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Abstract 

Neural networks and fuzzy systems have been studied in conjunction with 
work done by SRI International in an effort to develop effective means to 
control highly dynamic high-speed networks in a cost efficient manner. 
Working with SRI, we have used the results from a study of robust 
transfiguring protocols. These protocols were designed to recognize changes 
in assumed network state and adapt protocol parameters to meet these 
changing network conditions. We have shown a simple microprocessor based 
implementation of a fuzzy control algorithm. A distributed ring architecture 
is proposed for distributing this algorithm in a multi-microprocessor network. 
Suggestions for continued development on this architecture, as well as 
possible future work in genetic programming are made. 
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1.   Introduction 

This report describes the work done for Rome Laboratory under contract 
number F 30602-94-C-0023. The project engineer was Mr. Charles Meyer. 
The work on this contract was done in close cooperation with SRI 
International in conjunction with their work on the Robust Transfiguring 
Network Protocols (RNTP) Project [1]. 

1.1 Background 

Communication networks of the future will be based on high speed fiber 
optic links and fast digital switching. In addition, the number of nodes and 
links is steadily increasing. The combined effect of increased network 
complexity and faster transmission and switching will be to put a substantial 
computational burden on the processing of network control and management 
functions. The computations required for routing, flow control, bandwidth 
resource allocation, and network reconfiguration, will become the bottleneck 
in moving traffic through the network. Thus to fully realize the advances in 
optical transmission and switching technology, new computing techniques 
must be applied to these computationally intensive problems. Neural 
networks have been demonstrated as providing significant speed-ups for 
similar problems which can not generally be solved in reasonable time. 

SRI International has begun developing new protocols for network 
management which are designed to adapt to changing network conditions. 
When networks are subjected to various kinds of stresses, protocols which 
were designed to perform in an optimal manner under a set of assumed 
operating conditions may no longer be optimal. As the network operating 
conditions evolve, the model on which the protocols were based is no longer 
valid. In their work on the RTNP project, SRI has attempted to develop 
methods to recognize these adverse network conditions and then to 
dynamically select protocols or protocol parameters in response to the 
observed changes in the network model. 

There has been much past work on adaptive algorithms of one form or 
another. The difficulty with practical application of much of this work is that 
it relies on an accurate determination of current network state and operating 
conditions. Unfortunately this is seldom possible in "real-world" 
environments. Instead, the data is often uncertain, incomplete, or simply 
erroneous. 

A second aspect of this problem is that because networks are inherently 
distributed systems, the problem solving activity must be distributed. It is 
well known that attempts to centralize the decision making function are 



often unreliable. Centralized systems suffer from delays in getting data from 
remote sections of the network, or complete inability to get such data. 
Control decisions may be delayed or lost in reaching the intended 
destinations. Further, the transmission of large amounts of network status 
data from the entire network to a centralized decision-maker loads an 
already stressed network at a time when bandwidth is especially scarce. 
Thus, one characteristic which is highly desirable is to find methods for 
network management which are also distributed and do not rely on a single 
or a small number of decision making entities. 

1.2 Objectives and Results 

There were two primary objectives for this work. First, we worked 
closely with SRI on the RTNP project to assist in denning an approach to the 
problem of recognizing network state under adverse conditions and in the 
absence of complete and accurate data from the network. Their work has 
been written in the form of a final report for the RTNP project [1]. In section 
2 we summarize our interactions with SRI on the RTNP project and the 
results which we used in our subsequent work. 

A second objective of our effort was to use the results from RTNP and 
investigate novel implementation approaches. The results from this part of 
the effort are described in sections 3, 4 and 5. The approach we investigated 
is a distributed architecture of simple microcontrollers which implement 
neural networks and/or fuzzy logic for decision making algorithms. 

The work presented here is an initial approach based on the combined 
efforts of the work with SRI under the RTNP project and our own 
investigations. Much additional work remains to be done. It is the intention 
of this work to open the door to further research along these lines. 

2.   The RTNP Project 

In previous work, SRI developed the STIP3 protocol [2]. Unlike network 
protocols currently in use, STIP3 was designed specifically to perform 
multipath routing, link scheduling, and flow control in highly dynamic 
networks. STIP3 was designed to operate in environments with frequent 
changes in topology due to link jamming, node mobility, or intermittent 
interference. It has been shown to be superior to previously existing routing 
protocols based on path lengths and local queue delay. 

STIP3 is a distributed algorithm which computes expected time distances 
to each destination node from each node. These time distances are averaged 



locally and propagated to neighbor nodes only if the changes are significant 
(i.e. vary by more than a threshold amount from previous values). A key 
difference between STIP3 and most conventional routing algorithms is that 
STEP3 uses destination queues. Thus, each outgoing packet is placed in a 
queue based on its final destination. The decision as to which outgoing link 
should be used to route the packet toward this destination is not made until 
the packet is actually transmitted. This has two benefits: first, the decision 
is made at the last possible time instant, and thus is based on the most 
current network data; and second, if retransmission is required, the packet 
can be retransmitted over a different outgoing link. Thus a temporary or 
intermittent link outage, due for example to jamming, will quickly be 
detected and packets will be routed via alternate links as soon as possible. 

2.1 Protocol Performance Under Adverse Network Conditions 

The first task of the work performed by SRI under the RTNP project was 
to investigate the performance of STIP3 under adverse network conditions. 
The purpose of this task was to understand which characteristics of the 
network operating environment would have the greatest impact on protocol 
performance. 

So long as the operational characteristics of a network do not change 
radically, an advanced protocol such as STIP3 should perform well. 
However, under various adverse conditions, a protocol designed for superior 
operation may function considerably worse than its design performance. 
Simulations with STIP3 have shown that its performance degrades when the 
network is subjected to jamming (or other intermittent link outage) having 
various rates of jamming. A single link may be jammed continuously, in 
which case no packets are received at the distant end. However, if the link is 
subjected to a pulsed jamming, the link will successfully deliver some 
packets. The rate at which the link state switches between "up" (packets 
delivered) and "down" (no packets delivered) is the jamming rate. In 
networks with one or more links subjected to pulsed jamming, STIP3 does 
not perform as well as in those cases in which the jamming is either not 
pulsed or jamming rates are less dynamic. 

2.2 Protocol Tuning Factors 

STIP3 is a complex protocol that relies on several important factors to 
perform well. These factors represent "tunable" parameters which must be 
properly selected. Another aspect of SRFs work was to determine by means 
of simulations which parameters could be adjusted to compensate for 
changes in network operating conditions. 



Extensive simulations showed the following parameters to be the most 
effective in adapting STIP3 to changing network conditions. These were: 

(a) traffic spread - a measure of the degree to which traffic is spread over 
multiple paths; 

(b) linkjbias - a term which determines the degree to which minimum- 
hop routing is preferred over minimum delay routing; 

(c) distance change threshold - determines if local changes in the 
estimated time distance to each destination are significant for propagation to 
neighbor nodes; 

(d) time smoothing parameter - determines the degree of time averaging 
used to smooth estimated time distances; 

(e) update period - determines the period at which update messages are 
sent to neighbor nodes. 

These parameters are normally selected on the basis of trial evaluations 
of the protocol, first with simulated network operation, and then with actual 
network operation. Once determined, the parameters should remain valid as 
long as the fundamental network characteristics remain the same. However, 
for the purposes of this project, these parameters were identified as being the 
control parameters in adjusting STDP3 for varying network environments. 

2.3 Identifying Network Environments 

The third task under RTNP was to develop techniques for recognizing 
and/or predicting changes in network operating environments. It was 
suggested that the area of artificial intelligence should be reviewed to 
determine if appropriate techniques were known. Based upon on our 
suggestions and discussions with SRI, neural networks were investigated as 
one of two approaches. The other approach was based on previous work done 
by SRI in the expert systems area. This second method was based on the 
theory of evidential reasoning and used an in-house, SRI developed system 
known as GISTER. Since we had no technical input with respect to the 
development and use of GISTER, it will not be discussed here. Additional 
information is available from SRI in [3]. 

Neural networks were used to estimate three significant characteristics 
of the network environment. These were: 

(a) link state probability - the probability that a given link will be "up" 
during the next time period; 

(b) queuing delay - the estimated delay for each destination queue at 
each node; 
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(c) end-to-end jamming - a relative measure of the degree of jamming at 
destination nodes, averaged over all such nodes; varies between 0 (no 
jamming) and 1 (total jamming). 

The first two of these three parameters were used directly by the STIP3 
algorithm in place of the original estimates computed as part of STIP3. 
Simulations conducted by SRI found that the neural network estimates of 
both the link state probability and the queuing delay were more accurate 
than either the estimates produced by the original STIP3 algorithm or by the 
Gister-based evidential reasoning system. 

The third of these parameters was not part of the original STEP3 
algorithm. Instead, this parameter is used by a high-level network controller 
(HLNC). The HLNC was designed to adjust the tunable parameters based on 
changes in the network environment. 

2.4 Protocol Control Algorithms 

The tunable parameters of the STIP3 protocol were identified in section 
2.2. By controlling these parameters, the STIP3 protocol could be adapted to 
changes in the network environment. SRI developed a fuzzy control 
algorithm that uses network measurements, including the output from the 
neural network estimator of end-to-end jamming discussed in the previous 
section. 

In simulations by SRI, the fuzzy control algorithm was shown to be 
superior to the original STIP3 algorithm for control of the "traffic spread" 
parameter. Recall from section 2.2, the "traffic spread" parameter controls 
degree to which traffic is spread over multiple links. The fuzzy rule related 
the value of this parameter to the estimated amount of jamming and the 
estimated period (1/rate) of jamming. 

2.5 Summary of RTNP Results 

The RTNP project demonstrated the applicability of neural networks for 
estimating changing network states. In particular, SRI's simulations showed 
that neural network estimators of link state and queuing delay were 
significantly better than the algorithms used in the original design of the 
STIP3 protocol. The simulations also showed that a fuzzy control algorithm 
was superior to the original STIP3 protocol in its ability to vary the traffic 
spread as the amount of jamming and jamming rate changed. 



Two limitations were noted. First, the performance of neural networks 
greatly depends on the training data used to establish the interconnection 
weights used. Thus, in designing a neural network solution, careful 
attention must be paid to identifying appropriate training data which reflects 
the expected range of operating conditions. The second limitation observed 
was the difficulty of discovering fuzzy rules to control protocol parameters. 
Although one successful rule-set was identified and demonstrated, attempts 
at uncovering other useful rule-sets were less fruitful. SRI has suggested 
that further work in this area should be done so as to develop a more 
complete understanding of the conditions under which fuzzy controllers 
would be useful. 

3.   Neural Networks and Fuzzy Systems 

Complex systems that can not be easily modeled for conventional 
controllers have been designed with neural network and/or fuzzy logic 
control. Neural networks are primarily used to implement state recognition 
algorithms. Fuzzy logic allows a designer to handle uncertainties in a system 
by conditioning the membership functions and rule base that linguistically 
describe the system process. 

Many applications designed in industry today involve the use of 
microcontrollers. Some examples are cellular phones, pagers, microwaves, 
VCRs, electronic games, and cameras. Microcontrollers are self-contained 
computers in that all necessary hardware is integrated on the chip and little 
additional glue logic is needed. Therefore, they are ideal components to use 
in designing a system since the turnaround time and cost are greatly 
reduced. There is an abundance of software and hardware CAD tools in the 
market to assist system designers. These include assemblers, C-compilers, 
simulators, and emulators. 

Algorithms already exist for fuzzy logic control on a microcontroller. 
Fuzzy logic code runs efficiently on microcontrollers since it requires little 
processing time and memory. The peripherals on a microcontroller also 
provide necessary interfaces for embedded control. Software tools for 
microcontrollers have been created that allow a designer to visualize the 
fuzzy control system before actual implementation takes place. 

Homogeneous microcontrollers have been connected together in a 
network so that information can be shared among them. Microcontrollers are 
placed at sites in the network to process the data provided from sensors at 
that location. Each microcontroller handles a separate task for the network. 
This provides modularity to the system and eases the overall debugging 
process.   Typically, these microcontrollers are connected in a ring or star 



configuration since the number of serial communication interfaces on a 
microcontroller is often limited to a maximum of two. However, with a star 
topology, loss of the central (supervisor) controller implies failure of the 
network. Therefore a ring topology gives more reliability to the network and 
is often preferred. 

Currently, algorithms for fuzzy control are restricted to single 
microcontrollers. No distributed case for fuzzy logic control has been 
implemented as of yet. Distributing the fuzzy logic control over a ring 
network has several advantages. The time for completing the algorithm is 
shorter since the processing is overlapped at multiple nodes. There is 
reliability built into the system since other nodes in the network are able to 
process the fuzzy logic algorithm when one node fails. Inputs to the fuzzy 
logic control can come from sensors at remote sites. A higher number of 
inputs, outputs, and rules for fuzzy logic control can be handled than for a 
single controller. 

3.1 Architectures for Neural Networks and Fuzzy Systems 

A methodology is needed for distributing a neural network or fuzzy logic 
control algorithm over a ring network given the parameters of the network 
and the fuzzy logic control. Architecturally there is a significant similarity 
between neural networks and fuzzy logic controllers. The architecture of 
each of these is a feedforward process, shown in Figure 1, that consists of 
three layers of operation. For neural networks, there is an input layer, a 
middle or hidden layer, and an output layer [1, 4]. For fuzzy logic, the input 
layer computes the fuzzification of inputs, the middle layer performs 
evaluation of rules, and the output layer computes the defuzzification of the 
outputs. There are no feedback loops in the algorithm. A static mapping of 
this process onto the network is not a preferable choice since the mapping is 
a NP-hard problem and enforces the processing at specific nodes which could 
fail at some time. Therefore, the distribution of the fuzzy algorithm must be 
dynamic in response to the resources available at that time in the network 
and upon the current communication delays. 

The simplest distribution of fuzzy logic control in a network could be 
implemented by processing the algorithm only at the output nodes. This is 
equivalent to a static mapping of the algorithm at the output nodes. The 
objective of the rest of nodes in the network would be to pass the input values 
as message packets from the input nodes towards the output nodes. Each 
node in the network would maintain a queue of input packets for the fuzzy 
logic algorithm. Output nodes process the fuzzy logic algorithm whenever 
they receive the inputs that define them. 



A better approach to the distribution would be to involve all nodes in 
processing the algorithm along the paths of communication, when it is 
possible. A supervisory kernel for the distributed architecture could be 
created that allows nodes to process packets in their queues for portions of 
the fuzzy logic algorithm. The kernel permits this self-scheduling if the node 
is idle and the time for processing the packet is less than its queue delay. 
Therefore there will be a dynamic response to the network resources. The 
nodes will be able to perform fuzzifications on the input packets, rule 
evaluation (if they have all fuzzy input packets that define a rule), and 
output defuzzification (if they have all fuzzy output packets that comprise an 
output). Message packets sent through the network with the kernel active 
could contain information on inputs, fuzzy inputs, fuzzy outputs (from rules), 
and outputs. 

Input #2 

Input  Layer 

Middle 
|R9        Layer 

Output Layer 

output #1 

Simple Feedforward Architecture for 

Neural Network and Fuzzy Logic Control 

Figure 1 

Our   work    examines    the    design    of   a    distributed   network   of 
microprocessors that implement a neural network or fuzzy control algorithm. 
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Based on the results from the RTNP project as described in section 2, both 
neural networks and fuzzy control algorithms were found to be superior to 
alternative designs for adaptive network management. 

3.2 Microcontroller Architecture 

Figure 2 displays a typical microcontroller. The main job of the 
microcontroller is to supervise control of the system by processing inputs and 
adjusting the appropriate outputs. Inputs and outputs are any digital 
signals; these could be from other microcontrollers, or from other digital 
hardware, such as digital switches in a packet switched communication 
network. Directing the input-output relationship is the program embedded 
in the controller. The number of instructions available on most CPUs is often 
limited to less than 100. These instructions are usually enough to manage 
most supervisory tasks. The strength of the microcontroller comes from its 
ability to be reconfigured by the instructions programmed by the user. This 
allows the design to be flexible in the control of the system. 

The controllers that will be considered here are simple 8-bit micros. 
These are used because they are the most popular due to their low cost and 
are most familiar to most system designers. This work is intended to 
illustrate the basic ideas and not necessarily produce an actual prototype. At 
the time a prototype is designed, other choices for the actual processor should 
be considered in line with the technology available at that time. Several 
companies such as Intel, Motorola, Texas Instruments, and National 
Semiconductor manufacture 8-bit controllers. These chips have limited 
registers in the CPU and are at the low end of the performance spectrum- 
Yet they suffice for many typical applications. Many of the specific families 
derived from these controllers originated from custom designs for outside 
vendors. The amount of ROM typically ranges from less than 64 KBytes and 
the size of RAM is less than 1 KByte. These limitations can be a problem 
when trying to use a high-level language compiler. Different peripherals are 
embedded into the microcontrollers such as timers, communication 
interfaces, and analog-to-digital converters. Only the Motorola HC05, HC11, 
HC08 and the Intel 8051, 8052 8-bit micros will be mentioned following this 
since they are the most frequently used. The following descriptions give an 
idea of the basic structure of these microcontrollers. 

Motorola is the leading seller of microcontrollers with the MC68HC05 
device. There are over 130 variations of HC05 microcontrollers that exist, 
and they range in size from 16 to 44 pins on the chip. One of the smallest, 
the HC05K, has become so low in price that it is replacing many of the 4-bit 
micros in designs. The HC05 is a descendant from the 6800 microprocessor 



RAM 
Memory 

CPU 

Input/Output 

ROM 

Typical Single Chip Microcontroller 

Figure 2 

and the instructions for the controller are a reduced set from the 6800. The 
CPU has an accumulator based architecture and contains one accumulator 
(A), one index register (X), a program counter (PC), and a stack pointer (SP). 
There are 62 instructions on the chip that are used for writing programs. 
Ten different addressing modes are allowed for the instructions including 
indexing from the X register. The HC05 has a 64K addressing space and 
holds ROM or EPROM from 512 bytes to 32 Kbytes and RAM from 32 to 1200 
bytes. There are no stack manipulation operations since the amount of RAM 
is so small. Up to 40 input/output pins are found on some of the chips. A 16 
bit free-running timer is built into most of the HC05s for real-time interrupts 
and counting events. An external interrupt pin comes into the chip and is 
maskable from operation when necessary. Asynchronous and synchronous 
serial interfaces on some parts allow serial protocols in transmitting and 
receiving information. Various other peripherals such as A/D and D/A 
converters, display drivers, tone generators, and pulse width modulators 
(PWM) are seen on different parts. Low power modes are available to save 
battery life on designs that operate on batteries. 

Along with the HC05, Motorola produces the HC11 and HC08 
microcontrollers. Both of these chips are upward compatible from the HC05. 
They are higher performance parts and have more instructions and registers. 
Within the HC11 there are two accumulators, A and B, that help with 
calculations, and two 16-bit index registers IX and TY that assist in 
addressing. Some instructions allow 16-bit calculations by combining the A 
and B registers as the D register.   The stack can be changed on the HC11 

10 



with push and pop instructions, unlike the HC05. Again it has a 64K 
internal addressing space. However some variations can be placed in an 
expanded mode so that it can address up to lMeg externally. The HC11 
ranges from 8 to 32K of ROM or EPROM and 256 to 1280 bytes of RAM for 
its memory. Additionally, the HC11 contains up to 640 bytes of EEPROM 
that allows the designer to have access to nonvolatile memory which can be 
modified during execution. The chip has 3 external interrupt lines and up to 
62 possible input/output lines for interfacing. A 16-bit timer, SPI and SCI 
interfaces, and an A/D converter are on some parts. The HC08 is basically a 
faster HC05. Many instructions from the HC05 implemented on the HC08 
have been streamlined for faster operation. It has only one additional 
register, the H register, that is called in conjunction with the X register for 
indexed 16-bit addressing modes. Stack operations have been included on 
the chip, along with a stack-indexed addressing mode. Only information on 
the pilot part (HC08XL36) has been released. It contains 36K ROM or 
EPROM and IK of static RAM. There are 40 I/O lines on the part and 2 
external interrupts. The peripherals on the chip are a 4-channel 16-bit 
timer, SPI and SCI serial interfaces, a phase-locked loop (PLL), and a direct 
memory access (DMA) coprocessor. Other parts are available with variations 
on the memory and peripherals. 

Intel produces the 8051/8052 8-bit microcontrollers. These parts can run 
from frequencies of 12 to 40 MHz. One internal clock cycle for the CPU is 12 
ticks of the external clock, which gives a maximum bus speed of 1 MHz. 
These controllers are built around a register and accumulator CPU scheme. 
There are banks of registers in the RAM on the chip that allow register-based 
instructions. The accumulator (A) is responsible for most data transfers and 
calculations. There are 46 instructions embedded into the 8051/52. Direct 
and indirect addressing modes are allowed for the instructions. These 
controllers have 2 to 32 Kbytes of ROM/EPROM and 64 to 256 bytes of RAM 
internal to the chip. They can address up to 64 Kbytes of external memory. 
A 16-bit pointer DPTR lets the user specify an off-chip address for data. The 
only difference between the 8051 and 8052 is that the 8052 has more RAM, 
ROM, and peripherals. There can be up to 56 I/O lines on these controllers. 
There are two interrupt lines, 16-bit timers, serial interfaces, watchdogs, and 
A/D converters available for the part. Intel has leased its design of the 
8051/52 core to other companies who in turn have added other features. 

3.3 Fuzzy Control Algorithms 

Fuzzy logic control descends from fuzzy set theory which is an extension 
of traditional Boolean set theory. Membership of a set is not specifically true 
or false. Instead, each class of data is broken into membership regions where 
an element of a class can be considered partially a member of each of these 
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sets. Fuzzy set theory was established by Lofti Zadeh through papers [5,6] 
that were written on information and control in the 1960's. The advantage of 
fuzzy sets lies in the ability of representing data in an imprecise manner 
when no straightforward definition is possible. This began the development 
of fuzzy sets into several fields such as control and switching systems. 

Some definitions of fuzzy set theory are needed. An element in the class 
of values K can be labeled as k. In the papers by Zadeh, a fuzzy set is said to 
be described by the membership function fa(k) that translates the element k 

into the continuous range of (0,1). That is, the level of membership for an 
element k to a fuzzy set is high if the result tends toward one and low if 
towards zero. Unlike Boolean logic, each element can be placed into more 
than one fuzzy set. Therefore, an input to a class can be weighted in an 
approximate manner among all sets. The graph in Figure 3 gives a 
membership function fa(k) for a fuzzy set of "medium" jamming. Notice that 

the function is subjective to the person defining it, therein comes the 
imprecision. The shape of the membership function can take many different 
forms. Besides possibly being trapezoidal as in the figure, it can be 
triangular, parabolic, monotonic, and bell-shaped. To see how this might be 
used, recall from section 2.3 that at each node, an estimate of the degree of 
jamming averaged over all destination nodes is computed. This estimate 
ranges from 0 to 1. Each node can then be classified as having the 
characteristic of medium jamming based on its membership function value in 
the fuzzy set. Some values resulting from this membership function and the 
data elements are shown in Table 1. 

f(k) 

^    Jamming 

0.3 0.4 

"Medium" Jamming Membership Function 

Figure 3 
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Node Jamming f(k) 
A 0.1 0.0 
B 0.35 0.5 
C 0.48 1.0 
D 0.62 0.8 
E 0.8 0.0 

Table 1: Fuzzy Set Values for Medium Jamming 

An empty fuzzy set means that the membership function for that set is 
equated to zero (fa(k) =0) for all elements.  Equal fuzzy sets ( fa(k) = f^fk) ) 

must have identical membership functions describing them for all elements. 
Along with the fuzzy set definitions, there are logical operations defined for 
fuzzy sets. Inference rules for these operations [7] are shown in Table 2 
below. These are known as "possibilistic logic" rules. Although fuzzy set 
values describe membership in the continuous range of (0,1), fuzzy set theory 
should not be confused with probability theory. Other inference rules which 
behave more like traditional probability rules are known as probabilistic 
rules. 

Notation Operation Result 
~A not A 1-a 
-B notB 1-b 
AnB AandB min(a,b) 
AuB AorB max(a,b) 
A->B A then B max(l-a,b) 
A8B AxorB max(min(a, l-b),min( l-a,b)) 

A,B = fuzzy sets     a,b = members of A,B 

Table 2: Fuzzy Set Operations 

With fuzzy logic control, the definition of membership classes allows 
basic rules, comprised of linguistic labels describing these classes, to define 
the input-output relationship of the system [8,9]. This means that heuristics 
and simple inference, according to the selected set of inference rules, describe 
the behavior of a system. It is important for the fuzzy logic control system to 
have defined the amount of resolution for the inputs and the discrepancy 
between other fuzzy sets. In other words, the number of membership 
functions for an input must be high enough to distinguish each of the sets 
and the resolution for processing the inputs must be significant enough for 
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good results.    Without proper selection of these, it would be difficult to 
achieve the desired system. This also applies to the outputs of the system. 

The fuzzy logic control process [10] can be broken into three major parts: 
fuzzifying the inputs, evaluating the rule base, and defuzzifying the outputs. 
Figure 4 gives the basic layout of a fuzzy logic control system. Inputs for a 
fuzzy logic control system can come from many various sources. For example, 
in RTNP, inputs were from measurements derived from protocol operation as 
well as neural network outputs based on recognizing network operational 
states. Fuzzification grades these inputs into the membership sets of the 
system. The rule base can be created from different methods such as human 
experience, process modeling, and system learning. However, most of the 
systems built in the area of fuzzy control today default to human experience 
in adjusting the rules of the knowledge base. Evaluating the rules can lead 
to several of them firing at one time. This could lead to a contradiction in 
determining the values of the outputs, if not resolved. Crisp values for the 
outputs come from denazification of their fuzzy sets. This can be calculated 
through many methods. One approach has been to take the center of gravity 
(COG) of the fuzzy outputs by their weights which is comparable to an 
averaging procedure. Another is the Mean of Maximum (MOM) method 
which examines the weight of fuzzy outputs in ratio to the number of outputs 
which are at their maximums. System outputs tend to be smoothed by the 
COG denazification while discrete values result from the MOM method. We 
have only used the center of gravity (COG) method in defuzzifying the 
outputs. 

Input 
Fuzzifler 

Rule 
Base 

Output 
Defuzzifler  1 

System 
Under 

Control 
 1  Sensors r i    ntiuiiwi a   i - 

Block Diagram of a Fuzzy Logic Control System 

Figure 4 
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4.   An Example Implementation of Fuzzy Control 

In this section we illustrate these ideas by showing how the fuzzy control 
approach developed in conjunction with SRI under RTNP can be 
implemented in a single microcontroller subsytem. Recall from section 2.4 
that the traffic spread parameter of the STIP3 protocol was determined using 
fuzzy logic based on the estimated degree of jamming and the estimated 
jamming period (1/jamming rate). 

4.1 Definition of the Fuzzy Sets 

The first step is to relate input parameters to fuzzy values. This is done 
by denning fuzzy sets for jamming and jamming period. For this example, 
jamming is broken up into five regions: {None, Small, Medium, Large, Total} 
and similarly, jamming period into five regions: {Continuous, Short, Medium, 
Long, None}. A few words of explanation about the meaning of each of these 
categories is needed. For jamming, recall that this parameter is an estimate 
of the degree of jamming experienced by each node; it is normalized to the 
range of [ 0, 1 ]. Thus, if the estimate is near zero, we assign the semantics of 
"none" to this level. On the other hand, if the estimate is near 1, we assign 
the semantics of "total" to this level. For intermediate values, the fuzzy set of 
"small" jamming is centered at 0.25; similarly "medium" is centered at 0.5; 
and large is centered at 0.75. The fuzzy set membership functions are shown 
in Figure 5 below. 

.    fj(x) 

1.0 

0.0 

0      0.07S    0.175      0.325      0.425      0.575      0.675      0.825      0.925       1.0 

■Jamming 

Membership Functions for 
Jamming Input Variable 

Figure 5 
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For the jamming period, we are attempting to capture the idea of how 
rapidly the jamming is being applied. If the period of a pulsed jammer is 
very short, then we assign the term "continuous" indicating that the pulse 
rate is so fast as to have the same impact as if it were continuously on. As 
the rate slows down, the period increases and we assign appropriate terms to 
each of these intermediate levels. At some point, the period becomes 
sufficiently long that the jamming no longer has the characteristic of a 
pulsed jammer, but appears simply as intermittent jamming. The STIP3 
protocol was designed to handle jamming of this type, and thus we assign 
jamming periods at this level the term "none", meaning no pulsed jamming. 
Also notice that unlike the first input, the input scale is not linear, but rather 
logarithmic. The logarithmic scale is used because the input covers a large 
dynamic range, but was judged to have only five significant levels. Observe 
that the fuzzy sets are centered as follows: 

(a) continuous 0.01 sec 
(b) short 0.1 sec 
(c) medium 1.0 sec 
(d) long 10.0 sec 
(e) none 100.0 sec 

The membership functions are shown below in Figure 6. 

1.0 

0.0 

Continuous  short Medium Long None 

0.01 0.02    0.05    0.2     0.5     2.0     5.0     20.     SO.    100 

Jamming Period (sec.) 

Membership Functions for 
Jamming Period Input Variable 

Figure 6 

In the same way that inputs are segregated into fuzzy sets, the output 
parameter, traffic spread is divided into 7 positions as well. The fuzzy values 
of the traffic spread parameter are {Zero, Very Small, Small, Medium, Large, 
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Very Large, Maximum}. The rules will relate fuzzy values for the two input 
variables to the traffic spread parameter. Several rules may be activated 
based on a single input combination, and therefore the collection of these 
fuzzy outputs must be combined. As noted in section 3, we have used the 
fuzzy centroid denazification approach to determine a single crisp output 
value from the fuzzy inference rules. In this case we specify the output 
membership functions as singleton values at the corresponding crisp value. 
These values for the output variable traffic spread are shown in Figure 7 
below. 

«A <*) 

1.0 

0.0 

Zero Very 
Small 

Singleton Positions 

Small  Medium   Large Very 
Large 

Maximum 

0        2.0 4.0    5.0    6.0 8.0       10.0 

Traffic Spread 

Fuzzy Set Membership Functions 

Figure 7 

4.2 Fuzzy Rules 

The next step in determining the fuzzy control is to define the set of fuzzy 
rules. Each rule must capture knowledge about how the system should be 
controlled for each of the possible fuzzy input variable combinations. Rules 
typically take the form: 

IF x is fuzzy valuel AND y is fuzzy value2 THEN z is fuzzy output valuel 

Here, x and y are input variables and z is an output variable. For the 
example problem, x would represent the degree of jamming, and y would 
represent the jamming period. We determine if "x is fuzzy valuel" by 
computing the membership function value for x in the fuzzy set 
corresponding to fuzzy valuel.    Similarly, we determine the membership 
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function value for y in the fuzzy set corresponding to fuzzy value2. The 
conjunction "AND" is evaluated using the possibilistic logic rules given in 
section 3.3, Table 2 Thus, for each rule, the minimum of the membership 
functions over the set of input variables for the corresponding fuzzy set 
values is selected. This value, in turn, determines the degree to which the 
output value is activated. Each rule produces a scalar value for the output 
variable z relative to some fuzzy set value. Since many rules may be 
activated, and these rules may produce scalar outputs relative to one or more 
fuzzy set values, some method must be used to reduce these to a single crisp 
value for the output variable. Several approaches have been used [4]. In 
this example we combine scalar values by pointwise addition over the domain 
of the output variable. We then compute the centroid of the resulting fuzzy 
set to produce a single crisp output value for traffic spread. 

To illustrate, we give four possible rules below and show how these rules 
would be activated by various input combinations. 

Rule 1: 
If jamming is none and jamming period is continuous, then traffic 

spread is very small. 

Rule 2: 
If jamming is small and jamming period is continuous, then traffic 

spread is small. 

Rule 3: 
If jamming is small and jamming period is none, then traffic spread is 

zero. 

Rule 4: 
If jamming is small and jamming period is medium,    then traffic 

spread is medium 

Suppose we determine the degree of jamming to be 0.11 and the jamming 
period is measured as 0.03 sec. From the membership functions for jamming, 
we find jamming is "none" (0.65) and "small" (0.35). Similarly, jamming 
period is "continuous" (0.56) and "short" (0.44). This input combination 
activates rules 1 and 2. Rule 1 produces an output ofmin (0.65, 0.56) = 0.56 
relative to the fuzzy set value "very small" for traffic spread. Similarly, the 
scalar value produced by rule 2 is min (0.35, 0.56) = 0.35 relative to the fuzzy 
set value "small" for traffic spread. Since no other rules are activated, we 
have an output which is 0.56 * "very small" (2.0) and 0.35* "small" (4.0). 
Using the centroid calculation, we compute a crisp value as: 
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traffic spread = [(0.56 * 2.0) + (0.35 * 4.0)] / [0.56 + 0.35] = 2.77 

Notice that in the event that only one fuzzy output set is activated, we 
get the "full value" of the associated crisp output value, even if the rule which 
activates the output is only partially activated. This can be seen in the case, 
for example, if jamming = 0.11, and jamming period = 4.0 sec, then only rule 
4 is activated with a scalar value which is min (0.35, 0.24) = 0.24. Since this 
produces an output for only the fuzzy output value of "medium", the centroid 
computation yields: 

traffic spread = [0.24 * 5] / [0.24] = 5. 

In a completely developed system with the input fuzzy sets as defined 
here, there could be as many as twenty-five (25) rules, one for each 
combination pair of input fuzzy values. In practice, it has been found [4] that 
often only a small fraction of the total possible number of rules are actually 
needed. This has two important implications. First, from a computational 
point of view, in a single processor environment, the computation associated 
with rules not actually necessary represents an additional computational 
load which can be eliminated. Second, in a distributed, multi-processor 
model, if nearly all possible rules are employed, then the system may exhibit 
a degree of fault tolerance if some processors fail and contribute nothing to 
the output calculation. This, of course, is only true to the degree that the 
overall performance is not particularly sensitive to a few "key" rules. For 
our purposes, this simple example is useful for illustrating implementation 
ideas. Clearly a more complete set of rules would be necessary for any 
practical system. Additional information with regard to the specific choices 
studied by SRI can be found in [1] and [11-13]. 

4.3 Implementation Using a Single Microprocessor 

Microprocessors/controllers are adequate devices for performing fuzzy 
logic control. The ease of developing fuzzy control with microcontrollers in an 
embedded system is enhanced by the tools that are available for them. Three 
possible ways exist to compute fuzzy engine calculations: hardware, software 
emulation, or lookup tables. Microcontrollers typically utilize one or both of 
the latter two of these possibilities, and the choice of which one depends on 
the required speed of the control system. Operating fuzzy logic control with 
lookup tables is faster than software emulation in completing the algorithm. 
The previous example will be used to generate lookup tables on a generic 
microcontroller. 

The membership functions, the rule base, and the singleton output 
values are coded into lookup tables for the fuzzy logic engine. The number of 
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entries for a membership function in these tables is constant so that each 
entry may be accessed by indexing instead of a linear search. The number of 
labels per input must be fixed as well for the same purpose. For the example, 
the membership functions are trapezoidal in shape and can be converted into 
a set of 6 values: {P1,P2,P3,P4,S1,S2}. This means that "Medium" jamming 
has a descriptor with values {0.325, 0.425, 0.575, 0.625, 10, 10} as shown in 
Figure 8. A similar table is created for the jamming period input. Note, 
however, that the log of jamming period must be computed. This is most 
easily done using a simple lookup table with interpolation for values not 
stored directly in the table. For the output variable, the singleton values are 
easily stored in a table indexed by fuzzy set value. 

Medium ,   (0.32S,   0.425.   0.575,   0.625,   10,   10) 

1.0 

^    janming 

Sl«tt»*Val div  (P2-P1) S2-MaXVal div  (P4-P3) 

Representing a Trapezoidal Membership Function 

Figure 8 

To represent the rules in a general way, the number of antecedents must 
be allowed to be variable. Therefore the lookup table for rules must be 
created in a way that will allow the microcontroller to distinguish between 
antecedents and consequents of a rule. This may be done by marking the end 
of the antecedents with a specific value which is recognized as such. This 
could place a restriction on the number of inputs and outputs that the system 
can handle, but for most practical systems these limits would not be reached. 

The fuzzy engine is an algorithm that first processes the inputs, then 
evaluates the rules, and finally determines the appropriate outputs. This 
algorithm is given below for a general case. Let the number of inputs be 
called NCI, and the number of labels (i.e. fuzzy sets) per input as LPI. If the 
number of cycles required to compute the membership function for one input 
in one fuzzy set is approximately X cycles, then the amount of time for 
fuzzifying all inputs is NCI*LPI*X cycles. For the rules, let the number of 
rules be labeled NR. The timing in processing a rule is dependent on the 
number of antecedents that are in that rule; however, we can take an upper 
bound of the total number of input variables as the number of antecedents in 
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each rule. If the average time of one evaluation of a rule antecedent is Y 
cycles, then the total time for processing the rules is NR*NCI*Y cycles. In 
defuzzifying the outputs, let the count of labels per output be placed as LPO 
and the number of outputs as NCO. Then if one output defuzzification takes 
Z cycles to finish and the final divide takes V cycles, the total number of 
cycles for all outputs is LPO*NCO*Z + NCO*V. One revolution of the fuzzy 
engine therefore can be said to require a total of (NCI*LPI*X) + 
(NR*NCI*Y) + (LPO*NCO*Z) + NCO*V cycles. Notice that the values for 
X, Y, Z, and V will depend on the type of microcontroller used to implement 
the fuzzy control engine. Some microcontrollers will be able to handle certain 
portions of fuzzy logic control better than others. The significance of this 
general formulation is that is shows how computational load depends on the 
number of input and output variables and the number of fuzzy sets used in 
describing these variables. 
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Fuzzify Inputs — 
for each input variable 
{    for each fuzzy label 

{    A = input variable value 
if ( A <= PI [variable, label] or A >= P4 [variable, label]) 

then member [variable, label] = 0 
else if (A <= P2 [variable, label] ) 

then member [variable, label] = (A - PI) * SI 
else if (A <= P3 [variable, label]) 

then member [variable, label] = 1 
else member [variable, label] = (P4 - A) * S2 

} 
} 

- Evaluate Rules — 
for each output variable 
{    for each fuzzy label 

{    fuzzyout [variable, label] = 0 } 
} 

for each rule 
{    minrule = MAX_VALUE 

for each antecedent (an input variable and fuzzy label pair) 
{    minrule = min(minrule, member [input variable, label])} 
fuzzyout [output variable, label] = 

fuzzyout [output variable, label] + minrule 

} 

- Defuzzify Outputs — 
for each output variable 
{    cennum = 0 

cendenom = 0 
for each fuzzy label 
{    cennum = cennum + 

fuzzyout [ variable, label] * singleton value [variable, label] 
cendenom = cendenom + fuzzyout [variable, label] 

if (cendenom = = 0) outputvalue [variable] = 0 
else outputvalue [variable] = cennum / cendenom 

} 

General Algorithm for Fuzzy Controller 
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5.   Distributed Architectures for Neural and Fuzzy Systems 

Several steps need to be taken in order to develop a system for 
distributing the fuzzy logic algorithm over a microcontroller network. Code 
from the fuzzy logic algorithm will be placed at each processing node in the 
microcontroller network. This code handles only the processing of the fuzzy 
logic control. The kernel must supervise the packets in the queues and 
schedule the fuzzy logic for processing. The combination of the kernel and 
the fuzzy logic algorithm is used to implement the distributed fuzzy logic 
control. We note that although this section discusses a distributed 
architecture in terms of the fuzzy control algorithm, a similar approach 
could be used for a distributed neural network implementation. As discussed 
in section 3.1, the underlying architecture of a neural network system and a 
fuzzy controller are the same, only the details of the computational algorithm 
differ. 

The network for distribution of the fuzzy logic control is composed of a set 
of homogeneous microcontrollers. These controllers are joined in a ring 
topology and are connected through serial communication links. The baud 
rate between nodes will be uniform in the network. Communication rates in 
the network must be much faster than the rates at which inputs arrive at the 
input nodes for fuzzy logic control, otherwise there will be a bottleneck at the 
queues of the input nodes. Processing speed at the nodes must be such that 
the processor is able to perform the communication task and processing task 
at a rate commensurate with the input data rate in order to prevent queue 
bottlenecks. 

The fuzzy logic algorithm described in section 4 above was written for 
processing the algorithm serially on a single microcontroller. For the 
distributed case it needs to be modularized into a fuzzification unit, rule 
evaluation unit, and denazification unit. Each unit operatres independently 
of the others, but data is passed from one to another as required by the 
algorithm. Each of these modules will perform one iteration of the function 
at a time. 

The network of microcontrollers will be exchanging data for fuzzy logic 
control and other processes through message packets. Message packets are 
restricted in size in order to minimize the communication overhead. Each of 
the packets for fuzzy logic control should consist of three pieces of 
information: an identification to indicate the type of packet (input, fuzzy 
input, etc...), a data block that gives the value of the packet, and a time 
stamp for the period when the packet was first sent. Each node will grab 
packets from the network depending upon the identification byte. Since a 
packet can be transmitted in both directions in a ring network, the time 
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stamp will indicate the age of the packet.   A typical format is shown in 
Figure 9, below. 

Identification Data Byte Time Stamp 

Message Packet Layout 
Figure 9 

The kernel placed in each node in the network will decide which packets 
a node should process for the fuzzy logic control. A simple distribution 
scheme for the kernel would allow only the output nodes to process the fuzzy 
logic algorithm. When the input nodes receive the input data for the fuzzy 
logic control, they broadcast the information as packets towards the output 
nodes in both directions through the network. The output nodes would wait 
for the input packets that they need before processing the fuzzy logic 
algorithm. If an output node receives the same input packet from both 
directions, it ignores the later packet. Clearly the computational load is 
much greater on the output nodes in this case. Although this simple case 
could work, it does not utilize the idle time coming from the queue delays at 
the input nodes and does not permit a scaleable design to handle increased 
computation. Figure 10 below illustrates this simple approach. 
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Inpuc Packet 

Input Packet 

Input Packet 

Input Packet 

C = communication 
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Figure 10 
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Instead of allowing only the output nodes to process the fuzzy logic 
algorithm, the kernel could be structured so that a node may process a 
portion of the fuzzy logic algorithm if: 

1) it has the data packets necessary for it, 
2) the amount of processing time that it takes is less than the queue 

delay for those packets, and 
3) the microcontroller is idle. 

This will require that the kernel sift through the queues to determine what 
type of information that it has at all times. Priority for processing packets in 
the queues will be on a first-come first-serve (FCFS) basis. If the node does 
perform the processing, the results are reinserted back into the queue as 
packets and again are broadcast towards the output nodes. Once a packet 
reaches the last output node in the direction that it takes through the 
network, it finishes its route. This method is a better approach for the 
distribution since the network resources are dynamically accessed dependent 
on the current delays of the system. 

Some other considerations need to be addressed by the kernel. It is 
necessary to determine at the output nodes if the processing should complete 
whenever it receives a new input or wait until it receives all new inputs. 
Synchronization will not be necessary between the output nodes, since they 
will change their values whenever they can do so. Finally, if an output node 
never receives all of the information that it requires, or if there is some real- 
time constraint for outputs to change, there needs to be a method for 
degrading to some value, either abruptly or smoothly. Figure 11 illustrates 
this appoach. 
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5.1 Future Investigations 

In this section we have outlined a design approach to distribute the fuzzy 
logic control over a ring network of microcontrollers. A complete 
development of this design, testing, and verification in the context of a 
simulated communication network environment has not been possible withm 
the scope of this effort. We make suggestions for the next stages of research 
in this area. 

Examples will be needed to test the kernel for varying conditions in the 
network and fuzzy logic control. These examples should represent extreme 
cases that the kernel might encounter. Problems should be developed for 
multiple inputs and outputs at a single node. Also, cases should be made 
where the relative distance between inputs and outputs in the network is 
changed. The ratio of processing to communication speeds at the nodes 
should be varied in some examples. The number of nodes in the examples 
should be varied as well. 

Code from the fuzzy logic engines and the kernel should be implemented 
in a network of microcontrollers to demonstrate the proposed approach. To 
verify performance, this system must be tested in a realistic network 
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environment.   Such an environment could be provided using the simulation 
tools developed by SRI as part of their work on RTNP. 

In addition to the distributed implementation approach described here, 
there have been several recent developments in fuzzy/neural systems 
research which should be investigated in the context of this application area. 
Most notably is work being done in genetic programming [14]. Some of the 
problems encountered by SRI in developing satisfactory algorithms for fuzzy 
control and neural networks might be solved using these new approaches. 
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