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ABSTRACT 

To perform the most precise relative positioning using GPS, it is necessary to resolve 

the carrier-phase integer cycle ambiguities. This process becomes increasingly difficult 

as the distance between the mobile and reference GPS receivers increases, due to the 

decorrelation of the GPS errors with distance, resulting in a practical limit on the distance 

over which ambiguity resolution can be performed when using a single reference receiver. 

This thesis proposes a novel method, called NetAdjust, which uses multiple refer- 

ence receivers to reduce code and carrier-phase differential measurement errors and im- 

prove the ability to resolve carrier-phase ambiguities. The NetAdjust method is based 

upon an optimal linear minimum error variance estimator, and it "encapsulates" all of 

the network information into the measurements of a single reference receiver, so stan- 

dard single-reference differential GPS processing algorithms can be used. The geometry 

of the reference receiver network is embedded within the error covariance matrix, and a 

functional form of this covariance matrix is described. 

The NetAdjust method was tested using two different GPS networks—an 11-receiver 

network covering a 400 km x 600 km region in southern Norway, and a 4-receiver net- 

work covering a 50 km x 150 km region at Holloman AFB in New Mexico. The results for 

LI code, LI phase, and widelane phase measurements are analyzed in the measurement 

domain and the position domain, showing improvements in RMS errors of up to 50% 

when using NetAdjust. Significant improvements in the ability to resolve carrier-phase 

ambiguities are also demonstrated for the Holloman and Norway test networks. Issues 

relating to development of an operational, real-time NetAdjust system are discussed. 

Also, a covariance analysis method is developed which can be used to predict Net- 

Adjust effectiveness under various conditions and network configurations. This covari- 

ance analysis demonstrates that, for the conditions present during the Norway test, the 

network of eleven reference receivers is sufficient to perform widelane ambiguity resolu- 

tion, but it is not sufficiently accurate for LI ambiguity resolution throughout the network. 
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R Range between the receiver and the satellite (m). 
E The true range between the GPS receiver position at the time it received 

the signal and the satellite position at the time it transmitted the signal. 
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Chapter 1 

Introduction 

In this thesis, a novel and effective approach is presented for using a network of reference 

receivers to perform kinematic carrier-phase positioning. 

1.1   Background 

To improve the attainable accuracy using GPS, many differential GPS (DGPS) techniques 

have been developed which perform relative positioning between two or more GPS re- 

ceivers. The basic premise of these DGPS techniques is that many of the sources of GPS 

measurement errors are correlated between receivers. By only performing relative posi- 

tioning between receivers, rather than absolute positioning of the receivers, the correlated 

portions of the measurement errors are reduced, resulting in a significant increase in ac- 

curacy and precision. 

Differential GPS techniques can be classified according to the type of GPS measure- 

ment that is used: 

• Code differential techniques use the GPS pseudorange measurement which is ob- 

tained by locking onto the pseudorandom code for a given satellite and measuring 

the time difference between transmit and receive time to determine satellite range. 

The code measurement is an absolute range measurement, which provides a value 

of the true range between the satellite and the receiver, after removal of clock errors 



and other error sources. It is relatively easy to implement differential GPS for code 

measurements, because it is an absolute measurement. 

• carrier-phase differential techniques rely upon a measurement of the accumulated 

phase of the GPS carrier. It is not an absolute measurement, because the number of 

carrier-cycles at the start of the accumulation (known as the phase ambiguity) is not 

known. Due primarily to the different wavelengths of the code and carrier-phase 

measurements (about 290 m for C/A code and 0.2 m for carrier-phase), carrier- 

phase measurements are much more precise. The phase ambiguities must be deter- 

mined, however, to use carrier-phase measurements for positioning. 

Because the phase ambiguities are integer values, the most accurate differential tech- 

niques resolve these integer ambiguities, resulting in relative positioning accuracies at the 

cm level. Carrier-phase ambiguity resolution is limited, however, by measurement er- 

rors that are not removed in the double-differencing process. These measurement errors 

are grouped into spatially correlated errors (atmospheric and satellite position errors) and 

uncorrelated errors (receiver noise and multipath). Because differential atmospheric er- 

rors increase with the distance between the mobile and reference receivers, the ability to 

perform carrier-phase ambiguity resolution successfully decreases with distance as well. 

This requirement to be close to a reference receiver is a significant operational con- 

straint for many precise positioning applications. For example, suppose that there is a re- 

quirement to provide cm-level positioning over 100 km x 100 km area around a medium 

sized city. If the mobile receiver needs to be within 10 km of a reference receiver to 

guarantee rapid single-frequency integer ambiguity resolution, then one approach would 

be to place 25 reference receivers around the city as shown in Figure 1.1. In this figure, 

the small dark dots are reference receivers, and the grey circles are the areas that they 

effectively cover. This is obviously a poor approach, for a large number of receivers (and 

reference sites) are required, and some areas still remain uncovered. Another approach 

would be to increase the maximum distance over which ambiguities can be resolved by 
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Figure 1.1: Use of many independent 
reference stations to cover desired area. 
A mobile receiver would use reference 
data from just the nearest reference re- 
ceiver. 
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Figure 1.2: Use of network of reference 
stations to cover desired area. A mobile 
receiver would use reference data com- 
bined from all four reference receivers. 

using more advanced data processing techniques (such as better error models or combina- 

tions of dual frequency measurements). This approach has merit and is commonly used, 

but there remains an effective (albeit larger) maximum radius for accurate ambiguity res- 

olution. 

A different approach is shown in Figure 1.2, where instead of using a single reference 

receiver, data from multiple reference receivers are used together in a carrier-phase net- 

work. In this hypothetical example, only four reference receivers (represented by black 

dots) are required to provide coverage for the entire area. Note that this example refers to 

coverage of an area the size of a city, but this approach can be scaled up to the size of a 

state or province or even a country (as will be shown in Chapter 4). 

It is not immediately obvious how to use a network of reference receivers effeciently 

for performing carrier-phase ambiguity resolution, without solving for separate sets of 

integer ambiguities to each reference receiver. In this thesis, one promising approach to 

this problem is presented. 



1.1.1   Related Research 

1.1.1.1    Carrier-Phase Ambiguity Resolution 

One of the simplest ambiguity resolution algorithms is to use code measurements to de- 

termine the carrier-phase ambiguities directly (code/carrier smoothing) (Hatch, 1982). 

This method alone is not adequate generally to determine integer ambiguities. An early 

effort to resolve integer carrier-phase ambiguities was the Ambiguity Function Method 

(AFM) (Counselman and Gourevitch, 1981; Mader, 1990; Remondi, 1991). The AFM is 

a coordinate domain search technique that is computationally intensive and is not com- 

monly used in its original form. 

Next, the least squares search method was developed (Hatch, 1990; Lachapelle et al., 

1992). With a least squares search, sets of integer ambiguities are tested by calculating the 

least squares position estimate and residuals. If one set of ambiguities has significantly 

lower residuals than the rest, then it is considered the correct ambiguity set. While more 

efficient than the AFM, in its most basic form it can still be computationally intensive and 

require a large amount of memory. A number of improvements to this method have been 

proposed which greatly increase efficiency and reduce memory requirements (Euler and 

Landau, 1992; Borge and Forssell, 1994). 

Another class of ambiguity resolution techniques involves the use of a covariance ma- 

trix of the ambiguities, which is normally calculated by a Kaiman filter or a weighted 

least-squares algorithm. One of the earliest such techniques was the Fast Ambiguity Res- 

olution Approach (FARA) (Frei and Beutler, 1990). Other ambiguity covariance meth- 

ods include the Fast Ambiguity Search Filter (FASF) (Chen and Lachapelle, 1995), an 

integer nonlinear programming method (Wei and Schwarz, 1995), and the Z-transform 

method (Teunissen, 1994). A more statistically precise method for choosing the best am- 

biguity is given by Han (1996). Dual frequency data can also be used to aid the ambiguity 

resolution process (Hatch, 1989; Abidin, 1991; Lu et al., 1995). 

Recently, interest has been shown in single-epoch integer ambiguity resolution tech- 



niques (Han and Rizos, 1996; Pratt et al., 1997). These require high quality dual frequency 

GPS receivers, and they are very sensitive to uncancelled differential errors. 

Some have developed algorithms which are specifically designed to perform precise 

carrier-phase positioning over long baselines. One method calculates the dual-frequency 

(widelane) ambiguities at the start and end of the mission by taking off and landing near 

the reference receiver (Sonntag et al., 1995). Ambiguities in mid-flight are then estimated, 

holding the known ambiguities fixed. This is performed after the mission is completed, 

using forward and backward filtering, and it would fail if the mobile receiver was reini- 

tialized mid-flight (or if there were excessive cycle slips). 

Colombo studied precise GPS positioning over long baselines using a software simula- 

tion (Colombo, 1991). A high-order Kaiman filter/smoother was used to estimate satellite 

position errors, reference receiver position errors, atmospheric refraction errors, mobile 

receiver position, and phase ambiguities using dual frequency carrier-phase and single 

frequency LI Coarse Acquisition (CA) code measurements. There were no multipath er- 

rors in this simulation. He showed that using the high-order model (versus estimating 

only position and velocity) significantly improved positioning accuracy, especially when 

there were large satellite orbit errors. He also showed that using two reference receivers 

improved the results. The smoothing portion of this near-optimal method can only be 

performed in post-mission mode. 

Each of these methods have their own strengths and weaknesses, and there is no ques- 

tion that having a robust, well-designed algorithm can improve ambiguity resolution re- 

sults. Nevertheless, there remains a limit to the time required and the distance over which 

ambiguities can be resolved correctly due to the presence of uncancelled differential mea- 

surement errors (such as multipath, satellite position errors, and unmodeled atmospheric 

errors). Even a method that optimally calculates the integer ambiguities is limited by the 

presence of these uncancelled errors. The approach in this thesis is to reduce the errors, 

rather than to develop an improved ambiguity resolution technique. If the errors are re- 

duced, then all of the ambiguity resolution techniques listed above will show improved 



performance. 

1.1.1.2   Reducing Uncancelled Differential Errors 

Uncancelled differential errors are those errors which are not eliminated by measurement 

double differencing. These include satellite position errors, atmospheric propagation er- 

rors, multipath, and receiver noise. Receiver noise is primarily a function of receiver 

design tradeoffs, and it is relatively small and benign (since it is more or less zero-mean 

white noise). Efforts to reduce the other three uncorrelated error sources explicitly are 

given below. Reducing any of these errors will enhance the ability to perform carrier- 

phase ambiguity resolution. 

1.1.1.2.1 Reducing Satellite Position Errors For real-time, non-differential users, 

the satellite position error includes errors in the broadcast ephemerides and the effects 

of Selective Availability (SA), which introduces both a clock and satellite position error. 

The contribution of SA error to the user range error is 24 m (1-CT) (Zumberge and Bertiger, 

1996). The non-clock portion of the SA error can cause an error when the double dif- 

ference measurements are generated for integer ambiguity resolution. Even when SA is 

turned off, errors in the broadcast ephemerides remain which impact positioning accuracy. 

The U.S. National Research Council recommended improving the satellite ephemeris and 

clock estimates by increasing the satellite navigation data update frequency, increasing 

the number of GPS reference stations, and using a non-partitioned Kaiman filter for the 

orbit estimation (Committee on the Future of the Global Positioning System, 1995). 

Simply using differential GPS significantly reduces orbital errors, even over long base- 

lines. For example, an orbital error of 2.5 m will result in only a 1 cm positioning error 

over a 100 km baseline (Rothacher, 1997). 

A number of organizations also use worldwide reference receiver networks to calcu- 

lated post-mission precise orbits at a very high accuracy (20 cm or better) (Kouba et al., 

1993). These precise orbits are used to help isolate the various errors sources in Chapter 2. 



1.1.1.2.2 Reducing Atmospheric Propagation Errors Spatial variations in the iono- 

sphere and the troposphere introduce errors into the double difference measurements that 

increase with the distance between the two receivers. A standard ionospheric model 

can be used to remove approximately 50% of the ionospheric error in mid-latitude re- 

gions (Klobuchar, 1987). For greater accuracy, an ionospheric contour or ionospheric 

grid can be calculated using a network of ground receivers. This grid can then be used 

to provide accurate ionospheric corrections for any receiver/satellite combination with 

a receiver-to-satellite line of sight that pierces the grid (Skone et al., 1996; Kee, 1996; 

Enge and Van Dierendonck, 1996). Another method for modeling the ionosphere using 

tomography is presented by Hansen et al. (1997). Dual frequency users can determine 

the ionospheric effect directly, using the difference between the pseudorange measure- 

ments of the two frequencies (ICD-GPS-200C, 1993). Other methods have been devised 

to estimate ionospheric delays as well (Goad, 1990; Cohen et al., 1992). 

A great number of models have been developed for estimating the delay induced by the 

troposphere (Hopfield, 1969; Goad and Goodman, 1974; Santerre, 1987; Marini, 1972; 

Baby et al., 1988; Mendes and Langley, 1994). These work fairly well, but they do 

generally require input of meteorological parameters which may have errors. Also, the 

troposphere is at times not homogeneous (such as when a storm front is moving through), 

which can result in errors. Some have modeled the tropospheric error as part of the ambi- 

guity estimation process, with some success (Brown et al., 1995). 

1.1.1.2.3 Reducing Multipath The most basic method for reducing multipath is to 

place the GPS antenna in a low-multipath environment, away from any potential reflec- 

tors and with a good ground plane or choke ring (Tranquilla et al., 1994). Another com- 

mon method for reducing code multipath is to smooth the code measurements with the 

carrier-phase measurements (Hatch, 1982). Some have attempted to model the multi- 

path environment around a fixed antenna using simulated or real data (Hajj, 1990; Cohen, 

1992; Hardwick and Liu, 1995). Others have used the signal-to-noise ratio in combina- 



tion with the antenna gain pattern to estimate the carrier-phase multipath (Axelrad et al, 

1996). A number of techniques involve signal processing methods internal to the GPS 

receiver (Townsend and Fenton, 1994; Townsend et al, 1995; Kumar and Lau, 1996). 

Filtering techniques have also been used to estimate and correct for the multipath er- 

rors (Johnson and King, 1996). Using multiple reference receivers for multipath reduction 

has also been demonstrated (Raquet, 1996; Raquet and Lachapelle, 1996). 

1.1.1.3   Use of Multiple Reference Receivers 

1.1.1.3.1 Code Based Positioning It has long been recognized that using multiple 

reference receivers improves differential positioning results. Multiple reference systems 

have been implemented for code (or carrier-smoothed code) positioning in many different 

applications, normally in the context of a Wide-Area Differential GPS (WADGPS) system 

for positioning (Kee and Parkinson, 1992; Lapucha and Huff, 1992; Ashkenazi and Hill, 

1992; Spradley, 1993; Szabo and Tubman, 1994). Because the code measurement is an 

absolute measure of range and time (i.e., there are no ambiguities), most of these methods 

generate individual measurement corrections as a function of the mobile receiver position. 

One way to do this is to estimate code measurement corrections at each reference receiver 

and then use an estimation (i.e., interpolation) algorithm to determine the corrections at 

the mobile receiver location. 

This approach has been implemented using a Kaiman filter with a one-dimensional 

(Gauss-Markov) spatial decorrelation function (Tang et al., 1989). A similar approach 

using least-squares adjustment techniques is presented in Loomis (1991). In Mueller 

(1994), all of the individual pseudorange corrections for a given satellite are combined 

using a weighting function which explicitly minimizes the variance of the errors. This 

also relies upon a spatial decorrelation (or covariance) function, and it is very similar 

(if not identical) to the approaches by Tang and Loomis et al., because Kaiman filters 

and least-squares estimators also minimize the error variance. All three of these methods 

essentially interpolate the whole-valued corrections for the mobile receiver position. 



An alternative method is to estimate explicitly three-dimensional satellite position er- 

rors, ionospheric errors (using an ionospheric grid, for example), and SV clock errors, and 

then transmit these to the mobile user who then calculates the corresponding errors at their 

specific location. An example of this approach is the Wide Area Augmentation System 

(WAAS) (Enge and Van Dierendonck, 1996; Enge et al., 1996; Enge, 1997). This ap- 

proach would be applicable to carrier-phase positioning, as described in the next section. 

However, because small (10-20 cm) errors are not very significant for code-based posi- 

tioning, systems that are designed for code positioning often would not have the accuracy 

required to significantly aid in carrier-phase positioning. 

1.1.1.3.2 Carrier-Phase Based Positioning Lapucha and Barker (1996) have used 

a network of two reference receivers applied to carrier-phase ambiguity resolution, but 

only to improve the code positioning accuracy (which reduces the size of the ambiguity 

search space), and to provide a quality check of the ambiguities which are solved sepa- 

rately between the mobile receiver and each reference receiver. Checking the ambiguities 

between multiple reference receivers has also been performed in an aircraft-to-aircraft 

test (Lachapelle et al., 1994) and in a shipborne mode (Weisenburger, 1997). 

An approach to reducing the distance dependence of carrier-phase positioning errors 

has been proposed by Wübbena et al. (1996).. This approach involves generation of a ge- 

ometric model for carrier-phase corrections, using horizontal coordinates as parameters. 

The "network coefficients" of the geometric model are calculated by performing a least 

squares adjustment of a network of reference stations. Using the network coefficients, it 

is then possible to interpolate the DGPS carrier-phase corrections for specific locations 

within the area covered by the network. While this method has been described, it appar- 

ently has not yet been successfully implemented, as the results in W ubbena et al. (1996) 

use a full network adjustment software package to "simulate" what could be done by this 

approach. 

A similar approach proposed by Varner generates partial derivative corrections for 
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each individual phase double difference measurement, and it has shown promising re- 

sults (Varner, 1997). An advantage of this method over the estimation of the single 

geometric model given in (Wübbena et al., 1996) is that the uncorrelated errors (like 

multipath) can be accounted for. In this approach, the differential errors between a base 

reference receiver and each of the other reference receivers are used as measurements to 

estimate multipath at each site and to estimate the differential phase error as a function of 

position, by fitting it to a polynomial of position variables. The user then uses the error 

polynomial (and the estimated multipath error) to calculate the estimated differential error 

at their location. A simplified version of this same approach is given by Han (1997). 

Another approach to this problem presented by Wanninger is to model the differen- 

tial ionosphere explicitly, using a linear interpolation algorithm (Wanninger, 1995). As 

originally presented, this method involves calculation of differential ionospheric delays 

among network of three reference stations surrounding the mobile receiver. The differen- 

tial ionosphere is then linearly interpolated to the mobile user position (hence the name 

linear interpolation algorithm). 

Gao et al. (1997) improved upon this algorithm by extending it to any number of 

reference stations. They also modeled the satellite ephemeris error, and demonstrated a 

significant improvement in positioning accuracy over the uncorrected case. 

1.2   Statement of the Problem 

1.2.1   Objective 

Using a network of reference receivers (rather than a single reference receiver) should 

improve the ability to resolve carrier-phase integer ambiguities by reducing the differential 

errors. Evidence of the improvement would take three different forms: 

• Use of a network should improve the performance of ambiguity resolution algo- 

rithms, relative to the single reference case at the same distance. Performance is 
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measured in terms of the ability to determine the correct ambiguities and the time 

required to do this. 

• Use of a network should increase the distance over which ambiguities can be accu- 

rately resolved, relative to the single reference case. 

• Use of a network should reduce the errors in the differential code and carrier-phase 

measurements for the mobile user. The differential errors that should be reduced 

are all errors that are not cancelled in the double differencing process (except for 

the integer ambiguities). Reducing these errors improves the ability to resolve the 

carrier-phase ambiguities, and provides better positioning performance once the 

ambiguities are known. 

The primary objective for this research is to develop and test a methodology for 

using multiple reference receivers which a) reduces differential errors, b) improves 

ambiguity resolution performance (for a given inter-receiver distance), and c) in- 

creases the inter-receiver distance (for a fixed level of performance). 

1.2.2   Requirements 

As in most engineering problems, many different approaches can meet the stated objec- 

tive to some degree or another. The goal of this research is to develop a method which 

meets the primary objective and which is practically realizable in real-world and real-time 

situations. To this end, there are four requirements in addition to the primary objective, as 

described in the following sections. 

1.2.2.1   Real-Time Capability 

It must be possible to implement this methodology in a real-time mode (with a small data 

latency) as well as in post-mission mode. While this research will not involve actually 
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implementing a real-time system, the approach should be developed with consideration 

of real-time implementation at a future time. 

There are many applications in which real-time processing is absolutely necessary. 

The most obvious example is navigation, in which (users need to know their position in 

order to make real-time decisions about how to proceed. Landing an aircraft is one such 

application. 

1.2.2.2 Network Details Hidden 

This method should accept any number of reference stations at arbitrary locations. In 

addition, the real-time user should not be required to have to know the number of reference 

receivers, or their positions. In this way, the task of maintaining an operating network can 

be separated from the use of that network. 

Any network set up within a particular geographic region would probably begin with 

a minimal number of reference receivers (perhaps using receivers that currently exist). If 

the system is designed around this initial network (by requiring transmission of all of the 

raw data from the reference receivers to the mobile receiver, for example), then adding 

more reference receivers could be difficult. If there is a desire to add more receivers to 

the network (which commonly happens), then it is important to allow for seamless incor- 

poration of new reference receivers into the network. If the network details are hidden 

from the mobile user, then additional reference stations will affect improved performance 

without any additional computational load on the mobile user. 

1.2.2.3 Minimal Ambiguity Set 

This method should require solving for only a single set of integer ambiguities, as would 

be the case if there were only a single reference receiver. Again, the desire is to make it 

as easy as possible for the mobile user to resolve the carrier-phase integer ambiguities. 
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1.2.2A   Minimize Data Link Bandwidth Requirement 

In any real-time differential system, the bandwidth of the differential data link is often a 

limiting factor. This method should be chosen with consideration to minimizing data link 

bandwidth requirements. For example, it would be unacceptable to require transmission 

of the raw data from all of the reference receivers to the mobile receiver. 

1.2.3   Assumptions 

The assumptions listed in the sections below are top-level assumptions which help to 

define the scope of this research. Many of these assumptions are actually topics for addi- 

tional, complementary research. 

1.2.3.1 Reference Receiver Coordinates Known 

The locations of the reference stations are assumed to be known to a very high level 

of accuracy (e.g., < 1cm). This can be done off-line using many days of GPS data, if 

necessary. 

1.2.3.2 Centralized Data Collection 

It is assumed that the data from all of the reference receivers can be collected at one central 

location to be processed (in real-time, for real-time mode). This is a common approach 

for real-time network differential GPS systems (Lapucha and Huff, 1992). 

1.2.3.3 Large Data Processing Ability on Network Data 

While computational load of the mobile user should be minimized (as stated above), it 

is assumed that there is much computational capability for processing the data from the 

network prior to transmission to the mobile user. Because all of the data is sent to a 

central processing location (see above), it will be possible to have this data processed by 

sufficiently powerful computers at this location. 
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1.2.3.4   Network Ambiguities Known 

It is assumed that LI and widelane carrier-phase integer ambiguities have been resolved 

between each of the reference stations. This is a considerable challenge to implement in 

real-time, and this issue is discussed further in Chapter 6. 

1.3    Contributions of This Research 

In this thesis, a novel and effective approach is presented for kinematic carrier-phase posi- 

tioning using a reference receiver network. In this approach, code and carrier-phase mea- 

surement corrections are generated which minimize the sum of the variances of the differ- 

ential measurement errors (i.e., the trace of the error covariance matrix). As stated earlier, 

a minimum error variance approach for code measurements was given in Mueller (1994), 

which calculates corrections based upon network code measurement errors. For carrier- 

phase measurements, individual measurement errors are not directly available from the 

network (because of the unknown cycle ambiguities), so double differencing must be 

used as part of the minimum variance estimation process. 

This minimum error variance approach is equivalent to a least squares condition ad- 

justment on the measurements from each of the reference stations, and insight into the 

method is gained by interpreting it as such. The method presented in this thesis, which 

minimizes the sum of the differential error variances, will be referred to as the "Net- 

Adjust" method. 

The most distinguishing feature of the NetAdjust method relates to the assumptions 

about the characteristics of the errors as a function of position. Each of the other carrier- 

phase methods discussed in the previous section explicitly assumes a functional form 

which relates the error to position, and then calculates the coefficients of this functional 

form using the reference receiver data. In contrast, the NetAdjust approach does not force 

the errors themselves into a particular functional form (of position). Rather, the error 

covariance is expressed in a functional form (with coefficients based upon data from 
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the reference receiver network), and then this covariance is used to calculate the actual 

errors for any given mobile user position. In this way, the NetAdjust method is based 

upon determination of an accurate expression of the second moment (covariance) of the 

network errors. 

One advantage the NetAdjust approach is that it enables a realistic covariance analysis 

to predict performance under various network conditions, including various reference net- 

work configurations (number/position of reference stations), satellite configuration (num- 

ber/direction of satellites), positions of the mobile user, and different levels of correlated 

errors (atmospheric and satellite position errors). 

The specific contributions of this research can be stated as follows: 

1. Development of a new method for performing kinematic carrier-phase positioning 

using multiple reference receivers (the NetAdjust method), which minimizes the 

sum of the differential error variances (the trace of the error covariance matrix). 

(a) Mathematical description of the carrier-phase network problem. 

(b) Development of a functional form of the covariance matrix of the measure- 

ment errors from the reference network (using double-difference data). 

(c) Methodology for determining the elevation dependence of a measurement us- 

ing double difference data. 

2. Development of covariance analysis methodology for predicting performance of 

relative code and carrier-phase positioning using a reference network. 

1.4   Dissertation Outline 

This thesis consists of seven chapters and two appendices. 

Chapter 1 states the overall research objectives, requirements, and assumptions. It 

provides the motivation for using a carrier-phase reference network and outlines other 
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research that has been performed in this area. Finally, it describes the contributions of this 

thesis. 

Chapter 2 is an overview of differential GPS error sources, especially as they relate 

to the use of a reference receiver network. Included are definitions of phase and code 

errors, double differencing, and the errors that result from various carrier-phase measure- 

ment combinations. Each of the differential error sources is then described, including 

ionosphere, troposphere, multipath, measurement noise, satellite position error, receiver 

position error, and clock errors. 

Chapter 3 derives and describes the NetAdjust method for both code and phase mea- 

surements. It covers the derivation of the functional form of the error covariance matrix, 

and demonstrates how actual field data is used in this process. It also derives how a 

covariance analysis is performed once the functional form of the covariance matrix is 

determined. 

In Chapter 4, the NetAdjust method is applied to data from a network of reference 

stations covering the southern portion of Norway. The results are analyzed in the mea- 

surement domain and the position domain. The effect of using NetAdjust on the ability 

to calculate carrier-phase integer ambiguities is also analyzed. In addition, results from a 

smaller network in the southern United States are also presented. 

In Chapter 5, the covariance analysis procedure is used to examine the relationship 

between differential GPS performance and various factors, including the number and ge- 

ometry of the reference stations, the position of the mobile user, and the level of various 

error sources. 

Chapter 6 deals with operational considerations for an implementation of the Net- 

Adjust method in a real-world situation. This includes topics such as parameterizing the 

corrections as a function of the mobile user position, time filtering of the corrections and 

the effect on data link bandwidth requirements, calculation of the ambiguities between 

reference receivers, and continuous calculation of the covariance parameters. 

Chapter 7 provides a summary of the results and presents recommendations for further 
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research. 

Appendix A is a general description of the two different reference receiver field net- 

works that are used in this research, including a discussion of the methods used to deter- 

mine the reference receiver coordinates. Data from these networks are used in Chapters 

3,4, 5, and 6. 

Appendix B describes how the ambiguities between the reference receiver networks 

were calculated. 
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Chapter 2 

Analysis of Differential GPS Error 
Sources 

In order to use a network of reference receivers or simulate GPS measurements, one must 

understand the nature of the errors present in GPS measurements. In this chapter, error 

equations are defined for both code and phase measurements. Double differencing is 

described as a method for eliminating or reducing many of the errors, and each significant 

error source that remains after double differencing is described and analyzed. 

In Chapter 3, error sources will be treated in two groups—correlated errors (atmo- 

spheric and satellite position errors), and uncorrelated errors (multipath and noise). The 

error analysis shown below provides the background necessary to describe the statistical 

characteristics of both groups of errors accurately and precisely. 

2.1   Double Difference Error Equations 

There are two primary observables generated by most GPS receivers—the range measure- 

ment based upon tracking of the GPS signal code, and a measurement of the phase of the 

beat frequency between the received GPS carrier signal and the carrier signal generated 

within the receiver. These are referred to as the code measurement (represented as p) and 

the phase measurement (represented as </>)• 

The double difference error equations for both the code and phase measurements will 
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be derived below. 

2.1.1   Code Measurements 

The GPS code measurement p is a linear measurement in units of metres, and it can be 

represented as 

p = R+-= + T + m + c5trec-c6tav + v, (2.1) 
r 

where 

R = True range between SV (at transmit time) and receiver (at receive time) (m) 

/ = Ionospheric delay parameter (= 40.30 TEC—see note below) (Hz2m) 

/ = Carrier signal frequency (1575.42 MHz for LI, 1227.60 MHz for L2) 

T = Measurement delay due to troposphere (m) 

m = Measurement delay due to multipath (m) 

c = Speed of light (m/s) 

Strec = Receiver clock error (sec) 

ötsv = Satellite clock error (sec) 

v = Measurement noise (m). 

Note that in the above definitions, TEC is the Total Electron Content, which is the inte- 

gration of the electron density along the signal path. The TEC is in units of electrons/m2, 

and 40.3 is an empirically derived constant (with units m3s_2electrons_1) which relates 

the TEC to physically useful units. 

Most DGPS processing involves generating a nominal, "computed" range between 

the receiver and the satellite which is calculated from the best known coordinates of the 

receiver and the satellite. The true range vector R is 

R = P„ - Prec, (2.2) 
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where P«, is the true position of the satellite at transmit time and Prec is the true position 

of the receiver at receiver time. The computed range vector R is then 

where P8V is the computed position of the satellite at transmit time (from the ephemeris), 

and Prec is the nominal position of the receiver at receive time. The three-dimensional 

error in the computed range vector (SR) is 

6R = R - R 

= \*8v      ™sv)       (•*■rec      ^recj 

= 6P8V - SPrec (2.4) 

or, equivalently 

R = R + 6P8V - 6Prec, (2.5) 

where 6P8V and SPrec are the errors in the "known" (or computed) satellite and receiver 

positions relative to the true positions. 

If the magnitudes of the satellite position error and the receiver position error are very 

small relative to the magnitude of the true range vector (which is normally true in GPS 

positioning), then the errors can be projected onto the range vector to make them scalar 

quantities. In equation form, if 

|<5PS„|<|R|   and   |5Prec| < |R| 

then 

R = \R\ = |R + 8P8V - 6Prec\ 

= |R| + 5Psv - 5Prec (2.6) 

where 

5psv = e • öP8V, (2.7) 

öPrec = e • 6Prec, (2.8) 
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and 

R 
e = W (2.9) 

The magnitude R of the computed range vector can be subtracted from the actual code 

measurement to generate the measurement-minus-range observable p: 

p = p-\R\=p-R. (2.10) 

Note that if there are no errors (i.e. p = R and R = R), then p = 0. Any errors in either 

the computation of the range vector or the pseudorange measurement itself will result in 

a non-zero value for p. 

When performing standard GPS or DGPS code positioning, the method normally used 

is to calculate p (either explicitly or implicitly) based upon a nominal receiver position. In 

doing so, p provides a measure of the error in the nominal receiver position (SPrec), and 

it can be used to estimate that error and correct the nominal position until convergence is 

obtained.1 

In this research, the measurement-minus-range observable is used in a slightly dif- 

ferent manner. Instead of using p to calculate 6Prec, the reference receiver positions 

are assumed to be known exactly (i.e. ÖPrec is assumed to be zero), and p is used as a 

measurement of the errors themselves. 

In order to significantly reduce or eliminate many of the error sources for precision 

differential GPS, a "double-difference" observable is generated. 

2.1.1.1   Double Differencing 

For the discussion that follows, subscripts are used to identify the receiver and superscripts 

are used to identify the satellite. For example, px
a would be the code measurement-minus- 

range observable between receiver o and satellite x. 

'This simplified explanation of GPS positioning is intended to provide insight into the nature of the 

measurement-minus-range observable. Certainly, other considerations that must be taken into account (such 

as estimation of clock errors for single point positions) in order to successfully perform GPS positioning. 
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First, a single difference observable is generated by differencing simultaneous mea- 

surements between two satellites and one receiver:2 

Next, single difference observables between two receivers are themselves differenced in 

order to form the double difference observable 

= {pxa-PL)-(Pl-Py
b) 

= M - Pi) - {Pi - Pl)\ - [(Kl - \K\) - W\ - \Rl\)} (2.12) 

Combining Equation 2.12 with Equations 2.1 and 2.6 results in 

AVp^ = [   (ie-RZ)-(R?-B«!) (2.13a) 

+J>m-Iya)-{Ix
b-lD) (2.13b) 

+{Tx
a -1*) - (Tb* - Ty) (2.13c) 

+«-<)-(mx
b-my

b) (2.13d) 

+[(StrecX
a - Stree

v
a) - (5trec

x
b - 5trJb)]c (2.13e) 

+[(Stsv
x

a - Stsv
y

a) - {5tsv
x

b - 5tsv
y

b)]c (2.13f) 

+K ~ vl) - (v*b - vf)} (2.13g) 

-[   (BJ-Kg)-(RJ-R[[) (2.13h) 

+(5psv
x

a - 6Psv
y

a) - (8psv
x

b - 8pJb) (2.13i) 

-{ÖPrecl ~ tyred) + (ÖPrecl ~ SPrecb)} (2.13J) 

Several simplifications can be made in Equation 2.13. First, lines a and h completely 

cancel. Also, line e disappears with the assumption that the measurements were collected 

2In reality, the measurements are not simultaneous but are very close in time. As a result, different 

satellite positions are calculated for each receiver, which to first order removes the errors induced by non- 

simultaneous measurements. 
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at simultaneous receive times {5tre
x

a = 6trec
y

a and 5trec
x = 5trec

v
b). In a similar manner, 

line f disappears if the measurements were transmitted at the same time from satellites 

x and y (5tsv
x

a = Stsv
y

a and 5tsv
x = Stsv

y
b).3 After performing these cancellations and 

applying double difference notation, Equation 2.13 can be simplified to the final form of 

the code double difference error equation 

AVpE = -j^ + AVTa7 + AVrrtf + AVttf + AV« - AV<WX  (2-14) 

This equation shows each of the error sources that are present in a double differenced code 

measurement-minus-range observable. These error sources will be described in sections 

2.2 through 2.6. 

2.1.2   Carrier-Phase Measurements 

The LI or L2 GPS phase measurement 0, in units of cycles, can be represented as 

<£ = -(R - — + T + m + cStrec - c5tsv + v) + N (2.16) 

where R, /, /, T, m, 6trec, 8tsv, v, and c are defined as in Equation 2.1, and 

A = Wavelength of LI or L2 carrier 

N = Integer carrier-phase cycle ambiguity (cycles) 

Note that there are many similarities between the code measurement equation (2.1) 

and this phase measurement equation. First, the true range R, tropospheric delay T, and 

clock errors 5trec and 5tsv are identical (i.e. they have the same values). The ionospheric 

error / has an opposite sign than in the code equation, reflecting the fact that the iono- 

sphere effects a delay of the code measurement and an advance of the phase measure- 

ment (Klobuchar, 1996). The multipath m and measurement noise v are also defined as 

3As stated earlier, small differences in measurement times can be handled effectively by calculating 

separate satellite positions for each receiver. 
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in the code case, only here they refer to the phase measurements (so the actual values will 

be different). 

There is one additional term in Equation 2.16, which is the carrier-phase integer ambi- 

guity N. This is necessary because, unlike the code observable, the carrier-phase observ- 

able is not truly a whole-valued range measurement. Rather, the carrier-phase observable 

is a measurement of the accumulated Doppler since a particular time epoch, at which time 

there was an unspecified (N) number of carrier cycles between the satellite and the re- 

ceiver which could not be output as part of the carrier-phase measurement. In essence, N 

can be thought of as a constant, initially unknown bias added in each of the carrier-phase 

measurements which happens to be an integer number of cycles. The values for N are 

different and independent for measurements between different receivers or different satel- 

lites. However, the values for N are constant for the same measurements taken at different 

time epochs (assuming no cycle slips between those epochs). 

Using the same procedure presented in Section 2.1.1.1 with the phase measurement 

equation results in the phase double difference equation 

1       AVTxy 

AV« = -( - -j±*L + AVTa7 + AVntf 

+ AVt# + AVSpsv:i - AV5prec2) + AVN*J, (2.17) 

where / refers to the frequency of the carrier (LI or L2), and A = c/f. 

2.1.3   Carrier-Phase Measurement Combinations 

It is possible to generate a measurement denoted <f>j>k which is a linear combination of the 

LI and L2 phase measurements 

<t>3,k=j(f>Li + k(j)L2. (2.18) 
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After applying Equation 2.15, the <j>j)k observable can be described as 

0j.fc ="T—(^ + T + c5trec - c5tsv) 

1 A* 
+ T-(m^l + VLl) + T-(m^2 + VL2) 

M <*2 

1 fjf2 + kfl)+jN1 + kN2, (2.19) c\   M 
where 

2 

Finally, following the developments of the previous section, the double difference equa- 

tion of the measurement-minus-range observable is 

AV<S k =^- (AVTa7 + AWp„3f - AWp^) 
Aj,k 

+ £ (AVmSL1 + AVttfJ + A (AVmX2 + AVttfJ 

AWa6 ' ^2 + ^ ' + jAVA^i + AAViV2 (2.21) 
c      V    /1/2 

There are many different L1-L2 phase combinations that can be used. Two key com- 

binations that are used in this research are shown in the first two entries of Table 2.1. The 

widelane observable </>i _i (also denoted (J>WL) is often used for carrier-phase ambiguity 

resolution, for several reasons. First, the widelane ambiguity remains an integer quantity, 

Table 2.1: Linear combinations of phase measurements 

Description j      k Xj^ Ambiguity 

Widelane (WL) 1 -1 0.8619 m AVty - AViV2 = AVNWL 

Ionospheric Free (IF) 1 -£ 0.4844 m AViVi - ^AViV2 = AVNIF 

LI only (LI) 1      0        0.1903 AViVi 

L2only(L2) 0      1        0.2442 AViV2 
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which is necessary for any sort of integer search technique. The widelane observable also 

has a much longer wavelength than single frequency (LI or L2) measurements, which 

helps to reduce the effect of some of the errors, as shown in Table 2.2. In this table, the 

second and third columns are the LI and WL magnitudes of the differential GPS errors, 

expressed in cycles. The fourth column is the ratio between the WL errors and the LI 

errors, again expressed in cycles. This WL/L1 ratio describes how much the errors are 

reduced by using the WL measurement, relative to the cycle wavelength. Ambiguity res- 

olution algorithms attempt to determine the integer cycle ambiguities, so a reduction in 

the errors relative to the cycle wavelength (i.e. a WL/L1 ratio less than 1) aids in the am- 

biguity resolution process. Table 2.2 shows that the SV position, receiver position, and 

tropospheric errors are reduced the most, followed by ionospheric errors which are still 

reduced by over 70%. Note, however, that the multipath and measurement noise are not 

reduced at all. (It's not represented in the table, but the total multipath and noise actually 

increases, since it is a combination of LI and \J1 errors). 

Table 2.3 shows the differential GPS errors expressed in metres, and the WL/L1 ra- 

tio is calculated as in Table 2.2. This shows that for SV position, receiver position, and 

tropospheric errors the total error magnitude (expressed in m, such as used for position- 

ing) stays the same when going from LI to WL observables, the total ionospheric error 

increases slightly, and the multipath and noise are increased significantly. Tables 2.2 

and 2.3 taken together demonstrate that the total errors, expressed in m, are the same or 

are amplified when using a WL measurement, but due to the increased wavelength, the 

errors are generally reduced when expressed in cycles. 

A second carrier-phase combination is called the ionospheric-free observable <j> &. 

This measurement has the distinct advantage that it completely removes the ionospheric 



27 

Table 2.2: Comparison between LI phase error and WL phase error, expressed in cycles 

Error LI error (cycles) WL error (cycles) ^ ratio 

SV Position 

Rec. Position 

Troposphere 

Ionosphere 

LI Multipath 

LI Noise 

±AV6Prec 

f AVT 

^AVJ 
Ai /| 

fAVm 
Ai 

ÄTAVu 

äWI
A™P* 

xfeAva>r 

AVT 
Awi 

_{£-MAW 
c/1/2 

fAVm 
Ai 

AT
AVU 

AI 

AWL 

At 
AWL 

AWL 

0.221 

0.221 

0.221 

^fM Ä o.283 
/2 

1 

1 

Table 2.3: Comparison between LI phase error and WL phase error, expressed in metres 

Error LI error (m) WL error (m) WL 
LI ratio 

SV Position AV6psv AV5psv 1 

Rec. Position AVSprec AV5prec 1 

Troposphere AVT AVT 1 

Ionosphere -£AV7 AwL(/l-/2) 
C/1/2 

AV7 f « 1.283 h 

LI Multipath AVm ^fAVm *F- » 4.529 
Ai 

LI Noise AWv A^AVU 
Ai 

*&*>■ » 4.529 
Ai 
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errors.4 However, the ambiguity is no longer an integer quantity, so it cannot be calcu- 

lated using integer search techniques. The ionospheric free observable can be used in 

conjunction with the widelane observable to calculate the LI ambiguities, as described in 

Appendix B. 

2.2   Ionospheric Errors 

The ionosphere is a region of the atmosphere extending roughly from 50 to 1500 km, and 

it is characterized by a significant number of free electrons (with negative charge) and 

positively charged ions (Leick, 1995). The free electrons affect the propagation of radio 

waves, so they are of interest to users of GPS. The creation of free electrons is caused 

primarily by ultraviolet light from the sun, so the amount of ultraviolet light determines 

the state of the ionosphere. When there is no ultraviolet light, the free electrons and 

positive ions recombine, reducing the number of free electrons. The free electron density 

is then a function of the relative position of the sun, which makes it vary in a 24-hour cycle 

when observed from earth. The total amount of ultraviolet light emitted by the sun tends 

to be correlated with observations of the number of sunspots, have have historically varied 

on an approximately 11-year cycle. Times of high ultraviolet radiation (high number of 

sunspots) create a large number of free electrons in the ionosphere, resulting in relatively 

large induced errors in the radio signals. The next peak of the 11-year cycle is expected 

sometime in the year 2000. 

4To be more precise, the ionospheric-free observable removes all of the first order ionospheric effects. 

Higher order effects do exist, but they contribute less than 0.1% error, even under the worst case ionospheric 

conditions (Klobuchar, 1996). Nonetheless, 0.1% error can contribute several cm of error under these 

worst case conditions, and accounting for the higher order terms can yield improved results under these 

conditions (Brunner and Gu, 1991). 
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2.2.1 Effect on Code and Carrier-Phase Measurements 

By definition, the total electron content (TEC) along the path from the receiver to the GPS 

satellite is 

TEC =  I  Ne ds, (2.22) 

path 

where Ne is the local electron density, expressed in electrons/m3. Then, to first order, the 

ionospheric group delay I, expressed in Hz2m is 

T     40.30TEC 
/ = j2 , (2.23) 

were / is the frequency of the signal. The code measurement experiences a delay of 

Il(pc) seconds, which is equivalent to an elongation of the pseudorange measurement of 

Ilf2 metres. 

The phase of the GPS signal is advanced by the ionosphere by the same amount (when 

converted to m) that the code delay was delayed. As shown in Equation 2.16, the phase 

measurement is advanced by -IIcj cycles. 

2.2.2 Evaluation of Ionospheric Error from Phase Measurement Com- 

bination 

For a differential GPS positioning application, it is the uncancelled error (i.e. the portion 

of the error that is not cancelled by double differencing) that is of interest (as given in 

Equation 2.17). The value for AV/ can be measured directly using a phase measurement 

combination (j>x1-x2 
as defined in Equation 2.18. The result, after double differencing 

is performed and the ambiguities are removed, is a direct measurement of the double 

difference ionosphere (plus multipath and noise). This can be seen by using j — Ai and 
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k = -A2 in Equation 2.21, resulting in the error observable 

AV<^,_A2 = (AVm^Ll + AVttfJ - (AVmJ, + AVttfJ 

" AV/a7 (^^2) + iAVM + A;AVAT2. (2.24) 

Under normal conditions, multipath and noise are much smaller than the ionospheric error, 

so when the integer ambiguities are known, the (Ai, -A2) combination of phase measure- 

ments is a very good way to measure the double differenced ionosphere. 

The primary data set used in this thesis was from 11 receivers spread throughout the 

southern portion of Norway, as described in Appendix A. To demonstrate ionospheric 

error effects, four different baselines with lengths of 0.01 km, 67 km, 192 km, and 461 

km were chosen. The values of AV^\I,-A2 were calculated and scaled for the LI fre- 

quency for every possible PRN combination over two different three-hour periods. A 12° 

elevation cutoff was used. The first time period was from 12:00 to 15:00 local time, which 

would normally be the time of the day with the peak ionospheric errors. Another three- 

hour period was selected during the ionospherically stable night hours of 03:00 to 06:00 

local time. The data was collected at latitudes between 60° N and 65° N on September 

30, 1997, which is in the mid-point in the 11 year solar cycle. 

Because the ionospheric errors grow as the satellite elevation decreases, it is useful 

to map the errors to zenith (vertical), using a mapping function. The time series of iono- 

spheric phase advances was mapped to zenith using the equation 

/ = Fj{e)Iz, (2.25) 

where Iz is the value of I mapped to zenith, e is the satellite elevation, and F/(e) is the 

mapping function from the Klobuchar ionospheric model (Klobuchar, 1987) 

F/(e) = l + 16(0.53-I^)3 (2.26) 

(s is expressed in degrees). A plot of this mapping is shown in Figure 2.1. For double dif- 

ference measurements between satellites x and y, the mapping function is a combination 
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Figure 2.1: Zenith mapping function for ionosphere (Klobuchar model) 

of the two individual mapping functions 

AVI*y = We*) + Fr&)\ ^ (2.27) 

For more details on the justification of the above equation, see Section 3.4.3.2. 

The LI zenith differential ionospheric phase advance was calculated for the three-hour 

periods, and the results are shown in Figures 2.2 and 2.3. The axis limits are consistent 

for each of the plots in order to make the comparison clear. As would be expected, the 

ionospheric errors increase with baseline distance in the afternoon case, with an RMS 

value of around 0.7 cm at 0.01 km (which is from multipath and noise), to RMS values 

of 21.9 cm at 461 km. During the ionospherically stable nighttime conditions shown 

in Figure 2.3, the RMS values for the 461 km case was only 8.0 cm. The intermediate 

baselines also showed this same trend. As described in Appendix A, the ionosphere during 

this test showed no significant irregularities. 
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Figure 2.2: Time series and probability density functions of double difference zenith LI 
ionospheric delay for four different baseline lengths during afternoon (generated from 
AV0AI,-A2 observable), southern Norway, September 1997 
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Figure 2.3: Time series and probability density functions of double difference zenith 
LI ionospheric delay for four different baseline lengths during night (generated from 
AV^Ai,-A2 observable), southern Norway, September 1997 
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2.3   Tropospheric Errors 

The GPS measurement errors discussed in this section are those caused by the neutral 

atmosphere, primarily consisting of the troposphere (around 0-10 km altitude).5 At GPS 

frequencies, the troposphere is a non-dispersive medium, so the delay effects are not fre- 

quency dependent, and therefore are the same for both the code and phase measurements. 

There are two major delay effects of the troposphere, referred to as the dry delay 

(caused by the non-water portion of the atmosphere) and the wet delay (caused by water 

in the atmosphere). The dry delay is the larger of the two effects, and is caused primarily 

by the presence of 02 and N2 in the atmosphere. While the largest effect (contributing 

80%-90%), it can be modeled to an accuracy of 1% or better, so it is not much of a 

problem. The wet delay, on the other hand, only contributes to 10%-20% of the total 

delay, but it is difficult to model accurately, and zenith errors in wet delay models are at 

the level of 10-20% (Lachapelle, 1994). At zenith, the dry delay is about 2.3 m and the 

wet delay varies between 1-80 cm (Spilker Jr., 1996a). 

The tropospheric delay T can be expressed mathematically as 

T=   f(n-l)ds + Ag, (2.28) 
path 

where n is the refractive index of the atmospheric gases (which is a function of position), 

and Afl is the difference between the curved and free-space paths (since the signal does 

not actually travel in a straight-line path). The value of Ag is less than 3 mm for elevations 

greater than 20°, and increases to around 2 cm for elevations of 10° (Spilker Jr., 1996a). 

There are numerous tropospheric delay models that have been developed over the 

years, with varying levels of performance (Mendes and Langley, 1994). The model that 

5 Actually, the troposphere accounts for about 75% of the neutral atmosphere delay effect. The other 25% 

is caused by regions above the troposphere, namely, the tropopause (around 10-16 km) and the stratosphere 

(around 16-50 km) (Spilker Jr., 1996a). Nonetheless, the total neutral atmosphere delay is referred to as the 

tropospheric error. 
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has been used for this research is the modified Hopfield model (Goad and Goodman, 

1974), which has input parameters of atmospheric pressure, temperature, relative humid- 

ity, and satellite elevation. The pressure and temperature are determined from the receiver 

altitude (using standard temperature and pressure tables), and the relative humidity is set 

to a fixed value of 50%. 

The ionospheric free carrier-phase measurement combination is useful for studying the 

tropospheric error. If precise satellite coordinates are used (which eliminate the satellite 

position error), the receiver coordinates are assumed to be known, and the ambiguities are 

removed (all of which are post-processing mode), then the ionospheric free (AV^//? = 

AV0i,-f2/ft) measurement errors from Equation 2.21 can be simplified to 

AV0/F =-!-(AVT) 

1 U 
+ —(AVmL1 + AVvLl) - -/f-(AVmL2 + AVvL2) (2.29) 

For longer baseline distances, the troposphere term (AVT) will dominate the multipath 

and noise terms, which means that AV^JF is a useful tool for measuring differential 

tropospheric error (assuming that the above conditions regarding precise orbits, receiver 

coordinates, etc. are met). 

Figure 2.4 shows a 24-hour time series of the double differenced tropospheric errors, 

as calculated from the A V0/F observable (so it includes amplified multipath and noise). 

Precise (post-processed) ephemerides and an elevation cutoff of 12° were used. (Sur- 

face weather conditions during the test are given in Table A.l in Appendix A). Data is 

presented from the same four baselines as shown in the previous analysis of ionospheric 

errors. Figure 2.5 shows the probability density function for each of the time series, as 

well as the mean, standard deviation, and RMS value. As expected, the RMS value in- 

creases as the baseline distance increases. The increase is not as pronounced as in the 

ionospheric case, however. 
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Figure 2.4: Time series of double difference zenith troposphere delay (from AV(J)JF mea- 
surement) over 24-hour period for four different baselines 
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Figure 2.6: Zenith mapping function for troposphere 

Each of the values is mapped to zenith using the relation 

^yjrzy _  j  £T\£  ) + JT(S  )   i rpxy (2.30) 

where FT(e) is the simplified troposphere mapping function (Spilker Jr., 1996a) 

1 
FT(s) 

sine 
(2.31) 

This function is plotted in Figure 2.6. 

2.4   Measurement Noise 

Measurement noise is any noise which is generated by the receiver itself in the process of 

taking code or phase measurements. It is considered to be white noise for the sampling in- 

terval normally present in GPS receivers (maximum of 20Hz). There is also no correlated 

noise between separate measurements taken at the same point in time, because indepen- 

dent tracking loops are used for each separate measurement, and the noise is primarily 

generated by tracking loop jitter. 

White noise can be effectively measured through the use of a "zero-baseline" test. In 

this test, the GPS signal from a single antenna is split and sent to two different GPS re- 

ceivers. When measurement-minus-range values are calculated using data from these two 

receivers, then all error terms in Equations 2.14 and 2.17 cancel, except for measurement 

noise. (The carrier-phase ambiguities also remain, but these can easily be determined and 
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eliminated by rounding the double differenced measurement-minus-range values). The 

resulting equation for the phase measurement is 

AV« = AVttf = v§ - vl - («f - vf), (2.32) 

and the equation for the code measurement is 

AVfJ* = AVt# = vl - v\ - {vl - v\). (2.33) 

Note that in the above two equations, the v variables represent independent realizations of 

measurement noise, which are completely uncorrelated between measurements. 

Measurement noise is increased as the signal-to-noise ratio (SNR) decreases (Spilker Jr., 

1996b). Because the SNR tends to decrease with elevation, measurement noise can be ex- 

pected to increase with elevation. 

In order to characterize the measurement noise, data was collected for a period of 

six hours in a zero-baseline test using two Ashtech Z-12 receivers. Measurement-minus- 

range values were double differenced, and the phase measurement integer ambiguities 

were removed by rounding. The highest visible satellite was used as the base satellite in 

all cases. 

The top plot in Figure 2.7 shows the raw double differenced measurement noise as a 

function of the elevation of the lower satellite. To analyze the measurement noise as a 

function of elevation, the raw data was divided into separate 2° elevation bins. The first 

bin included all measurements in which the lowest satellite elevation was between 10° 

and 12°, the second bin was between 12° and 14°, and so on. Statistics were calculated 

for the samples in each elevation bin. The second plot in Figure 2.7 shows the number of 

double differenced measurements in each elevation bin, and the third plot shows the stan- 

dard deviation of the double-differenced measurement noise between the high-elevation 

satellite and the low-elevation satellite. While this is useful, what is really desired is the 

statistics of the measurement noise for an individual measurement. 

To calculate this, an assumption is made that the variance (i.e. square of the stan- 

dard deviation) of the measurement noise is constant at elevations greater than 50°. This 
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Figure 2.7: LI phase zero baseline test results using Ashtech Z-12 receiver 

assumption is supported by the third plot in Figure 2.7. Using the covariance law (and 

the fact that the measurements are uncorrelated), the variance of the double differenced 

high-elevation satellites (rj^^. h) can then be expressed as the sum of the four single 

measurement variances in Equation 2.32 

(°lDhigXi = Kji + Ki3h)i + Ki9h)i + Kigh)i       (2.34) 

where o\h.gh is the measurement noise variance of a single high elevation satellite. Be- 

cause the variance of the measurement noise is constant for high elevation satellites (by 

assumption), this can be rewritten as 

2, A    2 
aDDhigh = *avhigh 

(2.35) 

or, equivalently, 

_ uDDhigh 

Vhigh (2.36) 
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The high elevation satellite was at an elevation greater than 50° for all of the data that 

was collected. Applying Equation 2.34 to the case of any double difference measurement 

between a high satellite (x) and another satellite (y) results in 

&D)1 = KJI + (OZ + KJI + W)Z (2-37) igh'a,       \   v/a       \   vhighJ 

""high = 2<ioh + 2^2 (2-38) 

The variance of the measurement noise for a single measurement (a%) can then be solved 

using 

2      _ o_2 

o> = *2£_fZ2a* (2.39) 

The standard deviations corresponding with the values of al vs. elevation are shown in 

the bottom plot of Figure 2.7. 

The same procedure was repeated for the L2 phase measurement and the three code 

measurements from the Ashtech Z-12, and the standard deviations of the single measure- 

ment noise are shown in Figure 2.8. Note that the code measurement noise is on the order 

of metres, while the phase measurement noise is on the order of millimetres. For both 

code and phase measurements, the signals generated from the P codes are significantly 

noisier than the signals generated from the CA code. This is because the Ashtech receiver 

(and other non-authorized dual-frequency receivers) can only track P-code measurements 

in a semi-codeless mode (Van Dierendonck, 1994), and it relies upon cross-correlation to 

remove the encryption code (Van Dierendonck, 1994). 

A probability distribution function was also calculated for LI CA-code, LI semicode- 

less P-code, LI phase, and L2 phase double differenced noise measurements, and the re- 

sults are shown in Figure 2.9. Note that they each appear to follow a Gaussian distribution 

and are zero-mean. The zero-baseline test was also performed on other dual-frequency re- 

ceivers, with no significant differences in the results. 
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2.5   Multipath 

Multipath is the error caused when the GPS signal arrives at the receiver via more than one 

path, normally caused by reflections near the receiver. As a result, it is highly dependent 

upon the conditions surrounding the receiver antenna, the type of antenna that is used, 

and the internal tracking loop algorithms of the receiver. This makes multipath a difficult 

error to remove, because there is no model that can be used for the general case. 

2.5.1   Carrier-Phase Multipath 

The direct signal from the GPS satellite to the receiver (SD) can be expressed as 

SD = Aco8<p. (2.40) 

Then, each reflected signal (SR) will be attenuated and shifted in phase (as a function of 

the geometric configuration), and this is represented by the equation 

SR = aAcos((p + 5(p). (2.41) 

In the general case, there can be any number (n) of reflected signals with different 

attenuation factors a and phase shifts Sip. The total signal at the receiver antenna (S) is 

then the superposition of all of these signals 
n 

S = A cos tp + ^2 aiA cos(<£ + Sty). (2.42) 

It is useful to examine the simple case of one reflected signal to gain insight into 

multipath errors. Starting with the superimposed direct and reflected signal 

S = A cos tp + a,A cos(<£ + Sip) (2.43) 

(following the development in Hoffman-Wellenhof et al. (1994)), application of the cosine 

theorem yields 

S = A cos tp + a. A cos tp cos Sip — a A sin tp sin Sip (2.44) 

= (1 + a cos Sip) A cos tp — (a sin Stp) A sin tp. (2.45) 
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Because the direct and reflected signals have the same frequency, the superposition of 

them can also be written in the form 

S = aMA cos(ip + SipM), (2.46) 

where (%M is the attenuation factor of the signal due to multipath, and 5(pm is the induced 

phase shift of the signal due to multipath. 

Comparing the coefficients for A sin (p and A cos <p in Equations 2.45 and 2.46 results 

in the two simultaneous equations 

(*M sin 5ipm = a sin 5cp 

CXM cos 5(pm = 1 + a cos 5ip, (2.47) 

which, when solved for A sin ip and A cos ip yields 

am = i/l + a2 + 2a cos 5<p (2.48) 

and 

a; sin Jo? ,_ ..x tan 5<pm = — V (2.49) 
1 + acosocp 

The variation in amplitude for a variety of attenuation factors (a) and reflected signal 

phase shifts is shown in Figure 2.10. Note that the amplitude is actually larger when the 

reflected signal phase shift is small. More importantly (in terms of measurement errors), 

the phase shift in the combined signal induced by the reflected signal is shown in Fig- 

ure 2.11. In general, the tracking loops within the receiver will track the combined signal, 

and any induced phase error will show up as a multipath error in the phase measurement. 

According to Figure 2.11, the maximum multipath error (for a reflected signal with 

the same strength as the direct signal, i.e. a = 1) is 90°, which would correspond to about 

5 cm when converted from LI cycles to metres. However, in most real-world applications, 

the reflected signal will be attenuated to some extent, and typical phase multipath values 

are more on the order of 1 cm or less (Lachapelle, 1994). 
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2.5.2 Code Multipath 

Code multipath is similar to carrier-phase multipath, only its magnitude tends to be sev- 

eral orders of magnitude larger. Just as the carrier-phase multipath is a fraction of the 

wavelength, code multipath is limited by the chipping rate. The higher the chipping rate, 

the lower the maximum multipath (Leick, 1995). As a result, code multipath tends to 

be much smaller for P-code pseudorange measurements (which have a chipping rate of 

10.23 MHz) than for CA-code measurements (which have a chipping rate of 1.023 MHz). 

Several signal processing techniques within the receiver can be used to reduce the code 

multipath, such as narrow correlator spacing (Van Direndonck et al., 1992). 

2.5.3 Samples of Multipath from Field Data 

If two receivers are separated by a short enough baseline to remove all of the correlated 

(atmospheric and satellite position) errors, but long enough to assure that the multipath is 

decorrelated between the receivers, then double difference measurements will be primar- 

ily a measure of multipath and measurement noise. For short baselines, Equations 2.17 

and 2.14 reduce to 

AV« = AVntf + AVttf (2.50) 

AVjSft = AVroJSf + AVttf (2.51) 

Two different short baseline tests were conducted at The University of Calgary. In 

the first test, two Trimble 4000 SSi receivers were placed at sites separated by approxi- 

mately 600 m. One receiver was mounted on a concrete pillar on the roof of the 3-story 

Engineering building, and the other was mounted on the roof of a 1-story weather station 

using a tripod. Both receivers used standard Trimble dual frequency groundplane anten- 

nas. Data was collected at two second intervals over a period of six hours on Jan 13th, 

1998. The double differenced measurement-minus-range values were calculated for the 

code measurements (AVp) and the phase measurements (AV0). 
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The analysis described by Equations 2.34-2.39 in Section 2.4 was applied in the same 

manner for this short baseline data. The only difference was that in this case, the AVp 

and AV0 values included both multipath and noise. 

Results for the Trimble test are shown in Figure 2.12. The top plot shows the single 

measurement LI CA-code and semicodeless L2 P-code multipath + noise as a function 

of elevation. These particular measurements were carrier-smoothed, which resulted in 

relatively low multipath + noise values. The bottom plot shows the phase multipath + 

noise values. Note that these are an order of magnitude higher than the pure measurement 

noise values seen in Figure 2.8. 

A second test was performed the following day during the same time period us- 

ing Ashtech Z-12 receivers with standard dual-frequency Ashtech antennas. Results are 

shown in Figure 2.13. The Ashtech Z-12 generates LI P-code (semicodeless) in addition 

to the LI CA-code and L2 P-code (semicodeless). The top plot shows all of the code mea- 

surement statistics, and the bottom plot shows that phase measurement statistics. Recall 

from Figure 2.8 that the CA-code measurement noise was significantly lower than either 

of the P-code measurement noises, because the P-code measurements are semicodeless. 

When multipath is added, however, the semicodeless P-code measurements are slightly 

better than the CA-code measurements. This demonstrates that CA-code multipath is sig- 

nificantly higher than P-code multipath in this case. The Ashtech phase multipath + noise 

values are somewhat higher than the Trimble values, but still have maximum standard 

deviations of only 12 mm at low elevations. 

Finally, probability distribution functions were generated for the short baseline Trim- 

ble data, and the results are shown in Figure 2.14. Note that in all cases, the distribution 

appears Gaussian and the errors are double difference errors are close to zero-mean. 
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Figure 2.13: Single measurement multipath + noise statistics vs. elevation for Ashtech 
Z-12 receiver (600 m baseline) 
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2.6   Satellite Position Error 

In order to generate measurement-minus-range values, the positions of the satellites are 

calculated using the broadcast navigation message, which includes Keplerian orbital ele- 

ments and time derivatives for some of these elements. The broadcast navigation message 

is generated using measurements from five monitor stations located around the world, and 

it is updated once every two hours (nominally). This broadcast orbit has a slant range 

RMS accuracy of approximately 2.1 m (Bowen et al., 1986). 

Errors in the broadcast orbits will cause errors in the double differenced measurement- 

minus-range values. It is possible to determine what the orbital errors were for a particular 

period of time through the use of precise orbits, which are calculated using many reference 

stations and many days of data before and after the time period. These precise orbits 

typically have an RMS accuracy of 6 cm (Rothacher, 1997). The satellite position error 

can be calculated by differencing the position generated from the broadcast navigation 



48 

messages and the position generated from the precise orbits. The double differenced 

satellite position error is then calculated by projecting the 3-dimensional orbital error 

onto the line of site vectors between the receivers and the satellites, and then double 

differencing. 

Double differenced satellite position errors were calculated over a 24 hour period, us- 

ing the same data set presented in Section 2.3. Results for a 461 km baseline are shown 

in Figure 2.15. Note that the errors make step jumps at two hour intervals, corresponding 

to a new broadcast navigation message upload. Note also the unusually large errors be- 

tween 23:00 and 24:00. These are due to an unusually large position error in the PRN 14 

satellite, and the error is corrected at the 24:00 update. 

The same plot was generated for three additional baselines, and the results (along 

with the 461 km baseline) are presented in Figure 2.16. The corresponding probability 

distribution functions and statistics are shown in Figure 2.17. These figures show that the 

satellite position error is clearly a function of baseline distance. 
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Chapter 3 

The NetAdjust Method 

This chapter begins with a discussion of optimal estimation, showing that a Linear Min- 

imum error Variance (LMV) estimator is the optimal minimum error variance estimator 

under certain conditions. A full derivation of the optimal LMV estimator is not given— 

rather, the emphasis is on describing the estimation problem, defining the conditions of 

optimality and presenting the final result. 

After this mathematical background, a description of the NetAdjust method is pre- 

sented. This begins by carefully defining the values to be estimated for performing net- 

work differential GPS, followed by the application of the optimal LMV estimator to the 

problem. 

Next, a covariance analysis method is described. This covariance analysis predicts 

what the performance of the network will be when positioning a mobile receiver, and it 

forms the basis for all of the analysis that is performed in Chapter 5. 

The key element in the NetAdjust method is the measurement covariance matrix which 

contains the information about the reference network geometry. The fourth section in this 

chapter shows how a functional form of this covariance matrix can be generated, in order 

to calculate the covariance elements for any general receiver configuration within the 

network. A method for using field data to determine the parameters of the covariance 

function is then presented. 

Finally, the NetAdjust approach will be interpreted in the least squares context, in- 
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eluding the least squares condition adjustment and least squares prediction (collocation). 

The least squares condition adjustment interpretation is particularly useful to help provide 

insight into how the NetAdjust method works. 

All of the equations in this chapter refer to phase measurements, which can be either 

single frequency or widelane phase measurements. The equations apply equally well to 

GPS code measurements, except that with code measurements there are no cycle ambigu- 

ities, so the ambiguity terms (N or A VAT) can be ignored. (There is also a sign change in 

the ionospheric errors which is explicitly considered when applicable). When applied, the 

NetAdjust method is used to correct the LI code, LI phase, and WL phase errors inde- 

pendently (see Chapter 4 for more details). However, the underlying algorithms presented 

in the current chapter are the same for all three types of measurements. 

3.1   Mathematical Background 

3.1.1   Optimal Estimation 

The basic elements of a statistical estimation problem include (Minkler and Minkler, 

1993)1: 

• An unknown parameter (vector) x, whose value is to be estimated. 

• Observations Y containing information about x. 

• An estimator e(Y) which provides an estimate of x from Y. It is essentially a func- 

tion which assigns every set of observations Y to an estimate of the parameters x, 

i.e. x = e(Y) as shown in Figure 3.1. 

• The estimate of the x, x, which is the output of the estimator e(Y). 

'The references presented in this section are those used by the author, and they are not necessarily the 

original sources. 



53 

• A loss function L(x, x) that provides a value representing the loss incurred when an 

estimate x is assigned to the true value x. (Sometimes this is called a cost function). 

Criteria for optimal estimation. 

Figure 3.1: Definition of estimator 

In the following sections, a Linear Minimum error Variance (LMV) estimator (i.e., an 

estimator that minimized the estimation error variance) will be defined. In contrast, "least 

squares" estimation techniques explicitly minimize a quadratic form of the measurement 

residuals. Both the least squares and the LMV frameworks result in the same final esti- 

mator, but the LMV framework will be the one presented, because it fits more naturally 

into the context of the differential GPS network problem. 

3.1.1.1   Bayesian Estimators 

The loss function L(x, x) given in the previous section is used to determine the criterion 

for optimal estimation. It is called the loss function, because it represents the loss incurred 

by the estimator e(-) in its estimate of x. 

In Bayes estimation theory, it is assumed that either x or Y are random quantities, 

with a joint probability density function fx>Y (£, ij>) (where £ and t/> are dummy variables 

used in the definition of probability distribution/density functions). The "Bayes risk" B(e) 

for any estimator e(-) is defined as the expected value of the loss function (Minkler and 

Minkler, 1993): 

B(e) ± E[L{x,e(Y))] (3.1) 

= j J L(£, e(</>))/*,v(£, t/>)dtdif> (3.2) 
x   Y 



54 

Then, among a set of all possible estimators S for a given estimation problem, a Bayes 

estimator is an estimator in S that minimizes the Bayes risk (which is defined by the loss 

function). 

3.1.1.2   Minimum Error Variance Estimators 

Many reasonable loss functions can be generated. A loss function which is of particular 

interest is the squared error loss function, which is defined as 

L(x,e(Y))±\x-e(Y)\2, (3.3) 

where \x - e(Y)| is the magnitude of the vector x - e(Y). 

Then, combining Equations 3.1 and 3.3, an estimator e(Y) is a minimum variance of 

error estimator of x if it minimizes 

E[\x - e(Y)|2] = E[(x - e(Y))T(x - e(Y))}. (3.4) 

The error covariance matrix for an estimator e(Y) is defined as the matrix 

E[(x - e(Y))(x - e(Y))T}. (3.5) 

Note that minimizing E[\x - e(Y)|2] is the same as minimizing the trace2 of the error 

covariance matrix, because 

E[\x - e(Y)\2] = traceE[(x - e(Y))(x - e(Y))T]. (3.6) 

It can be shown that the optimal minimum variance of error estimator eop(Y) is (May- 

beck, 1994; Minkler and Minkler, 1993) 

Cbp (Y) = J$fx\Y($\Y)d$ = E[x\Y], (3.7) 

where /x|y(£|Y) is the conditional probability density function of x and £[cc|Y] is the 

conditional mean of x, conditioned on the observations taking on the realized value Y. 

2The trace of a matrix is defined to be the sum of the diagonal elements. 
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3.1.1.3   Linear Minimum Error Variance (LMV) Estimators 

A linear minimum error variance (LMV) estimator is any estimator that minimizes the 

Bayes risk 

B(e) = E[\x - e(Y)|2] (3.8) 

from all estimators that are of the form 

e{Y) = a + ßY (3.9) 

(which is the form of a linear estimator). An LMV estimator results in a squared error 

Bayes risk which is greater than or equal to that of a minimum variance of error estimator 

.E[a;|Y]. However, it can be shown that if x and Y are jointly Gaussian,3 then the LMV 

estimator is equal to the minimum variance of error estimator i?[a;| V], and it is therefore 

also the optimal estimator for minimizing the squared error Bayes risk (Maybeck, 1994; 

Minkler and Minkler, 1993). Therefore, under these conditions, 

x = eop(Y) = a + ßY. (3.10) 

Finally, the solutions for a and ß are (Minkler and Minkler, 1993) 

a = E[x]- CX,YC^EIY] (3.11) 

ß = Cx>YCy\ (3.12) 

where 

Cx 4 E[{x - E[x])(x - E[x])T], (3.13) 

CY = E[(Y - E[Y]){Y - E[Y])T),  and (3.14) 

CX,Y A E[(x - E[x])(Y - E[Y])T}. (3.15) 

3 Jointly Gaussian means that the joint distribution function /«.y (^, tf>) is Gaussian, or equivalently, the 

x 
vector is Gaussian. 



56 

If both x and Y are zero-mean (E[x\ = 0 and E[Y] = 0), then the above equations 

are simplified to 

x = eop(Y) = C^YCY'Y, (3.16) 

where 

Cx = E[xxT]       CY = E[YYT]       CX,Y = E[xYT]. (3.17) 

3.1.2   Double Difference Matrix (B) 

In a differential GPS scenario, two or more receivers collect nearly simultaneous mea- 

surements from common satellites at each time epoch. In a single reference case, there 

is one reference receiver and one "mobile" receiver.4 In a network case, there are two 

or more reference receivers, and one mobile receiver. The network case (which is more 

general) will be used here. First, all phase measurement-minus-range-observables from 

the reference receivers are placed into a single vector ln (standing for ^-network) 

£n = [ft... #», #... 4>r, • • • , 4L. ■ ■ ■ fc]T (3-18) 

where ^ is the phase measurement-minus-range observable from receiver a to satellite x, 

nrec is the number of receivers in the network, and nsv is the number of visible satellites. 

Note that the derivation in this chapter is performed using phase measurements (</>). The 

same operations apply to code measurements (p) as well. Note also that Equation 3.18 

implies that all reference receivers receive measurements from exactly the same satellites. 

This is not true, in general, and the actual ln vector may not be of the exact form as that 

shown in Equation 3.18. 

Next, all of the linearly independent5 double difference combinations of ln are placed 

4In this thesis, the "mobile" receiver refers to the receiver to be positioned. In some special applications, 

the receiver to be positioned may actually be stationary. 

5Linear independence means that no double difference can be expressed as a linear combination of any 

of the other double differences. 
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into the vector AV4 

AV4 = [AVflU... AVflS", AVfla • • • AVffi",... , AV«^rec ... AVfeJ 

(3.19) 

where ftf is the double difference of the measurement-minus-range observables from 

receivers a and b and satellites x and y (as defined in Equation 2.12). As before, some of 

these elements may be missing if not all of the satellites are visible to all of the reference 

receivers. 

The double difference matrix B„ for the network is then defined as 

A 9AV4 
Br d£n 

(3.20) 

Since double difference measurements (AV4) are direct linear combinations of the mea- 

surements themselves (£„), the Bn matrix is made up entirely of the values +1,-1, and 0. 

For example, suppose that there is a very small network with three receivers (a, b, and 

c), each generating measurements from three satellites (x, y, and z). The measurement 

vector in this case is 

*»=[# ft ft ft % H ft ft ft. 

One possible double difference vector is 

(3.21) 

AV4 = AVft!  AVftj  Avfty  AV<£ 
iT 

(3.22) 

(There are other possible sets of four linearly independent double differences, but the 

results would be the same). Then, according to Equation 3.20, the Bn matrix is 

Bn = 

1-10 1-10 0 0 0 

10-110-100 0 

1-10 0 0 0 1-10 

10-100      010-1 

(3.23) 
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Note that the B„ matrix is of size n^ x nm, where n^ is the number of double differences 

and nm is the number of measurements. For a network in which all receivers receive 

signals from a common set of satellites 

nm = (nrec)(nsv) (3.24) 

ndd = {nrec-l)(nsv-l). (3.25) 

Note also that the double difference vector can be formed by multiplying the measurement 

vector by the Bn matrix 

AWn = Bnen. (3.26) 

For this reason, the Bn matrix is called a "double difference matrix." 

3.2   Derivation of NetAdjust Method 

3.2.1   Definition of Differential Measurement Errors 

In this section, the GPS measurement errors are expressed in such a way as to separate 

out errors which are canceled during double differencing from those that are not canceled 

when double differencing. In Chapter 2, Equation 2.16, the phase measurement was given 

as 

(j)=\(R + T--^ + cStrec - c5tsv + m + v) + N. (3.27) 
A r 

If the calculated range is subtracted from this measurement, and a nominal value of T is 

removed using a tropospheric error model, then, from Chapter 2, the measurement-minus- 

range observable is 

<£ = T (T' - — + cötrec - c5tsv + m + v-6Psv) + N. (3.28) 

Note that there would also be a receiver position error term Sprec were it not for the 

assumption stated in Section 1.2.3.1 that the receiver coordinates are known. Note also 
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that the tropospheric error is denoted as T", indicating the residual tropospheric error, after 

subtracting the modeled error. Equation 3.28 can be broken into four parts 

4> = <^ciock + 5c(/)(prec) + 5U<I) + N (3.29) 

where 

£<?Wk = -r(c5trec - cStsv) (3.30) 

MiPrec) = \{T'-j5-Sp„) (3.31) 

M=j(ro + v). (3.32) 

The first term, 5^ci0Ck, includes the clock errors which will be completely canceled in the 

double differencing process. The öc(ß(prec) is the correlated error term, and it includes all 

of the errors which are purely a function of the receiver position prec. These are called 

correlated errors, because they are correlated between receivers that are close together. 

Correlated errors include satellite position error, ionospheric error, and tropospheric error. 

The third term, 8u(f>, is the uncorrelated error term. This includes all errors which are 

not canceled in the double differencing process and which are not a function of receiver 

position (hence uncorrelated). Uncorrelated errors include multipath and measurement 

noise. The integer ambiguity N is the fourth term. Note that 5c(f)(prec) and 5u(j) are 

absolute errors. That is, they are the whole valued errors before any differential canceling 

occurs. 

Next, the point p0 is defined as a fixed position from which all of the differential errors 

will be referenced. It will be called the "zero-point". It should be chosen to be somewhere 

near the center of the network, in order to minimize the distances to the reference receivers 

(and any mobile receiver position). The results are not very sensitive to the location of pQ, 

however. Define the relative error term 

dc(f>{Prec,Po) ~ <*c<KPrec) ~ Sc<f>(PQ)- (3.33) 



60 

Combining Equation 3.29 and 3.33 yields 

0 = <tyciock + 5c(f>(p0) + dc(j)(prec, p0) + 5u(j) + N. (3.34) 

Everything done up to this point has involved a single measurement from a single 

receiver, and the goal was to separate out errors which are canceled when double differ- 

encing from those which are not canceled when double differencing. If a double differ- 

ence measurement is formed between any two receivers and any two satellites, the double 

difference equation is 

A V<£ = AV<tycioCk + AV6c<f>(p0) + A Wc0(prec, p0) + AVSu<f> + AVN.     (3.35) 

Note, however, that AV<5<?Wk = 0, because the clock terms cancel out (reference Sec- 

tion 2.1.1.1). Also, AV5c<£(p0) = 0, because it is the whole valued error at the reference 

point p0, and as such it is not a function of the receiver position. When double differencing 

is performed, this term will be common to both receivers, so it will cancel. Therefore, 

AV<£ = AVdc(f>(Prec,p0) + AV<W + AViV. (3.36) 

Equation 3.36 includes all of the relevant errors when double differencing GPS mea- 

surements. If these errors can be estimated (and corrected), then the double difference 

measurements will be perfect (i.e. have zero error). Of the three terms on the right hand 

side of Equation 3.36, only the AVdc<f)(prec,p0) and AV6u<f> terms will be estimated by 

NetAdjust. The integer ambiguity term AVJV will be assumed to be known (in the case of 

the reference network-see Section 1.2.3.4) or will be the quantity that the mobile user will 

attempt to determine. Solving for the integer ambiguities between a reference receiver and 

the mobile user becomes easier the more the other two error terms are reduced. 

3.2.1.1   Relationship Between Measurements and Errors 

The measurements involved in a differential GPS network are either measurements from 

the network (reference) receivers or measurements from a mobile receiver. The position 
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of the mobile receiver is called the 'computation point," because it is the point for which 

the differential errors should be computed. 

All of the phase measurement-minus-range observables for measurements from the 

network are placed into the £n vector (as described in Section 3.1.2). In a similar manner, 

all of the measurement-minus-range values that would be generated by a mobile receiver 

are placed into a vector £cp. The subscript cp stands for "computation point", and the tilde 

O above the measurement denotes that it is a measurement that is unavailable for use in 

the network estimation process (i.e. it exists, but it cannot be used except by the mobile 

user). These two vectors can then be combined to form the complete measurement vector 

£ = 
£ 

I 
(3.37) 

Note that £ is a combination of available measurements (£n) and unavailable measure- 

ments (£cp)- 

Combining the definition of £ (Equation 3.21) with Equation 3.34 yields 

£ = <tyciock + Sc<f>(p0) + dc<f>(p, p0) + 5u(f> + N, (3.38) 

where the boldface error terms are now vector quantities corresponding to each phase 

measurement from the network. Note that the position at which the measurement was 

taken is denoted p, whether it was at a reference receiver (prec) or a computation point 

(pcp). The clock errors and ambiguities keep the raw £ vector from being directly useful. 

However, double differencing yields (following Equation 3.36) 

AW = AVdc<f>(p, pQ) + AVÖu</> + AViV, (3.39) 

where the boldface error terms are again vector quantities. Define AV&£ as the double 

difference errors to be eliminated (see Equation 3.36) 

AV5£ = AVdc(j>{p, p0) + AV8u(j>. (3.40) 
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Then, from Equation 3.39, 

AV6£ = AW - AVJV. (3.41) 

Equation 3.41 is key, because it states that the double differenced measurement-minus- 

range observables AV£ are equivalent to the double difference errors AV5£, after cor- 

recting for the integer ambiguities AViV. 

3.2.2   Definition of Network Optimal Estimization Problem 

When performing differential positioning or ambiguity resolution between the mobile 

receiver and one or more reference receivers, selected measurements from £ will be com- 

bined to form the double difference observables AV£cp. Using the double difference 

operator notation presented in Section 3.1.2, this can be written 

L\y Z.Cp — !5Cp-Cj (3.42) 

where Bcp represents the linear combinations of £. Because AV£cp is used for positioning 

or ambiguity resolution of the mobile receiver, all of the double difference measurements 

will be formed using two measurements from a network reference receiver (from £n) and 

two measurements from the mobile receiver (from £cp). Therefore, Bcp can be separated 

into two parts, such that 

AWCP = "cpi      "cp2 

t-cp 

(3.43) 

where Bcpi corresponds to the measurements from the network, and Bcp2 corresponds to 

the measurements from the mobile receiver. From Equation 3.41, the double difference 

measurements can be written instead in terms of double difference errors 

AV5£cp + AVNcp = Ocpi      t>cp2 

£ 

I cp 

(3.44) 
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The term AV5£cp represents errors in the measurements that are not canceled by dou- 

ble differencing. Large AV5£cp make ambiguity resolution difficult and reduce position 

accuracy. 

The network algorithm will generate estimated measurement errors 5£ for the mea- 

surements in £, and applying them will give the corrected measurement vector £ 

£ = £- 5£. (3.45) 

When these corrected measurements are double differenced, the resulting corrected dou- 

ble difference measurement vector AV£cp is then 

AWcp = Bcp£ (3.46) 

= Bcp[£-6£\. (3.47) 

The error estimates can themselves be double differenced by 

AV5£cp = Bcp8£, (3.48) 

and after combining this result with Equations 3.44 and 3.47, the corrected double differ- 

ence measurements are 

AV5~£cp - AV8£cp + AViVcp = Bcp[£ - 6£]. (3.49) 

Note that the vector AV£cp cannot be directly calculated without access to the mobile 

receiver measurements (which the network does not have). 

Equation 3.49 shows that after applying the corrections 8£ to the measurements, the 

total double difference estimation error err(AV5£cp) is 

err(AV54p) = AV5£cp - AVö\p, (3.50) 
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and the covariance6 of this estimation error is (by the definition of covariance) 

Cerr(Av«cp) = E[err(AV5£cp)err(AV5£cp)
T] 

= E[(AV5~£cp - AV5£cp){AVS£cp - AVS£cp)
T] (3.51) 

Note that the trace of the Cerr(Av«cp) matrix is the sum of the error variances. 

The differential GPS network optimization problem can then be stated as follows: 

given only the network measurement-minus-range observables £n, generate an estimate 

of the differential measurement errors 6£ that minimizes the trace of the error covariance 

matrix Cerr(AVttcp)- 

The operational concept is that the network is used to calculate measurement correc- 

tions 6£, which are then transmitted in some form to the mobile user, who applies them in 

the process of generating double difference measurement-minus-range observables. In so 

doing, minimizes the double difference measurement errors. 

3.2.3   Solution to Network Optimal Estimation Problem 

The previous section dealt with the double difference matrix Bcp which generates dou- 

ble difference measurements between the mobile receiver at the computation point and 

one or more reference receivers. Recall from Section 3.1.2 that there is also a double 

difference matrix Bn which generates all possible linearly independent double difference 

combinations using measurements from only the network reference receivers. After the 

application of Equation 3.41, the double differenced network measurements are 

AVS£n + AVNn = Bn£n. (3.52) 

6This is the error covariance as long as the estimator that generates AVS£cp is an unbiased estimator 

(i.e. E[err(AWÖ£cp)} = E[AVS£cp - AV<ftcp] = 0). If this is not true, then Equation 3.51 is actually a 

correlation matrix. (The estimator used by NetAdjust (Section 3.1.1.3) is an unbiased estimator (Minkler 

and Minkler, 1993)). 
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This equation is important for two reasons. First, recall that the goal is to calculate 5£n 

and S£cp. Equation 3.52 provides observability to the 5£n errors, albeit through a double 

difference. In fact, double differencing is really the only way that the differential errors 

5£n or S£cp can be directly observed. Secondly, this equation shows how AV8£n can be 

generated using data from the reference network. The AV£n term is made up of double 

differenced phase measurement-minus-range observables from the network reference re- 

ceivers, and the AViV term represents the double difference integer ambiguities between 

the network reference receivers receivers (which are assumed to be known, as stated in 

Section 1.2.3.4). Therefore, because AV<5£n can be generated using the network mea- 

surements and network ambiguities, and it is the only way to gain observability to the 

errors of interest, it then becomes the observable in the network estimation process (even 

though the ultimate goal is to calculate Si). 

Two different estimators will be derived. The first, called ei(-), uses observables 

AV5£n to generate estimates of the double difference error AV5£cp. The second esti- 

mator, e2(-) uses the same observables AV5£n to generate estimates of the measurement 

error vector 5£. It is necessary to derive these two estimators, because the relationship 

between them gives the final solution to the network estimation problem. Table 3.1 sum- 

marizes the two estimators. 

Table 3.1: Two estimators to be derived (x = e(Y)) 

Estimator   Observables (Y)   Parameters to be Estimated (x) 

ei(-) AV8£n AV6£cp 

e2(-) AV5£n S£ 
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3.2.3.1    Characteristics of 8£ 

In the derivations that follow, it will be useful to understand what the 8£ vector is and 

what its statistical characteristics are. A combination of Equations 3.40 and 3.48 results 

in 

AVdc0(p, Po) + AV5„0 = AV6£ = B8£, (3.53) 

where B is a double difference matrix. This equation holds true if 8£ is defined to be 

S£±dc<j>(p,p0) + 8u<j>. (3.54) 

The dc(j>(p,p0) term includes differential ionosphere, troposphere, and satellite position 

errors relative to point p0. The 8u<p term represents multipath and noise, which are un- 

correlated between different measurements (so they do not cancel out in the double dif- 

ferencing). The following two assumptions will be made about the 81 vector: 

1. It is well-described as a Gaussian random vector with covariance matrix C«. 

2. It is a zero-mean vector (i.e. E[8£] = 0). 

Both of these assumptions will be discussed in the paragraphs that follow. 

3.2.3.1.1 8£ is Gaussian Random Vector. There are two primary justifications for 

considering 8£ to be a Gaussian random vector. First, it is a linear combination of many 

different independent error sources (satellite position, ionosphere, troposphere, multipath, 

noise), and a linear combination of independent noise sources tends toward a Gaussian 

distribution according to the central limit theorem.7 Secondly, each of the error sources 

was separately analyzed in Chapter 2 using double differences, and sample probability 

distribution functions were generated for each of them (see Table 3.2 for figure reference 

information). All of the double differenced errors followed a Gaussian trend. 

7The central limit theorem essentially states that the more independent error sources there are, the more 

the combination of them appears Gaussian (Maybeck, 1994). 
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Table 3.2: Locations of plots showing double difference error probability distribution 

Error Type Figure Number Page Number 

Satellite Position Error 2.17 50 

Ionospheric Error 2.2 32 

2.3 32 

Tropospheric Error 2.5 35 

Multipath 2.14 47 

Measurement Noise 2.9 40 

3.2.3.1.2 5£ is Zero-Mean A necessary but not sufficient condition for 8£ to be zero- 

mean is that any double differences AVS£ are zero-mean, because 

E[AW5£) = E[B8£] = BE[5£}. (3.55) 

The double difference probability density plots referred to in Table 3.2 do show that the 

mean values of the double differenced errors are zero (or are very close). In addition, 

there is nothing inherent in the terms AVdc<f)(p, p0) and AV8u<f> which would keep them 

from being zero-mean. For example, there is no reason that the tropospheric error at point 

p would always be greater than the tropospheric error at point p0. Therefore, the vector 

S£ will be considered to be zero-mean. 

3.2.3.2   Covariance Transformations from C, si 

In the previous section, the measurements error vector 6£ was assumed to be Gaussian 

with covariance matrix Csi- This means that, by the definition of a covariance matrix, 

Csi = E[(8£ - E[5£])(5£ - E[6£])T]. (3.56) 
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However, the vector 8£ was also assumed to be zero-mean (E[S£] = 0), so the covariance 

equation reduces to 

CH = E[(8£)(8£)T}. (3.57) 

In the derivations that follow, it will be useful to know the covariance matrix of mea- 

surements that are a linear combination of the measurements in 8£. For example, the 

errors from double differencing the measurements from the network reference receivers 

are 

AV8£n = Bn8£n. (3.58) 

The covariance matrix of these double difference errors (CAVJ^J is, by definition, 

CAV% = E[(AVÖ£n - E[AV8£n])(AV8£n - E[AV8£n])T]. (3.59) 

This can be transformed using Equation 3.58, combined with the fact that the expectation 

operator E[-\ is a linear operator, as follows: 

CW„ = E[{AV8£n - E[AV8£n])(AV8£n - E[AV8£n])T]. 

= E[(Bn8£n - E[Bn8£n])(Bn8£n - E[Bn8£n])T] 

= E[(Bn8£n - BnE[8£n])(Bn8£n - BnE[8£n))T] 

= E[{Bn8£n){Bn8£n)T] 

= E[{Bn8£n){8£T
nB

T
n)] 

= BnE[(8£n)(8£nf)}Bl 

= BnC5£nBl (3-60) 

The same reasoning applies to cross-correlation matrices as well. 

A summary of the relations between the various error vectors and error double-difference 

vectors discussed in the previous sections are shown in the following equation: 

AV8£ = 
AVS£n 

AV8£ cp 

Bn      0 

"Cpi       "CP2 

8£n 

8£cp 
= B8£. (3.61) 
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These relationships can be used to calculate two other cross-covariance matrices (all based 

upon the Cst matrix or a subset of it) which will be useful later: 

'AV<5£cp,AV«n ■t*Cpi       &CP2 '6£ 
o 

'«,AV«„ = C$i 
0 

(3.62) 

(3.63) 

3.2.3.3   Solution for ei (•) 

Recall from Section 3.1.1 that for zero-mean, jointly Gaussian x (parameters) and Y (ob- 

servations), the estimator e(Y) which minimizes the trace of the error covariance matrix 

is 

x = C^YC^Y, (3.64) 

where Cxy and Cy are defined in Equation 3.17. 

For this ei(-) filter, Y = AV5£n and x = AV8£cp. In order to apply Equation 3.64, 

it must be shown that AV5£n and AV8£cp are zero-mean and jointly Gaussian. From 

Equation 3.61 

AV6£ 
AV5£n 

cp 

= BS£. (3.65) 

Therefore, 

E[AV5£] = E[B5£] = BE[6£] = 0, (3.66) 

so both AV5£n and AV5£cp are zero-mean. Requiring AVÖ£n and AWS£cp to be jointly 

Gaussian is equivalent to requiring the vector made from them (i.e. AV5£) to be Gaussian. 

Since 5£ is assumed to be Gaussian, then AV5£ must also be Gaussian, because it is a 

linear transformation of 5£ (Maybeck, 1994). 
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Now that it has been shown that the observation vector AV8£n and the parameter 

vector AV5£cp are zero-mean, jointly Gaussian random variables, a straightforward ap- 

plication of Equation 3.64 can be performed 

AVSlcp = CAVS£cpAWSen(CAVSenrAV8in. 

Applying Equations 3.60 and 3.62 results in the final form of the estimator ei (•) 

(3.67) 

e^AVSin) = AV6£, cp •fcpi   -£>Cp2 '51 
o 

{BnCuBi^AVSJEn,       (3.68) 

3.2.3.4   Solution for e2() 

For this e2(-) filter, Y = AV8£n (as before) and x = 81. In order to apply Equation 3.64, 

it must be shown that AW5£n and 8t are zero-mean and jointly Gaussian. Define 

8£ 

AV5£n 

I 

Bn   0 
51 = B25£. (3.69) 

Then Z can be shown to be a zero-mean, Gaussian random vector using the same reason- 

ing as presented for the ei(-) estimator, and therefore AV5£n and 8t are both zero-mean 

and jointly Gaussian. 

Next, Equation 3.64 is applied 

5£ = CstAV&tn{CAvsin)- AV8tn. 

Utilizing Equations 3.60 and 3.63 results in the final form of the estimator e2(-) 

(3.70) 

e2(AVJ4) = S£ = C, 5t 
o 

{BnCUnK)-1AV8£n, (3.71) 

3.2.3.5   Comparison between ei (•) and e2 (•) Estimators 

Comparing Equations 3.68 and 3.71 shows that 

ei(AV<*4) = ^cpi     "cpi e2(AV8£n), (3.72) 
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or, equivalently 

AVSlcp = "cpi       "CP2 8£. (3.73) 

This equation shows that the individual measurement error estimates 8£, when double dif- 

ferenced via the Bcpi       "CP2 matrix, yield the optimal double difference error estimates 

(i.e. the estimates which minimize the trace of CeTT(&vsecp))- This is the exact goal of the 

differential network optimal estimation problem as stated in Section 3.2.2. 

"cp\      "CP2 matrix in order to solve the Note that it is not necessary to know the 

network optimal estimation problem, because any double difference vector formed from 

the 8£ vector will be an optimal estimate. Nowhere in the above derivation has the exact 

form of Bcpi   BCP2] been specified. 

3.2.3.6   Final Form of Estimator 

The estimator e2(AV&£n), then, is the estimator which will generate the estimates of the 

measurement errors 81. When these errors are used to correct the measurements before 

double differencing, the double difference errors are minimized. 

The covariance matrix Csi in Equation 3.71 can be partitioned according to the errors 

from the network measurements 8£n and the errors from the mobile receiver measure- 

ments 8£P ^cp 

Cue = 
Csen     Csin,sicP 

otcp i**n C8£ cp 

(3.74) 

where Csen,secp and Csecp,sen 
are tne cross covariances between the network and mobile 

receiver measurement errors (Cinjcp = Cj£cp seJ. The e2(-) equation can be broken into 

two parts (for calculating 8£n and 8£cp) and simplified as 

8£n = CUnBZ(BnCunBZ)-1AV5ln 

6£CP = C5tcpMJ?n{BnC5tJ?nY
l^8£n. 

(3.75) 

(3.76) 
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Finally, combining with Equation 3.52, the final form of the network optimal estimator 

(i.e. the NetAdjust method) is obtained 

6\ = CuX&nCuXr'&nln - AViVn) (3.77) 

SXP = C^sttäiBnCuXy'tßntn ~ AVJVn). (3.78) 

All of the terms on the right hand side of Equations 3.77 and 3.78 can be generated without 

using the measurements from the mobile receiver. The measurement-minus-range vector 

£n comes directly from the GPS measurements taken by the network reference stations 

(and the network station positions). The integer ambiguities between the network refer- 

ence stations Nn are assumed to be known. The double difference matrix Bn generates all 

of the possible linearly independent double difference combinations of ln, as described in 

Section 3.1.2. Bn is formed based upon which measurements are available in ln. (Note 

that the actual values of the measurements in £n are not needed-just their existence). The 

last terms are the covariance matrices Cstn and Cstcp,stN, which are actually part of the 

larger covariance matrix Cst- The Cst matrix describes the second moments of the errors, 

and it can be calculated without knowing the actual measurement values (again, just their 

existence is needed). Calculation of £n, Nn,s and Bn are straightforward and unequivo- 

cal, and the effectiveness of the NetAdjust approach is dependent upon an accurate Cst 

matrix. The method used to calculate the Cst matrix is presented in Section 3.4. 

Note that the results presented in Equations 3.77 and 3.78 can also be obtained using 

a least squares condition adjustment (see Section 3.5.1, or least squares prediction (or 

collocation) (Moritz, 1989). 

Equations 3.77 and 3.78 involve an inversion of the network double difference co- 

variance matrix BnC^nB^, so this matrix must be non-singular for the method to work. 

For NetAdjust, the covariance function (presented in Section 3.4.1) generates a positive- 

definite Cstn matrix, and Bn is a full-rank matrix that transforms Cstn into double- 

8It is not necessarily easy to calculate these integer ambiguities between reference stations, but there is 

a single, correct value for each one of them. 
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difference space, so the resulting matrix (BnC«nB^) will always be non-singular. 

A flow chart showing the interrelationships between the various measurement and cor- 

rection variables is shown in Figure 3.2. All of the operations shown within the dashed 

box are performed by NetAdjust, and all of the operations outside of this box are per- 

formed by the mobile receiver at the computation point. The £n measurement vector is 

separated into individual measurement vectors for each of the reference receivers (£ni, 

£n2, etc.) As shown in the figure, there are two vectors generated by NetAdjust: 

1. 5£cp — The corrections to be applied to the measurements collected by the mobile 

receiver at the computation point (£cp)- 

2. £ni — The corrected measurements from a single reference receiver (receiver 1 in 

this case). Only one set of reference receiver measurements is required because of 

the "data encapsulation" effect of NetAdjust, as described in Section 3.5.2. (While 

receiver 1 is shown in the figure, NetAdjust would perform equally well using any 

one of the reference receivers). 

The vector £ni is generated directly from the measurements from the reference receiver 

network, and it is independent of the computation point. The vector S£cp is generated 

from the measurements from the reference receiver network, but it is also a function of 

the computation point. If NetAdjust is used to calculate corrections for many different 

computation points (as described in Chapter 6), then the £ni vector is calculated only 

once, and only the 8£cp vector needs be recalculated for each computation point. 

Note that, if desired, the 5£cp and £ni vectors can be combined by NetAdjust as fol- 

lows: 

Then, £ni represents the total corrections for the measurements from reference re- 

ceiver 1, which, when double differenced with the raw measurements from the mobile 

receiver at the computation point (£cp), result in the same corrected double difference 
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Figure 3.2: Diagram of NetAdjust algorithm.   Operations within dashed box are per- 
formed by NetAdjust, and operations outside this box are performed by the mobile re- 
ceiver. 
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measurements that would be obtained using the procedure shown in Figure 3.2. The only 

difference between the two approaches is that in the figure, S£cp and £ni are differenced 

by the mobile receiver (in the double differencing process), whereas using Equation 3.79, 

the differencing is performed by NetAdjust prior to transmission to the mobile user. The 

advantage of using Equation 3.79 is that it requires less information to be transmitted to 

the mobile user. 

3.3    Covariance Analysis Technique 

In this section, a method for predicting differential positioning accuracy is developed 

based upon the estimators presented above, which are designed to minimize the covari- 

ance matrix of the double difference errors Cerr(Av«Cp) as defined in Equation 3.51. The 

goal in this section is to show how to calculate this covariance matrix, which will be used 

extensively in Chapter 5. 

Before deriving the various error covariance matrices, it is useful to describe the so- 

called covariance law (Krakiwsky, 1990). The covariance law states that, given a func- 

tional relationship 

y = f(z) (3.80) 

between two Gaussian random vectors y and z, along with the covariance matrix of z 

(Cz), the covariance matrix of y (Cy) is given by 

*-(S°-(S'- 
If 

y = Az, (3.82) 

where A is a real matrix, then from Equation 3.81 

Cy = ACZA
T. (3.83) 

This was previously demonstrated in Equation 3.60. 
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3.3.1    Calculation of Cerr(^) 

The goal here is to calculate the covariance matrix of the errors in the estimation of 5£. 

This will then be used in the following section to calculate the covariance matrix of the 

double difference errors. 

The estimation error of 5£ is defined to be 

err(6£) = 5£ - 51. (3.84) 

Since the estimator is an unbiased estimator, E[err{5£)} = 0, and the covariance matrix 

of err(8£) is the same as the correlation matrix of err(5£). 

Combining Equation 3.58 (AV5£n = BnS£n) with the e2(-) estimator (Equation 3.71) 

and recognizing that BnC&inB^ = BiCsiBj yields 

St = C«Bf(BiC«Bf )"1B1«, (3.85) 

where 

B,=4 Bn   0 (3.86) >i 

The estimation error can then be written 

err(M) = 51- CstB
T

1{BlC5lB
T

1)-
lB15£ 

= [I - C«Bf (BiC^Bf )_1Bi]^ (3.87) 

where I is the identity matrix. Then, applying the covariance law, the covariance matrix 

of the errors can be calculated as 

Cerr(«) = [I - CstBl (BiCseB-^)~ Bi]C^[I - CseB1 (BiC^Bi)~ Bi] 

= Cse 

— CsiBx (BiCsiB1)~ BiCse 

— CseB1 (BiCsiB1)~ BiCsi 

+ CsiB1 (BiCstB1)~ BiCsiB1 (BiCstB1)~ BiCsi 

= Cse - CgeB1 (BiCseB1)~ B\C$f (3.88) 
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This shows that the covariance of the errors in the estimates of S£ can be calculated from 

the CM covariance matrix and the Bx double difference matrix. (Note that C^n and Bn 

are submatrices of Csi and Bi). 

3.3.2   Calculation of Cerr(Av<^) 

Recall from Equation 3.61 that the relationship between &V5£ and S£ is 

AV8£ = B5£ (3.89) 

or, equivalently, 

err(AV5£) = B err(^) (3.90) 

where 

B = 
B„      0 

(3.91) 

The covariance matrix CeiT(«) is given in Equation 3.88, and the covariance law can 

be used to transform it into the covariance of the error estimates of the double difference 

measurements Cerr(Av«) 

Cerr(AV,j£) = B(C« - C«Bf (BiC^Bf )-1B1C«)Br 

= BC«Br - BC«B? (BxCaBf )-1B1C«BT. 

(3.92) 

(3.93) 

This is the covariance for the estimation errors of the entire double difference vector 

AV6£, which includes the double differences exclusively between network reference re- 

ceivers AV5£n and the double differences between the mobile receiver and the network 

receivers AV&6cp. It is useful to examine each of these separately. 

First, to evaluate the covariance of the estimation errors of AV5£n (Cerr(AV«n)), 

Equation 3.89 is changed to 

AV6£n = BiW, (3.94) 
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where Bi is defined in Equation 3.86. Then the same development presented in Equa- 

tions 3.90 through 3.93 is followed, substituting Bi for B. The result is 

Cerr(Av<$£„) = BiCtf^ — BiCseB1 (BiCseB1)~ BiCgiB1 (3.95) 

= 0. (3.96) 

This shows that there are no errors in the estimated value of the double difference mea- 

surement errors AV5£n, which is not surprising because the exact values of AV8£n are 

actually the measurements used in the first place. 

More useful is the analysis of the errors in the estimates of the double difference mea- 

surements between the mobile receiver at the computation point and the network reference 

receivers. Following the relation shown in Equation 3.73, Equation 3.89 is changed to 

AV6£cp = B25£, (3.97) 

where B2 is defined as 

B,4 ■t*Cpi       &CP2 (3.98) 

Then, as before, the B matrix in Equations 3.90 through 3.93 is changed to the B2 matrix, 

yielding the final result 

Cerr(AVWcp) = ^C 8tB2 ~ ^2CseB1 (BiC«Bx)~ BiC«B2. (3.99) 

This equation shows how Cerr( AV«CP) 
can be calculated using only the B matrix (of which 

Bx and B2 are submatrices) and the Csi matrix. Both the B and CM matrices can be cal- 

culated without having the measurement realizations available, because all that is needed 

is knowledge of what measurements are available from each receiver. Equation 3.99, then, 

can be used to predict network performance under various network configurations (which 

result in different B and Csi matrices). This is called a covariance analysis procedure, 

and it is utilized extensively in Chapter 5. 
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3.4   Calculation of Covariance Matrix 

The covariance matrix of the measurement differential errors Cst is a key element in both 

the optimal estimation equations of Section 3.2 and the covariance analysis of Section 3.3. 

This section describes how the C$t matrix can be expressed in a functional form, and then 

shows how field data was used to determine the covariance function. 

3.4.1    Covariance Functional Form 

The measurement differential error vector 8£ was defined in Equation 3.54, and it is re- 

stated here as 

ö£±dc(/){p,p0) + 6u<t>. (3.100) 

The correlated error term dc<f>(p,p0) includes the differential ionosphere, troposphere, 

and satellite position errors, relative to point p0. The uncorrelated error term 5u<j> in- 

cludes multipath and measurement noise, which are assumed to be completely uncorre- 

lated between measurements. (For more details, refer to Section 3.2.1). As stated in Sec- 

tion 3.2.3.1, this 8£ vector is assumed to be zero-mean (E[8£] — 0) and well-described by 

a Gaussian distribution function. As such, it has a covariance matrix Cst defined as 

Cu = E[(ö£ - E[8£)){8£ - E[8£])T] 

= E[{8£){8£)T]. (3.101) 

Each element in the Cst matrix is the cross-covariance (or variance, if they are the same 

measurement) of two different scalar measurement errors. These two measurement errors 

are denoted 8£x
a (for the measurement from receiver a to satellite x) and 8£\ (for the mea- 

surement from receiver b to satellite y). Then the element in the Cst matrix corresponding 

to the two measurements 8£x
a and 8£\ is 

cxI = E[(8£:)(8£t)}. (3.102) 
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This can be expanded into the actual error sources according to the definition found in 

Equation 3.100 

cx
af = E[(dc<J>:(Pa,Po) + Su<t>Xa)(dc<t>yb(Pb,Po) + M?)], (3-103) 

where pa and pb are the positions of receivers a and b, respectively. This can be expanded 

to 

cxI = E[(dc(pi(pa,p0))(dMpb,PQ)) 

+ (<WS(Pa,J»o))M?) 

+ (su<t>i)(dcfb(pb,p0)) 

+ (5u<f>:)(5u<!>l)}. (3.104) 

Recognizing that the expectation operator is a linear operator, it can be rewritten as the 

sum of four separate expectations 

■'ab --E[(dc<ßl(pa,p0))(dc(l>l(pb,p0))} 

+E[(dc<f>xa(pa,p0))(^
y

b}) 

+E[(6u<t>Xa)(dc<l>yb(pb,p0))} 

+E[(8utf)(6ufi)]. (3.105) 

The uncorrelated error terms are by definition uncorrelated with anything but themselves, 

so this reduces to 

cab — 
E[(dc<t>*a(pa,p0))(dc<l>y

b(pb,Po))] + £[(MJ)M!)]    if o = b and x = y, 

E[(dc<l>l(pa,Po))(dc(f)yb(pb,p0))} otherwise. 

(3.106) 

Furthermore, assume that the correlated differential errors are uncorrelated between satel- 

lites, i.e. 

£[KC)(«)] = 0    ifx^y. (3.107) 
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This is a reasonable assumption, considering the nature of the errors involved. Differ- 

ential satellite position errors are certainly uncorrelated between satellites. Considering 

the ionospheric and tropospheric errors, there is nothing that would strongly indicate that 

differential atmospheric errors between satellites at different elevation and azimuth angles 

should be correlated.9 Then, given this additional assumption, the equations for calculat- 

ing a single element of the covariance matrix Cst are 

cab 

E[(dc<t>x
a(Pa,PoWccl>y

b(pb,Po))} + E[(5ufi)(6ufi)]    if a = b and x = y, 

E[(dc(l>Xa(Pa,Po))(dc<l>y
b(pb,Po))] if a # b and x = y, 

0 otherwise. 

(3.108) 

In plain terms, the first line is for elements along the diagonal of the covariance matrix 

(i.e., the variances of each of the differential measurement errors), the second line calcu- 

lates differential error covariances for measurements from two different receivers but the 

same satellite, and all other terms are zero. 

It is desirable to be able to generate a functional form of c^f, which uses as independent 

variables the positions of the receivers (pa and pb), the position of the zero-point (p0), the 

average satellite elevation (e10), and the actual receivers used (a and b) 

cXab=f(Pa,Pb,Po,£,a,b)- (3-109) 

If this function is known, then it can be used to generate each element in the Cu matrix. 

9There may be some situations where this assumption is not entirely true, such as when the tropospheric 

error model is significantly in error. Such second order effects are small and extremely difficult to charac- 

terize accurately, however, so they will not be considered here. (Remember that the tropospheric error is 

actually the residual tropospheric error, after removing an estimate of tropospheric error from a model.) 

10The elevation of the satellite will be slightly different if the measurements are taken at different lo- 

cations on earth. The elevation e is the average of the two elevations. (When two different satellites are 

involved, the covariance term is defined to be zero, so the elevation doesn't matter) 
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It should be noted that there can be many different functional forms of the C$i matrix, 

each with varying degrees of complexity and accuracy. The functional form presented 

in this research is intended to represent a reasonable trade-off between complexity and 

accuracy, and it is based upon insights into the overall characteristics of the errors. Other 

approaches could be taken that might improve the accuracy of Cge, but they would prob- 

ably be significantly more complex. 

In Chapter 2, each of the error sources (except for satellite position error) was shown 

to be elevation dependent—the magnitudes of the errors tended to increase as the elevation 

decreased. Because of this, it is useful to generate a functional form of the errors at the 

zenith, and then scale this variance or covariance term for the specific elevation involved. 

To this end, an elevation scaling factor /i(e) is introduced. This factor relates the value of 

a covariance element with its zenith value (c^2) as follows: 

<! = ß\e)cx
al (3.110) 

This removes the elevation as an independent variable of the covariance function, so Equa- 

tion 3.109 can be rewritten as 

cx
al = ß2(e)fz(pa,pb,Po,a,b). (3.111) 

Equation 3.108 shows that there are two types of errors involved in calculating each 

covariance matrix element—correlated errors (in E[(dc^(pa, p0))(dc(f)l(pb, p0))]), and 

uncorrelated errors (in E[(8u(f)l)(öu(f)l)]). The fz function can be separated into two dif- 

ferent functions relating to the two types of errors 

<l = Ae)[fZc(pa,pb,p0) + fZu (receiver)]. (3.112) 

The function fZc is for the correlated (satellite position and atmospheric) errors, and the 

function fZu is for the uncorrelated errors (multipath and noise). Note that the same eleva- 

tion scaling factor (j?(e) is applied to both the correlated and uncorrelated errors. This is a 

reasonable approach, because the uncorrelated errors elevation dependence follows a sim- 

ilar trend as that expected from the uncorrelated errors. This can be seen by comparing 
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the uncorrelated error standard deviations versus elevation plots shown in Figures 2.12 

and 2.13 with the standard (model) ionospheric mapping function shown in Figure 2.1. 

Note also that the correlated errors (fZc (pa, pb, p0)) are entirely a function of the posi- 

tions of the receivers and the zero-point, while the uncorrelated errors (fZu (receiver)) are 

entirely a function of the receiver being used. The arguments a and b have been dropped 

from the notation and replaced with the word "receiver", because the uncorrelated error 

only applies to individual measurements at a single receiver (i.e., a = b). Both of these 

functions will be developed in the sections that follow. 

3.4.1.1 Functional Form of Uncorrelated Errors at Zenith (fZu) 

The noise at zenith is primarily a function of the receiver design, although it may be 

somewhat affected by anything that reduces the signal-to-noise ratio of the GPS signal as 

well. The multipath is a function of the receiver design, but it is also a function of the 

environment surrounding the GPS antenna. Both the receiver design and the environment 

around the antenna are constant for each receiver, so the variance of the uncorrelated errors 

(multipath and noise) at zenith will be modeled as a constant, which can be different for 

each receiver. In equation form 

fZu (receiver) = o2
Uz (receiver) = E[(5u(f) zreceiver)2] = constant. (3.113) 

where o\z (receiver) is the constant zenith uncorrelated error variance for the receiver. 

3.4.1.2 Functional Form of Correlated Errors at Zenith (fZc) 

The goal in this section is to calculate 

fzc(Pa,Pb>Po) = E[(dcMPa,Po)z)(dc<Pb(Pb,Po)z)}- (3.114) 

Note that the errors correspond to zenith errors, hence the subscript z. Note also that the 

superscript indication of the satellite has been removed from the <f)a and <j)b terms. The 

atmospheric errors are not a function of the satellite. The realized satellite position errors 
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are different for different satellites, but it is assumed that the error statistics are the same 

for each satellite. Also, since the error is a zenith error, satellite elevation is not relevant. 

Therefore, the satellite is not relevant to the equation, so it is removed from the notation. 

From the definition of the differential errors found in Equation 3.33, the above equa- 

tion can be rewritten as 

fzc(Pa,Pb,Po) = E[Ma{Pa)z ~ ^MPo))(5cMPb)z ~ 8c(/>o(Po))}- (3.115) 

After expanding the right hand side, collecting like terms, factoring, and taking advantage 

of the fact that the expectation operator is a linear operator, the equation becomes 

fzc{Pa,Pb,Po) = 2E^5MP<^Z ~ 5cMPo))2} 

+ -E[{6c<pb(Pb)z - 5c<t>0(Po))2} 

- ^E[(5c(f>a(Pa)z - ScMPb))2]- (3-116) 

Note that each line in the above equation is a variance of the differential error between 

two different points. Define a function 

<(Pm,Pn) = EKSMPJ ~ MM)'} 0-117) 

to be the variance of the differential correlated errors between two arbitrary points pm and 

pn. Combining Equations 3.116 and 3.117 yields 

UPM) = <(p.^M-<(r.,K).        (3,18) 

Now all that is required is to specify a functional form of o2
z{pm,pn) (which describes 

how the differential correlated errors grow with distance) in order to specify the correlated 

error covariance function fZc completely. 

Define 

°l(pm,Pn)=Cid + c2d
2 (3.119) 

where d is the distance (magnitude) between pm and pn, and ci and c2 are fit coefficients. 
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This function states that the variance of the differential correlated (atmospheric and 

satellite position) errors grows according to the sum of second order polynomials in the 

east and north directions. This particular functional form (a truncated Taylor series ex- 

pansion) was chosen because it provided a good fit to the data collected in the Norway 

network, as discussed in the following section. 

3.4.2   Method for Calculating Covariance Parameters Using Field 
Data 

These coefficients of the covariance function are time varying, because the characteristics 

of the errors themselves vary with time. For example, during periods of high ionospheric 

activity, the correlated error variances (which include the ionospheric error) would be 

larger than periods of low ionospheric activity. The same is true of tropospheric errors 

(such as the passage of a weather front). The multipath uncorrelated error could also vary 

according to changes in the environment around the antenna (such as rain decreasing or 

increasing the reflective properties of nearby reflecting objects). 

It is useful, then, to devise a methodology for determining the covariance function 

coefficients using network reference station data over a particular time interval. The coef- 

ficients are valid for errors like those present in that time interval. As the error character- 

istics change over time, the covariance function coefficients can be recalculated, allowing 

them to adapt to the specific conditions at the time of interest. 

In this section a method is described for estimating the covariance function coefficients 

using the data from the network. It is demonstrated using a 24-hour data set from the 

Norway network, which is described in Appendix A. These coefficients are then used in 

the NetAdjust algorithm to generate the results that are presented in Chapter 4. 

There are two distinct phases used in calculating the covariance function coefficients. 

1. Determination of the elevation mapping function fi(e). 

2. Determination of the constant zenith uncorrelated error variance al  for each re- Uz 

ceiver and the coefficients of the zenith correlated error variance function a\ (pm, pn) 
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It is necessary to calculate the elevation mapping function first in order to scale the mea- 

sured double difference errors to zenith, before calculating the coefficients of the zenith 

o\z (receiver) and cr^z(pm,pn) functions. These two phases are described in the sections 

that follow. 

There are three independent covariance functions that are used in this research-Ll 

code, LI phase, and WL phase. It should be noted that the derivations presented in this 

section are performed notationally on the LI phase measurements. The same derivations 

apply equally well to the WL phase measurements and the code measurements, unless 

noted otherwise. 

3.4.3   Determination of Elevation Mapping Function /i(e) 

This section begins by defining the elevation mapping function. The mapping functions 

to convert double difference errors and double difference error variances to zenith values 

are then derived. After this background material, a method for determining the mapping 

function from network receiver data is presented. 

3.4.3.1   Definition of /i(e) 

Define the differential error 81% of a phase measurement-minus-range observable between 

receiver a and satellite x as 

Slxa±dc<l>xa(pa,pQ) + 6u<l>*a. (3.120) 

These represent the errors that are not directly canceled by double differencing, which are 

the errors of interest. 

Next, the elevation mapping function fj,(e) is defined, which maps the error at elevation 

e (5le) to the zenith error 5lz (for any receiver or satellite) 

tie) = ^ (3-121) 
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or, equivalently, 

6l£ = n(e)5lz, (3.122) 

where e is the elevation of the satellite (satellite x in the case of 81%). 

3.4.3.2   Use of /i(e) to Map Double Difference Measurement Errors to Zenith 

Define the double differenced differential errors between receivers a and b and satellites 

x and y as 

AVSlxal A Si: - Ml - {5lxb - <)■ (3-123) 

Converting each of the individual errors to zenith errors by Equation 3.122 yields 

AVÖQ = rte*)6ll - »(ey)5llz - (ß(e*)5ll - /i^)<) (3.124) 

= MOK - K] + Me")K - 5U (3-125) 

where ex and ey are the average elevations (between the two reference stations) of satel- 

lites x and y. Now, define the double differenced zenith differential errors as 

The goal is to determine a mapping function n&v(ex,ey) that maps the double dif- 

ference of the errors (AVc^f) to the double difference of the errors at zenith (AVSlfß ), 

i.e. 

MAV(£ ,£") - Av^^ • (3.127) 
abz 

Substituting Equations 3.123 and 3.126 and rearranging terms yields 

This is not directly solvable as a function of ^(e*) and ix{ey). However, it can be reason- 

ably assumed that on average 

(K-K) = «-<)> (3-129) 
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because these are the differential errors at the zenith, and the statistics of the errors are 

the same between different satellites. By making this assumption, Equation 3.128 can be 

reduced to 

*«<«■,«•) = "El+"(«»). (3.130) 

Using this in Equation 3.127 and rearranging terms results in the mapping between the 

actual double difference errors and the double difference errors at the zenith 

AvKv = Mfü+Mf!) AW^_ (3<131) 

3.4.3.3   Use of n(e) to Map Double Difference Error Variances to Zenith 

The variance cr\xsixv °^ t'ie double difference measurement AVSl^ is, by definition, 
ab 

ffU4£[(AVC)2], (3.132) 
ao 

assuming that AV8l*l is zero-mean, which is a reasonable assumption (see Section 3.2.3.1). 

This is expanded by Equation 3.123 and simplified (assuming that errors between satel- 

lites are uncorrelated) 

E[(^8Qf] =E[(8l*a - 811 ~ «f + OiK - Ml ~ Slf + S%)] 

=E[(8Fa)
2 - 2(8i:Slxb) + (Sit)2} 

+ E[(8llf - 2(81181%) + (SI*)2}. (3.133) 

The differential errors 81 can be rewritten using the definition of the mapping function 

(Equation 3.122) and then simplified 

E[(AV8i:if] =EMe*)6rj* - 2(^ex)8ll^X)K) + 0*(e*)«£)2] 
\2     o(../^v\xiy ..f^.y\xiv \  ,  t..(~v\xiy \2i + EMey)8iyf - 2(^)811^)811) + (/x(eyK)a 

-Aex)E[(8lxJ2-2(8i:z8ll) + (8lir 
2(ry\K\(Xiy \* _ off;y  Jj/y \   ,   fxw \2] + n2(ey)EWV2 ~ 2«<) + (Slff), (3.134) 
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where ex and ey are the elevations of satellites x and y, respectively. Next, the error 

variance of the double difference errors at zenith is (using the same approach as Equa- 

tion 3.133) 

E[(AV8i:if] =E[(8l*f - 2(5Faßi) + (8Fbz)
2] 

+ E[(5llf - 2{8llßl) + «)2]. (3.135) 

The goal is to determine a mapping function /v (ex, ev) that maps the double differ- 

ence of the error variance (E[(AV5lxl)2]) to the double difference of the error variance 

atzenith(j5[(AV^X)2])5i-e., 

Substituting Equations 3.134 and 3.135 and rearranging terms yields 

nXe*)E[{8llzY - 2(511811) + (5lxbf\ + /iV)gpJ» - 2(flgX) + «)2] 
E[(6l*J* - 2(61161%) + (8llY\ + E[(8llY - 2(«) + «)*] 

(3.137) 

This is not directly solvable as a function of ß\ex) and ß\ey).  However, as in Sec- 

tion 3.4.3.2, it can be reasonably assumed that on average 

E[(8i:f - 2(5llz8ll) + (Sllfj = E[(6llf - 2(<^<) + «)2],        (3.138) 

because the statistics of the errors (at the zenith) are the same between different satellites. 

By making this assumption, Equation 3.137 can be reduced to 

ßk^£»)=m+m. (3,39) 

Using this in Equation 3.136 and rearranging terms results in the mapping between the 

double difference error variance and the double difference error variance at the zenith 

E[(AV5i:iY] = ^M±iM^[(AV^X)2]. (3.140) 
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3.4.3.4   Calculation of fj,(e) From Data 

The procedure described below was performed using data from the Norway network, 

which consisted of 11 receivers spread throughout a 400 km x 600 km region of southern 

Norway. For a detailed description of this network, see Appendix A. 

There is a total of 55 different baselines between these 11 receivers. First, numerical 

estimates of ß(e) for a fixed set of elevations e were calculated for each of the 55 baselines. 

Then, these results were combined together to generate a functional form of ß(s) which 

fit the data generated in the first step. These two steps are described in the paragraphs that 

follow. 

3.4.3.4.1 Calculating Numerical Estimates of fx{e). First, all combinations of dou- 

ble differenced measurement-minus-range observables (with the integer ambiguities re- 

moved) were calculated once every minute over the 24-hour period described in Ap- 

pendix A. This generated between 31,000 to 45,000 samples of the double differenced 

differential errors (AVdl), depending upon the baseline.11 Next, any double difference 

measurement that did not have a satellite above 45° was rejected (for this calculation of 

n(e) only). Double difference measurements were then grouped into bins according to 

the elevation of the lower satellite. A bin size of 3° was used, so the first bin included all 

double difference measurements where the lower satellite was between 10°-13°, the sec- 

ond bin was from 13°-16°, and so on. The variance of the measurement errors was then 

calculated for each bin. A sample plot of the standard deviations of the measurements 

in each bin for the ALES-STAV (387 km) baseline is shown in Figure 3.3. The standard 

deviation (square root of the variance) is plotted rather than the variance, because the stan- 

dard deviation relates directly to the measurement errors (in m) rather than the square of 

"Some baselines had more double differences than others due to 1) variations in the number of measure- 

ments taken by each receiver, and 2) variations in the number of ambiguities that could be resolved between 

baselines. (If the integer ambiguity was not known for a particular double difference measurement, then 

that double difference measurement was rejected). 
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Figure 3.3: Standard deviation of double differenced measurement errors for ALES-STAV 
baseline 

the measurement errors (in m2). 

Next, Equation 3.140 is used to solve for the value of /j,(e) for each of the elevation 

bins. In that equation, ß(ex) is considered the low elevation satellite and n{ey) is consid- 

ered the high elevation satellite. Then, solving for /j,(elow), 

^=jmgm-A*»)- (3.141) 
£[(AVM,)2] 

Each of the terms on the right side of the equation can be calculated from the data. The 

variance of the double differenced errors (E[(AV8l)2]) is the variance of each bin (i.e., 

the squared values of each point in Figure 3.3). The variance of the double difference 

errors at zenith (E[(AV6lz)
2]) represents an extrapolation of the data shown in Figure 3.3 

to 90°. This is performed by fitting the data to a function g of the form 

g(e) = clFI{e) + c2FT{e), (3.142) 

where 

Fi(e) 

FT(e) = - 

1 + 16 * ( 0.53 

1 
V 180°/ 

sine 

(3.143) 

(3.144) 

(Note that the Fi(e) and Fr{e) are the ionospheric and tropospheric mapping functions 

used in Chapter 2). The constants cx and c2 are calculated from the data, and then the 
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Figure 3.4: Sample elevation scaling factor data points (for ALES-STAV baseline in Nor- 
way network) 

double difference error variance at zenith is calculated as 

E[(AV5lz)
2] = p(90°). (3.145) 

The standard deviation of the double difference measurement errors at zenith for the sam- 

ple data shown in Figure 3.3 is 0.071 m. Finally, the elevation scaling factor of the high 

elevation satellite (/j,(ehl9h)) can be calculated using an average value of the high elevation 

satellite over the 24 hour period in the nominal elevation mapping function 

Fi{s) + FT{s) 
[^nominal \£) — (3.146) 

which is an average of the ionospheric and tropospheric mapping functions. 

Using this analysis, a value for p,(e) can be calculated for each elevation bin. Fig- 

ure 3.4 shows the calculated values of p,(s) for the ALES-STAV baseline. Note that for 

elevations between 15°-20°, the errors are four to five times larger than for high elevation 

satellites. 

The procedure described above was performed on all 55 baselines, and the resulting 

point-by-point measurements of p,(e) are plotted together in Figure 3.5. All of the traces 

(except one) followed a very similar pattern. The one spurious trace above the others was 

between two receivers separated by only 43 m in a very high multipath environment (the 

TRYM-TRYR baseline in the Norway network - see Appendix A). The overall errors 
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Figure 3.5: Elevation scaling factor data points for all baselines 

were still very low but noisy (between 0.005 and 0.01 m), and it was difficult to establish 

an accurate value for the zenith error variance (E[(AV6ll%z )
2]) in this case. 

Finally, the data represented in Figure 3.4 was used in a least-squares fit to determine 

the coefficients of the elevation mapping function which is of the form 

3 

"(e)=5b+c"(a53-i^y (3.147) 

This function is a combination of the Fi(e) and FT{e) mapping functions, and it was 

chosen because a) both ionospheric and tropospheric errors are involved, and b) it seemed 

to provide a good fit for both code and carrier-phase measurements. The statistics of the 

calculated values of ß(e) from the data is plotted along with the functional fit in Figure 3.6. 

The results are shown for LI code,12 LI phase, and widelane (WL) phase measurements. 

The circles are the mean values from the 55 baselines, the lines show the \a range of 

the values from the 55 baselines, and the line shows the fit using the functional form 

12L1 code measurements were CA-code for the Trimble receivers and semicodeless P-code for the 

Ashtech receivers (due to the high levels of multipart! on the Ashtech CA code). See Chapter 4. 
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of Equation 3.147. The values of cß are shown on the plots, and they are 6.468, 3.939, 

and 7.184 for LI code, LI phase, and WL phase, respectively. All three curves show a 

reasonable fit for the data, so these elevation mapping functions will be used in all of the 

results that follow. 

3.4.4   Determination of Zenith Error Variance Functions 

This section describes how the zenith correlated and uncorrelated error variance functions 

are determined using data from the network reference stations. Due to the different natures 

of code and phase measurements, they will be discussed separately in the sections that 

follow. 

3.4.4.1   Phase Measurement Variance Functions 

The 24-hour double difference data set that was described in Section 3.4.3.4.1 was also 

used for determining the error variance functions. First, all of the double difference mea- 

surements were scaled to the zenith using Equation 3.131. Then, the variance of the 

zenith double differenced measurement error was calculated for each of the 55 different 

baselines. These zenith variance values are plotted against distance for LI and WL phase 

measurements in Figures 3.7 and 3.8, where each dot represents the zenith variance of 

the errors in one baseline. There is a strong correlation between the error variance and 

distance for both the LI and WL cases, as expected. 

The goal is to calculate the differential measurement error variance, as shown in Equa- 

tion 3.117 and restated here as 

<(Pm,Pn) = ß[(W.W " ^(Pn))2]- (3-148) 

The data represented in Figures 3.7 and 3.8 are the double differenced measurement error 

variances 

jxy \2 
E[(^Kln (3-149) 
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for receivers a and b and satellites x and y. (It will be shown later that the actual satellites 

used are unimportant, but it is notationally useful to consider two satellites). The zenith 

measurement error is defined in a manner analogous to the actual measurement error 

(Equation 3.120) as 

«*=<W£(P«.Pb) + M£. (3-150) 

Therefore, the relationship between the following two quantities must be established: 

E[{M76t2if\    «=»     E[(6C<I>Z(PJ ~ MM)2} (3-151) 
v v ' ' v ' 

From double difference data For use in covariance function 

Also, the uncorrelated zenith measurement error variances E[(Su(f>z)
2] (which are modeled 

as a different constant for each receiver) need to be calculated. (See Section 3.4.1.1 on 

page 83). 

Expanding the double difference measurement within the expectation yields 

E[(AV5i:i)2} = E[ ( dc<f>l(pa,p0) - <Wg.(p.,Pb) - <W£(Pö,Pb) + dc<t>l(Pt,Po) 

+ 8uFaz - MS, - Sufi. + 4,< f ]• (3-152) 

Recall that dc(j)z(pa,p0) = Sc(j)z(pa) - 8c<j)z(pQ) (Equation 3.33). All of the Sc(j)z(pQ) 

terms cancel in the double differencing, so they can be neglected. Furthermore, all of 

the uncorrelated errors (8u<f>z) are by definition uncorrelated with the other error sources. 

Equation 3.152 can then be simplified to 

m^Kt)2} =E[ (5c<f>i(Pa) - 8c(ßyz(pa) - ScfiM + scfbz(pb) f) 

+ mSutlf} + E[(6ucj>yaf} + E[{5ucj>tzf\ + EKS^tf]    (3.153) 

If the first line of Equation 3.153 is expanded, like terms canceled, and factored, it can be 

simplified to 

E[(AV5i:i)2} =E[ ( 5CC>J - Ö^IM f ) 

+£[(*efl>.)-*c<(P6))2] 

+E[(5u<t>l)2} + E[{6upj*\ + E[{8U4>1?) + E[(8ucf>in     (3.154) 



98 

Since all of the errors are zenith error, and the error statistics are assumed to be the 

same for each satellite, then 

=E[{8c^az{pa)-8c4>l{pb))
2] 

=E[{5MPa)-^MPb)f] (3-155) 

and 

E[(5u<t>:f] = EKS^lf] = E[{5u(j>azf] (3.156) 

EKSutlf) = E[(8uflf\ = E[{5u^hzf). (3.157) 

Combining Equations 3.154 through 3.157 results in the desired relationship between the 

double difference variance and the correlated and uncorrelated differential errors: 

E[(AV6i:&2} = 2E[ ( 5MPa) ~ SMPb) ? ] + 2£[(<WJ2] + 2E[Mbz?\- 

(3.158) 

In the notation from Section 3.4.1 (especially Equations 3.113 and 3.117), this can be 

written as 

E[(AV5i:if] = 2al(pa,pb) + 2<(reca) + 2<(rec6), (3.159) 

where a\ (reca) and o\z (rec(,) are constants. Expanding the correlated error term using 

the function given in Equation 3.119 yields 

E[(AV5lxalf] = 2(Cldab + c2d
2

ab) + 2<(reca) + 2<(recfe), (3.160) 

where dab is the distance between reference station a and b. Values of dab are calculated 

for each of the 55 baselines based upon the known receiver positions. The 55 double 

difference zenith measurement errors E[(AV8lHz)
2] (shown in Figures 3.7 and 3.8) are 

then measurements for Equation 3.160, and a standard least squares fit is used to determine 

the parameters c\ and c%, along with the constant o\ (•) which is used for each of the 11 
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receivers.13 Each of the 55 variances represented in Figures 3.7 and 3.8 (which are actually 

measurements for the least-squares fit) were assigned measurement variances proportional 

to d2 for the least squares fit. This had the effect of assigning higher weights to the shorter 

baselines (which are more critical in the NetAdjust algorithm). 

The results of these fits (for LI and WL data) are given in Table 3.3 (which summarizes 

results) at the end of this section. Figures 3.9 and 3.10 show the zenith double difference 

correlated error variance functions for the LI and WL phase measurements. They were 

generated by using the fit coefficients shown in Table 3.3, combined with the correlated 

error portion of Equation 3.160 (i.e., all but the a\z terms). The residuals14 for the LI and 

WL fits are shown in Figure 3.11, and they show a relatively good fit in both cases. 

Other functional forms of Equation 3.160 were tried, such as one that included the ver- 

tical distance in addition to easting and northing distances. Some more complex functions 

gave smaller residuals, but this was a result of increased degrees of freedom rather than a 

better model. As a result, the more complicated functions tended to result in parameters 

which did not make any physical sense.15 In many of the more complicated functions, 

the coefficients on the parameters failed to make any physical sense. In the end, Equa- 

tion 3.160 was deemed to be the best fit for the Norway network at the time of the test. It 

is possible that, for other networks at other times, other functional forms would be better. 

13Due to the long baseline distances between the network reference receivers, the correlated errors dom- 

inate the measurements, and it is not possible to determine uncorrelated errors on a station-by-station basis 

accurately. 

14Residuals are defined as the measured variance values minus the variance values as generated by the 

covariance function. 

15One example was a function that included vertical distance as one of the parameters. In this particular 

case the errors actually became more correlated as the vertical distance between receivers increased. 



100 

0.45 

0.4 

0.35 

o 
g —   0.3 
.22   « 

5   £0.25 
uJ r. 
a ~   0.2 
Q 

0.15 

0.1 

0.05 

i                i i 

/       ^ .......0.... 

/  ° 
/?     o 

o   °4 

0 
o   / 
y.a  8 X 

A° 
 Ijßj' 

—er^    i                i 
100 600 700 200 300 400 500 

Distance Between Receivers (km) 

Figure 3.9: Fit for zenith double difference correlated error variance of LI phase mea- 
surements 

0.035 

0.03- 

0.025 - 

5 s    0.02 
CO o 

w > 0.015 
Q 5- 
D 

0.01 - 

0.005 

100 200 300 400 500 600 700 

Distance Between Receivers (km) 

Figure 3.10: Fit for zenith double difference correlated error variance of WL phase mea- 
surements 



0.06 
<=   "n 
¥ % 0.04 
^   fr 
3   1- 0.02 
U.   _1 

«    «0 0 
C    IS 
B    3 -0.02 

-0.04 

LL -0.06 
( 

<0 0.004 
c   a) 

■° £ 

15 0.002 

^ 0.000 
s^ 
«•£ -0.002 
& a 
Ü  UL 

£  -0.004 

L1 Phase 

r,^r.;....r; 

101 

X       X 
..S.-..:.. 

100 200 300 400 500 
Baseline Distance (km) 

600 700 

WL Phase    x*   " 

" : : ! X': ""■ 

x                   *   *   :      x        x : 

 ; *..,, "..; * ■  

x        : 
X 

:                    :                   :                    :     x 
i                          i                         i                         i i 

100 200 300 400 500 
Baseline Distance (km) 

600 700 
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3.4.4.2   Code Measurement Variance Function 

A plot showing the code measurement variance versus distance for all 55 baselines is 

shown in Figure 3.12, which shows no strong correlation with baseline distance. Unlike 

the phase measurements, the code measurements are dominated by multipath, and the cor- 

related errors (atmospheric and satellite position errors) cannot be accurately determined. 

It is possible to determine the code correlated errors using the phase measurements, how- 

ever. 

In Chapter 2, two different dual frequency carrier-phase combinations were used to 

isolate the ionospheric and tropospheric errors. The ^\1 _Az combination isolated the iono- 

spheric errors (Equation 2.24), and the fa -^/^ combination isolated the tropospheric and 

satellite position errors.16 After scaling these double difference errors appropriately and 

changing the sign on the ionospheric error (since it is a code delay rather than a phase ad- 

vance), the errors are added together to yield a measure of the code measurement double 

difference zenith correlated errors. This process eliminates the impact of code multipath, 

16In Chapter 2, precise orbits were used to eliminate the satellite position errors. For determining code 

correlated errors, standard broadcast orbits are used so that the satellite position errors remain (as desired). 
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Figure 3.12:  Variance of LI code zenith double difference errors for 55 baselines in 
Norway Network 

and the distance dependency of the correlated errors become much more evident, as shown 

in Figure 3.13. 

Two different estimation processes were used to calculate the code measurement co- 

variance parameters. The code errors from phase combinations were used to calculate 

the correlated error parameters (ci and C2) using the same techniques as for the phase 

measurements (see Section 3.4.4.1). Then, in a separate estimation process, the code 

uncorrelated error variances (o^ ) were calculated by a least squares fit to 

m^Klf] = 2<(reca) + 2<(rec6). (3.161) 

(Note that this is the same as Equation 3.160, except that there are no correlated error 

terms {c\d, etc.). In this fit, the constant uncorrelated error variances o^(-) are given a 

priori values based upon the two short (less than 1 km) baselines in the Norway network. 

The results are given in Table 3.3 in the summary section. The zenith double dif- 

ference correlated error variance function, calculated from the fit coefficients is shown in 

Figure 3.14. The residuals for the code measurement variance fit are shown in Figure 3.15. 



103 

CO > 

01 

CO 
CD 

J3 

O 
Q 

c 
CD 
N 

0 100 200 300 400 500 600 700 
Baseline Distance (km) 

Figure 3.13: Variance of LI code zenith double difference correlated errors (from phase 
measurement combinations) for 55 baselines in Norway Network 

0.016 

0.014 

0.012 

8 c 
CO 

I F 

0.01 

0.008 

LU 

0.006 

0.004 

0.002 

100 200 300 400 500 

Distance Between Receivers (km) 

700 

Figure 3.14: Fit for zenith double difference correlated error variance of LI phase mea- 
surements 



104 

L1 Code 
0.06 

<B      0.04 - 

a •c 
(0 > 0.02 

|    -0.02 
CD !fc 
Q 
0} 
JD 
3 
O 
Q 
§    -0.06 
'c 
a> 
N 

-0.04. 

-0.08 

I      ' '■ 1 1 1 

:                    :                    :        x 

"" '; : * : x  
g     :                x: 

:                 x:     x      xx : 
x     :              x ; *x £ 

X 
X 

:                         x 
X 
X 

:       *           : 
i x               % 
\   x* 
:        *         : 

:                  :             x": 
x   x    : 

X 

X X 

X 

:                    :                 x 

l          !                    i 

) 

0 100 200 300 400 500 600 700 
Baseline Distance (km) 

Figure 3.15: Variance residuals of LI code covariance function fits 

The residuals are small when compared with the magnitude of the overall error variances 

shown in Figure 3.12, indicating a good overall fit. 

3.4.5   Summary of Covariance Function 

The covariance function is summarized in this section, using the equations and results that 

have been generated in sections 3.4.1 through 3.4.4. 

The covariance matrix C$i is made up of individual elements c^ which correspond 

to the measurements 5txa (from receiver a and satellite x) and 5tyb (from receiver b and 

satellite y as 

rPy — E[(K)«)}- (3.162) 

Receiver a is located at pa, and receiver b is located at pb. 

There are three cases for the covariance function. The first case is when a=b and x=y 
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(i.e., it is the variance of the measurement). Then, 

Öl = ß\eX)[fZc(Pa,Pa,Po) + <(«CB)], (3.163) 

where fZc{pa,pa,pQ) is the correlated variance function (described below), ß2(ex) is the 

elevation mapping function (described below), and a2
z (reca) is taken from the Table 3.3. 

If the receiver is not one of the reference receivers (so it is not in the table), then a nominal 

value is chosen for a2
z (rec0) based upon expected levels of multipath and noise. 

The second case is when both measurements are to the same satellite (x=y), but the 

measurements are from different receivers (a ^ b). In this case, 

cx
ab = ß2(£x)fzc(Pa,Pb,Po), (3-164) 

where fZc{pa,pb,p0)
1S tne correlated variance function (described below), and n2(ex) is 

the elevation mapping function (described below). 

The third case involves measurements from different satellites (a; ^ y), in which case 

cxJ> = 0. (3.165) 

The correlated variance function is calculated as a combination of three uses of the 

differential variance function 

f   (n    „ x        < (Pa, Po) + <>l (Pb, Po) ~ < (Pa, Pb) .,,,,. 
JzAPaiPbiPo) = —^ • (3.166) 

The differential variance function is described by 

< (Pm'Pn) = cid + c2d
2 (3.167) 

where d is the distance between pm and pn, and Ci and c2 are fit coefficients as found in 

Table 3.3. 

Finally, the elevation mapping function is 

"(£' = üb+c'(0-53-i^)s- (3-168) 

where c^ is taken from Table 3.3. 
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Table 3.3: Summary of covariance function parameters for Norway network.   (ALES, 
AREM, etc. are Norway network reference receivers). 

Parameter LI Code LI Phase WL Phase 

C2b 

5.5554e-06 

1.1820e-08 

1.1024e-04 

4.8766e-07 

8.9407e-06 

3.2532e-08 

<*' 6.4680 3.9393 7.1839 

1.5983e-01 4.4273e-05 3.0794e-05 

4.2223e-02 4.4273e-05 3.0794e-05 

5.3479e-02 4.4273e-05 3.0794e-05 

6.8439e-02 4.4273e-05 3.0794e-05 

3.6063e-02 4.4273e-05 3.0794e-05 

1.6804e-02 4.4273e-05 3.0794e-05 

8.7918e-02 4.4273e-05 3.0794e-05 

4.1489e-02 4.4273e-05 3.0794e-05 

(TRON)d    4.9219e-02 4.4273e-05 3.0794e-05 

1.6252e-02 4.4273e-05 3.0794e-05 

4.5789e-02 4.4273e-05 3.0794e-05 

< (ALES)d 

< (AREM)d 

< (ARER)d 

< (BERG/ 

< (GEIM)d 

< (GEIR)d 

< (KRIS)d 

< (STAV)d 

< (TRON)d 

< (TRYM)^ 

°l. (TRYR^ 

"Units are m2/km for code, (cycles)2/km for phase 

feUnits are m2/km2 for code, (cycles)2/km2 for phase 

cUnitless 

''Units are m2 for code and (cycles)2 for phase 
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3.5   Interpretation As Least Squares Condition Adjust- 
ment 

In previous sections of this chapter, the NetAdjust method was derived using optimal esti- 

mation theory based on minimizing the trace of the error covariance matrix (i.e., minimum 

squared error estimation). The NetAdjust method can also be interpreted in classical least 

squares terms as a "condition adjustment," and doing so will provide insight into how the 

method works. 

Note that the NetAdjust method can also be interpreted as least squares collocation 

(or least squares prediction), which involves calculating the "signal" at a number of sig- 

nal points, using measurements (which include the signal and noise) from other loca- 

tions (Moritz, 1989). For NetAdjust, the signal is the correlated (satellite position and 

atmospheric) error, and the signal points are the computation points. 

3.5.1   Description of Least Squares Condition Adjustment 

In many applications, least-squares techniques are used to estimate one or more unknown 

parameters (sc) based upon one or more measurements or observations (I). In the most 

general case, the parameters and the measurements are related through the function 

f(x,l) = 0. (3.169) 

This is often referred to as the "mixed model" or "combined" case. A subset of the com- 

bined case is a condition adjustment, in which there are no unknown parameters, but there 

are conditions placed upon the measurements as represented by the Equation (Bjerham- 

mer, 1973; Krakiwsky, 1990; Leick, 1995) 

f(l) = 0. (3.170) 

The least squares condition adjustment generates measurement corrections 61 which 
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are applied to the measurements using 

1 = 1 + 81. (3.171) 

When this is done, the corrected measurements I meet the conditions specified in Equa- 

tion 3.170, i.e., 

f(l) = 0. (3.172) 

In general, there are an infinite number of choices for 81 which will satisfy Equation 3.172. 

The least squares condition adjustment chooses the 81 that minimizes the quadratic form 

(8l)Ci (8l)T = minimum, (3.173) 

where Ci is the covariance matrix of the measurements. 

The solution for the least squares condition adjustment is then (Krakiwsky, 1990) 

81 = -CiBT(BClB
T)-1w, (3.174) 

where 

B^^l (3.175) 

and 

w = f(l). (3.176) 

It can be seen that Equation 3.174 is similar to the NetAdjust solution given in Equa- 

tion 3.77 on page 72, if the conditions are defined as 

f(£n) = AV£n - AViVn = 0, (3.177) 

where AViVn is a vector of the double difference integer ambiguities between the net- 

work reference receivers. This states that the measurement corrections 8£n are generated 

such that all of the corrected double differenced measurement-minus-range observables 
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between the reference receivers are zero (after removing the known ambiguities between 

reference receivers). This makes intuitive sense, because if there were no measurement 

errors in £n, the double differences would be zero. 

This condition (that AV£n = 0) also makes sense in terms of the covariance analysis 

presented in Section 3.3. Recall from Equation 3.96 that the covariance of the errors in 

the estimation of AV5£n is 0, which means that the estimated double difference errors 

AV5£n are known perfectly. Since they are known perfectly, then their double difference 

values between the network reference stations should be zero (after removing ambigui- 

ties), as stated in the condition adjustment. 

3.5.2   Data Encapsulation Effect 

The condition AV-£n - AViVn = 0 can be used to explain an important feature of the 

NetAdjust method. Presume phase measurements from satellites x and y are available 

from three different receivers—one mobile receiver at the computation point and two dif- 

ferent receivers in the reference receiver network. The measurements from the network 

have been corrected using the NetAdjust method. The measurements are denoted as fol- 

lows: 

<f>xcp, 4>VcP    from mobile receiver at computation point 

$L > $u     fr°m network reference receiver 1 

$i2' $i2     from network reference receiver 2 

Two different double difference measurements are formed from these measurements, 

namely 

AV^^-^-Cfo-Äx) (3-178) 

AV«^f2 = Fcp ~ 4>% ~ (&, - &J (3-179) 
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Subtracting the two equations yields 

AV<^ - AV<^2 = fa - fa - (fa - fa) 

= N^ni    (from Equation 3.177). (3.180) 

This shows that, if the double difference measurement AV^^ is available, there is no 

new information about the double difference errors AVtf^^i to be gained by using an- 

other measurement from a different reference station (AV^^)- Therefore, since the goal 

of the network is to minimize the effect of the errors AVS^i, only the corrected mea- 

surements from one reference receiver are required at the mobile receiver.17 

This is called data encapsulation, because the data from the entire network of reference 

receivers is "encapsulated" into the measurements of each individual reference receiver. 

This data encapsulation effect is very useful because it means that only one set of ref- 

erence receiver measurements needs to be transmitted to the mobile receiver. Then the 

mobile user can use any standard differential processing algorithm18 that relies only on 

one reference receiver to do the processing, and no special multiple reference algorithm 

is necessary. 

17The mobile user will also need the estimated corrections at the mobile receiver computation point S£cp, 

but these corrections are the same regardless of which reference receiver is used. 

18While a single reference algorithm can be used, it may be desirable to tune it to account for the reduced 

errors brought about by the network. 
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Chapter 4 

Analysis of NetAdjust Performance 
Using Field Data 

In this chapter, data from two different GPS receiver networks is used to analyze the ef- 

fectiveness of the NetAdjust method. The first network involved 24 hours of data from 11 

stationary receivers in southern Norway, while the second network at Holloman Air Force 

Base, New Mexico, involved 4 stationary reference receivers and three mobile receivers. 

Both of these networks are described in detail in Appendix A. 

Most of the analysis is focused on the Norway network, which is considered the pri- 

mary network due to its large size and long observation duration. Much less analysis is 

performed on the Holloman network, due to its smaller size and the difficulty in determin- 

ing the correct integer ambiguities of the mobile receivers. 

4.1    Norway Network Performance Analysis 

This section describes the specific manner in which the NetAdjust method was applied 

to the Norway network, and then seven different "test networks" are described. Each test 

network consists of a subset of the 11 receivers, chosen to represent a wide variety of 

network scenarios. 

This is followed by four sections that describe NetAdjust performance, starting at 

the most basic level (individual measurements), progressing through positioning accuracy 
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and floating ambiguity positioning, and culminating in an analysis of the effect of Net- 

Adjust on ambiguity resolution. This combination of analyses is used to establish the 

effectiveness of the NetAdjust method based upon the objectives stated in Chapter 1 (Sec- 

tion 1.2.1). These objectives state that the Network should improve the ability to resolve 

carrier-phase integer ambiguities, and the evidences for such improvement are restated 

here: 

• Use of a network should improve the performance of ambiguity resolution algo- 

rithms, relative to the single reference case at the same distance. Performance is 

measured in terms of the ability to determine the correct ambiguities and the time 

required to do this. 

• Use of a network should increase the distance over which ambiguities can be accu- 

rately resolved, relative to a single reference case. 

• Use of the network should reduce the errors in the differential code and carrier- 

phase measurements for the mobile user. The differential errors that should be re- 

duced are all errors that are not canceled in the double differencing process (except 

for the integer ambiguities). Reducing these errors improves the ability to resolve 

the carrier-phase ambiguities, and provides better positioning performance once the 

ambiguities are known. 

Each of these will be shown in the analysis that is presented below. 

4.1.1   Descriptions of Data Processing Technique 

For all of the results shown below, NetAdjust was used to calculate corrections for LI 

code, LI phase, and widelane (WL) phase measurements using the methods and covari- 

ance function described in Chapter 3. These three sets of corrections were calculated in- 

dependently from each other. Recall that NetAdjust generates error estimates for both the 

receiver measurements and for the unknown measurements at the computation point. The 
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total corrections were calculated as the sum of the estimated reference receiver errors and 

computation point errors. These corrections were then applied to the raw measurements 

to generate corrected measurements, which were then saved as corrected measurement 

files. A 12° elevation cut off angle was used for all measurements.1 

A plot showing the GPS receivers used in the Norway network is given in Figure 4.1. 

A detailed description of the network is given in Appendix A. 

LI CA-code measurements were used from Trimble receivers (KRIS, STAV, BERG, 

ALES, and TRON), while LI semicodeless P-code measurements were used from the 

Ashtech receivers (AREM, ARER, GEM, GEIR, TRYM, TRYR). The Ashtech receivers 

also generated LI CA-code measurements, but these were found to be extremely vulner- 

able to multipath, so they were not used. This is consistent with the short baseline results 

presented in Figure 2.13 in Chapter 2. 

NetAdjust generated the LI phase corrections, and these were applied directly to the 

LI phase measurements. 

The WL phase corrections were generated using the raw (unconnected) WL phase mea- 

surements. These are by definition the difference between the LI and L2 phase (see Sec- 

tion 2.1.3), so any WL correction could be applied to either the LI or L2 phase measure- 

ments (or both). For this research, the WL corrections were applied directly to the L2 

measurements only (after accounting for the previously applied LI corrections). This is 

referred to as the L2 via WL approach. 

Another approach would have been to use NetAdjust to estimate the L2 corrections 

directly, rather than correcting the L2 measurements through the WL correction. The dif- 

ferences between these two approaches, when implemented, are relatively minor, and the 

two approaches give nearly indistinguishable results. The L2 via WL approach was cho- 

sen in order to allow a straightforward WL covariance analysis (since the WL covariance 

'Normally, elevation cutoff angles between 10° and 15° are used, balancing the tradeoff between more 

measurements versus increased atmospheric modeling error. The 12° value was chosen as a middle value 

in this tradeoff. 
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Figure 4.1: Relative locations of Norway reference receiver sites 

matrix is explicitly calculated). If the L2 phase measurements are estimated directly (i.e., 

L2 via L2), then it is more difficult to predict WL performance, since no WL covariance 

matrix is explicitly calculated. 

For all three types of measurements (LI code, LI phase, and WL phase), only cor- 

rected measurements were output to the corrected measurement file. Occasionally there 

was a phase measurement for which a correction could not be generated. This would 

occur when a) it was the only measurement from that satellite in the entire network, or 

b) when the integer ambiguities for all double difference phase measurements involving 

the measurements were not known.2 In either case, the measurement was not part of any 

2Appendix B shows that 10%-20% of the LI integer ambiguities between reference stations were un- 

known at any given time. (The percentages are better for WL ambiguities). Also, a double difference 

measurement between network reference receivers was rejected, even if there was a valid ambiguity value, 

if the measurement exceeded a 4-u value based upon the a priori double difference error covariance matrix 

BnCr£„Bn. 



115 

usable double difference measurements between network reference receivers, so its errors 

were unobservable, and no correction could be generated. Only measurements that were 

corrected were included in the output corrected measurement file. 

While analyzing the error reduction brought about by NetAdjust, it is desirable to 

compare various results generated from corrected reference receiver measurements with 

results generated from raw reference receiver measurements. However, if some of the 

measurements are not available in the corrected measurement file (for reasons described 

above), then any differences in results with the raw data could be due to either reduced 

errors or differences in the available measurements. In order to facilitate a fair comparison 

between the raw and corrected measurements, NetAdjust generated a separate output file 

which included all of the measurements in the corrected measurement file, only without 

the corrections applied. This ensured that the same set of measurements were available in 

the raw and the NetAdjust corrected data files, and any differences between the two files 

can only be attributed to the NetAdjust corrections. When results are presented for the 

raw data in the sections that follow, they are referring to these raw data files which have 

the same measurements as the corrected measurement files (only without the corrections). 

4.1.2   Description of Test Networks 

To see the impact of network size and geometry on NetAdjust performance, seven dif- 

ferent test networks will be used in the analyses that follow. For each test network, one 

receiver is specified as the "mobile" receiver to be positioned. The NetAdjust algorithm 

does not use the measurements from this receiver when generating the measurement cor- 

rections. 

The mobile receiver is treated as though it were moving, even though it is actually 

stationary. This yields results which are very similar, if not identical, to results obtained if 

the receiver were actually moving, as long as any tuning parameters (such as process noise 

in a positioning Kaiman filter) are set to the values for a moving receiver. This approach 
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can be taken because most of the differential GPS errors (atmospheric and satellite posi- 

tion errors) are independent of receiver dynamics. In general, multipath is decreased with 

dynamics (relative to a stationary receiver), so if anything, a stationary receiver treated as 

a mobile receiver represents a worst-case scenario. 

Diagrams of each of the seven test networks are given in Figures 4.2 and 4.3. In these 

plots, circles represent reference receivers, and a diamond indicates the mobile receiver. 

Note that the ARER/AREM and TRYR/TRYM sites have two receivers located within 50 

m of each other, so they show up as one circle. The four-letter designation of each of the 

receivers included in the network are on the diagram. 

The networks are named using the mobile receiver four-letter designation followed 

by the distance to the nearest network reference receiver (in km). This distance is note- 

worthy, because it represents the minimum distance (i.e., best case) over which single 

reference positioning could be performed if there were no network, and this is the point 

of comparison for the NetAdjust results. 

The first six test networks (ARER-0, GEIR-29, ARER-67, STAV-143, GEIR-164, 

and ALES-242) all involve either 9 or 10 reference receivers. The seventh test network 

(GEIR-223-sparse) has only three reference receivers, so it is also designated as "sparse." 

Table 4.1 summarizes the characteristics of each of the networks. 

4.1.3   Effect of NetAdjust on Raw Double Difference Measurements 

As stated above, one evidence of an improvement from the network is a reduction in the 

double difference measurement errors (once the ambiguities have been removed). These 

are the errors that reduce positioning accuracy and inhibit the ability to resolve carrier- 

phase integer ambiguities. 

Individual double differenced LI code, LI phase, and WL phase measurement-minus- 

range observables were calculated over the 24-hour period using the Norway data. As 

shown in Equation 3.41, these observables are a direct measure of the double difference 
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Table 4.1: Summary of test network characteristics 

Network 

ARER-0 

Nearest 
Reference 
Rec 

Distance 
to Nearest 
RefRec 

Network Reference Receivers 

AREM 0.011 
AREM KRIS STAV BERG ALES 
TRON TRYM TRYR GEM GEIR 

GEIR-29 GEIM 28.7 
AREM ARER KRIS STAV BERG 
ALES TRON TRYM TRYR GEIM 

ARER-67 KRIS 67.4 
KRIS  STAV BERG ALES TRON 
TRYM TRYR GEIM GEIR 

STAV-143 BERG 142.8 
AREM ARER KRIS BERG ALES 
TRON TRYM TRYR GEIM GEIR 

GEIR-164 BERG 163.8 
AREM ARER KRIS STAV BERG 
ALES TRON TRYM TRYR 

GEIR-223-sparse STAV 222.7 STAV ALES TRYM 

ALES-242 GEIR 242.1 
AREM ARER KRIS STAV BERG 
TRON TRYM TRYR GEIM GEIR 

errors. The double difference observables were generated between the mobile receiver and 

the closest network receiver for each of the seven test networks using raw (uncorrected) 

data, and then repeated using the reference data file generated by NetAdjust (which in- 

cluded the NetAdjust corrections). Note that the mobile receiver data was the same in 

both cases. 

A summary of results for all of these runs is presented at the end of this section, but it 

is useful to begin by examining the results from one of the test networks in greater detail. 

The GEIR-164 network was chosen for this, because it is the longest network which still 

has a reasonably good network geometry.3 

Figure 4.4 shows a comparison between the raw and corrected double difference errors 

for the BERG-GEIR baseline (GEIR-164 network). The top two plots show the double 

3Good network geometry means that there are reference receivers surrounding the mobile receiver. The 

ALES-242 network is longer, but it has poor geometry because most of the network receivers in that case 

lie to the south or west of ALES. 
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difference code errors in a time series, and the improvement in the NetAdjust case can be 

clearly seen. Below that is a plot showing the probability density functions of the double 

difference code measurement errors for both the raw and NetAdjust cases. Both appear 

Gaussian, but the NetAdjust case has a much sharper peak, indicating smaller errors (and 

a smaller variance/standard deviation). The mean and standard deviations of the two cases 

are shown in the top of this plot, and these indicate that the standard deviation of the errors 

was cut in half by the use of NetAdjust. 

Figures 4.5 and 4.6 present the same plots for the LI phase and the WL phase mea- 

surements. The relatively large errors with NetAdjust during the first hour for the LI case 

are a result of the lack of known integer ambiguities between the network reference re- 

ceivers, which meant that NetAdjust had very few measurements to work with. Note the 

diurnal variation in the overall magnitude of the errors, especially in the raw cases. The 

lowest error periods appear during the night and early morning, and the peaks occur in the 

late afternoons. This can be attributed to the ionospheric errors, which normally follow 

this same pattern (see Section 2.2). Note also that when the NetAdjust corrections are 

applied, the errors are more consistent throughout the day. The improvement is evident as 

well in the probability density function plots, which show that the standard deviation of 

the double difference measurement error was reduced by approximately 45% for both LI 

and WL phase measurements in this test network. 

Note that these results are all using the reference receiver which is closest to the mobile 

receiver for the GEIR-164 network (BERG). If other, farther reference receivers were 

used, the raw data results would show even greater errors. The NetAdjust results, however, 

would be exactly the same, due to the data encapsulation effect discussed at the end of 

Chapter 3. 

The results for all of the test networks are summarized in Table 4.2. Root-Mean- 

Square (RMS) values of the double difference measurement errors are shown for all three 

measurement types, along with the percentage of improvement. The test networks are 

listed in order of the network lengths, with the shorter length networks at the top of the ta- 
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Table 4.2: Double difference RMS error comparison between raw and NetAdjust solutions 
for LI code, LI phase, and WL phase measurements 

Test LI Code( tn) LI Phase (cycles) WL Phase (cycles) 

Network Raw Cor Imprv Raw Cor Imprv Raw Cor Imprv 

ARER-0 1.089 0.888 18% 0.081 0.090 -10% 0.041 0.041 0% 

GEIR-29 0.921 0.608 34% 0.180 0.154 15% 0.053 0.048 9% 

ARER-67 1.338 0.899 33% 0.301 0.226 25% 0.096 0.077 20% 

STAV-143 1.166 0.862 26% 0.455 0.260 43% 0.135 0.081 40% 

GEIR-164 1.146 0.617 46% 0.560 0.297 47% 0.165 0.088 47% 

GEIR-223-sparse 0.973 0.660 32% 0.707 0.332 53% 0.190 0.095 50% 

ALES-242 1.957 1.885 4% 0.794 0.461 42% 0.236 0.134 43% 

ble. These RMS errors are also plotted versus baseline distance in Figures 4.7 through 4.9. 

Note that, for the LI and WL phase measurements, the percentage improvement in- 

creases as the baseline length increases. For very short baselines (such as ARER-0 and 

GEIR-29), the differential errors are already low, and the additional network receivers 

(most of which are very far from the mobile receiver) do not provide much useful infor- 

mation. As the baseline length increases, then the differential errors grow, and the network 

reference receivers become more useful. Both the LI and the WL phase measurements 

exhibit similar percentage improvements. The LI errors grow much more quickly than 

the WL errors (both expressed in cycles), due to the LI wavelength which is much shorter 

than the WL wavelength. As a result, use of NetAdjust keeps the WL RMS errors below 

0.1 cycles for all but the longest networks, while the LI RMS errors with NetAdjust grow 

to 0.3 cycles or more (even though they are still an improvement over the raw cases). 

The double difference code measurement errors are reduced by NetAdjust for all of the 

test networks, but there is not a trend with network length as there was for the phase mea- 

surements, because the primary errors in the code measurement in this case are multipath 



125 

50 100 150 200 250 

Distance To Nearest Reference Receiver (km) 

Figure 4.7: LI code double difference error RMS values for raw and NetAdjust corrected 
measurements 

a> 

CO 

CE 

e 
UJ 
u> 
<o • 

Si 
o ° 
C   T- 

D 
0> 
XI 
3 
O a 

0.8 

0.6 

0.4 

0.2 

i  1 r~        -             i  

 1 ; ; A- A--A 
" O—O 

Raw 
NetAdjust :                  A 

\    ,,M 
A'' 

s 

I                UJ 
<          a 

j'^'' 
- **  :                          : 

o 
12 a 

...............fr....... 

a. 

S
T

A
V

-1
43

 I 
c 
UJ 
o i    °   * 

50 100 150 200 250 

Distance To Nearest Reference Receiver (km) 
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and noise, which are not distance-dependent (see Section 3.4.4.2). If this test is repeated 

during periods of high solar activity (causing large ionospheric errors), code measurement 

errors could become correlated to distance. 

4.1.4   Effect of NetAdjust on Differential Positioning Accuracy 

An evaluation of the improvement in the individual double difference measurements brought 

about by NetAdjust was presented in the previous section. In the current section, the errors 

are evaluated in the position domain. 

For any given time epoch, measurements from two receivers can be combined to form 

a set of linearly independent double difference measurements. (These are the measure- 

ments that were evaluated in the previous section). These double difference measurements 

are then used in a least-squares adjustment to calculate the position of the mobile receiver. 

This was performed on an epoch-by-epoch basis (i.e., no filtering) for each of the test 

networks using LI code, LI phase, and WL phase measurements (raw and corrected). For 

the phase measurements, the previously calculated4 integer ambiguities were applied, so 

the results in this section describe the positioning accuracy after the ambiguities have been 

resolved. (The effect of NetAdjust on ambiguity resolution is described in later sections). 

No carrier-phase smoothing of the code was used for the results in this section. 

Figure 4.10 gives an analysis of the LI code positioning results for the BERG-GEIR 

baseline and the GEIR-164 network over the 24-hour test period. The first three plots 

on the left show the position errors using the raw (uncorrected) measurements, and the 

first three on the right show the position errors after the NetAdjust corrections have been 

applied to the reference receiver measurements. The scales on the plots are held con- 

stant between the raw and the NetAdjust results to facilitate comparison between the two. 

Mean, standard deviation, and RMS value statistics are also provided on each of these 

plots. 

4These ambiguities were calculated using the procedures described in Appendix B. 



127 

Raw Net Ad just 
mean = 0.095; Sigma = 1.205, RMS = 1:209 (m) 

.. •,V:'''J ■*•    ;'-»i^•Si" •■..•'.•■.      -r!»;..'•* 

a 
HI 

-5 

4 

East 

•c o 

-4 
10 

mean.=i 0.059) Sigma = 0.891, RMS = 0.893 (m) 
•ji     : T. •    ■ •    *. :    :.'     : \ '    * 

North 

Q. 
3 

mean = -0.203 Sigma = 1.580, RMS = i;.593(m) 

...... ^. •|^ 
• *','«" V" 

IBP 

; up 

-5 

—10' ' ' ' ' ' '—>       -10L 

144000 158400 172800 187200 201600 216000 230400  144000 158400 172800 187200 201600 216000 230400 
17:00    21:00    01:00    05:00    09:00    13:00    17:00     17:00    21:00    01:00    05:00    09:00    13:00    17:00 

GPS Week Seconds/Local Time GPS Week Seconds/Local Time 

East Autocorrelation North Autocorrelation Up Autocorrelation 

0 10 20 30 
Correlation Time T (minutes) 

0 10 20 30 
Correlation Time x (minutes) 

0 10 20 30 
Correlation Time T (minutes) 

Figure 4.10: Analysis of the epoch-by-epoch LI code double difference positioning results 
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Note first of all that the code positioning errors are dominated by noise and multipath, 

although there are some longer time constant trends in the data as well. RMS errors 

for the raw positions varied between 0.9 and 1.6 m, but after the NetAdjust corrections 

were applied, the RMS errors varied between 0.47 and 0.8 m. Overall, application of the 

NetAdjust corrections reduced the RMS error by approximately 50% in each axis for this 

network. Note also that the NetAdjust corrections significantly reduced the vertical error 

bias (mean), from -20 cm raw to -7 cm corrected. 

It is useful to examine the time constants of the errors in addition to the overall error 

statistics, and here this is done through the autocorrelation function. The general autocor- 

relation function ^xx(ti, £2) is defined as 

*«(*i,*2)=£[z(*iM*2)], (4.1) 

where rr(ti) and x (£2) are random variables from the stochastic process x at times t\ and 

t2. If x is wide-sense stationary,5 then this is simplified to 

VXX{T) = E[x(t)x(t + T)]. (4.2) 

The autocorrelation function ^xx(r) then describes how the stochastic process x is corre- 

lated over time. 

The bottom three plots show the autocorrelation functions for the position errors cal- 

culated using each of the 24 hour time series. The traces identified with triangles are 

the raw data autocorrelation functions, and the traces identified with circles are the Net- 

Adjust autocorrelation functions. For all three axes, the NetAdjust position errors showed 

significantly less correlation. This appears to be primarily a result of the decreased error 

magnitudes and removal of long-term biases rather than a shortening of the time constants 

of the errors.6 This makes sense, because the NetAdjust method, as implemented in this 

5Wide-sense stationary essentially means that E[x{t\)x{t^)] depends only on the time difference r = 

t-L — t\. A more precise definition is given in Maybeck (1994). 

6If the time constants of the errors were significantly changed by NetAdjust, then the shape of the raw 

autocorrelation functions should be different from the shape of the NetAdjust autocorrelation functions. 
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research, performs epoch-by-epoch error estimations (i.e., no filtering). 

Figure 4.11 shows the same family of plots, except for the fixed integer LI phase 

position errors. In this case, the errors with longer time constants (atmospheric and satel- 

lite position errors) are dominant over the errors with short time constants (multipath and 

noise). This makes it easier to see the long term error trends than with the code position 

error plots from Figure 4.10. As in the code case, the NetAdjust corrections significantly 

reduced the total error RMS value. This is especially true in the east error component, 

for which the raw solution showed a -20 cm offset during daytime hours (which strongly 

suggests ionospheric errors), but the NetAdjust solution showed no such variation. Note 

also that, as in the code case, the autocorrelation functions differ in magnitude rather than 

shape, indicating that the NetAdjust corrections do not significantly change the error time 

constants. 

For completeness, the fixed integer WL phase plots are shown in Figure 4.12. These 

also show a reduction in the error magnitudes, but no significant change in the error time 

constants. 

Figures 4.10 through 4.12 represent the results from just one of the seven test net- 

works (GEIR-164). The results from all of the test networks are summarized in Tables 4.3 

through 4.8. Table 4.3 shows the statistics (mean, standard deviation, and RMS value) 

of the raw and NetAdjust code positioning errors, broken down into each axis. In every 

case, the NetAdjust solution resulted in a sizeable reduction in the RMS position errors. 

Tables 4.4 and 4.5 show the same statistics for the fixed integer LI and WL phase position 

errors. Note that the NetAdjust corrections are very effective at reducing the mean errors 

(i.e., biases). For both LI and WL position errors, the NetAdjust corrections generally 

keep the biases down to a few centimetres, in contrast to the raw position errors which 

have biases of up to 11 cm. The RMS errors are also reduced, especially on the longer 

networks. 
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Figure 4.11: Analysis of the epoch-by-epoch fixed integer LI phase double difference po- 
sitioning results on BERG-GEIR baseline. NetAdjust results used the GEIR-164 network. 
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Figure 4.12: Analysis of the epoch-by-epoch fixed integer WL phase double difference po- 
sitioning results on BERG-GEIR baseline. NetAdjust results used the GEIR-164 network. 
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Table 4.3: Differential LI code position error statistics over 24-hour period, Norway 
network 

Raw Position Error (cm) NetAdjust Position Error (cm) 
Network Axis Mean Std Dev RMS Mean Std Dev RMS 
ARER-0 East 11.0 98.8 99.4 1.0 78.8 78.8 
ARER-0 North -1.8 82.1 82.1 -19.1 64.7 67.5 
ARER-0 Up -6.1 137.8 137.9 -14.3 112.5 113.4 
GEIR-29 East 1.8 84.1 84.1 -4.8 58.5 58.7 
GEIR-29 North 3.1 65.8 65.9 6.1 45.0 45.4 
GEIR-29 Up -1.2 101.8 101.8 -6.5 75.4 75.7 
ARER-67 East 0.1 124.1 124.1 0.6 80.1 80.1 
ARER-67 North -16.9 103.1 104.5 -22.5 66.7 70.3 
ARER-67 Up -21.0 176.2 177.4 -15.6 115.5 116.5 
STAV-143 East -0.5 113.1 113.1 -7.3 83.9 84.2 
STAV-143 North -2.5 88.6 88.7 -2.6 66.9 67.0 
STAV-143 Up 3.4 154.8 154.9 18.9 114.3 115.9 
GEIR-164 East 9.5 120.5 120.9 -5.7 59.3 59.5 
GEIR-164 North 5.9 89.1 89.3 6.7 46.0 46.5 
GEIR-164 Up -20.3 158.0 159.3 -7.1 78.1 78.4 
GEIR-223-sparse East 8.4 98.2 98.5 -6.8 65.2 65.6 
GEIR-223-sparse North 9.2 80.2 80.7 2.9 51.9 52.0 
GEIR-223-sparse Up -28.4 136.2 139.2 -10.5 86.3 87.0 
ALES-242 East 8.3 126.4 126.6 1.5 112.2 112.2 
ALES-242 North -13.6 111.4 112.3 -10.5 100.8 101.3 
ALES-242 Up 20.9 176.4 177.6 17.4 159.8 160.7 
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Table 4.4: Differential fixed integer LI phase position error statistics over 24-hour period, 
Norway network 

Raw Position Error (cm) NetAdjust Position Error (cm) 
Network Axis Mean Std Dev RMS Mean Std Dev RMS 
ARER-0 East -0.1 0.5 0.5 -0.4 0.7 0.8 
ARER-0 North 0.1 0.4 0.4 0.1 0.6 0.6 
ARER-0 Up 0.7 0.7 1.0 0.5 1.1 1.2 
GEIR-29 East -1.5 3.9 4.2 0.3 2.9 2.9 
GEIR-29 North -0.1 2.1 2.1 -0.0 2.0 2.0 
GEIR-29 Up 0.8 4.5 4.6 0.7 4.0 4.1 
ARER-67 East -5.1 4.7 7.0 -1.9 3.1 3.7 
ARER-67 North -0.9 3.5 3.6 0.3 2.8 2.8 
ARER-67 Up -1.9 6.5 6.8 -4.0 5.3 6.6 
STAV-143 East 0.8 6.5 6.5 1.6 4.3 4.6 
STAV-143 North 3.4 7.6 8.3 -0.2 3.5 3.5 
STAV-143 Up -1.9 8.8 9.0 0.1 6.0 6.0 
GEIR-164 East -10.7 12.9 16.7 -0.5 5.3 5.3 
GEIR-164 North 1.3 5.7 5.9 1.0 4.4 4.5 
GEIR-164 Up 7.0 12.0 13.9 4.3 7.5 8.6 
GEIR-223-sparse East -11.3 14.3 18.2 -0.2 7.0 7.0 
GEIR-223-sparse North -2.8 10.1 10.5 0.1 5.3 5.3 
GEIR-223-sparse Up 8.1 12.9 15.2 2.9 8.9 9.4 
ALES-242 East 8.5 12.8 15.4 4.3 9.8 10.7 
ALES-242 North -5.0 13.0 14.0 -1.4 6.0 6.2 
ALES-242 Up -3.5 15.9 16.3 0.0 12.5 12.5 
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Table 4.5: Differential fixed integer WL phase position error statistics over 24-hour pe- 
riod, Norway network 

Raw Position Error (cm) NetAdjust Position Error (cm) 
Network Axis Mean Std Dev RMS Mean Std Dev RMS 
ARER-0 East -0.0 2.9 2.9 0.3 2.9 2.9 
ARER-0 North -0.1 2.3 2.3 -0.1 2.3 2.3 
ARER-0 Up -0.8 4.1 4.2 -0.4 4.1 4.1 
GEIR-29 East 1.8 4.4 4.7 -0.2 4.1 4.1 
GEIR-29 North 0.2 2.9 2.9 -0.1 2.6 2.6 
GEIR-29 Up -0.4 5.7 5.7 -0.7 5.5 5.5 
ARER-67 East 4.3 8.6 9.6 1.5 6.9 7.0 
ARER-67 North 1.8 6.7 6.9 -0.1 4.5 4.5 
ARER-67 Up 2.4 9.6 9.9 4.8 8.6 9.8 
STAV-143 East 1.9 9.3 9.5 -1.2 5.9 6.0 
STAV-143 North -4.0 10.0 10.8 -0.2 5.1 5.1 
STAV-143 Up 0.6 12.6 12.6 -0.3 9.5 9.5 
GEIR-164 East 12.8 15.9 20.4 0.3 7.1 7.1 
GEIR-164 North -0.3 8.2 8.2 -0.2 5.2 5.2 
GEIR-164 Up -8.9 16.7 18.9 -5.8 12.0 13.4 
GEIR-223-sparse East 11.8 16.2 20.0 0.9 8.0 8.0 
GEIR-223-sparse North 3.6 13.2 13.6 -0.7 6.5 6.6 
GEIR-223-sparse Up -7.8 18.1 19.7 -3.7 12.5 13.1 
ALES-242 East -13.4 18.9 23.2 -6.6 10.8 12.6 
ALES-242 North 5.2 16.4 17.2 1.8 7.7 7.9 
ALES-242 Up 6.0 21.3 22.2 -1.3 15.0 15.0 
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Table 4.6: Comparison of LI code 3-D RMS position errors 

3-D RMS Position Error (cm)        Percent 
Network Raw NetAdjust Improvement _____ 

GEIR-29 
ARER-67 
STAV-143 
GEIR-164 
GEIR-223-sparse 
ALES-242  
Avg. over short (< 100 km) networks    192.3 139.2 27.6% 
Avg. over long (> 100 km) networks    216.1 152.1 29.6% 

188.8 153.7 18.6% 
147.5 106.0 28.2% 
240.4 158.0 34.3% 
211.3 158.1 25.2% 
219.0 108.9 50.3% 
188.6 120.7 36.0% 
245.3 220.6 10.0% 

Table 4.7: Comparison of fixed integer LI phase 3-D RMS position errors 

3-D RMS Position Error (cm)        Percent 
Network Raw NetAdjust Improvement _____ 

GEIR-29 
ARER-67 
STAV-143 
GEIR-164 
GEIR-223-sparse 
ALES-242  
Avg. over short (< 100 km) networks    6.0 5.0 17.1% 
Avg. over long (> 100 km) networks    22.2 12.5 43.9% 

1.2 1.6 -33.0% 
6.6 5.4 18.0% 
10.4 8.1 22.2% 
13.9 8.3 40.4% 
22.5 11.1 50.8% 
25.9 12.8 50.6% 
26.4 17.6 33.2% 



5.6 5.6 0.3% 
8.0 7.4 7.8% 
15.4 12.9 16.1% 
19.1 12.3 35.7% 
29.0 16.0 44.6% 
31.3 16.7 46.6% 
36.4 21.2 41.9% 
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Table 4.8: Comparison of fixed integer WL phase 3-D RMS position errors 

3-D RMS Position Error (cm)        Percent 
Network Raw NetAdjust Improvement 
ARER-0 
GEIR-29 
ARER-67 
STAV-143 
GEIR-164 
GEIR-223-sparse 
ALES-242  
Avg. over short (< 100 km) networks    9.7 8.6 10.8% 
Avg. over long (> 100 km) networks    28.9 16.5 42.8% 

Table 4.6 shows the 3-D RMS7 values of the LI code position errors. Each of the net- 

works showed an improvement when the NetAdjust corrections were used. The last two 

lines in the table show the average 3-D RMS values of the short (< 100 km) networks and 

the long (> 100 km) networks. Note that the improvement percentages given in the last 

two lines are calculated directly from the averaged 3-D RMS errors (not an average of the 

percentages for each network). For the code measurements, the short networks showed 

an average reduction in 3-D RMS errors of 27.6% when the NetAdjust corrections were 

applied, which was very similar to the average reduction of 29.6% for the long networks. 

This implies that the bulk of the LI code errors reduced by NetAdjust are multipath and 

noise, and not distance-dependent errors (such as satellite position and atmospheric er- 

rors). This is consistent with the error analysis performed in conjunction with the gener- 

ation of the covariance function in Chapter 3 (see Figure 3.12). In Figure 4.13, the 3-D 

RMS code position errors are plotted against the distance between mobile and reference 

receivers. This also shows that the NetAdjust corrections consistently reduce the errors, 

and that the total LI code RMS position error (for both the raw and NetAdjust cases) is 

7The 3-D RMS error is defined as the RMS value of the three-dimensional error magnitudes. 
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Figure 4.13: LI code 3-D RMS positioning error for seven test networks 

not related to the distance between the mobile and reference receivers.8 

The same set of statistics are presented for the fixed integer LI phase 3-D RMS po- 

sition errors in Table 4.7. Note that the percentage improvement was 17% for short net- 

works and 44% for long networks, demonstrating that the degree of phase measurement 

error reduction from NetAdjust is highly related to the network length. This is because, 

in contrast to code measurements, the dominant differential measurement errors for phase 

measurements are the errors which are distance-dependent (i.e., satellite position and at- 

mospheric errors). If there is a reference receiver that is close to the mobile receiver (such 

as in the ARER-0 network, where there is only an 11 m separation between the receivers), 

then the correlated errors are very small, and the other reference receivers cannot help 

much. If, however, the mobile receiver is far from any reference receiver (as in the long 

networks), then the correlated errors dominate, and the other reference receivers are very 

valuable for reducing the errors. This is graphically demonstrated in Figure 4.14, which 

8If this test were repeated during periods of high ionospheric activity (such as during a solar maximum), 

the errors could become correlated with distance. 
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Figure 4.14: Fixed integer LI phase 3-D RMS positioning error for seven test networks 

shows a plot of the 3-D RMS errors against the distance between the mobile and reference 

receiver. Note how the improvement from NetAdjust grows as the distance between the 

mobile and reference receivers grows. 

The same statistics are presented for the fixed integer WL case in Table 4.8 and Fig- 

ure 4.15. Note that the trends are very similar to the LI case, only with slightly larger 

errors. This is because a) the widelane observable is a combination of two measurements, 

which increases uncorrelated errors (multipath and noise) by a factor of \f2, and b) the 

ionospheric errors, multipath, and noise are amplified in the widelane measurement when 

expressed in metres, as they are in this case (see Table 2.3). 

4.1.5   Effect of NetAdjust on Integrated Floating Ambiguity Solution 

The University of Calgary FLYKIN™ software was used to generate an integrated float- 

ing ambiguity solution. FLYKIN uses code and carrier-phase measurements together in 

a Kaiman filter to estimate carrier-phase double-difference ambiguities along with three- 

dimensional position and velocity states. FLYKIN is designed primarily for kinematic 
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Figure 4.15: Fixed integer WL phase 3-D RMS positioning error for seven test networks 

carrier-phase integer ambiguity resolution (as will be used in the next section), but it can 

also be used in a "floating" mode, whereby it never attempts to fix the carrier-phase am- 

biguities to integers. Instead, the ambiguities are allowed to take on any real (or floating) 

value. 

All runs of FLYKIN in this section (and in Section 4.1.6) used a common set of filter 

tuning parameters. The LI code, LI phase, and WL phase (when used) were given mea- 

surement standard deviations of 1 m, 0.02 cycles, and 0.03 cycles.9 The state vector is 

defined as 

x = [Px    Py    Pz    vx    Vy    Vz    AViVx    ...    AViVn (4.3) 

where px,py, and pz represent the mobile receiver position in ECEF coordinates (m), vx, 

vy, and vz represent the mobile receiver ECEF velocity (m/s), and AV-/VX through AViVn 

are the integer ambiguity terms (cycles). Then, the process noise covariance matrix Q is 

9These are values typically used for FLYKIN for single reference cases. 
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calculated as 

3At3 0 0 3At2 0 0 0 0 

0 3At3 0 0 3A*2 0 0 0 

0 0 3At3 0 0 3At2 0 0 

3Ai2 0 0 3Ai 0 0 0 0 

Q = 0 3At2 0 0 3At 0 0 0 

0 0 3Ai2 0 0 3Ai 0 0 

0 0 0 0 0 0 IE -6A*A2   • 0 

0 0 0 0 0 0 0 •   lE-6AtX2 

(4.4) 

where At is the time interval between measurements (nominally 2 seconds for the Norway 

network) and A is the LI or WL wavelength, depending upon the phase measurement used 

in the processing. All of these tuning parameters are values typically used to provide the 

best results for integer ambiguity resolution, and they are not necessarily optimized for the 

conditions present in the Norway network. For more details on the FLYKIN algorithm, 

see Lachapelle et. al. (1992). 

Because FLYKIN is a Kaiman filter with an accuracy that improves as more mea- 

surements are obtained, it is useful to characterize its performance over time. Of special 

interest is the initialization period, defined as the time extending from filter initialization 

to filter steady state.10 It is desirable to have a statistical measure of the filter accuracy 

that is based upon many repeated runs (samples), rather than just one or two sample runs. 

To this end, a test method was used which generated many repeated runs over the 24-hour 

test period, as described in the following section. 

10Steady-state refers to the approximate time after which the filter errors no longer significantly decrease 

in magnitude, although they can fluctuate depending upon the number of measurements, geometry, etc. 
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4.1.5.1   Floating Ambiguity Test Methodology 

FLYKIN was used in an iterative manner, starting at the beginning of the 24-hour test 

period. Each run had a duration of 20 minutes, and the runs were staggered at 10-minute 

intervals. At each epoch, the total position error was calculated relative to the known 

receiver position. Figure 4.16 shows the east position error of the BERG-GEIR baseline 

with Net Adjust (using the GEIR-164 network) for the first six iterations. Note how the 

errors vary from run to run (other than perhaps a negative bias for these six runs). Fig- 

ure 4.17 is similar, only it shows the three-dimensional error magnitude rather than the 

east error. 

This process was repeated until the end of the 24-hours was reached, for a total of 

138 separate runs. Figures 4.18 and 4.19 show the east error and 3-D error magnitude, 

respectively, for each of the 138 runs. Note how the errors are large at the start, but they 

decrease rapidly until they appear to reach steady-state somewhere around 3-5 minutes. 

The occasional spikes in these plots show where the filter automatically reset itself in the 

middle of a 20 minute run.11 

The data represented in Figures 4.18 and 4.19 can be presented more concisely as 

statistical values. Figure 4.20 shows the mean value and a window of ± one standard 

deviation about that mean calculated from the 138 samples. Likewise, Figure 4.21 shows 

the RMS value of the three-dimensional position errors. 

The east, north, and vertical mean ± \-a window position errors for the GEIR-164 

baseline, based on the 138 samples, are shown in Figure 4.22. The plots on the left were 

generated from the 138 iterations of the BERG-GEIR baseline using raw (uncorrected) 

data, and the plots on the right were generated for the BERG-GEIR baseline after the 

BERG code and phase measurements were corrected by NetAdjust (using the GEIR-164 

baseline). FLYKIN was run in float mode using LI code and LI phase as measurements. 

11 Filter resets occur under various circumstances, such as if there are a large number of cycle slips or 

missing measurements. 
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Figure 4.18: East position error for 138 runs ofFLYKIN referenced to initialization time, 
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Figure 4.19: 3-D position error for 138 runs ofFLYKIN referenced to initialization time, 
floating ambiguity mode, BERG-GEIR baseline, GEIR-164 network 
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Figure 4.20:  East position error statistics using FLYKIN, floating ambiguity mode, 
BERG-GEIR baseline, GEIR-164 network 
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Figure 4.22: FLYKIN mean and 1-a window position error statistics for BERG-GEIR 
(164 km) baseline, float mode, LI phase and LI code measurements. (NetAdjust correc- 
tions generated using GEIR-164 network.) 
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Figure 4.23: FLYKIN mean and 1-a window position error statistics for BERG-GEIR 
(164 km) baseline, float mode, WL phase and LI code measurements. (NetAdjust correc- 
tions generated using GEIR-164 network.) 
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Figure 4.23 shows a similar plot using WL phase measurements. Both of these figures 

demonstrate the improvement attained through the use of NetAdjust for this particular 

scenario. 

The plots presented in Figures 4.22 and 4.23 only refer to the BERG-GEIR baseline 

(i.e., the GEIR-164 network). A summary of results for all of the networks is given 

in Tables 4.9 and 4.10. These tables present the mean and standard deviations of the 

position errors in each axis for each of the networks. Values are given after 3 minute and 

15 minutes initialization time, for both raw and NetAdjust corrected values. 

Note that, for these filtered position errors, use of the NetAdjust corrections always 

reduces the error standard deviation (compared to the raw case), but it is not so effective 

at removing the bias values. Possible explanations of this are discussed at the end of this 

section. 

Figures 4.24 and 4.25 show the RMS values of the three-dimensional position errors 

for the 138 test runs after a 15-minute FLYKIN filter initialization period. Figure 4.24 

was generated using LI phase measurements, while Figure 4.25 was generated using WL 

phase measurements. The values are plotted for the raw measurements (triangles and 

dashed line), the NetAdjust corrected measurements (circles and solid line). A third line 

(boxes and dash-dot line) represents the results when using the raw LI code measurements 

and the corrected phase measurements. 

Note that correcting only the phase measurements yields almost no improvement for 

these floating ambiguity tests. This implies that the FLYKIN errors are primarily caused 

by code errors. This can be understood in terms of what the FLYKIN filter appears to be 

doing with this set of tuning parameters. 

GPS phase measurements are implicitly used in a GPS positioning Kaiman filter in 

two different ways.12 First, the phase measurements act to smooth out the large, high fre- 

12The two uses of phase measurements described here are implicitly part of the Kaiman filter, meaning 

that the Kaiman filter does not explicitly use them twice or in two ways—rather, the phase measurements 

improve the results in two distinct manners. 



147 

Table 4.9: Mean position errors of 138 FLYKIN iterations after 3 and 15 minutes, float 
mode, LI phase and LI code measurements 

Network 
Init. 

Time 
Raw Mean Error (m) 

East     North      Up 
Net Adjust Mean Error (m) 

East       North        Up 
ARER-0 
ARER-0 

3 min 
15 min 

0.056 
0.023 

-0.021 
0.000 

-0.022 
-0.017 

-0.031 
-0.045 

-0.164 
-0.120 

-0.003 
0.054 

GEIR-29 
GEIR-29 

3 min 
15 min 

0.003 
0.002 

0.028 
0.020 

-0.016 
-0.025 

-0.031 
-0.033 

0.052 
0.045 

-0.051 
-0.046 

ARER-67 
ARER-67 

3 min 
15 min 

-0.059 
-0.064 

-0.125 
-0.111 

-0.082 
-0.033 

-0.033 
-0.047 

-0.190 
-0.157 

-0.012 
0.031 

STAV-143 
STAV-143 

3 min 
15 min 

0.003 
0.004 

-0.008 
-0.027 

0.003 
0.037 

-0.026 
-0.018 

-0.027 
-0.038 

0.164 
0.111 

GEIR-164 
GEIR-164 

3 min 
15 min 

0.021 
0.002 

0.075 
0.066 

-0.132 
-0.066 

-0.041 
-0.042 

0.067 
0.072 

-0.039 
-0.028 

GEIR-223-sparse 
GEIR-223-sparse 

3 min 
15 min 

0.006 
-0.013 

0.105 
0.110 

-0.201 
-0.116 

-0.055 
-0.054 

0.047 
0.046 

-0.067 
-0.027 

ALES-242 
ALES-242 

3 min 
15 min 

0.052 
0.072 

-0.172 
-0.182 

0.171 
0.088 

0.019 
0.040 

-0.132 
-0.152 

0.193 
0.153 

Table 4.10: Position error standard deviations of 138 FLYKIN iterations after 3 and 15 
minutes, float mode, LI phase and LI code measurements 

Network 
Init. 

Time 
Raw Error Std Dev (m) 

East       North        Up 
NetAdjust Error Std Dev (m) 
East          North          Up 

ARER-0 
ARER-0 

3 min 
15 min 

0.225 
0.159 

0.281 
0.115 

0.452 
0.227 

0.187 
0.150 

0.294 
0.160 

0.423 
0.210 

GEIR-29 
GEIR-29 

3 min 
15 min 

0.095 
0.075 

0.136 
0.108 

0.236 
0.179 

0.098 
0.077 

0.136 
0.107 

0.243 
0.181 

ARER-67 
ARER-67 

3 min 
15 min 

0.294 
0.223 

0.471 
0.288 

0.663 
0.395 

0.187 
0.152 

0.328 
0.201 

0.510 
0.291 

STAV-143 
STAV-143 

3 min 
15 min 

0.205 
0.155 

0.288 
0.208 

0.442 
0.321 

0.215 
0.196 

0.338 
0.257 

0.458 
0.326 

GEIR-164 
GEIR-164 

3 min 
15 min 

0.243 
0.193 

0.350 
0.300 

0.582 
0.398 

0.109 
0.100 

0.142 
0.147 

0.274 
0.220 

GEIR-223-sparse 
GEIR-223-sparse 

3 min 
15 min 

0.235 
0.207 

0.390 
0.295 

0.547 
0.449 

0.113 
0.109 

0.171 
0.156 

0.326 
0.298 

ALES-242 
ALES-242 

3 min 
15 min 

0.231 
0.219 

0.416 
0.404 

0.629 
0.517 

0.209 
0.217 

0.391 
0.386 

0.598 
0.484 
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Figure 4.24: RMS of three-dimensional position error for 138 iteration ofFLYKIN, float- 
ing mode, LI phase and LI code measurements, 15 minute filter initialization time 

0.50 

0.45 

0.40 

0.35 

0.30 

0.25 

A - -A   Raw Code, Raw WL Phase 
□—□    Raw Code, NetAdjust WL Phase 
G—G   NetAdjust Code, NetAdjust WL Phasib 

Distance to Nearest Reference Receiver (km) 

£ 

250 
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quency errors in the code measurements (i.e., multipath and noise). This effect is known 

as carrier-phase smoothing of the code (Hatch, 1982), and benefits are gained after a very 

short period of time (on the order of minutes). 

The second way carrier-phase measurements can improve positioning accuracy is 

more subtle, and it hinges on the idea that the ambiguities are by definition constant val- 

ues. As the geometry of the satellite constellation changes over time, only one set of 

ambiguities (the true ones) fit the data. The longer the observation interval, the greater the 

observability of the carrier-phase ambiguities (and therefore position). It is even possible 

to attain centimetre level accuracies without the use of any code measurements using this 

approach, as in Cannon (1990). Because this effect depends upon changes in the satellite 

constellation, more time is required before positioning improvements are gained from this 

effect, when compared to carrier-phase smoothing of the code. 

It appears from the performance of the FLYKIN filter in float mode (with the tun- 

ing parameters described above) essentially uses the phase measurements to smooth the 

code (the first use), but not to improve observability of the position (the second use). 

This assertion is backed up by the error plots in Figures 4.22 and 4.23, which show that 

the filter has reached steady state within 2-3 minutes. This time period is enough for 

carrier-phase smoothing, but not long enough for accurate ambiguity determination from 

changing satellite geometry. 

Carrier-phase smoothing of the code does not significantly benefit in the short term 

from the improved phase accuracy gained by NetAdjust, because carrier-phase smoothing 

uses the phase difference over time to generate the corrections. Any low frequency13 

error in the phase measurement will have no effect on the carrier-phase smoothing results 

(other than to generate a slightly different ambiguity estimate, which cancels out in the 

positioning). NetAdjust generates absolute corrections which will yield only marginal 

improvements in the time differenced carrier-phase values, which means that NetAdjust 

13Low frequency errors here imply a time constant on the order of approximately 5 minutes or more. 
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will not significantly improve carrier-phase smoothing results.14 

Note that the RMS errors for the NetAdjust case (identified by circles/lines) in Fig- 

ures 4.24 and 4.25 closely match the pattern of the NetAdjust corrected code-only differ- 

ential positioning errors presented in Section 4.1.4 (Figure 4.13 on page 137). This again 

demonstrates that the errors in the FLYKIN floating solutions are dominated by the code 

measurement errors. 

4.1.6   Effect of NetAdjust on Ambiguity Fixing 

For this test, the FLYKIN software package was used to test the effect of NetAdjust 

on carrier-phase ambiguity resolution. The NetAdjust method enhances the ambiguity 

resolution process by reducing the differential errors, and such a reduction will aid any 

ambiguity resolution software package. The goal of this chapter, then, is not primarily 

to establish absolute performance levels when using NetAdjust, but rather to show the 

performance improvement resulting from the NetAdjust corrections relative to the raw 

(uncorrected) performance. 

4.1.6.1   FLYKIN Ambiguity Resolution Algorithm 

Understanding the algorithms used in the FLYKIN is essential to interpret the results in 

this section properly. The FLYKIN software combines the floating ambiguity Kaiman 

filter described in Section 4.1.5 with the Fast Ambiguity Search Filter (FASF) described 

in Section B. 1.1.1.5 on page 243. The FASF algorithm is essentially an efficient way 

to determine the integer ambiguity search space15 using the information contained in the 

14Also, to limit the effects of code-carrier divergence (caused by the ionosphere having opposite effects on 

the code and carrier-phase measurements), filters implementing carrier-phase smoothing of the code (either 

implicitly or explicitly) need to have short time constants. As a result, the code smoothing never completely 

converges to the carrier-phase values, and small differences (or corrections) in the phase measurements do 

not have a significant effect. 

15The search space refers to the set of candidate integer ambiguity combinations, one of which is correct. 
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state covariance matrix generated by the Kaiman filter. After determining the ambiguity 

search space, FLYKIN attempts to identify the correct ambiguity set from all of the sets 

in the search space. There are two ways that this identification can occur: 

1. If there is only one candidate ambiguity set generated by FASF, then that one is 

deemed correct. 

2. If there are multiple candidate ambiguity sets, then the ambiguity set which has 

the lowest residuals is chosen, if the ratio of the sum of squares of the residuals 

from this set to the sum of squares of the residuals from the next best set exceeds a 

prespecified threshold. This assures that an ambiguity set will not be chosen unless 

it stands out as being significantly better than all of the other candidate ambiguity 

sets. Note that the phase measurement residuals are the ones used for this ratio 

check. 

Using NetAdjust to reduce the differential errors can then help the ambiguity reso- 

lution process of FLYKIN in two different ways. First, by having more accurate code 

measurements (and more accurate phase measurements to a lesser extent), the ambiguity 

search space will be made smaller and more accurate, which facilitates easier identifica- 

tion of the correct ambiguity. Secondly, more accurate phase measurements will improve 

the ability to distinguish the correct ambiguity set when using the ratio test. If the differen- 

tial errors are small, then the correct ambiguity set will yield very small residuals, which 

make it easy to identify. As the differential phase errors grow, however, the residuals grow 

as well, and the correct set becomes indistinguishable from the other sets. 

The emphasis of this research is to improve the ability to perform carrier-phase ambi- 

guity resolution by reducing the phase errors (although the code errors are estimated and 

removed as well). As described above, any improvement in FLYKIN performance could 

be attributed to a combination of the improvement in the phase and the code measure- 

ments. 
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It is desirable to determine the impact of the NetAdjust phase measurement corrections 

on FLYKIN apart from the code corrections. To this end, a comparison is made between 

three different sets of results throughout this section, including 

• Results using raw LI code and raw phase measurements. These are called the raw 

results. 

• Results using raw LI code and NetAdjust-corrected phase measurements. (These 

results demonstrate the impact of phase measurement corrections only). These are 

called the NetAdjust phase only results. 

• Results using NetAdjust-corrected LI code and NetAdjust-corrected phase mea- 

surements. These are called the NetAdjust results. 

4.1.6.2   Test Methodology 

The iterative process (involving 138 FLYKIN runs) described in Section 4.1.5 was used 

here, only FLYKIN attempted to determine the integer ambiguities at each measurement 

epoch. As soon as a set of ambiguities was chosen (either by being the only one in 

the search space or by passing the ratio test), then the solution time and the ambiguity 

values were recorded, and the next iteration was begun. After all iterations were complete, 

the stored ambiguities were compared against the precalculated16 ambiguities for that 

baseline to determine if they were correct. This analysis procedure was performed for LI 

ambiguities and WL ambiguities, for each of the seven test networks, and for each of the 

three types of corrections (raw, NetAdjust phase only, and NetAdjust). As in the floating 

ambiguity case, a maximum of 20 minutes was allowed for resolving ambiguities. 

Figure 4.26 is a bar chart showing, for each of the 138 runs, the time required to 

resolve the WL phase ambiguities between the BERG and GEIR receivers using raw data. 

Only the correct ambiguity solutions are plotted. Figure 4.27 shows the results after the 

16This is described in Appendix B 



153 

NetAdjust corrections were applied to the BERG data. Note that the use of NetAdjust 

reduced the time required to resolve the ambiguities and increased the number of correct 

ambiguities. 

Throughout the rest of this section, the results will be presented in terms of three per- 

formance measures which summarize the overall performance of the FLYKIN algorithm. 

The first performance measure is the percentage of correct fixes, which refers to the per- 

centage of the 138 iterations that yielded a correct fixed ambiguity solution. For example, 

94 correct ambiguities are represented in Figure 4.26, which means that the percentage of 

correct fixes in this case was 68.1% (100x94/138). Good performance results in a high 

percentage of correct fixes. 

The second performance measure is the percentage of incorrect fixes, defined as the 

percentage of the 138 iterations where FLYKIN generated a fixed ambiguity solution, but 

it was incorrect. Figure 4.26 shows only the 94 runs in which the correct ambiguities were 

calculated. Of the remaining 44 runs, 18 were incorrect, yielding a percentage of incorrect 

fixes value of 13.0% (100x18/138). (No solutions were obtained for the remaining 26 

runs). Good performance results in a low percentage of incorrect fixes. 

The third and final performance measure is the mean time to fix, which is defined as 

the average time required to determine the ambiguities which were calculated correctly. 

Any incorrect ambiguities are not included in the mean time to fix. The results presented 

in Figures 4.26 and 4.27 had mean time to fix values of 4.1 minutes and 2.7 minutes, 

respectively. Good performance results in a low mean time to fix. 

Each of these performance measures will be presented in the sections that follow. 

4.1.6.3   Analysis of Percentage of Correct Fixes 

Figure 4.28 shows the percentages of good fixes for the LI phase ambiguities over the 

seven test networks. The raw results are presented using triangles and dashed lines, the 

NetAdjust phase only results are presented using squares and dash-dot lines, and the com- 

plete NetAdjust results are presented using circles and solid lines. This plot shows that 
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Figure 4.26: Time required to resolve WL ambiguities for 138 iterations, BERG-GEIR 
baseline (164 km), raw data (only correct ambiguities plotted) 
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Figure 4.27: Time required to resolve WL ambiguities for 138 iterations, BERG-GEIR 
baseline (164 km), NetAdjust data, GEIR-164 network (only correct ambiguities plotted) 
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Figure 4.28: Percentage of correct fixes for LI ambiguities over seven test networks 

the LI ambiguities were almost never determined correctly for baselines greater than 50 

km when using the raw data. The NetAdjust (and NetAdjust phase only) results show 

a slight improvement to around 10% correct ambiguities, but this is still very poor from 

an absolute performance perspective. These results indicate that the LI phase NetAdjust 

corrections generated from the Norway network were not sufficiently accurate enough to 

resolve the phase ambiguities reliably using FLYKIN. This is due primarily to the large 

distances between the reference stations in the Norway network. Note that the LI phase 

errors were reduced by NetAdjust (see Figure 4.8 for example), but enough error still re- 

mained after the corrections to inhibit the ambiguity resolution process. These results are 

discussed further in Chapter 5. 

The percentages of correct fixes for the WL phase ambiguities are shown in Fig- 

ure 4.29. Here, the percentage of correct fixes when using raw measurements decreases 

from nearly 100% over short distances to around 50% at 242 km. In contrast, the Net- 

Adjust results show a fairly consistent 90% correct fixes until the last reference network. 

It is not surprising that the last network (ALES-242) has poor results even with Net- 

Adjust, because in addition to the long distance between the mobile and reference re- 
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Figure 4.29: Percentage of correct fixes for WL ambiguities over seven test networks 

ceivers, the network geometry is poor. The bulk of the Norway network is located far 

to the southeast of the ALES receiver, and the one network reference receiver located to 

the north (TRON) may have been less useful, due to the difficulty in calculating the net- 

work ambiguities between TRON and the other receivers resulting from the long baselines 

involved. 

Note that the NetAdjust phase only results are only slightly inferior to the full Net- 

Adjust results, and that they follow a similar patter. Clearly the majority of the improve- 

ment from using NetAdjust is a direct result of the phase measurement corrections. 

4.1.6.4   Analysis of Percentage of Incorrect Fixes 

Figure 4.30 shows the percentage of incorrect LI ambiguities for each of the seven test 

networks. The NetAdjust corrections provide an overall reduction in the percentage of 

incorrect fixes. As before, these LI results were not as notable as the WL results which 

are shown in Figure 4.31. Here, the percentage of incorrect fixes grows to between 10%- 

15% for the raw case, but it consistently stays at or below 5% for the NetAdjust case. 
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Figure 4.30: Percentage of incorrect fixes for LI ambiguities over seven test networks 
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Figure 4.31: Percentage of incorrect fixes for WL ambiguities over seven test networks 
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Again, the NetAdjust phase only results are between the NetAdjust and the raw results, 

and they track the trends in the NetAdjust results. 

It should be noted that the high percentage of incorrect fixes in the LI case (both raw 

and NetAdjust) is partly due to the fact that FLYKIN is not currently tuned to calculate LI 

ambiguities beyond a 50 km baseline.17 This percentage could be reduced, if desired, by 

using different filter tuning and more robust algorithms for flagging incorrect ambiguities. 

4.1.6.5 Analysis of Mean Time to Resolve Ambiguities 

Figure 4.32 shows the mean time to resolve the WL ambiguities for each of the seven 

test networks. (A plot for the LI ambiguities is not given, because so few ambiguities 

were resolved correctly). The NetAdjust results show a significant reduction in the time 

to resolve the WL ambiguities when compared with the raw results, and the NetAdjust 

improvement grows as the network length increases. Note that once again, the NetAdjust 

phase only results closely follow the full NetAdjust results. 

4.1.6.6 Summary of Ambiguity Resolution Results 

The preceding sections have shown that use of the NetAdjust corrections significantly 

improves each of the performance measures for the WL ambiguities. In general, the 

performance level when using NetAdjust at 200 km mobile/reference receiver separations 

was similar to the performance level when using the raw measurements over a 50 km 

separation. A significant portion of this improvement can be attributed to the WL phase 

measurement corrections. 

The LI results show that Norway network and the NetAdjust corrections generated 

from it are not sufficient for reliable LI carrier-phase ambiguity resolution, unless the 

user is very close to one of the reference receivers. It would be useful to determine if 

17In fact, some versions of FLYKIN do not even attempt to resolve the LI ambiguities if the mo- 

bile/reference receiver separation exceeds 50 km. 
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Figure 4.32: Mean time to resolve WL ambiguities over seven test networks 

a more densely populated reference receiver network would make reliable LI ambiguity 

resolution possible. The covariance analysis technique is used in Chapter 5 to help answer 

this question. 

4.2   Holloman Network Performance Analysis 

Analysis of the application of NetAdjust in a completely different network is presented 

here to demonstrate that NetAdjust can yield positive results in a variety of conditions. 

Data from the Holloman network was used for preliminary testing of the NetAdjust con- 

cept, and the results are based on an older, less refined NetAdjust algorithm (specifically a 

different covariance function). These results are still useful, however, because they show 

that the NetAdjust algorithm is effective even if the covariance Cg£ is not very accurate. 

The Holloman network consisted of four reference receivers and three mobile re- 

ceivers. Data was collected over a nine hour period at a one Hz rate. The positions of the 

reference receivers and the trajectory of the mobile receivers are shown in Figure 4.33. A 
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Figure 4.33: Holloman network configuration and van test route 

detailed description of the test configuration is given in Appendix A. 

4.2.1   Description of Covariance Function Used for Holloman Net- 

work 

The covariance function described in this section is completely different from the more 

refined covariance function used on the Norway network (and described in Chapter 3). 

The notation used to describe the Holloman covariance function is therefore intentionally 

different from the Norway covariance function, in order to avoid confusion. A more 

detailed description of the Holloman covariance function can be found in Raquet (1997). 

The Holloman network covariance function for calculating the covariance term be- 

tween a measurement from receiver a and satellite x and another measurement from re- 
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ceiver b and satellite y is 

£M = c\iixlxyüXty{Ma • A'b) + 8abfixfiya
2

mcomMeda b. (4.5) 
 V '      v v > 

correlated term uncorrelated term 

Each term in this equation will be explained in the paragraphs that follow. 

Correlated term. In this term, c\ is a scaling constant. (All cx terms are constants, 

with values given in Table 4.11). /ix and \xy are mapping functions for satellites x and y 

which increase the magnitude of the correlation at low satellite elevations: 

fj,x = eelev*-c3 — C4 

_£2_ 
fiy = ee"evj,-C3   - C4 (4.6) 

(elevation is in degrees). 

The Q,Xiy function decorrelates measurements from satellites that are in different direc- 

tions: 

QXtV = Q-
C

5
D

*,VI**»V f (4.7) 

where DXiV is the "angular distance" between satellites x and y, calculated by 

Dx>y = arccos{sin(eleva;) sin(elevy) + cos(eleVa;) cos(eleVj,) cos(Aazim)},       (4.8) 

where Aazim is the difference in azimuth between satellites x and y. 

Finally, the term (A^ • A'b) is the dot product of rescaled vectors from the computation 

point (pcp) to the positions of receivers a and b (pa and pb), expressed in local level 

(east-north-up, abbreviated as e,n,u) coordinates: 

A'0 = |^c6Aae   c7Aan c8AaJ 

=  |C6(Pae - PcPe) C7(pan - pcpn)     C8(pau - pcpu) 

c6A6e   c7A6n c8A6u 

C6 (Pbe  - Pcpe ) C7 {pbn  - pcpn )      C8 (pbu  - pcpu ) 

A'6 = 

(4.9) 

(4.10) 
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Table 4.11: Values for constants used in Holloman covariance function 

Constant      Value 
C\ 5 x 10~7 

c2 5 
C3 4 
C4 0.06 
c5 1.0 
c6 1.0 
c7 1.2 
c8 100.0 

The rescaling constants c6, c7, and c8 provide for the fact that the amount of correlated 

error is a function of both the magnitude and direction of the distance between the two 

receivers. For example, the correlated error introduced by an offset of 100 m in the vertical 

direction would probably be much larger than the correlated error introduced by an offset 

of 100 m in the east or north directions. 

Note that the dot product will give covariance characteristics that are similar to the 

covariance function derived in Chapter 3 (see Equation 3.166). For example, if the com- 

putation point is located a large distance from two receivers that are relatively close to 

each other, then the corresponding covariance element will be large for both covariance 

functions. Likewise, if the computation point is close to one of the reference receivers 

but far from the other, the covariance element will be small for both covariance func- 

tions. While similar, the two covariance functions are not the same, and the one presented 

in Chapter 3 is considered superior because it is based upon a precise definition of the 

differential errors and the definition of a covariance matrix. 
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Uncorrelated term. The uncorrelated term in Equation 4.5 is defined as follows: 
r 

S„h =   < (4.11) 
0 ifa^b, 

1 ifa = b. 

2 /   2 2 2 2 \ 
^uncorrelated,,,;, = (.^noisea "T" ^noisej, "r ^multipatha "•" ^multipathj,) > (4.12) 

where cr2oiseQ, a%oiseb, <4ultipatha, and a\ultipaflli are the nominal variances of the measurement 

noise and the multipath for receivers o and b. 

4.2.2   Holloman Network Test Methodology 

The primary goal of this test was to determine how much, if any, the NetAdjust method 

would improve the ability to perform carrier-phase ambiguity resolution for the mobile 

receivers. First, the raw (uncorrected) measurement data was used to establish a baseline 

level of performance. The University of Calgary FLYKHSf software (Lachapelle et al., 

1992) was used to calculate the ambiguities in kinematic mode for all of the results that 

follow. 

The ability to perform carrier-phase ambiguity resolution successfully depends upon 

many different time-varying factors (such as multipath), so a large sample size is required 

to obtain a statistically valid indication of improved performance. A total of 87 FLYKIN 

samples were generated for each mobile receiver using the following iteration procedure: 

1. Set start time to the beginning of the run. 

2. Run FLYKIN until the ambiguities are determined, or the time exceeds a maximum 

time (30 minutes past the start time). 

3. At the point that the ambiguities are determined (or the maximum time is exceeded), 

use these ambiguities to calculate the position of the mobile receiver. 

4. Save the run start time, fix time, and fix position to a data file as one sample. 
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5. Increment the start time by six minutes. If not at the end of the run, go back to step 

2. 

The above procedure was repeated for each of the three mobile receivers and the results 

were combined to give a total of 261 samples for each set of runs. 

The correctness of each integer ambiguity solution was evaluated by comparing the 

position saved at the end of the run with the "truth" position at the matching time. If the 

magnitude of the 3-dimensional error of a fixed ambiguity position relative to the truth 

was less than 2/3 of the ambiguity wavelength, then the ambiguity was deemed to be 

correct. Because the truth data was not always accurate (as described above), this method 

is only an approximate measure of the correctness of the ambiguities. 

4.2.3   Holloman Network Test Results 

In order to investigate various aspects of the NetAdjust algorithm as applied to this par- 

ticular test, a number of different run sets were accomplished, varying the following pa- 

rameters: 

• Mobile receiver used (Ashtech, NovAtell, NovAtel2) 

• Type of ambiguities resolved (LI or widelane) 

• Whether the corrections were applied (Raw or NetAdjust) 

• Reference receiver used (the closest receiver at the start of each iteration, CIGT 

only, RATS only, STAL only, or OSCU only) 

• FLYKIN filter tuning (default, tuned for network) 

It would be confusing to present all of the above variations simultaneously, so all results 

presented will be averages for each of the three mobile receivers. 
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4.2.3.1   Results When Using Closest Reference Receiver 

Table 4.12 shows a summary of results when the reference receiver used was the receiver 

that was closest to the mobile receiver at the start of each iteration. It compares the results 

when the uncorrected (raw) reference data is used with the results when the NetAdjust 

corrections are applied. If there were no network algorithm available, it would make sense 

to use the reference station closest to the mobile receiver when performing ambiguity 

resolution. This table represents the best that can be done using the four receivers without 

using a network algorithm for the uncorrected (raw) case. 

The first column of Table 4.12 shows the frequency used in the ambiguity resolution 

(LI or widelane), and the second column shows whether or not the NetAdjust corrections 

were applied. The percentage of good fixes is the percentage of tests in which FLYKTN 

solved for the correct ambiguity set. The mean time to fix represents the average time it 

took to fix the ambiguities for those that were correct. As explained above, each line in 

this table represents results from 261 separate runs of the FLYKIN program. 

It is clear that the use of the NetAdjust corrections improved the results when using the 

closest reference receiver to perform the double-differencing. In the LI case, there was a 

12% increase in the number of good fixes, and the mean time to fix was reduced by 12% 

when the NetAdjust corrections were applied. Results were even better for the WL case, 

in which there was a 15% increase in the number of good fixes and a 19% reduction in the 

mean time to fix. Note that under operational conditions, the NetAdjust method would not 

use the closest reference receiver, but would just choose any one reference receiver and 

stay with it (as in the next section). The purpose of Table 4.12 is to show the improvement 

using NetAdjust when the baselines are relatively short, as is the case when the nearest 

reference receiver is selected. Under these conditions, the uncorrelated errors (multipath 

and measurement noise) tend to dominate. 

Based upon past experience with ambiguity resolution (and the results presented for 

the Norway network), the mean time to fix values were surprisingly high, especially for 
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Table 4.12: Holloman network results when using closest reference receiver 

Network 
Corrections Mean time 
Applied to Pet Good to fix 

Freq      RefData Fixes (minutes) 
"TI     None (Raw) 3L8% 11Ö3 

LI      NetAdjust 44.1% 13.28 
WL    None (Raw) 58.2% 12.44 
WL     NetAdjust 73.2% 10.12 

the widelane case. (The percentage of good fixes seems slightly low as well). The same 

raw data sets were processed in an identical manner using the Ashtech PNAV™ software 

in widelane mode, resulting in 60.3% good fixes with a mean time to fix of 14.21 minutes. 

These results are very similar to the FLYKIN results shown in Table 4.12, which would 

imply that the long time to fix values are reasonable for this particular data set. 

4.2.3.2   Results When Using Single Reference Receiver 

Table 4.13 shows the results for runs in which a single reference receiver was used 

throughout the 9-hour mission (as opposed to selecting the closest receiver). For these 

runs, the baseline length between the mobile and the reference receiver could be as large 

as 150 km. 

There are a number of observations that can be made about the results shown in Ta- 

ble 4.13. First, there was a dramatic improvement in the percentage of good fixes when 

the NetAdjust corrections were applied in the LI cases. This makes sense, because LI am- 

biguity resolution is highly sensitive to even small systematic errors that arise with longer 

baselines. These results show how helpful the network approach can be for solving ambi- 

guities over long baselines. Also, note that while there were substantial improvements in 

the percentage of good fixes in the widelane cases, there was also a significant reduction 

in the mean time to fix. 
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Table 4.13: Holloman network results when using a single reference receiver for the entire 
9 hour test 

Network 
Ref Corrections Mean time 

Station Applied to Pet Good to fix 
Freq Used Ref Data Fixes (minutes) 
LI CIGT None (raw) 15.9% 17.49 
LI RATS None (raw) 8.0% 16.39 
LI STAL None (raw) 15.9% 14.42 
LI OSCU None (raw) 13.5% 15.47 
LI CIGT NetAdjust 40.6% 14.24 
LI RATS NetAdjust 29.9% 14.89 
LI STAL NetAdjust 36.8% 14.37 
LI OSCU NetAdjust 39.9% 14.57 
WL CIGT None (raw) 71.7% 9.99 
WL RATS None (raw) 62.8% 12.41 
WL STAL None (raw) 59.4% 12.90 
WL OSCU None (raw) 39.9% 14.93 
WL CIGT NetAdjust 70.5% 9.70 
WL RATS NetAdjust 78.5% 9.58 
WL STAL NetAdjust 79.7% 8.92 
WL OSCU NetAdjust 74.0% 8.73 
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Finally, when the NetAdjust corrections were applied, the results were very similar 

between each of the reference receivers for both the LI and widelane cases. This demon- 

strates that once the NetAdjust corrections are applied to each of the reference receivers, 

any one of the corrected reference receivers can be used to get the benefit of the entire 

network (see Section 3.5.2). Variations that do exist between the corrected values in Ta- 

ble 4.13 are primarily due to the reference receivers not always tracking the same number 

of satellites. The most notable difference between the results for the corrected receivers 

was the LI results from the "RATS" reference station, which had only a 30% fix rate. This 

can be explained by the fact that, for a reason unknown at this time, the "RATS" reference 

receiver consistently tracked fewer satellites than the other reference receivers during this 

test, as shown in Table 4.14. 

4.2.3.3   Effect of Filter Tuning 

The Holloman network results presented thus far were generated using the FLYKIN filter 

with a standard set of tuning parameters (see Section 4.1.5). The version of FLYKIN18 

used for the Holloman network has an adaptive noise algorithm which increased noise 

values as the distance between the reference and mobile receivers increases, in order to 

account for the increased error over long baselines. Some other ambiguity resolution 

software packages attempt to model atmospheric errors rather than increase noise values. 

The net result of either of these approaches (increasing noise or modeling) is that the filter 

ambiguity state variances decrease more slowly than they would in a short baseline case, 

resulting in a longer time to resolve the ambiguities (if they can be resolved at all). This 

is necessary for the standard two-receiver case, because the errors really do grow as the 

baseline distance increases. 

For a carrier-phase network, however, the errors should not grow significantly with 

18The Norway network data was processed using the standard version of FLYKIN. The Holloman data 

was processed by a modified version of FLYKIN called SFLY, developed by Weisenburger (1997). 
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Table 4.14: Average number of tracked satellites for Holloman network 

Reference Average Number 
Station of Tracked Satellites 
CIGT 8.34 
RATS 6.70 
STAL 8.19 
OSCU 8.11 

distance (as long as the mobile receiver is within the area covered by the network). As 

a result, when using NetAdjust, the filter tuning parameters should be adjusted to reduce 

this baseline distance dependency in order to achieve improved performance. 

In order to test this concept, the calculated distance between the reference and mobile 

receivers was divided by 4 in the FLYKIN software before using it to calculate the noise 

values. This would effectively reduce the distance dependency of the filter noise terms 

by a factor of 4 in order to "tune" the filter for the network. While this approach is not 

optimized in any way, it did result in significant performance improvements for the LI 

case as shown in Table 4.15. Results in this table are given for the case in which a single 

reference receiver was used for the entire 9-hour test, as in Table 4.13, except that the 

values are also averaged between the reference receivers. (For example, the first line in 

Table 4.15 is an average of the first four lines of Table 4.13). 

For the LI case, tuning the filter for the network increased the percentage of good fixes 

and decreased the mean time to fix (by 14%) when the network was used. However, when 

the network was not used, tuning the filter for the network did not yield a performance 

improvement (as expected). 

It is interesting to note that tuning the filter for the network in the widelane case did not 

have a significant impact on the results regardless of whether or not network corrections 

were applied. This seems to imply that the errors in the widelane case are not dominated 

by distance-dependent errors to the same extent as the LI case, for this particular network. 
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Table 4.15: Effect of filter tuning for Holloman network (averaged results when using 
single reference receiver for entire 9 hour test) 

Network 
Tuned Corrections Mean time 

For Applied to Pet Good to fix 
Freq Network? RefData Fixes (minutes) 
LI no None (raw) 13.3% 15.90 
LI yes None (raw) 14.2% 16.25 
LI no NetAdjust 36.8% 14.49 
LI yes NetAdjust 40.2% 12.50 
WL no None (raw) 58.3% 12.44 
WL yes None (raw) 54.8% 12.57 
WL no NetAdjust 73.2% 10.12 
WL yes NetAdjust 73.2% 10.84 
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Chapter 5 

Performance Prediction by Covariance 
Analysis 

In this chapter, the covariance analysis technique described in Chapter 3 (Section 3.3) is 

applied using the Norway network covariance function. Covariance analysis is a powerful 

tool for predicting the double difference code or phase error statistics for a given net- 

work configuration. A similar approach has been proposed for network differential code 

positioning (Pullen et al., 1995). 

From Chapter 3, the covariance matrix of the double difference measurement errors 

between a receiver located at a computation point and a corrected reference receiver is 

Cerr(Av«cp) = B2CMB£ - B2C«Bf (BiC«Bf )-1B1CwB^. (5.1) 

Each of the terms on the right hand side can be calculated without knowing the values of 

any of the measurements—all that is required is knowledge of which measurements are 

available, plus the information needed to calculate the covariance function for generating 

C se- 

in a real GPS receiver network, the number of visible satellites and the satellite ele- 

vations are constantly changing, so the resulting error covariance matrix Cerr^vsecp) is 

actually a function of time. The goal of covariance analysis as presented here is not, how- 

ever, to determine the precise error covariance at a given time instant. Rather, the goal 

is to determine an average or typical error level for a given set of (constant) conditions. 
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To this end, some assumptions can be made to simplify the process, without significantly 

degrading the results. A description of each of the terms on the right side of Equation 5.1 

and related assumptions are given in the paragraphs that follow. 

The B2 term is the double difference matrix used to form the double difference mea- 

surements between one or more reference stations and the the mobile receiver at the 

computation point. Because of the data encapsulation property of NetAdjust (see Sec- 

tion 3.5.2), it is only useful to form double difference measurements between the mobile 

receiver and one reference receiver. When forming the B2 matrix, it is assumed that the 

same set of satellites is visible for both the reference and mobile receivers. 

The other double difference matrix (Bx) generates a maximal set of linearly inde- 

pendent double difference measurements between all of the reference receivers. When 

generating this, it is assumed that all of the reference receivers obtain measurements from 

the same set of satellites. For a large network, this is usually not true, because low ele- 

vation satellites are often above the elevation cutoff angle for some receivers but not for 

others, or because a receiver simply fails to obtain a good measurement from a satellite 

that is visible. However, in a real network, there normally would only be a difference of 

one or possibly two satellites between reference receivers, so assuming that all receivers 

have the same measurements is not completely unrealistic. 

The covariance matrix Csi requires the satellite elevations and reference receiver posi- 

tions, in addition to the set of available measurements. For the covariance analysis results 

presented in this section, all satellites are assumed to have the same elevations for all of the 

reference receivers. Although this is not true in a real network, the elevation differences 

are small (depending on the size of the network). Furthermore, the satellite elevations are 

set at predetermined, fixed values, as indicated in Table 5.1. These sets of elevations are 

based on actual elevations for GPS satellites relative to one of the receivers in the Norway 

network, so they are realistic, in that they represent the situation for a specific epoch.1 

'For example, to select the set of 5 elevations, a set of epochs was found in which there were 5 visible 

satellites, and one of them was chosen to be the 5-satellite set presented in Table 5.1. 



173 

Table 5.1: Predetermined sets of satellite elevations used in covariance analysis 

Number of Satellites Predetermined Satellite Elevations (deg) 

5 25.7    15.1    59.9   38.4   48.3 

6 34.5    16.7    15.1    59.9   38.4   48.3 

7 29.9   39.1    63.7   59.0   27.3    15.6   54.0 

8 36.5   30.5   68.0    16.0   69.4   25.1    29.6   44.5 

By making the assumptions stated above, it is relatively easy to generate the Bi, B2, 

and C$t matrices, because they follow a regular pattern. This is demonstrated in Fig- 

ure 5.1, which is a diagram of the matrix structure of the Bi matrix. The x-axis represents 

the columns of Bi, and the y-axis represents the rows. All of the elements of the Bi matrix 

are zero except for the ones shown as dots, which have values of either +1 or -1. Each 

row of the matrix generates a single double difference measurement, using measurements 

from two different reference receivers. The purpose behind Figure 5.1 is to demonstrate 

that, if the same satellites are visible to all receivers, then the Bi matrix (and the B2 matrix 

as well) can be easily calculated according to the pattern. If there are different satellites 

visible at each receiver, then the matrix does not follow this pattern, and computation 

becomes more involved.2 

Note that Equation 5.1 describes the covariance matrix of the double difference mea- 

surement errors after the reference receiver measurements have been corrected by Net- 

Adjust. The covariance matrix of the raw (uncorrected) measurements CAV«CP is ob- 

tained by a straightforward application of the covariance law (see Section 3.3) 

CAVM   = B2CseB2, (5.2) 

2It should be emphasized that the assumption of common visible satellites for all reference receivers ap- 

plies only to the covariance analysis technique. The NetAdjust software is able to handle different satellites 

for each reference receiver. 
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B Matrix 

Figure 5.1: Non-zero values ofB\ matrix (each dot is either +1 or -1) 

5.1    Covariance Analysis Validation 

Before using the covariance analysis technique to predict performance, it is important 

to validate it against data from a real network. To this end, a covariance analysis was 

performed for each of the seven test networks described in Chapter 4. 

The average number of satellites received by the real network varied between five and 

ten over the 24-hour test durations, as shown in Figure A.3 on page 230. The covariance 

analyses were performed assuming seven visible satellites for all reference receivers, at 

the elevations given in the third row of Table 5.1. For the covariance analysis of a given 

test network, the computation point was located at the position of the mobile receiver for 

that network. The same sets of reference receivers were used in the covariance analysis 

as in each of the seven test networks. 

These covariance analyses generated seven different NetAdjust double difference error 

covariance matrices, corresponding to the seven different test networks. These represent 

predictions of the errors when forming double difference observables using measurements 
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from a receiver at the computation point and NetAdjust-corrected measurements from the 

reference receiver. Additionally, seven different raw double difference error covariance 

matrices were generated, using Equation 5.2. These represent predictions of the double 

difference errors when forming double difference measurements using raw (uncorrected) 

measurements from both the receiver at the computation point and the reference receiver. 

In Section 4.1.3 of Chapter 4, double difference error statistics are presented for both 

raw and corrected double difference measurements. Specifically, Figures 4.8 and 4.9 show 

the double difference error RMS for the LI and WL measurements, raw and corrected, for 

the seven test networks. Since the double difference measurement errors are zero-mean, 

these scalar RMS values represent the sample standard deviation for all of the double 

difference measurement errors. 

The covariance analysis technique, however, provides an error covariance matrix, with 

diagonal elements representing the variances corresponding to each of the satellites. In 

order to relate the covariance analysis matrix with the scalar RMS values from the actual 

measurements, the diagonal elements of the covariance analysis matrix are combined to 

form the RMSP (for RMS-predicted) value using 

EC(M) 
RMS„ = \| ^ , (5.3) 

N        n 

where n is the number of satellites (7 in this case), and C(i, i) are the diagonal elements of 

the covariance matrix generated by the covariance analysis. Note that RMSP is essentially 

the square root of the average variance (across each of the satellites). (It's also the root- 

mean value of the diagonal terms of the covariance matrix). As such, it can be thought of 

as the average (predicted) RMS value for comparison with the RMS values generated by 

the data. 

A comparison between the LI double difference RMS errors using the raw data and 

the covariance analysis predictions is shown in Figure 5.2. The traces marked with trian- 

gles show the double difference error RMS for the raw (uncorrected) measurements, and 
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Figure 5.2: Comparison of double difference LI error RMS between data and covariance 
analysis predictions for seven test networks (raw and NetAdjust-corrected) 

the traces marked with circles show the double difference error RMS for the NetAdjust- 

corrected measurements. Also, the dashed-lines and the solid lines represent results ob- 

tained from the data and the covariance analysis, respectively. 

Note first of all that for the raw measurements (traces with triangles), the covariance 

analysis generated very accurate predictions of the errors, when compared to the errors 

generated from the data. This is one indicator that the Cse matrix is indeed correct for the 

Norway network during the test period. 

The covariance analysis also did a very good job of predicting the corrected measure- 

ment error RMS values, indicating that the improvement brought about by NetAdjust is 

accurately predicted by the covariance analysis. 

The same type of plot for WL phase measurements is given in Figure 5.3. Note that 

once again the covariance analysis did an excellent job of predicting both the raw and the 

NetAdjust errors, when compared to the real data. 

Overall, the covariance analysis method generates accurate predictions for the LI and 
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Figure 5.3: Comparison of double difference WL error RMS between data and covariance 
analysis predictions for seven test networks (raw and NetAdjust-corrected) 

WL measurement accuracies, when compared with real-world data. It should be stressed 

that these results are as anticipated, given that the covariance functions were generated 

using the same data. The results, however, clearly validate the algorithms and developed 

software. 

5.2   Development of Differential Error Specification 

Since the output of the covariance analysis method is an estimate of the double difference 

error RMS value, then any specifications for network performance need to be stated in 

terms of this predicted RMS value. Specifically, for predicting carrier-phase ambiguity 

resolution performance, it is necessary to determine the relationship between ambiguity 

resolution performance and the RMS errors. Once this relationship is defined, then a level 

of performance for ambiguity resolution can be expressed in terms of predicted RMS error 

values. 

Figure 5.4 shows the standard deviations of the LI and WL phase zenith double differ- 
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ence measurement errors for each of the 55 baselines between reference receivers in the 

Norway network (represented as circles). The solid line in each of the plots is the value 

generated from the covariance function as described in Chapter 3. Figure 5.5 shows an 

expanded view of the curve fits for short baseline distances (which is useful in the dis- 

cussion that follows). These plots show the same information as Figures 3.7 and 3.8 in 

Chapter 3, only here the errors are expressed in terms of error standard deviations (rather 

than variances). 

Because ambiguity resolution is a complex process, it is difficult to parameterize am- 

biguity resolution performance directly in terms of error characteristics. However, ambi- 

guity resolution performance is known to be closely linked to the distance between the 

reference and mobile receivers (i.e., the baseline distance) (Weisenburger and Cannon, 

1997). If a specification for ambiguity resolution is given in terms of the baseline dis- 

tance, then the fit lines in Figure 5.5 can be used to relate this distance to actual error 

values. 

For example, suppose that LI ambiguity resolution performance was evaluated (in 

terms of time to fix, percentage of good fixes, etc.) over baseline lengths varying between 

1 km and 50 km, and it was found that acceptable performance3 was assured as long as 

the baseline length was 25 km or less. Then, the left plot in Figure 5.5 can be used to 

translate this requirement into a requirement about the maximum allowable zenith double 

difference error standard deviation. For performance at the level of a baseline of 25 km or 

less, the zenith error standard deviations must be less than 0.079 LI cycles. 

Note that the error standard deviations shown in Figures 5.4 and 5.5 are zenith errors, 

which need to be converted to the actual satellite elevations. Since the satellite elevations 

in a real network vary over time, it is best to use an average mapping factor to map the 

3What constitutes acceptable performance is application dependent—some applications (such as pre- 

cision landing) may require extremely high good-fix percentages and low time-to-fix values, while less 

stringent applications (such as ground vehicle navigation) can settle for lower good fix percentages and 

longer time to fix values. 
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errors from zenith. This average mapping factor is generated as follows: 

1. Randomly sample a large number of discrete satellite elevations from 24-hours of 

Norway network data. (20,000 were sampled in this case.) 

2. Calculate the elevation mapping function fi(e) for each of the 20,000 elevations, 

using the cß coefficients for each measurement as described in Chapter 3. 

3. Calculate the average of all of the mapping function values. This is the average 

mapping factor. 

Using this procedure, the average mapping factors were 2.30 and 2.44 for LI phase and 

WL phase measurements, respectively. The final error specification is then the zenith error 

multiplied by the average mapping factor. For the LI phase example described above, the 

maximum error standard deviation would be 0.079 x 2.30 = 0.182 cycles. 

Note that the error standard deviation is the same as the predicted RMS (RMSP), as 

long as the double difference errors are zero-mean (which is a basic assumption of the 

NetAdjust method). 

Table 5.2 shows the relationship between the baseline distance (for a single reference 

case) and the double difference measurement error RMS values for LI phase measure- 

ments. The values given in this table are valid for the conditions present during the Nor- 

way test. The same information for WL phase measurements is given in Table 5.3. 

Unless stated otherwise, the LI error specification used throughout the rest of this 

chapter is that the performance with the network must meet or exceed the performance 

obtained in a 25 km baseline single reference case. This means that the double difference 

error RMS value, as generated by the covariance analysis, cannot exceed 0.182 LI cycles 

for the results to be acceptable. Likewise, the WL specification is that the performance 

of the network must meet or exceed the performance obtained in a 60 km baseline single 

reference case, so the double difference RMS value must not exceed 0.092 WL cycles. 

These specifications are arbitrary, since no specific application has been stated. For an 
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Table 5.2: Relationship between single reference baseline distance and measurement er- 
ror RMS value for LI phase measurements (based on conditions present in Norway net- 
work) 

Distance Between Zenith Double Difference Double Difference 
Reference and Measurement Error Measurement Error 

Remote Receivers (km) Std Deviation (LI cycles) RMS (LI cycles) 
5 0.036 0.083 
10 0.050 0.115 
15 0.061 0.140 
20 0.071 0.162 
25 0.079 0.182 
30 0.088 0.201 
35 0.095 0.219 

application that required better or worse performance, the above specifications could be 

adjusted. The covariance analysis procedure is still valid, however. 

Only phase measurements are considered for this covariance analysis, since phase 

measurements are the key error to be removed for ambiguity resolution. More compli- 

cated error specifications could be developed that would involve both code and phase 

errors, if desired. 

5.3    Covariance Analysis of Norway Network 

The results presented in the covariance analysis validation above (Section 5.1) were gen- 

erated using a single computation point (located at the mobile receiver position) for each 

test network. The covariance analysis can be used to predict double difference error RMS 

values anywhere within or near the network, so it is possible to generate a map which 

shows the error as a function of position. 

An evenly spaced rectangular grid of computation points with a grid spacing of 20 

km was generated over the Norway network. The covariance analysis method (seven 

satellite case) was used to predict the double difference error RMS values at each of these 
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Table 5.3: Relationship between single reference baseline distance and measurement er- 
ror RMS value for WL phase measurements (based on conditions present in Norway net- 
work) 

Distance Between        Zenith Double Difference     Double Difference 
Reference and Measurement Error        Measurement Error 

Remote Receivers (km)   Std Deviation (WL cycles)    RMS (WL cycles) 
20 
40 
60 
80 
100 
120 
140 

0.023 
0.031 
0.038 
0.044 
0.051 
0.057 
0.062 

0.055 
0.075 
0.092 
0.108 
0.124 
0.138 
0.152 

computation points. 

The results of this analysis are presented graphically in Figure 5.6. This "coverage 

map" needs to be explained in detail, because most of the results in the remainder of this 

chapter will be presented in this form. 

The round, black dots on the coverage map represents the locations of each of the 

reference receivers available to the network. The dashed line that encircles the network 

delineates a desired region of coverage for the network. The overall goal is to assure that 

mobile receivers within this region will have ambiguity resolution performance that meets 

the requirements. The lines with the numbers overlaid are contour lines that show the 

predicted double difference error RMS values (in cycles) over the entire coverage map. 

The white and grey shading indicates the regions where the performance requirements 

4Note that, when calculating these error RMS values using Equation 5.1, only the computation point 

changes. The matrix that needs to be inverted (BiC«Bf) does not involve the computation points, be- 

cause the Bi matrix forms double difference measurements only between the network reference receivers 

(which remain the same for each computation point). As a result, once the (BiC^Bf )-1 matrix has been 

calculated once, it can be used for all of the computation points, drastically speeding up the computation 

process. 
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uration during test, 11 reference receivers, 7 satellites, contours are predicted double 
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have been met—white areas show where performance is acceptable, and grey areas show 

regions of sub-standard performance. Finally, at the top of the plot, a coverage percentage 

is given. This indicates what percentage of the desired region of coverage (i.e., the area 

within the dotted lines) meets the ambiguity resolution requirements. In Figure 5.6, there 

is only 17.1% coverage, meaning that, of all of the area within the desired region of 

coverage, only 17.1% is white. The goal is to have 100% coverage, meaning that there 

are no grey areas within the dotted lines. 

This LI coverage map demonstrates that the existing Norway network is not sufficient 

for performing LI ambiguity resolution under the conditions present during the test. This 

conclusion matches the LI ambiguity resolution test results presented in Section 4.1.6. 

Figure 5.7 shows the WL coverage map. In this case, there is 98.1% coverage within 

the desired area, which is a significant improvement over the LI case, and nearly up to the 

specifications given above (100%). 

5.4   Using Covariance Analysis to Analyze Alternatives 

The covariance analysis method is a powerful tool that can be used to study the effect of 

varying the parameters of the problem, as demonstrated in the sections that follow. 

5.4.1   Re-positioning Reference Receivers 

The eleven receivers in the Norway network were not evenly spaced throughout southern 

Norway, and the covariance analysis can be used to study alternative receiver placements. 

One such alternative placement is shown in the LI and WL coverage maps shown in 

Figures 5.8 and 5.9. 

The coverage has nearly doubled for LI ambiguity resolution, but it is still at only 

30.7%. The WL coverage, however, has attained 100%. This means that, for the error 

conditions present during this particular test, having reference receivers at the indicated 
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Figure 5.7: WL phase ambiguity resolution coverage map for Norway network config- 
uration during test, 11 reference receivers, 7 satellites, contours are predicted double 
difference error RMS values (WL cycles) 
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Figure 5.8: LI phase ambiguity resolution coverage map for re-positioned reference net- 
work configuration, 11 reference receivers, 7 satellites, contours are predicted double 
difference error RMS values (LI cycles) 
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Figure 5.9: WL phase ambiguity resolution coverage map for re-positioned reference 
network configuration, 11 reference receivers, 7 satellites, contours are predicted double 
difference error RMS values (WL cycles) 
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locations is predicted to enable WL carrier-phase ambiguity resolution at the required 

performance level everywhere within the desired coverage region. 

If the number of receivers is doubled (to 22), then the LI coverage increases to 91.4% 

as shown in Figure 5.10. This is fairly good coverage for these error conditions. For 

completeness, the WL coverage for the 22 receiver network is given in Figure 5.11. 

5.4.2 Varying the Number of Satellites 

The results presented thus far have all used the seven satellite model shown in Table 5.1. 

LI coverage maps for 5, 6, 7, and 8 satellites are shown in Figure 5.12. These were 

generated from the re-positioned 11-reference-receiver network described in the previ- 

ous section. Note that, as expected, the coverage improves as the number of satellites 

increases. Even with 8 satellites, there is only 46% coverage, however. 

WL results for 5,6,7, and 8 satellites are shown in Figure 5.13. Note that there is not 

100% coverage even if there are only 5 satellites, for this test. (Increasing the number of 

satellites will still improve performance above the specification, however). 

5.4.3 Increased Ionospheric Activity 

The covariance analysis results presented to this point have used the correlated error co- 

variance function that was generated by the data from the Norway network. It therefore 

represents only the error conditions presented during the Norway test, when the iono- 

sphere was stable and at the mid-point in the 11 year solar cycle. 

If data were to be collected at a different time, then a new covariance function could be 

calculated based on that data. Any covariance analysis using this new covariance function 

would generally be different from the results presented here, because the correlated errors 

change over time. 

In order to demonstrate in a simple manner the effect of increased ionospheric er- 

rors, the covariance analysis for the 7 satellite, re-positioned reference receiver case was 
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Figure 5.10: LI phase ambiguity resolution coverage map for re-positioned and enlarged 
reference network configuration (22 reference receivers), 7 satellites, contours are pre- 
dicted double difference error RMS values (LI cycles) 
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Figure 5.11: WL phase ambiguity resolution coverage map for re-positioned and en- 
larged reference network configuration (22 reference receivers), 7 satellites, contours are 
predicted double difference error RMS values (WL cycles) 
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Figure 5.13: WL phase ambiguity resolution coverage map for 5, 6, 7, and 8 satellites, re- 
positioned reference network configuration (11 receivers), contours are predicted double 
difference error RMS values (WL cycles) 
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repeated using correlated errors that were 50% larger than in the original covariance func- 

tion.5 This would simulate a situation in which the ionosphere is more active than during 

the Norway test. A 50% larger error means that the error magnitudes are 1.5 times as 

large as the Norway test. (The error variances would then be 1.52 = 2.225 times larger). 

Coverage maps showing the comparison between the normal and increased iono- 

spheric ambiguity resolution performance are shown in Figures 5.14 and 5.15 for the 

LI and WL ambiguities, respectively. In both cases, the performance of this network 

degrades dramatically. For an operational network to operate satisfactorily under these 

increased ionospheric conditions, the number of reference stations would have to increase 

significantly. Figures 5.16 and 5.17 show the coverage maps for the increased ionospheric 

conditions using the enlarged, 22 receiver network discussed previously (see Figures 5.10 

and 5.11). By increasing the number of receivers in this way, there was nearly complete 

(96.2%) for WL ambiguity resolution, but only 10.3% coverage for LI ambiguity resolu- 

tion. 

5.4.4   Limitations 

There are many other ways to use the covariance analysis to predict network performance. 

It is important to remember that the accuracy of any covariance analysis prediction is de- 

pendent upon the accuracy of the covariance matrix and the assumptions that are made 

in the covariance analysis. The covariance analysis technique should not be used as an 

absolute proof of system performance, because a) many factors can be present in a real 

network that are not modeled by the covariance analysis and b) real networks operate 

under vastly different conditions (number of satellites, atmospheric conditions, etc.) over 

time, while the covariance analysis lends itself toward a single set of conditions. Nonethe- 

5Note that the total correlated errors (including satellite position, tropospheric, and ionospheric errors) 

were increased by 50%. If the increase is to be attributed to ionosphere alone (i.e., the tropospheric and 

satellite position errors remain constant), then the increase in the ionosphere would be more than 50% for 

this example. 
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Figure 5.14: Coverage maps for normal and increased ionospheric errors (50% increase 
in total correlated error), LI ambiguities, 7 satellites, re-positioned reference receivers, 
contours are predicted double difference error RMS values (LI cycles) 
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Figure 5.15: Coverage maps for normal and increased ionospheric errors (50% increase 
in total correlated error), WL ambiguities, 7 satellites, re-positioned reference receivers, 
contours are predicted double difference error RMS values (WL cycles) 
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Figure 5.16: LI phase ambiguity resolution coverage map for increased ionospheric er- 
rors (50% increase in total correlated error), enlarged reference network configuration 
(22 reference receivers), 7 satellites, contours are predicted double difference error RMS 
values (LI cycles) 
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Figure 5.17: WL phase ambiguity resolution coverage map for increased ionospheric 
errors (50% increase in total correlated error), enlarged reference network configuration 
(22 reference receivers), 7 satellites, contours are predicted double difference error RMS 
values (WL cycles) 
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less, covariance analysis does provide a very useful tool for studying the effects of various 

parameters in the network differential problem, and the predictive results that it generates 

can be expected to be reasonable estimates of real-world performance. 
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Chapter 6 

Operational Considerations 

While results presented in this thesis demonstrate the capabilities of the NetAdjust ap- 

proach for kinematic carrier-phase ambiguity resolution using multiple reference receivers, 

there are a number of additional issues to be considered for implementation of such a sys- 

tem in real-time. The key real-time implementation issues are addressed in the sections 

that follow. The purpose of this chapter is to highlight these real time implementation 

issues and briefly discuss methods for dealing with them. 

6.1   Real-time Calculation of Ambiguities Between Refer- 
ence Receivers 

One of the initial assumptions for this thesis was that the carrier-phase integer ambigui- 

ties between all the reference receivers in the network are known. For the tests involving 

the Norway and Holloman networks, ambiguity resolution between reference receivers 

was performed using post-processing batch processing techniques, as described in Ap- 

pendix B. The NetAdjust method provided good results for the Norway network data, 

even though not all of the integer ambiguities were available. This demonstrates that it 

is not absolutely necessary to know all of the ambiguities within the reference receiver 

network. Nonetheless, determination of these ambiguities is a challenging and important 

real-time implementation issue. 

In contrast to post-processing methodologies, a real-time implementation of NetAdjust 
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does not have all of the measurements available ahead of time, so the ambiguities need to 

be estimated in real-time. Recall that the carrier-phase integer ambiguities are true con- 

stants, which implies that longer observation times can only improve the results.1 Ambi- 

guities between satellites that have been visible for a long time are therefore much easier 

to determine than satellites that have just come into view. It is these low elevation, rising 

satellites that pose the largest problem for real-time network ambiguity resolution. 

When comparing real-time ambiguity resolution with the batch mode ambiguity res- 

olution process described in Appendix B, the batch mode has the obvious advantage that 

it can use all measurements (past and future) to calculate the ambiguities at a given time 

epoch. Recall, however, that the batch mode process attempted to solve for the ambi- 

guities on a baseline by baseline basis. Using this approach, no information about the 

correlated (satellite position and atmospheric) errors is available, making the ambiguity 

resolution algorithm more difficult. 

Attempting to solve for the ambiguities simultaneously for the whole network (rather 

than on a baseline by baseline basis) would provide a means to take full advantage of the 

error correlations, improving the ability to resolve ambiguities. This network ambiguity 

resolution approach is normally applied in large batch processing algorithms, as shown in 

Blewitt (1989) and Dong and Bock (1989). 

The same approach can be used in an iterative, sequential processing algorithm (such 

as a Kaiman filter). Such a filter performs carrier-phase ambiguity resolution, but it also 

estimates the correlated errors and other "nuisance" parameters. After an initialization 

period, this filter will have solved the integer ambiguities for a subset of the measure- 

ments (normally including the satellites that have been visible for a while). Fixing these 

ambiguities increases the accuracy of the correlated error estimates, which then improves 

the ability to determine the ambiguities on the newly rising satellites. 

'if the ambiguities were random processes rather than constants, then the estimates of the ambiguities 

would change over time, and the autocorrelation function of the errors would tend to decrease over large 

time intervals. 
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As stated in Appendix B, 80%-90% of the LI ambiguities and 90%-100% of the WL 

ambiguities in the Norway network could be determined on a baseline by baseline basis 

in batch mode. A real-time Kaiman filter as described above would have the advantage of 

calculating the ambiguities in a true network sense, which should improve performance. 

On the other hand, a real-time Kaiman filter has the distinct disadvantage (compared to 

a post-processing batch technique) of only having measurements up to the current time 

available, which would degrade performance. The overall performance of the Kaiman 

filter will depend on a combination of these two effects. 

6.1.1   Use of Combination of Floating and Fixed Ambiguities 

At any moment in time, the network ambiguity resolution Kaiman filter will have some of 

the ambiguities solved as integers, and other ambiguities that it has not yet solved. While 

these unsolved integer ambiguities are not known, the Kaiman filter will have floating 

(i.e., non-integer) ambiguity estimates. 

Floating ambiguity estimates are not as good as fixed integer ambiguity estimates, but 

they still provide some amount of information. The NetAdjust procedure as described in 

this thesis requires fixed integer ambiguities, but it could be easily modified to be able to 

incorporate floating ambiguity estimates as well. The primary modification would be to 

make sure that the double difference measurement error covariance matrices used in the 

estimator reflect the reduced accuracies of the double difference measurements generated 

from the floating ambiguities. 

6.2   Parameterizing Corrections as a Function of Mobile 
Receiver Position 

When NetAdjust was applied to each of the seven test networks in Chapter 4, corrections 

were generated for one computation point (the location of the mobile receiver). If the mo- 

bile receiver location is known, then this single computation point approach is adequate. 
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However, if the location of the mobile receiver is not known, or there are too many mobile 

receivers to monitor, then the single computation point scheme will not work. In these 

cases, some other method must be used to express the NetAdjust corrections in such a 

form that a mobile receiver at any location within the desired coverage area is able to 

determine the corrections for its specific location. 

In a real-time system, the NetAdjust corrections are transmitted by some means to the 

mobile user (typically through a radio data link). It is often desirable to minimize the 

amount of data that needs to be sent to the mobile user, so that data link bandwidth limits 

are not exceeded. 

To devise a method for transmitting the NetAdjust corrections over the whole network, 

it is important to understand how the corrections change over the desired coverage area. 

Figure 6.1 shows the NetAdjust correction for PRN 23 at a single time epoch over the 

entire Norway network area. The plots on the left show the three-dimensional surfaces 

of the NetAdjust LI code, LI phase, and WL phase corrections. The plots on the right 

show contour plots of the same surfaces. The black dots represent the locations of the 

eleven reference receivers used by NetAdjust.2 The dotted line marks the border of the 

desired coverage area for the network. Note that the information on the contour plots is 

also shown directly underneath each of the three-dimensional surfaces, in order to help in 

relating the two types of plots. The corrections are for using GEIR (the dot closest to the 

origin) as the reference receiver. (Using a different reference receiver would not change 

the shape of the plots, but would only add a constant offset to the corrections). 

The same types of plots are shown for PRN 3 and PRN 21 in Figures 6.2 and 6.3, 

respectively. All of these plots are shown to give a sampling of the "shapes" of the Net- 

Adjust corrections over the Norway network. Note that, in many cases, the total correction 

is very close to the shape of a flat plane. There are some that are not at all planar, how- 

ever (such as the WL phase for PRN 3 and the LI phase for PRN 21), so transmitting the 

2Only nine distinct dots appear on the plots, because there are two pairs of co-located receivers—see 

Appendix A. 
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Figure 6.1: Three-dimensional surface and contour plots of NetAdjust correction val- 
ues over desired coverage area for a single time epoch, Norway network, PRN 23 (18° 
elevation) 
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Figure 6.2: Three-dimensional surface and contour plots of NetAdjust correction val- 
ues over desired coverage area for a single time epoch, Norway network, PRN 3 (30° 
elevation) 
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Figure 6.3: Three-dimensional surface and contour plots of NetAdjust correction val- 
ues over desired coverage area for a single time epoch, Norway network, PRN 21 (51° 
elevation) 
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corrections as a simple plane (i.e., gradient) is probably not sufficient. 

Given the nature of the errors shown in Figures 6.1 through 6.3, three different meth- 

ods for transmitting measurement corrections to a mobile user are proposed: 

1. Transmit the corrections as an algebraic function of user position. Coefficients of 

this function are calculated from the data shown in the correction surfaces. An 

example of this approach is to transmit the coefficients c\ through c7 of the following 

function 

correction = ci + c2de + c3d
2
e + c±d\ + c5dn + c&d

2
n + c7d

3
n, (6.1) 

where de and dn are the east and north approximate coordinates of the mobile user. 

This idea has been proposed by Varner (1997) and Wübbena (1996). 

2. Transmit the discrete correction values at a number of computation points through- 

out the desired area of coverage. The mobile user then interpolates the correction 

value to the desired location, using the computation points that are closest to that 

location (Raquet, 1997a). 

3. Use a combination of methods 1 and 2. Instead of transmitting a number of discrete 

correction values at the computation points, or transmitting a correction function, 

both correction values and local gradient information (i.e., a correction function) 

are transmitted for a smaller set of computation points. Then the mobile user in- 

terpolates the corrections to the desired location using the correction values and the 

gradient information. 

Each of these methods has advantages and disadvantages. Method 1 potentially has very 

low bandwidth requirements (because only the function coefficients are transmitted), but 

it may be difficult to arrive at a function form that will provide sufficiently accurate fits to 

all of the correction "shapes" that are present. 

Method 2 does not force the corrections into a certain functional form, so more unusual 

correction shapes can be accommodated (like the WL phase correction for PRN 3). This 
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method may require transmitting a large number of measurement corrections at many 

computation points, which could result in very high data link bandwidth requirements. 

Method 3 is the most flexible, and it utilizes the advantages of methods 1 and 2. It 

is much easier to generate an accurate and simple functional form of the correction if the 

area to cover is small (such as one sixth of the total Norway network). At the same time, 

it is not necessary to transmit the information for as many grid points as with method 

2, because the gradient information enables much more accurate interpolation between 

computation points. 

Each of these three methods should be considered when designing an operational, real- 

time network. Any one of the three could be the best, depending upon the requirements 

such as the size of the network, the data link bandwidth requirements, accuracy require- 

ments, and projected differential error levels. Once these requirements are established, 

then a decision can be made as to the best method to use for that particular case. 

6.3    Correction Data Thinning 

It may not be possible to transmit corrections for every satellite at every epoch, due to 

data link bandwidth constraints. A simple approach to handle such cases is to transmit the 

NetAdjust corrections only at periodic intervals, rather than at each epoch. It is important 

to understand what information is lost when doing this, however. 

Figure 6.4 shows the NetAdjust LI phase measurement corrections to be applied to 

the BERG reference receiver measurements for positioning the GEIR receiver. A 2-hour 

interval is shown (rather than the complete 24-hour interval) so that the correction time 

correlation can be clearly seen. This plot shows that the LI phase measurement correc- 

tions do not change very quickly. The largest consistent rate of change is around 0.5 

cycles/15 minutes (between 13:30 and 13:45), which works out to around 0.0005 cycles 

per second. If NetAdjust measurement corrections are sent every 20 seconds, and then 

treated as constants between 20 second updates, then the maximum expected data thin- 



204 

_ 0.5^ 

o 
^-0.5F 

I 
<D z 

-3.5. 

L1 Phase 

216000 217200 218400       219600       220800 222000 223200 
13:00 13:20 13:40         14:00         14:20 

GPS Week Seconds/Local Time 
14:40 15:00 

Figure 6.4:   NetAdjust LI phase corrections for BERG-GEIR (164 km) baseline, 
GEIR-164 network, 2 hour period 

ning error is only 0.01 cycles. Such a small error is on the order of magnitude of the 

measurement noise, and it is insignificant. 

A similar plot for the WL corrections over the same time period and baseline is given 

in Figure 6.5. Here, the maximum long term (low frequency) rate of change is about 

0.0003 cycles per second (between 13:40 and 13:50), which would give an error of only 

0.006 cycles with 20 second data thinning. Note, however, that there are some higher 

frequency components to these WL corrections. These are probably due to carrier-phase 

multipath, and they are much more evident for WL corrections than for LI corrections, 

because multipath is amplified when forming the WL observable (see Section 2.1.3 in 

Chapter 2). Data thinning will act as a low-pass filter, and will prevent the NetAdjust 

corrections from reducing some of this higher frequency error. The high frequency error 

magnitude is usually small, however, so this is not much of a problem. 

Finally, the NetAdjust LI code measurement corrections are plotted for the same 2- 

hour period in Figure 6.6. These corrections are dominated by high frequency errors, 
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Figure 6.5:   NetAdjust WL phase corrections for BERG-GEIR (164 km) baseline, 
GEIR-164 network, 2 hour period 

relative to the phase measurements. This is because the code measurements are dominated 

by multipath and noise errors, which have much higher frequencies than the correlated 

(satellite position and atmospheric) errors. Figure 6.7 presents the NetAdjust LI code 

corrections for just the first 5 minutes, in order to be able to see the time transients in the 

data more clearly. 

Unlike the phase measurements, it is not possible to remove the majority of the code 

error if the NetAdjust corrections are thinned by anything more than a few seconds. For- 

tunately, high frequency code errors can often be tolerated in a carrier-phase ambiguity 

resolution process, and lower frequency code errors (e.g., from multipath) would still be 

reduced by a thinned code correction. 
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6.4   Near Real-Time Calculation of Covariance Parame- 
ters 

The covariance matrix used in this thesis was calculated using the entire 24-hour Norway 

data set, as described in Chapter 3. This single covariance matrix was used for the entire 

period, with the implicit assumption that the errors during this period were constant (since 

the covariance function remains the same). In reality, the error characteristics do change 

over time. Recall, for example, the diurnal variation in double difference phase errors 

due to the daily change in ionosphere (see Figures 4.5 and 4.6). Error characteristics can 

change over periods of days, months, and years as well, due to changes in the network 

environment (including weather patterns, seasonal variations, and the 11-year solar cycle). 

A real-time, operational system must be able to monitor the error characteristics con- 

tinuously, and change the covariance model accordingly. 
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Chapter 7 

Conclusions and Recommendations 

7.1    Conclusions 

7.1.1   The NetAdjust Method 

The goal of this research has been to develop a method for using a network of refer- 

ence receivers which reduces the differential errors, and in so doing improves the ability 

to perform carrier-phase ambiguity resolution. The NetAdjust method proposed herein, 

which is based upon a linear minimum error variance estimator, is an effective means of 

using a reference receiver network to estimate and remove uncorrelated and correlated 

differential errors for both code and phase measurements, and for improving ambiguity 

resolution performance. If the double difference errors are zero-mean and Gaussian, then 

the NetAdjust algorithm provides the optimal error estimates (in the sense that the sum of 

the corrected measurement error variances is minimized). At the heart of the NetAdjust 

algorithm is the differential error covariance matrix, which describes the error variance 

and cross-correlation for all of the measurements received by network reference receivers 

and measurements that would be received by a mobile receiver at a predefined computa- 

tion point. A perfectly true error covariance matrix guarantees optimality (as described 

above). The degree to which the implemented error covariance matrix matches the true 

error covariance matrix is the degree to which the NetAdjust algorithm, as implemented, 
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is optimal with respect to the defined criterion. 

This differential error covariance matrix is expressed using a covariance function, 

which is generated using data from the reference receiver network. The covariance func- 

tion used in this thesis generates variance and covariance elements using the distance 

between the two relevant receivers (expressed in the east and north directions) and the 

satellite elevation. Other covariance functions could be used as well, depending upon the 

network size, error characteristics, and desired degree of complexity. 

One benefit of the NetAdjust approach is that all of the error information from the 

entire reference receiver network is "encapsulated" into the measurements of a single 

reference receiver. This is of great benefit, because it permits the use of standard single- 

reference differential processing techniques which, when used with the corrected refer- 

ence receiver measurements, give network-quality results. 

The NetAdjust method was tested using an 11-receiver network covering a 400 km 

x 600 km region in southern Norway. Seven different test networks, of varying baseline 

lengths, were used to evaluate various aspects of NetAdjust performance. 

Measurement domain. The improvement in differential double difference phase 

measurements was proportional to the distance between the reference and the remote 

receivers. For short baselines (less than 30 km), NetAdjust yielded no significant im- 

provement. As distances grew, the improvement from NetAdjust grew, so that the phase 

double difference RMS error was reduced by up to 50% at distances around 225 km. 

The NetAdjust method yielded approximately 30% reduction in code double difference 

error RMS values, and this improvement for code measurements was not dependent upon 

baseline length. 

Position domain. A comparison was made between the differential position accuracy 

using raw data and data corrected by NetAdjust. The phase measurement integer ambi- 

guities were removed in this test, resulting in a fixed ambiguity position. For LI and WL 

phase measurements, NetAdjust reduced the 3-D RMS position errors by approximately 

10% for short networks (less than 100 km distance) and 40% for long networks (greater 
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than 100 km distance). These results show that NetAdjust is effective in reducing the 

correlated phase errors. NetAdjust also reduced the LI code position errors by an average 

of 28%, and the reduction was not dependent on distance. 

Integrated code/carrier solution, floating ambiguities. A Kaiman filter used both 

code and carrier-phase measurements to perform differential positioning with floating 

(non-fixed) carrier-phase ambiguities. Using NetAdjust to correct the code and phase 

measurements only yielded a moderate improvement in position accuracy in this case. As 

explained in Chapter 4, for the filter tuning parameters used in this test, phase measure- 

ment error reductions had almost no impact on the solution. Also, code measurements 

are significantly reduced for both the raw and NetAdjust cases, because the Kaiman filter 

is implicitly performing carrier-phase smoothing of the code. Overall performance with 

NetAdjust corrections could be improved by tuning the Kaiman filter to have longer time 

constants for the ambiguity states. 

Ambiguity resolution performance. Use of NetAdjust significantly enhanced the 

ability to perform WL carrier-phase ambiguity resolution. The percentage of correct fixes 

when using raw (uncorrected) data decreased from 100% at short distances to 50%-60% 

for 225 km distances. After applying the NetAdjust corrections, however, the percent- 

age of correct fixes generally remained above 90%. (The one exception involved a test 

network with poor network geometry, which prevented NetAdjust from generating highly 

accurate error estimates). Likewise, NetAdjust kept the percentage of incorrect fixes be- 

low 5% (compared with 10%-20% for the raw data), and NetAdjust reduced the mean 

time to resolve the WL ambiguities by up to 40%. Because of the size of the reference 

receiver network and the nature of the LI measurement errors, ambiguity resolution per- 

formance for LI ambiguities was extremely poor for both raw and NetAdjust-corrected 

measurements for all but the shortest baselines. Nonetheless, NetAdjust did yield slight 

improvements in the percentage of correct fixes and the percentage of bad fixes for LI 

ambiguity resolution. 

The NetAdjust method was also applied to a network of four reference receivers and 
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three mobile receivers covering a 50 km x 150 km region in southern New Mexico. (This 

analysis was performed using a preliminary version of the covariance function which is 

different from the one used for the Norway network). In this case, NetAdjust yielded 

significant reductions in the time to resolve ambiguities and the percentage of good fixes 

for both WL and LI ambiguity resolution. 

7.1.2   Covariance Analysis 

The covariance function used by the NetAdjust method can also be used to determine the 

covariance matrix of the corrected measurements. This is useful, because it provides a 

means to predict the performance of the NetAdjust corrections, without having the mea- 

surements available. A method for relating the corrected measurement covariance matrix 

with carrier-phase ambiguity resolution is presented, which makes it possible to predict 

the carrier-phase ambiguity resolution performance as well. 

This covariance analysis technique was first validated against the data from the Nor- 

way network. It was then used to determine the areas where the NetAdjust method would 

attain a reasonable level of ambiguity resolution performance. Using the covariance anal- 

ysis, the percentage of the desired coverage area (i.e., the area within the network) with 

acceptable predicted ambiguity resolution performance was 78% for WL ambiguities, but 

only 12% for LI ambiguities. This demonstrated in another way why the LI ambigui- 

ties could not be accurately determined for many of the reference networks, as described 

above. 

A number of different covariance analysis scenarios were calculated, varying the num- 

ber of reference receivers, the number of satellites, and the level of ionospheric activity. 

These demonstrate that the covariance analysis is a powerful tool for studying NetAdjust 

performance as it relates to these environmental parameters. 
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7.1.3   Parameterization of NetAdjust Corrections 

Using the NetAdjust method, it would be possible to generate the value of the code and 

phase measurement corrections over the entire network. Then, the "shape" of these cor- 

rections could be evaluated in order to determine the best method for parameterizing the 

corrections as a function of the user position. Such analysis is not possible with other 

network methods that assume an a priori functional form relating errors to position, and 

then fit the coefficients of this function to the network data. 

7.2   Recommendations 

While the NetAdjust derivation and analysis presented in this thesis cover a wide range 

of topics, there are many more related research avenues that can (and should) be pursued. 

Some of these include 

• Derivation and testing of other statistically sound covariance functions. All of the 

results from the Norway network used a single covariance function that was gener- 

ated from the data collected by the network. Areas to examine are 

- Calculation of cross-correlation terms between different satellites. (These 

were assumed to be zero for the current covariance function). 

- More comprehensive study of the best functional form of the correlated error 

term (i.e., the one that relates to distance) in the covariance function. 

- More comprehensive validation of the covariance function using real data. 

- Development and testing of a methodology for generating a covariance func- 

tion which changes in real-time in order to track the real-time changes of the 

errors themselves (such as the atmospheric errors). 

• Analysis using different networks in different environments. The analyses pre- 

sented in this thesis primarily involved a 24-hour period of the Norway network. 



213 

The NetAdjust method should be applied to other networks at other locations and 

other times in order to gain a better understanding of its capabilities and limitations. 

Of special interest is the performance during periods of high ionospheric activity 

(especially during the solar maximum) and extreme tropospheric conditions. 

• Study of the effects of filter tuning when using a network of reference receivers. 

The filter tuning parameters used for the ambiguity resolution process in this the- 

sis were nominal parameters which work well under a variety of conditions. Since 

the NetAdjust method reduces many of the errors, the filter should be tuned to ac- 

count for these reduced errors. This concept was briefly explored for the Holloman 

network, but it needs much more analysis and testing. 

• Enhancement to use both fixed and floating ambiguities between reference receiver 

networks (as discussed in Section 6.1.1). 

• Analysis of issues regarding real-time transmission of NetAdjust correction, includ- 

ing 

- Analysis of the best method for parameterizing the corrections as a function 

of the mobile user position (as discussed in Section 6.2). 

- Analysis of NetAdjust performance when using data thinning (see Section 6.3). 

- Analysis of data link bandwidth requirements and correction coding schemes. 

• Use of covariance analysis to perform a comprehensive study of the relationship 

between LI and WL ambiguity resolution performance and the number of refer- 

ence receivers, network geometry, differential error levels (especially ionospheric 

errors), number and elevation of satellites, and differential error levels (especially 

ionospheric errors). 

• Study of the effectiveness of using NetAdjust corrections when the mobile receiver 

is at a high altitude relative to the network (such as an aircraft). It is likely that the 
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form of the covariance function would need to be changed to adapt to this type of 

situation. 

The large number of significant recommendations given above is indicative of the fact 

that this thesis represents the starting point for the NetAdjust approach to the multiple 

reference carrier-phase ambiguity resolution problem. Overall, the NetAdjust results pre- 

sented in this thesis are very promising, and they indicate that further research in this area 

is warranted. 
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Appendix A 

Description of Reference Network Data 
Sets 

Two different data sets are used throughout this thesis, and this appendix describes both of 

them. The first is called the Norway network, and it involves eleven stationary receivers 

spaced throughout southern Norway. Due to the quality and size of this network, it is the 

primary network used in the analysis of the NetAdjust method. 

A secondary network is called the Holloman network, which involves four stationary 

reference receivers and three mobile receivers. 

A.l   Norway Network 

The Norway network consists of eleven stationary receivers spaced throughout the south- 

ern portion of Norway, indicated by a box in Figure A.l. The relative locations of the 

reference receivers are shown in Figure A.2, which approximately covers the area of the 

box in Figure A.l. 

Each receiver is identified by a four letter designation. The BERG, ALES, and TRON 

receivers are located in Bergen, Älesund, and Trondheim, respectively. (This is useful 

for relating Figures A.l and A.2). Note that there are two receivers at the TRYM and 

TRYR site, and two receivers at the ARER and AREM site. They are very close together 

(with 40 m), so they would normally appear as a single dot. They are placed in the figure 
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Figure A.2: Relative locations of Norway reference receiver sites 
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slightly offset from each other, however, in order to show that there are two receivers at 

these sites. 

Five of the receivers (KRIS, STAV, BERG, ALES, and TRON) were part of the ex- 

isting Norwegian SATREF system currently used for code differential GPS inland and in 

the waterways around Norway. These were all Trimble 4000 SSi dual frequency (semi- 

codeless) receivers using permanently mounted groundplane antennas. 

The other six receivers (AREM, ARER, GEM, GEIR, TRYM, TRYR) were dual 

frequency (semicodeless) Ashtech Z-12 receivers which were temporarily set up for this 

test. The GEM, GEIR, TRYM, and TRYR receivers used Dorne-Margolin groundplane 

antennas, and the AREM and ARER receivers used standard Ashtech dual frequency 

groundplane antennas. All of the Ashtech antennas were mounted on tripods. The Dorne- 

Margolin antennas have a specified L2 phase center offset (relative to the LI phase center). 

All of the L2 measurements from these receivers were transformed to the LI phase center 

by subtracting out the projection of the phase center offset onto the satellite line-of-sight 

vector, prior to all of the analysis that is presented in this thesis. 

One other receiver was present during the test, located approximately halfway between 

the TRYM and AREM receivers. There were many cycle slips and data outages from this 

site, so it was not used. 

Data was collected from all receivers at a 1 Hz rate over a 50-hour period starting 

at approximately 14:00 UTC (15:00 local) on September 29th, 1997. In order to make 

the data set more manageable, a 24-hour subset of the data was selected extending from 

16:00 UTC (17:00 local) on September 29"1 to 16:00 UTC (17:00 local) on September 

30*\ and it was also thinned to two second intervals (0.5 Hz). This thinned, 24-hour data 

set was then used for all of the analysis and results presented in this thesis. The data 

collection for this test was performed by Kvaerner Ships Equipment, a.s. in a research 

effort in conjunction with The University of Calgary. 

Figure A.3 shows the number of visible satellites (averaged between the 11 reference 

receivers) over the 24-hour period. Visible satellites are defined as satellites which are 
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Figure A.3: Number of visible satellites (averaged between the 11 receivers in the Norway 
network) 

above 12° elevation and have valid LI and L2 phase measurements. The mean number of 

satellites was 7.7, averaged over time and among all 11 reference receivers. 

In general, the weather over the 24-hour test period varied from cloudy to clear. No 

major storm fronts were present during this time. Table A.l gives approximate (24-hour 

average) surface weather statistics obtained from the Norwegian Meteorological Institute. 

Data from a ground-based magnetic observatory in Norway showed no unusual varia- 

tions in the geomagnetic field during the 24-hour test period, indicating that the ionosphere 

was relatively stable. The test was performed in the 1th year of the 11 year sunspot cycle 

(during the rising portion). 

A.l.l   Calculation of Reference Receiver Positions 

One of the assumptions when using a reference network is that the receiver antenna coor- 

dinates are precisely known (see Section 1.2.3.1). It is very important, then, to determine 

precise antenna coordinates. For a reference receiver network, precision (relative error) is 
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Table A.1: Approximate Surface Weather Data for Selected Norway Reference Stations 

Temperature (°Q Precipitation Mean Rel. Atm. Pressure at 
Site Mean Max Min (mm) Humidity Sea Level (kPa) 
ALES 11.5 12.6 9.3 1.6 73% 1013.0 
BERG 10.4 13.1 8.0 0.8 92% 1020.6 
STAV 10.9 14.3 8.7 0.3 90% 1021.3 
AREM/ARER 9.0 15.9 2.3 0.1 75% 1019.8 
GEIM/GEIR 5.7 9.5 2.0 • 64% not avail. 
TRYM/TRYR 4.4 10.3 0.8 • 74% 1016.9 
TRON 9.6 14.0 6.2 • 83% 1016.2 

more critical than accuracy (absolute error). If the coordinates are precise, but with a fixed 

offset for all of the receivers, then the estimated differential errors will be calculated (and 

removed) correctly, and the position result will simply be offset by the network offset. 

Any lack of precision within the network, however, will effect incorrect estimates of the 

differential errors, which will reduce position accuracy and inhibit the ability to resolve 

carrier-phase ambiguities. 

Preliminary coordinates of each of the receivers were calculated by the Trimble GP- 

Survey™ surveying software using 6 hours of data thinned to 30-second intervals. The 

absolute positions of several of the SATREF receivers were provided by Kvasrner. 

Next, a three-dimensional baseline vector was calculated for each baseline in the net- 

work1 using positions calculated from the ionospheric free observable described in Sec- 

tion 2.1.3. This was done by first calculating an epoch by epoch relative position (i.e., 

baseline) at 30-second intervals over the 24-hour data period using fixed integer iono- 

spheric free double difference residuals. (The integer ambiguities were calculated previ- 

ously using the procedure described in Appendix B). Precise ephemeris obtained over the 

Internet from the U.S. National Geodetic Survey were used in order to minimize orbital 

error effects. 

'There are a total of 55 baselines between the eleven receivers. 
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A sample plot showing the epoch-by-epoch three dimensional baseline between the 

BERG and STAV reference receivers is given in Figure A.4. This was calculated using 

fixed integer ionospheric free (dual frequency) phase measurements and precise satellite 

orbits. The mean and standard deviation were calculated for each axis using the 24-hours 

of data, and they are presented on the plots as well. This mean value was then considered 

the BERG-STAV baseline measurement, with the standard deviation calculated from the 

data.2 This procedure was repeated for all 55 baselines, resulting in 55 three-dimensional 

baseline measurements and associated standard deviations. The standard deviations for 

each of the baseline measurements are plotted in Figure A. 5. 

The post-adjustment measurement residuals3 provide a good indication of the overall 

precision of the adjustment, and they are plotted in Figure A.6. The residuals are generally 

less than 5 mm in the horizontal directions and 1 cm in the vertical direction, indicating 

that the measurements are probably more precise than the measurement standard devia- 

tions (shown in Figure A.5) indicate. 

Finally, the post-adjustment error standard deviations of the receiver position errors 

were calculated for each of the receivers, using the error covariance (calculated from 

a priori measurement variances) scaled by the estimated variance factor OQ (calculated 

from the residuals) (Krakiwsky, 1990). Normally, OQ should be near one. In this case, it 

was 5.71 x 10-3, due to the small residuals relative to the measurement error standard de- 

viations. The post-adjustment error standard deviations for each of the reference receivers 

are shown in Table A.2. These values are probably somewhat optimistic, and data from a 

different day would be likely to generate slightly different coordinates. Nonetheless, the 

standard deviations do imply that the reference receiver locations are known to a precision 

2While the results are presented here in the geodetic (east-north-up) frame, all of the calculations were 

performed in the Earth-Centered Earth-Fixed (ECEF) frame. 

3The post-adjustment residuals are defined as the original baseline measurements (for the 55 baselines) 

minus the ranges calculated from the adjusted receiver coordinates. These residuals are calculated separately 

for each axis. 
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Figure A.6: Post-adjustment measurement residuals for each reference receiver 

Table A.2:  Theoretical estimated position accuracy of reference receiver coordinates 
(post-adjustment, based partly upon adjustment residuals) 

Estimated 1-cr Error (cm) 
Receiver East North Up 
ALES 0.05 0.12 0.17 
AREM 0.05 0.13 0.16 
ARER 0.05 0.12 0.16 
BERG 0.05 0.12 0.15 
GEM 0.05 0.12 0.15 
GEIR 0.05 0.12 0.15 
KRIS 0.06 0.13 0.16 
STAV 0.05 0.11 0.15 
TRON 0.06 0.13 0.18 
TRYM 0.05 0.13 0.17 
TRYR 0.06 0.13 0.17 
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Table A.3: WGS-84 ellipsoidal coordinates of LI phase centers for Norway network re- 
ceivers 

Receiver Longitude (deg) Latitude (deg) Height (m) 

ALES 6.198539697 62.476380742 194.982 

AREM 8.759850207 58.489055592 104.511 

ARER 8.759862588 58.489156739 104.123 

BERG 5.266541503 60.288741923 98.916 

GEIM 7.722183907 60.422093600 1247.947 

GEIR 8.200342981 60.525564727 814.324 

KRIS 7.907414342 58.082691975 152.801 

STAV 5.598620273 59.017709092 110.059 

TRON 10.319152630 63.371380847 322.810 

TRYM 12.381637217 61.422832771 723.940 

TRYR 12.381577927 61.423212395 724.795 

of 1 cm or better. 

The final computed positions of the reference receiver network are shown in Table A.3. 

These are expressed in WGS-84 ellipsoidal coordinates. 

A.2   Holloman Network 

In August 1996, four Ashtech Z-12 dual frequency all-in-view GPS receivers were set up 

at stationary points near Holloman Air Force Base, New Mexico (Raquet, 1997b). These 

receivers, shown as circles in Figure A.7, collected raw measurements at a 2-second inter- 

val continuously for over 54 hours. The receiver labeled "Cigt" was connected to a choke 

ring antenna which serves as the permanent differential GPS reference station antenna for 

the 746th Test Squadron Central Inertial Guidance Test Facility (CIGTF). The other three 
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Figure A.7: Holloman network configuration and van test route 

reference antenna established for this test were mounted on tripods approximately 1.5 m 

above flat building roofs. They each had an Ashtech antenna with groundplane, and their 

placement was not necessarily optimized for minimizing multipath. 

A fifth receiver was placed 50 km south of the Rats receiver, but it was a very poor 

site because of a number of obstructions and multipath sources (such as large ventila- 

tion ducts). As a result, data from this receiver was not used for the NetAdjust analysis 

presented in this thesis. It was, however, used as part of the network to determine the 

positions of the reference receivers. 

Three additional receivers were mounted on opposite corners of a 1.25 m square alu- 

minum sheet on top of the 746th Test Squadron Van. One of the receivers was an Ashtech 

Z-12 with an Ashtech groundplane antenna identical to those used at the reference sta- 

tions. The other two receivers were NovAtel MiLLennium dual-frequency all-in-view 

GPS receivers with choke ring antennas. The Ashtech Z-12 mobile receiver was on the 
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back left comer of the aluminum sheet (when looking from above), the first NovAtel mo- 

bile receiver was on the back right corner, and the second NovAtel mobile receiver was 

on the front right corner. These three receivers are referred to as Ashtechl, NovAtel 1, and 

NovAtel2, respectively. 

There were two days of kinematic testing. On the first day, four hours of data were 

collected as the bus traversed the south end of the test area. On the second day, a total 

of nine hours of continuous measurements were collected from all three receivers at a 

2-second interval. During this period of time, the test van visited each of the reference 

receivers, following the route shown in Figure A.7. On six separate occasions (the van 

stopped twice at CIGT), the van remained stationary between for 3CM5 minutes. These 

stationary periods are represented by an "X" in Figure A.7. The majority of the route 

was over the desert valley, and there were no significant obstructions to the signal of the 

mobile receivers over the entire 9-hour period. All of the results presented in this thesis 

were obtained from the data from this second day of testing. 

A.2.1    Determination of truth trajectories 

A "truth" trajectory was generated for each of the three mobile receivers. These trajec- 

tories were a weighted combination of four separate trajectories independently generated 

by using each of the four reference stations. These four trajectories were obtained by 

running the Ashtech PNAV software in forward/backward mode, attempting to fix ambi- 

guities. During most of the 9-hour run, each of the four trajectories were in agreement to 

within 10 cm. However, during some portions of the test, the solutions differed by 1 m 

or more. Overall, the truth trajectories for the mobile receivers could be characterized as 

being accurate to within 10 cm 90% of the time, and accurate to within 1 m the remaining 

10% of the time. 
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Appendix B 

Calculation of Ambiguities Between 
Reference Stations 

In order to apply the NetAdjust method, the ambiguities between each of the reference 

stations must be calculated. In an operational system, the ambiguities need to be calcu- 

lated in real-time. To accomplish this for both widelane (WL) and single frequency (LI) 

ambiguities, a network approach is required which attempts to determine all ambiguities 

within the network simultaneously, as opposed to calculating the ambiguities separately 

for each baseline (see Section 6.1). Examples of the network approach are given in ref- 

erences (Blewitt, 1989) and (Dong and Bock, 1989). Such an extensive effort is outside 

the scope of this research, however, so a more ad-hoc approach was taken based upon 

baseline-by-baseline ambiguity determination methods, which are simpler to develop in 

the short term, but are computationally inefficient and are not optimal for real-time use. 

The goal is to obtain integer ambiguity estimates for every possible double-difference 

measurement (between two receivers and two satellites). If integer ambiguities cannot 

be accurately determined, then the next best solution is to calculate floating ambiguities, 

which would introduce some level of error but should still result in an improvement over 

not using the double-difference measurement at all. 

Different methods of calculating reference network ambiguities were used for the Hol- 

loman and the Norway data sets. The approach used in the Norway data set is more com- 

plex than the approach used in the Holloman data set, due to the large distances between 
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reference stations in the Norway data set. Both approaches are described in the sections 

below. 

B.l   Norway Data Set 

The Norway network had reference station baseline distances of up to 600 km, which ne- 

cessitated the use of the network to calculate the double-difference ambiguities accurately. 

The procedure that was developed consists of the following stages of processing: 

1. Calculation of the WL and LI ambiguities separately for each of the baselines. 

This was done using an iterative method which attempted to calculate ambiguities 

in batch mode over various time intervals. The result was a highly redundant set of 

integer and floating ambiguity values from many different overlapping runs. Note 

that in this step, the LI ambiguities were calculated using an ionospheric free ob- 

servable which requires the WL integer ambiguities (so the WL ambiguities needed 

to be calculated first). 

2. All of the redundant ambiguity values calculated in step 1 for each baseline were 

combined together to determine the best possible ambiguity estimate (integer or 

floating). 

3. Using the ambiguities for each baseline calculated in step 2, the final ambiguities 

were determined by taking advantage of "chaining" together ambiguities from con- 

necting baselines in the network. This step served as a cross-check as well as pro- 

viding the ability to chain together short baseline ambiguities to get long baseline 

ambiguities. 

Each of these three steps are described in the sections that follow. 
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B.l.l   Initial Iterative Ambiguity Calculation 

In this step, repeated attempts were made to calculate the ambiguities between each refer- 

ence receiver pair in batch mode, using different time segments and different base PRNs. 

Repeated attempts were necessary, because correctly resolving integer ambiguities is sen- 

sitive to many factors, including the selection of the base satellite and the length of data 

that is processed. If the fixed ambiguities are correct, then they should be consistent from 

run to run, within the same data set. 

In order to eliminate the effect of satellite orbital errors, National Geodetic Survey 

precise orbits were used for all ambiguity calculations. These orbits have an advertised 

accuracy of 1.6-3.2 cm (la), based upon the information in the header of the precise orbit 

data files. 

This portion of the method will be described by first explaining how the WL and LI 

ambiguities were calculated for a given time segment of data and given base PRN. Then, 

the approach for determining which time segments and base PRNs to use is presented. 

B.l.1.1    Calculation of WL ambiguities 

The goal at this point is to calculate the WL and LI ambiguities (integer, if possible) 

between two stationary receivers, using a specified base PRN and a specified time period. 

(The method for selecting the base PRN and the time period is given in the section that 

follows). One of the receivers was designated as the reference receiver, and the other as 

the remote receiver. Since the only purpose at this stage is to determine the ambiguities 

(rather than perform positioning), the selection of base and remote reference receivers was 

arbitrary, and reversing the base and remote receivers would only change the sign of all 

of the ambiguities. 

B.l.1.1.1 Cycle Slip Detection and Correction. For every time epoch within the 

specified time interval, the LI and L2 carrier-phase measurement-minus-range observable 

(A V^) was generated between the base PRN (PRN x in this case) and each of the other 
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PRN measurements, as described in Section 2.1.2. This resulted in an epoch-by-epoch 

estimate of the LI and L2 ambiguities. When a cycle slip occurred, a discrete jump was 

observed in this time series. (A threshold of 0.35 cycles was used). If the magnitude of the 

jump was within 0.22 cycles of an integer, and the time period between double-difference 

measurements before and after the jump was less than 300 seconds, then the cycle slip 

was corrected in the measurements that followed, and the slip was recorded for later out- 

put. If the cycle slip could not be fixed, then the double-difference data was split off at 

that epoch, and two separate ambiguity parameters were estimated. (The newly created 

one could be split again if there was another unfixable cycle slip later, if necessary). 

B.1.1.1.2 Generation of WL observables. The widelane observable AV4>WL was 

then calculated as 

AV&WL = AV^Li - AV0L2, (B.l) 

where AV<^LI and AV^L2 are the double differenced measurement-minus-range values 

of the LI and L2 phase measurements. (This is the (f>i-i combination, as expressed in 

Section 2.1.3.) Any WL cycle slips that occurred were a result of slips in either the 

LI or L2 phase measurements (or both), and they were either corrected or split off into 

a new ambiguity, based upon the knowledge of the cycle slips in the single frequency 

measurements which had already been calculated. 

B.l.1.1.3 Data Thinning. In order to reduce the number of data points to process (and 

to reduce the time correlation of the errors in the measurements), the data was thinned to 

30-second intervals. In addition, the first and last double difference measurement were 

kept (if it didn't already fall on a 30-second interval), in order to keep track of the exact 

first and last epoch for that particular ambiguity. 

B.l.1.1.4 Initial Floating WL Ambiguity Calculation. A batch least-squares algo- 

rithm was used to obtain initial ambiguity values (and the covariance matrix of those 
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values). First, the parameter vector was defined as 

x = \Sx   Sy   Sz   NlwL   N2wL   ...   NnwL\   , (B.2) 

where Sx, Sy, and Sz are the errors in the nominal position of the remote receiver in the 

ECEF frame, and NiwL through NnwL are all of the double difference WL ambiguities 

that are to be estimated. The measurement vector I was comprised of all of the individual 

WL phase double differenced measurement minus range values for all epochs and all PRN 

combinations (involving the base PRN). The functional relationship between I and x is 

described by 

I = f{x). (B.3) 

Next, the design matrix A was calculated using 

A=%. 

Each row of A corresponds to an individual measurement in the I vector. In this case, 

the first three columns of A (corresponding to Sx, Sy, and 5z) were the unit line-of-sight 

vector from the mobile receiver to the satellite from which the measurements are taken, 

and the other columns (corresponding to the ambiguities) were 0,1, or -1, depending upon 

the ambiguities involved in that particular measurement. 

The initial floating ambiguity estimates were then calculated using the standard least- 

squares equation 

x = (ATA)-1ATl. (B.5) 

Note that this equation assumes that the covariance matrix of the noise in the measure- 

ments is the identity matrix. This implies that the measurement errors were uncorrelated 

with each other (which is true for the primary measurement errors in question, namely 

the ambiguities), and that they are all equally accurate. It would be possible to refine this 

further (by increasing the covariance for low elevation satellites, for example), but such 
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improvements are not necessary to obtain the initial covariance estimates. The total scal- 

ing on the covariance matrix (one for an identity matrix) is not critical either, because it 

will be seen below that the covariance values of interests are the covariance of the esti- 

mated parameters relative to each other, but not in any absolute sense.1 The covariance 

matrix of the estimated parameters (C^) is then 

C& = (ATA)-1. (B.6) 

By definition, the ambiguity parameters are integers, so the nominal integer ambiguity 

estimates were the floating ambiguity estimates rounded to the nearest integer. For short 

baseline lengths (such as 10km or less), the correlated error terms (satellite position error, 

ionospheric errors, and tropospheric errors) are almost completely canceled in the dou- 

ble differencing process. As a result, the floating ambiguity estimates were very close 

(typically within 0.05) to the closest integer value. Over long baselines, however, the cor- 

related error terms do not cancel as effectively, and the floating ambiguity estimates were 

often not very close to their true integer values. As a result, the algorithm needed to select 

the correct set of integer ambiguities. This involved two separate steps — determination 

of a set of integer ambiguity combinations to test (which should include the correct one), 

and determining which one is indeed the correct set of integer ambiguities. These steps 

are covered in the paragraphs that follow. 

'It is understood that certain aspects of this whole ambiguity estimation procedure are not theoreti- 

cally correct, because assumptions are made which are not true in the real world. In reality, there are 

cross-correlations in the measurement errors which should be reflected in the covariance matrix, and some 

measurements are more accurate than others. The cross-correlations are due to common errors in the same 

epoch, as well as time-correlated errors between observations at different epochs. While improving the 

measurement covariance matrix would improve the results, using an identity matrix worked sufficiently 

well for the purpose of this particular algorithm — to determine the integer ambiguities between reference 

stations. 
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B.l.1.1.5 Determination of Ambiguity Search Space. The technique used to deter- 

mine the sets of integer ambiguity combinations to test was based on the Fast Ambigu- 

ity Search Filter developed by Chen and Lachapelle (Chen, 1993; Chen and Lachapelle, 

1995). This algorithm uses the information embedded within the covariance matrix of the 

ambiguity parameters to select a set of ambiguities that are consistent in a very efficient 

manner. 

The diagonals of the covariance matrix give the variances of each of the corresponding 

parameters, including the ambiguity parameters. First, the ambiguity parameter with the 

lowest variance was selected (designated as the nth parameter). An integer search range 

was then specified for that ambiguity parameter, by selecting all integers that are within 

the range 

xn - kon < Nnint < xn + kan, (B.7) 

where xn is the estimate of the nth parameter, an is the standard deviation of the nth 

parameter, and A; is a constant. (The method used to calculate k is described later). 

Next, for each Nnint within the search range, a conditional mean and covariance for 

the parameters was calculated, conditioned on the fact the xn has taken on the realized 

value Nn.nt. This was implemented using the Equations (Lu, 1995; Weisenburger, 1997) 

x = x - Cn(xn - Nnint)/al (B.8) 

CA = C&- (cncn
T)/a2

n, (B.9) 

where 

x      is the estimated parameter vector conditioned upon xn = Nnint, 

C&    is the covariance matrix conditioned upon xn = Nnint, 

cn     is the nth column of the covariance matrix C&, and 

o\     is the scalar variance of the nth parameter (taken from the diagonal of C*). 

Because there are correlations between the parameters, the diagonal elements of C-j 

are less than or equal to the diagonal elements of C&. This effectively reduces the search 

ranges for each of the other ambiguities. 
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This process was repeated recursively, calculating conditional parameter estimates and 

covariances conditioned upon more than one fixed ambiguity. If all possible ambiguity 

parameters were set to integers in this recursive process, then this set of integer ambiguity 

estimates was considered a valid set to be considered as the possible correct set. This 

method is very efficient, because many incorrect integer ambiguity sets are rejected when 

at some layer in the recursion it is not possible to generate any integer values that meet the 

constraints given in Equation B.7. When all possible combinations have been exhausted, 

there are a number of candidate integer ambiguity sets, one of which is (hopefully) correct. 

Most previous implementations of the FASF method (see Weisenburger (1997) for 

example), use a predetermined value for the parameter k given in Equation B.7. Typically, 

a value between 3 and 10 is chosen (Lu et al., 1995). If the parameters are jointly Gaussian 

and the covariance matrix is reflective of the true covariance (i.e., it is properly scaled, 

and all significant error sources have been modeled), then using a constant value of k is 

a reasonable approach, because for a Gaussian distribution, there is a specific probability 

that the realization of the random variable (an integer ambiguity in this case) will lie 

within a window of size ka about the mean. For example, if k = 3, then there is a 

99.7% probability that the realization of the random variable will be within 3-cr of the 

mean. If, however, the covariance matrix is not reflective of the true covariance, then 

using a constant value of k can result in a candidate ambiguity set which is too pessimistic 

(resulting in many ambiguity sets, which makes it difficult to distinguish the correct one), 

or too optimistic (resulting in a small number of sets, but possibly excluding the correct 

ambiguity set). 

In this research, a different approach was taken. Rather than fixing k and living with 

whatever ambiguity sets are generated, k was adjusted such that there would be between 

30 and 700 candidate ambiguity sets. An initial value of k was chosen. If using that 

value of k generated fewer than 30 candidate ambiguity sets, then the entire process was 

repeated with a higher k value. Likewise, if more than 700 ambiguity sets were generated, 

then a lower k value was used. Using such an approach assured that there would be a 
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reasonable number of ambiguity sets to test. 

B.l.1.1.6   Determination of Correct Ambiguity Set.   The measurement residuals were 

used as a test to determine which of the candidate ambiguity sets was the correct one. 

First, the design matrix was partitioned into two submatrices 

A = [Apos\Aamb], (B.10) 

where Apos and Aamb are the columns of the A matrix which pertain to the position and 

ambiguity parameters, respectively. Next, the integer ambiguities were removed from the 

original double difference measurement vector by 

l(n)=l- Aambxint(n), (B. 11) 

where xint(n) is the nth candidate integer ambiguity set, and l(n) is the new vector of 

double difference measurements corrected for the ambiguities in xint(n). At this point 

the effect of the ambiguities has been removed, so the residuals r{n) to a least squares fit 

in the position domain were calculated using 

xpos(n) = {Aj0SAl0S)-
lAl0Sl{n) (B.12) 

r(n) = Alosxpos(n) - l(n), (B.13) 

and the scalar sum of squares of the residuals (SOSr) was then calculated using 

SOSr(n) = r(n)Tr(n). (B.14) 

Note that there exist alternative methods of calculating the SOSr values more efficiently 

in conjunction with Equations B.8 and B.9 (Weisenburger, 1997). 

Once the SOSr values were calculated for each of the candidate integer ambiguity sets, 

then the ratio of the second best to the best SOSr values was calculated as 

SOSratio = ^p^, (B.15) 
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where the "best" is defined to be the lowest value. If this ratio exceeded 1.8, then the 

candidate ambiguity set corresponding with SOSr2nd best was deemed to be correct. Keep 

in mind that the residuals represented here were for all of the double difference measure- 

ments over every epoch (i.e. not just one epoch). 

B.l.1.1.7 Removal of satellites when not correctly solved. Sometimes the above 

procedure would result in a SOSratjovalue of less than 1.8, which signified that with that 

particular set of measurements, no candidate ambiguity set was significantly better than 

any of the others. Sometimes this would be due to a satellite which had only a small num- 

ber of measurements available in the specified time interval. Because there were only a 

small number of measurements, then different ambiguities for these satellites would only 

change relatively few measurements within the residual (r) vectors, making the ratio test 

of Equation B. 15 fail. Similar effects would occur if one satellite (or a few satellites) had 

significant atmospheric errors, which is typically the limiting factor over long baselines. 

In order to prevent these types of situations, if the ambiguity search failed the ratio 

test, then measurements involving the ambiguity with the highest floating ambiguity vari- 

ance (from the C& matrix) were removed, and the entire process was restarted from the 

beginning. This iteration continued until either a) the ratio test was successful, or b) only 

three ambiguities remained (in which case they could not be solved). 

If the ratio test was successful with a subset of the ambiguities (but not all the ambi- 

guities), then floating ambiguity estimates were recalculated only for the ambiguities that 

were not successfully fixed. In this calculation, the fixed ambiguities were considered 

deterministic, resulting in fewer degrees of freedom than in the original floating solution 

(in which all ambiguities were stochastic). 

Finally, the fixed or floating ambiguities for every possible PRN combination were 

then saved into a file for later processing. PRN combinations that do not involve the base 

PRN were calculated as well, using the equation 

Nxy = Nbx-Nby, (B.16) 
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where Nbx and Nby are the ambiguities between the base PRN and PRNs x and y, respec- 

tively, and Nxy is the ambiguity between PRNs x and y. If both Nbx and N^ are fixed 

integers, then Nxy is an integer as well, but if either Nbx or iV6y (or both) are floating 

values, then Nxy is calculated as a floating ambiguity. 

B.1.1.2   Calculation of LI ambiguities 

For long baselines2, it becomes very difficult, if not impossible, to determine LI or L2 

integer ambiguities reliably using single frequency measurements. However, when dual 

frequency measurements are available, it is possible to calculate single frequency ambigu- 

ities using an ionospheric free L1/L2 measurement combination (which requires knowl- 

edge of the integer widelane ambiguity). The procedure described below is an adaptation 

of the algorithms given in Blewitt (1989) and Ashtech (1994). 

Recall from Section 2.1.3 that the widelane and ionospheric free observables can be 

calculated as 

§WL = §L\-§LI (B.17) 

h 
<1>IF - 4>Li - 7-0L2, (B.18) 

and the corresponding ambiguity equations are 

NWL = NL1-NL2 (B.19) 

NIF = NL1 - ^-NL2. (B.20) 
h 

Recognizing from Equation B.19 that A^2 = NLI — NWL, Equation B.20 can be rewritten 

as 

NIF = NLl-fl (NL1 - NWL), (B.21) 
h 

2Many of the baselines in the Norway network were hundreds of kilometres long. It is generally difficult 

or impossible to determine integer ambiguities using single frequency data for baselines greater than 30-50 

km. 
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or, equivalently, 

-H) 
Finally, solving for Nu yields 

NIF=[l-£)NL1 + ^NWL. (B.22) 

N    _ A^L 
NLi = ——L—. (B.23) 

This equation shows how the LI ambiguity can be calculated from the IF and WL ambi- 

guities. At this point in the process, the WL integer ambiguities have been calculated (as 

described above), and they are here considered deterministic quantities. Equation B.23 

then represents a linear transformation between the ionospheric free ambiguity NIF to the 

LI ambiguity NLi. This means that, if the expected value (estimate) and covariance ma- 

trix are calculated for a jointly Gaussian random vector of ionospheric free ambiguities, 

then the expected value and covariance matrix of the random vector of LI ambiguities can 

be easily determined using that linear transformation as follows (Maybeck, 1994): 

NLI = 7 -yiV/F - f—pr (B.24) 

Taking this into account, the procedure used to calculate the LI ambiguities from the 

IF observable is as follows: 

1. The floating estimates (NIF) and covariance matrix (C^/F) of the ionospheric free 

ambiguities were calculated using Equations B.5 and B.6, only in this case the I 

vector was comprised of IF observables (rather than WL observables). Because the 

IF observables included no ionospheric errors, the ionosphere did not introduce a 

bias into these floating ambiguity estimates. 

2. Floating estimates of the LI ambiguities (NLI) and the related covariance matrix 

(CftLi) were calculated using Equations B.24 and B.25. These estimates were not 
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biased by ionospheric errors (which would not be true if we used single frequency 

measurements only). 

3. The FASF procedure was used to calculate the candidate LI integer ambiguity sets 

using NLl and C^Ll. 

4. The residuals for each LI candidate integer ambiguity set were calculated by first 

transforming the integer LI and WL ambiguities into an IF ambiguity using Equa- 

tion B.22, then using the same procedure described in Equations B. 11 through B. 13. 

5. The correct ambiguity set was determined by using the ratio test given in Equa- 

tion B.15. As in the widelane case, a ratio of 1.8 was required for the search to be 

deemed successful. 

6. If the search was unsuccessful, the ambiguity with the highest variance was re- 

moved, and the entire LI search process was repeated until a successful ratio test or 

there were only three ambiguities left. (This is identical to the WL case). 

7. If successful, then floating ambiguities were recalculated for those ambiguities that 

had not been successfully fixed. (This is identical to the WL case). 

Using this procedure, ionospheric errors were eliminated. Using precise orbits es- 

sentially eliminated the satellite position errors. Errors that remained were tropospheric 

modeling errors, multipath, and measurement noise. Elimination of the ionospheric er- 

ror was often sufficient to make it possible to determine integer ambiguities, even in the 

presence of these other errors. 

B.l.1.3   Selection of Time Periods and Base PRNs 

Even while using the above method for removing the ionospheric effect in calculating the 

LI ambiguities, there were many situations in which it was not possible to determine the 

LI (or even WL) ambiguities using a particular base PRN and data from a given time 
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period. However, in many of these cases it was possible to determine the ambiguities 

by using a different base PRN or by changing the time period of the data. As a result, 

it was useful to attempt to calculate the WL and LI ambiguities using a variety of time 

periods and base PRNs. The sections that follow describe the algorithms used to select 

the different time periods and base PRNs. 

B.l.1.3.1 Selection of Time Periods The total Norway data set consisted of 24 hours 

of data, starting at 17:00 local time (16:00 UTC) on 29 Sep 97. The goal was to determine 

the data time intervals over which calculations of the WL and LI ambiguities would be 

attempted. For clarity, these data time intervals will be referred to as "windows." 

First, the window length was set to three hours (i.e., three hours of data would be used 

for each batch estimation of WL and LI ambiguities). The first window began at the start 

time (17:00 local) and ended three hours later (20:00 local). Then, the next window started 

at a time which was l/10th of a window length (18 minutes for a 3-hour window length) 

later than the first window start time. Additional 3-hour windows were then determined, 

each starting 18 minutes after the previous window started. This process continued until 

a window start time was within 1/2 of the window length of the end of the data set (1.5 

hours for a 3-hour window). A diagram showing the all of the 3-hour time windows that 

were used is given in Figure B.l. Each line represents a time window. There are a total of 

76 different windows. 

The same procedure was followed for window lengths of 4 hours and 5 hours. Again, 

each window was delayed in time from the previous window by 1/10th of the window 

length, which was 24 minutes for the 4-hour windows and 30 minutes for the 5-hour 

windows. This resulted in a total of 56 4-hour windows and 44 5-hour windows which, 

when combined with the 76 3-hour windows, resulted in a total of 186 different time 

windows used to calculate WL and LI ambiguities for each baseline. Plots similar to 

Figure B.l could also be drawn for the 4-hour and 5-hour length windows. 

The primary purpose for trying such a variety of time windows was to give every 
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Figure B.l: Set of 3-hour time windows used in the calculation ofWL and LI ambiguities 

possible opportunity to calculate all of the ambiguities. Because the differential GPS 

errors tend to vary with time, using different time periods would help to find periods in 

which the errors were low for any particular ambiguity. 

B.l.1.3.2 Selection of Base PRNs When calculating the WL and LI ambiguities as 

described in Section B.l.l, one satellite PRN is selected to be used as the base PRN 

in all double differenced measurement-minus-range values (i.e., the x in AV<^). It is 

generally accepted practice to select the highest elevation satellite as the base satellite 

(see Weisenburger (1997) for example), because this usually provides the best geometry, 

and the errors tend to be lower for high elevation satellites. While the highest elevation 

satellite is probably the best choice as a base satellite if only one must be used, there is no 

guarantee that using the highest elevation satellite is always the best. 

To this end, for each time window selected, different runs of the WL and LI ambiguity 

resolution procedure described in Section B.l.l were performed for multiple base PRNs. 

For a particular time window, every satellite that provided cycle-slip-free measurements 
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for at least the first 1.5 hours of the data window was used as a base PRN. Using this 

method, there were an average of 2.74 base PRNs used for each time window. 

It turned out that attempting to resolve ambiguities with different base PRNs was 

useful for obtaining more fixed integer ambiguities. In many cases, the integer ambiguities 

could not be determined using the highest elevation satellite, but they could be determined 

using a different base satellite. 

It should be noted that using the described procedure for selecting base PRNs had the 

side-effect of using varying time windows as well. For example, for a particular 3-hour 

window, there might be a satellite which provides cycle-slip-free data for the first 2 hours 

of the window. This satellite would be selected as a base PRN, and when used would 

effectively have a time window of 2 hours (rather than the specified 3-hour window). In 

cases in which the integer ambiguities could be successfully calculated when using one 

base PRN but not another, it is not always clear whether the difference is the variations in 

time intervals between the PRNs or the different error characteristics of the PRNs were 

primarily responsible for the success or failure of the technique. Most likely, it is a com- 

bination of the two effects. 

B.1.2   Combination of Redundant Ambiguity Calculations 

Using the procedure described in the above section resulted in a total of 510 separate 

attempts to calculate ambiguities (on average) for each baseline, using different PRNs 

and different overlapping time periods. The next step was to combine the results of these 

attempts into a single set of results for the baseline. 

First, the ambiguities were collected into groups according to the PRNs and the time 

periods. Each group corresponded to a single ambiguity value. If a cycle slip occurred, 

then there were multiple groups for the same PRN values, over different (but adjacent) 

time periods). 

All of the integer ambiguities in a single group were the same if the ambiguity had 
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been calculated correctly at every instance. The ambiguity would then be selected as the 

correct ambiguity over the time period of the whole group. Occasionally, however, the 

integer ambiguities within a group would differ, which meant that one or more of them 

were wrong. In this case, the correct ambiguity was chosen by calculating a weighted 

average of the integer ambiguities. Ambiguities that passed the ratio test with large values 

and that were estimated using long time periods received high weightings. Ambiguities 

that were part of solutions from which a different ambiguity was found to be incorrect 

were given a very low weight. The weighted ambiguity was then rounded off to determine 

the integer ambiguity for that group. While there can be unusual situations in which this 

procedure results in an incorrect ambiguity, most of the time this method is very reliable 

at choosing the correct ambiguity from among the list of potential ambiguities. It works 

well because incorrect ambiguity calculations are rare, and they can usually be singled 

out easily from among a number of correct ambiguity choices. 

For all groups, a pure floating ambiguity value was also calculated from all of the indi- 

vidual floating ambiguities weighted by their respective time intervals. As an example, a 

floating ambiguity calculated using three hours of data received three times the weighting 

of an ambiguity that was calculated using only one hour of data. 

B.1.3   Generation of Final Ambiguity Values Using Reference Station 
Chaining 

Equation B.16 showed how ambiguities between different PRNs can be combined to- 

gether in order to calculate new ambiguities. In a similar manner, ambiguities between 

reference stations can be "chained" together in order to determine ambiguities over a long 

distance. 

For example, suppose that there is a network with four receivers labeled a, b, c, and d. 

The symbol Nab represents the ambiguity for a particular PRN pair between receivers a 

and b, Nbc represents the ambiguity between receivers b and c, and so forth. The ambiguity 
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between receivers a and c can be calculated using the relation 

Nac = Nab + Nbc. (B.26) 

(This can be easily verified using Equation 2.17). If for some reason iVac was unable to 

be calculated, then the above equation can be used to calculate it. If the ambiguity Nac 

has already been calculated, then the above equation can be used as a cross check. Longer 

chains can be assembled as well, like this 3-link chain: 

Nad = Nab + Nbc + Ncd. (B.27) 

For the Norway network, a computer program called NetAmb was developed which 

is able to use receiver chaining to determine some ambiguities that were not calculated 

on the direct baseline. It also serves as a cross-check of each of the ambiguities. For a 

given ambiguity between two receivers, NetAdjust attempts to recalculate it using every 

possible 2-link chain (using one intermediate receiver, as in Equation B.26) and every 

possible 3-link chain (using two intermediate receivers, as in Equation B.27). 

Using the 11 receivers in the Norway network, there are a total of 9 possible 2-link 

chains and 72 possible 3-link chains. NetAdjust attempts to calculate the desired integer 

ambiguity using all of these different combinations, and then compares them with the 

direct ambiguity (with no chaining). If all of the ambiguities are correct, then all of the 

ambiguities will match. On occasions when they do not match, a scoring method is used 

to pick the correct ambiguity. This scoring method takes into account such factors as the 

frequency of occurrence (if almost every chain gives the same ambiguity, then the most 

common ambiguity is probably correct) and the number of chains used (shorter chains are 

weighted more highly than long chains). 

In the process, NetAmb also determines whether or not a particular ambiguity could be 

in error due to a "single point failure". If there is any single link which is common to all of 

the chains that produced the ambiguity, then that ambiguity is completely dependent upon 

the accuracy of that single link. If the link is wrong, then all of the calculated ambiguities 
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will be wrong as well, and there would be no way to know that it was wrong. In most 

cases, however, NetAmb was able to establish at least two chains that were completely 

independent of each other (i.e., they shared no common links). In these cases, a high level 

of confidence can be placed upon the resulting ambiguity. 

Despite the use of chaining, NetAmb was not able to determine every possible integer 

ambiguity. In cases in which it was not possible to determine the integer ambiguity, 

NetAmb calculated a floating ambiguity which was a weighted average of the floating 

ambiguities from each of the contributing chains (including the direct floating ambiguity 

between the two reference stations in question). 

The NetAmb program was used to calculate/verify the ambiguities for each baseline 

in two iterations. For the first iteration, NetAmb used the ambiguities calculated using 

the procedure described in Section B.1.2, and output a new set of ambiguities for each 

baseline. For the second iteration, NetAmb used the newly calculated set of ambiguities, 

and output the final set of ambiguities. This second iteration was used because it allowed 

NetAmb to chain together ambiguities that had been calculated by the first iteration of 

NetAmb, which increased the total number of integer ambiguities. It should be noted that 

the second iteration of NetAmb only dealt with integer ambiguities. Any floating ambigu- 

ities calculated during the first iteration were kept at the same values, in order to prevent 

them from developing errors due to correlation problems. (Recalculating the floating am- 

biguities in the second iteration would be taking weighted averages of weighted averages). 

Figure B.2 shows the total number of double difference measurements that can be 

generated between all of the reference stations in the Norway network, as a function of 

time. Note that this closely follows the number of satellites observed by the network, as 

shown in Appendix A (Figure A.3). 

Figure B.3 shows the percentage of the total number of double difference ambiguities 

that have been successfully fixed to integer values by NetAmb. In general, the LI am- 

biguity fix rate varies between 75% and 100%. The fix rate drops at the beginning and 

end of the 24-hour test period. This results from the fact that the ambiguity fixing process 
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Figure B.2: Total number of LI double difference measurements between Norway net- 
work reference stations 
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Figure B.3: Percentage of LI ambiguities that are fixed between between Norway network 
reference stations 
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Figure B.4: Percentage of WL ambiguities that are fixed between between Norway net- 
work reference stations 

is a batch process, and the ambiguities at any particular time epoch are calculated based 

on data before and after that epoch. At the beginning, however, data is only available 

after 17:00, so ambiguities calculated around 17:00 could only use measurements after 

that time, resulting in a reduced ambiguity fix rate. The same reasoning can be applied to 

explain the drop at the end of the 24-hour period as well. There is also a drop in the am- 

biguity fix rate at exactly 1:00 (which is midnight UTC). Because of an irregularity in the 

way that the raw data was recorded, all of the Trimble receivers experienced simultaneous 

cycle slips on all channels at that instant, causing the drop. 

Figure B.4 shows the percentage of WL ambiguities that were successfully fixed. 

B.2   Holloman Data Set 

The Holloman data set was processed during the early stages of this research, and the pro- 

cess used for the Norway network had not been developed yet. It was a much smaller net- 
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work, however, so the ambiguities could be resolved using a slightly different approach. 

The Ashtech PRISM™ software was used in an iterative manner to calculate both 

LI and WL ambiguities. PRISM is a GPS positioning package designed to be used for 

surveying static receivers. It performs carrier-phase ambiguity resolution in a batch mode, 

which means it uses all of the data from two receivers over the run duration in a single 

least-squares adjustment (and ambiguity search). 

For each baseline, PRISM was run over 3-hour time intervals which were staggered 

by one hour each, and the results from all of the separate runs were combined and cross- 

checked. The baseline-by-baseline ambiguities were then used in NetAmb (described 

in Section B.1.3) to generate the final set of ambiguities. Using this method, the LI 

and WL (and therefore L2) ambiguities between the Holloman reference receivers were 

successfully determined almost 100% of the time. 


