
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for
Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Dudget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY /Leaveblank/ 2. REPORT DATE

ll.Jan.99

3. REPORT TYPE AND DATES COVERED

DISSERTATION
4. TITLE AND SUBTITLE

PERFORMANCE ANALYSIS OF THE SIMULTANEOUS OPTICAL

MULTIPORCESSOR EXCHANGE BUS ARCHITECTURE

5. FUNDING NUMBERS

6. AUTHOR(S)

MAT DOSKOCZ EDWARD K

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

UNIVERSITY OF ALABAMA HUNTSVILLE
8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

THE DEPARTMENT OF THE AIR FORCE
AFIT/CIA, BLDG 125

2950 P STREET
WPAFB OH 45433

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

FY99-47

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Unlimited distribution
In Accordance With AFI 35-205/AFIT Sup 1

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

1999021619 1
14. SUBJECT TERMS IS. NUMBER OF PAGES

118
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

PERFORMANCE ANALYSIS OF THE SIMULTANEOUS OPTICAL

MULTIPROCESSOR EXCHANGE BUS ARCHITECTURE

by

EDWARD KOPLIN DOSKOCZ

A DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in

The Department of Electrical and Computer Engineering

of

The School of Graduate Studies

of

The University of Alabama in Huntsville

HUNTSVILLE, ALABAMA

1998

UMB &

Copyright by

Edward Kopiin Doskocz

Ali Rights Reserved

1998

DISSERTATION APPROVAL FORM

Submitted by Edward K. Doskocz in partial fulfillment of the requirements for the
degree of Doctor of Philosophy with a major in Computer Engineering.

Accepted on behalf of the Faculty of the School of Graduate Studies by the
dissertqiien corflfnittee:

l/*fig Committee Chair
{Date)

c&- ^fe^- Department Chair

M flvJS; sMi

fcfirflZsl/ tj'lfa

. College Dean

Graduate Dean

ui

ABSTRACT
School of Graduate Studies

University of Alabama in Huntsville

Degree Doctor of Philosophy College/Dept. Engineering / Computer

Name of Candidate Edward Koplin Doskocz

Title Performance Analysis of the Simultaneous Optical Multiprocessor Exchange

Bus Architecture ___

The computing world has entered an era in which executing high-

performance applications has become commonplace in the scientific,

engineering, and business workplace. The trend in these applications is toward

the execution of larger or more detailed models in less time, with parallel

processing seen as a useful tool for performing this work. The focus of this

dissertation is the performance evaluation of a parallel-processing architecture,

known as the Simultaneous Optical Multiprocessor Exchange Bus (SOME-Bus),

that exploits the parallelism in these applications via efficient data

communication between processors. The SOME-Bus is a low-latency, high-

bandwidth, broadcast-based fiber-optic interconnection network which can

efficiently interconnect over one hundred processing nodes.

Performance potential of the SOME-Bus architecture is examined by

comparing its quantifiable network characteristics to those of existing static and

dynamic network topologies. The need for a broadcast-based parallel-

processing design is examined by reviewing research into the workload,

communication patterns, and performance of current parallel systems.

Theoretical and simulation models are developed for both message-passing and

distributed-shared-memory parallel processing paradigms. The message-passing

iv

model consists of a closed queueing network. An efficient solution method is

developed using Norton's Theorem for Queueing Networks. Two distributed-

shared-memory models are constructed, one based on a closed, multi-class

queueing network, the other on a Markov-chain. Mean Value Analysis is used to

evaluate the first model; the second model is evaluated by examining state

probabilities. Performance results from the models and simulations are

compared to results from crossbar and torus system simulations. Models and

simulators were implemented using MATLAB and C languages.

Results indicate that quantifiable SOME-Bus interconnection-network

characteristics equal or exceed the best available from existing static and

dynamic network topologies. A review of current research shows that the

existence of a broadcast-based interconnection network, such as the SOME-Bus,

is justified due to the significant number of broadcast operations that commonly

occur in high-performance parallel applications. Results from theoretical and

simulation studies show that SOME-Bus performance, at a minimum, equals the

best available from torus and crossbar systems operating in either a message-

passing or distributed-shared-memory paradigm. In the most realistic

operational scenarios, the SOME-Bus appears to have a significant performance

advantage over these two popular architectures.

C-: £< // Abstract Approval: Committee Chair i^»—. ^ ^ oj t V/ ^ P
(Date)

Department Chairs—■&■&-

Graduate Dean hüfl&s*, if//?*

ACKNOWLEDGEMENTS

The work described in this dissertation would not have been possible

without the assistance of the Air Force, and a number of people who deserve

special mention. It was sponsorship by the Air Force Academy under a program

administered by the Air Force Institute of Technology, that allowed me to pursue

this research. I would like to thank Dr. Constantine Katsinis for offering this topic,

and for the patient guidance he provided throughout the work. The research of

Dr. Kulick and Dr. Gaede, among others, has given me the insight into the SOME-

Bus optical network and receiver designs that was necessary to complete my

work. In addition, the members of my committee have been very helpful from

both a technical, and an administrative, standpoint.

Finally, I want to offer a special thanks to my wife, Mali, for giving me her

full support throughout this endeavor; this accomplishment would not have been

possible without it.

VI

TABLE OF CONTENTS

Page

List of Figures >x

List of Tables xi

List of Symbols x"

Chapter

1 INTRODUCTION 1

1.1 Background !

1.2 SOME-Bus Architectural Summary 2

1.3 Evaluation of Performance Potential 8

1.3.1 Optically-Based Networks 10

1.4 Parallel Systems, Workload and Performance 12

1.4.1 Communication Patterns 15

1.4.2 Message-Passing and CSM System Performance 18

1.4.3 Distributed-Shared-Memory System Performance 22

1.5 Outline of the Dissertation 25

2 A MESSAGE PASSING MODEL OF THE SOME-BUS 27

2.1 A Message-Passing Model 27

2.2 Calculating System Performance 33

2.2.1 Norton's Equivalent of a Node 34

2.2.2 Network Normalization Constants 38

2.2.3 Performance Calculations 52

3 MESSAGE-PASSING MODEL PERFORMANCE EVALUATION 55

3.1 Analytical Model Results 55

vu

Page

3.2 Comparison to Torus and Crossbar Systems 61

4 DISTRIBUTED SHARED MEMORY MODELS OF THE SOME-BUS 70

4.1 Background 70

4.2 DSM Model Development 72

4.2.1 Model 1 .- 75

4.2.2 Model 2 80

5 DISTRIBUTED-SHARED-MEMORY MODEL PERFORMANCE EVALUATION 87

5.1 DSM Model 1 Results 88

5.2 DSM Model 2 Results 92

6 CONCLUSIONS AND FUTURE DIRECTIONS 103

6.1 Conclusions 103

6.2 Future Directions 110

REFERENCES HI

vni

LIST OF FIGURES

Figure paQe

1.1 SOME-Bus Architecture 3

1.2 SOME-Bus Receiver Array 4

1.3 Collective Communication Patterns 17

2.1 Queueing Network Model of an N-Node SOME-Bus 28

2.2 A Simplified N-Node SOME-Bus Model 29

2.3 Finding the Norton's Equivalent Service Center for a Single Node 35

2.4 N-Node SOME-Bus Model w/ Norton's Equivalent Nodes 38

2.5 Model for Norton's Equivalent Reduction of Two Centers 39

2.6 Reduced Model for Performance Evaluation , 42

2.7 A Four-Node SOME-Bus System 44

2.8 Four-Node Equivalent SOME-Bus Model 45

3.1 SOME-Bus Processor Utilization, 3 Tasks-per-Node, Analytical 57

3.2 Processor Utilization, 3 Tasks-per-Node, Analytical and Simulation 58

3.3 64-Node SOME-Bus Processor Utilization, 1 to 5 Tasks-per-Node 59

3.4 Communication Latency, SOME-Bus, 3 Tasks-per-Node 60

3.5 Communication Latency, 64-Node SOME-Bus,l to 5 Tasks-per-Node 61

3.6 Processor Utilization, All Architectures, No Synchronization 66

3.7 Processor Utilization, All Architectures, with Synchronization 67

3.8 Communication Latency, All Architectures, No Synchronization 68

3.9 Communication Latency, All Architectures, With Synchronization 69

4.1 SOME-Bus DSM Multiprocessor Model 1 76

ix

Page

4.2 SOME-Bus DSM Multiprocessor Model 2 81

5.1 SOME-Bus DSM Model 1 Processor, DMA, and Channel Utilization 90

5.2 SOME-Bus DSM Model 1 Communication Latency 91

5.3 DSM SOME-Bus Model 2, Subsystem Utilization 95

5.4 DSM SOME-Bus Model 2 Communication Latency 96

5.5 All DSM Architectures, Processor Utilization, No Invalidation Messages.... 97

5.6 All DSM Architectures, Processor Utilization, 10 Invalidation Messages 98

5.7 All DSM Architectures, Comm Latency, No Invalidation Messages 99

5.8 All DSM Architectures, Comm Latency, 10 Invalidation Messages 100

5.9 All DSM Architectures, Channel Utilization, No Invalidation Messages.... 101

5.10 All DSM Architectures, Channel Utilization, 10 Invalidation Messages 102

LIST OF TABLES

Table Page

1.1 Static Network Performance Comparison 8

1.2 Dynamic Network Performance Comparison 9

XI

LIST OF SYMBOLS

Symbol Definition

ß Memory bandwidth in bytes/sec.

c Channel designator.

C Number of service centers in a chain (DSM).

C(K) Normalization constant.

OfKj Normalization constant for reference node.

CNet(k) Network normalization constants.

D Number of data messages preceding a synchronization operation.

er Unit vector with the 1 in the rth position.

h Mean time interval between remote memory requests (DSM).

hi(ki) Unnormalized queue-length distribution of service center i.

K Total number of messages(processes) in a message-passing system.

K Number of threads processed at a DSM system node.

K Chain population vector (DSM).

K Vector of chain j message population at service center/ (DSM).
'j

k; Number of messages at service center i (message-passing).

ki Outstanding remote-memory requests by node i in a DSM system.

kt(K) Average number of messages at center /', given K messages.

m Mean time interval for DMA processing (DSM).

M Number of bytes in a message.

n Number of nodes in one dimension of a torus or mesh system.

Ml

Symbol Definition

N Number of nodes in a system.

«,. Mean number of chain j messages at center /' (DSM).
V

w,-.(r-) Mean number of chain j messages in service center/just prior to

the arrival of a message from chain r.

p Processor designator.

P Number of processors in a system.

P(kuk2,...kNJ State probability given the population vector (k,,k2,...kN).

pTR Set of states with messages in both processor queues (DSM).

pTO Set of states with only response queue occupied (DSM).

FOR Set of states with only request queue occupied (DSM).

Q The transition-rate matrix (DSM).

r Reference-node designator,

s Mean time interval for message transmission (DSM).

S Set of states in the Markov-chain state space (DSM).

fc Average channel service time in a message-passing system.

/. Mean time chain r message spends at service center / (DSM).

tp Average processor service time in a message-passing system.

ij(K) Average time spent at center i, given K messages in the network.

Ui Utilization of service center /" (message-passing).

utih Thread-processing processor utilization (DSM).

utik DMA-processing processor utilization (DSM).

w Bus width (bits).

xiii

Symbol Definition

X Transition probability matrix.

Xab Transition probability from node a to node b.

Xba Transition probability from node b to node a.

Xi, Probability a message will transition from center i to center j.

xia Probability of transitioning from node i to the aggregate center.

xa j Probability of transitioning from node j to the aggregate center.

Yr(K) Reference node throughput.

aT Fraction of available service for thread processing (DSM).

OR Fraction of available service for DMA processing (DSM).

Ya Probability of a message traversing the branch into node a.

Yb Probability of a message traversing the branch into node b.

6, (r-) Difference in the average number of chain / messages at station i.

X Equilibrium arrival (departure) rate vector.

X Channel center arrival rate at reference node.
cr

k Message-passing departure rate from service center i.

% Message-passing arrival rate at service center j.

Xj Throughput of chain j (DSM).

X Processor center arrival rate at reference node,

u Service rate of reference node channel center.

ß Load-independent service rate at service center i.

ß[k) Load-dependent service rate at service center i.

XIV

Symbol Definition

Service rate of reference node processor center.
*Pr

n The state-probability vector (DSM).

<TI Subsystem of interest (Norton's Theorem for Queueing Networks).

oi Remainder of network (Norton's Theorem for Queueing Networks).

x. Service time at center i for a chain j message (DSM).
V

x, Effective service rate for chain r message at service center /' (DSM).

xr Average service time at center i for chain j messages (DSM).

XV

Chapter 1

INTRODUCTION

1.1 Background

The computing world has entered an era in which executing high-

performance applications, defined as computation-intensive, data-intensive, or

both, has become commonplace in the scientific, engineering, and business

workplace [50], [10], [57]. The trend in these applications is toward the

execution of larger or more detailed models in less time, with parallel processing

seen as a useful tool for performing this work. Exploiting the parallelism in these

applications requires efficient data communication between processors. The

focus of this dissertation is the performance evaluation of a parallel-processing

architecture that accomplishes this task, the Simultaneous Optical Multiprocessor

Exchange Bus (SOME-Bus). It is a low-latency, high-bandwidth, broadcast-based

fiber-optic interconnection network which can efficiently interconnect over one

hundred processor nodes, directly linking arbitrary pairs without contention [26],

[28], [35].

Before a full-scale performance evaluation of the SOME-Bus is

undertaken, it is important to determine if the study is warranted. A summary of

SOME-Bus architectural features is followed by a comparison of its quantifiable

network characteristics to those of existing systems to prove its performance

potential. With performance potential established, the need for a broadcast-

2

based SOME-Bus design will be demonstrated. The framework for both of these

undertakings exists in Gordon Bell's taxonomy of the multiple-instruction, multiple-

data (MIMD) category of computer architecture established by Michael Flynn

[4], [22]. Bell divides MIMD systems into multicomputers and multiprocessors, and

then cites examples of each based on network topology. The static and

dynamic characteristics of those networks provides the comparative basis for

determining SOME-Bus performance potential. Concluding this chapter, a

review of research into the workload, communication patterns, and

performance of existing multicomputer and multiprocessor systems will

demonstrate the need for a broadcast-based network.

1.2 SOME-Bus Architectural Summary

The Simultaneous Optical Multiprocessor Exchange Bus (SOME-Bus) is a

parallel-processor interconnection network capable of interconnecting over 100

processing nodes [26] ,[28], [35]. It features high bandwidth (scaling directly with

the number of nodes), low latency, no arbitration delay, and non-blocking,

broadcast-based communication. SOME-Bus processing nodes communicate

with each other through a wavelength-division-multiplexed, optical-

interconnection network. The network is implemented with laser-diode

transmitters, optical fiber transmission lines with induced Bragg gratings, and

receivers formed of CMOS devices with integrated amorphous silicon detector

superstructures. The Bragg gratings in the optical fiber serve as narrow-band,

inexpensive optocouplers between the network and the receivers.

The SOME-Bus architecture for an N-node system is illustrated in Figure 1.1.

Each node contains a receiver array (with buffering), a processing element

(processor/memory), and a transmitter. The dedicated data transmission

channel for each processor eliminates the need for network arbitration, and

provides a system where bandwidth scales directly with the number of

processors. The receiver array at each node contains N receivers, one

dedicated to each data transmission channel. This design eliminates blocking

since there is no contention for shared resources.

V^ ■v
Channel 1

7"

7"

\Rcvr/Buffej/

Transmitter

±te-
Processor/Memory

Nodel

V"

\ffcvr/Buffe^7

Transmitter

±LZ-
Processor/Memory

Node 2

• ••

V

Channel 2

Channel N

jgcvr/Buffei/

Transmitter

iji_
Processor/Memory

NodeN

Figure 1.1 SOME-Bus Architecture

The transmitter subsystem is implemented with laser diodes and signal

insertion hardware [35]. This hardware allows up to four processors, each using a

dedicated wavelength, to insert data streams into a single fiber by employing

wavelength-division-multiplexing. In addition, a separate wavelength/fiber is

used for a clock signal which is common to all data channels on that fiber.

There is one insertion-point per fiber, dividing the fiber into two parts: one part

services processors to the left of the insertion point, the other services processors

to the right.

Readout Gratings (1/Wavelength)

Fibers

Figure 1.2 SOME-Bus Receiver Array

Figure 1.2 illustrates the optical fibers, with readout gratings, and receiver

array used by two nodes in the interconnection network [26]. The readout

gratings, permanently induced in the core of an optical fiber by standard

holographic techniques, allow light to be coupled off the fiber and onto the

detector [28]. Wavelength selectivity and reflectivity of the gratings are

5

determined by grating length, spatial period, and process exposure time. Each

grating couples out a fraction of the light from one wavelength in the fiber to a

designated detector on the receiver. The N receivers required by a single

processor are fabricated as a thin film of amorphous silicon structures, which

serve as the optical detectors, constructed directly on the surface of a digital

CMOS device. The low conductivity of the amorphous silicon layer eliminates

the need for subsequent patterning, thereby producing receivers with the same

yield and cost as the CMOS device itself. Together with the transmitter design,

this feature allows the SOME-Bus to scale by <D[N), minimizing both the number of

expensive components (transmitters) and the cost of highly replicated

components (receivers).

The current receiver-array performs two primary functions; it serves as the

optical interface and as the processor interface [28]. The optical interface

includes physical signaling, address filtering, barrier synchronization, length

monitoring, and type decoding. When a detector receives a signal, it generates

a bit stream which is examined for the presence of the framing byte. This is

necessary because the start of a data byte occurs asynchronously. Bit stuffing at

the transmitter and destuffing at the receiver is used to insure that the framing

byte cannot occur within the packet. Destuff logic generates a byte stream,

representing packet headers and data, and provides a framing error indication.

Header decoding identifies message type (synchronization or data), destination

address and message length. Synchronization messages are handled by barrier

logic; for data messages, the destination address is compared to the set of valid

addresses contained in the address decoder. The address decoder can

6

recognize individual, multicast-group, and broadcast addresses. If the address

does not match, the message is ignored.

For data messages, once a valid address has been identified, the

processor interface routes and queues the message. With one queue per

channel, a node can receive an arbitrary number of messages simultaneously.

Each queue is large enough to contain a single full-size ethemet packet or a

number of smaller messages. The next stage of the interface determines which

queue will be processed next. If most queues contain messages most of the

time, a simple counter design selects the queues in a fair manner. If only a few

queues contain messages at any time, then a resolver network makes the

selection based on an indexing and priority scheme. The selected message is

transferred directly into the processor's memory using cut-through routing

hardware.

In the SOME-Bus, where each processor can broadcast its own message

while simultaneously receiving messages from all other processors,

synchronization is possible in a single cycle. To achieve this, the receiver array

converts each synchronization message into a single bit of information and

stores it in a flip-flop. The flip-flop output becomes one input to an and-tree

consisting of partition members. This scheme limits the involvement of the

processor in a synchronization operation to transmission of the synchronization

message, testing the summary from the receiver array. Arbitrary group

partitioning for synchronization is handled by special hardware. Each receiver

has two counters, one tracking the number of partitioning decisions made by

the receiver array's processor, the other tracking partitioning decisions of the

7

input channel. These counters tabulate the (respective) number of partition

decisions since their last shared partitioning. When both counters are at zero,

both processors are in the same partition. If they are not equal to zero, the

respective processor(s) must undo the counted number of partition decisions to

again be in the same partition.

To illustrate the data transfer capability of the SOME-Bus, a 128 node

system will serve as an example. Using the silicon receiver array design

described above and 32 fibers multiplexing 17 wavelengths/fiber (4

wavelengths/channel, 4 channels/fiber, 1 common clock) provides 77 MB/sec of

bandwidth for each channel, given a clock rate of 155MHz [26]. Using a

receiver array manufactured using gallium arsenide lift-off technology and a

clock rate of 1 GHz, the same 32-fiber SOME-Bus would provide up to 500 MB/sec

of bandwidth per node, equivalent to the link bandwidth of a Cray T3E [49].

In summary, the SOME-Bus features high bandwidth (scaling directly with

the number of nodes), low latency, no arbitration delay, and non-blocking

communication. Nodes communicate through a wavelength-division-

multiplexed, optical-interconnection network implemented with laser-diode

transmitters, optical-fiber transmission lines with induced Bragg gratings, and

receivers consisting of CMOS devices with integrated amorphous silicon

detector superstructures. The network supports individual, multicast, and

broadcast transmissions, is (effectively) fully connected, and scales by O(N).

1.3 Evaluation of Performance Potential

Determining the performance potential of the SOME-Bus requires

comparing its network characteristics to those of existing systems. As explained

at the beginning of this chapter, the method chosen for the comparison involves

separating the networks represented in Bell's taxonomy [4], [22] into static and

dynamic topologies. The quantifiable characteristics associated with each type

are then compared to the SOME-Bus.

Table 1.1 Static Network Performance Comparison

NETWORK DIAMETER NODE DEGREE BISECTION COST
SOME-BUS 1 N N N/4

Completely-
Connected
2D Mesh

1

2(N'/2-l)

N-l

2

(N/2)2 N-]

2(N-N'/2)

2D Torus i_Nvy2] 4 2N'/2 2N

Hypercube log2N \0g2N Nil N log2N/2

Performance metrics of static interconnection networks include diameter,

connectivity, bisection width, and cost [22], [29]. Diameter represents the

maximum number of communication links between any two processors in the

system; a smaller diameter results in lower data-transfer latency. Connectivity,

also referred to as node degree, describes the minimum number of

communication channels that must be removed to separate a single network

into two disconnected parts. Higher connectivity results in less contention for

shared communication resources. Bisection width is a measure of the minimum

number of communication links that must be removed to separate a network

into two equal halves. The greater the number of links, the more bandwidth for

data transfer. The final criterion, cost, denotes the number of physical

communication links in the system. Table 1.1 compares an N-node SOME-Bus to

N-node static network topologies. As Table 1.1 shows, the SOME-Bus is clearly the

superior network configuration among this group, matching or exceeding the

best in every category except bisection width. Performance figures cited in

Table 1.1, for systems other than SOME-Bus, came from the work of Bell [22] and

Kumar [29].

Figures of merit for dynamic networks include data transfer latency,

bandwidth per processor, wiring complexity, and switching complexity [22].

Latency refers to the minimum amount of time necessary to transfer data from

source to destination. Bandwidth describes the total bandwidth available for

data transfer by a single node. Wiring complexity measures the physical number

of wires (fibers) interconnecting source and destination. Switching complexity

defines the number of switches in a system.

Table 1.2 Dynamic Network Performance Comparison

Network Latency Bandwidth Wiring
Complexity

Switching
Complexity

SOME-Bus Constant O(wN) 0(N/w) O(l)

Bus Constant 0(w/N) to O(w) O(w) O(N)

Multistage 0(logfcN) O(w) to O(wN) 0(NwlogkN) 0(NlogkN)

Crossbar Constant O(w) to O(wN) 0(N2w) 0(N2)

10

Table 1.2 compares the three dynamic network topologies (bus,

multistage, and crossbar) represented in Bell's taxonomy to the same SOME-Bus

configuration used in the static network comparison. Each system has N

processors and memory modules and a data-channel width of w bits. In

addition, the multistage network is assumed to use kxk switches. Based on the

results shown in Table 1.2, it appears the SOME-Bus also has greater performance

potential than existing dynamic topologies. An additional benefit, not explicitly

seen in Table 1.2, is that SOME-Bus transmissions are never blocked due to

contention for shared switching resources.

1.3.1 Optically-Based Networks

In addition to the static and dynamic networks above, the potential of a

SOME-Bus must be compared to other optically-based parallel processors. In

one research study, free-space optical techniques are applied to the design of

a mesh-connected bus network [33]. The drawbacks to this design, compared

to the SOME-Bus, include contention resolution due to multi-access

communication channels and greater power requirements resulting from free-

space transmission methods. A second study describes an optical crossbar

design using time division multiplexing [43]. Although the optical crossbar

switching network used to implement the crossbar reduces the switching

complexity, allowing linear scaling of switching components, the contention for

shared resources inherent in any crossbar system remains.

In two separate studies, systems were found that leverage optical

transmission methods to implement a hyperbus (also known as a hypermesh).

11

This network topology provides complete connectivity in each dimension and

appears isomorphic to a 1 -D SOME-Bus. The concept of a hyperbus has been

known for some time and shown to have great performance potential.

However, it has not been seriously pursued until recently because its

implementation is not feasible using electrical interconnection methods alone.

In the first study, an implementation using a combination of electrical and

optical crossbars is described [53]. Although the design uses multiple

wavelengths per fiber to keep cost low, multiple-access of those wavelengths

requires the additional complexity of contention resolution. The second

proposal is based on completely-connected, 36-node building blocks [58]. Each

node consists of a 'cluster' of 8 processors interconnected by a crossbar switch.

Nodes within a building block are then completely connected via a clear

plastic bar acting as an optical waveguide. Mirrors guide multiple wavelength-

division-multiplexed optical signals through the bar to individual wavelength

detectors at each node. Although promising as a feasible way to implement a

hypermesh, this architecture has much greater complexity than SOME-Bus. In

addition to the crossbar switch at each node, it requires more transmitters and

precise mirror-to-detector alignment.

In summary, the SOME-Bus exhibits outstanding performance potential.

Compared with static topologies, a SOME-Bus offers the same performance as

the powerful but costly fully-connected network, but with the added benefit of

a lower cost than a hypercube, mesh, or torus. Contrasted to the most versatile

dynamic network, the crossbar, SOME-Bus scales better and supports more

communication patterns. In addition, due to the optical implementation of its

12

broadcast-based design, no node is ever blocked from transmitting by another

node, and no arbitration for shared resources is reguired. Even with the SOME-

Bus reguiring N2 receivers, larger than the number reguired in other architectures,

it scales by O(N), since N receivers are integrated into a single device at

relatively low cost.

1.4 Parallel Systems, Workload and Performance

Parallel systems can be classified as multicomputers, or multiprocessors

[4], [22]. Multicomputer systems consist of multiple autonomous computing

nodes, each with a distinct address space. All communication in multicomputer

systems takes place through the interconnection network via message passing.

Although existing multicomputer systems use both static and dynamic networks,

static topologies are more common.

Multiprocessor systems are defined by a single address space,

implemented as either centralized or distributed memory. In all multiprocessor

systems, interprocessor communication takes place using shared variables in the

common address space. In a central-shared-memory (CSM) multiprocessor,

main memory is realized by a subsystem that is physically separate from the

processing nodes. Since all main-memory reguests traverse the interconnection

network, CSM systems feature uniform access time to any memory address. The

majority of CSM systems are implemented using dynamic interconnection

networks, and are often referred to as tightly-coupled due to extensive sharing

of common resources.

13

Distributed-shared-memory (DSM) systems have main memory physically

distributed among the processing nodes. This distribution results in non-uniform

access times since some main-memory requests are satisfied locally. Both static

and dynamic networks are common in DSM system implementations. In these

loosely-coupled multiprocessors, management agents map the shared logical

address space onto local memories [24]. These agents hide the message-

passing mechanism, provide a shared-memory model, and keep data coherent

at all times. In addition, on each access to shared space, hardware determines

if the requested data is in local memory and, if not, copies it from remote

memory.

Recent trends in commercial parallel-system design indicate a

preference for DSM multiprocessor systems [50]. This shift stems from two primary

factors: first, given certain interconnection topologies DSM multiprocessors

provide the economic advantages of both size- and generation-scalability by

leveraging commercial microprocessor advances; second, their single address

space allows for relatively efficient general-purpose programming. In addition,

message passing can be implemented implicitly on DSM systems via writing to

shared variables.

Given this preference for DSM multiprocessors, it is important to determine

the issues that effect successful DSM systems and see if they exist in the SOME-

Bus. A focus of current DSM research involves attempts to reduce or hide data

access latency while maintaining memory consistency. In general, the result of

this research indicates that data access latency in DSM systems is related to the

extent of memory consistency required [24]. Models with strong restrictions show

14

increased latency and higher network bandwidth requirements (stronger

restrictions result in greater traffic on the network). Models with weaker

constraints that allow reordering, pipelining, and overlapping of memory

produce better performance, but require explicit synchronization operations.

This body of research implies that a viable DSM system should have a low-

latency, high bisection-bandwidth interconnection network. - These are

characteristics the SOME-Bus possesses.

The following subsections first define the types of communication patterns

that frequently occur in parallel applications, and then examine current

research into their effect on system performance. Using the trend toward DSM

systems as a guide, the research summaries are divided into those covering

message-passing and central-shared-memory systems and those dealing with

distributed-shared-memory systems. These studies show that today's high-

performance computing workload includes modeling and simulation of physical

phenomena, integrated circuits, neural networks, weather, economic systems,

and image processing. These same studies show that processing these tasks on

existing parallel systems results in load imbalance among processing nodes,

delays caused by barrier synchronization, and communication patterns which

place an excessive load on the interconnection network.

Some of the basic mathematical operations used to execute the

workload described above include fast Fourier transforms (FFTs), matrix

multiplication, Gaussian elimination, LU-factorization, and solutions to partial

differential equations [29]. Parallel-processing implementations of these

operations typically involve one-to-all and all-to-all broadcasts, and broadcasts

15

place the heaviest burden on inter-processor communication networks. The

research studies will highlight the mismatch between these communication

patterns and current interconnection architectures (both static and dynamic),

regardless ot implementation medium. The cumulative results of these studies

indicate that high-performance applications execute on existing parallel systems

at only poor-to-moderate performance levels, even after extensive efforts at

software tuning. Based on these findings, it is apparent that a scaleable parallel

system, capable of supporting the communication patterns inherent in common

applications, is needed.

1.4.1 Communication Patterns

Efficient communication is critical to any application's performance.

Communication may involve point-to-point operations, which have a single

source/destination pair, or collective operations, in which more than two

processes participate [21]. A collective operation begins when a group,

consisting of some or all processes in an application, invokes a communication

routine, such as a broadcast. The broadcast routine identifies the scope of

group membership to determine if the broadcast will be implemented as a

multicast (when the group does not consist of all processes in the application), or

as a true broadcast. The range of collective operations, illustrated in Figure 1.3

[21] for a group of four processes, can be classified into three types: data

movement, process control, and global compute operations.

The first type of collective operation, data-movement, is shown in Figure

1.3(a)-(e). Figure 1.3(a) shows a one-to-all broadcast in which one process [Pa)

16

sends all other group members the same information (aO). A scatter operation,

Figure 1.3(b), occurs when one process in the group (Pa) sends individual

messages (aO, ah a2) to other members. During a gather, illustrated in Figure

1.3(c), one process [Pa] is the recipient of information [bO, cO, dO) from other

group members. In an all-to-all broadcast each group member (Pa, Pb, Pc, Pd)

sends all other members an identical message (aO, bO, cO, dO) as shown in Figure

1.3(d). The final data-movement operation, an all-to-all scatter-gather, also

known as an all-to-all personalized broadcast or a complete exchange, places

the heaviest burden on a communication network [29]. Figure 1.3(e) shows how

each process in the group [Pi] sends individualized information (;'0, ih \2) to all

other group processes during this operation.

Barrier synchronization is an example of process control, the second

category of collective communication,. As seen in Figure 1.3(f), one method of

performing barrier synchronization occurs in two phases, with one process in the

group (Pa) playing the role of a barrier process. In the first phase each member

of the group that reaches the barrier sends a message indicating this fact to the

barrier process. Once messages from all the other members are received,

phase two takes place as the barrier process broadcasts a message to the

group indicating that work may proceed.

The final category of collective communication, global compute

operations, includes both reduction and scan (also known as parallel prefix or

prefix sum). In reduction, each member of the group forwards data to a central

process (Pa) where associative and commutative operations are performed;

examples include sum, max, min, and bitwise operations. Figure 1.3(g) shows a

17

(a) Broadcast (b) Scatter

(c) Gather (d) AII-to-AII Broadcast

(e) AII-to-AII Scatter-Gather (f) Barrier Synchronization

R=aO*bO,cO,dO R0=a0 Rl=aO'bO

R3=aO,bO*cO*dO R2=a0,b0,c0

(g) Reduction (h) Scan

Figure 1.3 Collective Communication Patterns

18

special case of reduction with a generic operator; the result (R) resides at a

single process in this illustration while in other cases it may be distributed to some

or all of the group processes. The scan operation, shown in Figure 1.3(h), applies

an associative and commutative operator (represented by the asterisk) to the

data such that the result at process Pi is Ri = aO*bO... * iO.

1.4.2 Message-Passing and Central-Shared-Memory System Performance

One study that illustrates the effect of collective communication on

message-passing or central-shared-memory system performance examines a

parallel three-dimensional Navier-Stokes solver. This study analyzed the

communication patterns inherent in the algorithm and evaluated its

performance on P-processor IBM SP2, Cray T3D, and SGI Power Challenge XL

systems [14]. The algorithm, based on 2- and 3-D FFs, requires a series of all-to-all

scatter-gather (complete exchange) operations, global reduction, gather

operations, and global synchronizations. It was found that there are not enough

network connections between nodes in any of these systems to support an O(P)

complete exchange without contention, and that there was a large variability

for times associated with communication performance, all biased toward higher

values. Although the program is computation-intensive, memory-bus contention,

brought on by the collective operations cited, caused excessive performance

degradation in the Power Challenge. Performance of the SP2 and T3D was also

degraded, but to a lesser extent. As the number of processors was increased,

performance became increasingly communication-bound with the cost of the

19

complete exchange almost doubling (thus becoming prohibitively expensive)

on the SP2.

Another study focused on the parallel implementation of an atmospheric

general-circulation model making extensive use of Fourier transforms [37]. The

application was executed on Intel Paragon and Cray T3D systems, where the

authors found it necessary to perform data-shuffling (which utilizes all-to-all

broadcast) to achieve load balancing among the processors. Modifications

were made to the model in an effort to minimize this costly operation, but came

at the expense of other forms of collective communication coupled with a

substantial amount of local bookkeeping. Despite the modifications, processor

utilization (a typical performance metric representing the percentage of

processor time dedicated to problem solution) of only 30% to 40% was achieved.

Research involving the simulation of an astrophysics N-body problem

using mature code compared the performance of two experimental parallel

computers built with commodity (commercially available microprocessor)

components to that of existing supercomputers that had been running the same

code for years [55]. Although the code has been optimized, it generates

numerous reauests for non-local data yielding high communication costs. This

study highlights the relationship between high communication costs and

scalability of existing systems since all the computers with more than 100

processors attained only 30% processor utilization except an Intel Delta, which

reached 50%.

The goal of one study was to reduce the cost of all-to-all communication

(given all messages of the same size) in a 2-dimensional torus of size (n x n) [19].

20

The author explains that this communication pattern is frequently encountered in

multidimensional convolution, array transposes, etc., and often results from High-

Performance FORTRAN operations. Presenting a communication algorithm

based on phased communications, where each phase approaches the peak

bandwidth available in this architecture, a 40% reduction in the time to perform

a 512 x 512 FFT is achieved. In addition, given bidirectional communication links,

an all-to-all communication takes only (n/2)3 phases using the proposed

algorithm. Although the pattern seems optimal, the phases must be completely

and globally synchronized through either more interprocessor communication or

additional hardware, a costly addition in either case. It was also shown that

performance deteriorates when message sizes vary within a phase, at its worst

when empty messages are included.

Many-body simulation, a common high-performance application, is one

in which arriving at a solution usually, sometimes exclusively, depends on all-to-

all communication [17]. This study compares the performance of a new many-

body algorithm, designed specifically to avoid all-to-all communication, to two

more traditional methods. All algorithms were executed on both an nCUBE2

and an Intel Paragon system. When running on systems of 128 or more nodes,

speedup (a ratio of execution time on the parallel system to that of a uni-

processor system) was 50% or less of perfect (linear), with the rate of Paragon

performance degradation greater than that of the nCUBE2 as more nodes were

employed. In some situations the traditional methods, using all-to-all

communication, performed better. A similar lack of scalability was found in a

separate study of code designed for transient dynamic simulations, also

21

executed on a Paragon system [45]. Only 30% (64 nodes) to 47% (128 nodes) of

linear speedup was reported by this study.

Utilizing both theoretical and simulation models, one study examined the

performance of a clustered CSM multiprocessor. Crossbar switches connected

processor elements (consisting of a processor and private memory) within a

cluster, and those same processor elements with global memory [38]. As the

probability of memory access/cycle was increased, the authors found that if all

those accesses were directed to global memory, the system could only attain

approximately 25% of its peak processing capability. However, performance

rose to 60% when those same memory accesses were directed equally to

private and global memory, thereby reducing the burden on the

interconnection network.

There are numerous articles dealing with general issues involving

collective communication in message-passing architectures that are not

specifically tied to an application. There have been attempts to minimize the

number of steps necessary to broadcast on hypercubes by using path-based

algorithms [20], [23]. Similarly, there is a large body of research in multicast

(broadcast to a select group of nodes) communication and its effect on mesh

and torus architectures employing trees and wormhole routing [9], [30], [34], [40],

[41]. One presentation noted that extensive efforts are focusing on the

development of algorithms to alleviate the fact that intense multicast

communications cause wormhole-routing performance to degrade to that of

store-and-forward routing [29]. When viewed as a whole, the research above

22

indicates that collective communication inhibits the performance potential of

existing message-passing and CSM systems.

1.4.3 Distributed-Shared-Memory System Performance

As with message-passing and CSM systems, there are numerous studies

illustrating the impact of collective communication on the performance of

existing DSM systems. One study uses both a queueing-network model and

simulation to examine a two-dimensional mesh-based multiprocessor system

where each processor can execute a number of threads [42]. Model

parameters include number of threads per processor, probability that memory

requests are directed to particular remote memories, and the delay in each

network switch. Program execution is represented by each thread processing

for a period of time, generating a memory request, and then suspending. The

analysis of this model provides the data from which processor utilization and

remote memory request response time is calculated. The results showed that

when the probability of remote memory request was small, processor utilization

increased as the number of threads executed increased, but response time

(relative to mean thread run time) also increased dramatically. The data

showed that response time becomes unacceptably large when more than five

threads are present in each processor. Also, as the probability of remote

memory requests increased (> 0.5), the interconnection network saturated and

processor utilization fell below 35%.

In an article examining how to improve performance of the HP/Convex

Exemplar system, an example of the role of the interconnection network in

23

application scalability is presented [51]. Processor performance is measured

during execution of four Earth and space-sciences application programs. The

Exemplar is a relative newcomer to the multiprocessing field, consisting of up to

16 multiprocessor clusters, each cluster containing four functional blocks, each

block having two processors. The blocks within a cluster are interconnected by

a crossbar switch, and sets of functional blocks between clusters are

interconnected by four ring networks in an attempt to provide high connectivity

at a relatively low cost. Using up to 16 processors, one portion of the study

measured cache misses for one application (tree code for an N-body problem)

finding the rate to be 10% to 25% depending on application size (verifying the

need for an efficient interconnection network for these types of problems). A

second part of the study, measuring the scalability of all the applications while

varying the number of processors between 1 and 16, showed that some

applications had almost linear speedup, while others fell below 50%. The study

attributes poor performance to "irregular data access patterns, global

communication between processors, and load balancing" for a finite element

application and "irregular, dynamic data structures" for a particle-in-cell

program. This study showed that the performance of one of the newest, most

commercially-popular DSM systems suffers from poor network support of the

collective-communication requirements inherent in commonly executed, high-

performance applications.

Findings similar to those of the study above are seen in a study of four

architectures with hardware DSM support [16]. After establishing workload

parameters by estimation, an examination of the impact of system size and data

24

locality (both temporal and spatial) on processor utilization and shared-memory

latency was undertaken. With workload parameters that appear overly

optimistic, especially in terms of cache misses (as evidenced by the low network

utilization in all four architectures here compared to those seen in other studies),

the results show significant data-access latency compared to the CPU clock

cycle time. In conjunction with that finding, data locality was found to have a

significant effect on processor utilization.

Examining a DSM implementation of a system originally designed as a

message-passing multicomputer is the topic of another study [2]. Using an

nCUBE, a hypercube topology capable of supporting up to 8192 nodes, the

study experiments with executing four parallel programs on a 16-node

configuration. Although linear (or better) speedup was achieved in three

applications, greatly reduced performance occurred in the fourth. This

application, which performs matrix addition on distributed data, required

significant data-transfer time relative to node computation time. The authors

concluded that such programs are unsuitable for DSM implementation on a

hypercube unless an algorithm can be found to reduce the communication

involved. Taking a broader view, these results indicate that large applications

distributed over many nodes (more than 16) require significant data-transfer

times, and, since they cannot simply be rejected as unsuitable for DSM

implementation, alternative networks must be developed that offer better

support.

The fact that poor performance can occur even in a parallel system

specifically designed to reduce contention for shared resources is found in

25

another study [5]. Using a model of a DSM multiprocessor with a multistage bus

network, the authors study processor utilization. Model parameters include the

probability of a processor generating a memory request during a cycle and the

probability that a request is directed to local, versus non-local, memory. Results

showed that when the majority of requests are directed to local memory and

the probability of generating a memory request is above 10%, processor

utilization falls below 65%. When the majority of requests are to non-local

memory, and the probability of memory reference rises above 10%, utilization

falls below 40%. Utilization drops significantly as the request probability increases,

which the authors attribute to "a higher amount of traffic and queuing delays".

In summary, existing multicomputers and multiprocessors, implemented

with static or dynamic interconnection networks, offer only poor-to-moderate

performance for a wide class of commonly executed applications that use

collective communication operations. This finding, combined with the results of

the performance-potential evaluation, justify an in-depth performance study of

the SOME-Bus architecture.

1.5 Outline of the Dissertation

Chapter 2 presents the development of a closed-queueing-network

model of the SOME-Bus as a message-passing system. Chapter 3 validates a

message-passing SOME-Bus simulator using this model, extends the simulator to

perform synchronization tasks, and compares its results to message-passing

crossbar and torus simulations.

26

In Chapter 4 two distributed-shared-memory models of the SOME-Bus are

developed using queueing theory. Chapter 5 presents the results from both

models and validates a corresponding simulator. That simulator is extended to

perform cache coherence operations, and its performance is compared to DSM

torus and crossbar simulations.

Chapter 6 offers conclusions based on the findings of this dissertation and

describes the direction of future research.

Chapter 2

A MESSAGE PASSING MODEL OF THE SOME-BUS

2.1 Message-Passing Model

It is important to choose an analytical modeling method with a firm

theoretical foundation to both evaluate performance and validate simulations.

The model must abstract the system to a degree appropriate for evaluating

changes in system parameters and offer an efficient solution method to facilitate

those evaluations. Modeling the SOME-Bus as a closed queueing network

satisfies all of these requirements.

Queueing network theory is based on the theory of Markov processes, a

subclass of stochastic processes. A characteristic of Markov processes is that the

probability of being in a specific next state depends solely on the current state,

i.e., the evolution of the process is independent of its past history [27]. The

process of interest for SOME-Bus evaluation is the distribution of messages among

system resources. Since messages and system resources are discrete, finite

entities, the state space defining their distribution is also finite and discrete, and

the process is referred to as a Markov chain.

The closed queueing network model of a message-passing SOME-Bus

system is illustrated in Figure 2.1. The model consists of a network of service

centers that represent system resources, with each node modeled as two

service centers in tandem. The first service center represents the activities of the

receiver-buffer and processor-memory blocks of the SOME-Bus architecture, as

27

28

depicted in Figure 1.1, and will be referred to as the processor, or p-type, service

center. The second service center models the actions of the transmitter block

and the channel characteristics, and will be referred to as the channel, or c-

type service center. These service centers are characterized via assignment of

service rates and service disciplines. All service centers in the model of Figure 2.1

are assumed to have load-independent, exponential service time distributions,

and first-come, first-served service disciplines.

Channel 1

Figure 2.1 Queueing Network Model of an N-Node SOME-Bus

In a message-passing system, a program is viewed as a set of processes,

and messages are used to exchange data between those processes [29].

Assuming each node is responsible for executing a fixed number of processes,

and each process requires a data message to enable its execution, the number

29

of messages in the system is constant and equal to the total number of processes

(K). No messages enter the system from external sources, or depart to external

sinks. Also, since the same average service rate applies to all messages arriving

at a given service center, a single-class closed queueing network results. In a

single-class network the message originator becomes irrelevant, allowing the set

of queues in each processor service center (as seen in Figure 2.1) to be replaced

by a single queue, resulting in the simplified SOME-Bus model shown in Figure 2.2.

T
"T

\

\/

T

5 0
Nodel Node 2 Node N-l

-k.

5
iL

Figure 2.2 A Simplified N-Node SOME-Bus Model

5 5
Node N

5 5

A queueing network model of a Markov chain affords a closed-form

equation, known as the product-form equation, for calculating equilibrium state

probabilities [15], [39]. Once this equation is solved such that the sum of those

30

probabilities equals one, performance measures can be determined [32]. The

product-form equation defining the state probabilities associated with the

SOME-Bus model of Figure 2.2 appears as Equation 2.1, where N represents the

number of nodes in the system, and k, the number of messages at service center

/ , \ (2N \ 2N
P(kx,k2,...k2N) = {/C(K)} -I IW*,)J (where £*,. = K) (2.1

2N

I'
i=l

In Equation 2.],h;(k;) represents the individual, unnormalized queue-length

distributions of all service centers in the network, which appear to act

independently at equilibrium. The purpose of the normalization constant, C(K), is

to insure that the sum of the state probabilities equals one. Although a solution

to Equation 2.1 exists, direct computation is inefficient, making performance

evaluation of alternative system configurations cumbersome.

When service centers in a closed queueing network have exponential

service time distributions, as assumed above, their queue-length distributions,

hi(ki), depend on their service and arrival rates. Service rates are simply the

inverse of service times. The arrival rates, X\, are found by solving the system of

flow-balance equations seen in Equation 2.2, where h is the departure rate, and

x,y, is the fixed probability of a message transitioning from center \ to center/.

IN

Äj=j:^y (2.2)

31

Letting X represent the matrix of transition probabilities and substituting A? for A,

(since arrival and departure rates from service center /' are the same at

equilibrium), allows the system of equations, represented by Equation 2.2, to be

written in the vector-matrix form X=XX. Because this is a closed system, with

equal arrival and departure rates, the system X-XX has one linearly dependent

equation [27]. One method of solving this system is to assign one service center

as a reference center, and let its arrival rate serve as a parameter. Using this

method establishes relative arrival rates for all other centers [39], [54].

Assigning the load-independent service rate //, to service center / in Figure

2.2, and substituting the resulting unnormalized service center queue-length

distribution, (^/n,)*' for hi(k] in Equation 2.1 [48], results in Equation 2.3 (given the

service time and service discipline assumptions already stated).

P(äJ,ä'2,... k2N K/cro)
2AT/T /*/ n (/
,=1 V / H;/

2N
(where ^ = K)

i=i
(2.3)

The normalization constant, C(K), is then found using Equation 2.4.

ItP(kl,...Jc2N) = l => C(K)= I
2N 2N

1=1 i=l

IN/« /\kt

FT'
i=i

(2.4)

32

Normalization constants are used in the computation of performance

measures including server utilization (the proportion of time the server is busy),

residence time (the average time spent at the service center by a customer,

both queued and receiving service), queue length (the average number of

customers at the service center, both waiting and receiving service), and

throughput (the rate at which customers pass through the service center).

An efficient solution for Equation 2.4, given identical service rates jup and

/Jc for all processor and channel service centers, respectively, has been found

[25]. Transition rates were calculated by assuming that messages transmitted by

c-type (channel) centers are uniformly directed to the p-type (processor)

centers at other nodes. These assumptions established transition probabilities

from channel to processor centers of x;; = 0 (if the channel and processor centers

are in the same node) or x,j = 1/(N-1) (otherwise). Since messages transferred

from a p-type center can only go to the c-type center in the same node,

transition probabilities from processor to channel are x,y = 7 (if the channel and

processor centers are in the same node) orx,y = 0 (otherwise). There is a limitation

to the existing solution; the solution is specific to the two-service-center model of

a node shown in Figure 2.2. In addition, the solution depends on identical

service and arrival rates at all nodes, prohibiting hot-spot analysis unless

modifications are made. The next section presents the development of an

efficient solution process that overcomes the two-service-center model limitation

and allows evaluation of hot-spot conditions.

33

2.2 Calculating System Performance

As explained above, system performance measures can be calculated

using network normalization constants [7]. The method developed in this

dissertation for the determination of those constants is based on a service center

aggregation technique known as Norton's Theorem for Queueing Networks

(NTQN) [11]. Norton's theorem for queueing networks was originally developed

as an efficient way to evaluate network performance while varying parameters

of a subsystem-of-interest within a larger network. Standard application of NTQN

involves functionally partitioning a network into a subsystem-of-interest, CTJ, and

the remainder of the network, <J2. A short replaces <JI, and the resulting network

is used to find a single, load-dependent (Norton-equivalent) aggregate center

that exhibits the statistical behavior of a, as experienced by a). (The service rate

for the equivalent service center is set equal to the load-dependent throughput

of the shorted branch.) Once that equivalent service center is found, it replaces

02 in the original system to create a new network. The product-form equation for

that network has fewer terms, making the computation of network normalization

constants more efficient.

Evaluation of the SOME-Bus model focuses on how changing the service

rate of processor or channel service centers impacts system performance,

making a node the subsystem-of-interest. The fact that there are multiple nodes

in the model requires a modification to the standard application of NTQN

described above. First, a Norton-equivalent service center for the model of

each node will be found, making individual nodes serve as 02 during the

application of NTQN (with the remainder of the network serving as <J{\. The

34

node-equivalent sen/ice centers then replace all the corresponding subsystems

(nodes) in Figure 2.2. Although the network models in this dissertation also

incorporate the two-service-center model of a node used by Katsinis [25], this

step allows the evaluation of any node-architecture model that meets NTQN

requirements. Next, NTQN is iteratively applied to pairs of node-equivalent

service centers until only an N-l node Norton's equivalent service center in series

with a single node remains. The normalization constants for this equivalent

network are used to calculate network performance.

2.2.1 Norton's Equivalent of a Node

The first step in finding network normalization constants is to determine a

Norton's equivalent service center for each system node. Figure 2.3 depicts a

single node, designated node r (for reference), serving as as with the remainder

of the SOME-Bus network replaced by a short. Solving the resulting flow-balance

equations, seen in Equation 2.5, shows that the arrival rate at the processor

center, \Pr, is equal to the arrival rate at the channel center, kCr.

K K]=K K]
0 1

1 0
(2.5)

The resulting product-form equation for this closed queueing network appears as

Equation 2.6. The number of messages in the processor and channel service

centers are represented by kp and kc, and processor and channel service rates

by n^and n (respectively).

35

**,A>-C£m)v% Pr

K
V-cJ

(where k. + kc = K) (2.6) "p -c

Shorted
Network

Processor

Service Center

Channel (Comm)
Service Center

Figure 2.3 Finding the Norton's Equivalent Service Center for a Single Node

Choosing the arrival rate of the processor center to serve as the system

parameter and arbitrarily assigning it the value of the processor service rate, \y.Pr,

produces the normalization constant for node r, Cr(K), seen in Equation 2.7,

K f / \K C^--L{%J * =0

(2.7)

36

which simplifies to

Cr(K) =

1-1 »*>
K+\

1-1%
Vcr)

(2.8)

Once the normalization constant is found, average throughput, Yr(K), for

the processor and channel service centers in Figure 2.3 can be calculated using

Equation 2.9 [7].

W = v(Cr(*"%r(Jo) (' = **) (2.9)

With the arrival rates of both service centers the same, the throughput of both

centers, and the shorted branch, are equal. By calculating Cr(k) for all k, k =

1,2,...,K, and substituting the parameter value \ip for A,-, the solution to Equation

2.9 becomes the load-dependent (state-dependent) service rate for the

Norton's equivalent of node r [48].

lirC) = »Pr{
Cr(k %r(k)} (k = l2,...,K) (2.10)

Node-equivalent service centers must be found for every node with

processor or channel service rates, or arrival rates, different from those of node r.

37

By assigning \i to serve as the parameter value representing the arrival rate to

the reference node, relative arrival rates to the remaining nodes are found by

solving X = XX for the N-node system. Normalization constants can then be

calculated for node / using Equation 2.11,

K

\/vPl

J %, >*-/

V-, CiJ
(2.1 I;

which results in the associated load-dependent service rate for node i seen in

Equation 2.12.

H,(k) = X,. -{Ci{k yCj{fij (* = U.~,*; / = l,2,...,A0 (2.12)

Substituting these Norton-equivalent service centers for their respective

nodes in Figure 2.3 results in the simplified system model shown in Figure 2.4. The

product-form equation for this network, with its N load-dependent service

centers, takes the form of Equation 2.13 [15].

P(ki,k2,...kN) - ^/c(Ky
N n N

k

7=1

N
(where £*, = K) (2.13)

i=l

38

T-

\y

Nodel
Equiv

T
-r:

0 O Node 2
Equiv

• • • Node N-l
Equiv

5 Q Node N
Equiv

Figure 2.4 N-Node SOME-Bus Model w/ Norton's Equivalent Nodes

2.2.2 Network Normalization Constants

Determining network normalization constants first requires finding an N-l

node Norton's equivalent service center, which is accomplished here by

iterative application of NTQN. The process begins by partitioning the model of

Figure 2.4 into two parts. One part, os, consists of any two, node-equivalent

service centers (identified as Center a and Center b), while a> contains the

remainder of the network. Shorting <j\ results in the queueing network of Figure

2.5, allowing the Norton's equivalent center of cr2 to be determined. This

equivalent service center is substituted for a in the model of Figure 2.4, and the

process is repeated until an N-1 node aggregate center results.

39

Figure 2.5 Model for Norton's Equivalent Reduction of Two Centers

Terms appearing on Figure 2.5 indicate the probability of a message

traversing the associated branches of the network. The values xab and Xba are

the system transition probabilities from Node a to Node b, and Node b to Node

a (respectively). Values ya and yb arise from system flow-balance

considerations, and are calculated using system arrival rates and transition

probabilities, as seen in Equation 2.14.

f ^ and yb =

KVi*a,b

y N (2.14)

\Vi*a,b

40

For reference purposes, the transition probability matrix for the network of Figure

2.5, is shown in Equation 2.15.

x =
xaa xab

xba xbb.
where

«t=(l-«*)-YB

xab=xab+{l-xab)-yb
xba=xba+Q-xba)-la
xbb =V~xba)-lb

(2.15)

The product-form equation for the network of Figure 2.5 is created using

the load-dependent service rates and system arrival rates for Centers a and b

[15].

P(ka,kb) = ^(K) (where ka + kb = K) (2.16)

Substituting the node-equivalent, load-dependent service rate equation

(Equation 2.12) for each center into Equation 2.16, and noting that C(0) = 1 by

definition [48], the normalization constants for the network of Figure 2.5 are

found.

41

Q2(*)= I[(cfla))-(Q(*-y))] (* = <>,...,*:) (2.17)
7=0

The load dependent service rate for the two-center aggregate is set

equal to the throughput of the shorted-network branch [48], as shown in

Equation 2.18.

ii02(k)=[{i-xabyxa+(i-Xbayxb]
Ca2(k-l)

(2.18)

Comparing Equation 2.18 with Equation 2.9, the arrival rate of the aggregate

service center can be determined.

K2={l-XabYK+(l-Xba)-*.b (2-19)

The final step in the aggregation process consists of revising and reducing

the transition probability matrix associated with the system model of Figure 2.4 to

reflect the aggregation of two centers into one. Replacing the separate

transition probabilities from node / to nodes a and b is the single transition

probability, shown in Equation 2.20, from node /' to the aggregate center.

*fe2=*fc+*ft U*a,b) (2.20)

42

The two rows of the system transition probability matrix associated with Centers a

and b are replaced by the transition probabilities from the aggregate center to

other network nodes.

\Xa-xaj+'kb-xbj\
X°2J ' V Z (V*« + V**y)

\fj*a,b

U*a,b) (2.21]

The aggregate node does not send messages to itself, making xa a, = 0.

N-l Node
Aggregate
Service Center

Processor
Service Center

Channel (CommJ
Service Center

Figure 2.6 Reduced Model for Performance Evaluation

43

In a network with equal transition probabilities, such as a SOME-Bus with

no hot-spots and identical processor and channel service rates at every node,

repeating the aggregation process as few as 2[log2(N)] times produces an N-l

node Norton's equivalent service center. The worst case, where no two pairs of

nodes have the same transition probabilities requires N-2 iterations.

The model representing the final result of the aggregation process just

described is shown in Figure 2.6, with the original two-center model of the

remaining node replacing its Norton equivalent for the purpose of performance

evaluation. This model, statistically equivalent to the model of Figure 2.4,

produces the network normalization constants used to calculate performance

measures.

The product-form equation for Figure 2.6 appears as Equation 2.22. Due

to the series configuration of the network, the arrival rates to all the stations are

equal [Ap = Äc = Aagg).

P(kp,kc,kagg)- /cMet(K)\ /ju. NeA^)\/HpJ \/PcJ /ff.. I* (Z22)

(where kp + kc + kagg = K)

For calculation of CNet(k), Equation 2.23 partitions the messages in the network

into those in the two service centers of the node (/), and those in the aggregate

service center (k-i). It then further partitions those in the node into those in the

processor center (/) and those in the channel center (/'-/).

44

j=0 j=0

\'~J y^ss)
k-i

ÜMaggÜ)
y=l J

(A: = 0,1 K) (2.23)

This reduces to Equation 2.24.

;=0 film' ■(c«(*-0) (* = <U...,*) (2.24)

Nodel Node 2 Node 3 Node 4

Figure 2.7 A Four-Node SOME-Bus System

45

The following subsections present three examples illustrating how to apply

the method described above. The first example represents a SOME-Bus system

with no hot-spots. The second system has a single hot-spot node that is the focus

of the evaluation. The final example has the same hot-spot node, but a different

node is the subject of the evaluation . All nodes are assumed to have identical

processor and channel service rates. Figure 2.7 illustrates the queueing network

model for all three examples.

2.2.2.1 Example 1: No Hot-Spots

Model
Equiv

Node 2
Equiv

V
Node 3
Equiv

\/

Node 4
Equiv

Figure 2.8 Four-Node Equivalent SOME-Bus Model

46

Since the nodes of Figure 2.7 have the same model as the system

presented in Figure 2.1, the load-dependent service rate for the Norton's

equivalent of node i is already known (Equation 2.12). Substituting copies of this

existing node-equivalent service center into Figure 2.7 produces the simplified

model of Figure 2.8.

With no hot-spots in the system, the probability transition matrix for the

model of Figure 2.8 is shown in Equation 2.25.

' 0 1/3 1/3 1/3
1/3 0 1/3 1/3
1/3 1/3 0 1/3
1/3 1/3 1/3 0

(2.25)

Solving X - XX finds all arrival rates to be the same; using Node 4 as the

reference, and its arrival rate [\ip) as the system parameter, relative arrival rates

are established as Xt = \iPr (/' = 1,2,3,4). For the first two-center aggregation, any

two of the identical node-equivalent centers can be chosen to serve as Centers

a and b of Figure 2.5. For reference purposes, the transition probability matrix for

this network is seen in Equation 2.26.

x = 1/3 2/3

2/3 1/3
(2.26)

47

With arrival rates for nodes a and b already known to equal \iPr, and their

normalization constants equal to those of the reference node (C0=Cb=Cr), the

normalization constants for the aggregate center can be found by applying

Equation 2.17.

Q,1W= ICrO>Cr(*-y) (k = l,2,...,K) (2.27)

Using Equation 2.19, the relative arrival rate to the aggregate center is found to

be Xa = 4nPr /3. This results in the load-dependent service rate for the

aggregate center shown in Equation 2.28.

^2J (*) = ('
4^ %,(*-!),

'Co2M
(k = l,2,...,K) (2.28)

Equations 2.20 and 2.21 are used to calculate elements of the reduced system

transition probability matrix, as seen in Equation 2.29.

x =
0 1/3 2/3

1/3 0 2/3

1/2 1/2 0

(2.29)

The final aggregation, to produce the N-1 node center, substitutes one of

the remaining node-equivalent centers for Center a of Figure 2.5, and the

aggregate center of the previous step for Center b. With Xa equal to y.Pr, and

48

the relative arrival rate to the aggregate center known to be Xb = 4\iPr /3 (from

the previous aggregation), the normalization constants for this iteration can be

found.

Q22(*) = T,Cr(j)-C02i(k-j) (k = \X...,K) (2.30)

Finding the relative arrival rate for this aggregation to be XCT = \iPr, the service

rate of the aggregate center is equal to the value shown in Equation 2.31.

■w*)=k){Cff"(*"%M(*)) {k=v-v {2-31}

Equations 2.27 and 2.30 show that normalization constant calculations for

aggregate nodes depend only on the normalization constants of individual

nodes, or previous aggregations. Also, note that the N-l node aggregate

service center relative arrival rate, X0i , equals \ip, the arrival rate established

for the reference node. This is expected since the final system model of Figure

2.6 places the N-1 node aggregate in series with the remaining node, which has

the same configuration as the reference node. Recognizing these facts provides

a computational advantage; there is no need for any calculation during

aggregation other than that of aggregate-center normalization constants

(Equation 2.17). When aggregation is complete, set the arrival rate of the N-l

node aggregate equal to the arrival rate of the remaining node.

49

The product form equation for the final network, which has the same

configuration as the network of Figure 2.6, is

p(kp, kc, kagg) - l/CNet{K)) i
l)p\ / ^

(where kp+kc + kagg = K)

K)
y=i -j

(2.32)

producing the network normalization constants shown in Equation 2.33.

Qto(*) = I
;=0

Zl^
J=o

■(cffu(*-o) (* = 0,1,...,A:) (2.33)

2.2.2.2 Example 2: Hot-Spot Node Performance

Given the same architecture as the first example, the model again

simplifies to that of Figure 2.8. The hot spot node for this example is Node 1, as

seen in the transition probability matrix of Equation 2.33.

x =

' 0 1/3 1/3 1/3'
1/2 0 1/4 1/4
1/2 1/4 0 1/4
1/2 1/4 1/4 0

(2.33)

With the hot-spot node the subject of the performance evaluation, the

aggregate service center will be composed of all the other nodes. Configuring

50

the system so that Node 4 is the reference node, solving X = XXr and setting

XA = \iPr results in the relative arrival rate vector X = [3npj2,\iPr,\iPr,\iPr]. The

normalization constants for the first stage of the aggregation are found to be the

same as those shown in Equation 2.27, but the aggregate center relative arrival

rate is Xa =3y.pj2. The normalization constants for the second aggregation

are also the same as those of the first example (Equation 2.30). However, the

relative arrival rate of that aggregation, the N-l node aggregate center, is

X02i = 3y.pj2. Again, note that this arrival rate is equal to that of the remaining

(hot-spot) node.

The product-form equation for the final network, represented by the

model of Figure 2.6, is

Net{K)J \/2) \ /2\LcJ
3Ak> i^Pr P{kp,kcXgg) ~ {/cN„t(K)J

(where kp + kc + kagg = K)

rK,,o')
(2.34)

which results in the network normalization constants of Equation 2.35.

vnr
J=0

(Q2,(*-0) (k = 0X...,K) (2.35)

51

2.2.2.3 Example 3: Evaluating a Non-Hot-Spot Node in a Hot-Spot System

For this example, the simplified system model (Figure 2.8), transition

probability matrix (Equation 2.33), and relative arrival rate vector are the same

as the previous example. For the first aggregation, the hot-spot node is arbitrarily

paired with a non-hot-spot node. Substituting the non-hot-spot node for Center

a and the hot-spot node for Center b in Figure 2.5, produces the aggregate

center normalization constants shown in Equation 2.36. The term Ch[k) represents

the hot-spot node normalization constants.

Q21(*)=lQO>c*(*-y) (2-36)
j=0

This aggregate center has a relative arrival rate of Xa =3\ip/2. After reducing

the system transition probability matrix, the second aggregation produces the

normalization constants

Q,2(*) = ICr(y)-Cff2I(*-y) (2.37)
7=0

and the associated relative arrival rate, A.ff,2 = \yPr (as expected).

The product-form equation for the final network is

NetKKP V<

(where kp + kc + kagg = K)

j=\ J

52

(2.38)

resulting in the network normalization constants shown in Equation 2.39.

i=0
tr*-
J=0 K<

(Co2.2(k-i)) (k = 0±...,K) (2.39)

2.2.3 Performance Calculations

When network normalization constants, service rates, and arrival rates are

known for the service centers in the model shown in Figure 2.6, performance

measures can be calculated. Throughput, already defined in Equation 2.9 for

the special case of a single node, is redefined in Equation 2.40 for the network of

Figure 2.6. With identical arrival rates to each center (represented by faet),

individual center throughputs are equal in this serial network.

Yi(K) = ANet(
C"e>(K %Net{K) where i = p,c,agg (2.40)

The probability of finding k messages at a center, given K in the network, is

defined in Equation 2.41 [8].

The utilization of center /' is then calculated using Equation 2.42.

The average number of messages at center /, given K in the network is

which transforms into Equation 2.44 (by substitution of Equation 2.41]

53

p(*<=*H/c^> = i CNet(K-k)-\-L

where/'= p,c,agg

CNet{K-k-\) (Al
(2.41]

Uj = l- P(kj = 0) where /' = p, c, agg (2.42)

ki(K) = Z * • p(k' = *) where ' = A c>a8B
k=\

(2.43)

W=i-HC*'(/:"^ f*:0 where i = p,c,agg (2.44)

The final performance measure, average time spent in the center

(Equation 2.45), is determined using a relationship established by Little's Law [36]

as practiced in a queueing network analysis method known as Mean Value

Analysis [47].

t,(K) = *i(i%(jQ where i = p,c,agg (2.45)

54

These formulas are applied in the next chapter to analyze the

performance of the SOME-Bus message-passing model as the number of nodes,

service rates, and number of messages are varied.

Chapter 3

MESSAGE-PASSING MODEL PERFORMANCE EVALUATION

This chapter presents the results of analytical and simulation modeling of

a message-passing SOME-Bus system along with performance comparisons to

crossbar and torus simulations. Performance measurements provided by the

queueing-network model developed in Chapter 2 are used to evaluate

processor utilization and communication latency, as well as validate a SOME-Bus

simulator with the same average service times and distributions. The simulator is

then extended to perform commonly occurring system activities that are difficult

or impossible to model analytically. Results from the modified SOME-Bus

simulator are compared to simulations of crossbar and torus systems to

determine the relative performance of the SOME-Bus architecture with respect

to these two network topologies.

3.1 Analytical Model Results

The analytical model evaluated here is the N-node SOME-Bus queueing-

network model that was developed in Chapter 2 (shown in Figure 2.1). The

model consists of a network of service centers that represents system resources,

with each node modeled as two service centers in tandem. The first service

center represents the activities of the receiver-buffer and processor-memory

blocks of the SOME-Bus architecture, as depicted in Figure 1.1. The second

service center models the actions of the transmitter block and the channel

55

56

characteristics ot the same figure. All service centers in the model are assumed

to have load-independent, exponential service time distributions, and first-come,

first-served service disciplines.

The parameters of the model that can be manipulated include the

number of nodes (N), the average processing service time, average channel

service time (which is proportional to message size), the total number of

processes executing in the system (N-K), and the destination node selection

distribution. The primary means of comparing the performance of the analytical

and simulation models involves examination of processor utilization (average

fraction of time dedicated to executing processes) and communication latency

(channel queueing plus transfer time).

The reference point for all timing parameters and measurements is the

average time assigned to service a process (fp), maintained at 100 time units for

all model runs. The average channel service time (fc) represents the message

transfer time through the channel and is varied between 5 and 100 time units.

All performance data is presented so that the x-axis of the associated plot

represents the ratio of average message transfer time to average process

service time [tc/tp], a ratio indicative of the amount of communication overhead

incurred per unit of computation [52]. When the value of tc/fP is low, the task

granularity is assumed to be coarse, while higher values indicate more finely-

grained tasks.

Figure 3.1 shows analytical model (T) processor utilization for a SOME-Bus

system as the number of nodes in the model is varied from 4 (-4N) to 128 (-128N)

(in powers of 2), with the number of processes averaging three-per-node. Note

57

that the difference in processor utilization, as communication service time is

varied, remains at less than 5 percent between a 4-node and a 128-node

configuration. In addition, the difference in utilization as the number of nodes

increases converges on the 128 node curve, with the difference between any

two of the curves remaining constant over the entire range of tc/tP. Taken

together, these facts indicate that the system scales well, with even the largest

system operating at the finest granularity, being able to maintain processor

utilization above 60%.

c
o
a
N

o
00
oo
<D
O
O

1 -r

0.9 -

0.8 |

0.7 -•

0.6

0.5 -

0.4 -•

0.3 -■

0.2 -•

0.1 -

0

-+-T-4N

-^-T-8N

-A-T-16N

-*-T-32N
-*- T-64N
-*--T-128N

-\ 1- H h H 1
to t- Lo CM \r> co m
°. ö T d "^ ö m. o o o o

■si- to totocotor-toootocotn
o o o o o

(Message Transfer Time/Processing Time)

Figure 3.1 SOME-Bus Processor Utilization, 3 Tasks-per-Node, Analytical

Figure 3.2 presents an expanded view of 4-, 16-, and 64-node SOME-Bus

processor utilization curves, showing both analytical (T) and simulation (S) results.

58

The close correspondence between the two sets of curves indicates the

simulator provides accurate results for processor utilization as the number of

system nodes is varied. There is also similar correspondence between analytical

and simulation results for 8-, 32-, and 128-node system configurations.

(Message Transfer Time/Processing Time)

Figure 3.2 Processor Utilization, 3 Tasks-per-Node, Analytical and Simulation

Further proof of simulator accuracy is provided in Figure 3.3, where

analytical (T) and simulation (S) results are shown as the number of nodes in the

SOME-Bus is fixed at N = 64, and the number of processes is varied between 64

and 320, in units of 64. These numbers correspond to an average of 1 (-1P) to 5 (-

5P) processes-per-node. Note that processor utilization does not decline as the

number of processes is increased, an indication that the network can effectively

59

deal with the additional message traffic generated by multiple processes-per-

node. Also, as task granularity increases, the difference between curves remains

constant, an additional indication that network attributes have minimal impact

on the ability of a processor to execute its tasks.

c o
o

o
oo
0
Ü
o

(Message Transfer Time/Processing Time)

Figure 3.3 64-Node SOME-Bus Processor Utilization,! to 5 Tasks-per-Node

Processors in message-passing systems depend on their interconnection

network to provide, in a timely manner, the data needed to enable their

assigned processes. One critical measure of this ability is communication

latency. In the SOME-Bus analytical model, this measure consists of the time a

message spends in the channel center, both waiting and in service. Channel

service time in the analytical model corresponds to message transfer time in the

60

simulation, due to the constant channel bandwidth of a SOME-Bus channel.

Figure 3.4 shows communication latency for SOME-Bus systems as the number of

nodes is varied from 4 to 128 nodes (in powers of two), and the number of

processes is kept fixed at K = 192. In addition, the simulation results for 4-, 16-, and

64-node systems are included for validation purposes. This set of curves shows

that latency does not depend on the number of nodes in the system, and that

analytical and simulation models are again in close agreement.

(Message Transfer Time/Processing Time)

Figure 3.4 Communication Latency, SOME-Bus, 3 Tasks-per-Node

Figure 3.5, shows communication latency for a 64-node SOME-Bus system

as the number of processes is varied from 64 (-1P) to 320 (-5P), in units of 64. Both

analytical (T) and simulation (S) results appear on the graph, again in close

61

agreement. When tasks are coarse-grained, there is essentially no waiting time

in the channel queue, regardless of the number of processes. As the ratio of

communication to computation increases, the processor becomes less of a

bottleneck and waiting times in the channel queue add to the increase in

latency.

o CN in co
o CM o

m -vi- to LO IT) vO "O l-s to CO LO o >o —
co o ^ o LO o sO o rv o CÜ o o
o o d d d d d

(Message Transfer Time/Processing Time)

Figure 3.5 Communication Latency, 64-Node SOME-Bus,l to 5 Tasks-per-Node

3.2 Comparison to Torus and Crossbar Systems

The close correspondence between utilization and communication

latency results of the message-passing SOME-Bus analytical and simulation

models validates the ability of the SOME-Bus simulator to predict system

performance. This section presents results from a modified version of that

62

simulator, comparing them to simulations of'two-dimensional torus and crossbar

message-passing systems. All modifications represent commonly occurring

processing or communication activities that are difficult or impossible to model

analytically. One of these modifications permits examination of system

performance when task synchronization is required.

Task synchronization is modeled in all three types of networks by having

each node send the same synchronization message to all other nodes in the

form of an all-to-all communication. Processors initiate a synchronization

operation after a specified period of time elapses and the processor completes

its current processing task. Synchronization intervals considered here are 5000

time units (representing heavy synchronization, synchronizing an average of

once every 50 messages), or 30000 time units (representing light synchronization,

averaging once every 300 messages). In addition, each synchronization

operation can be preceded by a processor sending a number (D) of distinct

data messages to other nodes. Each of these messages is short in duration (5

time units), with D equal to 0 or 10. This activity represents the exchange of

partial results that normally occurs prior to task synchronization.

Processing, as defined for these models, consists of the processor at each

node extracting a data message from an input queue, servicing the associated

process for a period of time, generating an output data message, and then

suspending that process. A processor operating in this manner becomes idle

only when all processor input queues are empty. Also, in all architectures, the

receiver or router at each node is assumed to contain dedicated

synchronization hardware. This assumption releases the processor from having to

63

dedicate part of its service to synchronization tasks, and eliminates

synchronization messages from the processor input queue(s).

In the crossbar architecture, each node is able to connect its single

output channel to the single input channel of any other node. Messages wait at

the output channel queue of a source node if the input channel of the

destination is engaged in communication with a different node. -When a node

needs to broadcast the same message to all nodes (modeled here as a

synchronization operation), it waits until all input channels are free, reserves

them, and then simultaneously sends a single copy of the message to all nodes.

In the torus architecture, dedicated channels connect each node to its

four adjacent neighbors. Each of those four channels has an associated output

queue to buffer messages traveling through the network from source to

destination. In addition, each node has a single input queue to buffer messages

directed to that node. When source and destination nodes are not nearest

neighbors, an adaptive form of wormhole routing is employed to facilitate

communication. This method routes the message through the next available

channel in the direction of the destination. Synchronization is performed by

having all nodes send a synchronization message to a barrier node. Each node

in a row receives a single synchronization message on its right channel,

forwarding this message to its left channel once it arrives at its barrier. A similar

procedure forwards the synchronization message to the barrier node through

the left column. Once the barrier node accumulates synchronization messages

from all nodes, it redistributes them in the opposite fashion to reinitiate

processing.

64

In the SOME-Bus architecture, messages leaving a node are broadcast

from the associated channel queue through the corresponding channel in a

single operation. The processor operates in a fashion similar to a server in a

polling system. Polling system theory indicates that service discipline has an

effect on the waiting time of the messages in the input queues. In the

simulations presented here it is assumed that the processors employ a limited

service discipline. Synchronization messages are processed in the receiver at

the destination node, and their arrival is marked in a local table.

With respect to all three architectures, the processing time, fp, again

serves as the reference point for all performance evaluations, being

geometrically distributed with a mean of 100 time units. The time it takes to

transfer a message, fc, is varied from 3 to 100 time units, and is uniformly

distributed. This transfer time represents actual channel time in crossbar and

SOME-Bus simulations, but it only represents actual channel time for the torus

when a message is not blocked in transit from source to destination. In addition,

establishing individual channel connections for the wormhole routing scheme of

the torus requires a small amount of time. Destination nodes in the crossbar and

SOME-Bus are uniformly selected over all nodes (excluding the source) and

uniform in each direction in the torus. All architectures are assumed to have the

same channel capacity, and all simulations were performed with the number of

nodes (N) set equal to 64 and the number of processes in the system set equal to

192.

Although all the simulations performed here use the same channel

capacity for each of the three architectures, it is not necessarily true that they

65

have the same transmission-rate capability. To illustrate, if the processor

subsystem of a node in the torus architecture utilizes typical high-end

microprocessors with moderate-size caches and single-bus access to a

moderate-speed main memory, memory bandwidth can be the factor which

limits the speed at which messages are transmitted and received. Many high

performance all-to-all communication (and synchronization) algorithms assume

that nodes in a torus are capable of all-port communication. This assumption

limits the transmission rate of torus network channels to one-quarter the memory

bandwidth, possibly less if the node is also configured to accept incoming

messages at similar rates. The SOME-Bus receiver, with a dedicated buffer for

each input channel, and the crossbar, with its single input channel and buffer,

avoid this restriction. As an example, given messages of size M bytes and a

memory bandwidth of ß bytes/sec, it takes 4M/B seconds to transmit the

message from node-to-node in the torus. Given the same message size in a

SOME-Bus or crossbar system, it takes 2M/B seconds to transmit (due to the buffer

between the channel and memory). These basic calculations show that for

equal processing capability, channel capacity, and memory bandwidth, the

SOME-Bus and crossbar systems can operate at twice the transmission rate of

torus channels.

Figure 3.6 shows processor utilization for the three architectures (SO =

SOME-Bus, CR = crossbar, TO = torus) as message transfer time is varied and no

synchronization operations occur. Results indicate that, in the absence of

synchronization, all architectures display similar performance for short to medium

message transfer times. SOME-Bus and crossbar system performance appear to

66

be identical, showing only minor degradation as message transfer times

increase. As the time it takes to transfer a message approaches the

computation time of the associated process, processor utilization in the torus

decreases at a markedly greater rate than the other two architectures. These

results are in general agreement with studies of similar architectures in [1].

(Message Transfer Time/Processing Time)

Figure 3.6 Processor Utilization, All Architectures, No Synchronization

Figure 3.7 illustrates processor utilization for all three architectures in the

presence of synchronization operations. Cases of both heavy synchronization

(HS), where synchronization occurs every 5000 time units (averaging 50 messages

between synchronizations), and light synchronization (LS), where synchronization

takes place every 30000 time units (averaging 300 messages between

67

synchronizations), are shown. In addition, separate simulations were performed

with the number of short data messages, representing an exchange of

intermediate results just prior to transmission of synchronization messages, set at 0

(0) and 10 (10). The SOME-Bus outperforms the other two architectures in all four

situations, seemingly unaffected by the presence of an exchange of

intermediate results prior to synchronizations. The SOME-Bus also maintains a

constant difference between HS and LS curves. In contrast, heavy

synchronization operations, coupled with longer message transfer times, appear

to have a dramatic effect on the ability of torus and crossbar systems to keep

their processors occupied with assigned tasks.

-*—SO-HS(0)

-♦—SO-HS(IO)

-■—CR-HS(O)

-♦— CR-HS(IO)

-m— TO-HS(0)

-♦---TO-HS(IO)

-*— SO-LS(0)

-+— SO-LS(IO)

— A— CR-LS(O)

— •— CR-LS(IO)

---^--TO-LS(O)

---«---TO-LS(IO)

(Message Transfer Time/Processing Time)

Figure 3.7 Processor Utilization, All Architectures, with Synchronization

68

Figure 3.8 shows communication latency (time a message is queued and

in transit as it travels from source to destination) when no synchronization

operations occur, and average message transfer times are varied. Again, the

SOME-Bus and crossbar systems exhibit identical performance, while the torus

system experiences significant additional delays as messages increase in size.

600 T

>.500
o c
B 400

300 -
c
o
o o
c
I 200
o
ü 100

0

■SO-NS

--»-••• TO-NS

-*- CR-NS

..»'

—TSS""

:*

w

4—"

JT'

X

co
o 6

CO

d ö ö 6 d
CO

d d

(Message Transfer Time/Processing Time)

Figure 3.8 Communication Latency, All Architectures, No Synchronization

Communication latency for the three architectures in the presence of

synchronization is shown in Figure 3.9. Whether heavy or light synchronization

occurs, and whether or not intermediate results are exchanged, the SOME-Bus

exhibits the same performance as when no synchronization operations occur

69

(Figure 3.8). In comparison, the crossbar is significantly effected by heavy

synchronization operations, and even light synchronization noticeably increases

latency with respect to no synchronization. The torus has at least twice the

latency, on average, as the SOME-Bus, regardless of the type of synchronization

that occurs. The SOME-Bus clearly has less latency, in all synchronization

situations, than the crossbar or the torus.

500 T
SO-HS(0)

TO-HS(0)

CR-HS(0)

SO-HS(IO)

TO-HS(IO)

CR-HS(IO)

SO-LS(O)

TO-LS(O)

CR-LS(0)

SO-LS(IO)

TO-LS(IO)

CR-LS(IO)

<r> .— CN co ■* LO o N. CO o

ö o o o o o o o o o

(Message Transfer Time/Processing Time)

Figure 3.9 Communication Latency, All Architectures, With Synchroniztion

As mentioned earlier in this section, these simulations do not take into

account the fact that SOME-Bus and crossbar channels should have twice the

transmission-rate capability of torus channels. Taking this fact into account, the

SOME-Bus compares even more favorably with the other architectures.

Chapter 4

DISTRIBUTED SHARED MEMORY MODELS OF THE SOME-BUS

4.1 Background

As discussed in Chapter 1, contemporary shared-memory multiprocessor

systems are designed to benefit from the technological advances in, and

economic advantages of, commercial microprocessors and their support

components [50]. The majority of those microprocessors have on-chip cache

memory to improve uniprocessor performance by bridging the speed gap

between processor and memory technology. When processors take advantage

of this feature in multiprocessor systems, cache coherence becomes a major

concern.

Snooping is a common hardware-based technique to maintain

coherence in central-shared-memory systems, informing all caches of every

memory write by every processor. Existing distributed-shared-memory (DSM)

systems are unable to implement snooping because their interconnection

networks quickly saturate due to the additional message traffic associated with

the method [44]. Software-based cache-coherence techniques are available

for DSM systems, but also incur excessive communication overhead, limiting

them to systems with few processors. Another method to implement coherence

in DSM systems is a directory-based protocol, where the directory catalogs the

state of every block that is cached. The overhead associated with this method

scales acceptably in systems with up to one hundred processors [44].

70

71

Because of the difficulties involved in maintaining cache coherence,

some DSM multiprocessors, such as the Cray T3D, make shared data

uncacheable, using the cache only for private data [44]. These DSM systems fall

into the non-uniform memory access (NUMA) category of architectural models.

The SOME-Bus, when functioning as a DSM multiprocessor, can readily support

cache coherence, placing it in the cache-coherent, non-uniform memory

access (CC-NUMA) category. Although the SOME-bus can utilize software or

directory-based techniques for implementing cache coherence, its design

allows the transmitter, receiver, and cache controller to function as a hardware-

based, integrated cache-coherence mechanism.

The SOME-Bus cache-coherence mechanism functions by having every

node broadcast messages to update, or invalidate, remote caches when a

processor writes to local memory. Receivers at remote nodes monitor these

messages, signaling their cache controller when one is detected. This

hardware-based approach enforces coherence at the cache-block level,

reducing the probability of false sharing and thrashing.

Although the non-blocking nature of the SOME-Bus network eliminates the

possibility of interconnection network saturation, intense cache-consistency

traffic could saturate the cache controller [24]. In that situation, the SOME-Bus

cache-coherence mechanism could leverage existing directory-based

techniques, only notifying remote caches with affected data blocks. This would

be accomplished by including a list of destinations in the invalidation-message

header, making the decision to accept or reject an input message the

responsibility of the receiver, rather than the cache controller. This same

72

mechanism would allow a SOME-Bus-based system to support multiple-read,

multiple-write data accesses. A write by a cache controller to the shared

address space in local memory could automatically be propagated to all other

nodes, updating cached data in a non-demand, anticipatory manner.

4.2 DSM Model Development

As the number ot nodes in a distributed-shared-memory system grows, a

greater percentage of the shared address space resides outside the local node.

In this situation it is reasonable to assume that the miss rate to local memory will

increase, with support for this assumption found in other multiprocessor-system

studies [56], [12]. Given finite memory bandwidth, this increased rate of remote-

memory requests can be expected to interfere with the ability of memory to

service local requests. The mechanisms that influence this interference, which

reduces system performance, are the focus of the SOME-Bus DSM models.

Two queueing-network models will be developed to examine

performance of the SOME-Bus as a DSM system. These models, again based on

the system architecture shown in Figure 1.1, represent an N-node SOME-Bus, with

two service centers used to model the subsystems of a node. The first service

center, referred to as the processor service center, represents the combined

activities of the receiver, processor (with cache), and memory subsystem. The

second service center, referred to as the channel service center, represents the

behavior of the transmitter and output channel. In addition, multithreaded

execution is assumed, with the processor at node / responsible for executing K

(constant) threads. When performing tasks associated with the execution of its

73

own threads, a node is referred to as a local node; when performing tasks

associated with the threads owned by another node, it is referred to as a remote

node.

In the actual system, activity at a local node begins with the execution of

a thread, and continues until a cache miss occurs. If the miss can be supported

by local memory, the thread continues to execute. If remote data access is

required the thread suspends, a read request is generated, and that request is

transmitted to the remote node hosting the memory address. Simultaneously, a

context switch occurs if any other threads are ready to execute.

To model local node activity, consider the case where k,, the number of

outstanding remote memory requests by node /, is less than K, the number of

processing threads assigned to a node. In this situation it is assumed the

processor continues to generate remote-memory requests, with a mean interval

of h time units between requests. This interval corresponds to the processor-

center service time (exponentially distributed with mean h) that each of the

remaining K- k; threads receives. These assumptions are similar to those made in

other performance studies involving DSM systems based on mesh [1], torus [42],

and multistage interconnection networks [56]. Once a request message is

generated, it is placed in the queue of the channel service center for

transmission on the output channel. When the message reaches the server of

the channel service center, it requires a mean of s time units (exponentially

distributed) for transmission, where s is proportional to the length of the message.

(This assumption is based on the fact that a SOME-Bus has constant channel

74

bandwidth.) It is further assumed that remote-memory requests are directed

with equal probability to the other nodes in the system.

Modeling of remote-request activities begins with the message in the

processor-center queue at a remote node. Once the message reaches the

head of the queue, it requires a mean service of m time units (exponentially

distributed) to access the data and assemble the response message. Again, the

output of the processor service center is placed in the channel service center

queue, and once it reaches the server, a mean of s time units is required for

transmission. Remote-memory-request responses are returned to their owner

node.

Referring again to the actual system, when a remote-memory request

reaches a node, a DMA controller in the memory subsystem performs the

necessary memory accesses, creates the response message, and forwards it to

the transmitter. While performing these tasks, the DMA controller competes with

the cache controller of the same node for local memory bandwidth. Since this

competition can be managed in different ways, there is a need for two DSM

models.

The first model contains a single queue for both remote-memory request

and response messages. Arriving messages are serviced in a first-come, first-

served manner, which corresponds to the processor in the actual system having

exclusive access to local memory while a thread executes. As a result, remote-

memory requests are serviced only at context switch points when they reach the

head of the queue. The second model contains separate queues for remote-

memory requests and responses, with the message at the head of each queue

75

receiving a fixed portion of the available service. This model, in effect,

represents sharing of local memory bandwidth as remote-memory and thread-

processing requests interleave their local memory accesses.

Upon initial inspection, it appears that the two DSM SOME-Bus queueing-

network models will each require N nodes, and that the number of customer

classes should be a function of both the types of messages and the number of

nodes, with each class having population K. However, since no distinction is

made regarding the origin of remote-memory request messages and responses

are returned directly to the node making the request, the models can be

abstracted into two-node, two-class (remote-memory request and response)

aggregates.

4.2.1 Modell

In the first model of a SOME-Bus-based DSM multiprocessor, illustrated in

Figure 4.1, both message classes wait in the same input queue at the service

centers and are served in a first-come, first-served (FCFS) manner. In the case of

the processor service center, this corresponds to the situation where all memory

bandwidth is allocated to local threads as they execute, and remote requests

for data are serviced only when they reach the head of the queue. Because

the service time for thread processing at the processor service center, h, can

differ from the service time to generate a response message to a remote-

memory request, m, a product-form solution does not exist for this network [3]. To

calculate performance measures for this model an approximation technique,

based on an evaluation method known as mean value analysis (MVA), is used

76

[46]. Mean value analysis provides a method to recursively compute the mean

number of customers (messages), center residence times (queued plus service),

and throughputs for individual service centers in a closed queueing network.

The approximation method developed in [46], and used here, generates the

same values, but does so by iterating until convergence is achieved.

Processor Channel

CeMerl Center2

Node A
■CMMMMMMMMMMMUIII

Channel Processor

Center4 Center 3

NodeB

Figure 4.1 SOME-Bus DSM Multiprocessor Model 1

There are two chains present in the model of Figure 4.1: the first (Chain 0)

consists of request messages issued by Node A and responses by Node B, while

the second (Chain 1) consists of request messages issued by Node B and

responses by Node A. Let xt. represent the service time that service center /

77

applies to messages of chain j. The service times associated with the four service

centers of Model 1 are shown in Equation 4.1.

Tlo = T3, = h

\ = T30
= m

T2o = T4o = ?2l
= T41

= S

(4.i;

The arrival theorem [31] that serves as the basis for MVA [47] states that a

message of chain r, arriving at service center /, finds an equilibrium situation

equivalent to that of a network with one less customer (message) in the arriving

message's chain. This has been proven true when the network has a product-

form equation. The MVA approximation technique developed by Reiser [46] is

based on the postulation that this theorem holds true even for non-product-form

networks.

Let n, (r-) represent the mean number of chain j messages in service

center / just prior to the arrival of a message from chain r. Then

^=H+£vVr-) (4-2)

is the mean time a message from chain r spends at service center / (queued and

in service) when the service centers have exponential service times [46]. If the

system has a product-form solution, the exact value of n, (r-) is found by

removing one message from chain r, as seen in Equation 4.3. In this equation K

78

represents the chain population vector (K = (Ko,Ki) tor the model of Figure 4.1)

and er, a unit vector with the 1 in the rth position.

/i0(r-) = »(/(K-er) (4.3)

When only an approximate solution is possible, «;.(r-) must be estimated.

Let Ziir-) represent the difference in the average number of messages in chain

j at station /', as seen in Equation 4.4.

s;.(r-) = «/.(K)-«/.(K-er) (4.4)

To determine the value of s, (r-) for a specific chain, evaluation of a single-

chain MVA is required. First, suitably redefined service rates for each center in

that chain must be determined. Equation 4.5 shows that the effective single-

chain service rate for a chain r message at service center /' results from the

fraction of service center capacity that a chain r message uses, the remainder

devoted to other chains [46].

(4.5)

79

Upon completion of the single-chain MVA, Zj.{K) is found using Equation 4.6.

zir(K) = nir(K)-nir(K-l) (4.6)

Assume that only the chain with the arriving message is significantly

affected by the s; (r-) term in Equation 4.4 (therefore set e; (r-)= Owhen j *r),

allowing the substitution of Equation 4.6 for Equation 4.4. As a result, Equation 4.2

simplifies to Equation 4.7, establishing the approximate waiting time for a chain j

message at service center / [46].

K =H +\ ■(nir(K)-eir(K)) + Tiq -niq(K) (where,?*/-) (4.7)

Completing the multichain MVA approximation, the throughput of chain j

is

Xy<- KA (4-8)
5X
/=1J

resulting in the mean number of chain / messages at center / shown in Equation-

4.9.

nt.^Xj-t,. (4.9)
V J J

80

Summarizing the approximation technique in algorithmic form [46]:

1. Initialize «; and % for each chain. The only requirement for distributing

the messages among the centers is that each chain has the correct

number of messages. A suggested initial value for A,- is the lowest

service rate of all centers in the chain.

2. Repeat steps 3-6 until convergence occurs.

3. Perform single-chain MVA for both chains to determine e, (AT)

(Equations 4.5 and 4.6).

4. Calculate mean waiting times at each center (Equation 4.7).

5. Calculate chain throughputs (Equation 4.8).

6. Calculate mean number of messages at each center (Equation 4.9).

4.2.2 Model 2

The second DSM SOME-Bus model, shown in Figure 4.2, is again

abstracted to two-nodes, but with separate queues for the two chains at the

processor service centers. The separate queues are used to represent the case

where a DMA and cache controller interleave their memory accesses. As in

Model 1, Chain 0 receives thread processing at Node A, producing remote-

memory requests, and DMA service at Node B, generating response messages.

Correspondingly, Chain 1 receives DMA service at Node A and thread

processing at Node B. Thread and remote-memory request service times at a

processor center can differ, with h representing the mean thread processing

time, and m the mean time to process a remote-memory request (both

81

exponentially distributed). At the channel service center both chains receive

the same exponential service, with a mean ot s time units. If messages from only

one chain are enqueued at a processor center, the message at the head of the

corresponding queue receives service at its full service rate. When messages

from both chains are present, the messages at the head of each queue share

available service, with the fraction aT going to the message in the thread queue

and GTR to the message in the request queue («r + OTR = 1).

Processor Center
(Center 1)

Responses

Channel Center
(Center 2)

Figure 4.2 SOME-Bus DSM Multiprocessor Model 2

The state of the network shown in Figure 4.2 is completely defined by K, ,

the vector representing the number of chain j messages present at service

82

center /. Given exponentially distributed service times for all servers, these states

form a Markov Chain. The number of states associated with a single chain is

equal to the number of ways the K messages of the chain can be partitioned in

the C service centers, as shown in Equation 4.10.

(C-l + K}
SKC= 4.10 K'c \ K)

Each chain of this model is assumed to contain three messages. The

choice of three messages is based on experimental results indicating

unacceptable latency (relative to thread execution time) for responses to

remote-memory requests by more than three threads. These results are in

agreement with the findings of other researchers studying multithread execution

in multiprocessor systems [42], [1]. With K=3 and C=4, the number of states for a

single chain of the model equals 20, making the total number of states for the

two-chain model 400. The state probabilities, used to determine performance

measures, are found by solving the system of global balance equations

7tQ = 0 (4.11)

where % is the state-probability vector, and Q the transition-rate matrix [27].

Equation 4.11 illustrates the fact that probability flux among the states is

balanced at equilibrium. The system of Equation 4.11 has one linearly

dependent equation that is replaced by the conservation relationship shown in

83

Equation 4.12 (with S representing the set ot states in the Markov chain) to permit

a solution.

2X = 1 (4.12)
s<sS

To determine processor center utilization for a chain, let PTR represent the

set of states in the Markov chain where a processor center has messages in both

queues. Let Pw represent the set of states where responses are enqueued, but

no remote-memory requests are present. When both chains are present,

threads receive only ar of the available service, resulting in thread-processing

processor utilization of

utilj. = aT ■ 2>(0+ 2>0) (4.13)

for either node. Processor center utilization for remote-memory requests can be

found in a similar fashion using the sets PTR and POR, and the fraction aR, as seen

in Equation 4.14.

utilR=aR- 2>(/)+ I>ü) (4.14)
i<sPm jsP0R

With no service distinction between remote memory requests and responses at a

channel service center, channel utilization is determined by summing the

84

probabilities associated with the set ot states in S where the channel center is

occupied.

The formula for the average number of chain / messages at center / is

shown in Equation 4.15, where ns(k = kr) are the probabilities associated with

the states of the Markov chain where k = kt,.

K(\
"i =1 *•!*,(* = *,-) (4-15)

1 *=lV seS J)

To calculate the average time a message of chain j spends in center / of Figure

4.2 (queued and in service), the average-time-in-center formula from the MVA

method is again applied. At the channel center, all arriving messages are

placed in the same queue and receive the same service. Given equal service

times (x,o = %h =xc, *' = 2,4), the arriving message from chain r observes the

equilibrium solution of the network with one less customer in its chain [46]. This

condition is reflected in the average number of messages of chain r present in

Equation 4.16.

hr =^c+ic<\(K-l) + niq(K)) (q*r and / = 2,4) (4.16]

To determine the average time threads or requests spend at processing

center ; requires redefining thread and request service times, due to the

processor sharing described above. This redefined service time is conditioned

85

on the fact that the processing center must be occupied. During those periods

where messages from only one chain are enqueued, the average service time is

xr. When messages from both chains are present, the average service time

changes to x/r/ar for thread processing, and TiR/aR for requests. The

percentages of time each of these situations occur are found using the same

sets of states used in the utilization calculations (Equations 4.13 and 4.14). As a

result, Equation 4.17 redefines the service time for threads

^ f \
Z Xj + T: •

'T Z np
KpePro J

\=- Z^/
(where/= 1,3 and T = threads) (4.17)

while Equation 4.18 does the same for requests.

\=-
\j<=Pm J

+ T; 1>P
Kp<sP0R J (where / = 1,3 and R = requests) (4.18)

Substituting the redefined service time for threads stated in Equation 4.17

into the MVA formula for average time at a service center allows calculation of

the average time between the arrival of a response message and its associated

thread issuing another memory request.

86

th = x,r + t,r • nh (K -1) (where / = 1,3 and T = threads) (4.19)

Using the redefined service time for remote-memory requests seen in Equation

4.18,

?. = %j + Tj ■ rij (K -1) (where /' = 1,3 and R=requests) (4.20)

is the average time a remote-memory request will spend at a processing center.

The next chapter analyzes performance results of the two DSM SOME-Bus

models developed in this chapter. Comparisons to results of DSM SOME-Bus

simulations are performed to provide insight into the accuracy of these

approximate models. Performance results from crossbar and torus DSM system

simulations are also examined to determine how well the DSM SOME-Bus

configuration performs relative to these two popular topologies.

Chapter 5

DISTRIBUTED-SHARED-MEMORY MODEL PERFORMANCE EVALUATION
i

This chapter presents the results of theoretical and simulation modeling of

distributed-shared-memory (DSM) SOME-Bus systems, along with performance

comparisons to crossbar and torus simulations. Performance measurements

provided by the two theoretical models developed in Chapter 4 are used to

evaluate DSM SOME-Bus processor utilization and communication latency and

validate two corresponding versions of DSM SOME-Bus simulators. The simulator

associated with the model developed in section 4.2.2 of Chapter 4 is extended

to perform DSM system activities that are difficult or impossible to model

analytically. Results produced by this simulator are then compared to crossbar

and torus DSM-system simulations.

Models of similar systems found in the literature seem to assume that DMA

activity at a node does not interfere with the ability of a processor to execute

threads. As the results presented in this chapter show, this assumption is incorrect

due to memory accesses brought about by remote cache misses. The first DSM

SOME-Bus model was created under the assumption that maximum interference

occurs as a result of remote cache misses and serves as a useful, worst-case

performance analysis tool. By modeling DMA activities in the manner that they

are performed by currently-available hardware, the second SOME-Bus DSM

model provides a method to realistically assess the impact of remote cache

misses on processor performance.

87

SS

5.1 DSM Model 1 Results

This section compares the performance results produced by the SOME-

Bus-based DSM multiprocessor theoretical model developed in section 4.2.1 of

Chapter 4 to those produced by a corresponding simulator. In this model each

node has a single input queue, with the processor at each node receiving and

generating two types of messages while executing K = 3 threads. All messages

to the single input queue are served in a first-come, first-served manner. This

approach corresponds to the case of a processor in an actual system having

exclusive access to memory resident at its node while a thread executes. The

two types of messages are classified as remote-memory requests and responses.

Nodes generate a remote-memory request message when a thread, enabled

by a response message entering processor service, has a cache miss that

cannot be satisfied locally. Nodes generate a response message when a

remote-memory request reaches the head of the processor queue (at context

switch points), and receives service representing a set of DMA accesses

assembling a response message. Service times for the two message types are

exponentially distributed and can have different mean values.

Model parameters that were manipulated for this study include average

thread processing time, (fp), average DMA service time, (fr), and average

channel service time (fc, which is proportional to message size). As mentioned

above, there are K = 3 threads assigned to each node, and simulations were

performed with the number of nodes (N) equal to 64. The average channel

and DMA service times are set equal to each other for each model run. This

89

allows examination of performance results from both the theoretical model and

the simulator, over a full range of input values. The primary means of comparing

analytical and simulation results involves examining processor utilization

(average fraction of time dedicated to thread processing) and communication

latency (channel queueing plus transfer time).

The reference point for all timing parameters and measurements is the

average thread processing time prior to a cache miss that cannot be satisfied

locally. This average is kept at TOO time units for all model runs. Mean channel

and DMA service times are varied from 5 to 100 time units. All performance data

is presented so that the x-axis of the associated plot represents the ratio of

average message transfer time to average thread processing time (tc/tp).

Destination node selection is uniform over all nodes (excluding the transmitter) in

the SOME-Bus simulator.

The ratio of fc/fP is in the proper range to reflect a miss rate of

approximately 10%. This was determined by letting m be the miss rate and f the

number of instructions-per-second executed by the processor at each node. In

addition, let M be the mean message size in bytes and C the channel

bandwidth (in bytes per second). As a result, the mean thread runtime, fp, is

equal to l/(mf), and the mean message transfer time, tc, is equal to M/C, making

tc/tp = mfM/C. In current massively-parallel systems, the ratio of f/C is in the

range of 0.5 to 1. For example, the Cray T3D can execute 150x106 instructions-

per-second, and its byte-wide network links operate at 150MHz. The Cray T3E

has the same processing capability, but its network links have 2 to 4 times more

bandwidth. In the ASCI RED, each node has two processors with peak-

90

processing capability of 200x106 instructions-per-second, and bi-directional

network links capable of 400 Mbytes per second in each direction. These values

translate into a tc/tP ratio of approximately .05 to 1 for small cache blocks and

miss rates of 10 percent or less.

Q
UT) to

CM -St Pv.
io
CO CN

O o o o o o o o o o
(Message Transfer Time/Processing Time]

Figure 5.1 SOME-Bus DSM Model 1 Processor, DMA, and Channel Utilization

Figure 5.1 shows average utilization of various components in the SOME-

Bus system, as produced by the theoretical (-T) and simulator (-S) models. These

include the processor (PRC), DMA (DMA), and channel (CHN). Note that there is

excellent correspondence between theoretical and simulation results over the

majority of the tc/tP range (which is also the tr/tP range, since tr is set equal to ic).

When short responses to remote memory requests are assembled and

91

transmitted, processor utilization is approximately 90 percent. However, under

the single-input-queue premise of this model, as the DMA service time increases

in response to longer remote-request messages, the processor is blocked from

executing threads, and utilization drops. Note that channel utilization remains

below 70 percent over the entire tc/tP range, showing a significant reserve of

channel capacity to service higher miss rates by the processor.

o
c
0
Ö
 I
c
o
o
o
c
D

o
U

200

180

160

140

120

100

80

60

40

20

0

1 1 1 1
I I 1 I
■ lit

i i . . i i i i i . i . .Vr1

i . . . i l i i i . . $sf jS*'*
.

—

-+- LAT-T
i r t . i i t i i . 35""*jr > .
i i i ■ i i i . i . ^jjf i i

i : i 1 i 1 i i i^r 1 i i
1 1 I 1 . 1 1 I /T/ III.

 < vr/>
;;;;;; p-^Jr ! i ! ! !

i i i . i JJQJ*^ i i i . . . i

i i yrJ?p\ i i i ; i : 1 i :
1 .s^JW 1 1 I I 1 I 1 1 1 1 1

jmC<* i . i
.,-*• ^^ i i . i . . i .

^^ . i i i i i i i i . i i i
. i i i i i . i ■ . i i t
. . i i i t . . t

i^
2*9' * ' '
111!

1 1 1 1

. i . . i . . i . . i . i

. i . i i . . i ■ i i . .

— r - ~i— i""" \ r '" i "i i i i i i i
LO r—

°- 6 - o o
to CN in co
-. ri o>.

to
- o ^

o o d
tO lO lO xO LO I\

o ID
6 o vO

lO CO io o^
IN r< CO r<

(Message Transfer Time/Processing Time)

Figure 5.2 SOME-Bus DSM Model 1 Communication Latency

Communication latency (LAT: consists of waiting plus channel transfer

time) for the first DSM SOME-Bus model is seen in Figure 5.2. Again, there is close

correspondence between theoretical (-T) and simulator (-S) results. Note the

almost linear growth in latency as remote-memory and response messages grow

92

proportionally to channel transfer time. This scalability is due to the constant

channel bandwidth available in the SOME-Bus, a system with no contention for

switching or routing hardware.

As the results of the next section show, the single-input-queue processor

architecture does not perform as well as the two-queue processor sharing

method examined using DSM SOME-Bus model 2. In addition, the second model

presents a more realistic view of processing node actions, given the current state

of processing hardware. These facts make comparisons of this model to torus

and crossbar architectures unnecessary.

5.2 DSM Model 2 Results

This section presents performance results from the second theoretical

model of a DSM SOME-Bus system, and uses them to validate the performance

of a corresponding SOME-Bus simulator. Once validated, the simulator is

extended to perform commonly occurring DSM system tasks that are difficult, or

impossible, to model analytically. Results from this extension to the simulator are

then compared to torus and crossbar DSM simulations. The distinction between

this model and the one studied in the previous section is that the input channel

queue at each node logically appears as two queues. As messages arrive at a

node, remote-memory request messages enter one queue, while response

messages enter the other. The messages at the heads of the two queues share

service from the local memory which, in effect, becomes the server. The

fraction of service ar goes to response messages (for thread processing), and the

93

fraction OR goes to remote-memory requests (for DMA processing). The two

fractions sum to one.

Simulators for all three architectures contain N = 64 nodes, with each

node containing a receiver capable of receiving messages simultaneously on its

input channel(s), a processor with cache, a portion of global memory, and an

output channel. Multithreaded processing is assumed, with each processor

assigned a set of K = 3 parallel threads. Thread processing in all simulators

consists of a thread executing until it encounters a cache miss that requires

remote data. At that point the thread suspends until a response message

(modeling the requested data) is received from a remote node. The arrival of

the response message enables the thread for execution, and it resumes

execution when that message reaches the head of its queue.

When a thread has a cache miss, as described above, a remote-memory

request message is enqueued for transmission on the output channel. After

transfer time fc expires, the message is enqueued at the receiver of the

destination (remote) node to await service by the DMA processor. The DMA

processor requires time tr to assemble the response message and enqueue it for

transmission on the output channel of the remote node. The response message

is then returned to the originating node.

In DSM systems, write accesses to global memory generate invalidation

(or update) messages that must be transmitted on the interconnection network.

Unlike the torus and the crossbar architectures, this additional traffic has no

effect on SOME-Bus network communication latency (waiting plus channel

transfer time) since there is no contention for shared communication resources

94

(thus no potential for blocking). However, this traffic does have an effect at the

receiving processor in all architectures. The model for issuing invalidation

messages, used for all three architectures, assumes the source node has a

directory of the nodes with cached copies of the affected data.

In all three simulators, when invalidation messages are modeled they

accompany remote-memory requests. In the SOME-Bus, a single invalidation

message is broadcast, with a list of recipient nodes. In the crossbar, a node

waits until input channels to all nodes with copies of the invalid data are

available, reserves them, and then broadcasts a single invalidation message to

those destinations. In the torus, a spanning tree is created from the source node

and multi-destination worms broadcast the invalidation message. The number

of nodes receiving invalidation messages (0 or 10), and the amount of

processing time those messages receive (5 time units) are parameters of the

simulation. Although invalidation messages receive service at the destination

node, no response is transmitted back to the source node.

The major parameters of this study are the distribution type and average

length of thread and DMA service times, distribution type and average length of

messages, and the destination node selection distribution. Quantities used to

measure and compare the performance of the architectures include the

average utilization of various system components (fraction of busy time) and the

average communication latency (channel waiting plus transfer time) that a

message experiences.

The reference point for the timing parameters and measurements of the

study is the thread runtime, ip, geometrically distributed with a mean of 100 time

95

units. Message transfer time, fc, is geometrically distributed with a mean in the

range from 3 to 100 time units, placing tc/tP in the range of 0.03 to 1, for the same

reasons described in the previous section. Destination node selection for

remote-memory requests in the SOME-Bus and crossbar is uniform over all nodes

(excluding the source) and uniform in each direction in the torus. Response

messages are returned directly to the requester. The fractions of service

assigned to thread and DMA processing are kept equal for all simulation runs

((XT=CXR=0.5). This choice was made when initial studies indicated that all three

architectures are insensitive to the fraction of memory bandwidth allocated to

the DMA controller, unless it is below 15 percent. Establishing paths (or

wormholes) to transfer messages in the crossbar and torus occurs in the same

manner as that described in Chapter 3, section 3.2.

-*— PRC-T

■a— PRC-S

-*— DMA-T

- <^— DMA-S

__*__ MEM-T

- &---•■ MEM-S

—♦—CHN-T

-e— CHN-S

(Message Transfer Time/Processing Time)

Figure 5.3 DSM SOME-Bus Model 2, Subsystem Utilization

96

Figure 5.3 compares the average utilization for processor (PRC), DMA

(DMA), channel (CHN), and memory (MEM) subsystems produced by the second

simulation (-S) and theoretical (-T) DSM SOME-Bus models. For this comparison

the DMA processing time (fr) is again set equal to message transfer time (fc). As

mentioned above, the memory subsystem functions as the server when

processor-sharing between threads and remote-memory requests occurs. As a

result, the memory utilization curve shown is the sum of processor and DMA

utilization.

250 T

&200
c
0

c 150 4
o

-4—

Ö
o
§ 100
E
E
o
U 50

■ i

- ■ i i i i

' ' ■ ' M
i i t i .•** i
i i (w ■
i i i .<.■" i i

1

1
1

1

1

1

1

1

1

.

1 1 ^ -^LAT-T

-*-•■• LAT-S

/ i i ^^ i i

■W J

J^

i i i
i t i
i t i
i i i
■ i I
i i i
i I I
i i i

Xj
F""'^

,A
&f

1 1 1 JS^

tr-T : : !
i i i i

.... l r™ i ■ r 1 i i i

ooooo o o o o o

(Message Transfer Time/Processing Time)

Figure 5.4 DSM SOME-Bus Model 2 Communication Latency

97

Given the fact that the theoretical model is only an approximation of

system behavior, as explained in Chapter 4, it produces results that are very

close in value, and identical in trend, to the simulations. With both operations

having equal access to memory (or = <XR = 0.5), memory utilization shows a

decline as the average DMA processing time approaches the time to process a

thread. Compared to results from the previous model, the processor is better

utilized over the entire range of tc/tP. Figure 5.4 shows communication latency

(channel waiting plus transfer time) for this model, again indicating an almost

linear increase in response to longer messages and DMA processing times.

(Message Transfer Time/Processing Time]

Figure 5.5 All DSM Architectures, Processor Utilization, No Invalidation Messages

98

The results shown in Figures 5.3 and 5.4 indicate that the simulator

accurately reflects the second DSM SOME-Bus theoretical model performance

predictions. Extending this simulator to incorporate the issuance of cache

invalidation (update) messages, as explained above, provides a basis for realistic

comparisons to torus and crossbar DSM architectures. Figure 5.5 shows processor

utilization for the SOME-Bus (S), crossbar (C), and torus (T) as DMA processing

times are varied between 10 (-10), 20 (-20), and 50 (-50) time units. The baseline

results, produced when no cache invalidation messages (0) are transmitted,

show SOME-Bus and crossbar processor utilization curves are almost identical,

while the torus exhibits a rapid decline as message lengths increase. As

expected with all architectures, processor utilization declines as average DMA

processing time or message length increases.

<s

S-10(10)

S-20(10)

S-50(10)

C-IO(IO)

C-20(10)

C-50(10)

T-10(10)

T-20(10)

T-50(10)

(Message Transfer Time/Processing Time)

Figure 5.6 All DSM Architectures, Processor Utilization, 10 Invalidation Messages

99

Figure 5.6 shows the effect of invalidation message traffic, and its

associated processing, on processor utilization when 10 nodes (10) receive the

invalidation message that accompanies each remote-memory request. The

crossbar now begins to react like the torus as it waits for communication

channels to become available for an invalidation-message broadcast. Except

for a constant offset, SOME-Bus performance here is identical to that shown in

Figure 5.5, the loss due only to invalidation-message processing, not network

characteristics.

1200 T

(Message Transfer Time/Processing Time)

Figure 5.7 All DSM Architectures, Comm Latency, No Invalidation Messages

Communication latency for all three architectures, for the case of no

invalidation messages and 10, 20, and 50 time unit average DMA processing

100

times, is seen in Figure 5.7. Again, the SOME-Bus and crossbar show almost

identical performance, while torus latency increases rapidly in response to

increasing message length. Examination of additional simulation statistics show

this rise is in direct relationship to the number of blocked wormholes.

Figure 5.8 shows communication latency in all three architectures when

cache invalidation messages are transmitted. Comparing this figure to Figure 5.7

shows that the additional transmissions essentially have no effect on SOME-Bus

communications, while torus and crossbar systems are both affected. Crossbar

latency grows relative to the availability of channels connected to the nodes

receiving invalidation messages. As message lengths increase, the associated

wait for channels needed for invalidation-message broadcasts also increases,

with the final outcome being increased latency.

-*—S-10(10]

-*—S-20(10)

-i—S-50(10)

— B— C-10(10)

— <>— C-20(10)

— A— C-50(10]

 » T-IO(IO)

—♦--T-20(10)

■A- T-50(10)

(Message Transfer Time/Processing Time)

Figure 5.8 All DSM Architectures, Comm Latency, 10 Invalidation Messages

101

Figures 5.9 and 5.10 show channel utilization curves associated with the

communication latencies shown in Figures 5.7 and 5.8. The torus quickly reaches

a plateau of channel utilization, whether invalidation messages are broadcast or

not, as channels needed by one wormhole are blocked by another. Figure 5.9

shows that, In the absence of invalidation messages, the SOME-Bus and crossbar

exhibit almost identical performance. However, when invalidation messages

are broadcast, as shown in Figure 5.10, the crossbar begins to react in a manner

similar to the torus, waiting for blocked channels to become available so

invalidation-message broadcasts can take place. Figure 5.10 also shows a rise in

the average channel utilization rate of the SOME-Bus, but the curves do not show

channel saturation, even when messages reach the maximum length studied.

(Message Transfer Time/Processing Time)

Figure 5.9 All DSM Architectures, Channel Utilization, No Invalidation Messages

102

c o

C c o
O

 *— -S-IO(IO)

-S-20(10)

-S-50(10)

•• 010(10)

— *— - C-20(10)

— A— - C-50(10)

 88J- •T-IO(IO)

 ♦•■ • •T-20(10]

 M- ■ ■T-50(10)

(Message Transfer Time/Processing Time)

Figure 5.10 All DSM Architectures, Channel Utilization, 10 Invalidation Messages

An additional study of this (second) model of DSM architectures was

performed with K = 7 threads assigned to each node. In this situation, all

architectures were found to have similar processor utilization simply because all

the networks were able to effectively deliver, without significant delay, the

reduced number of messages that resulted from the execution of fewer threads.

The more realistic case of three threads-per-processor, studied in this chapter,

indicates that there are pronounced differences in performance between the

three architectures in the presence of significant message traffic on the network.

Chapter 6

CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Conclusions

The execution of high-performance applications is now a common

occurrence in the engineering, science, and business communities. Users want

to execute larger or more detailed models in less time and now accept parallel

processing systems as a useful tool for performing this work. The key to exploiting

the parallelism in these applications is efficient communication between task

processes, which implies a corresponding need for efficient communication

among parallel-system processors. The Simultaneous Optical Multiprocessor

Exchange Bus (SOME-Bus) meets this need with its low-latency, high-bandwidth,

broadcast-based fiber-optic interconnection network that is able to

interconnect over one hundred processor nodes, directly linking arbitrary pairs

without contention.

An examination of existing multicomputer and multiprocessor

interconnection-network characteristics, both static and dynamic, provided a

quantitative basis for determining SOME-Bus performance potential. The results

of these comparisons indicated that the SOME-Bus exhibits outstanding

performance potential. Compared with static topologies, a SOME-Bus offers the

same performance as the powerful yet costly fully-connected network, but at a

lower cost than a hypercube, mesh, or torus. Contrasted with the most versatile

dynamic network, the crossbar, the SOME-Bus is scaleabie and directly supports

103

104

more communication patterns, in addition, due to the optical implementation

of its broadcast-based design, no node is ever blocked from transmitting by

another node, and no arbitration for shared resources is required. Even with the

SOME-Bus requiring N2 receivers, larger than the number required in other

architectures, the hardware scales by O(N), since N receivers are integrated into

a single device at relatively low cost.

Research studies show that common high-performance applications

include modeling and simulation of physical phenomena, integrated circuits,

neural networks, weather, economic systems, and image processing. Some of

the basic mathematical operations used to execute this workload include fast

Fourier transforms (FFs), matrix multiplication, Gaussian elimination, LU-

factorization, and solutions to partial differential equations. Parallel-processing

implementations of these operations typically involve collective

communications, including one-to-all and all-to-all broadcasts of data and

synchronization information. On existing parallel processing systems, processor

performance declines as these collective-communication operations result in

increased communication latency. Results of numerous studies indicate that the

high-performance applications cited above execute on existing parallel systems

at only poor-to-moderate performance levels, even after extensive efforts at

software tuning. Based on these findings, it is apparent that the SOME-Bus, a

scaleable parallel system that directly supports the collective communication

operations inherent in common high-performance applications, has the

potential to outperform existing systems executing those same applications.

105

A theoretical examination of the SOME-Bus as a message-passing system

was performed using a closed, single-class queueing network model. An

efficient solution method for the product-form equation associated with this

network was developed based on an iterative application of Norton's Theorem

for Queueing Networks. This solution method permits the evaluation of hot-spot

performance and allows the use of any model of a node 4hat can be

represented by a product-form queueing network. Performance measurements

provided by the model were used to evaluate processor utilization and

communication latency, as well as validate a SOME-Bus simulator with the same

average service times and distributions. The simulator was extended to perform

synchronization operations and exchanges of intermediate data results that

cannot be modeled analytically. Results from the modified SOME-Bus simulator

were compared to crossbar and torus simulations to determine the relative

performance of the SOME-Bus architecture with respect to these two network

topologies.

As a message-passing system, simulation results (for a 64-node system

executing 192 total tasks with no synchronization operations) indicate that the

SOME-Bus, crossbar, and torus display similar performance (processor utilization)

for coarse- to medium-grain parallel processes. However, as message transfer

time approaches computation time, processor utilization in the torus decreased

at a markedly greater rate than the other two architectures. With respect to

communication latency (message waiting plus channel transfer time), the SOME-

Bus and crossbar systems exhibited identical performance, while the torus system

experienced significant additional delays as message sizes were increased.

106

In the presence of both heavy (frequent) and light (infrequent)

synchronization operations, the SOME-Bus outperforms the other two

architectures, seemingly unaffected by the exchange of intermediate data

results prior to a synchronization operation. In contrast, heavy synchronization

operations, coupled with message transfer times that approached computation

times, appear to have a dramatic effect on the ability of torus and crossbar

systems to keep their processors occupied with assigned tasks. With regard to

communication latency in the presence of synchronization, SOME-Bus results

were identical to those generated when no synchronization took place. In

comparison, the crossbar was significantly affected by heavy synchronization

operations, and even light synchronization noticeably increased latency (with

respect to no synchronization). The torus had at least twice the latency, on

average, as the SOME-Bus, regardless of the type of synchronization that occurs.

The SOME-Bus clearly has less latency, in all synchronization situations, than the

crossbar or the torus. As a message-passing parallel processing system, the

SOME-Bus clearly outperformed these two architectures when synchronization

operations occurred, or when the processing tasks were fine-grained.

Two theoretical models were developed and used to evaluate the SOME-

Bus as a distributed-shared-memory (DSM) parallel processing system. By

modeling both processor and DMA activity at a node, the contention for

memory that is introduced by remote-memory requests becomes apparent. This

approach to DSM modeling is contrary to most models of similar systems found in

the literature; those models seem to assume that DMA activity at a node does

107

not interfere with the ability of a processor to execute threads. As the

performance results showed, this activity should not be ignored.

The first DSM SOME-Bus model was created by assuming that the

maximum interference possible occurs as a result of remote cache misses; it

serves as a useful, worst-case performance analysis tool. The second SOME-Bus

DSM model treats DMA activities in the manner that they are performed by

commercial-off-the-shelf hardware, thus providing a realistic assessment of the

impact of remote cache misses on processor performance. Again, the

theoretical model was used to validate a baseline simulator, which was then

extended to incorporate cache-coherence operations that cannot be

modeled analytically. Results from the modified simulator were then compared

to DSM torus and crossbar simulations.

Results from the first model show that when short responses to remote-

memory requests are assembled and transmitted, processor utilization in a 64-

node system executing 3 tasks-per-node is approximately 90 percent. However,

under the single-input-queue premise of this model, as DMA service time

increased in response to longer remote-request messages, memory interference

blocked the processor from executing threads and utilization dropped. Channel

utilization, however, remained below 70 percent over the entire range of DMA

and channel transfer times studied, which indicates a significant reserve of

channel capacity to service higher miss rates by the processor. There was

almost linear growth in communication latency as the time to transfer remote-

memory and response messages increased. This characteristic illustrated the

108

availability of constant channel bandwidth in the SOME-Bus, a system with no

contention for switching or routing hardware.

By extending the simulator associated with the second DSM SOME-Bus

model to incorporate the issuance of cache invalidation (update) messages to

accompany remote-memory requests, the basis for realistic comparisons to torus

and crossbar DSM architectures was created. With DMA and thread processors

sharing equal access to memory at a node, processor utilization was examined

as DMA processing and channel transfer times were varied. The baseline results,

produced when no cache invalidation messages were transmitted, show SOME-

Bus and crossbar processor utilization curves are almost identical, while the torus

exhibits a rapid decline relative to the others as message length increased.

Regarding communication latency, the SOME-Bus and crossbar again show

almost identical performance, while latency in the torus increased rapidly in

response to increasing message length. This increase was in direct relationship

to the number of blocked wormholes in the system.

When cache-invalidation messages accompanied remote-memory

requests, only a minor reduction in processor utilization was seen in the SOME-

Bus, and its communication latency was unaffected. The reduction in processor

utilization was attributed to invalidation-message processing, not network

characteristics. Crossbar and torus processor utilization declined rapidly as

message lengths increased and communication channels became blocked by

invalidation-message broadcasts. Crossbar and torus latency grew relative to

the availability of channels connected to the nodes receiving invalidation

109

messages. As message lengths increased, the associated wait for the set of

channels to broadcast invalidation-messages also increased.

A contributing factor for the increased latency of the torus and crossbar

systems was found in an examination of channel utilization. The torus quickly

reached a plateau of channel utilization, whether invalidation messages were

broadcast or not, as channels needed by one wormhole were blocked by

another. When invalidation messages were broadcast, the crossbar began to

react in the same manner, as it waited for blocked channels to become

available for invalidation-message broadcasts. Channel saturation was clearly

evident for the torus and crossbar systems. In the final analysis, when cache-

coherence is considered, the SOME-Bus clearly outperformed the crossbar and

torus as a DSM system.

When the performance results presented in this dissertation are

considered along with the advances in optical technology, it is readily apparent

that the SOME-Bus is a viable parallel processing system. Its performance derives

from the fact that no routing or arbitration is required for communications,

allowing the system to function as though it were a fully-connected network.

The hardware and communication bandwidth scale directly, and as optical

components mature, available bandwidth will increase. Even the modest

implementations described in Chapter 1 have bandwidths comparable to other

state-of-the-art architectures. With receiver logic designed to efficiently support

programming models that are commonly implemented on parallel computers,

the SOME-Bus greatly simplifies parallel programming.

110

6.2 Future Directions

Direct extensions to the work presented in this dissertation include the

evaluation of a message-passing SOME-Bus with different processing

architectures and hot-spot conditions. Also, by extending the application of

Norton's Theorem for Queueing Networks presented in Chapter 2 to include

multi-class queueing networks, other models become feasible. First, by using a

more complex model of a node, in combination with the network configuration

presented in Chapter 2, an exact DSM model corresponding to the second

model presented in Chapter 4 may be possible. Second, an examination of the

SOME-Bus as a central-shared-memory multiprocessor, where memory-request

messages issued by processing nodes form one customer class and responses to

those requests by the memory subsystem forms another, could be constructed

using relatively simple models of processing and memory nodes. Finally,

different receiver logic designs could be evaluated by creating a more complex

model of a node that included separate service centers to represent the

different activities that take place within the receiver.

REFERENCES

[1] Adve, V.S., and M.K. Vernon, 1994. "Performance Analysis of Mesh

Interconnected Networks with Deterministic Routing," IEEE Transactions on

Parallel and Distributed Systems, Vol. 5, No. 3, pp 225-246.

[2] Agarwala, A., and C.R. Das, 1995. "Experimenting with a Shared Virtual

Memory Environment for Hypercubes," Journal of Parallel and Distributed

Computing, Vol. 29, No. 2, pp. 228-235.

[3] Baskett, F., K.M. Chandy, R.R. Muntz, and F.G. Palacios, 1975. "Open,

Closed, and Mixed Networks of Queues with Different Classes of

Customers," Journal of the ACM, Vol. 22, No. 2, pp. 248-260.

[4] Bell, G. 1992. "Ultracomputers, A Teraflop Before Its Time,"

Communications of the ACM, Vol. 35, No. 8, pp 27-47.

[5] Bhuyan, L.N., R.R. Iyer, and M. Kumar,!997. "Performance of Multistage Bus

Networks for a Distributed Shared Memory Multiprocessor," IEEE

Transactions on Parallel and Distributed Systems, Vol. 8, No. 1, pp. 82-95.

[6] Bogineni, K., and P.W. Dowd, 1992. "Performance Analysis of Two Address

Space Allocation Schemes for an Optically Interconnected Distributed

Shared Memory System," Proceedings of the International Conference on

Parallel Processing, pp. 562-566.

[7] Bruell, S.C., and G. Balbo, 1980. Computational Algorithms for Closed

Queueing Networks. North Holland.

in

112

[8] Buzen, J.P., 1973. "Computational Algorithms for Closed Queueing

Networks with Exponential Servers," Communications of the ACM, Vol. 16,

No. 9, pp. 527-531.

[9] Calvin, C. 1995. "All-To-All Broadcast in Torus with Wormhole-Like Routing,"

Proceedings of the IEEE Symposium on Parallel and Distributed

Processing, pp. 130-137.

[10] Camp, W.J., SJ. Plimpton, B.A. Hendrickson, R.W. Leland. 1994. "Massively

Parallel Methods for Engineering and Science Problems,"

Communications of the ACM, Vol. 37, No. 4, pp. 31-41.

[11] Chandy, K.M., U. Herzog, and L Woo, 1975. "Parametric Analysis of

Queuing Networks," IBM Journal of Research and Development, Vol. 19,

No. 1, pp. 36-42.

[12] Dahlgren, F. and P. Stenstrom, 1996. "Evaluation of Hardware-Based

Stride and Sequential Prefetching in Shared-Memory Multiprocessors," IEEE

Transactions on Parallel and Distributed Systems, Vol. 7, No. 4, pp 385-394.

[13] Demmel, J. 1996. "Performance of a Parallel Global Atmospheric

Chemical Tracer Model," Supercomputing 96.

[14] Evangelinos, C. 1995. "Communication Performance Models in Prism: a

Spectral Element-Fourier Parallel Navier-Stokes Solver," Supercomputing

95.

[15] Gordon, W.J., and G.F. Newell, 1967. "Closed Queueing Systems with

Exponential Servers," Operations Research, Vol. 15, pp. 254-265.

113

[16] Grujic, A., M. Tomasevic, and V. Milutinovic, 1996. "A Simulation Study of

Hardware-Oriented DSM Approaches," IEEE Parallel and Distributed

Technology, Vol. 4, No. 1, pp. 74-83.

[17] Hendrickson, B., and S. Plimpton, 1995. "Parallel Many-Body Simulations

Without All-To-All Communication," Journal of Parallel and Distributed

Computing, Vol. 27, No. I, pp. 15-25.

[18] Hines, W.W., and D.C. Montgomery, 1990. Probability and Statistics in

Engineering and Management Science. Wiley.

[19] Hinrichs, S. 1994. "An Architecture for Optimal All-To-All Personalized

Communication," Carnegie-Mellon Tech. Report (Cs Cmu-Cs-94-140).

[20] Ho, C. 1995. "Optimal Broadcast in All-Port Wormhole-Routed

Hypercubes", IEEE Transactions on Parallel and Distributed Systems, Vol. 6

No. 2, pp. 203-207.

[21] Huang, C, and P.K. McKinley, 1994. "Communication Needs of Parallel

Applications," IEEE Parallel & Distributed Technology, Winter, pp. 78-79.

[22] Hwang, K. 1993. Advanced Computer Architecture: Parallelism,

Scalability, Programmability. McGraw-Hill.

[23] Johnsson, S. 1989. "Optimum Broadcasting and Personalized

Communications in Hypercubes," IEEE Transactions on Computers, Vol. 38,

pp. 1249-1267.

[24] Katsinis, C, 1998. "Distributed-Shared-Memory Support on the

Simultaneous Optical Multiprocessor Exchange Bus," MASCOTS

Conference, July 21,1998.

114

[25] Katsinis, C, 1998. "Performance Analysis and Simulation of the SOME-Bus

Architecture Using Message Passing," Seventh International Conference

on Computer Communications and Networks, October 12,1998.

[26] Katsinis, C, W. E. Cohen, R. K. Gaede and J. H. Kulick. 1997. "The

Architecture and Performance of the Simultaneous Optical Multiprocessor

Exchange Interconnection Network (SOME-Bus)," Proceedings of the

International Conference on Parallel and Distributed Processing

Techniques and Applications.

[27] Kleinrock, L, 1975. Queueing Systems, Vol. I: Theory. Wiley-lnterscience.

[28] Kulick J. H., W. E. Cohen, C. Katsinis, E. Wells, A. Thomsen, R. K. Gaede, R.

G. Lindquist, G. P. Nordin, M. Abushagur, and D. Shen. 1995. "The

Simultaneous Optical Multiprocessor Exchange Bus," Proceedings of the

Second International Conference on Massively Parallel Processor Optical

Interconnects, pp. 336-344.

[29] Kumar, V., A. Grama, A. Gupta, and G. Karypis. 1994. Introduction to

Parallel Computing, Design and Analysis of Algorithms.

Benjamin/Cummings.

[30] Lan, Y. 1994. "Multicast Communication in 2-D Mesh Network,"

Proceedings of the IEEE International Conference on Parallel and

Distributed Systems, pp. 63-68.

[31] Lavenberg, S.S., and M. Reiser, 1980. "Stationary State Probabilities at

Arrival Instants for Closed Queueing Networks with Multiple Types of

Customers," Journal of Applied Probabiltiy, Vol. 17, pp. 1048-1061.

115

[32] Lazowska, E.D., J. Zahorjan, G.S. Graham, and K.C. Sevcik, 1984.

Quantitative System Performance: Computer System Analysis Using

Queueing Network Models. Prentice-Hall.

[33] Li, Y., A.W. Lohmann, Z.G. Pan, S.B. Rao, I. Redmond, and T. Wang, 1994.

"Optical Multiple-Access Mesh-Connected Bus Interconnections," IEEE

Proceedings, Vol. 82, No. 11, pp. 1690-1700.

[34] Lin, X. 1993. "Multicast Communications in Multicomputer Networks," IEEE

Transactions on Parallel and Distributed Systems, Vol. 4, No. 10, pp. 1105-

1117.

[35] Lindquist R.G., J. H. Kulick, W. E. Cohen, R. K. Gaede, E. Wells, M.

Abushagur, D. Shen, C. Katsinis, and S. T. Kowel. 1997. "An Optoelectronic

Design of the Simultaneous Optical Multiprocessor Exchange Bus (SOME-

Bus]," SPIE Proceedings.

[36] Little, J.D.C., 1961. "A Proof of the Queueing Formula L=A.W," Operations

Research, Vol. 9, pp. 383-387.

[37] Lou, J. 1995. "Performance Analysis and Optimization on the UCLA Parallel

Atmospheric General Circulation Model Code", Supercomputing 95.

[38] Mabbs, S.A., and K.E. Forward, 1994. "Performance Analysis of MR-1, a

Clustered Shared-Memory Multiprocessor," Journal of Parallel and

Distributed Computing, Vol. 20, No. 2, pp. 158-175.

[39] Marsan, M. A., G. Balbo, and G. Conte, 1986. Performance Models of

Multiprocessor Systems. MIT Press.

116

[40] Mckinley, P. 1994. "Unicast-Based Multicast Communication in Wormhole-

Routed Network," IEEE Transactions on Parallel and Distributed Systems,

Vol. 5, No. 12, pp. 1252-1265.

[41] Mckinley, P. 1995. "Collective Communication in Wormhole-Routed

Massively Parallel Computing," IEEE Computer, Vol. 28, No. 12, pp. 39-50.

[42] Nemawarkar, S. S., R. Govindarajan, G.R. Gao, and V.K. Agarwal, 1993.

"Analysis of multithreaded multiprocessors with distributed shared

memory," Proceedings of the IEEE Symposium on Parallel and Distributed

Processing, pp. 114-121.

[43] Nowatzyk, A. 1995. "Are Crossbars Really Dead? The Case for Optical

Multiprocessor Interconnection Systems," Computing Architecture News,

Vol.23, No. 2, p. 106.

[44] Patterson, D.A., and J.L. Hennessy, 1996. Computer Architecture A

Quantitative Approach. Morgan Kaufmann.

[45] Plimpton, S. 1996. "Transient Dynamics Simulations: Parallel Algorithms for

Contact Detection and Smoothed Particle Hydrodynamics,"

Supercomputing 96.

[46] Reiser, M., 1979. "A Queueing Network Analysis of Computer

Communication Networks with Window Flow Control," IEEE Transactions

on Communications, Vol. 27, No. 8, pp. 1199-1209.

[47] Reiser, M., and S.S. Lavenberg, 1980. "Mean-Value Analysis of Closed

Multichain Queuing Networks," Journal of the ACM, Vol. 27, No. 2, pp. 313-

322.

117

[48] Robertazzi, T.G., 1994. Computer Networks and Systems: Queueing Theory

and Performance Evaluation. Springer-Verlag.

[49] Scott, S.L., and G.M. Thorson, 1996. "The Cray T3E Network: Adaptive

Routing in a High Performance 3D Torus," Proceedings of HOT

Interconnects IV.

[50] Stenstrom, P., and F. Dahlgren. 1996. "Applications for Shared Memory

Multiprocessors," IEEE Computer, Vol. 29, No. 12, pp. 29-31.

[51] Sterling, T., P. Merkey, and D. Savarese, 1996. "Improving Application

Performance on the HP/Convex Exemplar," lEEEComputer, Vol. 29, No. 12,

pp. 50-55.

[52] Stone, H.S., 1987. High-Performance Computer Architecture. Addison-

Wesley.

[53] Szymanski, T. 1995. "Hypermeshes: Optical Interconnection Network for

Parallel Computing," Journal of Parallel and Distributed Computing, Vol.

26, No. 1, pp. 1-22.

[54] Trivedi, K.S., 1982. Probab/7/fy and Statistics with Reliability, Queueing, and

Computer Science Applications. Prentice Hall.

[55] Warren, M. 1997. "Parallel Supercomputing with Commodity

Components," Proceedings of the International Conference on Parallel

and Distributed Processing Techniques and Applications, p. 1372.

[56] Willick, D.L, and D.L. Eager, 1990. "An Analytic Model of Multistage

Interconnection Networks," ACM SIGMETRICS, pp 192-202.

[57] Wilson, J. 1997. "Interesting Problems; Potential Applications," IEEE

Computer, Vol. 30, N. 10, pp 34-35.

118

[58] Ziavras, S. 1996. "A Low-Complexity Parallel System for Gracious, Scalable

Performance Case for near Petaflops Computing", Proceedings of the

IEEE 1996 Symposium on the Frontiers of Massively Parallel Computing, pp.

363-370.

