
News
The DoD Source for Software Technology Information.

In This Issue:

COTS Software 1

Software Architecture
Representation 2

Research Directions in
Software Architecture 7

The Profession of
Software Architecture 16

Call for Participation
DoD Intranet Survey 19

Software Architecture
Resources on WWW 20

DACS Patron Survey.... Insert

Read additional Software
Architecture articles at:

www.dacs.dtic.mil/
awareness/newsletters/

listing, shtml

DoD Data &Analysis Centerfor Software
http://www.dacs.dtic.mil

i^TIO*,

«***,

si j

pr

COTS Software: Five Key Implications for the
System Architect
by Kurt Wallnau, Ph.D. - Software Engineering institute

Introduction

Some of the most significant
changes that have confronted
DoD software acquisition efforts
in the past few years are the
result of using Commercial Off-
The-Shelf (COTS) software.
However, these changes are not
unique to the DoD—virtually all
segments of US Government and
industry have been forced to deal
with the implications of COTS
software. These changes are the
inevitable and irreversible
consequence of increasing
industrial and social reliance on
computing technology. And if
this assertion is not convincing to
the DoD program manager, there
is a range of Government and
DoD acquisition policies,
guidelines, and directives that
provide more than ample
motivation for using COTS
software.

The implications of COTS
software on DoD software
acquisition are many and varied,
as suggested by the SEI
monograph series on COTS
software m. This short article is
focused more narrowly on the
topic of COTS software on
software architecture. To side
step the issue of what is meant by
"architecture," this article
examines how COTS software
affects the strategies and tactics
employed by the successful
system architect or lead designer.
Although this article focuses on
the architect, DoD program
managers and executives will
find this information useful in
understanding the issues faced by
integration contractors, and in
assessing how well integration
contractors are responding to
these issues.

Continued on page 11

wmcßßäSJBr nrarat/JttUD 4

Software
Architecture

STN ItlUllllWll

Software Architecture Representation: Architecture Description
Languages and "Styles"

What is Architecture and
What is it Good for?

Systems are represented by a
continuum of notations ranging
from highly informal descriptions
of functional requirements to the
(fully specified) executing
system. "Architectures" occupy a
space in this continuum. They are
more explicit than requirements,
since they describe components
and component interactions.
They may be less explicit than
detailed designs, since they do
not describe specifically how the
building blocks function.
However, the separation between
architecture and design is fuzzy
at best.

According to Garlan and Shaw,|fi|

[Software architecture] goes
beyond the [design of]
algorithms and data structures of
the computation: designing and
specifying the overall system
structure emerges as a new kind
of problem. Structural issues
include gross organization and
global control structure;
protocols for communication,
synchronization, and data access;
assignment of functionality to
design elements; physical
distribution; composition of
design elements; scaling and
performance; and selection
among design alternatives.

One adds to this, the explicit
representation of constraints on
or boundaries of a system. Much

John Salasin, Ph.D. -
Defense Advanced Rer.ei

of system integration requires
understanding constraints (e.g.,
with respect to data access, event
sequencing and timing, resource
utilization, allowable parameter
values, allowable topologies,
fault tolerance, real time,
survivability, redundancy, and
replication) of components that
are composed in the context of a
hardware and software
architecture.

An architecture is said to
represent a family of systems
rather than a single instance. If

rch Projects Agency (DARPA)

this is to be useful, we must have
some way of representing what
the boundaries of the family are;
what is "inside" and what is
"outside" the architecture. The
constraints can provide explicit
boundaries on implementation
variability and dynamic
modification.

One way of defining architecture
(or Architecture Description
Languages (ADL) or architectural
styles) is by the functions they
perform. Figure 1 describes them
by analogy with language typing.

Architecture and Language Types

Provide checking and generation
Simplification through specialization

Data Tvpes Architectures (Styles)

• Abstracts data types
(strong typing), e.g.
■ X := list of apples

• Abstracts component interactions
■ Pipe and Filter
■ Transaction Processing

■ Y := array of oranges

• Defines legal operations, e.g.

■ Apples + Apples OK
■ Apples + Oranges Q$

• Defines legal connections/
interactions

■ Pipe => Filter
■ Pipe @ Transaction

• Generates code to implement
logical operator specialization
■ "+" for array, vector, boolean

■ "sort" for integer, real.
character

• Generates "glue" to implement
component interaction/constraints
■ Control relationships for Pipe/

Filter vs. Transaction Processing
■ Triggers to control (dynamic)

typology

Figure 1: Architecture and Language Type Comparison

/////////////// STN

Continued from page 2

New-Generation
Architecture Description
Languages are Useful
for Four Reasons

ADLs:

1. Enable automatic analysis and
early detection of errors. We
can analyze architectures to
prevent errors and to generate
automated runtime checks.

2. Enable reuse and product line
development. We can use
architectures to formalize
component interrelationships in
families of related systems
tailored to a specific domain.

3. Support incrementality.
Architectural specifications
allow us to do the minimum
work required to accommodate
change.

4. Support optimization (non-
functional attributes). We can
use architectures as the basis
for optimizing component
placement and partitioning with
respect to "non-algorithmic"
attributes such as performance,
reliability, security, and safety.

Examples of Automatic
Analysis

Architecture provides abstractions
adequate for modeling a large
system, while ensuring sufficient
detail for establishing properties
of interest. The abstractions
encompass multiple views,

varying in level of detail and
properties represented (e.g., data
or control flow views, timing,
and resource use). They need to
support both static and dynamic
analyses.

Static analysis includes internal
consistency checks, such as
whether appropriate components
are connected and their interfaces
match. Certain concurrent and
distributed aspects of an
architecture can also be assessed
statically, such as the potential
for deadlocks and starvation,
performance, reliability, security,
and so on. Finally, architectures
can be statically analyzed for
adherence to design heuristics
and style rules.

Examples of dynamic analysis
are testing, debugging, assertion
checking, and assessment of the
performance, reliability, and
schedulability of an executing
architecture.

Specific languages provide
different types of checks. Thus,
for example:

• Wright[3] detects mismatches
between parts that fail to agree
on protocols of interaction. It
identifies race conditions and
potential deadlocks.

• Aesop [2] provides facilities for
checking type consistency,
cycles, resource conflicts, and
scheduling feasibility.

• C2 [13] establishes adherence to
style rules and design
guidelines.

• Rapide [7,91 simulates
architectures in terms of
Partially Ordered Sets of
Events (POSETS) and animates
their execution. It provides
tools for viewing and filtering
events generated by the
simulation (or an executing
system).

• MetaH [151 analyzes
schedulability, reliability, fault
handling, and, security errors.

Examples of Enabling
Reuse and Product Line
Development

A product line is a group of
applications that share a common.. _,
architecture (e.g., a standard set of
applications for Missile Guidance,
Navigation and Control
(MGN&C)). Large-scale reuse is
possible because the applications
share a set of generic components
and employ common interaction
protocols.

An architectural style is a
recurring pattern of system
organization. It defines a standard
vocabulary of components and
connectors and rules for their use.
The use of architectural styles can
promote design reuse by
clarifying the context of
applicability of particular
solutions. It can also promote
code reuse by permitting

CO
CD
O

10

oo

THBffliütlOW STATEMENT A \

im pt&blüs fetes*?*

Continued on page 4

STN

Software Architecture Representation
Continued from page 3

///////////////

shared implementations of
invariant aspects of an
architectural style.

The use of composition/
generation based on architecture,
run-time constraint checking,
architecture generated testing, and
architecture recovery (for legacy
systems) can help assure that the
implementation is a valid
instantiation of architecture.

All ADLs unambiguously specify
the important interfaces in a
system and provide tool support
for using/checking these
interfaces. This is critical for
enabling the reuse and easy
reconfiguration of subsystems/
components.

Some specific language examples
include:

• Wright m was used to model
and analyze the Runtime
Infrastructure (RTI) of the
Department of Defense (DoD)
High-Level Architecture for
Simulations (HLA). The
original specification for RTI
was over 100 pages long.
Wright was able to
substantially condense the
specification and reveal several
inconsistencies and weaknesses
in it. It is now being used as
(one) tool to determine if
implementations conform to
the HLA product line.

• SADL "4| was applied to an
operational power-control
system, used by the Tokyo
Electric Power Company. The
system was implemented in
200,000 lines of Fortran 77
code. SADL was used to
formalize the system's
reference architecture and
ensure its consistency with the
implementation architecture.

• Rapide m has been used in
several large-scale projects
thus far. A representative
example is the XI Open
Distributed Transaction
Processing (DTP) Industry
Standard. The documentation
for the standard is over 400
pages long. Its reference
architecture and subsequent
extensions have been
successfully specified and
simulated in Rapide.

Examples of Support to
Incrementality

Incrementality means reuse,
rather than redevelopment, in the
face of change. It allows us to do
the minimum work required to
accommodate change.
Architectural representations and
analyses can support
incrementality in four ways.
They can provide:

1. Assurances that properties can
be relied upon while the

system evolves, with these
properties expressed at an
architectural, rather than code,
level;

2. Automated code development /
evolution, where architecture
modification triggers code
modification;

3. Automated support to test and
analysis, where the architecture
is a basis for specifying /
deriving test and analysis plans
(or plan modifications); and

4. Dynamic (run-time)
modification by specifying and
controlling change
mechanisms.

Some examples:

In Integrated Modular Avionics
(IMA) systems, global
architectural constraints can
ensure that no defects in partitions
at lower levels of certification
could interfere with the proper
operation of more highly certified
partitions. Enforcement of such
laws has been coded in MetaH.

Rapide's Constraint Checker
analyzes the conformance of a
Rapide simulation to the formal
constraints defined in the
architecture. A Rapide model of

Continued on page 5

/////////////// STN

Continued from page 4

the architecture of a Chip
Fabrication Line control system is
now installed in TIBCO
Software's demonstration facility.
It uses an event hierarchy to
quickly zero in on a low-level
error.

Darwin [1I] allows deletion and
rebinding of components by
interpreting Darwin scripts. C2
specifies a set of operations for
insertion, removal, and rewiring
of elements at runtime [10]. C2's
ArchShell tool enables arbitrary
interactive construction,
execution, and runtime-
modification of C2-style
architectures by dynamically
loading and linking new
architectural elements.

MetaH[15] includes a feature called
a mode, which allows the set of
processes, or the connections
between those processes, to be
changed dynamically by the
application during system
operation.

Examples of Support to
Optimization

Architecture is the way in which
non-functional requirements such
as performance, fault tolerance,
and security/safety concerns are
expressed and analyzed. If we
were only interested in functional
requirements, we could write a
formal spec in Z, automatically
convert it to Prolog and let it run
(slowly).

Performance-related properties
are important determinants of
design. Carnegie Mellon
University's Acme-based
performance analyzer uses
stochastic models to calculate
latency, throughput, and
bottlenecks for systems that use
asynchronous message passing.
Aesop analyzes resource conflict,
and checks scheduling feasibility.
MetaH optimizes the generated
glue code/middleware for each
application, significantly
reducing the time and space
requirements for communication,
dynamic reconfiguration, etc. It
supports analyses of
schedulability, reliability, and
security.

DARPA's Work in
Architecture

Architecture (or architecture-
centered systems) is key to
DARPA's Evolutionary Design of
Complex Software (EDCS)
concept of evolution. The ability
to define and analyze system
designs and to specify and
analyze changes at the
architecture level are important
notions for evolution. In
addition, the ability to evolve
systems through generation and
composition technologies based
on architecture makes evolution
more affordable and increases the
confidence associated with
system change.

Research is going on to improve
our ability to represent, evaluate,
and analyze architectures, and to
use these architectures to generate
or compose systems. Projects are
attempting to identify and
quantify the benefits provided by
various architectural
representations. We are
emphasizing architectural
languages and analysis tools that
describe systems in terms of
component interactions and legal
and illegal sequences of events, as
contrasted with more traditional
design tools that emphasize
component topology and
configurations. The EDCS
program is adding notions of
constraints [4], dynamic
configurations, and standard
representation [5].

Medvidovic provides an excellent
summary of language features.[12]

Further information can be found
at: http://www.darpa.mil/ito/
research/edcs/index.html.

Author Info & Article References on page 6

STN mm mau

Software Architecture Representation
Continued from page 5

About the Author

Dr. John Salasin has conducted
information processing research
for his entire professional career -
- on systems ranging in size from
the encoder mechanism of a
single cell in the Limulus
(horseshoe crab) eye to the World
Wide Military

Command and Control
(WWMCCS) system. His
education includes a Ph.D. in
Computer Science (1972), a M.S.
in Neurophysiology (1969) from
the University of Minnesota,, and
a B.S. in Zoology from George
Washington University (1964).

Author Contact Information

Dr. John Salasin
DARPA/ITO

3701 North Fairfax Drive
Arlington, VA

jsalasin@darpa.mil

References

[I] HLA: A Standards Effort as Architectural Style, Robert Allen, Second International Software Architecture Workshop
(ISAW-2), October 1996.

[2] http://www.cs.cmu.edu/afs/cs/project/able/www/aesop/aesop homc.html

[3], Robert Allen and David Garlan, A Case Study in Architectural Modeling: The AEGIS System, Proceedings of the
Eighth International Workshop on Software Specification and Design (IWSSD-8), March 1996.

[4] Robert T. Monroe, Armani LRM Edition 0.1, April 1997, personal communication

[5] David Garlan, Robert Monroe, David Wile, ACME: An Architecture Description Interchange Language,
http://www.cs.cmu.edU/afs/cs/project/able/www/acme-web/v3.0/white-papcr-v3.0/white-papcr.html

[6] D. Garlan and M. Shaw. An Introduction to Software Architecture: Advances in Software Engineering and Knowledge
Engineering, volume I. World Scientific Publishing, 1993.

[7] D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan, and W. Mann. Specification and Analysis of System
Architecture Using Rapid. IEEE Transactions on Software Engineering, 21(4): 336-355, Apr. 1995.

[8] David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug Bryan, Walter Mann. Specification and
Analysis of System Architecture Using Rapide, IEEE Transactions on Software Engineering, Special Issue on Software
Architecture, 21(4):336-355, April 1995.

[9] D. Luckham and J. Vera. An Event-based Architecture Definition Language. IEEE Transactions on Software
Engineering, 21(9):717-734, Sept. 1995.

[10] Nenad Medvidovic. "ADLs and Dynamic Architecture Changes", Proceedings of the Second International Software
Architecture Workshop (ISAW-2), pages 24-27,San Francisco, CA, October 14-15, 1996.

[II] J. Magee and J. Kramer. Dynamic Structure in Software Architectures. In Proceedings of ACM SIGSOFT'96:
Fourth Symposium on the Foundations of Software Engineering (FSE4), pages 3-14, San Francisco, CA,
October 1996.

[12] Nenad Medvidovic and David S. Rosenblum , "Domains of Concern in Software Architectures and Architecture
Description Languages", Proceedings of the 1997 USENIX Conference on Domain-Specific Languages, October
15-17, Santa Barbara, California

[13] P. Oreizy, N. Medvidovic, R. N. Taylor. Architecture-Based Runtime Software Evolution. Proceedings of the
International Conference on Software Engineering 1998 (ICSE'98), Kyoto, Japan, April 19-25, 1998.

[14] "Introduction to SADL 1.0", SRI Computer Science Laboratory Technical Report SRI-CSL-97-01,
March 1997.
[15] Steve Vestal, "Mode Changes in a Real-Time Architecture Description Language," International Workshop on
Configurable Distributed Systems, Pittsburgh PA, March 1994.

mmmmi STN

Research Directions in Software Architecture
Major Mark J, Gerken — Air Force Operational Test and Evaluation Center

Introduction

Over the last several years, there
has been an increased emphasis
on techniques for specifying and
analyzing software architecture.
During this time, software
architecture research has
generally fallen into one of the
following four areas:

1. Architecture representation;

2. Transforming and commun-
icating architectures;

3. Architecture-based analysis;
and

4. Architecture-based generation.

One of the basic premises of
architecture-based research is that
systems can be specified,
designed, analyzed, built, tested,
and evolved through architecture.
Thus researchers are seeking to
make architecture explicit and, to
some degree, formal, and are
seeking to provide manipulation
and analysis tools supporting
architecture-based development
and evolution.

The use of architecture
specifications in the development
of software intensive systems is
depicted in Figure 1. As seen in
the figure, architecture
specifications typically identify
three elements:

1. Components (the loci of
computation);

2. Connectors (data conduits or
other relations between
components); and

3. Constraints, which may
address both structural aspects
(styles) and behavioral aspects.

Architecture Description
Languages (ADLs) generally
provide support for specifying
these three elements, although
the level of support varies
between ADLs. For example,
Wright[2] emphasizes component
interaction protocols while
UniCon [10] emphasizes
architectural styles. As can be
inferred from this discussion,
there is no widely accepted
definition of the term "software
architecture." Architecture "...
is generally taken to be a view of
a system that includes the
system's major components, the
behavior of those components as
visible to the rest of the system,
and the ways in which the
components interact and
coordinate to achieve the
system's mission."[5] Rather than
attempt to provide a formal

definition of software
architecture, this article reviews
the major research areas listed
above and identifies a few usage
considerations.

Architecture
Representation

Software architecture involves
descriptions of elements from
which systems are built,
interactions among those
elements, patterns that guide their
composition, and constraints on
those patterns. ADLs provide
language support for expressing
these elements and lend
themselves to providing a
scientific and engineering basis
for design, analysis, and
composition. Some language and
tool development efforts, such as
the Domain Specific Software
Architecture program, have as an
additional goal support for
domain specific language in
architectural specification.

System simple-client-server = {

Component client = { Port send-request;

Properties {
request-rate: float=17.0;

source-code : external-file = "client.c

Client
9 send-request

Component server = { Port receive-request;

Properties {
idempotence : boolean = true;

max-clicnts : integer = 1;

source-code : external-file = "server.c'
Connector rpc = {Role caller;

Role callee;

Properties { synchronous : boolean = true;

max-rolcs : integer = 2;

protocol: Wright ="..."}}
Attachments { clientsend-request to rpc.caller;

 server.receive-request to rpc.callee;

}}

rpc

receive-request

}}

Server

Figure 1: Architecture Specification in ACME
Continued on page 8

STN

Research Directions in Software Architecture
Continued from page 7

8

Some progress has been made
with respect to representation and
generation:

• UniCon: components are loci
of computation and state,
and connectors are loci of
relations between
components; generates C/C++
code.1101

• Wright: defines component
interaction using process
algebras.121

• Aesop: defines a system for
developing style-specific
architectural development
environments.1121

• Jakarta: defines a software
generator environment that
uses constraint propagation to
refine and integrate reusable
software artifacts.|4'

• Planware: Architecture is
defined as a diagram of formal
specifications.1"1

Transforming and
Communicating
Architecture

Although certain needs are shared
by all ADLs, such as support for
multiple views and tool support
for control and data flow analysis,
ADLs have been developed to
meet different needs; thus
expressive and analytical
capability varies between them.
Rather than developing multiple
architectural specifications for a
given system (or family of
systems), a group of researchers is
developing an architecture
interchange language called
ACME whose goal is to facilitate

the exchange of architectural
information.1" These researchers
are designing ACME along with
translators into and out of ACME
so that, for example,
architectures described in
UniCon can be translated through
ACME into another ADL such as
Aesop. This interchange
language provides a way for
different ADLs and ADL tool
suites to work together. An
interesting by-product of this
research is that it is leading to a
better understanding of what
ADLs should be capable of
representing and reasoning about.

Figure 2 depicts architecture
interchange using ACME. The
heavy arrows in the figure
represent language to language
transformations. Another type of
transformation is one that takes
place within the same language.
These transformations seek to
recast architectural elements into
alternate representations. In
conjunction with his work on the
SADL language, Moriconi has
developed several architectural
transformations that can be used,
for example, to enhance system
performance.191

Analysis,

Architecture-Based
Analysis

Architecture specifications are
more than "boxes and arrows"
diagrams. They are formal
entities subject to analysis; they
can be investigated to determine
properties of the system(s) they
specify. Investigating system
properties at the architectural
level has at least two advantages:

• Unnecessary implementation
details are abstracted away,
allowing a developer to con-
centrate on architectural rather
than implementation issues.

• Early analysis. It is not
necessary to have an
implementation constructed
before investigating family/
system properties. For
example, both Wright and
Rapide were used to model
the Department of Defense's
High Level Architecture
(HLA) simulation framework.
Analysis of the Wright
specification revealed HLA
problems associated with
distributed start-up, paused on
join, and in-transit messages
after a resign.131 Similarly,

analysis of the Rapide
specification revealed
that the run time
interface could lose the
event order and that
there were orphaned
attributes after a player
resigned from the
simulation.

Figure 2: Architecture Interchange Continued on page 9

9 STN

Continued from page 8

The depth and type of
investigation will vary between
ADLs, but generally speaking,
investigations include:

• Static analysis. Ambiguities,
incompleteness (e.g., missing
connectors), wrong
directionality, and, depending
on the ADL, syntactic and
semantic data type
compatibility can be
investigated.1131

• Model checking, including
insufficient preconditions,
faulty control models, and
latent deadlocks.[2]

• Simulation-based testing,
including event order and
causality anomalies.171

As a further example, the Model
Integrated Computing (MIC)
framework developed at
Vanderbilt University has been
used to investigate production
flow at Saturn [6] . This
investigation (through
architectural modeling) led to a
10% increase in the throughput of
Saturn's Spring Hill, Tennessee
plant.

Architecture-Based
Generation

This line of research seeks to
make better use of architecture
specifications in software
generation. As shown in Figure 3,
rather than have a target
architecture implicitly defined by
the generator, researchers are
developing generators that take as
input an architecture specification

Constraints

Component ■ Connector .
Specifications II Specifications

le Functional ^^^^r
e es ^^ Generator

< Investigate Livelock, Deadlock,
and Process Interaction

• Define Functional
Properties

Simulation Architecture
Animation Specifications
Constraint Satisfaction

»Architectural
Translations

• Architectural
Transformations

• Shared tools
across
Architectures

a
Common

Representation Component
Definitions

Architecturally
Consistent

Implementation

• Legacy Reuse
• COTS Integration

Figure 3: Architecture-Based Development and Evolution

of the target system. A closely
related research topic is the
specification of product line
architectures.
The basic idea of product line
development is to specify the
architecture of a family of
systems. Several efforts are
underway in this area, including
the Jakarta work at the University
of Texas [4! and the Planware
system under development at the
Kestrel Institute.1111 The
Planware system defines an
architecture for a family of
scheduling applications using
formal specifications;
implementations satisfying
developer-selected constraints are
generated from these
specifications. Researchers at
Kestrel have proven that the
systems generated using
Planware will find feasible
schedules provided such
schedules exist an important
property of this family.

Usage Considerations

Several changes to current

system development practices
may occur:
• Training. Developers will

need training to understand
and use ADL technology and
architectural concepts/styles
effectively.

• Change/emphasis in life cycle
phases. Architectural design
and analysis may precede
code development; an ADL
specification should provide a
good basis for programming
activities [10].

• Documentation. Because the
structure of a software system
can be explicitly represented
in an ADL specification,
separate documentation
describing software structure
may not be necessary.

• Expanding scope of
architecture. ADLs are not
limited to describing the
software architecture;
application to system
architecture (to include
hardware, software, and
people) is also a significant
opportunity.

Continued on page 10

STN !

Research Directions in Software Architecture
Continued from page 9

/////////////// 10

About the Author

Major Gerken has been a
computer engineer with the Air
Force for over 11 years. He was
initially assigned to support large
scale acquisition efforts, including
the C-17 and AMR A AM systems.
He later transferred to the Air
Force Institute of Technology
where he researched formal
approaches for representing and
reasoning about software
architectures. After receiving his
Ph.D., Major Gerken was
assigned to the Air Force

Research Laboratory's Rome
Research Site where he directed
research into formal methods and
software architecture. He is
currently assigned to the Air
Force Operational Test and
Evaluation Center where he
supports test and evaluation of
software intensive systems.

Further Reading

For a comparison of several
ADLs, see|81 and for an in-depth
treatment of architecture-based
development, see "31.

Author Contact Information

Major Mark J. Gerken
Air Force Operational Test and

Evaluation Center
HQ AFOTEC/TSS

8500 Gibson Blvd, SE
Kirtland AFB, NM 87117-5558

DSN: 246-7827
Telephone: (505) 846-7827

Fax: (505)846-5145
gcrkenmC«1 afotec.af.mil

References

[I] The ACME Architectural Description Language, http://vvvvw.cs.cmii.cdu/~acmc/

[2] Allen, Robert and Garlan, David. A Formal Basis for Architectural Connection. ACM Transactions on Software
Engineering and Methodology, July 1997.

[3] Allen, Robert; Garlan, David and Ivers, James. Formal Modeling and Analysis of the HLA Component Integration
Standard. Proceedings of the Sixth International Symposium on the Foundations of Software Engineering (FSE-96),
November, 1998.

[4] Batory, Don et al Jakarta: A Tool Suite for Constructing Software Generators.
http://www.cs.utexas.edu/users/schwart77JOvervicw.htm

[5] Software Engineering Institute (SEI): EDCS Architecture and Generation Cluster
http://www.sei.cmu.edu/community/edcs/CLUSTERS/ARCH/

[6] Long, Earl; Misra, Amit and Sztipanovits, Janos. Increasing Productivity at Saturn. IEEE Computer, August 1998.

[7] Luckham, David C. Rapide: A Language and Toolset for Simulation of Distributed Systems by Partial Orderings of
Events. Technical Report CSL-TR-96-705, Stanford University, 1996.

[8] Medvidovic, Neno. A Classification and Comparison Framework for Software Architecture Description Languages.
Technical Report UCI-ICS-97-02, University of California, Irvine, 1996.

[9] Moriconi, Mark; Qian, Xiaolei and Riemenschneider, R. Correct Architecture Refinement. IEEE Transactions on
Software Engineering, 21(4):356-372, April 1995.

[10] Shaw, M. et al Abstractions for Software Architecture and Tools to Support Them. IEEE Transactions on Software
Engineering, April 1995.

[II] Smith, Douglas. Planware-Domain Specific Synthesis of High-Performance Schedulers. Technical Report AFRL-
AF-RS-TR-1998-200, Kestrel Institute, 1998.

[12] Carnegie Mellon University. Aesop Software Architecture Design Environment.
http://www.cs.cmu.cdu/afs/cs/projcct/able/\vw\v/aesop/aesop._homc.In ml

[13] Shaw, Mary and Garlan, David. Software Architecture: Perspectives on an Emerging Discipline. Prentice Hall
Publishing, 1996.

11 mmnumiii STN

COTS Software
Continued from page 1

Five Key Implications of
COTS Software

The following discussion is
organized in terms of the
implications of COTS software on
the design activity, and the way in
which a lead designer must
accommodate these implications.
In the interest of brevity only five
implications are described. There
are certainly other implications,
but the five discussed are
particularly revealing.

Before beginning, it is essential to
be clear about the type of system
that is being designed. COTS-
based systems comprise a
spectrum, ranging from COTS-
solution systems at one extreme,
to COTS-integrated systems at
the other extreme. COTS-
solution systems are pre-
integrated systems that are
customized and deployed for use;
examples include enterprise
resource management packages
and payroll packages. COTS-
integrated systems are assembled
from (frequently many) COTS
components provided by different
vendors. Both extremes present
unique challenges; this article is
concerned with COTS-integrated
systems.

Implication #1: Accept The
Influence Of COTS Software
On System Design

There are two common mistakes
made by designers unfamiliar
with the implications of using

COTS software. The first
mistake is to design a system
without reference to COTS
software on the assumption that
products are merely an
implementation detail to be filled
in after the major design
decisions have been made. The
second mistake is the
complement of the first, that is,
to blithely allow one or more
COTS products to dictate the
design of a system. The
consequence of the first mistake
is that opportunities to use COTS
products will be missed, while
the consequence of the second
mistake is vendor lock. The
successful architect will have a
more balanced approach.

It is important to understand that
COTS products often have an
unavoidable impact on system
design. Consider, for example,
an architectural trade-off analysis
conducted by the SEI for the
Federal Aviation Administration
(FAA)[2]. This study analyzed
the architectural implications of
using two different commercial
technologies for interprocess
communication, CORBA and
POSIX.21*. The result of the
study showed that each
technology imposed its own
unique constraints on the system
design, resulting in different
system structures and quality
attributes (e.g., modifiability and
performance).

Tradeoffs involving COTS
software are not limited to just the
system architecture. For example,
the CORBA design might have
better modifiability than the
POSIX.21 design due to its
object-oriented nature, but in
exchange might have worse
performance. Making this
tradeoff might involve
requirements. Can performance
requirements be relaxed to obtain
benefits in modifiability?

Figure 1: Tradeoff Regions

Figure 1 illustrates tradeoff
regions as intersections among
COTS software, design, and
requirements. The architect needs
to be actively engaged in each of
these regions. The CORBA-
induced performance versus
modifiability tradeoff lies at the
intersection of COTS product,
design and require-ments. Other
tradeoff decisions might involve
only COTS products and the
design. It is also possible for
COTS products to influence
system requirements independent
of a design.

continued on page 12

* CORBA: Common Object Request Broker Architecture. POSIX.21: Portable Operating System Interface, real-time communication annex.
For simplicity we finesse the fact that CORBA and POSIX.21 are specifications rather than products. It suffices to say that there are
commercial implementations of both specifications.

STN //////////ff//// 12

COTS Software
Continued from page 11

It might appear that it is difficult
to manage all of these
simultaneous tradeoffs and it is.
Fortunately, there are tools that an
architect can use to come to terms
with these tradeoffs. The
Architecture Tradeoff Analysis
Methodology (ATAM)[3] used in
the FAA study cited above is one
tool. Another tool more closely
linked to COTS software is
formative evaluation. In brief,
formative evaluation exposes how
products ought to be used in a
system. The architect will find
formative evaluation useful early
in the design process when there
is more latitude for adapting
design and requirements to
product capabilities (and
liabilities). A more detailed
discussion of formative (and
normative) evaluation can be
found in an on-line tutorial on
COTS software evaluation '4|.

Implication #2: Plan for
Instability

An ironclad rule of the software
marketplace is that things change,
and often change very quickly.
New products and technologies
emerge at a rapid pace (two
thousand software products per
month, according to CIO
magazine |5]), and new versions of
existing products add and modify
capabilities in response to market
pressures. The implication is
clear: a design that has been
influenced by commercial
software may become infeasible
in response to changes to that
software. Of course, this takes a

negative view of marketplace
change when, in fact, it is
precisely this market dynamism
that produces steady
improvements in product
capabilities. So, in the same way
that marketplace changes can
render some design options
infeasible, new design options
may become feasible and perhaps
desirable.

System designers have always
had to accommodate the
exigencies of change in the
design activity. Designs evolve
as more is learned about the
problem at hand; and of course,
changing requirements is the
norm, not the exception.
However, the software
marketplace adds a new
dimension of instability that
becomes noticeably pronounced
as the number of products used in
a system increases. This
instability is exaggerated where
new and rapidly evolving
technologies are employed, as is
the case with Web technologies
and distributed object
technologies such as CORBA
and Java™. It is an unfortunate
"Catch 22" that these unstable
technologies are usually the ones
whose use is perceived (by
customers, designers and end
users) as being highly desirable,
since it is precisely this interest
that leads to the technology
instability in the first place.

What can the architect do in the
face of marketplace instability?
One technique is to keep

product-sensitive design options
open for as long as possible. For
large projects where the design
activity may span many months
this kind of "late binding"
strategy may be appropriate. For
example, three design options
could be pursued: a safe option
that is known to work with
today's products; an anticipatory
option that is expected to work
with new capabilities that have
been announced but not yet
shipped by vendors; and a "blue
sky" option that is more
aggressively futuristic. For
projects with a tighter timeframe
for the design activity, an
alternative to late binding is early
binding, sometimes referred to as
"anchor first." In this strategy
early design commitments are
made on key products that are
presumed to be stable. For
example, integration
infrastructures such as message-
oriented middleware products, or
tool suites from relational
database vendors, are often used
as design anchors.

Selecting products as design
anchors has the appeal of
simplifying the design process,
but on the other hand increases
the risk of a system becoming too
dependent on a particular
software vendor. What if the
anchor (or its vendor) turns out to
be less stable than anticipated?
This issue is taken up in the
implications of vendor lock.

Continued on page 13

13 ^"■■"-:

Continued from page 12

STN

Implication #3: Sustain
Core Technology and
Product Competency

The first two implications
combine to establish a third
implication: deep product
expertise is a critical design asset.
Simply put, good design decisions
about software products can not
be made in the absence of
sufficient (and often deep)
knowledge about those products.
As the number of products used in
the system increases, so also
increases the need for spanning
expertise knowledge of how
ensembles of products (or
technologies) can be integrated.
Unfortunately, given the
dynamism of the commercial
software marketplace, product
expertise is a wasting asset: the
useful half-life of expertise in
some key technology areas is
surprisingly short. For example,
until recently "thin clients" via
Java™ Applets was the "hot"
technology. Today, experts in
Web ensembles are much more
skeptical about the universality of
thin clients (see [6) for a good
discussion of the pros and cons of
thin clients and some practical
alternatives).

Unfortunately, individuals with
deep, spanning expertise across
the range of products typically
used in COTS-integrated systems
for example, Web, database,
transaction, distributed object,
system management, and security
technologies are exceedingly rare.
Keeping current with any one

product in any of these product
areas is difficult enough; and
tracking an entire category of
products (Web products, for
example) can be a full time job.
It is an expensive proposition to
develop and sustain this level of
technology competency.

How can the architect obtain the
kind of product and technology
expertise at the time it is needed?
One choice frequently adopted is
to hire consultants. In some
cases this is the most economical
approach, although there are two
risks. First, the hiring
organization often lacks enough
expertise to assess the
competency of the consultant and
the consequence of accepting
advice from charlatans is
predictable. Second, consultants
often have ulterior motives,
especially if they are hired from a
software product vendor, or if
their expertise is limited in range
rather than spanning if the
consultant only knows how to
wield a hammer, everything
looks like a nail.

The architect does have another
option in the use of model
problems (a kind of formative
evaluation technique see [4]) to
develop "just in time" technology
competency. Model problems
are small-scale prototypes that
are focused narrowly on specific
critical design issues. Software
products can be used to develop
one or more model solutions,
each representing design
alternatives that have been

proven feasible (or infeasible).
The trick in this case is to have
sufficient technology competency
to recognize a critical design issue
relating to the use of COTS
software (integration issues are a
good place to start)—but this is
not too much to expect from a
COTS-savvy architect.

Implication #4:
Understand Vendor Lock
and Vendor-Neutral
Options

The software market is driven by
differentiation, not standardiza-
tion, and it is often innovative
(i.e., non-standard) features that
cinch software sales. The
temptation to take full advantage
of unique product features is
understandable, especially in
high-end, expensive products.
Using vendor-specific features
can provide enhanced system
capabilities, but on the other hand
makes the sustainability of the
system dependent upon a single
supplier. There is a
complementary temptation to
insulate systems from specific
products, usually as a hedge
against market dynamism. For
example, if a vendor goes out of
business a new product can be
inserted in place of the old, and
clients will not be affected.
Insulating products provides
stability, but an abstract interface
that can be mapped to competing
products forces the system to rely
on the common subset of features
found in products.

Continued on page 14

STN /////////////// 14

COTS Software
Continued from page 13

Although there is no universal
answer to this tradeoff, it is
important that the architect is
aware of the conditions in which
unanticipated and de facto vendor
lock can arise. One simple
technique is to ensure that every
product used in a system has a
viable competitor that is
commercially available. If
competitors exist, then a separate
design decision about whether or
not to insulate the design from the
product (through abstract
interfaces, for example) can be
made. If there are no viable
competitors, however, no amount
of insulation can hide the reality
of vendor lock. Note that
"standards" are not completely
sanative; in some cases vendors
extend standards (SQL is a classic
example), while in other cases too
few products may implement a
standard to prevent de facto lock-
in.

Another technique for the
designer to avoid vendor lock is
to allow the use of product-
specific features, but only for
non-critical or discretionary parts
of a system capabilities that can
be sacrificed. This can be a good
compromise, but it does introduce
a very slippery slope.

Implication #5: Use
Business and Software
Analysis in Design
Decisions

The previous implications are
combined into one last
implication of great significance:
the skills of the system architect

must encompass both technical
competency and business
competency. This can be seen in
each of the above implications:

• Managing tradeoffs between
commercial products and
requirements requires deep
knowledge of the products as
well as the mission or
business area being
automated. Frequently, the
architect will be required to
negotiate directly with
customers, explaining the
business implications of
using commercial software in
addition to technical
implications for example,
impacts on cost to sustain the
system, added operational
efficiencies, and return on
investment.

• With respect to system and
design instability, the
architect must make early
decisions regarding the kinds
of technologies to be used.
Clearly, some technologies
are less stable than others; a
decision to use a newer but
less stable technology in
place of an established but
more stable technology
requires investment analysis.
Does mission criticality
justify the added cost and risk
of using unstable but
"feature-rich" technologies?
Or would "good enough"
technologies suffice?

• Concerning technology
competency, the architect
must understand the costs of

acquiring product expertise
versus the cost of making a
poor decision. In some cases
sufficient design risk will
warrant a significant
investment in acquiring
competency perhaps a small-
scale prototype will need to be
developed. The point is that
uncertainty is inevitable with
COTS software, and the
management of uncertainty
invariably requires business
analysis.

• The need for business acumen
is most apparent in addressing
issues of vendor lock. Lock-in
might be the outcome of a
strategic alliance between
product suppliers and
integrators. Such alliances
might bring competitive
advantages to integrators, and
cost and capability benefits to
acquirers. Of course,
technical and business risks
accrue as well. In the DoD
these issues can arise on a per-
acquisition basis, given the
size and longevity of the
systems concerned. In these
cases, the architect must play
a key role in mediating the
technical and business
tradeoffs.

Summary

The system architect of the future
will possess a range of personal
and technical skills especially
adapted to the implications of
extensive use of commercial

Continued on page 15

15 STN

Continued from page 14

software components. Acquirers
will need to understand these
implications in order to be
informed consumers. In the final
analysis, building COTS-
integrated systems requires a
partnership of owner, integrator
and product suppliers.

About the Author

Kurt C. Wallnau is a senior
member of the technical staff at
the Software Engineering Institute
(SEI), Carnegie Mellon
University, Pittsburgh, PA, where
he co-leads the Commercial Off-
The-Shelf (COTS) COTS-Based
Systems project.

Mr. Wallnau's current interests
include the role of product
evaluation in the system design
activity, and the transition from
COTS-based to component-based
systems. Mr. Wallnau has
published several papers and
tutorials on COTS product and
technology evaluation as well as
on various facets of component-
based software engineering with
distributed objects. Prior to the
SEI, Mr. Wallnau was the Unisys
System Architect of CARDS, a
$7M/Year DoD program focused
on the use of COTS software as a
strategy for improving software
reuse.

__ The Software

Mr. Wallnau graduated in 1985
summa cum laude from Villanova
University with a B.S. in
computer science.

Author Contact Information

Kurt C. Wallnau
Software Engineering Institute

(412) 268-3265,
Fax: (412) 268-5758

kcw@sei.cmu.edu
http://www.sei.cmu.edu

Engineering Institute

References

[1] See http://www.sei.cmu.edu/cbs/monographs.htmlfor a list of available monographs.

[2] Meyers, C, Plakosh, D., Place, P., Klein, ML, Kazman, R., "Assessment of CORBA and P0SIX.21 Designs for
FAA En Route Resectorization," Special Report CMU/SEI-98-SR-002, Software Engineering Institute, Pittsburgh,
PA, April 1998. An online version is available at
http://www.sei.cmu.edu/publications/documents/98.reports/98sr002/98sr002abstract.html.

[3] Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipsom, H., Carriere, J., "The Architecture Tradeoff
Analysis Method, Technical Report CMU/SEI-98-TR-008, Software Engineering Institute, Pittsburgh, PA. An
online version is available at:
http://www.sei.cmu.edu/publications/documents/98.reports/98tr008/98tr008abstract.html

[4] Wallnau, K., Carney, D., Morris, E., Oberndorf, P., Buhman, C, "A Tutorial on the Theory and Practice of COTS
Software Evaluation," half day tutorial presented at the 20th International Conference on Software Engineering,
Kyoto, Japan, 1998, and at the 1998 Software Engineering Symposium, Pittsburgh, PA. An online version is
available at: http://www.sei.cmu.edu/cbs/cbs_slides/98symposium/eval_tut/index.htm

[5] J. Bresnahan, "Mission: Possible," CIO Magazine, October 15, 1996.

[6] Seacord, R., Hissam, S., "Browsers for Distributed Systems: Universal Paradigm or Siren's Song?" Technical
Report CMU/SEI-98-TR-10, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
June 1998. An online version is available at:
http://www.sei.cmu.edu/publications/documents/98.reports/98tr010/98tr010abstract.html

5«S

STN /////////////// 16

The Profession of Software Architecture
Laura and Marc Sewell - Worldwide Institute of Software Architects

Introduction

It is beyond debate that the
software development industry is
characterized by troubled and
failed projects fraught with
missed deadlines, scrapped code,
muddy accountability, and
escalating cost. There has been a
tremendous effort to improve
tools and methodologies, as well
as project and risk management
techniques. However, the
underpinnings of the software
development industry are flawed
and projects will continue to fail
until it is understood that we are
attempting to build huge
information technology structures
without architects, plans, and
logical construction processes.

Mention the word "architect" and
even kids on Career Day will
intuitively form a clear image in
their minds. They envision
someone at a drafting table or at a
building site supervising
blueprints in hand. But put the
word "software" before
"architect" and the clear images
become enshrouded in dense fog.
This is true not just for children,
but also for the clients of software
development projects, the users of
the systems, and even the
software professionals themselves
who have difficulty defining the
title, responsibilities, and the role.

The Yellow Pages do not have
listings for "Software Architects."
There are no degrees offered in
Software Architecture, and yet
there are increasingly large

numbers of software
professionals assuming the title
despite the role remaining vague
and variable.

Departments of Computer
Science are educating software
professionals, but they are
producing engineers, researchers,
and programmers the builders of
software systems not architects.

Nonetheless, a spontaneous,
inchoate trend toward software
architecture continues. It is time
to take this beyond a trend by
formally establishing the
profession of software
architecture. The Worldwide
Institute of Software Architects
(WWISA) has been founded to
accelerate this movement, as the
American Institute of Architects
did in the 1850's.

C=]
9

oB

Y

h

h Pt 9

1 t^a
LJ* 2£a

WWISA

To build a foundation for this
new profession, we need to look
no further than our own human
history. It is there that
architecture is defined and its
role understood.

Software Architects:
Assuming an Ancient Role

"Architect" is a word with a great
deal of history behind it; a history
waiting to be assumed by the new
profession of software
architecture. Throughout the
centuries, there have been
architects who have arisen
humbly from the trades and gone
on to anonymously design and
build cathedrals. There have also
been great artists who have turned
their attention to architecture at
the behest of kings and popes.
Since the Industrial Revolution,
when the sheer variety, scope, and
function of buildings multiplied
dramatically, architects have been
university-trained, licensed, and
subject to professional standards.

Regardless of origins and the
wide range of architectural styles
through the centuries from Gothic
to Post Modern the role of the
architect has never varied. That
role has always been to design
structures to meet human needs
and house their activities. This is
a starkly minimalistic way to
describe such masterstrokes as the
chateaux at Chenonceau, Grand
Central Station, and the
Parthenon, but it is the definition
of an architect and the only reason
they exist.

The American Institute of
Architects was established in
1857 to formally establish that

Continued on page 17

17 M/MM/ffl! STN

Continued from page 16

profession. It was understood, of
course, that architects had
successfully been educating
themselves and designing
structures for centuries, but the
scope of the Industrial Revolution
changed everything. Degree
programs were established and
standards and codes were
introduced to meet the challenges
of the new age. We are now at a
similar point in the Information
Revolution. Compared to building
architecture, our history is rather
abbreviated, but in another sense,
the introduction of the
professional software architecture
is long overdue.

The Analogy

The analogy between building
construction and software
construction is not new. It has
been used to illustrate points,
especially to end-users, and to
borrow terms like "architect," but
it has never been fully developed.
It is referred to as "simplistic" by
software theorists, or dismissed as
being just a tool for raising
questions, but not supplying
answers.

But the analogy is profoundly true
and has the power to transform
software construction out of its
current crisis. It is simple and
elegant with the elemental force
to shift our current paradigm. It
will empower not only software
professionals, but clients and end-
users, as well.

With the analogy, we can solidify
the growing trend toward
software architects, design, and
plans as well as transform
software processes, titles, roles,
and accountabilities. With the
analogy, we see that a software
architect is as much an architect
as Frank Lloyd Wright. An
architect is an architect, whether
a structure is erected from
lumber, bricks, or computer code.
Software architects design
information technology
structures to meet human needs
and "house" our multifarious
activities.

The Architectural Process

All architects, regardless of the
"building materials," are client
advocates, and it is there that the
process begins. Before ground is
broken, or a site even selected,
the client hires an architect as a
designer and guide. The architect
first listens to the client and
studies the needs, desires,
problems, resources, and
environmental issues all of which
define the client's domain.

Based on these needs,
preferences and constraints, the
architect develops a vision of a
structure and, in collaboration
with the client, revises the plan
until it is affirmed. The
architect's role is to then guide
the plan to reality, spanning the
worlds of the client and the
technical builders. The client can
be wholly ignorant of technical
aspects of construction (footings,

bearing walls, programming
languages) but with the architect
and blueprint, can validate and
manage the logical, sequential
building process.

The architect is the arbiter of
design decisions and changes as
the project continues, the design
conscience, as it were. Just as in
building construction, however,
not all design decisions are made
by the architect. The architect's
plan outlines, for example, where
the electrical outlets are located,
but the electrician designs the
actual circuitry and configuration
of the circuit box. In turn, the
electrician's helper would design
the path of the wires strung
through the walls and supports.
Low and high level, construction
and architectural level, design
decisions are made in an
analogous way in software
construction.

The Software Architect:
Bridging Clients and
Builders

Despite the increasing numbers of
self-conferred software architects
and the emphasis on architectural
design, many clients are, in a
sense, going in the opposite
direction. The risk of large project
failure has led to a short-term
approach in which small software
applications are built, one at a
time, and added to in a modular
fashion.

Continued on page 18

STN ///////////////. 18

The Profession of Software Architecture
Continued from page 17
This reduces risk and increases
manageability but, through the
analogy, we can see that it is akin
to building a powder room on a
vacant lot and worrying about the
rest of the house later. It is fine to
build in phases, but it is folly to
begin to build without an overall
plan of the entire structure. The
lack of architects with
understandable plans, and the
resultant chaos, has thwarted
client expectations to the point
where this limited, shortsighted
strategy has tremendous appeal.
But the old adage applies "If you
don't know where you are going,
any road will take you there."

Compounding this problem is a
chasm separating software
professionals from the people
they serve; the clients, users,
indeed, the general public, who
find themselves intimidated by
scary lingo and acronyms.
Software professionals, in turn,
are frustrated by the ambiguities
of their roles and responsibilities,
as well as their inability to
communicate effectively with
clients and users.

Without effective communication
and without understandable plans,
clients are unable to validate and
manage software construction and
users are unable to communicate
their needs. There is growing
discontent, but few systemic
solutions. The profession of
software architecture provides a
bridge over this gulf, as the
profession of building architecture
has since ancient times. Most
clients and users, and certainly the

general public, do not even know
what "methodologies" are, but
they can follow diagrams and
drawings, as well as rely on the
judgement of an architect who is
accountable to them.

The architectural plan is
consistent with needs and desires
of the users and, at the same
time, with the needs of the
builders. Both sides are given a
cognitive map of the design, as
well as the logical process that
leads to completion.
Construction, even with a
blueprint, is fraught with
difficulty, but at least buildings
get built and inhabited. Unlike
software structures, total building
failure is virtually unknown.
With a profession of software
architecture, the same happy fate
awaits our information
technology skyscrapers.

Architectural Education

Software architects are
organizing to establish their
profession, but the client or
customer will be the true driving
force of this movement by
demanding architects with plans.
Degree programs will follow
which will not only train
qualified architects, but will
attract new students to
information technology, where
the numbers are now stagnant
and insufficient to meet ever
growing demand.

The field of Computer Science
has an engineering and
programming focus that fits

students with that vocational
profile and range of interests.
Students with different interests,
perhaps in business or liberal arts,
express a desire to have a career
in the information technology
sector, but simply do not see
themselves as systems engineers
or programmers. So, they major
in business or psychology, for
example, and take a few
computer-related courses thinking
that will cover all bases. It does
not, however, work out in "the
real world" where they find their
computer skills too superficial for
practical use.

A degree in software architecture
would be similar to a traditional
architecture degree in its multi-
disciplinary approach. Both forms
of architects require grounding in
the technical aspects of
construction to know what can be
engineered and built. They do not,
however, have to master
engineering and building
techniques. The educational focus
would be on information
technology and design, as well as
such disciplines as business,
management, and art. The goal of
a software architect's education is
to provide a foundation in design
and problem solving with
information technology. These
tools allow the architect to
leverage the full range of
information technology in the
client's favor.

Continued on page 19

DoD Software Tech News, Vol. 2., No. 3 (January 1999)
1999 DACS Patron Survey

The first 100 people to return this
Your views and experience are important to us and survey will receive a computer
so we ask that you take part by completing this questionnaire. shaped squeeze toy.

Name

Position or Title

Agency or Organization,

Address

State.

Zip _

Country.

+4

Phone _

E-mail

Fax

URL

1. When did you first become aware of the products and services offered by the DACS?

Month Year

Org Type
□ Air Force
□ Army
Q Navy
□ Marines
□ DISA
□ DTIC
□ Other DoD
□ Coast Guard
□ Other Federal
□ Commercial
□ Non-Profit
□ Academia
□ Media
□ Foreign
Other

2. How did you first become aware of the DACS products and services? (Please check all that apply.)

□ Software Tech News □ WWW Search □ DACS Website □ DTIC

Q Colleague □ Magazine □ Other IAC □ E-mail Advertisement

□ Conference (Please tell us which one)

□ Other Website (Please tell us which one)

□ Other

3. How often does your organization use the products and services offered by the DACS, including visiting the DACS
Website? (Please check one)

□ Daily □ At least once a week □ At least once a month □ Less than monthly

4. How many people from your organization have access to the DACS products and services? (Please check one)

□ Just me Q2-10 □ 11-25 □ 26-50 □ More than 50 □ Don't know

5. What other sources do you use for Software Technology products and services?

6. Who uses DACS products and services in your organization? (Please check all that apply)

□ Managerial □ Research and Development □ Faculty □ Students

□ Other

7. How would you rate the content of the DACS material you have received? (Please check one)

□ Too general □ Just right □ Too technical □ Don't know

8. Have any of the products or services from the DACS ever saved you time or money?
If so, please describe below:

9. The DACS offers many services as the DoD Software Information Clearinghouse.
Please rate your satisfaction with a few of the products & services of the DACS using the fol

5=excellent 4=above average 3=average 2=below average l=poor 0=Don't know o

Customized Electronic Technology Magazine (CETM) 5 4 3 2
http://wwvv.clacs.dtic.niil/celiii/cctni.slitnil

DACS Courses & Seminars 5 4 3 2
hi tp://\vvvvv.dacs.dtic.mil/training/courscs.slit ml

DACS Broadcast Service 5 4 3 2
http://vvvvvv.dacs.dtic.mil/foniis/broadcasf form, shtml

DACS Technical Reports 5 4 3 2
http://vvvvvv.dacs.dlic.mil/lcchs/tr.shtml

DACS Topic Areas (21 topical sections on homepage) 5 4 3 2
http://vvvvvv.dacs.dt ic.mil/inde\.shl ml

DACS Website (general opinion of all areas) 5 4 3 2
hltp://vv vvvv.dacs.dlic.mil/

Software Engineering Bibliographic Database (SEBD) 5 4 3 2
http://www.dacs.dtic.mil/databases/selKl.shtm]

Software Lifecycle Empirical Database (SLED) 5 4 3 2
http://www.dacs.dtic.mil/dat abases/sled.hi ml

Software Tech News (this newsletter) 5 4 3 2
http://www.dacs.dl ic.mil/avvareness/iievvslcllers/lisliiig.shl m I

Special Study or Technical Area Task 5 4 3 2
http://vvvvvv.daes.dlic.mil/aboul/scrvices/special.htiiil

Technical Inquiry Service 5 4 3 2
E-mail: webmasleiY« (lacs.dlic.mil

owing scale:

• never used

0

0

0

0

0

0

0

0

0

0

0

10. The DACS would like to help you.

Please check the box if you would like to be contacted to discuss the consulting services available from the DACS.
□ Yes I'd like to more about your Special Studies (Technical Area Tasks)
hllp://vvww.dacs.dlic.mil/about/services/spceial.lit ml

Please check the box if you would like to be the DoD DACS Broadcast Service.
□ Yes I'd like to be registered for your Broadcast Service
htlp://vv ww.dacs.dtic.mil/lbrms/broadcast form, shtml

The first 100 people to return this survey
Fold here and tape. No staples please. will receive a computer shaped squeeze toy.

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 120 ROME NY

POSTAGE WILL BE PAID BY ADRESSEE

DATA & ANALYSIS CENTER FOR SOFTWARE
PO BOX 1400
ROME, NY 13449-0138

I...II..II..I..I.I..II.I..II II..11,1,.1,1.,,11

19 nmmuaih STN

Continued from page 18

Just as in building construction,
the scope and range of
architectural services can be all
encompassing or limited. The
project may be a kitchen
remodeling or a corporate
headquarters; a total software
reengineering of a behemoth
corporation or a lowly website. In
either case, though, the architect
strives to do more than merely
fulfill a catalogue of client
requirements. It is hoped that the
structure will attain what noted
(building) architect Christopher
Alexander calls "the quality
without a name." That is, a
structure that is ineffably greater
than a sum of its parts, more than
mere "function."

This is the ancient marriage of the
aesthetic and the practical that lies
at the heart of architecture. It is
hoped that it will flower and
thrive in software where artistry is
as important as it is in buildings.
It has been quite rare in the
software industry to date but,
understandably, how can great
aesthetic design be achieved with
a chancy, design-as-you-build
technique? Besides, as we all can

imagine, it is simply impossible
to be artistic in a crisis.

The Worldwide Institute of
Software Architects (WISA), is a
non-profit organization dedicated
to the establishment of the
profession. For more information
on the profession of Software
Architecture see the author
contact information.

About the Authors

Marc Sewell is the President of
the Worldwide Institute of
Software Architects, which
opened on September 1, 1998.
He has been Chief Architect of
IBM, VP of Information
Technology for Morgan Stanley,
and is currently an independent
software architect.

Laura Sewell has written for the
Atlanta Journal and Constitution
and The Washington Post. She is
the author of the WWISA
website, and also works as a
Disability and Rehabilitation
Consultant in the insurance
industry.

Author Contact Information

Laura and Marc Sewell

The Worldwide Institute of
Software Architects

North Cobb Parkway
Suite 109-211

Kennesaw, GA 30152
(404) 786-WISA (9472)

wwisa@wwisa.org

Copyright© 1997,1998
Institute of Software Architects. Inc. Ail rights reserved

http://www.wwisa.org

WANTED:
DoD Organizations

to Participate in
a Baseline

DoD Intranet
Survey

DoD organizations are
invited to participate in a

survey to establish a
limited baseline profile of

Intranets within the US
Department of Defense.

To participate, complete
the questionnaire found at:

http ://www.dacs.dtic.miI/
forms/intranetsurvey.shtml

A summary of the survey
responses will be

compiled and shared.
Distribution of the

summary report will be
limited to DoD agencies.

Direct any questions or
comments to the following:

Contact Information
Nancy L. Sunderhaft

DoD Data & Analysis Center
for Software (DACS)
775 Daedalian Drive

Rome, NY 13441-4909
(315)334-4949

Fax:(315)334-4964
nsunderhaft@dacs.dtic.mil

Software Tech News on the World Wide Web — r f
This newsletter in its entirety and past newsletters
with such topics as Risk Management, Rapid Application
Development, and Software Measurement are available / C
on the DACS Website at:)
http://www.dacs.dtic.mil/awareness/newsletters/listing.shtml

•■■•■'" 'x

}: > I- V..j

Other Software Architecture Web Resources

DoD DACS Software Architecture Topic Area -
http ://w ww.dacs.dtic.mil/
A Testbed for Analyzing Architecture Description Languages (ADL) -
http://source.asset.com/stars/lm-tds/Papers/arch/

Cetus Links - Architecture & Design - http://www.cetus-links.org/
top_architecture_desi gn. html

Software Architecture Technology Guide -
http://www-ast.tds-gn.lmco.com/arch/guide.html

STARS Software Architecture Papers -
http://source.asset.com/stars/darpa/Papers/ArchPapers.html

Software Engineering Institute (SEI) Software Architecture Definitions -
http://www.sei.cmu.edu/architecture/definitions.html

%

DoD Data & Analysis Center for Software
P.O. Box 1400
Rome, NY 13442-1400

Return Service Requested

First-Class Mail
U.S. Postage

PAID
Colo. Spgs., CO
Permit No. 745

