle in the two cases may
differ only infinitesimally. This property of the ray approximation is a likely cause of the
gaps in the time front prediction. When such gaps occur near the depth of a receiver, it
can be difficult to obtain an associated eigenray prediction. Indeed, difficulty in obtaining
the eigenray prediction for a ray known to exist probably results from such an unphysical
gap in the time front.

10 TM 3-98

.UNIVERSITY OF WASHINGTON »APPLIED PHYSICS LABORATORY.

CONCLUSIONS

We have described a method for making fast, accurate computations of acoustic
rays as a tool for ocean acoustic tomography. We described ray equations, including a
derivation of ray equations that include the effects of weak ocean currents (Appendix F).
Methods using cubic spline interpolation and a look-up table allow sound speed and
sound speed gradient to be calculated rapidly and accurately at arbitrary range and depth.
The choice of the step size used in integrating the differential equations is critical, affect-
ing both the computation time and the accuracy of the ray predictions. The best method
for integrating the ray equations appears to be ordinary, classical 4th order Runge-Kutta
integration. Presently known integration methods using the adaptive-step techniques to
maintain a user-specified numerical accuracy appear to carry too much computational
cost to be competitive. A user-specified step size greatly increases the efficiency of the
computation, but a more efficient adaptive-stepping method may yet be devised. Integra-
tion accuracy can be initially checked for a particular problem by repeating the ray pre-
dictions with several trial step-size functions.

For 5-Mm range acoustic transmissions across the North Pacific, eigenray travel
times calculated with the code described here agreed with the travel times of the Bowlin
code to within 20 ms. Similar agreement was found for other calculations at similar mul-
timegameter range. The upper and lower turning depths of eigenray paths calculated
using the code here and the Bowlin code agreed to within a few meters. Sound speeds
calculated using the annual mean Levitus '94 ocean atlas were used for these calcula-
tions. When calculating time fronts to similar accuracy, the present code appears to be
comparable in speed to the Bowlin code. However, when calculating eigenrays
(Appendix B), the present code appears to be 2-3 times faster than the Bowlin code
because most of the time it integrates only two differential equations. In addition, the
present eigenray code appears to be a little more effective at finding the eigenrays than
the Bowlin code, so fewer rays need to be calculated to define the initial time front used
to find the eigenrays.

The code described here is inherently unstable, yet it is highly flexible. The com-
puter code is easily modified for particular problems. One application of this code may
be to calculate the forward problem matrices used for travel time inversion while calculat-
ing the eigenrays. This calculation would result in more accurate matrices and it will not
require saving the ray paths to one's hard disk. As described in some of the appendices,
the code can calculate eigenrays, can be modified to run on a parallel computer for
rapidly obtaining ray predictions, or can be modified to include the effects of ocean cur-
rent. The present suite of software consists of about 1800 lines (including lots of com-
mentary) of FORTRAN code.

TM3-98 11

.UNIVERSITY OF WASHINGTON • APPLI ED PHYSICS LABORATORY.

APPENDIX A
A TECHNICAL SUMMARY AND A FLOW CHART

OF THE COMPUTER CODE

A flow chart sketching the computer code is shown in Figure 3. The main program
ray.f first sets up the sound speed look-up tables (subroutine speed.f) before integrating
the rays (subroutine dodeintf) with the desired ray launch angles. The code is in double
precision throughout. Note that for the code to be universally portable the common tables
must have the double precision arrays and variables listed before the integer variables.

The sound speed look-up tables (ctab) are calculated using the Numerical Recipes
cubic spline routines dspline.f and dsplintf. The subroutine dspline.f calculates the sec-
ond derivative of sound speed, from which the cubic splined sound speeds are obtained.
The subroutine dsplint.f has been modified to obtain the subroutine dsplint_both.f which
returns the values of both sound speed and sound speed gradient. While reading in the
values for sound speed, the subroutine also obtains the table of profile ranges (range).

A step size look-up table (steps) is also determined in the subroutine speed.f. As
mentioned earlier, this predetermined step size is linear from the surface to a user-speci-
fied depth and then has a tanh functional form below that depth. The user is asked to
specify the transition depth from linear to tanh forms and the step size values at the sur-
face, at the transition depth, and at 5500-m depth.

The bathymetry look-up table (btab) is determined in the subroutine bathy.f. This
subroutine reads in the maximum allowable bottom bounces (MBONK), the tolerance for
the ray to miss the ocean bottom (btol), and the bathymetry data. The bathymetry look-
up table consists of the five variables: range, depth, slope, twice the slope angle, and a
value of an intercept of the line segment.

Once the sound speed, range, step size and bathymetry look-up tables have been
defined, the rays are integrated using the subroutine dodeint.f. Presently the code loops
over a set of rays at equally incremented launch angles. The subroutine dodeint.f has
been heavily modified from the Numerical Recipes subroutine example of the same name.
The role of this subroutine is as a driver for taking the Runge-Kutta steps (step size h)
with the subroutine drk4.f; the user wishing to change the method of integration from
Runge-Kutta may merely substitute an alternate subroutine to drk4.f. The subroutine
drk4.f has been only slightly modified from the Numerical Recipes subroutine of the
same name. The subroutine drk4.f calls the subroutine derivs.f which calculates the cou-
pled differential equations (the ray equations) at arbitrary depth and ray angle. The sub-
routine dodeintf saves the ray paths derived during the integration in variables xp and yp
and returns the cosine and sine ray angle at the receiver range, the depth of the ray at the
receiver range, and the ray travel time for writing to a file.

Range dependence is implemented in the derivs.f subroutine using the variable
deltaX; deltaX is the horizontal range between a step in the integration and the range of
the sound speed profile most recently exceeded by the ray. Since range dependence is
implemented using a constant sound speed gradient between profiles, the sound speed at

12 TM 3-98

.UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY.

any step in the integration can be found by c(r, z) = c(rh z) + deltaX dcldr. Here,
c(rh z) is the sound speed profile at range r,. The value for the vertical gradient of sound
speed can be found similarly. In general, the step size h, 0(5-200) m, is much less than
deltaX,O(10km).

TM 3-98 13

.UNIVERSITY OF WASHINGTON «APPLIED PHYSICS LABORATORY.

APPENDIX B
CALCULATION OF EIGENRAYS

There are several ways in which eigenrays can be computed accurately, yet with far
fewer calculations than are required for a complete time front prediction. In all cases,
eigenrays must be found by first tracing a fan of rays and then determining the ray launch
angles that result in rays arriving at the receiver depth. However, there are a number of
shortcuts that can be implemented.

In a ray fan equally spaced in launch angle, most of the rays concentrate in the
cusps of the time front and so frequently do little to resolve the time front in the depth
region of interest. Thus, one of the simplest ways to speed up eigenray calculations is to
use an initial prediction with a small number of rays in order to define the range of ray
angles that arrive near the depth of the receiver. Using these selected angle ranges, a sec-
ond prediction with many rays can be done that is far more efficient at defining the time
front near the depth of the reciever.

A second way to gain efficiency is to omit the calculation of travel time in the ini-
tial fan of rays. All that is required to derive eigenrays is the angle that produces a ray
that arrives at the receiver depth, so that travel time is not necessary. The present incarna-
tion of the eigenray code implements this using only two coupled differential equations
(for tangent of ray angle and ray depth; see Eq. Bl below), rather than the four required
for obtaining travel time as well. Once the launch angles resulting in rays that arrive at
the receiver depth are found, a small number of integrations with all four differential
equations can then be performed to obtain all the information about the eigenrays.

Eigenray predictions are probably more efficient if fewer, more accurate rays are
used to calculate the time front rather than many, inaccurate rays. The more linear the
relation between launch angle and arrival depth, the easier it will be to obtain the eigen-
rays.

After the two ray arrivals that span the receiver depth are determined, eigenrays are
probably best found by a sequence of bisections of ray launch angle giving a sequence of
rays that converge on the receiver depth. An initial interpolation to solve for the eigenray
launch angle might improve efficiency, but in general the ray arrivals are not linear in
launch angle and arrival depth, so the interpolation will not be accurate. The code
presently uses ordinary bisection on rays that span the receiver depth. Because of non-
linearities in the relation between launch angle and receiver depth, the sequence of bisec-
tions sometimes misses the receiver depth. Various contingencies have been built into the
code to account for this, but it may sometimes happen that the eigenray cannot be found
at all. It appears that at 3-Mm range, usually less than five bisections are required to find
a ray that arrives within 10 m of the receiver depth.

If one wants only the travel time of the eigenrays, one could interpolate the pre-
dicted time front to get the travel times associated with the depth of the receiver. Travel
times determined in this way will (for benign oceans) be accurate to within a few mil-
liseconds.

14 TM 3-98

.UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY.

Thus, the travel times of the eigenrays can be determined without having to actually solve
for the eigenray path. This technique has not been implemented.

The code here is flexible enough that the user can easily implement ideas for find-
ing eigenrays. If someone develops code that works well for determining eigenrays, he or
she is requested to forward those methods to the authors of this report.

The code for finding eigenrays is similar to that described in Appendix A, with the
addition of subroutines dodeint_short.f, drk4_short.f, and derivs_short.f. These sub-
routines use only two differential equations in tangent of ray angle and ray depth. If
tn = tan(6), then these equations are

dtn , d7'C ,„„ „
— = (l + m2) — (Bla)
dr c

dz 4- = tn (Bib)
dr

(
dt _ Vl + m2

dr c
(Blc)

The subroutine used to find the eigenray ray launch angles is find_arr.f. This rou-
tine uses the time front information from the initial ray traces to select pairs of ray angles
with depths at the receiver range that span the receiver depth. A series of bisections on
ray launch angle is used to converge on the desired eigenray ray launch angle. The rays
at the selected angles are then recalculated using all four differential equations to obtain
all the information about the ray. Since this entire procedure relies on these two different
integrations giving nearly identical ray paths, the procedure is actually one test of integra-
tion accuracy. If the eigenrays in the second integration miss the receiver depth, one
problem may be that the step sizes are too big. However, the integrations are so sensitive
that the series of step sizes during the two integrations must be fairly well synchronized.
If even slightly different step sizes are used in the second integration, the rays can miss
the the receiver depth by 0(100 m).

Once the eigenrays have been calculated, frequently the next step for the tomogra-
pher is to calculate the forward problem matrix,

w vM (B2)
c(x)2

r, v '

TM 3-98 15

.UNIVERSITY OF WASHINGTON «APPLIED PHYSICS LABORATORY.

Here T, is the ith ray path, 77, is one of a set of functions used to model the ocean, ds is
an element of ray path length (equal to dr/cos(0)), and c is sound speed. Traditionally, to
facilitate this calculation the parameter ds/c2 is calculated for each saved step in the ray
trace. With this parameter, the above integral can be calculated with relative ease. How-
ever, ds/c2 is not entirely easy to calculate with rigorous accuracy.

The problem of calculating ds/c2 is illustrated in Figure 4. While a ray path is cal-
culated using very small horizontal step sizes, 0(5-200 m), the ray path is saved at a
much large range increment, 0(1000 m). What is required, then, is a value for ds/c2

appropriate for this much larger horizontal range increment. It is not obvious how this
parameter is to be calculated rigorously. It is easy, of course, to approximate ds by sum-
ming the small ds(that occur during the integration, but what of 1/c2 ? Should the values
of c, 1/c, or 1/c2 be averaged over the several small steps? Sound speed varies so little
over a path increment that it probably does not matter too much. The present code calcu-
lates dsj/c2 at each integration step and sums these values over the several integration
steps that comprise the saved range increment. The value of ds/c2 is saved together with
the ray path range and depth pairs. Possible errors may arise at depths where the sound
speed or mode functions are varying rapidly, however.

With the present set of subroutines, it would be relatively easy to merge the ray
tracing routines with the calculation of the forward problem. In this way, the forward
problem matrices can be calculated at the very small step sizes of the integration on the
fly, as it were, without having to fill one's hard disk up with the stored ray paths. This is
the ideal way to calculate the forward problem matrices.

The Bowlin et al. (1992) RAY code appears to address the problem of ds/c2 by
integrating a variable q = sic2. With this variable, ds/c2 may presumably be calculated at
the nth step by qn - qn-X. This procedure is not correct, since d(s/c2) = ds/c2 -2s dc/c3.
The second term has a dangerous dependence on the path length itself. The second term
oscillates in sign because dc changes sign from upward-going to downward-going rays.
Calculation of this variable requires the integration of an additional differential equation.
For small values of s, the values of ds/c2 derived from present code and from the Bowlin
code appear agree to 1 part in 10,000 for the North Pacific environment modeled by the
annual mean Levitus atlas.

16 TM 3-98

.UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY.

APPENDIX C
MODIFYING THE CODE FOR COMPUTATIONS IN PARALLEL

Calculating ray predictions for long-range transmissions is a natural application for
parallel computation. Each ray trace is independent of all the others, so several computer
processors can calculate subsets of rays separately. A parallel version of the ray code
described here has been developed using the MPI suite of subroutines (Gropp et al.
1994).

In order for several processors to be able to trace rays, all that is required is that
they have access to the sound speed look-up table. Thus, the parallel version of the code
broadcasts this look-up table, together with a few other variables, to all available proces-
sors. With this information, the available processors can trace subsets of the desired
rays. When they have completed these calculations, they then communicate the results
(travel times, ray paths, etc.) back to the master process for printing or other use. The
MPI routines perform these communications tasks (broadcasting to all processors or
sending and receiving information between processors) relatively easily. The speed of
the ray calculations scales well with the number of available processors.

With a homogeneous set of processors, the complete set of rays to be calculated
can be broken up into equally sized subsets. Each processor then gets a subset of rays to
calculate. The present parallelized version of the ray code adopts this strategy.

With an inhomogeneous set of processors, "load balancing" becomes an issue.
Fewer rays should be sent to slower processors. It may be better to assign rays singly to
processors and assign additional rays to a particular processor as its ray calculations are
completed. MPI includes "non-blocking" send and receive communication subroutines
which may be used for this purpose. That is, the code will not wait for a particular ray
trace to be completed before assigning rays to other processors. In this way, a processor
that is four times faster than another processor will complete four times as many rays
without requiring the user to preallocate unequally sized subsets of rays to the processors.
This strategy has not been implemented, but it would not be difficult to do so.

TM 3-98 17

.UNIVERSITY OF WASHINGTON «APPLIED PHYSICS LABORATORY.

APPENDIX D
INPUT AND OUTPUT FILES AND OTHER OPERATIONAL

INFORMATION

As noted often earlier, this code is meant to be modified by the user for his or her
own purposes. This includes the formats of the sound speed data files and the means to
input other information such as receiver depth, range, and other parameters of the ray
trace as well as the output formats. The present setup of the code is described here as an
example of a way to implement the code.

The code is presently run by executing the command

time eigenray < in.ray

"time", of course, reports the time it takes to execute the raytrace; "eigenray" is the
executable, and the file "in.ray" contains all of the relevant parameters that "eigenray"
asks for.

An example of a file for input to eigenray:

8. 12. Starting and ending values for ray angle (degrees)
100 1500. # rays to sketch out time front, and depth below which to omit rays in the

second raytrace. The second ray trace is not performed for time front
calculations.

100 # rays in second ray trace.
1000 1000 Source and receiver depths (meters)
0.0 3000000 Start and end ranges (meters)
1000.0 The range increment to save the ray paths (meters)
10.0 Tolerance for missing receiver depth (meters)
1 Save eigenray paths? 0=no, l=yes
0 Calculate either eigenrays (=0) or a time front (= 1)
1 Enable ocean bottom? 0=no, l=yes
test.ssp The sound speed filename
1500. Transistion depth for step size, linear to tanh (meters)
5. 100. 500. Values of step size at the surface, the transition depth, and at the bottom

(all in meters)
1.0 Step size scaling e.g., 0.5,1.0,2.0; for testing accuracy
30 The maximum number of bottom bounces before dropping a ray
5.0 The tolerance for missing the ocean bottom (meters)
test.bth The bathymetry file name. These last three lines are not required

if the flag disabling bathymetry is set.

18 TM 3-98

.UNIVERSITY OF WASHINGTON «APPLIED PHYSICS LABORATORY.

The file of sound speeds has the same format as that of the Bowlin RAY code, with "-1
range" marking the start of a profile, followed by depth and sound speed.

An example sound speed file:
-1 0.000
0 1500.597
10 1500.465
20 1499.793
30 1498.795
50 1495.540
75 1491.698
100 1489.109
125 1487.366
150 1486.174
200 1484.450
250 1483.021
300 1481.752
400 1479.939
500 1479.103
600 1479.168
700 1479.679
800 1479.737
900 1480.225
1000 1480.835
1100 1481.586
1200 1482.276
1300 1483.210
1400 1484.137
1500 1485.137
1750 1487.678
2000 1491.187
2500 1498.126
3000 1506.161
3500 1514.534
4000 1523.252
4500 1532.259
5000 1541.404
5500 1550.529

-1 50.963 A new sound speed profile at 50.963 km range.
0 1500.751
10 1500.612
20 1499.982
30 1499.038 (etc., repeated as necessary)

TM 3-98 19

.UNIVERSITY OF WASHINGTON »APPLIED PHYSICS LABORATORY.

When the flag enabling bathymetry is set, the code requires a bathymetry file consisting
of simply two columns of range and depth, both in meters.

The time front or eigenray data are written to the file "ray.info". This file consists
of the travel time, ray angle at the source, ray angle at the receiver, ray upper and lower
turning depths, depth of ray at receiver range, and number of turning points. The ray
paths are written to the file "ray.data"; this is not recommended when calculating a time
front. The columns of this file are range (meters) and depth (meters) along the ray path
and the parameter dslc2 along the ray path which is used for calculating the matrices for
inversion of travel times.

20 TM 3-98

.UNIVERSITY OF WASHINGTON «APPLIED PHYSICS LABORATORY.

APPENDIXE
THE RAY EQUATIONS IN TERMS OF SOUND SLOWNESS

The ray equations (4a-4d) can be considerably simplified if they are formulated in
terms of sound slowness. Sound slowness is the reciprocal of sound speed, p = lie. The
following equations are equivalent to Eqns. (4a-4d), but they are not currently imple-
mented in the code. They are included here for reference. If A = p cos(6) and
B-p sin{6), then

(Ela)
dA P dp
dr A dr

dB P dp
dr A dz

dz B

dr ~~Ä

dt

dr
_P2

A

(Elb)

(Elc)

(Eld)

These equations are ordinary differential equations for A, B, z, and t. One advantage of
using these equations is that one division is saved, and so these equations may be about
15% faster to compute than Eqns. (4a-4d). However, in Eqns. (4a-4d), the terms involv-
ing dcßr are neglected, while this is a term essential to equation (Ela). It is unclear to us
what the implications of this fact are, e.g., whether small errors in the calculation of dcßr
may prove to be a difficulty in implementing Eqns. (Ela-Eld). The approximation that
dAldr ~ 0 is probably not adequate. In addition, there are certain logistical difficulties
with using a look-up table for sound slowness.

TM 3-98 21

.UNIVERSITY OF WASHINGTON «APPLIED PHYSICS LABORATORY.

APPENDIX F
THE RAY EQUATIONS WITH CURRENT

The code does not presently offer the option of including the effects of ocean cur-
rent. We derive here the ray equations that include the effects of ocean current. The user
interested in calculating the effects of current can modify the code to include the current
effects.

A quick review of the literature (i.e., Franchi and Jacobson 1972; Munk et al. 1995)
found no ray equations that included the effects of current and could be easily imple-
mented for numerical calculation. There seems to be a tendency in the literature toward
the cryptic and toward obscure notation. We therefore include here a derivation which
may prove to be practically useful.

The textbook by Pierce (1989) gives ray equations with current in terms of the
derivative with respect to travel time. These equations are

dv c2p /r:i .
_ = _f + v (Fla)
dt Q.

^=--Vc-px(Vxv)-(p-V)v (Fib)
dt c

or (in Cartesian coordinates)

dpi Q dc 3 _ a

dt
" ac v ° CPO\ = - Zpj^-Vj (F2)

Here r is ray spatial coordinate, p = \Jco is wave-slowness vector, v is current, and

Q = (F3)
c + vn

where n is a unit normal that is parallel to the ray. We can immediately make a number
of simplifications to these equations. We assume that v = (v,0,0), i.e., current is only in
the direction of the plane of acoustic propagation. We assume that the user of the code
will project current onto the path between the source and receiver and that currents in the
vertical are negligible. Further, the wave-slowness vector is

p = (cos0,O,sin0)/c (F4)

22 TM 3-98

.UNIVERSITY OF WASHINGTON «APPLIED PHYSICS LABORATORY.

and

Q =
c + v cos 6

(F5)

These simplifications result in the following equations:

dr c cos 8
— = — + v
dt Q

dz c sin 9

dt Q

d(C0Sd]
V c J

dt

Q, dc cos 9 dv

c dr c dr

(F6a)

(F6b)

(F6c)

sinö

dt

Q dc cos 6 dv

c dz c dz
(F6d)

While it may make for an interesting exercise to integrate these equations using
small steps of travel time, this is not particularly useful in the present context. We there-
fore seek to use the magic of mathematics to transform these equations into something
useful. We will assume that vie « 1 and keep terms only to first order in vie. For exam-
ple,

Q=l-
VCOS0

(F7)

The equation for dtldr can be found by taking the reciprocal of the equation for dr/dt:

dt 1

dr c cos 9 c2 - — (2 + tan2 9) (F8a)

The equation for dzldr can be similarly found by dzldtldrldt:

TM 3-98 23

.UNIVERSITY OF WASHINGTON •APPLIED PHYSICS LABORATORY.

dz J, v
— = tan 8 1
dr \ ccos 8

(F8b)

The differential equations for d cos 91 dr and d sin 0/dr can be derived similarly by noting
that

fcos 8

dr

1 dcosd 1 dc
 cos 0

c dr dr
(F9)

and

dc 3c dz dc

dr dr dr dz
(F10)

After six pages of algebra (which interested readers should probably do for themselves to
check), the set of differential equations, including those for ray angles, is

dcosd
dr

= — sin 8
(\ dc 1 dc'
- — tan 6 - - —
c or c oz

v dc 1 dv
+ (3 + tanz 0) — — - tan Ö —

v dc
2 dr c dr c2 dz

(Flla)

dsind fl dc
 = cos 8

dr

 1 dc \ v dc 1 dv
-— tan0--5-+3 — —

v^c dr c dz) cL dz c dz
(Fllb)

dz J-, v
— = tan 8 1
Jr I ccos Ö

(Flic)

dt 1
dr c cos 8 c2 - — (2 + tan2 0) (Flld)

Equations Ella-El Id constitute the ray equations, modified to account for ocean current
to first order. Note that when v = 0 these equations satisfactorily reduce to the original
ray equations, Eqs. 4a-4d.

24 TM 3-98

.UNIVERSITY OF WASHINGTON «APPLIED PHYSICS LABORATORY.

In practice, it would be easy to include the current terms in the subroutine derivs.f
defining the differential equations. The second modification would be in the subroutine
speed.f to create a look-up table for current analogous to the table for sound speed.

TM 3-98 25

.UNIVERSITY OF WASHINGTON «APPLIED PHYSICS LABORATORY.

REFERENCES

Aki, K., and P. Richards, Quantitative Seismology, Theory and Methods, 2 vols., Free-
man, San Francisco, 1980, 932 pp.

Bowlin, J. B., J. L. Spiesberger, T. F. Duda, and L. F. Freitag, Ocean Acoustical Ray-
Tracing Software RAY, Tech. Rep. WHOI-93-10, Woods Hole Oceanographic Institu-
tion, Woods Hole, Mass., 1992,49 pp.

Colosi, J. A., E. K. Scheer, S. M. Flatte, B. D. Cornuelle, M. A. Dzieciuch, W Munk,
P. F. Worcester, and A. B. Baggeroer, "Comparisons of measured and predicted acous-
tic fluctuations for a 3250-km propagation experiment in the eastern North Pacific," J.
Acoust. Soc. Am., in press, 1999.

Dushaw, B. D., Inversion of multimegameter range acoustic data for ocean temperature,
IEEEJ. Ocean. Eng., in press, 1999.

Dushaw, B. D., B. M. Howe, J. A. Mercer, R. C. Spindel, and the ATOC Group, Multi-
megameter range acoustic data obtained by bottom-mounted hydrophone arrays for
measurement of ocean temperature, IEEE J. Ocean. Eng., in press, 1999.

Franchi, E. R., and M. J. Jacobson, Ray propagation in a channel with depth-variable
sound speed and current, J. Acoust. Soc. Am., 52, 316-331, 1972.

Gropp, W, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with
the Message-Passing Interface, The MIT Press, Cambridge, Massachusetts, 1994, 307
pp.

Moler, C. B., and L. P. Solomon, Use of splines and numerical integration in geometrical
acoustics, J. Acoust. Soc. Am., 48, 739-744, 1970.

Munk, W, P. Worcester, and C. Wunsch, Ocean Acoustic Tomography, Cambridge Uni-
versity Press, New York, 1995,433 pp.

Murphy, E. L., and J. A. Davis, Modified ray theory for bounded media, J. Acoust. Soc.
Am., 56, 1747-1760, 1974.

Odom, R., Near Surface Turning Rays, Technical Memorandum, Applied Physics Labo-
ratory, University of Washington, in preparation, 1998.

Parker, R., Geophysical Inverse Theory, Princeton University Press, Princeton, New Jer-
sey, 1994, 386 pp.

26 TM 3-98

.UNIVERSITY OF WASHINGTON «APPLIED PHYSICS LABORATORY.

Pierce, A. D., Acoustics: An Introduction to Its Physical Principles and Applications,
Acoustical Society of America, Woodbury, New York, 1989, 678 pp.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in
FORTRAN: The Art of Scientific Computing, 2nd Ed., Cambridge Univ. Press., 1992,
963 pp.

Worcester, P. W., B. D. Cornuelle, M. A. Dzieciuch, W. H. Munk, B. M. Howe, J. A.
Mercer, R. C. Spindel, J. A. Colosi, K. Metzger, and T. G. Birdsall, A test of basin-
scale thermometry using a large-aperture vertical array at 3250-km range in the eastern
North Pacific, J. Acoust. Soc. Am., in press, 1998.

TM 3-98 27

0

500

1000

1500

Q.
CD
Q 2000

2500

3000

Ik
1 i

HM

■ K.;

Bvrr: * -
^E4 2-**» BC ••
Bv*—

Mt£»
ti^^B-?i'.' • ~
W^BÄt^-'"**
tlK',1

MPK"'**- 'IHN\\'

•.•
.

' *""-4^f .•» ••* ■•-.<. . • -

. . • . * • • • • • •* **
*f-." *»••••• .!"" . •"- •*. . •

• *

• • # • *
V
-*•

•""sV..
■ * mm •

•*♦.• *•*%"!*• * .*
• ••* .. %

i 1

• •

0 500 1000 1500

Step Size (m)

0 500 1000 1500

Step Size (m)

Figure 1. Step sizes determined by an adaptive ray trace and the
predetermined step size presently implemented in the code. The left
panel shows the step sizes as a function of depthderived by an adaptive
step size algorithm used to calculate a single ray with a fairly small error
tolerance. The right panel shows an analytic step size function that
produces ray predictions as accurate as the adaptive step sizing but that
require much less computation time.

28 TM 3-98

E
*1

Q.
CD
Q
i—
CD
>

'CD
Ü
CD

DC

E

Q.
CD
Q
k_
CD
>

"CD
Ü
CD
o:

CD
>

'CD
Ü
CD

2

3

1 ■ i ' •J''.:*::?:»fL:i .5 • • I». i :• •L'JSl

2

3

'nUiiili'1

S=0.5

S=1.0

S=4.0

2021 2023 2025
Travel Time (s)

■:•• I Mi
\A| ::j! jtII«

i !i ii "

.: !. i .*•': 5?. |.i M
: •• :-::"V::??-li

Bowlin

Colosi

2021 2023 2025
Travel Time (s)

Figure 2. Time front predictions
associated with various step size
scalings. The left panels show the
deterioration of the time front as the
step size is increased. For very small
step sizes the ray arrivals are evenly
spaced. For comparison, predictions
using the Bowlin and Colosi codes are
shown in the right panels. In all cases
the shape and travel time of the time
front are nearly identical.

TM 3-98 29

Program EIGENRAY

Information about
source, receiver
depth, ►
range, etc.

Loop over
ray launch
angles

Write out ray
information

Stop

Subroutine SPEED
step size table - steps(#depths)
(read in steps parameters)
sound speed table -
ctab(#depths,#profiles,6)
(read in sound speed profiles)

Subroutine Subroutine
SPLINE SPLINT_BOTH
(2nd Deriv.) (c(z), dc/dz)

Subroutine ODEINT
integrate over a path
(save information at regular
intervals if desired)

One call to
initialize

Subroutine
DERIVS

A multitude
of steps

Subroutine
RK4
Runge-Kutta
step

Figure 3. A flow chart of one implementation of the
ray trace code. This code is designed to be easily
modified for the user?s purposes.

Subroutine
DERIVS
(ray eqns.)

30 TM 3-98

c(z) or TI(Z)

Q.

Q

Saved range increment = £ h|

Range

Figure 4. A schematic figure showing the relation of increments
of ray path, s, to the sound speed profile or mode function. The
ray path is calculated at small range increments hj (e.g., 5-200 m)
but saved at a much larger increments (e.g., 1000 m). A value
of ds/c2 associated with the saved path increment is required
to calculate the matrices used in the inversion of travel times.
It is probably better to calculate the matrices while performing a
ray trace; better accuracy may be obtained by using the small
step sizes.

TM 3-98 31

REPORT DOCUMENTATION PAGE
Form Approved

OPM No, 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to
the Office of Information and Regulatory Affairs, Office of Management and Budget, Washington, DC 20S03.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

December 1998
3. REPORT TYPE AND DATES COVERED

Technical

4. TITLE AND SUBTITLE

Ray Tracing for Ocean Acoustic Tomography

6. AUTHOR(S)

Brian D. Dushaw and John A. Colosi

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Applied Physics Laboratory
University ofWashington
1013 NE 40th Street
Seattle, WA 98105-6698

SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research Defence Advanced Research Projects Agency
Ballston Tower 1 3701 N. Fairfax Drive
800 N. Quincy Street Arlington, VA 22203
Arlington, VA 22217

5. FUNDING NUMBERS

DARPA Grant MDA 972-93-1-003
ONR Grant N00014-97-1-0259

8. PERFORMING ORGANIZATION
REPORT NUMBER

APL-UWTM3-98

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report describes a new, flexible computer code in the FORTRAN computer language to make ray calculations for ocean
acoustic tomography. The Numerical Recipes software package provided the basis for much of this computer code. The ray equa-
tions are reviewed, and ray equations that include the effects of ocean current are derived. Methods are derived for rapidly in-
tegrating those equations to obtain time front and eigenray information for long-range, deep-water acoustic transmissions. These
methods include a look-up table for sound speed, sound speed gradient, second derivative of sound speed, and range-dependent
information. Cubic spline methods are used to interpolate sound speed with depth and to obtain the derivatives of sound speed.
The choice of the step size increments used to integrate the equations is a critical aspect of the integration, affecting both the
accuracy of the prediction and the speed of computation. A predetermined, user-specified step size appears to allow more effi-
cient calculations than"adaptive step" methods. "Adaptive step" methods adjust the step size automatically to maintain a given
accuracy in the integration of the ray equations, while user-specified step sizes allow one to use prior knowledge of the integration
problem to achieve the desired accuracy with much less computational overhead. Several integration methods were explored,
but the classical 4th order Runge-Kutta method appears to be the most efficient and best method for this integration problem.
Appendices describe detailed aspects of the computer code, as well as the methods used for deriving eigenray information and
for parallelizing the ray calculations. The computer code is designed to be unstable so that the user can easily modify it to his
or her own purposes.

14. SUBJECT TERMS

Ray tracing, ocean acoustics, geometrical optics

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

36
16. PRICE CODE

20. LIMITATION OF ABSTRACT

SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-f
Prescribed by ANSI Std. 239-1B
299-01

