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1. Introduction. 

We shall consider the potentials of radiotomography (RT) 

using phase and phase-difference measurements. Task of the ray RT 

of large-scale structures are usually formulated as follows: 

making use of measurements of linear integrals for series of rays 

intersecting a certain area, it is necessary to reconstruct the 

structure of this area. Since the dimensions of large 

inhomogeneities of natural (such as an ionospheric trough) or 

artificial origin (traces of spacecraft, technological releases 

etc.) are of hundreds and thousands kilometers, the diffraction 

effects in the case of VHP/UHF probing can be neglected [1,21. 

It seems to be not possible even to name the kinds and types 

of emissions and waves for which attempts, at least theoretically, 

have not been made to apply tomographic methods. It makes no sense 

here to list all of the variants of tomographic approaches, but 

perhaps we should briefly characterise the approaches in the 

closest fields of tomography of geophysical structures. The 

methods and equipment for seismic tomography, where the 

distribution of the seismic "slowness", which is a value which is 

the Inverse of the wave velocity, is reconstructed from 

measurements of the propagation time of seismic waves, have now 

been developed rather well. There is a very large number of works 

on seismic tomography; we will only cite certain surveys [3-51. 

Many solution methods and algorithms have been proposed in the 

field of seismic tomography which are also suitable for other 

types of waves. Tomographic studies of other "spheres" of the 

Earth are also carried out. Acoustic tomography of the ocean, 

where the propagation time of acoustic waves is also measured, is 

now being developed actively £6,73. Works on radio and optical 
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tomography of the atmosphere have appeared [8,93. 

Proposals on variants of RT of the Ionosphere have also been 

offered. A tomographic methods for determining the local 

attenuation factor as a function of geographic coordinates using 

data on the integral attenuation factors on paths covering a given 

region with a sufficiently dense network is discussed in 110,111. 

Emitters and receivers far from the region to be reconstructed 

provide straight propagation paths. It was suggested to use the 

Radon transformation, which is practically unfeasible due to a 

small number of rays, besides, the question of the dependence of 

the attenuation factor on height remains to be settled. A variant 

of RT using a satellite, where reconstruction of the electron 

concentration distribution from the TEC on a series of rays was 

proposed, was examined in 112,131. The data acquisition scheme is 

shown in FIg.O, where three receiving stations are located on the 

plane of passage of the satellite and the rays are assumed to be 

linear. The schemes for tomography according to linear integrals 

for various types of waves are indistlguishable from one another. 

The approach according to the ray Integral electron concentration 

examined in [12,133 is identical, for example, to seismic 

interstitial tomography 1143, where the sources of seismic waves 

are placed in bore holes, while the receiver is moved along the 

surface. More recently, methods of the RT of the ionosphere using 

the TEC have been developed by many investigators [15-231. 

Prom our point of view such a generalization of tomography 

using linear integrals or TEC is enough obvious. The problem is 

how to determine this absolute phase or the linear integral. Many 

Investigators attempted to answer this question and discussed 

difficulties. Here a nontrivial point Is that when determining the 

absolute phase proportianal to TEC, the problem of determining the 



"Initial phase" arises and one can make a significant error and be 

off by a constant, which would lead to inconsistent tomographlc 

data and render the reconstruction unfeasible. Unfortunately the 

authors of earlier publications on the ionosphere tomography 

merely presented this common and evident idea and failed to show 

the possibility of the reconstruction in the presence of typical 

errors, that is they did not model the influence of errors at the 

initial stages on the reconstruction results. The above comments 

should not be understood as diminishing the significance of the 

earlier studies on Ionospheric RT, of special Importance are 

studies on limitations of Ionospheric RT and resolution limits 

imposed by geometrical and sampling limitations in ionospheric RT 

£15,163. However, the authors of the earlier works restricted 

themselves to simulating the possibility of reconstructing the 

function using linear integrals, which was of little use since 

such simulation with the term substitution ("group delays" -► TEC, 

"seismic  slowness  distribution" -»  "electron concentration 

distribution" and so on) has been made In numerous earlier works 

on seismic and other kinds of tomography. In contrast to seismics, 

however, where a linear integral (a group delay) is measured 

directly, for the Ionosphere there are techniques for only 

approximate determination of linear integrals. Here a specific 

error appears - an error by a constant, which is essential for 

tomography. In direct measurements of linear integrals this error 

has, as a rule, a noise-like nature, which does not seriously 

affect the results. As discussed earlier £1,2,24] and will be 

sho?m below in section 4, the phase RT leads to poor results In 

the case of typical errors In determining the absolute phase or 

TEC.  Therefore,  some years ago  [2,24]  we proposed the 

phase-difference RT of the ionosphere. 
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The theoretical foundation of the ray RT is the well-known 

relations [25s1] for phase of radiowaves in the geometrical optics 

approximation. The following equality determines linear integrals 

from the electron concentration distribution N: 

*re J N dö = <j>, (1} 

where X is length of probing wave, re is the classical electron 

radius, w=kc, k is the wave number in the free space, c is the 

velocity of light, fan is the symbol of integrating by the ray. 

Here the linear integrals are the phase difference $= $Q-<& of the 

field being measured (E=Aexp(I®)) and the probing wave field 

(E0=A0exp(i$0)). Measurements of $ are realized by receiving 

signals at two coherent frequencies from navigation satellites. 

We introduce a series of parameters characterising the 

geometry of the recording scheme in polar coordinates (r, a). In 

PIg.O (r0, aQ) - are the coordinates of the satellite, (R, a.) - 

are the coordinates of one of the receivers located on the surface 

of the earth (r=R); ß is the elevation of the satellite; (|> = 

(p-ic/2) is the angle to the satellite measured from vertical; 0 Is 

the center of the earth; axis 0-0' is axis of the polar coordinate 

system. On the basis of simple geometrical relations for any point 

in the Ionosphere with coordinates (r, a) located at the distance 

of 1 from the receiver the foollowing equations are satisfied: 
1  =   r R 

sin^-a)  sin(7c/2+ß) aln(%-(%/2+ß)-(a±~a))* 

Prom this, we obtain an equation for r(a) of the straight 

(ß=const) ray 

r(a) = (R cos ß)/(cos(ß + a± - a)) (2) 

and the relation which is inverse of It 
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R 
a(r) = a± +  ß - arccos(-y cos ß). (3) 

The relation between ß and a, r follows from (2): 

tg ß = (cos (o^-a) - R/r)/(sln(ai-a)). (4) 

Using (3), we obtain a formula for an element of the ray 

of length do 

do2 = [1 + r2( )2] dr2 = -= = p- drd.       (5) 
dr       r^ - R^ cos^ß 

Then, the relation for the measured linear integral (1) with 

respect to the electron concentration will have the fonn 

9 = A,re J N(rfa) do = \rQ J 
N(r,a) r dr 

7 r2 - R2sin2<|> 
(6) 

In the place of the polar coordinates (r, a), hereafter it is 

convenient to use the orthogonal system (h, i): h=(r-R) is the 

height above the earth's surface and t = aR is the "transverse" 

(horizontal) distance along the earth's surface in the plane of 

passage of the satellite. Here, ray equation (2) will no longer be 

a straight line 

cos ß 
h(T) = R C 13. (7) 

cos(ß+(Ti-T)/R) 

Here, (1^,11=0) are the coordinates of the receivers. The relation 

which is the inverse of (7) is similar to (3). 

R 
% - T. = R Cß - arccos(— cos ß)3. (8) 

1 R+h 

In this case, subject to (5), the linear integrals of type 

(1) have the form 



r° F(h,T)(R+h)dh 
 = KP»^). (9) 

0 7 R2sln2ß + 2Rh + h2 

Integration with respect to the ras7 connecting receiver i (T^SOL^R) 

to tlie satellite is replaced according to (5) by integration with 

respect to the height from surface of the earth to the height of 

the satellite hQ. The elevation ß is determined (4) .by position of 

the satellite (h0,T0)- The linear integral ICß,^) is dependent on 

the coordinate of the receiver i.   and the elevation of the i 

satellite (3. The linear integral is the complete phase (j> (1); 

here, the reconstructed function 3? will be proportional to N. 

Since there cannot be a large number of receivers and the range of 

angles ß is limited, it is inadvisable to examine methods for 

analytical inversion of such linear integrals and methods for 

integral transformations. In given case small-aspect tomography is 

intended from the start to solve the problem in discrete form and 

to use algebraic reconstruction algorithms or methods for 

expansion into finite series. 

At first we will examine the possibility for replacing ray 

(7) by straight line. The ray became curved after the switch to 

the new coordinates (h,T) convenient for solution of the of the 

discrete problem. The straight ray connecting the receiver (h^O, 

t^O) and the satellite (l^, iQ) Is defined by the function h* (T)= 

= i ctg i|)0, which differs from the dependence 

h(T) = R [ sin<l)/sin(i|>-T/R) - 1 ], 

where h(%Q) - h' (t0) = hQ. Expanding in powers of the small 

component %/B. « <{>, we find that the height difference Ah between 

the two trajectories is expressed by the formula 



*^0 o     t^ T 
Ah = h'Cu)-h(T) * —(-£- + ctg (j)g)T {-\- + ctg2^) + 0(-£). 

R R R 

In the middle T=TQ/2 of the trajectory where <J>0= TC/4, 1^=1000 tan, 

Ah «w60 ion. From this, the division of the ionosphere into vertical 

Increments should significantly exceed Ah If the curvature of the 

ray In coordinates (h,T) Is considered or, otherwise, if 

"curvature" of the polar coordinates to the region of 

reconstruction using a straight ray Is not considered. The total 

phase will be even more sensitive to a failure to consider the 

curvature of the ray if we attempt to reconstruct N from the 

complete phase, since the lengths of the curved and straight rays 

will differ significantly. In short, consideration of the 

curvature of the polar coordinates to the region of reconstruction 

or of the curvature of the ray In coordinates (h,T) to ray 

Ionospheric RT of global structures Is necessary, which is, 

unfortunately, not taken into account to a number of works 

[13,17,18]. 
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1. The solution of the direct problem of radio wave 
propagation lor the Ionospheric Tomography. 

The purpose of this section is to describe the technique and 

program for solving the direct problem of ionosphere radio 

probing, i.e. the problem of obtaining the phase and the phase 

difference from the date on the electron density distribution. In 

view of calculation the direct problem solution amounts to 

calculatiry the integral (9), i.e. the phase or the difference of 

auch integrals (the phase difference) for a small variation of the 

satellite position angle p. For the computer modeling of ET 

problems it is necessary to calculate a series of such integrals 

for arbitrary positions of the receivers and the 

satellite,therefore we accomplished the program for calculating 

the phase and the phase difference for arbitrary positions of the 

receivers and the satellite. 

Since the integrand lias no peculiarities, the calculation can 

be performed using the rectangle technique or the Simpson method. 

Let us evaluate the necessary step of numerical integration and 

the accuracies obtained, in this" way. It is well known that errors 

of numerical integration by the rectangle method e and the 

Simpson method eg are equal to: 

^'ir^F* e* = ^;?~'        (10) 

where hQ is the Integration interval length (the satellite 

height), m is the number of the integral discretization elements. 

Integration errors made using the rectangle and Simpson methods 

are proportional to the values of the second and fourth 

derivatives, respectively, of the integrand at a certain point 

within the integration interval. For an approximate estimation of 



errors It Is sufficient to evaluate the second, and fourth 

derivatives as a result of dividing a characteristic value of the 

function F by the square or the fourth power "a", respectively, of 

the structural Irregularities of p. Limitations associated with 

diffraction effects as well as those of the linear tomography 

problem malte It Impossible to reconstruct details smaller than 

10-20 Ian using the method of ray RT C1,2], therefore a £ 10-20 KM. 

The value of m is equal to the result of dividing hQ by the 

Integration step Ah. Hense the estimations of absolute and 

relative errors are: 

V too*1 

 - (Ah/a)2, e_ <  
12 B  2880 

(11) 

  <*  ^ (Ah/a)V12,      «  « (Ah/a)V2880, 
I   IIQF I   y 

When the Integration step Ah=0.5 KM and a=20km the relative error 

of the rectangle method is 0.5*10~4 (for the Simpson method it is 

smaller than 10"11) which Is quite satisfactory for RT 

applications. 

For further computer modeling of the RT problems it is 

necessary to use a set of appropriate electron density 

distributions models of the ionoshere. Naturally, it is Impossible 

to make up a complete set of all the cinceivable ionospheric 

conditions, and this study was not aimed to do so. For our purpose 

- to Illustrate the applications, which Includes the main 

structural features (a trough, localized natural and man-made 

irregularities and groups of irregularities). Horewer, the 

presented package of programs makes it easy to design many other 

structural types and to extend this "ZOO" as far as possible using 

the available "details". In what follows the available "details" 
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and the models used are described. 

Description of the set of the models used for reconstruction. 

The "parabola" (with a discontinuity of the first derivative) 

and the "cosine square" (with no discontinuity of the first 

derivative), a "gaussian" are used as the functions to describe 

localized irregularities. Gross-sections of the constant value for 

such irregularities may be arbitrary oriented ellipses. 

No.1. A simple model of the ionosphere with a trough and a 

positive irregularity at the left edge of the trough is 

represented in Pig.1 in isolines in the 106cm~3 units. 

No.2. A model of the ionosphere with a trough and three 

inhomogeneities (all of them being of the "cosine-square" type, 

the positive one is at the left edge of the trough, the other 

positive one is also at the height of the maximum at the opposite 

edge of the trough, the negative irregular! tity is located higher 

(h=500km, T = 500km)) representated in Pig.2 in isolines in the 

106cm~3 units. 

No.3. A model of a homogeneous smooth ionosphere with a chain 

of irregularities in the region of the main maximum. The model is 

represented in Pig.3 in isolines in the 106cm"^ units. 

No.4. The model of the heated ionospheric lens [261. The 

maximum of AN is equal AN=104cm~3. N(h,T)=N0(h0/G(h))
2(1-T2/G29Q), 

i « G(h)0o, G(h)=(h
2+7(h-h2))1/£, hQ=100 km, 7=3, eQ=0,15 (Pig.4). 

No.5. A model of a localized irregularity described by 3 

"gaussians". The sizes of the disturbed region are 100 x 100 km. 

No.6. A group of isolated irregularities (Pig.6) described by 

the "cosine square" functions. 

No.7. A model (Pig.7) of a localized simple irregularity 

described by two "cosine square". The sizes of the disturbed 

region are 100 x 100 km, the hight is 200km. 
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Description of the program 

for calculation the phase and the phase-difference for 

arbitrary positions of the receivers and the satellite. 

System Requirements 

Computer:      IBM AT or compatible (with coprocessor) 
Operating System: MS-DOS or PC-DOS version 3.0 and later 
Memory:       at least Extended memory 16 Mbytes 

(depends on geometry and type of 
approximation reconstructed function) 

Hard Disk Space: 16 Mbytes 

Software:      compiler 1.4e and linker 2.2d 

NDP-P0RTRAN-386(c) MicroWay or later 

1. Program <integr.for> 

This program solves direct problem, namely, determines the 
model structure and calculates the phases or TEC for phase RT or 
floppier for phase-difference RT on the model structure. 

Input parameters and files: 
Answer=1 - Phase RT: Tec_ph=1 —> calculation of TEG 

Tec_jph=2 —> calculation of Phase 
Answer=2 - Phase-difference RT 
Answer, Tecjah are Introduced from the screen 
file <name_F.int> - names of output files for integrals for each 

receiver 
NREC - number of receivers 
NRAY - max number of rays 
RAY - array of rays for each receiver 
NF - number of discrets on the horizontal grid 
NR - number of discrets on the vertical grid 
NirMAX - max number of local Irregularities for model 
PP - array of receivers's polar angles In degrees 

( PP(1)=0. -> for the first receiver) 
RZ - Earth's radius In km 
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RO - satellite orbit in polar coordinate system in km 
HFIST,HFIN - initial and final altitude of reconstructed 

structure in km 
P1 - horizontal distance to the left from first receiver 

in km (P1<0) 
P2 - horizontal distance to the right from last receiver 

In km (F2>0) 
Dconst - the value for determination of doppler (shift of rays) 
NJ - number of discrets on the one ray for calculation 

of integrals 
RMAX - altitude of max electron density in km 
The model structure is determined by function <FMODEL> which 
uses functions <FUNC1>, <FUNC2>, <HOMPAR> or <HOMGOS> and input 

file <P_mod>. 
Input file <P_mod> contains parameters of model, for example: 
« 'number of irregularities and Zmax - max value of parabol' 

1 1. 
'local irregularities: Hirreg, Tirreg, A, B, Z' 

350. 36. 100. 100. 0.08 
•trough — > TGRi, TGR2 in km' 

-20. 640. » 
line 2 in file: 1 1. 
Nirreg (number of irregularities)=1 

Zmax=1. 
line 4 in file: 350. 36. 100. 100. 0.08 - 
Hir (altitude of irregularity in km)=350. 
Tir (horizontal coordinate of irregularity in km) =36. 

Air=1G0.- vertical size of irregularity 
Bir=100.- horizontal size of irregularity 
Zmax=0.08 - max value of irregularity 

line 6 in file 
-20. 640. 
TGR1=-20., TGR2=640 - horizontal coordinates of trough in km 

RMAX, RM, B1, B2, ZSM - parameters for function <PUNC1> 

(model on h) 
DEPTH, G0NS1, C0HS2 - parameters for function <PUNG2> (trough) 

DEPTH - depth of trough 
G0NS1 ,C0NS2- the egdes of trough 
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<HOMPAR> - approximation of local irregularity by parabol 
<HOMGOS> - approximation of local irregularity by cos2 

The combinations of <PIMC1>,<FUNG2>,<HOMPAR>,<HOMOOS> make it 
possible to obtaine different model structures. 
Subroutine <DEPPSI> determinates the angles of rays on the 
satellite's coordinates 
Subroutine <DEPINT> calculates either Phase or TEG or Doppler and 
uses subroutine <INTERG>. 
Subroutine <INTERG> calculates integral only one ray on the model. 

Output files: 
MOD.GRD - file of model structure 
Files <Fint> - arrays of either Phases or TEG or Doppler 

Execution 
f77 integr.for 

RUN 
integr.exp 
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2. Design of the different versions of 

the RT operators (matrices). 

We shall consider the problems of the design of the different 

versions of the RT operators (matrices), beginning with 

discretization procedure for equations (1). We perform 

digitization of the linear integrals Kß^.) (9) according to the 

position of the satellite, which is dependent on the coordinates 

T0J. or the angle aQ^ T0../R. The set of coordinates of the 

satellite %Qt is recalculated according to (4) into a series of 

elevation ß. . of the satellite from receiver i: 

(R + hQ) cosfa. - ou.) - R 
tg p. . =   . (12) 

•LJ   (R +hQ) sln(ai - aQ.) 

The sets of elevation of all receivers define a series of discrete 

values of the linear integrals 1^ * Kßijj» V* The slmPlest 

method for digitization of the sought function F(h,T) in a fixed 

rectangular (mQ - nQ) grid is to replace it by a 

piecewise-constant approximation, or to represent F by a system of 

(m0 * nQ) basis functions equal to unity in certain rectangle and 

zero in all others. The rectangular reconstruction region is 

divided into mQ heights (m ^ mQ) and nQ horizontal samples (1 < n 

^ n0). Let the value of the function F(h,i;) in a fixed (m * n) 

rectangle be J^. The point in the rectangles at which the samples 

of F(hfT) are selected is not,especially important; this may be at 

the middle of the rectangles or nodes of the grid. 

The problem of tomographic reconstruction according to linear 

integrals is to determine the set of discrete samples CF^} in the 

known grid according to the set CI^}. Designating the length of 

ray (i,J) in cell (m,n) as L1?'1* we obtain the system of linear 
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equations 

m,n M 

Here, "renumbering" of the ray (1,3)-+ J and the sells of the 

ionosphere (m,n)-* M is performed in the second equation. The 

repeating indices are understood as summation. The number of rays 

is determined by the parameters of the recording system. The 

coefficients L^ are calculated according to the given rays and 

cells into which the ionosphere is divided. System (13) may be 

either overdetermined or sub-definite. 

Thus if there is a possibility to determine the linear 

integrals (1), the problems of the ray RT are reduced with the 

help of discretization procedure to solving systems of linear 

equations. But the problem of ionospheric RT according to 

phase-difference or Doppler measurements cannot be solved by such 

scheme with a piecewise-constant approximation. The fact is that 

the data here will be derivatives of linear Integrals of type (9): 

D = dI/daQ, or finite-difference ratios of the increment AI of the 

linear integrals to the increment AaQ of the satellite coordinate. 

The Doppler frequency Q = d0/dt measured in the experiment is 

determined by the phase derivative (1). The relation between the 

angle aQ of a satellite moving uniformly along a circular orbit 

with velocity vQ and the time aQ = vQt/(R+h0) makes it possible to 

express the Doppler frequency Cl by means of the derivative with 

respect to the angle of the satellite 

Q 

vo d<p 

R+hQ <3a0* 

from which these phase-difference tomography data are proportional 

to AI/Aa0. The derivatives of the linear integrals in a 
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plecewise-constant approximation of the sought function P will be 

discontinuous. This is because each linear integral is the sum of 

integrals over the set of cells. As the elevation of the satellite 

changes, the ray encounters a new cell; the integral with respect 

to unity of this cell is a continuous function of the angle of the 

satellite aQ, but the derivative of the linear integral with 

respect to aQ will contain a discontinuity when the ray contacts 

the corner of each cell. Therefore, the plecewise-constant 

representation of the function to be reconstracted does not make 

it possible to analyse the phase-difference problem. 

Phase-difference measurements require • higher-order 

interpolation than the plecewise-constant representation of the 

function to be recorded- Correspondingly, the matrix L^ for 

transition from the function to be reconstructed to linear 

integrals should be calculated differently so as to ensure 

continuity of linear integrals with respect to the coordinate of 

the satellite aQ (or elevation ß). If the matrix of the direct 

problem l^: FM -* Ij is continuous with respect to the angle of 

the satellite aQ, then in place system (13) it is possible to 

obtain a system for phase-difference or Doppler data by 

differentiating (13) with respect to the angle aQ: 

WM ■ DJ • <14> 

Here, Dj = AIj/Aa0 are Doppler data and A^ = AL^/Aou, is finite 

-difference ratio (or derivative) of the matrix I^j to the 

increment of the angle. The Doppler data are determined not only 

by the change in the complete phase related to integral electron 

concentration along the ray, but also the local electron 

concentration NB at the point of the satellite. The correction to 

the Doppler data is equal to the product of NB times the velocity 
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component of the satellite directed along the ray - X r N cos (a. + 

+ P - a0). This correction can be Inserted into the iteration 

algorithm and the values of Nfi at the boundary h=hQ of the 

Ionosphere obtained in the Iteration process will constantly 

"correct'* the measured Doppler frequency values [25]. The question 

of whether such a correction of the data should be made can be 

answered depending on whether we use direct measurements of the 

Doppler frequency or the phase difference derived from phase 

measurements. In the former case such a correction should be made, 

In the latter - not. Here such a correction shall not be 

performed; horewer, It would not be difficult to Introduce It when 

using direct doppler measurements. 

In what follows we shall briefly describe the methods of 

constructing the operators that are smooth l)j the satellite angle; 

here are the examples of constructing the L^ matrices of the 

transition from the reconstructed function to the linear Integrals 

(matrices  of  projection  operators)  useful  as  for  the 

phase-difference RT and also for the phase RE. In this section we 

consider examples of constructing smooth projection operators of 

the direct problem. One must construct such a LM  matrix that 

would provide the smooth of linear integral over the satellite 

angle. In the beginning section we consider contribution on the 

basis of triangular elements, at the end of the 'section other 

possible variants be outlined. We will proceed to calculation of 

the matrix A^ of the difference problem, which, as was already 

noted, should be determined from the increment of the matrix I 
«JH 

which Is smooth with respect to the angle of the satellite. 

Smoothness of the matrix L^ can be ensured by Introducing finite 

triangular elements for representation of the function F(h,T), 

I.e., when the sought function is replaced by a piecewise-planar 
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approximation. The smooth function F(h,T) Is replaced by a 

continuous polyhedral approximation surface, according to which 

the derivative with respect to the satellite angle of the linear 

integrals Is already a continuous function. Triangular elements 

are obtained naturally from a grid of rectangles by dividing each 

of them in half diagonally. The function F(h,T) within each 

triangular element Is replaced by linear approximation 

F(h,T;) = a + DT + ch. (15) 

The values of the coefficients (a, b, c) in each finite element 

are determined from system of three equations for three boundary 

points. It is simple to immediately write expressions for the 

coefficients in a given finite element» These expressions differ 

slightly for triangular elements of two types: those occupying 

cells "below" or "above". We stipulate that cell (m,n) 

Is divided by a diagonal (tm,hn+1) - {%m+^, \) running downward 

and left -to-right, into two triangular elements: the "lower" and 

"upper" elements. Then, in the lower (m,n) element 

F —  T? TP _  T? 
m+1 ,n     *m,n                 xm,n+1        m,n 

l»'*'" rm,n + <*-V + ~ -<*-V     (16) 

and in the upper (m,n) element 

*m+1 ,n+1 
F(h-T> = Fm+i,n+i + z L— (T-W + 

F       — F 
m+1 ,n-M  xm,n+1 

F      — F m+1 ,n+1   m+1 ,n 

As before, to simplify the notation we will renumber the values of 

the samples below: Fffl n-* FM,  (m+1 ,n) ■*  (M+1), (m,n+1) -» (M+AIff), 
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(m+1 ,n+1) -> (M+AM+1), where AM is the number of cells horizontally 

in one row. 
The linear integral Ij (9) is the sum of the integrals with 

respect to all finite elements which intersect ray J: 

Ij =  f 7(h) F(h,T) oh, 
M J 

where 7(h)=(R+h)[R2sta2ß+2Rh+h2r1/? while F(h,T) is represented, 

in the form of piecewise-planar approximations (16),(17) in each 

finite element. The result of integration of such an approximation 

in lower element M 

J 7(h)P dh = J0 *M + JT(PM+1 - *„> + <y
PM+AM " V   

(18) 

and in upper triangular element M 

J 7(H)* dh - J£ :FM+AM+1 + Ji <PM+AM+1 " ^M+AM5 + 

+ Jh<*M+AM+l "W 
(19) 

Here, JQ, JT, Jh, JJ. JJ, J£ are the following integrals: 

h 1 hn+1 

JT = - J 7(h) [T(h)-Tm]dh;  J£ = - J Tl^ttlhH^ldh; 
AT ^ AT h 

h (20> 

1 h ! **H 
j. = - J 7(h)[h-hn]dh;   J£ = - J 7(h)Ch-Vl3dl1' h  AhJ^     * Ahh 

Integration with respect to a lower finite element begins at the 

lower boundary of the cell h^ and ends at height h, where the 

ray leaves the lower element. Integration with respect to the 

upper finite elements begins at this height and ends at the height 

of the upper boundary of the cell. We will recall that 7(h) and 

all integrals with respect to cell H are functions of the 
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elevation ß, aQ or the number of the ray J. 

After integration (18) with respect to ray J in the lower 

element M the value (JQ - J^ - Jh) is entered into the coefficient 

LJJJ, since it is a coefficient for PM. Correspondingly, JT is 

entered into Lj M+1 and Jh into Lj M+^JJ. However, in integration 

with respect to one lower finite element M these coefficients L 

are still not completely determined. It is easy to understand that 

each sample Pm falls into three lower and three upper adjacent 

finite elements. Only after integration with respect to ray J in 

all finite elements is it possible to completely form the 

coefficient Ljjj from six around Pm where the ray fell. Integration 

with respect to the upper finite element M with respect to ray J 

(19) makes the contribution (J^ + J^. + J£) to the coefficient 

Lj M+AJ{+1 ; the contribution (-J.J-) to the coefficient Lj M+AM and 

the contribution (-J^) to the coefficient Lj M+1. The integrals 

with respect to all rays of type (20) can be calculated by various 

numerical methods; in view of the smoothness of 7(h) and the 

piecewise-planar approximation of P, it is sufficient to use the 

trapezoid or Simpson method. Here, in each integration step Ah it 

is necessary to verify that the ray does not exceed the limits of 

the finite element. 

Performing numerical integration with respect to all rays, we 

obtain the matrix L^. The matrix L^ is related to the set iaQ} 

of positions of the satellite and the corresponding series of 

rays. It is also possible to calculate the matrix L' for another 

set of close positions of the satellite with a fixed increment 

{a0+AaQ}. After this, we determine the matrix for phase-difference 

tomography problem A^ = (L^ - LJ^/ACIQ. 

The projection operator or L^ matrix can also be built on 

the basis of approximations of higher order than that of (15). Por 
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example, one can use a two-dimensional approximation in the form 

of the product of linear functions or the product of cubic 

splines. Then the function P(h,T) takes the form 

F(h,T) ^a^A* (2D 
m,n=0 

Inside an arbitrary (m,n) rectangular, representing the function 

through the normalized coordinates X^T-T^/AT, y=(h-hn)/Ah, we 

can obtain the following representation through the values of the 

function at the four angular points (x,y)= {(0,0); (0,1); (1,0); 

(1.1». xz  y y  xy xy 
P(x,y) = F00P00+ ]?00P00+ F00P00+ P0o

poo+ P01P01+  

Here the subscrips refer to the coordinates (x,y) of the angular 

points, P is the value of the function in corresponding point, Fx, 

Fy are the values of the function partial derivatives with respect 

to x,y, P*$ is the value of the function partial derivative of the 

second order with respect to x,y. The total sum (21) will contain 

16 summands, PL(*,y) are corresponding polynomials of the power 

not exceeding 3. We shall not write the mentioned polynimlals 

completely, four examples will be suffice for Illustration: 

P00= 4x
3y3- 6x2y3- 6x3y2+ 9x2y2+ 2y3- 3y2+2x3-3x2+ 1, 

PQ0= 2x
3y3- 4x2y3- 3x3y2+ 6x2y2+ 2xy3- 3xy2+x3-2x2+ x, 

PQ0= 2x
3y3- 3x2y3- 4x3y2+ 6x2y2+ 2x3y - 3x2y +y3-2y2+ y, 

p00= x3y3~ 2x2y3_ 2x3y2+ 4x2y2+ x3y - 2x2y + xy3- 2x y2 + xy. 

Then, integrating in each cell of the given polynomials we 

can produce the corresponding elements of the matrix, as In the 

case (16-20). Note, that now it Is not only the values of the 

function P, but the values of the mensioned derivatives that are 
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unknown, I.e. such representation makes it possible to find the 

function and Its first derivatives. The matrix for the product of 

linear approximations can be constructed in a similar, even 

simpler, way, this being in fact a particular case of that 

described above, where the summation in the formula is made up to 

1 rather than up to 3. 

Thus, the following operators (matrices) for solving the RT 

problems are described: 

A - is built with the piece-constant approximation, 

B - is built with the piece-planar approximation, 

G - Is built with the linear product approximation, 

D - is built with the cubic spline product approximation. 

Projection operators with approximations of higher orders 

allow a better approximation of the operator of the direct 

problem, I.e. they enable us to come closer to the true operator 

of the direct problem. Tables 1,2 shows examples of calculations 

of the direct problem for the model 2 and 5 with the help of 

different operators: A, B, C, D. Errors of the numerical 

simulation can appropriately be characterized by number Ö, which 

shows the deviation of the function being reconstructed P from the 

true function P: ö=JP-P|/|P||. The norms of the spaces l2 and l00 

can be helpfully used (ö2 s ö(l2) and öm = 0(1°°)). We use the data 

(hQ=1000km) from three receivers with coordinates T^ Okm, T2= 475 

km, T3= 1435 km (for model 2, this geometry Is similar to the 

geometry of Murmansk-Moscow RT experiments [1,21) and T^O, 

T2=240, T3=480 (model 5). Prom the results given in this tables 

one can clearly see the increased accuracy In solving the direct 

problem for operators with higher oders of approximation. 

One can see that the transition to higher orders makes it 

possible to significantly improve the solution of the direct 



22> 

problem. However, as the approximation order Increases the matrix 

becomes more complicated and less rarefied, which can impair the 

solution of the inverse problem. One cannot say in advance which 

operator will be more preferable when solving the inverse problem, 

because at the beginning of the increase of the approximation 

order the function Is approximated better but the matrix 

properties for solving the inverse problem become worse. Operators 

must be chosen by means of computer simulation to be Illustrated 

in the next section. 

Description of the program for calculation 

of the different versions of the RT matrices (operators). 

/ 2. Program <matric.for> 
This program designs different versions of the operators 

(matrices) for phase RT or phase-difference RT. 

Input parameters and files: 
Parameters < Answer, NP, NR, NREO, NJ, RAY, HPIST, HPIN, P1, F2, 
RZ, RO, Dconst> are similar to same parameters of program 

<INTBGR.POR>. 
Pile <name_F.mat> contains names of output files 
MOD.GRD - input file of model structure (program <INTEGR.FOR>) 
APTYPE - type of approximation of reconstructed structure, it Is 

introduced from the screen 
Subroutine <DEPPSI> determinates the angles of rays on the 
satellite's coordinates. 
Subroutine <DEFMAT> determinates the 
matric with corresponding approximation for one receiver 
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Output files: 
Files <F_matr> - arrays of matric of corresponding approximation 

for each receiver 
Pile <Fparam> - parameters of matrices for each receiver 
Files <F_int> - results of multiplications of calculated, matric 

and model structure 
File <F_st> - array (1ST) of number of all rays which cross the 

corresponding discret of model (SIRT algorithm) 

Execution 
177 matric.for raylnt.obj 
RUN 
matric.exp 
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3. The BOlution of the Inverse problems of the phase and 

phase-difference RT. 

It should be noted that the earlier authors solved problems 

of tomography using linear integrals, which amounted to solving 

systems of linear equations. In this respect, therefore, the 

problem of pure phase RT is entirely equivalent to the known 

problems on linear integrals. The peculiarity of ionospheric 

applications is revealed in the nature of possible errors by a 

conctant in determining the phase, which will be dealt with in the 

next section. 

In this section varios methods of solving inverse problems of 

RT will be brlfly described and analysed. The results obtained 

using various reconstruction methods and the sensitivities of 

these methods will be compared, which is of interest for 

ionospheric application. Solution of (13-14) in ray RT of the 

ionosphere is difficult in computational respects. When 

reconstructing global structures with dimensions of thousands 

kilometers and a sampling interval of tens kilometers, the 

matrices of such systems contain up to 106-107 elements, but are 

rather empty. There are a significant number of both direct and 

iterative methods for solving system of linear equations like 

(13-14). Nevertheless, intensive development of the theory and 

practical methods and algorithms for solution of these systems 

continues at present. There are a large number of diverse 

iterative methods for solving systems of linear equations. Many of 

them have been tested in ray RT problems. As was previously noted, 

tomographic methods have been developed most intensively In 

seismics, where various methods for solution of these system have 

been used. Here, we can cite algebraic reconstruction technique 
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(AET), including with relaxation and lor systems of inequalities; 

simultaneous iteration reconstruction technique (SIRT); 

multiplicative algebraic reconstruction technique (MART); 

block-iterative algorithms, reconstruction on the basis of the 

Bayes approach, algorithms for regularizetion of the mean square 

error, algorithms for optimization of image entropy, etc. [363. 

Good practical results have been obtained in seismic tomography 

using methods for minimization of the iterative corrections in 

various matrices with variants of weighted correction, ray 

weighing and inter-iteration smoothing [31. Investigations have 

been made of the characteristics of the spectra of the matrices, 

the resolution of the reconstruction systems and the uniqueness of 

the reconstruction possible "at the limit", i.e., with an 

infinite increase in the number of measurements [53. 

Since there are numerous methods of solving systems of linear 

equations, it appears to be impossible to apply all the Jmown 

approaches within one study. It should be pointed out that the 

main results of the investigations perfomed are weaMy dependent 

on the applied methods for solving systems of linear equations, 

here, therefore, we shall apply the most widely Imown methods: 

ART, SIRT, MART. 

Before giving examples of RT-reconstructions, it is to be 

noted that in some cases there is a possibility of an accurate 

determination of the absolute phase. It is possible to determine 

the absolute phase at Inhomogenelties when reconstructing the 

structure of sufficiently large localized artificial (releases, 

heating, etc.) or natural Inhomogeneitles of the Ionosphere 

arising during the time between flights of the satellite. Such a 

formation being localized in space provide the possibility of 

solving the problem without additional a priori assumptions 
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concerning the inhomogenelty. By recording the data before and 

after the emergence of the disturbance and making subtraction of 

data, one can find the contribution of the localized inhomogene!ty 

being reconstructed, if the ionosphere changes little between the 

flights. 

Fig.8 shows the reconstruction of a heated ionospheric lens 

by phase RT after 20 ART iterations using the data from three 

receivers with coordinates T.,=0 km, T2=45 km, t3=90 km, iu = 

1000km. The height of the disturbed region varied from 80 to 220 

km. The zeroth initial guess was given. The size of the division 

discrete was 10kmx10km. The reconstruction differs little from the 

model structure, the relative reconstruction errors being ö2 = 

=0.07, öm =0.09. Also the simulation of the reconstructions of 

other localized formulations was carried out, thus showing the 

possibility to reconstruct structures of localised objects 

emerging between flights of the satellite using data on the 

absolute phase of this object. 

In what follows the results of modeling the RT 

reconsctraction using different operators A,B,C,D are presented. 

Tables 2 and 3 show examples of calculations of the reconstruction 

results for the models 2, 5 and 7 with the help of different 

operators: A, B, 0, D. Errors of the numerical simulation be 

characterized by number ö0 and 8_ , which shows the ratio of the 

deviation of the function being reconstructed F from the true 

function F. The reconstruction results must be compared in the 

norms approaching to the integral ones, i.e. the norms L2 must be 

used instead of l2 and I00 instead of 1°° (the corresponding numbers 

A2 and A^ instead of numbers 52 and ö^). In other words the 

functions must be compared using a much finer grid than that used 

for reconstruction. Otherwise, if the results are compared in 
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reconstruction points only, we may come to erroneous conclusions. 

We use the data from three receivers (similar to Murmansk-Moscow 

ET experiments [1,2]) with coordinates 1.,= 0 km, T2= 475 km, i3= 

1435 km (for model 2), T^O, T2=240, T3=480 (model 5) and ^=0, 

T2=250, T3=500, T4=750, T5=1000, (model 7). Pigs.9 (A,B,C,D) show 

the RT reconstruction results for different approximations (A, B, 

0, D, respectively) of model 7. Pigs.10 (E,C) show the RT 

reconstruction results for different approximations (B, G) of 

model 2. Pig. 11 show the RT reconstruction result for 

approximation C of model 5 and fig. 12 for approximation (D). Prom 

the reconstruction results and tables 2,3 one can see the increase 

in the accurasy of solving RT reconstruction problems for 

operators with higher orders of approximation. 

The results of RT reconstruction also depend on the applied 

approach of the phase or phase-difference RT. If the conventional 

phase RT with the piece-constant (A) approximation is used, the 

phase-difference RT with matrices of the (B,0,D) type has, as a 

rule, an advantage connected with a more accurate representation 

of the direct problem operator. Pigs. 13 and 14 show the results of 

the RT reconstruction of model 2 using the methods of the phase 

(fig. 13) and phase-difference (fig. 14) RT. The homogenious 

ionosphere model (fig.15) was used as an initial approximation. 

Phase-difference RT allows a more precise isolation of local 

extrema and has a lower noise level. Note that, in general, the 

reconstruction results of rather large structures obtained using 

these methods providing there were no errors in determination of 

the Initial phase are comparable. The presense of such an error, 

however, makes the phase RT method practically unsuitable, which 

will be shown by the results to be presented in the next section. 

Let us analyse the results obtained by applying various 
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methods of solving systems of linear equations (SLE) for RT 

problems. It has already been mentioned that we shall restrict our 

consideration to the most widely used techniques, namely, the ART, 

SIRT and MART algorithms. Comparison of different algorithms of 

solving SIE must clearly be made for the same RT method. The 

results of comparing the SIE solution algorithms for the phase RT 

method will be illustrated by the reconstruction of model 6. Since 

reconstruction errors are determined both by the number of 

iterations and measurement errors, each algorithm should be 

characterized by a two-dimensional error "portrait" providing the 

dependence of a relative reconstruction error on the number of 

iterations and the relative error in the right-hand part of 

equation. Such an error portrait characterises the convergence 

rate, the feasible minimum of the reconstruction error for 

different levels of data errors. The error portraits for the ART 

and MART algorithms are represented in figs. 16,17. One can see 

that for non-aero errors the algorithms begin diverging quite 

rapidly, the iteration process must, therefore, be stopped in the 

region of the reconstruction error minimum, whose position being 

determined by data errors. The SIRT algorithm (Fig. 18) is 

significantly less sensitive to data errors owing to intermediate 

averaging of the results during the iteration process. The error 

level in the SIRT, however, Is much higher (£43%) than those of 

the ART and MART algorithms. The numerical experiments performed 

with other models also showed that the SIRT algorithm Is 

practically unsuitable due to the high level of reconstruction 

errors. This algorithm would be appropriate for use in the case of 

severe data errors (£5-10%). In this case, however, the SIRT 

algorithm would reconstruct a highly "averaged object" which bears 

little resemblance to the original structure. In general, the 
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reconstruction results obtained using the ART and MART algorithms 

are comparable: in some cases the ART has certain advantages, in 

other cases the MART is more appropriate. 

Another advantage of phase-difference tomography over phase 

tomography should be noted, that is a higher sensitivity of the 

former. Doppler data are more sensitive to small inhomogeneities 

which have little affect on the phase. For example, when the ray 

scans the inhomogeneity AN of the size a, the phase changes by A® 

toeANa, here the relative change of the phase A®/® ~ ANa/N." 

"ANa/iy,, where Nt is the TEÖ along the ray, Nm is the value at 

the maximum electron concentration, L is the ray lenght 

characteristic. As a result, relative variations of the phase are 

proportional to the ratio of the TEG of the Inhomogeneity to the 

TEC of the whole ionosphere. One should not expect the methods of 

solution of (13,14) to be more sensitive to changes of the 

right-hand part than a few percent. Therefore phase methods would 

not  distinguish  even  sufficiently  strong  AN/N w  0.1 

Inhomogeneities with the size a<L/10 telOOkm), since they produce 

only 1% of phase variations. It is not accidental, in our opinion, 

that in the reported reconstructions using the phase methods 

[18-203 details with dimensions of less than a few hungred 

kilometers are not revealed. This is not the case for 

phase-difference measurements. Here total Doppler variations are 

proportional to d(f)/dt ~ AreNL/(L/-üß), and Doppler variations at an 

inhomogeneity are  w a,reANa/ (a/vß).  Then relative Doppler 

variations (phase differences) are proportional to the ratio of 

electron concentrations WAN/Nm. Thus, the phase-difference methods 

allow the reconstruction of inhomogeneities of a few percent 

against the background regardless of the size of an inhomogeneity. 

This is fully supported by our experimental results [2,24,27-293. 
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To illustrate the estimation of the sensitivity of the 

methods, we shall consider the reconstruction results of model 3, 

with the chain of irregularities of the size a =100km and 

variations AN=0.025*1012m~3 (the first two irregularities at the 

left) and AN=0.015 *1012nf3 (the next three Regularities), which 

amounts to 3-5% of the maximum   Nm=0.5*10
12nf3. Due to 

irregularities, variations of the total phase are a few parts of a 

percent and practically invisible in fig.19. In accordance with 

the above estimations, doppler variations are equal to a few 

percent and can be seen easily in fig.20. The RT reconstruction 

results for model 3 are represented in fig.21 (phase RT) end 

fig.22 (phase - difference RT). The experiment's geometry was 

taken to be the same as that of RATE-93 (hQ=1000km, 't^Okm, 

T2=38Q.4km, T3«624.9tan, i4*809.3km). As an initial guess we used 

here a very good approximation (fig.23) which in fact coincides 

with the background ionosphere. In spite of this good initial 

guess the phase method with the ART algorithm does not reveal the 

irregularity chain, whereas the phase-difference method does 

indent if y the given structure quite satisfactority. Note that if 

the phase method is used with the MART algorithm,  the 

irregularities can be isolated (fig.24). MART algorithms work 

better within the range of high values of the functions being 

reconstructed. However,  this cannot be considered as an 

unconditional' Indication of MART algorithms being superior to ART 

ones. If,; for example, a similar irregular structure of even a 

higher intensity , AN=0.04#ld12m~3 (fig.25) is located at a greater 

altitude (at!about OTJkm), i.e. not within the range of high 

values of the function being reconstructed, the MART algorithm 

begins distorting strongly the result (fig.26) in the attempt to 

"attach" such an irregular structure ^Just inside the range of high 
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values of N, In other words, to attach the irregularities to the 

maximum of the layer. It goes without saying that such a 

distortion of results can lead to a wrong interpretation of the 

probing data and is undoubtedly a serious drawback of MART 

algorithms. 

To summarize in brief the results of analysing various 

algorithms of solving SLE, it should be pointed out that at 

present it is not possible to say which algorithms have 

unconditional advantages over the othes, it seems to be impossible 

for all the cases of ionosphere RT. It is necessary to establish 

the conditions and areas of applicability for various methods and 

algorithms as soon as possible, therefore now there is a vast 

field for examining different combinations of algorithms as 

applied to problems of both phase and phase-difference RT. Prom 

our point of view, studies of methods to solve systems of 

equations [30-323 as applied to the ionospheric RT are also of 

interest. Mension should be made of the method using 

one-dimensional empirical ortho-normal functions to reconstruct 

vertical ionospheric profile [30], the method based on the maximum 

entropy principle [313, a different orthogonal basis functions 

(whole domain functions) reconstruction algorithm [323; several 

transform techniques [16,323. Expansion into series In some 

continuous basis functions has both advantages and disadvantages. 

In our opinion, on the basis of our several years of experience In 

experimental RT reconstruction, one is most unlikely to find basis 

functions to describe adequately the variety of Ionospheric 

processes. In order to obtain a resolution similar to that of 

discrete division, the number of basic functions must be of the 

same order as the number of discrete elements. Besides, the matrix 

of this problem would be less rarefied with a large condition 



23 

number and the method itself is highly sensitive to errors In the 

unknowns coefficients connected with high-order basic functions. 

Note the convenience of applying the methods E30-32 3 to the 

phase-difference problem have obvious advantages over the phase 

one. On the whole it should pointed out that at present there is 

no one preferable method to solve similar tomographic problems. 

Various methods may be better depending on the conditions of the 

experiment. It can be concluded from this that it is necessary to 

perform extensive research to test various methods and find the 

optimal methods as applied to specific ray RT schemes. 

Here we shall not consider in detail the effects of the 

initial quess on the reconstruction results and make some brief 

remarks only. In simulations the uniform (in t) Ionosphere with 

different levels of the concentration maxima were used as an 

initial quess. Changes in Initial quessea produce small changes 

in the background level, but the spatial structure of the local 

extrema remains the same. The spatial structure reconstructed by 

the phase-difference RT method can be said to weakly depend on the 

initial quess. Generally speaking, the aim is to generate an 

assembly of solutions satisfying (14) with a given accuracy 

determined by experimental errors. Now we have developed such 

methods of generating such solution assembly (by varying the 

algorithms, Initial quess, etc.) which makes it possible to get an 

"assembly-averaged" solution and to estimate the reconstruction 

error distribution. This subject is, however, too extensive to be 

discussed in this paper. 
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3. Program <solve.for> 
This program solves inverse problem for Phase RT or 

Phase-difference RT by means of different algorithms: ART, MART, 
SIRT. It calculates errors of reconstruction in metric C and 12. in 
dependence of data errors and noises. 

Input parameters and files: 
Parameters < Answer, HP, NR, NREC> are similar to same parameters 
of program <MA.TRIC.FOR>. 
MOD„GRD - input file of model structure (program <INTEGR.POR>) 
XO.GRD - input file of initial guess (program <INTEGR.FOR>) 
X - initial guess 
Zmax - max value of initial guess 
Function <GUESS> - for initial guess 
RMAX, RM, Zmax, ZSM, B1, B2 - parameters for function <GUESS> 
XIST - model structure from input file <MOD.GRD> 
Pile <name_F.slv> containes the names of input and output files: 
line 1 - name of file with parameters of matrie (Pparam) 
line 2: namel - name of input file with matric 

name2 - name of input file with either Phase or TEC or Doppler 
(output files (Pint) from program <INTEGR.FOR>) 
name3 - name of output file with results of multiplications 
of input matric and reconstructed structure 

Npi - array of contants (2TUI) for each receiver 
/  er_n - level of noise in % 

Npi, er_n are introduced from the screen 
Nsolve - the method of solution, It Is introduced from the screen 
REL - array of relaxation parameter 
IMAX - max number of nonzero matric elements for each receiver 
AZ - array of nonzero matric elements for all receivers 
NST - array of corresponding column nonzero matric elements for 

all receivers 
LST - array of number of all rays which cross the 

corresponding discret of model (SIRT algorithm) from 
input file <ST.dat>, It Is similar to LST 
In program <MATRIC.FOR> 

Niter - number of iterations, It is introduced from screen 
Subroutine <DEFSYS> - solution of linear system equations for one 
ray. 
Subroutine <ercl2> calculates errors in metric G and L2 
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Subroutine <VMINM> calculates mln and max of array 
Function <RAN> calculates random values in CO,13 
Output files: 
Pile <RE0.GRD> - the reconstruction 
Pile <er-solv.dat> - errors of right items and reconstruction in 
metric C and 12 

Pile <Pout> - results of multiplications of the matric 
and reconstructed structure 

Execution 
177 solve.lor 
RUN 
solve.exp 

4. Analysis of the influence of data errors and noise3 on the 
reconstruction results« 

Before presenting the results on the influence of errors in 

determining the absolute phase on the reconstruction results, let 

us estimate the possibilities of determining the absolute phase. 

The phase method involves measuring a linear integral of the form 

(1) multiplied by constant of the order of unity [23, which is 

insignificant here. The basis for difficulties appearing in the 

determination of the linear integral (6) is that the phase value 

is very high. Por typical maximum values N " 1012 nf3, X~2m and a 

ray length in the ionosphere of the order of a thousand 

kilometers, $ is thousands of radian. Thus, the problem arises of 

isolating the "initial phase" $0 =2im, which must be added to the 

measured (within 2ic) A$ to obtain the complete phase $ = <p0 + Ac{> 

or the linear integral (6). To explain the difficulties arising, 

we will examine the possibility for isolating the initial phase in 

the presence of minor horizontal gradients. 

We represent the concentration in the form of an expansion, 

where the regular spherically-symmetric background NQ(r) is 

isolated N(r,a) = NQ(r) + N»(a - a^), N» (r) ■ -gg- a=0 ; 0^(0) is 
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the angle of Intersection of the Ionospheric maziraum by the ray; 

its vicinity makes the primary contribution to integral (6). In 

thi3 case, retaining the first terms of the expansion in terms of 

powers h/R in (6), we obtain 

^re            tg2«])  h 
(J) «  J N0(h)dh - fcre  J - N0(h)dh + 

COS(|) c COSlj) 

J N* (hXaChJ-o^Xih + ... (22) 
^e 

cose!) 

If there were no horizontal gradient, it might be possible to 

measure A4>(<|)) for various angles <j> In the range A<|> and obtain a 

system of linear equations from which It would be possible to 

determine X NQdh, J dh h N0/R etc. In other words, the known 

functional dependence on <|> would make it possible to Isolate the 

TEC and other moments of the function NQ(h). However, the presence 

of the term with. Nr greatly complicates the situation when its 

value becomes comparable to 2ic. We will estimate this term in the 

case of nearly vertical sounding |a|, \a±\   « 1; for this, in the 

integrand we replace a(h}~ affl by ^(h-h^J/CR+h) « t|>(h-I^)/R , 1^ 

is the height of the maximum; this asymptotic equation follows (at 

low angles) from (4): ij? <*    (a-ai)/(1~R/r) = (a-ai)(R+h)/h. 

Therefore, such methods for Isolating the constant component will 

be suitable under the condition 

,     N'(h)(h~hJ   . 
|XreA«|> J ™- dh j « 2ic. (23) 

R 

The typical values of dIUda In the presence of a "trough" in 

the ionosphere dWda   "   1013 m~3 radian-1, then (23) is only 

satified for A(|> « 10~2. However, at angles of fractions of a 

degree it Is practically impossible to determine the functional 

dependence on i|) In the prssence of noises. Inequality (23) applies 
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to the case of determination of the TEG along the vertical. The 

limitation on the horizontal gradient becomes even more strict in 

oblique sounding. A detailed analysis of a number of traditional 

techniques for determination the constant phase was provided in 

[333. These techniques include combined techniques Doppler and 

Faraday measurements simultaneously. The results of numerical 

modeling [333 showed that in the presence of a trough and 

characteristic gradients dWda ~ 1013 M~3 radian"1 the error in 

determination of the constants varies within 100-1000%! This 

agrees with estimate (23) and indicates that practical 

determination of the linear integral of the electron concentration 

is unrealistic in the presence of characteristic horizontal 

gradients in the ionosphere, while it is specifically this case 

which is of Interest for RT. 

There is one more method for determining the TEC in the 

presence of horizontal gradients [34-361 v/hich is based on 

recording of satellite signals at a pair of separated receiving 

stations. With data on the phases on a fixed bass, it is possible 

to compare the pair of linear equations with the nearly identical 

last terms of (22), i.e., the rays traveling to different 

receivers should intersect the ionospheric maximum at one point, 

likewise; a pair of equations for another moment In time leads to 

a system for the initial phase, in which the influence of the 

gradient term will be reduced. Otherwise, condition (23) is 

replaced by a less strict condition. However, it is impossible to 

completely eliminate the influence of horizontal gradient and 

subsequent derivatives on the result of determination of the 

initial phase by a such a method. The methods used [28-303 have an 

error by constant of about 10% or at least a few percents. Of 

course, it is always possible to propose a variant of the 
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recording method in which it is possible to determine the initial 

phase; but to do so, one must perform a multifrequency reception 

using an array of several receivers. 

Thus, by virtue of the nature of the phase measurements, it 

is inadvisable to reduce the problem of ionospheric RT to a 

problem in linear integrals. Determination of initial phase by the 

simplest recording systems leads to major errors, while the use of 

complex multipo3ition and multifrequency systems is not Justified 

here, since a different solution of the problem is possible by the 

phase-difference or Boppler measurements without determination of 

the initial phase. 

Here are the results of numerical simulation of the 

reconstruction of the ionosphere section for typical errors in 

finding the absolute phase (TEC). 1 simple model of the ionosphere 

with a trough ana a positive inhomogene it y at the left edge of the 

trough (model 1) is used for numerical simulation. It was assumed 

that satellite radio probing (h0=1000 tan) was performed at the 

frequencies 400 and 150 MHz (X=2m) and the receivers are located 

at the points with the coordinates a\pO Ion, T2=4T5 Km, n;3=1435km. 

A homogeneous ionosphere having no trough was used as a initial 

guess Mg.27. Fig.23 and Pig. 29 show the results of the 

reconstruction with the help of the phase RT with ±3% and ±5% 

accuracy in dßterming the TEG (which corresponds the error in the 

value of the absolute of 6TC and 10rc), the signs of the errors 

don't coincide for different receivers. These figures illustrate 

an extremely poor quality of reconstruction using the phase RT 

method with typical errors in determining the TEG: even the 

principal features of this simple model structure are not 

recovered and at the same time some heavy artefacts are present. 

Fig.30 shows the dependences of the reconstruction errors ö2 
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and ö^ on the error In determining the absolute phase (-2ran), 

on the number m. It can be seen that even errors of a few units Z% 

lead to a poor quality of reconstruction. It should be noted that 

if the SIRT algorithm is used, as it was done by other authors in 

[12,17,19], rather than the ART algorithm, the reconstruction 

results similar to those in Figs.28-29 will at first sight be 

better. They have a more regular, less "chaotic" character. The 

averaging SIRT algorithms result in the reconstruction being 

weaker dependent on measurement errors, i.e.1 the SIRT algorithms 

are less sensitive to small variations of data and therefore 

poorly reflect the fine structure of the reconstructed 

cross-sections. The SIRT algorithms can reconstruct the general 

background quite satisfactorily but often they fail to reveal even 

the existing trough if It is 20-40% smaller than the maximum. If 

the signs of the errors in determining the absolute phase are the 

same for all the receivers, the reconstruction quality is somewhat 

better. Nevertheless at the level of errors greater then 10%, the 

reconstruction quality is still poor. In Fig.31 we represent the 

result of reconstruction of the model 1 using the phase- 

difference RT method (the matrix was built by plecewise-planar 

approximation). One can easily see that the principal features of 

the Ionosphere section are reconstructed quite well. Numerical 

simulation of the reconstruction of various ionospheric structures 

carried out by us proved a noticeable advantage of the 

phase-difference RT method over the phase RT with typical errors 

in determining the absolute phase. 

Note another significant limitation of RT methods connected 

with deviation of receivers from the satellite flight plane. 

Similar deviation can also lead to significant errors In 

determining the absolute phase. Let us introduce the distance p in 
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the direction perpendicular to this plane, and the deviation angle 

tg7=p/L where L is the (tilted) distance to the satellite. Then It 

can easily be shown that the difference between the phase detected 

by the receiver in the flight plane and that detected bj receiver 

off the plane by p will be: 

Acf> « A.reNt(1/cos7 - 1)+ ta^stay <3N/dp> L
2/2       (24) 

L 
2   r  ON 

where <<3N/öp> = —=-   Idi -  the ray "averaged" 

transverse gradient of the electron density, N^. Is the TEG along 

the ray. The correction associated with changing tilted distance 

(the first summand in (24)) can easily be taken Into account. 

However, strong transverse gradients can noticeably change the 

phase, and for the phase method the following condition must be 

satisfied: 

% re siny <-|jp-> -g- « 2« (25) 

with the typical gradient <öN/ap>'v 105 m~4 and distances mom? 

this fact results in a strict limitation of p«10km. However 

this limitation was not taken into account in the experiments 

[17,19*20]. The sheme of experiment C1T3 seems to be strange and 

surprising because the Kallningrad-Riga-Lenlngrad track makes an 

angle of the order of 45° with the satellite trajectory 

projection. The angle between Kiruna-Oulu direction [19] and the 

satellite trajectory projection Is also greater then 40°. Note 

that the deviation of the receiver from the satellite plane only 

due to the Earth's rotation during the recording time of the order 

of 10 minutes can reach a hundred kilometers in the middle 

latitudes, which is quite significant for phase RT. For the 
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phase-difference RT it is only relative smallness of the change A<j> 

in respect to the basic phase that is required, which leads to the 

inequality <aNt/<3p>p « Nt that is practically always fulfilled. 

Consider the influence of the noise-type errors on the 

reconstraction results. The physical origin of such noises may be 

connected both with instrumental errors and external noises. 

Methods of phase-difference HP provide quite satisfactory results 

even with considerable errors in experimental data. Fig.32 shows 

the reconstruction by the method of phase-difference RT, but in 

this case the data with the noise level being 10% of maximum 

amplitude of Doppler data were used. One can see that random 

measurements errors Blightly affect the reconstruction results, 

almost there is no defference between Fig.31 and Fig.32. This 

conclusion is confirmed by fig.33 showing the dependence of the 

reconstruction error in the l2 metrics on the noise level. Even 

the 50% noise level changes the reconstruction error only 

slightly, which can be explained by mutual compensation and 

effective "averaging" of noises in the process of tomographic 

reconstruction.  In  the  phase-difference  RT  experiments 

[24,27-291 the noise level does not exceed a few percent. The 

results of the simulation also show that the influence of noises 

on the phase RT method is rather weak, because within the frame 

work of this model it is possible to consider weak noises within 

the 2TC-innternal only, which amounts to 1Q~3 in typical 

ionospheric conditions. Thus, for the phase RT method, errors in 

determining the "initial phase" are of paramount importance and it 

is difficult to avoid such errors due to numerous factors, such as 

horisontal gradients, deviations of receivers from the plane of 

recording, changes in the position of receivers owing the Earth's 

rotation, etc. 
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Table 1 
Direct problem errors 

&L 

Model 5 Model 2 Model 7 

Operator type 5oo ö2 5a>                52 öc ö2 

A 0.0344 0.0087 0.1241    0.0803 0.3160 0.2105- 

B 0.0147 0.0065 0.0933    0.0540 0.0500 0.0323 

0 0.0101 0.0071 0.0898   0.0534 0.0468 0.0303 

D 0.0005 0.0002 0.0449 0.0244 

Table 2 

- 

Inverse prob lem errors 

Model 5 Model 2 Model 7 
Operator type ,Joo 02 

ö» r'y. V;:
: 

ö2 

A 0.26 0,21 0.328    Ö,2£ö 0,407 0.327 

B 0.17 0r15 0.317    0,215 0,180 ,0.127. 

C 0.16 QrU 0.316   Q,21| 0,161 0.118 

b 0.16 0-16 0,080 0.073 

Table 3 
Inverse problem errors 

Model . 5 Model 2 Model 7 

Operator type Aco A2 A«>             A
2 

Aoo A2 

A 0.25 ? 0.22 0.421      0,256 0,660 0.362 

B 0.16 ? 0,14 0.339     Qr%ß PtTiQ 0.089 

C 0.15 ? 0.14 0.339     Ö.2g4 0,15g 0.075 

D 0.15 ? 0.13 0.338     0.224 Or 113 0.069 


