9%

Development of Algorithms and Programs for
the Ray Radiotomography of the Ionosphere.

Final (1Z-month) report (EOARD Contract SPC G3-404T7)

- 19990211 031 =

Introduction. , 1

{. The solution of the direct problem of radio wave
propagation for the Ionospheric Tomography. 8
Description of the program for calculation the phase and the 11
phase-difference for arbitrary positions of

the receivers and the satellite.

- 2. Design of the different versionz of the RT operators (matrices). 14
Description of the program for caleulatlon of the different 23

versions of the RT matrices (operators).

3. The solution of the inverse problems of the phase and
phase-difference RI. 25
Description of the program for solution of the inverse 34

problems of the phase and phase~differencé RT.

4. Analysis of the influence of 8ate errors and nolses on the 356

- reconstruction resulis.

Referencees | 42
Filgures and tables 45

Principal investigator

DISTRIBUTION STATEMENT A
Approved for publis relecse: ‘ ./€?4%5>%7/ Professor V.Kunitsyn

Distributicn Unlimited

DTI0 GUALITY ANGPECTED Reproduced From
Best Available Copy

[




1. Introduction.

We shall consider the potentlals of radiotomography (RT)
using phase and phase-difference measurements. Task of the ray RT
of large-scale structures are usually formulated as follows:
making use of measurements of linemr integrals for series of rays
Intersecting a certain area, 1t 1s necessary to reconstruct the
structure of this area. Since the dimensions of large
Inhomogeneities of natural (such as an lonospheric trough) or

t1ficlal origin (traces of spacecraft, technological releases
etc.) are of hundreds and thousands kilometers, the diffraction
effects In the case of VHF/UHF probing can be neglected {1,21.

It seems to be not possible even to name the kinds and types
of emissions and waves for which attempts, at least theoretically,
have not been made to apply tomographic methods. It makes no sense
~ here to 1ist all of the variants of tomographic approazches, but
perhaps we should briefly characterize the apprcaches in the
closest flelds of tomography of geophysicel structures. The
methods and equlpment for seismic tomography, where the
distribution of the selsmic "slowness", which 1s a value which 1s
the Inverse of the wave veloclty, 1is reconstructed from
measurements of the propagation time of seismic waves, have now
been developed rather well. There 1s a #ery large number of works
on seismic tomography; we wlll only cite certain sm'veys [3-51.
Many solution methods and algorithms have been proposed in the
field of selsmic tomography which are also sultable for other
types of waves. Tomographlic studies of other "spheres" of the
Earth are also carried out. Acoustic tomography of the ocean,
where the propagation time of acoustic waves is also measured, is

now belng developed actively [6,71. Works on radio and optical




tomography of the atmosphere have appeared [8,9].

Proposals on variants of RT of the ionosphere have also been
offered. A tomographic methods for determining the local
attenuation factor as a function of geographic coordinates using
data on the iIntegral attenuation factors on paths covering a given
region with a sufficiently dense network is discussed in [10,111.
Enitters and recelvers far from the reglon to be reconstructed
provide straight propagation paths. It was suggested to use the
Radon transformation, which is practically unfeasible due to a
small number of rays, besides, the question of the dependence of
the attenuation factor on height remains to be settled. A variant
of RT using a satellite, where reconstruction of the electron
concentration distribution f:[_'om the TEC on a series of rays was
proposed, was examined in [12,13]. The data acquisition scheme is
'~ shown in Fig.0, where three recelving stations are located on the
plane of passage of the satellite and the rays are assumed to be
linear. The schemes for tomography according to linear integrals
for varlous types of waves are Indistiguishable from one another.
The approach according to the ray integral electron concentration
examined in 112,131 1is identical, for example, to selsmic
Interstitial tomography [141, where the sources of seismic waves
are placed in bore holes, while the receiver is moved along the
surface. More recently, methods of the RT of the ionosphere using
the TEC have been developed by many Investigators [15-23].

From our point of view such a generalization of tomography
using linear Integrals or TEC 18 enough obvious. The problem is
how to determine thls absolute phase or the linear integral. Many
Investigators attempted to answer this question and discussed
difficulties. Here a nontrivial point is that when determining the
absolute phase proportianal to TEC, the problem of determining the




"initial phase"™ arises and one can make a slgnificant error and be
off by a constant, which would lead to Inconsistent tomographic
data and render the reconstruction unfeasible. Unfortunately the
authors of earller publications on the lonosphere tomography
merely presented this common and evident idea and failed to show
the possibility of the reconstruction in the presence of iypilcal
errors, that is they did not model the Influence of errors at the
Initial stages on the reconstruction results. The above comments
should not be understood as diminishing the significance of the
earlier studles on lonospheric RT, of special importance are
studies on limitations of ionospheric RT and resolution limits
Imposed by gecmetrical and sampling limitations in ionospheric RT
[15,161. However, the authors of the earlier works restricted
themselves to simulating the possibility of reconstructing the
functlon using linear Integrals, which was of 1ittle use since
such simulation with the term substitution ("group delays" - TEC,
"seismic slowﬁess distribution”™ - "electron concentration
distribution" and so on) has been made in numerous earlier works
on seismic and other kinds of tomography. In contrast to seismics,
however, where s I1lnear integral (a group delay) is measured
directly, for the lonosphere there are techniques for only
approximate determination of linear Integrals. Here a specific
error appears - an error by a constant, which is essential for
tomography. In direct measurements of linear integrals this error
has, as a rule, a nolse-like nature, which does not seriously
affect the results. As discussed earlier [1,2,24) and will be
shown below In section 4, the phase RT leads to poor results in
the case of typlcal errors in determining the absolute phase or
TEC. Therefore, some years ago [2,24]1 we proposed the
Phase-difference RT of the ionosphere.




The theoretical foundation of the ray RT 1s the well-known
relations [25,1] for phese of radiowaves in the geometrical optics
approximation. The following equality determines linear integrals
from the electron concentrstion distribution N:

ar, [ N do = ¢, | (1)

where A 1s length of probing wave, T, 1s the classical electron
radius, w=ke, k is the wave number In the free space, ¢ 1is the
veloclty of 1ight, [do 1= the symbol of 1ntegrat1ng by the ray.
Here the linear integrals are the phase difference ¢= ©,-& of the
field belng measured (E=Aexp(1®)) and the prob ing wave field
(EO-AOexn(1¢»)). Measurements of ¢ are realized by receiving

- 81gnals at two coherent frequencies from navigation satellites.

We Introduce a series of parameters characterizing the
geometry of the recording scheme in poler coordinates (r, a).
Fig.0 (Tye @4) - are the coordinates of the seteliite, (R, a;) -
are the coordinates of one of the receivers located on the surface
of the earth (r=R); p is the elevation of the satellite: P =
(B-1/2) 1s the angle tc the satellite measursed from vertical; O is
the center of the earth; axis 0-0' 15 axis of the polar coordinate
System. On the bhasis of simple geometrical relations for any point
In the lonosphere with coordinates (r, a) located at the distance
of 1 from the receiver the foollowing equations are satisfied:

1 T R
sin(ai—a)= sin(w/2+ﬁ)= sin(%—(w/2+ﬁ)—(ai~a))'

From thls, we obtein an equation for r(a) of the straight

(B=const) ray

r(a) = (K cos p)/(cos(p + a; - a)) (2)

and the relation which is inverse of it



R
a(r) = a; + f - arccos(—z— cos g). (3)
The relation between § and a, r follows from (2):
tg p = (cos(ai—a) - R/r)/(sin(ai~a)). (4)

| Using (3), we obtain a formula for an element of the ray
of length do ‘

dou r°

do® = [1 + T°(—)?] ar® = 55 ar®. (5)
‘ dr r“ - R* cos™pB

Then, the relation for the measured linear integral (1) with

respect to the electron concentration will have the form

~ N(r,a) r dr
¢ = ATy [ N(r,a) do = Ar, | : (6)

Ve - R?sin?¢

In the place of the polar coordinates (r, a), hereafter 1t is
convenient to use the orthogonal system (h, T): h=(r-R) 18 the
height above the earth's surface and Tt = aR 1s the "transverse"
(hbrizontal) distance along the earth's surface in the plane of
passage of the satellite. Here, ray equatlion (2) will no longer be
a straight 1line '

cos B

h(t) =R [ -
cos (f+(T;~T)/R)

11. (7)

Here, (Ti,h:O) are the coordinates of the recelvers. The relation
which 1s the inverse of (7) 1s similar to (3).

R
T -1, = R [ - arccos(— coS 1. 8
i p (—— cos B) (8)

In this case, subject to (5), the linear iIntegrals of type
(1) have the form



o
F(h,T) (R+h)dh :
| = I(B.y). (9)

o V Resin®p + 2Rh + b°

Integration with respect to the ray commecting receiver i (7;=a;R)
to the satellite 1s replaced according to (&) by Integration with
respect to the helght from surface of the earth to the height of
the satelllte h,. The elevation § 1s determined (4) by posltion of
the satellite (h,,Ty). The linear integral I(P,T;) 1s dependent on
the coordinate of the recelver 1t; and the elevation of the
sateliitsz f. The linear Integral 1s the complete phase ¢ (1);
hers, the reconstructed function F will be proporiional to N.
Since there cannot be & large number of receivers and the range of
angies f 1s limited, 1t 1s 1nadviszble to examine methods for
analytical inversion of such linear integrals and methods for
Integral transformations. In glven case small-aspect tomography 1s
intended from the start to solve the problem in discrete form and
to use algebralc reconstructlon algorithms or methods for
expansion Into finite serles.

At first we will ezamine the possibliity for replacing ray
(7) by otralght line. The ray became curved after the switch to
the new coordinates (h,T) convenient for solution of the of the
discrete problem. The straight ray connecting the recelver (h;=0,
Ti=0) and the satellite (hg, To) 1s defined by the functlon h'(1)=
= T ¢1g ¢, which differs from the dependence

h(t) = R [ sin¢/sin(¢-t/R) - 1 1,

where h(ty) = h'(t,) = h,. Expanding In powers of the small
component T/R « ¢, we find that the height difference Ah between

the two trajectories 1s expressed by the formula



T 2 3
1 2 1
B = B (T)R(T) @ (5= + Olg ¢G)T - (= + ctagh,) + 0(=5).

In the middle 'c='co/2 of the trajectory where q,)o= /4, h0=1 000 Xm,
Ah »~60 km. From this, the division of the ilonosphere into vertical
Increments should significantly exceed Ah 1f the cui'vature of the
ray 1n coordinates (h,T) 18 considered or, otherwise, if
"curvature” of the polar coordinates In the vregion of
reconstruction using a stralght ray is not considered. The total
phase will be even more sensitive to a fallure to consider the
curvature of the ray 1f we attempt to reconstruct N from the
complete phase, since the lengths of the curved and straight rays
will differ significantly. In 'short, consideration of the
curvature of the polar coordinates In the region of reconstruction
or of the curvature of the ray in coordinates (h,T) In ray
ilonospheric RT of global structures 18 necessary, which is,
unfortunately, not taken iInto account in & number of works
[13,17,181.



1. The solution of the direct problem of radio wave
propagation for the Ionospheric Tomography.

The purpose of this section is to describe the technique and
program for solving the direct problem of 1oriosphere radio
probing, i.e. the problem of obtaining the phase ‘and the phase
difference from the date on the electron density distribution. In
view of calculation the direct problem solution amounts to
calculatiry the integral (9), i.e. the phase or the difference of
such integrals (the phase difference) for a'small variation of the
satellite position angle B. For the computer modeling of RT
problems 1t 1s necessary to calculate a series of such integrals
for  arbltrary positions  of the receivers and  the
satellite,therefore we accomplished the program for calculating
the phase and the phase difference for arbltrary positions of the
recelvers and the satellite.

Since the integrand has no peculiarities, the calculation can
be performed using the rectangle technique or the Simpson method.
Let us evaluate the necessary step of numerical integration and
the accuracies obtained. in this ;va'y. It is well known that errors
of numerical Integration by the rectangle method €, and the
Simpson method €y are equal to: ‘

-

3 5
hy g(2) hy (4) .
E, = —— —5— g, = —— —— (10)
T2 n® 5 2sgomt
where hy 1s the Integration Interval Ilength (the satellite

helght), m 1s the munber of the integral discretization elements.
Integration errors mads using the reclangle and Simpson methods
gre proporiional  to  the values of the second and fourth
derivatives, respectively, of the iIntegrand at a certain point

within the Integration interval. For an approximate estimation of



errors 1t 1s sufficlent to evaluate the second and fourth
derivatives as a result of dividing a characteristic value of the
function F by the square or the fourth power "a", respectively, of
the structural irregularitiez of F. Limitations assoclated with
diffraction effects as well as those of the linear tomography
problem make 1t Impossible to reconstruct detalls smaller than
10-20 km using the method of ray RT [1,21, therefore a 2 10-20 M.
The value of m 1s equal to the result of dividing hy by the
Integration step Ah. Hense the estimations of absolute and

relative errors are:

F F |
£ < —-h—?- (Ah/a)@ £ < —-—li.i- (Ah/a)?
“p ~ ] 8 - -
12 2880
(11)
81" EP o 8S 88 5
~ — £ (Ah/2)2/12, — « — £ (Ah/a)?/2880,
I h I F

When the Integration step Ah=0.5 mM and a=20km the relative error
of the rectangle method 18 0.5x1 0~4 (for the Simpson method it 1s
smaller than 10'11) which 1s quite satisfactory for RT
applications. |

For further computer modeling of the RT problems 1t is
necegssary to use a 8et of appropriaté electron density
distributions models of the ionoshere. Naturally, it is impossible
to make up a complete set of all the cinceivable 1onospheric
conditions, and this study was not ailmed to do so. For our purpose
- to 1llustrate the applications, which includes the main
structural features (a trough, localized natural and man-made
irregularities and groups of irregularities). Horewer, the
presented package of programs makes 1t easy to design many other
structural types and to extend this "Z00" as far as possible using
the avallable "detalls". In what follows the available "detalls"




and the models used are described.
Description of the set of the models used for reconstruction.

The "parabola"™ (with a discontinmuity of the first derivative)
and the "cosine square" (wlth no discontinuity of the first
derivative), a "gaussian" are used as the functions to describe
localized Irregularities. Cross-sections of the constant value for
such irregularities may be arbltrary oriented ellipses.

No.1. A simple model of the lonosphere with a trough and a
positﬂive irregularity at the Ileft edge of the +trough 1s
represented in Fig.1 in isolines in the 10%m™2 units.

No.2. A model of the ionosphere with a trough and three
inhomogenelitles (all of them belng of the "cosine-square®™ type,
the positive one 18 aft the left edge of the irough, the other
positive one is also at the height of the maximum at the opposite
edge of the trough, the negative irregularitity is located higher
(h=500km, t = 500km)) representated in Fig.2 in isolines in the
10%m™2 wnits.

No.3. A model of a homogeneous smooth lonosphere with a chain
of irregularities in the region of the main maximum. The model is

-3

represented In Fig.3 in isolines in the 1 0%m° units.

10

No.4. The model of the heated ionospheric lens [261. The -

maximm of AN is equal AN=10%cm™>. N(h,T)=N,(h,/G(h))2(1-12/c%62),
T < G(h)8,, G(h)=(h®+y(h-h2))"/2, h=100 km, 7=3, 0,=0,15 (Fig.4).

No.5. A model of a localized irregularity described by 3
"gaussians". The sizes of the disturbed region are 100 x 100 km.

No.6. A group of 1solated 1rregularities‘ (Fig.6) described by
the "cosine square"™ functions.

No.7. A model (Fig.7T) of a localized simple irregularity
described by two "cosine square®. The sizes of the disturbed
region are 100 x 100 km, the hight is 200km.




Description of the program
for calculation the phase and the phase-difference for
arbitrary positions of the receivers and the satellite.

System Requirements

- Computer: IBM AT or compatible (with COprocessor)
- Operating System: MS-DOS or PC-DOS version 3.0 and later
~ Memory: at least Extended memory 16 Mbytes

(depends on geometry and type of
approximation reconstructed function)
-~ Hard Disk Space: 16 Mbytes
- Software: compiler 1.4e and linker 2.2d
NDP-FORTRAN-386(c) MicroWay or later

1. Program <integr.for»

This program solves direct problem, namely, determines the
model structure and calculates the phases or TEC for phase RT or
doppler for phase-difference RT on the modsl structure.

Input parameters and files:

Answer=1 - Phase RT: Tec_ph=1 --> calculation of TEC
Tec_ph=2 --> calculation of Phase

Answer=2 - Phase-difference RT

Answer, Tec_ph are introduced from the screen

file <name_F.int> - names of output files for integrzls for each
recelver

NREC - number of recelvers

NRAY - max number of rays

RAY - array of rays for each recelver

NF - number of discrets on the horizontal grid

NR - number of discrets on the vertical grid

NirMAX - max number of local irregularities for model

FP - array of receivers's polar angles in degrees

( FP(1)=0. -> for the first receiver)
RZ - Earth's radius in km



RO - satellite orbit in polar coordinate system in km
HFIST,HFIN - initial and final altitude of reconstructed
structure in km
Fi - horizontal distance to the left from first receiver
in km (F1<0)
F2 - horizontal distance to the right from last receiver
in km (F2>0)
Deonst - the value for determination of doppler (shift of rays)
NJ - number of discrets on the one ray for calculation
of integrals
BMAX - altitude of max electron density in km
The model structure is determined by function <FMODEL> which
uses functions <FUNCi>, <FUNC2>, <HOMPAR> or <HOMCOS> and input
file <F_mod>.
Input file <F_mod> contains parameters of model, for example:
¢¢ ‘mumber of irregularities and Zmax - max value of parabol'
11.
‘local irregularities: Hirreg, Tirreg, A, B, Z'
350. 36. 100. 100. 0.08
*trough --> TGRt, TGRZ2 in km'
-20. 640. >
line 2 in file: 1 1.
Nirreg (number of Irregularities)=i
Zmax=1.
1ine 4 in file: 350. 36. 100. 100. C.08 -
Hir (eltitude of irregulerity in km)=350.
Tir (horizontal coordinate of irregularitiy in km) =
Air=100.- vertical size of irregularity
Bir=100.- horizontal size of irregularity
Zmax=0.08 - max value of irregularity
line 6 in file
-20. 640.
TGR1=—20., TGR?=640 - horizontal coordinates of trough in km

RMAX, RM, Bi, B2, ZSM - parameters for function <FUNC1>
{model on h)

DEPTH, CONS1, CONS2 - parameters for fumction <FUNCZ2> (trough):

DEPTH - depth of trough
CONS1,C0NS2- the egdes of trough

12
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<HOMPAR> - approximation of local irregularity by parabol
<HOMCOS> - approximation of local irregularity by cos2
The combinations of <FUNC1>,<FUNC2>,<HOMPARS>,<HOMCOS> make 1t
possible to obtaine different model structures. )
Subroutine <DEFPSI> determinates the angles of rays on the
satellite's coordinates
Subroutine <DEFINT> calculates elther Phase or TEC or Doppler and
uses subroutine <INTERG>.
Subroutine <INTERG> calculates integral only one ray on the model.

Output files:
MOD.GRD - file of model structure
Files <Fint> - arrays of either Phases or TEC or Doppler

Execution
77T integr.for

RUN
Integr.exp



2. Design of the different versions of

- the RT operators (matrices).

We shall consider the problems of the design of the different
versions of the RT operators (matrices), beginning ~with
discretization procedure for equations (1). We perform
digitization of the linear integrals I(B.7;) (9) according to the
position of the satellite, which 1s dependent on the coordinates
Toj OT the angle 05" Toj/R. The set of coordinates of the
satellite T3 18 recalculated according to (4) into a series of
elevation 615 of the satellite from recelver 1:

(R + L) coa{ai - aoj) - |

tg B.. = . (12)
€8P, (R +hy) sin(a; - ags)

The sets of elevation of all receivers define a series of discrete

values of the linear Integrals Iij = I(ﬁij, Ti). The simplest
method for digitization of the sought function F(h,T) in a fixed
~ rectangular (my = mng) grid Iis to replace it by a
piecewlse-constant approximation, or to represent F by a system of
'(mo x D) bagls functions equal to unity in certain rectangle and
zero in all others. The rectangular reconstruction region is
divided into m, helghts (m < m,) and n, horlzontal semples (1 < n

€ ny). Let the value of the function F(h,t) in & fixed (m x n)
rectangle be F_ . The point In the rectangles at which the samples
of F(h,T) are selected 1s not especially important; this may be at
the middle of the rectangles or nodes of the grid.

The problem of tomographic reconstruction according to linear
Integrals is to determine the set of discrete samples {F 1 in the
known grid according to the set {Iij}' Designating the length of
ray (1,]) iIn cell (m,n) as L?;g, we obtain the system of linear

y



equations
m,n M
Li,j Fm,n = Ii,j or IIJ FM = IJ - (13)

Here, "renumbering" of the ray (1,J)» J and the sells of the
ionosphere (m,n)» M 1is performed in the second equation. The
repeating indices are understood as summation. The number of rays
is determined by the parameters of the recording system. The
coefiicients Ly are calculated according to the given rays and
cells into which the ionosphere 1is divided. System (13) may be
elther overdetermined or sub-definiie.

Thus 1f there 1is a possibllity to determine the Ilinear
integrals (1), the problems of the ray RT are reduced with the
help of discretization procedure .to' golving systems of linear
equations. But the problem of ionospheric RT according to
phase-difference or Doppler measurements cammot be solved by such
scheme with a piecewise-constant approximation. The fact 18 that
the data here will be derivatives of linear integrals of type (9):
D = dl/da,, or finite-difference ratlos of the increment AI of the
linear Integrals to the Incremeni Ao, of the satellite coordinate.
The Doppler frequency Q = df/di measured in the experiment 1s
determined by the phase derivative (1). The relation beiween the
angle o, of a satellite moving uniformiy along & circular orbit
with velocity v, and the time a, = Vo i/ (Rthy) makes 1t possible to
express the Doppler frequency Q by means of the derivative with
respect to the angle of the satellite

v
0
0.0 ®

© Reh, day

from which these phase-difference tomography data are proportlonal
to  Al/iag. The derivatives of the 1linear Integrals 1In a

s




plecewise-constant approximation of the sought functlon F will be
discontinuous. This 18 because each linear Integral 1s the sum of
Integrals over the set of cells. As the elevation of the satelllte
chenges, the ray encounters 2 new cell; the integrsl with respect
to unity of this cell i3 a contlnuous functlon of the angle of the
satellite 0y but the derivative of the 1linear iIntegral with
respect to Oy will contain a discontimilty when the rsy contacts
the corner of each cell. Therefore, the pilecewise-constant
representation of the fumetion to be reconstructed does not make
1t possible to analyze the phase-difference problem.
Phase-difference measurements require - higher-order
interpolation than the plecewise-constant representation of the
function to be recorded. Correspondingly, the matrix L I for
transitlon from the Zfunction to be reconstructed 1o linear
integrals should be caleulated differently 8o as to ensure
continuity of linear iIntegrals with respect to the coordinate of
the satellite a. (or elevation B). If the matrix of the direct

0

problem L.t Fy - I; 1s contimucus with respect to the angle «01’

M
the satellite Qs then 1In place gystem (13) 1t is poséf;ible to
obtain & system for phase-difference or Doppler data by

differentlating (13) with respect o the angle ag:

ApgFy = Dy - (14)

Here, D, = AI /Ao, are Doppler data and Ap. = AL,/Aa, is finite
-difference ratio (or derlvative) of the matrix LMJ to the

increment of the angle. The Doppler data are determined not only

by the change In the complete phase related to integral electiron

concentration along the -ray, but also the local electron
concentration N at the pbint of the satellite. The correction to

the 'Doppler data 1s equal to the procluct' of N, times the veloclty

16
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component of the satellite directed along the ray - A rN_cos (a; +
+ B - ay). This corraction can be inserted into the iteration
algorithm and the values of Ns at the boundary h=ho of the
lonosphere obtailned in the iteration process will constantly
"correct™ the mezsured Doppler frequency values [25]. The question
of whether such a correction of the data should be made can be
anawered depending on whether we use Cm@m- measurenanis of the
Doprler frequency or the phase difference derived from phase
measurements. In the former case such & correctlon should be made,
In the latter - not. Here such & correction shall not be
| Derformed; horewer, 1% would not be difficult to introduce it when
using direct doppler measurements.

In what follows we shall brilefiy describe the methods of
constructing the operators thet are smooth by the satellite angle;
here are the examples of constructing the L gy Matrices of the
transition from the reconstructed function to the 1inear mtegrals
(matrices of projection operators) wuseful as for the
phase-difference RT and alsc for the phase RT. In this section we
consider examples of canstmctlng smocth projectiou operators of
the direct problem. One must construct such & I gy matrix that
would provide the smooth of 1inear integral over the satellite
angle. In the beginning gectlon we consider contributlion on the
basis of triangular elements, at the end of the seciion other
possible variants be outlined. We will proceed to calculation of
the matriy A Ji of the difference problem, which, &3 was already
noted, should be determined from the increment of the matrix L JM
which 1s smooth with respect to the engle of the satellite.
Smoothness of the matrix L g ©an be ensured by introducing finite
triengulsr elements for representation of the function F(h,1),
l.e., when the sought function is replaced by a pilecewise-planar



approximation. The smocth functlon F(h,t) 1s replaced by a
continuous polyhadral approximation surface, saccording to which
the derivative with respect to the satellite angle of the linear
Integrals 1is already =& continuous function. Triangular elements
are obialned naturally from a grid of rectangles by dividing each
of them in half diagonally. The functlon F(h,t) within esch

triangular element 13 replaced by lineasr approximstion

F(h,t) = a + bt + ch. (18)

The valves of the coefflcients (a, b, ¢) in each finiie element
are determined from system of three equations for three boundary
points. Tt is simple to immediately write expressiorié for the
coefficients in a given finite element. These expressions differ
slightly for triangular elements of two types: those occupying

cells "below" or “above". We stipulate that cell (m,n)
(T Upeq V% (s g ) = AT x AL

is divided by a diagonal (Tm'hnﬂ) - ('Em-!-'l’ hn) running downward
and ieft -to-right, Into two triangular elements: the "lower" and

"upper” elements. Then, in the lower (m,n) element

Ah

! F'm+'1 qn l?'m,n ~ Fm,m-‘l - Fm,n’

F(h,T)= Fm,n + - (T-7) + o ~(h-h, ) (16)

and in the upper (m,n) element
Fm+’i,n+1 - Fm,nﬂ
F(,T) = Froig e * A (T-Tpyq ) +
T
Fm+'! n+l Fm+'l n
+ (h**h,n_,_j ). (17)

As before, to simpllfy the notation we will remumber the values of

the gamples below: F_ - F., (m+i,n) - (M+1), (m,n+1) - (M+AM),
+ m,n M

4
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(m+1,n+1) » (M+AM+1), where AM 1s the number of cells horizontally

in one row. ‘ :
The linear integral I; (9) 18 the sum of the integrals with
respect to all finite elements which intersect ray dJ:

L= I 7(n) F(h,7) dh,

11 /2

where 7(h)=(R+h)[stin2p+2Rh+h2 = while F(h,T) is represented

in the form of plecewlse-planar approximations (16),(17) 1in each
finite element. The result of integration of such an approximation

in lower element M
J1)F dh = J5 Fy + Ir Fyprq — Fy) + Iy Fapeam — Fy) (18)
and in upper triangular element M |

FY®P dh = 33 B + 9 Puener ~ Paeaw) +

+ 9y (Paroaer ~ Faet) (19)

Here, Joys dos dy Jge des Jy, are the following mtegrals:

; b ¢ Mo+t _

3y = — [ 70 tr(a)-tyldhy Iy = — [ 7(0)ITM0)-Ty,, 1003
At At

hn h
(20)

; b ¢ Dot

Jy = — I 'y(h)[h—hn]dh; dy = — I 'y'(h)[h—hnH]dh.
Ah By, Ah

Integration with respect to a lower finite element begins at the
lower boundary of the cell h=h and ends at height h, where the
ray leaves the lower element. Integration with respect to the
upper finite elements begins at this height and ends at the height
of the upper boundary of the cell. We will recall that 7(h) and
all integrals with respect to cell M are functions of the
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elevation B, 0, OT the number of the ray J.

After Integration (18) with respect to ray J In the lower
element M the value (J0 - J,C - Jh) is entéred into the coefficient
Lyy» since it 1s a coefflcient for Fy. Correspondingly, J. 1s
entered into Ly y, . and d,, into I’J,M+AM‘ However, in integration
with respect to one lower finite element M these coefficients L
are still not completely determined. It 18 easy to understand that
each sample F, falls into three lower and three upper adjacent
finite elements. Only after integration with respect to ray J iIn
~all finite elements 1s it possible to completely form the
" coefficient L gy from six around Fm where the ray fell. Integration
with respect to the upper finite element M with respect to ray J
(19) makes the contribution (Jb + J,'E + fo) to the coefficient
Ly, m+An+qs the contribution (-Jg) tq the coefficlent I‘J,M+AM and
the contribution (—Jﬁ) to the coefficient I'J,M+
with respect to all rays of type (20) can be calculated by various

4~ The integrals

numerical methods; in view of the smoothness of <y(h) and the
plecewlse-planar approximation of F, 1t is sufficient to use the
trapezold or Simpson method. Here, Iin each Integration step Ah 1t
1s necessary to verify that the ray does not exceed the limits of
the finite element.

Performing numerical integration with respect to: all rays, we
obtain the matrix Lj,. The matrix Lj, is related to the set {a,}
of positions of the satellite and the corresponding series of
rays. It 1s also possible to calculate the matrix L' for another
set of cloée positions of the satellite with a fizxed increment
{ayt+Aa,}. After this, we determine the matrix for phase-difference
tomography problem A M= (I.:m - LJ.M)/Aa .

The projection operator or Lg, mairix can also be built on
the basis of approximations of higher order than that of (15). For
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example,’one can use a two-dimensional approximation in the form
of the product of linear functions or the product of cubile

splines. Then the function F(h,t) takes the form

3
PR, = ) 8y, (21)
m,n=0
Inside an arbitrary (m,n) rectangular, representing the function

through the normalized coordinates x=(T—Tm)/AT, yb(hrhn)/Ah, we
can obtain the following representation through the values of the
function at the four angular points (x,y)= {(0,0); (0,1); (1,0);
(1,1)1.
X X y ¥ xy Xy _
F(x,5) = PooPoo*t Foofoot Foofoot Foofoo* Forfort =-----

Here the subscrips refer to the coordinates (x,y) of the angular
points, F is the value of the function in corresponding point, F%,
F¥ are the values of the function partial derivativés with respect
to x,y,'Fgg is the value of the function partial derivative of the
gsecond order with respect to x,y. The total sum (21) will contain
16 summands, P&ﬁ(x,y) are corresponding polynomials of the power
- not exceeding 3. We shall not write the mentioned polynimials

completely, four examples will be suffice for illustration:

Pog= 41077~ 6357~ 677+ 9x°yo+ 2y°- 3y2+2x°-32%+ 1,

on= 2x3y3— 4x2y3— 3x3y2+ 6x2y2+ 21y3— 3xy2+x3~2x2+ X,

P§o= 2x3y3— 3x2y3- 4x3y2+ 6x2y2+ 2x3y - ngy +y3—2y2+ Y,
P§g= x3y3- 2x2y3- 2xy°+ 4x°7°+ 3oy - 2%y + Xy°- 2% ¥ + xy.

Then, integrating in each cell of the given polynomials we
can produce the corresponding elements of the matrix, as in the
case (16-20). Note, that now it is not only the values of the
function F, but the values of the mensioned derivatives that are



unknown, 1i.e. such representation makes it possible to Ifind the
function and its first derivatives. The matrix for the product of
linear approximations can be constructed in a similar, even
 gimpler, way, this being in fact a particular case of that
described above, where the summation in the formula is made up to

1 rather than up to 3.
Thus, the following operators (matrices) for solving the RT

problems are described:

A - 13 built with the plece-constant approximation,

B - 1s bullt with the plece-planar approximation,

G - 1s built with the linear product approximation,

D - is built with the cubic spline product approximation.

Projection operators with approximations of higher orders
allow a better approximatibn of the operator of the direct
problem, i.e. they enable us to come closer to the true operator
of the direct problem. Tables 1,2 shows examples of calculations
of the direct problem for the model 2 and 5 with the help of
different operators: A, B, C, D. Errors of the numerical
simulation can appropriately be characterized by numbegvc, which
shows the deviation of the function being reconstructed F from the
true functlon F: 6=|F—§|/|Fﬂ. The norms of the spaces 1% and 1%
can be helpfully used (62 = 6(12) and 8 = 5(1%®)). We use the data
(hy=1000km) from three recelvers with coordinates t,= Okm, T,= 475
km, T3= 1435 km (for model 2, this geometry is simllar to the
geometry of Murmansk-Moscow RT experiments ([1,2]) and T1=D,
. 12=240, T3=480 {model 5). From the results glven in this tables
one can clearly see the increased accuracy in solving the direct
problem for operators with higher oders of approximation.

One can see that the transition to higher orders makes 1t
possible to significantly improve the solution of the direct
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problem. However, as the approximation order increases the matrix
becomes more complicated and less rarefied, which cen impair the
solution of the inverse problem. One cannot say in advance which
operator will be more preferable when solving the Inverse problem,
because at the beginning of the increase of the approximation
order the function is approximated better but the matrix
properties for solving the Inverse problem become worse. Operators
mist be chosen by means of computer simulation to be illustrated

in the next section.

Description of the program for calculation

of the different versions of the RT matrices (operators).

/ 2. Program <matric.for>

This program designs different versions of the operators
(matrices) for phase RT or phase-difference RT.

Input parametiers and files:

Parameters < Answer, NF, NR, NREC, NJ, RAY, HFIST, HFIN, F{, F2,

RZ, RO, Dconst> are similar to same parameters of program

<INTEGR.FOR>.

File <name_F.mat> contains names of output flles

MOD.GRD - input file of model structure (program <INTEGR.FOR>)

APTYPE - type of approximation of reconstructed structure, it is
introduced from the screen

Subroutine <DEFPSI> determinates the angles of rays on the

satellite's coordinates.

Subroutine <DEFMAT> determinates the

matric with corresponding approximation for one receiver
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Output files:
Files <F_matr> - arrays of matric of corresponding approximation
for each recelver
File <Fparam> - parameters of matrices for each recelver
Files <F_int> - results of muitiplications of calculated matric
and model structure
File <F_st> - array (IST) of number of all rays which cross the
, corresponding discret of model (SIRT algorithm)
Execution
77 matric.for rayint.ob]
RUN
matric.exp



3. The solution of the inverse problems of the phase and
phase-difference RT. |

It should be noted that the earlier authors solved problems
of tomography using linear integrals, which amounted to solving
gystems of linear equations. In thls respect, therefore, the
problem of pure phase RT 1s entirely equivalent to the known
problems on linear integrals. The peculiarity of Ionospheric

applications is revealed in the nature of possible errors by a

conctant in determining the phase, which will be dealt with In the
next section.

In this section varios methods of solving Inverse problems of
RT will be brifly described and arialysed. The resulis obtained
using various reconstruction methods and the sensitivities of
these methods will be compared, which is of interest for
1onospher1¢ application. Solution of (13-14) in ray RT of the
ionosphere is difficult iIn computational respects. When
reconstructing glqbal gtructures with dimensions of thousands

kilometers and a sampling 1ntei't}a.1 of tens kilometers, the

- matrices of such systems contain up to 106-1 sl elements, but are

rather empty. There are s significant number of both direct and
1terative methods for solving gystem of linear equations 1llke
(13-14). Nevertheless, intensive development of the theory and
practical methods and algorithms for solution of these systems
continues at present. There are a iarge number of diverse
iterative methods for solving systems of linear equations. Many of
them have been tested in ray RT problems. As was previously noted,
tomographic methods have been developed most Intensively in
seismics, where various methods for solutiion of these system have

been used. Here, we can cite algebraic reconstruction technique




(ART), Including with relexastion and for systems of inequalities;
gimul taneous 1teration reconstruction technique (SIRT);
multiplicative  algebraic reconstruction  technlque (MART);
block-iterative algorithms, reconstruction on the baslis of the
Bayes approach, algorithms for regularization of the mean square
error, algorithms for optimization of Image eniropy, etc. [36].
Good practical results have been obtained in seismic {omography
using methods for minimization of the iterative corrections in
various matrices with variants of weighted correction, ray
welghing and inter-iteration smoothing [31. Investigations have
been made of the characteristics of the spectra of the matrices,
the resolution of the reconstruction systems and the uniqueness of
the reconsti'uotion possible "at the 1imit®, i.e., with an
infinite increase in the number of measurements {5].

Since there are numerous methods of solving systems of linear
equations, 1t appears to be impossible to apply all the known
approaches within one study. It should be pointed out that the
main results of the Investigations perfomed are weakly dependent
on the applied methods for solving systems of linear equations,
here, therefore, we shall apply the most widely known methods:
ART, SIRT, MART.

Before giving examples of RT-reconstiructions, it is to be
noted that in ""some cases there 1s a possibllity of an accurate
determination of the absolute phase. It is possible to determine
the absolute phase at Inhomogeneitles when reconstructing the
structure of sufficiently large localized artificial (releases,
heating, etc.) or natural inhomogeneitlies of the Ionosphere
arising during the time between flights of the satellite. Such a
formation being locallzed 1In space provide the possibllity of
solving the problem without additional a priorl assumptions
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concerning the Inhomogeneity. By recording the data before and
after the emergence of the disturbance and making subtraction of
data, one can find the contributionvof the localized inhomogenelty
being reconstructed, 1f the lonosphere changes little between the
flights.

- Fig.8 shows the reconstruction of & heated lonospheric lems
by phase RT after 20 ART 1terations using the data from three
recelvers with coordinates 'c,l=0 km, '1:2=45 km, T3=9U km, ho =
1000km. The height of the disturbed region veried from 80 to 220
km. The zeroth initial guess was glven. The size of the division
discrete was 10kmx1Okm. The reconstruction differs little from the
model structure, the relative recdnstmction errors being 62 =
=0.07, 8, =0.0%9. Also the simulation of the reconsiructions of
other locallzed formulations was carried out, thus showing the
possibility 1o reconstruct structures of 1localized objects
emerging between flights of the satellite using data on the
absolute phase of this object. ’

In what follows the vresulis of modeling the RT
reconactraction using different operators A,B,C,D are presented.
Tebles 2 end 3 show examples of calculations of the reconstruction
results for the models 2, 5 and 7 with the help of different
operators: A, B, G, D. Errors of the numerlcal slmulation be
characierized by number 62 and 600 , Which shows }‘:he ratio of the
deviation of the function being reconstiructed F from the true
functlon F. The reconstruction results must be compared in the
norms approaching to the integral ones, 1.e. the norms 12 must be
used instead of 1% and I”® instead of 1% (the corresponding numbers
A, and A, instead of numbers 6, and 6, ). In other words the
functlcons must be compared using a much finer grid than that used

for reconstruction. Otherwise, 1f the resulis are compared In




reconstruction points only, we may come to erroneous conclusions.
We use the data from three receivers (similar to Murmansk-Moscow
RT experiments [1,21) with coordinates = 0 km, T,= 475 km, Ty=
1435 km (for model 2), '1:1=G, T2=24O, 'r:3=480 (model 5) and '!:1=0,
'52=250, '53:500, 'c4=750, '55==1OOD, (model 7). Figs.S5 (4,B,C,D) show
the RT reconstruction resultis for different approximations (A, B,
C, D, respectively) of model 7. Figs.i0 (B,C) show the RT
reconstruction results for different  approximations (B, C) of
model 2. Fig.11 show the RT reconsiruction result for
approximation C of model 5 and fig.12 for spproximztion (D). From -
the reconstruction resulis and tables 2,3 one can see the Increase
In the accurasy of solving RT reconstruction problems for
operators with higher orders of approximation.

The results of RT reconstruction also depend on the applied
approach of the phase or phase-difference RT. If the conventional
phase KT wiih the plece-constant (4) approximztion is used, the
phase-difference RT wilth matrlces of the (B,0,D) type has, as a
rule, an advantage comnected with a more accurate representation
of the direct problem operator. Figs.i13 and 14 show the results of
the RT reconstruction of model 2 using the methods of the phase
(fig. 13) and phase-difference (fig. 14) RT. The homogenious
lonosphere model (flg.15) was used as an Inltial approximation.
Phase-difference RT allows a more precise isoclation of local
exirema and has & lower nolse level. Note that, in general, the
reconstruction resulis of rather large structures obtained using
these methods providing there were no errors in determination of
the Initial phaSe are comparable. The presense of such an error,
however, makes the phase RT method practically unsuitable, which
will be shown by the results to be presented in the next section.

Let us analyse the results obitained by applying various
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methods of solving systems of linear equations (SLE) for RT
problems'. It has already been mentioned that we shall restrict our
consideration to the most wildely used techniques, namely, the ART,
SIRT and MART algirithms. Comparison of different slgorithms of
golving SILE must clearly be made for the same RT method. The
results of comparing the SIE sclution algorithms for the phase RT
method will be illustrated by the reconstruction of model &. Since
reconstruction errors are determined both by the number of
iterations and measurement errors, esach algorithm should be
characterized by a two-dimensional error "portrait" providing the
&ependence of a relative reconstruction errcr on the‘ number of
lterations end the relative error 1in the right-hand part of
equation. Such an error portrait characterizes the convergence
rate, the Ifeasible minimm of the reconstruction error for

different levels of data errors. The error portraits for the ART
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and MAHT algorithms are represented in figs. 16,17. One can see .

fhat for non-zerc errors the algorithms begin diverging quite
rapidly, the literation process must, therefore, be stopped in the
reglon of the reconsiruciion error minimum, whose position being
determined by date errors. The SIAT algori"thm (Fig.18) 1s
significantly less sensitive to data errors owing to intermediate
averaging of the resultis during the iteration process. The error
level in the SIKT, however, is much higher (»43%) than those of
the ART and MART algorithms. The numerical experiments performed
with other models also showed that the SIRT algorithm 1s
practicaelly unsultable due to the high level of reconstruction
errors. This algorithm would be appropriate for use .iLn the case of
severe data errors (26-10%). In this case, however, the SIRT
algorithm would reconstruct a highly “averaged object" which bears

11tile resemblance to the original structure. In general, the




reconstruction resulis obtained using the ART and MART algorithms
are comparable: in some cases the ART has certain advantages, in
other cases the MART is more appropriate.

Another advantage of phase-difference tomography over phase
tomography should be noted, that is a higher sensitivity of the
former. Doppler data are more sensitive to small inhomogeneities
which have 1little affect on the phage. For example, when fhe ray
gcans the inhomogenelty AN of the size a, the Phase changes by AD
~ hrewa, here the relative change of the phese AD/D ™ ANa/N."
"’AN&/HmL, where Nt is the TEC elong the ray, I\Im is ihe value at
the mexlmum electron concentration, I 1is the ray lenght
characteristic. As a result, relstive varistions of the phase are
proportional to the retio of the TED of the Inhomogenelty to the
TEC of the whole lonosphere. One should mot expect the methods of
soluticm of (12,14) 1o be more sensitive to changes of the
- right-hand part thsn s few percent. Therefcre phase methods would
not distingulsh  even sufficiently strong AN/Nm"' 0.1
Inhomogeneitles with the size ag<l/10 (<100km), since they produce
only 1% of phase verlations. It is not eccidentsl, in our opinion,
that 1n the reported reconstructions uslng the phase methods
[18-201 ‘detalls wiih dimensions of less than a few hungred
kilometers are not revealed. This is not the case for
pPhase-difference measurements. Here total Doppler variations are
proporiional to dp/dt ™ Ar e1\IL/(L/v$) » and Doppler variations at an

Inhomogenelty arse Ar ANa/ (8/vg). Then relative Doppler
variations (phase differences) are proportional to the ratio of
electron concentrations '“AN/Nm. Thus, the phase-difference methods
allow the reconstruction of dinhomogeneities of a few percent
ageinst the background regardless of the size of an inhomogeneity.
This 18 fully supported by our experimental results [2,24,27-291].
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To d1llustrate the estimation “of the sensitivity of the
methods, we shall consider the reconstruction results of model 3,
with the chain of irregularities of the size a =100km and
variations AN=0. 0e5x1012n~3 (the first t#vo irregularities at the
left) and AN=0.015 %1023 (the next three irregularities), which
amounts ' to 3-5% of the maximm  N=0.5x10"°m>. Due to
1rregular1iies, variations of the total phase are a few parts of a
percent and practically invisible in fig.19. In accordance with
the above .Estﬂnations, doppler variations are equal to a few
percent and. can be seen easily in fig.20. The RT Teconstruction
results "»Ic‘)r}mo;delj 5 are represented in fig.21 (phase RT) end
fig.22 (phase - difference RT). The experimeni's geomelry was
taken to .be the same a8 that of BRATE-S3 (h0=1 000km, T4 =0km,

=u80 4km, To=624.9km, 'c4=809.31{m}. As an initial guess we used
here a very good approximation (fig.£3) which in fact coincides
with the bgckg:ound ionosphere. In spite of this good Inltial

guess the phase method with the ART algorithm does not reveal the

irregularity chain, whereas the phase-difference method does
indentify tnﬁ glven atrur't‘urt. qulte sstisfactority. Note that 1f
the phase m&thﬂ& 12 used with the MNART algorithm, the
ixTegularities can be isolated (fig. 24) MART algc;ritlfn*ns work
better within the rangp ‘of high values of the functions belng
reconstmcted., However, ' this _cannot be considered as an
unconditional indication o:f MART algorithms being superior to ART
ones. If ior example, & similar irregular structure of even a
higher intensity AN=0. 04*1013 ‘3 (fig 25) 1is located at a greater
altitude (at about EDOkm), i.e. not within the range of high
values of the iunction being reconstructed the MART algorithm
begins distorting awongly the result (i’ig 26) in the attempt to
"attach™ such a;* 1rregular stmlcture just inside the range of high



values of N, in other words, to attach the irregularities to the
maximum of +the layer. It goes without saylng that such a
distortion of resulis can lead to & wrong mterprétation of the
probing data and 1is undoubtedly a serious drawback of MART
algorithms.

To summarize in brief the results of analysing various

ra

algorithms of solving SLE, 1t should " be pointed out that at

pregent 1t 1s not possible to say which algorithms have
unconditional advantages over the cihes, 1t seems to be impossible
for ali the cases of ionosphere RTI. It 1s necessary to establish
the conditlons and areas of applicability for varlous methods and
algorithms as soon as possible, therefore now there 13 a vast
field for examiﬁ:mg different comblnations of algorithms as
gpplied to problems of both phass and phase-difference RT. From
our point of view, situdies of meﬂréﬁ i0 8clve gystems of
equations [30-32] as applied to the Ilonospheric RT ares also of
interest. Mension should be made of the wethcd using
one-dimensional empirical orthonormal functlons to recénstmct
vertical ionospheric profile [301, the method based on the maximum
entropy principle [31]1, a different orthogonal basis functions
(whole domain funciions) reconstruction algorithm [321; several
transform techniques [16,32]1. Expanslon iInto séries in some
continuous basis functlons has both advantages and disadvantages.
In our opinion, on the basis of our several years of experience In
experimental RT reconstruciion, one is most unlikely fo find basis
- functions 1o describe adequately the variety of ionospheric
processes. In order to obtain a resolution similar to that of
discrete division, the number of basic functions must be of the
same order as the number of discrete elements. Besides, the matrix
of this problem would be less rarefied with a large condition
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number and the method itself is highly sensitive to errors in the
unknowns coefficlenis comnected with high-order basic functions.
Note the convenience of applying the methods [30-32] to the
phase-difference problem have obvlious advantages over the phase
one. On the whole it should pointed out that at present there is
no one preferable method to solve similar tomogrephic problems.
Various methods may be better depending on the conditions of the
experiment. It can be concluded from this that it is necessary to
perform extensive research to test varicus meihods and find the
cptimal methods as applied to specific ray RT schemes.

Here we shall not consider In detail the effects of the
initial quess on the reconstruciion resulis and meke some brief
remerks only. In simulations the uwndform (in 1) lonosphere with
different levels of the concentration maxima were used as an
initial quess. Changes in initlal quesses produce small changes
in the background level, but the spatial structure of the local
extrems remsins the =zeme. The spatial structure reconstructed by
the phase-differance RT method can be sald to weakly depend on the
Inltlal gquess. Generally spesking, the aim is to generate an
azzenmbly of so}.utions satisfying (14) with a glven accuracy
determined by experimsntal errors. Now we have developed such
methods of generating such solution assembly (by varying the
algorithms, initial quess, etc.) which makes it possible to get an
~ "gssembly-averaged” solution and to estimate the reconstruction
error distritution. This subject 1s, however, itoo extensive to be

discussed in this paper.



3. Program <solve.for) ‘

This program solves iInverse problem for Phase RT or
Phase-difference RT by means of different algoriihms: AKRT, MART,
SIRT. It calculates errors of reconstruction in metric C and 12 in
dependence of data errors snd noises. '

Input parameters and files: |
Parameters < Answer, NF, NK, NREC> are similar to same parameters
of program <MATRIC.FOR>. ' .
MOD.GRD - Input flle of model structure (program <INTEGR.FOR>)
X0.GRD - input file of initial guess (program <INTEGR.FOR>)
X - Initial guess
Zmax - max value of Initial guess
Function <GUESS> - for inltizl guess
RMAX, RM, Zmax, ZSM, B1, B2 - parameters for function <GUESS>
XIST — model structure Ifrom input file <MOD.GRD>
File <name F.slv> containes the names of Input and output files:
line 1 - name of file with parameters of matric (Fparam)
line 2: namet! ~ name of Input file with matric
name? - name of input file with either Phase or TEC or Doppler
(output files (Fint) from program <INTEGR.FCR>)

of Input matric and reconstructed structure
Npi - array of contants (Zmn) for each receiver
er_n - level of noisez in %
Npl, er_n are Introduced from the screen
Nsolve - the method of solution, it is introduced from the screen
REL - array of relaxation parameter
IMAX - max number of nonzero matric elements for each recelver
AZ - array of nonzero matric elements for all receivers
NST - array of corresponding colummn nonzero matric elements for :
all receivers
IST -~ array of number of all rays which cross the
corresponding discret of model (SIRT algorithm) from
Input file <8T.dat>, 1t 1s similar to LST
in program <MATRIC.FOR>
Niter - number of iterations, 1t is Introduced from screen
Subroutine <DEFSYS> - solution of linear system equations for one
TRY.
Subroutine <ercl2> calculates errors in meiric C and 12
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Subroutine <VMINM> calculates min and max of array

Function <RAN> calculates random values in [0,11]

Output files: :

File <REC.GED> -~ the reconstruction

File <er-solv.dat> - errors of right items and reconstruction in

metric C and 12

File <Fout> - results of multiplications of the matric
and reconsiructed siructure

- Execution

77T solve.for

RUN

solve.exp

4. Analysie of the influence of data errors and noises on the
reconstruction resulis.

Before presenting the results on the Influence of errors in
determining the absolute phase on the reconstruction results, let
us estimate the possibllities of determining the absolute phase.
The phase method involves measuring a linear integral of the form
(1) multiplied by constant of the order of unity [2], which 1s
insignificant here. The basis for difficulties appearing in the
determination of the linear integral (&) 1s that the phase value
is very high. For typlcal maximum values N ” 1012 m"B, A=2m and a
ray length iIn the ionosphere of the order of a thousand
kilometers, ¢ 1s thousands of radian. Thus, the problem arises of
1solating the "initial phase" ¢, =27n, which must be added to the
- measured (within 2m) A to obtain the complete phase ¢ = $y + AP
or the linear integral (6). To explain the difficulties arising,
we will examine the possibility for isolating the initial phase in
the presence of minor horizontal gradients. ,

We represent the concentration in the form of an expansion,
where the regular spherically-symmetric backgmund No(r) is

isolated N(r,a) = No(r) + N'(a - a ), N'(r) = -2-| ;o (¢) 1s



the angle of Intersectlon of the ionospheric maximum by the ray;
1ts vicinity mekes the primary contribution to integral (6).
thls case, retaining the first terms of the expansion In terms of
powers h/R 1n (6), we obtain

?"TB N.(h)dh - A t82¢ n N_.(h)dh
o — -Ar, — [ = +
cos § Bpha € cos 5%
Mﬁ
N'(h h dh cen 22
p— J N (h)(a(h)-op) + (22)

IT there were no horizontal grzdlent, 1t might be pozsible to
measure AQ(P) for various angles ¢ in the range A and obtain a
system of linesr equaticns from which 1t would be possible to
determine [ Nydh, § db I Ny/R etc. In other words, the known
functlonal dependence on ¢ would make it possible to Isolate the
TEC and other moments of the funstion N g(h). However, the presence
of the term with N' greatly complicates the situstion when its
value becomes comparable to 2wn. We will estimate thiz term in the
case of nearly vertical sounding |af, fa;l « 15 for this, In the
Integrand we replace afh)- o by tp(h«hm)/ (R+h) = qm(h-—hm)/R , hm
i1s the helght of the meximum; thils asymptotic equaiion follows (at
low angles) from (4): ¢ e (a—~ai)/(1~R/r) = (aﬂi)(R+h)/h.
Therefore, such methods for isolating the constant component will
be suliable under the condition

N' (B) ’h~hm)

|Ar a9 f dh | « 2m. (23)

The {yplcal values of 8W/8a In the presence of a "trough" in
the ionosphere 8N/da ~ 10" m™> radian™!, then (23) is only
satifled for A « 1072, However, &t angles of fractions of a
‘degree it 1s practically iupessible fo determine the functional

dependence on ¢ 1n the presence of nolses. Inequaliiy (23) applies




to the casze of determination of the TEC along the vertical. The
1imitation on the horizontal gradient becomes even more strict in
oblique sounding. A detailed analysis of a number of traditional
techniques for determinatlon the constant phase was provided in
[33]. These tectmiques include combined techniques Doppler and
Faradzsy measurmenta gimultansously. The resulis of numerical
modeling [33]1 showed that in the presence of = trough and
characteristic gradients - ON/8o ™ 10"3 M2 radian™ the error in
determination of the constants verles within 100-1000%! This
agrees with estimste (22) and Indlcates that practical
determination of the linesr integral of the eleciron concentration
18 unrealistic In the gpresence of | characteristic horizontal
gradients in the ilonesphere, whlle 1t 1s gpecifically this case
which 1s of interest for RT.

There 1s one more method for determining the TEC in ‘the
presence of horizontal gradlenis [34-361 which 1= Dbased on
recording of sstellite signels st & pair of separated recelving
stations. With data on the phases on a fixed bese, 1t 1s possible

to compare the pair of linear equations with the nearly ldentical

1sst terms of (22), 1.e., the rays traveling to different

preceivers should intersect the lonospheric maxzimum at one point.
Likewlse, a palr of equations for enother moment in time leads to
a system for the inltial phase, In which the Influence of the
gradient term will be reduced. Otherwise, condition (23) 1s
replaced by a less strict condition. However, it iz impossible to
completely eliminate the iInfluence of horizontal gradient and
subsequent derivatives on the result of determination of the
initial phase by a such a method. The methods used [28-30] have an
error by constant of sbout 10% or at least a few percents. of

course, 1t 1= =always possible to propose & varlant of the

Ve




recording method in which it 1s possible to determine the initial
phase; but to do so, one must perform a multifrequency reception
using an array of several receivers.

Thus, by virtue of the nature of the phase measurements, it
is inadvisable to reduce the problem of Iionospheric RT to a
problem in linear integrals. Determination of initizl phase by the
simplest recording systems leads to major errors, while the use of
complex multiposition and multifrequency systems is not ;}uatified
here, siunce & different solution of the problem is possible by the
phase-difference or Doppler measurements ‘wilthout determination of
the initial phase. _

Here are the resulis of mnumerlcal simul.étic:n of the
reconstiruction of the lonosphere section for typlcel errors in
finding the sbsclute phmse (TEC). A simple model of the ionosphere
with a irough and a positive Inhomogenelty at the left edge of the
trough (model 1) 1s used for munerical simulation. It wes assumed
that satelllte radio probing (h =1000 km) was performed at the
‘Irequencies 400 and 150 MHz (A=2m) and the recelvers are located
‘at the polnts with the coordinates fc,i=0 ¥om, '52=4.75 km, rt:3=1 435km.
A homogeneous ionosphere having no trough was used &8 & initial
guess Fig.2T. Fig.28 and Fig.29 show the results of the
reconstruction with the help of the phase RT with *3% and 5%
accuracy in determing the TEC (which corresponds the error in the
value of the absolute of &x and 10x), the signs of the errors
don't colncide Ior different receivers. These figures illustrate
an extremely poor quality of recomstruction using the phase RT
method with typical errors in determining the TEC: even the
principal features of this simple model gstructure are not
recovered and at the ssme time some heavy artefacts are present.

Fig.30 shows the depende‘mﬁs of the reconstiruction errors O,

I




J9

and 8 on the error in determining the absolute phase (*2mm),
~on the number m. It can be seen that even errors of a few units o
lead to a poor quality of reconstruction. It should be noted that
if the SIRT algorithm is used, as 1t was done by other authors in
[12,17,191, rather than the ART algorithm, the reconstruction
results similar to those In Figs.28-29 will at first sight be
better. They have a ‘more regular, less "chaotic" character. The
averaging SIRT algorithms result in the areconstruction being
weaker dependent on measurement errors, 1e the SIRT algorithms
are less sensitive to small varlations of' data 'and therefore
poorly reflect the fine siructure of' the reconstméted
cross-sectlions. .'I‘he SIRT algorithms can reconstruct the general
background quite satisfactorily but ofien tnéy fall to reveal even
the existing trough i1f it is 20-40% smaller than the maximum. If
the signs of the errors in determining the absolute phase are the
same for all the receivers, the reconstruction quality is somewhat
better. Nevertheless at the level of errors greater then 10%, the
reconstruction quality is still poor. In Fig.31 we represent the
~result of reconstruction of the model 1 wusing the phase-
difference RT method (the matrix was bullt by piecewise-planar
approximation). One can easily see that the principal features of
the lonosphere sectlon are reconstructed quite well. Numerical
simulation of the reconstruciion of various lonospheric structures
carried out by us proved & noticeable advantage of the
phase-difference RT method over the phase RT with typlcal errors
in determining the absolute phase. '

Note another significant limitation of RT methods connected
with deviation of recelvers from the satellite fiight plane.
Similai' deviation can also lead to significant errors 1n
determining the absolute phase. Let us intreduce the distance p In




the direction perpendicular to this plane, and the deviation angle
tgy=p/L where L is the (tilted) distance to the satellite. Then 1t
cann easily be shown that the difference between the phass detected
by the receiver in the flight plane and that detectéd by receiver
off the plane by p will be:

Ap ~ Ar N, (1/cosy - 1)+ Ar_siny <ON/dp> 12/2 ' (24)
2 oN ,
where <ON/6p> = -3 f —-- 11 - the 1ay “averaged"
, L op p=0 _
o =

transverse gradlent of the electron density, N, 1s the TEC along
the ray. The correction associated with changing tilted distance
~(the firat summand In (24)) cen easily be tsken into account.
However, strong ftransverse gredients can noticeably change the
phase, and for the phese method the following condition must be
satisfied:

A v sty Ty 12 ¢ on (25)
e T gp 2 ‘

with the typleal gradient <8N/8ps>™ 10° m™* and distances L™10m®
this fact results In a strict limitation of p<<10km. However
this limitation was not taken Into accoumt iIn the experiments
{17,19,201. The sheme of experiment [(17] seems to be strange and
surpriging because the ¥aliningrad-Riga-Ieningrad track makes an
angle of the order of 45° with the satellite trajectory
projection. The sngle between Kirmma-Oulu direction [19] and the
satellite trajectory prolection 1is also greater then 40°. Note
that the deviation of the receiver from the satellite plane only
due 10 the Earth's rotation during the recording time of the order
of 10 mimutes can reach a hundred kilometers in the middle
latitudes, which 13 qulte signifiecsnt for phase RT. For the

7




phase-difference RT 1t 1s only relative smallness of the change Ap
in respedt to the basic phase that is required, which leads to the
inequality <ON,/0p>p <K N, that is practically always fulfilled.

Consider the influence of the nolse-type errors on the
reconstraction results. The physical origin of such nolses may be
comnected both with iInstrumental errors and external nolses.
Methods of phase-difference RT provide gquite satisféctory resulis
even with considerable errors in experimentsl data. Fig.32 shows
the reconstruction by the method of phase-difference RT, but in
this case the data with the noise level belng 10% of maximum
amplitude of Doppler data were used. One can see 1ihat random
measurements errors sligntly affe‘ct the reconstruction resulis,
almost there is no defference between Fig.31 and Fig.32. This
conclusion is confirmed by fig.33 showing the dependence of the
reconstruction error in the 12 metrics on the noise level. Even
the 50% nolse level changes the reconstruction eiTor only
slightly, which can be explained by mutual compensation and
effective "averaging" of mnoises in the process of tomographic
reconstruction. In the phase-difference RT  experiments
[24,27-291the noise level does not exceed a few percent. The
resuits of the simulation also show that the influsnce of nolses
on the phase RT method is rather weak, because within the frame
work of this model it is possible to consider weaek nolses within
the 2n-innternal only, which amounts to 10"3 in typlcal
ionospheric conditions. Thus, for the phase RT method, errors in
determining the "initial phase” are of paramount lmportence and 1t
ig difficult to avoild such errorg due to mumerous factors, such as
horisontal gradients, deviatlons of recelvers from the plane of
recording, changes in the position of receivers owing the Earth's

rotation, etc.

"
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Table 1

Direct problem errors

84

, Model & lodel 2  Model 7
Operator type 3, 3, 5, 5, 8, 3,
A 0.0344 0.0087 0.1241 0.0802 0.2160 0.2105
B 0.0147 0.0065 ©0.0333 0.C540 0.0500 0.0323
C 0.0101 0.0071 0.0898 0.0534 0.0468 0.0303
D 0.0005 0.0002 0.0449

0.0244

Table 2

Inverse probiem erToIrs

Opgrator type

Model 5

Hogel 2

O S

Model 7

>
5

0,21

4 U.26 0.328 0.226 | b.401f 0.321

B 0.47 0,18  0.317 0.218 - 0.180 O.iZT. |
0 0.46 014 0316 0.216  0.161 0.118  © T
D 0.16  0.16 R 0.080 0.073

Table 3 ‘
Inverse problem errors
Model 5 Model 2 Hodel T

Operator type 4, A, by Ay Ay Ay

A 0.25 7 0.22 0.421 0.256 0,660 0.362

B 0.16 ? 0,14  0.339 0,226 ;170 0.089

c 0.156 7 0.14  0.335 0.224 0,162 0.075

D 0.15 ? 0.12  0.332 0.224 0.113 0.06°




