
AFRL-IF-RS-TR-1998-237
Final Technical Report
January 1999

NEURAL NETWORKS FOR HIGH SPEED
COMMUNICATION SWITCHING

Clarkson University

Robert Meyer and David Perreault

CO
CO
CO
o
w

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

CO

it*

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1998-237 has been reviewed and is approved for publication:

/UuaedJk GM^' APPROVED:
PRISCILLA CASSIDY
Project Engineer

FOR THE DIRECTOR:
WARREN H. DEBANY JR., Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGA, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time lor reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other espect ol this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations end Reports, 1215 Jefferson Devis Highwey, Suite 1204, Arlington, VA 22202-4302, end to the Office of Management and Budget, Peperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

January 1999
3. REPORTTYPE AND DATES COVERED

Final Feb 94 - May 95
4. TITLE AND SUBTITLE

NEURAL NETWORKS FOR HIGH SPEED COMMUNICATION SWITCHING

6. AUTHOR(S)

Robert Meyer (Clarkson University and David Perreault (Boston University)

S. FUNDING NUMBERS

C - F30602-94-C-0023
PE - 62702F
PR - 4519
TA - 22
WU - PK

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Prime Contractor: Subcontractor:
Clarkson University Boston University
Division of Research College of Engineering
Clarkson Hall 110 Qimmington Street
Potsdam NY 13699-5630 Bpstpn MA Q2215

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONS0RINGJM0NITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/IFGA
525 Brooks Road
Rome NY 134414505

10. SPONSORING/MONITORING
AGENCY REPORT HUMBER

AFRL-IF-RS-TR-1998-237

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Priscilla Cassidy/IFGA/(315) 330-1887

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Neural networks and fuzzy systems have been studied to develop effective means to control highly dynamic high-speed
networks in a cost efficient manner. Using the results from a study of robust transfiguring protocols which were designed to
recognize changes in assumed network state and adapt to these changing network conditions, a fuzzy control algorithm was
implemented.

14. SUBJECT TERMS

Neural Networks, Fuzzy Systems, Distributed Systems, Network Architectures

13. NUMBER OF PAGES

40
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED
Standard Form 298 {Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro. WHS/OIOft, Ocl 94

Table of Contents

Abstract ü
1. Introduction 1
1.1 Background 1
1.2 Objectives and Results 2
2. The RTNP Project 2
2.1 Protocol Performance Under Adverse Network Conditions 3
2.2 Protocol Tuning Factors 3
2.3 Identifying Network Environments 4
2.4 Protocol Control Algorithms 5
2.5 Summary of RTNP Results 5
3. Neural Networks and Fuzzy Systems 6
3.1 Architectures for Neural Networks and Fuzzy Systems 7
3.2 Microcontroller Architecture 9
3.3 Fuzzy Control Algorithms 11
4. An Example Implementation of Fuzzy Control 15
4.1 Definition of the Fuzzy Sets 15
4.2 Fuzzy Rules 17
4.3 Implementation Using a Single Microprocessor 19
5. Distributed Architectures for Neural and Fuzzy Systems 23
5.1 Future Investigations 26

Bibliography 28

Abstract

Neural networks and fuzzy systems have been studied in conjunction with
work done by SRI International in an effort to develop effective means to
control highly dynamic high-speed networks in a cost efficient manner.
Working with SRI, we have used the results from a study of robust
transfiguring protocols. These protocols were designed to recognize changes
in assumed network state and adapt protocol parameters to meet these
changing network conditions. We have shown a simple microprocessor based
implementation of a fuzzy control algorithm. A distributed ring architecture
is proposed for distributing this algorithm in a multi-microprocessor network.
Suggestions for continued development on this architecture, as well as
possible future work in genetic programming are made.

11

1. Introduction

This report describes the work done for Rome Laboratory under contract
number F 30602-94-C-0023. The project engineer was Mr. Charles Meyer.
The work on this contract was done in close cooperation with SRI
International in conjunction with their work on the Robust Transfiguring
Network Protocols (RNTP) Project [1].

1.1 Background

Communication networks of the future will be based on high speed fiber
optic links and fast digital switching. In addition, the number of nodes and
links is steadily increasing. The combined effect of increased network
complexity and faster transmission and switching will be to put a substantial
computational burden on the processing of network control and management
functions. The computations required for routing, flow control, bandwidth
resource allocation, and network reconfiguration, will become the bottleneck
in moving traffic through the network. Thus to fully realize the advances in
optical transmission and switching technology, new computing techniques
must be applied to these computationally intensive problems. Neural
networks have been demonstrated as providing significant speed-ups for
similar problems which can not generally be solved in reasonable time.

SRI International has begun developing new protocols for network
management which are designed to adapt to changing network conditions.
When networks are subjected to various kinds of stresses, protocols which
were designed to perform in an optimal manner under a set of assumed
operating conditions may no longer be optimal. As the network operating
conditions evolve, the model on which the protocols were based is no longer
valid. In their work on the RTNP project, SRI has attempted to develop
methods to recognize these adverse network conditions and then to
dynamically select protocols or protocol parameters in response to the
observed changes in the network model.

There has been much past work on adaptive algorithms of one form or
another. The difficulty with practical application of much of this work is that
it relies on an accurate determination of current network state and operating
conditions. Unfortunately this is seldom possible in "real-world"
environments. Instead, the data is often uncertain, incomplete, or simply
erroneous.

A second aspect of this problem is that because networks are inherently
distributed systems, the problem solving activity must be distributed. It is
well known that attempts to centralize the decision making function are

often unreliable. Centralized systems suffer from delays in getting data from
remote sections of the network, or complete inability to get such data.
Control decisions may be delayed or lost in reaching the intended
destinations. Further, the transmission of large amounts of network status
data from the entire network to a centralized decision-maker loads an
already stressed network at a time when bandwidth is especially scarce.
Thus, one characteristic which is highly desirable is to find methods for
network management which are also distributed and do not rely on a single
or a small number of decision making entities.

1.2 Objectives and Results

There were two primary objectives for this work. First, we worked
closely with SRI on the RTNP project to assist in denning an approach to the
problem of recognizing network state under adverse conditions and in the
absence of complete and accurate data from the network. Their work has
been written in the form of a final report for the RTNP project [1]. In section
2 we summarize our interactions with SRI on the RTNP project and the
results which we used in our subsequent work.

A second objective of our effort was to use the results from RTNP and
investigate novel implementation approaches. The results from this part of
the effort are described in sections 3, 4 and 5. The approach we investigated
is a distributed architecture of simple microcontrollers which implement
neural networks and/or fuzzy logic for decision making algorithms.

The work presented here is an initial approach based on the combined
efforts of the work with SRI under the RTNP project and our own
investigations. Much additional work remains to be done. It is the intention
of this work to open the door to further research along these lines.

2. The RTNP Project

In previous work, SRI developed the STIP3 protocol [2]. Unlike network
protocols currently in use, STIP3 was designed specifically to perform
multipath routing, link scheduling, and flow control in highly dynamic
networks. STIP3 was designed to operate in environments with frequent
changes in topology due to link jamming, node mobility, or intermittent
interference. It has been shown to be superior to previously existing routing
protocols based on path lengths and local queue delay.

STIP3 is a distributed algorithm which computes expected time distances
to each destination node from each node. These time distances are averaged

locally and propagated to neighbor nodes only if the changes are significant
(i.e. vary by more than a threshold amount from previous values). A key
difference between STIP3 and most conventional routing algorithms is that
STEP3 uses destination queues. Thus, each outgoing packet is placed in a
queue based on its final destination. The decision as to which outgoing link
should be used to route the packet toward this destination is not made until
the packet is actually transmitted. This has two benefits: first, the decision
is made at the last possible time instant, and thus is based on the most
current network data; and second, if retransmission is required, the packet
can be retransmitted over a different outgoing link. Thus a temporary or
intermittent link outage, due for example to jamming, will quickly be
detected and packets will be routed via alternate links as soon as possible.

2.1 Protocol Performance Under Adverse Network Conditions

The first task of the work performed by SRI under the RTNP project was
to investigate the performance of STIP3 under adverse network conditions.
The purpose of this task was to understand which characteristics of the
network operating environment would have the greatest impact on protocol
performance.

So long as the operational characteristics of a network do not change
radically, an advanced protocol such as STIP3 should perform well.
However, under various adverse conditions, a protocol designed for superior
operation may function considerably worse than its design performance.
Simulations with STIP3 have shown that its performance degrades when the
network is subjected to jamming (or other intermittent link outage) having
various rates of jamming. A single link may be jammed continuously, in
which case no packets are received at the distant end. However, if the link is
subjected to a pulsed jamming, the link will successfully deliver some
packets. The rate at which the link state switches between "up" (packets
delivered) and "down" (no packets delivered) is the jamming rate. In
networks with one or more links subjected to pulsed jamming, STIP3 does
not perform as well as in those cases in which the jamming is either not
pulsed or jamming rates are less dynamic.

2.2 Protocol Tuning Factors

STIP3 is a complex protocol that relies on several important factors to
perform well. These factors represent "tunable" parameters which must be
properly selected. Another aspect of SRFs work was to determine by means
of simulations which parameters could be adjusted to compensate for
changes in network operating conditions.

Extensive simulations showed the following parameters to be the most
effective in adapting STIP3 to changing network conditions. These were:

(a) traffic spread - a measure of the degree to which traffic is spread over
multiple paths;

(b) linkjbias - a term which determines the degree to which minimum-
hop routing is preferred over minimum delay routing;

(c) distance change threshold - determines if local changes in the
estimated time distance to each destination are significant for propagation to
neighbor nodes;

(d) time smoothing parameter - determines the degree of time averaging
used to smooth estimated time distances;

(e) update period - determines the period at which update messages are
sent to neighbor nodes.

These parameters are normally selected on the basis of trial evaluations
of the protocol, first with simulated network operation, and then with actual
network operation. Once determined, the parameters should remain valid as
long as the fundamental network characteristics remain the same. However,
for the purposes of this project, these parameters were identified as being the
control parameters in adjusting STDP3 for varying network environments.

2.3 Identifying Network Environments

The third task under RTNP was to develop techniques for recognizing
and/or predicting changes in network operating environments. It was
suggested that the area of artificial intelligence should be reviewed to
determine if appropriate techniques were known. Based upon on our
suggestions and discussions with SRI, neural networks were investigated as
one of two approaches. The other approach was based on previous work done
by SRI in the expert systems area. This second method was based on the
theory of evidential reasoning and used an in-house, SRI developed system
known as GISTER. Since we had no technical input with respect to the
development and use of GISTER, it will not be discussed here. Additional
information is available from SRI in [3].

Neural networks were used to estimate three significant characteristics
of the network environment. These were:

(a) link state probability - the probability that a given link will be "up"
during the next time period;

(b) queuing delay - the estimated delay for each destination queue at
each node;

4

(c) end-to-end jamming - a relative measure of the degree of jamming at
destination nodes, averaged over all such nodes; varies between 0 (no
jamming) and 1 (total jamming).

The first two of these three parameters were used directly by the STIP3
algorithm in place of the original estimates computed as part of STIP3.
Simulations conducted by SRI found that the neural network estimates of
both the link state probability and the queuing delay were more accurate
than either the estimates produced by the original STIP3 algorithm or by the
Gister-based evidential reasoning system.

The third of these parameters was not part of the original STEP3
algorithm. Instead, this parameter is used by a high-level network controller
(HLNC). The HLNC was designed to adjust the tunable parameters based on
changes in the network environment.

2.4 Protocol Control Algorithms

The tunable parameters of the STIP3 protocol were identified in section
2.2. By controlling these parameters, the STIP3 protocol could be adapted to
changes in the network environment. SRI developed a fuzzy control
algorithm that uses network measurements, including the output from the
neural network estimator of end-to-end jamming discussed in the previous
section.

In simulations by SRI, the fuzzy control algorithm was shown to be
superior to the original STIP3 algorithm for control of the "traffic spread"
parameter. Recall from section 2.2, the "traffic spread" parameter controls
degree to which traffic is spread over multiple links. The fuzzy rule related
the value of this parameter to the estimated amount of jamming and the
estimated period (1/rate) of jamming.

2.5 Summary of RTNP Results

The RTNP project demonstrated the applicability of neural networks for
estimating changing network states. In particular, SRI's simulations showed
that neural network estimators of link state and queuing delay were
significantly better than the algorithms used in the original design of the
STIP3 protocol. The simulations also showed that a fuzzy control algorithm
was superior to the original STIP3 protocol in its ability to vary the traffic
spread as the amount of jamming and jamming rate changed.

Two limitations were noted. First, the performance of neural networks
greatly depends on the training data used to establish the interconnection
weights used. Thus, in designing a neural network solution, careful
attention must be paid to identifying appropriate training data which reflects
the expected range of operating conditions. The second limitation observed
was the difficulty of discovering fuzzy rules to control protocol parameters.
Although one successful rule-set was identified and demonstrated, attempts
at uncovering other useful rule-sets were less fruitful. SRI has suggested
that further work in this area should be done so as to develop a more
complete understanding of the conditions under which fuzzy controllers
would be useful.

3. Neural Networks and Fuzzy Systems

Complex systems that can not be easily modeled for conventional
controllers have been designed with neural network and/or fuzzy logic
control. Neural networks are primarily used to implement state recognition
algorithms. Fuzzy logic allows a designer to handle uncertainties in a system
by conditioning the membership functions and rule base that linguistically
describe the system process.

Many applications designed in industry today involve the use of
microcontrollers. Some examples are cellular phones, pagers, microwaves,
VCRs, electronic games, and cameras. Microcontrollers are self-contained
computers in that all necessary hardware is integrated on the chip and little
additional glue logic is needed. Therefore, they are ideal components to use
in designing a system since the turnaround time and cost are greatly
reduced. There is an abundance of software and hardware CAD tools in the
market to assist system designers. These include assemblers, C-compilers,
simulators, and emulators.

Algorithms already exist for fuzzy logic control on a microcontroller.
Fuzzy logic code runs efficiently on microcontrollers since it requires little
processing time and memory. The peripherals on a microcontroller also
provide necessary interfaces for embedded control. Software tools for
microcontrollers have been created that allow a designer to visualize the
fuzzy control system before actual implementation takes place.

Homogeneous microcontrollers have been connected together in a
network so that information can be shared among them. Microcontrollers are
placed at sites in the network to process the data provided from sensors at
that location. Each microcontroller handles a separate task for the network.
This provides modularity to the system and eases the overall debugging
process. Typically, these microcontrollers are connected in a ring or star

configuration since the number of serial communication interfaces on a
microcontroller is often limited to a maximum of two. However, with a star
topology, loss of the central (supervisor) controller implies failure of the
network. Therefore a ring topology gives more reliability to the network and
is often preferred.

Currently, algorithms for fuzzy control are restricted to single
microcontrollers. No distributed case for fuzzy logic control has been
implemented as of yet. Distributing the fuzzy logic control over a ring
network has several advantages. The time for completing the algorithm is
shorter since the processing is overlapped at multiple nodes. There is
reliability built into the system since other nodes in the network are able to
process the fuzzy logic algorithm when one node fails. Inputs to the fuzzy
logic control can come from sensors at remote sites. A higher number of
inputs, outputs, and rules for fuzzy logic control can be handled than for a
single controller.

3.1 Architectures for Neural Networks and Fuzzy Systems

A methodology is needed for distributing a neural network or fuzzy logic
control algorithm over a ring network given the parameters of the network
and the fuzzy logic control. Architecturally there is a significant similarity
between neural networks and fuzzy logic controllers. The architecture of
each of these is a feedforward process, shown in Figure 1, that consists of
three layers of operation. For neural networks, there is an input layer, a
middle or hidden layer, and an output layer [1, 4]. For fuzzy logic, the input
layer computes the fuzzification of inputs, the middle layer performs
evaluation of rules, and the output layer computes the defuzzification of the
outputs. There are no feedback loops in the algorithm. A static mapping of
this process onto the network is not a preferable choice since the mapping is
a NP-hard problem and enforces the processing at specific nodes which could
fail at some time. Therefore, the distribution of the fuzzy algorithm must be
dynamic in response to the resources available at that time in the network
and upon the current communication delays.

The simplest distribution of fuzzy logic control in a network could be
implemented by processing the algorithm only at the output nodes. This is
equivalent to a static mapping of the algorithm at the output nodes. The
objective of the rest of nodes in the network would be to pass the input values
as message packets from the input nodes towards the output nodes. Each
node in the network would maintain a queue of input packets for the fuzzy
logic algorithm. Output nodes process the fuzzy logic algorithm whenever
they receive the inputs that define them.

A better approach to the distribution would be to involve all nodes in
processing the algorithm along the paths of communication, when it is
possible. A supervisory kernel for the distributed architecture could be
created that allows nodes to process packets in their queues for portions of
the fuzzy logic algorithm. The kernel permits this self-scheduling if the node
is idle and the time for processing the packet is less than its queue delay.
Therefore there will be a dynamic response to the network resources. The
nodes will be able to perform fuzzifications on the input packets, rule
evaluation (if they have all fuzzy input packets that define a rule), and
output defuzzification (if they have all fuzzy output packets that comprise an
output). Message packets sent through the network with the kernel active
could contain information on inputs, fuzzy inputs, fuzzy outputs (from rules),
and outputs.

Input #2

Input Layer

Middle
|R9 Layer

Output Layer

output #1

Simple Feedforward Architecture for

Neural Network and Fuzzy Logic Control

Figure 1

Our work examines the design of a distributed network of
microprocessors that implement a neural network or fuzzy control algorithm.

8

Based on the results from the RTNP project as described in section 2, both
neural networks and fuzzy control algorithms were found to be superior to
alternative designs for adaptive network management.

3.2 Microcontroller Architecture

Figure 2 displays a typical microcontroller. The main job of the
microcontroller is to supervise control of the system by processing inputs and
adjusting the appropriate outputs. Inputs and outputs are any digital
signals; these could be from other microcontrollers, or from other digital
hardware, such as digital switches in a packet switched communication
network. Directing the input-output relationship is the program embedded
in the controller. The number of instructions available on most CPUs is often
limited to less than 100. These instructions are usually enough to manage
most supervisory tasks. The strength of the microcontroller comes from its
ability to be reconfigured by the instructions programmed by the user. This
allows the design to be flexible in the control of the system.

The controllers that will be considered here are simple 8-bit micros.
These are used because they are the most popular due to their low cost and
are most familiar to most system designers. This work is intended to
illustrate the basic ideas and not necessarily produce an actual prototype. At
the time a prototype is designed, other choices for the actual processor should
be considered in line with the technology available at that time. Several
companies such as Intel, Motorola, Texas Instruments, and National
Semiconductor manufacture 8-bit controllers. These chips have limited
registers in the CPU and are at the low end of the performance spectrum-
Yet they suffice for many typical applications. Many of the specific families
derived from these controllers originated from custom designs for outside
vendors. The amount of ROM typically ranges from less than 64 KBytes and
the size of RAM is less than 1 KByte. These limitations can be a problem
when trying to use a high-level language compiler. Different peripherals are
embedded into the microcontrollers such as timers, communication
interfaces, and analog-to-digital converters. Only the Motorola HC05, HC11,
HC08 and the Intel 8051, 8052 8-bit micros will be mentioned following this
since they are the most frequently used. The following descriptions give an
idea of the basic structure of these microcontrollers.

Motorola is the leading seller of microcontrollers with the MC68HC05
device. There are over 130 variations of HC05 microcontrollers that exist,
and they range in size from 16 to 44 pins on the chip. One of the smallest,
the HC05K, has become so low in price that it is replacing many of the 4-bit
micros in designs. The HC05 is a descendant from the 6800 microprocessor

RAM
Memory

CPU

Input/Output

ROM

Typical Single Chip Microcontroller

Figure 2

and the instructions for the controller are a reduced set from the 6800. The
CPU has an accumulator based architecture and contains one accumulator
(A), one index register (X), a program counter (PC), and a stack pointer (SP).
There are 62 instructions on the chip that are used for writing programs.
Ten different addressing modes are allowed for the instructions including
indexing from the X register. The HC05 has a 64K addressing space and
holds ROM or EPROM from 512 bytes to 32 Kbytes and RAM from 32 to 1200
bytes. There are no stack manipulation operations since the amount of RAM
is so small. Up to 40 input/output pins are found on some of the chips. A 16
bit free-running timer is built into most of the HC05s for real-time interrupts
and counting events. An external interrupt pin comes into the chip and is
maskable from operation when necessary. Asynchronous and synchronous
serial interfaces on some parts allow serial protocols in transmitting and
receiving information. Various other peripherals such as A/D and D/A
converters, display drivers, tone generators, and pulse width modulators
(PWM) are seen on different parts. Low power modes are available to save
battery life on designs that operate on batteries.

Along with the HC05, Motorola produces the HC11 and HC08
microcontrollers. Both of these chips are upward compatible from the HC05.
They are higher performance parts and have more instructions and registers.
Within the HC11 there are two accumulators, A and B, that help with
calculations, and two 16-bit index registers IX and TY that assist in
addressing. Some instructions allow 16-bit calculations by combining the A
and B registers as the D register. The stack can be changed on the HC11

10

with push and pop instructions, unlike the HC05. Again it has a 64K
internal addressing space. However some variations can be placed in an
expanded mode so that it can address up to lMeg externally. The HC11
ranges from 8 to 32K of ROM or EPROM and 256 to 1280 bytes of RAM for
its memory. Additionally, the HC11 contains up to 640 bytes of EEPROM
that allows the designer to have access to nonvolatile memory which can be
modified during execution. The chip has 3 external interrupt lines and up to
62 possible input/output lines for interfacing. A 16-bit timer, SPI and SCI
interfaces, and an A/D converter are on some parts. The HC08 is basically a
faster HC05. Many instructions from the HC05 implemented on the HC08
have been streamlined for faster operation. It has only one additional
register, the H register, that is called in conjunction with the X register for
indexed 16-bit addressing modes. Stack operations have been included on
the chip, along with a stack-indexed addressing mode. Only information on
the pilot part (HC08XL36) has been released. It contains 36K ROM or
EPROM and IK of static RAM. There are 40 I/O lines on the part and 2
external interrupts. The peripherals on the chip are a 4-channel 16-bit
timer, SPI and SCI serial interfaces, a phase-locked loop (PLL), and a direct
memory access (DMA) coprocessor. Other parts are available with variations
on the memory and peripherals.

Intel produces the 8051/8052 8-bit microcontrollers. These parts can run
from frequencies of 12 to 40 MHz. One internal clock cycle for the CPU is 12
ticks of the external clock, which gives a maximum bus speed of 1 MHz.
These controllers are built around a register and accumulator CPU scheme.
There are banks of registers in the RAM on the chip that allow register-based
instructions. The accumulator (A) is responsible for most data transfers and
calculations. There are 46 instructions embedded into the 8051/52. Direct
and indirect addressing modes are allowed for the instructions. These
controllers have 2 to 32 Kbytes of ROM/EPROM and 64 to 256 bytes of RAM
internal to the chip. They can address up to 64 Kbytes of external memory.
A 16-bit pointer DPTR lets the user specify an off-chip address for data. The
only difference between the 8051 and 8052 is that the 8052 has more RAM,
ROM, and peripherals. There can be up to 56 I/O lines on these controllers.
There are two interrupt lines, 16-bit timers, serial interfaces, watchdogs, and
A/D converters available for the part. Intel has leased its design of the
8051/52 core to other companies who in turn have added other features.

3.3 Fuzzy Control Algorithms

Fuzzy logic control descends from fuzzy set theory which is an extension
of traditional Boolean set theory. Membership of a set is not specifically true
or false. Instead, each class of data is broken into membership regions where
an element of a class can be considered partially a member of each of these

11

sets. Fuzzy set theory was established by Lofti Zadeh through papers [5,6]
that were written on information and control in the 1960's. The advantage of
fuzzy sets lies in the ability of representing data in an imprecise manner
when no straightforward definition is possible. This began the development
of fuzzy sets into several fields such as control and switching systems.

Some definitions of fuzzy set theory are needed. An element in the class
of values K can be labeled as k. In the papers by Zadeh, a fuzzy set is said to
be described by the membership function fa(k) that translates the element k

into the continuous range of (0,1). That is, the level of membership for an
element k to a fuzzy set is high if the result tends toward one and low if
towards zero. Unlike Boolean logic, each element can be placed into more
than one fuzzy set. Therefore, an input to a class can be weighted in an
approximate manner among all sets. The graph in Figure 3 gives a
membership function fa(k) for a fuzzy set of "medium" jamming. Notice that

the function is subjective to the person defining it, therein comes the
imprecision. The shape of the membership function can take many different
forms. Besides possibly being trapezoidal as in the figure, it can be
triangular, parabolic, monotonic, and bell-shaped. To see how this might be
used, recall from section 2.3 that at each node, an estimate of the degree of
jamming averaged over all destination nodes is computed. This estimate
ranges from 0 to 1. Each node can then be classified as having the
characteristic of medium jamming based on its membership function value in
the fuzzy set. Some values resulting from this membership function and the
data elements are shown in Table 1.

f(k)

^ Jamming

0.3 0.4

"Medium" Jamming Membership Function

Figure 3

12

Node Jamming f(k)
A 0.1 0.0
B 0.35 0.5
C 0.48 1.0
D 0.62 0.8
E 0.8 0.0

Table 1: Fuzzy Set Values for Medium Jamming

An empty fuzzy set means that the membership function for that set is
equated to zero (fa(k) =0) for all elements. Equal fuzzy sets (fa(k) = f^fk))

must have identical membership functions describing them for all elements.
Along with the fuzzy set definitions, there are logical operations defined for
fuzzy sets. Inference rules for these operations [7] are shown in Table 2
below. These are known as "possibilistic logic" rules. Although fuzzy set
values describe membership in the continuous range of (0,1), fuzzy set theory
should not be confused with probability theory. Other inference rules which
behave more like traditional probability rules are known as probabilistic
rules.

Notation Operation Result
~A not A 1-a
-B notB 1-b
AnB AandB min(a,b)
AuB AorB max(a,b)
A->B A then B max(l-a,b)
A8B AxorB max(min(a, l-b),min(l-a,b))

A,B = fuzzy sets a,b = members of A,B

Table 2: Fuzzy Set Operations

With fuzzy logic control, the definition of membership classes allows
basic rules, comprised of linguistic labels describing these classes, to define
the input-output relationship of the system [8,9]. This means that heuristics
and simple inference, according to the selected set of inference rules, describe
the behavior of a system. It is important for the fuzzy logic control system to
have defined the amount of resolution for the inputs and the discrepancy
between other fuzzy sets. In other words, the number of membership
functions for an input must be high enough to distinguish each of the sets
and the resolution for processing the inputs must be significant enough for

13

good results. Without proper selection of these, it would be difficult to
achieve the desired system. This also applies to the outputs of the system.

The fuzzy logic control process [10] can be broken into three major parts:
fuzzifying the inputs, evaluating the rule base, and defuzzifying the outputs.
Figure 4 gives the basic layout of a fuzzy logic control system. Inputs for a
fuzzy logic control system can come from many various sources. For example,
in RTNP, inputs were from measurements derived from protocol operation as
well as neural network outputs based on recognizing network operational
states. Fuzzification grades these inputs into the membership sets of the
system. The rule base can be created from different methods such as human
experience, process modeling, and system learning. However, most of the
systems built in the area of fuzzy control today default to human experience
in adjusting the rules of the knowledge base. Evaluating the rules can lead
to several of them firing at one time. This could lead to a contradiction in
determining the values of the outputs, if not resolved. Crisp values for the
outputs come from denazification of their fuzzy sets. This can be calculated
through many methods. One approach has been to take the center of gravity
(COG) of the fuzzy outputs by their weights which is comparable to an
averaging procedure. Another is the Mean of Maximum (MOM) method
which examines the weight of fuzzy outputs in ratio to the number of outputs
which are at their maximums. System outputs tend to be smoothed by the
COG denazification while discrete values result from the MOM method. We
have only used the center of gravity (COG) method in defuzzifying the
outputs.

Input
Fuzzifler

Rule
Base

Output
Defuzzifler 1

System
Under

Control
 1 Sensors r i ntiuiiwi a i -

Block Diagram of a Fuzzy Logic Control System

Figure 4

14

4. An Example Implementation of Fuzzy Control

In this section we illustrate these ideas by showing how the fuzzy control
approach developed in conjunction with SRI under RTNP can be
implemented in a single microcontroller subsytem. Recall from section 2.4
that the traffic spread parameter of the STIP3 protocol was determined using
fuzzy logic based on the estimated degree of jamming and the estimated
jamming period (1/jamming rate).

4.1 Definition of the Fuzzy Sets

The first step is to relate input parameters to fuzzy values. This is done
by denning fuzzy sets for jamming and jamming period. For this example,
jamming is broken up into five regions: {None, Small, Medium, Large, Total}
and similarly, jamming period into five regions: {Continuous, Short, Medium,
Long, None}. A few words of explanation about the meaning of each of these
categories is needed. For jamming, recall that this parameter is an estimate
of the degree of jamming experienced by each node; it is normalized to the
range of [0, 1]. Thus, if the estimate is near zero, we assign the semantics of
"none" to this level. On the other hand, if the estimate is near 1, we assign
the semantics of "total" to this level. For intermediate values, the fuzzy set of
"small" jamming is centered at 0.25; similarly "medium" is centered at 0.5;
and large is centered at 0.75. The fuzzy set membership functions are shown
in Figure 5 below.

. fj(x)

1.0

0.0

0 0.07S 0.175 0.325 0.425 0.575 0.675 0.825 0.925 1.0

■Jamming

Membership Functions for
Jamming Input Variable

Figure 5

15

For the jamming period, we are attempting to capture the idea of how
rapidly the jamming is being applied. If the period of a pulsed jammer is
very short, then we assign the term "continuous" indicating that the pulse
rate is so fast as to have the same impact as if it were continuously on. As
the rate slows down, the period increases and we assign appropriate terms to
each of these intermediate levels. At some point, the period becomes
sufficiently long that the jamming no longer has the characteristic of a
pulsed jammer, but appears simply as intermittent jamming. The STIP3
protocol was designed to handle jamming of this type, and thus we assign
jamming periods at this level the term "none", meaning no pulsed jamming.
Also notice that unlike the first input, the input scale is not linear, but rather
logarithmic. The logarithmic scale is used because the input covers a large
dynamic range, but was judged to have only five significant levels. Observe
that the fuzzy sets are centered as follows:

(a) continuous 0.01 sec
(b) short 0.1 sec
(c) medium 1.0 sec
(d) long 10.0 sec
(e) none 100.0 sec

The membership functions are shown below in Figure 6.

1.0

0.0

Continuous short Medium Long None

0.01 0.02 0.05 0.2 0.5 2.0 5.0 20. SO. 100

Jamming Period (sec.)

Membership Functions for
Jamming Period Input Variable

Figure 6

In the same way that inputs are segregated into fuzzy sets, the output
parameter, traffic spread is divided into 7 positions as well. The fuzzy values
of the traffic spread parameter are {Zero, Very Small, Small, Medium, Large,

16

Very Large, Maximum}. The rules will relate fuzzy values for the two input
variables to the traffic spread parameter. Several rules may be activated
based on a single input combination, and therefore the collection of these
fuzzy outputs must be combined. As noted in section 3, we have used the
fuzzy centroid denazification approach to determine a single crisp output
value from the fuzzy inference rules. In this case we specify the output
membership functions as singleton values at the corresponding crisp value.
These values for the output variable traffic spread are shown in Figure 7
below.

«A <*)

1.0

0.0

Zero Very
Small

Singleton Positions

Small Medium Large Very
Large

Maximum

0 2.0 4.0 5.0 6.0 8.0 10.0

Traffic Spread

Fuzzy Set Membership Functions

Figure 7

4.2 Fuzzy Rules

The next step in determining the fuzzy control is to define the set of fuzzy
rules. Each rule must capture knowledge about how the system should be
controlled for each of the possible fuzzy input variable combinations. Rules
typically take the form:

IF x is fuzzy valuel AND y is fuzzy value2 THEN z is fuzzy output valuel

Here, x and y are input variables and z is an output variable. For the
example problem, x would represent the degree of jamming, and y would
represent the jamming period. We determine if "x is fuzzy valuel" by
computing the membership function value for x in the fuzzy set
corresponding to fuzzy valuel. Similarly, we determine the membership

17

function value for y in the fuzzy set corresponding to fuzzy value2. The
conjunction "AND" is evaluated using the possibilistic logic rules given in
section 3.3, Table 2 Thus, for each rule, the minimum of the membership
functions over the set of input variables for the corresponding fuzzy set
values is selected. This value, in turn, determines the degree to which the
output value is activated. Each rule produces a scalar value for the output
variable z relative to some fuzzy set value. Since many rules may be
activated, and these rules may produce scalar outputs relative to one or more
fuzzy set values, some method must be used to reduce these to a single crisp
value for the output variable. Several approaches have been used [4]. In
this example we combine scalar values by pointwise addition over the domain
of the output variable. We then compute the centroid of the resulting fuzzy
set to produce a single crisp output value for traffic spread.

To illustrate, we give four possible rules below and show how these rules
would be activated by various input combinations.

Rule 1:
If jamming is none and jamming period is continuous, then traffic

spread is very small.

Rule 2:
If jamming is small and jamming period is continuous, then traffic

spread is small.

Rule 3:
If jamming is small and jamming period is none, then traffic spread is

zero.

Rule 4:
If jamming is small and jamming period is medium, then traffic

spread is medium

Suppose we determine the degree of jamming to be 0.11 and the jamming
period is measured as 0.03 sec. From the membership functions for jamming,
we find jamming is "none" (0.65) and "small" (0.35). Similarly, jamming
period is "continuous" (0.56) and "short" (0.44). This input combination
activates rules 1 and 2. Rule 1 produces an output ofmin (0.65, 0.56) = 0.56
relative to the fuzzy set value "very small" for traffic spread. Similarly, the
scalar value produced by rule 2 is min (0.35, 0.56) = 0.35 relative to the fuzzy
set value "small" for traffic spread. Since no other rules are activated, we
have an output which is 0.56 * "very small" (2.0) and 0.35* "small" (4.0).
Using the centroid calculation, we compute a crisp value as:

18

traffic spread = [(0.56 * 2.0) + (0.35 * 4.0)] / [0.56 + 0.35] = 2.77

Notice that in the event that only one fuzzy output set is activated, we
get the "full value" of the associated crisp output value, even if the rule which
activates the output is only partially activated. This can be seen in the case,
for example, if jamming = 0.11, and jamming period = 4.0 sec, then only rule
4 is activated with a scalar value which is min (0.35, 0.24) = 0.24. Since this
produces an output for only the fuzzy output value of "medium", the centroid
computation yields:

traffic spread = [0.24 * 5] / [0.24] = 5.

In a completely developed system with the input fuzzy sets as defined
here, there could be as many as twenty-five (25) rules, one for each
combination pair of input fuzzy values. In practice, it has been found [4] that
often only a small fraction of the total possible number of rules are actually
needed. This has two important implications. First, from a computational
point of view, in a single processor environment, the computation associated
with rules not actually necessary represents an additional computational
load which can be eliminated. Second, in a distributed, multi-processor
model, if nearly all possible rules are employed, then the system may exhibit
a degree of fault tolerance if some processors fail and contribute nothing to
the output calculation. This, of course, is only true to the degree that the
overall performance is not particularly sensitive to a few "key" rules. For
our purposes, this simple example is useful for illustrating implementation
ideas. Clearly a more complete set of rules would be necessary for any
practical system. Additional information with regard to the specific choices
studied by SRI can be found in [1] and [11-13].

4.3 Implementation Using a Single Microprocessor

Microprocessors/controllers are adequate devices for performing fuzzy
logic control. The ease of developing fuzzy control with microcontrollers in an
embedded system is enhanced by the tools that are available for them. Three
possible ways exist to compute fuzzy engine calculations: hardware, software
emulation, or lookup tables. Microcontrollers typically utilize one or both of
the latter two of these possibilities, and the choice of which one depends on
the required speed of the control system. Operating fuzzy logic control with
lookup tables is faster than software emulation in completing the algorithm.
The previous example will be used to generate lookup tables on a generic
microcontroller.

The membership functions, the rule base, and the singleton output
values are coded into lookup tables for the fuzzy logic engine. The number of

19

entries for a membership function in these tables is constant so that each
entry may be accessed by indexing instead of a linear search. The number of
labels per input must be fixed as well for the same purpose. For the example,
the membership functions are trapezoidal in shape and can be converted into
a set of 6 values: {P1,P2,P3,P4,S1,S2}. This means that "Medium" jamming
has a descriptor with values {0.325, 0.425, 0.575, 0.625, 10, 10} as shown in
Figure 8. A similar table is created for the jamming period input. Note,
however, that the log of jamming period must be computed. This is most
easily done using a simple lookup table with interpolation for values not
stored directly in the table. For the output variable, the singleton values are
easily stored in a table indexed by fuzzy set value.

Medium , (0.32S, 0.425. 0.575, 0.625, 10, 10)

1.0

^ janming

Sl«tt»*Val div (P2-P1) S2-MaXVal div (P4-P3)

Representing a Trapezoidal Membership Function

Figure 8

To represent the rules in a general way, the number of antecedents must
be allowed to be variable. Therefore the lookup table for rules must be
created in a way that will allow the microcontroller to distinguish between
antecedents and consequents of a rule. This may be done by marking the end
of the antecedents with a specific value which is recognized as such. This
could place a restriction on the number of inputs and outputs that the system
can handle, but for most practical systems these limits would not be reached.

The fuzzy engine is an algorithm that first processes the inputs, then
evaluates the rules, and finally determines the appropriate outputs. This
algorithm is given below for a general case. Let the number of inputs be
called NCI, and the number of labels (i.e. fuzzy sets) per input as LPI. If the
number of cycles required to compute the membership function for one input
in one fuzzy set is approximately X cycles, then the amount of time for
fuzzifying all inputs is NCI*LPI*X cycles. For the rules, let the number of
rules be labeled NR. The timing in processing a rule is dependent on the
number of antecedents that are in that rule; however, we can take an upper
bound of the total number of input variables as the number of antecedents in

20

each rule. If the average time of one evaluation of a rule antecedent is Y
cycles, then the total time for processing the rules is NR*NCI*Y cycles. In
defuzzifying the outputs, let the count of labels per output be placed as LPO
and the number of outputs as NCO. Then if one output defuzzification takes
Z cycles to finish and the final divide takes V cycles, the total number of
cycles for all outputs is LPO*NCO*Z + NCO*V. One revolution of the fuzzy
engine therefore can be said to require a total of (NCI*LPI*X) +
(NR*NCI*Y) + (LPO*NCO*Z) + NCO*V cycles. Notice that the values for
X, Y, Z, and V will depend on the type of microcontroller used to implement
the fuzzy control engine. Some microcontrollers will be able to handle certain
portions of fuzzy logic control better than others. The significance of this
general formulation is that is shows how computational load depends on the
number of input and output variables and the number of fuzzy sets used in
describing these variables.

21

Fuzzify Inputs —
for each input variable
{ for each fuzzy label

{ A = input variable value
if (A <= PI [variable, label] or A >= P4 [variable, label])

then member [variable, label] = 0
else if (A <= P2 [variable, label])

then member [variable, label] = (A - PI) * SI
else if (A <= P3 [variable, label])

then member [variable, label] = 1
else member [variable, label] = (P4 - A) * S2

}
}

- Evaluate Rules —
for each output variable
{ for each fuzzy label

{ fuzzyout [variable, label] = 0 }
}

for each rule
{ minrule = MAX_VALUE

for each antecedent (an input variable and fuzzy label pair)
{ minrule = min(minrule, member [input variable, label])}
fuzzyout [output variable, label] =

fuzzyout [output variable, label] + minrule

}

- Defuzzify Outputs —
for each output variable
{ cennum = 0

cendenom = 0
for each fuzzy label
{ cennum = cennum +

fuzzyout [variable, label] * singleton value [variable, label]
cendenom = cendenom + fuzzyout [variable, label]

if (cendenom = = 0) outputvalue [variable] = 0
else outputvalue [variable] = cennum / cendenom

}

General Algorithm for Fuzzy Controller

22

5. Distributed Architectures for Neural and Fuzzy Systems

Several steps need to be taken in order to develop a system for
distributing the fuzzy logic algorithm over a microcontroller network. Code
from the fuzzy logic algorithm will be placed at each processing node in the
microcontroller network. This code handles only the processing of the fuzzy
logic control. The kernel must supervise the packets in the queues and
schedule the fuzzy logic for processing. The combination of the kernel and
the fuzzy logic algorithm is used to implement the distributed fuzzy logic
control. We note that although this section discusses a distributed
architecture in terms of the fuzzy control algorithm, a similar approach
could be used for a distributed neural network implementation. As discussed
in section 3.1, the underlying architecture of a neural network system and a
fuzzy controller are the same, only the details of the computational algorithm
differ.

The network for distribution of the fuzzy logic control is composed of a set
of homogeneous microcontrollers. These controllers are joined in a ring
topology and are connected through serial communication links. The baud
rate between nodes will be uniform in the network. Communication rates in
the network must be much faster than the rates at which inputs arrive at the
input nodes for fuzzy logic control, otherwise there will be a bottleneck at the
queues of the input nodes. Processing speed at the nodes must be such that
the processor is able to perform the communication task and processing task
at a rate commensurate with the input data rate in order to prevent queue
bottlenecks.

The fuzzy logic algorithm described in section 4 above was written for
processing the algorithm serially on a single microcontroller. For the
distributed case it needs to be modularized into a fuzzification unit, rule
evaluation unit, and denazification unit. Each unit operatres independently
of the others, but data is passed from one to another as required by the
algorithm. Each of these modules will perform one iteration of the function
at a time.

The network of microcontrollers will be exchanging data for fuzzy logic
control and other processes through message packets. Message packets are
restricted in size in order to minimize the communication overhead. Each of
the packets for fuzzy logic control should consist of three pieces of
information: an identification to indicate the type of packet (input, fuzzy
input, etc...), a data block that gives the value of the packet, and a time
stamp for the period when the packet was first sent. Each node will grab
packets from the network depending upon the identification byte. Since a
packet can be transmitted in both directions in a ring network, the time

23

stamp will indicate the age of the packet. A typical format is shown in
Figure 9, below.

Identification Data Byte Time Stamp

Message Packet Layout
Figure 9

The kernel placed in each node in the network will decide which packets
a node should process for the fuzzy logic control. A simple distribution
scheme for the kernel would allow only the output nodes to process the fuzzy
logic algorithm. When the input nodes receive the input data for the fuzzy
logic control, they broadcast the information as packets towards the output
nodes in both directions through the network. The output nodes would wait
for the input packets that they need before processing the fuzzy logic
algorithm. If an output node receives the same input packet from both
directions, it ignores the later packet. Clearly the computational load is
much greater on the output nodes in this case. Although this simple case
could work, it does not utilize the idle time coming from the queue delays at
the input nodes and does not permit a scaleable design to handle increased
computation. Figure 10 below illustrates this simple approach.

Input
Input #2

Queues

Inpuc Packet

Input Packet

Input Packet

Input Packet

C = communication
p a Processing

A Simple Approach

Figure 10

24

Instead of allowing only the output nodes to process the fuzzy logic
algorithm, the kernel could be structured so that a node may process a
portion of the fuzzy logic algorithm if:

1) it has the data packets necessary for it,
2) the amount of processing time that it takes is less than the queue

delay for those packets, and
3) the microcontroller is idle.

This will require that the kernel sift through the queues to determine what
type of information that it has at all times. Priority for processing packets in
the queues will be on a first-come first-serve (FCFS) basis. If the node does
perform the processing, the results are reinserted back into the queue as
packets and again are broadcast towards the output nodes. Once a packet
reaches the last output node in the direction that it takes through the
network, it finishes its route. This method is a better approach for the
distribution since the network resources are dynamically accessed dependent
on the current delays of the system.

Some other considerations need to be addressed by the kernel. It is
necessary to determine at the output nodes if the processing should complete
whenever it receives a new input or wait until it receives all new inputs.
Synchronization will not be necessary between the output nodes, since they
will change their values whenever they can do so. Finally, if an output node
never receives all of the information that it requires, or if there is some real-
time constraint for outputs to change, there needs to be a method for
degrading to some value, either abruptly or smoothly. Figure 11 illustrates
this appoach.

25

Input #1

Queues

Inpuc Packet

Input Packet

F.I. Packet

F.O. Packet

F.I. Packet

OutputPacket

Input #2

C = Communication
p s Processing

Output

Improved Approach

Figure 11

5.1 Future Investigations

In this section we have outlined a design approach to distribute the fuzzy
logic control over a ring network of microcontrollers. A complete
development of this design, testing, and verification in the context of a
simulated communication network environment has not been possible withm
the scope of this effort. We make suggestions for the next stages of research
in this area.

Examples will be needed to test the kernel for varying conditions in the
network and fuzzy logic control. These examples should represent extreme
cases that the kernel might encounter. Problems should be developed for
multiple inputs and outputs at a single node. Also, cases should be made
where the relative distance between inputs and outputs in the network is
changed. The ratio of processing to communication speeds at the nodes
should be varied in some examples. The number of nodes in the examples
should be varied as well.

Code from the fuzzy logic engines and the kernel should be implemented
in a network of microcontrollers to demonstrate the proposed approach. To
verify performance, this system must be tested in a realistic network

26

environment. Such an environment could be provided using the simulation
tools developed by SRI as part of their work on RTNP.

In addition to the distributed implementation approach described here,
there have been several recent developments in fuzzy/neural systems
research which should be investigated in the context of this application area.
Most notably is work being done in genetic programming [14]. Some of the
problems encountered by SRI in developing satisfactory algorithms for fuzzy
control and neural networks might be solved using these new approaches.

27

Bibliography

1 Ogier, R.G., Wong, J.S., and Khan, I.H., "Robust Transfiguring Network
Protocols: Final Technical Report", ITAD-3302-FR-95-243, SRI
International, Menlo Park, CA, December 1995.

2. Hight, J., Costa, E., Lee, D., Ogier, R.G., and Wong, J.S., "Evaluation and
Development of Multimedia Networks in Dynamic Stress (EDMUNDS)",
ITAD-8558-FR-93-277, SRI International, Menlo Park, CA, 1993.

3. Lowrance, J.D., "Evidential Reasoning with Gister-CL - A Manual", SRI
International, Menlo Park, CA, 1993.

4. Kosko, B., Neural Networks and Fuzzy Systems, Prentice-Hall,
Englewood Cliffs, NJ, 1992.

5. Zadeh, L.A., "Fuzzy Sets", Information and Control, Vol. 8, pp. 338-353,
1965

6. Zadeh, L.A., "Fuzzy Algorithms", Information and Control, Vol. 12, pp.
94-102,1965.

7. Tanimoto, S.L., The Elements of Artificial Intelligence, Computer Science
Press, New York, NY., 1990.

8. Klir, G.J. and Folger, T.A., Fuzzy Sets, Uncertainty and Information,

Prentice Hall, Englewood Cliffs, NJ., 1988.

9. Lowen, R. and Roubens, M., Fuzzy Logic, State of the Art, Kluwer

Academic Publishers, Boston, MA., 1993.

10. Yager, R.R. and Zadeh, L.A., An Introduction to Fuzzy Logic Applications
in Intelligent Systems, Kluwer Academic Publishers, Boston, MA., 1992.

11. Khan, I.H., Ogier, R.G., and Wong, J.S., "Software Design Document for
the Robust Transfiguring Network Protocol", SRI International, Menlo
Park, CA, 1995.

12. Khan, I.H., Ogier, R.G., and Wong, J.S., "Software Test Report for the
Robust Transfiguring Network Protocol", SRI International, Menlo Park,
CA, 1995.

28

13. Wong, J.S., Ogier, R.G., and Khan, I.H., "Software User's Manual for the
Robust Transfiguring Network Protocol", SRI International, Menlo Park,
CA, 1995.

14.Nangsue, P. and Conry, S., "Internet-Based Genetic Programming
Platform", in Late Breaking Papers at the Genetic Programming 1997
Conference, ed. John Koza, Stanford University, 1997.

29

MISSION
OF

AFRIANFORMATIONDIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

