
AFRL-IF-RS-TR-1998-236
Final Technical Report
January 1999

A FRAMEWORK FOR THE CERTIFICATION AND
EVALUATION OF REAL-TIME SAFETY-CRITICAL
INTELLIGENT SYSTEMS

University of Illinois at Chicago

Jeffrey J.P. Tsai

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

u I
: CD

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. ^ £Q

to

o
CO

This report has been reviewed^ the Air Force Research Laboratory Mormation
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1998-236 has been reviewed and is approved for publication.

APPROVED:
C^loJL^

CRAIG S. ANKEN
Project Engineer

i/4jf fbl>(&*>
FOR THE DIRECTOR:

NORTHRUP FOWLER, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force ^search
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed^by
your organization, please notify AFRL/IFTB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public »porting biirden I« this collection ol information is estimated to average I hoot ptr response, incliidina the tkn to. reviewing .nstiuctions, searching existing irt« sources, oothonng .nd msitta jtig tta drts ■«^^^"*J
me coSlien of Worn,«™. Send comments regarding this burden estimate or any ether aspect ol ltd. collection .1 information ircMrag suggest»™r for reduc^.this b^en to Washin|ton 1Heedguarter. Sennces, Directorate lor Information
Opsratjons and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01881, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

 January 1999

3. REPORT TYPE AND DATES COVERED

Final Jul 95 - Oct 97
4. TITLE AND SUBTITLE

A FRAMEWORK FOR THE CERTIFICATION AND EVALUATION OF
REAL-TIME SAFETY-CRITICAL INTELLIGENT SYSTEMS

6. AUTHOR(S)

Jeffrey J.P. Tsai

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Illinois at Chicago
Department of Electrical and Computer Science
851 South Morgan Street
Chicago IL 60607

9. SPONSORINGjMONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/IFTB
525 Brooks Road
Rome NY 13441^505

5. FUNDING NUMBERS

C - F30602-95-1-0035
PE - 625581
PR - 5581
TA - 27
WU - 95

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1998-236

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Craig S. Anken/IFTB/(315) 330-4833

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum200 mrdsl
The concept of software architecture has recently emerged as a new way to improve our ability to effectively construct large
scale software systems. However, there is no formal architecture specification language available to model and analyze
temporal properties of complex real-time systems. In this paper, an object-oriented logic-based architecture specification
language for real-time systems is discussed. Representation of the temporal properties and laming constraints, and their
integration with the language to model real-time concurrent systems is given. Architecture based specification languages
enable the construction of large system architectures and provide a means of testing and validation. In general, checking the
timing constraints of real-time system is done by applying model checking to the constraint expressed as a formula in
temporal logic. The complexity of such a formal method depends on the size of the representation of the system. It is
possible that this size could increase exponentially when the system consists of several concurrently executing real-time
processes. This means that the complexity of the algorithm will be exponential in the number of processes of the system and
thus the size of the system becomes a limiting factor. Such a problem has been defined in the literature as the "state
explosion problem". This paper proposes a method of incremental verification of architectural specifications for real-time
systems. The method has a lower complexity in a sense that it does not work on the whole state space, but only on a subset
of it that is relevant to the property to be verified.

14. SUBJECT TERMS

Real-Time AI, Performance Evaluation, Monitoring, Anytime Algorithms

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

28
18. PRICE CODE

20. LIMITATION OF
ABSTRACT

-S&s>
yülw^

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.1«
Designed using Perform Pro, WHS/DIOR, Oct 94

Abstract

The concept of software architecture has recently emerged as a new way to improve our ability to effectively

construct large scale software systems. However, there is no formal architecture specification language available to

model and analyze temporal properties of complex real-time systems. In this paper, an object-oriented logic-based

architecture specification language for real-time systems is discussed. Representation of the temporal properties

and timing constraints, and their integration with the language to model real-time concurrent systems is given.

Architecture based specification languages enable the construction of large system architectures and provide a

means of testing and validation. In general, checking the timing constraints of real-time systems is done by

applying model checking to the constraint expressed as a formula in temporal logic. The complexity of such a

formal method depends on the size of the representation of the system. It is possible that this size could increase

exponentially when the system consists of several concurrently executing real-time processes. This means that the

complexity of the algorithm will be exponential in the number of processes of the system and thus the size of the

system becomes a limiting factor. Such a problem has been defined in literature as the. "state, explosion problem".

We propose a method of incremental verification of architectural specifications for real-time systems. The method

has a lower complexity in a sense that it does not work on the whole state space, but only on a subset of it that

is relevant to the property to be verified.

Keywords: Model-checking, architecture, Requirements specification, labeled transition system.

1 Introduction

For the construction of large concurrent and real-time systems, it is useful to build an architecture level

description of the system. This enables representation of how the components relate to each other in a global way

in addition to providing a means of constructing and reusing them. This will also help to execute and check the

performance of the system before it is actually built. But, for this to be feasible, the architecture must be specified

in a way that allows easy analysis and checking of the runtime constraints of the specification. The execution of

such architecture descriptions can be applied in stages of a system development, for early prototyping to check

consistency, for verification of various aspects of concurrency and timing, for testing that communication between

components satisfies architectural constraints, etc.

One of the most important issues concerning the real-time systems is to verify that the system meets its timing

constraints. Majority of such systems contain multiple processes executing in parallel. For representing such

systems, one needs an architecture level language supporting object-oriented features, a way of representing data,

knowledge and operations, communication between objects; and a semantic foundation using which the properties

of the system can be verified.

The architecture specification language used here is an object oriented specification language based on logic

[1]. The syntax consists of a set of object and activity frames. The object hierarchies are represented through

inheritance relations and activities are modeled as processes. The semantics is defined using an extended Horn

clause logic. Standard Horn-clause logic provides neither a hierarchical structure with property inheritance nor

an exception mechanism to its rules and constraints. We use a variant of Horn-clause logic supplemented with

these two mechanisms via the concept of non-monotonic reasoning to establish a formal foundation for the object-

oriented architecture specification language. The non-monotonicity is a desired property that the semantics must

support because in the hierarchy, for example, some properties of objects may be overridden during the course

of software development. The language supports most of the mechanisms for modeling concurrent distributed

systems such as AND and OR-parallelism, non-determinism, synchronous and asynchronous communication.

The correctness of the functionality of the system is determined by computing the models (non-monotonic

extensions) of the horn clause logic program. The time-dependent aspects are modeled using a temporal logic

framework. The correctness of the specification with respect to a wide variety of temporal properties is determined

using model checking [2,3,4,5,6]. Temporal logic has been used extensively for the specification and verification

of concurrent systems. It was found especially useful in proving properties of concurrent programs describing

systems at any level of abstraction, and for compositional reasoning. Different systems of temporal logic use

different modalities and notations. However, they generally rely on either linear or branching time logics. In a

linear time logic, the temporal modalities are defined with respect to a single path which the program follows.

Typical linear time operators include "always," "sometimes," "next," and "until." Properties expressed by

branching time logics include "inevitably," (for all futures, sometime) "potentially," (for some future, sometime)

and "invariably" (for all futures, always). With temporal logic based frameworks, it is difficult to specify notions

of absolute time. Generally, only relative orderings between processes can be stated.

2 Background and Significance

In the following, we use the syntax and semantics of an extension of modal mu calculus (called #7» [7,8].

[7] gives an algorithm for model-checking using this extension of mu-calculus and a labeled transition system as

a representation of the system. This algorithm has a small polynomial time complexity. Temporal aspects of

the architectural specification are also discussed and a method of verifying its timing constraints through model

checking is given.

Several methods for model checking proposed so far in the literature basically focus on deriving a reduced,

compact representation of state-spaces before verifying the state-space against a property [9,11]. Nevertheless, the

following problem remains: whenever a change is induced in the specification, we have to rebuild the state-space

again from scratch, however minor that change might be. Incremental model checking is an efficient state-

space exploration based method for the verification of systems that frequently undergo changes in their design

and requirement phases. Instead of building the representation of the system from scratch after any change is

introduced into the system, the representation of the system is incrementally modified so that the new state-space

satisfies the revised specification. This gives another use of this method: if the change is local, i.e, applies only

to a component of the system, then one can analyze the impact of that change on other components and on

the overall behavior of the system. [5] gives an incremental model checking algorithm for the alternation free

fragment of modal mu-calculus for a system represented by a labeled transition diagram. Their algorithm takes

time linear in the size of the labeled transition diagram in the worst case, but in the best case its complexity is

linear in the magnitude of the change applied.

In terms of applicability of the algorithm to practical problems, our method can be applied for efficient verifi-

cation of temporal properties of systems that frequently experience changes in their requirements, which demands

changes in their design i.e, the state space representation. However, in some cases, the time complexity of such

an incremental algorithm could be as bad as the standard model-checking algorithm [7]. Such cases arise when

the change made in the state-space propagates through the whole state-space.

3 Motivation

Verification of safety critical timing constraints of a specification representing a real-time concurrent system

can be a very time-consuming process. The complexity of model checking for a given specification, represented as

a model for some sentence in temporal logic, depends on the number of states of the model. Moreover, the size of

the state space increases exponentially with the number of concurrent processes in the system. The complexity

of the temporal logic formula is another factor determining the performance of the model checking. Formally,

the complexity of the algorithm [3] is 0[(|M|M)c] where \M\ is the size of the model M corresponding to the

specification, <j> is the sentence in the temporal logic and c is a constant that depends on the complexity of the

formula <f>. In practice, all the formulas needed to express the timing properties of real-time systems have a

complexity of not more than c = 2. Hence, the main issue is to avoid the state explosion since size of M depends

on the number of states. One of the potential solutions is to build an abstraction of the system that has a

smaller state space and yet the same behavior (as suggested in [10]) and then apply the model checking to the

abstraction. Another solution is to perform incremental runs of the algorithm on the system. This will avoid

repeated reference to the whole state space of the system and hence the performance of each incremental run will

not depend on the size of the whole state space. The incremental algorithm in the best case depends only on

the size of the change made to the model (transition system). [5] gives an example to which incremental model

checking is applied to verify certain timing properties and shows that every incremental run of the algorithm can

be performed in constant time irrespective of the number of processes of the system.

4 Modal Mu-calculus

Modal mu-calculus is a powerful temporal logic that can express the safety, liveliness and fairness properties of

real-time systems. It is shown in [3] that a restricted fragment of propositional modal mu-calculus is adequate for

formalizing most temporal reasoning about distributed real-time programs and they also give a small polynomial

time complexity model checking algorithm for any specification that can express all temporal assertions found in

practice.

The performance of the model checking algorithm depends on the complexity of the fix-point assertion to be

verified. For a formula in which the alternating depth [3] of least and greatest fix-points is one, the algorithm runs

in linear time. Fortunately, almost every temporal property of any real-time system in practice can be expressed

by such a formula. Syntax and semantics of RT/x is explained in [7].

5 Temporal aspects of the architectural specification

[7] gives constructs to represent timing constraints of specifications. In particular it gives constructs for

representing clock activities and shows how these are implemented by integrating them with the underlying

parallel logic program. Two kinds of timing activities can be modeled here - the periodic and the sporadic

processes. The language also uses certain built in temporal operators like next, henceforth, eventually, until, and

precede. These constructs have a straight forward conversion into KTp.

6 Verification of timing constraints of architectures for real time systems through

Model checking

To verify a program through model checking treat the specification as a structure. Then determine whether

this structure is a model for sentence of RT/z that expresses a desired property of the specification. The procedure

for determining whether a structure is a model of KI> has acceptable time-complexity. Model checking gives

us a powerful mechanism to determine the correctness of our specification relative to a wide variety of temporal

properties. The properties that we want to verify are the safety properties like state invariants, global invariants,

partial correctness, mutual exclusion and deadlock freedom, and liveliness and fairness properties.

6.1 Expressing specifications as models

To verify a program through model checking we treat the specification as a transition system. Then we

determine whether this transition system is a model for the RT/i sentences that express the desired property of

the specification. A specification can be viewed as a transition system in the following way: Given a set of states

of the computation, the specification tells us for each state, which other states can be reached by a single step

of computation. Formally, a transition system is a triple A=<HA,SA,RA >, where S^ is the alphabet of the

transition system, SA is a set of states, and RA is a function from SA * %A to 2sA. Each transition has an

associated label from HA- To convert a specification into the corresponding transition system, create a new state

for each unique action (or alternative action) and precondition in the specification. Let T,A be the set of actions,

preconditions and alternative actions of the specification. Then, for every two states corresponding to two actions

or preconditions connected by a conjunction, create a transition between these two states labelled by the first

action/precondition. Here, we can collapse any sequence of states that donot contribute to the time-dependent

behaviour of the specification.

When several processes execute concurrently, each state of the execution is a combination of the states of

the individual processes. To form a transition system representing the concurrent execution of the component

transition systems, we form the product of the component transition system. A transition in the combined

system is then due to a transition in one of the component transition systems. We add, however, a constraint

on transitions in the combined system. There are situations requiring two actions of component systems to be

executed simultaneously. If.this constraint is met by the product of two transition systems, we call the resulting

system synchronized.

Definition 1 Given the transition systems Ax = (£i,5i,Ai),..., An = <S„,S„,Rn), the synchronized product

of Ai, ..., An is the transition system A = (£,S,R), where

(ii) S = Si x ... x Sn

("0 Il*=i vk € ^(rifc=i "*><*)> for anyl< *> •? ^ B» a"«1 * ?* i» either

• a G Ej 0 si and ui e Äi(«t,a) A üJ G Rj{uj,a)

• a G £i - £j and «i € Ri{ui,a) A Vj = Uj.

(let fl*=i denote the formation of an n-tuple).

Note that the synchronized product of transition systems is both associative and commutative. We could

also express it as an operation over two transition systems and obtain the product of several transition systems

through repeated product formation.

FYom the synchronized product of the processes under consideration, we construct the model intended to

provide a model for the sentences of the temporal calculus to be tested.

Definition 2 Given a transition system A = (£A,SA,RA), the model M = (S,R,L) corresponding to A is

(i) S = SA

(ii) R is a function from 5 to 2s, such that t G R(s) if for some label a G EA» t G RA(S, a)

(iii) L is a function from 5 to 2E'\ such that if there exist states s,t G SA and a label a G XU, and

t G fi,i(s,a), then a G L{t).

Note that the set of proposition^ constants of the model is the set of labels of the corresponding transition

system.

7 Incremental Verification

A concurrent real-time system can be considered as built up by undergoing a series of incremental updates

to its specification for example by addition or deletion of states/transitions to the transition graph representing

the specification. Suppose the system satisfies a set of temporal properties. These properties need to be verified

through model-checking every time the system undergoes a change. But it would be very costly to repeatedly

apply model checking to the whole state space every time a transition is added/deleted from the graph. Given a

set of changes to the specification one wants to derive the new assignment of variables/properties to states and

at the same time no global information should be maintained between updates. Here we consider the verification

of least fix-point formulas using incremental model checking. For greatest fix-point formulas, the method is

completely dual. Also, every greatest fix-point formula can be transformed into a least fix-point formula by

introducing negations. In the next subsection, we first show how non-incremental model-checking can be done

using the structures defined.

7.1 Preliminaries

We re-write a fix-point formula as a set E of equations of the form Xi = U where Xi € Var, the countably

infinite set of variables, and ft is a prepositional constant or obtained by applying exactly one operator to

variables. For example, consider the following least fix-point formula

F = nz.QV(PAVOz).

This is re-written as

Xi = X4 V Xi

Xi = Xa A X3

x3=vo*

X4 = Q

XS = P

Let Subf(F) represent the set of all sub-formulas of the fix-point formula F. Hence, for the above example,

Subf(F) = {Xi,Xi,X3,X4,Xs}. In the following procedure, we make use of a state-variable graph SV which is

defined for a formula F and a model (transition system) M = (S, A, R) where 5 is the set of states, A is the set

of actions and R is the transition relation, as follows:

SVG = (N'tE', E") where N' = {< a,X >\ s € S, X € Subf(F)}.

(i)For all states s € 5, < s,Xi >->< s,X, > G E' and < s,Xk >-*< s,Xj >€ E' if Xj = A'(VA't or

Xj = Xi A Xk-

(ii)If s -4 s' G R and Xt = VO Xj or X{ = 30 *; then < s', X, >-►< s, X< >G £'.

(Hi) For all states se5,<«,X >-►< «,z > € £" where X is the top-level fix-point formula or sub-formula (in

case of nested fixpoint formulas) and z is the variable that comes under the scope of the fix-point operator of the

formula X.

Definition 7.1 A variable assignment is an assignment of variables to states of the model such that a variable

true in a state is assigned to that state. Formally, there is a set v{S) for each state S of the model such that

V{S) = {X\f(X, S) = true}, where f{X, S) is true iff the variable X ü true in the state S.

We associate a truth value with every node. Initially, let all the nodes be false, indicating that all variables

defined in E are false in all states. Note that since we are computing least fix-point, the variable assignment for

each state at any time should be lower than the variable assignment corresponding to the fix-point in the lattice

of the variable assignments. This is because the method works by monotonically raising the variable assignment

till it reaches fix-point. Now, we make some nodes of SV graph true so that the variable assignment reaches

the least fix-point. If {X = P} € E, where P is a prepositional constant, then for all states s belonging to

V(P) make < s,X > true. Also, for all nodes < s,X{ > such that s has no successors and Xi = VO Xj; € E

(Xt = 3 O Xj € E), make < s, X{ > true (false).

After the above initialization step, we start the fix-point computation. Intuitively, this computation can be

considered as a repeated bottom-up evaluation of a tree T in which the nodes are labeled as < X, OP > where X

is defined in E or X is a free variable occurring in the formula, and OP € {A, V, -., O. -} or 0P is a prepositional

constant. We also associate a value for each node which is the set of states satisfying the variable corresponding

to the node. For instance, in the above example, T would be

<Xi,V>

<X2,A> <X4,Q>

<*3,0> <Xi,P>

t

Figure 1. Formula Graph.

Every leaf of the form < X,P > where P € Prop is given the value V{P) i.e. set of states in which P is true.

The leaf corresponding to the free variable z is assigned the value <j> (since we are evaluating the least fix-point).

The values of all other nodes is undefined. Each inner node < X, OP > is evaluated by applying the operator

OP to its successor nodes with A meaning set intersection, V meaning set union and -> meaning set complement.

The algorithm for evaluating the least fix-point is as follows

procedure evaluate(T);

begin

for all nodes of the form <z,_> do

val(<z,_>) = null;

for all nodes of the form <X,P> do

val«X,P» = V(P);

repeat

prev = val(<z,_>);

Bottom-up evaluation;

val(<z,_>) = val(root);

until prev = val(root);

end

val(root) at the end of the procedure is the set of states satisfying the least fix-point formula F. We now use the

values of the nodes in T to update the truth values of the nodes in SV graph. That is, for each node < X, OP >

in T and for each state s € val(< X, OP >) make all nodes in SV graph of the form < s,X > true if they are

already not true. This gives us the new variable assignment corresponding to the fix-point formula F.

7.2 Incremental Algorithm

This algorithm takes as input a set S of changes to the transition system, the set E of equations corresponding

to the least fix-point formula F to be verified and the state-variable graph SV and produces as output a new graph

SVi corresponding to the new variable assignment. Note that the input SV graph should be the one obtained by

an application of the non-incremental algorithm to F and the model before the changes S are introduced into the

transition system. The changes may be addition or deletion of transitions, or changes in the set of propositions

that are true in a state in the labeled transition system (LTS). In the following, VO and 30 represent universally

and existentially quantified next time operators respectively. The algorithm runs in three phases. In the first

phase {phases 0 and 1) we compute the direct effects of the changes on the state-variable graph. The second

phase involves updating values of SV graph in order to account for the changes made in the first phase. In the

final phase, we do the actual fix-point iteration by making as many nodes true (for least fix-points) as possible.

When we have a set of changes to the transition system, we consider one change at a time i.e, execute the whole

algorithm for an element in 6 before considering any other element. Also, the lists used in the algorithm are sets

i.e, there is no ordering between the elements and no multiple occurrences of any element in the list.

Algorithm

Phase 0: If a transition (sm, s„) is added to (deleted from) the LTS, then for all X and X, such that Xj = VOX

or Xj = 3 O*i add(delete) the edge < s„,Xf >-+< sm,Xj > to SV graph.

Phase 1(a):

• If < sn,Xi >-+< sm,Xj > is added to SV graph and X,- = VO X, and < sm,Xj > is true and < a»,X > is

false then make < sm,Xj > false.

• If < sn,Xi >->< sm,Xj > is added to SV graph and Xj = 3OX and < sm,Xj > is false and < s„,X > is

true then make < sm,Xj > true.

• If < sn,Xi >->< sm,Xj > is deleted from SV graph and Xj =V04 and if < s„,X > was its only false

predecessor, then make < sm,Xj > true.

. If < sn,Xi >->< sm,Xj > is deleted from SV graph and X, = 3 O *i and if < s„,X > was its only true

predecessor, then make < sm,Xj > false.

Phase 1(b):

• for every edge < s, X< >-►< s', Xj > deleted such that both < s, X > and < s',Xj > are true, make < s', Xj >

false and add it to F and also to another list F'.

• for every edge < s,X >->< s',Xj > added such that X and Xj come under the scope of the same fix-point

operator, and both < s, X > and < s', Xj > are true, make < s', Xj > false and add it to F and also to another

list F'.

10

Now we propagate these changes to the successors of the nodes whose values were updated in phase 1(a).

We define two kinds of lists of the SV graph nodes namely, the true list T consisting of all the nodes that were

changed from false to true in phase 1(a) and the false list F defined in a dual manner.

Phase 2(a):

for each node < sm, Xi > € F do

• for each successor < s„, Xj > of < sm, Xi > such that Xj = Xi V Xk or Xj = 3 O %i do

if < sn,Xj > is true and has no true predecessors then make < sn,Xj > false and add < s„,Xj > to F.

• for each successor < s„, Xj > of < sm, Xj > such that Xj = Xi A Xk or Xj = V O X\ do

if < s„, Xj > is true, then make < sn, Xj > false and add it to F.

• for each successor < s„, Xj > of < sm, Xi > such that Xj = Xi V Xk or Xj = 3 O Xi do

if < sn,Xj > is true and has a true predecessor then make < sn,Xj > false and add < s„, Xj > to F and F'.

•if < s„,Xj > is the only successor of < sm, Xi > and Xj € Var then

if < sn, Xj > is true then make it false and add it to F.

•delete < sm,Xi > from F.

Phase 2(b):

for each node < sm,Xt> € F' do

• if (Xi = Xj VXk or Xi = 3QXj) and < sm,Xi > has a true predecessor then make < sm,Xi > true and add

it to T.

• if (Xi = Xj A Xk or Xi — V O -^0) and < sm, -X* > has no false predecessors then make < sm, Xi > true and

add it to T.

•delete < sm, Xi > from F'.

Phase 3:

for each node < sm, Xi > € T do

• for each successor < sn, Xj > of < sm, Xi > such that Xj = Xi A Xk or Xj = V O Xi do

if < s„, Xj > is false and has no false predecessors then make < sn, Xj > true and add < sn, Xj > to T.

11

• for each successor < s„,Xj > of <sm,Xj> such that Xj = Xi V Xk or Xj = 3 O*i do

if < s„,Xj > is false, then make < sn,Xj > true and add it to T.

•if < sn, Xj > is the only successor of < sm, Xi > and Xj € Var then

if < s„, Xj > is false then make it true and add it to T.

•delete < sm,Xi > from T.

Note that if there is a nesting of fix-point operators in the formula, then the phases 2 and 3 have to be

executed for each fix-point sub-formula in a bottom-up manner, i.e, the inner most fix-point sub-formula has to

be evaluated first.

Let SVi be the final state-variable graph obtained after applying the above four steps. The set of states

satisfying the fix-point formula in the new model are all states s such that < s,X >€ SVi is true, where X is the

variable appearing in the root of the evaluation tree T of the fix-point formula.

The above algorithm has a worst case complexity of the product of the sizes of the model and the formula, the

size of model being the number of states and transitions and that of the formula being the number of equations

in E. This is because, in the worst case we may have to visit each node of the SV graph. But in the best case,

the complexity is linear in the size of the change applied to the model.

Consider the following simple example. The system consists of only 3 states with the following transition

graph. The atomic proposition P is true only in state 3. Let the property to be verified be nx.(P V 3 O ») *• i-e,

P will eventually be true along some path. The state-variable graph obtained is also given in the figure.

12

X = Xi V Xi

O 3 Xi = P

X2 = 3 O *

State-apace Graph

(I,PV ao;

(*'p) (1.BO*)

ft«;

T (2,P) (S.SQx)

(3,P V 30; ► (3,x)

T

(1,*) T (3>p) (3ZQx)

■ (z,p v 3o;

/\

SV graph before adding the edge (2,3)

Figure 2. State Variable Graph Before Update.

Initially, assume all nodes are false. The bottom up evaluation results in the variable assignment which is

represented in the figure. The node < s,X > labeled T implies X is true in state s. From the figure, we conclude

that the fix-point formula is true only in state 3. Now, let a transition from state 2 to state 3 be added to the

system. Using the incremental algorithm, this results in change in the variable assignment such that the formula

is now satisfied in all three states of the system.

7.3 Comments

Consider the updated transition graph and its corresponding SV graph in the previous example. If the edge

(2,3) is deleted, we need to have a way for falsifying all the nodes in the cycle of the SV graph since the formula

is no longer satisfied in states 1 and 2. This is done by the phase 1(b). That is, if we have a cycle or a strongly

connected component in which all the nodes are of the same kind (i.e, either need all or atleast one of their

predecessors to be true for their value to be true) then all the nodes in the cycle should be false for the variable

assignment to be a fix-point solution.

13

T (1,P V 3Qx)

/ \
(l.P) T (1.30*)

SVG after the update

Figure 3. State Variable Graph After Update.

We now discuss the effect of different kinds of changes on the reachability graph.

• An edge s-> s' is added: This results in addition of edges < s'.Xi >-*< s,Xj > for all relations of the

form Xj = VO Xi or Xj = 3 O*«• When Xj = 3 O Xit <s,Xj> cannot become false if its already true

and so the propagation of change stops at this node. But if Xj = V O *«, then < s, Xj > can become false

and we need to propagate the changes further in the SV graph.

• An edge s -> s' is deleted: This results in deletion of edges < s',Xi >-»< s,Xj > for all relations of the

form Xj = V O Xi or X,- = 3 O *<• When Xs = V O Xit < s,Xj > cannot become false if its already

true and so the propagation of change stops at this node. But if Xj = 3 O **, then < ., Xj > can become

false and we need to propagate the changes further in the SV graph. This accounts for increase in cost of

updating the SV graph.

• L(S) D L'(S): The effect of decreasing the set of propositions that are true in state S is more costly than

the case when 1(5) C L'(S). For example, if P is set to true in state 2 after adding the edge (2,3), it does

not change values of any nodes except the node < 2, P >. But if P is set to false in state 3, then the change

has to be propagated further in the graph.

14

• A new state S is added: Here we have to add new nodes and edges and then use L(S) to assign values to

the new nodes and also propagate it to the already existing graph.

• A state S is deleted: First delete all the out going edges from all the nodes of the form < S, X > and

compute its effect. Next delete these nodes and all the incoming edges to these nodes.

When there exists a cycle or strongly connected components in the SV graph such that all the nodes in them

are of the same kind, then for the variable assignment, obtained after the update, to correspond to the least fix

point, all the nodes in the cycle (or sec) should be false. For example, when the edge (2,3) is deleted we assume

that the node (2,30x) belongs to a cycle (containing all nodes of the same kind) and make it false even though

one of its predecessors is still true, and propagate this change which makes all nodes of the cycle false. In cases

when such an assumption is not correct, we undo the effect of such assumptions in the phase 2(b).

It is also important to note, from point of view of implementation, that when a user specifies a change to the

system, the lower level representation of the system (which is the transition graph here) should also be updated

incrementally before we can proceed to incrementally update the state-variable graph. In practice, it is very

costly to represent the whole transition graph of the composition of the processes of the system. Hence, while

constructing the global transition graph, only reachable states are considered. Also, every node in the SV graph

has a counter associated with it that maintains the number of false (true) predecessors if the node requires all

(some) of their predecessors to be true for it to be true.

8 Future Work

FRORL [1] is an architecture specification language that can express inheritance, non-monotonicity and object

oriented features. It is to be extended to support architecture level features like interconnection relations between

various objects, modularization, synchronous communication, event modeling. When the system consists of

many processes executing independently, they have to be analyzed via compositional model-checking [11] and

incremental approach to such compositional checking techniques. We are currently working on determining the

kind of properties at the abstraction of architecture level that can be verified incrementally. We have also started

the implementation phase and hope, by conducting several experiments, to analyze the efficiency of the overall

incremental process from the higher level of user specification up to the construction and analysis of the state-

15

variable graph.

A lotof research ha, been done by people on representing real-time distributed systems using the architectural

concepts. But veryfew have explored ways of integrating this with model checking i.e, integration of system

description and its verification both at the level of architecture. We hope to improve upon the language given in

this paper so that some good number of properties of such systems can be expressed and verified.

References

[1]. J.J.-P. Tsai, T. Weigert, and H. Jang, A Hybrid Knowledge Representation as a Basis of Requirement

Specification and Specification Analysis, IEEE Trans. Software Engineering, SE-18, No. 12, 1992.

[2]. H. R. Andersen, Model Checking and Boolean graphs, ESOP, 1992.

[3]. E. Allen Emerson, and Chin-Laung Lei, Efficient Model Checking in fragments of Proposition^ mu-calculus,

Logic in Computer Science, 1986.

[4]. R. Cleaveland, and B. Steffen, A linear time Model checking algorithm for Alternation free modal mu-calculus,

Formal Methods in System Design, 1986.

[5]. V. Sokolsky, and A. Smolka, Incremental model checking in modal mu-calculus, 6th International conference

on Computer Aided verification, 1994.

[6]. E. A. Emerson, C. Jatla, and A. P. Sistla, Efficient Model-checking for fragments of mu-calculus, International

Conference on Computer Aided Verification, Crete, Greece, June 1993.

[7]. J. P. Tsai, and J Weigert, Knowledge based software development for Real-time distributed systems, World

Scientific, 1994.

[8]. D. Kozen, Results on Proposition^ mu-calculus, Theoretical Computer Science, 1983.

[9]. J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang, Symbolic model checking: 1020 states and beyond.

IEEE Symp. Logic in Computer Science, pp. 428-439,1990.

[10]. H. De-leon, and Orna Grumberg, Modular abstractions for verifying Real-time Distributed sy.stcms. tonnal

methods in system design, 1992.

16

[11]. E. M. Clarke, D. E. Long, and K. L. McMillan, Compositional Model checking, 4th Annual Symposium on

LICS, June, 1989.

17

MISSION
OF

AFRIANFORMATION DIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

