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ABSTRACT 
School of Graduate Studies 

University of Alabama in Huntsville 

Degree      Doctor of Philosophy      College/Dept.    Engineering / Computer 

Name of Candidate Edward Koplin Doskocz  

Title Performance Analysis of the Simultaneous Optical Multiprocessor Exchange 

Bus Architecture ___  

The computing world has entered an era in which executing high- 

performance applications has become commonplace in the scientific, 

engineering, and business workplace. The trend in these applications is toward 

the execution of larger or more detailed models in less time, with parallel 

processing seen as a useful tool for performing this work. The focus of this 

dissertation is the performance evaluation of a parallel-processing architecture, 

known as the Simultaneous Optical Multiprocessor Exchange Bus (SOME-Bus), 

that exploits the parallelism in these applications via efficient data 

communication between processors. The SOME-Bus is a low-latency, high- 

bandwidth, broadcast-based fiber-optic interconnection network which can 

efficiently interconnect over one hundred processing nodes. 

Performance potential of the SOME-Bus architecture is examined by 

comparing its quantifiable network characteristics to those of existing static and 

dynamic network topologies. The need for a broadcast-based parallel- 

processing design is examined by reviewing research into the workload, 

communication patterns, and performance of current parallel systems. 

Theoretical and simulation models are developed for both message-passing and 

distributed-shared-memory parallel processing paradigms. The message-passing 

iv 



model consists of a closed queueing network. An efficient solution method is 

developed using Norton's Theorem for Queueing Networks. Two distributed- 

shared-memory models are constructed, one based on a closed, multi-class 

queueing network, the other on a Markov-chain. Mean Value Analysis is used to 

evaluate the first model; the second model is evaluated by examining state 

probabilities. Performance results from the models and simulations are 

compared to results from crossbar and torus system simulations. Models and 

simulators were implemented using MATLAB and C languages. 

Results indicate that quantifiable SOME-Bus interconnection-network 

characteristics equal or exceed the best available from existing static and 

dynamic network topologies. A review of current research shows that the 

existence of a broadcast-based interconnection network, such as the SOME-Bus, 

is justified due to the significant number of broadcast operations that commonly 

occur in high-performance parallel applications. Results from theoretical and 

simulation studies show that SOME-Bus performance, at a minimum, equals the 

best available from torus and crossbar systems operating in either a message- 

passing or distributed-shared-memory paradigm. In the most realistic 

operational scenarios, the SOME-Bus appears to have a significant performance 

advantage over these two popular architectures. 

C-: £<   // Abstract Approval: Committee Chair i^»—.   ^    ^      oj t V/ ^ P 
(Date) 

Department Chairs—■&■&- 

Graduate Dean hüfl&s*, if//?* 



ACKNOWLEDGEMENTS 

The work described in this dissertation would not have been possible 

without the assistance of the Air Force, and a number of people who deserve 

special mention. It was sponsorship by the Air Force Academy under a program 

administered by the Air Force Institute of Technology, that allowed me to pursue 

this research. I would like to thank Dr. Constantine Katsinis for offering this topic, 

and for the patient guidance he provided throughout the work. The research of 

Dr. Kulick and Dr. Gaede, among others, has given me the insight into the SOME- 

Bus optical network and receiver designs that was necessary to complete my 

work. In addition, the members of my committee have been very helpful from 

both a technical, and an administrative, standpoint. 

Finally, I want to offer a special thanks to my wife, Mali, for giving me her 

full support throughout this endeavor; this accomplishment would not have been 

possible without it. 

VI 



TABLE OF CONTENTS 

Page 

List of Figures >x 

List of Tables xi 

List of Symbols x" 

Chapter 

1 INTRODUCTION 1 

1.1 Background ! 

1.2 SOME-Bus Architectural Summary 2 

1.3 Evaluation of Performance Potential 8 

1.3.1    Optically-Based Networks 10 

1.4 Parallel Systems, Workload and Performance 12 

1.4.1 Communication Patterns 15 

1.4.2 Message-Passing and CSM System Performance 18 

1.4.3 Distributed-Shared-Memory System Performance 22 

1.5 Outline of the Dissertation 25 

2 A MESSAGE PASSING MODEL OF THE SOME-BUS 27 

2.1 A Message-Passing Model 27 

2.2 Calculating System Performance 33 

2.2.1 Norton's Equivalent of a Node 34 

2.2.2 Network Normalization Constants 38 

2.2.3 Performance Calculations 52 

3 MESSAGE-PASSING MODEL PERFORMANCE EVALUATION 55 

3.1      Analytical Model Results 55 

vu 



Page 

3.2      Comparison to Torus and Crossbar Systems 61 

4 DISTRIBUTED SHARED MEMORY MODELS OF THE SOME-BUS 70 

4.1 Background 70 

4.2 DSM Model Development 72 

4.2.1 Model 1 .- 75 

4.2.2 Model 2 80 

5 DISTRIBUTED-SHARED-MEMORY MODEL PERFORMANCE EVALUATION 87 

5.1 DSM Model 1 Results 88 

5.2 DSM Model 2 Results 92 

6 CONCLUSIONS AND FUTURE DIRECTIONS 103 

6.1 Conclusions 103 

6.2 Future Directions 110 

REFERENCES HI 

vni 



LIST OF FIGURES 

Figure paQe 

1.1 SOME-Bus Architecture 3 

1.2 SOME-Bus Receiver Array 4 

1.3 Collective Communication Patterns 17 

2.1 Queueing Network Model of an N-Node SOME-Bus 28 

2.2 A Simplified N-Node SOME-Bus Model 29 

2.3 Finding the Norton's Equivalent Service Center for a Single Node 35 

2.4 N-Node SOME-Bus Model w/ Norton's Equivalent Nodes 38 

2.5 Model for Norton's Equivalent Reduction of Two Centers 39 

2.6 Reduced Model for Performance Evaluation , 42 

2.7 A Four-Node SOME-Bus System 44 

2.8 Four-Node Equivalent SOME-Bus Model 45 

3.1 SOME-Bus Processor Utilization, 3 Tasks-per-Node, Analytical 57 

3.2 Processor Utilization, 3 Tasks-per-Node, Analytical and Simulation 58 

3.3 64-Node SOME-Bus Processor Utilization, 1 to 5 Tasks-per-Node 59 

3.4 Communication Latency, SOME-Bus, 3 Tasks-per-Node 60 

3.5 Communication Latency, 64-Node SOME-Bus,l to 5 Tasks-per-Node 61 

3.6 Processor Utilization, All Architectures, No Synchronization 66 

3.7 Processor Utilization, All Architectures, with Synchronization 67 

3.8 Communication Latency, All Architectures, No Synchronization 68 

3.9 Communication Latency, All Architectures, With Synchronization 69 

4.1       SOME-Bus DSM Multiprocessor Model 1  76 

ix 



Page 

4.2 SOME-Bus DSM Multiprocessor Model 2 81 

5.1 SOME-Bus DSM Model 1 Processor, DMA, and Channel Utilization 90 

5.2 SOME-Bus DSM Model 1 Communication Latency 91 

5.3 DSM SOME-Bus Model 2, Subsystem Utilization 95 

5.4 DSM SOME-Bus Model 2 Communication Latency 96 

5.5 All DSM Architectures, Processor Utilization, No Invalidation Messages.... 97 

5.6 All DSM Architectures, Processor Utilization, 10 Invalidation Messages 98 

5.7 All DSM Architectures, Comm Latency, No Invalidation Messages 99 

5.8 All DSM Architectures, Comm Latency, 10 Invalidation Messages 100 

5.9 All DSM Architectures, Channel Utilization, No Invalidation Messages.... 101 

5.10 All DSM Architectures, Channel Utilization, 10 Invalidation Messages 102 



LIST OF TABLES 

Table Page 

1.1 Static Network Performance Comparison 8 

1.2 Dynamic Network Performance Comparison 9 

XI 



LIST OF SYMBOLS 

Symbol Definition 

ß Memory bandwidth in bytes/sec. 

c Channel designator. 

C Number of service centers in a chain (DSM). 

C(K) Normalization constant. 

OfKj Normalization constant for reference node. 

CNet(k) Network normalization constants. 

D Number of data messages preceding a synchronization operation. 

er Unit vector with the 1 in the rth position. 

h Mean time interval between remote memory requests (DSM). 

hi(ki) Unnormalized queue-length distribution of service center i. 

K Total number of messages(processes) in a message-passing system. 

K Number of threads processed at a DSM system node. 

K Chain population vector (DSM). 

K Vector of chain j message population at service center/ (DSM). 
'j 

k; Number of messages at service center i (message-passing). 

ki Outstanding remote-memory requests by node i in a DSM system. 

kt(K) Average number of messages at center /', given K messages. 

m Mean time interval for DMA processing (DSM). 

M Number of bytes in a message. 

n Number of nodes in one dimension of a torus or mesh system. 

Ml 



Symbol Definition 

N Number of nodes in a system. 

«,. Mean number of chain j messages at center /' (DSM). 
V 

w,-.(r-) Mean number of chain j messages in service center/just prior to 

the arrival of a message from chain r. 

p Processor designator. 

P Number of processors in a system. 

P(kuk2,...kNJ    State probability given the population vector (k,,k2,...kN). 

pTR Set of states with messages in both processor queues (DSM). 

pTO Set of states with only response queue occupied (DSM). 

FOR Set of states with only request queue occupied (DSM). 

Q The transition-rate matrix (DSM). 

r Reference-node designator, 

s Mean time interval for message transmission (DSM). 

S Set of states in the Markov-chain state space (DSM). 

fc Average channel service time in a message-passing system. 

/. Mean time chain r message spends at service center / (DSM). 

tp Average processor service time in a message-passing system. 

ij(K) Average time spent at center i, given K messages in the network. 

Ui Utilization of service center /" (message-passing). 

utih Thread-processing processor utilization (DSM). 

utik DMA-processing processor utilization (DSM). 

w Bus width (bits). 

xiii 



Symbol Definition 

X Transition probability matrix. 

Xab Transition probability from node a to node b. 

Xba Transition probability from node b to node a. 

Xi, Probability a message will transition from center i to center j. 

xia Probability of transitioning from node i to the aggregate center. 

xa j Probability of transitioning from node j to the aggregate center. 

Yr(K) Reference node throughput. 

aT Fraction of available service for thread processing (DSM). 

OR Fraction of available service for DMA processing (DSM). 

Ya Probability of a message traversing the branch into node a. 

Yb Probability of a message traversing the branch into node b. 

6, (r-) Difference in the average number of chain / messages at station i. 

X Equilibrium arrival (departure) rate vector. 

X Channel center arrival rate at reference node. 
cr 

k Message-passing departure rate from service center i. 

% Message-passing arrival rate at service center j. 

Xj Throughput of chain j (DSM). 

X Processor center arrival rate at reference node, 

u Service rate of reference node channel center. 

ß Load-independent service rate at service center i. 

ß[k) Load-dependent service rate at service center i. 

XIV 



Symbol Definition 

Service rate of reference node processor center. 
*Pr 

n The state-probability vector (DSM). 

<TI Subsystem of interest (Norton's Theorem for Queueing Networks). 

oi Remainder of network (Norton's Theorem for Queueing Networks). 

x. Service time at center i for a chain j message (DSM). 
V 

x, Effective service rate for chain r message at service center /' (DSM). 

xr Average service time at center i for chain j messages (DSM). 

XV 



Chapter 1 

INTRODUCTION 

1.1 Background 

The computing world has entered an era in which executing high- 

performance applications, defined as computation-intensive, data-intensive, or 

both, has become commonplace in the scientific, engineering, and business 

workplace [50], [10], [57]. The trend in these applications is toward the 

execution of larger or more detailed models in less time, with parallel processing 

seen as a useful tool for performing this work. Exploiting the parallelism in these 

applications requires efficient data communication between processors. The 

focus of this dissertation is the performance evaluation of a parallel-processing 

architecture that accomplishes this task, the Simultaneous Optical Multiprocessor 

Exchange Bus (SOME-Bus). It is a low-latency, high-bandwidth, broadcast-based 

fiber-optic interconnection network which can efficiently interconnect over one 

hundred processor nodes, directly linking arbitrary pairs without contention [26], 

[28], [35]. 

Before a full-scale performance evaluation of the SOME-Bus is 

undertaken, it is important to determine if the study is warranted. A summary of 

SOME-Bus architectural features is followed by a comparison of its quantifiable 

network characteristics to those of existing systems to prove its performance 

potential.  With performance potential established, the need for a broadcast- 
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based SOME-Bus design will be demonstrated. The framework for both of these 

undertakings exists in Gordon Bell's taxonomy of the multiple-instruction, multiple- 

data (MIMD) category of computer architecture established by Michael Flynn 

[4], [22]. Bell divides MIMD systems into multicomputers and multiprocessors, and 

then cites examples of each based on network topology. The static and 

dynamic characteristics of those networks provides the comparative basis for 

determining SOME-Bus performance potential. Concluding this chapter, a 

review of research into the workload, communication patterns, and 

performance of existing multicomputer and multiprocessor systems will 

demonstrate the need for a broadcast-based network. 

1.2 SOME-Bus Architectural Summary 

The Simultaneous Optical Multiprocessor Exchange Bus (SOME-Bus) is a 

parallel-processor interconnection network capable of interconnecting over 100 

processing nodes [26] ,[28], [35]. It features high bandwidth (scaling directly with 

the number of nodes), low latency, no arbitration delay, and non-blocking, 

broadcast-based communication. SOME-Bus processing nodes communicate 

with each other through a wavelength-division-multiplexed, optical- 

interconnection network. The network is implemented with laser-diode 

transmitters, optical fiber transmission lines with induced Bragg gratings, and 

receivers formed of CMOS devices with integrated amorphous silicon detector 

superstructures. The Bragg gratings in the optical fiber serve as narrow-band, 

inexpensive optocouplers between the network and the receivers. 



The SOME-Bus architecture for an N-node system is illustrated in Figure 1.1. 

Each node contains a receiver array (with buffering), a processing element 

(processor/memory), and a transmitter. The dedicated data transmission 

channel for each processor eliminates the need for network arbitration, and 

provides a system where bandwidth scales directly with the number of 

processors. The receiver array at each node contains N receivers, one 

dedicated to each data transmission channel. This design eliminates blocking 

since there is no contention for shared resources. 

V^ ■v 
Channel 1 

7" 

7" 

\Rcvr/Buffej/ 

Transmitter 

±te- 
Processor/Memory 

Nodel 

V" 

\ffcvr/Buffe^7 

Transmitter 

±LZ- 
Processor/Memory 

Node 2 

• •• 

V 

Channel 2 

Channel N 

jgcvr/Buffei/ 

Transmitter 

iji_ 
Processor/Memory 

NodeN 

Figure 1.1     SOME-Bus Architecture 

The transmitter subsystem is implemented with laser diodes and signal 

insertion hardware [35]. This hardware allows up to four processors, each using a 

dedicated wavelength, to insert data streams into a single fiber by employing 



wavelength-division-multiplexing. In addition, a separate wavelength/fiber is 

used for a clock signal which is common to all data channels on that fiber. 

There is one insertion-point per fiber, dividing the fiber into two parts: one part 

services processors to the left of the insertion point, the other services processors 

to the right. 

Readout Gratings (1/Wavelength) 

Fibers 

Figure 1.2 SOME-Bus Receiver Array 

Figure 1.2 illustrates the optical fibers, with readout gratings, and receiver 

array used by two nodes in the interconnection network [26]. The readout 

gratings, permanently induced in the core of an optical fiber by standard 

holographic techniques, allow light to be coupled off the fiber and onto the 

detector [28].    Wavelength selectivity and reflectivity of the gratings are 
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determined by grating length, spatial period, and process exposure time. Each 

grating couples out a fraction of the light from one wavelength in the fiber to a 

designated detector on the receiver. The N receivers required by a single 

processor are fabricated as a thin film of amorphous silicon structures, which 

serve as the optical detectors, constructed directly on the surface of a digital 

CMOS device. The low conductivity of the amorphous silicon layer eliminates 

the need for subsequent patterning, thereby producing receivers with the same 

yield and cost as the CMOS device itself. Together with the transmitter design, 

this feature allows the SOME-Bus to scale by <D[N), minimizing both the number of 

expensive components (transmitters) and the cost of highly replicated 

components (receivers). 

The current receiver-array performs two primary functions; it serves as the 

optical interface and as the processor interface [28]. The optical interface 

includes physical signaling, address filtering, barrier synchronization, length 

monitoring, and type decoding. When a detector receives a signal, it generates 

a bit stream which is examined for the presence of the framing byte. This is 

necessary because the start of a data byte occurs asynchronously. Bit stuffing at 

the transmitter and destuffing at the receiver is used to insure that the framing 

byte cannot occur within the packet. Destuff logic generates a byte stream, 

representing packet headers and data, and provides a framing error indication. 

Header decoding identifies message type (synchronization or data), destination 

address and message length. Synchronization messages are handled by barrier 

logic; for data messages, the destination address is compared to the set of valid 

addresses contained in the address decoder.    The address decoder can 
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recognize individual, multicast-group, and broadcast addresses. If the address 

does not match, the message is ignored. 

For data messages, once a valid address has been identified, the 

processor interface routes and queues the message. With one queue per 

channel, a node can receive an arbitrary number of messages simultaneously. 

Each queue is large enough to contain a single full-size ethemet packet or a 

number of smaller messages. The next stage of the interface determines which 

queue will be processed next. If most queues contain messages most of the 

time, a simple counter design selects the queues in a fair manner. If only a few 

queues contain messages at any time, then a resolver network makes the 

selection based on an indexing and priority scheme. The selected message is 

transferred directly into the processor's memory using cut-through routing 

hardware. 

In the SOME-Bus, where each processor can broadcast its own message 

while simultaneously receiving messages from all other processors, 

synchronization is possible in a single cycle. To achieve this, the receiver array 

converts each synchronization message into a single bit of information and 

stores it in a flip-flop. The flip-flop output becomes one input to an and-tree 

consisting of partition members. This scheme limits the involvement of the 

processor in a synchronization operation to transmission of the synchronization 

message, testing the summary from the receiver array. Arbitrary group 

partitioning for synchronization is handled by special hardware. Each receiver 

has two counters, one tracking the number of partitioning decisions made by 

the receiver array's processor, the other tracking partitioning decisions of the 
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input channel. These counters tabulate the (respective) number of partition 

decisions since their last shared partitioning. When both counters are at zero, 

both processors are in the same partition. If they are not equal to zero, the 

respective processor(s) must undo the counted number of partition decisions to 

again be in the same partition. 

To illustrate the data transfer capability of the SOME-Bus, a 128 node 

system will serve as an example. Using the silicon receiver array design 

described above and 32 fibers multiplexing 17 wavelengths/fiber (4 

wavelengths/channel, 4 channels/fiber, 1 common clock) provides 77 MB/sec of 

bandwidth for each channel, given a clock rate of 155MHz [26]. Using a 

receiver array manufactured using gallium arsenide lift-off technology and a 

clock rate of 1 GHz, the same 32-fiber SOME-Bus would provide up to 500 MB/sec 

of bandwidth per node, equivalent to the link bandwidth of a Cray T3E [49]. 

In summary, the SOME-Bus features high bandwidth (scaling directly with 

the number of nodes), low latency, no arbitration delay, and non-blocking 

communication. Nodes communicate through a wavelength-division- 

multiplexed, optical-interconnection network implemented with laser-diode 

transmitters, optical-fiber transmission lines with induced Bragg gratings, and 

receivers consisting of CMOS devices with integrated amorphous silicon 

detector superstructures. The network supports individual, multicast, and 

broadcast transmissions, is (effectively) fully connected, and scales by O(N). 



1.3 Evaluation of Performance Potential 

Determining the performance potential of the SOME-Bus requires 

comparing its network characteristics to those of existing systems. As explained 

at the beginning of this chapter, the method chosen for the comparison involves 

separating the networks represented in Bell's taxonomy [4], [22] into static and 

dynamic topologies. The quantifiable characteristics associated with each type 

are then compared to the SOME-Bus. 

Table 1.1     Static Network Performance Comparison 

NETWORK DIAMETER NODE DEGREE BISECTION COST 
SOME-BUS 1 N N N/4 

Completely- 
Connected 
2D Mesh 

1 

2(N'/2-l) 

N-l 

2 

(N/2)2 N-] 

2(N-N'/2) 

2D Torus i_Nvy2] 4 2N'/2 2N 

Hypercube log2N \0g2N Nil N log2N/2 

Performance metrics of static interconnection networks include diameter, 

connectivity, bisection width, and cost [22], [29]. Diameter represents the 

maximum number of communication links between any two processors in the 

system; a smaller diameter results in lower data-transfer latency. Connectivity, 

also referred to as node degree, describes the minimum number of 

communication channels that must be removed to separate a single network 

into two disconnected parts.   Higher connectivity results in less contention for 



shared communication resources. Bisection width is a measure of the minimum 

number of communication links that must be removed to separate a network 

into two equal halves. The greater the number of links, the more bandwidth for 

data transfer. The final criterion, cost, denotes the number of physical 

communication links in the system. Table 1.1 compares an N-node SOME-Bus to 

N-node static network topologies. As Table 1.1 shows, the SOME-Bus is clearly the 

superior network configuration among this group, matching or exceeding the 

best in every category except bisection width. Performance figures cited in 

Table 1.1, for systems other than SOME-Bus, came from the work of Bell [22] and 

Kumar [29]. 

Figures of merit for dynamic networks include data transfer latency, 

bandwidth per processor, wiring complexity, and switching complexity [22]. 

Latency refers to the minimum amount of time necessary to transfer data from 

source to destination. Bandwidth describes the total bandwidth available for 

data transfer by a single node. Wiring complexity measures the physical number 

of wires (fibers) interconnecting source and destination. Switching complexity 

defines the number of switches in a system. 

Table 1.2    Dynamic Network Performance Comparison 

Network Latency Bandwidth Wiring 
Complexity 

Switching 
Complexity 

SOME-Bus Constant O(wN) 0(N/w) O(l) 

Bus Constant 0(w/N) to O(w) O(w) O(N) 

Multistage 0(logfcN) O(w) to O(wN) 0(NwlogkN) 0(NlogkN) 

Crossbar Constant O(w) to O(wN) 0(N2w) 0(N2) 
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Table 1.2 compares the three dynamic network topologies (bus, 

multistage, and crossbar) represented in Bell's taxonomy to the same SOME-Bus 

configuration used in the static network comparison. Each system has N 

processors and memory modules and a data-channel width of w bits. In 

addition, the multistage network is assumed to use kxk switches. Based on the 

results shown in Table 1.2, it appears the SOME-Bus also has greater performance 

potential than existing dynamic topologies. An additional benefit, not explicitly 

seen in Table 1.2, is that SOME-Bus transmissions are never blocked due to 

contention for shared switching resources. 

1.3.1 Optically-Based Networks 

In addition to the static and dynamic networks above, the potential of a 

SOME-Bus must be compared to other optically-based parallel processors. In 

one research study, free-space optical techniques are applied to the design of 

a mesh-connected bus network [33]. The drawbacks to this design, compared 

to the SOME-Bus, include contention resolution due to multi-access 

communication channels and greater power requirements resulting from free- 

space transmission methods. A second study describes an optical crossbar 

design using time division multiplexing [43]. Although the optical crossbar 

switching network used to implement the crossbar reduces the switching 

complexity, allowing linear scaling of switching components, the contention for 

shared resources inherent in any crossbar system remains. 

In two separate studies, systems were found that leverage optical 

transmission methods to implement a hyperbus (also known as a hypermesh). 
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This network topology provides complete connectivity in each dimension and 

appears isomorphic to a 1 -D SOME-Bus. The concept of a hyperbus has been 

known for some time and shown to have great performance potential. 

However, it has not been seriously pursued until recently because its 

implementation is not feasible using electrical interconnection methods alone. 

In the first study, an implementation using a combination of electrical and 

optical crossbars is described [53]. Although the design uses multiple 

wavelengths per fiber to keep cost low, multiple-access of those wavelengths 

requires the additional complexity of contention resolution. The second 

proposal is based on completely-connected, 36-node building blocks [58]. Each 

node consists of a 'cluster' of 8 processors interconnected by a crossbar switch. 

Nodes within a building block are then completely connected via a clear 

plastic bar acting as an optical waveguide. Mirrors guide multiple wavelength- 

division-multiplexed optical signals through the bar to individual wavelength 

detectors at each node. Although promising as a feasible way to implement a 

hypermesh, this architecture has much greater complexity than SOME-Bus. In 

addition to the crossbar switch at each node, it requires more transmitters and 

precise mirror-to-detector alignment. 

In summary, the SOME-Bus exhibits outstanding performance potential. 

Compared with static topologies, a SOME-Bus offers the same performance as 

the powerful but costly fully-connected network, but with the added benefit of 

a lower cost than a hypercube, mesh, or torus. Contrasted to the most versatile 

dynamic network, the crossbar, SOME-Bus scales better and supports more 

communication patterns.  In addition, due to the optical implementation of its 
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broadcast-based design, no node is ever blocked from transmitting by another 

node, and no arbitration for shared resources is reguired. Even with the SOME- 

Bus reguiring N2 receivers, larger than the number reguired in other architectures, 

it scales by O(N), since N receivers are integrated into a single device at 

relatively low cost. 

1.4 Parallel Systems, Workload and Performance 

Parallel systems can be classified as multicomputers, or multiprocessors 

[4], [22]. Multicomputer systems consist of multiple autonomous computing 

nodes, each with a distinct address space. All communication in multicomputer 

systems takes place through the interconnection network via message passing. 

Although existing multicomputer systems use both static and dynamic networks, 

static topologies are more common. 

Multiprocessor systems are defined by a single address space, 

implemented as either centralized or distributed memory. In all multiprocessor 

systems, interprocessor communication takes place using shared variables in the 

common address space. In a central-shared-memory (CSM) multiprocessor, 

main memory is realized by a subsystem that is physically separate from the 

processing nodes. Since all main-memory reguests traverse the interconnection 

network, CSM systems feature uniform access time to any memory address. The 

majority of CSM systems are implemented using dynamic interconnection 

networks, and are often referred to as tightly-coupled due to extensive sharing 

of common resources. 
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Distributed-shared-memory (DSM) systems have main memory physically 

distributed among the processing nodes. This distribution results in non-uniform 

access times since some main-memory requests are satisfied locally. Both static 

and dynamic networks are common in DSM system implementations. In these 

loosely-coupled multiprocessors, management agents map the shared logical 

address space onto local memories [24]. These agents hide the message- 

passing mechanism, provide a shared-memory model, and keep data coherent 

at all times. In addition, on each access to shared space, hardware determines 

if the requested data is in local memory and, if not, copies it from remote 

memory. 

Recent trends in commercial parallel-system design indicate a 

preference for DSM multiprocessor systems [50]. This shift stems from two primary 

factors: first, given certain interconnection topologies DSM multiprocessors 

provide the economic advantages of both size- and generation-scalability by 

leveraging commercial microprocessor advances; second, their single address 

space allows for relatively efficient general-purpose programming. In addition, 

message passing can be implemented implicitly on DSM systems via writing to 

shared variables. 

Given this preference for DSM multiprocessors, it is important to determine 

the issues that effect successful DSM systems and see if they exist in the SOME- 

Bus. A focus of current DSM research involves attempts to reduce or hide data 

access latency while maintaining memory consistency. In general, the result of 

this research indicates that data access latency in DSM systems is related to the 

extent of memory consistency required [24]. Models with strong restrictions show 



14 

increased latency and higher network bandwidth requirements (stronger 

restrictions result in greater traffic on the network). Models with weaker 

constraints that allow reordering, pipelining, and overlapping of memory 

produce better performance, but require explicit synchronization operations. 

This body of research implies that a viable DSM system should have a low- 

latency, high bisection-bandwidth interconnection network. - These are 

characteristics the SOME-Bus possesses. 

The following subsections first define the types of communication patterns 

that frequently occur in parallel applications, and then examine current 

research into their effect on system performance. Using the trend toward DSM 

systems as a guide, the research summaries are divided into those covering 

message-passing and central-shared-memory systems and those dealing with 

distributed-shared-memory systems. These studies show that today's high- 

performance computing workload includes modeling and simulation of physical 

phenomena, integrated circuits, neural networks, weather, economic systems, 

and image processing. These same studies show that processing these tasks on 

existing parallel systems results in load imbalance among processing nodes, 

delays caused by barrier synchronization, and communication patterns which 

place an excessive load on the interconnection network. 

Some of the basic mathematical operations used to execute the 

workload described above include fast Fourier transforms (FFTs), matrix 

multiplication, Gaussian elimination, LU-factorization, and solutions to partial 

differential equations [29]. Parallel-processing implementations of these 

operations typically involve one-to-all and all-to-all broadcasts, and broadcasts 
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place the heaviest burden on inter-processor communication networks. The 

research studies will highlight the mismatch between these communication 

patterns and current interconnection architectures (both static and dynamic), 

regardless ot implementation medium. The cumulative results of these studies 

indicate that high-performance applications execute on existing parallel systems 

at only poor-to-moderate performance levels, even after extensive efforts at 

software tuning. Based on these findings, it is apparent that a scaleable parallel 

system, capable of supporting the communication patterns inherent in common 

applications, is needed. 

1.4.1 Communication Patterns 

Efficient communication is critical to any application's performance. 

Communication may involve point-to-point operations, which have a single 

source/destination pair, or collective operations, in which more than two 

processes participate [21]. A collective operation begins when a group, 

consisting of some or all processes in an application, invokes a communication 

routine, such as a broadcast. The broadcast routine identifies the scope of 

group membership to determine if the broadcast will be implemented as a 

multicast (when the group does not consist of all processes in the application), or 

as a true broadcast. The range of collective operations, illustrated in Figure 1.3 

[21] for a group of four processes, can be classified into three types: data 

movement, process control, and global compute operations. 

The first type of collective operation, data-movement, is shown in Figure 

1.3(a)-(e). Figure 1.3(a) shows a one-to-all broadcast in which one process [Pa) 
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sends all other group members the same information (aO). A scatter operation, 

Figure 1.3(b), occurs when one process in the group (Pa) sends individual 

messages (aO, ah a2) to other members. During a gather, illustrated in Figure 

1.3(c), one process [Pa] is the recipient of information [bO, cO, dO) from other 

group members. In an all-to-all broadcast each group member (Pa, Pb, Pc, Pd) 

sends all other members an identical message (aO, bO, cO, dO) as shown in Figure 

1.3(d). The final data-movement operation, an all-to-all scatter-gather, also 

known as an all-to-all personalized broadcast or a complete exchange, places 

the heaviest burden on a communication network [29]. Figure 1.3(e) shows how 

each process in the group [Pi] sends individualized information (;'0, ih \2) to all 

other group processes during this operation. 

Barrier synchronization is an example of process control, the second 

category of collective communication,. As seen in Figure 1.3(f), one method of 

performing barrier synchronization occurs in two phases, with one process in the 

group (Pa) playing the role of a barrier process. In the first phase each member 

of the group that reaches the barrier sends a message indicating this fact to the 

barrier process. Once messages from all the other members are received, 

phase two takes place as the barrier process broadcasts a message to the 

group indicating that work may proceed. 

The final category of collective communication, global compute 

operations, includes both reduction and scan (also known as parallel prefix or 

prefix sum). In reduction, each member of the group forwards data to a central 

process (Pa) where associative and commutative operations are performed; 

examples include sum, max, min, and bitwise operations. Figure 1.3(g) shows a 
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(a) Broadcast (b) Scatter 

(c) Gather (d) AII-to-AII Broadcast 

(e) AII-to-AII Scatter-Gather (f) Barrier Synchronization 

R=aO*bO,cO,dO R0=a0 Rl=aO'bO 

R3=aO,bO*cO*dO R2=a0,b0,c0 

(g) Reduction (h) Scan 

Figure 1.3 Collective Communication Patterns 
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special case of reduction with a generic operator; the result (R) resides at a 

single process in this illustration while in other cases it may be distributed to some 

or all of the group processes. The scan operation, shown in Figure 1.3(h), applies 

an associative and commutative operator (represented by the asterisk) to the 

data such that the result at process Pi is Ri = aO*bO... * iO. 

1.4.2 Message-Passing and Central-Shared-Memory System Performance 

One study that illustrates the effect of collective communication on 

message-passing or central-shared-memory system performance examines a 

parallel three-dimensional Navier-Stokes solver. This study analyzed the 

communication patterns inherent in the algorithm and evaluated its 

performance on P-processor IBM SP2, Cray T3D, and SGI Power Challenge XL 

systems [14]. The algorithm, based on 2- and 3-D FFs, requires a series of all-to-all 

scatter-gather (complete exchange) operations, global reduction, gather 

operations, and global synchronizations. It was found that there are not enough 

network connections between nodes in any of these systems to support an O(P) 

complete exchange without contention, and that there was a large variability 

for times associated with communication performance, all biased toward higher 

values. Although the program is computation-intensive, memory-bus contention, 

brought on by the collective operations cited, caused excessive performance 

degradation in the Power Challenge. Performance of the SP2 and T3D was also 

degraded, but to a lesser extent. As the number of processors was increased, 

performance became increasingly communication-bound with the cost of the 
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complete exchange almost doubling (thus becoming prohibitively expensive) 

on the SP2. 

Another study focused on the parallel implementation of an atmospheric 

general-circulation model making extensive use of Fourier transforms [37]. The 

application was executed on Intel Paragon and Cray T3D systems, where the 

authors found it necessary to perform data-shuffling (which utilizes all-to-all 

broadcast) to achieve load balancing among the processors. Modifications 

were made to the model in an effort to minimize this costly operation, but came 

at the expense of other forms of collective communication coupled with a 

substantial amount of local bookkeeping. Despite the modifications, processor 

utilization (a typical performance metric representing the percentage of 

processor time dedicated to problem solution) of only 30% to 40% was achieved. 

Research involving the simulation of an astrophysics N-body problem 

using mature code compared the performance of two experimental parallel 

computers built with commodity (commercially available microprocessor) 

components to that of existing supercomputers that had been running the same 

code for years [55]. Although the code has been optimized, it generates 

numerous reauests for non-local data yielding high communication costs. This 

study highlights the relationship between high communication costs and 

scalability of existing systems since all the computers with more than 100 

processors attained only 30% processor utilization except an Intel Delta, which 

reached 50%. 

The goal of one study was to reduce the cost of all-to-all communication 

(given all messages of the same size) in a 2-dimensional torus of size (n x n) [19]. 
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The author explains that this communication pattern is frequently encountered in 

multidimensional convolution, array transposes, etc., and often results from High- 

Performance FORTRAN operations. Presenting a communication algorithm 

based on phased communications, where each phase approaches the peak 

bandwidth available in this architecture, a 40% reduction in the time to perform 

a 512 x 512 FFT is achieved. In addition, given bidirectional communication links, 

an all-to-all communication takes only (n/2)3 phases using the proposed 

algorithm. Although the pattern seems optimal, the phases must be completely 

and globally synchronized through either more interprocessor communication or 

additional hardware, a costly addition in either case. It was also shown that 

performance deteriorates when message sizes vary within a phase, at its worst 

when empty messages are included. 

Many-body simulation, a common high-performance application, is one 

in which arriving at a solution usually, sometimes exclusively, depends on all-to- 

all communication [17]. This study compares the performance of a new many- 

body algorithm, designed specifically to avoid all-to-all communication, to two 

more traditional methods. All algorithms were executed on both an nCUBE2 

and an Intel Paragon system. When running on systems of 128 or more nodes, 

speedup (a ratio of execution time on the parallel system to that of a uni- 

processor system) was 50% or less of perfect (linear), with the rate of Paragon 

performance degradation greater than that of the nCUBE2 as more nodes were 

employed. In some situations the traditional methods, using all-to-all 

communication, performed better. A similar lack of scalability was found in a 

separate study of code  designed  for transient  dynamic  simulations, also 
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executed on a Paragon system [45]. Only 30% (64 nodes) to 47% (128 nodes) of 

linear speedup was reported by this study. 

Utilizing both theoretical and simulation models, one study examined the 

performance of a clustered CSM multiprocessor. Crossbar switches connected 

processor elements (consisting of a processor and private memory) within a 

cluster, and those same processor elements with global memory [38]. As the 

probability of memory access/cycle was increased, the authors found that if all 

those accesses were directed to global memory, the system could only attain 

approximately 25% of its peak processing capability. However, performance 

rose to 60% when those same memory accesses were directed equally to 

private and global memory, thereby reducing the burden on the 

interconnection network. 

There are numerous articles dealing with general issues involving 

collective communication in message-passing architectures that are not 

specifically tied to an application. There have been attempts to minimize the 

number of steps necessary to broadcast on hypercubes by using path-based 

algorithms [20], [23]. Similarly, there is a large body of research in multicast 

(broadcast to a select group of nodes) communication and its effect on mesh 

and torus architectures employing trees and wormhole routing [9], [30], [34], [40], 

[41]. One presentation noted that extensive efforts are focusing on the 

development of algorithms to alleviate the fact that intense multicast 

communications cause wormhole-routing performance to degrade to that of 

store-and-forward routing [29].  When viewed as a whole, the research above 
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indicates that collective communication inhibits the performance potential of 

existing message-passing and CSM systems. 

1.4.3 Distributed-Shared-Memory System Performance 

As with message-passing and CSM systems, there are numerous studies 

illustrating the impact of collective communication on the performance of 

existing DSM systems. One study uses both a queueing-network model and 

simulation to examine a two-dimensional mesh-based multiprocessor system 

where each processor can execute a number of threads [42]. Model 

parameters include number of threads per processor, probability that memory 

requests are directed to particular remote memories, and the delay in each 

network switch. Program execution is represented by each thread processing 

for a period of time, generating a memory request, and then suspending. The 

analysis of this model provides the data from which processor utilization and 

remote memory request response time is calculated. The results showed that 

when the probability of remote memory request was small, processor utilization 

increased as the number of threads executed increased, but response time 

(relative to mean thread run time) also increased dramatically. The data 

showed that response time becomes unacceptably large when more than five 

threads are present in each processor. Also, as the probability of remote 

memory requests increased (> 0.5), the interconnection network saturated and 

processor utilization fell below 35%. 

In an article examining how to improve performance of the HP/Convex 

Exemplar system, an example of the role of the interconnection network in 
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application scalability is presented [51]. Processor performance is measured 

during execution of four Earth and space-sciences application programs. The 

Exemplar is a relative newcomer to the multiprocessing field, consisting of up to 

16 multiprocessor clusters, each cluster containing four functional blocks, each 

block having two processors. The blocks within a cluster are interconnected by 

a crossbar switch, and sets of functional blocks between clusters are 

interconnected by four ring networks in an attempt to provide high connectivity 

at a relatively low cost. Using up to 16 processors, one portion of the study 

measured cache misses for one application (tree code for an N-body problem) 

finding the rate to be 10% to 25% depending on application size (verifying the 

need for an efficient interconnection network for these types of problems). A 

second part of the study, measuring the scalability of all the applications while 

varying the number of processors between 1 and 16, showed that some 

applications had almost linear speedup, while others fell below 50%. The study 

attributes poor performance to "irregular data access patterns, global 

communication between processors, and load balancing" for a finite element 

application and "irregular, dynamic data structures" for a particle-in-cell 

program. This study showed that the performance of one of the newest, most 

commercially-popular DSM systems suffers from poor network support of the 

collective-communication requirements inherent in commonly executed, high- 

performance applications. 

Findings similar to those of the study above are seen in a study of four 

architectures with hardware DSM support [16]. After establishing workload 

parameters by estimation, an examination of the impact of system size and data 
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locality (both temporal and spatial) on processor utilization and shared-memory 

latency was undertaken. With workload parameters that appear overly 

optimistic, especially in terms of cache misses (as evidenced by the low network 

utilization in all four architectures here compared to those seen in other studies), 

the results show significant data-access latency compared to the CPU clock 

cycle time. In conjunction with that finding, data locality was found to have a 

significant effect on processor utilization. 

Examining a DSM implementation of a system originally designed as a 

message-passing multicomputer is the topic of another study [2]. Using an 

nCUBE, a hypercube topology capable of supporting up to 8192 nodes, the 

study experiments with executing four parallel programs on a 16-node 

configuration. Although linear (or better) speedup was achieved in three 

applications, greatly reduced performance occurred in the fourth. This 

application, which performs matrix addition on distributed data, required 

significant data-transfer time relative to node computation time. The authors 

concluded that such programs are unsuitable for DSM implementation on a 

hypercube unless an algorithm can be found to reduce the communication 

involved. Taking a broader view, these results indicate that large applications 

distributed over many nodes (more than 16) require significant data-transfer 

times, and, since they cannot simply be rejected as unsuitable for DSM 

implementation, alternative networks must be developed that offer better 

support. 

The fact that poor performance can occur even in a parallel system 

specifically designed to reduce contention for shared resources is found in 
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another study [5]. Using a model of a DSM multiprocessor with a multistage bus 

network, the authors study processor utilization. Model parameters include the 

probability of a processor generating a memory request during a cycle and the 

probability that a request is directed to local, versus non-local, memory. Results 

showed that when the majority of requests are directed to local memory and 

the probability of generating a memory request is above 10%, processor 

utilization falls below 65%. When the majority of requests are to non-local 

memory, and the probability of memory reference rises above 10%, utilization 

falls below 40%. Utilization drops significantly as the request probability increases, 

which the authors attribute to "a higher amount of traffic and queuing delays". 

In summary, existing multicomputers and multiprocessors, implemented 

with static or dynamic interconnection networks, offer only poor-to-moderate 

performance for a wide class of commonly executed applications that use 

collective communication operations. This finding, combined with the results of 

the performance-potential evaluation, justify an in-depth performance study of 

the SOME-Bus architecture. 

1.5 Outline of the Dissertation 

Chapter 2 presents the development of a closed-queueing-network 

model of the SOME-Bus as a message-passing system. Chapter 3 validates a 

message-passing SOME-Bus simulator using this model, extends the simulator to 

perform synchronization tasks, and compares its results to message-passing 

crossbar and torus simulations. 
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In Chapter 4 two distributed-shared-memory models of the SOME-Bus are 

developed using queueing theory. Chapter 5 presents the results from both 

models and validates a corresponding simulator. That simulator is extended to 

perform cache coherence operations, and its performance is compared to DSM 

torus and crossbar simulations. 

Chapter 6 offers conclusions based on the findings of this dissertation and 

describes the direction of future research. 



Chapter 2 

A MESSAGE PASSING MODEL OF THE SOME-BUS 

2.1 Message-Passing Model 

It is important to choose an analytical modeling method with a firm 

theoretical foundation to both evaluate performance and validate simulations. 

The model must abstract the system to a degree appropriate for evaluating 

changes in system parameters and offer an efficient solution method to facilitate 

those evaluations. Modeling the SOME-Bus as a closed queueing network 

satisfies all of these requirements. 

Queueing network theory is based on the theory of Markov processes, a 

subclass of stochastic processes. A characteristic of Markov processes is that the 

probability of being in a specific next state depends solely on the current state, 

i.e., the evolution of the process is independent of its past history [27]. The 

process of interest for SOME-Bus evaluation is the distribution of messages among 

system resources. Since messages and system resources are discrete, finite 

entities, the state space defining their distribution is also finite and discrete, and 

the process is referred to as a Markov chain. 

The closed queueing network model of a message-passing SOME-Bus 

system is illustrated in Figure 2.1. The model consists of a network of service 

centers that represent system resources, with each node modeled as two 

service centers in tandem. The first service center represents the activities of the 

receiver-buffer and processor-memory blocks of the SOME-Bus architecture, as 

27 



28 

depicted in Figure 1.1, and will be referred to as the processor, or p-type, service 

center. The second service center models the actions of the transmitter block 

and the channel characteristics, and will be referred to as the channel, or c- 

type service center. These service centers are characterized via assignment of 

service rates and service disciplines. All service centers in the model of Figure 2.1 

are assumed to have load-independent, exponential service time distributions, 

and first-come, first-served service disciplines. 

Channel 1 

Figure 2.1 Queueing Network Model of an N-Node SOME-Bus 

In a message-passing system, a program is viewed as a set of processes, 

and messages are used to exchange data between those processes [29]. 

Assuming each node is responsible for executing a fixed number of processes, 

and each process requires a data message to enable its execution, the number 
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of messages in the system is constant and equal to the total number of processes 

(K). No messages enter the system from external sources, or depart to external 

sinks. Also, since the same average service rate applies to all messages arriving 

at a given service center, a single-class closed queueing network results. In a 

single-class network the message originator becomes irrelevant, allowing the set 

of queues in each processor service center (as seen in Figure 2.1) to be replaced 

by a single queue, resulting in the simplified SOME-Bus model shown in Figure 2.2. 
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Figure 2.2 A Simplified N-Node SOME-Bus Model 
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A queueing network model of a Markov chain affords a closed-form 

equation, known as the product-form equation, for calculating equilibrium state 

probabilities [15], [39].  Once this equation is solved such that the sum of those 
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probabilities equals one, performance measures can be determined [32]. The 

product-form equation defining the state probabilities associated with the 

SOME-Bus model of Figure 2.2 appears as Equation 2.1, where N represents the 

number of nodes in the system, and k, the number of messages at service center 

/     ,        \   (2N \ 2N 
P(kx,k2,...k2N) = {/C(K)} -I IW*,)J (where £*,. = K) (2.1 

2N 

I' 
i=l 

In Equation 2.],h;(k;) represents the individual, unnormalized queue-length 

distributions of all service centers in the network, which appear to act 

independently at equilibrium. The purpose of the normalization constant, C(K), is 

to insure that the sum of the state probabilities equals one. Although a solution 

to Equation 2.1 exists, direct computation is inefficient, making performance 

evaluation of alternative system configurations cumbersome. 

When service centers in a closed queueing network have exponential 

service time distributions, as assumed above, their queue-length distributions, 

hi(ki), depend on their service and arrival rates. Service rates are simply the 

inverse of service times. The arrival rates, X\, are found by solving the system of 

flow-balance equations seen in Equation 2.2, where h is the departure rate, and 

x,y, is the fixed probability of a message transitioning from center \ to center/. 

IN 

Äj=j:^y (2.2) 
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Letting X represent the matrix of transition probabilities and substituting A? for A, 

(since arrival and departure rates from service center /' are the same at 

equilibrium), allows the system of equations, represented by Equation 2.2, to be 

written in the vector-matrix form X=XX. Because this is a closed system, with 

equal arrival and departure rates, the system X-XX has one linearly dependent 

equation [27]. One method of solving this system is to assign one service center 

as a reference center, and let its arrival rate serve as a parameter. Using this 

method establishes relative arrival rates for all other centers [39], [54]. 

Assigning the load-independent service rate //, to service center / in Figure 

2.2, and substituting the resulting unnormalized service center queue-length 

distribution, (^/n,)*' for hi(k] in Equation 2.1 [48], results in Equation 2.3 (given the 

service time and service discipline assumptions already stated). 

P(äJ,ä'2,... k2N K/cro) 
2AT/T       /\*/ n ( / 
,=1 V / H;/ 

2N 
(where ^ = K) 

i=i 
(2.3) 

The normalization constant, C(K), is then found using Equation 2.4. 

ItP(kl,...Jc2N) = l   =>   C(K)=    I 
2N 2N 

1=1 i=l 

IN/«    /\kt 

FT' 
i=i 

(2.4) 
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Normalization constants are used in the computation of performance 

measures including server utilization (the proportion of time the server is busy), 

residence time (the average time spent at the service center by a customer, 

both queued and receiving service), queue length (the average number of 

customers at the service center, both waiting and receiving service), and 

throughput (the rate at which customers pass through the service center). 

An efficient solution for Equation 2.4, given identical service rates jup and 

/Jc for all processor and channel service centers, respectively, has been found 

[25]. Transition rates were calculated by assuming that messages transmitted by 

c-type (channel) centers are uniformly directed to the p-type (processor) 

centers at other nodes. These assumptions established transition probabilities 

from channel to processor centers of x;; = 0 (if the channel and processor centers 

are in the same node) or x,j = 1/(N-1) (otherwise). Since messages transferred 

from a p-type center can only go to the c-type center in the same node, 

transition probabilities from processor to channel are x,y = 7 (if the channel and 

processor centers are in the same node) orx,y = 0 (otherwise). There is a limitation 

to the existing solution; the solution is specific to the two-service-center model of 

a node shown in Figure 2.2. In addition, the solution depends on identical 

service and arrival rates at all nodes, prohibiting hot-spot analysis unless 

modifications are made. The next section presents the development of an 

efficient solution process that overcomes the two-service-center model limitation 

and allows evaluation of hot-spot conditions. 
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2.2 Calculating System Performance 

As explained above, system performance measures can be calculated 

using network normalization constants [7]. The method developed in this 

dissertation for the determination of those constants is based on a service center 

aggregation technique known as Norton's Theorem for Queueing Networks 

(NTQN) [11]. Norton's theorem for queueing networks was originally developed 

as an efficient way to evaluate network performance while varying parameters 

of a subsystem-of-interest within a larger network. Standard application of NTQN 

involves functionally partitioning a network into a subsystem-of-interest, CTJ, and 

the remainder of the network, <J2. A short replaces <JI, and the resulting network 

is used to find a single, load-dependent (Norton-equivalent) aggregate center 

that exhibits the statistical behavior of a, as experienced by a). (The service rate 

for the equivalent service center is set equal to the load-dependent throughput 

of the shorted branch.) Once that equivalent service center is found, it replaces 

02 in the original system to create a new network. The product-form equation for 

that network has fewer terms, making the computation of network normalization 

constants more efficient. 

Evaluation of the SOME-Bus model focuses on how changing the service 

rate of processor or channel service centers impacts system performance, 

making a node the subsystem-of-interest. The fact that there are multiple nodes 

in the model requires a modification to the standard application of NTQN 

described above. First, a Norton-equivalent service center for the model of 

each node will be found, making individual nodes serve as 02 during the 

application of NTQN (with the remainder of the network serving as <J{\.   The 
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node-equivalent sen/ice centers then replace all the corresponding subsystems 

(nodes) in Figure 2.2. Although the network models in this dissertation also 

incorporate the two-service-center model of a node used by Katsinis [25], this 

step allows the evaluation of any node-architecture model that meets NTQN 

requirements. Next, NTQN is iteratively applied to pairs of node-equivalent 

service centers until only an N-l node Norton's equivalent service center in series 

with a single node remains. The normalization constants for this equivalent 

network are used to calculate network performance. 

2.2.1 Norton's Equivalent of a Node 

The first step in finding network normalization constants is to determine a 

Norton's equivalent service center for each system node. Figure 2.3 depicts a 

single node, designated node r (for reference), serving as as with the remainder 

of the SOME-Bus network replaced by a short. Solving the resulting flow-balance 

equations, seen in Equation 2.5, shows that the arrival rate at the processor 

center, \Pr, is equal to the arrival rate at the channel center, kCr. 

K K]=K K] 
0 1 

1 0 
(2.5) 

The resulting product-form equation for this closed queueing network appears as 

Equation 2.6. The number of messages in the processor and channel service 

centers are represented by kp and kc, and processor and channel service rates 

by n^and n   (respectively). 
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Figure 2.3 Finding the Norton's Equivalent Service Center for a Single Node 

Choosing the arrival rate of the processor center to serve as the system 

parameter and arbitrarily assigning it the value of the processor service rate, \y.Pr, 

produces the normalization constant for node r, Cr(K), seen in Equation 2.7, 

K   f / \K C^--L{%J * =0 

(2.7) 
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which simplifies to 

Cr(K) = 

1-1 »*> 
K+\ 

1-1% 
Vcr) 

(2.8) 

Once the normalization constant is found, average throughput, Yr(K), for 

the processor and channel service centers in Figure 2.3 can be calculated using 

Equation 2.9 [7]. 

W = v(Cr(*"%r(Jo)     (' = **) (2.9) 

With the arrival rates of both service centers the same, the throughput of both 

centers, and the shorted branch, are equal. By calculating Cr(k) for all k, k = 

1,2,...,K, and substituting the parameter value \ip for A,-, the solution to Equation 

2.9 becomes the load-dependent (state-dependent) service rate for the 

Norton's equivalent of node r [48]. 

lirC) = »Pr{
Cr(k  %r(k)}     (k = l2,...,K) (2.10) 

Node-equivalent service centers must be found for every node with 

processor or channel service rates, or arrival rates, different from those of node r. 
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By assigning \i   to serve as the parameter value representing the arrival rate to 

the reference node, relative arrival rates to the remaining nodes are found by 

solving X = XX for the N-node system. Normalization constants can then be 

calculated for node / using Equation 2.11, 

K 

\/vPl 

J %, >*-/ 

V-, CiJ 
(2.1 I; 

which results in the associated load-dependent service rate for node i seen in 

Equation 2.12. 

H,(k) = X,. -{Ci{k   yCj{fij     (* = U.~,*; / = l,2,...,A0 (2.12) 

Substituting these Norton-equivalent service centers for their respective 

nodes in Figure 2.3 results in the simplified system model shown in Figure 2.4. The 

product-form equation for this network, with its N load-dependent service 

centers, takes the form of Equation 2.13 [15]. 

P(ki,k2,...kN) - ^/c(Ky 
N n N

k 

7=1 

N 
(where £*, = K)    (2.13) 

i=l 
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Figure 2.4 N-Node SOME-Bus Model w/ Norton's Equivalent Nodes 

2.2.2 Network Normalization Constants 

Determining network normalization constants first requires finding an N-l 

node Norton's equivalent service center, which is accomplished here by 

iterative application of NTQN. The process begins by partitioning the model of 

Figure 2.4 into two parts. One part, os, consists of any two, node-equivalent 

service centers (identified as Center a and Center b), while a> contains the 

remainder of the network. Shorting <j\ results in the queueing network of Figure 

2.5, allowing the Norton's equivalent center of cr2 to be determined. This 

equivalent service center is substituted for a in the model of Figure 2.4, and the 

process is repeated until an N-1 node aggregate center results. 
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Figure 2.5 Model for Norton's Equivalent Reduction of Two Centers 

Terms appearing on Figure 2.5 indicate the probability of a message 

traversing the associated branches of the network. The values xab and Xba are 

the system transition probabilities from Node a to Node b, and Node b to Node 

a (respectively). Values ya and yb arise from system flow-balance 

considerations, and are calculated using system arrival rates and transition 

probabilities, as seen in Equation 2.14. 

f ^   and   yb = 

KVi*a,b 

y N    (2.14) 

\Vi*a,b 
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For reference purposes, the transition probability matrix for the network of Figure 

2.5, is shown in Equation 2.15. 

x = 
xaa     xab 

xba     xbb. 
where 

*«t=(l-*«*)-YB 

xab=xab+{l-xab)-yb 
xba=xba+Q-xba)-la 
xbb =V~xba)-lb 

(2.15) 

The product-form equation for the network of Figure 2.5 is created using 

the load-dependent service rates and system arrival rates for Centers a and b 

[15]. 

P(ka,kb) = ^(K) (where ka + kb = K) (2.16) 

Substituting the node-equivalent, load-dependent service rate equation 

(Equation 2.12) for each center into Equation 2.16, and noting that C(0) = 1 by 

definition [48], the normalization constants for the network of Figure 2.5 are 

found. 
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Q2(*)= I[(cfla))-(Q(*-y))]      (* = <>,...,*:) (2.17) 
7=0 

The load dependent service rate for the two-center aggregate is set 

equal to the throughput of the shorted-network branch [48], as shown in 

Equation 2.18. 

ii02(k)=[{i-xabyxa+(i-Xbayxb] 
Ca2(k-l) 

(2.18) 

Comparing Equation 2.18 with Equation 2.9, the arrival rate of the aggregate 

service center can be determined. 

K2={l-XabYK+(l-Xba)-*.b (2-19) 

The final step in the aggregation process consists of revising and reducing 

the transition probability matrix associated with the system model of Figure 2.4 to 

reflect the aggregation of two centers into one. Replacing the separate 

transition probabilities from node / to nodes a and b is the single transition 

probability, shown in Equation 2.20, from node /' to the aggregate center. 

*fe2=*fc+*ft U*a,b) (2.20) 
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The two rows of the system transition probability matrix associated with Centers a 

and b are replaced by the transition probabilities from the aggregate center to 

other network nodes. 

\Xa-xaj+'kb-xbj\ 
X°2J    ' V Z  (V*« + V**y) 

\fj*a,b 

U*a,b) (2.21] 

The aggregate node does not send messages to itself, making xa a, = 0. 

N-l Node 
Aggregate 
Service Center 

Processor 
Service Center 

Channel (CommJ 
Service Center 

Figure 2.6 Reduced Model for Performance Evaluation 
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In a network with equal transition probabilities, such as a SOME-Bus with 

no hot-spots and identical processor and channel service rates at every node, 

repeating the aggregation process as few as 2[log2(N)] times produces an N-l 

node Norton's equivalent service center. The worst case, where no two pairs of 

nodes have the same transition probabilities requires N-2 iterations. 

The model representing the final result of the aggregation process just 

described is shown in Figure 2.6, with the original two-center model of the 

remaining node replacing its Norton equivalent for the purpose of performance 

evaluation. This model, statistically equivalent to the model of Figure 2.4, 

produces the network normalization constants used to calculate performance 

measures. 

The product-form equation for Figure 2.6 appears as Equation 2.22. Due 

to the series configuration of the network, the arrival rates to all the stations are 

equal [Ap = Äc = Aagg). 

P(kp,kc,kagg)- /cMet(K)\ /ju. NeA^)\/HpJ       \/PcJ /ff..      I* (Z22) 

(where kp + kc + kagg = K) 

For calculation of CNet(k), Equation 2.23 partitions the messages in the network 

into those in the two service centers of the node (/), and those in the aggregate 

service center (k-i). It then further partitions those in the node into those in the 

processor center (/) and those in the channel center (/'-/). 
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j=0 j=0 

\'~J y^ss) 
k-i 

ÜMaggÜ) 
y=l J 

(A: = 0,1 K)    (2.23) 

This reduces to Equation 2.24. 

;=0 film' ■(c«(*-0) (* = <U...,*)     (2.24) 

Nodel Node 2 Node 3 Node 4 

Figure 2.7 A Four-Node SOME-Bus System 
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The following subsections present three examples illustrating how to apply 

the method described above. The first example represents a SOME-Bus system 

with no hot-spots. The second system has a single hot-spot node that is the focus 

of the evaluation. The final example has the same hot-spot node, but a different 

node is the subject of the evaluation . All nodes are assumed to have identical 

processor and channel service rates. Figure 2.7 illustrates the queueing network 

model for all three examples. 

2.2.2.1 Example 1: No Hot-Spots 

Model 
Equiv 

Node 2 
Equiv 

V 
Node 3 
Equiv 

\/ 

Node 4 
Equiv 

Figure 2.8 Four-Node Equivalent SOME-Bus Model 
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Since the nodes of Figure 2.7 have the same model as the system 

presented in Figure 2.1, the load-dependent service rate for the Norton's 

equivalent of node i is already known (Equation 2.12). Substituting copies of this 

existing node-equivalent service center into Figure 2.7 produces the simplified 

model of Figure 2.8. 

With no hot-spots in the system, the probability transition matrix for the 

model of Figure 2.8 is shown in Equation 2.25. 

' 0 1/3 1/3 1/3 
1/3 0 1/3 1/3 
1/3 1/3 0 1/3 
1/3 1/3 1/3 0 

(2.25) 

Solving X - XX finds all arrival rates to be the same; using Node 4 as the 

reference, and its arrival rate [\ip ) as the system parameter, relative arrival rates 

are established as Xt = \iPr (/' = 1,2,3,4). For the first two-center aggregation, any 

two of the identical node-equivalent centers can be chosen to serve as Centers 

a and b of Figure 2.5. For reference purposes, the transition probability matrix for 

this network is seen in Equation 2.26. 

x = 1/3   2/3 

2/3    1/3 
(2.26) 
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With arrival rates for nodes a and b already known to equal \iPr, and their 

normalization constants equal to those of the reference node (C0=Cb=Cr), the 

normalization constants for the aggregate center can be found by applying 

Equation 2.17. 

Q,1W= ICrO>Cr(*-y)        (k = l,2,...,K) (2.27) 

Using Equation 2.19, the relative arrival rate to the aggregate center is found to 

be   Xa   = 4nPr /3.  This  results  in  the  load-dependent service  rate  for the 

aggregate center shown in Equation 2.28. 

^2J (*) = (' 
4^ %,(*-!), 

'Co2M 
(k = l,2,...,K) (2.28) 

Equations 2.20 and 2.21 are used to calculate elements of the reduced system 

transition probability matrix, as seen in Equation 2.29. 

x = 
0 1/3 2/3 

1/3 0 2/3 

1/2   1/2      0 

(2.29) 

The final aggregation, to produce the N-1 node center, substitutes one of 

the remaining node-equivalent centers for Center a of Figure 2.5, and the 

aggregate center of the previous step for Center b. With Xa equal to y.Pr, and 
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the relative arrival rate to the aggregate center known to be Xb = 4\iPr /3 (from 

the previous aggregation), the normalization constants for this iteration can be 

found. 

Q22(*) = T,Cr(j)-C02i(k-j) (k = \X...,K) (2.30) 

Finding the relative arrival rate for this aggregation to be XCT = \iPr, the service 

rate of the aggregate center is equal to the value shown in Equation 2.31. 

■w*)=k){Cff"(*"%M(*))     {k=v-v      {2-31} 

Equations 2.27 and 2.30 show that normalization constant calculations for 

aggregate nodes depend only on the normalization constants of individual 

nodes, or previous aggregations. Also, note that the N-l node aggregate 

service center relative arrival rate, X0i , equals \ip, the arrival rate established 

for the reference node. This is expected since the final system model of Figure 

2.6 places the N-1 node aggregate in series with the remaining node, which has 

the same configuration as the reference node. Recognizing these facts provides 

a computational advantage; there is no need for any calculation during 

aggregation other than that of aggregate-center normalization constants 

(Equation 2.17). When aggregation is complete, set the arrival rate of the N-l 

node aggregate equal to the arrival rate of the remaining node. 
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The product form equation for the final network, which has the same 

configuration as the network of Figure 2.6, is 

p(kp, kc, kagg) - l/CNet{K)) i
l)p\ / ^ 

(where kp+kc + kagg = K) 

K) 
y=i -j 

(2.32) 

producing the network normalization constants shown in Equation 2.33. 

Qto(*) = I 
;=0 

Zl^ 
J=o 

■(cffu(*-o) (* = 0,1,...,A:) (2.33) 

2.2.2.2 Example 2: Hot-Spot Node Performance 

Given the same architecture as the first example, the model again 

simplifies to that of Figure 2.8. The hot spot node for this example is Node 1, as 

seen in the transition probability matrix of Equation 2.33. 

x = 

' 0 1/3 1/3 1/3' 
1/2     0 1/4 1/4 
1/2 1/4     0 1/4 
1/2 1/4 1/4 0 

(2.33) 

With the hot-spot node the subject of the performance evaluation, the 

aggregate service center will be composed of all the other nodes. Configuring 
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the system so that Node 4 is the reference node, solving X = XXr and setting 

XA = \iPr results in the relative arrival rate vector X = [3npj2,\iPr,\iPr,\iPr].   The 

normalization constants for the first stage of the aggregation are found to be the 

same as those shown in Equation 2.27, but the aggregate center relative arrival 

rate is Xa   =3y.pj2.   The normalization constants for the second aggregation 

are also the same as those of the first example (Equation 2.30). However, the 

relative arrival rate of that aggregation, the N-l node aggregate center, is 

X02i = 3y.pj2. Again, note that this arrival rate is equal to that of the remaining 

(hot-spot) node. 

The product-form equation for the final network, represented by the 

model of Figure 2.6, is 

Net{K)J \/2)     \    /2\LcJ 
3Ak>  i^Pr P{kp,kcXgg) ~ {/cN„t(K)J 

(where kp + kc + kagg = K) 

rK,,o') 
(2.34) 

which results in the network normalization constants of Equation 2.35. 

vnr 
J=0 

(Q2,(*-0) (k = 0X...,K) (2.35) 
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2.2.2.3 Example 3: Evaluating a Non-Hot-Spot Node in a Hot-Spot System 

For this example, the simplified system model (Figure 2.8), transition 

probability matrix (Equation 2.33), and relative arrival rate vector are the same 

as the previous example. For the first aggregation, the hot-spot node is arbitrarily 

paired with a non-hot-spot node. Substituting the non-hot-spot node for Center 

a and the hot-spot node for Center b in Figure 2.5, produces the aggregate 

center normalization constants shown in Equation 2.36. The term Ch[k) represents 

the hot-spot node normalization constants. 

Q21(*)=lQO>c*(*-y) (2-36) 
j=0 

This aggregate center has a relative arrival rate of Xa   =3\ip/2. After reducing 

the system transition probability matrix, the second aggregation produces the 

normalization constants 

Q,2(*) = ICr(y)-Cff2I(*-y) (2.37) 
7=0 

and the associated relative arrival rate, A.ff,2 = \yPr (as expected). 

The product-form equation for the final network is 



NetKKP V< 

(where kp + kc + kagg = K) 

j=\ J 
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(2.38) 

resulting in the network normalization constants shown in Equation 2.39. 

i=0 
tr*- 
J=0 K< 

(Co2.2(k-i)) (k = 0±...,K) (2.39) 

2.2.3 Performance Calculations 

When network normalization constants, service rates, and arrival rates are 

known for the service centers in the model shown in Figure 2.6, performance 

measures can be calculated. Throughput, already defined in Equation 2.9 for 

the special case of a single node, is redefined in Equation 2.40 for the network of 

Figure 2.6. With identical arrival rates to each center (represented by faet), 

individual center throughputs are equal in this serial network. 

Yi(K) = ANet(
C"e>(K   %Net{K)     where i = p,c,agg (2.40) 

The probability of finding k messages at a center, given K in the network, is 

defined in Equation 2.41 [8]. 



The utilization of center /' is then calculated using Equation 2.42. 

The average number of messages at center /, given K in the network is 

which transforms into Equation 2.44 (by substitution of Equation 2.41] 
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p(*<=*H/c^> = i CNet(K-k)-\-L 

where/'= p,c,agg 

CNet{K-k-\) (Al 
(2.41] 

Uj = l- P(kj = 0)     where /' = p, c, agg (2.42) 

ki(K) = Z * • p(k' = *)     where ' = A c>a8B 
k=\ 

(2.43) 

W=i-HC*'(/:"^    f*:0     where i = p,c,agg (2.44) 

The final performance measure, average time spent in the center 

(Equation 2.45), is determined using a relationship established by Little's Law [36] 

as practiced in a queueing network analysis method known as Mean Value 

Analysis [47]. 

t,(K) = *i(i%(jQ      where i = p,c,agg (2.45) 
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These formulas are applied in the next chapter to analyze the 

performance of the SOME-Bus message-passing model as the number of nodes, 

service rates, and number of messages are varied. 



Chapter 3 

MESSAGE-PASSING MODEL PERFORMANCE EVALUATION 

This chapter presents the results of analytical and simulation modeling of 

a message-passing SOME-Bus system along with performance comparisons to 

crossbar and torus simulations. Performance measurements provided by the 

queueing-network model developed in Chapter 2 are used to evaluate 

processor utilization and communication latency, as well as validate a SOME-Bus 

simulator with the same average service times and distributions. The simulator is 

then extended to perform commonly occurring system activities that are difficult 

or impossible to model analytically. Results from the modified SOME-Bus 

simulator are compared to simulations of crossbar and torus systems to 

determine the relative performance of the SOME-Bus architecture with respect 

to these two network topologies. 

3.1 Analytical Model Results 

The analytical model evaluated here is the N-node SOME-Bus queueing- 

network model that was developed in Chapter 2 (shown in Figure 2.1). The 

model consists of a network of service centers that represents system resources, 

with each node modeled as two service centers in tandem. The first service 

center represents the activities of the receiver-buffer and processor-memory 

blocks of the SOME-Bus architecture, as depicted in Figure 1.1. The second 

service center models the actions of the transmitter block and the channel 

55 
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characteristics ot the same figure. All service centers in the model are assumed 

to have load-independent, exponential service time distributions, and first-come, 

first-served service disciplines. 

The parameters of the model that can be manipulated include the 

number of nodes (N), the average processing service time, average channel 

service time (which is proportional to message size), the total number of 

processes executing in the system (N-K), and the destination node selection 

distribution. The primary means of comparing the performance of the analytical 

and simulation models involves examination of processor utilization (average 

fraction of time dedicated to executing processes) and communication latency 

(channel queueing plus transfer time). 

The reference point for all timing parameters and measurements is the 

average time assigned to service a process (fp), maintained at 100 time units for 

all model runs. The average channel service time (fc) represents the message 

transfer time through the channel and is varied between 5 and 100 time units. 

All performance data is presented so that the x-axis of the associated plot 

represents the ratio of average message transfer time to average process 

service time [tc/tp], a ratio indicative of the amount of communication overhead 

incurred per unit of computation [52]. When the value of tc/fP is low, the task 

granularity is assumed to be coarse, while higher values indicate more finely- 

grained tasks. 

Figure 3.1 shows analytical model (T) processor utilization for a SOME-Bus 

system as the number of nodes in the model is varied from 4 (-4N) to 128 (-128N) 

(in powers of 2), with the number of processes averaging three-per-node. Note 
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that the difference in processor utilization, as communication service time is 

varied, remains at less than 5 percent between a 4-node and a 128-node 

configuration. In addition, the difference in utilization as the number of nodes 

increases converges on the 128 node curve, with the difference between any 

two of the curves remaining constant over the entire range of tc/tP. Taken 

together, these facts indicate that the system scales well, with even the largest 

system operating at the finest granularity, being able to maintain processor 

utilization above 60%. 
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Figure 3.1 SOME-Bus Processor Utilization, 3 Tasks-per-Node, Analytical 

Figure 3.2 presents an expanded view of 4-, 16-, and 64-node SOME-Bus 

processor utilization curves, showing both analytical (T) and simulation (S) results. 
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The close correspondence between the two sets of curves indicates the 

simulator provides accurate results for processor utilization as the number of 

system nodes is varied. There is also similar correspondence between analytical 

and simulation results for 8-, 32-, and 128-node system configurations. 

(Message Transfer Time/Processing Time) 

Figure 3.2 Processor Utilization, 3 Tasks-per-Node, Analytical and Simulation 

Further proof of simulator accuracy is provided in Figure 3.3, where 

analytical (T) and simulation (S) results are shown as the number of nodes in the 

SOME-Bus is fixed at N = 64, and the number of processes is varied between 64 

and 320, in units of 64. These numbers correspond to an average of 1 (-1P) to 5 (- 

5P) processes-per-node. Note that processor utilization does not decline as the 

number of processes is increased, an indication that the network can effectively 
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deal with the additional message traffic generated by multiple processes-per- 

node. Also, as task granularity increases, the difference between curves remains 

constant, an additional indication that network attributes have minimal impact 

on the ability of a processor to execute its tasks. 
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Figure 3.3 64-Node SOME-Bus Processor Utilization,! to 5 Tasks-per-Node 

Processors in message-passing systems depend on their interconnection 

network to provide, in a timely manner, the data needed to enable their 

assigned processes. One critical measure of this ability is communication 

latency. In the SOME-Bus analytical model, this measure consists of the time a 

message spends in the channel center, both waiting and in service. Channel 

service time in the analytical model corresponds to message transfer time in the 
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simulation, due to the constant channel bandwidth of a SOME-Bus channel. 

Figure 3.4 shows communication latency for SOME-Bus systems as the number of 

nodes is varied from 4 to 128 nodes (in powers of two), and the number of 

processes is kept fixed at K = 192. In addition, the simulation results for 4-, 16-, and 

64-node systems are included for validation purposes. This set of curves shows 

that latency does not depend on the number of nodes in the system, and that 

analytical and simulation models are again in close agreement. 

(Message Transfer Time/Processing Time) 

Figure 3.4 Communication Latency, SOME-Bus, 3 Tasks-per-Node 

Figure 3.5, shows communication latency for a 64-node SOME-Bus system 

as the number of processes is varied from 64 (-1P) to 320 (-5P), in units of 64. Both 

analytical (T) and simulation (S) results appear on the graph, again in close 
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agreement. When tasks are coarse-grained, there is essentially no waiting time 

in the channel queue, regardless of the number of processes. As the ratio of 

communication to computation increases, the processor becomes less of a 

bottleneck and waiting times in the channel queue add to the increase in 

latency. 
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Figure 3.5 Communication Latency, 64-Node SOME-Bus,l to 5 Tasks-per-Node 

3.2 Comparison to Torus and Crossbar Systems 

The close correspondence between utilization and communication 

latency results of the message-passing SOME-Bus analytical and simulation 

models validates the ability of the SOME-Bus simulator to predict system 

performance.    This section presents results from a modified version of that 
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simulator, comparing them to simulations of'two-dimensional torus and crossbar 

message-passing systems. All modifications represent commonly occurring 

processing or communication activities that are difficult or impossible to model 

analytically. One of these modifications permits examination of system 

performance when task synchronization is required. 

Task synchronization is modeled in all three types of networks by having 

each node send the same synchronization message to all other nodes in the 

form of an all-to-all communication. Processors initiate a synchronization 

operation after a specified period of time elapses and the processor completes 

its current processing task. Synchronization intervals considered here are 5000 

time units (representing heavy synchronization, synchronizing an average of 

once every 50 messages), or 30000 time units (representing light synchronization, 

averaging once every 300 messages). In addition, each synchronization 

operation can be preceded by a processor sending a number (D) of distinct 

data messages to other nodes. Each of these messages is short in duration (5 

time units), with D equal to 0 or 10. This activity represents the exchange of 

partial results that normally occurs prior to task synchronization. 

Processing, as defined for these models, consists of the processor at each 

node extracting a data message from an input queue, servicing the associated 

process for a period of time, generating an output data message, and then 

suspending that process. A processor operating in this manner becomes idle 

only when all processor input queues are empty. Also, in all architectures, the 

receiver or router at each node is assumed to contain dedicated 

synchronization hardware. This assumption releases the processor from having to 
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dedicate part of its service to synchronization tasks, and eliminates 

synchronization messages from the processor input queue(s). 

In the crossbar architecture, each node is able to connect its single 

output channel to the single input channel of any other node. Messages wait at 

the output channel queue of a source node if the input channel of the 

destination is engaged in communication with a different node. -When a node 

needs to broadcast the same message to all nodes (modeled here as a 

synchronization operation), it waits until all input channels are free, reserves 

them, and then simultaneously sends a single copy of the message to all nodes. 

In the torus architecture, dedicated channels connect each node to its 

four adjacent neighbors. Each of those four channels has an associated output 

queue to buffer messages traveling through the network from source to 

destination. In addition, each node has a single input queue to buffer messages 

directed to that node. When source and destination nodes are not nearest 

neighbors, an adaptive form of wormhole routing is employed to facilitate 

communication. This method routes the message through the next available 

channel in the direction of the destination. Synchronization is performed by 

having all nodes send a synchronization message to a barrier node. Each node 

in a row receives a single synchronization message on its right channel, 

forwarding this message to its left channel once it arrives at its barrier. A similar 

procedure forwards the synchronization message to the barrier node through 

the left column. Once the barrier node accumulates synchronization messages 

from all nodes, it redistributes them in the opposite fashion to reinitiate 

processing. 
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In the SOME-Bus architecture, messages leaving a node are broadcast 

from the associated channel queue through the corresponding channel in a 

single operation. The processor operates in a fashion similar to a server in a 

polling system. Polling system theory indicates that service discipline has an 

effect on the waiting time of the messages in the input queues. In the 

simulations presented here it is assumed that the processors employ a limited 

service discipline. Synchronization messages are processed in the receiver at 

the destination node, and their arrival is marked in a local table. 

With respect to all three architectures, the processing time, fp, again 

serves as the reference point for all performance evaluations, being 

geometrically distributed with a mean of 100 time units. The time it takes to 

transfer a message, fc, is varied from 3 to 100 time units, and is uniformly 

distributed. This transfer time represents actual channel time in crossbar and 

SOME-Bus simulations, but it only represents actual channel time for the torus 

when a message is not blocked in transit from source to destination. In addition, 

establishing individual channel connections for the wormhole routing scheme of 

the torus requires a small amount of time. Destination nodes in the crossbar and 

SOME-Bus are uniformly selected over all nodes (excluding the source) and 

uniform in each direction in the torus. All architectures are assumed to have the 

same channel capacity, and all simulations were performed with the number of 

nodes (N) set equal to 64 and the number of processes in the system set equal to 

192. 

Although all the simulations performed here use the same channel 

capacity for each of the three architectures, it is not necessarily true that they 
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have the same transmission-rate capability. To illustrate, if the processor 

subsystem of a node in the torus architecture utilizes typical high-end 

microprocessors with moderate-size caches and single-bus access to a 

moderate-speed main memory, memory bandwidth can be the factor which 

limits the speed at which messages are transmitted and received. Many high 

performance all-to-all communication (and synchronization) algorithms assume 

that nodes in a torus are capable of all-port communication. This assumption 

limits the transmission rate of torus network channels to one-quarter the memory 

bandwidth, possibly less if the node is also configured to accept incoming 

messages at similar rates. The SOME-Bus receiver, with a dedicated buffer for 

each input channel, and the crossbar, with its single input channel and buffer, 

avoid this restriction. As an example, given messages of size M bytes and a 

memory bandwidth of ß bytes/sec, it takes 4M/B seconds to transmit the 

message from node-to-node in the torus. Given the same message size in a 

SOME-Bus or crossbar system, it takes 2M/B seconds to transmit (due to the buffer 

between the channel and memory). These basic calculations show that for 

equal processing capability, channel capacity, and memory bandwidth, the 

SOME-Bus and crossbar systems can operate at twice the transmission rate of 

torus channels. 

Figure 3.6 shows processor utilization for the three architectures (SO = 

SOME-Bus, CR = crossbar, TO = torus) as message transfer time is varied and no 

synchronization operations occur. Results indicate that, in the absence of 

synchronization, all architectures display similar performance for short to medium 

message transfer times. SOME-Bus and crossbar system performance appear to 
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be identical, showing only minor degradation as message transfer times 

increase. As the time it takes to transfer a message approaches the 

computation time of the associated process, processor utilization in the torus 

decreases at a markedly greater rate than the other two architectures. These 

results are in general agreement with studies of similar architectures in [1 ]. 

(Message Transfer Time/Processing Time) 

Figure 3.6 Processor Utilization, All Architectures, No Synchronization 

Figure 3.7 illustrates processor utilization for all three architectures in the 

presence of synchronization operations. Cases of both heavy synchronization 

(HS), where synchronization occurs every 5000 time units (averaging 50 messages 

between synchronizations), and light synchronization (LS), where synchronization 

takes  place  every  30000  time   units   (averaging   300  messages   between 
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synchronizations), are shown. In addition, separate simulations were performed 

with the number of short data messages, representing an exchange of 

intermediate results just prior to transmission of synchronization messages, set at 0 

(0) and 10 (10). The SOME-Bus outperforms the other two architectures in all four 

situations, seemingly unaffected by the presence of an exchange of 

intermediate results prior to synchronizations. The SOME-Bus also maintains a 

constant difference between HS and LS curves. In contrast, heavy 

synchronization operations, coupled with longer message transfer times, appear 

to have a dramatic effect on the ability of torus and crossbar systems to keep 

their processors occupied with assigned tasks. 
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Figure 3.7 Processor Utilization, All Architectures, with Synchronization 
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Figure 3.8 shows communication latency (time a message is queued and 

in transit as it travels from source to destination) when no synchronization 

operations occur, and average message transfer times are varied. Again, the 

SOME-Bus and crossbar systems exhibit identical performance, while the torus 

system experiences significant additional delays as messages increase in size. 
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Figure 3.8 Communication Latency, All Architectures, No Synchronization 

Communication latency for the three architectures in the presence of 

synchronization is shown in Figure 3.9. Whether heavy or light synchronization 

occurs, and whether or not intermediate results are exchanged, the SOME-Bus 

exhibits the same performance as when no synchronization operations occur 
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(Figure 3.8). In comparison, the crossbar is significantly effected by heavy 

synchronization operations, and even light synchronization noticeably increases 

latency with respect to no synchronization. The torus has at least twice the 

latency, on average, as the SOME-Bus, regardless of the type of synchronization 

that occurs. The SOME-Bus clearly has less latency, in all synchronization 

situations, than the crossbar or the torus. 
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Figure 3.9 Communication Latency, All Architectures, With Synchroniztion 

As mentioned earlier in this section, these simulations do not take into 

account the fact that SOME-Bus and crossbar channels should have twice the 

transmission-rate capability of torus channels. Taking this fact into account, the 

SOME-Bus compares even more favorably with the other architectures. 



Chapter 4 

DISTRIBUTED SHARED MEMORY MODELS OF THE SOME-BUS 

4.1 Background 

As discussed in Chapter 1, contemporary shared-memory multiprocessor 

systems are designed to benefit from the technological advances in, and 

economic advantages of, commercial microprocessors and their support 

components [50]. The majority of those microprocessors have on-chip cache 

memory to improve uniprocessor performance by bridging the speed gap 

between processor and memory technology. When processors take advantage 

of this feature in multiprocessor systems, cache coherence becomes a major 

concern. 

Snooping is a common hardware-based technique to maintain 

coherence in central-shared-memory systems, informing all caches of every 

memory write by every processor. Existing distributed-shared-memory (DSM) 

systems are unable to implement snooping because their interconnection 

networks quickly saturate due to the additional message traffic associated with 

the method [44]. Software-based cache-coherence techniques are available 

for DSM systems, but also incur excessive communication overhead, limiting 

them to systems with few processors. Another method to implement coherence 

in DSM systems is a directory-based protocol, where the directory catalogs the 

state of every block that is cached. The overhead associated with this method 

scales acceptably in systems with up to one hundred processors [44]. 

70 
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Because of the difficulties involved in maintaining cache coherence, 

some DSM multiprocessors, such as the Cray T3D, make shared data 

uncacheable, using the cache only for private data [44]. These DSM systems fall 

into the non-uniform memory access (NUMA) category of architectural models. 

The SOME-Bus, when functioning as a DSM multiprocessor, can readily support 

cache coherence, placing it in the cache-coherent, non-uniform memory 

access (CC-NUMA) category. Although the SOME-bus can utilize software or 

directory-based techniques for implementing cache coherence, its design 

allows the transmitter, receiver, and cache controller to function as a hardware- 

based, integrated cache-coherence mechanism. 

The SOME-Bus cache-coherence mechanism functions by having every 

node broadcast messages to update, or invalidate, remote caches when a 

processor writes to local memory. Receivers at remote nodes monitor these 

messages, signaling their cache controller when one is detected. This 

hardware-based approach enforces coherence at the cache-block level, 

reducing the probability of false sharing and thrashing. 

Although the non-blocking nature of the SOME-Bus network eliminates the 

possibility of interconnection network saturation, intense cache-consistency 

traffic could saturate the cache controller [24]. In that situation, the SOME-Bus 

cache-coherence mechanism could leverage existing directory-based 

techniques, only notifying remote caches with affected data blocks. This would 

be accomplished by including a list of destinations in the invalidation-message 

header, making the decision to accept or reject an input message the 

responsibility of the receiver, rather than the cache controller.    This same 
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mechanism would allow a SOME-Bus-based system to support multiple-read, 

multiple-write data accesses. A write by a cache controller to the shared 

address space in local memory could automatically be propagated to all other 

nodes, updating cached data in a non-demand, anticipatory manner. 

4.2 DSM Model Development 

As the number ot nodes in a distributed-shared-memory system grows, a 

greater percentage of the shared address space resides outside the local node. 

In this situation it is reasonable to assume that the miss rate to local memory will 

increase, with support for this assumption found in other multiprocessor-system 

studies [56], [12]. Given finite memory bandwidth, this increased rate of remote- 

memory requests can be expected to interfere with the ability of memory to 

service local requests. The mechanisms that influence this interference, which 

reduces system performance, are the focus of the SOME-Bus DSM models. 

Two queueing-network models will be developed to examine 

performance of the SOME-Bus as a DSM system. These models, again based on 

the system architecture shown in Figure 1.1, represent an N-node SOME-Bus, with 

two service centers used to model the subsystems of a node. The first service 

center, referred to as the processor service center, represents the combined 

activities of the receiver, processor (with cache), and memory subsystem. The 

second service center, referred to as the channel service center, represents the 

behavior of the transmitter and output channel. In addition, multithreaded 

execution is assumed, with the processor at node / responsible for executing K 

(constant) threads. When performing tasks associated with the execution of its 
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own threads, a node is referred to as a local node; when performing tasks 

associated with the threads owned by another node, it is referred to as a remote 

node. 

In the actual system, activity at a local node begins with the execution of 

a thread, and continues until a cache miss occurs. If the miss can be supported 

by local memory, the thread continues to execute. If remote data access is 

required the thread suspends, a read request is generated, and that request is 

transmitted to the remote node hosting the memory address. Simultaneously, a 

context switch occurs if any other threads are ready to execute. 

To model local node activity, consider the case where k,, the number of 

outstanding remote memory requests by node /, is less than K, the number of 

processing threads assigned to a node. In this situation it is assumed the 

processor continues to generate remote-memory requests, with a mean interval 

of h time units between requests. This interval corresponds to the processor- 

center service time (exponentially distributed with mean h) that each of the 

remaining K- k; threads receives. These assumptions are similar to those made in 

other performance studies involving DSM systems based on mesh [1], torus [42], 

and multistage interconnection networks [56]. Once a request message is 

generated, it is placed in the queue of the channel service center for 

transmission on the output channel. When the message reaches the server of 

the channel service center, it requires a mean of s time units (exponentially 

distributed) for transmission, where s is proportional to the length of the message. 

(This assumption is based on the fact that a SOME-Bus has constant channel 
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bandwidth.) It is further assumed that remote-memory requests are directed 

with equal probability to the other nodes in the system. 

Modeling of remote-request activities begins with the message in the 

processor-center queue at a remote node. Once the message reaches the 

head of the queue, it requires a mean service of m time units (exponentially 

distributed) to access the data and assemble the response message. Again, the 

output of the processor service center is placed in the channel service center 

queue, and once it reaches the server, a mean of s time units is required for 

transmission. Remote-memory-request responses are returned to their owner 

node. 

Referring again to the actual system, when a remote-memory request 

reaches a node, a DMA controller in the memory subsystem performs the 

necessary memory accesses, creates the response message, and forwards it to 

the transmitter. While performing these tasks, the DMA controller competes with 

the cache controller of the same node for local memory bandwidth. Since this 

competition can be managed in different ways, there is a need for two DSM 

models. 

The first model contains a single queue for both remote-memory request 

and response messages. Arriving messages are serviced in a first-come, first- 

served manner, which corresponds to the processor in the actual system having 

exclusive access to local memory while a thread executes. As a result, remote- 

memory requests are serviced only at context switch points when they reach the 

head of the queue. The second model contains separate queues for remote- 

memory requests and responses, with the message at the head of each queue 
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receiving a fixed portion of the available service. This model, in effect, 

represents sharing of local memory bandwidth as remote-memory and thread- 

processing requests interleave their local memory accesses. 

Upon initial inspection, it appears that the two DSM SOME-Bus queueing- 

network models will each require N nodes, and that the number of customer 

classes should be a function of both the types of messages and the number of 

nodes, with each class having population K. However, since no distinction is 

made regarding the origin of remote-memory request messages and responses 

are returned directly to the node making the request, the models can be 

abstracted into two-node, two-class (remote-memory request and response) 

aggregates. 

4.2.1 Modell 

In the first model of a SOME-Bus-based DSM multiprocessor, illustrated in 

Figure 4.1, both message classes wait in the same input queue at the service 

centers and are served in a first-come, first-served (FCFS) manner. In the case of 

the processor service center, this corresponds to the situation where all memory 

bandwidth is allocated to local threads as they execute, and remote requests 

for data are serviced only when they reach the head of the queue. Because 

the service time for thread processing at the processor service center, h, can 

differ from the service time to generate a response message to a remote- 

memory request, m, a product-form solution does not exist for this network [3]. To 

calculate performance measures for this model an approximation technique, 

based on an evaluation method known as mean value analysis (MVA), is used 
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[46]. Mean value analysis provides a method to recursively compute the mean 

number of customers (messages), center residence times (queued plus service), 

and throughputs for individual service centers in a closed queueing network. 

The approximation method developed in [46], and used here, generates the 

same values, but does so by iterating until convergence is achieved. 

Processor Channel 

CeMerl Center2 

Node A 
■CMMMMMMMMMMMUIII 

Channel Processor 

Center4 Center 3 

NodeB 

Figure 4.1 SOME-Bus DSM Multiprocessor Model 1 

There are two chains present in the model of Figure 4.1: the first (Chain 0) 

consists of request messages issued by Node A and responses by Node B, while 

the second (Chain 1) consists of request messages issued by Node B and 

responses by Node A.   Let xt. represent the service time that service center / 
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applies to messages of chain j. The service times associated with the four service 

centers of Model 1 are shown in Equation 4.1. 

Tlo = T3, = h 

\ = T30 
= m 

T2o = T4o = ?2l 
= T41 

= S 

(4.i; 

The arrival theorem [31] that serves as the basis for MVA [47] states that a 

message of chain r, arriving at service center /, finds an equilibrium situation 

equivalent to that of a network with one less customer (message) in the arriving 

message's chain. This has been proven true when the network has a product- 

form equation. The MVA approximation technique developed by Reiser [46] is 

based on the postulation that this theorem holds true even for non-product-form 

networks. 

Let n, (r-) represent the mean number of chain j messages in service 

center / just prior to the arrival of a message from chain r. Then 

^=H+£vVr-) (4-2) 

is the mean time a message from chain r spends at service center / (queued and 

in service) when the service centers have exponential service times [46]. If the 

system has a product-form solution, the exact value of n, (r-) is found by 

removing one message from chain r, as seen in Equation 4.3. In this equation K 
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represents the chain population vector (K = (Ko,Ki) tor the model of Figure 4.1) 

and er, a unit vector with the 1 in the rth position. 

/i0(r-) = »(/(K-er) (4.3) 

When only an approximate solution is possible, «;.(r-) must be estimated. 

Let Ziir-) represent the difference in the average number of messages in chain 

j at station /', as seen in Equation 4.4. 

s;.(r-) = «/.(K)-«/.(K-er) (4.4) 

To determine the value of s, (r-) for a specific chain, evaluation of a single- 

chain MVA is required. First, suitably redefined service rates for each center in 

that chain must be determined. Equation 4.5 shows that the effective single- 

chain service rate for a chain r message at service center /' results from the 

fraction of service center capacity that a chain r message uses, the remainder 

devoted to other chains [46]. 

(4.5) 
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Upon completion of the single-chain MVA, Zj.{K) is found using Equation 4.6. 

zir(K) = nir(K)-nir(K-l) (4.6) 

Assume that only the chain with the arriving message is significantly 

affected by the s; (r-) term in Equation 4.4 (therefore set e; (r-)= Owhen j *r), 

allowing the substitution of Equation 4.6 for Equation 4.4. As a result, Equation 4.2 

simplifies to Equation 4.7, establishing the approximate waiting time for a chain j 

message at service center / [46]. 

K =H +\ ■(nir(K)-eir(K)) + Tiq -niq(K) (where,?*/-) (4.7) 

Completing the multichain MVA approximation, the throughput of chain j 

is 

Xy<-    KA (4-8) 
5X 
/=1J 

resulting in the mean number of chain / messages at center / shown in Equation- 

4.9. 

nt.^Xj-t,. (4.9) 
V J        J 
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Summarizing the approximation technique in algorithmic form [46]: 

1. Initialize «; and % for each chain. The only requirement for distributing 

the messages among the centers is that each chain has the correct 

number of messages. A suggested initial value for A,- is the lowest 

service rate of all centers in the chain. 

2. Repeat steps 3-6 until convergence occurs. 

3. Perform  single-chain  MVA  for  both   chains  to  determine   e, (AT) 

(Equations 4.5 and 4.6). 

4. Calculate mean waiting times at each center (Equation 4.7). 

5. Calculate chain throughputs (Equation 4.8). 

6. Calculate mean number of messages at each center (Equation 4.9). 

4.2.2 Model 2 

The second DSM SOME-Bus model, shown in Figure 4.2, is again 

abstracted to two-nodes, but with separate queues for the two chains at the 

processor service centers. The separate queues are used to represent the case 

where a DMA and cache controller interleave their memory accesses. As in 

Model 1, Chain 0 receives thread processing at Node A, producing remote- 

memory requests, and DMA service at Node B, generating response messages. 

Correspondingly, Chain 1 receives DMA service at Node A and thread 

processing at Node B. Thread and remote-memory request service times at a 

processor center can differ, with h representing the mean thread processing 

time, and m the mean time to process a remote-memory request (both 
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exponentially distributed). At the channel service center both chains receive 

the same exponential service, with a mean ot s time units. If messages from only 

one chain are enqueued at a processor center, the message at the head of the 

corresponding queue receives service at its full service rate. When messages 

from both chains are present, the messages at the head of each queue share 

available service, with the fraction aT going to the message in the thread queue 

and GTR to the message in the request queue («r + OTR = 1). 

Processor Center 
(Center 1) 

Responses 

Channel Center 
(Center 2) 

Figure 4.2 SOME-Bus DSM Multiprocessor Model 2 

The state of the network shown in Figure 4.2 is completely defined by K, , 

the vector representing the number of chain j messages present at service 
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center /. Given exponentially distributed service times for all servers, these states 

form a Markov Chain. The number of states associated with a single chain is 

equal to the number of ways the K messages of the chain can be partitioned in 

the C service centers, as shown in Equation 4.10. 

(C-l + K} 
SKC= 4.10 K'c   \    K     ) 

Each chain of this model is assumed to contain three messages. The 

choice of three messages is based on experimental results indicating 

unacceptable latency (relative to thread execution time) for responses to 

remote-memory requests by more than three threads. These results are in 

agreement with the findings of other researchers studying multithread execution 

in multiprocessor systems [42], [1]. With K=3 and C=4, the number of states for a 

single chain of the model equals 20, making the total number of states for the 

two-chain model 400. The state probabilities, used to determine performance 

measures, are found by solving the system of global balance equations 

7tQ = 0 (4.11) 

where % is the state-probability vector, and Q the transition-rate matrix [27]. 

Equation 4.11 illustrates the fact that probability flux among the states is 

balanced at equilibrium. The system of Equation 4.11 has one linearly 

dependent equation that is replaced by the conservation relationship shown in 
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Equation 4.12 (with S representing the set ot states in the Markov chain) to permit 

a solution. 

2X = 1 (4.12) 
s<sS 

To determine processor center utilization for a chain, let PTR represent the 

set of states in the Markov chain where a processor center has messages in both 

queues. Let Pw represent the set of states where responses are enqueued, but 

no remote-memory requests are present. When both chains are present, 

threads receive only ar of the available service, resulting in thread-processing 

processor utilization of 

utilj. = aT ■ 2>(0+ 2>0) (4.13) 

for either node. Processor center utilization for remote-memory requests can be 

found in a similar fashion using the sets PTR and POR, and the fraction aR, as seen 

in Equation 4.14. 

utilR=aR- 2>(/)+ I>ü) (4.14) 
i<sPm jsP0R 

With no service distinction between remote memory requests and responses at a 

channel service center, channel utilization is determined by summing the 
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probabilities associated with the set ot states in S where the channel center is 

occupied. 

The formula for the average number of chain / messages at center / is 

shown in Equation 4.15, where ns(k = kr) are the probabilities associated with 

the states of the Markov chain where k = kt,. 

K( \ 
"i =1 *•!*,(* = *,-) (4-15) 

1      *=lV     seS J ) 

To calculate the average time a message of chain j spends in center / of Figure 

4.2 (queued and in service), the average-time-in-center formula from the MVA 

method is again applied. At the channel center, all arriving messages are 

placed in the same queue and receive the same service. Given equal service 

times  (x,o = %h =xc, *' = 2,4), the arriving message from chain r observes the 

equilibrium solution of the network with one less customer in its chain [46]. This 

condition is reflected in the average number of messages of chain r present in 

Equation 4.16. 

hr =^c+ic<\(K-l) + niq(K)) (q*r and  / = 2,4) (4.16] 

To determine the average time threads or requests spend at processing 

center ; requires redefining thread and request service times, due to the 

processor sharing described above.  This redefined service time is conditioned 
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on the fact that the processing center must be occupied. During those periods 

where messages from only one chain are enqueued, the average service time is 

xr.   When messages from both chains are present, the average service time 

changes to   x/r/ar   for thread processing, and   TiR/aR   for requests.    The 

percentages of time each of these situations occur are found using the same 

sets of states used in the utilization calculations (Equations 4.13 and 4.14). As a 

result, Equation 4.17 redefines the service time for threads 

^ f         \ 
Z   Xj + T:    • 

'T Z np 
KpePro     J 

\=- Z^/ 
(where/= 1,3 and T = threads)   (4.17) 

while Equation 4.18 does the same for requests. 

\=- 
\j<=Pm J 

+ T; 1>P 
Kp<sP0R  J (where / = 1,3 and R = requests)     (4.18) 

Substituting the redefined service time for threads stated in Equation 4.17 

into the MVA formula for average time at a service center allows calculation of 

the average time between the arrival of a response message and its associated 

thread issuing another memory request. 
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th = x,r + t,r • nh (K -1) (where / = 1,3 and T = threads) (4.19) 

Using the redefined service time for remote-memory requests seen in Equation 

4.18, 

?.  = %j + Tj ■ rij (K -1) (where /' = 1,3 and R=requests)        (4.20) 

is the average time a remote-memory request will spend at a processing center. 

The next chapter analyzes performance results of the two DSM SOME-Bus 

models developed in this chapter. Comparisons to results of DSM SOME-Bus 

simulations are performed to provide insight into the accuracy of these 

approximate models. Performance results from crossbar and torus DSM system 

simulations are also examined to determine how well the DSM SOME-Bus 

configuration performs relative to these two popular topologies. 



Chapter 5 

DISTRIBUTED-SHARED-MEMORY MODEL PERFORMANCE EVALUATION 
i 

This chapter presents the results of theoretical and simulation modeling of 

distributed-shared-memory (DSM) SOME-Bus systems, along with performance 

comparisons to crossbar and torus simulations. Performance measurements 

provided by the two theoretical models developed in Chapter 4 are used to 

evaluate DSM SOME-Bus processor utilization and communication latency and 

validate two corresponding versions of DSM SOME-Bus simulators. The simulator 

associated with the model developed in section 4.2.2 of Chapter 4 is extended 

to perform DSM system activities that are difficult or impossible to model 

analytically. Results produced by this simulator are then compared to crossbar 

and torus DSM-system simulations. 

Models of similar systems found in the literature seem to assume that DMA 

activity at a node does not interfere with the ability of a processor to execute 

threads. As the results presented in this chapter show, this assumption is incorrect 

due to memory accesses brought about by remote cache misses. The first DSM 

SOME-Bus model was created under the assumption that maximum interference 

occurs as a result of remote cache misses and serves as a useful, worst-case 

performance analysis tool. By modeling DMA activities in the manner that they 

are performed by currently-available hardware, the second SOME-Bus DSM 

model provides a method to realistically assess the impact of remote cache 

misses on processor performance. 

87 



SS 

5.1 DSM Model 1 Results 

This section compares the performance results produced by the SOME- 

Bus-based DSM multiprocessor theoretical model developed in section 4.2.1 of 

Chapter 4 to those produced by a corresponding simulator. In this model each 

node has a single input queue, with the processor at each node receiving and 

generating two types of messages while executing K = 3 threads. All messages 

to the single input queue are served in a first-come, first-served manner. This 

approach corresponds to the case of a processor in an actual system having 

exclusive access to memory resident at its node while a thread executes. The 

two types of messages are classified as remote-memory requests and responses. 

Nodes generate a remote-memory request message when a thread, enabled 

by a response message entering processor service, has a cache miss that 

cannot be satisfied locally. Nodes generate a response message when a 

remote-memory request reaches the head of the processor queue (at context 

switch points), and receives service representing a set of DMA accesses 

assembling a response message. Service times for the two message types are 

exponentially distributed and can have different mean values. 

Model parameters that were manipulated for this study include average 

thread processing time, (fp), average DMA service time, (fr), and average 

channel service time (fc, which is proportional to message size). As mentioned 

above, there are K = 3 threads assigned to each node, and simulations were 

performed with the number of nodes (N) equal to 64. The average channel 

and DMA service times are set equal to each other for each model run.  This 
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allows examination of performance results from both the theoretical model and 

the simulator, over a full range of input values. The primary means of comparing 

analytical and simulation results involves examining processor utilization 

(average fraction of time dedicated to thread processing) and communication 

latency (channel queueing plus transfer time). 

The reference point for all timing parameters and measurements is the 

average thread processing time prior to a cache miss that cannot be satisfied 

locally. This average is kept at TOO time units for all model runs. Mean channel 

and DMA service times are varied from 5 to 100 time units. All performance data 

is presented so that the x-axis of the associated plot represents the ratio of 

average message transfer time to average thread processing time (tc/tp). 

Destination node selection is uniform over all nodes (excluding the transmitter) in 

the SOME-Bus simulator. 

The ratio of fc/fP is in the proper range to reflect a miss rate of 

approximately 10%. This was determined by letting m be the miss rate and f the 

number of instructions-per-second executed by the processor at each node. In 

addition, let M be the mean message size in bytes and C the channel 

bandwidth (in bytes per second). As a result, the mean thread runtime, fp, is 

equal to l/(mf), and the mean message transfer time, tc, is equal to M/C, making 

tc/tp = mfM/C. In current massively-parallel systems, the ratio of f/C is in the 

range of 0.5 to 1. For example, the Cray T3D can execute 150x106 instructions- 

per-second, and its byte-wide network links operate at 150MHz. The Cray T3E 

has the same processing capability, but its network links have 2 to 4 times more 

bandwidth.    In the ASCI RED, each node has two processors with peak- 
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processing capability of 200x106 instructions-per-second, and bi-directional 

network links capable of 400 Mbytes per second in each direction. These values 

translate into a tc/tP ratio of approximately .05 to 1 for small cache blocks and 

miss rates of 10 percent or less. 
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Figure 5.1 SOME-Bus DSM Model 1 Processor, DMA, and Channel Utilization 

Figure 5.1 shows average utilization of various components in the SOME- 

Bus system, as produced by the theoretical (-T) and simulator (-S) models. These 

include the processor (PRC), DMA (DMA), and channel (CHN). Note that there is 

excellent correspondence between theoretical and simulation results over the 

majority of the tc/tP range (which is also the tr/tP range, since tr is set equal to ic). 

When  short  responses  to   remote   memory  requests   are   assembled   and 
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transmitted, processor utilization is approximately 90 percent. However, under 

the single-input-queue premise of this model, as the DMA service time increases 

in response to longer remote-request messages, the processor is blocked from 

executing threads, and utilization drops. Note that channel utilization remains 

below 70 percent over the entire tc/tP range, showing a significant reserve of 

channel capacity to service higher miss rates by the processor. 
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Figure 5.2 SOME-Bus DSM Model 1 Communication Latency 

Communication latency (LAT: consists of waiting plus channel transfer 

time) for the first DSM SOME-Bus model is seen in Figure 5.2. Again, there is close 

correspondence between theoretical (-T) and simulator (-S) results. Note the 

almost linear growth in latency as remote-memory and response messages grow 
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proportionally to channel transfer time. This scalability is due to the constant 

channel bandwidth available in the SOME-Bus, a system with no contention for 

switching or routing hardware. 

As the results of the next section show, the single-input-queue processor 

architecture does not perform as well as the two-queue processor sharing 

method examined using DSM SOME-Bus model 2. In addition, the second model 

presents a more realistic view of processing node actions, given the current state 

of processing hardware. These facts make comparisons of this model to torus 

and crossbar architectures unnecessary. 

5.2 DSM Model 2 Results 

This section presents performance results from the second theoretical 

model of a DSM SOME-Bus system, and uses them to validate the performance 

of a corresponding SOME-Bus simulator. Once validated, the simulator is 

extended to perform commonly occurring DSM system tasks that are difficult, or 

impossible, to model analytically. Results from this extension to the simulator are 

then compared to torus and crossbar DSM simulations. The distinction between 

this model and the one studied in the previous section is that the input channel 

queue at each node logically appears as two queues. As messages arrive at a 

node, remote-memory request messages enter one queue, while response 

messages enter the other. The messages at the heads of the two queues share 

service from the local memory which, in effect, becomes the server. The 

fraction of service ar goes to response messages (for thread processing), and the 
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fraction OR goes to remote-memory requests (for DMA processing). The two 

fractions sum to one. 

Simulators for all three architectures contain N = 64 nodes, with each 

node containing a receiver capable of receiving messages simultaneously on its 

input channel(s), a processor with cache, a portion of global memory, and an 

output channel. Multithreaded processing is assumed, with each processor 

assigned a set of K = 3 parallel threads. Thread processing in all simulators 

consists of a thread executing until it encounters a cache miss that requires 

remote data. At that point the thread suspends until a response message 

(modeling the requested data) is received from a remote node. The arrival of 

the response message enables the thread for execution, and it resumes 

execution when that message reaches the head of its queue. 

When a thread has a cache miss, as described above, a remote-memory 

request message is enqueued for transmission on the output channel. After 

transfer time fc expires, the message is enqueued at the receiver of the 

destination (remote) node to await service by the DMA processor. The DMA 

processor requires time tr to assemble the response message and enqueue it for 

transmission on the output channel of the remote node. The response message 

is then returned to the originating node. 

In DSM systems, write accesses to global memory generate invalidation 

(or update) messages that must be transmitted on the interconnection network. 

Unlike the torus and the crossbar architectures, this additional traffic has no 

effect on SOME-Bus network communication latency (waiting plus channel 

transfer time) since there is no contention for shared communication resources 
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(thus no potential for blocking). However, this traffic does have an effect at the 

receiving processor in all architectures. The model for issuing invalidation 

messages, used for all three architectures, assumes the source node has a 

directory of the nodes with cached copies of the affected data. 

In all three simulators, when invalidation messages are modeled they 

accompany remote-memory requests. In the SOME-Bus, a single invalidation 

message is broadcast, with a list of recipient nodes. In the crossbar, a node 

waits until input channels to all nodes with copies of the invalid data are 

available, reserves them, and then broadcasts a single invalidation message to 

those destinations. In the torus, a spanning tree is created from the source node 

and multi-destination worms broadcast the invalidation message. The number 

of nodes receiving invalidation messages (0 or 10), and the amount of 

processing time those messages receive (5 time units) are parameters of the 

simulation. Although invalidation messages receive service at the destination 

node, no response is transmitted back to the source node. 

The major parameters of this study are the distribution type and average 

length of thread and DMA service times, distribution type and average length of 

messages, and the destination node selection distribution. Quantities used to 

measure and compare the performance of the architectures include the 

average utilization of various system components (fraction of busy time) and the 

average communication latency (channel waiting plus transfer time) that a 

message experiences. 

The reference point for the timing parameters and measurements of the 

study is the thread runtime, ip, geometrically distributed with a mean of 100 time 
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units. Message transfer time, fc, is geometrically distributed with a mean in the 

range from 3 to 100 time units, placing tc/tP in the range of 0.03 to 1, for the same 

reasons described in the previous section. Destination node selection for 

remote-memory requests in the SOME-Bus and crossbar is uniform over all nodes 

(excluding the source) and uniform in each direction in the torus. Response 

messages are returned directly to the requester. The fractions of service 

assigned to thread and DMA processing are kept equal for all simulation runs 

((XT=CXR=0.5). This choice was made when initial studies indicated that all three 

architectures are insensitive to the fraction of memory bandwidth allocated to 

the DMA controller, unless it is below 15 percent. Establishing paths (or 

wormholes) to transfer messages in the crossbar and torus occurs in the same 

manner as that described in Chapter 3, section 3.2. 
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Figure 5.3 DSM SOME-Bus Model 2, Subsystem Utilization 
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Figure 5.3 compares the average utilization for processor (PRC), DMA 

(DMA), channel (CHN), and memory (MEM) subsystems produced by the second 

simulation (-S) and theoretical (-T) DSM SOME-Bus models. For this comparison 

the DMA processing time (fr) is again set equal to message transfer time (fc). As 

mentioned above, the memory subsystem functions as the server when 

processor-sharing between threads and remote-memory requests occurs. As a 

result, the memory utilization curve shown is the sum of processor and DMA 

utilization. 
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Given the fact that the theoretical model is only an approximation of 

system behavior, as explained in Chapter 4, it produces results that are very 

close in value, and identical in trend, to the simulations. With both operations 

having equal access to memory (or = <XR = 0.5), memory utilization shows a 

decline as the average DMA processing time approaches the time to process a 

thread. Compared to results from the previous model, the processor is better 

utilized over the entire range of tc/tP. Figure 5.4 shows communication latency 

(channel waiting plus transfer time) for this model, again indicating an almost 

linear increase in response to longer messages and DMA processing times. 

(Message Transfer Time/Processing Time] 

Figure 5.5 All DSM Architectures, Processor Utilization, No Invalidation Messages 



98 

The results shown in  Figures 5.3 and 5.4 indicate that the simulator 

accurately reflects the second DSM SOME-Bus theoretical model performance 

predictions.    Extending this simulator to incorporate the issuance of cache 

invalidation (update) messages, as explained above, provides a basis for realistic 

comparisons to torus and crossbar DSM architectures. Figure 5.5 shows processor 

utilization for the SOME-Bus (S), crossbar (C), and torus (T) as DMA processing 

times are varied between 10 (-10), 20 (-20), and 50 (-50) time units. The baseline 

results, produced when no cache invalidation messages (0) are transmitted, 

show SOME-Bus and crossbar processor utilization curves are almost identical, 

while the torus exhibits a rapid decline as message lengths increase.    As 

expected with all architectures, processor utilization declines as average DMA 

processing time or message length increases. 
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Figure 5.6 All DSM Architectures, Processor Utilization, 10 Invalidation Messages 
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Figure 5.6 shows the effect of invalidation message traffic, and its 

associated processing, on processor utilization when 10 nodes (10) receive the 

invalidation message that accompanies each remote-memory request. The 

crossbar now begins to react like the torus as it waits for communication 

channels to become available for an invalidation-message broadcast. Except 

for a constant offset, SOME-Bus performance here is identical to that shown in 

Figure 5.5, the loss due only to invalidation-message processing, not network 

characteristics. 

1200 T 

(Message Transfer Time/Processing Time) 

Figure 5.7 All DSM Architectures, Comm Latency, No Invalidation Messages 

Communication latency for all three architectures, for the case of no 

invalidation messages and 10, 20, and 50 time unit average DMA processing 
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times, is seen in Figure 5.7. Again, the SOME-Bus and crossbar show almost 

identical performance, while torus latency increases rapidly in response to 

increasing message length. Examination of additional simulation statistics show 

this rise is in direct relationship to the number of blocked wormholes. 

Figure 5.8 shows communication latency in all three architectures when 

cache invalidation messages are transmitted. Comparing this figure to Figure 5.7 

shows that the additional transmissions essentially have no effect on SOME-Bus 

communications, while torus and crossbar systems are both affected. Crossbar 

latency grows relative to the availability of channels connected to the nodes 

receiving invalidation messages. As message lengths increase, the associated 

wait for channels needed for invalidation-message broadcasts also increases, 

with the final outcome being increased latency. 
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Figure 5.8 All DSM Architectures, Comm Latency, 10 Invalidation Messages 
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Figures 5.9 and 5.10 show channel utilization curves associated with the 

communication latencies shown in Figures 5.7 and 5.8. The torus quickly reaches 

a plateau of channel utilization, whether invalidation messages are broadcast or 

not, as channels needed by one wormhole are blocked by another. Figure 5.9 

shows that, In the absence of invalidation messages, the SOME-Bus and crossbar 

exhibit almost identical performance. However, when invalidation messages 

are broadcast, as shown in Figure 5.10, the crossbar begins to react in a manner 

similar to the torus, waiting for blocked channels to become available so 

invalidation-message broadcasts can take place. Figure 5.10 also shows a rise in 

the average channel utilization rate of the SOME-Bus, but the curves do not show 

channel saturation, even when messages reach the maximum length studied. 

(Message Transfer Time/Processing Time) 

Figure 5.9 All DSM Architectures, Channel Utilization, No Invalidation Messages 
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Figure 5.10 All DSM Architectures, Channel Utilization, 10 Invalidation Messages 

An additional study of this (second) model of DSM architectures was 

performed with K = 7 threads assigned to each node. In this situation, all 

architectures were found to have similar processor utilization simply because all 

the networks were able to effectively deliver, without significant delay, the 

reduced number of messages that resulted from the execution of fewer threads. 

The more realistic case of three threads-per-processor, studied in this chapter, 

indicates that there are pronounced differences in performance between the 

three architectures in the presence of significant message traffic on the network. 



Chapter 6 

CONCLUSIONS AND FUTURE DIRECTIONS 

6.1 Conclusions 

The execution of high-performance applications is now a common 

occurrence in the engineering, science, and business communities. Users want 

to execute larger or more detailed models in less time and now accept parallel 

processing systems as a useful tool for performing this work. The key to exploiting 

the parallelism in these applications is efficient communication between task 

processes, which implies a corresponding need for efficient communication 

among parallel-system processors. The Simultaneous Optical Multiprocessor 

Exchange Bus (SOME-Bus) meets this need with its low-latency, high-bandwidth, 

broadcast-based fiber-optic interconnection network that is able to 

interconnect over one hundred processor nodes, directly linking arbitrary pairs 

without contention. 

An examination of existing multicomputer and multiprocessor 

interconnection-network characteristics, both static and dynamic, provided a 

quantitative basis for determining SOME-Bus performance potential. The results 

of these comparisons indicated that the SOME-Bus exhibits outstanding 

performance potential. Compared with static topologies, a SOME-Bus offers the 

same performance as the powerful yet costly fully-connected network, but at a 

lower cost than a hypercube, mesh, or torus. Contrasted with the most versatile 

dynamic network, the crossbar, the SOME-Bus is scaleabie and directly supports 
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more communication patterns, in addition, due to the optical implementation 

of its broadcast-based design, no node is ever blocked from transmitting by 

another node, and no arbitration for shared resources is required. Even with the 

SOME-Bus requiring N2 receivers, larger than the number required in other 

architectures, the hardware scales by O(N), since N receivers are integrated into 

a single device at relatively low cost. 

Research studies show that common high-performance applications 

include modeling and simulation of physical phenomena, integrated circuits, 

neural networks, weather, economic systems, and image processing. Some of 

the basic mathematical operations used to execute this workload include fast 

Fourier transforms (FFs), matrix multiplication, Gaussian elimination, LU- 

factorization, and solutions to partial differential equations. Parallel-processing 

implementations of these operations typically involve collective 

communications, including one-to-all and all-to-all broadcasts of data and 

synchronization information. On existing parallel processing systems, processor 

performance declines as these collective-communication operations result in 

increased communication latency. Results of numerous studies indicate that the 

high-performance applications cited above execute on existing parallel systems 

at only poor-to-moderate performance levels, even after extensive efforts at 

software tuning. Based on these findings, it is apparent that the SOME-Bus, a 

scaleable parallel system that directly supports the collective communication 

operations inherent in common high-performance applications, has the 

potential to outperform existing systems executing those same applications. 
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A theoretical examination of the SOME-Bus as a message-passing system 

was performed using a closed, single-class queueing network model. An 

efficient solution method for the product-form equation associated with this 

network was developed based on an iterative application of Norton's Theorem 

for Queueing Networks. This solution method permits the evaluation of hot-spot 

performance and allows the use of any model of a node 4hat can be 

represented by a product-form queueing network. Performance measurements 

provided by the model were used to evaluate processor utilization and 

communication latency, as well as validate a SOME-Bus simulator with the same 

average service times and distributions. The simulator was extended to perform 

synchronization operations and exchanges of intermediate data results that 

cannot be modeled analytically. Results from the modified SOME-Bus simulator 

were compared to crossbar and torus simulations to determine the relative 

performance of the SOME-Bus architecture with respect to these two network 

topologies. 

As a message-passing system, simulation results (for a 64-node system 

executing 192 total tasks with no synchronization operations) indicate that the 

SOME-Bus, crossbar, and torus display similar performance (processor utilization) 

for coarse- to medium-grain parallel processes. However, as message transfer 

time approaches computation time, processor utilization in the torus decreased 

at a markedly greater rate than the other two architectures. With respect to 

communication latency (message waiting plus channel transfer time), the SOME- 

Bus and crossbar systems exhibited identical performance, while the torus system 

experienced significant additional delays as message sizes were increased. 
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In the presence of both heavy (frequent) and light (infrequent) 

synchronization operations, the SOME-Bus outperforms the other two 

architectures, seemingly unaffected by the exchange of intermediate data 

results prior to a synchronization operation. In contrast, heavy synchronization 

operations, coupled with message transfer times that approached computation 

times, appear to have a dramatic effect on the ability of torus and crossbar 

systems to keep their processors occupied with assigned tasks. With regard to 

communication latency in the presence of synchronization, SOME-Bus results 

were identical to those generated when no synchronization took place. In 

comparison, the crossbar was significantly affected by heavy synchronization 

operations, and even light synchronization noticeably increased latency (with 

respect to no synchronization). The torus had at least twice the latency, on 

average, as the SOME-Bus, regardless of the type of synchronization that occurs. 

The SOME-Bus clearly has less latency, in all synchronization situations, than the 

crossbar or the torus. As a message-passing parallel processing system, the 

SOME-Bus clearly outperformed these two architectures when synchronization 

operations occurred, or when the processing tasks were fine-grained. 

Two theoretical models were developed and used to evaluate the SOME- 

Bus as a distributed-shared-memory (DSM) parallel processing system. By 

modeling both processor and DMA activity at a node, the contention for 

memory that is introduced by remote-memory requests becomes apparent. This 

approach to DSM modeling is contrary to most models of similar systems found in 

the literature; those models seem to assume that DMA activity at a node does 
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not interfere with the ability of a processor to execute threads. As the 

performance results showed, this activity should not be ignored. 

The first DSM SOME-Bus model was created by assuming that the 

maximum interference possible occurs as a result of remote cache misses; it 

serves as a useful, worst-case performance analysis tool. The second SOME-Bus 

DSM model treats DMA activities in the manner that they are performed by 

commercial-off-the-shelf hardware, thus providing a realistic assessment of the 

impact of remote cache misses on processor performance. Again, the 

theoretical model was used to validate a baseline simulator, which was then 

extended to incorporate cache-coherence operations that cannot be 

modeled analytically. Results from the modified simulator were then compared 

to DSM torus and crossbar simulations. 

Results from the first model show that when short responses to remote- 

memory requests are assembled and transmitted, processor utilization in a 64- 

node system executing 3 tasks-per-node is approximately 90 percent. However, 

under the single-input-queue premise of this model, as DMA service time 

increased in response to longer remote-request messages, memory interference 

blocked the processor from executing threads and utilization dropped. Channel 

utilization, however, remained below 70 percent over the entire range of DMA 

and channel transfer times studied, which indicates a significant reserve of 

channel capacity to service higher miss rates by the processor. There was 

almost linear growth in communication latency as the time to transfer remote- 

memory and response messages increased.   This characteristic illustrated the 
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availability of constant channel bandwidth in the SOME-Bus, a system with no 

contention for switching or routing hardware. 

By extending the simulator associated with the second DSM SOME-Bus 

model to incorporate the issuance of cache invalidation (update) messages to 

accompany remote-memory requests, the basis for realistic comparisons to torus 

and crossbar DSM architectures was created. With DMA and thread processors 

sharing equal access to memory at a node, processor utilization was examined 

as DMA processing and channel transfer times were varied. The baseline results, 

produced when no cache invalidation messages were transmitted, show SOME- 

Bus and crossbar processor utilization curves are almost identical, while the torus 

exhibits a rapid decline relative to the others as message length increased. 

Regarding communication latency, the SOME-Bus and crossbar again show 

almost identical performance, while latency in the torus increased rapidly in 

response to increasing message length. This increase was in direct relationship 

to the number of blocked wormholes in the system. 

When cache-invalidation messages accompanied remote-memory 

requests, only a minor reduction in processor utilization was seen in the SOME- 

Bus, and its communication latency was unaffected. The reduction in processor 

utilization was attributed to invalidation-message processing, not network 

characteristics. Crossbar and torus processor utilization declined rapidly as 

message lengths increased and communication channels became blocked by 

invalidation-message broadcasts. Crossbar and torus latency grew relative to 

the availability of channels connected to the nodes receiving invalidation 
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messages. As message lengths increased, the associated wait for the set of 

channels to broadcast invalidation-messages also increased. 

A contributing factor for the increased latency of the torus and crossbar 

systems was found in an examination of channel utilization. The torus quickly 

reached a plateau of channel utilization, whether invalidation messages were 

broadcast or not, as channels needed by one wormhole were blocked by 

another. When invalidation messages were broadcast, the crossbar began to 

react in the same manner, as it waited for blocked channels to become 

available for invalidation-message broadcasts. Channel saturation was clearly 

evident for the torus and crossbar systems. In the final analysis, when cache- 

coherence is considered, the SOME-Bus clearly outperformed the crossbar and 

torus as a DSM system. 

When the performance results presented in this dissertation are 

considered along with the advances in optical technology, it is readily apparent 

that the SOME-Bus is a viable parallel processing system. Its performance derives 

from the fact that no routing or arbitration is required for communications, 

allowing the system to function as though it were a fully-connected network. 

The hardware and communication bandwidth scale directly, and as optical 

components mature, available bandwidth will increase. Even the modest 

implementations described in Chapter 1 have bandwidths comparable to other 

state-of-the-art architectures. With receiver logic designed to efficiently support 

programming models that are commonly implemented on parallel computers, 

the SOME-Bus greatly simplifies parallel programming. 
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6.2 Future Directions 

Direct extensions to the work presented in this dissertation include the 

evaluation of a message-passing SOME-Bus with different processing 

architectures and hot-spot conditions. Also, by extending the application of 

Norton's Theorem for Queueing Networks presented in Chapter 2 to include 

multi-class queueing networks, other models become feasible. First, by using a 

more complex model of a node, in combination with the network configuration 

presented in Chapter 2, an exact DSM model corresponding to the second 

model presented in Chapter 4 may be possible. Second, an examination of the 

SOME-Bus as a central-shared-memory multiprocessor, where memory-request 

messages issued by processing nodes form one customer class and responses to 

those requests by the memory subsystem forms another, could be constructed 

using relatively simple models of processing and memory nodes. Finally, 

different receiver logic designs could be evaluated by creating a more complex 

model of a node that included separate service centers to represent the 

different activities that take place within the receiver. 
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