
Naval Research Laboratory
Washington, DC 20375-5320

Mechanical Verification of
Timed Automata: A Case Study

MYLA ARCHER

CONSTANCE L. HEITMEYER

Center for High Assurance Computer Systems
Information Technology Division

December 31, 1998

Approved for public release; distribution unlimited.

NRL/MR/5540--98-8180

(pT;.o QüLI^IZ msmmim 3

CD

to

o
00

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank! 2. REPORT DATE

December 31, 1998

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

Mechanical Verification of Timed Automata: A Case Study

5. FUNDING NUMBERS

PE-61153N15

6. AUTHOR(S)

Myla Archer and Constance Heitmeyer

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Research Laboratory
Washington, DC 20375-5320

8. PERFORMING ORGANIZATION
REPORT NUMBER

NRL/MR/5540-98-8180

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research, Code 311, Ralph Wächter
800 North Quincy Street
Arlington, VA 22217-5660

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

A

13. ABSTRACT {Maximum 200 words)

This report describes the results of a case study on the feasibility of developing and applying mechanical methods, based on
the proof system PVS, to prove propositions about real-time systems specified in the Lynch-Vaandrager timed automata model.
In using automated provers to prove propositions about systems described by a specific mathematical model, both the proofs and
the proof process can be simplified by exploiting the special properties of the mathematical model. Because both specifications
and methods of reasoning about them tend to be repetitive, the use of a standard template for specifications, accompanied by
repetitive, the use of a standard template for specifications, accompanied by standard shared theories and standard proof
strategies or tactics, if often feasible. Presented are the PVS specification of three theories that underlie the timed automata
model, a template for specifying timed automata models in PVS, and an example of its instantiation. Both hand proofs and the
corresponding PVS proofs of two propositions are provided to illustrate how these can be made parallel at different degrees of
granularity. Our experience in applying PVS to specify and reason about real-time systems modeled as timed automata is also
discussed. The methods for reasoning about timed automata in PVS developed in the study have evolved into a system called
TAME (Timed Automata Modeling Environment). A summary of recent developments regarding TAME is provided. A shorter
version of the report was presented at the 1997 Real-Time Applications Symposium.

14. SUBJECT TERMS

Real-time systems Automated deduction Theorem proving
Verification Formal methods Mechanical verification

15. NUMBER OF PAGES

78

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89I

Prescribed by ANSI Std 239-18

298-102

Contents

1 Introduction 1

2 Background 2
2.1 The Generalized Railroad Crossing Problem 2
2.2 The Timed Automata Model 2
2.3 PVS 3

3 Underlying Theories for Timed Automata 4
3.1 The Theory machine 4
3.2 The Theory states 5
3.3 The Theory time_thy 5

4 A Template for Timed Automata Models 6
4.1 What the Template Looks Like 6
4.2 Instantiating the Template 8

5 Two Examples of Proofs 10
5.1 Proof of the Induction Principle 10
5.2 Proof of the Safety Property 13

6 Summary of Results 15
6.1 Using Template Specifications 15
6.2 Repeated Patterns in Timed Automaton Proofs 16
6.3 Repeated Patterns in Using PVS 17
6.4 Expressing and Proving Real-Time Properties 19

7 Related Work 19

8 Conclusions 20

9 TAME: Recent Developments 21

A Appendix. The Theory atexecs: Admissible Timed Executions 25

B Appendix. Specifying the GRC Timed Automata Solution in PVS 27
B.l Appendix. The Full Theory of Trains in PVS 28
B.2 Appendix. Representing the Automaton AxSpec in PVS 30
B.3 Appendix. The Timed Automaton OpSpec in PVS: Version 1 33
B.4 Appendix. The Timed Automaton Systlmpl in PVS 41

C Appendix. PVS Strategies for Timed Automata 45

D Appendix. PVS Proofs of State Invariants 56

E Appendix. Lessons from the PVS Proof of Lemma E.l 61
E.l The PVS Proof of Lemma E.l with Annotations 61
E.2 Potential New Strategies for Lemma E.l from PVS Enhancements 67

F Appendix. A Second PVS Template for Timed Automata 70
F.l Appendix. The Theory timed^auto_decls 70
F.2 Appendix. The Timed Automaton OpSpec in PVS: Version 2 72

m

List of Figures

1 The Theory machine 4
2 The Theory states 5
3 The Theory time_thy 6
4 A Timed Automaton Template 7
5 The Timed Automaton Trains 8
6 Instantiating the Template 9
7 A Detailed Hand Proof 10
8 PVS Translation of a Detailed Hand Proof 11
9 The PVS Proof Buffer 12
10 A Translation Using GRIND 13
11 Translating the Proof of the Safety Property 14
12 Updated TAME Proof of the Safety Property 22

MECHANICAL VERIFICATION OF TIMED AUTOMATA: A CASE STUDY

1 Introduction

Researchers have proposed many innovative formal methods for developing real-time systems [14]. Such
methods are intended to give system developers and customers greater confidence that real-time systems
satisfy their requirements, especially their critical requirements. However, applying formal methods to
practical systems raises a number of challenges:

1. How can the artifacts produced in applying formal methods (e.g., formal descriptions, formal proofs) be
made understandable to the developers?

2. To what extent can software developers use the formal methods, including formal proof methods?

3. What kinds of tools can aid developers in applying formal methods?

The purpose of this report is to describe the results of a case study in which these issues were investigated.
In particular, we are interested in how a mechanical proof system can support formal reasoning about real-
time systems using a specific mathematical model. By validating human proofs of timing properties, such a
system can increase confidence that a given specification satisfies critical properties of interest.

In the case study, we applied the mechanical proof system PVS [31, 33] to a solution of the Generalized
Railroad Crossing (GRC) problem [16, 12, 13]. The solution is based on the Lynch-Vaandrager timed
automata model [28, 27] and uses invariant and simulation mapping techniques. Our approach, which
should generalize to proving properties about real-time systems specified in any model, was to develop a
template, containing a set of common theories, a common structure, and specialized proof strategies, useful
in constructing timed automata models and proving properties about them. To specify a particular timed
automata model and its properties, the user fills in the template. The user then may use the proof system
to verify that the model satisfies the properties. This approach simplifies both the specification process and
the proof process because users can reason in a specialized domain, the timed automata model; they need
not master the base logic and the user interface of the full automatic proof system. The techniques we
have developed using this approach have become the basis for a tool TAME (Timed Automata Modeling
Environment), which we are continuing to develop.

Like other approaches to formal reasoning about real-time systems, such as SMV [29, 8], HYTECH [18],
and COSPAN [19], our approach is based on a formal automata model. Moreover, like these other approaches,
our methods can be used to prove properties of particular automata and, like COSPAN, to prove simulations
between automata. However, our approach is different from other approaches in two major ways. First, the
properties we prove are expressed in a standard logic with universal and existential quantification. This is
in contrast to most other approaches, where the properties to be proved are expressed either in a temporal
logic, such as CTL or ICTL, or in terms of automata. Second, unlike other automata-based methods, the
generation of proofs in our method is not completely automatic. Rather, our method supports the checking
of human-developed proofs of the properties based on deductive reasoning. By this means, and by providing
templates for developing specifications, we largely eliminate the need for ingenuity in expressing a problem
using the special notations and special logics of a verification system.

Requiring some interaction with an automatic theorem prover does demand a higher level of sophistication
from the user. But by supporting reasoning about automata at a high level of abstraction, we make it possible
to prove more powerful results than can be done with tools requiring more concrete descriptions of automata
and avoid the state explosion problem inherent in other automata-based approaches.

In our approach, each mechanically generated proof closely follows a corresponding English language
proof. Such a proof is more likely to be understandable and convincing to developers familiar with the
specialized timed automata domain and comfortable with English language proofs. Our study identified
proof techniques, such as induction, that were most useful in proofs about timed automata models. We
designed PVS strategies that automatically do the standard parts of proofs having a standard structure. A
major goal was to develop PVS versions of hand proofs that could be understood and, in some cases, even
produced using appropriate tools, by domain experts who are able to understand hand proofs but who are
not PVS experts.

In Section 2, the report reviews the GRC benchmark, the timed automata model, and PVS. Section 3
presents three theories that underlie the timed automata model and gives their representation in PVS. One

NRL/MR/5546-96-7845 was not printed and was updated and replaced with this report.
Manuscript approved May 19, 1998.

1

of these theories, the theory machine, contains as a theorem the induction principle used to prove state
invariants in the timed automata model. Section 4 presents a template for defining timed automata models
in PVS and an example of how the template can be instantiated to specify the Trains component of the
timed automata solution of the GRC. Section 5 presents a hand proof and the corresponding PVS proof of
the induction principle given in the theory machine. To illustrate how our approach can be used to check
a complex proof, Section 5 presents the hand proof of the Safety Property (see the GRC problem statement
below) along with the corresponding PVS proof. Sections 6, 7 and 8 present major results of our case study,
a discussion of related work, and some early conclusions. Section 9 gives an overview of recent developments
regarding TAME.

Additional detail on the work done in the study is provided in the appendices. Appendix A presents
the theory atexecs of admissible timed executions of timed automata, the fourth underlying theory for the
timed automata model. Appendix B contains the full specifications of four example timed automata from
[13, 12]. Appendix C presents the PVS strategies that were used in proofs of properties of the example timed
automata. The full set of proofs of state invariants of the example timed automata is shown in Appendix D.
An example ad hoc proof of a property of admissible timed executions of timed automata, together with a
discussion of feasibility of better PVS strategies to support it and similar proofs, is presented in Appendix E.
Appendix F exhibits an alternative timed automaton template with an example of its use.

A briefer version of this report can be found in [1].

2 Background

2.1 The Generalized Railroad Crossing Problem

The purpose of the GRC problem is to provide a benchmark for comparing different real-time formalisms.
Although it is a "toy" problem, the different specifications and solutions of the GRC benchmark provide
many insights into the strengths and weaknesses of different formal approaches for representing and reasoning
about real-time systems. The problem statement is as follows:

The system to be developed operates a gate at a railroad crossing. The railroad crossing I lies in a region
of interest R, i.e., I C R. A set of trains travel through R on multiple tracks in both directions. A sensor
system determines when each train enters and exits region R. To describe the system formally, we define a
gate function g(t) G [0, 90], where g(t) = 0 means the gate is down and g(t) = 90 means the gate is up. We
define a set {A,} of occupancy intervals, where each occupancy interval is a time interval during which one
or more trains are in /. The ith occupancy interval is represented as A, = [r,-, vi\, where r; is the time of the
ith entry of a train into the crossing when no other train is in the crossing and vi is the first time since r,
that no train is in the crossing (i.e., the train that entered at n has exited, as have any trains that entered
the crossing after r,).

Given two constants fi and £2, £1 > 0, £2 > 0, the problem is to develop a system to operate the crossing
gate that satisfies the following two properties:

Safety Property: t € U;Aj =>• g(t) = 0 (Gate is down during all occupancy intervals.)
Utility Property: t 0 U;[i"i — £1, Vi + £2] => g(t) = 90 (Gate is up when no train is in I.)

2.2 The Timed Automata Model

The formal model used in [12,13] to specify the GRC problem and to develop and verify a solution represents
both the computer system and its environment as timed automata, according to the definitions of Lynch and
Vaandrager [28, 27]. A timed automaton is a very general automaton, i.e., a labeled transition system.
It need not be finite-state: for example, the state can contain real-valued information such as the current
time or the position of a train or crossing gate. This makes timed automata suitable for modeling not only
computer systems but also real-world entities such as trains and gates. The timed automata model describes
a system as a set of timed automata, interacting by means of common actions. In solving the GRC problem
using timed automata, separate timed automata represent the trains, the gate, and the computer system; the
common actions are sensors reporting the arrival of trains and actuators controlling the raising and lowering
of the gate. Below, we define the special case of timed automata, based on the definitions in [12, 13], which
we used in our case study.

Timed Automata. A timed automaton A consists of five components:

• states(A) is a (finite or infinite) set of states.

• start(A) C states(A) is a nonempty (finite or infinite) set of start states.

A mapping now from states(A) to R-°, the non-negative real numbers. •

• acts(A) is a set of actions (or events), which include special time-passage actions v(At), where At is a positive
real number, and non-time-passage actions, classified as input and output actions, which are visible, and internal
actions.

• steps(A) : states(A) x acts(A) -> states(A) is a partial function that defines the possible steps (i.e., transitions).

This is a restricted definition that requires steps(A) to be a function. The most general definition of
timed automata permits steps(A) to be an arbitrary relation. Straightforward modifications to our approach
would handle the general case.

Timed Executions and Reachability. A trajectory is either a single state or a continuous series of states
connected by time passage events. A timed execution fragment is a finite or infinite alternating sequence
a = wo7riWiir2u)2 • • •■, where each Wj is a trajectory and each TTJ is a non-time-passage action that "connects"
the final state s of the preceding trajectory Wj-i with the initial state s' of the following trajectory Wj. A
timed execution is a timed execution fragment in which the initial state of the first trajectory is a start state.
A state of a timed automaton is defined to be reachable if it is the final state of the final trajectory in some
finite timed execution of the automaton.

A timed execution is admissible if the total amount of time-passage is infinity. We use the notation
atexecs(A) to represent the set of admissible timed executions of timed automaton A. The notion of ad-
missible timed executions is important in expressing the Utility Property (and other properties defined over
time intervals rather than time points) and in defining simulation relations between timed automata.

MMT Automata. An MMT automaton [30, 25, 24] is a special case of the general Lynch-Vaandrager
timed automata model, whose states can be represented as having a "basic" part representing the state of
an underlying I/O automaton [26], a current time component now, and first and last components that define
lower and upper time bounds on each action.

Invariants and Simulation Mappings. An invariant of a timed automaton is any property that is true
of all reachable states, or equivalently, any set of states that contains all the reachable states. A simulation
mapping [28, 27, 24] relates the states of one timed automaton A to the states of another timed automaton B
with the same visible actions in such a way that the visible actions and their timings in any admissible timed
execution of A correspond to those in some admissible timed execution of B. The existence of a simulation
mapping from A to B thus implies that each visible behavior of automaton A is contained in the set of
visible behaviors of automaton B. Proofs of both state invariants and simulation mappings have a standard
structure with a base case involving start states and a case for each possible action.

2.3 PVS

The following description of PVS is taken from [35]:

PVS (Prototype Verification System) [33] is an environment for specification and verification that has been
developed at SRI International's Computer Science Laboratory. In comparison to other widely used verifi-
cation systems, such as HOL [11] and the Boyer-Moore prover [7], the distinguishing characteristic of PVS
is that it supports both a highly expressive specification language and a very effective interactive theorem
prover in which most of the low-level proof steps are automated. The system consists of a specification lan-
guage, a parser, a type checker, and an interactive proof checker. The PVS specification language is based on
higher-order logic with a richly expressive type system so that a number of semantic errors in specification
can be caught by the type checker. The PVS prover consists of a powerful collection of inference steps that
can be used to reduce a proof goal to simpler subgoals that can be discharged automatically by the primitive
proof steps of the prover. The primitive proof steps involve, among other things, the use of arithmetic and
equality decision procedures, automatic rewriting, and BDD-based boolean simplification.

machine [states, actions: TYPE,
enabled: [actions,states -> bool],
trans: [actions,states -> states],
start: [states -> bool]]: THEORY

BEGIN
s,sl: VAR states
a: VAR actions
n,nl: VARnat

Inv: VAR [states -> bool];

reachable_hidden(s,n): RECURSIVE bool =
IF n = 0 THEN start(s)
ELSE (EXISTS a, s 1: reachable_hidden(s 1 ,n - 1) & enabled(a,s 1) & s = trans(a,s 1))
ENDIF
MEASURE n

sr reachable(s): bool = (EXISTS n: reachable_hidden(s,n))

base(Inv): bool = (FORALL s: start(s) => Inv(s))

inductstep(Inv): bool =
(FORALL s, a: reachable(s) & Inv(s) & enabled(a,s) => Inv(trans(a,s)))

inductthm(Inv): bool = base(Inv) & inductstep(Inv) => (FORALL s: reachable(s) => Inv(s))

machine_induct: THEOREM (FORALL Inv: inductthm(Inv))

END machine

Figure 1: The Theory machine.

A major goal of our study was to evaluate P VS as a basis for suitable theorem proving support for establishing
properties of specifications in our specialized domain. Our experience with PVS is summarized in Section 8.

3 Underlying Theories for Timed Automata

Our approach to specifying timed automata in PVS is to use a template that defines a set of underlying
theories and provides a standard framework and standard names and definitions for each specification. The
standard framework can be defined in more than one way. In Section 6, we discuss the tradeoffs in selecting
a framework. Below, we introduce three underlying theories shared by all timed automata: the theory
machine, which contains as a theorem the induction principle upon which we base our specialized induction
strategies; the theory states, which defines the components of states; and the theory time_thy, which uses
the extended non-negative real numbers to represent time values.1

3.1 The Theory machine
Figure 1 shows the PVS specification of the theory machine. This theory, which defines the meaning of
mathematical induction in the context of the timed automata model, is the core of our general PVS strategy
for performing the standard steps of state invariant proofs. It is also of interest because Section 5 uses
the proof of the induction principle as an example of how a hand proof can be translated into PVS. The
theory consists of the induction principle along with the definitions needed for its statement. Most of these
definitions are straightforward.

The theory has the five parameters needed to define a timed automaton: states, the automaton's states;
actions, its input alphabet; start, its start states; enabled, the guards on state transitions; and trans, the
automaton's transition function. The two parameters states and actions are simply type parameters. The

'An additional theory, atexecs, which we do not need for the examples in Section 5, defines atexecs(A), the admissible
timed traces of automaton A. We present this theory in Appendix A.

states [actions, MMTstates, time : TYPE, fin_pred : [time -> bool]]: THEORY

BEGIN
states: TYPE = [# basic: MMTstates, now: (fin_pred), first, last: [actions -> time] #]

END states

Figure 2: The Theory states.

actual parameters in an instantiation of the template are the states and actions types (i.e., the sets of possible
values of states and actions) of some particular timed automaton. The parameter start is instantiated by
a predicate on states true only for start states, and the parameter enabled by a predicate on actions and
states true only when the action is enabled in the state. The parameter trans is instantiated by a function
that maps an action and a state to a new state. Together, enabled and trans define the steps of the timed
automaton.

The body of the theory describes six predicates used to define the induction principle. The first predicate
Inv represents an arbitrary predicate (i.e., an invariant) on states. The second predicate reachable-hidden is
true of a state s and natural number n if s is reachable from a start state in n steps. The MEASURE clause
of this definition permits PVS to verify during type checking that the predicate reachable-hidden is always
well defined, i.e., that its (recursive) definition terminates on all arguments. The predicate reachable is true
of a state s if reachable-hidden is true for s and some natural number n. (We have proved in PVS that this
definition of reachability is equivalent to the definition given in Section 2.2.2) The next two predicates define
the two parts of the induction principle: base, which states that the given invariant holds for the base case,
and inductstep, which states that the invariant is preserved by every enabled action on a reachable state.
Finally, the predicate inductthm on invariants states that an invariant is true if it holds in the base case and
is preserved in the induction step.

3.2 The Theory states
Figure 2 gives the PVS specification of the very simple theory states. The main purpose of this theory is to
define a standard record structure and standard temporal information for the states of an automaton. The
theory has four parameters. The first three, actions, MMTstates, and time, are type parameters. The fourth
parameter finjpred is a predicate that is true if its argument, a time value, is finite.

The body of the theory contains a single statement defining the record structure of a state. The theory
requires that a state contain a basic component, a time component, and components first and last representing
time restrictions on specified actions. In PVS, the symbols "[#•-•#]" are record brackets. The basic
component contains all of the nontimed information in the state along with any. nonstandard absolute time
markers. The now component is an element of type time satisfying the predicate finjpred (that is, now is
finite). The first and last components specify the upper and lower time bounds on each action.3

Both the theory machine and the theory states have parameters that are functions. The ability to define
a theory with function parameters and to define states with components that are functions exists because
PVS has a higher-order logic. In general, using a higher-order logic facilitates the creation of template
specifications. Section 8 describes other advantages of a higher-order logic.

3.3 The Theory time_thy
Figure 3 gives the PVS specification of the data type time and the theory time_thy. In a timed automaton,
each state has an associated time in R-°. However, in the time bounds associated with actions, infinity is
allowed as a time value to represent the case when no final deadline on an action exists. Thus, to represent
time in our template, we require the union type, R-° U {oo}.

2See Lemma reachability in the theory opspec-atexecs_aux in Appendix B.3.
3Although the type states is designed to make it easy to express an MMT automaton as a timed automaton, it is general

enough for any timed automaton.

time: DATATYPE

BEGIN

fintime(dur:{r:real|r>=0}): fintime?
infinity: inftime?

END time

time_thy: THEORY

BEGIN

IMPORTING time

zero: time = fintime(O);

<= (tl,t2:time):bool = IF fintime?(tl) & fintime?(t2) THEN dur(tl) <= dur(t2)
ELSE inftime?(t2) ENDIF;

>= (tl,t2:time):bool = IF fintime?(tl) & fintime?(t2) THEN dur(tl) >= dur(t2)
ELSE inftime?(tl) ENDIF;

< (tl,t2:time):bool = IF fintime?(tl) & fintime?(t2) THEN dur(tl) < dur(t2)
ELSE NOT(inftime?(tl)) & inftime?(t2) ENDIF;

> (tl,t2:time):bool = IF fintime?(tl) & fintime?(t2) THEN dur(tl) > dur(t2)
ELSE NOT(inftime?(t2)) & inftime?(tl) ENDIF;

+ (tl,t2:time):time = IF fintime?(tl) & fintime?(t2) THEN fintime(dur(tl) + dur(t2))
ELSE infinity ENDIF;

- (tl:time, t2:(fintime?)):time =
IF fintime?(tl) & dur(tl) >= dur(t2)THEN fintime(dur(tl) -dur(t2))
ELSE infinity ENDIF;

END time_thy

Figure 3: The Theory time_thy and the Data Type time.

Like many other strongly typed languages, the PVS specification language represents union types using
abstract data type definitions reminiscent of traditional algebraic specifications. In PVS, these definitions
consist of a line for each constructor which specifies the constructor name, names and types for each ar-
gument (if any) to the constructor, and a predicate that recognizes elements of the data type built using
the constructor.4 We thus define the type time as a PVS data type. (Later, we define another part of our
template, the type actions, as a PVS data type; its definition is similarly understood.)

The data type time has two constructors. The first constructor, fintime, has a non-negative real parameter
dur and the recognizer fintime?, and the second constructor, infinity, has no parameters and the recognizer
inftime?! The PVS prover recognizes the following assertions as true:

dur{fintime{x)) = x (for any x G R-°)
fintime?(fintime(x)) (for any x G i?-0)
inftime ?(infinity)

The theory time_thy contains the definitions of the standard arithmetic operators and predicates for time
values. Note that we have exploited the support PVS provides for overloading names.

4 A Template for Timed Automata Models
4.1 What the Template Looks Like

Figure 4 shows one template we have developed for defining a timed automata model in PVS. The tem-
plate imports appropriate instantiations of the fixed theories time_thy, states, and machine. The theory
time_thy appears first in the template because it has no parameters. The two remaining theories, states
and machine, appear later in the template because their parameters must first be defined. The template

4When processing a datatype declaration, the PVS typechecker generates individual declarations for all the constructors,
their arguments, and their recognizers, together with axioms defining their relationships, an induction axiom, etc.

<timed-automaton name>: THEORY

BEGIN

IMPORTING time_thy

actions: DATATYPE

BEGIN
nu(timeof:(fintime?)): nu?

END actions;

MMTstates: TYPE = <...>

IMPORTING states[actions,MMTstates,time,fintime?]

OKstate? (s:states): bool = <...> ;

enabled_general (a:actions, s:states):bool = now(s) >= first(s)(a) & now(s) <= last(s)(a);

enabled_specific (a:actions, s:states):bool =
CASES a OF

nu(delta_t): (delta_t > zero & <...>),

ENDCASES;

trans (a:actions, s:states):states =
CASES a OF

nu(delta_t): s WITH [now := now(s)+delta_t],

ENDCASES;

enabled (a:actions, s:states):bool =
enabled_general(a,s) & enabled_specific(a,s) & OKstate?(trans(a,s));

start (s:states):bool = (now(s) = zero) & <...> ;

IMPORTING machinefstates, actions, enabled, trans, start]

END <timed-automaton name>

Figure 4: A Template for Specifying Timed Automata Models.

is instantiated by filling in the missing parts and adding any desired auxiliary declarations and definitions.
The missing parts are represented in Figure 4 by the symbol "< ... >" .5

Before the theory states can be imported, two of its parameters, actions and MMTstates, must be
defined. The type actions is defined as a data type with one constructor, the time passage action nu, which
is an action associated with every timed automata model. The corresponding parameter extractor, called
timeof, is declared as an element of type time that satisfies the predicate fintimef. The symbol "< ... >"
is a placeholder for the other (non-time-passage) actions associated with a given timed automaton. The
type of the basic component of an element of type states is MMTstates. The symbol "< ... >" that follows
"MMTstates: TYPE =" is a place holder for the nondefault part of the state of the timed automaton,
typically a record structure. Once actions and MMTstates are defined, the type states can be defined by
importing the appropriate instance of the theory states.

One proceeds in a similar fashion before importing the theory machine. The definition of the predicate
enabled divides naturally into three parts. The first part, enabled^general, is the same for all timed automata;
it defines the time bounds associated with actions. In particular, if the automaton is in state s, its time
now(s) allows action a to occur if it is bounded below by first(s)(a) and above by last(s)(a). The second
part, called enabledspecific, restricts the time passage action nu to positive values and provides place holders
for other restrictions on when actions are enabled in a given timed automaton. The third part is defined by
the predicate OKstate? on states, which provides an optional mechanism for enforcing a state invariant by
fiat. In the transition function trans, the definition of "nu(delta_t)" is the same for all timed automata: as
expressed by the WITH construct, the effect of a time passage action is simply to update the now component

5The form of the template to use, as well as that of the missing parts, depends on how adherence to the template conventions
is enforced. Section 6 discusses this issue. An alternate template is presented in Appendix F.

of the state.6 The remaining action cases for a particular timed automaton must be supplied. Finally, the
partial declaration of the predicate start(s) indicates that it must enforce the requirement now(s) — zero.

We introduce an additional convention in our timed automaton template to make our proof strategies
simpler: State invariants are assigned names of the form Inv-<name>, and the associated state invariant
lemma (or theorem) is called lemma-<name> (or theorem-<name>). The PVS proof of the Safety Property
in Section 5 uses this convention.

4.2 Instantiating the Template

To illustrate an instantiation of the template, we use the template to specify in PVS the timed automaton
Trains, a component of the timed automata solution of the GRC problem. Before presenting the PVS
specification, we present the original specification of Trains, extracted from [13]. The timed automaton
Trains has no input actions, three output actions, enterR(r), enterl(r), and exit(r), for each train r, and
the time passage action v(At). The basic component of each train's state is the status component, which
simply describes where the train is. Each train's state also includes a current time component now, and first
and last components for each action, giving the earliest and latest times at which an action can occur once
enabled.

The state transitions of Trains are described by specifying the "Precondition" under which each action can
occur and the "Effect" of each action, s denotes the state before the event occurs, and s' the state afterwards.
The transition function contains conditions that enforce the bound assumptions; that is, an event cannot
happen before its first time, and time cannot pass beyond any last time. In the Trains specification, only
the state components now and first{enterl{r)) and last{enterl{r)) for each r contain nontrivial information,
so the other cases are ignored. Note that the time that enterl(r) occurs is always no sooner than e± and
no later than e2 after the train r entered the region P. The states and transitions of the timed automaton
Trains are shown in Figure 5.

State:
now, a nonnegative real, initially 0
for each train r:

r.status 6 {not-here, P, I}, initially not-here
first(enterl(r)), a nonnegative real, initially 0
last(enterl(r)), a nonnegative real or ~, initially °o

Transitions:
enterR(r) enterl(r)

Precondition: Precondition:
s.r.status = P s.r.status = P

Effect: s.now > s.first(enterl(r))
s'. r.status = P Effect:
j '.first(enterl(r)) = now + Ej S '. r.status = /
s '.last(enterl(r)) = now + £j s' .first(enterl(r)) = 0

s'.last(enterl(r)) = °°

exit(r) v(Ar)
Precondition: Precondition:

s.r.status = I for all r.
Effect: s.now + At < s.last(enterl(r))

s'. r.status = not-here Effect:
i '.now = s.now + At

Figure 5: States and Transitions of the Timed Automaton Trains.

6The template we present here thus restricts the time passage action more than does the model we described in Section
2.2. Sometimes, as in the railroad crossing solution with a continuous gate action described in [12], one wants to allow other
components of the state besides the now component to change during time passage. An obvious modification of our template
would permit our template to support the description of these more general timed automata.

trains: THEORY
BEGIN
IMPORTING time_thy
deltaj: VAR (fintime?);
eps_l, eps_2: (fintime?);
train: TYPE;
r: VAR train;
actions : DATATYPE

BEGIN
nu(timeof:(fintime?)): nu?
enterR(Rtrainof:train): enterR?
enterI(Itrainof:train): enterl?
exit(Etrainof:train): exit?

END actions;
a: VAR actions;
status: TYPE = {not_here,P,I};
MMTstates: TYPE = [train -> status];
IMPORTING states[actions,MMTstates,time,fintime?]
status(r:train, s:states):status = basic(s)(r);
OKstate? (s:states): bool = true ;
enabled_general (a:actions, s:states):bool = now(s) >= first(s)(a) & now(s) <= last(s)(a);
enabled_specific (a:actions, s:states):bool =

CASES a OF
nu(delta_t): (delta_t > zero & (FORALL r: now(s) + delta_t <= last(s)(enterl(r)))),
enterR(r): status(r,s) = not_here,
enterl(r): status(r,s) = P & first(s)(a) <= now(s),
exit(r): status(r,s) = I,

ENDCASES
trans (a:actions, s:states):states =

CASES a OF
nu(delta_t): s WITH [now := now(s)+delta_t],
enterR(r): (# basic := basic(s) WITH [r := P], now := now(s),

first := first(s) WITH [(enterl(r)) := now(s)+eps_l],
last := last(s) WITH [(enterl(r)) := now(s)+eps_2] #),

enterl(r): (# basic := basic(s) WITH [r := I], now := now(s),
first := first(s) WITH [(enterl(r)) := zero],
last := last(s) WITH [(enterl(r)) := infinity] #),

exit(r): s WITH [basic := basic(s) WITH [r := notjiere]]
ENDCASES;

enabled (a:actions, s:states):bool =
enabled_general(a,s) & enabled_specific(a,s) & OKstate?(trans(a,s));

start (s:states):bool = (s = (# basic := (LAMBDA r: not_here), now := zero,
first := (LAMBDA a: zero), last := (LAMBDA a: infinity) #));

IMPORTING machine[states, actions, enabled, trans, start]
END trains

Figure 6: Instantiating the Template to Specify Trains.

Figure 6 uses our template to specify the Trains automaton in PVS. In addition to the time passage
action nu, the instantiation contains the three output actions, enterR(r), enterl(r), and exit(r), for each
train r. The basic component of each train's state, which has type status, has the value notJiere, P, or I.7

The predicate enabledspecific captures the "Preconditions" and the function trans captures the "Effects"
shown in the above specification. Note the lower and upper bounds, eps-1 and eps„2, on the action enterl(r)
established by the action enterR (r). Also note the initialization of the start states with the basic component
set to noLhere, the now component to zero (thus fulfilling the template requirement), and the first and

7In this simple example, we were able to define the type MMTstates of the automaton basic state as a simple function type,
rather than the more typical record type used in AxSpec, OpSpec, and Systlmpl (see Appendix B).

last components to zero and infinity, respectively. Our template instantiation also includes some auxiliary
declarations, such as the types trains and status needed to define the type MMTstates, and the function
status(r,s), which retrieves the value of the status component of train r in state s.

5 Two Examples of Proofs

To illustrate the correspondence between a hand proof and a PVS proof, this section presents example hand
proofs and corresponding PVS proofs of two results. The first hand proof is a proof of the induction principle
presented in Section 3.1. The second is a proof of the Safety Property taken from the technical report [12].

5.1 Proof of the Induction Principle

The first hand proof establishes an essential component of the support we provide for developing PVS proofs
for timed automata, namely, the induction principle. This example illustrates how a very detailed hand
proof can be translated almost directly into a PVS proof. At the same time, it illustrates the need to bring
additional knowledge to the prover at points where the hand proof implicitly appeals to human knowledge
and experience.

Figure 7 gives our detailed hand proof of the induction principle, while Figure 8 presents our best PVS
approximation to that proof. A systematic method for translating much of the hand proof to the PVS proof
maps short proof steps to particular PVS rules or strategies. For example, to appeal to a definition, use
EXPAND; to "suppose" the hypotheses of an implication being proved, use FLATTEN; to say "let • • •"
or "choose • • •", use SKOLEM; to apply a quantified formula or to establish one by providing an instance,

Step 1. What one wants to prove is the following formula—call it (*):

V/nv: states —¥ bool.
(\/s: states, start (s) => Inv(s) A
Vs:states,a:actions: (reachable(s) A /nv (5) Aenabled(a,s)

=> Inv (trans (a, s))))
=> Vs: states, reachable (s) => Inv (s)

Step 2. Let Inv{ be a particular state invariant. We will show that the body of (*) holds for
Invy

Step 3. So, suppose that

(a) VJ : states, start (s) => Inv, (s)
and

(ß) Vs: states, a: actions: (reachable (s) A In v, (s) A enabled (a,s)
=5 Invy (trans (a, s))).

Step 4. Then, let s j be a particular state. We will show that reachable (s,) => Inv ,(.s ,).

Step 5. Thus, suppose reachable (s j).

Step 6. Now, reachable (s t) means that i, can be reached from a start state in n steps, for
some« >0.

Step 7. We will use induction on n.

Step7.1. If n = 0, then start (s{). In this case, by (a), Inv^s^ holds.

Step 7.2. If n > 0, then s, = trans (a0, s0) for some state s0 reachable in n -1 steps from
a start state and some action a0 for which enabled (a 0,s0) is true. By induc-
tive hypothesis, 7nv,(50) holds. By (ß) applied to a0 and s0,
Inv ftrans(a0, s0)) holds; i.e., 7nv,(5,) holds.

QED.

Figure 7: Hand Proof of the Induction Principle.

10

(""
Step 1. (EXPAND "inductthm")

Step 2. (SKOLEM 1 "Inv_l")

Step 3. (FLATTEN)

Step 4. (SKOLEM 1 "s_l")

Step 5. (FLATTEN)

Step 6. (EXPAND "reachable")

Show induction result
is sufficient.

(CASE "(FORALL(n):
(FORALL(s): (i

Let n_0 be such that
reachable_hidden(s_ 1 ,n_0).

(("1"
(DELETE-2-3)
(SKOLEM -2 "n_0")

Induction result applied
to s_l and n_0
finishes the proof.

(INST-1 "n_0")
(INST-1 "s_l")
(GROUND))

Step 7.
("2"
(INDUCT "n")

Begin Step 7.1. (("1"
(DELETE-2-3 2)

Ifn = Othenstart(s_l). (EXPAND "reachable

By (a),
Inv_l(s_l) holds.

(EXPAND "base")
(PROPAX))

Begin Step 7.2. ("2"

Letj_l>0.
Suppose ind. hyp. for j_l.

(DELETE -1 -3 2)
(SKOLEM 1 "j_l")
(FLATTEN)

Choose s_01, and (SKOLEM 1 "s_01")
suppose reachable in j_l+1 steps. (FLATTEN)

Then s_01 is reached from s via a (EXPAND "reachablejiidden" -2)
for some s reachable in j_l steps. (SIMPLIFY)
Let a = a_0 and s = s_0.

By inductive hypothesis,
lnv_l(s_0) holds.

By(ß)
applied to a_0 and s_0,
lnv_l(trans(a_0,s_0)) holds,

because s_0 is reachable
in j_l steps.

(SKOLEM -2 ("a_0" "s_0"))

(INST-1 "s_0")
(GROUND)

(EXPAND "inductstep")
(INST-5"s_0""a_0")
(GROUND)

(EXPAND "reachable")
(INST 1 "j_l"))))))

Figure 8: PVS Proof of the Induction Principle.

use INST; to do straightforward simplification and propositional reasoning, use GROUND; and to set up
an induction, use INDUCT. Together with a few uses of DELETE to simplify the current proof goal and
one use of SIMPLIFY to simplify an assertion, the set of translations above is sufficient to handle nearly

everything in our hand proof.8

The correspondence between the steps in the hand proof and the PVS steps is more easily understood
from the actual user interaction with PVS. Figure 9 shows the contents of the PVS proof buffer during the
first few steps of the proof in Figure 8. The current goal at each step is represented as a sequent, with a line
dividing a list of hypotheses from a list of conclusions. At each step, the object is to show that at least one

8The PROPAX in Figure 8 is generated by PVS, and is not supplied by the user.

11

machine_induct:

{1} (FORALL Inv: inductthm(Inv))
Rule? (EXPAND "inductthm")
Expanding the definition of inductthm, this simplifies to:
machine_induct:

|
{1} (FORALL Inv: base(Inv) & inductstep(Inv) => (FORALL (s: states): reachable(s) => Inv(s)))
Rule?(SKOLEM 1 "Inv_l")
For the top quantifier in 1, we introduce Skolem constants: Inv_l, this simplifies to:
machine_induct:

{1} base(Inv_l) & inductstep(Inv_l) => (FORALL (s: states): reachable(s) => Inv_l(s))
Rule? (FLATTEN)
Applying disjunctive simplification to flatten sequent, this simplifies to:
machine_induct:
{-1} base(Inv_l)
{-2} inductstep(Inv_l)

{1) (FORALL (s: states): reachable(s) => Inv_l(s))
Rule? (SKOLEM 1 "s_l")
For the top quantifier in 1, we introduce Skolem constants: s_l, this simplifies to:
machine_induct:
[-1] base(lnvj)
[-2] inductstep(Inv_l)

{1) reachable(s_l) => Inv_ 1 (s_l)
Rule? (FLATTEN)
Applying disjunctive simplification to flatten sequent, this simplifies to:
machine_induct:
[-1] base(Inv_l)
[-2] inductstep(Inv_l)
{-3} reachable(s_ 1)

{1} Inv_l(s_l)
Rule? (EXPAND "reachable")
Expanding the definition of reachable, this simplifies to:
machine_induct:
[-1] base(lnvj)
[-2] inductstep(Inv_l)
{-3} (EXISTS (n: nat): reachable_hidden(s_l, n))

|
[1] Inv_l(s_l)

Figure 9: Contents of the PVS Proof Buffer.

of the conclusions follows from the hypotheses. The sequents in Figure 9 all have only one conclusion.
The parts of the hand proof in Figure 7 that require the help of a knowledgeable human when translating

to the PVS proof in Figure 8 are those associated with induction: first, the specification of exactly what
to prove by induction; second, establishing that this inductive assertion is enough to obtain the proof; and
finally, replacement of the state s_l in the induction step Step 7.2 by an arbitrary state reachable in the
same number of steps.

To fully understand the correspondence between the proofs in Figures 7 and 8, one needs to run PVS.
For example, although the specification of machine makes clear that "inductstep" corresponds to hypothesis
(ß), to apply (ß) to a_0 and s_0, one needs to know that its assertion number is —5. The ability to tag
assertions or identify them by content would reduce this problem.

In contrast to our detailed PVS proof, we show in Figure 10 a more conventional PVS proof of the

12

(""
(GRIND :IF-MATCH NIL)
(CASE "(FORALL (n): (FORALL (s): (reachable_hidden(s,n) IMPLIES Inv!l(s))))")
(("1" (GRIND))
("2"
(INDUCT "n")
(("1" (GRIND))
("2"
(GRIND :IF-MATCH NIL)
(APPLY (THEN (INST -8 "sl! 1" "a! 1") (INST -2 "sl!l"))

"At this point, it is evident that we have the inductive hypothesis for n = j! 1 and the
hypothesis (beta) to work with, and need to establish Inv!l(perform(a!l,sl!l)).
So, we instantiate the latter with sl! 1 and a! 1, and the former with sl! L")

(GRIND))))))

Figure 10: PVS Proof Using GRIND.

induction principle which relies heavily on the workhorse strategy GRIND.9 In this proof, one must also
supply the inductive assertion. In addition, one must determine when to tell GRIND not to reduce quantified
formulae (the effect of the ":IF-MATCH NIL" argument), and help PVS decide how to use the inductive
hypothesis and assumption (ß). One must also analyze the current goal after a call to GRIND terminates
to recognize what help is needed.

We refer to these two styles of PVS proofs as small step and large step proofs. One can view a hand
proof as a proof plan for a PVS proof. With a small step proof, one can more easily determine what point
has been reached in a proof plan and what step one wishes to take next. With a large step proof, especially
one using generic large steps based on GRIND, it is harder to control the position in the proof plan. In fact,
in some cases, this position may not be well defined, since GRIND may perform steps from the plan out of
order. With experience, a PVS user can often predict the result of a large step, but even so must rely on
interaction with PVS to see just what piece of information from the plan should be provided to PVS next.

In our experience, both styles of proof benefit, in terms of speed of construction with minimal back-
tracking, from the existence of a proof plan. We note that if the automatic-instantiation feature of GRIND
had been somewhat more powerful, the only proof information PVS would have required in the large step
proof is the inductive assertion, and the reason why the resulting PVS proof worked would be impossible to
discern.10 The degree to which we find the resulting PVS proof convincing, in the sense that the theorem
is true for the right reasons, is certainly greater with the small step proof, although some of these reasons
were supplied to PVS in the large step proof.

On the other hand, for theorems with complex proofs, or for theorems with proofs having a standard
structure, mimicking all the micro-steps of the PVS proof is unnecessarily tedious and repetitive. In our
specialized domain, we have been able to define reusable PVS strategies that allow the user to follow a proof
plan reasonably closely without most of the tedium of providing the micro-steps. Large step proofs using
GRIND typically execute several times as slowly as short step proofs. Because our strategies are specialized
for timed automata, they yield an efficiency comparable to that of short step proofs.

5.2 Proof of the Safety Property
Our second example of a hand proof translated into a PVS proof is a proof with a standard structure:
namely, the proof by induction of a state invariant. The particular state invariant is the Safety Property for
the timed automaton Systlmpl, which is stated and proved as Lemma 6.3 in [12, 13]. Figure 11 shows the
hand proof and the corresponding PVS proof.

The PVS proof uses the induction strategy AUTO JPROOF_UNrV_SYSTIMPL to set up the induction,

9The GRIND strategy in PVS approximates an automatic theorem prover. It expands definitions and forms, applies rewrites,
invokes propositional and arithmetic decision procedures, and does automatic skolemization and instantiation. Instantiation is
done by best guess and can be incorrect. To provide more control of instantiation and other features, GRIND has options that
can be selected by supplying arguments.

10If one uses GRINDS in place of GRIND, PVS will save the small steps that GRIND has followed. However, understanding
these steps is very difficult.

13

Lemma 6.3. In all reachable states ofSystlmpl, ifTrains.r.status = Ifor any r, then Gate.status = down.

Proof: Use induction. The interesting cases are enterl and raise. Fix r.

1. enterl(r)

By the precondition, s.Trains.r.status =P.

If s.Gate.status e {up,going-upJ, then Lemma 6.1 implies that s.Trains.first (enterl(r)) >
now + ydm.„, so s.Trains.first (enterl (r)) > now. But, the precondition for enterl(r) is
s. Trains.first (enterl (r))< now. This means that it is impossible for this action to occur, a contradic-
tion.

If s.Gate.status = going-down, then Lemma 6.2 implies that s.Trains.first (enterl (r)) >
s.Gate.last(down). By Lemma B.l, s.Gate.status = going-down implies s.Gate.last(down) > now.
This implies that s.Trains.first (enterl (r)) > now, which again means that it is impossible for this
action to occur.

The only remaining case is s.Gate.status = down. This implies J '.Gate.status = down, which suffices.

2. raise

We need to show that the gate doesn't get raised when a train is in /. So suppose that s.Trains.r.status
= /. The precondition of raise states that lr: s.CompImpl.r.sched-time < now + y+ 5 + ydm.„,
which implies that, for all r, s. Complmpl. r.sched-time > now. But Parts 1 and 3 of Lemma 5.1 imply
that in this case, s.Trains.r.status = P, a contradiction.

Inv_6_3_A(s: states):bool = (FORALL (r: train): status(r,s) = I => gate_status(s) = fully_down);

("" (APPLY (AUTO_PROOF_UNIV_SYSTIMPL "Inv_6_3_A") "Use induction. Fix r = r_2.")
(("I" (APPLY (THEN (EXPAND "enabled_specific") (SYSTIMPL_SIMP))

"Case enterl(r_l). Invoke the precondition.")
(CASE "gate_status(s_l) = fully_up OR gate_status(s_l) = going_up")

(("1" (APPLY (THEN (APPLY_UNIV_INV_LEMMA "6_1" "r_l") (SYSTIMPL_SIMP))
"Invoke the invariant lemma 6_1.")

(APPLY (TIME_ETC_SIMP) "Derive contradiction with the precondition."))
("2" (APPLY (THEN (APPLY_UNIV_INV_LEMMA "6_2" "r_l") (SYSTIMPL_SIMP))

"Invoke the invariant lemma 6_2.")
(APPLY (THEN (APPLY_INV_LEMMA "B_l_l") (SYSTIMPL_SIMP))
"Invoke invariant lemma B_l, part 1.")

(APPLY (TIME_ETC_SIMP) "Derive contradiction with the precondition."))))
("2" (APPLY (THEN (EXPAND "enabled_specific") (SYSTIMPL_SIMP) (INST 2 "r_2"))

"Case raise. Invoke and specialize the precondition.")
(APPLY (THEN (APPLY_UNIV_INV_LEMMA "5_1_P "r_2") (SYSTIMPL.SIMP))

"Invoke invariant lemma 5_1, part 1.")
(APPLY (THEN (APPLY_UNIV_INV_LEMMA "5_1_3" "r_2") (SYSTIMPL_SIMP))

"Invoke invariant lemma 5_1, part 3.")
(APPLY (TIME_ETC_SIMP) "Derive contradiction."))

("3" (APPLY (THEN (EXPAND "enabled_specific") (SYSTIMPL_SIMP))
-,-■■ "Case up. Invoke the precondition."))))

Figure 11: Hand Proof and PVS Proof of the Safety Property.

potentially producing subgoals for the base case and each possible action. Subgoals deemed sufficiently
"trivial" are proved automatically, and only the nontrivial subgoals are displayed. As can be seen, in the
hand proof, the action cases for enterl(r) and raise are the nontrivial cases. The PVS proof of the enterl(r)
case is obtained as in the hand proof by invoking the precondition, doing a case split, applying the indicated
lemmas appropriately, and asking for a little simplification and linear arithmetic. The PVS proof of the raise
case is translated analogously. An extra case up is generated in the PVS proof, but is handled by invoking
the precondition, a step considered obvious in the hand proof.

In our general experience with proofs of state invariants, we have noticed that an "extra" case waved
away as obvious in the hand proof occasionally turns up in the PVS proof. Appealing to one of a short list
of standard facts about timed automata typically proves these cases. In proving the Safety Property, the
standard fact needed is that the precondition must be satisfied or the case will not arise. The precondition
is present among the hypotheses in name, but its definition must be expanded for it to be taken into
account. One other standard fact has sometimes been required in handling the "obvious" cases of the

14

hand proofs we have translated from [12]: the uniqueness of actions. In particular, if r-1 ^ r.2, then
enterl(r.l) ^ enterI(r-2), and similarly for other actions with arguments. One can envision that certain
relationships among constants used to define a timed automaton might also sometimes be considered too
obvious to mention. Adding knowledge of such standard facts to the induction strategies would eliminate
the need to deal with most such "obvious" cases interactively, but at the expense of longer proof times. It
would also obscure their application in the PVS proof in cases in which one wants to explicitly mention them
in the hand proof for emphasis.

A close look at the PVS proof of the Safety Property in Figure 11 reveals a few subtleties involving the
choice of a particular version of a strategy or its arguments.11

With respect to the choice of arguments, one notes first that when an invariant lemma is invoked, it is
sometimes applied to n, and sometimes to r2. It would seem that the choice of appropriate argument would
have to be made by examining the current PVS goal. Although this could be done, the choice can be made
on another basis: choose rx when one is clearly referring to the train index of the action case; choose r2 when
one is clearly referring to the train whose status is / (or, more generically, to the train mentioned explicitly
in the body of the lemma). Second, we note that the precondition of raise is "specialized" when it is invoked
in the raise branch of the proof. This is necessary because it contains a quantifier. The instantiation to give
that quantifier is r2, since the raise action is not indexed over trains. This instantiation can also be chosen
based on matching the body of the quantified formula to the known fact that r2 is the train whose status
is I. Thus, these choices of argument can be made, if not automatically, at least from information provided
by the user of a more abstract nature than the argument's explicit name.

With respect to versions of strategies, one question that arises with respect to the PVS proof in Fig-
ure 11 is how one chooses the particular induction, simplification, and lemma application strategies used.
The choice of AUTO.PROOF.UNIV-SYSTIMPL and SYSTIMPL.SIMP can be made by the PVS user on
knowing that one is proving a universally quantified invariant in the theory Systlmpl. Whether to use AP-
PLY.UNIV JNV-LEMMA or APPLYJNVJLEMMA is determined by whether or not the invariant lemma is
universally quantified. We note that while the user can make these choices of strategy, all of them could be
made automatically by an interface to PVS, given user input of the form "use induction" or "apply invariant
lemma 6_1".

Thus, in proving the Safety Property, it is possible to shield the verifier from low-level interaction with
PVS. Our experience so far with other state invariant proofs indicates that this is very often the case.

A third category of translations of hand proofs to PVS proofs contains translations of proofs with a more
ad hoc proof structure than state invariant proofs. For more ad hoc proofs, our results so far suggest that
one cannot disengage the verifier from low-level interaction with PVS to the extent that one can with the
more structured state invariant proofs. However, one can identify repeated patterns of reasoning that occur
because a result from a particular domain with much shared structure is being proved. Appropriate PVS
strategies can frequently handle these repeated patterns. A menu of such strategies, specially tailored for
timed automata models, can support translating hand proofs into PVS proofs made up of a combination of
a limited set of small PVS steps combined with large standard steps, whose correspondence with the source
hand proofs is much easier to see.

6 Summary of Results
Based on our experience to date, we discuss below our use of template specifications, how repeating patterns
in proofs were detected and exploited, how best to interact with the theorem prover, and how real-time
properties are expressed and proven in our approach.

6.1 Using Template Specifications
Using a template to create a formal specification of a particular mathematical model greatly reduces the
required effort. This reduction comes from two sources. First, with the basic theories and lemmas already
specified, the amount that remains to be specified for a particular model is significantly reduced. Second,
the existence of conventions regarding names, types, and definitions of the missing parts eliminates many

11 The PVS proof commands are embedded in APPLY so that they can be accompanied by comments.

15

organizational decisions required in specifying a particular model: the specifier needs only to fill in the
missing pieces.

Creating a template helped us to identify commonalities among instances of the timed automata model
that can be exploited in designing specialized support for proving properties. The very discipline of creating a
template helps one to identify high level common patterns. For example, in our study, we identified induction
structured over actions as an important principle that underlies many proofs about timed automata models.
This principle can be used to prove state invariants about these models by invoking appropriately designed
PVS strategies. At a more detailed level, the particular specification structure and conventions enforced in
a template can be taken advantage of in creating reusable proof strategies: for example, in our template,
we know that we always want to expand the definition "start" of the start state in doing the base case of
an induction proof. This advantage can be taken even farther by exploiting even lower level features of the
template such as definition structure. More detail on the relation between our template and the strategies
we have developed can be found in Appendix C.

Templates can be enforced in different ways, with tradeoffs involved. Through an additional, top-level
parameterized theory added to the framework in Section 4, we can require that all models include a time
passage action, define the types of enabled-specific and trans, define the significance of these three operators
in relation to the admissible timed executions of a timed automaton, and enforce other similar template
conventions. This approach has the advantage of permitting many generic lemmas that provide important
support for proof strategies specialized for timed automata to be proved without instantiating the template.
These generic lemmas can then be kept in a standard library, saving much of the processing time needed to
load instantiations of the template into PVS. An alternative is to enforce the template conventions through
an interface that compiles user-provided information into a PVS specification of the proper form. Our
experiments with template instantiations suggest that proofs of properties run more efficiently when the
second approach is used.

However, no matter how the template is enforced, the strong type system in PVS is very helpful in
establishing a template discipline. In contrast to Lamport [20], we find strong typing more a help than a
hindrance.

6.2 Repeated Patterns in Timed Automaton Proofs

In analyzing proofs in the timed automata domain, our approach has been to create small step proofs,
optimize them for both efficiency and logical structure, and find patterns that can be translated into PVS
strategies. We have found a variety of patterns. These patterns can be classified by whether it is possible
to translate them into an appropriate strategy, whether the strategy can be written in PVS as it stands
or requires enhancements to PVS, and whether the strategy requires instance-specific details to compile or
choose. The classification of certain repeating patterns remains to be decided. For some patterns, we do not
yet have, a PVS strategy but can supply a heuristic: an example is the recurring argument in hand proofs
that time cannot pass beyond a certain bound unless a certain type of event occurs. In following a hand
proof, the need to turn to a heuristic can arise when the hand proof does not supply enough detail.

Many patterns that recur in small step proofs are of such a general nature that existing PVS strategies
already handle them. A simple example is the pattern handled by the PVS strategy SKOSIMP, which
corresponds to "Suppose that the hypotheses hold for some generic values; we will prove that the conclusion
holds for these values." However, there are some patterns of a general nature that require domain specialized
PVS strategies. An example is the repeated need to substitute names for values (as opposed to expressions—
that is, semantically as opposed to syntactically), and, conversely, to retrieve information associated with
names. Although this need in general will arise in nearly any domain, appropriate strategy support will
require such domain-specific information as when two expressions represent the same value, what kind of
information there exists to retrieve, and so on. We have made some progress in writing PVS strategies that
partially meet these needs; see Appendix C. Ideal strategy support will require certain enhancements to
PVS, such as the ability to recognize formulae by content.

Others patterns have appeared that are specific to timed automata. Examples are the repeated need to
apply state invariant lemmas and to establish that a state is reachable. In Appendix C, we present strategies
we have defined to help with each of these patterns. For applying state invariants, we have two strategies, one

16

for unqualified invariants and another for universally quantified invariants. The choice of which strategy
to invoke is assumed to be made externally to PVS. In principle, the choice could be made internally by
PVS if more access to the PVS data structures were provided. To show that a state in an admissible timed
execution is reachable, we have a strategy that applies a lemma containing general reachability results. The
user must supply instantiations that focus the general results on the neighborhood (in terms of the number
of non-time steps that have occurred) of the state that is to be confirmed to be reachable. With appropriate
enhancements to PVS, the appropriate instantiations could be inferred automatically from the current proof
goal; also, after simplification of the results from application of the lemma, the irrelevant results could be
deleted. This is a further example where a better PVS strategy is in principle feasible, but not yet expressible:
helpful enhancements to PVS would again include the ability to recognize formulae by content, and also the
ability to extract parts of formulae and to apply naming conventions to formulae.

There are other patterns specific to timed automata that require instantiation-specific knowledge before
an appropriate PVS strategy can be constructed. An important example is in the setting up cases in an
induction proof. Each case of a particular form is handled in a particular way. The information that must
be supplied includes whether the case is the base case or an action case; if an action case, how the action
is parameterized; and if an action case, whether the body of the corresponding case in the definition of
trans is an IFJTHENJELSE. All of the supplied information can be determined automatically from the
instantiated template specification. Thus, it is possible, in principle, to compile such strategies from a
template instantiation. It is conceivable that the necessary choices could be made by a single PVS strategy
that accesses details of definitions; such a strategy would require access to the PVS data structures that
currently has not been provided. There is clearly an efficiency tradeoff involved in the choice of solution; a
strategy which itself must make choices will obviously be less efficient. Whether the reduction in efficiency
is significant remains to be determined.

In proving state invariants, another interesting pattern arises. In particular, when the state invariant
involves quantification, one often wishes to coordinate the simplification of the quantified formulae from the
inductive hypothesis and conclusion (specifically, one wants to instantiate one with the skolem constant or
constants from the other). This is typically the case when one is reasoning about the behavior of independent
entities, such as the trains in the GRC benchmark. When this is the case, the standard part of the induction
strategy can be extended to include this; this was in fact done in our proof of the Safety Property. The
fact that a PVS strategy could be developed to do the coordination of skolemization and instantiation
depended heavily on the predictability of the assertion numbers of the related quantified formulae. For
invariants involving quantification in other forms, such as existential or embedded, it is harder to predict
the related assertion numbers. In principle, it should be possible to extend the standard induction strategy
to handle any particular additional coordination case analogously, and also to select the appropriate variant
of the induction strategy to apply automatically from knowledge of the form of the invariant to be proved.
Implementing such extensions would require enhancements to PVS.

Some repeating patterns that occur in proofs are of such a general nature that the best one can offer as
a general solution is a heuristic. For these cases, one can hope to provide automated support that guides
the user in applying the heuristic.

6.3 Repeated Patterns in Using PVS
As indicated above, our approach to PVS proofs about timed automata is to follow a hand proof as closely
as possible. For nontrivial theorems, a hand proof provides essential guidance in constructing the automated
proof, since it presents, in some organized fashion, the reasons why a theorem is believed to be true. These
reasons generally correspond closely to the information that must be supplied to a theorem prover.

As illustrated in Section 5, very detailed proofs and routine proofs can be easily translated into PVS. A
direct translation of a detailed hand proof to a PVS proof involves detailed human guidance, but most of
this guidance is routine and could conceivably be mechanized. Undertaking such a direct translation helps
to clarify at which points in the proof crucial information that involves some human insight must be supplied
to the prover: e.g., in our example proof of the induction principle, this crucial information involved the
exact formulation and use of what needs to be proved using induction over natural numbers. In translating
a hand proof with a routine structure (e.g., an induction proof of a state invariant of an automaton with

17

a standard structure), human guidance is mostly needed to provide the non-routine facts and case splits
needed to complete proof branches generated by a strategy that performs the standard initial stages of the
proof. The need for human guidance can be further minimized in this case by taking advantage of template
conventions to provide domain-specific strategies for recurring types of reasoning. For example, in proving
the Safety Property in section 5, the strategy TIME_ETC_SIMP handles reasoning about extended time
values.

Translating hand proofs that omit many details and have an ad hoc structure to PVS requires signif-
icant interactive guidance. However, this problem can be reduced by using domain-specific strategies and
heuristics. The domain-specific strategies permit one to take larger steps in a proof and make it easier to
track one's place in the hand proof. An example that has arisen in ad hoc proofs about timed automata
is the need to confirm with minimum effort that a certain state is reachable, because one wants to apply
a state invariant lemma to it. We have designed a strategy that simplifies this step greatly, and would be
able to improve it further if certain enhancements are made to PVS. The specialized strategies that we have
developed so far for ad hoc proofs have not reduced proof efficiency. A preliminary exercise in developing
domain-specific strategies for timed automata and employing them in an ad hoc proof resulted in a more
than 60% reduction in proof size (415 lines to 158 lines) with no penalty—in fact, a slight improvement—in
the running time of the proof.

To keep track of the correspondence between a hand proof and a PVS proof, inserting comments in the
PVS proof is very helpful, and for a proof of any length, it is essential. A combination of comments in
the proof and a glossary of English meanings of PVS strategies can create confidence that the PVS proof
succeeded for the right reasons.

We have undertaken the translation into PVS of several hand proofs of properties of timed automata of
an ad hoc structure, the longest being the one page hand proof of a result equivalent to the Utility Property
in Section 2 for the timed automaton OpSpec. From this experience, we can make additional observations
on the process of translating hand proofs into PVS.

The first observation is that although PVS has many built-in rules and strategies that allow one to closely
mimic the steps of a detailed hand proof, there are some cases in which one cannot quite do this with PVS
as it stands. This is not only due to the fact that one must sometimes take many steps in PVS to follow
a step in the hand proof—a phenomenon that will become less of a problem as more specialized strategies
are developed—but results from PVS sometimes forcing a slightly different structure on the proof by way of
undesired case splits.

In general, case splits should be avoided unless they are natural occurrences in a human style proof, since
when they are forced, the existing proof plan will need to be revised. A major example where one is forced
in PVS to split a goal into separate subgoals, where conceptually this is not necessary, is as follows. When
one has facts A and A =$■ B in the antecedent of the goal, a call to the PVS strategy ASSERT will, in most
cases, reduce the second fact to simply B, provided the form of A is simple. For the case when A is more
complex,:a user-defined PVS strategy can be written that will, in most cases, accomplish the same thing.
An exception in both cases is when the form of B is B\ =>■ B2. In this case, one is forced into a case split.
The difficulty is that some of the PVS rules and strategies are not exactly on target with the natural steps
in a hand proof. Adding rules to PVS that provide finer control of subgoal manipulation should overcome
this difficulty.

Even when case splits are part of the proof plan, they can cause the problem of losing track of one's place
in a proof when using PVS. Planned case splits may be explicit in the hand proof, or implicit as the result
of including an in-line lemma in the proof—that is, a lemma proved on the spot and then applied. After
doing several case splits in a row and then discharging subgoals in the default order, upon returning to the
subgoal or subgoals that correspond to the second or additional branches from the first case split, one can
easily forget where they came from, and therefore, what one's approach to their proof will be. The ability to
attach comments to related subgoals at least semi-automatically, based on user input, would greatly alleviate
this problem.

The second observation is that a very common occurrence in the process of creating a machine-checked
proof is the reappearance of subgoals that have already been proved in an earlier proof branch. In the hand
proof, one can simply say "as shown earlier ..." but this will not work in PVS or most other automatic
theorem proving systems. However, one of the advantages to starting from a hand proof is the ability to see

18

easily where some piece of information is used more than once in the proof. A careful restructuring of the
hand proof prior to undertaking the PVS proof can eliminate much subgoal duplication in the PVS proof,
particularly of subgoals corresponding to facts playing a major role in the proof. Our experience has shown
that eliminating all duplication of subgoals is difficult and perhaps impossible, since some subgoals come from
type correctness conditions implicitly needed for the application of lemmas in the course of the proof. And
even though some repeated subgoals can be eliminated by restructuring the proof plan, there will be some
proofs where this can make the reasoning in the proof more difficult to follow, since such restructuring usually
involves the up front introduction of facts that will be used more than once whose role in the proof is not
yet clear. Introducing these facts as separately proved lemmas is one possible solution, but not always ideal;
assuming that one is checking hand proofs using PVS, one must ask why these facts were not introduced
as separate lemmas in the hand proof. The answer is typically that they are too specialized to be worth
including in a theory, being unlikely to be used outside the current proof. Thus, some mechanism in PVS
for handling repeating subgoals would be a very welcome enhancement.

6.4 Expressing and Proving Real-Time Properties
In our approach, the real-time properties of a timed automaton are determined by the definitions of enabled
and trans. Real-time properties that are state invariants are proved in PVS by induction. The specific stage
at which reasoning about time occurs in each branch of the induction is typically a point at which a set of
inequalities involving time values has been established by invoking the definitions of enabled and trans and
by introducing previous state invariant lemmas. The proof is then completed using only reasoning about the
inequalities. If time were simply represented by the non-negative real numbers, the decision procedures in
PVS that do arithmetic would complete the proof in a single step. Because we include infinity in the set of
possible time values, these decision procedures will not work directly. To handle this problem, we developed
a strategy called TIME_ETC_SIMP that reduces time inequalities to inequalities involving non-negative real
numbers and then invokes the PVS decision procedures for arithmetic.

Care must be taken in translating assertions involving time values from hand proofs into PVS. While
"negative" time values can be used in hand proofs, they cannot be used in our PVS proofs, because our
type time does not contain values corresponding to negative numbers. To handle this problem, we transform
any equations or inequalities involving subtraction of time values so that they involve only addition, prior
to doing PVS proofs.

Other real-time properties of a timed automaton concern the relative timing of events during an admissible
timed execution. Proofs of these properties often involve establishing the claim that if the automaton is in
a certain state, then time cannot pass beyond a certain time bound unless a specified event occurs prior to
the bound. As indicated above, we lack a specific strategy for this type of reasoning. However, we do have
a heuristic that often works. With this heuristic, we prove by induction that if the required event does not
occur between the current time now(s) and the time bound, then some component of the state involved in
the precondition for time passage is not changed by subsequent events, and that, as a result, the precondition
prevents a time passage event from crossing the bound. It is likely that a PVS strategy with a sufficient set
of arguments can be developed to set up a proof based on this heuristic. We also envision an interactive
interface that guides the user through an application of the strategy or of the heuristic directly.

7 Related Work

An effort closely related to ours uses the Larch Shared Language and the Larch Prover (LP) to prove state
invariants and simulations for real time systems represented as timed automata [22]. In this approach, proofs
are developed in LP that follow hand proofs, but proof strategies specialized to timed automata that can
support a close correspondence in the more complex induction or simulation proofs and proofs of an ad hoc
structure are not included. Whether such proof strategies can be developed in LP to the same extent as in
PVS is an open question. Other efforts have used PVS in proving properties of real-time systems expressed in
different formalisms. For example, a proof assistant that encodes the Duration Calculus in PVS and supports
the development of Duration Calculus specifications and proofs of real-time properties is described in [34].
A second effort whose goal is to make formal specification and theorem proving in PVS more accessible to
hardware design practitioners is described in [35].

19

8 Conclusions
A major goal of our research is to make the use of an automatic theorem prover feasible for software
developers. Checking properties of specifications of real-time systems with a mechanical theorem prover
can lead to the early discovery of inconsistencies and omissions in a design. We envision that such use
of automatic provers can be made feasible by appropriate automated support. Parts of this support may
be direct, e.g., through an appropriate interface to a system such as PVS that supports specification and
automatic theorem proving. Other parts of it may be indirect, e.g., by way of a mechanism for arriving at
formal specifications that are understandable to both the developer and a formal methods expert, and for
creating mechanically checked proofs that also are understandable to both.

Our early results are encouraging. For real-time systems specified in the timed automata model, we have
developed a template that can be instantiated in a straightforward manner. For understandable translations
of hand proofs, we have identified PVS proof steps that correspond to natural steps in hand proofs. We
have been able to define specialized strategies in PVS that make the translation of hand proofs of state
invariants into recognizably similar PVS proofs straightforward and also simple enough in many cases that
developers themselves could create them through an appropriate interface to PVS. Such an interface would
perform such services as choosing the appropriate instance of the induction strategy or the invariant lemma
strategy and would also be useful to the formal methods expert in simplifying the proof effort. We have
defined additional model-specific strategies that can be useful to the formal methods expert in translating
more complex proofs of properties of designs into recognizable PVS equivalents.

Although PVS strategies such as GRIND reduce the necessary human interaction with the theorem prover
in obtaining a proof, the reasoning in proofs obtained from these strategies is hard to follow. In contrast, we
have found that human-understandable PVS proofs can be derived naturally and with an acceptable level
of human interaction by applying a set of domain-specific strategies in the course of following a hand proof.
Being specialized, these strategies result in proofs with a significantly shorter execution time than proofs
based on GRIND. There is also an advantage in undertaking proofs using our methods and strategies when
the proof does not succeed: it is much simpler to discover the reason that the proof does not succeed when
one knows exactly the corresponding step in the hand proof.

Similar observations apply when we compare our methods to other automata-based formal approaches
to reasoning about real-time systems. In particular, while the latter can be used to prove properties, they
provide no feedback on why the properties are true. When a proof fails, a tool such as SMV can supply
the trace of a counterexample. While this information is helpful, it is on the same low level as that used in
software debugging. By contrast, the information provided by the failure of a mechanically checked hand
proof is on a conceptual level, thus providing more direct information on where one's assumptions about
a particular automaton specification are incorrect. Mechanically checked hand proofs have an additional
advantage: they make it easier to predict the effects of changes in specifications on the properties of the
specified automata. In addition, when these changes do not affect the validity of a property, checking the
property can often be done by modifying the former proof only slightly, or not at all—as opposed to rerunning
a time-consuming algorithm on the entire specification.

Our use of PVS as a basis for specification and proof support has been largely successful. Using decision
procedures to handle the obvious low-level reasoning greatly facilitates the creation of the proofs. Moreover,
the rich specification language of PVS supports both parameterized theories and higher-order constructs
that allow functions and predicates to be used as record components and theory parameters. As a result,
once one has identified common features to include in a template, expressing the template in PVS is largely
straightforward and natural. The higher-order logic of PVS makes it possible to prove useful, reusable high
level theorems about arbitrary predicates and functions, such as our induction principle.

However, the current version of PVS does not always satisfy our needs. For example, it imposes some
constraints that limit the directness with which one can express timed automaton specifications and trans-
late steps from hand proofs. At least one case has arisen where it would be helpful to have parametric
polymorphism in the type system, as is the case in HOL.

The limitation on specifications is visible in the template instantiation of the timed automaton Trains;
the status component of a state of Trains is represented by the basic component of the state of the PVS
instantiation trains, rather than by a component named status. An auxiliary function definition is included
in the PVS version to permit this basic component to be referred to using the name status. The natural

20

method of providing a template for the type state with slots for the standard parts involving time and timing
is to define type state as a record type with standard components. In addition to the standard components,
the state of any particular timed automaton may have an arbitrary number of specialized state components.
Being unable to define a parameterized record type in PVS with a variable number of components, we are
constrained to use a single slot, to which we give the standard name basic, to represent these additional
specialized components.

In translating steps from hand proofs to PVS, there are cases in which one must choose the appropriate
version of a PVS strategy—say, to invoke a state invariant lemma—for the current context. While this
sometimes might be done using a single, parameterized strategy, we wish to relieve the user of providing
(the often considerable and technical) information that has the potential to be supplied automatically. Both
of these problems could be eliminated from the user's point of view by an appropriate interface to PVS.
However, there are other limitations of PVS as it stands as support for translating hand proofs that adding
an interface cannot eliminate, such as the need to refer to particular assertion numbers when applying proof
rules (see Section 5.2). One outcome of our study is the identification of a number of features, such as
the ability to name assertions or identify them by contents, that would remove most or all of these other
limitations if added to PVS.

An example difficulty that affects both specification and proof is the problem of reasoning about extended
non-negative time. In both mathematical specification and hand proof, one can allow a larger time value to
be subtracted from a smaller one with a negative number as the result. Because we have had to define type
time as an abstract data type in PVS, time values cannot easily be viewed as overlapping real number values
and therefore sharing some arithmetic. In fact, the result of subtracting a larger time value from a smaller
one is undefined.12 To accomplish specifications and proofs equivalent to the originals in [12], we have had
to rephrase any equalities involving subtraction as equalities involving only addition. (See the definitions
related to the Utility Property in Appendix B.3.)

The lack of parametric polymorphism in the type system of PVS has led to the following minor frustration:
in timed automata, it is known that the time transition action changes only the now component of a state.
Thus, other state components are equal for the states at the endpoints of a time transition interval. One
cannot state a general lemma to this effect in PVS because these components do not all have the same
type. One must instead prove a separate invariance lemma for each individual state component. With
a standardized naming structure for these lemmas, the fact that they are separate can be masked on the
strategy level by designing the strategy to invoke the appropriate lemma when passed the name of a state
component as an argument.

9 TAME: Recent Developments
Since the publication of [1], our system for supporting the methods developed in this study was given the
name TAME [2]. Further developments regarding TAME have been reported in [5], [4], and [6]. TAME has
now been applied with some success to multiple examples of timed and non-timed automata, including the
boiler controller in [21] (see [5, 3]), a vehicle control system from [36], a timed version of Fischer's algorithm
from [23], the group communication service in [10, 9], and several examples of SCR specifications (see [6]).13

For the boiler controller and vehicle control system, TAME was extended by expanding the template
conventions to cover specifying nondeterministic transitions using Hilbert's "choice" operator e, extending
the set of common theories to include a theory real_thy containing facts about real numbers helpful in
reasoning about real arithmetic, and adding a new strategy to the standard strategies to simplify reasoning
about e. A slightly modified version of TAME's template and strategies was developed for reasoning about
SCR specifications: for this purpose, it has proved more useful to represent transitions using a relation
rather than a function. Although TAME was developed for timed automata, it can also be used without
modification for non-timed automata, the group communication service being an example. TAME was used
in a somewhat different fashion in connection with this example: many of the proofs of state invariants were
undertaken with no hand proof to follow, or at best an extremely sketchy hand proof. While this resulted in

12We could have simply permitted negative time values; however, doing so would have complicated several of our definitions,
and, therefore, proofs involving reasoning about time. For example, we would have had to explicitly state that the value of now
for any state is nonnegative.

13For more on SCR specifications, see [15, 17].

21

Inv_6_3_A(s: states):booI = (FORALL (r: train): status(r.s) = I => gate_status(s) = fully_down);

(""
(AUTOJNDUCT)
((" 1" ;;Case enterI(Itrainof_action)
(APPLY_SPECIFIC_PRECOND)
(SUPPOSE "gate_status(prestate)=fully_up OR gate_status(prestate)=going_up")
(("1" ;;Suppose [gate_status(prestate)=fully_up OR gate_status(prestate)=going_up]
(APPLY_INV_LEMMA "6_1" "Itrainof_action")
(TRY_SIMP))

("2" ;;Suppose not [gate_status(prestate)=fully_up OR gate_status(prestate)=going_up]
(APPLY_INV_LEMMA "6_2" "Itrainof_action")
(APPLY_INV_LEMMA "B_l_l")
(TRY_SIMP))))

("2" ;;Case raise
(APPLY_SPECIFIC_PRECOND)
(INST "specific-precondition" "r_theorem")
(APPLY_INV_LEMMA "5_1_1" "r_theorem")
(APPLY_INV_LEMMA "5_1_3" "r_theorem")
(TRY_SIMP))

("3" ;;Case up
(APPLY_SPECIFIC_PRECOND)
(TRY_SIMP)))) __^_

Figure 12: Updated TAME Proof of the Safety Property

some extra backtracking in the search for a mechanical proof, many of the proofs of simple properties were
obtained fairly quickly. Feedback from proofs that did not succeed was provided to the authors of [10, 9], and
proved helpful in suggesting additional state invariants needed as lemmas, for indicating that the statements
of proposed invariants needed revision, of for suggesting the additional guidance needed in mechanizing the
proof. For one complex property that was accompanied by a detailed hand proof, TAME helped to reveal
an important missing case not covered by that proof. It should be noted that many extra theories for the
specialized data types used in the specification of the group communication service, and corresponding proof
strategies for reasoning about these types, were used to support the application of TAME in this context. In
fact, completing the checking of all the invariant lemmas in [10, 9] awaits fuller development of these special
data type theories. Therefore, while TAME has proved very useful for this application, the use of TAME for
this and similar examples entails more than the usual overhead. However, this overhead and more would be
needed in any ad hoc approach to mechanizing proofs of properties of specifications that use complex data
types.

Based on a preliminary version of P VS with some added features—the ability to generate automatic labels
for formulae in a sequent, the ability to generate automatic comments that are displayed both interactively
and in saved proofs, the ability to probe into the content of formulae, and a few more atomic proof steps—we
have solved some of the problems noted in Sections 6.3 and 8. In particular, comments labeling the base case
and induction cases of a state invariant induction proof are now generated automatically, as are comments
showing the content of various facts applied in the proof such as preconditions, previous invariant lemmas,
or suppositions. Strategies that help the user avoid unnecessary branching in mechanized proofs have been
or are being developed. Uniform strategies for the induction step and the application of invariant lemmas
now exist, and with the added PVS features plus some documentation of PVS internals, were implemented
internally to PVS, without an external interface. This work is discussed in [6]. As an example of how TAME
proofs of state invariants now typically appear using the improved TAME strategies, Figure 12 shows the
most recent version of the PVS proof of the Safety Property in Figure ll.14 It should now be possible to
extend TAME with the strategies proposed in Appendix E and other proof steps useful in ad hoc proofs.

Future plans for TAME include developing user interface support outside of PVS. An external interface
would include support for entering the application-specific parts of specifications into the TAME template,
and support for automatic translation of automata specifications in other specification languages into TAME

14For clarity, comments generated by APPLYJSPECIFIC-PRECOND and APPLYJNV.LEMMA have been omitted.

22

form. (There is a preliminary implementation of the latter for SCR specifications.) The interface would also
handle some processing of a specification externally to PVS—for example, the construction of application-
specific strategies such as SYSTIMPL.SIMP. In addition, we expect the interface to provide help to the
user in the form of simple access to lemmas from all relevant theories and descriptions of existing TAME
strategies.

So far, no proof support has been developed for proofs of simulation of one automaton by another.
While it is possible to provide a template with slots for two automata for this purpose, accompanied by
appropriate proof strategies, a problem arises when one wishes to apply a lemma previously proved for one
of the automata in the course of a proof: this automaton has been specified and reasoned about in a separate
theory. When theory instantiations become available in PVS as planned [32], support for simulation proofs
is feasible in a form we desire.

Acknowledgments
We wish to thank the anonymous reviewers of [1] for insightful comments and our colleagues Ramesh Bharad-
waj and Ralph Jeffords for very helpful discussions. We also wish to thank Natarajan Shankar and Sam
Owre of SRI International for implementing the extensions to PVS that allowed the further development of
TAME.

References

[i

[2:

[3:

[4:

[5:

[e;

[?
P:

[9;

[10:

tu:

[12:

[13:

[14;

M. Archer and C. Heitmeyer. Mechanical verification of timed automata: A case study. In Proc. 1996 IEEE
Real-Time Technology and Applications Symp. (RTAS'96). IEEE Computer Society Press, 1996.

M. Archer and C. Heitmeyer. TAME: A specialized specification and verification system for timed automata.
In Work-in-Progress Proc. 1996 IEEE Real-Time Systems Symp. (RTSS'96), pages 3-6, 1996.

M. Archer and C. Heitmeyer. Verifying hybrid systems modeled as timed automata: A case study. Technical
report, NRL, Wash., DC, 1997. In preparation.

Myla Archer and Constance Heitmeyer. Human-style theorem proving using PVS. In E. L. Gunter and A. Felty,
editors, Theorem Proving in Higher Order Logics (TPHOLs'97), volume 1275 of Led. Notes in Comp. Sei., pages
33-48. Springer-Verlag, 1997.

Myla Archer and Constance Heitmeyer. Verifying hybrid systems modeled as timed automata: A case study. In
Hybrid and Real-Time Systems (HART'97), volume 1201 of Led. Notes in Comp. Sei., pages 171-185. Springer-
Verlag, 1997.

Myla Archer, Constance Heitmeyer, and Steve Sims. TAME: A PVS interface to simplify proofs for automata
models. Submitted for publication.

R. Boyer and J Moore. A Computational Logic. Academic Press, 1979.

S. Campos, E. Clarke, and M. Minea. Analysis of real-time systems using symbolic techniques. In Formal
Methods for Real-Time Computing, chapter 9. John Wiley & Sons, 1996.

A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a partitionable group communication service.
Technical Memo MIT/LCS/TM-570, Lab. for Comp. Sei., Mass. Inst. of Tech., October, 1997.

A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a partitionable group communication service.
In Proc. Sixteenth Ann. ACM Symp. on Principles of Distributed Computing (PODC'97), pages 53-62, Santa
Barbara, CA, August 1997.

M. J. C. Gordon and T.F. Melham, editors. Introduction to HOL: A Theorem Proving Environment for Higher-
Order Logic. Cambridge University Press, 1993.

C. Heitmeyer and N. Lynch. The Generalized Railroad Crossing: A case study in formal verification of real-time
systems. Technical Report MIT/LCS/TM-51, Lab. for Comp. Sei., MIT, Cambridge, MA, 1994. Also TR 7619,
NRL, Wash., DC 1994.

C. Heitmeyer and N. Lynch. The Generalized Railroad Crossing: A case study in formal verification of real-time
systems. In Proc, Real-Time Systems Symp., San Juan, Puerto Rico, December 1994.

C. Heitmeyer and D. Mandrioli, editors. Formal Methods for Real-Time Computing. Number 5 in Trends in
Software. John Wiley & Sons, 1996.

23

[15] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated consistency checking of requirements specifications.
ACM Transactions on Software Engineering and Methodology, 5(3):231-261, April-June 1996.

[16] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. A benchmark for comparing different approaches for specifying
and verifying real-time systems. In Proc., 10th Intern. Workshop on Real-Time Operating Systems and Software,
May, 1993.

[17] Constance Heitmeyer, James Kirby, and Bruce Labaw. Tools for formal specification, verification, and validation
of requirements. In Proc. 12th Annual Conf. on Computer Assurance (COMPASS '97), Gaithersburg, MD, June
1997.

[18] T. Henzinger and P. Ho. Hytech: The Cornell Hybrid Technology Tool. Technical report, Cornell University,
1995.

[19] R. P. Kurshan. Computer-Aided Verification of Coordinating Processes: the Automata-Theoretic Approach.
Princeton University Press, 1994.

[20] L. Lamport. Types are not harmless. Digital Systems Research Center, July 1995.

[21] Gunter Leeb and Nancy Lynch. Proving safety properties of the Steam Boiler Controller: Formal methods for
industrial applications: A case study. In Jean-Raymond Abrial, Egon Boerger, and Hans Langmaack, editors,
Formal Methods for Industrial Applications: Specifying and Programming the Steam Boiler Control, volume 1165
of Led. Notes in Comp. Sei. Springer-Verlag, 1996.

[22] V. Luchangco, E. Söylemez, S. Garland, and N. Lynch. Verifying timing properties of concurrent algorithms.
In D. Hogrefe and S. Leue, editors, Formal Description Techniques VII: Proc. of the 7th IFIP WG6.1 Intern.
Conference on Formal Description Techniques (FORTE'94, Berne, Switzerland, October 1994), pages 259-273.
Chapman and Hall, 1995.

[23] Victor Luchangco. Using simulation techniques to prove timing properties. Master's thesis, Massachusetts
Institute of Technology, June 1995.

[24] N. Lynch. Simulation techniques for proving properties of real-time systems. In REX Workshop '93, volume 803
of Lecture Notes in Computer Science, pages 375-424, Mook, the Netherlands, 1994. Springer-Verlag.

[25] N. Lynch and H. Attiya. Using mappings to prove timing properties. Distrib. Comput., 6:121-139, 1992.

[26] N. Lynch and M. Tuttle. An introduction to Input/Output automata. CWI-Quarterly, 2(3):219-246, September
1989. Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands.

[27] N. Lynch and F. Vaandrager. Forward and backward simulations - Part II: Timing-based systems. To appear
in Information and Computation.

[28] N. Lynch and F. Vaandrager. Forward and backward simulations for timing-based systems. In Proc. of REX
Workshop "Real-Time: Theory in Practice", volume 600 of Lecture Notes in Computer Science, pages 397-446.
Springer-Verlag, 1991.

[29] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[30] M. Merritt, F. Modugno, and M. R. Tuttle. Time constrained automata. In J. C. M. Baeten and J. F. Goote,
eds., CONCUR'91: 2nd Intern. Conference on Concurrency Theory, vol. 527 of Led. Notes in Comp. Sei.
Springer-Verlag, 1991.

[31] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal verification for fault-tolerant
architectures: Prolegomena to the design of PVS. IEEE Transactions on Software Engineering, 21(2):107-125,
February 1995.

[32] John Rushby. Private communication. NRL, Jan. 1997.

[33] N. Shankar, S. Owre, and J. Rushby. The PVS proof checker: A reference manual. Technical report, Computer
Science Lab., SRI Intl., Menlo Park, CA, 1993.

[34] J. Skakkebaek and N. Shankar. Towards a duration calculus proof assistant in PVS. In Third Intern. School
and Symp. on Formal Techniques in Real Time and Fault Tolerant Systems, Led. Notes in Comp. Sei. 863.
Springer-Verlag, 1994.

[35] M. K. Srivas and S. P. Miller. Formal verification of a commercial microprocessor. Technical Report SRI-CSL-
95-04, Computer Science Lab., SRI Intl., Menlo Park, CA, 1995.

[36] Henri B. Weinberg. Correctness of vehicle control systems: A case study. Master's thesis, Massachusetts Institute
of Technology, February 1996.

24

A Appendix. The Theory atexecs: Admissible Timed Executions

Below is the specification of the (parameterized) theory atexecs that is one of the underlying theories of
our template specification for timed automata. The major purpose of this specification is the definition
of the type atexecs. This definition, which closely follows the description of admissible timed executions
in [12, 13], represents atexecs as a complex predicate subtype of a record type with three components:
an action sequence, a trajectory sequence, and a time sequence. The associated predicate restricts these
three-sequence combinations to those whose first trajectory starts with a start state, whose trajectory time
bounds connect up, whose trajectory end points are connected by the corresponding actions, and whose time
sequence satisfies a "greatest lower bound" property that ensures that it is non-Zeno: that is, as the index
of the time points approaches infinity, so does the indexed time.

The definitions after that of atexecs set up two examples of lemmas about admissible timed executions,
last-event and first-event, that eventually will be used to support useful specialized strategies. For example,
the strategies using these lemmas will allow one in a single PVS step to follow hand proof steps of the form
"let 7T be the last (or first) event before (or after) state s that has property P".

We note that, as with the template definition of time passage events, this part of the template is also
more restrictive than the model described in Section 2.2. First, we enforce the condition that the value
of now in any admissible timed execution must approach infinity by requiring the non-time-passage events
to be infinite in number and to include a first one after any fixed finite time. In the general model, an
admissible timed execution might have only finitely many non-time-passage events, with time approaching
infinity through successive time-passage events. This difference is not really significant, since one can always
add a dummy do-nothing non-time-passage action at infinitely many future points in a "finite" admissible
timed execution. The second difference in the model is that we have added an axiom trajectory-unique (see
the theory opspec_atexecs_aux in Appendix B.3) whose effect is to ensure that there are no repeating
states in an admissible timed execution. A later state that repeats an earlier state could result only from a
series of actions occuring in zero time; otherwise, the later state would have a different time component. We
do not believe that ignoring executions with such "loops" is inordinately restrictive. In particular, an unsafe
state lasting zero time should be unimportant, and properties (such as the utility property for opspec)
involving time intervals should be unaffected in practice. If a real reason to permit repeating states arises,
we could add the concept of "state occurrence" on which to base some of our reasoning.

atexecs[states, actions: TYPE,
start: [states — > bool],
now: [states — > {nreal | r>=0}],
step?: [[states,actions,states] —> bool],
nu: [{nreal | r>0} -> actions]] : THEORY

BEGIN

future: TYPE = {nreal | r>=0};

k,m,nl,n2: VAR nat;
z,tl,t2: VAR future;
a: VAR actions;

time-action?(a):bool = (EXISTS (t:future): t > 0 & a = nu(t));

interval(tl,t2)(z):bool = (tl <= z k z <= t2);

time_path: TYPE = [# ftime,length:future, path:[(interval(ftime,ftime+length))->states] #];

ltime(w:time_path):future = ftime(w) + length(w);

trajectory?(w:time.path): bool =
(FORALL (zl,z2: (interval(ftime(w),ltime(w)))):

zl<z2 => step?(path(w)(zl),nu(z2-zl),path(w)(z2)))
k (FORALL (z: (interval(ftime(w),ltime(w)))): now(path(w)(z)) = z);

trajectory: TYPE = (trajectory?);

25

fstate(w:trajectory):states = path(w)(ftime(w));

lstate(w:trajectory):states = path(w)(ltime(w));

time_seq: TYPE = {t:[nat -> future] | t(0)=0 & (FORALL (nl,n2): nl<=n2 => t(nl)<=t(n2))};

is_glb(z:future,t:time_seq,k:nat):bool = (t(k) <= z & (FORALL (m): m>k => z < t(m)));

has_glb(z:future,t:time_seq):bool = (EXISTS (k): is_glb(z,t,k));

posjiat: TYPE = {n:nat | n > 0};

non-time-action: TYPE = {a:actions | (NOT (time_action?(a)))};
action_seq: TYPE = [pos_nat — > non_time-action];

traj-seq: TYPE = {w:[nat -> trajectory] | (FORALL (k): ltime(w(k)) = ftime(w(k+l)))};

atexecs: TYPE = {alpha : [# pi: action_seq, w: traj_seq, t: time_seq #] |
start(fstate(w(alpha) (0)))

k (FORALL (k): t(alpha)(k)= ftime(w(alpha)(k)))
k (FORALL (k): step?(lstate(w(alpha)(k)), pi(alpha)(k+l), fstate(w(alpha)(k+l))))
k (FORALL (z): has-glb(z,t(alpha))) };

% The definitions and lemmas below are auxiliary to the main theory atexecs. They serve to
% illustrate one of the conveniences of a theorem proving system with a higher order logic: one can
% state such results as last-event and first-event that say that if there exists an event
% before (after) some state that satisfies some property Q, then there is a last (first) such event.

in_trajectory(w:trajectory) (s:states) :bool =
(EXISTS (t:future): t >= ftime(w) & t <= ltime(w) k path(w)(t) = s);

precedes(alpha:atexecs)(sl,s2:states):bool =
(now(sl) <= now(s2))

& (EXISTS (nl,n2):(in_trajectory(w(alpha)(n2))(s2) k in_trajectory(w(alpha)(n2))(s2)
k nl <= n2));

precedes-State(alpha:atexecs)(nl:posnat,s2:states):bool =
(t(alpha)(nl) <= now(s2))

k (EXISTS (n2): (in-trajectory(w(alpha)(n2))(s2) k nl <= n2));

precedes_event(alpha:atexecs) (sl:states,n2:posnat):bool =
(now(sl) <= t(alpha)(n2))

k (EXISTS (nl): (in_trajectory(w(alpha)(nl))(sl) k nl <= n2-l));

state_event_prop: TYPE = [atexecs,states,posnat — > bool];
Q: state_event-prop;

last_event: LEMMA (FORALL (alpha:atexecs, s:states, P:state_event_prop):
(LET Q = (LAMBDA(alpha:atexecs, s:states, n:posjaat):

(precedes_state(alpha)(n,s) k P(alpha,s,n)))
IN (FORALL (n:posnat): (Q(alpha,s,n) =>

(EXISTS (m: posnat): m >= n k Q(alpha,s,m)
k (FORALL (k: posnat): k >= m k Q(alpha,s,k) => k = m))))));

first_event: LEMMA (FORALL (alpha:atexecs, s:states, P:state_event_prop):
(LET Q = (LAMBDA(alpha:atexecs, s:states, n:pos_nat):

(precedes_event(alpha)(s,n) k P(alpha,s,n)))
IN (FORALL (n:posnat): (Q(alpha,s,n) =>

(EXISTS (m: posnat): m <= n k Q(alpha,s,m)
k (FORALL (k: posnat): k <= m k Q(alpha,s,k) => k = m))))));

END atexecs

26

B Appendix. Specifying the GRC Timed Automata Solution in
PVS

The specification in Figure 6 shows how the definition of the timed automaton Trains from [12, 13] is
represented in PVS. Trains is a component of each of the timed automata used in deriving a solution to the
Generalized Railroad Crossing problem in [12, 13]. Figure 6 shows only the declarations needed to define
the automaton Trains; the full theory of Trains also contains lemmas that have been proved about the
automaton.

In general, when using the template shown in Figure 4, it has proved convenient to organize the full theory
of a timed automaton into several PVS theories that group definitions and lemmas or theorems according to
their significance, and to import these separate theories either directly or indirectly into a trivial top-level
theory. For any given automaton < timed-automaton-name >, we name the subsidiary theories according
to the following conventions:

1. < timedjautomatonjfiame >_decls contains the definitions required to instantiate the template;

2. < timed.automaton.name >_unique_aux contains the lemmas that document the fact that parame-
terized actions with distinct arguments are distinct;

3. < timedjautomatonjname >-invariants contains the state invariant definitions and corresponding state
invariant lemmas for the state invariants of < timed.automatonjname >;

4. < timedjautomatonjname >_atexecs_aux contains the standard definitions and "IMPORTING atex-
ecs" declaration to define the admissible timed executions of < timedjautomatonjname >;

5. < timedjautomatonjname >_atexecs contains the lemmas, theorems, and any supporting definitions
concerning properties of the admissible timed executions of < timedjautomatonjname >;

6. < timedjautomatonjname >jstrat_aux contains the lemmas needed to support the specialized strate-
gies designed for use in the ad hoc portions of proofs of properties of < timedjautomatonjname >;

7. < timedjautomatonjname > is the trivial top-level theory of < timedjautomatonjname > that imports
all the subsidiary theories.

The subsidiary theories having the _aux suffix have the potential of being generated automatically from
the information in the < timedjautomatonjname >_decls theory. For example,

(A) < timedjautomatonjname >_unique_aux can be generated from the declaration of the actions
datatype;

(B) the definitions of Now, Nu, and step?, as well as the "IMPORTING atexecs" clause in the theory
axspec_atexecs_aux, are of a standard form, and are technically part of (an extended form of) the
template; and

(C) the lemmas in < timedjautomatonjname >_strat_aux are identical in form for all applications.

The theory < timedjautomatonjname >_unique_aux in (A) contains a set of lemmas about the unique-
ness of actions whose content is not part of the knowledge incorporated in existing PVS strategies, but which
are provable in PVS.15 In fact, the proofs of these lemmas could also be generated automatically.

The syntactic content of the theories in (B) and (C) is fixed, and can be considered an extension of the
template. Note that the lemmas in the theory < timedjautomatonjname >^strat_aux need to be proved
at some point, in order to guarantee the soundness of proofs obtained using strategies that depend on the
lemmas. These lemmas need to be proved in an environment in which type of trans is known. One method
for providing such an environment is to import a theory into < timed.automatonjname >_strat_aux,

15The information that they contain is one example of the type of knowledge that is "obvious" to a human but not to PVS.
Note that the truth of this information depends on the fact that there are no equations postulated among elements of the data
type actions. PVS does not support the declaration of such equations, although other theorem proving systems, including LP,
do allow them.

27

directly or indirectly, in which trans is declared (following our naming conventions, this theory should be
< timed .automaton-name >_decls). This is the method used in the specifications in this Appendix. Note
that it requires proving the lemmas anew for each timed automaton. Another method would be to define
the lemmas within a theory to which trans is passed in as a parameter of known type. This second method
is used in our second template, which is shown in Appendix F. Using this method, the lemmas need to be
proved only once, at the top level.

The connections between the lemmas in the theory < timed-automaton-name >_strat_aux and our
domain specific strategies are made explicit in Appendix C.

Below, we present four full PVS theories in the order that the corresponding timed automata are defined
in [12, 13]: trains, the theory of Trains; axspec, the theory of AxSpec; opspec, the theory of OpSpec; and
systimpl, the theory of Systlmpl. Not every one of these timed automata required all of the subtheories
listed above. For the timed automata Trains and Systimpl, we have only needed the theories described in
(1), (2), (3), and (7). For AxSpec, only (1), (2), (4), (5), and (7) are needed. OpSpec requires all seven
subtheories.

B.l Appendix. The Full Theory of Trains in PVS

The specification in Figure 6 shows how the definition of the timed automaton Trains from [12, 13] is
represented in PVS. The full theory trains of Trains also includes one invariant lemma: lemmaJLl. In
accordance with our naming conventions, lemmaJLl appears in the subsidiary theory trains_invariants.

trains_decls: THEORY

BEGIN

IMPORTING time_thy

delta-t: VAR (fintime?)
eps_l, eps_2: (fintime?)

train: TYPE

r: VAR train

actions : DATATYPE

BEGIN
nu(timeof:(fintime?)): nu?
enterR(Rtrainof:train): enterR?
enterI(Itrainof:train): enter I?
exit(Etrainof:train): exit?

END actions

a: VAR actions

status: TYPE == notJiere,P,I

MMTstates: TYPE = [train -> status]

IMPORTING states[actions,MMTstates,time,fintime?]

status(r:train, s:states):status = basic(s)(r)

OKstate?(s:states):bool = true;

enabled-general (a:actions, s:states):bool = now(s) >= first(s)(a) & now(s) <= last(s)(a);

enabled_specific (a:actions, s:states):bool =
CASES a OF

nu(delta-t): (FORALL r: now(s) + delta_t <= last(s)(enterl(r))),
enterR(r): status(r,s) = notJiere,
enterl(r): status(r,s) = P & first(s)(a) <= now(s),
exit(r): status(r,s) = I

28

ENDCASES

trans (a:actions, s:states):states =
CASES a OF

nu(delta-t): s WITH [now := now(s) + delta_t],
enterR(r): (# basic := basic(s) WITH [r := P],

now := now(s),
first := first(s) WITH [(enterl(r)) := now(s)+epsJL],
last := last(s) WITH [(enterl(r)) := now(s)+eps_2] #),

enterl(r): (# basic := basic(s) WITH [r := I],
now := now(s),
first := first(s) WITH [(enterl(r)) := zero],
last := last(s) WITH [(enterl(r)) := infinity] #),

exit(r): s WITH [basic := basic(s) WITH [r := notJiere]]
ENDCASES

enabled (aractions, s:states):bool =
enabled_general(a,s) & enabled_specific(a,s) & OKstate?(trans(a,s));

start (s:states):bool =
s = (# basic := (LAMBDA r: notJiere),

now := zero,
first := (LAMBDA a: zero),
last := (LAMBDA a: infinity) #)

IMPORTING machine[states, actions, enabled, trans, start]

END trains_decls

trains_unique_aux: THEORY

BEGIN

IMPORTING trains_decls

enterR.unique: LEMMA (FORALL (rl, r2: train): (enterR(rl) = enterR(r2) => rl = r2));
enterLunique: LEMMA (FORALL (rl, r2: train): (enterl(rl) = enterl(r2) => rl = r2));
exit_unique: LEMMA (FORALL (rl, r2: train): (exit(rl) = exit(r2) => rl = r2));
nu.unique: LEMMA (FORALL (tl, t2: (fintime?)): (nu(tl) = nu(t2) => tl = t2));

END trains_unique_aux

trainsJnvariants: THEORY

BEGIN

IMPORTING trains_unique_aux

Inv_3_l(s: states) :bool =
(FORALL (r: train): (status(r,s) = P =>

first(s)(enterl(r)) + eps_2 - eps_l = last(s)(enterl(r))));

lemma-3-1: LEMMA (FORALL (s: states): reachable(s) => Inv_3_l(s));

END trains_invariants

trains: THEORY

BEGIN

IMPORTING trainsJnvariants

END trains

29

B.2 Appendix. Representing the Automaton AxSpec in PVS

Below, we present the theory axspec, which is the translation into PVS of the theory of the automaton
AxSpec from [12, 13].

The automaton AxSpec includes axiomatic versions of the Safety and Utility Properties as part of its
definition, so we wish to include these in the full corresponding PVS theory axspec. Since the Safety and
Utility axioms restrict the admissible timed executions of AxSpec, they are defined in the subsidiary theory
axspec_atexecs.

Note that the use of subtraction in the time expressions appearing in the inequalities involved in the
definition of the Utility Property axiom has been avoided by following the convention of replacing the
inequalities with equivalent ones involving only addition. Doing this results in reducing the number and
complexity of the cases to be considered in PVS proofs relying on these inequalities. It also ensures that the
inequalities have the same semantics as if they permitted negative values to result from subtractions, as is
typically assumed in hand proofs involving values in R-° U {00}. We have included the original formulations
of the definitions for comparison. This particular convention for fitting an automaton specification to our
PVS template could be automated.

axspec.decls: THEORY

BEGIN

train: TYPE;

r,rl: VAR train;

IMPORTING time_thy

t, delta_t: VAR time;
eps-1, eps.2, gamma.down, gamma-up, xi_l, xi_2, delta: (fintime?);

actions : DATATYPE

BEGIN
nu(timeof:(fintime?)): nu?
enterR(Rtrainof:train): enterR?
enterI(Itrainof:train): enter I?
exit(Etrainof:train): exit?
lower: lower?
raise: raise?
up: up?
down: down?

END actions;

a: VAR actions;

train-status: TYPE = not_here,P,I;

gate-status: TYPE = fully_up,fully_down,going_up,going_down;

MMTstates: TYPE = [# trains-part: [train —> train-status], gate.part: gate_status #];

IMPORTING states[actions,MMTstates,time,fintime?]

si: VAR states;

status(r:train, s:states):trainjstatus = trains.part(basic(s))(r);

gate-Status(s:states):gate_status = gate_part(basic(s));

OKstate?(s:states):bool = true;

enabled-general (a:actions, s:states):bool = now(s) >= first(s)(a) & now(s) <= last(s)(a);

enabled-specific (a:actions, s:states):bool =
CASES a OF

nu(delta_t): (delta.t > zero
& (FORALL r: now(s) + delta_t <= last(s)(enterl(r)))

30

& now(s) + delta-t <= last(s)(up)
& now(s) + delta-t <= last(s)(down)),

enterR(r): status(r,s) = notJiere,
enterl(r): status(r,s) = P & first(s)(a) <= now(s),
exit(r): status(r,s) = I,
lower: true,
raise: true,
up: gate-status(s) = going.up,
down: gate_status(s) = going_down

ENDCASES;

trans (a:actions, s:states):states =
CASES a OF

nu(delta.t): s WITH [now := now(s)+delta.t],
enterR(r): s WITH [basic := basic(s) WITH

[trains_part := trains.part(basic(s)) WITH [r := P]],
first := first(s) WITH [(enterl(r)) := now(s)+eps.l],
last := last(s) WITH [(enterl(r)) := now(s)+eps_2]],

enterl(r): s WITH [basic := basic(s) WITH
[trains-part := trains_part(basic(s)) WITH [r := I]],
first := first(s) WITH [(enterl(r)) := zero],
last := last(s) WITH [(enterl(r)) := infinity]],

exit(r): s WITH [basic := basic(s) WITH
[trains-part := trains_part(basic(s)) WITH [r := notJiere]]],

lower: IF gate-Status (s) = fully.up OR gate-Status(s) = going.up
THEN s WITH [basic := basic(s) WITH [gate.part := going.down],

last := last(s) WITH
[down := now(s) + gamma.down, up := infinity]]

ELSE s ENDIF,
raise: IF gate_status(s) = fully-down OR gate^status(s) = going-down

THEN s WITH [basic := basic(s) WITH [gate-part := going.up],
last := last(s) WITH

[up := now(s) + gamma.up, down := infinity]]
ELSE s ENDIF,

up: s WITH [basic := basic(s) WITH [gate_part := fully.up],
last := last(s) WITH [up := infinity]],

down: s WITH [basic := basic(s) WITH [gate.part := fully-down],
last := last(s) WITH [down := infinity]]

ENDCASES

enabled (a:actions, s:states):bool = enabled_general(a,s) & enabled_specific(a,s);

start (s:states):bool =
s = (# basic := (# trains.part := (LAMBDA r: notJiere), gate.part := fully.up #),

now := zero,
first := (LAMBDA a: zero),
last := (LAMBDA a: infinity) #);

IMPORTING machine [states, actions, enabled, trans, start]

END axspec_decls

axspec_unique_aux: THEORY

BEGIN

IMPORTING axspec_decls

enterR.unique: LEMMA (FORALL (rl, r2: train): (enterR(rl) = enterR(r2) => rl = r2));
enterLunique: LEMMA (FORALL (rl, r2: train): (enterl(rl) = enterl(r2) => rl = r2));

31

exit-unique: LEMMA (FORALL (rl, r2: train): (exit(rl) = exit(r2) => rl = r2));
nu.unique: LEMMA (FORALL (tl, t2: (frntime?)): (nu(tl) = nu(t2) => tl = t2));

END axspec_unique_aux

axspec_atexecs_aux: THEORY

BEGIN

IMPORTING axspec_unique_aux

step? (sl:states, a:actions, s2:states): bool = enabled(a,sl) &: s2 = trans(a,sl);

Now (s: states): {z:real | z>=0} = dur(now(s));

Nu (z: {z:real | z>0}): actions = nu(fintime(z: {z:real | z>=0}));

IMPORTING atexecs [states, actions, start, Now, step?, Nu]

END axspec_atexecs_aux

axspec_atexecs: THEORY

BEGIN

IMPORTING axspec_atexecs_aux

safety: AXIOM (FORALL (alpha: atexecs): (FORALL (s: states):
(in_atexec(alpha)(s) => ((EXISTS (ntrain): status(r,s)=I) => gate-Status(s)=fully_down))));

% utility.prop_a (alpha:atexecs, s:states): bool =
% (EXISTS (sl:states):
% (precedes(alpha)(sl,s) & (EXISTS (ntrain): status(r,sl) = I) & now(sl) >= now(s) - xi_2));

utility_prop_a (alpha:atexecs, s:states): bool =
(EXISTS (sl:states):

(precedes(alpha)(si,s) & (EXISTS (r:train): status(r,sl) = I) & now(sl) + xL2 >= now(s)));

utility_prop_b (alpha:atexecs, s:states): bool =
(EXISTS (sl:states):

(precedes(alpha)(s,sl) & (EXISTS (r:train): status(r,sl) = I) & now(sl) <= now(s) + xLl));

% utility_prop-C (alpha:atexecs, s:states): bool =
% (EXISTS (sl,s2:states):
% precedes(alpha)(sl,s) & precedes(alpha)(s,s2)
% k (EXISTS (r:train):status(r,sl)=I) & (EXISTS (ntrain):status(r,s2)=I)
% k now(s2) - now(sl) <= xLl + xi.2 + delta);

utility .prop-C (alpha:atexecs, s:states): bool =
(EXISTS (sl,s2:states):

precedes(alpha)(sl,s) & precedes(alpha)(s,s2)
& (EXISTS (ntrain):status(r,sl)=I) & (EXISTS (r:train):status(r,s2)=I)
& now(s2) <= xi_l + xi_2 + delta + now(sl));

utility: AXIOM (FORALL (alpha: atexecs): (FORALL (s: states):
((in_atexec(alpha)(s) & NOT(gate_status(s) = fully -up)) =>

(utility_prop_a(alpha,s) OR utility.prop_b(alpha,s) OR utility_prop_c(alpha,s)))));

END axspec_atexecs

axspec : THEORY

BEGIN

IMPORTING axspec_atexecs

END axspec

32

B.3 Appendix. The Timed Automaton OpSpec in PVS: Version 1

The timed automaton OpSpec denned in [12, 13] is the composition of three timed automata: Trains, Gate,
and CompSpec. In our study, we have first composed these automata by hand into a a single timed automaton,
which we then defined by completing our template specification.

The complete theory of OpSpec includes several state invariant lemmas and a few results about admissible
timed executions of OpSpec—most notably, two major theorems, the Safety Property and the Utility Prop-
erty for OpSpec, which appear in the theory opspec_atexecs. This theory also contains a major lemma
(lemma-E-1) and three definitions needed to state and prove the Utility Property. A heavily annotated
version of the PVS proof of lemmaJEA (which corresponds to Lemma E.l in [12]) appears in Appendix E.

opspecdecls: THEORY

BEGIN

train: TYPE

r,rl: VAR train

IMPORTING time_thy

beta-posreal: {nreal | r > 0};
delta-t: VAR (fintime?)
eps.l, eps-2, gamma_down, gamma_up, xLl, xi_2, delta: (fintime?)
beta:(fintime?) = fintime(beta_posreal:{nreal | r >= 0});

const-facts: AXIOM
(eps_l <= eps_2

& eps.l > gamma_down
& xi_l >= gamma_down + beta + eps_2 — eps_l
& xi_2 >= gamma_up);

actions : DATATYPE

BEGIN

nu(timeof:(fintime?)): nu?
enterR(Rtrainof:train): enterR?
enterI(Itrainof:train): enter I?
exit(Etrainof:train): exit?
lower: lower?
raise: raise?
up: up?
down: down?

END actions;

a: VAR actions;

train-status: TYPE = {not_here,P,I};

gate-Status: TYPE = {fully-up,fully_down,going_up,going_down};

MMTstates: TYPE = [# trains-part: [train -> train_status],
gate.part: gate-Status,
lastJLpart, last_2_up.part, last_2J-part: time #];

IMPORTING states[actions,MMTstates,time,fintime?]

si: VAR states;

status(r:train, s:states):train_status = trains_part(basic(s))(r);

33

gate_status(s:states):gate-status = gate-part(basic(s));

last-l(s:states):time = last_l.part(basic(s));

last_2_up(s:states):time = last-2_up_part(basic(s));

last.2J(s:states):time = last_2JLpart(basic(s));

OKstate? (s:states): bool =
((EXISTS (ntrain): status(r,s) = I) => gate_status(s) = fully-down);

OKstates: TYPE = (OKstate?);

enablecLgeneral (a:actions, s:states):bool =
now(s) >= first(s)(a) & now(s) <= last(s)(a);

enabled-specific (a:actions, s:states):bool =
CASES a OF

nu(delta_t): (delta.t > zero
k (FORALL r: now(s) + delta.t <= last(s)(enterl(r)))
& now(s) + delta-t <= last(s)(up)
& now(s) 4- delta-t <= last(s)(down)
& now(s) + delta-t <= last.l(s)
& now(s) + delta.t <= last_2J(s)),

enterR(r): status(r,s) = not-here,
enterl(r): status (r,s) = P & first (s) (a) <= now(s),
exit(r): status(r,s) = I,
lower: true,
raise: true,
up: gate_status(s) = going.up,
down: gate_status(s) = going-down

ENDCASES;

trans (a:actions, s:states):states =
CASES a OF

nu(delta.t): s WITH [now := now(s)+delta_t],
enterR(r): s WITH [basic := basic(s) WITH

[trains-part := trains.part(basic(s)) WITH [r := P]],
first := first(s) WITH [(enterl(r)) := now(s)+eps_l],
last := last(s) WITH [(enterl(r)) := now(s)+eps_2]],

enterl(r): s WITH [basic := basic(s) WITH
[trains_part := trains_part(basic(s)) WITH [r := I],
last_l_part := infinity,
last_2_up_part := infinity,
last_2_Lpart := infinity],

first := first(s) WITH [(enterl(r)) := zero],
last := last(s) WITH [(enterl(r)) := infinity]],

exit(r): LET si = s WITH [basic := basic(s) WITH
[trains_part := trains_part(basic(s)) WITH

[r := notJiere]]]
IN IF (FORALL (rl: train): (NOT (rl = r)) => (NOT status(rl,s) = I))

THEN si WITH [basic := basic(sl) WITH
[last_2_up_part := now(s) + xi_2,
last_2 J_part := now(s) + xi_2 + delta + xi_l]]

ELSE si ENDIF,
lower: IF gate_status (s) = fully_up OR gate_status(s) = going.up

THEN LET si = s WITH
[basic := basic(s) WITH [gate_part := going-down],

34

last := last(s) WITH
[down := now(s) + gamma_down, up := infinity]]

IN IF last_l_part(basic(s)) = infinity
THEN si WITH

[basic:= basic(sl) WITH [last_l_part:= now(s)+xi_l]]
ELSE si ENDIF

ELSE s ENDIF,
raise: IF gate.status(s) = fully_down OR gate_status(s) = going_down

THEN s WITH [basic := basic(s) WITH [gate.part := going-up],
last := last(s) WITH

[up := now(s) + gamma-up, down := infinity]]
ELSE s ENDIF,

up: LET si = s WITH [basic := basic(s) WITH [gate.part := fully.up],
last := last(s) WITH [up := infinity]]

IN IF now(s) <= last_2_up_part(basic(s))
THEN si WITH [basic := basic(sl) WITH

[last-2-up-part:= infinity, last_2_I_part:= infinity]]
ELSE si ENDIF,

down: s WITH [basic := basic(s) WITH [gate.part := fully-down],
last := last(s) WITH [down := infinity]]

ENDCASES

enabled (a:actions, s:states):bool =
enabled-general(a,s) & enabled_specific(a,s) & OKstate?(trans(a,s));

start (s:states):bool =
s = (# basic := (# trains-part := (LAMBDA r: notJiere),

gate.part := fully.up,
last.l.part := infinity,
last.2_up.part := infinity,
last-2_I_part := infinity #),

now := zero,
first := (LAMBDA a: zero),
last := (LAMBDA a: infinity) #)

rans, start]

END opspec.decls

opspec_unique_aux: THEORY

BEGIN

IMPORTING opspec.decls

enterR.unique: LEMMA (FORALL (rl, r2: train): (enterR(rl) = enterR(r2) => rl = r2));
enterl.unique: LEMMA (FORALL (rl, r2: train): (enterl(rl) = enterl(r2) => rl = r2));
exit-unique: LEMMA (FORALL (rl, r2: train): (exit(rl) = exit(r2) => rl = r2));
nu-unique: LEMMA (FORALL (tl, t2: (fintime?)): (nu(tl) = nu(t2) => tl = t2));

END opspec_unique_aux

opspecJnvariants: THEORY

BEGIN

IMPORTING opspec_unique_aux

35

Inv_4_.l-l(s: states) :bool =
(EXISTS (r: train): (status(r,s) = I)) => gate_status(s) = fully .down;

lemma-4-1-1: LEMMA (FORALL (s: states): reachable(s) => Inv_4_l_l(s));

Inv_4_l_2(s: states):bool = (last-2.up(s) + delta + xLl = last_2J(s));

lemma.4_l_2: LEMMA (FORALL (s: states): reachable(s) => Inv_4_l_2(s));

Inv_4_2_l(s: states):bool = (now(s) <- last.l(s));

lemma-4-2-1: LEMMA (FORALL (s: states): reachable(s) => Inv_4_2_l(s));

Inv_4_2_2(s: states):bool = (now(s) <= last_2J(s));

lemma_4_2_2: LEMMA (FORALL (s: states): reachable(s) => Inv_4_2_2(s));

Inv_4_2_3(s: states):bool =
(NOT (last-l(s) = infinity)) => (last.l(s) <= now(s) + xLl);

lemma-4_2_3: LEMMA (FORALL (s: states): reachable(s) => Inv_4_2_3(s));

Inv_4_2_4(s: states):bool =
(NOT (last_2J(s) = infinity)) => (last_2J(s) <= now(s) + xi_2 + delta + xi.l);

lemma_4_2.4: LEMMA (FORALL (s: states): reachable(s) => Inv.4-2_4(s));

Inv_4_2_5(s: states):bool =
(NOT (last_2_up(s) = infinity)) => (last_2_up(s) <= now(s) + xL2);

lemma_4_2_5: LEMMA (FORALL (s: states): reachable(s) => Inv_4_2_5(s));

END opspecJnvariants

opspec_atexecs_aux: THEORY

BEGIN

IMPORTING opspecJnvariants

step? (sl:states, a:actions, s2:states): bool = enabled(a,sl) & s2 = trans(a,sl);

Now (s: states): {z:real | z>=0} = dur(now(s));

Nu (z: {z:real | z>0}): actions = nu(fintime(z: {z:real | z>=0}));

IMPORTING atexecs [states, actions, start, Now, step?, Nu]

A: var atexecs;

reach_equiv: LEMMA (FORALL (s: states): (FORALL (n: nat):
steps_reach(n, s) => reachable(s)));

reach_equiv_2: LEMMA (FORALL (s: states): (EXISTS (n: nat):
steps_reach(n, s)) => reachable(s));

reachability: LEMMA (FORALL (alpha: atexecs): (FORALL (s: states):
(in-atexec(alpha)(s) => reachable(s))));

last_linterval-O: LEMMA (FORALL (alpha: atexecs): (FORALL (j: nat): (FORALL (s: states):
(in_trajectory(w(alpha)(j))(s) => (last.l(s) = last_l(fstate(w(alpha)(j))))))));

lastJJnterval: LEMMA (FORALL (alpha: atexecs): (FORALL (j: nat):
(last-l(lstate(w(alpha)(j))) = last.l(fstate(w(alpha)(j))))));

gate-statusjnterval.0: LEMMA (FORALL(alpha:atexecs):(FORALL(j:nat):(FORALL(s:states):
(in_trajectory(w(alpha)(j))(s) => (gate-status(s) = gate_status(fstate(w(alpha)(j))))))));

36

gate_statusinterval: LEMMA (FORALL (alpha: atexecs): (FORALL (j: nat):
(gate-status (lstate (w (alpha) (j))) = gate_status (fstate(w(alpha) (j))))));

statusinterval-O: LEMMA (FORALL (alpha: atexecs): (FORALL (j: nat): (FORALL (s: states):
(in_trajectory(w(alpha)(j))(s)
=> (FORALL (r: train): (status(r,s) = status(r,fstate(w(alpha)(j)))))))));

status-interval: LEMMA (FORALL (alpha: atexecs): (FORALL (j: nat): (FORALL (r: train):
(status(r,lstate(w(alpha)(j))) = status(r,fstate(w(alpha)(j)))))));

last-2_upJnterval-0: LEMMA (FORALL (alpha:atexecs): (FORALL (j:nat): (FORALL (s:states):
(in_trajectory(w(alpha)(j))(s) => (last_2_up(s) = last_2_up(fstate(w(alpha)(j))))))));

last-2-up_interval: LEMMA (FORALL (alpha: atexecs): (FORALL (j: nat):
(last_2-up(lstate(w(alpha)(j))) = last_2_up(fstate(w(alpha)(j))))));

last_2J_intervaL0: LEMMA (FORALL (alpha:atexecs): (FORALL (j:nat): FORALL (s:states):
(in_trajectory(w(alpha)(j))(s) => (last_2J(s) = last_2J(fstate(w(alpha)(j))))))));

last_2J_interval: LEMMA (FORALL (alpha: atexecs): (FORALL (j: nat):
(last_2J(lstate(w(alpha)(j))) = last.2J(fstate(w(alpha)(j))))));

trajectory-unique: AXIOM (FORALL(alpha:atexecs):(FORALL (s:states):(FORALL (nl,n2:nat):
(in_trajectory(w(alpha)(nl))(s) k in_trajectory(w(alpha)(n2))(s)) => nl = n2)));

last_2J_fbced: LEMMA (FORALL (alpha: atexecs): (FORALL (j,k: nat):
(j<=k
& (FORALL (m: nat): (j < m k m <= k) => (not(exit?(pi(alpha)(m)))

k not(enterI?(pi(alpha)(m)))
k not(up?(pi(alpha)(m))))))

=> last_2J(fstate(w(alpha)(k))) = last_2J(fstate(w(alpha)(j)))));

last-2-up-fixed: LEMMA (FORALL (alpha: atexecs): (FORALL (j,k: nat):
(j<=k
k (FORALL (m: nat): (j < m & m<= k) => (not(exit?(pi(alpha)(m)))

k not(enterI?(pi(alpha)(m)))
k not(up?(pi(alpha)(m))))))

=> last_2.up(fstate(w(alpha)(k))) = last-2.up(fstate(w(alpha)(j)))));

END opspec_atexecs_aux

opspec_strat_aux: THEORY

BEGIN

IMPORTING opspec_atexecs_aux

event-times: LEMMA (FORALL (alpha:atexecs, n:nat):
ftime (w (alpha) (n)) = t (alpha) (n) k
Now(path(w(alpha)(n))(t(alpha)(n))) = t(alpha)(n) k
Now(path(w(alpha)(n))(ftime(w(alpha)(n)))) = t(alpha)(n) k
dur(now(path(w(alpha)(n))(t(alpha)(n)))) = t(alpha)(n) k
dur(now(path(w(alpha)(n))(ftime(w(alpha)(n))))) = t(alpha)(n) k
(n > 0 => (ltime(w(alpha)(n - 1)) = t(alpha)(n) k

ftime(w(alpha)(n - 1)) + length(w(alpha)(n-l)) = t(alpha)(n) k
Now(path(w(alpha)(n - 1))(t(alpha)(n))) = t(alpha)(n) k
Now(path(w(alpha)(n - l))(ftime(w(alpha)(n)))) = t(alpha)(n) k
dur(now(path(w(alpha)(n — l))(t(alpha)(n)))) = t(alpha)(n) k
dur(now(path(w(alpha)(n - l))(ftime(w(alpha)(n))))) = t(alpha)(n))));

37

same_states: LEMMA (FORALL (alpha:atexecs, nmat):
fstate(w(alpha)(n)) = path(w(alpha)(n))(t(alpha)(n)) &
lstate(w(alpha)(n)) = path(w(alpha)(n))(t(alpha)(n + 1)) &
(n > 0 => lstate(w(alpha)(n-l)) = path(w(alpha)(n-l))(t(alpha)(n))) &
trans (pi (alpha) (n + 1), lstate(w(alpha)(n))) = path (w (alpha) (n + l))(t (alpha) (n + 1)) &
trans(pi(alpha)(n + 1), path(w(alpha)(n))(t(alpha)(n + 1)))

= path(w(alpha)(n + l))(t(alpha)(n + 1)) &
LET (dt:{z:real|z>=0}) = t(alpha)(n + 1) - t(alpha)(n) IN

(dt >= 0 & (dt > 0 => trans(nu(fintime(dt)),fstate(w(alpha)(n))) = lstate(w(alpha)(n)))));

event_times_l: LEMMA (FORALL (alpharatexecs, n:nat):
ftime(w(alpha)(n)) = t(alpha)(n));

event-times.2: LEMMA (FORALL (alpharatexecs, n:nat):
(t(alpha)(n+l) - t(alpha)(n) >= 0) = TRUE);

event_times_3: LEMMA (FORALL (alpharatexecs, nmat):
(t(alpha)(n+l) >= t(alpha)(n)) = TRUE);

event_times_4: LEMMA (FORALL (alpharatexecs, nmat):
(t(alpha)(n) <= t(alpha)(n+l)) = TRUE);

event_times_5: LEMMA (FORALL (alpharatexecs, nmat):
Now(path(w(alpha)(n))(t(alpha)(n))) = t(alpha)(n));

event-times-6: LEMMA (FORALL (alpha:atexecs, nmat):
Now(path(w(alpha)(n))(ftime(w(alpha)(n)))) = t(alpha)(n));

event.times_7: LEMMA (FORALL (alpha:atexecs, nmat):
dur(now(path(w(alpha)(n))(t(alpha)(n)))) = t(alpha)(n));

event_times_8: LEMMA (FORALL (alpharatexecs, nmat):
dur(now(path(w(alpha)(n))(ftime(w(alpha)(n))))) = t(alpha)(n));

event.times_9: LEMMA (FORALL (alpha:atexecs, nmat):
now(path(w(alpha)(n))(t(alpha)(n))) = fintime(t(alpha)(n)));

event_times_10: LEMMA (FORALL (alpha:atexecs, nmat):
now (path (w(alpha) (n)) (ftime (w (alpha) (n)))) = fintime (t (alpha) (n)));

event_times-ll: LEMMA (FORALL (alpha:atexecs, nmat):
ltime(w(alpha)(n)) = t(alpha)(n+l));

event_times_12: LEMMA (FORALL (alpha:atexecs, nmat):
ftime(w(alpha)(n)) + length (w (alpha) (n)) = t(alpha)(n+l));

event.times-13: LEMMA (FORALL (alpha:atexecs, nmat):
length(w(alpha)(n)) + ftime(w(alpha)(n)) = t(alpha)(n+l));

event_times_14: LEMMA (FORALL (alpha:atexecs, nmat):
t(alpha)(n) + length(w(alpha)(n)) = t(alpha)(n+l));

event_times_15: LEMMA (FORALL (alpha:atexecs, nmat):
length(w(alpha)(n)) + t(alpha)(n) = t (alpha) (n+1));

event_times_16: LEMMA (FORALL (alpha:atexecs, nmat):
Now(path(w(alpha)(n))(t(alpha)(n+l))) = t(alpha)(n+l));

event-times_17: LEMMA (FORALL (alpha:atexecs, nmat):
Now(path(w(alpha)(n))(ftime(w(alpha)(n+l)))) = t(alpha)(n+l));

event_times_18: LEMMA (FORALL (alpha:atexecs, nmat):
dur(now(path(w(alpha)(n))(t(alpha)(n+l)))) = t(alpha)(n+l));

event_times_19: LEMMA (FORALL (alpha:atexecs, nmat):
dur(now(path(w(alpha)(n))(ftime(w(alpha)(n+l))))) = t(alpha)(n+l));

event_times_20: LEMMA (FORALL (alpha:atexecs, nmat):
now(path(w(alpha)(n))(t(alpha)(n+l))) = fintime(t(alpha)(n+l)));

event_times_21: LEMMA (FORALL (alpha:atexecs, nmat):
now(path(w(alpha)(n))(ftime(w(alpha)(n+l)))) = fintime(t(alpha)(n+l)));

same-states-22: LEMMA (FORALL (alpha:atexecs, n:posnat):
(t(alpha)(n) - t(alpha)(n-l) >= 0) = TRUE);

38

event-times-23: LEMMA (FORALL (alpha:atexecs, nrposnat):
(t(alpha)(n) >= t(alpha)(n-l)) = TRUE);

event_times_24: LEMMA (FORALL (alpha:atexecs, n:posnat):
(t(alpha)(n-l) <= t(alpha)(n)) = TRUE);

event_times_25: LEMMA (FORALL (alpha:atexecs, n:posnat):
ltime(w(alpha)(n—1)) = t(alpha)(n));

event-times-26: LEMMA (FORALL (alpha:atexecs, nrposnat):
ftime(w(alpha)(n—1)) + length(w(alpha)(n-l)) = t(alpha)(n));

event-times-27: LEMMA (FORALL (alpha:atexecs, n:posnat):
length(w(alpha)(n—1)) + ftime(w(alpha)(n—1)) = t(alpha)(n));

event_times-28: LEMMA (FORALL (alpha:atexecs, nrposnat):
t(alpha)(n—1) + length(w(alpha)(n-l)) = t(alpha)(n));

event_times_29: LEMMA (FORALL (alpha:atexecs, n:posnat):
length(w(alpha)(n—1)) + t(alpha)(n—1) = t (alpha) (n));

event_times_30: LEMMA (FORALL (alpha:atexecs, n:posnat):
Now(path(w(alpha)(n-l))(t(alpha)(n))) = t(alpha)(n));

event_times_31: LEMMA (FORALL (alpha:atexecs, n:posnat):
Now(path(w(alpha)(n— l))(ftime(w(alpha)(n)))) = t(alpha)(n));

event_times_32: LEMMA (FORALL (alpha:atexecs, n:posnat):
dur(now(path(w(alpha)(n—l))(t(alpha)(n)))) = t(alpha)(n));

event_times_33: LEMMA (FORALL (alpha:atexecs, nrposnat):
dur(now(path(w(alpha)(n—l))(ftime(w(alpha)(n))))) = t(alpha)(n));

event_times_34: LEMMA (FORALL (alpha:atexecs, n:posnat):
now(path(w(alpha)(n—l))(t(alpha)(n))) = fintime(t(alpha)(n)));

event_times_35: LEMMA (FORALL (alpharatexecs, nrposnat):
now(path(w(alpha)(n— l))(ftime(w(alpha)(n)))) = fintime(t(alpha)(n)));

trans-facts: LEMMA (FORALL (alpha:atexecs, n:nat):
trans(pi(alpha)(n+l), lstate(w(alpha)(n))) = path(w(alpha)(n+l))(t(alpha)(n+l)) &
trans(pi(alpha)(n+l), path(w(alpha)(n))(t(alpha)(n+l)))

= path(w(alpha)(n+l))(t(alpha)(n+l)) &
((t(alpha)(n+l) - t(alpha)(n) > 0) =>
trans(nu(fintime((t(alpha)(n+l) — t(alpha)(n)):{r:real|r>=0})), fstate(w(alpha)(n)))

= lstate(w(alpha)(n))) &
(n > 0 =>
trans(pi(alpha)(n), lstate(w(alpha)(n-l))) = path(w(alpha)(n))(t(alpha)(n)) &
trans(pi(alpha)(n), path(w(alpha)(n— l))(t(alpha)(n))) = path(w(alpha)(n))(t(alpha)(n)) &
((t(alpha)(n) - t(alpha)(n-l) > 0) =>
trans(nu(fintime((t(alpha)(n) — t(alpha)(n—l)):{r:real|r>=0})), fstate(w(alpha)(n—1)))

= lstate(w(alpha)(n—1)))));

same-states-1: LEMMA (FORALL (alpha:atexecs, n:nat):
fstate(w(alpha)(n)) = path(w(alpha)(n))(t(alpha)(n)));

same.states_2r LEMMA (FORALL (alpharatexecs, n:nat):
lstate(w(alpha)(n)) = path(w(alpha)(n))(t(alpha)(n+l)));

same_states_3: LEMMA (FORALL (alpha:atexecs, n:posnat):
lstate(w(alpha)(n-l)) = path(w(alpha)(n—l))(t(alpha)(n)));

reachable_states: LEMMA (FORALL (alpha:atexecs, n:nat):
reachable(fstate(w(alpha)(n))) &
reachable(lstate(w(alpha)(n))) &
reachable(path(w(alpha)(n))(ftime(w(alpha)(n)))) &
reachable(path(w(alpha)(n))(ltime(w(alpha)(n)))) &:
reachable(path(w(alpha)(n))(t(alpha)(n))) &
reachable(path(w(alpha)(n))(t(alpha)(n+l))));

39

glbJact: LEMMA (FORALL (alpha:atexecs, Brfuture):
(EXISTS (k:nat): t(alpha)(k) <= B & B < t(alpha)(k+l)));

time-relation: LEMMA (FORALL (alpha:atexecs, tl,t2:nat):
(tl <= t2 => t(alpha)(tl) <= t(alpha)(t2)) & (t2 <= tl => t(alpha)(t2) <= t(alpha)(tl)));

END opspec_strats_aux

opspec_atexecs: THEORY

BEGIN

IMPORTING opspec_strat_aux

lemmaJE_1: LEMMA (FORALL (alpha: atexecs): (FORALL (n: pos_nat):
pi(alpha)(n) = lower

& (gate_status(lstate(w(alpha)(n—1))) = going_up OR
gate.status(lstate(w(alpha)(n—1))) = fully_up))

=> (EXISTS (m: pos_nat):
(m > n & (EXISTS (r: train): pi(alpha)(m) = enterl(r))

& fintime(t(alpha)(m)) <= fintime(t(alpha)(n)) + xi_l))));

safety: THEOREM (FORALL (alpha: atexecs): (FORALL (s: states):
(in_atexec(alpha)(s) => ((EXISTS (r:train): status(r,s)=I) => gate_status(s)=fully_down))));

% utility_prop_a (alpha:atexecs, s:states): bool =
% (EXISTS (sl:states):
% (precedes(alpha)(sl,s) & (EXISTS (r:train): status(r,sl) = I) & now(sl) >= now(s) - xi.2));

utility-prop _a (alpha:atexecs, s:states): bool =
(EXISTS (sl:states):

(precedes(alpha)(sl,s) & (EXISTS (ntrain): status(r,sl) = I) & now(sl) + xi.2 >= now(s)));

utility_prop-b (alpha:atexecs, s:states): bool =
(EXISTS (sl:states):

(precedes(alpha)(s,sl) & (EXISTS (ntrain): status(r,sl) = I) & now(sl) <= now(s) + xi.l));

% utility_prop_c (alpha:atexecs, s:states): bool =
% (EXISTS (sl,s2:states):
% precedes (alpha) (si,s) & precedes(alpha)(s,s2)
% & (EXISTS (r:train):status(r,sl)=I) & (EXISTS (ntrain):status(r,s2)=I)
% & now(s2) - now(sl) <= xi.l + xi_2 + delta);

utility.prop.c (alpha:atexecs, s:states): bool =
(EXISTS (sl,s2:states):

precedes (alpha) (si,s) & precedes(alpha)(s,s2)
& (EXISTS (r:train):status(r,sl)=I) k (EXISTS (r:train):status(r,s2)=I)
& now(s2) <= xi_l + xi_2 + delta + now(sl));

utility: THEOREM (FORALL (alpha: atexecs): (FORALL (s: states):
((in_atexec(alpha)(s) & NOT(gate-status(s) = fully_up)) =>

(utility_prop_a(alpha,s) OR utility_prop_b(alpha,s) OR utility_prop_c(alpha,s)))));

END opspec_atexecs

opspec : THEORY

BEGIN

IMPORTING opspec_atexecs

END opspec

40

B.4 Appendix. The Timed Automaton Systlmpl in PVS

The PVS specification of the full theory of Systlmpl is structured analogously to that of Trains.

systimpLdecls: THEORY

BEGIN

train: TYPE

r,rl: VAR train

IMPORTING time_thy

beta-posreal: {r:real | r > 0};
delta-t: VAR (fintime?)
eps.l, eps_2, gamma_down, gamma_up, xLl, xi_2, delta: (fintime?)
beta:(fintime?) = fmtime(beta_posreal:{r:real | r >= 0});

constJacts: AXIOM
(eps.l <= eps-2
& eps_l > gamma-down
& xLl + eps_l>= gamma_down + beta + epsJ2
& xi_2 >= gamma-up);

actions : DATATYPE

BEGIN
nu(timeof:(fintime?)): nu?
enterR(Rtrainof:train): enterR?
enterI(Itrainof:train): enterl?
exit(Etrainof:train): exit?
lower: lower?
raise: raise?
up: up?
down: down?

END actions;

a: VAR actions;

train-status: TYPE = {not_here,P,I};

gate-status: TYPE = {fully-up,fully_down,going_up,going-down};

comp_train_status: TYPE = {comp_not_here,R};

comp-gatejstatus: TYPE = {comp_up,comp_down};

MMTstates: TYPE = [# trains.part: [train -> train_status],
gate-part: gate-status,
comp_train_status_part: [train -> comp.trainjstatus],
comp_sched_time_part: [train — > time],
comp_gate-status-part: comp_gate_status #];

IMPORTING states[actions,MMTstates,time,fintime?]

si: VAR states;

status(r:train, s:states):train^tatus = trains_part(basic(s))(r);

gatejstatus(s:states):gate_status = gate_part (basic (s));

comp_status(r:train, s:states):comp_train-status = comp.train_status_part(basic(s))(r);

sched_time(r:train, s:states):time = compjsched_time.part(basic(s))(r);

comp_gate-status(s:states):comp.gate_status = comp_gate_status_part(basic(s));

41

OKstate?(s:states):bool = true;

enabled-general (a:actions, s:states):bool = now(s) >= first(s)(a) & now(s) <= last(s)(a);

enabled-specific (a:actions, s:states):bool =
CASES a OF

nu(delta_t): (delta_t > zero
& (FORALL r: now(s) + delta.t <= last(s)(enterl(r)))
& now(s) + delta-t <= last(s)(up)
& now(s) + delta_t <= last(s)(down)
& (comp_gate_status(s) = comp.up =>

enterR(r): status(r,s) = notJiere,
enterl(r): status(r,s) = P & first(s)(a) <= now(s),
exit(r): status(r,s) = I,

(FORALL r: now(s) 4- delta.t + gamma.down < sched_time(r,s)))
& (comp_gate_status(s) = comp.down =>

(EXISTS r: sched.time(r,s) <=
now(s) 4- gamma-up + delta + gamma_down))),

lower: comp_gate-Status(s) = comp.up
& (EXISTS r: sched_time(r,s) <= now(s) + gamma.down + beta),

raise: comp-gate-status(s) = comp.down
& (NOT (EXISTS r: sched_time(r,s) <= now(s)+gamma_up+delta+gamma-.down)),

up: gate-status(s) = going.up,
down: gate_status(s) = going_down

ENDCASES;

trans (a:actions, s:states):states =
CASES a OF

nu(delta-t): s WITH [now := now(s) + delta_t],
enterR(r): s WITH [basic := basic(s) WITH

[trains-part := trains_part(basic(s)) WITH [r := P],
comp_train_status_part :=

comp_train_status_part(basic(s)) WITH [r := R],
comp_sched_time-part :=

comp_sched_time_part (basic(s)) WITH
[r := now(s)+eps_l]],

first := first(s) WITH [(enterl(r)) := now(s)+eps_l],
last := last(s) WITH [(enterl(r)) := now(s)+eps_2]],

enterl(r): s WITH [basic := basic(s) WITH
[trains-part := trains_part(basic(s)) WITH [r := I]],

first := first(s) WITH [(enterl(r)) := zero],
last := last(s) WITH [(enterl(r)) := infinity]],

exit(r): s WITH [basic := basic(s) WITH
[trains_part := trains_part(basic(s)) WITH [r := not-here],
comp_train_status_part :=

comp-train_status_part(basic(s)) WITH [r := comp_not_here],
comp_sched_time_part :=

comp_sched_time.part(basic(s)) WITH [r := infinity]]],
lower: IF gate_status (s) = fully_up OR gate_status(s) = going.up

THEN s WITH [basic := basic(s) WITH
[gate-part := going-down,
comp_gate_status_part := comp_down],

last := last(s) WITH
[down := now(s) 4- gamma.down, up := infinity]]

ELSE s ENDIF,

42

raise: IF gate_status(s) = fully-down OR gate.status(s) = going-down
THEN s WITH [basic := basic(s) WITH

[gate-part := going_up,
comp_gate-Status-part :— comp_up],

last := last(s) WITH
[up := now(s) + gamma_up, down := infinity]]

ELSE s ENDIF,
up: s WITH [basic := basic(s) WITH [gate.part := fully .up],

last := last(s) WITH [up := infinity]],
down: s WITH [basic := basic(s) WITH [gate.part := fully-down],

last := last(s) WITH [down := infinity]]
ENDCASES

enabled (a:actions, s:states):bool = enabled_general(a,s) & enabled_specific(a,s);

start (s:states):bool =
s = (# basic := (# trains.part := (LAMBDA r: not-here),

gate-part := fully _up,
comp_train_status_part := (LAMBDA r: comp_not_here),
comp_sched-time_part := (LAMBDA r: infinity),
comp-gate-Status_part := comp.up #),

now := zero,
first := (LAMBDA a: zero),
last := (LAMBDA a: infinity) #)

IMPORTING machine[states, actions, enabled, trans, start]

END systimpl_decls

systimpl_unique_aux: THEORY

BEGIN

IMPORTING systimpLdecls

enterR-unique: LEMMA (FORALL (rl, r2: train): (enterR(rl) = enterR(r2) => rl = r2));
enterLunique: LEMMA (FORALL (rl, r2: train): (enterl(rl) = enterl(r2) => rl = r2));
exit.unique: LEMMA (FORALL (rl, r2: train): (exit(rl) = exit(r2) => rl = r2));
nu-unique: LEMMA (FORALL (tl, t2: (fintime?)): (nu(tl) = nu(t2) => tl = t2));

END systimpl_unique_aux

systimplJnvariants: THEORY

BEGIN

IMPORTING systimpLunique_aux

Inv_5_l_l(s: states):bool = (FORALL (r: train):
(comp_status(r,s) = R) IFF (status(r,s) = P OR status(r,s) = I));

lemma-5-1-1: LEMMA (FORALL (s: states): reachable(s) => Inv_5_l-l(s));

Inv_5_l_2(s: states):bool = (FORALL (r: train):
(status(r,s) = P) => (sched_time(r,s) = first(s)(enterl(r))));

lemma-5-1-2: LEMMA (FORALL (s: states): reachable(s) => Inv_5_l_2(s));

Inv_5-1.3(s: states):bool = (FORALL (r: train):
(comp_status(r,s) = R & sched_time(r,s) > now(s)) => (status(r,s) = P));

lemma-5-1-3: LEMMA (FORALL (s: states): reachable(s) => Inv_5_l_3(s));

Inv_5_l_4(s:states):bool = (FORALL (r:train): (status(r,s) = I) => (sched_time(r,s) <= now(s)));

43

lemma_5_l-4: LEMMA (FORALL (s: states): reachable(s) => Inv_5_l_4(s));

Inv_5_l-5(s: states):bool = (FORALL (r: train):
(NOT (sched_time(r,s) = infinity)) => (status(r,s)=P OR status(r,s)=I));

lemma-5-1-5: LEMMA (FORALL (s: states): reachable(s) => Inv_5_l_5(s));

Inv_5_2_l(s: states) :bool =
(comp_gate-Status(s) = comp.up

IFF (gate_status(s) = fully _up OR gate_status(s) = going.up));

lemma-5-2-1: LEMMA (FORALL (s: states): reachable(s) => Inv_5_2_l(s));

Inv_5_2_2(s: states):bool =
(comp_gate_status(s) = comp.down

IFF (gate-Status(s) = fully-down OR gate_status(s) = going_down));

lemma_5-2_2: LEMMA (FORALL (s: states): reachable(s) => Inv_5-2-2(s));

Inv_B_l_l(s: states):bool = (gate_status(s) = going_down => last(s)(down) >= now(s));

J lemma_B_l_l: LEMMA (FORALL (s: states): reachable(s) => InvJB_l_l(s));

Inv_B_l_2(s: states):bool = (gate^status(s) = going_down
=> last(s)(down) <= now(s) + gamma_down);

lemma_B_l-2: LEMMA (FORALL (s: states): reachable(s) => Inv_B-l_2(s));

Inv_6_l(s: states):bool = (FORALL (r: train):
((status(r,s) = P & (gate_status(s) = fully_up OR gate_status(s) = going_up))

=> first(s)(enterl(r)) > now(s) + gamma_down));

lemma-6-1: LEMMA (FORALL (s: states): reachable(s) => Inv_6_l(s));

Inv_6-2(s: states):bool = (FORALL (r: train):
((status(r,s) = P & gate_status(s) = going.down) => first(s)(enterl(r)) > last(s)(down)));

lemma.6-2: LEMMA (FORALL (s: states): reachable(s) => Inv_6_2(s));

Inv_6_3(s: states):bool = ((EXISTS (r: train): status(r,s) = I) => gate_status(s) = fully_down);

lemma.6-3: LEMMA (FORALL (s: states): reachable(s) => Inv_6_3(s));

Inv_6-3_A(s: states):bool = (FORALL (r: train): status(r,s) = I => gate_status(s) = fully_down);

lemma_6-3-A: LEMMA (FORALL (s: states): reachable(s) => Inv_6.3_A(s));

END systimpUnvariants

systimpl: THEORY

BEGIN

IMPORTING systimpUnvariants

END systimpl

44

C Appendix. PVS Strategies for Timed Automata

Below are the definitions of the user-defined strategies that we have used in our proofs of properties of timed
automata, organized by category. The strategies used in induction proofs have been rather finely tuned for
efficiency on our example proofs.

Most of the strategies developed for ad hoc proofs are expected to form parts of higher-level strategies,
once enhancements to PVS permits these strategies to be defined. Examples of their current and possible
future use can be found in Appendix E, where we present an annotated ad hoc proof that relies on them.

The strategy file "pvs-strategies" presented below is divided into nine segments:

Segment 1: Major support strategies used in all induction strategies.

Segment 2: Specialized strategies for the timed automaton Trains.

Segment 3: Specialized strategies for the timed automaton OpSpec.

Segment 4: Specialized strategies for the timed automaton Systlmpl.

Segment 5: Specialized simplification strategies for timed automata.

Segment 6: Apply-lemma strategies for timed automata.

Segment 7: General strategies useful in reasoning about atexecs.

Segment 8: A special tec strategy.

Segment 9: Strategies for the timed_auto template version.

That many strategies rely on the form of the template is clear when one compares the strategies in
Segment 9 to their counterparts in Segments 1, 3, and 7. As can be seen from examination of the strategies,
both templates provide standard names for functions to be expanded as parts of strategies. The templates
also guarantee the form of the definitions of these functions, and the form of critical lemmas such as "ma-
chineinduct" (the basis of the induction strategies). Knowledge of these forms is taken advantage of in
various calls to SPLIT, LIFT-IF, FLATTEN, PROP, and INST. An obvious example is the definition of the
strategy time_etc_simp, where explicit knowledge of the forms of the definitions in time_thy is used: every
arithmetic operator or predicate is defined as an if.then.else, so, since these operators may occur embedded
in expressions, expansion of each is followed by a LIFT-IF. A less obvious example is the prop-probe strat-
egy in Segment 1, which is used by the induction strategies at the point where the invariant assertion in
the inductive conclusion is instantiated with the state specified in some case of the case statement defining
trans. When, as is often the case, this state is specified using an if_then_else construct, the call to LIFT-IF
transforms the instantiated invariant assertion itself into an if_then_else construct, which can then be split
by PROP into cases that may be provable by ASSERT.

The strategies presented divide into three categories: those specialized for proof of state invariants that
are independent of timed executions, those designed to support recurring types of reasoning in ad hoc proofs
about timed executions, and those that are useful in either context. The strategies in Segments 1 through 4
(and some of those in Segment 9) are in the first category. So far, the only strategies known to be in the last
category are the simplification and apply-lemma strategies in Segments 5 and 6. The strategies in Segment 7
(and their relatives in Segment 9) are in the second category.

The strategies from Segment 7 generally depend on lemmas about admissible timed executions.
The theory containing these lemmas is, in the conventions of our first template, the theory
< timed-automaton-name >_strat_aux. Certain generic parts of this theory can be included as a sub-
theory of atexecs, say, in a theory atexecs_strat_aux. However, other parts of this theory involve generic
function names from parts of the template other than atexecs, and so must be included in a theory in
which these function names are known. Using our first template, we are constrained to use some sub-theory
of < timed-automaton-name > for this purpose; using our second template, we can use the generic the-
ory timed^auto_thy. So far, we have only used these strategy support lemmas to reason about opspec;

45

hence, to simplify matters in using our first template, we have grouped all of the strategy support lemmas
in opspec_strat_aux (see Appendix B.3).

The Segment 7 strategies provide automated support for handling several of the repeating patterns in
proofs about admissible timed executions that were mentioned in Section 6. The strategy normalize_atexecs
causes alternative representations of time and state values to be rewritten into a standard form, simplifying
many proofs that two expressions represent the same value. Strategies using lemmas containing standard facts
about reachability and states related by trans can currently be used to retrieve the information relevant to a
certain state or pair of states given the name of the relevant atexecs value alpha and the index of a trajectory
in alpha near the state or states in question. These strategies already help simplify the proof process. For
example, in combination with norma!ize_atexecs, the reachability strategy allows one to simplify the process
of confirming a particular state is reachable as a prerequisite to applying a state invariant lemma to the
state. Provided sufficient tracking and recognition-by-content of assertions is added to PVS, these strategies
could be refined to produce exactly the required information, with minimal user input and no extra clutter
added to a sequent. In fact, it should be possible to use the reachability strategy invisibly to the user as
part of an invariant-lemma strategy.

A final note on our strategies: many of them were developed to illustrate feasibility, and require further
polishing. E.g., the use of standard names for skolem constants is a danger, since one must assure non-
duplication of names associated with a given type. One advantage of standard names is that their significance
is also standard. Ideally, automatic generation of these skolem constants will be accompanied by some
method of tracking their significance. This might be done through an interface to PVS. There is another
naming problem as well. When two or more automaton theories are being reasoned about simultaneously,
the standard names of template operators will have more than one instantiation. For the strategies to work
in such a situation, they will have to use the correct instantiations of these operators when they are invoked.
The best way to obtain the information needed to determine these instantiations needs to be determined.

; *** Section 1 ***
; *** Major support strategies used in all induction strategies. ***

(defstep auto-cases (inv)
(then* (lemma "machineinduct")

(expand "inductthm")
(inst —1 inv)
(split))

"" "Splitting into machine base and induction cases")

(defstep base-case (inv)
(then* (delete 2)

(expand "base")
(skolem 1 "s.l")
(flatten)
(expand "start")
(expand inv))

"" "Simplifying the machine base case")

(defstep induct.cases (inv)
(let ((x (format nil "~a~a~a~a~a"

"(LAMBDA (a: actions): (FORALL (s: states): reachable(s) & "
inv
"(s) & enabled(a,s) => "
inv
"(trans(a,s))))")))

(then* (delete 2)
(expand "inductstep")
(lemma "actionsinduction")
(inst — 1 x)

46

(beta)
(branch (split)

((then* (skolem 1 ("sJL" Ba_l"))(inst -1 "a_l")(inst -1 "sJL"))
(skip)))))

"" "Splitting the induction case on action class")

(defstep reduce.case_one-var.exp (inv varl)
(then* (delete 2)

(skolem 1 (varl))
(skolem 1 ("a-l"))
(flatten)
(expand "enabled")
(expand "trans")
(expand inv))

"" "Applying the standard simplification")

(defstep reduce.casejio.var.exp (inv)
(then* (delete 2)

(skolem 1 ("s.l"))
(flatten)
(expand "enabled")
(expand "trans")
(expand inv))

"" "Applying the standard simplification")

The strategy reduce_case_no_var_rew is just like reduce.case_no_var_exp except that it calls rewrite
instead of expand on trans in order to avoid doing the lift-if included in an expand that spoils the matching
of universally quantified formulae in inductive hypothesis and conclusion. The choice of strategy is made
according to whether there is an IF-THEN-ELSE at the top level of the definition for the corresponding
case in the definition of trans. The use of rewrite on expand as well is the result of experiment showing
it to be more efficient in this case.

(defstep reduce_case_no-var_rew (inv)
(then* (delete 2)

(skolem 1 ("s_l"))
(flatten)
(rewrite "enabled")
(rewrite "trans")
(expand inv))

"" "Applying the standard simplification")

; The strategy prop.probe is used to test whether the remainder of a proof is "trivial". It is part of
; several other "_probe" strategies.

(defstep prop_probe ()
(then* (lift-if)

(prop)
(assert)
(fail))

; *** Section 2 ***
; *** Specialized strategies for the timed automaton trains. ***

(defstep auto-proof-trains (inv)
(then (branch (auto_cases inv)

((then (base_case inv)(trains_simp_probe)(postpone))
(branch (induct.cases inv)

47

((then (reduce_case_one-var.exp inv "t-1")
(trains.simp_probe) (postpone))

(then (reduce-case_one_var_exp inv "r_l")
(trains-simp-probe) (postpone))

(then (reduce_case_one_var_exp inv "r_l")
(trains-simp.probe) (postpone))

(then (reduce_case-.one-var.exp inv "r_l")
(trains_simp_probe) (postpone)))))))

"" "Taking care of the standard steps in the proof)

(defstep auto_proof_univ_trains (inv)
(then (branch (auto_cases inv)

(then (base.case inv)(trains_simp_probe)(postpone))
(branch (induct.cases inv)

((then (reduce_case_one_var_exp inv "t_l")
(match_univ_and_trains_simp_probe)
(postpone))

(then (reduce_case_one_var_exp inv "r_l")
(match.univ-and-trains-simp-probe)
(postpone))

(then (reduce_case_one_var_exp inv "r.l")
(match_univ_and_trains_simp_probe)
(postpone))

(then (reduce_case_one_var.exp inv "r_l")
(match_univ_and_trains_simp_probe)
(postpone)))))))

"" "Taking care of the standard steps in the proof)

(defstep trains_simp ()
(then* (expand "OKstate?")

(expand "status")
(flatten))

"" "Expanding some trains definitions")

(defstep trains_simp_probe ()
(then (trains_simp) (prop.probe))

(defstep match_univ_and_trains_simp.probe ()
(then (skolem 1 "r.2") (inst -2 "r_2") (trains-simp-probe))

; *** Section 3 ***
; *** Specialized strategies for the timed automaton opspec. ***

; The auto_proof strategies are the induction strategies.

(defstep auto-prooLopspec (inv)
(then (branch (auto-cases inv)

(then (base-case inv)(opspec-simp.probe)(postpone))
(branch (induct_cases inv)

((then (reduce_case_one_var_exp inv "t_l")
(opspec-simp_probe) (postpone))

(then (reduce_case_one_var_exp inv "r_l")
(opspec_simp_probe) (postpone))

(then (reduce.case_one_var_exp inv "r_l")
(opspec_simp_probe) (postpone))

48

(then (reduce_case_one.var_exp inv "r_l")
(opspec_simp_probe) (postpone))

(then (reduce-.case-no_var.exp inv)
(opspec-simp.probe) (postpone))

(then (reduce_case_no_var_exp inv)
(opspec_simp_probe) (postpone))

(then (reduce_case_no-var_exp inv)
(opspec_simp_probe) (postpone))

(then (reduce_case_no_var_exp inv)
(opspec_simp_probe) (postpone)))))))

"" "Taking care of the standard steps in the proof)

(defstep opspec-simp ()
(then* (expand "OKstate?")

(expand "last.l")
(expand "last_2_up")
(expand "last-2J")
(expand "status")
(expand "gate_status")
(flatten))

"" "Expanding some opspec definitions")

(defstep opspec-simp_probe ()
(then (opspec-simp) (prop_probe))
«» «5) \

; The strategy do_trans_opspec expands and simplifies a state of opspec that is represented by a trans
; expression, and reasons about the result. Because trans is usually defined by a case expression, it is
; not unusual for branching to occur. It is typical for the expected number of branches to be small when
; do-trans_opspec is an appropriate proof step.

(defstep do_trans_opspec ()
(then (expand "trans")(opspec_simp)(lift-if)(assert)(assert))

; *** Section 4 ***
; *** Specialized strategies for the timed automaton systimpl. ***

; The auto_proof strategies are the induction strategies.

(defstep autO-proof_systimpl (inv)
(then (branch (auto.cases inv)

(then (base.case inv) (systimpl_simp_probe) (postpone))
(branch (induct.cases inv)

((then (reduce-case_one_var_exp inv "t_l")
(systimpl.simp_probe) (postpone))

(then (reduce_case_one_var_exp inv "r_l")
(systimpl-simp.probe) (postpone))

(then (reduce_case.one_var_exp inv "r_l")
(systimpLsimp_probe) (postpone))

(then (reduce_case_one_var_exp inv "r_l")
(systimpl-simp_probe) (postpone))

(then (reduce_case_no-var_exp inv)
(systimpl-simp.probe) (postpone))

(then (reduce_case_no-var_exp inv)
(systimpl-simp.probe) (postpone))

(then (reduce.case_no_var_exp inv)

49

(systimpLsimp.probe) (postpone))
(then (reduce_case_no_var_exp inv)

(systimpl-simp-probe) (postpone)))))))
"" "Taking care of the standard steps in the induction proof)

(defstep auto_proof-univ-systimpl (inv)
(then (branch (auto-cases inv)

(then (base.case inv)(systimpl_simp_probe)(postpone))
(branch (induct.cases inv)

((then (reduce_case_one.var_exp inv "t-1")
(match_vmiv_and-systimpl-simp-probe)
(postpone))

(then (reduce.case_one_var_exp inv "r_l")
(match_univ_and_systimpl_simp_probe)
(postpone))

(then (reduce_case_one_var_exp inv "r_l")
(match_univ-and-Systimpl_simp_probe)
(postpone))

(then (reducexase_one_var_exp inv "r_l")
(match_univ_and_systimpl_simp_probe)
(postpone))

(then (reduce_case-no_var_rew inv)
(match_univ-and-systimpl-simp_probe)
(postpone))

(then (reduce.case Jio-var j:ew inv)
(match_univ_and_systimpl-simp_probe)
(postpone))

(then (reduce-case_no.var_exp inv)
(match_univ_and_systimpl-simp.probe)
(postpone))

(then (reduce_case_no_var_exp inv)
(match_univ_and-systimpl_simp-probe)
(postpone)))))))

"" "Taking care of the standard steps in the induction proof)

(defstep systimpl-simp ()
(then* (expand "OKstate?")

(expand "beta")
(expand "comp_status")
(expand "comp_gate_status")
(expand "sched_time")
(expand "status")
(expand "gate_status")
(flatten))

"" "Expanding some systimpl definitions")

(defstep systimpl-simp_probe ()
(then (systimpl_simp) (prop.probe))

(defstep match_univ_and-systimpl_simp_probe ()
(then (skolem 1 "r_2") (inst -2 "r_2") (systimpl_simp_probe))

(defstep direct.proof.univ_systimpl (inv)
(then* (skolem 1 "s_l")

50

(expand inv)
(flatten)
(skolem 1 "r.l")
(systimpl-simp))

"" "Doing the standard steps of a non-induction proof)

; *** Section 5 ***
; *** Specialized simplification strategies for timed automata. ***

; Simplification strategies that handle time definitions and other simple types of reasoning needed for
; timed automata.

(defstep time_etc_simp ()
(then* (lift-if)

(prop)
(assert)
(expand "<=")
(lift-if)
(expand ">=")
(lift-if)
(expand "<")
(lift-if)
(expand ">")
(lift-if)
(expand "+")
(lift-if)
(expand "-")
(lift-if)
(repeat* (then* (assert) (prop) (lift-if))))

"" "Doing time-arithmetic")

; The strategy time_etC-simp.probe tries time_etc_simp and backtracks if it does not succeed.

(defstep time_etc_simp_probe ()
(then* (lift-if)

(prop)
(assert)
(expand "<=")
(lift-if)
(expand ">=")
(lift-if)
(expand "<")
(lift-if)
(expand ">")
(lift-if)
(expand "+")
(lift-if)
(expand "-")
(lift-if)
(repeat* (then* (assert) (prop) (lift-if)))
(fail))

"" "Doing time-arithmetic")

; The strategy time_simp focusses time_etc_simp on a single formula in a sequent.

(defstep time-simp (fnum)
(then* (lift-if fnum)

51

(my .prop fnum)
(assert)
(expand "<=" fnum)
(lift-if fnum)
(expand ">=" fnum)
(lift-if fnum)
(expand "<" fnum)
(lift-if fnum)
(expand ">" fnum)
(lift-if fnum)
(expand "+" fnum)
(lift-if fnum)
(expand "—" fnum)
(lift-if fnum)
(repeat* (then* (assert) (my_prop fnum) (lift-if fnum))))

"" "Doing time-arithmetic on a particular formula")

; The strategy my_prop focusses the standard strategy prop on a single formula in a sequent.

(defstep my .prop (fnum)
(try (flatten fnum) (my .prop fnum) (try (split fnum) (my .prop fnum)(skip)))

; The following shorter version of time_etc.simp was provided by Shankar at SRI. It is equivalent in power
; to time_etc_simp, but testing has shown that while it is sometimes equally fast, it is sometimes several
; seconds slower.

(defstep time_etc_simp_shankar ()
(then (stop-rewrite)

(auto-rewrite-theory "time_thy")
(repeat* (then (lift-if)(ground))))

"" "Doing time-arithmetic")

; *** Section 6 ***
; *** Apply-lemma strategies for timed automata. ***

; Some of the apply-lemma strategies are specialized for application of state invariant lemmas.

(defstep applyJemma (lem args)
(let ((x (cons 'inst (cons —1 args))))
(then (lemma lem) x))
"" "Applying a lemma to some arguments")

(defstep applyJnvJemma (invno ^optional statevar)
(let ((lemmaJiame (format nil "~a~a" "lemma." invno))

(theorem_name (format nil "~a~a" "lemma_" invno))
(invjiame (format nil "~a~a" "Inv_" invno))
(state (cond (statevar) (t "s_l"))))

(then* (try (apply Jemma lemma_name (state)) (skip)
(applyJemma theorem_name (state)))

(assert)
(expand invjiame)))

"" "Applying the appropriate invariant lemma")

(defstep apply_univ Jnv Jemma (invno quantvar ^optional statevar)
(let ((lemmaJiame (format nil "~a~a" "lemma." invno))

(theoremjiame (format nil " ~a ~a" "lemma." invno))
(inv_name (format nil "~a~a" "Inv_" invno))

52

(state (cond (statevar) (t "s_l"))))
(then* (try (apply Jemma lemma_name (state)) (skip)

(apply-lemma theorem_name (state)))
(assert)
(expand inv_name)
(inst —1 quantvar)))

"" "Applying the appropriate invariant lemma")

; *** Section 7 ***
; *** General strategies useful in reasoning about atexecs. ***

; The strategy put-gib finds the time index of the last indexed time in an atexec that is less than or equal
; to the particular non-negative-real valued bound "timebound", and gives it an associated name.

(defstep put-gib (atexec timebound)
(let ((x (format nil "~a~a" timebound "-gib"))

(y timebound)
(z atexec))

(put_glb-2 x y z))
«5) «»\

(defstep put_glb-2 (boundname timebound atexec)
(let ((x (list atexec timebound))

(y (list boundname)))
(then (applyJerama "gib.fact" x) (skolem -1 y) (flatten)))
an un \

; The strategy get_reachables adduces the fact of reachability for states in an atexec near time index "index",
; under various aliases.

(defstep get-reachables (atexec index)
(let ((x (list atexec index)))

(then (applyJemma "reachablejstates" x) (flatten)))

; The strategy transfacts adduces the relatedness of states, under various aliases, via a transition in an
; atexec near time index "index".

(defstep transfacts (atexec index)
(let ((x (list atexec index)))

(then (applyJemma "transfacts" x)
(flatten) (assert) (flatten)))

; The strategy normalize-atexecs converts all time points and state points of an admissible timed execution
; to a normal form, so that equalities may be inferred.

(defstep normalize_atexecs ()
(then (auto-rewrite-theory "opspec_strat_aux")

(apply (do-rewrite)))
«» «7> \

; The strategy time_order is used to infer an inequality between time indices from the same inequality
; between the indexed times.

(defstep time_order (atexec nl n2)
(let ((x (list atexec nl n2)))

(then (applyJemma "time_relation" x) (flatten) (simplify)))

53

; The strategy match-condition is used to simplify reasoning about an IF-THEN-ELSE assertion. It can
; sometimes circumvent splitting; when it does not, it can make the result of splitting more "natural".

(defstep match.condition (fnum)
(then (split fnum) (flatten) (assert))
"" "Attempting to eliminate a condition")

; The strategy modus_ponens is used to avoid splitting an assertion having a complex hypothesis identical
; to another assertion present.

(defstep modus_ponens (fnum)
(branch (split fnum) ((skip) (assert)))
"" "Attempting to eliminate an hypothesis")

; *** Section 8 ***
; *** A special tec strategy. ***

; A strategy useful in proving the tecs for the lemmas about admissible timed traces used to support
; normalize_atexecs:

(defstep same-states-tcc (atexec leftend rightend)
(let ((timeseq (format nil "~a~a~a" "t(" atexec ")"))

(trajseq (format nil "~a~a~a" "w(" atexec ")")))
(then (skosimp)

(expand "interval")
(apply (then (typepred atexec) (hide —1—3 —4) (inst-cp —1 leftend)

(inst — 1 rightend)))
(apply (then (typepred timeseq) (hide —1) (inst —1 leftend rightend)))
(apply (then (typepred trajseq) (inst —1 leftend)))
(expand "ltime")
(assert)))

an Uli \

; *** Section 9 ***
; *** Strategies for the timed_auto template version. ***

(defstep auto_proof_opspec_timed_auto (inv)
(then (branch (time (auto_cases inv))

(then (base_case_timed_auto inv)(opspec_simp_probe)(postpone))
(branch (induct.cases inv)

((then (reduce_case_timed.auto_one_var_exp inv "t_l")
(opspec-simp.probe) (postpone))

(then (reduce_case_timed-auto_one_var_exp inv "r_l")
(opspec-simp.probe) (postpone))

(then (reduce_case_timed_auto_one.var.exp inv "r.l")
(opspec-simp .probe) (postpone))

(then (reduce_case_timed_auto_one_var_exp inv "r.l")
(opspec_simp_probe)(postpone))

(then (reduce_case-timed_auto_no_var_exp inv)
(opspec-simp.probe) (postpone))

(then (reduce_case_timed_auto_no.var.exp inv)
(opspecsimp .probe) (postpone))

(then (reduce_case_timed-auto_no.var.exp inv)
(opspec_simp-probe) (postpone))

(then (reduce_case_timed-auto_no_var_exp inv)
(opspec_simp_probe) (postpone)))))))

"" "Taking care of the standard steps in the proof)

54

(defstep base-case.timed_auto (inv)
(then* (delete 2)

(expand "base")
(skolem 1 "s.l")
(flatten)
(expand "start")
(flatten)
(expand "basic^start")
(expand inv))

"" "Simplifying the auto base case")

(defstep reduce-case-timed_auto_one_var_exp (inv varl)
(then* (delete 2)

(skolem 1 (varl))
(skolem 1 ("s_l"))
(flatten)
(expand "enabled")
(expand "trans")
(expand "basic_trans")
(expand inv))

"" "Applying the standard simplification")

(defstep reduce_case-timed-auto_no-var_rew (inv)
(then* (delete 2)

(skolem 1 ("s.l"))
(flatten)
(rewrite "enabled")
(rewrite "trans")
(expand "basic.trans")
(expand inv))

"" "Applying the standard simplification")

(defstep reduce_case_timed_auto_no_var_exp (inv)
(then* (delete 2)

(skolem 1 ("s_l"))
(flatten)
(expand "enabled")
(expand "trans")
(expand "basic.trans")
(expand inv))

"" "Applying the standard simplification")

(defstep normalize-atexecs_timed_auto ()
(then (auto-rewrite-theory

"timed_auto_thy [basic-states, actions, nu, nu?, timeof, basic-Start,
first-start, last-start, basic.trans, first-trans,
basic_trans, enabled-specific, OKstate?]")

(apply (do-rewrite)))

(defstep do-trans_opspec_timed_auto ()
(then (expand "trans")

(expand "basic-trans") (expand "first-trans")(expand "last_trans")
(opspec-simp) (lift-if) (assert) (assert))

55

D Appendix. PVS Proofs of State Invariants

In this Appendix, we present our PVS proofs of all the state invariants that we have proved for our timed
automata models. With the exceptions noted, these proofs all follow this standard script:

• If the proof is an induction proof, apply the appropriate induction strategy; otherwise, apply the appro-
priate direct-proof strategy.

• For each generated subgoal, introduce the facts and case splits appealed to in the hand proof. The facts
appealed to may be the transition precondition (if the subgoal is an action case in the induction proof),
axioms about constants in the automaton definition, applications of invariant lemmas, or applications of
other lemmas.

• Attempt to complete the proof with an appeal to the strategy TIMEJETC-SIMP.

• In cases where this fails—often, these are cases dismissed as trivial in the hand proof—appeal to one of the
following: the precondition, an appropriate uniqueness lemma, or facts about the constants associated
with the timed automaton. Then again call TIME-ETC-SIMP.

Below is the proof of the single state invariant for the timed automaton Trains. It follows the standard
script.

trains .invariants .lemma JL1:

("" (AUTO_PROOF_UNIV_TRAINS "Inv_3-1")
(("1" (APPLY (TIME-ETC-SIMP) "Case enterR(r_l)."))
("2" (APPLY (THEN (APPLY-LEMMA "enterLunique" ("r-1" "r-2")) (TRAINSJ3IMP))

"Caseenterl(r-l).")
(TIMEJETC-SIMP))))

Below are the proofs of the seven state invariants for the timed automaton OpSpec. All of these proofs
follow the standard script.

opspecJnvariants.lemma_4_l_l:

("" (AUTO-PROOF-OPSPEC "Inv.4-1-1"))

opspec Jnvariants.lemma_4_l _2:

("" {AUTO-PROOF_OPSPEC "Inv_4.1-2")
(("1" (APPLY (TIME-ETC-SIMP) "Base case." "Infinity plus finite equals infinity."))
("2" (APPLY (TIME-ETC-SIMP) "Case enterl(r.l)." "Infinity plus finite equals infinity."))
("3" (APPLY (TIMEJETC-SIMP) "Case up." "Infinity plus finite equals infinity."))))

opspec Jnvariants.lemma_4-2-l:

("" (AUTO-PROOF-OPSPEC "Inv_4.2-1")
(("1" (APPLY (TIMEJETC-SIMP) "Base case." "zero <= infinity."))
("2" (APPLY (THEN (EXPAND "enabled-specific") (OPSPECSIMP)) "Case nu(t.l)."))
("3" (APPLY (TIMEJETC-SIMP) "Case enterl(r.l)." "finite <= infinity."))
("4" (APPLY (TIMEJETC-SIMP) "Case lower." "a <= a + b."))))

opspecdnvariants.lemma_4_2_2:

("" (AUTO-PROOF-OPSPEC "Inv_4-2_2")
(("1" (APPLY (TIMEJETC-SIMP) "Base case." "Finite <= infinity."))

56

("2" (APPLY (THEN (EXPAND "enabled_specific") (OPSPECSIMP)) "Case nu(t_l)."))
("3" (APPLY (TIME-ETC-SIMP) "Case enterl(r_l)." "Finite <= infinity."))
("4" (APPLY (TIME-ETC-SIMP) "Case exit." "a <= a + b + c + d."))
("5" (APPLY (TIME_ETCJ3IMP) "Case up." "Finite <= infinity."))))

opspecinvariants.lemma_4-2_3:

("" (AUTO-PROOF_OPSPEC "Inv_4-2_3")
(("1" (APPLY (TIMEJETC-SIMP) "Case nu(t-l)." "Finite <= infinity."))
("2" (APPLY (TIME-ETC-SIMP) "Case lower." "a <= a."))))

opspec_invariants.lemma-4-2_4:

("" (AUTOJPROOF-OPSPEC "Inv-4_2.4")
(("1" (APPLY (TIME-ETC-SIMP) "Case nu(t.l)." "Finite <= infinity."))
("2" (APPLY (TIMEJETC-SIMP) "Case exit(r_l)." "a <= a."))))

opspecJnvariants.lemma-4_2_5:

("" (AUTO-PROOF.OPSPEC "Inv.4-2.5")
(("1" (APPLY (TIME_ETCJSIMP) "Case nu(t_l)." "a <= b + c implies a <= b + d + c."))
("2" (APPLY (TIME_ETC-SIMP) "Case exit(r.l)." "a <= a."))))

Below are the proofs of the thirteen invariant lemmas of the timed automaton Systlmpl. The ones whose
proofs differ from the standard script are lemma_6_l and lemma-6_3.

The major differences in lemma_6_3, which is logically equivalent to lemma_6_3_A, result from the fact
that it is formulated with an embedded existential quantifier rather than a top-level universal quantifier,
making it difficult to predict how to match skolemization and instantiation in the induction steps. The
differences in lemma.6-1 consist of uses of MODUS-PONENS, ASSERT, and INST. MODUS.PONENS is
used to eliminate from some implication-assertions their hypotheses that would have been eliminated by
the calls to ASSERT in the apply-invariant-lemma strategies if they had been simpler in form. The call
to ASSERT then eliminates another hypothesis that was the conclusion of one of the original implication-
assertions; combining it with INST accomplishes the required instantiation of part of the precondition of the
action nu(t_l).

With appropriate enhancements to PVS, these deviations from the standard script can be eliminated,
except possibly for the "appropriate instantiation of the precondition"; whether this step can be automated
as part of a general apply-the-precondition strategy remains to be determined.

sy stimpl -invar iant s .lemma_5 _1 _1:

("" (AUTOJPROOF-UNIV-SYSTIMPL "Inv-5-l_l")
(("1" (APPLY (TIME-ETC-SIMP) "Base case."

"Retrieving function defs from state s_l and doing beta reduction."))
("2" (APPLY (THEN (EXPAND "enabledjspecific") (SYSTIMPLJ3IMP)) "Case enterl(r.l).")

(TIME-ETC-SIMP))))

systimpl -invariants .lemmaJLl _2:

("" (AUTO-PROOF-UNIV.SYSTIMPL "Inv.5-1-2")
(("1" (APPLY (APPLY-LEMMA "enterLunique" ("r-1" "r_2")) "Case enterR(r-l)).")

(TIME-ETCJ3IMP))
("2" (APPLY (APPLY-LEMMA "enterLunique" ("r-1" "r.2")) "Case enterl(r-l).")

(TIME-ETC-SIMP))))

57

systimpl Jnvariants.lemma_5_l-3:

("" (AUTO-PROOF_UNIV_SYSTIMPL "Inv_5.1-3")
(("1" (APPLY (TIME-ETC-SIMP) "Case nu(t-l)." "a > b + c implies a > b."))
("2" (APPLY (THEN (EXPAND "enabledspecific") (SYSTIMPL-SIMP)) "Case enterl(r_l).")

(APPLY (THEN (APPLY-UNIVJNV-LEMMA "5-1-2" "r.l") (SYSTIMPL-SIMP)))
(APPLY (TIME-ETC-SIMP) "Doing obvious case-based reasoning."))))

systimplJinvariants.lemma-5-1-4:

("" (DIRECT-PROOF.UNIV-SYSTIMPL "Inv.5.1.4")
(APPLY (THEN (APPLY_UNIVJNV_LEMMA "5-1.1" "r_l") (SYSTIMPL-SIMP)))
(APPLY (THEN (APPLY_UNIV_INV_LEMMA "5-1-3" "r_l") (SYSTIMPL-SIMP)))
(TIME-ETC-SIMP))

systimpldnvariants.lemma_5-l-5:

("" :(AUTO-PROOF.UNIV-SYSTIMPL "Inv_5_l-5"))

systimpl Jnvariants.lemma-5-2_l:

("" (AUTO_PROOF^YSTIMPL "Inv.5-2-1")
(("1" (APPLY (THEN (EXPAND "enabled-specific") (SYSTIMPLJSIMP)) "Case up.")

(TIME_ETC-SIMP))
("2" (APPLY (THEN (EXPAND "enabled-specific") (SYSTIMPL-SIMP)) "Case down.")

(TIME-ETC-SIMP))))

systimpl .invariants.lemma-5 _2 _2:

("" (DIRECT-PROOF.UNIV-SYSTIMPL "Inv.5-2.2")
(APPLY (THEN (APPLYJNVJLEMMA "5-2-1") (SYSTIMPL-SIMP)))
(TIME-ETC-SIMP))

systimpUn variants .lemmaJB _1 _1:

("" (AUTO-PROOF-SYSTIMPL "Inv_B-l_l")
(("1" (APPLY (THEN (EXPAND "enabledJüpecific") (SYSTIMPL-SIMP)) "Case nu(t-l).")

(APPLY (HIDE —5 —8 —9) "Hiding quantified formulae before using (time_etc_simp).")
(APPLY (TIME-ETC-SIMP) "Doing time-arithmetic: reversing an inequality."))

p'2" (APPLY (TIME-ETC-SIMP) "Case lower."
"Doing propositional reasoning plus time arithmetic."))))

systimplJnvariants.lemma_B-l_2:

("" (AUTO-PROOFJ3YSTIMPL "InvJBJL2")
(("1" (APPLY (TIME-ETC-SIMP) "Case nu(t_l)."))
("2" (APPLY (TIME_ETC-SIMP) "Case lower."))))

systimplJnvariants.lemma.6-1:

("" (AUTO-PROOF-UNIV-SYSTIMPL "Inv-6-1")
(("1" (APPLY (THEN (EXPAND "enabled_specific") (SYSTIMPL-SIMP))

"Case nu(t-l). Invoke the precondition.")
(APPLY (THEN (APPLYJNVJLEMMA "5-2-1") (SYSTIMPL_SIMP)))

58

(APPLY (THEN (APPLY_UNIVJNV.LEMMA "5-1-2" "r.2") (SYSTTMPL-SIMP)))
(MODUS-PONENS -3)
(MODUS-PONENS -5)
(ASSERT)
(INST -11 "r.2")
(APPLY (HIDE -8) "Hiding quantified formulas.")
(TIME-ETC-SIMP))

("2" (APPLY (THEN (APPLY-LEMMA "const-facts" NIL)
(APPLYXEMMA "enterLunique" ("r_l" "r_2")))

"Case enterR(r_l). Appeal to some standard facts.")
(APPLY (TIME-ETC-SIMP) "Combine some propositional and time-arithmetic reasoning."))

("3" (APPLY (APPLY-LEMMA "enterLunique" ("r.l" "r.2"))
"Case enterl(r_l). Appeal to some standard facts.")

(TIME-ETC-SIMP))
("4" (APPLY (THEN (EXPAND "enabled-specific") (SYSTIMPL.SIMP))

"Case raise. Invoke the precondition.")
(INST 1 "r-2")
(APPLY (THEN (APPLY.UNIVJNVXEMMA "5-1.2" "r.2") (SYSTIMPL-SIMP)))
(TIMEJETC-SIMP))

("5" (APPLY (THEN (EXPAND "enabled-specific") (SYSTIMPL-SIMP))
"Case up. Invoke the precondition.")

(APPLY (TIME-ETC-SIMP) "Applying simple propositional reasoning."))))

systimpl-invariants.lemma-6-2:

("" (AUTO_PROOF-UNIV-SYSTIMPL "Inv-6-2")
(("1" (APPLY (THEN (APPLYJNVJLEMMA "B-l-2") (SYSTIMPL-SIMP)) "Case enterR(r_l).")

(APPLY (APPLY-LEMMA "const-facts" NIL) "Appealing to some standard facts.")
(APPLY (TIME-ETC-SIMP) "Combining reasoning about cases and time arithmetic."))

("2" (APPLY (APPLYXEMMA "enterLunique" ("r_l" "r-2")) "Case enterl(r_l)."
"Appealing to a standard fact.")

(APPLY (TIME_ETC-SIMP) "Doing some propositional reasoning."))
("3" (APPLY (THEN (APPLY.UNIVJNVJLEMMA "6-1" "r.2") (SYSTIMPL-SIMP))

"Case lower." "Apply invariant lemma 6_1.")
(APPLY (TIME-ETCJSIMP) "Doing propositional reasoning by cases."))))

systimplJnvariants.lemma.6-3:

("" (APPLY (AUTO-PROOFJ3YSTIMPL "Inv.6.3") "Use induction.")
(("1" (APPLY (TIMEJETCJ3IMP) "Case enterR(r-l)."

"Prepare sequent for matched SKOLEM and INST.")
(APPLY (THEN (SKOLEM -4 "r_2") (INST 1 "r_2")) "Setting r = r.2.")
(APPLY (TIME-ETCJ3IMP) "Confirm that this case is trivial."))

("2" (APPLY (TIMEJETC-SIMP) "Case enterl(r-l)."
"Prepare sequent for matched SKOLEM and INST.")

(APPLY (THEN (SKOLEM -4 "r-2") (INST 1 "r-2")) "Setting r = r_2.")
(APPLY (THEN (EXPAND "enabled^pecific") (SYSTIMPL-SIMP))

"Invoke the precondition.")
(CASE "gatejstatus(s-l) = fully.up or gate_status(s_l) = going_up")
(("1" (APPLY (THEN (APPLY-UNIVJNVXEMMA "6_1" "r_l") (SYSTIMPL-SIMP))

"Invoke the invariant lemma 6-1.")
(APPLY (TIMEJETC-SIMP) "Derive contradiction with the precondition."))

("2" (APPLY (THEN (APPLY-UNIVJNV-LEMMA "6_2" "r-1") (SYSTIMPL-SIMP))
"Invoke the invariant lemma 6-2.")

59

(APPLY (THEN (APPLYJNV-LEMMA "B_l_l") (SYSTIMPL.SIMP))
"Invoke the invariant lemma B_l, part 1.")

(APPLY (TIME_ETC-SIMP) "Derive contradiction with the precondition."))))
("3" (APPLY (TIME.ETC-SIMP) "Case exit(r_l)."

"Prepare sequent for matched SKOLEM and INST.")
(APPLY (THEN (SKOLEM -4 "r_2") (INST 1 "r_2")) "Setting r = r.2.")
(APPLY (TIMEJETC-SIMP) "Confirm that this case is trivial."))

("4" (APPLY (TIME-ETCJ3IMP) "Case raise.")
(APPLY (THEN (SKOLEM -5 "r_2"))

"Matching formula for INST was eliminated. Setting r = r_2.")
(APPLY (THEN (EXPAND "enabled_specific") (SYSTIMPLJ3IMP) (INST 1 "r.2"))

"Invoke and specialize the pre-condition.")
(APPLY (THEN (APPLY_UNIVJNV.LEMMA "5.1.1" "r_2") (SYSTIMPL.SIMP))

"Invoke invariant lemma 5.1, part 1.")
(APPLY (THEN (APPLY.UNIVJNV.LEMMA "5-1.3" "rJ2") (SYSTIMPL.SIMP))

"Invoke invariant lemma 5.1, part 3.")
(APPLY (TIME-ETC.SIMP) "Derive contradiction."))

4"5" (APPLY (THEN (EXPAND "enabled-specific") (SYSTIMPL.SIMP))
"Case up. Invoke the precondition.")

(APPLY (TIMEJETC-SIMP) "Derive contradiction with the precondition."))))

systimpl-invariants.lemma_6-3_A:

("" (APPLY (AUTO_PROOF_UNIV_SYSTIMPL "Inv_6_3_A") "Use induction. Fix r = r_2.")
(("1" (APPLY (THEN (EXPAND "enabled-specific") (SYSTIMPL_SIMP))

"Case enterl(r_l). Invoke the precondition.")
(CASE "gate_status(s_l) = fully_up OR gate_status(s_l) = going_up")
(("1" (APPLY (THEN (APPLY.UNIVJNVXEMMA "6.1" "r.l") (SYSTIMPL-SIMP))

"Invoke the invariant lemma 6_1.")
(APPLY (TIMEJETC-SIMP) "Derive contradiction with the precondition."))

("2" (APPLY (THEN (APPLY.UNIVJNV.LEMMA "6-2" "r_l") (SYSTIMPL-SIMP))
"Invoke the invariant lemma 6_2.")

(APPLY (THEN (APPLYJNV-LEMMA "BJL1") (SYSTIMPL_SIMP))
"Invoke invariant lemma B_l, part 1.")

(APPLY (TIME-ETCJ3IMP) "Derive contradiction with the precondition."))))
("2" (APPLY (THEN (EXPAND "enabled-specific") (SYSTIMPL-SIMP) (INST 1 "r.2"))

"Case raise. Invoke and specialize the precondition.")
;: (APPLY (THEN (APPLY-UNIVJNV-LEMMA "5.1-1" "r-2") (SYSTIMPL.SIMP))

"Invoke invariant lemma 5_1, part 1.")
(APPLY (THEN (APPLY.UNIVJNVXEMMA "5.1^" "r_2") (SYSTIMPL^IMP))

"Invoke invariant lemma 5_1, part 3.")
(APPLY (TIMEJ:TCJSIMP) "Derive contradiction."))

("3" (APPLY (THEN (EXPAND "enabled-specific") (SYSTIMPL.SIMP))
"Case up. Invoke the precondition.")

(APPLY (TIMEJETC-SIMP) "Derive contradiction with the precondition."))))

60

E Appendix. Lessons from the PVS Proof of Lemma E.l

In the first section of this Appendix, we present the statement of Lemma E.l from Appendix B.3 of [12],
and its proof in PVS, annotated by an equivalent interleaved English language proof. The PVS proof was
developed as follows: First, an attempt was made to follow the hand proof in [12] as closely as possible.
Many missing details needed for the PVS prover were incorporated in this proof, resulting in a PVS proof
running to over 6 pages, not counting comments. Strategies were designed to abbreviate many of the repeated
sequences in reasoning; these sequences were identified by the purpose they served, and were therefore not
always precisely syntactically isomorphic. The proof was then redone using the new strategies to replace
longer sequences. At this stage, the structure of the PVS proof became much clearer, and it was possible to
eliminate duplicated efforts and simply wasteful steps. Comments were incorporated with the proof steps to
help clarify this structure. The resulting PVS proof was then annotated in fuller detail in English.

Note that this is not the method by which we expect other ad hoc timed automaton proofs in PVS to be
developed. One result of our study of such proofs should be the identification of parts of English language
proofs that need additional detail to be added when translated for the automatic prover, as well as the type
of additional detail they need. With this knowledge, a hand proof can be expanded to a more detailed one
more suitable for straightforward translation. Used in combination with the more sophisticated large step
strategies whose development will become possible when appropriate enhancements are added to PVS, this
approach can bring us closer to the ideal of mimicking a natural hand proof in PVS. The addition to PVS
of a facility for attaching comments to goals rather than proof steps will also aid in the documentation of
the correspondence between natural language proof and PVS proof.

Included among our annotations of the Lemma E.l proof are indications of step sequences that have the
potential of being replaced by calls to large step strategies supported by PVS enhancements. These sequences
are denoted by asterisks along the right margin, with number tags in the form (m.n), where m denotes the
m-th potential strategy, and n denotes the n-th place where this strategy could be used. The second section
of this Appendix describes the desired effects and possible implementations of these strategies, and shows
for each potential use just how the strategy might be invoked.

E.l The PVS Proof of Lemma E.l with Annotations

; Lemma_E-l: Let alpha be an admissible timed execution of OpSpec. Let Pi be any lower event
; occurring in alpha from a state in which Gate.status is in {going-up, up}. Then there is an enterl
; event Phi occurring after Pi in alpha, with time(Phi) <= time(Pi) + xLl.
/«»

; Let A-l be an atexec of OpSpec and n_l be the index of the action Pi = pi(A_l)(n.l), which occurs
; from the state lstate(w(A_l)(n_l - 1)) in which the gate is either going.up or fully.up.

(SKOLEM 1 "A_l")
(SKOLEM 1 "n.l")
(FLATTEN)

; For convenience, we will call the state just before Pi, namely lstate(w(A_l)(n_l - 1)), s_l, and the
; state after Pi, namely fstate(w(A_l)(n_l)), s.2.

(APPLY (THEN (NAME "s_l" "lstate(w(A-l)(n_l - 1))")
(NAME "s_2" "fstate(w(A_l)(n_l))"))

"Give names s_l and s_2 to the states just before and after Pi.")

; Supposition 1: The time of Pi, t(A.l)(nJ.), equals now(s_l) and now(s.2).

(APPLY (CASE "now(s_2) = now(s_l) & Now(s.l) = t(A_l)(n.l)B)
"Assume the time equivalences from the first sentence of the hand

proof. The proof of these facts below depends mainly on
normalize^atexecs.")

(("1"

61

; Supposition 2: last_l(s_2) <= now(s_2) + xLl.

(APPLY (CASE "last.l(s_2) <= now(s_2) + xLl")
"Assume the inequality that concludes the first paragraph of the
hand proof. It will be proved later below.")

(("1"
(TIME-SIMP -1)
(FLATTEN)

; Call the value last_l(s.2), b.

(NAME "b" "dur(last_l(s-2))")
(APPLY (REPLACE -1) "Using the name b."

"Note that it would be helpful to have a general strategy
replace_names that could periodically be invoked to call
replace on all definitions entered via NAME, and perhaps
certain others. Marked definitions could be kept hidden
until recalled for this purpose or for a general review
of definitions.")

; Call the value t(A_l)(n_l) + dur(xLl), B.

(NAME "B" "t(A.l)(n.l) + dur(xLl)")

; Let B-glb name the largest index for which t(A_l)(B_glb) <= B.

(PUT.GLB "A-l" "B")

; Supposition 3: B_glb + 1 > nJL

(CASE "B-glb + 1 > n_l")

(("1"
; Note that part of the hypothesis of lemmaJE.l is that the gate is either going.up or fully_up in state s_l.

(NORMALIZEJ^TEXECS)
(REPLACE -11)

Supposition A(B): We suppose something that appears, a priori, stronger than the negation of what
we hope to prove, in order to derive a contradiction: namely, that there is no enterl event from event
Pi to time B, *and* that the last.l component of the state after every event from Pi to B has the
same value last.l (s_2). Actually, the second part is redundant, but is needed in the induction proof
that comes later.

We actually state this supposition in a more complex form. This more complex form of Supposition
A(B) says that every event from the n_l-th event Pi to time B has property A, where property A of
any m-th event is that every p-th event from event Pi through that m-th event has property A-hat:
namely, it is not an enterl event and the last_l component of its result state equals last_l(s_2).

(APPLY (CASE "(forall (m:pos_nat): (m >= n_l & t(A_l)(m) <= B) =>
(forall (p:pos_nat): ((n_l <=p&p<=m) =>

(not (exists (r: train): pi(A_l)(p) = enterl(r)) &
last_l(fstate(w(A_l)(p))) = last_l(s_2)))))")

"Call this assertion A(B). We hope it is not true. Thus, we
expect to obtain a contradiction by assuming it. It says,
in effect, that every event before and up to time bound B
is the last in a chain of events starting with Pi that have
the same last_l value when they occur, and that are not an
enterl.")

(("1"
; In particular, event B_glb has property A.

(INST -1 "B-glb") *
(("1" * (1.1)

(ASSERT) *

62

; So, event B-glb has property A-hat.

(APPLY (INST -1 "B.glb") *
"Starting to show that last_l still has the value it did *
at s_2 when the B_glb+l-th event occurs. This uses the *
fact that time has advanced beyond B, in a hidden way— * (1.2)
via lemma last_l Jnterval. It will lead to a contradiction.") *

(ASSERT) *
(FLATTEN) *

; Let s_3 name the state just after the B_glb-th event, and s_4 name the state just before the
; (B.glb + l)-th event.

(APPLY (THEN (NAME "s.3" "fstate(w(A.l)(B-glb))")
(NAME "s.4" "lstate(w(A-l)(B.glb))"))

"Let s_3 and s_4 be the left and right endpoints of the
B-glb-th interval, which spans the time B.")

; A standard lemma says that components of the state other than the "now" component are not
; affected by time passage. In particular, the value of last_l is the same at s_4 as it was at s_3.

(APPLYJLEMMA "last.lJnterval" ("A_l" "B.glb")) *
(NORMALIZE.ATEXECS) * (2.1)
(APPLY (THEN (REPLACE -2) (REPLACE -3)) *

"Using the names s.3 and s_4.") *

; Supposition 4: Now(s_4) = t(A.l)(B_glb+l).

(CASE "Now(s_4) = t(A.l)(B.glb+l)")

(("1"
; Since s_4 is reachable, we can apply the invariant lemma 4_2_1, which says that
; now(s_4) <= last_l(s_4).

(GET_REACHABLES "A.l" "B_glb") *
(APPLYJNVXEMMA "4_2_1" "s_4") * (3.1)
(APPLY (HIDE -2 -3 -4 -5 -6 -7) *

"Remove unneeded reachability info.") *

But this contradicts what we know about now(s_4): namely, that Now(s_4) = t(A_l)(B_glb+l) > B,
last_l(s_4) = last_l(s_3), last_l(s_3) = last_l(s_2) (because event B_glb has property A-hat),
and last.l(s_2) <= B.

(EXPAND "Now")
(TIME-SIMP -1))

; Proof of Supposition 4: Follows from the definition of s_4 and standard simplifications.

("2"
(APPLY (REPLACE -2 1 RL)

"Using the def of s_4 in the subgoal consequent.")
(NORMALIZE-ATEXECS)
(SIMPLIFY))))

; We prove a TCC showing that B_glb is within the range of values for which property A-hat holds,
; given that B_glb has property A.

("2" (ASSERT))))

; We now prove Supposition A(B) by induction on the variable m.

("2"
(APPLY (THEN (INDUCT "m") (ASSERT))

"Note that inducting this way avoids creating 4 subgoals."

63

"This is the proof of assertion A(B); rather, it is the proof
that if assertion A(B) is false, then one can find an enterl
event between Pi and B, which claim is assertion A(B)'s
companion assertion in the subgoal's consequent.")

; The base case and some TCC's were proved by ASSERT, i.e., by the decision procedures,
; simplification, and propositional reasoning in PVS. We prove the induction step.

(APPLY (THEN (SKOLEM 1 "j.l") (FLATTEN)))

; Suppose that j_l is some integer such that if j_l > 0 and the j-l-th event is the n.l-th event or later
; and comes before time B, then j_l has property A. We will show that if the conclusion of lemma_E_l
; is false, then if the (j_l + l)-th event is the n_l-th event or later and comes before time B, then
; j-1 + 1 has property A. To do this, suppose that indeed the (j_l + l)-th event is the n_l-th event
; or later and comes before time B.

; If j-1 + 1 = n_l, it trivially has property A, since pi(A_l)(n_l) = lower and
; last J(path(w(A_l)(n_l))(t(A_l)(n_l))) = last_l(s.2).

(CASE "j.1+1 = n.l")
" (("1" (SKOLEM 1 "p.l") (FLATTEN) (ASSERT))

; So we may assume that j_l + 1 is greater than n_l.

("2"

; We may then deduce that j_l > 0 (since n_l is positive), and that j_l >= n_l.

(ASSERT)

; We may also deduce that the j-l-th event comes before time B, because the (j_l + l)-th does.

(APPLY (TIME-ORDER "A.1" "j-1" "j-1+1") *
"This should mimic doing a SPLIT without getting *
a companion assertion.") * (4.1)

(ASSERT) *
(APPLY (HIDE -1) "Finish the mimicking of SPLIT.") *

; Let p-1 be some positive natural number. We will show that if n_l <= p_l <= j_l + 1, then p.l
; has property A-hat. Since p_l is arbitrary, it will follow that j_l + 1 has property A.

(SKOLEM 2 "p-1")

; By inductive hypothesis, if n_l <= p_l <= j_l, then p_l has property A-hat.

(INST -1 "p_l")

; So, suppose that n_l <= p_l <= j_l + 1.

(APPLY (FLATTEN)
"Note, above is an instance of matched skolem + inst.")

; Then if p_l is in fact less than or equal to j_l, it has property A-hat.

(ASSERT)

; So, consider the case that p.l = j_l + 1-

(APPLY (CASE "p_l = j_l + 1")
"This is the meaty case, since if p_l < j.l + 1, then the

induction hypothesis, which applies to all p.l between
n_l and j_l, inclusive, assures that last.l at p_l is
the same as at n_l, and that event p.l is not enterl.")

; Then we will show that either lemma_E_l holds with the p.l-th event being the event Phi that comes
; after Pi and before B that is an enterl, or else p_l has property A-hat.

64

(("1"
(INST 3 "p-1")
(ASSERT)

; Since the p_l-th event is after Pi, this is equivalent to showing that (1) either the p_l-th event is an
; enterl or p_l has property A-hat and (2) either the p-l-th event happens before B or p_l has property
; A-hat.

(SPLIT 3)

; We first prove (1).

(("1"
; We recall that the induction hypothesis says that any integer between n.l and j_l has property A-hat.

(APPLY (REVEAL -1)
"Grab the general form of the induction hypothesis.")

; This applies in particular to j_l itself.

(APPLY (INST-1 "j.l") *
"We now prepare to do the real induction step in this *
proof, namely, to show that last_l is unchanged by *
event j_l + 1 provided it is not an enterl.")

(ASSERT)

; We will show that either the p_l-th event is an enterl or else last-1 in the state
; following this event is last_l(s_2).

*

* (1-3)
*
*

*
*
*

(APPLY (SPLIT 3)
"Using a SPLIT to match a complex expression that
ASSERT missed.")

; We first replace our formulation of the assertion that the p_l-th event is an enterl (given as an
; existentially quantified expression over trains r that might do an enterl action) by the data-type
; recognizer formulation of this assertion: enterI?(pi(A_l)(p_l)).

(APPLY (CASE "enterI?(pi(A.l)(p_l))") *
"Expressing enterl—ness better.") *

(("1" * (G)
(INST 2 "Itrainof(pi(A.l)(p-l))") *
(APPLY-EXTENSIONALITY 2)) *

; We can now proceed with our proof. Since j_l has property A-hat, the value of last_l in the state
; following the j-l-th event is last_l(s_2).

(FLATTEN)

; For convenience, we assign names to certain states: s_8 is the state just after the j-l-th event, s_9 is
; the state just before the (j_l + l)-th event, and s_10 is the state just after the (j_l + l)-th event.

(APPLY (THEN (NAME "s.8" "fstate(w(A_l)(j_l))")
(NAME "s-9" "lstate(w(A-l)(j_l))")
(NAME "s.lO" "fstate(w(A_l)(j_l+l))"))

"Name the states relevant to the preservation of
last_l from the time of event j_l to that of event

j-l + 1.")
; We note that the value of last_l does not change in passing from s_8 to s_9.

(APPLYJLEMMA "last.linterval" ("A_l" "j_l"))

; We also note that s_10 is the state reached by transitioning on the (j_l + l)-th action in state s_9.

65

(TRANS-FACTS "A_l" "j_l") *
(APPLY (THEN (REPLACE -8) (REPLACE -9)) *

"Note that transJacts has invoked rewriting, and *
thus accomplished a normalizejitexecs. We now use * (5.1)
the names s.9 and s_10, which will also help *
to find which of the trans-facts are not needed.") *

(APPLY (HIDE -2 -3 -4 -5 -6) *
"Hide the irrelevant trans facts.") *

; Since p_l = j_l + 1, we know that what we have to prove is that either the (j_l + l)-th event is an
; enterl or else last_l(s_10) = last_l(s_2).

(APPLY (THEN (REPLACE -7) (REPLACE -3))
"Using the equality of p_l to j_l + 1 and
the definition of s_10 to rephrase part of
the consequent to last_l(s_10) = last_l(s.2).")

; We now show that since s_10 is the result of transitioning on the (j_l + l)-th action in state s_9, the
; desired conclusion follows.

(APPLY (THEN (REPLACE -1 + RL) (HIDE -1)) *
"Using the trans version of s_10 in the consequent.") * (6.1)

(DO-TRANS.OPSPEC)))) *

; We prove (2): either the p_l-th event happens before B or p_l has property A-hat, by showing that
; the p-l-th event indeed happens before B (because we have supposed that the (j_l + l)-th event
; does, and we have assumed that p_l = j_l + 1).

("2" (TIME-SIMP 1))))

; We now consider the case p_l < j_l + 1; but the fact that the p_l-th event has property A-hat for
; any such p_l, which is what we must prove, follows trivially from the inductive hypothesis.

("2" (ASSERT))))))))

; We now prove Supposition 3: B_glb + 1 > n_l. This follows from the fact that the (B_glb + l)-th
; event happens after the n_l-th event.

("2" (TIME.ORDER "A_l" "n_l" "B.glb + 1") (ASSERT)))) * (4.2)

; We now prove Supposition 2: last_l(s_2) <= now(s_2) + xLl.

("2"
(HIDE 2)

; We first isolate the fact that now(s_l) = now(s_2).

,, (FLATTEN)

; We adduce the fact that state s_2 is the result of transitioning on the n_l-th action Pi on state sJL.

-• (TRANS-FACTS "A_l" "n.1-1") *
- (NORMALIZEJVTEXECS) *

(APPLY (THEN (REPLACE -7) (REPLACE -8)) "Using the names s_l and s.2.") * (5.2)
(APPLY (HIDE -2 -3 -4) *

"The object here is to hide all instances of trans that *
are not connected to s_2 or are redundant.") *

; Applying these two facts, together with the knowledge of the effect of the lower action Pi in a state
; in which the gate is either going_up or fully.up, we see that it is enough to show that either
; last_l(s_l) = infinity or else last_l(s_l) <= now(sJL) + xLl.

(APPLY (REPLACE -2)
"Using the fact that now(s_2) = now(s_l); note that it is
critical to do this before the next step.")

(APPLY (THEN (REPLACE -1 + RL) (HIDE -1)) *
"Using the trans version of s_2 in the consequent.") * (6.2)

(DO-TRANS-OPSPEC) *

66

(APPLY (MATCH.CONDITION 1)
"Forcing the if-then-else with condition fully.up or going.up
to simplify as if it were recognized that the condition is
equivalent to goingaip or fully_up.")

(APPLY (MATCH.CONDITION 1)
"This splits and flattens the new if-then-else, giving the
effect of case splitting on last_l(s_l) = infinity.")

; In the case last_l(s_l) = infinity, the result is trivial.

(("1" (TIME-SIMP 1))

; So, we may assume that last_l(s_l) <> infinity.

("2"

; Now, state s_l is reachable.

(APPLY (GETJtEACHABLES "A.1" "n_l - 1") *
"Note that this is one case where one wants to keep both *
assertions in the consequent.") * (3.2)

; Therefore, we can apply the invariant lemma 4.2-3 to s_l: *
(APPLYJNV-LEMMA "4_2_3" "s_l") *

; which is precisely what is required.

(APPLY (THEN (OPSPEC-SIMP.2) (TIMEJSIMP 2))))))))

; Proof of Supposition 1: The time of Pi, t(A_l)(n.l), equals now(s.l) and now(sJ2). This follows
; from standard equivalences, the definitions of s_l and s_2, and standard PVS simplifications and
; decision procedures.

("2"
(APPLY (HIDE 2) "Finally proving the time equivalence facts.")
(APPLY (THEN (REPLACE -1 + RL) (REPLACE -2 + RL))

"Expanding the names s_l and s_2 in the consequent.")
(NORMALIZE-ATEXECS)
(SIMPLIFY))))

E.2 Potential New Strategies for Lemma E.l from PVS Enhancements

In the annotated proof in Appendix E.l, we have indicated places where six new strategies could be applied,
if we had the tools in PVS to define them. Here, we describe the effects (when successful) and possible
implementation of each of these proposed new strategies, and indicate how they would be invoked at each
of the indicated places in the Lemma E.l proof. As will be seen, all the proposed implementations require
naming, analysis, and recognition capabilities for assertions that are not currently available in PVS. To
avoid repetition, the proposed implementations omit mentioning the anticipated use of assertion naming
by strategies that rely on a lemma; such naming will aid in the recognition and removal of redundant or
irrelevant information generated from the lemma application. The proposed implementations also ignore an
important feature that will need to be incorporated in each: the generation of useful error messages.

(1) (CONCLUDE <proposition> <instantiation>)

Effect. Puts all conclusions in <proposition>, applied to <instantiation>, in the hypotheses of the current
sequent. <proposition> may be denoted by a tag (this requires enhancement to PVS) or by an assertion
number, and should refer to a current subgoal antecedent formula in the form of a universally quantified
implication whose hypothesis is satisfied by [instantiation;,.

Proposed implementation. Implement by a sequence INST, MODUS.PONENS, FLATTEN focused
on <proposition>, which may be indicated either by a name rather than an assertion number.
MODUS JPONENS will be a more sophisticated version of MODUS JPONENS as defined in Appendix C;

67

it will focus on removing the highest-level hypothesis from an assertion, provided it can be deduced from
other antecedent formulae in a sequent.

Invocations in the Lemma E.l proof.
(1.1) (CONCLUDE "Claim-A(B)" "B_glb")

(1.2) (CONCLUDE "Claim_A(B)_condusion" "B.glb")

(1.3) (CONCLUDE "ClaimJ^(B)JndJiyp" "j.l")

Comments. We have used assertion names rather than assertion numbers in these example invocations.
It is anticipated that the assertion name "Claim_A(B)" would be provided by the user at the time this
particular assertion was introduced using CASE. Names of the related assertions would be automatically
generated according to the structure of the original assertion (as in "Claim_A(B)_conclusion") or as the
result of its manipulation by other strategies (such as the call to "(INDUCT "m")", that locates and
then operates on assertion "Claim_A(B)").

If one uses ASSERT instead of MODUS-PONENS, the invocation (1.1) will handle an associated TCC
automatically. The proposed implementation of CONCLUDE probably will be modified to maximize
the set of cases in which this will happen.

(2) (SAMEVAL <component_name> <state_l> <state_2>)

Effect. Adds the fact that the state function or component <component_name> has the same value at
<state_l> and <state_2> to the hypotheses of the current goal.

Proposed implementation. The implementation must rely on the existence of a lemma about
<component_name> with a standard derived name that guarantees that <componentJiame> is con-
stant in a trajectory. State arguments that are simply names may have to be looked up in the visible
or hidden part of the antecedent hypothesis list to determine the appropriate relevant atexecs and nat
instantiations for the lemma, and to replace the states in the conclusion of the lemma by their names.

Invocations in the Lemma E.l proof.
(2.1) (SAMEVAL "last-1" "s_3" "s_4")

Comments. Automatic generation and proof of the necessary supporting lemmas is a possibility.

(3) (INVARIANT <inv_name> <state>)

Effect. Adds the fact that invariant <inv_name> holds for <state> to the hypotheses of the current goal.

Proposed implementation. Use GETJIEACHABLES to retrieve information about the reachability of
states in the neighborhood of <state>. This neighborhood can be deduced from the arguments of types
atexecs and nat in the representation of <state>, which, in turn, will either be explicitly present or
retrievable from some visible or hidden equality in the current goal. This information can be retrieved,
used in the call to APPLYJNV-LEMMA, and then hidden.

Invocations in the Lemma E.l proof.
(3.1) (INVARIANT "4_2_1" "s.4")

(3.2) (INVARIANT "4_2_3" "s.l")

Comments. The retrieval of reachability information about <state> could include a check on whether this
information is present in either the visible or hidden part of the current goal, if this increases efficiency.

(4) (TIME_RELATION <index_l> <index_2>)

Effect. Puts the fact that event <index_l> comes before event <index_2>, or vice-versa (whichever is
correct) in the hypotheses of the current goal.

68

Proposed implementation. Use the strategy TIME-ORDER, followed by ASSERT (to deduce and apply
the appropriate inequality between <index_l> and <index_2>); then hide or delete the extra assertion
generated (that relates to the "inappropriate" inequality).

Invocations in the Lemma E.l proof.
(4.1) (TIME-RELATION "j-1" "j_l + 1")

(4.2) (TIME-RELATION "n.l" "B-glb + 1")

- Comments. An argument of type atexecs may also be added to this strategy. The alternative is to provide
some means to retrieve the appropriate instantiation or instantiations from the current goal. When
reasoning about properties of one timed automaton, there will typically be only one such instantiation.
When reasoning about simulations between timed automata, there may be two.

(5) (TRANS-RELATION <state_l> <state_2>)

Effect. Puts the fact that <state_2> is the result of a transition from <state_l>, or vice-versa, in the
antecedent, with an instantiation of the action associated with the transition.

Proposed implementation. The neighborhood of <state_l> and <state_2> (that is, the relevant atexecs
and nat values) are retrieved either directly or by looking state names up in the visible or hidden part
of the antecedent of the current goal. The strategy TRANS-FACTS can then be invoked to get all likely
candidates for the transition relation. State values are then normalized by NORMALIZE-ATEXECS,
and those equal to <state_l> and <state_2> are replaced by <state.l> and <state_2>. Irrelevant
or redundant assertions generated by TRANS-FACTS are then removed; these are recognized by a
combination of name and content.

Invocations in the Lemma E.l proof.
(5.1) (TRANS-RELATION "s_9" "s-10")

(5.2) (TRANS-RELATION "sJ." "s.2")

Comments. If <state_l> and <state_2> are expressions rather than names, replacing equal state values by
these names will require some care, since these expressions may be altered by NORMALIZE-ATEXECS.

(6) (COMPUTE-TRANS <state> <assertion>)

Effect. Replaces <state> in <assertion> by its value computed as the result of a transition.

Proposed implementation. If the representation of <state> as the result of at transition is present in
the antecedent of the current goal, it can be recognized, and used to replace <state> in <assertion>. A
version of DO-TRANS that focuses only on <assertion> can then be applied.

Invocations in the Lemma E.l proof.
(6.1) (COMPUTE-TRANS "s_10" "Claimj\.(B)ind-concl")

(6.2) (COMPUTE-TRANS "s-2" "Supposition.2")

Comments. DO-TRANS is timed-automaton-dependent, since it calls the standard simplification strategy
of the timed automaton in which the transition takes place. However, the name of the timed automaton,
and hence that of its simplification strategy, could be deduced from the type information for <state>.

Note that we have marked one sequence in the proof of Lemma E.l with an "(G)". At point "(G)",
the representation of a certain fact in the sequent is changed by supplying a rather cryptic instantiation
and applying the PVS strategy APPLY-EXTENSIONALITY. Both representations of the particular fact
correspond to the same high-level English language description "the p_l-th event is an enterl event". Thus,
sequence "(G)" does not exactly correspond to any step in an English language proof of Lemma E.l; the need
for it in the PVS proof is really an artifact of the representation in PVS of the timed automaton OpSpec.
"(G)" may be one example of a point where a certain amount of "PVS glue" is required in translating from
hand proof to PVS.

69

F Appendix. A Second PVS Template for Timed Automata

The theory timed^auto-decls, if used as one of the fixed underlying template theories, is designed to allow
the PVS typechecker to enforce many of the template conventions, such as the existence of a time passage
action, the usage of the separate parts of enabled, the fact that the now component of a start state must
be zero, and so on. It has an accompanying theory, timed-^uto-thy, which we do not show since it is
essentially identical to the theory opspec_strat_aux (see Appendix B.3).

One of the benefits of including the two theories among the fixed template theories is that the lemmas
in timed^auto_thy become independent of the automaton being specified, and can be pre-proved prior to
specifying any particular timed automaton. They do not then have to be re-proved in order to be used (by
way of our specialized strategies or otherwise) in constructing "guaranteed sound" PVS proofs of properties
of a particular timed automaton.

We first present the theory timed^uto-decls, and then show how the timed automaton OpSpec would
be defined in PVS using the resulting new template.

F.l Appendix. The Theory timed_auto_decls

fimed.auto_decls [basic_states, actions: TYPE,
% Importing time_thy defines the type "time" that behaves like the non-negative
% reals except for having an infinite value included.

(IMPORTING time-thy,
% Importing states[...] defines the type states, whose elements are records with
% indices "basic" (basic_states),"now" (a (fintime?) value), "first" and "last"
% (maps from actions to time).

states[actions,basic-states,time,fintime?])
nu: [(fintime?) -> actions],
nu?: [actions -> bool],
timeof: [(nu?) -> (fintime?)],

% The "start" predicate on states is split into three parts to emphasize its
% structure and to enforce "now(s) = zero".

basicstart: [basicstates -> bool],
first-start: [basic-states,actions -> time],
last_start: [basic_states,actions -> time],

% The "trans" operation of actions on states is also split into three parts to
% emphasize its independence from "now" except in the special case of a
% time-step action nu.

basic-trans: [[actions,states] -> basic-States],
first_trans: [[actions,states] -> [actions->time]],
last_trans: [[actions,states] -> [actions->time]],
enabled-specific: [[actions,states] -> bool],
OKstate?: [states -> bool]] : THEORY

% The theory timed_auto_decls is the main template specification for timed automata. Instantiation
% of this template is done by importing the companion specification timed_auto.thy with the
% appropriate parameters.

% The expected instantiations of the specification parameters to timed_auto_decls and timed.auto_thy
% are as follows:

% basicjstates: some encoding of that part of the states that is separate from the "now"
% component (a time value) and the "first" and "last" components (maps from actions
% (events) to time).

70

% actions: an abstract data type whose members are actions, that contains a "nu" action
% parameterized by (non-zero, non-infinite) time.

% nu: the time-step element of "actions", parameterized by "(fintime?)"

% nu?: a predicate on actions that identifies just when an action is a "nu" time-step action.

% timeof: extracts the "time" parameter from time-step actions.

% basic-start: the predicate that identifies the basic parts of start states.

% first-start: the function that maps states and actions to the initial "first" value for that
% action with respect to the basic part of the state.

% last-start: the function that maps states and actions to the initial 'last" value for that
% action with respect to the basic part of the state.

% basic-trans: this is the part of "trans" that does not deal with changes to "now", "first" and
% "last".

% first-trans: this is the part of "trans" that describes how one action affects the "first" time of
% another.

% last-trans: this is the part of "trans" that describes how one action affects the "last" time of
% another.

% enabled-specific: this is the part of enabled that maps an action to the non-default part of the
% pre-condition predicate on the state.

% OKstate?: this is a predicate on states that can be used to enforce one or more state invariants
% by restricting the reachable states directly.

BEGIN

% Before importing atexecs, one needs to define start, Now, step?, and nu; step? depends on the
% definitions of enabled and trans, so must define these also. Note that one can then go ahead and
% import machine as well.

start(s:states):bool = (s = (# basic := basic(s),
now := zero,
first := (LAMBDA(a:actions): first-Start(basic(s),a)),
last := (LAMBDA(a:actions): last_start(basic(s),a)) #)

& basic_start(basic(s)));

Now(s:states):{r:real | r >= 0} = dur(now(s));

Nu (z: {z:real | z>0}): actions = nu(fintime(z: {z:real | z>=0}));

trans(a:actions,s:states):states =
IF nu?(a) THEN s WITH [now := now(s) + timeof(a)]

ELSE s WITH [basic := basic-trans(a,s),
first := (LAMBDA(b:actions):first_trans(b,s)(a)),
last := (LAMBDA(b:actions):last_trans(b,s)(a))]

ENDIF;

enabled_general(a:actions,s:states):bool =
IF nu?(a) THEN dur(timeof(a)) > 0 ELSE first(s)(a) <= now(s) & now(s) <= last(s)(a) ENDIF;

enabled(a:actions,s:states):bool =
enabled-general(a,s) & enabled-specific(a,s) & OKstate?(trans(a,s));

step? (sl:states, a:actions, s2:states): bool = enabled(a,sl) & s2 = trans(a,sl);

IMPORTING atexecs [states, actions, start, Now, step?, Nu]
IMPORTING machine[states, actions, enabled, trans, start]

END timed_auto_decls

71

F.2 Appendix. The Timed Automaton OpSpec in PVS: Version 2

The specification of the theory opspec in the alternative template (and actually, the new template itself) is
rather more messy, than the specification in B.3, since certain functions have been decomposed into several
functions. However, at least some of this messiness could be hidden by an appropriate interface external to
PVS.

opspec_decls: THEORY

BEGIN

train: TYPE

r,rl: VAR train

IMPORTING time_thy

beta_posreal: {nreal | r > 0};
delta.t: VAR (fintime?)
eps_l, eps_2, gamma_down, gamma_up, xLl, xi.2, delta: (fintime?)
beta:(fintime?) = fintime(beta_posreal:{r:real | r >= 0});

const .facts: AXIOM (eps_l <= eps_2
& eps-1 > gamma_down
& xLl >= gamma_down + beta + eps_2 — eps_l
& xi.2 >= gamma_up);

actions : DATATYPE

BEGIN
nu(timeof:(fmtime?)): nu?
enterR(Rtrainof:train): enterR?
enterI(Itrainof:train): enterl?
exit(Etrainof:train): exit?
lower: lower?
raise: raise?
up: up?
down: down?

END actions;

a: VAR actions;

train-status: TYPE = {notJiere,P,I};

gate-status: TYPE = {fully_up,fully-down,going_up,going_down};

basic-States: TYPE = [# trains_part: [train —> train-status],
gate_part: gate-Status,
last_l_part, last_2_up_part, last_2_Lpart: time #];

IMPORTING states[actions,basic_states,time,fintime?]

si: VAR states;
b: VAR basicjstates;

status(r:train, s:states):train-Status = trains_part(basic(s))(r);

gate-status (s:states):gate_status = gate_part(basic(s));

last_l(s:states):time = last_l_part(basic(s));

last_2_up(s:states):time = last_2_up_part(basic(s));

last_2J(s:states):time = last_2J_part(basic(s));

OKstate? (s:states): bool = ((EXISTS (ntrain): status(r,s) = I) => gate_status(s) = fully.down);

72

enabled-specific (a:actions, s:states):bool =
CASES a OF

enterR(r): status(r,s) = notJiere,
enterl(r): status(r,s) = P & first(s)(a) <= now(s),
exit(r): status(r,s) = I,
nu(delta_t): (delta.t > zero

k (FORALL r: now(s) + delta_t <= last(s)(enterl(r)))
k now(s) + delta-t <= last(s)(up)
& now(s) + delta_t <= last(s)(down)
k now(s) + delta_t <= last_l(s)
k now(s) + delta.t <= last.2J(s)),

lower: true,
raise: true,
up: gatejstatus(s) = going.up,
down: gate_status(s) = going-down

ENDCASES;

basic.trans (a:actions, s:states):basic_states =
CASES a OF

enterR(r): basic(s) WITH [trains.part := trains.part(basic(s)) WITH [r := P]],
enterl(r): basic(s) WITH

[trains-part := trains_part(basic(s)) WITH [r := I],
last-l_part := infinity,
last_2_up_part := infinity,
last_2J.part := infinity],

exit(r): LET b = basic(s) WITH [trains.part:= trains_part(basic(s)) WITH [r:= notJiere]]
IN IF (FORALL (rl: train): (NOT (rl = r)) => (NOT status(rl,s) = I))

THEN b WITH
[last-2_up_part := now(s) + xi_2,
last.2_I_part := now(s) + xi_2 + delta + xi_l]

ELSE b ENDIF,
nu(delta_t): basic(s),
lower: IF gate-Status (s) = fully_up OR gate_status(s) = going.up

THEN LET b = basic(s) WITH [gate-part := going-down]
IN IF last.l(s) = infinity

THEN b WITH [last_l.part:= now(s)+xi.l]
ELSE b ENDIF

ELSE basic(s) ENDIF,
raise: IF gate_status(s) = fully_down OR gate^status(s) = going.down

THEN basic(s) WITH [gate.part := goingjip]
ELSE basic(s) ENDIF,

up: LET b = basic(s) WITH [gate.part := fully_up]
IN IF now(s) <= lastJ2_up(s)

THEN b WITH [last^_up_part:= infinity, last_2J_part:= infinity]
ELSE b ENDIF,

down: basic(s) WITH [gate.part := fully_down]
ENDCASES

first-trans (a:actions, s:states):[actions—>time] =
CASES a OF

enterR(r): first(s) WITH [(enterl(r)) := now(s) + eps.l],
enterl(r): first(s) WITH [(enterl(r)) := zero]

ELSE first(s)
ENDCASES

73

last-trans (a:actions, s:states): [actions—>time] =
CASES a OF

enterR(r): last(s) WITH [(enterl(r)) := now(s)+eps_2],
enterl(r): last(s) WITH [(enterl(r)) := infinity],
exit(r): last(s),
nu(delta_t): last(s),
lower: IF gate_status (s) = fully_up OR gate_status(s) = going.up

THEN last(s) WITH [down := now(s)+gamma_down, up := infinity]
ELSE last(s) ENDIF,

raise: IF gate_status(s) = fully .down OR gate_status(s) = going_down
THEN last(s) WITH [up := now(s)+gamma_up, down := infinity]
ELSE last(s) ENDIF,

up: last(s) WITH [up := infinity],
down: last(s) WITH [down := infinity]

ENDCASES

basic-start (b:basic_states):bool =
b = (# trains-part := (LAMBDA r: notJiere),

gate-part := fully_up,
last_l_part := infinity,
last-2_up.part := infinity,
last_2JLpart := infinity #);

first-start (b:basic_states, a:actions):time = zero;

last-start (b:basic_states, a:actions):time = infinity;

IMPORTING timed_auto_thy [basic-States, actions, nu, nu?, timeof,
basicstart, first-start, last-start,
basic_trans, first-trans, last_trans,
enabled-specific, OKstate?]

END opspec.decls

74

