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Abstract 

We investigate here the characteristics of energy resonant dipole-dipole interac- 

tions between Rydberg atoms in Magneto-Optical Trap. These resonant processes 

occur in a kinetic energy regime in which the atoms may be considered stationary 

over the time scale of the experiment. Coupled with the long range of the interactions 

considered, this leads to multi-atom interactions becoming non-negligible. A simple 

model is outlined to provide insight into the effects of these multi-atom interactions 

which lead to some interesting behaviors. Experiments which examine the broadening 

of the dipole-dipole resonances and observe the time dependence of the interaction 

signal are discussed. Examination of adiabatic character of population transfer caused 

by slewing across the resonance is discussed in another experiment, as is the scaling 

behavior of the resonance linewidths and on-resonant signal growth rates. We end 

by discussing an experiment which takes advantage of some of the characteristics of 

these interactions to measure the tensor polarizability of Rydberg states of Rb. 
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Chapter 1 

Introduction 

We go about our daily lives understanding almost nothing of the world. 
We give little thought to the machinery that generates the sunlight that 
makes life possible, to the gravity that glues us to an Earth that would 
otherwise send us spinning off into space, or to the atoms of which we 
are made and on whose stability we fundamentally depend. Except for 
children (who don't know enough not to ask the important questions), 
few of us spend much time wondering why nature is the way it is; where 
the cosmos came from, or whether it was always here; if time will one 
day flow backward and effects precede causes; or whether there are ulti- 
mate limits to what humans can know. 
... But much of philosophy and science has been driven by such in- 
quiries. An increasing number of adults are willing to ask ques- 
tions of this sort, and occasionally they get some astonishing answers. 

-Carl Sagan[l] 

While we do not profess to arrive at astonishing answers which illuminate the very 

core of our existence, this is an attempt to ask some interesting questions about a very- 

small part of how nature works; how do atoms interact with each other. In specific, we 

are investigating characteristics of energy resonant dipole-dipole interactions between 

atoms in states with high principal quantum numbers, or Rydberg atoms. Put another 

way, we are looking at interactions which alter only the internal structure, or energy, 

of the atoms involved, but leave their kinetic energy intact. The interesting portion 
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of the questions we are asking is how do these interactions proceed in a relatively 

dense gas composed of atoms which may be characterized as having an extremely 

low temperature, less than a thousandth of a degree above absolute zero. This low 

temperature means that the atoms are essentially not moving relative to each other, 

and, along with the exaggerated properties of the Rydberg atoms, appears to be the 

source of the interesting properties we have observed. 

Before we describe these experiments, we shall discuss in more detail the properties 

of Rydberg atoms, the characteristics of energy resonant interactions, and the nature 

of extremely low temperature, or ultracold, collisions. With this framework in place, 

we shall then go on to discuss our investigations in more depth. 

1.1    Rydberg Atoms 

While not entirely understood at the time, observations of atoms in states of high 

principal quantum number, n, were made as early as 1885, when Balmer observed 

that the wavelengths of the visible absorption lines of hydrogen were given by (c.f. 

[2]) 

where b =364.56 Ä and n represents the principal quantum number of the upper 

state of the transition. It was in part the work of J. R. Rydberg that helped to 

understand this formula, as well as formula describing other series of atomic spectral 
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lines, most notably those of sodium. Rydberg demonstrated that the spectral lines of 

these different atoms were related by the overall energy scale used to describe them, 

and that there should exist a general expression for these different series, although 

he did not really understand why. What seemed amazing at the time was that he 

was right, all the experimental observations could be described by one energy scale. 

That energy scale is defined by what is now called the Rydberg constant, denoted Ry, 

which has the value of 109737.3 cm-1, where the wavenumber (with the unit cm-1) 

is the inverse of the wavelength of light in vacuum. This constant is used to describe 

the wavenumbers of all series of spectral lines for all atoms, which may be written in 

general form as 

±v - _^ *L (1 2) 
±u-(n-6e)*     (n'-fr)2' (     j 

where 5g and Sy are experimentally determined values (now known to be the quantum 

defects) which give the locations of the series of atomic lines for different atoms. The 

Balmer lines are given by this formula if 6e = 6e> = 0 and n = 2. 

1.1.1    Bohr's Model 

It was not until the work of Neils Bohr over twenty years later and his proposed 

model for the hydrogen atom that a physical picture could be attatched to the states 

of high n, which have come to be called Rydberg states. While we now know that 

Bohr's theory is not precisely correct, it does accurately predict the properties of 
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the Rydberg states.  The theoretical construct known as the Bohr atom has as its 

foundation an electron moving in a classical circular orbit around a nucleus (or ionic 

core for non-hydrogenic atoms). In order to account for the observations of distinct 

spectral lines in hydrogen, Bohr assumed that only distinct orbits could occur, and 

that any spectral transition had to correspond to a jump from one orbit to another. 

As a final assumption, Bohr assumed that the orbits could only have angular momenta 

corresponding to an integer number of units of h, Planck's constant divided by 2TT. 

Prom classical mechanics, a circular orbit occurs when all of the kinetic energy 

contributes to the angular momentum of the orbit (i.e.   r = 0).   This implies the 

condition 

mv2 _ kZe2 .     . 

where Z is the charge of the ionic core and k is related to the permittivity of free 

space, eo, by k = l/Aire^. The requirement of quantized angular momentum may be 

expressed as 

mvr = nh. (1.4) 

Combining Eqs. 1.6 and 1.4, we get several crucial results. The first is the radius of 

an atomic orbit is given by 

n2ft2        op  a 
T     Ze2mk      ZU' [Lb) 

where ao is the Bohr radius which equals 0.531 Ä. Thus have calculated the scale 
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of atomic lengths from fundamental constants. We also see that Rydberg states are 

physically much larger than the ground state atoms. For instance, an atom in the 

33s state will have a radius of 58 nm, over 1000 times that of a ground state atom. 

It is not uncommon for Rydberg atoms to be well over a micron in diameter. 

We can also write down the energy of our atom in its circular orbit as the sum of 

the kinetic and potential energies 

_ mv2     kZe2 _    mk2Z2eA .     . 
~2 ~=       2^T' (     j 

which allows us to calculate the difference betwen the bound energy levels n and n'. 

This is given by 

AW 
mk2Z2e4 

2h2 ^n2     (n')2 j 
(1.7) 

Comparing this result to Eq. 1.2, we recognize immediately that the term in brackets 

is 1 Ry when Z = 1. With a theoretical model, we have calculated that all atoms 

will have an energy scale defined by 1 Ry, as had been experimentally verified twenty 

years earlier. Further, this lets us calculate the difference in energy between states n 

and (n + 1), which scales approximately as n~3. 

Another point which becomes apparent using this simple model is that atoms 

in Rydberg states are quite susceptible to electric fields. In fact, relatively modest 

electric fields are capable of ionizing Rydberg atoms, stripping the electron from the 

ionic core about which it was orbiting. This is called field ionization of the atom, and 
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we can derive some basic information about it by considering an atom in an electric 

field along a well-defined axis. The presence of the field lowers the potential felt on 

one side of the ionic core, such that atoms with energies lower than the saddle point 

of the potential, V^ = —2\/kE remain in classically bound orbits. Thus atoms placed 

in a field greater than 

& = £*? (1.8) 

are ionized by the presence of the field. 

1.1.2    Properties of Rydberg Atoms 

There is another result we may glean from our classical model. The Bohr model 

we discussed above assumes the ionic core, about which the outer electron orbits, is 

a point charge. In fact, for the alkali atoms such as sodium, potassium, rubidium, 

etc., this is inherently not true. The ionic core for these alkali atoms is formed by 

the nucleus and a closed, tightly bound shell of electrons, having a net charge of 

+le. This size difference manifests itself in several ways. The most important is the 

energy shift of the low orbital angular momentum states, or states of low L The 

orbits with low angular momentum will be elliptical rather than circular in nature, 

implying the outermost, or valence, electron will at times be close to the ionic core. 

It is possible that the electron will even penetrate into the core for some portion of 

its orbit, and during this time will see a decidedly different charge distribution. We 
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would expect this to noticeably alter the energy states of the atom, which in fact it 

does. Core penetration and core polarization (which is due to the electron coming 

close to, but not penetrating, the ionic core) decrease the energy of a state with low 

orbital angular momentum relative to those of high orbital angular momentum. This 

effect is summed up by the following equation, which is given in atomic units, a unit 

system conveniently devised such that all of the parameters for the ground state of 

hydrogen are equal to one, thus 1 Ry = 1/2. We shall use atomic units throughout 

this work, converting to more convenient units when necessary. For a definitive list 

of the values of atomic units see Ref. [3]. 

The decreased energy of the lower angular momentum states relative to the higher 

angular momentum states is given by 

"M—W^W (L9) 

Here öe is the quantum defect for a series of states with orbital angular momentum £, 

which measures the effectiveness of the core penetration and polarization in altering 

the energy levels of those states. This equation is a very good approximation to the 

energy levels for even the most rigorous quantum mechanical calculations, and yet 

it is essentially the same as what Rydberg found over 100 years ago. For a more 

rigourous derivation of this effect, the reader is advised to consult Gallagher[4] or 

Stebbings and Dunning [5]. 
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Now that we have established that we can calculate many of the properties of 

Rydberg atoms, we can discuss the notation used to describe them. We know now that 

the quantum mechanical state of a spinless one (valence) electron atom is expressed 

by a set of quantum numbers which describe certain properties. These include n, the 

principal quantum number, £, which describes the orbital angular momentum of the 

valence electron, and ra, which describes the projection of the angular momentum 

vector I, onto the z-axis. Traditionally, states with orbital angular momentum t = 

0,1,2,3,... are referred to by the letters s,p,d,f,..., respectively. We now consider 

how the inclusion of the spin of the valence electron changes this description. In alkali 

atoms, the valence electron spin, s, couples to the valence electron orbital angular 

momentum, £, such that j = I + s, and thus rrij = me + ms, where m< =mas 

previously defined. For states with I > 0, the quantized values of spin, ±1/2, lift 

an energy degeneracy so that j = I ± 1/2, and lead to fine structure (or spin-orbit) 

splittings in the energy levels.   States are specified by n£j, for example 25si/2 or 

25p3/2- 

With this notation in mind, we can list the quantum defects for the lowest angular 

momentum states of the atoms used in the experiments which are discussed in this 

work, rubidium atoms. Rubidium has two natural isotopes, 85Rb and 87Rb; however, 

we only use 85Rb atoms for reasons which will become clear later, and as such, we 

refer to 85Rb atoms as Rb. The relevent quantum defects for Rb are 

Without resorting to further derivation, some other scaling properties of Rydberg 
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S\/2 Pl/2 P3/2 ^3/2,5/2 /5/2J/2 

5e   3.13109   2.65456   2.64145    1.347157   0.016312 

Table 1.1: Quantum defects for law-£ states of Rb[4]. 

atoms are listed in Table 1.2. The results provide some insight into why Rydberg 

atoms make interesting experimental subjects. These highly exaggerated properties 

make it possible to observe interactions that are unheard of in other systems, and at 

times make it possible to test fundamental precepts of physics, including the interac- 

tion of atoms with both strong and weak electromagnetic fields[6], and the transition 

between classical and quantum mechanic descriptions of a system. 

Property n dependence Rb(25d) 
Binding Energy n"2 0.024 eV 
Energy between adjacent n states n~3 1.02 e-3 eV 
Orbital Radius n2 934.5 a0 

Geometric Cross Section n4 8.73 e6 a2, 
Dipole Moment (nd\er\np) n2 759 ea0 

Polarizability n7 0.66 MHz/(V/cm)2 

Radiative Lifetime n3 17.2 fis 
Fine Structure Interval n~3 -691.2 MHz 

Table 1.2: Scaling properties of Rydberg atoms, with examples for 
Rb. Adapted from Gallagher [4]. 
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1.2    Energy Resonant Dipole-Dipole Interactions 

We now turn our attention to the characteristics of energy resonant interactions be- 

tween Rydberg atoms. At higher translational energies than we are examining, these 

interactions would be described as resonant energy transfer collisions, and have long 

been studied as they play an important role in the development of many gas lasers, 

including CO2 and He-Ne lasers. Resonant energy transfer collisions occur when the 

colliding species change only their internal energy, rather than their kinetic energy as 

typically occurs with atomic scattering reactions. They are also a common form of 

population transfer in upper atmospheric processes, where energy resonances between 

ro-vibrational levels of molecules provide for rapid population redistribution!?, 8]. 

The resonant collisions we are studying occur between two Rydberg atoms, each in 

a well-defined, but not necessarily identical, initial state, say |ni£im^i) and |n2^2^,2)) 

with energies W\ and W2- The dipole moment of atom 1 interacts with the dipole 

moment of atom 2 as they pass near each other. This dipole-dipole interaction 

causes atom 1 and atom 2 to undergo a dipole transition to the states In'^m'-1) 

and I ^2^2), with energies W{ and W^ respectively. The condition of energy reso- 

nance implies Wi + W2 = WI + W2, while the dipole transitions require that A£; = ±1 

and Arrijj = 0, ±1. In an ideal experiment, we imagine that the energy of one or 

all of the atoms is altered by some parameter which we may control in a continuous 

manner, call it £, in such a way that at some value of this parameter, the condition of 
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1 , 

wx f*l 

w2                ■—-^^J 

V-2                         ^"\^\^ 

w'2 1 

III. 

Figure 1.1: Schematic representation of an ideal energy resonant collision. 
Shown are the atomic energy levels as they scale with a controllable param- 
eter £. Notice that \W[ — W\\ = \W^ — W2I at the indicated resonance position. 
The arrows show the transfer of population with the dipole matrix element la- 
beled. For clarity, the degenerate transition in which atom 1 goes to state 2' 
and atom 2 goes to state 1' is not shown. 

energy resonance is met and the cross section for the energy resonant collision reaches 

a maximum. This is shown schematically in Fig. 1.1. 

The Stark shift of the densely spaced energy levels in Rydberg atoms (see Sec. 5.2 

for a discussion about the Stark shift of energy levels in an atom) allows one to realize 

such an ideal experiment, as was done with Na atoms by Safinya, et al. in 1981 [9]. 

As an illustration of such a collision between two Rydberg atoms, let us consider the 

following process in Rb: 

n>P3/2 + np3/2 -> nsi/2 + (n + l)s1/2. (1.10) 
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atom 1 

atom 2 

Figure 1.2: Diagram showing the geometry of a simplified dipole-dipole collision. 

Each of these states is dipole coupled, and with a few simple assumptions, we can 

calculate some characteristics of their interaction. For more detailed calculations, the 

interested reader should consult Gallagher [10] or Veale[ll]. 

1.2.1    A Simple Classical Picture 

We start by assuming that we are tuned to the resonant electric field, and that the two 

atoms (which we call atom 1 and atom 2 for lack of a better name like Pete or Steve) 

are approaching each other with a relative velocity v and at an impact parameter b, 

as shown in Fig. 1.2. In order to treat the problem classically, we note that the dipole 

matrix elements, which in atomic units are written {np\r\ns} and {np\r\(n + l)s), 

may be viewed as oscillating classical dipoles, with the dipole moment equal to the 

matrix element, and the frequency of the oscillation corresponding to the transition 
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frequency[10]. Thus we may write (np\r\ns) = ßx and (np\r\(n + l)s) = /x2. If 

we view atom 2 as being fixed in space, the passage of atom 1, with its classically 

oscillating dipole, will induce the dipole transition in atom 2. Atom 1 produces a 

field Ei = /ii/r3 at the position of atom 2, where r is the separation between the 

atoms. This resonant field will drive the transition in atom 2 provided the interaction 

strength is sufficient. This interaction strength is 

«ft = ^ (LID 

We make the simplifying assumption that the field is given by 

Ei   = £,   r<^b (1.12) 

EI    =0,    r>^-6, (1.13) 

which has the same time integrated interaction strength as the dipole potential. The 

length scale defined by Eq. 1.12 implies that atom 2 only interacts with atom 1 for 

a time t = b/v. Atom 2 will undergo a transition if the time integrated interaction 

is near one, or Ei/j,2t tu 1 [10]. Substituting in known values gives us the transition 

condition 

bö    v       vbl 
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Equation 1.14 allows us to estimate the cross section, giving 

aR = nb2 ^b2 = ^. (1.15) 

While the collision time is given by 

t=-^- = Ä^- (L16) 

1.2.2    A Simple Quantum Mechanical Picture 

A slightly more refined model will allow us to calculate the form of the lineshape of 

the collisional resonance. The method is essentially as presented in Gallagher [10]. 

We again begin with the assumption of two atoms moving in a straight line with an 

impact parameter, b. Our goal is to calculate the probability of transition P(b) for a 

given impact parameter. Integration over all possible impact parameters will give us 

the cross section. We start the problem by constructing the direct product states for 

the initial and final states of the atoms involved in the interaction. We refer to these 

as molecular states, and write them as 

\A) = |np3/2)i|nP3/2>2, and    \ipf) = \ns1/2)i\(n + l)s1/2)2. (1.17) 



1.2 Energy Resonant Dipole-Dipole Interactions 15 

These states are the solutions to the time-independent Schrödinger equation with 

Hamiltonian Ho = Hi + H2, where Hi is the non-interacting Hamiltonian for atom i 

in an electric field. The interacting Hamiltonian then becomes H = HQ + Vdipoie, or 

n = H   1 Mi-/*2     3(Mi-r)(^2-r) (1.18) 

The last two terms are the vector forms of the dipole-dipole inter action [12]. 

We now seek to solve the time-dependent Schrödinger equation, H^ = id^/dt, 

which for the states we have defined in Eq. 1.17, gives us solutions of the form 

v = ci(tM) + cf(t)\i>f), (1.19) 

in which all of the time dependence is contained in the coefficients Ci{t) and C/(i). 

The time-dependent Schrödinger equation then becomes 

I  -   W Wi + Vu       vfi Ci 

cf V°'7 
= % 

y     Vif      Wf + Vff j 

a 

\Cf ) 

(1.20) 

where Wj represents the energy of the initial or final molecular state, and Vjk = 

(i]jj\V\ipk), the (time-dependent) matrix element of V connecting the two molecular 

states j and k. 

In general Eq. 1.20 is analytically insoluble, except for a few cases. One of these 
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is defined by the potential of Eqs. 1.12 and 1.13, in which case Vu = Vff = 0. For 

small interactions, our assumption of a straight line trajectory will hold, which allows 

us to write r = y/b2 + (vt)2. With the initial condition C;(0) = 1, C/(0) = 0, we find 

after a time t > b/v 

PW = |C/|2 = ^Bin2(^), (1.21) 

where 

n = yW-Wf)
2 + 4\Vif\

2, (1.22) 

is the Rabi frequency of the collision. The form of Eq. 1.21 implies that the resonant 

collisions have Lorentzian lineshapes with width Av £=: y/v3/ßiß2i as we determined 

in Eq. 1.16. 

With these basic properties of energy resonant dipole-dipole collisions in mind, 

let us now turn our attention to collisions which occur between atoms with very little 

kinetic energy. 

1.3    Ultra-cold collisions 

With the advent of laser cooling and trapping techniques, it has become possible to 

observe collsions between atoms in energy regimes previously unthinkable. Atoms 

with temperatures of & 100 fj,K are readily attainable using standard cooling and 

trapping techniques, such as those outlined in Sec. 2.2.   Collisions in which the ki- 
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netic energies of the colliding atoms are « 1 mK or less have been accepted within the 

general community as "ultracold collisions," and their study has led to some inter- 

esting discoveries [13]. Experiments have taken advantage of the long collision times 

to form bound molecular states via photoassociation[14, 15, 16]. Further excitation 

from these bound molecular states can lead to photoassociative ionization and sub- 

sequent ejection of the ion from the trap[17, 18]. Additional efforts have centered on 

use of optical fields to prevent or alter collisions which result in trap loss[19, 20, 21]. 

We shall attempt to very briefly highlight some of the properties of these collisions 

and contrast them to the energy resonant interactions we observe in the following 

chapters. 

Although all alkali atoms have been used in ultracold collision experiments, we 

use Rb atoms as an example here. We will consider ultracold collisions occuring 

principally between Rb atoms in the ground state, 5s, and the excited state, 5p, 

produced by the trapping lasers. These collisions are dipole-dipole in nature, and 

hence their interaction has the form of Eq. 1.11, however the relavent dipole moments 

are typically \i « //' ~ 3ea0[22]. Using the results of Eq. 1.16, we see this implies 

that the collisions are of duration tc ~ 30-50 ns, in excess of the 27 ns lifetime of the 

5p excited state. As such, collisions are frequently terminated by the spontaneous 

emission of a photon taking the hp atom back into the 5s ground state[23]. However, 

should the atoms continue to small internuclear separations, the spontaneous decay 

will be red-shifted due to the well in the 5s + 5p potential.  This process transfers 
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Figure 1.3: (a) Typical classical trajectory of an atomic collision showing the 
flux enhancement effect. The solid (dashed) line indicates the atoms trajectory 
while in the excited ( ground) state. The incoming atom approaches from the 
right. The atom pair is excited at Rt by the trap laser pulse and is accelerated 
by the attractive long-range potential. After spontaneous decay, it proceeds to 
Rp, where it may be excited again by a probe laser pulse. The atom pair is then 
accelerated quickly into short range, where either RE (Radiative Escape from 
the Trap) or AJ (fine-structure change) may occur, leading to trap loss, (b) 
Molecular potential diagram for the same process. Taken from Ref. [26]. 

enough potential energy into the kinetic energy of one of the trapped atoms to eject 

it from the trap. Collisions such as these are often monitored by detecting changes in 

the rate at which atoms are lost from the trap. More thorough theoretical treatments 

are given by Gallagher and Pritchard[24], and Julienne et al[25]. 

One such experiment by Gensemer and Gould uses a pump-probe arrangement 

to directly measure an enhancement in the population of atoms at close internuclear 

separations[26], as shown in Fig. 1.3. By initiating the collisions at large separations, 
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they are able to monitor the dependence of the trap loss signal on the delay between 

pulses. They have, in effect, designed an experiment which takes advantage of the 

difference between the attractive and repulsive potential energy curves of the dipole- 

dipole interaction. The strength of interaction is sufficient to accelerate the pair of 

atoms to a relatively high energy (~ 1 K)[23]. 

An intriguing point is raised by these experiments. The dipole moments of the 

interactions we shall discuss in the remainder of this work are stronger by factors 

between 100 to 1000, depending on the system discussed. As such, there are two 

key differences between the cold collisions discussed above and those we shall discuss. 

First, the effective range of the interaction scales as the product of the dipole moments; 

in typical ultracold collisions these are ~ 100 nm, whereas in our experiments these 

numbers are more typically ~ 10 /zm. This can exceed the average internuclear 

separation, making the role of multi-atom interactions much more important, as we 

shall see in Chap 3. Second, the forces involved in the collisions also scale as the 

product of the dipole moments; the typical ultracold collision experiment can produce 

changes in the kinetic energy of the colliding atoms of ~ 1 K; should our experiments 

result in similar impact parameters, the interactions we study could produce changes 

in excess of ~ 100 K. 
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1.4    Summary 

Having explored some of the more interesting general properties of Rydberg atoms, 

the characteristics of energy resonant dipole-dipole interactions between atoms, and 

the unusual traits of ultracold collisions, we are now ready to discuss the experiments 

which make up the remainder of this work. We start this discussion by outlining 

how the experiments were performed, including a look at how we produced the frozen 

Rydberg gas. Next we discuss a pair of experiments which highlight the multi-atom 

nature of the dipole-dipole interactions in our frozen Rydberg gas. We then discuss an 

experiment which takes advantage of some of the characteristics of these interactions 

to measure fine-structure splittings in Rydberg states of Rb. Finally, we end with a 

look toward the future, examining potential follow-on experiments to further elucidate 

the nature of these dipole-dipole interactions. 
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Chapter 2 

Experimental Apparatus 

2.1    Outline 

In this chapter we shall describe the experimental apparatus used to perform the 

experiments described in the following chapters. We begin with a section discussing 

the magneto-optical trap (or MOT) used. In this section, we shall describe both 

the theory behind laser cooling and trapping and its application to our apparatus. 

Finally, we outline the calibration of the monitoring apparatus used to characterize 

the trapped atoms. 

We then discuss the preparation and measurement of the Rydberg atoms produced 

from the trapped atoms. We briefly describe the dye lasers used to excite the Rb 

atoms into the required Rydberg states. This section also includes a description of 

the generation of the electric fields used both to tune the atomic energy levels and to 
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measure the results of the interactions studied. We shall end this section by describing 

the detection and measurement of the Rydberg atoms. 

2.2    Magneto-optical trap 

The idea that one could use lasers to slow or cool atoms was independantly sug- 

gested by Theodore Hänsch and Arthur Schawlow[27] and Hans Dehmelt and David 

Wineland[28] in 1975. As early as 1978, laser cooling of ions had been reported 

by several groups[29, 30]. By 1981, Phillips, et. al.[31] had successfully cooled a 

sodium beam in one dimension using resonant laser pressure. Chu, et. al.[32] demon- 

strated the three-dimensional cooling and confinement of neutral atoms via reso- 

nant light pressure. Shortly thereafter, in 1987, the first magneto-optical trap was 

demonstrated [33] in which near-resonant light was used to provide a linear restoring 

confinement force by exploiting the magnetic structure of the atoms. Rapid advance- 

ment has followed these discoveries, and led to the awarding of the 1997 Nobel Prize 

jointly to William Phillips, Steven Chu, and Claude Cohen-Tannoudji for their pio- 

neering work in the field. Several good review articles [34, 35, 36] and special journal 

issues[37, 38] have been devoted to laser cooling and trapping of neutral atoms, and 

will point the reader towards other references. 
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2.2.1    Theory of Operation 

Laser Cooling of Atoms 

Laser cooling of neutral atoms results from the conservation of momentum between 

the atoms and the photons of a laser beam. The simplest type of cooling, "Doppler 

cooling" can be described in terms of a two-level atomic system, having simply a 

ground state, \g), and an excited state, |e). While in reality there exists no such 

system, it may be approximated using dipole selection rules for transitions between 

states of angular momentum J and J + 1 and given the absorption of circularly 

polarized light. Then atoms in the \g, rrij — ± J) sublevel can only be excited to the 

|e, rrij = ±(J +1)) sublevel, which can then only decay to the \g, rrij — ±J) sublevel. 

The absorption of a photon from the laser field will impart a momentum KkL to the 

atom, where kj, is the wave vector of the photons in the laser field. The excited atom 

can return to the ground state through either stimulated or spontaneous emission. 

Should the atom emit a photon stimulated by the laser field, the emitted photon 

will rejoin the laser field in the same mode and the atom will lose tiki momentum, 

resulting in no net change in the atom. However, the spontaneous emission of a photon 

of momentum fiks is an isotropic process, so on average, the atom will experience no 

net change in momentum from the emission of a spontaneous photon. Thus the net 

process of absorption of a photon from the laser field and spontaneous decay will, on 

average, result in a change in momentum of Ap = KkL. For a 85Rb atom the resulting 
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change in velocity is 0.6 cm/s. The average force exerted by the laser beam depends 

on the rate of spontaneous decay, which is given by the product of the probability of 

being in the excited state, ge, and the decay rate of the upper state, 7e (which is the 

inverse of the lifetime of the state, re). For steady-state processes, ge = 1/2, and the 

maximum possible acceleration of the atom has magnitude 

adoppur = ^^ = 1.1 x 105m/s2. (2.1) 

The force we have described with our simplified picture exists only when the laser is 

resonant with the Doppler-shifted atomic transition. For cold atoms and symetrically 

overlapping lasers detuned slightly to the red of the atomic transition, the force 

will provide viscous dampening of the atomic motion, forming what is known as an 

optical molasses. However, the process of spontaneous emission will cause the atoms 

to diffuse out of the overlap region. The temperature limit for this cooling process, 

TD, or Doppler temperature, is determined by the balance between the cooling force 

and the momentum diffusion of the atoms, and can be estimated from the uncertainty 

in energy of the spontaneously emitted photon, hqe. In fact this limit is given by[39] 

kBTD = -hje, (2.2) 

which is about 141 fiK for Rb atoms. 
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It was quickly realized that atoms in an optical molasses were reaching tempera- 

tures far below this Doppler limit[40]. In fact, molasses temperature were measered 

at several times the recoil limit, TR, which is defined as the temperature correspond- 

ing to the energy transfer between the laser photon and the cooled atom. For Rb, 

TR — 181 nK. The discrepancy was explained by Claude Cohen-Tannoudji and Jean 

Dalibard as resulting from what is termed "Sisyphus cooling" or polarization gradient 

cooling[41]. The mechanism is a complicated result of spatial variations in the polar- 

ization gradients of the laser field, the changes in the energy levels of the atom due 

to the presence of the photons (light shifts), and the optical pumping rates between 

the two levels involved in the cooling. We now turn our attention to how we can 

constrain the motion of laser-cooled atoms to a specific region of space, forming an 

atomic trap. 

Magneto-Optic Trapping 

The first demonstrated neutral atom trap utilized a quadrupolar magnetic field to 

provide a restoring force for the atoms in the trap[42]. An atom with a magnetic 

dipole moment ß will experience a force when placed in a magnetic field gradient. 

When the dipole moment of the atom is aligned with the field, the atom is attracted 

to the region of minimal field, while atoms anti-aligned with the field are repelled 

from the field strength minimum. A quadrupolar magnetic field provides a region of 

local field strength minimum and a gradient that is nearly linear in all directions. 



2.2 Magneto-optical trap 26 

The first magneto-optical trap utilized the viscous cooling force of near-resonant 

laser light and the spatially varying magnetic field of the magnetic dipole trap to 

provide a means for simultaneously confining and damping atomic motion. The 

quadrupolar field produces Zeeman shifts in the atomic energy levels which vary 

linearly with the displacement of the atom from the field minimum. When com- 

bined with appropriately polarized near-resonant lasers, these energy shifts provide a 

restoring force for confinement of the atoms. 

A simple example demonstrates this principle: consider that the ground state of 

an atom, \g), has angular momentum J = 0, and \rrij\ = 0, while the excited state, 

|e), has J = 1 and \rrij\ = 0, ±1. The quadrupolar magnetic field will vary linearly 

along the z-axis as B(z) = B0z. The Zeeman effect will cause the upper state energy 

levels to separate as shown in Fig. 2.1. These atoms are placed in a region of space 

which has a laser beam of polarization o+ travelling in the +z direction, and one 

of polarization <j~ travelling the opposite direction. We shall use the polarization 

sign convention used in the laser cooling and trapping literature, in which light of 

polarization <j+ induces a transition from the \rrij\ =0 ground state to the \rrij = +1| 

state, and o~ induces a transition to the \rrtj = —1| state 

The oppositely polarized lasers will result in a spatial dependance of the detunings 

to the upper state sublevels when the cooling lasers are detuned from the zero-field 

resonance. An atom is more likely to absorb light with a smaller detuning from 

resonance, thus light from one of the lasers will be absorbed at a higher rate, resulting 
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Energy 

Figure 2.1: Schematic diagram depicting the spatially confining force felt by an 
atom in a magneto-optical trap. Consider the atom shown to have two levels, 
a J — 0 ground state and a J = 1 excited state, having two \m,j\ sublevels and 
moving near the zero of a quadropolar magnetic field. There are two counter- 
propagating laser beams of frequency u, with opposing circular polarizations. 
The laser incident from the left has polarization a+, defined to promote transi- 
tion to the \rrij = +1| state, while the laser incident from the right has polar- 
ization a~, which promotes transition to the \rrij = —1| state. The asymmetry 
in detunings for the two transitions results in an imbalanced optical force which 
varies with the position of the atom. For example, at z = za, the atom will 
experience a larger scattering rate for the a~ transition and will be accelerated 
toward z = 0. The figure is taken from Bradley and Hulet[36]. 

in a spatially varying restoring force which effectively traps the atom along that axis. 

Generalizing this idea to three dimensions results in a Magneto-Optical trap, or MOT. 

To build a 85Rb MOT, one must take into acount that it is not strictly a two level 

atom. 85Rb has 37 protons and electrons with an atomic mass of 84.911 amu. The 

first 36 electrons occupy closed subshells. It therefore occupies the ground 5s state. 

It has a total angular momentum of J = L + S = 1/2, while the nucleus has spin 
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Figure 2.2: Hyperfine levels of Rb with the trapping and repump transitions 
marked. The spacing between the 5si/2 and 5p3/2 levels is not to scale, and the 
splitting between the 5p3/2 sublevels has been magnified by ten. The spacings 
between the 5si/2 sublevels is 3036 MHz, while the spacing between the 5y>3/2 
sublevels are, in order, 29, 63, and 121 MHz. 

/ = 5/2. The total spin, F is formed by coupling J to i". The ground 5si/2 state 

can have F = 2 or 3, while the excited 5p3/2 state can have F — 1, 2, 3, or 4. The 

lasers used for cooling and trapping the atoms are tuned ~5 MHz to the red of the 

Rb F = 3 —> 4 transition between the 5si/2 ground level and the 5p3/2 level. This 

transition has a wavelength of 780.0 nm. However, the 5p3/2, F = 3 level is 120 MHz 

from the F = 4 level, resulting in some (0.1 %) population transfer to the F = 3 level. 

Spontaneous decay out of this sublevel will result in the atom being in the 5si/2, F 

= 2 sublevel, which is 3 GHz from the F = 3 sublevel. Thus all atoms in the F = 

2 sublevel of the 5si/2 state will have no interaction with the cooling and trapping 

lasers, and thus will escape from confinement. In order to compensate for this loss 

mechanism, one must also introduce a "repumping" laser tuned to the Rb 5sy2, F 
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= 2 —»■ 5p3/2, F = 3 transition, as shown in Fig. 2.2. This laser is aligned to overlap 

the region defined by the intersection of the six trapping lasers. 

2.2.2    Description of MOT apparatus 

Vacuum System 

In our MOT, the Rb atoms were introduced into a room temperature stainless steel 

vacuum chamber held at a background pressure of 10-8 torr by heating a sidearm 

containing « 1 g of Rb to approximately 45°C. Heating the sidearm was necessary 

in order to increase the fill rate of the trap, thus preventing excessive depletion from 

the field ionization during the course of an experiment. The vacuum chamber was 

manufactured by Nor-Cal Products, Inc., with ultra-high vacuum (UHV) compati- 

ble components [43]. All of the flanges use conflat-style connections to maintain the 

necessary pressure. There are eight windows providing optical access through 4 axes: 

x,y,z, and (x + y). The electrical connections are made via two Varian electrical 

feedthroughs located on the (x — y) axis. 

In order to minimize collisional losses from the MOT, the background pressure 

must be kept as low as possible. It is therefore impractical to use a mechanical rough- 

ing pump and diffusion pump combination, as these would result in oil backstreaming 

into the vacuum chamber. The most logical choice for vacuum pump is then a sputter- 

ion pump, which has no moving parts and is relatively inexpensive.   A sputter-ion 
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pump operates by placing a large potential difference between stainless steel anodes 

and two cathodes, one of titanium and one tantalum. Atoms or molecules which 

travel between the anode and cathode are ionized and imbedded into the cathode. 

Pumping speed and overall pump lifetime are then determined by the total surface 

area of the two cathodes. Sputter-ion pumps are extremely efficient at pumping light 

atoms and inert gasses, and have the minor disadvantage of pumping Rb. One must 

take care not to load the pump with the output of the Rb source continuously, as this 

will severely degrade the lifetime of the pump. The vacuum chamber used in these 

experiments uses a Perkin-Elmer Differential Ion Pump, with a nominal pumping 

speed of 20 liters/sec. The ion pump is powered by a Perkin-Elmer 5 kV ion pump 

power supply. 

Sputter-ion pumps are unable to operate at pressures above about 10 mTorr, 

so a roughing system must be used to achieve this pressure. In order to keep the 

vacuum system clean, a battery of molecular-sieve (sorption) pumps is used for rough 

pumping. These pumps are filled with pellets of artificial zeolite, a material with a 

large surface area to mass ratio (« 1000 m2/g with a typical pump holding 5-10 g). 

Cooling the zeolite with liquid nitrogen causes most gases to adhere to the zeolite 

and be removed from the chamber volume. Sorption pumps do not pump H2, He, 

or Ne well, but using a battery of three pumps consecutively can bring the chamber 

pressure down to below 1 mTorr, which is sufficient for starting the sputter-ion pump. 

The sorption pump battery is attatched to the chamber with an all-metal UHV 
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valve. After the roughing operation is completed, the valve may be closed and the 

sorption pump battery removed for more convenient access to the MOT chamber. 

Cooling and Trapping Lasers 

As stated in Sec. 2.2.1, lasers operating at 780.0 nm are needed to cool and trap Rb 

atoms. There are two potential sources of light at that wavelength, a continuous-wave 

(cw) Ti:Sapphire laser or AlGaAs diode lasers. Due to their extremely low cost and 

relative ease of use, we have chosen to use diode lasers to provide the trapping laser 

fields. The lasers have powers from 25 to 50 mW and are available commercially from 

Sharp and Spectra Diode Labs (SDL), with natural linewidths of about 30 MHz. 

The wavelength of the laser output of a given laser diode can be tuned by adjusting 

the temperature of the diode and the current density. Adjusting the temperature of 

the laser has two effects: the gain curve of the laser is shifted by 0.25 nm/K, and 

the cavity length changes by 0.06 nm/K [44]. The difference in these tuning rates 

causes discontinuous changes in the cavity modes which are supported by the diode, 

or "mode hops". 

The trapping scheme outlined in Sec. 2.2.1 requires lasers with a linewidth less 

than the 5.89 MHz natural linewidth of the atomic resonance. This can be done by 

placing the diode laser in an external cavity, thus reducing the ratio of the spontaneous 

emission rate to the number of photons in a given cavity mode, and therefore the 

linewidth of the laser. We use an external cavity design from Carl Wieman's group [45], 
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Figure 2.3: Top view of laser diode in external cavity from MacAdam, et. al.[45\. 
The laser diode is denoted LD, with collimating lens C. The fine screw S ad- 
justs the relative positions of the diode and the lens. The grating is mounted 
with blaze in the direction indicated by the arrow on a mirror mount (MM). A 
piezo-electric disk (P) is sandwiched behind the horizontal adjustment screw to 
provide fine electronic scanning of the output wavelength. The entire apparatus 
is placed in a box and covered to protect it from air currents. The window (W) 
is antireflection coated at 780 nm. A thermistor (T) monitors the temperature 
of the diode and assembly. 

as shown in Fig. 2.3, which utilizes a diffraction grating as one surface of the cavity, 

and the high-reflectivity back surface of the diode as the second. The front face of the 

diode has an antireflection coating on the front surface, which permits the extinction 

of the internal "free running" mode of the diode by the higher Q of the external 

cavity. Further wavelength selectivity is achieved by using a diffraction grating as 

the second surface of the cavity and feeding back the Littrow order of the diffracted 
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light. The resulting linewidths are typically well below 1 MHz; Anderson measured 

a linewidth of less than 100 kHz using these lasers [43]. 

The frequency of the trapping and repump lasers is controlled by frequency locking 

to the sideband of the Rb F = 3 —► 4 and Rb F = 2 —> 3 transitions using a saturated 

absorption setup [46] and an active feedback loop [45]. A portion of the output of a 

master laser is used for frequency locking to each of the transitions. The remaining 

light is used to injection lock slave lasers. For the trapping transition, the master laser 

is a Sharp LT024MD0 25 mW diode laser placed in an external cavity, while two SDL 

5401-G1 50 mW laser diodes cool the atomic vapor. The trapping beams typically 

have 10 mW of power and are approximately 9 mm in diameter. The repump laser is 

also an SDL 50 mW diode laser, and is injection locked to a frequency-stabilized Sharp 

25 mW master diode laser in the external cavity configuration. The SDL repump 

slave beam typically has 35 mW of power and is typically 23 mm in diameter. The 

geometry of the components used for generation of the trapping and repump laser 

beams are shown in Fig. 2.4 

Magnetic Field Production 

The quadropolar magnetic field required to trap the Rb atoms was produced by a pair 

of magnet coils placed in the anti-Helmholtz configuration. In this configuration a 

co-axial pair of coils separated by distance 2A and with radius R have equal currents 

/ running in opposing directions. The axial and radial components of the magnetic 
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Figure 2.4: Depiction of the geometry of the lasers used for cooling and trapping. 
Included are the saturated absorption vapor cells, the injection-locking setup, 
and the Fabry-Perot interferometer used to monitor the laser output. 

field generated by such an arrangement are given by [47] 

Bz = bxz + b3 [zd + „3 , 3*p2 

+ (2.3) 

and 

*,"fc(f)+fc(: V + 3^V (2.4) 

where the coefficients are 

h = 
SßoIAR2 

(i?2 + A2)5/2' 
(2.5) 
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and 

5 (4A2 - 3R2) 

6 (R2 + A2) 
h = hx   ^/TV> ,   „0,2

7. (2.6) 

The coils used on the MOT have 12 turns (three coils of four turns) of 1/8 inch 

o.d. copper automotive tubing covered with shrink-wrap insulation held in place by 

an aluminum form. The turns have an effective radius of 10.16 cm. The coils are 

separated by 2A = 14 cm, and have 100 amperes of current running through them. 

Placing these values into Eqs. 2.3 and 2.5 indicate typical axial field gradients of 

11.5 G/cm, and equatorial field gradients of 6.75 G/cm. 

In order to provide adequate heat dissipation in the magnet coils, water from a 

closed-loop heat exchanger is circulated through the coils. Operating temperatures of 

the magnet coils range from 28°C in the winter to 40°C in the summertime. Failure 

to monitor the operating temperature can lead to the catastrophic melting of the 

insulation, which requires re-wrapping the magnet coils. 

Additional coils are placed on the chamber to null any stray magnetic fields and 

to provide fine control over the position of the trapped atoms in the vacuum chamber. 

These coils are positioned to provide fields along the z and (x — y) axes. They are 

made of ribbon cable and have about 150 and 1250 turns, typically carry currents of 

0.5 and 0.1 amperes, and typically produce fields of up to 0.75 and 2 G, respectively. 
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Monitoring the Trapped Atoms 

By imaging the radiation from the spontaneous decay of the trapped atoms onto a 

linear CCD array, we are able to measure the number of atoms in the 5p3/2 state 

in the trap. The system was calibrated by imaging the radiation from one of the 

frequency stabilized diode lasers onto the head of a pin, and measuring the power 

collected, as well as its spatial extent. The system has a calibration factor of 3587 

atoms/(V-//s) plus an additional factor of 6.61 for a filter placed in front of the CCD 

array to block the 480 nm pulsed laser light. Using this calibration factor, we infer 

that the trap has a typical radius of 750 fj,m, with a population ranging from 2 x 104 

to 6 x 106 atoms. The resulting densities range from 3 x 107 to 2 x 109 atoms/cc, 

respectively. 

2.3    Production and Detection of Rydberg Atoms 

As we do it, the production of Rydberg atoms requires two photons, and is greatly 

simplified by the presence of the trapping lasers. The Rb atoms are excited from 

the ground 5si/2 state to the 5^3/2 state via the trapping lasers. Although the 5p3/2 

state has a lifetime of 27 ns, the atoms in the trap are continuously absorbing and 

re-emitting photons to produce a steady-state population of atoms in the 5p3/2 state, 

generally equal to one-half the total trap population for our trap. Thus we can excite 

directly to the Rydberg states from the 5p3/2 state with a single additional photon, 
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Figure 2.5: Laser frequencies used to prepare the initial atomic states in the 
magneto-optical trap for study. The 780nm lasers are CW diode lasers, while 
the 480nm lasers are pulsed dye lasers. The arrival of the pulsed dye lasers 
signals the beginning of the interaction period in the absense of a static field 
tuning pulse. The states accessed are for the experiment described in Chapter 
3. 

as shown in Fig. 2.5. 

From the 5£>3/2 state, the atoms were excited to Rydberg states using pulsed dye 

lasers producing ~ 6 ns pulses of ~ 482 nm light at a 20 Hz repetition rate. The dye 

lasers were used to produce atoms in states with principal quantum numbers 21 < 

n < 50. These states are accessible from the 5p3/2 state with photons between 484 and 

480 nm. The ionization limit lies 20,875 cm-1 above the 5p3/2 state, corresponding 

to one 479 nm photon. Lasers of several different configurations were used for state 

preparation. If multiple initial states were required, the laser pulses were roughly 

overlapped in space and time using a polarizing beamsplitter.  The Rydberg lasers 
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were also focused onto the trap volume. The measured beam waist diameter at the 

focus is 129±20 /im for the geometry used in these experiments. The pulsed lasers 

typically transfer up to 10% of the 5p3/2 population into a given initial state. 

Efficient excitation of trapped atoms into Rydberg states is hampered by their low 

temperature. The finite lifetime of an excited atomic state contributes to the width 

of an optical transition. This width, Sun, is given in Rb by 

^-27^-27^(71*)"' (2J) 

where the parameters r0 and a are: 

f 
r0 (ns)    1.43    2.76    2.09    0.76 
a 2.94   3.02   2.85   2.95 

Table 2.1: Lifetime parameters for Rb using Eq 2.7[48]. 

For the 25<i state, 8u25d = 9.25 /xs. The width of the 5p3/2 state, which has a lifetime 

of 27 ns, is 5.9 MHz and also contributes to the width of the optical transitions. As 

such, the natural widths of the excitation processes we use are essentially given by 

the width of the 5.9 MHz width of the 5p3/2 state. 

At low pressures, the natural linewidth is broadened by the Doppler width of the 
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transition, which results in a Gaussian profile of width 

SuD = 7.16 x 1(T7 Hz • M/T7> (2-8) 
V M 

where v0 is the center frequency of the transition, T is the temperature of the 

gas in question, and M is the mass in atomic mass units[46]. At room temperature, 

Eq. 2.8 gives 8VD m 1 GHz, far in excess of the radiative widths. For Rb atoms at 

140 /iK, this gives SUD « 200 kHz for a 25d Rydberg state, which is smaller than 

the natural width of the transitions. Thus, the frequency of a dye laser exciting a 

Rydberg state in a MOT must be much more accurate than one used to excite a room 

temperature vapor in order for excitation to occur. The MOT Doppler width is far 

more narrow than the pulsed laser linewidths, and therefore mode structure of the 

laser will play an important role in the stability of the excitation signal. This problem 

prompted the development of the short-cavity dye laser discussed in Sec. 2.3.1. 

2.3.1    Dye Lasers 

Three separate configurations of dye lasers were used in the experiments described 

in the following chapters. These are the Hänsch[49], the Littman[50], and the short- 

cavity (single-mode) Littman[51]. The lasers differed primarily in their geometric 

configurations, power output, and linewidths. However, each of the lasers used LD- 

473 laser dye, mixed with methanol at a concentration between 400 and 600 mg/L. 
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Figure 2.6: Diagram of a Hänsch cavity laser, used in several of the experiments 
described. The pump laser beam, in this case 354.7 nm light from a frequency- 
tripled Nd:YAG laser, passes through a cylindrical lens and is focused just inside 
the dye cell. Light emitted from the relaxing dye molecules forms the gain 
medium between the diffraction grating on the right and the partially reflecting 
mirror on the left. The telescope expands the output from the dye cell which 
serves to illuminate more lines on the grating and reduce the intensity. The 
optional etalon may be inserted once the cavity is lasing, and serves to reduce 
the linewidth of the laser. 

This provided a reasonable excitation efficiency to the desired Rydberg states for each 

configuration used. Additionally, all lasers utilized harmonics of a Continuum YG661 

Nd3+ doped Y3Al50i2 (Nd:YAG) laser for pumping. The Nd:YAG laser produces 600 

mJ/pulse of 1064 nm light at a repetition rate of 20 Hz. Each ~ 5 ns pulse is sent 

through a pair of KDP harmonic generating crystals to produce light at 532 nm (130 

mJ/pulse) and 354.67 nm (60 mJ/pulse). 

Hänsch Cavity Lasers 

The Hänsch cavity configuration utilizes a cylindrical lens to focus the pump beam 

into a narrow line which excites molecules flowing through a 10 mm long dye cell, as 
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shown in Fig. 2.6. Light radiated by the dye molecules travels outward transversely 

to the pump beam. The laser cavity is formed by a partially reflecting mirror (usually 

a 3° wedge window) and a diffraction grating. The total cavity length is generally 

quite long, about 30 cm, providing for very few (4-6) light passes during the time the 

dye is active. This requires that the dye provide high gain for the desired wavelength. 

A telescope is placed between the dye cell and the diffraction grating in order to 

illuminate more lines on the grating. Additionally, the telescope collimates the light 

incident on the grating and reduces its intensity. 

The diffraction grating is mounted such that the Littrow order is reflected back 

through the telescope into the laser cavity. In such a configuration, linewidths of 

approximately 1 cm-1 are easily achieved, with powers reaching 0.5 mJ/pulse. To 

achieve a narrower linewidth, a Fabry-Perot etalon is placed in the laser cavity 

between the telescope and the diffraction grating. This substantially reduces the 

linewidth, to approximately 3 GHz, or 0.1 cm-1. Although the total output power 

is reduced, the power available for excitation of an atom generally increases with the 

etalon in place as less of the light is outside the linewidth of the driven transition. As 

a result, shot-to-shot variation in the signal is substantially reduced with an etalon 

in place. In general, Hänsch lasers tend to work best for the lower Rydberg states 

(lower in energy than the 27s state), where their high power provides good excitation, 

and their relatively poor linewidth is not too severe a penalty. 
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Figure 2.7: Schematic diagram of a Littman cavity laser. The pump beam again 
is focused just inside the dye cell. Light emitted from the dye molecules forms 
the gain medium between the tuning end mirror on the right and the tuning 
mirror on the left. In some cases, a second diffraction grating is used as the 
tuning element, replacing the tuning mirror. 

Littman Cavity Lasers 

The Littman cavity configuration also utilizes a cyclindrical lens to illuminate a line of 

dye molecules flowing in a 10 mm long dye cell. Light radiated by the dye molecules 

travels outward towards a highly reflective end mirror which forms one end of the 

laser cavity. Light travelling the opposite direction strikes a diffraction grating at 

grazing incidence (60 PS 89°). Light diffracts from the grating and continues towards 

a tuning mirror placed on a high-precision rotating mount, which is used to feed back 

light of the appropriate wavelength, as shown in Fig. 2.7. Light on the return trip 

is further dispersed by the grating, which enhances the separation between different 

wavelengths in the cavity. For a given angle of incidence, 0i; and diffraction angle, 
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0<2, the wavelength of the laser light is given by 

A = -[sm(0i) + sin(0d)], (2.9) 
m 

where d is the spacing of the grating, and m is the order of the diffracted light. 

Because the light oscillating in the laser cavity strikes the tuning grating twice in 

a round trip, the grating chosen for use in the cavity must have reasonable single pass 

efficiency, as the net efficiency of the cavity will depend on the square of the grating 

efficiency. All Littman lasers used in these experiments used 3600 line/mm gratings 

manufactured by American Holographies specifically for use in grazing incidence dye 

lasers. At the wavelengths used, these gratings have single pass efficiencies between 

5 and 10%, depending on the angle of incidence, and provided the light is polarized 

perpendicular to the grooves. The laser output is the zero order reflection from the 

grating. 

The Littman cavity configuration produces spectrally narrow output, generally 

having linewidths less than 3 GHz, and of reasonable power (typically 150 //J/pulse). 

However, their linewidth can be improved using a modification shown in Fig. 2.7. In 

this configuration, the tuning mirror is replaced with a second diffraction grating. 

This tuning grating is mounted such that the Littrow order is reflected back into 

the cavity. Because gratings can have efficiencies approaching 60% for visible light 

reflected into the Littrow order, there is not a significant loss in cavity efficiency, 
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but the linewidth of the output can be substantially narrowed with this additional 

frequency-dispersive element placed in the cavity. Care must be taken not to insert 

the grating into the cavity backwards, so that its dispersion cancels that of the first 

grating. Further, using a piezo-electric transducer (PZT) controlled optical mount to 

position the tuning grating allows extremely precise tuning of the laser to the required 

state. This feature is especially useful when exciting states of high principal quantum 

number or when exciting states in electric fields, where the spacings between adjacent 

states can be quite small. 

The output of the Littman or Hänsch laser may be amplified using a single-pass, 

transversely-pumped dye amplifier. Amplified lasers typically have a factor of 10 or 

more power than their non-amplified oscillator output, without significant penalty to 

the laser linewidth. 

Short-Cavity Design Littman Lasers 

The short-cavity design grazing incidence laser was the product of the desire to have 

a continuously tunable pulsed dye laser. In order to continuously tune a laser cavity 

without mode hops, one must change the physical length, L, of the cavity, such that 

the relation A = 2 x L/N, is always true (here N represents the mode number of 

the cavity). Because the Hänsch and Littman cavity lasers described above have a 

very ill-defined optical axis, it is difficult to determine the actual cavity length, and 

as such, these lasers tend to run in multiple longitudinal modes.   There were two 
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Figure 2.8: Arrangement of the pivot point of a dye laser which allows for 
continous mechanical tuning of the laser in a single mode. By rotating the 
tuning mirror around the axis denned by the intersection of the planes of the 
end mirror and the grating surface, the cavity changes such that the output 
wavelength denned by Eq. 2.9 and the cavity length change in the same manner. 
This is easily seen as the cavity length, L\ + L?, = L sin a + L sin(a + ß), has the 
same functional form as Eq. 2.9. 

problems that therefore had to be overcome to produce a single-mode pulsed dye 

laser: continuous scanning of the cavity length and producing a well-defined optical 

axis. The first problem was solved by Liu and Littman, when they discovered that by 

pivoting the tuning mirror of a Littman configuration laser about a certain axis the 

cavity length will change continously as one changes the angle of the tuning mirror. 

This axis is defined by the intersection of the surface planes of the end mirror, the 

tuning mirror, and the diffraction grating[52], This is shown in Fig. 2.8. Should a 

second grating be used instead of the tuning mirror, this relationship does not quite 

hold. 

To better define an optical axis, a longitudinal pump configuration was adopted. 

By tightly focusing the pump light onto the dye cell, an effective pinhole is introduced 
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into the laser cavity, providing a well-defined axis. Finally, the overall cavity length 

was dramatically shortened. This separates the cavity modes further in frequency and 

allowed light within the cavity to complete several round trips within the duration of 

the pump pulse, which was necessary as the smaller cavity and longitudinal pumping 

resulted in much lower single-pass gains than the transversely-pumped designs[51]. 

A convenient side-effect of the lower single-pass gain of the longitudinally pumped 

laser is the elimination of the majority of the amplified stimulated emission (ASE) 

present in the transversely-pumped lasers. Linewidths of these lasers can approach 

the transform limit of the pump pulse. General information on lasers of this design 

may be found in Littmann[53], Cor less, et al.[54], and references therein. 

In order to achieve more stable excitation of the trapped atoms into Rydberg 

states, a short-cavity Littman dye laser (SCDL) was constructed. The laser design 

is shown in Fig. 2.9, and is adopted from [51]. A detailed equipment list follows in 

Table 2.2. 

The design attempts to minimize misplacement of the pivot point by centering 

the rotation stage beneath the platform on which the remaining optics are mounted. 

By fixing the pivot point to a marked position on the baseplate, accurate visual 

alignment can be made. Small adjustments to the position of the end mirror are 

made with a PZT, which serves to fine tune the cavity length. The minimal ASE of 

the longitudinal pump configuration makes it necessary to insert a microscope slide 

in the cavity between the dye cell and the diffraction grating during initial alignment. 
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Assembly Company Part Number Description 

Rotation Oriel 13021 Large precision rotator 
Stage 

Oriel 13085 2.75" Rotator top adaptor, En- 
glish thread 

End Mirror CVI TLM1-500-0- 0.5"      High     power     mirror, 
0537 Kenter = 500 nm 

Gratings American 
Holographic 

10x25x10 Al coated, 3600 1/mm 

American 10x25x10 Al coated, 2400 1/mm 
Holographic 

Focusing Lens Newport SPX-031 500mm PCX quartz lens 
Dye Cell NSG     Preci- 

sion Cells 
T-506 2mm path length micro dye cell 

Opto- Newport MM-100 (x2) l"xl" optic mount 
mechanics 

Newport MM-200 2"x2" optic mount 
Newport BP-1 (x2) 1" base plate 
Newport BP-2 (x2) 2" base plate 
Thorlabs AE0505D08 Dual Stack piezo-electric trans- 

ducer 
New Focus 9783 Micro mirror mount 

Dye Pump Cole-Parmer H-07144-05 Continuous-duty Motor and 
controller system 

Micropump H-07002-25 0.017 ml/rev pressure loaded 
(D) pump head 

Table 2.2: Main components used in the assembly of the short-cavity dye laser used 
in the experiments. 
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Figure 2.9: Schematic drawing of the short-cavity dye laser used in these exper- 
iments. The pump beam is directed down into the cavity at a slight angle, and 
is focused in front of the dye cell as shown. The faces of the dye cell are tilted 
with respect to the other surfaces of the cavity to prevent etaloning. For intial 
alignment, a microscope slide is placed between the dye cell and Gl. 

By aligning the slide and the end mirror to form a resonator cavity, a beam is created 

with which one may align the remaining optics. When it is apparent that the main 

cavity is lasing (in addition to the resonator), the microscope slide is removed. Small 

adjustments in the tilt of the tuning grating will then bring the cavity into lasing, 

compensating for the slight change in the optical axis caused by removing the slide. 

Further optimization of the cavity generally includes adjustments of the incidence 

angle of the first grating and slight displacements of the pump beam.  Care should 
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be taken not to insert the slide into the pump beam, as this will make alignment on 

removal of the slide much more difficult due to displacement of the pump beam. 

There are several details requiring special attention. First, the pump beam should 

range from 500 to 650 //J per pulse. Pump powers in excess of these numbers will 

quickly burn holes in the dye cell surface and can damage the gratings via reflections. 

Second, it is a good idea to focus the pump beam in front of the dye cell, to further 

avoid damaging the cell. For a nominal 600 /iJ/pulse pump beam, the focus should 

be located about 1.5 cm in front of the cell. Third, it is important to polarize the 

pump beam in the plane of the table (orthogonal to the grooves of the grating, or 

7r-polarization), as the efficiency of the grating is much better for 7r-polariztion than 

for cr-polariztion. Fourth, care should be taken to ensure a good transverse beam 

profile. The pump beam profile determines the transverse mode of the dye laser, and 

also forms the virtual pinhole that accurately defines the optical axis of the cavity. 

As a result, the pump beam should not be steered into the cavity using a microscope 

slide, as this will create a second pinhole in the dye cavity, which can damage the 

grating should this second beam focus onto its surface. Finally, it is also easier to 

direct the pump beam into the dye cell with a slight descent. This makes directing 

the output beam easier, as the two beams can often come out such that they are 

very close together. Directing the pump beam down into the dye cell increases the 

separation while not affecting the beam quality. 

The output of the SCDL will generally exhibit large fluctuations in intensity, 
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Figure 2.10: Schematic of atomic trap, including trapping lasers. Also shown 
are the field plates, used for selective field ionization of final state atoms, and 
the pulsed dye lasers used for initial state preparation. 

which are minimized by sending the output through two transversely-pumped dye 

amplifiers, the second of which is saturated. The resulting beam exhibits a time- 

averaged linewidth capable of completely separating the \m,j = 1/2| and \rrij = 3/2| 

levels of the S0ps/2 state at an electric field of 20 V/cm; the states are separated by 

about 250 MHz, implying a linewidth of less than 500 MHz. 

2.3.2    Electric Field Generation 

As shown in Fig. 2.10, the trap volume was located approximately midway between a 

pair of vertical copper plates spaced 1.909 cm apart. These plates provide a means for 

introducing non-zero electric fields to the atoms in the trapped volume. This is done 
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in several ways. The first is the application of a slowly rising high voltage ionizing field 

pulse, typically rising between zero and 500 to 2000 V/cm in about 1 ßs. Secondly, a 

tuning field may be applied to Stark shift the energies of the various Rydberg states 

into and out of resonance. This may be done by pulsing small voltages onto the 

plates (typically less than 50 V/cm) with fast risetimes (fa 10 ns), or by varying the 

potential difference between the plates with a static voltage. 

The ionizing pulse and the static field voltages are applied to the field plate farthest 

from the detector (see Sec. 2.3.3). The pulse is produced by charging a 1.0 fx¥ 

capacitor with an HP 2612B DC power supply. A trigger pulse triggers a silicon- 

controlled rectifier (SCR), which dumps the stored charge through the primary coil 

of an ILC model T228 transformer. The pulse is amplified by a factor of about 70. 

The high voltage side of the secondary coil is attached to the field plate farthest from 

the detector, while the low voltage side is attached to a DC power supply (Kepco 

APH500M) used to provide a static field offset. The signal is sent into the chamber 

through one pin of a eight pin Varian UHV high-voltage feedthrough. 

Fast-risetime tuning field voltages are sent to the field plate closest to the detector. 

Because the voltages applied to this plate do not pass through the transformer, they 

are capable of carrying much higher frequency components, and therefore may have 

extremely fast risetimes. As such, application of these pulses is used to accurately 

control interaction times for the atoms in the trap volume. 

The field plates each have two 0.375 inch holes drilled through them at a 45° 
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angle to allow the trapping beams to pass. The holes are covered with a fine copper 

mesh composed of twenty 0.00127 inch copper wires per inch. This is intended to 

improve field homogeneity between the plates while allowing ample clearance for the 

trapping lasers. In the center of the plate nearest the detector there is an array 

of 0.020 inch diameter holes providing an exit for the ions produced by the field 

ionization pulse. 

2.3.3    Charged particle detection 

Due to the low binding energies of Rydberg states of atoms, modest electric fields 

are capable of stripping the valence electron from the atom. The required ionization 

voltage is determined by the state of the atom, and its magnitude is proportional to 

l/16n4. The difference in the threshold ionization voltage between adjacent states is 

often sufficient to differentiate between these atomic states. Application of a ramped 

pulse will ionize the highest states earliest in time. By placing a charged particle 

detector in the direction of travel of either the electrons or ions produced, we can 

measure the time dependence of the signal to determine which states were present 

in the trapped volume. As mentioned in Sec. 2.3.2, we detect the ions produced 

by the pulse. We do this with a dual microchannel plate (MCP) detector placed to 

the left of the field plates. After the ions pass through the small holes in the field 

plates they strike the front MCP, across which is a potential difference of between 600 

and 1000 V. Photons or charged particles incident on the front face of the MCP will 
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induce a rush of electrons down the channels. An avalanche of electrons with a voltage 

dependant gain of between 600 and 6000 will then impinge on the second plate, which 

repeats the process. The electrons from the second plate strike a collector which then 

sends the current through a Varian shielded HV feedthrough before being amplified 

by a Hewlett-Packard 462A or MiniCircuits ZDL-500 amplifier. The output of this 

amplifier is then monitored on a Tektronix 2440 oscilloscope. A SRS Model SR250 

gated integrator measures the signal collected at a specific time corresponding to a 

given Rydberg state and sends the result to a microcomputer. The microcomputer 

averages the signal for a given set of conditions over many shots of the laser, changes 

the conditions such as tuning voltage or resonance interaction time, and stores the 

results for later retrieval and analysis. 
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Chapter 3 

Quasistatic Resonant 
Dipole-Dipole Interactions 

3.1    Introduction 

Resonant energy transfer collisions, in which the total internal energy of the colliding 

partners remains constant, have long been studied in Rydberg atoms [4, 10]. Two 

reasons for this are the particularly large dipole moments found in Rydberg atoms, 

resulting in correspondingly large cross sections, and the rich Stark structure found 

in the atoms, which allow one to tune energy levels into and out of resonance. The 

relative velocity of the colliding partners determines a characteristic collision time, 

and correspondingly, the width of these resonances. One would expect, therefore, 

that the width of the resonance would scale inversely with the relative velocity of the 

colliding atoms [11]. In fact, a tr3/2 scaling is expected. Previous experiments using 

velocity selected atomic beams [55, 56] have demonstrated this to be true for a broad 

range of conditions. 
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However, there are situations where the assumptions inherent in this description 

break down. In particular, observations of line broadening in a dense room temper- 

ature Rydberg gas by Raimond et. al. [57] require the use of a quasistatic, rather 

than a dynamic, description of the processes occuring in the experiment. This occurs 

when the spatial separation of the atoms is small enough that the average interatomic 

interaction is observable. When these distances are comparable, it becomes necessary 

to consider three- and four-body collisions. While our densities do not quite reach 

those of Raimond et. al, our experiments are performed in a magneto-optical trap, 

or MOT, at temperatures less than 300 //K where the atoms under study move only 

a small fraction of their separation during the time scale of the experiment. Any in- 

teractions observed between atoms will therefore depend on the essentially constant 

relative spacing, and one can expect that more than one atom might be considered 

for interaction with a given partner. This results in a situation analagous to an amor- 

phous solid, where the energy levels of the individual atoms form energy bands due 

to the many-atom interactions. 

The nature of the many-body interaction in a resonant energy transfer reaction 

is not totally understood for a dense, frozen Rydberg gas. Recent studies have left 

several questions unanswered [58, 59]. Specifically, they have not examined the time 

dependence of the energy transfer process, and have measured line-broadening only 

over a limited range of densities. In this chapter we shall attempt to clarify the many- 

atom, non-binary mechanism for energy transfer in such a system.   We shall then 
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Figure 3.1: Energy levels of Rb as a function of electric field showing the resonant 
energy transfer interactions of Eq. 3.1 

present the results of resonant energy transfer experiments performed on Rydberg 

atoms prepared in a MOT which corroborate the many-body picture of resonant 

energy transfer reactions in a cold, dense Rydberg gas. 

3.2    Description of Energy Transfer Process 

We start our explanation by considering an energy resonance for a two-atom collision 

system in 85Rb. In this two-atom picture, we are investigating the reaction of two Rb 
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atoms 

25si/2 + 33s1/2 -> 24p1/2 + 34p3/2, (3.1) 

which we assume to take place at room temperature. The collision is resonant at the 

electric fields E = 3.0 and 3.4 V/cm for the \rrij\ = 1/2 and \m,j\ = 3/2 levels of 

the 34p3/2 state, as seen in Fig. 3.1. Recalling Eq. 1.15, the cross section for such a 

binary collision is 

a = &L « b\ (3.2) 
v 

Here n and fjf represent the 25s-24p and 33s-34p electric dipole moment matrix 

elements, while v is the collision velocity, and b is the impact parameter. In atomic 

units, /i = 492eao and // = 126ea0. Likewise, we recall from Eq. 1.16 the collision 

linewidth Au is the inverse of the collision duration r 

1       ^3/2        v Au = — =    .       = —T=. (3.3) 

Applying Eqs. 3.2 and 3.3 at T = 300 K, we calculate a = 10~8 cm2 and Au = 

380 MHz, while at T = 140 //K, typically found in our MOT, we find a w 10-5 cm2 

and Av TU 10 kHz. Finally, in our MOT, we have a typical density of atoms in the 

initial state of p0 = 1 x 109 atoms/cc, and they are NQ = 107 in number.  We can 
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then calculate the average interatomic spacing, 

/   3   \1/3 r° = feJ  • (3'4) 

finding that r0 ~ 6.2 /im, notably less than the impact parameter calculated from the 

two-body cross section (b = *Ju « 30 /im). At this density, as noted by Anderson 

et. dl. [58] and Mourachko et. al. [59], the effects observed are clearly not due to a 

purely binary collision. 

The collision velocity for a binary collision at 140 ßK is given by 

MT      nn 
v = \  —— = 26 cm/s, (3.5) l/ irM ' 

where M is the reduced mass of the colliding Rb atoms. This implies the atoms 

move approximately 0.5 //m, or 0.08 b during the 2 //s course of our experiment. It is 

therefore likely that in a 140 /xK gas, the process described by Eq. 3.1 is quasistatic in 

nature [60] and is not a collision. We are therefore faced with the problem of describing 

the resonant energy transfer process which is occurring in a different manner. 

3.2.1    Resonant Energy Transfer in a Quasistatic Picture 

In order to represent the quasistatic resonant energy transfer process analagous to 

the room temperature collision given by Eq.   3.1, we must make some simplifying 
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assumptions. We start by assuming there are N0 = N25S + N^s atoms in the trap 

volume, with the additional restriction that N25S ~ -^33s- We further assume the 

atoms to be motionless, and separated by distances r^, such that rij = TQ. In short, 

we have a random distribution of atoms with a mean spacing such that we measure 

a density 

3N0 

Anr: A) = Tz/-> (3-6) 
trap 

where rtrap is the radius for the entire volume of trapped atoms. 

Given this situation, the simplest approach to take would be to view the pro- 

cess much as one would an interaction betwen lattice sites in a solid, essentially the 

resonant analog of the work of Raimond, et al [57]. That is, we would expect to 

observe a binary resonance between atoms separated by the average spacing, r0. For 

r0 = 6.2 //m, we find Au = 240 kHz, which is still far smaller than the observed 

widths of ~ 5 MHz. 

For a distribution of atomic spacings as discussed above, there will be some atoms, 

Nc, spaced closer than a distance rc <IC ro- These pairs will have couplings strong 

enough to interact via Eq. 3.1 at detunings up to ßß'/r^ away from resonance. Given 

a typical distribution of separations, one would expect only a small fraction of atoms 

to have separations less than rc, i.e. Nc/N0 < 0.01. As noted by Anderson et al. [58] 

and Mourachko et al. [59],this number of atoms is too small to explain the magnitude 

of signals observed, as will be shown in Sec. 3.4.1. 
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Anderson et al. formulated the following simple model to explain the observed 

resonance phenomena. In addition to the resonant dipole-dipole interaction of Eq. 3.1, 

there are also two other dipole-dipole interactions which are always resonant. These 

are 

25s1/2 + 24p1/2 -»• 24p1/2 + 2531/2, (3.7) 

and 

33si/2 + 34p3/2 -» 34p3/2 + 33si/2. (3.8) 

These have interaction strengths 

^   md    <£, (3,) 

respectively, and are the same interactions which are responsible for suppression of 

superradiance[61] and the self-broadening of resonance lines[60]. Those few pairs of 

atoms spaced closer than rc will undergo the resonant transfer defined by Eq. 3.1 far 

off resonance, by up to fiß'/rl, which will lead to a larger linewidth. Those few atoms 

will then oscillate between the initial (25s and 33s) and final (24p and 34p) states with 

frequency /x///rj?, on average spending half their time in the final states. While in the 

final states, the atoms may interact with other neighboring atoms in the 25s and 33s 

states via Eqs. 3.7 and 3.8, at rates given by Eq. 3.9. This cycle is repeated many 

times over the course of an experiment, allowing the p state population to diffuse 
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Figure 3.2: Diagram of atoms and typical spacings used in the four atom de- 
scription of the resonant energy transfer process. The atoms are numbered 1 to 
4 from left to right, and are initially in the states s, s, s', and s', respectively. 
The distances in microns between atoms are: r±2 = 2.3, r\z = 3.47, m = 4.3, 
7*23 = 1-5, T24 = 3.17, T34 = 2.1, and are chosen to represent a typical distri- 
bution of neighboring atom spacings. The lighter shaded atoms are meant to 
represent the atoms initially in the s' state. 

away from the close atom pair, much like products in catalyzed chemical reactions 

move away from the initial reaction sites [62]. 

3.2.2    Resonant Energy Transfer in a Four-Atom System 

If we examine the process outlined above in the simplest possible non-binary inter- 

action, we see that the three processes of Eqs. 3.1, 3.7, and 3.8 are intertwined. Let 

us start by considering a static binary interaction between atom 2, which we excite 

to the 25s (or s) state, and atom 3, which we have excited to the 33s (or s') state, 

as shown in Fig. 3.2. The atoms are spaced by a typical nearest-neighbor separation 

of r23 = 1.5 /im. We form the wavefunction for this two-atom system by taking the 

ordered direct product of the individual atomic wavefunctions, i.e. |\I>) = |ss'), which 

we will call the molecular state of the system. In the absence of coupling, the energy 
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of this system will be W{ = Ws + Wsi. We now introduce the dipole-dipole coupling 

between the atoms, which we denote 

X23 = ^ = 17 MHz, (3.10) 
'23 

and which transfers atom 2 to the 24p, or p, state and atom 3 to the 34p, or p' state 

at the electric field for the resonance for the energy transfer interaction of Eq. 3.1, 

which we define as zero detuning. Away from resonance, the detuning is given by 

A = Wf — Wi, where Wf = Wp + Wpi is the energy of the final molecular state. The 

time-independant Schrödinger equation for this system is 

V 

0       X23 

X23      A 

ss 

) 

= W 

ypp J 

ss 

\pp 

(3.11) 

which has the energy levels shown in Fig. 3.3. 

We now construct a model incorporating the four atoms shown in Fig. 3.2. The 

spacing between atoms 2 and 3 is less than the spacing between the remaining atoms, 

as is noted in the figure. We again form the molecular state of the system, which will 

initially be sss's'. Ignoring the weak prime-unprime couplings such as s' — p, there 

are six approximately degenerate states. In the absence of any couplings between the 
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Figure 3.3: Energy levels for a two atom quasistatic interaction. The anticrossing 
formed at the resonance is of magnitude %23 = 17 MHz for the 1.5 /an spacing 
used in the calculation. 

atoms, the time-independent Schrödinger equation is 

W\V) = H0\V), (3.12) 

where 

l*> 

/ sss's' \ 

sps'p' 
spp's' 
pss'p' 
psp's' 

\ ppp'p' ) 

(3.13) 
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The energies of these states, which we label with subscripts a — g, are 

Wa = 0   Wb = A   WC = A   Wd = A   We = A   Wg = 2A. (3.14) 

Experimentally, we selectively field ionize atoms in the atomic state p'. Therefore, 

each of the molecular states other than sss's' may be detected by our apparatus. 

However, the final molecular state ppp'p' will produce a signal twice as large as that 

of the other molecular states. If we can find a way of coupling the first and last 

molecular states, we will have a method of producing more than one p' atom for a 

single close pair of ss' atoms. In other words, we can produce a larger signal than 

would be expected from the number of close atoms, and will have produced p-state 

excitation away from the site of the close atoms. 

Couplings in the four atom system 

We now introduce the effects of the the dipole-dipole energy transfer resonance of 

Eq. 3.1 into our four-atom system. If only the closest pair of atoms are coupled by 

the reaction of Eq. 3.1, the Hamiltonian for the system becomes 

#i = 

( ° 0 Xac 0 0 0   \ 
0 A 0 0 0 0 

Xac 0 A 0 0 0 
0 0 0 A 0 Xac 
0 0 0 0 A 0 

I o 0 0 Xac 0 2A / 

(3.15) 



3.2 Description of Energy Transfer Process 65 

N 

U 
c 

-100 - 

-100 -50 0 

detuning (MHz) 

50 100 

Figure 3.4: Energy levels for a four atom quasistatic interaction with only one 
coupling. Notice the coupling only partially lifts the degeneracy of the system 
near the resonance. 

where Xac = AiA*'/r23 1S the coupling between atoms 2 and 3, which connects the 

molecular states a to c (and also d to g). This interaction has two significant results. 

First, the initially prepared molecular state, sss's' is no longer an eigenstate of the 

Hamiltonian, as is seen in Fig. 3.4. In other words, the prepared state evolves in time 

according to how it maps onto the new eigenstates of the total Hamiltonian. The 

prepared state will map onto the states (sss's' ± spp's')/sqrt{2). The partial lifting of 

the degeneracy of the molecular states will, after some allowed interaction time tint, 

result in population in a molecular state which will allow us to observe atoms in the 

final atomic state p'. The measured signal for this process will be proportional to the 
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number of atoms, JVC, spaced close enough to interact. Were all such processes within 

the atomic trap perfectly coherent and all close atoms spaced by the same amount, 

we should observe beating in the final state population with a frequency xoc. 

Having seen the effect of a single interaction, we now introduce the remaining 

dipole-dipole interactions, including those represented by Eqs. 3.1, 3.7, and 3.8. These 

are given by 

Xbd 

Xae 

Xad 

Xab 

Xbc 

JL. 
r12 

r13 
//// 

r24 

'34 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

The Hamiltonian for this system is given by 

"       Xab     Xac     Xad    Xae       «      ' 

Xab      A      Xbc     Xbd       0       Xae 

H = Xac Xbc A 0 Xbd Xad 

Xad Xbd 0 A Xbc Xac 

Xae 0 Xbd Xbc A Xab 
\     0       Xae     Xad     Xac     Xab     2A  / 

(3.21) 

The solutions to this Hamiltonian are shown in Fig. 3.5, which clearly shows the 

complicated nature of the interaction.   There are several things to note; first, all 
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Figure 3.5: Energy levels for a four atom quasistatic interaction with all single- 
tranisition couplings. The couplings completely lift the degeneracy of the system 
and demonstrate a ladder-like structure in the area of the resonance. 

degeneracies are lifted, even at large detunings. Second, note the band-like structure 

within the resonance. As the system sits near resonance, a given state will oscillate 

in the region of this structure. If the oscillations are strong enough, the population 

effectively climbs the ladder, ending up in a state which projects strongly onto ppp'p1 

and thus provides transfer to the final p' atomic in excess of the number of close atom 

sites. Finally, notice the overall width of the resonance has increased from Fig. 3.4. 

The Hamiltonian of Eq. 3.21 includes all of the single-transition couplings. Having 

outlined a basic model to provide some insight into the physical phenomena, we can 

now look more closely at the experiment. 
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3.3    Experiment description 

The energy resonance we studied, which for two atoms has the form given by Eq. 3.1, 

was observed in a magneto-optical trap [33], as described in Chap. 2. The Rb atoms 

in the trap were excited from the ground 5si/2 state to the 5f»3/2 state via the trapping 

lasers. Prom there, the atoms were excited to the Rydberg states using two Hänsch- 

style pulsed dye lasers (see Sec. 2.3.1, producing ~ 6 ns pulses at a 20 Hz repetition 

rate, as shown in Fig. 2.5. The arrival of the laser pulses into the region of trapped 

atoms marks the beginning of the interaction period. 

The laser pulses were roughly overlapped in space and time using a polarizing 

beamsplitter, and transferred approximately 10% of the overall trap population to 

each of the initial Rydberg states. Population transfer into the initial states was 

controlled by placing neutral density filters in the beam paths, before or after they 

were overlapped. 

During some of the experiments, an additional pulsed dye laser, tuned to the 

780 nm hyperfine transition, was sent into the chamber a few nanoseconds before the 

blue laser pulses arrive. This served to approximately double the number of atoms 

in the 5p3/2 state, thereby increasing both the number and the density of Rydberg 

atoms in the trap. When this method was used, an additional broad background 

signal was present due to resonant collisions with thermal atoms in the chamber. 

Once we produced the initial states in the trap, we allowed them to interact in a 
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static field before applying a 10 ns risetime detuning pulse of about 10 volts, followed 

by a 1 /is risetime high voltage pulse to selectively field ionize those atoms in the final 

34p3/2 state. We averaged this signal over many shots of the laser, during which time 

we used a computer-controlled digital-to-analog converter (DAC) to scan either the 

static field or the delay between the arrival of the pulsed lasers and the fast detuning 

pulse, i.e. the allowed interaction time iint. 

3.4    Data acquisition and analysis 

In order to characterize the behavior of the energy transfer, several types of data were 

collected. In the first set of data, we scanned the static field across the resonances, 

allowing the interactions to proceed for 4.86 ßs. These gave us information on the 

scaling of the width of the resonances as the density of atoms in the initial states was 

varied. In the second set of scans, we held the static field at the value corresponding to 

the peak of the \rrij\ = 3/2 resonance, while scanning the interaction time between 0 

and 4.85 /xs, allowing us to monitor the time evolution of the signal at various densities 

of initial states. Finally, we looked at the time evolution of the entire resonance signal 

at two different densities to observe variations in the lineshape as a function of the 

allowed interaction time. 

For the first two sets of data, both the overall and relative population of atoms in 

the initial states was varied. To vary the relative initial population in either the 25si/2 
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or the 33s!/2 state, a neutral density filter was placed in the path of the appropriate 

pulsed dye laser. The overall population was changed in two ways. In the first, a 

pulsed dye laser tuned to the Rb F — 2 -» 3 transition was focused on the trap 

such that it arrived a few nanoseconds before the Rydberg lasers. This resulted in 

a temporary increase in the number of atoms in the 5p3/2 state, and gave an overall 

increase of a factor of two in the number of atoms in the initial states. In the second 

method, a neutral density filter was placed in the path of the repumping laser. This 

decreased the number of atoms in the 5^3/2 state, and therefore the number of atoms 

in the initial states by a factor corresponding to the attenuation of the filter. We now 

discuss each set of data individually. 

3.4.1    Resonance scans and linewidth scaling with density 

The result of each of the resonance scans was a set of linewidths corresponding to 

the \m,j\ = 1/2 and \rrij\ = 3/2 resonances. We used a non-linear least squares fit to 

a Lorentzian lineshape to determine these linewidths. The computer routine fit for 

both linewidths simultaneously, using the equation 

f = Vo + ^-2+ T^T*. (3-22) 

The fit parameters 2/?i and 2ß2 are the full-widths at half maximum for the resonances, 

while Xi and x2 are the peak locations.  Looking at Fig. 3.6, one can see that the 
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Figure 3.6: Energy transfer resonances measured for initial atomic state densities 
of 1.01 x 109 (circles), 1.81 x 108 (triangles), and 3.22 x 107 atoms/cc (squares). 
Solid lines indicate fits to dual-Lorentzian lineshapes with an overall offset. The 
apparent discrepancy in the widths of the \rrij\ = 1/2 and 3/2 resonances is due 
to the difference in the polarizabilites of the states. Measured average widths 
are 8.33, 1.25, and 0.93 MHz, respectively. The bottom data set (squares) 
is magnified by a factor of 6.64 relative to the other scans. Estimated peak 
population transfer is estimated at 25%. 
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resonances do not have a perfectly Lorentzian lineshape. However, the fits result in 

an accurate determination of the resonance widths. Note also that the characteristic 

deviations from a Lorentzian profile predict values too small near resonance, and 

predict values too large in the wings of the resonance. 

The measured resonance widths ranged from 910 kHz to 8.4 MHz, as the density 

of the system increased from 3 x 108 to 2 x 1010 atoms/cc. Taking advantage of 

our ability to spatially sample the electric fields in the trapping region by moving 

the trap, we are able to measure an upper limit to the field inhomogeneity of about 

0.003. For the measured interaction, this leads to a broadening of 0.20 MHz in the 

resonances. The variation in magnetic field strength experienced across the spatial 

extent of the trap will also contribute to the broadening of the resonances. The typical 

magnetic field gradient is dB/dz = 14 G/cm, leading to a resonance broadening of 

approximately 0.55 MHz for a typical 750 jum trap. We expect transform broadening 

due to the finite interaction time [63, 64] to contribute an additional 0.13 MHz to the 

resonance broadening, making the total experimental contribution to the linewidth 

0.88 MHz, not too different from our observed minimum width of 0.91 MHz. 

We have also investigated the change in linewidth as we alter the density in each 

of the initial atomic states individually. These results are shown in Fig. 3.7. The 

results demonstrate that the alteration of the relative density of one initial state have 

a much smaller effect on the width of the resonance, which we might expect from 

differentially scaling the interatomic spacings. 
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Figure 3.7: Resonance widths as a function of the density of each initial atomic 
state. Note the strong dependence on the density when both states are changed, 
while altering the density of only one state results in smaller changes in the 
observed linewidth. 

3.4.2    Signal development with allowed interaction time 

Initial investigation into the time characteristics of these dipole-dipole resonances 

characterized the behavior as consistent with the transform broadening seen by Thomp- 

son, et al. [64] in their experiments on resonant collisions in potassium. While we 

have observed transform broadening in this system, the growth of the resonant signal 

as a function of allowed collision time showed a somewhat different picture than might 

be expected. 

Figure 3.8 shows a pair of these interaction time scans for two different initial 
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Figure 3.8: On-resonance signal evolution as a function of allowed interaction 
time for two different initial state atomic densities: 1.07 x 109 (circles) and 
3.37 x 107 atoms/cc (triangles). Notice the sharp onset of signal for the higher 
density, consistent with rapid diffusion of p' excitation from the large number of 
closely spaced s' atoms. Only one-third of the data points are plotted for clarity. 
Peak population transfer is estimated at 25%. 

state densities. The scans were fit to a dual exponential growth function: 

f = y0 + a(l-e-ßlt)+a(l-e-^t). (3.23) 

The two characteristic growth times for these processes range from 140 ns and 4.8 fj,s 

to 1.35 fxs and 60 /xs, respectively. As can be seen in Fig. 3.8 (a), the majority of the 

on-resonance signal has built up in the first few hundred nanoseconds for the dense 

system, implying a characteristic width for the collisions on the order of 1.3 xlO6 s_1. 
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More interesting, the dual exponential nature of the signal growth appears to imply 

both a fast and a slow resonant process, consistent with the picture of multiple cou- 

plings between molecular states outlined in Section 3.2.1. The characteristic width of 

the slow process appears to be as low as 70 xlO3 s-1. 

On (or near) resonance, one would expect that the evolution of the signal would 

be dominated by the close atom couplings, %ac from Sec. 3.2.2, which can be as large 

as 100 MHz. For the closest of these close atoms, the remaining atoms in the four 

atom system will be close enough that the other couplings will be larger than the 

detuning. While this occurs in less than a percent of the total atoms, it is likely 

that the strengths of the interactions will lead to extremely rapid rates. We also see 

evidence of the weaker couplings, once we have saturated the strong interactions, in 

the slow risetime after a few hundred nanoseconds. Further from resonance, we would 

not expect that this difference should be so great, and we might also expect that the 

rate of signal increase should be less, implying that it is possible that we should see a 

time dependence in the lineshapes. We investigate that possibility in the next section. 

3.4.3    Time dependance of lineshapes 

The enhanced p' atom production near resonance for short times seen in Section 3.4.2 

has interesting implications on the overall lineshape as observed for different inter- 

action times. For a given interaction time, tmt, the overall level splitting will have 

the form shown in Fig. 3.5, but it is probable that the magnitudes of the individual 
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avoided crossings will change, becoming larger as more of the weaker couplings are 

able to occur. This should allow us to make some general statements about how 

the lineshape changes with interaction time. At small detunings, we know that we 

shall observe an increase in the rate of p' atom production at short interaction times, 

tint < Xac- At larger detunings, however, it is clear that the larger separations should 

dramatically decrease the transfer rate to the rate defined by the slower couplings. 

Thus we should not see a marked increase in the p' atom production rate at larger 

detunings, and the signal off-resonance will not increase as rapidly as we increase the 

interaction time. As a result, we expect that at short times we should see narrower 

resonances than at longer times, where the large-detuning signal can build up, con- 

trary to observations of transform broadening, which predicts resonances will only 

get wider with decreasing interaction time [63]. 

To verify that this was indeed the case, a series of resonance scans was taken at 

various allowed interaction times, with the results shown in Figs. 3.9 and 3.10. Note 

the rapid growth of the signal on-resonance seen in Fig. 3.8 for higher density systems. 

This is consistent with our analysis above. The time dependence of the linewidth is 

more clearly seen in Fig. 3.10. Here the first scan of the series is partially transform 

broadened. As the interaction time increases, the linewidth decreases proportional to 

I/tint. However, after a few hundred nanoseconds the linewidth begins to increase, 

as we might expect from our description of the multi-atom couplings in Sec. 3.2.2. 
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Figure 3.9: Series of resonance scans showing the behavior of the energy transfer 
resonances as a function of allowed interaction time. The series is taken with a 
constant initial state atom density of 6.62 x 108 atoms/cc, with no evidence of 
saturation broadening. The scales are identical for all traces, but each trace is 
offset for clarity. Solid lines indicate fits to Lorentzian lineshapes. Fit values are 
shown in Fig. 3.10. The traces are offset for ease of viewing, and the allowed 
interaction times are, from bottom to top: 81 ns, 360 ns, 650 ns, and 1.78 //s. 
Peak population transfer for the longest resonance is 17.4±5.6%. 
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Figure 3.10: Plot of fit values for resonance widths as a function of allowed 
interaction time. The initial state density for all scans was 6.62 x 108 atoms/cc. 
The first data point is transform broadened. The increase in the widths at 
longer times is due to more efficient transfer of p' excitation from closely spaced 
ss' pairs near resonance. 

3.5    Summary 

We have shown here how the resonant energy transfer process in a frozen Rydberg gas 

can be formulated in a quasistatic picture. Specifically, we have demonstrated how 

couplings between molecular states influence the energy eigenstates of the system. 

We have investigated the dependance of the frequency characteristics of the interac- 

tion on the allowed interaction time and the density of atoms in the initial states. 

Experimental data demonstrate that this formulation of the interaction is reasonable. 
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Finally, the dependance of the observed signal on allowed interaction time shows good 

qualitative agreement with our model. In the next chapter, we will investigate a set 

of resonances with different characteristics and determine how well the interaction 

picture we have developed here holds up to the new data. 
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Chapter 4 

A Series of Dipole-Dipole 
Interactions: n Dependence 

4.1    Introduction 

In order to further test the model developed in Sec. 3.2, we sought to investigate a res- 

onant interaction with somewhat different characteristics. The interaction discussed 

in Chap. 3 was selected to minimize any experimental broadening effects, while also 

yielding the narrowest possible resonances. For this experiment, we chose to focus on 

determining how changes in the dipole matrix elements affect the characteristics of 

the interaction process. Additionally, we wanted interactions with large dipole matrix 

elements. A series of resonant processes met these two criteria. For two Rb atoms 

this series has the form 

npz/2 + npz/2 -» ns + (n + l)s. (4.1) 
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Initial np 
Resonance Position in V/cm 

rrii 1/2 + 1/2 m. 1/2 + 3/2 rrij =3/2 + 3/2 

26 52.2 
27 39.7 
28 30.3 
29 23.3 
30 17.9 
31 13.8 
32 10.6 
33 8.1 

55.0 
42.0 
32.0 
24.6 
18.9 
14.5 
11.2 
8.5 

58.4 
44.6 
34.1 
26.1 
20.1 
15.5 
11.9 
9.0 

Table 4.1: Resonant Electric Fields for npz/2 + nP3/2 —► ns + (n+l)s 
dipole-dipole interactions. 

For each n, there is a set of three resonances due to the fine structure splitting of 

the np3/2 level. The experiments discussed in the remainder of the chapter examine 

the \rrij\ = 3/2 + 3/2 resonance. The experimentally measured resonant fields for 

n = 26 to 33 are given in Table 4.1. We shall describe this interaction first in terms 

of a simple quasistatic binary interaction, adopting our conventions from Chapter 3. 

We recall the detuning from resonance is defined by the energy difference of the initial 

and final energies of the molecular states, i.e. A = Wf — W{ = (Wns + W(n+i)s) — 

(Wnp + Wnp). We also set the energy of the states at resonance to be zero. In this 

binary picture, two atoms in the initial state are separated by a distance r and the 
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resonant dipole-dipole interaction strength between the two atoms is given by 

Xbinary = ^, (4.2) 

where \i and // are the np — ns (or p — s) and np — (n + l)s (or p — s') dipole matrix 

elements, respectively. These are listed in Table 4.3 (in Sec. 4.3), along with values 

of x for a typical nearest neighbor spacing of 1.5 jum. 

4.1.1    Multi-atom description of np resonances 

Recalling our discussion of Sec. 3.2.1, we realize that the process of Eq. 4.1 is not truly 

binary in nature, but rather is better described by a multi-atom interaction between 

molecular states. For a multi-atom system, there are two additional dipole-dipole 

interactions which are resonant at all electric fields, 

nP3/2 + ns   —*■   ns + np3/2, and (4.3) 

np3/2 + (n + l)s   ->■   (n + l)s + npz/2. (4.4) 

These interactions have strengths between atoms i and j separated by r^ given by 

$r> and ^-- (4-5) 
ij ij 

We now seek to formulate the Hamiltonian for a four-atom system, as we did in 
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ri4 

Figure 4.1: Diagram of atoms and typical spacings used in the four atom de- 
scription of the resonant energy transfer process. The atoms are numbered 1 to 
4 from left to right, and are initially all in the p state. The distances in microns 
between atoms are: ri2 = 2.3, ri3 = 3.47, ru = 4.3, T2z — 1.5, r2A = 3.17, 
T34 =2.1, and are chosen to represent a typical distribution of neighboring atom 
spacings. 

Sec. 3.2.2. We again assume that we have four atoms at fixed positions in space, with 

separations as shown in Fig. 4.1. We continue by forming the possible molecular states 

of the system via the ordered direct product of the wavefunctions of the individual 

atoms. At this point, we notice a significant difference from the system discussed in 

Chap. 3; in that experiment, there were four distinct atomic states which took part 

in the interaction, while here we have only three. This limits the number of possible 

states of the system, as the two distinct initial atomic states forces a certain symmetry 

on the molecular wavefunction of the system. The resonant transfer process of Eq. 4.1 

(which we can write as pp —► ss')has no such limitation. This dramatically increases 

the number of possible molecular states. 

Given the experimentally produced initial molecular state of pppp, we find there 

are 19 approximately degenerate molecular states for this system.  These are listed 
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below, grouped by the number of atoms in the p state, and labeled in the ordered 

basis in which we refer to them (i.e. the molecular state (r) is the 14th element of 

the basis): 

(b)pps 9)ps  p    (l)PsP , 

(a)pppp,         C]PpSS, WPSSP, fSr   Land       (u)ss>s>s   (v)s>sss>      .   (4.6) ^   (d)psps j)spps (n)sspp )   \J                      /gs   < 
{ejpsps [kjspps {q)s spp   J v 

This increased number of molecular states also adds to the number of couplings 

included in the Hamiltonian. Using the basis defined above, the Hamiltonian becomes: 
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While certainly unwieldy, we can numerically diagonalize this Hamiltonian for a 

given detuning to determine the energy levels of the system, as we did in Chap. 3. 

The results of this calculation for the 26p and 30p system are presented in Fig. 4.2. 

The separations used are identical to those listed in Fig. 4.1, and as those used 

in calculating Fig. 3.5. Several items are of note. First, the increased number of 

molecular states has led to a much more complicated picture than for the ss' —> pp' 
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Figure 4.2: 
(a) Energy levels of the 4-atom Hamiltonian from the 26p + 26p —> 26s + 27s 
resonance as a function of detuning from resonance. Spacings used in the cal- 
culation are identical to those of Fig. 4.1. (b) Same as (a), but for the 
30p + 30p —> 30s + 31s resonance. 
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resonance. However, the initially prepared state (pppp) is still somewhat isolated from 

the remaining states, as was the case for the ss' —» pp' interaction. The central band 

of states correspond to the group of 12 states in Eq. 4.6 that have two atoms in the 

p state, while the states that tend towards zero energy at large detunings are those 

with no p-state atoms. The width of the crossing is significantly larger than that of 

Fig. 3.5, as we might expect from the larger dipole moments. 

With this picture of the energy resonant dipole-dipole interactions in mind, we 

now turn our attention to the experimental data. Our investigations in this chapter 

will focus on several measurements, with the goal of determining how these charac- 

teristics of the resonances scale with the principal quantum number n. We repeat our 

measurements of the resonance widths as a function of density, confirming some of our 

observations from Sec. 3.4.1. We also measure the signal development on resonance, 

as in Sec. 3.4.2. We shall start, however, by discussing our measurent of population 

transfer caused by slewing across the resonance with a ramped electric field. 

4.2    Adiabatic Population Transfer 

The problem of how a system behaves near an avoided crossing of energy levels was 

solved independently by Landau and Zener to explain data describing slow atomic 

collisions [65, 66, 67]. The theory they developed has since been used to describe a 

wide variety of processes, including field ionization of Rydberg atoms[68, 69] and ionic 
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1 

electric field 

Figure 4.3: Diagram of a representative avoided level crossing. In the absence 
of any coupling between the two states labelled i and / (dashed lines), they 
cross at some electric field Ec. The presence of a coupling of strength x (an 

off-diagonal term in the Hamiltonian) between the two states removes the de- 
generacy such that the two levels repel each other. The eigenfunctions of the 
complete Hamiltonian are labeled u and d (solid lines). 

recombination in atomic collisions [70]. The essential result of the theory allows one 

to determine the magnitude of an avoided crossing by measuring the dependence of 

the population transfer between states on the rate at which the crossing is traversed. 

We shall briefly outline the key results of the Landau-Zener theory and then discuss 

our measurements of population transfer in the resonant dipole-dipole interactions of 

Eq. 4.1. 

4.2.1    Landau-Zener Theory 

Landau-Zener theory describes the behaviour of a quantum mechanical system in the 

presence of an avoided crossing such as the one pictured in Fig. 4.3. In the absence of 
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coupling, the eigenstates of the system are \i) and |/), which have energies Wi(E) and 

Wf(E). These are often called the asymptotic states of the system. With coupling 

of strength x = 2|(i|V'|/)|, the Hamiltonian may be written as 

H{E) = (4.8) 

where 

Wi(E)   =   Wt{E) + {i\V\i), (4.9) 

wf{E)   =   Wf(E) + (f\V\f) , and (4.10) 

|e-*   =   (i\V\f). (4.11) 

By diagonalizing this Hamiltonian, we obtain the energies of the new eigenstates 

\u) and \d). We are interested in calculating the probability of remaining on curve 

\u) (i.e. moving from u to v!) as the field is changed from one side of the avoided 

crossing to the other. If we make a few assumptions (see Ref. [70] for a discussion 

of these), we can solve the problem in a straightforward manner using the time- 

dependent Schrödinger equation. The result is known as the Landau-Zener formula, 

and is given by 

P{u -*u') = l- P{u -> d!) = 1 - e-27rr, (4.12) 
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where 

v V 
r = = —— (413) 

«(ft*)«. *"# 

Here we have used the shorthand w{E) = W\{E) — w2(E). We henceforth refer to the 

slew rate dE/dt as E, and the differential slope at the avoided crossing (dw/dE)E=Ec 

as w' to simplify the notation. 

The basic result can be summed up as follows: the faster the atoms move through 

the resonance, the more likely they will follow the asymptotic states of the system 

and traverse the crossing diabatically. If the atoms move through the crossing slowly 

enough, they will remain on the curve \u) and traverse the crossing adiabatically 

Another important point of note is that if we measure the fractional population 

transfer from one state to another as a function of the crossing traversal rate (or slew 

rate), we can extract information about the coupling strength, x, using Eq. 4.12. 

The advantage of this method of measuring the interaction strength is that we have 

avoided any potential inhomogeneous broadening effects, as we are simply following 

the adiabatic energy levels of the coupled system. For a two level system, the process 

is relatively straightforward, as we have shown. Now we turn our attention to our 

experiment, in which we measure the population transfer as a function of the slew 

rate across the resonant dipole-dipole interactions described by Eq. 4.1 and pictured 

in Fig. 4.2 
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Figure 4.4: Timing diagram for the population transfer measurements. The 
electric field starts at a value below the resonant field. After laser excitation to 
the initial state, the field is linearly ramped through the resonant field, and the 
population field ionized. The maximum and minimum risetimes used are shown. 
The simplified energy levels are shown as a guide to the size of the pulse, which 
was a minimum of 5 times the width of the resonance measured in Sec. 4.3. 

4.2.2    Population Transfer Measurements 

The energy resonance we studied, which for two atoms has the form given by Eq. 4.1, 

was observed in a magneto-optical trap, as described in Chap. 2. The Rb atoms in 

the trap were excited from the ground 5si/2 state to the 5p3/2 state via the trapping 

lasers. Prom there, the atoms were excited to the np3/2, \rrij\ = 3/2 Rydberg state 

using a doubly-amplified short cavity Littman-style pulsed dye laser (see Sec. 2.3.1), 

similar to the process shown in Fig. 2.5. The final excitation process is done at an 

electric field slightly below the resonant field. 

We then produce the electric field pulse which takes us through the resonant 

electric field, in a manner similar to that shown in Fig. 4.4. The linear risetime 

pulse is produced by a Hewlett-Packard 8112A pulse generator, and is connected to 
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the field plate closest to the detector (see Sec. 2.3.2 and Fig. 2.10). The atoms are 

selectively field ionized and the resulting ions detected with a microchannel plate 

detector. The field ionization pulse ionizes atoms from all three states involved in the 

resonance process. The ion signals are amplified and monitored with a Tektronix 2440 

oscilloscope, which averages the signals from 256 shots of the laser and downloads the 

resulting trace to a computer. The areas under the curves for the np and ns states were 

numerically integrated and the resulting signal levels used to calculate the fractional 

population transfer. Several averaged traces were collected for each slew rate. For 

each data point collected at a given slew rate, a nominial "background" trace was 

collected using a 4.5 ns risetime pulse. This was used to monitor the initial state 

population relative to other data sets. 

Figure 4.5 shows two traces taken with pulse risetimes of 4.5 ns and 4.0 /is. The 

increase in 26s population with the longer risetime (slower slew rate) is quite notice- 

able, as is the appearance of signal due to the 27s state, despite its partial overlap 

in time with the 26p signal. We desire to measure the fractional population trans- 

fer, denoted here as Q, as a function of electric field. We determine this fraction 

experimentally by measuring 

Q(E) =        N[ns] + N[{n + l)s] 
W{   '     N[np] + N[ns] + N[(n + l)s]' {      ' 

where N[n£] represents the integrated signal due to the state nL Since the np and 
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Figure 4.5: Sample oscilloscope traces to illustrate the measurement of popula- 
tion transfer. The top trace was taken with a 4.0 us risetime pulse, while the 
lower trace had a 4.5 ns risetime pulse. The peaks are labeled by state, with the 
dotted line below the 26s state signal is meant to demonstrate the time extent 
of its signal. The area under each curve is measured to determine the fractional 
population transfered from the 26p state. These traces are taken at the highest 
density measured. 

(n+l)s signals are partially overlapped in time, we measure these two signals together, 

and the ns signal separately. Noting N[ns] = N[(n + l)s from detailed balance, we 

then find 

2N[ns] 
Q{E) 

N[ns] + {N[np\ + N[(n + l)a]} 
(4.15) 

The outcome of a set of measurements for n = 26 is shown in Fig. 4.6. The small 

circles on the left hand side are the population transfer measurements from the 4.5 ns 

risetime background data. Their mean value, effectively the minimum measurable 

population transfer Qmin due to black body radiation induced tranfer, is represented 
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Figure 4.6: Slew rate dependence of population transfer for 26p data at the 
highest measured density. The data are plotted against the reciprocal slew rate. 
The triangles represent individual data points. The solid curve represents a fit 
to Eq. 4.16 modified with a fixed baseline offset, while the dashed line is the 
average of the population transfer for the highest slew rate. The small circles 
are the background data measurements, whose mean is used to determine the 
nominal zero transfer, here at Q « 0.1, denoted by the solid line. 

by the dashed line.  The solid curve represents a non-linear least-squares fit to the 

function 

Q(E) = Qmax-v^V 
TTK,2   1 

2w'E / ' 
(4.16) 

in which Qmax is allowed to vary to account for maximum population transfers which 

are less than one (typical values are about 0.4), while 77 accounts for the non-zero 

minimum population transfer. 

Several possible functional forms were attempted before we decided on Eq. 4.16. A 

strict Landau-Zener function (i.e. Eq. 4.12) was unable to deal with the limited change 
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Figure 4.7: All measured values for the fit parameter K from Eq. 4.16 as a 
function of n and the relative density p. The symbols represent the following: 
white triangles, 26p; black circles, 27p; black squares, 28p; black diamonds, 29p; 
and grey triangles, 30p. The data are also presented in Table 4.2. 

in Q. We attempted to deal with this by scaling either the maximum probability 

(from 1 to a variable parameter Qmax) or the minimum probability (from 1 to a 

variable parameter rj) independently, but these also systematically resulted in poor 

fits. Finally, we attempted to fit the data to the average of a set of Landau-Zener 

probabilities at a scaled set of frequencies. This still resulted in relatively poor fits. 

As such, we fit the data using the three adjustable parameters above, which resulted 

in a reasonable representation of all data sets taken. 

The fit parameter K has units of frequency, and in the Landau-Zener model would 

represent the coupling between the two levels which form the avoided crossing. Given 
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p 
(A.) 

K 

MHz 
Vmax V Vmin 

1.000 17.596 ± 1.5 0.455 0.260 0.101 
0.786 
0.446 

17.105 ± 2.3 
18.150 ± 2.0 

0.390 
0.390 

0.080 
0.280 

0.273 
0.056 

0.411 
0.371 

25.660 ± 2.3 
17.720 ± 0.8 

0.470 
0.420 

0.370 
0.250 

0.147 
0.071 

0.210 20.420 ± 2.9 0.448 0.301 0.069 
0.180 11.875 ± 0.5 0.543 0.488 0.045 
0.463 15.896 ± 3.2 0.490 0.260 0.169 
0.204 14.029 ± 2.8 0.322 0.161 0.101 
0.826 
0.714 

23.108 ± 3.2 
17.638 ± 1.6 

0.514 
0.389 

0.165 
0.145 

0.311 
0.220 

0.659 
0.486 

17.119 ± 1.8 
24.108 ± 3.2 

0.324 
0.220 

0.094 
0.076 

0.192 
0.131 

0.172 15.253 ± 1.0 0.343 0.234 0.068 

Table 4.2: Fit parameters K, 77, Qmax, and Qmin, along with error 
in determining K for all np3/2 + npz/2 —> ns + (n + l)s population 
transfer measurements. 

the complicated nature of the energy levels as shown in Fig. 4.2, it is unclear exactly 

what K physically represents. Despite this, we report the measured values of K here 

(as well as Qmax and 77), as an effective means of characterizing all data sets taken. We 

also estimated the error in determining a value of K which accurately characterized 

the data for a given set of conditions. The error bars are a gross estimate; we varied 

the value of K at a fixed percentage from the measured value, and tried to fit the 

data varying only the remaining parameters. The values quoted are rounded up from 

twice the largest acceptable change. 

The fit values Qmax) Vi and K for all np measurements are given in Table 4.2. There 
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are several points of note about the data. First, the relative density, p/po, is found by 

dividing the measured average initial state signal, taken from the background scans 

at a given set of conditions, by the effective volume of the interaction region. The 

resulting value is then scaled to a reference density. The reference density was taken by 

saturating the signal from the 26p inital state at a trap density of 7.52 xlO9 atoms/cc 

with a diameter of 1.161 mm. The effective volume of the interaction is given by the 

intersection of the cylinder formed by the waist of the pulsed dye laser and the sphere 

of the trap. Second, the maximum measured population transfer for all data was 0.58, 

taken with a 9 //s risetime pulse, or at a slew rate of E = 0.233 V/(cm-/xs). Finally, 

the data for K appear to be relatively constant, with all values effectively grouped 

around a mean value of 18.3 MHz, with little apparent dependence on density or 

n. This is somewhat surprising, as in a simple binary system, we would expect the 

coupling to vary linearly with density, due to the r~3 dependence of the dipole-dipole 

coupling. Likewise, we would expect the data to vary with n as the dipole moments 

vary as n2, and the dipole-dipole coupling by n4. 

4.3    Scaling of Resonance Widths 

In Chapter 3, we demonstrated that the widths of the dipole-dipole resonance varied 

as a function of the density of atoms in the initial state. As a part of our investigation 
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Initial np   ß (ea0)    //' (eao)    x (MHz) 
26 614.19 590.67 104.7 

27 668.03 642.34 123.8 

28 724.13 696.17 145.5 
29 782.49 752.16 169.8 
30 843.12 810.32 197.1 
31 906.00 870.64 227.6 
32 971.14 933.12 261.5 

Table 4.3: Dipole matrix elements and typical close atom couplings 
for the npz/2 + npz/2 —> ns + (n + l)s resonances. 

of the system of dipole-dipole interactions described by Eq. 4.1, 

npzß + np3/2 -^ns + (n + l)s, 

we measured the widths of these resonances as a function of the initial state density. 

We hope to ascertain n scaling from the data. We expect to see the widths of the 

resonances change as a function of n, if only due to the changes in the dipole matrix 

elements, shown in Table 4.3. It is clear from Fig. 4.2 that the energy level spacing 

for the 30p resonance is noticably larger than for the 26p resonance, lending credence 

to this notion. 

We chose to focus on two of the resonances, n = 26 and n = 30, for the mea- 

surements. Below n = 26, the resonances are at high enough fields that we expect to 

have problems resolving much change in the linewidth due to broadening from electric 
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field inhomogeneity. We have measured the field homogeneity to be AE/E = 0.003, 

which implies a minimum measurable width for n = 26 of ~ 68 MHz. Above n = 30, 

the resonance fields are sufficiently low to make excitation into the np3/2, \rrij\ = 3/2 

state extremely difficult. There are two reasons for this: first, there is less d-character 

in the np state at low electric field, and hence less oscillator strength for optical exci- 

tation into that state; second, we are unable to resolve the individual \rrij\ sublevels 

with the laser at the resonant fields for the systems above n = 30, which means we 

lose half of the population we produce into the wrong \rrij\ sublevel. We also focused 

on these levels to complement the population transfer data taken in Sec. 4.2. 

The experiment is essentially the same as that outlined in Sec. 3.3, with a few 

minor modifications. As in the last section, the initial state excitation is performed 

in an electric field. After allowing the atoms to interact for 3.5 //s, we terminated 

the interaction time with a 4.5 ns risetime pulse of 1.5 to 2 V/cm. At fields below 

resonance, it is possible we might see small amounts of population transfer to the 

final states as we cross the resonance, while at fields above the resonance, this pulse 

simply takes us further from resonance. This effect was most pronounced in the 26p 

data. We control the value of the electric field with a digital-to-analog converter and 

sweep it across the resonance, averaging the signal at each field over many shots of 

the laser. 

Representative data scans for the 30p resonance are shown in Fig. 4.8. The data 

are taken at relative densities of 0.659po and 0.357po for the top and bottom scans, 
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Figure 4.8: Two scans of the 30p resonance. These are taken at relative den- 
sities of 0.659/9o (top) and 0.357po (bottom). The dashed lines are the best 
fits to Lorentzian lineshapes, and have widths of 0.701 Volts (127.9 MHz) and 
0.517 Volts (94.3 MHz), respectively. The curves are offset for clarity, and the 
peak population transfers are 34±15% and 30±15%, respectively. 

respectively. The dashed lines indicate fits to a single Lorentzian lineshape 

f = Vo + 
a 

1 + (^) 

2' (4.17) 

where a is the area under the peak, Er is the resonant field, yo is an offset to 

account for the baseline signal level, and ß is the FWHM of the peak. We can convert 

ß into energy units using the differential slope of the energy levels, given by w' = 

(dw/dE)E=Ec = 182.4 MHz/(V/cm) for the 30p system, and w' = 204.5 MHz/(V/cm) 

for the 26p system. The fit values for ß in Fig. 4.8 are 0.701 (top) and 0.517 Volts, 

corresponding to energy widths of 127.9 and 94.3 MHz.  The lineshapes shown are 
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Figure 4.9: Density scaling of resonance widths for n = 26 (black circles) and 30 
(open circles). All densities are scaled relative to the highest measured density. 
The dashed line represents a linear fit to the 30p data, with ßo = 51.5 MHz, and 
a slope of 121 MHz/(unit relative density). The dotted line is a fit to the 26p 
data, with values 55.5 MHz and 79.3 MHz/(po), respectively. 

typical in that they are noticeably asymmetric. A possible explanation for this effect 

is that the experimentally produced molecular state changes character as we move 

across the resonance. Recall that two aligned dipoles will repel each other, while two 

anti-aligned dipoles attract. At fields below the resonance, we excite atoms to the 

rupulsive molecular state; avove the resonance, we excite to the attractive state. It is 

conceivable that the repulsive potential will see a small decrease in the rate at which 

the pp —> ss' transition occurs relative to the attractive potential. 

The results of all of the measurements made for n = 26 (black circles) and 30 

(open circles) are shown in Fig. 4.9. The data appear to scale linearly with density, 

as indicated by the dotted (n = 26) and dashed (n = 30) lines. The data points are 
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fit to a linear function 

ß = ßo + m(prd), (4.18) 

where prei is the relative density, and m is the slope of the line in units of MHz/(po)- 

The slopes and intercepts of these lines are given in Table 4.4, along with the mea- 

sured linewidths and estimated errors. There were two significant sources of error 

in measuring the linewidths, in addition to the statistical error due to the fitting 

procedure. First, for the n = 26 data, several of the resonance scans had noticeable 

population transfer on the low field side of the resonance. This essentially added a 

shoulder to the line, and increased the error in determining the linewidth for these 

data. Second, potential inaccuracies in the calculation of the relative density add to 

the error estimation. 

The linear scaling of the width with density is consistent with the expected scaling 

of all the couplings, but somewhat different than the scaling measured in Chap. 3. 

This difference could possibly be due to the stark contrast between the energy level 

pictures offered by our multi-atom interaction models for the two systems, or due to 

the improved measurement of the relative densities of the initial states in these data. 

4.4    On-Resonant Signal Devlopment 

We now turn to the development of the resonant signal as a function of the allowed 

interaction time. As we saw in Sec. 3.4.2, the timescale of the signal growth should tell 
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n        p (po)        ß (MHz)        ßp (MHz)    m (MHz/p0) 

LÖÖ 134.17 ± 1.50 
0.82 116.83 ± 0.75 

26 0.62 102.76 ± 1.25        33.0 102.6 
0.41 71.87 ± 1.50 

 0.21       69.76 ± 1.50  
0.83 148.90 ± 0.35 
0.71 135.80 ± 0.50 
0.66 127.88 ± 0.75 

30        0.54 119.53 ± 1.00        51.5 121.0 
0.49 121.43 ± 1.25 
0.36       94.33 ± 1.00 
0.14       63.65 ± 1.25 

Table 4.4:  Measured values for the resonance widths and density- 
scaling values for the 26p and 30p dipole-dipole interactions. 

us something about the dynamics of the dipole-dipole interaction. For the ss' —> pp' 

system we examined in Chap. 3, the difference between the rate of the resonant 

process and the always resonant "diffusion" processes caused a fast and slow timescale 

to emerge in the growth signal. Looking at the energy levels of the pp — ss' system 

shown in Fig. 4.2 and its Hamiltonian of Eq. 4.7, we would not expect to see this 

type of behavior, as the always resonant couplings are much closer in magnitude to 

the resonant coupling than the system of Chap 3. 

The data are taken in a manner similar to those in Sec. 3.4.2. The initial states 

were excited in an electric field corresponding to the peak position of the correspond- 

ing resonance measured in Sec. 4.3. At a variable time after the arrival of the laser 
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Figure 4.10: Two scans of the on-resonance signal development for the 30j> 
resonance. These are taken at relative densities of 0.659 (black triangles) and 
0.357 (open triangles). The lines are the best fits to an exponential growth 
rate, and have values of 3.489xl06 and 2.415xl06 s-1, respectively. The two 
curves are offset for clarity, and the peak population transfers are 35±15% and 
30±15%, respectively. 

into the interaction region, a 2 V/cm, 4.5 ns pulse was applied to take the system out 

of resonance. Data were collected and the signal corresponding to each interaction 

time averaged over many shots of the laser. Two example scans for the 30p resonant 

interaction are shown in Fig. 4.10. The black triangles are the data collected at a 

relative density of 0.659p0, while the open triangles are data taken at 0.357p0- The 

solid lines are fits to the function 

/ = yo + a(l-e-^*), (4.19) 
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Figure 4.11: Density scaling of on-resonance signal development for n = 26 
(black circles) and 30 (open circles). All densities are scaled relative to the 
highest measured density. 

where y0 is the baseline signal, or signal level at t = 0, a is the maximum signal 

height, and ß9 is the on-resonance signal growth rate. The fit values for /?.in Fig. 4.10 

are 3.489 xlO6 and 2.415 xlO6 s_1 for the top and bottom curve, respectively. Note 

that the data are well fit by a single exponential, rather than the two exponentials 

needed to fit the data in Chap. 3. 

The results for all of the measurements made for n = 26 and n = 30 are presented 

in Fig. 4.11 and Table 4.5. The data for n = 26 show a tendency towards higher 

growth rate as density is increased, while the data for n = 30 are constant. The best 

fit line for the n = 26 data has a slope of 5.21 xlO6 s-1/(p0), while the the average 

value for the n = 30 data is 2.56 MHz. The difference in the density scaling of these 
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n p(f>o) ßg (xlO
6 s-1) 

1.00 6.26 ± 100 
0.82 2.93 ± 100 

26 0.62 3.53 ± 100 
0.52 2.24 ± 125 

0.35 2.38 ± 150 
0.21 0.91 ± 150 

0.83 1.39 ± 100 
0.71 2.56 ± 100 
0.66 3.49 ± 100 

30 0.54 2.07 ± 125 
0.49 2.78 ± 125 
0.36 2.42 ± 150 
0.14 3.21 ± 150 

Table 4.5: Measured values for the on-resonant signal growth for the 
26p and SOp dipole-dipole interactions. 

values is puzzling, as is the similarity of the measured rates, and bears further study 

on intermediate values of n. The linear scaling of the ßg with density for the 26p 

resonance is consistent with the expected change in the binary couplings between 

atoms. 

4.5    Summary 

In this chapter, we have demonstrated the measurement of adiabatic population trans- 

fer in the quasistatic dipole-dipole interactions defined by Eq. 4.1, 

nPz/2 + np3/2 -> ns + (n + l)s. 
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We have shown how the application of a quasistatic multi-atom model to this sys- 

tem of resonance leads to a dramatic increase in the number of energy levels in the 

system. Finally, we further characterized this system of dipole-dipole interactions by 

measuring the density dependence of the linewidths and on-resonant growth rates for 

n = 26 and 30. 

The results of these experiments have been interesting. Our simple binary model of 

the interactions appears to predict the density scaling behavior for the linewidth and 

growth rate, but fails to provide us with insight as to the size of the measurements 

or insight into the adiabatic population transfer measurements. We see that the 

complex multi-atom model offers potential insight into the difference in behavior of 

the adiabatic population transfer measurements from the two-level assumption of 

Landau-Zener theory, but that more study is required to ascertain its role in the 

observed differences. 
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Chapter 5 

Tensor Polarizability of Rubidium 
d-states 

5.1 Introduction 

As discussed in Sect. 2.3, optical transitions are effectively Doppler-free in the MOT. 

Resonant dipole-dipole interactions are likewise narrowed over thermal measurements, 

as we have seen in the previous chapters. We can take advantage of this improved 

resolution to perform measurements of the fine structure splitting in resonances pre- 

viously temperature broadened, allowing us to investigate resonances at higher n and 

lower fields. 

5.2 Theory 

It has long been known that the energy levels of an atom are altered by an elec- 

tric field[71]. Simply viewed, the presence of an electric field will create an induced 
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dipole moment in the atom which alters the energy of the charge distribution as (c.f. 

Jackson[12]) 

i ij 3 

where pi is the induced dipole moment along the i axis, Qij is the quadrupole moment 

tensor, and Ei is the electric field along that axis. The induced dipole moment may 

be written as pi = aEi, while the quadrupole moment may be similarly parameterized 

as /?(VE), a constant value times the gradient of the field. Substituting these values 

back into Eq. 5.1, we see 

Wpol = W0- \a\E\2 - ^(VE)2 + • • • (5.2) 

To leading order, our classical calculation predicts the energy shift of a state should 

be quadratic in field. This is known as the quadratic Stark effect. 

A full quantum mechanical treatment of the problem for non-degenerate states 

involves expanding the Hamiltonian in even powers of the electric field. To leading 

order, the resulting Hamiltonian for a spin-orbit coupled atomic state in a weak 

electric field is 

IT_IT        ,   IT       ^2     <*2   23m|-J(J + l) 
H-HCoul + His-YE --E      J(2J_1)      +••■, (5.3) 

where i?coui represents the Coulomb interaction of the outer (valence) electron 
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with the remaining ionic core, Hfs represents the fine structure Hamiltonian, J is the 

total angular momentum quantum number, and rrij is its projection along the z-axis. 

The Coulomb interaction leads to the familiar result that the energy of each state of 

well-defined £ has an energy in zero field of 

^—2(^- (5'4) 

where n* = n — 5e is the effective principal quantum number, and 6g is the quantum 

defect of the / state. The fine structure term in Eq. 5.3 may be estimated in Rb by[72] 

HW> - ^f1- (5-5) n6 

The expansion above is only valid when the Stark shift of the state is smaller than the 

energy separation from the adjacent £ states. At fields somewhat below this point, 

however, terms proportional to E4 and E6 enter into the expansion. 

The two remaining terms in Eq. 5.3, «o and a.^, are the scalar and tensor polariz- 

abilities. The scalar polarizability shifts all rrij states by an equal amount, while the 

tensor polarizability shifts each rrij state by a different amount, splitting the energy 

level into different sublevels. Khadjavi et al. have derived a general expression for 

these parameters, which relates the polarizabilites to the energy differences between 

dipole-coupled states and angular factors (6-J symbols).   These equations may be 
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simplified by further assuming that the fine structure splittings are small compared 

to the separations from adjacent £ states, and that the radial matrix elements of the 

different spin-orbit states of a given £ are identical[73] When these assumptions are 

made, the polarizabilities ao(nJ) and ot2(nJ) for the ndj states of Rb are given in 

atomic units by 

a0(n3/2)=    a„(n5/2) =     ~P-lp (5.6) 

a2(n3/2)=   >2(n5/2) =   ^P + ^F. (5.7) 

The terms V and T represent the sums 

_   ^\jR(nd)R{n'p)rdr\2 

V ~ *?     wnd - wn,p     ' (5-8) 

_   ^|/fl(nd)iZ(n7)rdr|a 

^        Wnd-Wn,f        ' ^ 

where R(n£) denotes the radial wavefunction, and Wne the energy of the n£ state. 

Taking advantage of Eqs. 5.6 and 5.7, we can simplify notation such that 

a0(nd)=     a0(n3/2)=     a0(n5/2), (5.10) 

a2(nd) =   fa2(n3/2) =   a2(n5/2). (5.11) 

With a little thought, we can derive basic information about a0(nd) and a^nd). 
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The sums in Eqs. 5.8 and 5.9 are dominated by the states nearest the nd state in 

question. As the energy denominators rapidly increase, the radial matrix elements 

rapidly decrease with each term. Assuming we are not near a Cooper minimum, the 

sign of the polarizabilities will be determined by whether the closest states lie above or 

below the d state in energy. For Rb, the nd state lies just below the (n+l)p state and 

the nf state. Thus, the denominator of both Eqs. 5.8 and 5.9 will be negative, making 

a0(nd) > 0 and a2(nd) < 0. The task at hand is to measure tensor polarizabilities, 

oi2(nd) for a range of nd levels by measuring the splittings of the states. 

5.3    Experimental Discussion 

We choose to measure the splittings between different \mj\ levels in the nd state of 

Rb by considering the resonant dipole-dipole interaction 

nd5/2 + nd5/2 -> (n - l)k + (n + l)p3/2, (5.12) 

for n = 23 to 33. We excite the atoms into the intitial state using a single Littman 

style dye laser, as outlined in Sec. 2.3. The excitation takes place in an electric field, 

which is varied by a digital-to-analog converter(DAC), and results collected for each 

set of conditions. Some of the data acquistion made use of the computer program 

Salsa[6], which averages the entire oscilloscope trace and allows for direct observation 
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Figure 5.1: Series of dipole-dipole interaction resonances occuring between the 
\m,j\ = 1/2 sublevels of the 24d and 25p states. The upper set of curves are the 
molecular states (23, k + 25p) for k = 3 to 10. The k = 3 state is the lowest of 
that set of curves. The single curve is represents the molecular state (24d+ 24d). 

of variations in the field ionization signal. 

If we look at only the \m,j\ = 1/2 sublevels of the states in Eq. 5.12, we get a series 

of resonant interactions corresponding to the different (n—1)k manifold states. One of 

these series is shown in Fig. 5.1. The energies of the composite, or "molecular", states 

formed by an ordered direct product of the wavefunctions of the initial or final state 

atoms. This molecular wavefunction is still a solution to the Schrödinger equation, 

with an energy equal to the combined energy of the two initial state atoms, or the 

two final state atoms. Fig. 5.1 shows a series of these states as a function of electric 

field. The resonances occur at the curve crossings. The energy levels were calculated 
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using the method outlined by Zimmerman[74], in which the Hamiltonian matrix is 

constructed using the zero-field states as the basis states. Thus the zero-field energies 

are the diagonal terms of the matrix and the off-diagonal elements are the dipole 

coupling terms. The off-diagonal terms are of the form (nl\r cos 6\n'7'); the angular 

integrals may be evaluated analytically and the radial integrals numerically using the 

Numerov algorithm. Diagonalizing the matrix determines the energy eigenvalues for 

a given electric field. 

Now let us examine what happens to an individual resonance as we consider the 

fine structure splittings of the two d states and the p state. The p3/2 state will have two 

fine structure sublevels, \rrij\ = 1/2 and \m,j\ = 3/2. Were this the only splitting, we 

would expect to see a doublet for each resonance. However, we know each 0^5/2 state 

will have three possible sublevels: \rrij\ = 1/2, 3/2, and 5/2. The initial molecular 

state should then have six possible non-degenerate sublevels, increasing the number 

of resonances to twelve for each manifold state. 

If we recall Fig. 2.5 and some dipole selection rules for optical transitions in an 

electric field, we can limit the number of sublevels we populate initially. In an electric 

field, polarization of the laser parallel to the electric field leads to transitions with 

Arrij = 0, while polarization of the laser orthogonal to the field can only excite 

transitions with Arrij = ±1[75]. The trapping lasers which excite the ground state 

5s atoms to the bps/2 state are circularly polarized, and therefore have polarization 

components both parallel and perpendicular to the electric field.   Thus both \m,j\ 
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Figure 5.2: Resonances for the system shown in Fig. 5.1 for k = 9. Shown are 
the fine structure sublevels due to the \rrij\ splitting in the 24d and 25p states 
which form a multiplet structure for the resonance. 

sublevels of the 5^3/2 state will be populated. The Rydberg laser, however, is linearly 

polarized, and enters the chamber propagating in a direction orthogonal to the electric 

field in such a way that we may choose its polarization relative to the field. By 

polarizing the laser parallel to the field, we see from the selection rules above that the 

laser can only excite atoms into the \m,j\ = 1/2 and 3/2 sublevels of the nd^ß state, 

or into the three molecular states \rrij\ = 1/2,1/2, \m,j\ = 1/2,3/2, or \m,j\ — 3/2,3/2. 

Remembering that we have no control over the final state, we know we should see a 

splitting in the final np3/2 state. This means there should be six possible resonances 

for each manifold state, two sets of three, as seen in Fig. 5.2. Observing a set of 

resonances in a room temperature (300K) collision will show a set of four resonance 
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Figure 5.3: Observed resonances for the 24d(|mj|=|,§) + 24d(|m.j|=|,§) —> 
23,9 + 25p(|m_7|=|,|) dipole dipole interaction. The lines below the data show 
the resonances which share the same final state which are used to measure the 
splittings in the 24d fine structure sublevels. 

peaks consistent with this picture, as observed by Veale[72]. 

As discussed in the previous chapters, the linewidths of energy resonant dipole- 

dipole interactions are substantially reduced in a MOT. We would expect, then, to 

be able to resolve the six individual peaks. 

As seen in Fig. 5.3, there are more than 15 individual peaks that we can see. This 

apparent increase in structure is due to our earlier neglect of the \m,j\ sublevels of the 

23,9 manifold state. The sublevel splitting of the manifold states is rather significant 

in Rb. In fact, the \rrij\ = 5/2 manifold states effectively separate into two separate 
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Figure 5.4: Molecular states for the system shown in Fig. 5.1 for k = 9. The 
three solid, nearly horizontal lines are the initial states, while the final states 
have the large negative slope. Shown are the fine structure sublevels due to the 
\m,j\ splitting in all the atomic states, which form a more complicated multiplet 
structure for the resonance than seen in Fig. 5.2 The final states are grouped by 
line type as follows: solid line, p, \rrij\ = 1/2 + spin up Stark state; short dashed 
line, p, \rrij\ — 3/2 + spin up Stark state; dotted line, p, \rrij\ = 1/2 + spin down 
Stark state; long dashed line, p, \rrij\ = 3/2 + spin down Stark state; 

manifolds: one of states with \mi\ = 3 which behaves essentially hydrogenic, and one 

with states of \mi\ — 2 which has a larger core coupling and displays the familiar 

anticrossing behavior[74.]. Including the fine structure states of the 23,9 manifold 

state should drastically increase the number of possible resonances. 

Looking at Fig. 5.4, we clearly see that inclusion of these sublevels increases the 

number of potential resonances to 18. The remaining resonances qualitatively agree 

with the data given the instrumental linewidth, which does not allow us to resolve 
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peaks closer than about 0.1 V/cm. The stick structure at the bottom of Fig. 5.3 

identifies the first three of the six observed triplets with the same final states. Some 

resonances are identified with two triplets, in which case they were not used in cal- 

culating the polarizability. 

Given that we have identified the peaks in the multiplet as resulting from fine 

structure splitting in the initial and final states, we now can measure the splittings 

between the \mj\ sublevels of the nd states. 

5.4    Data Analysis 

Several manifold resonances were recorded for each n investigated. Measuring the 

peak separations for states of known common final states allowed us to determine the 

|m^ | splitting at a given electric field. Using Eq. 5.3, it is apparent that a measured 

splitting, AE between the \rrij\ = 1/2 + 1/2 and \rrij\ = 1/2 + 3/2 states relates to 

a2(n<i) by 

a2 = T]Ej*> (513) 

The crux of the problem is determining how to convert the measured field splitting 

into an energy splitting, which is essentially an algebra problem. The energy of the 

final molecular state at a field E is given by W(Ptk)(E) = W(ptk)(Q) — kE — ap/2E2, 

where ap is the total polarizability of the np sublevel which is in the final state. The 

difference in energy between the field of the first peak at a field E0 and the second 
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peak, at a field E0 + AE, is given by 

A%) = -(A; + apEo)AE - -f(AE)2, (5.14) 

To find the splitting at E0, we must subtract out the change in energy change of the 

second nd sublevel. This energy difference is given by 

AW{nd) = -2E0(a0 + ^)AE - (a0 + ^-){AEf. (5.15) 

We see that it is impossible to solve for AW = AWfak) — AW(nd) without knowing 

the value of a2, as it is given to leading order in AE by 

AW = -(A; + apE0 - 2a0E0)AE - a2E0AE + Ö[(AE)2]. (5.16) 

We note that the a2 term is much smaller than the remaining terms, in fact, it is 

generally less 5% of the other values. We solve for the energy difference by ignoring 

the term proportional to a2, and adjusting our error estimate to account for this 

systematic error in the measurement process. We then calculate a2 using Eq. 5.13. 

We can calculate W'k by diagonalization of the Stark matrix as described above. 

We then make a series of measurements for each n, k combination, and average over 

the measurements to determine the value for a2(nd). The number of measurements 

available decreases the statistical error bars significantly, to typically less than 5% of 
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Figure 5.5: Measured energy splittings between \rrij\ sublevels for resonances 
with the 24d state. The line is a linear fit through the data points with slope 
0.129 MHz/(V/cm)2. 

the measured value, with the highest nd measurements typically having the largest 

statistical errors. This is due to the limitation that we measure the splittings in 

fields such that the fine structure splitting is small. We can ensure that we oper- 

ate in this regime by verifying that the energy splitting is quadratic in the electric 

field. Figure 5.5 shows that this holds, using data from the 24c? measurements as an 

example. 
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Figure 5.6: Measured values for 0:2(nd) with errors. Also shown are the values 
to a least-squares fit to the data (solid line) and a numerical calculation using 
Eq. 5.6 (dashed line). Open circles are measurements from Veale[72] with error 
bars as indicated. Open squares are measurements from 0'Sullivan[76]. 



5.5 Results 122 

0.3912 0.373(30) 
0.5411 0.423(274) 

0.7376 0.710(40) 
0.9923 1.073(537) 

1.3190 

1.7330 

2.2550 

2.9050 

3.7100 
4.6990 
5.9060 

nd a2 (measured) a2 (fit)    a2 (calculated)    Prom Ref. [72]    From Ref. [76] 

23 0.3338 ± 0.0177 0.3324 ~ 
24 0.4300 ± 0.0226 0.4559 
25 0.6800 ± 0.0348 0.6169 0.7376 0.710(40) 0.81(1) 
26 0.7475 ± 0.0414 0.8243 
27 1.1187 ± 0.0889 1.0889 
28 1.5102 ± 0.0980 1.4232 
29 1.9018 ± 0.1179 1.8417 
30 2.2833 ± 0.1725 2.3617 2.9050 3.2(1) 
31 3.4849 ± 0.2441 3.0027 
32 3.8364 ± 0.2699 3.7874 
33 4.0802 ± 0.3292 4.7417 

Table 5.1: Measured values for a2(nd) with errors. Also shown 
are the values to a least-squares fit to the data and a numerical 
calculation using Eq. 5.6, as well as values from Refs. [72] and [76]. 

5.5    Results 

The results of the experiment are presented in Table 5.1 and Fig. 5.6. From Eq. 5.6, 

we expect that the polarizability of a Rydberg state will scale as (n2)2/(n~3) = n7. 

We performed a least-squares fit of the data to the function f(n) = a ■ (n*)7, where 

n* = n - Si = n - 1.347157. The fit value for a was 0.1415 Hz/(V/cm)2. 

The data show a consistent offset from measurements by Veale[72] and O'Sullivan 

and Stoicheff[76], who used a Doppler-free two-photon spectroscopic method, as 

shown in Fig. 5.6. Reported values from this study are also presented in Table 5.1. 

This discrepancy could be due to the dependance of the measured energy splitting 

on the accuracy of the slopes of the final atomic states. 



5.6 Summary 123 

The errors quoted include estimates of several sources of potential error. The first 

is error caused by inaccuracies in determining the positions of the splittings, such 

as misidentifying a fine structure peak or poor determination of the peak center. It 

also includes error caused by not accounting for the differential slope of the ^5/2 \m,j\ 

sublevels. Finally, it includes the limitation inherent making measurements at lower 

and lower fields for higher n resonances, such as an inability to resolve all of the 

fine-structure peaks at the lower field resonances. 

5.6    Summary 

Measurements of the energy splittings of the nd5/2 states of Rb have been made 

in a MOT, taking advantage of its improved resolution of the narrow dipole-dipole 

interaction resonances. Data show a consistent offset of 15 to 35measurements of 

O'Sullivan and Stoicheff. Further study should provide determination of the source 

of this offset. 
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Chapter 6 

Summary and Future Directions 

We have presented the results of a series of experiments investigating resonant dipole- 

dipole interactions between Rydberg atoms produced in a magneto-optical trap. The 

extremely low kinetic energies of the atoms implies that during the time of these 

interactions, they move only a small fraction of their average spacing. As such, we 

considered the processes to be quasistatic in nature and treated the individual atoms 

as frozen in space. The long range of the dipole-dipole interaction prompted us to 

consider the possibility that multiple atoms are involved in the resonance process. 

The inclusion of these additional atoms and their corresponding couplings introduced 

significant complexity into our characterization of the system, and appears to cause 

such observed properties as the broadening of the resonance lines as the density of 

atoms is increased. We demonstrated measurement of adiabatic population transfer 

in a series of dipole-dipole interactions, and attempted to characterize the nature of 

these resonances more completely than had been done to date. These data indicate 

more clearly the complex, multi-atom nature of the resonances we have observed, and 
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point to the necessity of further experiments and theoretical work to understand the 

details of the interactions. 

Several intriguing experiments come immediately to mind. The asymmetry in 

the lineshapes of the pp —> ss' resonances indicate that one might be able to take 

advantage of the differing characteristics of the attractive and repulsive molecular 

states. In essence, one should be able to controllably reduce the collision rate by 

selectively populating one state or the other. Using radiofrequency fields, one should 

be able to resonantly switch between the attractive and repulsive states and measure 

the difference in collision rates. Alternatively, one can run the resonance process 

we studied in reverse, i.e. compare the properties of the pp —> ss' interaction with 

the ss' —> pp resonant interaction. A further, but much more difficult, experimental 

possibility entails observing these interactions in an optical lattice. This should have 

the effect of binning the interatomic spacings in such a manner as to possibly allow 

one to discern the details of the interactions we have studied. 
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