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AIMS AND SCOPE

The discipline of chaos has created a universal paradigm, a scientific parlance, and a mathematical tool for
grappling with nonlinear phenomena. In every field of the applied sciences (astronomy, atmospheric
sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences,
zoology, etc.) and engineering (aerospace, chemical, civil, computer, information, mechanical, software,
telecommunication, etc.) the local and global manifestations of Chaos and Bifurcation have burst forth in
an unprecedented universality, linking scientists heretofore unfamiliar with one another's fields, and
offering an opportunity to reshape our grasp of reality.

The primary objective of this journal is to provide a single forum for this multidisciplinary discipline
- a forum specifically designed for an interdisciplinary audience, a forum accessible and affordable to all.
Real-world problems and applications will be emphasized. Our goal is to bring together, in one periodical,
papers of the highest quality and greatest importance on every aspect of nonlinear dynamics, phenomena,
modeling, and complexity, thereby providing a focus and catalyst for the timely dissemination and cross-
fertilization of new ideas, principles, and techniques across a broad interdisciplinary front.

The scope of this journal encompasses experimental, computational, and theoretical aspects of'
bifurcations, chaos and complexity of biological, economic, engineering, fluid dynamic, neural, physical,
social, and 'other dyamical systems. This broad but focused coverage includes, but is not restricted to,
those areas of expertise provided by the members of the editorial board, whose composition will evolve
continuously in order to respond to emerging new areas and directions in nonlinear dynamics and
complexity. The philosophy and policy of this journal, as well as its commitment to readability and clarity,
are articulated in an Editorial in the first issue (vol. 1, no. 1, 1991).

INFORMATION FOR AUTHORS

1. International Journal of Bifurcation and Chaos is a monthly journal consisting of
* papers 4 - ^ )

While the majority of papers will consist of original contributions, the Journal also welcomes well-
written, incisive authoritative tutorials and reviews with long-lasting value to future researchers.

" letters to the Editor
These are mainly for the timely announcement of significant new results and discoveries
(phenomena, algorithms, theorems, etc.). Though concise, letter manuscripts must include details
and data so that referees can evaluate their validity and significance.

2. Once a paper or letter to the Editor is accepted for publication, the author is assumed to have transferred
the copyright for it to the publisher.

3. Essential color pictures will be published at no cost to the authors.

4. There are no page charges for this journal.

5. 50 complimentary reprints will be given to the author(s) of each paper. For a multi-author paper, these
will be sent to the author designated as the contact person. Orders for additional reprints may be made
on forms which will be sent along with the proofs.
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EDITORIAL

The Third EuroConference on Nonlinear Dynamics in Physics and Related Sciences was
held in Montecatini Terme, Tuscany, Italy, from 16-18 May, 1997, under the Auspices of a
HCM granting programme (EEC Contract N. ERB4050PL934039). The title of the Confer-
ence was: Control of Chaos: New Perspectives in Experimental and Theoretical Nonlinear
Science.

The aim of the workshop was to bring together researchers from different fields working

on control and synchronization of chaos and spatiotemporal chaos, in order to assess the
recent achievements in these areas, and to point out future directions.

The subjects covered in the conference include the control and tracking of unstable
periodic orbits in experimental systems, the synchronization of chaos for secure communi-
cation systems, the control of chaotic laser dynamics, the stabilization of unstable periodic
patterns in extended dynamical systems, the control of chemical reactions, and the targeting
of chaotic trajectories to desired states.

The control of chaos refers to a process wherein a chaotic dynamics is slightly perturbed
in order to stabilize some of the unstable periodic orbits which are embedded within the
chaotic attractor. This process allows us to use a single chaotic system to produce an
infinite variety of periodic behaviors, with great flexibility in switching from one to another.
Chaos synchronization refers to a situation where two identical chaotic systems starting
from different initial conditions are kept synchronized by means of the transmission of a
signal. Finally, targeting of chaos is a process wherein tiny perturbations applied to the
system are able to steer the trajectory emerging from a given initial condition to any desired
point of the attractor in a finite (and usually very short) time.

In the last few years, these subjects have attracted more and more interest within the
scientific community due to the extreme interdisciplinary nature of these research fields. For
instance, applications of chaos synchronization range from building a secure communication
system to the problem of bacterial replication. On the other hand, control of chaos has
been experimentally tested in different dynamical situations, such as in laser dynamics, in
electronic circuits, in the dynamics of the magnetoelastic ribbon, in the control of cardiac
timing, in the control of chemical waves.

All the different achievements have faced different aspects of the same problem, and in
many cases different methods have been used to control different dynamical situations.

More than 60 participants of the conference have profusely discussed these subjects
from diverse points of view: from applied mathematics, to engineering, to laser physics,
to chemistry, to electronics. We believe that the Montecatini Workshop has strongly con-
tributed by bringing together different skills and expertises, and emphasizing the common
achievements and the future directions of the field.

The present special issue summarizes the discussion that took place during the confer-
ence, by reporting most of the oral and poster presentations. This special issue also contains
two tutorial papers, which are intended for the nonexpert readers as an introduction to the
field.

We gratefully thank all colleagues who helped referee the papers in this issue. Their
comments, suggestions and remarks have significantly improved the quality of the presenta-
tion of the reported papers. We would like to thank the EU representative, and all colleagues
who chaired the different sections of the conference, who helped in putting up a successful
and fruitful workshop. Special thanks also go to all the participants of the workshop and
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to all the contributors to this special issue. We are particularly indebted to the following
institutions for their contribution to the success of the conference:

- United States Air Force European Office of Aerospace Research and Development
(E.O.A.R.D.)

- Istituto Nazionale di Ottica (Florence, Italy)
- Gruppo Nazionale di Elettronica Quantistica e Plasmi del Consiglio Nazionale delle

Ricerche (G.N.E.Q.P.)

F. T. Arecchi
S. Boccaletti

M. Ciofini

G. Grebogi
R. Meucci
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Controlling chaos is a process wherein an unstable periodic orbit embedded in a chaotic attractor
is stabilized by means of tiny perturbations of the system. These perturbations imply goal
oriented feedback techniques which act either on the state variables of the system or on the
control parameters. We review some theoretical schemes and experimental implementations for
the control of chaos.

1. Introduction that the reading of this paper may help researchers
in entering this field, and in getting their bearings

Controlling chaos consists in perturbing a chaotic
among the different methods.system in order to stabilize a given unstable pe- In Sec. 2 we report the first control method,

riodic orbit (UPO) embedded in the chaotic at- which was proposed by Ott et al. [1990] (OGY)
tractor (CA). The UPO's constitute the skeleton of and which consists in slight readjustments of a
chaotic dynamics, which, indeed, can be seen as a control parameter each time the trajectory crosses
continuous irregular jumping process among neigh- the Poincar6 section (PS). Since a generic UPO is
borhoods of different periodic behaviors [Auerbach mapped on the PS by an ordered sequence of cross-
et al., 1987]. Thus, control of chaos implies the ex- ing points, OGY is able to stabilize such a sequence
traction of desired periodic motions out of a chaotic whenever the chaotic trajectory visits closely a
one, through the application of judiciously chosen neighborhood of one of the saddle PS points. The
small perturbations. The process allows to ex- time lapse for a natural passage of the flow within
ploit a single dynamical system for the production the fixed neighborhood (hence for switching on the
of a large number of different periodic behaviors, control process) can be very large. To minimize
with an extreme flexibility in switching from one such a waiting time, a technique of targeting has
to another, so that the single system can carry out been also introduced [Shinbrot et al., 1993].
different performances with different yields. Another technique to constrain a nonlinear sys-

The aim of this paper is to summarize some the- tem x(t) to follow a prescribed goal dynamics g(t)
oretical and experimental implementations of the [Plapp & Huebler, 1990] is based upon the addition
above concepts. It is important to point out that to the equation of motion dx/dt = F(x) of a term
the body of literature on this topic is very wide, U(t) chosen in such a way that Ix(t) - g(t)l -- 0
and that the methodologies described here are by no as t -- co. Plapp and Huebler choose U(t) =
means the only ones valid. Nevertheless, we hope dg/dt - F(g(t)). The method provides robust
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1644 F. T. Arecchi et al.

solutions, but in general the perturbation U would 1991; Petrov et al., 1993], the optical fiber laser
not be a small portion of the unperturbed dy- [Bielawski et al., 1993], the CO 2 laser with modula-
namics F. tion of losses [Meucci et al., 1994], and the lead-salt

In other papers the effects of periodic [Lima diode laser [Chin et al., 1996].
& Pettini, 1990; Braiman & Goldhirsch, 1991; Finally, we discuss the experimental imple-
Azevedo & Rezende, 1991] and stochastic [Fahy & mentations of the "washout filter" technique of
Hamann, 1992] perturbations is explored in produc- Sec. 4. The method has provided successful experi-
ing dramatic changes in the dynamics, which even- mental applications both on autonomous [Meucci
tually may lead to the selection of some UPO, even et al., 1997] and nonautonomous [Ciofini et al.,
though they cannot be considered in general as goal 1997] chaotic CO 2 laser systems.
oriented. This parametric perturbation avenue is
explored in several companion papers of this issue.

Section 3 presents a method based upon the 2. The OGY Control of Chaos

continuous application of a delayed feedback term In this section we summarize the OGY method for
in order to force the dynamical evolution of the sys- the control of chaos [Ott et al., 1990]. Even though
tem toward the desired periodic dynamics whenever such method holds regardless of the number of pos-
the system visits such a periodic behavior closely itive Liapunov exponents, for simplicity, we refer
[Pyragas, 1992]. to a continuous-time chaotic dynamical system in

Section 4 describes a frequency-domain control a three-dimensional phase space, thus with a single
technique called "washout filter" [Tesi et al., 1996, positive Liapunov exponent. This is ruled by the
Basso et al., 1997], based upon the insertion of a differential equation
selective filter within a feedback loop.

Section 5 introduces the method of adap- dx = F(x, p), (1)
tive recognition [Arecchi et al., 1994] and control dt
[Boccaletti & Arecchi, 1995, 1996] of chaos. The where x is a D dimensional vector (D 3), and p is
method has later been successfully applied to chaossynchronization [Boccaletti et at., 1997a], targeting a control parameter that we assume to be accessible

nchra to n [Boccaletti et a l., 1997b], filtering noise for adjustments. The goal is to temporally program
of chaos [Boccaletti et al., 1997b], such adjustments so as to achieve stabilization of
from chaotic data sets [Boccaletti et al., 1997c], some UPO embedded within the chaotic attractor.
and eventually to the quenching of defects in an Furthermore, we imagine that the functional form
infinite dimensional dynamical system [Boccaletti of F is not known, but that experimental time se-
et al., 1997d]. The technique consists of a first step of s s calarkn o mpoent t t can imese-
wherein the unperturbed features of the dynamics ries of some scalar component z(t) can be measured.
are extracted, and in a second step in which pertur- By means of time-delay coordinates, and selecting
bations are done for the control of desired periodic an embedding ssibe contructorbits, a M ± 1 dlimensional embedding space containing

orbits.the vectors of the form
In Sec. 6 we review a few implementations of

control of chaos in several experimental situations. X(t) = [z(t), z(t - T), z(t - 2T),..., z(t - MT)].
The first experimental application of OGY was the
stabilization of periodic orbits of a chaotic gravi- If one is interested in periodic orbits, one shall
tationally buckled, amorphous magnetoelastic rib- use X to obtain a surface of section, wherein
bon [Ditto et al., 1990]. OGY inspired an eas- any continuous-time-periodic orbit emerges as a
ily realizable experimental technique called OPF discrete-time orbit cycling through a finite set of
(occasional proportional feedback), and demon- points. The requirement is that the embedding
strated in a chaotic diode oscillator [Hunt, 1991]. space has as many dimensions as there are coordi-

Many other experimental systems have pro- nates of the point (M = D - 1), so that our surface
vided successful examples of chaos control. We re- of section is, in the present case, a two-dimensional
call among the others the thermal convection loop surface. Let us now suppose that the control pa-
[Singer et al., 1991], the yttrium iron garnet os- rameter p can be varied in a small interval about
cillator [Azevedo & Rezende, 1991], the optical some nominal value po (in the following, and with-
multimode solid-state laser [Roy et al., 1992], the out loss of generality, we take po = 0), ranging
Belouzov-Zabotinsky chemical reaction [Peng et al., within the interval p. > p > -p.. Again, let us
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suppose that the experimental measurement con- This way, a stable periodic orbit is obtained
tains many points in the surface of section for p = 0. out of the chaotic evolution of the dynamics. As
By denoting such points as 1, 2, 3,. -- , k, then we mentioned, the control of chaos gives flexibility.

n are in general the coordinates at the nth inter- By turning the small controlling perturbations off,
section of the surface by the orbit X(t). A common one can switch the time asymptotic behavior from
choice of the surface is z(t - MT) = constant, so one periodic orbit to another. In some situations,
that n - [Z(tn),..., Z(tn - (M - 1)T)], t = tn de- where flexibility offered by the ability to do such
noting the instant of the nth intersection, switching is desirable, it may be advantageous to

Finally, let us denote by = & =_ 0 a given design the system so that it is chaotic. In other sit-
fixed point, by A, and A, respectively the stable and uations, where one is presented with a chaotic sys-
unstable eigenvalues of the surface at F, by e, and tem, the method may allow one to eliminate chaos
e, the unit vectors of the corresponding experimen- and achieve great improved behavior at relatively
tally determined eigenvectors. When a change in p low cost. The OGY ideas can also be applied to
from p = 0 to some other value p = p is done, then stabilize a desired chaotic trajectory, which has po-
the fixed point coordinate will shift correspondingly tential applications to problems such as synchro-
from 0 to some nearby point F(p). For small p the nization of chaotic systems [Lai & Grebogi, 1993],
following approximation holds conversion of transient chaos into sustained chaos

[Lai & Grebogi, 1994], communication with chaos
S F(P)  1 [Hayes et al., 1993, 1994; Rosa et al., 1997; Bollt

- P - P et al., 1997], and selection of a desired phase [Nagai

which allows an experimental estimate of G. On & Lai, 1995].

the surface and near = 0, we can describe the
dynamics with the linear map 3. The Pyragas' Method

n+l - F(P) - M. [ n - F(P)] An alternative time-continuous method [Pyragas,
where M is a 2 x 2 matrix. Using &F(P) -_ p, the 1992] considers a dynamical system ruled by a set of
above equation reads unknown ordinary differential equations, and hav-

ing some scalar variable accessible for measure-
fn+l - PnG + [Aeuf + Aesfs] •[n --pniG] (2) ments. Furthermore, the system possesses at least

one input accessible for external forcing. The above
where f, and fu are controvariant basis vectors de- assumptions are met by the following model
fined by f, 'e = f ' e, = 1, f,'eu = f - e , - 0.
Let us assume n be located within a neighborhood dy - dx
of the desired fixed point. The control method con- dt = P y x) + F(t); d-- Q(y, x) (3)
sists in selecting Pn so as n+ be put onto the stable where y represents the output scalar variable, x the
manifold of = 0, which implies to select Pn so that remaining hidden variables of the dynamical sys-
fu - n±i = 0. When n+i falls on the stable mani- tem, F(t) is an input signal which disturbs the dy-
fold of the desired fixed point, the parameter can be namical evolution of the variable y, and P and Q
set again to p = 0, because, by subsequent natural are two nonlinear functions.
evolution, the dynamics will approach the desired Let us imagine that system (3) produces chaotic
fixed point at a geometrical rate A. dynamics for F = 0. In general, a large num-

Dotting (2) with fu, we obtain ber of the UPO's within a chaotic attractor can
A. fu 'n be obtained from a single scalar variable through

Pn u - 1 fuG the standard method of delay coordinates. There-

fore, one can extract from the measured variable
which can be used provided the magnitude of the y various periodic signals of the form y = yi(t),
right-hand side be smaller than p,.. In the oppo- yi(t + T) = yi(t), where T represents the period of
site case, Pn is set to 0. As a consequence, the the ith unstable periodic orbit.
perturbation is activated only when n is located To achieve stabilization of the selected UPO,
within a narrow strip n < , = fu " 'n and let us design an external feedback line which rein-
* =p.I(l - AIu')G ful. jects into the system the difference D(t) between
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the signals y(t) and y(t - T) as a control signal: characterized by a certain transfer function C(s):

F(t) = K[y(t - 7) - y(t)] (4) sx 1 = F(xl, X2) - XlC(S) "

where the weight K has to provide a negative feed- The above equation can be also rewritten as
back (K < 0) and r represents a time delay. Stabi-
lization of the ith UPO is achieved when r equals x1 = F(xi, X2)
the period Ti. s + C(s)

The method can be extended by adding infor- In order to stabilize a given orbit with pulsation
mation on previous periods, that is, replacing (4) Q introducing a minimal perturbation, C(s) should
with [Bleich & Socolar, 1996] vanish for w = 0 and w = Q (which implies that the

C k ) feedback does not alter the fixed point and the limit
F(t) = K yt - (1 - R) E R-(t - k ) cycle solutions of the unperturbed system). More-

k=(5) over, depending on the route to chaos, it is useful to
choose C(s) so that it presents a maximum in cor-

with 0 < R < 1 a suitable real parameter, and k respondence to the frequency characteristic of the
integer. transition to chaos. Whenever the above conditions

Notice that use of the perturbations (4) or (5) are fulfilled, the only frequency component which is
transforms the Ordinary Differential Equation (3) not affected by the feedback is that of the cycle to
to a Delay Differential Equation. This requires be stabilized, while all the other components are
some warning. As a delayed dynamical system is sent back as a correction signal.
richer than an instantaneous one, care should be For example, in the case of the subharmonic
put in stabilizing a true UPO of the original unper- route to chaos, the filter structure for stabilizing the
turbed system, rather than a spurious UPO intro- period-1 (fundamental frequency f = Q/27r) orbit
duced artificially by the delay. can be modeled as

s(s 2 + 2 )

Control of chaos can be achieved by negative feed- 4 )back of suitable spectral com ponents of a system w e e 0 4 - . n st eg i a t r h
variable [Meucci et al., 1996; Tesi et al., 1996; Basso wh e and s the a trnTh
et al., 1997; Ciofini et al., 1997]. The set up con- amplitude and phase responses of the above trans-
sists in a feedback loop wherein all unwanted fre- fer function are shown in Fig. 1 for f = 110 kHz;

quencies present in the chaotic spectrum are trans- the maximum of C(s) is set approximately at Q/2.

mitted as correction signals by means of a selective We add some remarks on the applications to

filter ("washout filter"). In this way, the system is real experimental conditions.

allowed to oscillate at the only frequency which is (i) This control scheme can be in principle very
not fed back, namely, that of the unstable orbit to fast; indeed, the feedback loop can be entirely
be stabilized. This control scheme is very easy to be realized by analog electronics.
implemented, besides having the relevant advantage (ii) The control is also very robust since it is inde-
of being robust and fast.Consider a dynamical system modeled by ordi- pendent of parameter fluctuations.
nary differential equations in the form (iii) Regarding the possibility of stabilizing more

complex orbits (i.e. a period-2 orbit or a
X1 = F(xi, X2) (6) torus), one has just to design a different fil-

F2 = G(xi, x 2 ), ter C(s), with several zeroes corresponding to
F and G being a linear and a nonlinear function, all the frequency components of the cycle to be

respectively. The forthcoming considerations still stabilized.

hold in case the system is nonautonomous. Consid- (iv) The basic structure of Eqs. (6) (called Lur'e

ering a stationary periodic regime where each vari- form) is peculiar of dynamical systems widely

able can be approximated by Xk - eSt (s = iw), let studied in the literature, such as the Chua cir-

us introduce in the first equation a suitable nega- cuit, the Rbssler model and the Duffing oscil-
tive feedback loop for x, through a "washout filter", lator [Genesio et al., 19931.
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Fig. 1. Amplitude and phase response curves of the washout filter as a function of w.

As a final consideration, we observe that Here 7n-+l is the minimum of all -_(') corresponding
this method presents several similarities with the to the different i, and defined by the rule
time-delayed autosynchronization method [Pyra-
gas, 1992; Basso et al., 1997], despite the conceptual Wn(l Tr((1 -tanh(oAi(tn+l))). (9)
difference between these two techniques. In the fre-
quency domain, the Pyragas' method can be seen Equation (9) arises from the following consider-
as a negative feedback loop with a high-pass filter ations. To obtain a sequence of geometrically regu-
whose amplitude response goes to zero at the fun- lar 5xi, we shrink (stretch) the time intervals when-
damental frequency Q and for all its multiples nQ. ever the actual value of 5xi is larger (smaller) than
In this way, the stabilized limit cycle is exactly the the previously observed one. The hyperbolic tan-

same as that of the unperturbed system since it gent function maps the whole range of c-Ai into the

contains all the harmonics, while the perturbation interval (-1, +1). The constant a, strictly positive,
vanishes. is chosen in such a way as to forbid T(i) from going

to zero. It may be taken as an a priori sensitivity,
however, a more sensible assignment would consist

5. The Adaptive Algorithm in fixing a by a moving average procedure, looking

at the unbiased dynamical evolution for a while andLet us consider a dissipative dynamics ruled by then taking a ci value smaller than the reciprocal of

Eq. (1). The adaptive control technique consists the maxima o rerde tha te spa o

in two successive steps, the first one, in which the tha m ving senstiit is mat wenever

unperturbed features of the dynamics are extracted

[Arecchi et al., 1994] and the periods of the UPO's the adaptive recognition is specialized to the mea-
surement of a periodic orbit [Arecchi et al., 1994].are measured, and the second one whereby adaptive We thus obtain a sequence of observation times

perturbations are applied in order to stabilize the stating o ti

selected UPO [Boccaletti & Arecchi, 1995, 1996]. starting from to

We consider an observer "blind" to the main co- to,tl =to + i, t 2 = tl +r,..., tn+1 = tn + Tn, ...

ordinate position xi (i = 1,..., D) and interested (10)
only in its variation

i(tn+1) = Xi(tn+l) - Xi(tn), (7) corresponding to which the variations of xi (tn) can

be reduced below a preassigned value.

where tn+1 - tn = Tn is the nth adjustable interval, The observations performed at these times pro-

to be specified. In order to assign rn+l we consider vide a "regularized" window, and the time sequence

the local variation rate (10) now includes the chaotic information which was
in the original geometric sequence x(t). The se-

Ai(t+I) n Xi(tn+l) (8) quence (10) contains the relevant information on
T n I 6xi(tn) " ( the dynamics, and we can characterize chaos as
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Fig. 2. Return maps Tn+l versus *-r for (a) Ro4 and (b) Ro4 with an additional 1% white noise. Initial conditions: x(0) = -20,
y(O) = z(o) = 0, w(o) = 15. g = 0.000048.

follows. Since in Eq. (9) JoAj Il < 1, then two suc- n(k). In fact, the chaotic dynamics steers the phase-
cessive i-n must be strongly correlated. As a result, space trajectory toward neighborhoods of different
even though the set of T may be spread over a UPO's. As the trajectory gets close to an UPO of
rather wide support, the return map Tn+1 versus Tn period T, temporal selfcorrelation is rebuilt after

must cluster along the diagonal. The residual devi- T and the distribution of -r includes windows of

ations, averaged over many successive n's, provide correlated values appearing as minima of 77 versus

the decorrelation trend, and hence yield an accu- k around kj = Tj/(r), (T) being the average of the

rate assignment of the maximum Liapunov expo- -distribution.

nent. However, presence of large deviations from To give an exemple, we report in Fig. 3 the

the diagonal denotes an uncorrelated perturbation. 77-k plot for Ro4, from which one can extract the

This may be some additive noise, which eventually different UPO's periods looking to the minima of

can be filtered out, thus extracting the determinis- the q curve. In fact, during the observation, the

tic dynamics [Boccaletti et al., 1997c].
In the following we will summarize the ap- 16

plication of such a method to the Roessler four-
dimensional (Ro4) model [Roessler, 1979] for a x10-4

vector state x - (X, x2, x 3 , x4 ). For particular 12
initial conditions (xi(0) = -20, x2(0) = x 3 (0) = 0, 12
x4 (0) = 15) and control parameters, Ro4 under-
goes a hyperchaotic dynamics with two positive
Liapunov exponents. 77 8

Figure 2 reports the return map of the T, for
Ro4 and for Ro4 with 1% noise.

Since we are interested in stabilizing periodic 4.

dynamics, we need to extract the periods of UPO's
embedded within the CA. For this purpose, instead
of considering the single step map, we construct the 0 ............................ . ...
maps -rn+k versus -r, k = 1, 2,... and we plot the 0 100 200 300 400 500
r.m.s. 7(k) of the point distribution around the di- k
agonal of such maps as functions of the step interval

Fig. 3. 77-k plot for Ro4 attractor. Initial conditions and
k. For chaotic dynamics, temporal selfcorrelation control parameters as in the text. The recognition task has

lasts only for a finite time, hence one should ex- been performed with g = 0.01. Vertical axis has to be multi-

pect to obtain a monotonically increasing function plied for 10-4.
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time intervals are changing, and a more rigorous We keep Eq. (9) and the choice of the minimum
determination of the period is provided by mini- for the updating process of r's. Defining U(t) as
mizing a suitable cost function in the vicinity of the vector with ith component (constant over each
each minimum of the 77 curve [Boccaletti & Arecchi, observation time interval) given by
1995].

Once the periods Tj (j = 1, 2,...) of the UPO's 1
have been measured, stabilization of each one can nnn+(
be achieved when the system naturally visits closely
phase space neighborhoods of that UPO. For a we add such a vector to the evolution equation,
nonauthonomous system, a period T may corre- which then becomes
spond to many degenerate UPO's. In this case, se-
lection of the desired one can be achieved by the dx
study of the topology of all UPO's corresponding d F(x, p) + U(t). (14)
to the same period and by switching-on the con-
trol task when the system is shadowing the selected Notice that the A's given by Eq. (12) track the
UPO. Several topological approaches to the UPO's rate of separation of the actual trajectory from the
detection have been developed [Cvitanovic et al., desired one. Indeed, A negative means that locally
1988; Gunaratne et al., 1989; Mindlin et al., 1990; the true orbit is collapsing into the desired one and
Tufillaro et al., 1990]. hence the actual dynamics is shadowing the desired

The control procedure is done by use of the UPO, while A positive implies that the actual tra-
following modified algorithm. At each new ob- jectory is locally diverging away from the desired
servation time tn+1 = tn + rn and for each com- one and control has to be performed in order to
ponent i of the dynamics, instead of Eq. (7), we constrain the orbit to shadow the desired UPO.
evaluate the differences between actual and desired As a consequence, contraction or expansion of
values T-'s now reflects the need to perturb the dynamics

more or less robustly in order to stabilize the desired
Jxi(tn+l) = Xi(tn+l) - xi(tn+1 - Tj), (11) UPO. This appears as a weight to the correction of

and the local variation rates A's now read Eq. (13), which, once a given T has been chosen
by the operator, is selected by the same adaptive
dynamics.

log . (12) Once again, the introduced adaptive weighting
Tn i(tn)-Xi(tn - T) procedure in Eq. (13) assures the effectiveness of the

80 40--
chaotic period 8

X 2  X,

40 0

0 40

-40- -80

a) 4, b)- 8 0 ' . . . ................. ....... 1 -1 2 0 .. .. .. ... . .. .. .. .. .. .
-120 -80 -40 0 40 0 100 200 300 400

xl time

Fig. 4. (a) (x1, X2) projection of the phase space portrait for the controlled period-8 of Ro4 attractor. Control task has been
performed with period-8 extracted from Fig. 3 and g = 10- 5. (b) Time evolution of the first component xi of Ro4 before and
after control. Arrows indicate the instant at which control task begins.
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Fig. 5. (a) Temporal evolution of the first component of the additive controlling term U1 during the control of period-8 of
Ro4 and (b) temporal evolution of the uncontrolled dxl/dt. The adaptive correction term is between two and three orders
of magnitude smaller than the natural evolution of the dynamics. Same stipulation for controlling task as mentioned in the
caption of Fig. 4.

method (perturbation is larger or smaller whenever reversible/ changes of its Young's modulus when
it has to be) as well as the fact that the additive small magnetic fields are applied. It is clamped at
term U is much smaller than the unperturbed dy- the base, yielding a free vertical length greater than
namics F. the Euler buckling length, thus providing an initial

In Fig. 4 we show the control of period-8 of Ro4. buckling configuration. The ribbon is placed within
Figure 5 reports the perturbation U1 (t) and the three mutually orthogonal pairs of Helmoltz coils,

unperturbed dynamics G1 for the Ro4 model dur- allowing to compensate for the Earth's magnetic
ing the control task of period-8, in order to show field. Finally, a uniform vertical magnetic field is
that the former is between two and three orders of applied along the ribbon. In this configuration, the
magnitude smaller than the latter as expected by Young's modulus of the ribbon is varied due to the
the above discussion. applied vertical magnetic field which has the form

Notice that the limit o = 0 of the above al- H =Hc + Hac cos(27rft). Both amplitudes have
gorithm recovers [Pyragas, 1992]. Choosing a /2 been set typically in the range 0.1-2.5 Oe. A mea-
0 implies an adaptive nature of the forcing term surement of the curvature of the ribbon near the
[Eq. (13)] which is inversely proportional to the time base is provided by a sensor.
intervals and hence is weighted by the information The experimental data consist in time series
extracted from the dynamics itself. voltages V(t) acquired from the output of the sensor

Applications of this method have been already and sampled at the drive period of the ac magnetic
reported in the introductory section. field (i.e. at times tn = n/f). The sampled voltages

are considered as iterates of the map X, = V(tn)
and the control theory in Sec. 2 is applied, taking as

6. Review of Some Control control parameter the amplitude of the continuous
Experiments component of the magnetic field Hdc. Selecting Hac,

The OGY method described in Sec. 2 has found ap- Hdc and f so as to produce chaotic dynamics, con-
plications in several experimental situations. As an trol of period-1 UPO is achieved for over 200 000
example, we herewith report the first experimental iterates (approximately 64 hours) with maximum
realization of chaos control which was done in 1990 perturbation of about 1% of the unperturbed con-
by Ditto et al. [1990]. trol parameter. With the same setup, control of one

In this case, the theoretical background of of the period-2 UPO is also achieved.
Sec. 2 has been applied to an experimental system A modification of the OGY method, called oc-
consisting of a gravitationally buckled, amorphous casional proportional feedback (OPF) has been used
magnetoelastic ribbon. The ribbon exhibits large to stabilize unstable orbits in a chemical system
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[Peng et al., 1991, Petrov et al., 1993] and in a diode a window of selected offset and width, and a signal
resonator [Hunt, 1991]. This technique consists proportional to the deviation from the center of the
in feeding back deviations of the chaotic variable window is applied to perturb the injection current of
within a specified window from a reference point to the pumping laser diodes. With this configuration
perturb a control parameter. The chemical experi- period-i, -4 and -9 limit cycles have been success-
ment deals with the Belousov-Zhabotinsky reaction fully stabilized with relative perturbation amplitude
carried out in a continuousflow stirred-tank reac- less than 10%.
tor. The flow rate p of the reactants into the tank The control scheme proposed by Pyragas
ultimately determines whether the system shows (discussed in Sec. 3) has been first experimentally
steady state, periodic and chaotic behaviors. The demonstrated in an electronic circuit (Gauthier
control algorithm takes advantage of the predictable et al., 1994] and in a modulated laser [Bielawski
evolution of the chaotic system in the vicinity of a et al., 1994]. In the first experiment, the setup is
fixed point in the next-amplitude return map of a similar to that reported by Hunt, the only differ-
suitable variable A (dimensionless concentration). ence being that the resonator has been modified to
The position of the period-1 fixed point is given by operate at higher frequency (10 MHz). The con-
theintersection of the map with the bisectrix, where trol is derived by directing half of the voltage sig-
An+l = An = A,. The map can be shifted to tar- nal (proportional to the resonator current) directly
get the fixed point by applying a perturbation to the into one input of a summing amplifier, while the
bifurcation parameter p according to the difference other half, delayed and inverted, is sent to the sec-
between the system state and the fixed point ond input. The delay line consists of a cable with

An - As length precisely adjusted so that it provides a delay
Ap r T corresponding to the period of the desired UPO.

The control signal is reinjected into the resonator as
where g is a suitable constant. In an analogous an additive perturbation of the driving voltage. In
manner (changing A, and g) period-2 and period-4 this way, a close reproduction of the control Eq. (4)
unstable orbits have been stabilized, is achieved, allowing stabilization and tracking of

The electronic experiment consists of a p-n period-i, -2 and -4 unstable limit cycles.
junction rectifier in series with an inductor. The The second experiment deals with a CO 2 laser
system exhibits the period-doubling route to chaos with cavity loss modulation, obtained by driving
when driven with an increasing sinusoidal voltage, an intracavity electro-optic crystal with an external
The current through the diode provides a conve- sinusoidal voltage. In this case, the chaotic variable
nient chaotic variable; if the peak current In falls is the infrared (10 pm) laser light, monitored by a
within a given window, the driving voltage is am- fast photovoltaic detector. The detector voltage is
plitude modulated with a signal proportional to the used to modulate a laser diode emitting at 845 nm
difference between Jn and the center of the window, so that a time delayed voltage can be obtained by
By changing the level and the width of the window, propagating the laser diode light in a long fiber and
or the gain of the feedback signal, several unstable detecting it at the end. Finally, the difference be-
orbits are stabilized, up to the period-23. tween the CO 2 laser intensity and its delayed ver-

The OPF has been also applied by Roy et al. sion is added to the modulation signal after suitable
[1992] to an autonomously chaotic multimode laser, amplification. With such a configuration the unsta-
that is, a high dimensional system for which the ble period-1 orbit is stabilized and tracked along a
chaotic attractor is not characterized by a low- wide range in the bifurcation diagram.
dimensional map. The experimental setup con- The experimental implementation of the con-
sists of a diode-laser-pumped solid state Nd-doped trol scheme based on the washout filter has been
yttrium aluminum garnet (Nd:YAG) laser contain- tested in the chaotic regimes of both a nonau-
ing a KTP doubling crystal. The source of chaotic tonomous system [Meucci et al., 1996; Ciofini et al.,
behavior in this laser is the coupling of the longitu- 1997] (a CO 2 laser with externally modulated
dinal modes through the nonlinear process of sum- losses) and of an autonomous system [Meucci et al.,
frequency generation. This process destabilizes the 1997] (a CO 2 laser with intensity feedback), obtain-
relaxation oscillations which are normally damped ing stabilization and tracking of different unstable
in a system without the intracavity KTP crystal. periodic orbits, with perturbation amplitudes of the
The total laser output intensity is sampled within order of few percent.
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The experimental setup consists of a single characteristic curves in Fig. 1 have been closely re-
mode CO 2 laser with an intracavity electro-optic produced by a two-stage passive filter (a band-pass
crystal which can be driven by an external voltage stage combined with a Notch stage) entirely realized
V(t) to modulate the cavity losses k. In the nonau- by analog circuitry (Fig. 6).
tonomous case, the driving voltage V(t) is a sinu- Figure 7 reports the experiment. Figure 7(a) is
soidal signal, so that the cavity loss parameter k be- the chaotic laser oscillations (m = 0.18) observed
comes: k = ko[1+m sin(27rft)], where f = 110 kHz
is the modulation frequency and the modulation
depth m, proportional to the amplitude of V(t), L2
is the control parameter. By increasing m the sys- R1
tem undergoes the transition to chaos through a se-
quence of subharmonic bifurcations. The period-1
orbit is stable up to m - 0.1, and a further increase v RE
of m drives the system to period-2 and period- VIN L1  C 1  C 2  R 2  VOUT

4 orbits, followed by the first chaotic region and,
finally, by a period-3 stable solution. The con- 0

trol was implemented with a negative feedback loop Fig. 6. Electronic scheme of the washout filter: R1 = 1 kQ,
where the laser intensity, revealed by a fast detector, L1 = 6.5 mH, C= 0.1 nF, R2 = 6.7 kQ, L2  12.4 mH and
is first filtered and then subtracted from V(t). The C2 = 0.2 nF.

1.0 1.0
V) ) In

:30
_ 0.5 0.5

0 0

0.0 A.1L .0 50 100 150 0 50 100 150
Time (u.s) Time (u.s)

40 40
(b)

E 20 E 20-

0-20 0-20

-40-
0 50 100 150 0 50 100 150
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Fig. 7. Experimental results: (a) chaotic laser intensity without control and (b) corresponding control signal; (c) and (d)
represent the same signals as (a) and (b), respectively, but in the case of activated control.
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with open control loop, while Fig. 7(b) is the cor- if) 1.0
responding control signal. The same signals are re- ~
ported in Figs. 7(c) and 7(d), respectively, but in -
the case of a closed control loop. The control signal ,
amplitude of Fig. 7(b) provides a 1.25% perturba-
tion of the driving signal. This result confirms that .oo
the method allows stabilization of unstable orbits r0 05 00000000

slightly different from those embedded in the un- 0. 0 000 / ,

perturbed system. 6,
Following the above criteria, a second filter has . •0

been prepared allowing stabilization of the period-2 l) 0 Ii

limit cycle, and both filters have been used to track .. l(I)
the corresponding trajectory along the whole bifur- -a-".
cation diagram. The unperturbed bifurcation dia- . 0.0
gram has been measured by increasing the control 0.05 0.15 0.25 0.35
parameter m at fixed steps, and processing the laser m
intensity in order to extract the maxima (Fig. 8).
The same measurements have been repeated after (a)
the insertion of the feedback loops with the two fil-
ters. Figures 8(a) and 8(b) show the superposition
of the unperturbed bifurcation diagram (dots) with U)0
the tracked period-1 and period-2 orbits (circles), :t'-
respectively. In both cases the tracking has been -:
achieved without any readjustment of the gain of 40*

the feedback loop over the whole explored range,
and with relative perturbation amplitudes less L

than 3%.
In a different experiment, the control has been "

tested on a CO 2 laser made chaotic by an intensity >, + iI
feedback. In this case the system is autonomous, t '
since the modulator voltage V(t) carries informa- H!)
tion on the output intensity. Indeed it is obtained l)
by detecting the laser output and then amplifying
such a signal. The equation for V(t) is m 0.01

0.05 0.15 0.25 0.35
(V B RI

1 + al
(b)

where f3 is the damping rate of the feedback loop, Fig. 8. Experimental results of the tracking of (a) period-1
I is the laser intensity, B a bias voltage acting as unstable orbit and (b) period-2 unstable orbit. Circles and

the control parameter and R the total gain of the points: maxima in the laser output signal with and without
loop (the term al represents the saturation of the the control loop, respectively.

detection apparatus).
Starting from constant laser output and in-

creasing B, the system passes to a limit cycle the three-dimensional reconstruction of the chaotic
through a Hopf bifurcation, and then it reaches the attractor and the stabilized period-1 orbit obtained
chaotic region after a subharmonic cascade. The with a relative perturbation of about 7%.
spectral analysis of the chaotic signal for .B = 360 V All the experimental results can be adequately
shows the presence of a peak at f = 22 kHz, rem- reproduced by numerical integration of a CO 2 laser
nant of the Hopf bifurcation. This property sug- model based on rate equations for the intensity and
gests to prepare a suitable washout filter with zero for the populations of the resonant levels coupled
amplitude in correspondence of f. Figure 9 shows by collisions with the rotational manifolds.
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In this paper the technical details of chaotic digital code-division multiple access ((CD) 2MA)
communication systems used in cable communication systems are presented. The cable com-

munication system may be a pure coaxial RF cable network, a hybrid fiber-coax network, or
a pure optical fiber network for high-capacity data link. As an example of its many poten-
tial applications in cable communication systems, (CD) 2 MA is used to support the upstream
digital data communications in cable TV systems occupying the very noisy 5-40 MHz portion
of spectrum. Although the (CD) 2MA proposed in this paper is only used to support current

Internet services via cable TV networks, it can also be used to support the high-speed data-link

provided in the 550-750 MHz band in hybrid fiber-coax networks.
(CD) 2MA is a new communication framework which uses band-limited chaotic carriers in-

stead of linear ones. For the purpose of generality, in this paper the band-limited chaotic carriers
are approximated by groups of linear sub-carriers, which distribute within the same bandwidth
with a fixed amplitude, random phases and uniformly distributed frequencies. The theoretical
result of the performance of (CD) 2 MA is given. We also provide the simulation results of the
bit-error-rate (BER) performances of a synchronous (CD) 2 MA used in cable communication

systems. The results show that the (CD) 2 MA system has a better performance than the syn-
chronous CDMA system proposed for the same cable communication system. Technical details
of (CD) 2 MA are also presented for the future design of prototype systems. We present the

framework of the whole (CD) 2MA system including carrier synchronization, timing recovery

and the details of nonlinear carrier generators.

1. Introduction years older, the cable television system has covered

Currently, the main networks connecting American almost every corner of North America and Europe.

homes to the Internet are telephone lines. However, Today, cable TV companies have direct access to

the twisted pair copper telephone wire cannot pro- more than 63 million U.S. homes. Recently, due to

vide much more bandwidth than 56 to 64 kbps. For the rapid growth of the Internet market, the func-

this reason, many American families have to install tions of cable television systems have been changed

separate telephone lines for their PCs. from sending only analog television signals to send-

Cable television system is a kind of communica- ing both analog television signals and digital Inter-

tion system which was originally designed to broad- net information. In view of this conceptual change
cast television signals via coaxial RF cables rather of usage of the cable television system, a brand new
than through the air [Baer, 1974]. More than 50 television set called WebTV (shown in Fig. 1) will
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Fig. 1. The outline of a WebTV system.

usher in a new era of television [Tomari et al., 1997], grade the existing cable TV system. For example,
where entertainment and information services are by using optical fibers, the bandwidth of a cable TV
combined into single devices. The main advantage system can be enlarged by 50%, from 40-550 MHz
of a cable TV network is its ability to transmit high- to 40-750 MHz. In addition, the optical fiber is
bandwidth video, voice and data. Furthermore, a more reliable than a coaxial cable. However, even
cable TV network integrated with digital informa- for a small city, it would cost $20 million to upgrade
tion sources can also create new Internet services its cable system to fiber-optic lines.
such as interactive TV programs, high-speed on-line A less costly approach is to keep the hardware
services and videophone services, framework of the cable TV systems unchanged but

Being a mature technical and widespread com- exploit optimally the channel capacity of existing
mercial service, it has become very expensive to up- networks. One of these methods is synchronous
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code division multiple access (S-CDMA) proposed must pay is to ensure that all devices along the
by Terayon Communication Systems. 1  Terayon's channel are operating only in linear regions. This
S-CDMA can provide a very robust transmission makes the whole communication system expensive
with a full 10 Mbps per 6 MHz channel upstream because nonlinearity is wasted as useless excess
and downstream over a fiber-coax cable system. So baggage.
far, since only a very small portion of the band- The organization of this paper is as follows.
width, namely 5-40 MHz, can be used to provide In Sec. 2, the layout of today's cable TV system
two-way, high-speed data links between a subscriber with Internet service is presented. In Sec. 3, The
and the Internet, the channel capacity of this por- layout of the (CD) 2MA system used in upstream
tion of spectrum becomes very critical to the service and downstream cable TV systems is presented.
quality for cable subscribers to access the Internet In Sec. 4, the theoretical model of our proposed
via cable TV networks. (CD) 2MA scheme for cable TV systems is given. In

Besides upgrading the cable TV network, a ca- Sec. 5, theoretical results on the performance of our
ble modem for converting the data stream to radio (CD) 2MA system are presented. In Sec. 6, a com-
frequency should be plugged into a PC. The cur- parison between the performance of the S-CDMA
rent price of a cable modem is about $250 to $600 system and the (CD) 2MA system for the 5-40 MHz
[Huffaker, 1995]. Since today's PCs usually include band in the same cable TV system is presented. Fi-
pre-installed modems for accessing the Internet via nally, some concluding remarks are given in Sec. 7.
telephone lines, a user may object to the extra cost
of installing the cable modem. To overcome this ob-
jection, a cable modem should be cheap enough for 2. Cable TV Systems
the cable TV company to provide each user with
a free cable modem at the outset. In designing Figure 2(a) shows the outline of a typical current ca-
the application of (CD) 2MA to cable TV Internet ble communication system, which is not only a two-

services, we must always bear this consideration in way analogue TV broadcast system but a two-way
mind such that all costly and sophisticated devices information network. However, unlike telephone
are concentrated at the fiber node, or at the head- networks, a cable TV network is very asymmetric,
end, to reduce the expense of the overall network. with over 90% capacity used for downstream and

We have shown in [Yang & Chua, 1997] that an the rest for the upstream. The functional change of
asynchronous (CD) 2MA technology can double the cable communication systems from one-way to two-
channel capacity of an asynchronous CDMA system way is driven by the rapid growth of the demand for
in a wireless communication environment. In this bandwidth on the Internet. The central node of a
paper, we propose a synchronous (CD) 2MA tech- cable TV system is the headend. Signals from differ-
nology and show that better performance than the ent sources, such as satellite and terrestrial broad-
S-CDMA can be achieved. Instead of employing cast, Internet, as well as local originating program-
a linear carrier, a (CD)2 MA system uses a chaotic ming, are modulated onto radio frequency carriers
carrier. Whenever a chaotic carrier is used the non- and combined together for distribution over the ca-
linearity of the channel can be exploited to make ble system. Supertrunks (high-quality microwave,
the carriers more distinguishable from each other fiber optic, or cable links) connect the head-end to
by reducing the correlation of the different chaotic local distribution centers, known as hubs. Several
carriers generated by the same chaotic generator trunks may originate from a hub to provide coy-
structure in different transmitters. For linear com- erage over a large contiguous area. Figure 2(b)
munication systems, however, any nonlinearity will shows a single trunk of a typical cable TV system.
change the waveforms of the linear carriers such Trunk amplifiers are installed along the trunk to
that it is more difficult to recover the modulated maintain the signal level and compensate for ca-
information because the current design principle ble transmission characteristics. The bridge ampli-
is to maintain the waveform unchanged all along fier serves as a high-quality tap, providing connec-
the channel. Although beautiful theoretical analy- tion between the main trunk and multiple high-level

* sis can be formulated in view of the simplicity of branches. The line extender is a type of amplifier
linearity, the price a linear communication system that maintains the signal level along the branch.

'At the URL: http://www.terayon.com
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Fig. 2. The outline of typical current cable communication systems. (a) Block diagram of a typical cable communication
system. (b) The block diagram of a single trunk.
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The splitter connects a subbranch to a branch. Sub- applications. For a two-way cable TV system, the
scriber drops are connected to passive taps along spectrum slot located at 5-40 MHz provides sub-
the subbranch. Many cable TV companies support scribers with an upstream data-link to the outside
500 subscribers per fiber node in hybrid fiber-coax world through the fiber-coax cable system. For-
networks [Huffaker, 1995]. If each subscriber has mally, this upstream link can only provide a low
a 64 kbps modem for its PC, then a 32 Mbps per speed data-link due to two main noise sources in
fiber node should be designed for peak hours. How- this spectral slot (shown in Fig. 3). The first is
ever, the available bandwidth is always swamped by impulsive noise from the electrical devices in PCs,
more advanced Internet services such as teleconfer- TV sets, hair dryers, vacuum cleaner and etc., as
ence where real time audio and video data streams well as vehicle emission systems. The second is
are sent. narrowband interference picked up by the cable net-

Technical limitations on channel capacity are work itself such as Ham radio and Voice of America
set principally by cable amplifiers. The coaxial ca- broadcasts.
ble service occupies the 40-550 MHz portion of the In the Terayon S-CDMA system, it was re-
spectrum, while the hybrid fiber-coax cable service ported that a total capacity of 10 Mbps per 6 MHz
occupies the 40-750 MHz portion of the spectrum. channel can be achieved in the 5-40 MHz band.
Since each commercial analog TV channel occu- While this represents a big advance in technology,
pies a 6 MHz bandwidth, a cable TV system may this channel capacity may be too small to match
provide up to 100 TV channels. In the future, a the rapid future growth of demand of the Inter-
fully upgraded hybrid optical-coax cable network net service, accompanied by the occupation of PCs
may use the 550-750 MHz band to provide digi- and WebTVs in subscriber homes. Although the
tal video, high-speed data and telephone services, soft-degradation of the service quality of current
In this spectrum band, (CD) 2MA can also find CDMA systems can provide a barely satisfactory

F 3 mn s ust5 M ao c T y..

Fig. 3. Two main noise sources in the 5-40 MHz band of a cable TV system.
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service to each subscriber during peak periods, such hardware for each chaotic digital circuit is chosen
degradation of service can still be felt by subscribers to be the same in every transmitter. To ensure that
if they are in the process of downloading image at every moment the chaotic carriers in the same
files, or some other data-intensive services, such as channel are orthogonal to each other, the headend
teleconferencing. controller must dynamically assign each transmitter

a user ID number as the initial states of the digi-
tal chaotic generator whenever a subscriber begins

3. (CD) 2MA for sending information. Then, the output of the dig-
Cable Communication System ital chaotic generator (which may be 8 or 12 bits)

The main problems in using the 5-40 MHz band is fed into a D/A converter, whose output is sent
in cable TV systems are impulsive and narrowband to a frequency step-up for transferring the chaotic

noises. The multipath fading problem in wireless carrier to a different spectral band. Since the D/A

environments [Viterbi, 1995) does not occur in cable converter may work at a clock speed of 1 M-IHz, we

systems and the delay from each link can be mea- may have to shift this output to some prescribed

sured a priori. Since the price that a subscriber is 6 MHz channel within the 5-40 MHz band.

willing to pay for updating his cable service is rel- A frequency step-up is used to transfer the non-
atively low, the transmitter and the receiver of the linear carrier to an appropriate spectral band. This
(CD)2 MA system at the subscriber's end should be is accomplished by a frequency multiplier, which
as simple as possible. The layout of the (CD) 2MA consists of a nonlinear circuit followed by a band-
transmitter for upstream communication is shown pass filter, as shown in Fig. 5(a). While there are
in Fig. 4. Since the hardware structure of a ca- many choices for the nonlinear device, the simplest
ble communication system is fixed during its opera- one is a transistor biased in the nonlinear region.
tion, each head-end controller can broadcast a local The frequency multiplier based on a transistor is
clock signal to synchronize the local clocks of all shown in Fig. 5(b). If a bandpass signal vin(t) is fed
subscribers under the same headend. The timing into a frequency multiplier, the output v0ot(t) will
recovery in a cable communication system is thus appear in a frequency band at the nth harmonic
solved. of the input frequency(range). However, the mul-

The chaotic carrier used in the (CD) 2MA sys- tiplication factor n that can be provided by this
tem can be generated by an array of chaotic digital circuit is usually small with a typical value of 3
circuits, such as a "chaotic" (pseudo-chaotic) cel- or 5 because the nonlinearity of a transistor is too
lular automata [Toffoli, 1987], or a reversible cel- "smooth". To get a large gain, we need to find some
lular neural network [Crounse et al., 1996; Yang device which has much more irregular nonlinearities
et al., 1996]. For manufacturing convenience, the such as breakpoints.

Fig. 4. The block diagram of the upstream transmitter at subscriber's end.
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The block diagram of the receiver at the head-
V in (t) no,,ea _ Vout(t) end controller for retrieving the digital signal from

dec the ith user is shown in Fig. 6. Since the delay of
the ith subscriber has been previously measured,

frequency multiplier the receiver in the headend controller can find the
pre-measured time delay from a lookup table and

(a) generate the corresponding chaotic carrier with the
corresponding delay. The signal received by the ca-
ble network is a mixture of noises and interferences

VC ccfrom the other subscribers. The received signal is
then multiplied by the regenerated carrier at the
receiver. The result is low-pass filtered by a [0, T]
integrator and then thresholded and sampled to give
the recovered digital signal. The timing signal used
in sampling is provided by the local clock signal

_0 at the head-end controller. This recovered signal
is then sent out to the Internet from the headend

V Vout(t) controller.
The downstream communication is almost the

o_ _same as that of the upstream except that before the
headend sends a chaotic carrier to user i, a time de-
lay is compensated at the transmitter end. By doing

(b) this, the receiver at the subscriber's end is almost

Fig. 5. A frequency multiplier used for the frequency step- the same as its transmitter except for an additional
up. (a) The block diagram of a frequency multiplier. (b) The [0, T] integrator, a thresholding and a sampling
circuit implementation of a frequency multiplier. circuit. The block digram of the receiver at the

Fig. 6. The block diagram of the receiver at the headend controller for upstream communication.
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digta -1 . A

Fig. 7. The block diagram of the receiver at the subscriber's end for downstream communication.

subscriber's end is shown in Fig. 7. Observe that ers, we give a theoretical model for a chaotic carrier
the main part of the transmitter is shared by the which has a flat enough spectrum in the bandwidth
receiver. Since the synchronization signal is we are interested in. The chaotic carrier for the ith
broadcast through the whole network, the expen- user is given by
sive synchronization circuit is not installed in the N
subscriber's transmitter/receiver. Hence, the addi- c (t) = a, n(t) Cos(wt + 9i, n)

tional equipment in the subscriber's home is rela- ,=1
tively inexpensive.

Under ideal conditions, the power levels of the {R N
chaotic carriers from different users at the fiber -Re ai, N-o
node (or the headend) should be the same. This n=l

is the power control problem, which had been ex- (1)
tensively studied in wireless CDMA systems [Lee, where j = v/-1, and ai,,(t) E R, w, E [prescribed
19891. However, in view of the fixed hardware spectral band] and i,, E (-7r, r] are respectively
structures of cable TV networks, amplifiers can be the amplitude, frequency and phase of the nth com-
designed to satisfy this condition. In this paper, ponent of the chaotic carrier. Since ci(t) is a non-
perfect power control is assumed. linear wave, at least one of ai, , n = 1,..., N, must

be time-varying. Observe that the single tune car-
rier is a special case of ci(t) with ail 7 0 and aij = 0

4. Model of Chaotic Digital CDMA if j , 1 for a given 1.
Communication Systems Similarly, the carrier for the jth user is modeled

The difference between classical CDMA and by
(CD) 2MA is that the former uses a pseudo-random N
digital NRZ signal as a nonlinear sub-carrier and cj (t) E aj, n(t) cos(wt + Oj, n)
this carrier is then used to modulate a linear carrier n=1
for central frequency shift. The latter uses chaotic N
carriers directly in the desired spectral band. To =Re E aj, (t)exp(jwnt+jOj, n) N-+c0
clarify the difference between them, in this section l--1
we present examples to show the different principles (2)
used in these two schemes.

Since in (CD) 2MA systems many candidates of Since in (CD) 2MA systems, we usually use a [0, T
chaotic RF waveforms can be used as chaotic carri- integrator as the low-pass filter (LPF), the moving
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average of the cross-correlation between ci(t) and cj(t), i $ j with time window T is given by

1t

rij) W t-T ci(t)cjs(t) dt
tN N

1 T an(t)cos(Wt + Zi,n) E a,n(t)coS(Wnt +Oj,n)dt

t N

iT-T aj,,n(t) cos(wt + 0i, n)aj, n(t) COS(W,t + 0j, )dt- T n~l

t N N

+ ] ai'(t) cos(wt + O i'n) aj, m(t) Cos(wmt + Oj, m)dt
+ t-T n=1 m=1, rn 6n

t N t LI N
= a, n(t)aj,n(t) cos(0i, n - Oj, n)dt + ai, n(t)aj, n(t) COS(2Wnt + 0i, n. + 0j, n)dt-2T ItTn=l 2 T n= 1

t N N

+ T aj, (t) cos(Wnt + Oi',n) m aj, m(t) Cos(wmt + Oj, m)dt , N -+o0 (3)
n=1 ~ m= 1, mrn

Assuming that the phase of each sub- by the kth chip value Pk; namely,
component of a chaotic carrier is a random vari- 0
able distributed uniformly over the interval (-r, r], 0j(k) = (5)
then Oi, n - 0j, n distributes over (-21r, 27r). Hence, L r, Pk = 0
we can choose T large enough so that rij (t) will be
small enough. Similarly, the carrier for the jth user is given

In CDMA systems, binary pseudo-random se- by
quences (chip sequences) are used to spread the ( [t/T] )
bandwidth of the modulated signals over the cj(t) = aj cos wt + Oj + 5 yj(k) (6)
larger transmission bandwidth, and to distinguish k=O
the different user signals by using the same trans- The moving average of the cross-correlation be-
mission bandwidth. Then the chip sequence is mod- tween ci(t) and cj(t) with time window T is given
ulated by a linear sinusoidal waveform using dif- by
ferent modulation methods. The most commonly
used method is QPSK modulation [Viterbi, 1995]. rij (t)

However, for simplicity and without loss of general- 1 c(t)ej(t)gt
ity, let us choose the simplest "phase shift" method - T T
("bit 1" shifts the 0 phase of the linear carrier while t

"bit 0" shifts the ir phase) for demonstration pur- - /aicos wt-Oi- E 0i(k) aj

poses. The ith carrier in a CDMA system is given T T k=o

by ft/Tc

[t/TI x COS wt±9,±ZE ,(k) )dt
ci(t) = aicos (wt+ ' + T 0i (k) () =

ali aj CSoi0j0+o E '(k)-ojAk))dt

where the two constants ai and w are respectively T Tk=O
the amplitude and frequency of the ith carrier; T is 2 t [t/To1

the chip bit duration defined as the time span of a + -f aiaicos 2wt+Oi+Oj+ E ¢b(k)+Oj(k) dt

bit in the chip sequence; [xJ denotes the biggest in- T =

teger less than x; and Lj(k) is the phase shift caused (7)
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For both chaotic CDMA and linear CDMA sys- * the desired output, which depends only on Xi, n(t);
tems, the main goal is to make rij(t) -+ 0 whenever 9 the inter-symbol interference components, which
i = j. Comparing Eqs. (3) and (7) we can see that depend only on xi,n+m(t), m = 0;
the chaotic CDMA and the linear CDMA achieve 9 the component due to background noise, which
this goal by using different strategies. In chaotic we assume to be white with a one-side density
CDMA, the goal is to make the term equal to No watts/Hz;

t r N e the other-user interference components, which

It "I: a,n(t)aj,n(t) cos (0i, - Oj,, dt (8) depend on xj,n+m(t) for all i 5 j and all m.
Let Tb be the bit duration of the message signal,

as small as possible, but in linear CDMA the goal and choose a [0, Tb] integrator as the LPF. Thus,
is to make the term

t[Tao] r = fTbyi (t) dt (10)" acos O-jy O k j()d
2I-,; T akaj

The sign of this measurement is used to decide
whether the message bit is +1 or -1. The mean of

as small as possible. To reduce the value of F is given by
Eq. (9) we can reduce the transmitting energy T

of each carrier (restricted by the noise level), in- E[F] =/ E[yj(t)ixn(t)]dt
crease T (restricted by the bit-rate of the mes- J
sage signal), increase the bit-rate of the chip Tb

sequence (restricted by bandwidth) and make P I xi,n(t)dt
Oj(k) - Oj(k) as random as possible (restricted by
the pseudo-random algorithm for generating the = ±TbVi2 (11)
chip sequence).

To reduce the value of Eq. (8) we can also re- where Pi is the power of ith chaotic carrier. The sec-
duce the transmitting energy of each carrier and ond equality is satisfied because we have assumed
increase T. However, instead of increasing the that every signal has constant power throughout the
bit-rate of the chip sequence, we need to use transmission period. Here, the sign depends on the
as many sub-carrier components as possible; in- sign of xi, n(t), which is constant over [0, T].
stead of making '¢i(k) - Oj (k) random, we need to Since the noise components are essentially
make 0j, - Oj, n random enough. We can then uncorrelated,
conclude that the main difference between a
linear CDMA and a chaotic CDMA is that the Var[r] =Tb
former explores the spectrum resource from the J
time-domain, while the latter does it in the = Tb(VI + VN + Vo) (12)
frequency-domain.

where VF, VN and Vo are the variances of the inter-

5. The BER Performance of (CD) 2MA symbol interference, background noise and interfer-
ence from all the other users, respectively.

In this section we study the bit-error-rate (BER) Then the bit-error-rate (BER) is given by
performance of (CD) 2 MA. This is a very impor-
tant benchmark for measuring service performance. ( = (Er])2

Throughout this section we assume that all signals BER = V 'Va I
are at constant power throughout the transmission Var[F]

period. /

Suppose yi(t) is the output of the demodula- TbP (13)
tor of the ith user and xi,,(t) is the nth bit of VI + VN + VO
the message signal of the ith user. As with any
digital communication system, spread spectrum or where
not, there are four components in the demodulator T(x) A 1 o es 2/2ds. (14)
output: vix
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Assuming the inter-symbol interference to be neg- background noise (i.e. No = 0) and assume that
ligible or zero, and since the other two components because of perfect power control, all users are re-
(background white noise and other-user interfer- ceived by the base station (headend or fiber node)
ence) are independent of xi,n(t) for all i, it follows receiver at the same power Pi = Pj = Pc for any
that the variance due to background noise is just i and j. Then for a given Eb/Io level, determined
the effect of a white noise with one-sided density from Eq. (19) for the required BER, the maximum
No on the receiver filter whose transfer function is number of users, Kmax, obtained from Eq. (20), is
H*(f), and must therefore contribute given by

VN = (N0/2) I IH(f)12df = No/2. (15) K1ax - I Tb
Eb/Io f'

This is because the filter gain is normalized, so that ]I IH(f) 14df

J IH(f)12df = 1. (16) _ 1 W/R (21)
-00 Eb/Io WE IH(f)14df

To the user i any other user j has a constant 00

carrier power Pj modulated as cj(t)xj, (t) which is
independent of and generally unsynchronized with where W is the bandwidth, R is the bit rate and
that of user i. In addition, the carrier phase of the the integral in the denominator is lower-bounded
jth user's modulator will differ from that of the ith by unity. Consequently,
user. Hence, the effect of the jth user's signal on
the kth user's demodulator will be that of a white W/R
noise with a two-sided density Pj passing through Kmax 1< E(22)
the tandem combination of two filters in the trans-
mitter and the receiver with a combined transfer and the maximum bit-rate, Rmax, that this channelfunction IH(f)12. Hence,anthmaiubi-aRatathscane

can support is given by

Vo= -L IH(f)14df. (17) w
i~ f oRmx <_ W-+ R (23)

It follows from Eqs. (13), (15) and (17) that

For a given BER, the actual Eblo depends on the

2TbPi system design and error-correction code. It may ap-
BER = T (18) proach but is never equal to the theoretical calcula-

No + Pj JIH(f)4df tions. In the next section, we use simulation results
ji -to find the performance of (CD) 2MA systems.

The numerator is just twice the bit energy, Eb, and
the denominator is the effective interference density.Thus, 6. Comparison of BER Between

S-CDMA and (CD) 2MA Systems

BER ( 2E b (19) In the upstream, the headend receives all the
10 chaotic carriers from active subscribers, additive

where impulsive noises and narrowband noises from the
cable network. The channel model of the upstream

Eb = Tb P (20) data-link located at the 5-40 MHz band in cable

10 No -+ Pj IH(f)14df TV systems is only a noisy channel with narrow-

j¢i --0 band interference and random impulsive noise with
duration up to 100 ps. Since multipath fadings

Since (CD) 2MA systems are interference lim- usually encountered in wireless mobile communi-
ited rather than noise limited, let us ignore the cation systems [Lee, 1989] do not occur here, a
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0 Table 1. The relationship between the channel capacities

of the (CD) 2 MA system and the S-CDMA system in its fall
-1.......... .... ....... back m ode.

BER 10- 6 10- 5 10- 4 10- 3 10- 2

- 2 . .. . ... . .. W .... ... ....... ..... k ...........
(CD) 2MA

Capacity rate: (CDMA 1.50 1.50 1.40 1.35 1.41
-3 .......... .......... . . ... ...... .....

a -4 ... . . . .. .. . . . :. . . . . .. . . .. i . . . . . . ... ... . .. . ... .. ....

can see that (CD)2 MA can support a much higher
0 bit-rate than S-CDMA when the BER is smaller-5 .... ........... .. ...... . ... A .............. ........ . tha 10- 5 . A 1 5 t m s h g e bi - a e i t is c e

than i0.A 1.5 times higher bit-rate in this case
means that a (CD)2 MA system can support a ca-

. ..... .. ....... . . ........... .. . pacity of 15 M bps per 6 M Hz upstream .

7. Conclusions

-8 '2
-25 -20 -15 -10 -5 In this paper, we apply (CD)2 MA to cable com-

SNR, dB munication systems by using the 5-40 MHz band

Fig. 8. The BER performance of the (CD) 2 MA system used which is very noisy for other narrow band com-

in a cable communication system. The dashed line and munication schemes, such as the QPSK method.
the dash-dotted line are the corresponding results of the S- Time division multiple access (TDMA) and fre-
CDMA system under "normal mode" (dashed line) and "fall quency division multiple access (FDMA) also can-
back mode" (dashdotted line), respectively, not be used efficiently in this noisy portion of the

spectrum because narrowband interference and long
spread spectrum communication system can be duration impulsive noises can introduce many er-

spred sectrm cmmuicaton yste ca be rors in TDMA and FDMA systems. We also com-
used much more easily in this channel than in ror n TD MA nd to tem s socom-pare our (D)MA system to Terayon's S-CDMA

a wireless communication channel. Furthermore, system and found that the (CD) 2MA system can
since the delay in a cable system is a fixed char- perform much better than the S-CDMA system by
acteristic which can be measured, it is possible increasing the channel capacity 1.5 times more than
to use synchronous spread spectrum communica- the best performance by an S-CDMA system.
tion schemes, such as S-CDMA and synchronous In this paper, we emphasize the application of
(CD)2 MA. our (CD) 2MA on the almost "useless" spectrum

Our simulation results of the (CD) 2MA system band in today's cable TV networks because its po-
are shown in Fig. 8. The solid line shows the BER tential commercial benefit can easily be realized
performance when N = 200 sub-carriers are used tomode th choti carie of achsubcrier.The even without upgrading existing cable TV networks.
model the chaotic carrier of each subscriber. The However, readers should not form the wrong im-
parameters for the [0, T] integrator at the receivers pression that (CD) 2MA can only be used in coax-
are chosen as T = Tb = 1/64 ms. One should ial networks. In fact, the (CD)2MA principle can
note that the interference from the other users in al neos. in fatte high-cap rci pl can
the same 6 MHz channel is also considered as noise also be used in future high-capacity digital datalinks based on pure optical fibers to enable a high

here. For comparison, the results of the Terayon's bandwidth efficiency. On the other hand, since
S-CDMA system in both normal mode and fall back (CD)2MA systems are interference limited but not
mode are also shown in the same figure. We can seethattheperfrmace o (C)2 M sytemsis uch dimension-limited, it can provide more flexible per-
that the performance of (CD)2MA systems is much formance choices for different services.

better than the S-CDMA scheme in its "fall back

mode", which is the best operating mode that the
Terayon's S-CDMA scheme can provide. Acknowledgment
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Onset of chaotic mode transitions can be used in a simple and robust mechanism for adaptation
in multimode systems. We present an idealized model of adaptive mode selection using on-off
switching of chaotic basin transitions in a multistable system. A stochastic description obtained
in the limit of large switching intervals gives search times in terms of projections of the chaotic
state onto basins of multistability.

1. Introduction between a multistable regime and a chaotic mode
transition regime.

This paper relates to work on harnessing the onset The effectiveness and practicality of this scheme

of chaotic dynamics for adaptive mode selection in h e en ad innuical [Dais 1990]

multimode systems. This work is based on a gen- and physical experiments [Aida & Davis, 1994] us-

eral view of self-reorganization in which chaos can ing an opto-electronic oscillator, and in numerical

play an important role in finding "fit" modes. It is experiments on a neural network [Nara & Davis,

often the case that whether a particular mode of a 1992]. A variation of this idea has also been used

multimode system, such as a laser, or a neural net- in experiments on a signal generator spontaneously

work, for example, is satisfactory or "fit", is known adapting its output signal mode to avoid signal col-

by the external response seen when the system is in lisions [Liu &o Davis, 1997].

that mode. When working on the problem of mode The purpose of this paper is to present a simple
selection in a particular high-dimensional nonlinear model of this method, involving adaptive switch-
optical system, we proposed that bifurcation to in- ing between two idealized dynamical regimes. It
termittent mode transitions (also called chaotic itin- allows an easy derivation of a state transition dia-
erance) could be harnessed to automatically search gram describing the mode search process, including
for fit modes among a set of candidate modes by the effects of "false-alarms".
simply feeding back external fitness responses to a
bifurcation parameter [Davis, 1990]. The general
idea of adaptive mode selection using chaos is to 2. Model System
couple the fitness response signal to the multimode
in such a way that bad responses result in mode The basic model for adaptive mode selection is as
transitions, and good responses result in suppres- follows. The multimode system is described by a
sion of mode transitions. Specifically, the fitness parameter p and a dynamical variable X. The
response signal can be used to drive the system control parameter has two particular parameter

*E-mail: davis9acr.atr.co.jp
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values p- and p+, corresponding to the two dyami- E = 1. Then the system is allowed to freely evolve

cal regimes - multistability regime and mode tran- for a time T.

sition regime, respectively. In the multistability Note that we do not exclude the possibility that

regime, there is a set of modes which are all sta- more than one mode gets a good response. And it

ble for the same parameter; that is, there are mul- is functionally reasonable for the system to make a

tiple basins of attraction, and which mode is ex- spontaneous selection of any one of multiple good

cited depends on the location of the initial state. modes.

In the mode transition regime, the modes are un-
stable, and there is a single chaotic attractor which

extends to the neighborhoods of the previously sta- 3. State Transition Representation

ble modes. The system receives a response E which The dynamics of the search process defined in Fig. 1
is some arbitrary function of X and its history can be described by the state transition diagram
over some time interval. The response E takes shown in Fig. 2(a). The combined state of the mul-

two values, say 0 and 1 respectively, corresponding tistable system plus environment is completely de-

to "good" and "bad" fitness. The response signal scribed by the parameter p, dynamical state X, and
causes the multimode to switch between the two dy- response E. We sample the state of the system im-

namical regimes at p- and p+, as shown in Fig. 1. mediately after the parameter has been adjusted.
The mode search algorithm is represented by Then there is one-to-one correspondence between

3 steps. The fitness of the mode is evaluated, re- the state of the combined system and states of X.
turning a value of signal E =0 or 1. Then the First we define two states, the set SB of X states

parameter is adjusted, to p- in the case of a good which get a bad response, and the set SG of X

response, E = 0, or p+ in the case of a bad response, states which get a good response. One iteration

of the search algorithm gives one of four transitions
in the transition diagram: SB -4 SB, SB -4 SG,

SG - SG, or SG -+ SB.

Now, it is useful to further decompose SG, as
shown in Fig. 2(b), into "trap" states ST which
do not lead to transitions back to bad states SB,

test and "nontrap" states SNT which do lead to transi-
for ftions back to bad states SB. If there is a transition

good bad from a good state in SG, or any of its iterates, to
a bad state SB, then it belongs to the nontrap set

sp e SNT. The SNT states will be called "false-alarm"
et parameter sestates. False-alarm states exist when there is a mis-

to p_ to p+ match between the external fitness criterion and the

basin structure. States X which get a good response

mode I chaotic mode but which are located in the basin of a bad mode

multistability transitions are straightforward examples of false-alarm states.
However, there may also be false-alarm states in
the basins of "good" modes. Note that under cer-

evolve evolve tain conditions, the scheme defined in Fig. 1 can
for time T for time T eventually reach a good mode even if there is such

a mismatch causing false alarms. This is a key point

for the usefulness of this adaptation mechanism.

_4. Accessibility of Fit Modes

Fig. 1. Control algorithm for adaptive mode search using Now we consider if and when the system will be
on-off switching of chaos. It is assumed that at "test" there able to find and lock onto a good mode. That
is a response signal from the environment which indicates is, do trap states exist and can they be reached
whether the current state is "good" or "bad". from arbitrary initial states? If one or more of the
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SB SB

P+: SBP+:

p_: G : SNT S

(a) (b)

Fig. 2. (a) State transition representation of the search process. SG and SB are sets of states X of the multimode system
which get "good" and "bad" responses, respectively. For this transition diagram, states are defined just after the switch
of parameter and before the free evolution stage. (b) As for (a) but with the So states split into trapping states ST and
nontrapping (or false-alarm) states SNT.

multistable modes at parameter p- satisfy the fit- transition diagram. A transition between states can
ness criterion, then the set of trap states in Fig. 2(a) now be described as a stochastic transition charac-
is not empty, i.e. ST = 0. If the orbit of the chaos terized by a probability which depends only on the
at parameter p+ passes through states which are in current state. The probabilities for transitions from
the trap set, then the trap set is accessible from at the SB state are obtained by projecting the invari-
least some initial conditions. For a given system, ant measure of the chaotic attractor. The probabil-
such states may be easy to identify. However, in ity PB,T for transition SB -+ ST is the relative mea-
general, it is difficult to say whether trap sets can sure of states visited by chaos which are also in the
be reached from arbitrary initial states. Regardless trapping set ST. The probability PB,NT for tran-
of the ergodicity on the chaotic attractor at param- sition SB -4 SNT is the relative measure of states
eter p+, the on-off switching may alter the distri- visited by chaos which are in the false-alarm set.
bution of the search dynamics to the extent that Now, the probability PT,T of the ST --+ ST tran-
local accesibility is not enough to guarantee global sition is just unity by definition. The probability
accessibility. PNT,B of the SNT -+ SB transition is also unity

In order to establish a condition where we can from the assumption about the uniqueness of the
guarantee global accessibility for the trap set, let fitness type of the states in each multistable mode.
us take the limit of large switching intervals. Let It can be seen immediately from Fig. 3 that
us assume that the interval T is much longer than in this limit of large switching intervals, there is
characteristic times for relaxation to the invariant convergence to the trap set ST so long as PB,T is
measures at both p- and p+. Also, we will assume nonzero. It is also straightforward to calculate the
that each of the attractors at p- contains only ei- average time 7 to reach the trap set,
ther good or bad states and not both. (A counter-
example is a mode which is a limit-cycle through - T P B T( - PB,NT + 2p2,NT + 2 PB,TPB,NT)

good and bad states.) Then the transition diagram (1 - PB,NT)2 (PB,T + PB,NT) 2

can be written as in Fig. 3, as a markov stochastic (1)
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PB,B search time r of

2T(3

PB,G (3)

P+: In this method, the average search time may be

twice as long as that for the method of Fig. 1 in the
case when PB,NT = 0. However, this method has
the advantage that there are cases in which it may

PNT,B =  PB,NT PB,T allow convergence to a good mode even when the
method in Fig. 1 does not do so.

5. Conclusions
P-: SWe have presented a simple model of the method

proposed in [Davis, 1990] for adaptive mode se-

lection using adaptive bifurcation between multi-
PT,T=1 stability and chaotic mode transition regimes in a

Fig. 3. Stochastic transition diagram obtained with assump- multimode system. In actual implementations of

tion of free evolution time T longer than characteristic times this method, in particular to high-dimensional mul-
for relaxation to invariant measures. Transitions are marked timode systems, such as in the experiment by Aida
with corresponding transition probabilities, and Davis [1994], it can be difficult to analyze the

search dynamics, for example to estimate search
times. The simple model presented here involves

In the particular case where there are no false adaptive switching between two ideal dynamical
alarms, PB,NT = 0, then the average search time regimes of multistability and chaos. It allows easy
is just derivation of a state transition diagram describing

T T
- - (2) the mode search process, including the effects of

PB,T PB,G' "false-alarms". This provides a useful framework

where PB,G is the probability of a chaotic transi- for further analysis of particular systems. In par-

tion from a bad state to a good state, PB,G, =- ticular, in the limit of large switching intervals, it

PB,T + PB,NT. Clearly, the adaptive mode selec- can be seen that the mode search depends on just

tion process will be faster if the measure of the the projection of the chaotic attractor on the states

chaotic dynamics is localized on the neighborhoods which get good responses, and on their distributions

of the candidate modes, and the environment re- in the basins of stable modes.

sponses match the mode basins, so that the proba-
bility of false alarms is reduced. Also, in practice, References
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A concise account is given of the early motivations for introducing parametric methods to
achieve control of chaos. The heuristic argument that made us think that this kind of method
could have been successful is also given. A key study is then reviewed. This concerns a
parametric perturbation of a damped and forced Duffing-Holmes oscillator in a chaotic regime.
The theoretical analysis, based on the Melnikov treatment of homoclinic tangles, provides a
clear understanding of the intimate mechanism that controls chaos. Numerical results confirm
and extend the theoretical predictions. A brief discussion of an experimental test on a magneto-
elastic device is finally presented.

1. Introduction of regular magnetic surfaces, due to chaotic insta-
bility, is another unpleasant effect in these systemsIt is well known that chaos is rather ubiquitous in [Rosenbluth et al., 1966].

both physical and nonphysical nonlinear systems. Also particle accelerators of betatron type are

Sometimes chaos can be useful; this is for instance Alt batic a lities theecn be aue
the aseof te egodi diertr intokrnak, were afflicted by chaotic instabilities, these can be causedthe case of the ergodic divertor in tokamaks, where by beam-beam interactions in storage-ring colliders

a stochastic layer of magnetic field is produced at

the plasma edge to improve the confinement. In [Scandale & Turchetti, 1991].

other cases chaos can have harmful consequences: In some cases one can a priori suggest how a

Plenty of engineering devices could be mentioned machine should be designed in order to avoid the

[Moon, 1987]. onset of chaos: .An example has been given for stel-

Among physical systems where chaos is harm- larators [Hanson & Cary, 1984] for which the dan-

ful, we want to mention an example that motivated gerous parameter ranges have been investigated.

our contribution to the field of control of chaos: More generally, if a given physical or nonphys-

Magnetic confinement devices for controlled ther- ical system is satisfactorily described by some non-

monuclear fusion. Here the intrinsic chaoticity of linear dynamical model, then by studying - ana-

particle dynamics is responsible for an enhanced lytically or numerically- its parameter space, it is
diffusion across the confining magnetic field; this possible to know how chaos could be avoided.
chaotic (anomalous) transport is much larger than But, let us consider those situations where one
the loss rate predicted by collisional transport the- cannot make a system operate in a safe domain of
ory (see e.g. [Pettini et al., 1988]). The destruction parameter space. In other words, assume that chaos
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is unavoidable for the operating conditions of your signal; (2) nonadaptive - open loop or non feed-
system. For example, this is the case of anoma- back- methods, requiring good model equations of
lous transport of energy and particles in tokamaks. the chaotic system. Both of these classes then split
Then the only thing you can dream of is to perturb into two subclasses: (1) additive methods, where
your system in a skilful way to reduce or even sup- the orbits are directly acted upon; (2) parametric
press chaos. This idea, obviously, is not new and methods, where one or more parameters are var-
dates back to an old preprint (in Russian) [Izrailev ied in time in order to achieve the control of the
& Chirikov, 1974]. These authors studied how a dynamics.
perturbation of an area preserving map can change Claiming that one method is superior to an-
dramatically the phase space structure, hence the other would be senseless, much depends on the
diffusion properties of the model; the drawback is specific problem one has to tackle. Sometimes a
in the choice of the perturbation, which is critical, feedback method can be implemented, sometimes
and on its amplitude, which is not small. it is a priori unconceivable because following the

Later on, in a more recent paper [Matsumoto & individual trajectories of a system is impossible;
Tsuda, 1983], a white noise, added to a map model- this is the case, for example, of chaotic trajectories
ing the Belusov-Zhabotinsky reaction, was proved of charged particles in a plasma, where an open-
useful to reduce or suppress chaos. The explanation loop parametric method is the only hope to control
is related to the peculiar structure of the invariant chaos.
density p(x) of the map, which is strongly peaked Let us now give a heuristic argument which led
in the region of If/&x1 that gives the largest con- us to guess that parametric excitations could work.
tribution to the Lyapunov characteristic exponent. The idea arises from the following observations:
The introduction of additive noise smears out this
peak of p(x) thus reducing chaos. (a) parametric perturbations can modify the sta-

In two subsequent papers (in Russian) bility properties of fixed points of linear (or
[Loskutov, 1987; Alexeev & Loskutov, 1987], a linearized) systems [Arnold, 1976];
parametric control of chaos has been proved effec- (b) Jacobi equation for the spread of a geodesic flow
tive in the case of the R6ssler attractor and for is a linear equation whose stable and unsta-
a system of ODE that models a simple ecosys- ble solutions correspond to regular and chaotic
tem. These works are based only upon numerical flows respectively.

simulations. The first item means that the elliptic fixed point
A first account of a theoretical understand- (&(0), x(O)) = (0, 0) of the linearized pendulum

ing of how chaos can be controlled was given in equation
[Pettini, 1988], where it was presented the possibil- -* 2
ity of reducing or suppressing chaos by means of 0 0 (
parametric excitations on the basis of both analyti- can be made unstable substituting w0 -* w2(1 +
cal and numerical results. Moreover, the suggested Ef(t)), where f(t) = f(t + T). This is a parametri-
method relies upon a "resonant" effect, therefore cally excited oscillation.
a small relative variation of a parameter is effec- Near the hyperbolic fixed point ((O), x(0))
tive, provided that some "resonance" condition is (0, -7r) the same equation reads
satisfied. Thinking of the practical application of 2 (2)
this method, its advantage is that the hardware - x = 0

of a given chaotic system should be only slightly and the same substitution can make stable the un-
modified, whereas the addition - for example - stable position (0, -7r) provided that the pivot of
of new couplings in the system often requires non- the reversed pendulum is in sufficiently rapid oscil-
trivial modifications. lation (thus e has to be large) [Arnold, 1976].

Then, at the beginning of the '90s, an impres- The second item is used only heuristically as
sive flourishing of papers occurred on the subject of follows. At least for Newtonian systems, Lagrange
control of chaos [Chen & Dong, 1993]. At present equations of motion describe the geodesics of the
four main strategies can be roughly identified, they configuration space manifold equipped with the
group into two different classes: (1) adaptive - Riemannian metric [Pettini, 1993] gij(x) = 2[E -

closed loop or feed-back- methods, requiring an on- U(x)]6ij, where E is the total energy of the sys-
line data acquisition and treatment of the chaotic tem and U(x) is the potential energy; then the
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Jacobi equation for the second variation of the The conjecture given above is tested using a dy-
action functional describes the local stability of namical system where, to some extent, chaos can be
geodesics with respect to a reference geodesic -y : tackled also analytically.
{x = x'(s)}; when expressed in local coordinates it
reads [Pettini, 1993]

2. A Paradigmatic System

W + R 1 I9k 0 (3) In [Lima & Pettini, 1990] we chose the so-called

where V, is the covariant derivative, Rikl is the Duffing-Holmes oscillator. This model, defined by

curvature tensor associated to gij, s is the *natural the equation

parameter along the geodesic and ' is the Jacobi 3
field of geodesic variation. (5)

For two-dimensional manifolds of constant cur- is one of the simplest nonlinear dissipative ODE un-
vature Eq. (3) simplifies to dergoing a chaotic transition. With some approxi-

mations of Galerkin type [Guckenheimer & Holmes,
d2  + K ± = 0 (4) 1983], it can be derived from a PDE describing the

dynamics of a buckled beam; in a different context,
where j is the perpendicular component of the it can also be used to describe plasma oscillations
Jacobi field and K is the Gaussian curvature of [Laval & Gresillon, 1979]. Equation (5) can be triv-
the manifold. ially rewritten as (we set a = 1 without loss of

From Eq. (4) it is clear that on a sphere S2 the generality)
geodesics are stable because K > 0. At variance,
on a compact hyperbolic manifold the geodesics are ( Y ) + 0 )
unstable because K < 0 everywhere, and thus the -- E (6)

geodesic flow is chaotic. Loosely speaking, to de- \Y +cowt
scribe regular and chaotic dynamics we have recov- which is in the form
ered - at another level- Eqs. (1) and (2). Let-
ting K -4 K(1 + Ef(t)), as with Eq. (1), one can ± = f0 (x) + Efi(x, t). (7)
make exponentially unstable nearby geodesics on a
positively curved manifold as a consequence of cur- The unperturbed part x = fo(x) can be derived
vature fluctuations "felt" by the geodesics; this is from the Hamiltonian
actually a major mechanism responsible of chaos 1 112 1 2  (8
in Hamiltonian flows of physical relevance [Cerruti- H = -2 4 (8)
Sola & Pettini, 1996; Pettini & Valdettaro, 1995;
Casetti et al., 1996]. Therefore it is also conceivable and is integrable. Its phase space has only one hy-
that a suitable parametric perturbation of Eq. (4) perbolic fixed point from which an "eight-shaped"
might act to stabilize the exponentially unstable separatrix originates. The motion on this separatrix
(chaotic) trajectories, when K < 0, in analogy with is given by
the reversed pendulum Eq. (2). Within this analogy
the sign of K should periodically change in time. X(0 )(t) 2

This argument is only heuristic because, in gen- Lech t,

eral chaotic flows are not topologically equivalent (9)
to geodesic flows on manifolds of constant nega- -t
tive curvature, if this were the case one should ( s

have structural stability (after the Lobatchevsky-
Hadamard theorem [Arnold & Avez, 1968]), thus The separatrix, parametrically defined by Eq. (9),
ergodicity, mixing, etc., but this is not the generic is also called homoclinic loop and results from the
situation. In principle this heuristic argument - superposition of the so-called stable and unstable
of differential geometric kind - could be also re- manifolds, WS and WU, respectively tangent at the
peated for dissipative systems using the geometry origin to the stable and unstable eigenspaces E' and
of Finsler spaces, but this goes far beyond the aim EU of the hyperbolic point. W s and WU are defined
of the present contribution, as those trajectories which converge asymptotically
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to the hyperbolic fixed point: WS for t -+ +0o where curly brackets are Poisson brackets, of the
and WU for t --+ -c respectively. When the sys- unperturbed Hamiltonian H0 with the perturba-
tern = fo(x) is perturbed only by a dissipative tion Hamiltonian H 1 , computed along the unper-
term, the two manifolds WS,U never meet and the turbed separatrix F(°); M(to) is useful to evaluate
solutions are still regular. If a forcing term is also the thickness of the stochastic layer. The analytical
added (i.e. an energy supply is added to balance computation of A(to) for Eq. (6) is standard and
friction losses) then Ws',u may have an homoclinic yields
intersection and hence an infinity of subsequent in-
tersections [Guckenheimer & Holmes, 1983]. We 2 s wto +41
briefly recall how Melnikov's method works to de- A(t2) = 2 -yw s s wo - (15)
termine the condition of homoclinic intersection of
W s and WU and so of the onset of chaos. Let Unfortunately there are not so many models for
](°)(t) = (.h(O)(t), x(°)(t))T be the unperturbed mo- which explicit computation of A(t 0 ) can be per-
tion on the homoclinic loop, write formed. Therefore we chose Duffing-Holmes model

because it is not difficult to compute A(to) when a
WS'U(t, to) !- F(° ) (t - to) + VWS'UI(t, to) (10) parametric perturbation is introduced.

Let us modify Eq. (6) to
to describe how Ws,' are perturbed up to first order
in e [due to fl in Eq. (7)] starting from r(°); to is an /3( 1
arbitrary reference time and W ' u =- ( sx,u)T =X 0 Y , OSg)

are column vectors. One gets

d = J(F(°)(t - to))WS'Ul + 6(Y+ cs ) + (16)

+f,(()(t - to), t) (11) if q < 1 we are allowing a periodic modulation of

where J is the Jacobian matrix of f0 computed at small amplitude of the parameter /3.

F(0) (t - to). Accounting for the modulating term

Then the Melnikov distance is defined as 0377 cos Qt x 3 in the perturbation function fl, the
new Melnikov function Ap(t 0 ) is given by

A(t, to) = n. (W (t, to) - W(t, to)) (12) Ap(to) = A(to) - f dii(t- to)

where n is the normal to F(°) (t - to). -11

After some algebra one finally finds the Mel- x [x( 0 ) (t- to)] 3 cos Qt (17)
nikov function

-) 0a Ausing (10), after simple but tedious computations,

A(t) =- dt(f0 A fl)(o)(tt) (13) one finds [Lima & Pettini, 1990, 1993]

which in principle can be explicitly computed; if Ap(to) = 27r w sech sin wto + -
A(to) changes sign for some to, then an infinity of 2 3/3
homoclinic intersections between W' and WS will
take place and chaos will set in. This is the only - (4 +4Q2)cosech sin Qt0.

general predictive method to study the condition 63" 2
for the onset of chaos in dissipative ODE. (18)

Notice that for Hamiltonian systems there are
always homoclinic intersections when a noninte- Let us now consider a set of parameters for which

grable perturbation f1 (x, t) is added to an inte- A(to) changes sign, thus predicting the existence

grable system; in this case the Melnikov function of chaos; then we add the parametric perturbation

[Chirikov, 1979] is as in Eq. (16) and we compute, from the numerical
tabulation of Eq. (18), the time needed between two

M(to) = - dt{Ho, HlIrm)(t-to)  (14) successive homoclinic intersections of WU and Ws,
0o ' let us denote it by TM.
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Fig. 2. The largest Lyapunov characteristic exponent A
0.0 11 Il ... r is reported versus Q. This result corresponds to 3 = 4,0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 6 = 0.154, y = 0.088, w = 1.1, 77 = 0.03. The dotted line

refers to n = 0 (unperturbed case) for which A = 0.1056.
Dotted lines are also used for subharmonic resonances whoseFig. 1. The inverse of the time TM elapsed between two suc- exsncdpnsontetaigpitinhsepc.

cessive homoclinic intersections, computed using Eq. (18), existence depends on the starting point in phase space.

is plotted versus the parametric perturbation frequency Q.
Again /3 = 4, 6 = 0.154, 7 = 0.088, w = 1.1. Continuous line
corresponds to ?7 0.09, dashed line to 77 = 0.1 and dotted For the same set of parameters in Fig. 1, ex-
line to 7 = 0.15. cept for 7/ which is 0.03, A is computed for differ-

ent values of the parametric perturbation frequency
Q. The results are shown in Fig. 2 and are rather

In Fig. 1, M1 is reported versus the paramet- striking. The resonance line displayed in Fig. 1 by

ric perturbation frequency Q for the following set of 7 (9), Q - Qo = 1.1 corresponds to the first order

parameters: -y = 0.088, J = 0.154, 1.1, 4, resonance of A(Q) in Fig. 2. Moreover, other reso-

7 0.1. nances show up: at Q = 2.2 and Q = 3.3, second

A "resonance line" is found which is centered and third harmonics of R respectively, at Q = 0.55

at Q = w; for this value of Q, rM becomes infinite; and Q = 2.75, i.e. at the first subharmonic of
Q0 and at the third harmonic of the subhiarmonic.

this means that Wu and W s never intersect, hence R

chaos should disappear. These last resonances are very narrow and corre-

If 71 is smaller than some critical value 7c, then spond to suppression of chaos (A = 0) only if the

TM remains finite and homoclinic intersections are initial conditions belong to a suitable domain.

not suppressed. By increasing 77 above 7/c, a line

broadening is observed (see Fig. 1). Finally, outside ening is produced at increasing perturbation ampli-
in tude, which is at least in qualitative agreement with

the interval of tv where the quat ponia the analytical result reported in Fig. 1.
Eq. (18) is negative, there is no way to avoid inter- Another way to get a hold of what happens
sections of W u and WS. to the dynamics when the parametric perturbation

Similar results are obtained for different sets of frequency approaches a resonant value, is to look at
parameters. the autocorrelation function (x(t + At)x(t)) of the

Accurate numerical experiments can be per- solution of Eq. (5). In [Lima & Pettini, 1990] some
formed to make a comparison with these pre- of them are reported and show an increasing corre-
dictions. Equation (16) is integrated using a lation time - thus a decreasing chaoticity -- when
Hammings modified predictor-corrector of fourth fQ approaches a resonant value (in this case Q()).

order, time integration steps At = 0.001 - 0.003 and We thus have a paradigmatic example show-

integration times of t = 10 000- 20 000 after a tran- ing that chaos can be reduced or eliminated in a
sient of t = 500. By means of a standard technique dissipative system by means of parametric pertur-
[Benettin et al., 1979], the largest Lyapunov char- bations. A 3% modulation of a parameter, when
acteristic exponent A is computed to detect chaos the modulation frequency is resonant with the forc-
and measure its strength. ing frequency, is able to make regular the chaotic
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dynamics. Let us just spend few words about STORAGE

Hamiltonian systems. We have already mentioned
that in this case chaos is always present, therefore Fig. 4. Sketch of the experimental apparatus.
one can "only" hope either to stabilize some bro-
ken KAM tori, or to modify the diffusion proper- a one mode approximation of Galerkin type can be
ties of the model. Some attempts made with the done on the partial differential equation that de-
Hamiltonian version of the Duffing-Holmes oscilla- scribes this flexible pendulum [Marsden & Holmes,
tor and with the systems of [Pettini et al., 1988], 1980], so that the single mode amplitude obeys the
show that sometimes several small and sticky is- Duffing-Holmes ordinary differential Eq. (5). In or-
lands can be produced by parametric perturbations; der for a parametric perturbation to act upon the
the major consequence is a slowing down of diffusion system, the permanent magnets of the experimental
in phase space due to intermittent trapping near is- apparatus are surrounded by coils of copper wires.
lands. An increase of intermittency is revealed by a An oscillating electric current in the coils gives a
worse convergence of maximal Lyapunov exponent modulation of the magnetic field at the end of the
caused by enhanced fluctuations of local divergence beam so that a and / in Eq. (5) become
rate of nearby trajectories. In general, stronger
perturbations are necessary to produce measurable ac -- 4al ± & cos(27rvMt)], E < 1 (19)
effects. 3 -- 0[1 + 77 cos(27rvMt)], 7 < 1. (20)

3. An Experimental Confirmation The bending of the beam can be measured by
an optical device: A thin screen fixed on the elastic

The model equation above studied is well suited also beam makes an occultation of a light source, then
for an experimental test of the practical applicabil- the resulting light intensity, measured by a photore-
ity of the method [Fronzoni et al., 1991]. sistence, reveals the fundamental mode amplitude

The experimental apparatus consists of a of the deflection which is described in Eq. (5).
magnetoelastic device schematically represented in The dynamics of the system can be examined
Fig. 4: A steel-made elastic beam is clamped at with the aid of an oscilloscope where the portraits
one end and is left free at the other end; near the (x, d) of the Poincar sections of the phase space

free end of the beam two magnets create a two- are obtained by modulating the z-axis of the oscil-
well potential with two stable equilibria. The whole loscope with a signal synchronized to the driving
system is put in vibration by means of an electro- signal of the vibrator. A typical Poincar6 section,
magnetic shaker. If the forcing is not too strong, obtained when chaotic vibrations are present, is
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x(V)

-, .(a)

1 t (sec.) 10
X(v)

Fig. 5. Poincar6 section obtained with 300 seconds of acqui-
sition time. About 1000 points are displayed. VF = 13.03 Hz,
A/Ar = 1.33, = 7/= 0. A

reproduced in Fig. 5. Long runs (several hours)
of the experimental apparatus ensure that chaos is 1 (b)
stable in the system. ,_,__ _ ,

A current flowing through the coils around the 1 t (sec.) 10
permanent magnets changes the magnetic field in- x(V)

tensity at the end of the elastic beam, this means
that the parameters a and ,3 are modified according
to Eq. (20).

When a modulation voltage is applied to the 0

coils, the response is like in Fig. 6, where the volt-
age output (proportional to x(t)) is displayed ver-
sus time. At modulation frequencies vM close to
the forcing frequencies 1 F chaotic vibration is al- (

ternated by ordered vibrations. Ordered phases are
almost periodic oscillations around one of the two t

minima of the potential with x(t) locked to the forc- 5 t (see.) 10

ing signal. Fig. 6. Oscillation amplitude x(t), measured in Volts, at

The average duration of the regular vibrations VF = 13.03 Hz, e = 0.1, q = 0.08, A/A, = 1.33.

increases when IvF-vMI is reduced. Roughly speak- (a) vM = 13.06 Hz; (b) ivM = 13.07 Hz; (c) vM = 13.08 Hz.

ing, the parametric perturbation makes the system
intermittent and by approaching a resonance be-
tween vF and VM the laminar phase has an increas- is sent also to the reference of the Lock-in. The
ing weight with respect to the chaotic phase. Com- tracings display typical resonance patterns. These

plete regularization of the dynamics shows up only show how the relative weight of laminar phases
at exact resonance. A modulation of the 10% of the with respect to chaotic phases changes as a func-
unperturbed value of a (i.e. E = 0.1) is needed to tion of parametric modulation frequency. The two
produce the result reported in Fig. 6. upper curves correspond to different amplitudes

A less qualitative description of phenomenon is of the modulation (E = 0.16 and E = 0.1 from
given in Fig. 7, where the amplitude output of a top to bottom) and show a resonance broadening
Lock-in measurement device is reported versus the at increasing 6. The maxima of the peaks corre-
perturbation frequency VM when the forcing signal spond to vM - iE. The same effect of parametric
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14 is unperturbed system in a chaotic phase, it is again
possible to prevent A(to) from changing sign (i.e. to
eliminate chaos), provided that Q2 is resonant and

(a) that the other parameters are in suitable domains.

4. Concluding Remarks

We have briefly shown that open-loop parametric
0control of chaos is successful. The model here dis-

cussed is somehow paradigmatic because, beside the
general heuristic argument, we have at disposal an
analytical prediction - based on the only predic-

(b) tive method existing at present (Melnikov's theory)
- and numerical simulations confirming the theo-
retical analysis, and finally an experimental confir-
mation on a physical system.

Numerical simulations confirmed the analyti-
I I I I Ical predictions revealing at the same time a richer

28 30 V. (Hz) phenomenology, which is not surprising because

Fig. 7. Lock-in amplitude output (arbitrary units) versus Melnikov's theory is based on an approximate
vM. Sweep time: 1175 sec/Hz. Lock-in integration time: method.
300 sec. VF = 14.59 Hz and A/AC = 1.33. (a) upper curve The experimental confirmation is crucial at
refers to e = 0.16; lower curve refers to E = 0.1. (b) second least for two reasons: The obvious one is to show
harmonic resonance, E = 0.12. that the method can be successfully implemented

in real systems, the other is that the possibility of
controlling chaos by parametric perturbations turns

modulation is found at VM - 2VF and this too is out to be robust, in fact our experimental system is
reported in Fig. 7 (lower curve), only roughly modeled by a Duffing-Holmes equa-

In the experimental device it is not possible to tion, nevertheless the method works, this suggests
avoid the contemporary modulation of a and /3, that the choice of good model equations is certainly

therefore one has to adapt the above theoretical tat od moel

analysis to this case. The Melnikov function must important but not critical.

be computed for Eq. (5) with the modulations given derstanding. Among the open questions we mention

by Eq. (20). The new result - (setting Q = 27rvm that:

and w = 27rvF) - reads

(i) The development of a more general theoretical
A(to)=27rwA -2sech 7W sin(wto)  framework requires to go beyond Melnikov's

2 2 -ciw theory which is undoubtely general but it ap-

plies to weakly perturbed systems and it is of
[7 (_ Q (Q4 2] practical utility only in a few simple cases. An

'3 - ) 63 interesting direction for further research work
on this topic could be provided by optimal con-

___ 4-ya 3/ 2  trol theory, a la Pontrjaguin, i.e. to minimize
x cosech - sin(Qto) + .(21) the functional

At 77 = E = 0, if the parameters are such that J=j dtA(x(t), u(t))

the function A(to) changes sign then homoclinic in-
tersections are present and hence the existence of rt N

chaotic solutions is inferred. At E,77 =, 0, as the + dt -'[; i - fi(x(t), u(t))]2  (22)

sign of the polynomial function of Q is indefinite, i=1

the second term of Eq. (21) can act as a counterterm where the dynamic constraints vi = fi(x(t),
of the first one. As a consequence, also choosing the u(t)) have been introduced with a Lagrange
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multiplier ft and where the (vector) function Chirikov, B. V. [1979] "A universal instability of
u(t) represents the control(s) with respect to many-dimensional oscillator systems," Phys. Rep. 52,
which the functional J has to be minimized. 263-379.
Here the problem is to find a good function Chen, G. & Dong, X. [1993] "From chaos to order -
A(x(t), u(t)) that attains its minimum in cor- Perspectives and methodologies in controlling chaotic

respondence of ordered motions. nonlinear dynamical systems," Int. J. Bifurcation and

(ii) The above results raise an intriguing prob- Chaos 3, 1363-1409.
lem in connection with the so-called "stabil- Fronzoni, L., Giocondo, M. & Pettini, M. [1991]ity dogma" [Guckenheimer s Holmes, 1983]: "Experimental evidence of suppression of chaos by

resonant parametric perturbations," Phys. Rev. A43,
If you observe chaos in real systems it must be 6483-6487.
structurally stable (in the strong sense) and Guckenheimer, J. & Holmes, P. [1983] Nonlinear Oscilla-
the same should hold for the theoretical mod- tions, Dynamical Systems, and Bifurcations of Vector
els used. In fact theoretical models will never Fields (Springer-Verlag, NY).
take into account all the interactions, pertur- Hanson, J. D. & Cary, J. R. [1984] "Elimination
bations, noise, etc. which are present in real of stochasticity in stellarators," Phys. Fluids 27,
systems. Attempts to soften the definition of 767-769.
structural stability have been proposed some Izrailev, F. M. & Chirikov, B. V. [1974] Numerical
years ago [Zeeman, 1988]. Experiments on Stabilization of Stochastic Instabilityyear ag [Zeman 198].with the Use of Computer in Interactive Regime (in

(iii) In this context it is not out of place to men-

tion that, after the Birkhoff-Smale homoclinic Russian), I.Ya.F. preprint 74-13, Novosibirsk.
tiorem thatte heirHolSmale, 1983inie Lima, R. & Pettini, M. [1990] "Suppression of chaos bytheorem [Guckenheimer & Holmes, 1983], the resonant parametric perturbations," Phys. Rev. A41,
existence of homoclinic intersections for the 726-733.
Duffing-Holmes oscillator ensures the exis- Lima, R. and Pettini, M. [1993]- "Reply to comment on
tence of a hyperbolic invariant set A. Other suppression of chaos by resonant parametric pertur-
considerations [Guckenheimer & Holmes, 1983] bations," Phys. Rev. E47, 4630-4631.
rule out, for the same model, the possibility for Loskutov, A. Yu. [1987] Parametric Destochastization of
A to be an attractor. There are several reasons a System with a Strange Attractor of a Spiral Type
to believe that noise, which is always present (in Russian), preprint n. 4802-B87, Phys. Dept. Univ.
both in real systems and in numerical mod- Moscow.

els, plays an important role together with A Laval, G. & Gresillon, D. (eds.) [1979] "Intrinsic
stochasticity in plasmas," (Les Edition de Physiqueto stabilize chaotic transients or, at least, to Courtaboeuf, Orsay).

make them very long with respect to practical Marsden, J. E. & Holmes, P. J. [1980] "A horseshoe in

the dynamics of a forced beam," in Nonlinear Dynam-
ics, ed. Helleman, R. H. G. (The New York Academy
of Science, NY).
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This paper describes mode-transition dynamics of a compound-cavity, multimode, Fabry-Perot
(FP) semiconductor laser and the basic idea of adaptive wavelength selection using chaotic
search. In the presence of external feedback, the laser is shown to exhibit different mode-
competition dynamics including single-mode, multistability, and chaotic mode-transition states.
A chaotic search technique is proposed to adaptively select a dominant lasing mode which fits
the environment by switching a control parameter (feedback level or bias injection) between
multistability and chaotic mode-transition states. The effectiveness of the adaptive mode selec-
tion is verified through a computer simulation and the robustness as well as the experimental
implementation of the technique are discussed.

1. Introduction for performing adaptive mode (wavelength) selec-
tion using chaotic search, that is, multistability ofApplications of chaotic dynamics have received moeanannstfchtitrstosaog

much attention in recent studies of nonlinear dy- the different modes.

namics. One promising topic is adaptive mode se- the pper iso

lection using chaotic search [Davis, 1990] which uti- The paper is organized as follows. In the next

lizes the global properties of a chaotic system and section, we first introduce a numerical model of a

the bifurcation from multistable regime to chaotic multimode laser with external feedback and com-

regime. This method was successfully applied to pare numerical results for the spectral distribu-

adaptive oscillation mode selection in an electro- tion with experimental observations. The mode-
optical system [Aida & Davis, 1994; Liu & Davis, competition dynamics are characterized by mode

1997]. power and dominant mode distributions, and based
This paper describes the application of the on these measures, the laser output is classified

chaotic search to a multimode FP semiconductor into three different regimes: single dominant mode
laser with external optical feedback. Experiments regime (only one mode dominates the lasing), multi-
have revealed that the external reflectivity as well stability regime (different modes become dominant
as the external cavity length exert essential influ- depending on initial condition), and chaotic mode-
ences on dynamical and spectral behaviors of a laser transition regime. In particular, we show that it
diode in an external cavity (e.g. [Mork et al., 1992; is possible to switch between the multistability and
Uenishi et al., 1996]). The purpose of this paper chaotic mode transition regimes by switching a con-
is to investigate the mode-competition dynamics trol parameter: external feedback strength or injec-
in the external cavity laser and to verify whether tion current. In Sec. 3, we show that adaptive mode
it has a bifurcation structure which is suitable selection using chaotic search can be performed by

*E-mail: y-liuc4acr.atr.co.jp
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coupling the control parameter to an external eval-
uation signal. The effectiveness of the adaptive
mode selection technique is verified by computer
simulations. The robustness and possible exper-
imental implementation of the technique are also
discussed. The last section summarizes the paper
with a comment on potential applications of the
proposed chaotic search scheme to other lasers.

2. Mode-Competition Dynamics and
Bifurcation Diagrams

As a reference for the numerical modeling, we first 787378

show an experimental optical spectrum of a typ- Wavelength (nm)

ical laser diode with moderate optical feedback
(1 - 10%). The laser employed in the observa- (a)

tion of Fig. 1 is a AlGaAs laser diode with a center 0.3 mmMPR

mode wavelength of about 782 nm at the threshold -'--DMR

bias current of 45 mA. It is well known that a FP
semiconductor laser subject to moderate to strong 0.2

feedback often exhibits multimode behavior. In this
experiment, it is found that about 10 modes have
power levels within 10% of that of the peak mode
power.

The dynamics of the above laser can be de- 0
scribed by a set of multimode rate equations in- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

cluding the external feedback and Langevin noise Mode

[Byrne, 1992; Ryan et al., 1994]. (b)

dt ( (t) Fig. 1. Optical spectra of a FP laser diode with external

dt _ i(wm - Wth)Em(t) feedback. (a) Experimental and (b) simulation results. The
vertical scale of (a) is 50 nW/div.

+1 (1 - ia)(Gm- )Em(t)

+ rEm(t - -T) exp(iwmr) linewidth enhancement factor, 0 mk is the coefficient
for cross-saturation between modes m and k, J is

1 the bias injection, and Fm, FN are Langevin noise
2 Z OmkIEk(t)I2 Em(t) + Fm(t), (1) terms. We did not include noises in the current sim-

k ulations in order to distinguish effects of determin-

dN(t) j N(t) M istic chaos from stochastic noise. The expression for
dt _ _ _ E S GjIEj(t)12 + FN(t). (2) the mode gain Gm is given by
dt Ts j=1 Gm = 9[N(t) - No][1 - (Am - A) 2 /A 2 ] (3)

Here, Em is the complex optical field of the mth

(m = 1, 2,..., M) longitudinal mode and is scaled where g is the gain coefficient, No is the carrier num-

so that JEm12 corresponds to the photon number ber at transparency, Ap is the wavelength of the

within the laser cavity, N(t) is the carrier number peak gain, and AAg is the full width half maximum

within the laser cavity, win, Am, Gm are respectively (FWHM) value of the parabolic gain curve. The

the angular frequency, wavelength, and gain of the feedback level K is given by

mth mode. y is the loss coefficient of the laser, -r, is r. = (I - r2)rl/inro, (4)
the life time of carriers, -r is the time delay in the ex-

ternal feedback, Wth is the angular frequency of the where rin is the round-trip time of the laser cay-
solitary laser without external feedback, a is the ity and r0 and r, are internal cavity reflection
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Table 1. Some parameter values for the laser diode used in the
numerical calculations.

Symbol Parameter Value

A Center wavelength 780 nm

6Am Wavelength separation 0.28 rm

6A9  FWHM of laser gain 100 nm

I Laser cavity length 250 mm

ro Facet reflectivity 0.5556

g Gain coefficient 1639 s- 1

^I Loss coefficient 5.3 x 1011 s- 1

a Linewidth enhancement factor 3

No Carrier number at transparency 1.75 x 108

Nth Carrier number at threshold 4.99 x 108

Ts Life time of carrier 2.0 ns

TIn Round-trip time of laser cavity 5.9 ps

Omm Saturation coefficient 2.8 x 104 s- I

6
mk Cross-saturation coefficient 2.5 x 104 s- xl

and external reflection coefficients (both in ampli- of the light power of each mode. The distribution of
tude), respectively. Modes couple with each other MPR shows the optical spectrum of the laser during
through the depletion of the commonly shared car- a specified time interval. Meanwhile, DMR shows
riers [Eq. (2)] and the gain cross-saturation effect. how frequently a specific mode dominates the laser
We neglect the small contribution from spontaneous output. The two factors are respectively defined as
emission to the lasing mode. This factor is evalu-
ated to be much smaller (less than one percent) than (MPR)i = IEi(t) 2 dt/ E f IEj(t)12dt, (5)
the feedback term (at r1 = 1%) and negligible com-
pared with both the gain and loss factors. Based
on the observed optical spectrum, we assume the and
bandwidth of the laser gain to be 100 nm with the
center wavelength at 780 nm and the total mode (DMR)i =f ]-O[Ei(t)-Ej(t)] dt f dt, (6)
number M to be 20 which is large enough to cover [ -
the experimental spectrum. Other parameters and
parameter values employed in the calculation are where O(x) is a step function and takes 1 for x > 0
listed in Table 1 [Lang & Kobayashi, 1980; Mork and 0 otherwise.
et al., 1992; Ryan et al., 1994]. We mention that nonlinear dynamics and mode

We have numerically simulated Eqs. (1) and interactions of multimode lasers have been stud-
(2) by employing a fourth order Runge-Kutta al- ied in various experimental systems and numer-
gorithm and investigated dynamical states for dif- ical models. For example, Byrne [1992] calcu-
ferent parameter conditions. Figure 1(b) shows a lated the averaged response and the stochastic
numerical result for the optical spectrum of the laser response of a multimode laser under Gb/s mod-
with external feedback. The spectrum is quite sim- ulation. Bracikowski and Roy [1991] investigated
ilar to the experimental result in Fig. 1(a) and this periodic pulsing of a multimode solid-state laser
justifies the numerical model and the parameter val- and found antiphase cycling among different modes.
ues used. Ryan et al. [1994] investigated intensity noise fea-

To characterize mode states of the multi- tures of a multimode laser diode with external feed-
mode LD, we introduced two measures, namely, back and observed mode transitions in the time
mode-power-ratio (MPR) and dominant-mode- evolution of the laser output. Recently, Szwaj
ratio (DMR). MPR stands for a long-term average et al. [1996] observed wave propagation in the
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Single Mode Multi-Stability Mode-Transition white circles denote stable dominant modes whose
Regime Regime Regime DMR is unity for some initial condition. Multi-

20
ple circles at a fixed parameter value indicate mul-
tistability of the dominant mode. On the other

15 . hand, solid dots denote temporary dominant modes,
0 0000 i.e. the dominant mode changes from one to another
0 0 in time and each marked mode is only dominant for

S10 0 0 0 0
0 0 0 0 0 0 ........... a short time interval. It is stressed that the blank

. . .area in the bifurcation diagram does not necessarily
5 mean the output power of the mode there is truly

zero, it only means the mode never becomes domi-
nant during the observation time.

00.5 1 1.5 2 2.5 3 In the above bifurcation diagrams, the pa-
External Reflectivity (%) rameter domain can be divided into three dif-

Fig. 2. Bifurcation diagram of mode-competition states ver- ferent regimes corresponding to different mode-
sus external reflectivity. White circles and solid dots denote competition states: (i) single mode regime where
respectively stable and temporary dominant modes. Param- only one specific mode becomes dominant (which
eters are Ib= 1.5 /th and Lext 15 cm. means DMR = 1) and the mode takes most of the

output power all the time; (ii) the multistability
regime where different dominant modes exist de-

Mode-Transition Multi-Stability Mode-Transition pending on initial conditions; and (iii) the chaotic
Regime Regime Regime

20

15 0.85 ............. 0.

o ..... . .. 0 0000000 0 000 . ......
... 000 000 00 0.6

lo 0 00 0 0
°  

•.--•
E-........... 00000 C 000 00 00 0.. . 060 .............. 0. oo 0.4. 00000 O0 0000000 0 0 00.....•

0I 000•ee••e0 0.......0.

.........
0.2

0 0_ _ 0_W___@J

1.1 1.3 1.5 1.7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Bias Injection (Ith) Mode

Fig. 3. Bifurcation diagram of mode-competition states ver- (a)
sus bias injection. White circles and solid dots denote respec-
tively stable and temporary dominant modes. Parameters are
Lext 36 cm and Rext = 1.0%. 1

0.8

spectrum as a result of coupling between modes in 0.6

a strongly multimode fiber laser. In this paper, we
focus on the bifurcation of mode-competition dy- 0.4
namics when the external feedback level or the bias
injection are varied. In particular, we use the mea- 0.2

sures of DMR and MPR to classify different laser 0
states and investigate how the bifurcation of mode- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

competition dynamics results in changes in laser Mode
states. (b)

Figures 2 and 3 show the bifurcation diagrams Fig. 4. Mode distributions in multistability regime for Ib =
of laser states versus the external reflectivity and 1.5 Ith, Lext = 15 cm, and Rext = 1.4%. Dominant mode is

the bias injection, respectively. In these diagrams, (a) No. 9 and (b) No. 13.



Adaptive Mode Selection in a FP-LD 1689

mode-transition regime where no particular mode Thus the search is performed as follows. When a
becomes dominant during the observation time. mode gets a good external response, the control pa-

Examples of mode distributions for multistable rameter is set to Mo. If the laser output falls into a
states are shown in Figs. 4(a) and 4(b). The his- different mode which gets a bad response, the con-
tograms show DMR distributions while the lines in- trol parameter is reset to yC and the search loop
dicate MPR values. In both figures, there exists is repeated.
one mode whose DMR becomes unity, although the Two typical examples of chaotic search are
MPR shows that the mode does not take all of the shown in Figs. 5 and 6. In the case of Fig. 5, the
laser output power.

13 13
4)11

3. Adaptive Mode Selection Using 8

Chaotic Search
20

A method for adaptive mode selection using chaotic 18
search was proposed by Davis [1990]. Here the word 16

"mode" could mean an oscillation pattern, a bit se- 014

quence, or the dominant lasing wavelength as in the
current case. The method is applicable to systems 18 8 a

which exhibit multistability of modes and an onset 0
of chaotic transitions among the different modes. 4
It is further assumed that the "fitness" of a partic- 2 -. ,,B - -
ular mode is shown by an external response signal 0 - ,

obtained when the system is in that mode, with dif- 0 5 10 15
ferent response signal levels corresponding to good Time (gs)
fitness and bad fitness. The general idea of adap- Fig. 5. Mode search process. Target modes are mode 8,

tive mode selection using chaotic search is to couple 13, 11, and 13. The control parameter (bias injection Ib) is

the fitness response signal to the control parameter switched between p' = 1.15 Ith and p0 = 1.35 Ith. Other
of the system in such a way that bad responses re- parameters are Lext = 36 cm and Rext = 1.0%. Upper trace:

sult in mode transitions and good responses result Dominant mode DMR. Lower trace: The control signal.

in mode stability.
As shown in the last section, a multimode FP 13 13

laser diode with external feedback has multistability 1l
and chaotic mode-transition states as well as bifur- 9
cation between these two regimes upon the contin-
uous variation of laser parameters. Thus, we are 20

able to apply the chaotic search idea to the mul- 18
timode FP semiconductor laser for the purpose of 16

adaptive mode selection. The chaotic search con- 14
sists of two steps: mode evaluation and parameter 12

adjustment. In the first step the system output is 10 99
evaluated and external response is generated and in 8

the second step the control parameter is adjusted 6
4using the external response signal. In the first step, 4c

we detect the output of each mode and calculate the 2 p B ..
0DMR during the fixed mode-evaluation time inter- 0 1 2 3 4

val. The mode-evaluation time is chosen as several Time (ps)

times the relaxation time of the laser. For the sec-
ondste, te cntrl pramteris hosn a a wo- Fig. 6. Mode search process. Tar'get modes are mode 13, 9,

ond step, the control parameter is chosen as a two- 11, 9, and 13. The control parameter (external reflectivity
level variable for simplicity, with parameter value Rext) is switched between p = 2.8% and po = 1.4%. Other
A c corresponding to chaotic mode-transition regime parameters are Ib = 1.5 !th and Lext = 15 cm. Upper trace:

and parameter value yt° to multistability regime. Dominant mode DMR. Lower trace: The control signal.



1690 Y. Liu & P. Davis

bias injection is taken as the control parameter 50

and is switched between chaotic mode-transition 2 40 4

regime at pC = 1.15 /th and multistability regime at
P0 = 1.35 Ith- Three modes (mode 8, 11, and 13) 30

were alternatively set as targets. During each search
VZloop, there are several switch-on and -off processes. 20

Such behavior is typical in this adaptive mode selec- 1
tion method due to mismatch between the external 0
classification of output states and the basins of at- 0
traction. When the target mode appears, the laser 2 2.5 3 3.5 4

is set in multistability regime (p = p0) and the out- External Reflectivity pc (%)
put mode converges to one of the multiple stable Fig. 7. The dependence of average mode search time on

modes. If the output converges to the target mode, control parameter M'c. The control parameter is external
the good response will keep the control parameter reflectivity Rext. Other parameters are Ib = 1.5 Ith and
at p0 ; if the output falls into some other mode, the Lext = 15 cm. Dependence on bias injection is similar.

change of the external response will automatically
reset the control parameter to be pc . Chaotic search
can also be performed using the external reflectivity current simulation with a more simple method: To
as the control parameter as shown in Fig. 6. Here, detect the light power for a particular wavelength
again three states (modes 9, 11, and 13) were set and compare it with a preset threshold, i.e. to

as targets. We purposely chose mode 11 as one of evaluate MPR instead of DMR. We numerically

the targets to show a case when the search fails to tested this simplified version of the search technique

converge. Since mode 11 is not among the mul- and obtained successful mode selection provided the

tistable states at p0 (see Fig. 2), the laser output threshold is appropriately chosen. The experimen-

cannot converge to this mode. This search method tal implementation could be realized by using a
can only converge to modes which are stable at z° .  diffraction grating and a photodiode whose band-The influence of the parameter value for the width corresponds to the mode-evaluation time,onset of chaos on the search process has been in- and an amplifier with a preset threshold voltage.vestigated. Figure 7 shows the effects of c on the The target mode can be set by varying the angle ofaverage search time which was calculated from 50 the grating and hence the wavelength of the lightsearch events. It can be seen from Fig. 7 that the incident upon the detector. The detected signal forseach vens. t cn b sen fom ig.7 tat he a specific wavelength could be compared with the
mode search time varies in a complicated way on pec wvelg cld e compae pihte
the control parameter, the reflectivity. The mode preset threshold and the deviation signal employed
search time depends on the details of the chaotic to adjust the injection current of the laser or themodetrasiton ynaics[Davs, 998, wichcan electric port of an acousto-optical modulator whichm ode transition dynam ics [D avis, 1998], w hich can co t ls he x er a r fe ti ty
have complicated structure depending on the con-
trol parameter. More detailed analysis of this is a
subject for future work. However, it is important 4. Conclusion
to note that Fig. 7 shows that there is a parameter
interval over which the variation of the search time In summary, we have investigated mode-compe-
is small enough for the search method to be con- tition dynamics of a multimode FP semiconduc-
sidered robust. On the other hand, for yc 2.1%, tor laser and demonstrated that different mode-
the average search time shows significant increase competition states exist when external feedback or
and the search fails when tc < 2%. The increase bias injections are varied and these states and their
of the search time near the boundary of the chaotic bifurcation structure are suitable for performing
mode-transition regime, where the mode-transition adaptive mode (wavelength) selection using chaotic
rate decreases, shows that chaotic mode-transition search. For a solitary multimode laser, all modes
is essential in the adaptive mode selection. are excited and no particular mode dominates the

We briefly discuss the feasibility of experi- light output. When external feedback or injec-
mentally implementing the above mode selection tion modulation are introduced, the laser exhibits
method. For experimental convenience, we could complex mode-competition dynamics. Three differ-
substitute the mode-evaluation method used in the ent parameter regimes have been verified namely a
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single-mode regime, a multistability regime, and a Byrne, D. M. [1992] "Accurate simulation of multifre-
chaotic mode-transition regime. quency semiconductor laser dynamics under gigabits-

Switching between the multistability regime per-second modulation," J. Lightwave Technol. 10(8),

and the chaotic mode-transition regime makes it 1086-1096.

possible to adaptively select a dominant lasing Davis, P. [1990] "Application of optical chaos to tempo-

mode by using a chaotic search method. In this ral pattern search in a nonlinear optical resonator,"

method, the laser is initially set in the chaotic mode- Jap. J. Appl. Phys. 29(7), L1238-L1240.

transition regime. When a particular wavelength Davis, P. [1998] "Adaptive mode selection using on-off
gtasgoodnextena regi he, te p ti ernalenh switching of chaos," Int. J. Bifurcation and Chaos
gets a good external response, the external response 8(8), 1671-1674.
stabilizes that mode as the dominant mode of the Lang, R. & Kobayashi, K. [1980] "External optical feed-
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We consider the effects of parametric perturbation on the onset of chaos in different dynamical
systems. Favoring or suppression of chaos was observed depending on the phase or the frequency
of the periodic perturbation. A lowering of the threshold of chaos was observed in an electronic
device simulating a Josephson-Junction model and the suppression of chaos was obtained in a
bistable mechanical device. We showed that in case of spatial instability in a sample of liquid
crystal, the action of the parametric perturbation is to modify the velocity and the onset of the
defects.

Considering that the emergence of defects precedes the threshold of spatio-temporal chaos,
we infer that parametric perturbation can modify the threshold of chaos in this spatial dynam-
ical system.

1. Introduction Considering that these works were essentially
of theoretical nature, it was particularly in-

In 1965, an interesting paper appeared where teresting to -try to verify these predictions in
Wehrmann [1965] was able to suppress turbulence real systems with an experimental point of
behind a cylinder in a moving fluid. The basic idea view. In spite of the development of other
was to put in vibration the cylinder with a suit- methodologies for the control of chaos, e.g. [Ott
able feed-back using the same fluctuations present et al., 1990; Pyragas, 1992] and more recently
in the turbulent fluid. A complete laminarization [Boccaletti & Arecchi, 1995], the techniques for
was obtained. Turbulence is a phenomena related controlling chaos with parametric perturbations re-
to .a system with infinite degrees of freedom and main a good method when it becomes impossible
it is natural to wonder if parametric perturbations to apply feedback on the systems. In the next
can modify the onset of chaos in low dimensional sections we will reassume the experimental results
system as well. In 1990, Lima and Pettini [1990] that have allowed us to verify these predictions
showed with rigorous theoretical consideration that [Cicogna & Fronzoni, 1990; Fronzoni et al., 1991].
resonant parametric perturbation can remove chaos The validity of this kind of methodology has been
in low dimensional systems. They confirmed this verified in other experiments performed in several
prediction with numerical simulation. Further- laboratories [Azevedo & Rezende, 1991; Braiman &
more, Cicogna [1990] showed, using a Melnikov Goldhirsch, 1991; Meucci et al., 1994; Ding et al.,
Integral [Melnikov, 1963], how to modify the thresh- 1994; Chizhevsky & Glorieux, 1995; Chizhevsky &
old of chaos by resonant parametric modulation. Corbalan, 1996].
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2. The Influence of Parameter P0 R,
Perturbations in a
Josephson-Junction Model

We considered a model that describes a wide class GENERATOR

of phenomena that can be reduced to a pendulum in VC0

the presence of forcing and viscosity. This equation R

can be resumed in the following equation: 5 S 2

d2¢ (P doLW-ASR V MI

d-2-+5 +Dsin +-cos(wt)=O (1) FILTER

where 5 means the viscosity coefficient, -y the am- 0 Y°

plitude of forcing and w the frequency.

This system behaves chaotic in a range of
parameters -y and D as widely described in an Fig. 1. Scheme of circuit for simulating Eq. (1).

experiment [D'Humieres et al., 1982], where an elec-
tronic device was used to simulate Eq. (1). threshold of chaos. In this experiment we used forc-

We repeated this experiment but with an
important improvement, which is to consider the ing and modulation locked with 9 o 0.coefficient D as a modulated control parameter: The prediction of the chaos threshold can be

obtained by means of the Melnikov Integral. After
some approximation [Cicogna & Fronzoni, 1990] one

D = Do[1 + cos(fQt + 0)] (2) deduces a simple relation for this quantity

where Q means the frequency modulation, C is the M(to) -A cos(Qto) + B sen (Qto + 0), (5)
amplitude and 0 is the difference of phase between
the modulation and the forcing. with

In Fig. 1 we show the scheme of the circuit A = 83 + 27r-ysech(wzr/2) (6)
which simulated Eq. (1) using minimum compo- and
nents technique [Fronzoni, 1989]. B = 21rCQ 2 csch (Q7r/2). (7)

The main element of this device is the Voltage
Control Oscillator (VCO) that provides an output Assuming > 0, chaos does not appear if
with frequency depending on the input V1 according 2

to the relation -y sech(wir/2) + 2 csch(fbr/2) < 46/7r. (8)

Wvco = KV 1 . (3) It is important to observe that the sign of M(to)
depends on the sign of and 0. In other words the

M1 and M2 are multipliers, and without going into threshold of chaos is defined by the relation of sign
great detail, it is important to know that the phase between the amplitude modulation and the phase
q of the voltage at the VCO-output is described by 0. For instance, > 0 and 0 > 0 provide a lowering
the following relation: of the threshold of chaos.

Figure 2 shows the results, which are justified

s sin V C.- by this theory where one has to expect a lowering of
V(1 + cos Qt) + + T- + = 0. the threshold of chaos versus the amplitude of themodulation. The quantitative differences between

(4) the experimental data and the theoretical predic-
tions are due to the approximations used in the

With suitable time-scaling this relation is equiva- computation of the Melnikov Integral.
lent to Eq. (1) which includes the modulation term. When we performed this experiment we were
To study the influence of the modulation we fixed not interested in observing the suppression of chaos,
the amplitude and the frequency of the modulation, nevertheless the Cicogna' s theory predicts this pos-
then the forcing was increased until it reached the sibility. Only favoring chaos was experimentally
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system. For this purpose we restricted our choice to
7 ra bistable system as illustrated in Fig. 3 and mod-

0.8 - eled by a Duffing-Holmes forced oscillator [Moon,
1997].

0.6 A metal beam was fixed over an oscillating
plate. Two electromagnets are located near the

0.4 (Z) free-end of the beam. This system is approximately

described by this equation:
0.2

0 = ¢ .4 03 -= 3 -y + A cos(27rvft). (9)

0.2 0.4 0.6 The parameters a and 0 are obtained by a di-
Fig. 2. Experimental results and theoretical predictions rect measurement of the equilibrium position ±xo
(z-line) for threshold chaos as function of the amplitude mod- and resonant frequencies vo for small perturbations,
ulation with 6 = 0, J = 0.25, w = 0.75 and 0 = 0.75. according to the following relations:

verified with this kind of apparatus. Prodded by the a = 1(27rv)2, (10)

theory of Lima and Pettini we performed another
experiment with the specific intention to verify the 13 = 2 (27rvo)2. (11)
suppression of chaos in a real mechanical system. 2x0

We get the modulation by sending a periodic
current into the electromagnets and this modifies

3. Suppression of Chaos in a the parameters a and /3:
Bistable Mechanical Device

The motivation behind this choice arises from the a -+ a[1 + E cos(27rvnt)], (12)

fact that the theoretical predictions could be in- /3-+ 0[1 + 7/cos(2rvmt)]. (13)
validated by the incomplete correspondence of the
model with the reality. This could cause doubts E and q are the modulation amplitudes and vm the
on the true possibility to remove chaos in a real frequency modulation. Figure 3 shows the experi-

mental configuration used to control chaos.
The shaker drove the plate with a frequency

Optical detector forcing vf. An optical detector read the oscillation
Iamplitude of the beam. This signal and its deriva-

tive were sent to the x-y input of an oscilloscope.
shaker IIf the z-axis of the oscilloscope was triggered by the

&M magnets forcing, a Poincar6 section appeared on the screen.
plus coils With this technique we were able to know in real

time the state of the system without computations.
-Fixed dots on the screen indicated order and spread

modulator points on the screen indicated chaotic dynamics.
oAccording to the Lima-Pettini theory it is possi-
oscilloscope ble to suppress chaos if the frequency of the pertur-

signal bation approaches the values of the characteristic
generator Z .frequencies of the system, including harmonics.

Z 'To observe the suppression of chaos we used
the following procedure: We fixed the driving am-

trigger X I analog. plitude and its frequency to observe a strange at-

differ. tractor on the screen and then we sent a periodic
current into the coils. The frequency of this pertur-

Fig. 3. Scheme of mechanical device and the experimental bation was swept around the values of the driving
configuration. frequency or around the harmonics.
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(b) Fig. 5. Amplitude Lock-in output versus frequency mod-
ulation v. (a) first-harmonic resonance, upper curve E =
0.16, lower curve 6 = 0.1. (b) second-harmonic resonance

1 s 10 E = 0.12. Sweep time 1175 sec/Hz, integration time 300 sec
SECONDS and A/Achaos = 1.33.

VOLTS (c) The average duration of the ordered phases was

0 proportional to the reciprocal of the difference

AV= Vf - Vm.

A way to get numerical evaluation of the res-

-, (C) onance phenomena, was to send the derivative of
C-voltage to the input of a Lock-in instrument us-

5 o ing the amplitude modulation as reference signal.

SECONDS Peaks in the response of the Lock-in indicate or-

Fig. 4. Time evolution of voltage at the output of Optical dered state synchronized with the modulation sig-

Detector in presence of modulation. vy = 13.03 Hz, 6 = nal. Figure 5 shows the Lock-in output versus the
0.1, 77 = 0.08, and A/Achaos = 1.13. (a) vm = 13.08 Hz, frequencies modulation. Resonance at the forcing
(b) vm = 13.07 Hz, (c) vm, = 13.06 Hz. frequency and at the second harmonics are evident.

These results are well explained by the theory [Lima
& Pettini, 1990].

Figure 4 shows the voltage of the optical detec-

tor versus the time for different modulation frequen-
cies. The beam angle amplitude ¢ is proportional 4. Parametric Perturbation on
to this quantity. It results in: Spatio-Temporal Instability

The onset of chaos in spatio-temporal dynamics
(a) Chaotic vibrations of the beam were alternated is characterized by the appearance of defects or

with ordered oscillations. topological defects. The behavior of these defects
(b) The ordered states were characterized by become more complex when a control parameter

periodic oscillation around one of the two equi- approaches the chaos threshold. For instance, the
librium positions. The beam amplitude was number and the velocity of these objects are increas-
synchronized with the forcing. ing with the control parameter.
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Due to the absence of regularity in the behav- 60-

ior of these defects its results are too ambiguous to
define the threshold of the spatio-temporal chaos. 50-
In fact, in spite of the presence of a few defects in {
the structure, they assume chaotic motion just for T
a small increase of the control parameter.

To study the influence of parametric perturba- ET
tions on this kind of system, we considered an elec- 3o-

trohydrodynamic instability [Williams, 1963] that . j
appears in samples of nematic liquid crystals in 20-
the presence of electric field. Nematics are organic
elements characterized by molecules with rod like
shape. These properties induce an ordered configu-
ration where the molecules prefer to stay in a well
defined orientation around a mean value. A vec- 0 I

tor n called "director" defines this orientation. In 0.2 0.3 0.4 0.5 0.6 0.7 0.8

our experiment the nematic was closed between two frequency ( Hz )

conducting glass plates. The internal plate surface Fig. 7. Velocity of defects versus frequency modulation.

was rubbed in a well defined direction. In this con- Open circles correspond to the data of repeated experiment
figuration the molecules assume an orientation par- 30 days later.
allel to the rubbing direction. When an electric field
is applied on the sample, fluctuations of the molec-
ular orientation induce spatial charges inside the on the sample, as shown in Fig. 6. The image is
nematic. The charges are generated by a current obtained observing the cell with a polarized micro-
perpendicular to the field because of the anisotropy scope. Dark and white lines correspond to opposite
of the nematic conductibility. The interaction of velocities of the fluid in the sample with rotation
the spatial charges with an electric field cause move- axes parallel to the plates. As the electric field is
ment in the fluid. This motion arises over a critical increased topological defects broke the regularity of
threshold of the field and a regular pattern appears the structure. Two examples of these defects are

shown in Fig. 6. These defects are well described by
the Landau-Ginsburg theory [Ginsburg & Pitaevs,
1958].

In our experiment we used MBBA ( Methoxy-
benzilidenebutylaniline) inside square glass plates
of 2 cm size and separated by 20 pm. We ap-
plied on the sample an alternating voltage at the
frequency of 10 Hz. We perturbed the system by

means of voltage amplitude modulation of the order
of 10%. Figure 7 shows the velocity of the defects
against the frequency of periodic amplitude mod-
ulation and a resonance behavior is evident. This
experiment was repeated with the same sample 30
days later obtaining a good reproducibility of the
phenomena.

It is important to note that a modulation of
10% of the forcing at Vm = 0.5 Hz induced an
increase of the order of 50% of the defects veloc-
ity. Considering that the increase of defects velocity
precedes the onset of chaos means that parametric

Fig. 6. Microscopic image of liquid crystals cell in pres-

ence of Williams' domains. Two defects are present in the perturbation induces a lowering of the threshold of
structure. chaos in this kind of instability.
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The paper considers the problem of designing time delayed feedback controllers to stabilize
unstable periodic orbits of a class of sinusoidally forced nonlinear systems. This problem is
formulated as an absolute stability problem of a linear periodic feedback system, in order to
employ the well-known circle criterion. In particular,, once a single test is verified by an unstable
periodic orbit of the chaotic system, our approach directly provides a procedure for designing
the optimal stabilizing controller, i.e. the one ensuring the largest obtainable stability bounds.
Even if the circle criterion provides a sufficient condition for stability and therefore the obtained
stability bounds are conservative in nature, several examples, as the one presented in this paper,
show that the performance of the designed controller is quite satisfactory in comparison with
different approaches.

1. Introduction for other related works [Socolar et al., 1994;
Kittel et al., 1995; Just et al., 1997], which are re-

The problem of controlling chaos has recently re- ferred to as time-delayed auto-synchronization or
ceived a lot of attention and many theoretical as time-delayed or simply Pyragas methods. These
well as experimental contributions coming from sev- two classical approaches, based on quite different
eral areas have considered different aspects of this properties and design procedures and successfully
problem (see e.g. [Shinbrot et al., 1993; Ogorzalek, applied to various physical experiments, lead to
1993; Chen & Dong, 1993; Abed & Wang, 1995; feedback controllers utilizing small perturbation
Hu et al., 1995] and references therein). One of signals and they really exploit the peculiar char-
the most frequent objectives consists in the sta- acteristics of chaos. Also for this reason, the above
bilization of chaotic behaviors to periodic regimes methods and in general most literature on control of
and, in particular, many methods are directed to- chaos appear to be distinct from what is called con-
wards the stabilization of one of the infinite un- trol theory, although some evident links are present.
stable periodic orbits that coexist in the chaotic The purpose of the present paper is to
attractor. This problem was first considered by contribute (see also [Basso et al., 1997a]) to the
Ott, Grebogi and Yorke in a paper [Ott et al., results of feedback control theory in order to opti-
1990] that has originated, with related extensions mize, in a certain sense, the solution obtainable via
and modifications (see e.g. [Romeiras et al., 1992; the Pyragas approach, and also to indicate a means
Hunt, 1991; Dressler & Nitsche, 1992]), the so- of designing the related controller. In particular,
called OGY methods. A distinct technique was pro- we consider periodically forced chaotic systems, for
posed by Pyragas [1992], again forming the basis which the Pyragas methods are quite appealing,

*E-mail: genesioadsi.unifi.it
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and we formulate the periodic orbit stabilization Y
as an absolute stability problem [Vidyasagar, 1992] +
of a linear periodic feedback system. Therefore, U(t G(.) ()

a well-known frequency criterion, the circle crite-
rion [Vidyasagar, 1992], is employed to compute
the largest obtainable stability bounds. Once a sin-
gle test is verified by the unstable periodic orbit -0
of the chaotic system, our approach directly pro-
vides a procedure for designing the "optimal" sta-
bilizing controller, i.e. the one maximizing the sta-
bility bounds. Even if the method is based on a
sufficient condition and therefore the bounds are
conservative in nature, several examples show that
the performance of the optimal controller is quite
satisfactory.

The remainder of the paper is organized as fol-
lows. Section 2 formulates the problem and de-
velops the main results, while Sec. 3 presents in E

some detail one example showing the application "
E

of these results, also in comparison with different
approaches. Some brief comments end the paper in -..

Sec. 4.

2. Main Results 0 20 40 60 80 100 120 140 160 180 200
A

The notation adopted hereafter is pretty standard. Fig. 2. The solid (dotted) curves correspond to stable (un-
For instance, X(s) denotes the Laplace transform stable) T-periodic solutions. (Ymax : aXtE[O,T] yA(t),

of the time-domain signal x(t), f' stands for the Ymin := mintE[O,T] yA(t)).

derivative of a function f. A transfer function is
said to be stable if its impulse response belongs to
L1, the space of time-domain signal x(t) such that T-periodic solution up to a certain value, where a
fo7 jx(t)Idt is finite. If the transfer function is ra- first period doubling bifurcation appears. After this
tional, this reduces to the usual notion of stability, value the system possesses an unstable T-periodic
i.e. all the poles must have a negative real part. solution and a stable 2T-periodic solution, until this

To motivate our problem of stabilizing unsta- latter solution undergoes a new period doubling bi-
ble periodic solutions, we consider one of the most furcation, and so on according to the well-known se-
studied problems in controlling chaos, i.e. the elim- quence which usually leads to chaos. This scenario
ination of a period doubling bifurcation sequence is illustrated in Fig. 2 where only the T-periodic so-
[Abed & Wang, 1995]. lutions are indicated explicitly. The basic idea for

Consider the periodically forced (Lur'e) sys- eliminating the bifurcation sequence is to stabilize
tem depicted in Fig. 1, where G(s) is the transfer the unstable T-periodic solution (the dashed one
function of a stable finite dimensional linear time- in Fig. 2), thus inhibiting the first period doubling
invariant system and n(.) is a sufficiently smooth bifurcation. Obviously, this calls for the design of
nonlinear function such that n(O) = 0 and n'(0) = a controller that stabilizes the family of T-periodic
0. These latter hypotheses on the function n(-) solutions corresponding to the largest possible in-
are quite general (see also the example of Sec. 3) terval of amplitudes A of the forcing term.
and are posed to ensure that the origin is a locally To proceed, consider the problem of stabiliz-
stable equilibrium point of the uncontrolled system ing an unstable T-periodic solution yA(t) of the
(i.e. u(t) = 0), when the amplitude A of the forcing uncontrolled system (i.e. u(t) = 0) of Fig. 1 cor-
term is zero. For increasing values of the ampli- responding to a given amplitude A of the forcing
tude A the uncontrolled system exhibits a stable term. Such a problem requires the design of a linear
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time-invariant feedback controller of transfer func- It is well known that the stability of YA(t) is guar-
tion C(s), i.e. anteed by the stability of the origin of the linearized

system of Fig. 3 [Vidyasagar, 1992]. Here, we refer
U(s) = C(s)Y(s), (1) essentially to input-output stability, even if quite

such that yA(t) becomes a stable T-periodic solu- mild assumptions on the feedback interconnection
tion of the controlled system. of G(s) and C(s) allow one to consider asymptotic

It is easily recognized that the controller trans- stability [Basso et al., 1997a].

fer function must satisfy the condition To assess the stability of the system of Fig. 3
and consequently the stability of YA(t), we can em-
ploy the well-known circle criterion [Vidyasagar,

(.2) 0f n1992]. The two quantitiesC 3n'7- =0 for n=0, 1,2.... (2)

1 1
to ensure that the T-periodic solution yA(t) is still a ' := 3 = kA(t)

solution of the controlled system. This fact implies (6)
that the transfer function of such a controller has
the form are introduced to state the following stability result.

C(s) = F(s)(1 - e - sT) (3) Theorem 1. Let a < 0 and 0 > 0. Then, the con-

where F(s) is in general not restricted to be ra- troller C(s) stabilizes YA(t) if
tional. For instance, F(s) is a constant gain K 1. L(s) is stable;
in [Pyragas, 1992], while it has the form K(1 - 2. the following inequality holds:

ResT)- 1 in [Socolar et al., 1994], where R is a

suitable constant. A generalization of this latter La +/3 / - a
structure has been used in [Basso et al., 1997a]. L2w) - 2 < Vw > 0. (7)

To investigate the stability of YA(t), the lin-
earization of the Lur'e system around the periodic Remark 1. Condition (7) has a simple graphical in-
solution is performed. This leads to the linear pe- terpretation in terms of the Nyquist plot of L(s).
riodic system of Fig. 3, where the transfer function Indeed, the Nyquist plot must lie inside the circle
L(s) of the linear subsystem is given by the feedback of center ((/0 + a)/2, 0) and radius (3 - a)/2.
interconnection of G(s) and C(s), i.e.

G(s) Remark 2. Similar results can also be given for gen-
L(s) = 1 + C(s)G(s) (4) eral values of a and /3. However, for the purposes of

this paper, it is enough to consider the case a < 0

and the periodic gain in the feedback path has the and / > 0.
form

dn From condition (2) and Eq. (4), it follows that
kA(t). (5) L(jn27r/T) = G(jn27r/T) for n = 0, 1, 2,....

y YyA(t) Therefore, it is evident that Theorem 1 can ensure
stability of yA(t) only if L(s) is stable and the fol-
lowing inequalities

L(s) G n2 +,3 < ' for n = 0, 1, 2 ....

(8)

hold. Note that the inequalities above rely on the
uncontrolled system, thus resulting in an a priori

kA(t) test for the guaranteed stabilizability of yA(t).

Now, the major question is the following: If the
a priori test (8) is satisfied for yA(t), is it possible

Fig. 3. Linear periodic feedback system. to design a controller C(s) such that Theorem 1
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ensures stability of YA(t)? Fortunately, the answer is always different from zero. At this point it is
is affirmative as shown by the next result. enough to choose W(jw) close to one to fulfill con-

dition (10) also for these frequencies. The fact that
Theorem 2. Let yA(t) satisfy condition (8) and rational transfer functions are dense in the L 1 space
define g1(s) = 1 - e -sT. Then, it is always pos- concludes the proof.
sible to find a stable rational (with stable inverse)
approximation a)up(s) of (P(s) and a stable rational Remark 3. A possible way to select 4ap is to use the
transfer function W(s) such that the controller standard odd Pad6 approximation of e- sT. How-

ever, the resulting (ap has its zeros on the imagi-

1 -0+ s) W(s) nary axis. This drawback is simply eliminated by

C(s) 12G(s) apslightly shifting the zeros into the left half plane,
G(s) (+ ) I(s) (9) thus arriving at a new bap that has a stable inverse.

s 1 -2(1 )J 2G(s)J P W(s) Increasing the order of the Pad6 approximation, it is
easily verified that the ratio '1(jw)/ap(jW) is quite

stabilizes yA(t). close to one at all frequencies, except for w = n27r/T

for n = 0, 1, 2,.... The choice for W is based on the
Sketch of the proof (see [Basso et al., 1997b] for idea of not using the controller (W(jw) = 0) at the
details): frequencies w where G(jw) is already inside the cir-

The stability of L(s) follows directly from the cle of center ((O3+a)/2, 0) and radius (3-a)/2, and
stability of G(s), 4apl(s), W(s) and )(s). Indeed, to use the controller at the remaining frequencies
from Eqs. (4) and (9) it turns out that to force L(jw) towards the center of such a circle.

Finally, we note that it is often possible to simplify

L(s) = G(s) - (G(s) & +/3 N (s) W(s) the controller (9) via a suitable order reduction.
( 2 1 ap(s) Despite the complicated aspect of Eq. (9), the

implementation of the controller is rather simple.
Consider the inequality (7). After some manipula- Indeed, the controller is obtained via the positive
tions, it can be rewritten in the form feedback scheme reported in Fig. 4 that makes clear

the presence of a unique delay element and two ra-
-G(jw)  a+ 1 - (w) "  a tional filters, G(s) and

2' ak.2H ( W (s )

Vw> H(s) 2G(s) G(s)-%p(s)" (11)

and, equivalently, Let us now consider the problem of stabilizing
the family of T-periodic solutions corresponding to

/3 - a the largest interval of amplitudes A of the forcing
I1 OW) W(jw) < 2 term. To this purpose, let A 0 denote the largest

\ Ibap(jw) J (jw) - +/3 possible value of A such that condition (8) holds
2 J where a = ao and 3 = 3o, being ao and /3o defined

as

Vw > 0. (10) ao= max a )30= min )3. (12)
AE[0,Ao] AE[0,A0]

Now, the ratio at the right hand side of inequality
(10) is greater than one for the set of w such that
G(jw) is inside the circle of center ((3+a)/2, 0) and
radius (/3-a)/2 (see Remark 1). For this set, which U(s) H(s) (1-e -' )  

Y(S)

contains w = n27r/T for n = 0, 1, 2,..., as ensured U

by condition (8), it is enough to put W(jw) close
to zero in order that condition (10) holds. For the
remaining values of w, i.e. those such that the ra-
tio at the right hand side of inequality (10) is equal G(-)
or less than one, we select (ap such that the ra-
tio 4b(jw)/4ap(jW) is arbitrarily close to one. This
can always be done since at such frequencies 4(jw) Fig. 4. Controller structure.
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Clearly, the application of Theorem 2 guarantees 1

that all the T-periodic solutions corresponding to 0.8

amplitudes A < A 0 are stabilized by the controller
0.8-

C(s).
Finally, we recall that Theorem 2 provides 0.4

a sufficient condition for the stability of YA(t), 0.2/

i.e. yA(t) may be stable even if condition (8) is far
0-

from being satisfied (see the example in the next
section). However, several application examples 2

have shown that the controller designed via our ap- -0.4-

proach performs much better than other controllers
that do not satisfy condition (7). This is illustrated -0.6

via the example developed in the next section. -0.8

0 2 4 6 8 10 12
A

3. Example Fig. 5. a(A) (lower curve), 3(A) (upper curve).

Consider the equation of the driven Toda
oscillator

0.25

0.2-

j + 0.8y + 25(e y 
- 1) = A sin 27rt - u(t). (13) 0.15 A0=8.6

0.1

This system has been extensively studied in [Just o.05

et al., 1997], where the analysis of the Floquet ex- M 0
ponents showed the presence of a set of stable orbits E

of period T = 1 in the range A E (0, 37) of the forc-
ing input. For larger values of the amplitude the -0.1

system undergoes a sequence of period doubling bi- -0.15

furcations leading to chaos. The stable (solid curve) -0.2

and unstable (dotted curve) T-periodic solutions of -0.25

the uncontrolled system are reported in Fig. 2. The -013 -012 - 0 0.1 012 013

upper and the lower curves represent the maximum Real

and minimum, respectively, of the periodic solution Fig. 6. Nyquist plot of L(s) using controller (16).

yA(t), as a function of the system parameter A.
The control technique proposed in this paper

can be fruitfully exploited to derive a unique time- From the bifurcation diagram of Fig. 2 and us-
delayed feedback controller such that the controlled ing expressions (5), (6) and (15) we can derive the
system has stable periodic solutions for a much two functions ax and 03 of the amplitude A, shown
larger range of the parameter A. It is easily recog- in Fig. 5.
nized that system (13) can be recast in the classical From these functions, we compute A 0 , i.e. the
Lur'e structure of Fig. 1, where largest possible value of A satisfying condition (8),

that is the smallest circle that includes the fixed

1 complex points at the frequencies 2nr, n = 0, 1,...
G(s) 2 + 0.8s+25 (14) ('x' marks in Figs. 6-8). It turns out that ao =

-0.064, 3o = 0.088 and A 0 = 8.6.
Based on Theorem 2 and the structure in Fig. 4,

and the following controller is obtained

n(y) 25(e - y -1). (15)

C() H(s)(1 -e- s)  (16)

Note that G(s) is stable and n(0) = n'(0) = 0. C(s) - 1 - G(s)H(s)(1 - e-s)
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where 0.25

1.3s2 + s + 32.5 0.2 Ao-8.6

5 10-7S3 ± 1.3 10-482 + 1.6 10-28 + 1 0.15- A=4

(17) 0.1
0.05(17 ..... ... ..
0.05_

Here, the stable filter '0-

4Oap(S) -o0o
-0.1

2s5 + 20s 4 + 899S3 + 4598S2 + 35720s + 108900 -0.15

S5 + 30S4 + 420S3 + 3360S2 + 15120s + 30240 -0.2

(18) -0.25
-0.302601 0 01 . .

follows directly from the fifth order Pad6 approxi- -0.3 -. 2 -0.1 0 01 0.2 0.3Real

mation of e- s .

The Nyquist plot of the corresponding closed Fig. 7. Nyquist plot of L(s) using controller (20).

loop transfer function L(s) is indicated in Fig. 6 to-
gether with the circle intersecting the real axis in
ao and /3o. 0.25- A=2.45

Simulations show that the designed controller 0.2-A8

(16) stabilizes the periodic orbits of system (13) 0.15 ............ ...

over the range A E (0, 1500), where the upper 0.1 A-4

bound is only due to numerical problems in inte- 0.05.

grating the system at large values of A. . 0-
We can compare the results obtained by our - . 5

controller with those presented in [Just et al., 1997], -0.1 .......

where a Pyragas controller was designed exploiting
Floquet theory. The derived control law was -0.15 \ ...

-0.2

u(t) = 2.4[ (t) - y(t - 1)], (19) -0.25

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

or, equivalently, Real

C(s) = F(s)(1 - e- ) = 2.4s(1 - e-). (20) Fig. 8. Nyquist plot of G(s).

Such a controller is optimal among the con-
trollers with the same structure but different gains
(i.e. F(s) = Ks), in the sense of minimizing the Guaranteed Simulated
Floquet exponents at the given input amplitude Stability Stability

A = 105. C(s) Range Range

Figure 7 shows the application of Theorem 1 to 0 A G (0, 2.45) A E (0, 37)

the system (13) and the controller (20). From the 2.4s(1 - e- s) A E (0, 4) A E (0, 131)
Nyquist diagram we can derive A = 4, a = -0.149 Eq. (16) A E (0, 8.6) A E (0, 1500)

and f3 = 0.173 (circle with solid curve). For com-
parison, Fig. 7 also reports the optimal circle at
A0 = 8.6 (dotted curve).

Finally, we note that the controller (20) is also To conclude, Theorem 1 is applied to the un-
optimal with respect .to Theorem 1 in the sense that controlled system [see the Nyquist plot of the linear
maximizes the amplitude A among the controllers subsystem (14) in Fig. 8] determining the values of
with the same structure but different gains, a = -0.241, fi = 0.266 and A = 2.45 (solid circle in

Simulations on the controlled system show that Fig. 8).
the controller (20) can stabilize all the orbits of pe- We summarize the results obtained in
riod 1 in the much restricted range A E (0, 131). Table 1, which definitely supports our claim that
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20 20- 20

0 0 0 0-0

-2C -20 -20
-6 -4 -2 0 2 -6 -4 -2 0 2 -6 -4 -2 0 2
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50 50 50
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0 0 0*

-200 -2001 -2000
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Fig. 9. Simulations in the (y, i) plane: Each row denotes a different value of the parameter A (40, 140, 1200), while each

column indicates a different controller, i.e. column 1 C(s) = 0, column 2 controller (20), column 3 controller (16).

the larger the amplitude of the system input fulfill- nating the period doubling bifurcation sequence has
ing Theorem 1, the larger the range that is stabi- been shown.
lized in practice. For completeness, we have also
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It has been established that chaotic iterated maps can be transferred to a periodic motion
by application of periodic signals. As a next step, we investigate the optimization of such
signals with respect to a small norm. This method employs a cost function on the space of
periodic inputs. By means of a direct optimization search in this space, the approach stabilizes
periodicity with small forces. The results for increasing driving periods are compared.

1. Introduction Such techniques usually require some type of feed-
back since the control forces correct deviations from

In recent years, many authors considered the prob- the desired orbit. In principle (i.e. in absence of
lem of controlling chaotic systems (see [Chen & noise, modeling errors, etc.) control forces vanish
Dong, 1993; Shinbrot, 1995] for reviews). A if the goal is reached ("noninvasive" controls). By
common goal is to force the chaotic system into a contrast there are "invasive" methods that always
periodic state. Other intentions might be a migra- influence the system. The particular invasive tech-
tion of the system to certain phase space regions, nique we consider is called "open-loop" since it fore-
synchronization with an arbitrary signal, or the en- goes any additional feedback. The control forces
hancement of chaos in the system. In this paper are applied permanently and irrespective of the ac-
we will focus on the conversion of chaos to peri- tual system state. If one wants to achieve a peri-
odicity. There are two aspects of this approach: odic goal motion by an open-loop control, the forces
(i) some advantage of a periodic behavior over a have to be periodic, too. The only possible goal
chaotic one (e.g. reduced drag, higher mean out- trajectories are asymptotically stable solutions of
put, limited peak values, or simple predictability), the periodically driven system - which are typi-
and (ii) the proximity of the chaotic motion to cally not pre-existing unstable system solutions like
(infinitely many) unstable periodic solutions. The UPOs. It might be possible, however, to control
second point is the reason why it may take very a goal close to a UPO. For instance, a pendulum
little effort to control the system. This paper inves- can be stabilized in a vibrating state near to its un-
tigates a method to systematically reduce periodic stable inverted position by periodic up and down
control inputs that remove chaos in iterated maps. motion of the suspension (vibrational control, see

Removal of chaos with very little effort by use e.g. [Bellman et al., 1986]).
of its own specific complex phase space structure The history of periodic control of chaotic sys-
is the main aspect pursued in the chaos control tems dates back to Alekseev [1987] who sinusoidally
field. In this regard, many proposed methods aim modulated a parameter of a chaotic population
to exactly stabilize a pre-existing unstable periodic system modeled by an ordinary differential equa-
orbit (UPO) embedded in the chaotic attractor. tion. More recent work has focused on driven
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oscillators, often employing an analytical treat- dissipative oscillators, and the results for increasing
ment by Melnikov's method [Lima & Pettini, 1990; control signal period are compared. A discussion is
Braiman & Goldhirsch, 1991; Chac6n, 1995]. Inter- given in Sec. 4.
esting effects of periodic and stochastic parameter
modulation of iterated maps have been investigated
by R6ssler et al. [1989]. Subsequent experimental 2. Optimization Problem and

work has employed periodic modulation for removal Direct Search Approach

of chaos [Azevedo & Rezende, 1990; Fronzoni et al., We consider an iterated map dynamics subject to a
1991; Ciofini et al., 1995]. periodic control signal input,

A somewhat different approach of open-loop pntrol sinal inp,
control was proposed by Hiibler & Liischer [1989]. X f(x(), u()), U(n+N) - U (1)

They constructed control forces starting from an where n E Z is the discrete time, N is the period of
explicit goal trajectory of the system (whereas sim- the control, and x G Rd, u E Rk, f : Rd x k + Rd.
ple periodic modulation methods do not provide a Without control, i.e. if all u (n ) = 0, we assume
priori knowledge of the eventual controlled orbit). chaotic motion of the system. The task is to find
Their entrainment control method is not limited to a convenient set UN = {u(n)}n=0,...,.N-1 such that
chaotic systems, and the goal trajectory need not be (i) there exists an asymptotically stable periodic so-
periodic. Nevertheless, authors often deal with the lution of Eq. (1), and (ii) some norm of the input
chaos to periodicity conversion problem [Jackson & set is small.
Hiibler, 1990; Jackson, 1991; Jackson & Kodogeor- To determine the quality of a test set UN, in-
giou, 1992; Mettin et al., 1995]. formation must first be gained about existence of

Modulation can be simple and fast, which is the an asymptotically stable periodic solution under its
main advantage of the open-loop approaches over action. This is used in connection with the control
the feedback approach as long as one accepts larger signal's norm for evaluation of a cost function like
permanent control signals. An attempt to reduce IIUN1: stable period
the control power by a suitable shaping of the mod- cost = (2)
ulation was proposed for chaotic continuous flows c,: otherwise
[Mettin & Kurz, 1995]. It was demonstrated that where cp is some large (penalty) number. An op-
multimode signals can scale down the control and timization algorithm performs the task of finding
switch between different goal states. Now we con- a test set that minimizes the cost function. It
sider the control of chaotic iterated maps in the turns out that the cost landscape defined by Eq. (2)
same manner. Therefore, the control problem is can be very complicated and rough or fractal-like.
restated in terms of an optimization problem. We Therefore we expect to find sufficient but not opti-
seek to find convenient periodic control inputs that mal control forces.
(i) introduce asymptotically stable periodic solu- The optimization works directly on the (kN)-
tions in the chaotic system, and (ii) are small in dimensional space of control signal sequences UN.
a given sense. With respect to smallness, there The detection of the existence of an asymptoti-
are several considerations. In principle, the power cally stable periodic solution is done by a recurrence
needed by noninvasive methods to keep an origi- check for different initial conditions. For simplicity
nally chaotic system in periodic motion is negligi- in this initial study, we do not include statements
ble. Intuitively, one expects that the finite power about the basin of attraction so as to avoid excessive
an open-loop control needs is less the closer the numerics needed to check for coexisting attractors.
goal is to the uncontrolled, natural dynamics. This Thus we are content with periodicity for a few se-
might depend on the exact definitions of "power" lected initial states x (° ,4) and an a posteriori test
and "close". However, if this expectation holds, or- of the basin after the complete optimization. If all
bits resulting from small signal periodic modulation tested initial x (0 ,4) lead (after M transient itera-
may emerge near to UPOs. On the other hand, the tions) to a periodic recurrence of the same response
underlying UPO structure may facilitate a periodic period N, it is concluded that a stable periodic solu-
modulation approach. tion exists under the influence of the control signal,

The optimization problem and the control sig- and that the basin of attraction has some larger ex-
nal search are stated in detail in Sec. 2. In Sec. 3 tent. Then the tested control signal is assigned a
the method is applied to a map that models driven cost value according to its norm.
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To decrease the cost, the optimization algo- 2.5 1 1 1 I

2rithm directly manipulates the control sequence UN 1.5

what we call a direct search. It is also possible to M- .
implement an indirect search that manipulates goal 0.5
trajectories instead of the control forces. The latter " 0
corresponds to a transfer of the optimized entrain- -0.5

ment control approach [Mettin, 1997] to iterated _1
maps, and it will be investigated in future work. -1.5

-2
1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7

a
3. Example Fig. 1. Bifurcation diagram of the uncontrolled oscillator

As an example we consider a two-dimensional map map Eq. (3): first coordinate x1 versus parameter a.

introduced by Parlitz et al. [1991]. It models a class
of driven dissipative oscillators and reads driving amplitude a. Note, however, that a is never

reduced below 1.32 by application of all in the fol-
(l y(XXn ) COS3- 2 sin/() lowing reported optimized signals.

= X) Sin+(n) COS3 + a + A period 1 control signal corresponds to a con-
2  1- 2  stant parameter shift of a, and the nearest low-

periodic window to a = 1.5 can be found at al =
where u(n) is the (scalar) control, and 1.4356 (response period N = 28). This is in some

sense the only obvious nonoptimized control signal
dT/2  = T+ Ixn)I2 + 1x~n)2. (4) as it can easily be extracted from a codimension

S=Tone bifurcation diagram. Such an initial guess is
not straightforward in the higher dimensional con-

The parameters correspond to a damping d, a driv- trol signal spaces (besides the trivial set of identical
ing period T, and a driving amplitude a (where u(n) = a - a, = 0.0644). Therefore the purpose of
the control acts upon). They were set to T = 1.0, the optimzation procedure is twofold: first to find a
d = 0.9162, a = 1.5 which results in a chaotic dy- nontrivial stabilizing sequence UN at all, and sec-
namics. As a cost function we chose Eq. (2) with ond to reduce the norm of such a sequence.
Cp = 10 and the L2 norm of the control inputs UN Control inputs of periods N from 2 to 12 were
written as an N-dimensional vector, divided by the used for optimization. For all control periods N the
control period N: algorithm easily found nontrivial stabilizing sets.

Further optimization reduced the norm on average
1 N ) by a factor of 2. The computations were terminated

IIU -II = Iu(n)12) (5) when no further improvement of the cost criterion
N \n=O (2) could be found within a given time. The runs

were repeated a few times, and arbitrary sequences
The recurrence was checked up to period 32 with as well as results from lower periods (extended to
five different initial conditions x(0 J ) = (2j - 1) an integer multiple control period) were used as ini-
(0.1,0.1), j =1,..., 5. The check was done af- tial guesses. The overall best results from all runs
ter M = 100 transients and for a recurrence of have been taken. The expenditure for obtaining the
10- 3.For the search of small cost values in the N- individual optimized results was moderate but sim-
dimensional control signal space the numerical op- ilar for the various N. Therefore a comparison of
timization algorithm amebsa, a variant of simulated these is justified, though the results are supposed
annealing, from [Press et al., 1992] was employed, to provide only some local cost minima. Figure 2

Figure 1 shows a bifurcation diagram of the pa- presents the magnitude of the best signals found in
rameter a near the chosen value for the uncontrolled different norms versus the driving period N. The
oscillator map. It can be seen that the chaotic re- L2-type norm used for optimization [Eq. (5)] is in-
gion reaches from about a = 1.32 upwards, and dicated by the squares connected by the solid curve.
a few, narrow periodic windows are visible. Peri- The dashed line connects for the same control in-
odic control is equivalent to a periodic shift of the puts the arithmetic mean of the absolute values
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Fig. 2. Magnitude of the optimized control signals versus 0.02

their period: the solid line connects the values of norm -0.03

Eq. (5), the dashed line of norm Eq. (6). -0.04
-0.05

-0.06 I I I

(Li-type norm): 0 7 14 21 28
n

N-I Fig. 3. Optimized control signal u of period 7 versus discrete

1hUNh = - E I Iu(n) 1•  (6) time n (lower plot), and resulting periodic orbit (diamonds in

n-0 the upper plot). An adjacent UPO is indicated by the dotted
line.

Note that Eq. (6) is a better criterion for compar-
ison with the trivial control (N = 1) than Eq. (5) underly the effort necessary to stabilize the system
since the latter gives smaller values for the same un the effrtnb
signal written in a multiple period. The numbers in their vicinity.

abov th squresindcatetheactal sste reFinally, the result of the optimization dependsabove the squares indicate the actual system re- o h h s n c s u c i n e e a q a r t c m a
sponse period N that is achieved by control (always on the chosen cost function. Here a quadratic mean
an integer multiple of the driving period N). All of the applied signal was minimized, which does not

control signals have rather small norm values, and avoid relatively large single inputs (compare the rel-

the resulting stable periodic orbits turn out to lie ative peak of U (6) shown in Fig. 3). To minimize

close to the chaotic attractor. It can be seen that the largest control amplitude, one might choose the

there is the tendency of the norm to decrease for maximum norm for the cost evaluation.

higher periods, which is plausible because of more
degrees of freedom in the search space. However, 4. Discussion
the control cost does not decline monotonously, but
seems to saturate except for some selected minima It was demonstrated that a chaotic iterated map can
(at control periods N = 5, 7, and 10). Therefore the be controlled to return eventual periodic motions by
gain of an optimized periodic driving with respect means of small optimized inputs of various period-
to constant parameter shift (trivial periodic control) icity. The optimization of the cost function corre-
depends to some extent on the specific period of sponds to a search for periodic windows in the con-
the applied control signal. In Fig. 3, the optimized trol signal parameter space near to the origin. The
period-7 control is shown (lower plot). The result- possibility of finding such a window should in prin-
ing orbit was detected as a period 14, and its first ciple increase with the dimension (the control signal
coordinate is shown in the upper plot (diamonds period). Accordingly, the example shows a trend of
connected by the solid line). It runs close to a decreasing control forces for higher driving periods,
UPO of period 7 (dotted line). In fact, all emerging with some periods being preferred. This might be
stable periodic states are adjacent to pre-existing related to the underlying structure of UPOs, as con-
unstable periodic orbits, but a detailed analysis of trolled trajectories appeared near them. Besides the
this is beyond the scope of the paper. In particu- pure reduction of open-loop control forces, this con-
lar, a certain hierarchy of the different UPOs might nection of stabilized periodic states and pre-existing
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UPOs provides an interesting result. Further inves- Fronzoni, L., Giocondo, M. & Pettini, M. [1991]
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We study the spatiotemporal dynamics of the underdamped Josephson junction series arrays
(JJSA) which are globally coupled through a resistive shunting load and driven by an rf bias
current. Clustering bifurcations are shown to appear. In particular, cluster-doubling induced
period-doubling bifurcations and clustering induced spatiotemporal chaos are found. Further-
more, an interesting spatiotemporal intermittency is also found. These phenomena are closely
related to the dynamics of the single cell.

The dynamics of globally chaotic systems has been a subject of active research. After scaling the pa-
of great interest in recent years. They arise natu- rameters [Domfnguez et al., 1991], the dynamical
rally in studies of Josephson junctions arrays, mul- equations of an underdamped JJSA shunted by a
timode laser, charge-density wave, oscillatory neu- resistive load, and subject to an rf-bias current
ronal system, and so on. Some rather surprising I(t) = Idc + Irf sin(wrft), [Hadley & Beasley, 1987;
and novel features, such as clustering, splay state, Hadley et al., 1988; Tsang et al., 1991; Tsang &
collective behavior, and violation of the law of large Schwartz, 1992] are
numbers are revealed in these continuous and dis- i +g9i + Sin i + iL = idc + irf sin(rfT)
crete globally coupled models [Benz et al., 1990;
Bhattacharya et al., 1987; Chernikov & Schmidt, Lr N (1)
1995; Domfnguez et al., 1991; Dominguez t i i 1,..., N,
Cerdeira, 1995; Eikmans & van Himbergen, 1991;
Fisher, 1983; Free et al., 1990; Hadley & Beasley, where Oi is the superconducting phase difference
1987; Hadley et al., 1988; Hebboul & Garland, 1991; across the junction i. N is the total number of
Kaneko, 1989; Kvale & Hebboul, 1991; Lee et al., Josephson junctions or system size. Here, we use
1992; Middleton et al., 1992; Strogatz & Mirollo, reduced units, with currents normalized by the crit-
1993; Tchiastiakov, 1996; Tsang et al., 1991; Tsang ical current, i = I/Ic; time normalized by the
& Schwartz, 1992; Watanabe & Strogatz, 1993; plasma frequency wpt = 7, with wp = (2eIc/hC)1/ 2

Wiesenfeld et al., 1996]. and C the capacitance of the junctions; and volt-
Being a paradigm for the study of nonlinear ages by rIc, with r the shunt resistance of the junc-

dynamical systems with many degrees of freedom, tions. iL is the current flowing through the resis-
Josephson junction series arrays (JJSA) have been tive load; g = (h/2eCr2 Ic)1/2 = 3 C1/2, with /, the
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McCumber parameter [McCumber, 1968; Stewart, 3 (a)

1968]; v = VtotaI/N is the total voltage across the 2=0.8 g=0.2 idc=0.03 5h
array per junction; a = rN/R, with R the resis- 2
tance of the shunting load, represents the strength 1
of the global coupling in the array; and the normal- -s- 0
ized rf frequency is Qrf = Wrf/wp. Equation (1) ex- 1
hibits rich spatiotemporal behavior, including phase 1
locking, bifurcations, chaos, solitonic excitation, -2

and pattern formation, breaking the law of large -3
numbers and novel pseudo-Shapiro steps emerge in 0.6 0.65 0.7 0.75 0.8 0.85
turbulence [Benz et al., 1990; Dominguez et al., rf(b)
1991; Dominguez & Cerdeira, 1995; Eikmans & 3 = g=0.2 if=0. 6l
van Himbergen, 1991; Free et al., 1990; Hebboul & 2
Garland, 1991; Kvale & Hebboul, 1991; Lee et al., 1 -4
1992]. However, to the best of our knowledge, the - -

mechanism of the transitions among these dynam- *0 0
ical phases, specially the transition from coherence -1
to turbulence, has never been discussed. In this pa- -2 - ------------

per we study the interesting spatiotemporal inter-
mittency, clustering bifurcation and clustering in- -3
duced spatiotemporal chaos in the system (1). idc

For a single cell (i.e. N = 1), the dynamical
equation reduces to Fig. 1. Plots of 0 at t = nT(T = 27r/Q2rf), with n being

large enough to exclude the transient process.

+ 9 + sin = idc + irfsin(QrfT), (2)

with = (1 + a)g. It is well known that Eq. (2) interesting and surprising point is that this period-
can exhibit chaotic behavior in the underdamped doubling solution meets with an unstable period-2
regime, i.e. g < 1 and Qrf < 1 [Ben-Jacob et al., orbit (the dashed lines), and they suddenly disap-
1982; Bhagavatula et al., 1992; Huberman et al., pear via inverse tangent (saddle-node) bifurcation
1980; Iansiti et al., 1984; Jensen et al., 1984; Kautz as idc reaches a critical value idc P 0.035076. Be-
& Monaco, 1985; Octavio & Raedi Nasser, 1984]. yond this threshold, the behavior of the system is
In Figs. 1(a) and 1(b) we show the bifurcation dia- rotating and the motion is chaotic in a large scale
grams, for = 0.2, Q'rf = 0.8, as a function of /rf and region, and has the characteristic of type-I intermit-
idc respectively. In Fig. 1(a) with idc = 0.03, the fol- tency [Pomeau & Manneville, 1980]. In Fig. 1(b),
lowing points are to be remarked: First, the motion it is clear that another period-2 orbit appears via
of the system (2) is period-i, then as irf increases tangent bifurcation for idc near zero. Increasing
to a critical value 0.662, in the system takes place idc, this period-2 solution first bifurcates into a
a period-doubling bifurcation to period-2. Second, small region of chaos through a series of continu-
as irf continuously increases, the system undergoes ous period-doubling bifurcations, then this chaotic
a series of period-doubling bifurcation leading to motion coincides with the unstable period-2 orbit,
a small scale region of chaos. At irf z 0.832, and suddenly disappears due to a boundary crisis
this chaotic attractor suddenly expands, and is re- [Grebogi et al., 1983]. The two attractors form an
placed by a large scale chaotic motion. After the interesting hysteresis phenomenon. In the following
expanding transition the system acquires a rotat- we investigate the complicated spatiotemporal dy-
ing motion, and the time-averaged voltage becomes namics in JJSA and how it originates from that of
nonzero. The bifurcation diagram as a function of a single Josephson junction.
idc, with irf = 0.61, is shown in Fig. 1(b). The bi- An important concept in a model for globally
furcation behavior is essentially different from that coupled systems is "clustering". This means that
of Fig. 1(a). As idc increases, the period-1 orbit even when the interaction between all elements is
first loses its stability, then a new period-2 solution identical, the dynamics can break into different clus-
arises via period-doubling bifurcation. The most ters, each of which consists of fully synchronized
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elements. After the system falls in an attractor, we (a)
say that the elements i and j belong to the same 0.4
cluster if /i =- Oj for all time. Therefore, the behav-
ior of the whole system can be characterized by the 0.2
number of clusters ncl, and the number of elements
of each cluster (Mi, M 2 ,..., Mnci) [Domfnguez & 0.0
Cerdeira, 1995; Kaneko, 1989]. 0.6 0.65 0.7 0.75 0.8

The simplest attractor of the system (1) is the lrf (b)
spatially homogeneous configuration, so called co-
herent state, i.e. O&iT) =- 0(r), n = 1, M1  N N. 2

Linearizing Eq. (1) around the 0(T) state 0 T2C2 T4C4L in e arizing E q .(1 ) ar o u nd th e ¢ (r) st at eT l1 ....[[[ [ ........... ................. ............................... .........T C 4 4,,V ! !
..... ~~~T~i ........ ... ....... ......oN -2

&i+ g Tih + cos 060i + E2i = 0,
N j= 0.6 0.65 0.7 0.75 0.8

i1,...,N. (3) 60 (C)

Introducing the following coordinates defined by - 40
N 1 20
j=1 (4) 0

Yk =J5 k - J¢k+1, k=1,..., N - 1 0.6 0.65 0.7 0.75 0.8
irf

After simple algebra, the critical stability bound- Fig. 2. (a) Bifurcation diagram for the homogeneous or co-
aries of this coherent state are determined by the herent state in a versus if plane with N = 128. In the shaded
following set of linearizing equations: region the coherent state is unstable due to the clustering bi-

furcation. (b) Bifurcation sequences plotted versus irf for
+ -X + cos OX = 0, g = 0.2, Qrf = 0.8, idc = 0.03, a = 0.1 and N = 128. (c) The

S+ gk + cos Yk = 0, k 1..,N - 1. (5) number of cluster, n.1 versus irf for the state of Fig. 2(b).

The first equation in (5) is nothing but the equa-
tion obtained from linearizing the single cell case tions per cluster (i.e. M 1  ..... Mnci, with Mi,
[Eq. (2)]. The second one characterizes the evolu- being the number of elements in the ith cluster),
tion of the difference of two cell perturbations. The and each cluster may have the same motion except
interesting point here is that the second one has for uniformly distributed phase shifts. We focus on
the same structure as the other except that it has g this kind of states, a period-m state with k clus-
instead of the renormalized g. Since the difference ters will be called TmCk state, and N = k x n,
between the two is proportional to a, the system n = 1, 2, 3 .... It often happens that m = k, then
recovers the single cell scenario when a = 0. The the dynamics of the TkCk state is reduced to
critical boundaries of the coherent state in the a
versus irf parameter plane are shown in Fig. 2(a) .. k + 27r.)
with g = 0.2, idc = 0.03 and N = 128. In the q(Tr) + g(-r) + sin 0(r) + E go' + -r
white region, the coherent state (motion in time j=1

may be regular and irregular) is locally stable, while idc + irf sin(Qrf7)• (6)
in the shaded region, the coherent state loses its
stability, and bifurcates to a multicluster state. As To investigate the clustering bifurcations in
the coupling strength a decreases to zero, the in- JJSA with nonzero coupling, we show the asymp-
stability regions collapse to the discrete bifurcation totic state of the system (1) in Fig. 2(b) as a func-
points for a single cell (a = 0). After the coherent tion of irf with a- = 0.1, N = 128 and the other
state loses the stability, lots of multiclusters are cre- parameters equal to those of Fig. 1(a). However,
ated in the JJSA. A class of interesting states are the bifurcation diagram is essentially different from
multiclusters with a uniform distribution of junc- that of Fig. 1(a). The T1C1 (coherent) state first
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undergoes a cluster-period-doubling bifurcation at induced spatiotemporal chaos". Moreover, these
irf ; 0.624 to create a stable T2C2 state. By cluster-doubling sequences grow from the period-
increasing irf, the state undergoes further cluster- doubling sequences of the single cell due to the
period-doubling bifurcations leading to spatiotem- nonzero global coupling. As ar decreases to zero,
poral chaos. Figure 2(b) is interesting due to the the clustering-doubling sequences is identified as the
following novel features. First, we find a cluster- period-doubling sequence of the single cell. If the
doubling induced period-doubling. The bifurcation period-doubling sequence of the single cell is bro-
point value is below the period-doubling condition ken off, then the character of the clustering bifur-
for a single Josephson junction. Global coupling cation in JJSA also changes suddenly. This can be
leads to cluster doubling at this parameter, which clearly seen in Fig. 3(a) which shows the asymp-
induces period doubling in time. Second, we find totic state of the system (1) along the idc axis, with
a cluster-doubling sequence 1-2-4 (and the induced o = 0.6 and the other parameters are the same as
period-doubling sequence). We expect that this those of Fig. 1(b). The T1C1 state first undergoes a
clustering doubling cascade will proceed to a very cluster-period-doubling bifurcation at idc z 0.02087
large number of clusters and long periods. In our to create a stable T2C2 state. However, since the
case this cascade is interrupted at k = 4 by a Hopf period-doubling period-2 solution in the single cell
bifurcation, i.e. the modulus of another couple of [see Fig. 1(b)] is destroyed by the inverse saddle-
complex eigenvalues is greater than one. Neverthe- node bifurcation by increasing idc, the T2C2 state
less, the tendency of cluster doubling bifurcations in the JJSA is suddenly destroyed by the spatiotem-
leading to spatiotemporal chaos can still be seen poral intermittency transition near idc = 0.02143.
in Fig. 2(c), where we plot number of clusters ver- In Figs. 2(b) and 3(a), first we run Eqs. (1) to get
sus irf for the state described in Fig. 2(b). There- the coherent (period-i) state from random initial
fore, we conclude that spatiotemporal chaos is made conditions, then we compute Eqs. (1) by gradually
possible by clusterization, and call it "clustering increasing the parameter value (id, or irf) and by

(a)

2 
-1.3 (a)

1 -1.4

-1 TICI .. .........T2C2-1.5
.................................. ........................ 0 20 40 60 80 100-2 "1

-3 -1.2 (b)

0.0207 0.021 0.0213 -1.3 1

0 .6 ,, (b) " -1 .4

-1.5
0.4 " Turbulent phase 0 20 40 60 80 100

-1.2

0.2 T1C1 -1.3

- -1.5

0.0_
0.02 0.024 0.028 0.032 -1.6 1

ldc 0 20 40 60 80 100i
Fig. 3. (a) Bifurcation sequences plotted versus idc for =

0.2, Qrf = 0.8, irf = 0.61, a = 0.6 and N = 128. (b) The Fig. 4. Snapshot of the asymptotic solution of the sys-
critical boundaries among the TIC1 state, the T2C2 state tem (1) after the transient process for g = 0.2, irf = 0.61,
and the turbulent phase in idc-Or plane with the parameters Qrf = 0.8, a = 0.6, and N = 100. (a) idc = 0.0206, (b) and
of (a). (c) are two successive snapshots for id, = 0.0210.
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using the final state for the previous parameter 4 (a)

value as the initial state for the new parameter
value, in this way we can surely get clusters with a 2

uniform distribution of cells for all cluster-doubling
cascades. Figure 3(b) shows the phase diagram -_ 0
among TIC1 state, T2C2 state and the turbulent ... .. I _ I -
phase in the a versus idc plane. The two criti- -2 1- 1111
cal transition curves in Fig. 3(b) are obtained by
the numerical simulation of the system (1). It is -4
clear that the regime of the T2C2 state is very nar- 30000 60000 90000 120000

row. Figures 4 shows the snapshots of q for the nT (b)
T1C1 state and T2C2 state after a long transient
process. The features of coherence and two-cluster
are clearly observed in Figs. 4(a), and 4(b)-4(c), 2
respectively. The most interesting phenomenon is -C-
that the system suddenly evolves to a very compli- 0 0
cated rotating motion as idc is increased beyond a -2

critical value (idc ; 0.02143 for a = 0.6), i.e. af-
ter the T2C2 state loses its stability. The system -4

falls in a large ncl - N clusters motion with all 30000 60000 90000 120000
Mi small. Figure 5 shows the space-time evolu- nT
tion after a very long and complicated transient
process for idc = 0.0215 and a = 0.6. The tur- Fig. 6. The evolution of 01 and 01 - 02 with the same pa-

bulent character of the motion is very clear. The rameters as those of Fig. 5. The features of spatiotemporal

evolution of ¢1 (the first junction) is displayed in intermittency are clear.

Figs. 6(a) at the same parameters values as those of
Fig. 5. The motion displays periodic behavior (2P) bursts and quickly resumes the periodic fashion.
for a long time, it is suddenly interrupted by large The similar features of the difference ¢1 -¢2 are also

displayed in Fig. 6(b). As idc is far from the criti-
cal value, more and more random large bursts take
place more frequently. Although this behavior is
similar to the characteristic of well-known intermit-
tency, which were investigated in low-dimensional

32 systems [Pomeau & Manneville, 1980], it is an es-

1 _ sential type of spatiotemporal intermittency, which
0 - has not been found before in the rf-driven JJSA

-, or other high dimensional globally chaotic systems.
2 The above features do not depend on the specific

-3 cell and the number of cells. The spatial variable
(N > 2), the dynamics of a single cell and the global
coupling are of crucial importance for this interest-

100 100 ing phenomenon.
300 7In conclusion we analyzed the complex spa-
T00 4 6 tiotemporal dynamics of the rf-driven JJSA. Clus-

600 3tering bifurcation, clustering induced spatiotem-
700 12poral chaos and spatiotemporal intermittency are

shown to appear in these systems. The spa-
Fig. 5. The time-space evolution of the system (1) for

idc = 0.0215 and the other parameters the same as those of tial variable, the dynamics of a single cell and

Fig. 4. The plots are at t = nT after some transient process, the global coupling are of crucial importance for
where T is the same as in Fig. 1. The features of turbulence the existence of these interesting spatiotemporal
are clearly observed. phenomena.
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In this paper, we are devoted to the problem of escaping from a potential well which is present
in a great number of physical situations. We use the Helmholtz oscillator as a model for those
situations and consider the behavior of the oscillator under an additional driven perturbation.
The Melnikov analysis reveals it as an adequate method. Some comparisons are made with the
perturbations of the oscillator on the linear and quadratic terms.

1. Introduction

The problem of escaping from a potential well is In [Chac6n et a., 1996] we applied to the
Helmholtz oscillator the technique of weak paramet-present in a great number of different physical sit- n ouain oteqartcadlna em

uations: The orbits described by a photon near a in tequation o the oscilator The tenq

Schwarzschild black hole [Misner et al., 1973], the in goo rsut s i the tof The inito

capsizing of a boat under trains of regular waves ofta s whic as prn in the unertre
[Thopso, 199] nd oher (se [Cac~net l., of the chaos which was present in the unperturbed[Thompson, 1989] and others (see [Chac6n et at., oscillator.

1996]). t ors

In this paper we continue developing the idea The Helmholtz oscillator was chosen since it is

first introduced in [Chac6n et al., 1996] where the a good example and a representative model of the
behavior of the situations mentioned above.

Helmholtz oscillator was considered as a model to i its itaeos eqtion abeve n
trea mot o th aboe poblms.by:In its integrable form its equation can be giventreat most of the above problems. y

In all those situations a common characteristic by:
can be observed. Before the escape from a potential x"(t) - x(t) + ix(t)2  0
well, some chaotic transients of an unpredictable where x denotes the displacement and / > 0.
length can be produced and they can be observed When we introduce a weak perturbation in the
in the orbits which start in the chaotic regions of the integrable expression, the equation takes the form
phase space, one of those being the region closed to
separatrices [Chac6n et al., 1995]. x"(t) - x(t) + 3x(t)2 = -5x'(t) + y sin(wt)

*This work has been supported by Spanish D.G.I.C.Y.T. PB95-1004 grant and also by COM-20/96 MAT from Direcci6n
General de Universidades, Comunidad Aut6noma de Murcia.
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with 5 > 0 and -y <K 1. w, J and -y denote the nor- tables [Gradshteyn et al., 1994] we obtain:
malized frequency, damping coefficient and driving M(to) -C - A cos(wto) - B cos(Oto + W)
term amplitude.

In this paper we are devoted to study the be- where
havior of the oscillator under an additional driven 65 67r-y 2

perturbation given by: C 5-- A- w cosh(rw)

x"(t) - x(t) + 3x(t) 2 = -6x'(t) + -y sin(wt) B = 67ra- Q2 cosh(7rw)

+a' sin(Qt+V) (1) 0
Note that A, B and C are positive numbers in all

where 0 < a < 1 and with Q and o we denote the the interval of the parameters.
normalized frequency and the initial phase of the It is well known that the Melnikov's function
perturbation. M(to) gives a measure of the distance between

We will compare the results with those obtained the perturbed stable and unstable manifolds in the
in [Chac6n et al., 1996] where perturbations of the Poincar6 section at a particular time to. When
quadratic and linear terms were considered. As a M(to) has a simple zero, then we have a homo-
conclusion we will have that in some cases it is more clinic bifurcation and therefore we have the possi-
advantageous to use the additional driven term (low bility of the appearance of chaos. As a consequence
frequencies) while in others the use of perturbations M(to) = 0 is a necessary condition for such an ap-
in the quadratic and linear terms (high frequencies) pearance. But if M(to) has never a zero then this is
is better. a sufficient condition for the opposite effect of the

inhibition of even the transient chaos.

2. Melnikov Analysis

When detecting chaos in a dynamical system, 3. Inhibition of Chaos
one analytic procedure of great interest is the When a = 0 then M(to) = - C-A cos(wto) and we
Melnikov's method [Wiggins, 1990]. It gives a have a situation of chaotic escape if A - C -d > 0
useful criterion for detecting the presence of ho- since in this case the Melnikov's function has simple
moclinic or heteroclinic orbits. Nevertheless this zeros and it is equivalent to the previous condition
procedure is limited in two senses: It is an ap- d > 0.
proximative method of first order and is only valid If a = 0 then B > d, that is A - B - C < 0.
for orbits which start in points sufficiently close to This last relationship is a necessary condition for
separatrices. M(to) to have the same sign, in this case M(to) < 0

In the situation under consideration it gives for every to and can be written as
good results. If we consider the phase space cor- C) 2 [sinh(Q)]
responding to Eq. (1), the separatrix of the system a> 1- R where R 'sinh(irw
without perturbation has the following equations: L

For general values of Q and 0 < V < 27r
xo(t) =3/23 sec h2 (t/2) the above condition is not sufficient to assure that
x '(t) =-3/23 sec h2 (t/2) tgh(t/2) M(to) < 0 for every to. Now we can state themain result on inhibition of chaos for the Helmholtz

The Melnikov's function associated to such an oscillator.
orbit is:

Theorem 1. Let Q = pw with p a positive in-xt
2  

2m-(,/lr) i aife o
M(to) =-5 (t)dt teger and such that p = 2n+1 is satisfied for

some positive integers m and n. Then M(to) always

+-y J x(t) sin[w(t + to)]dt has the same sign (M(to) < 0) for every to if and
0only if

+ J/7 X'(t) sin[Q(t + to) + W]dt Oain<a Omax

f 00 where Omin 1- )R Cea RAfter some computations and using the integral i A} R amax = 2
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One observation on the theorem is that the A sin wo + ')- B sin(Qio + a)
length of the interval [Oemin, Oimax] could be small, 2/
in fact this is the case if we observe the val- Q Q)

ues of the parameters for which we have chaotic = A - B cos (27r W > A - B

escape.
To prove the theorem we need some technical since 7 and w are incommensurable and

lemmas. cos(2Wr) <1.
In an equivalent way we will take o, -31 I- -) when w < Q . Let o, =A 37

Lemma 2. Let pw = qQ for some positive in 3 r = 2 (1- w

tegers p and q. Then there exists t* satisfying (1- ). Then taking t0 = we obtain
-cos(wt*) = cos(Qt* + w) = 1 if and only if A3sin(wt0+ -Bsin(ft0+o)

p 2n-/ for some integers m and n.
q -- 2n+1

Proof. If - cos wt* = 1 then there is an integer n WA-Bsin(31rf ±cr)>A-B
such that

since in this case -31r-. Uwt* = (2n + 1)7r (2)2

On the other hand if cos(Qt* + ) = 1 then there Lemma 4. Let g(; p, q) - 1-cos whe

is m E Z such that Qt* +. = 2mir, that is, R and p and q are positive integers. Then g is fi-
ft* = 2mlr - W. Using (2) we obtain nite if and only if q = 1. Moreover, we have that

0 < g(7T; p, 1) _< p 2 , where r E (-oo, oo).
Q 2m7r W p

w (2n + 1)7r (2n + 1)7r q Proof. First we will compute lim7-- 27 ri g(T; p, q)
where l E Z. A necessary condition to get g

Therefore bounded is that its numerator has zeros in the same

p 2mir - W 2m - points that its denominator.
_ _ _ 7 Consider first the case q 7 1. The zeros of

q (2n + 1)7r 2n + 1 the numerator and denominator of g are - = 1217r

- = 27rs where 1 E Z and s C Z. It is evident that

Lemma 3. Let Q and w be incommensurable, that with arbitrary positive integers p, q(q $ 1) it is not
i is an irrational number. Then there exists 1 always possible to find an integer 1 such that s = pq

s where s is an arbitrary integer.
The above limit attains the value p2 and since

-B cos(Qto + W) - A cos(wto) > A - B g(-r; p, 1) = [ ,/)] using finite induction over-- -- [~~~~~~~ sin(T-/2) uInfitendconvr

p we immediately obtain 0 < g(T; p, 1) < p 2 .

Proof. Using the change of variable = a + - we Proof of Theorem 1. We ask under which condi-
have tions the condition a > (1\- C)R is also a suffi-

cient condition to obtain M(to) for every to. It is
-B cos(Qto + W) - A cos(wto) immediate to observe that a sufficient condition is

= A sin + B sin(fto + a) given by

A - B > -B cos(Qto + W) - A cos(wto) (3)

We are looking for a to for which Now we are looking for values of w, Q and W in
order that Eq. (3) be satisfied for every to. Lemma 3

A sin wto+ - B sin(fito + a)> A - B says that if Q and w are incommensurable, this con-
dition is not satisfied. Therefore a resonance condi-
tion pw = qQ is necessary with p, q positive integers.

Let a = 3r = -) if w> Q. Then In such case Lemma 2 supplies a sufficient condition
taking 0 = we obtain for Eq. (3) to be held in a infinite number of values
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1.60- Aoa achieves a minimum value as a function of the
frequency.

1.20 (a) 4. Comparisons with the Quadratic
_and Linear Parametric
SPerturbations Cases

In [Chac6n et al., 1996] the Helmholtz oscillator is
0perturbed by weak parametric modulations of the

r quadratic (5a) and linear (5b) terms in the following()(b) way:
x"(t) = x(t) - 03[1 + ,q sin(Qit + <fi)]X(t) 2

0.40- , -6x'(t) +-y sin(wt) (5a)

0.00 0.40 0.80 1.20 x"(t) = x(t)[1 + 71' sin(Q't + po')]

) -/3x(t)
2 - Jx'(t) + -y sin(wt) (5b)

Fig. 1. Function Aa(w) = Qmax - amin versus w for 6 = obtaining similar results as above. Nevertheless it
const., /0 = const., -f = const. and Q = pw: (a) p = 1; is of great interest to compare those results from
(b) p = 2; (c) p = I the point of view of inhibition of chaos with the sit-

uation considered in this paper. The results of this
comparisons are shown in Figs. 2 and 3. In bothof to. In such a case (3) is written as pictures we represent the quotient --I (w)

prt hO versus
A > 1 - cos(Qto + p) w for several values of p. In Fig. 2 we have
B - 1 + cos(wto) A(w) 10__ _ _

1 Aa(w) (p2w2 + 1)(p 2W2 + 4)
1-qcos(P[wto-(2n+l)r]+ 2mlr) and in Fig. 3

1 + cos(wto) A?7'(W) _ _____

Then 
Aa(w) p2w2 + 1

1 Cos 3.00-
A 1-cs
A> C q with -r = wto -(2n + 1)7rB - 1 -cosT7

(4)

But since 2 [ sinh(7rQ) we obtain

1 -cos
R> with =wto -(2n+1)7ra -- I -cos -r<

c1.00-

Finally if q = 1, Lemma 4 gives a condition for / (a)
(4) to be satisfied for every T (that is for every to).a<R whr 2 [sinh(7rQ2)j

This condition is o~<4where R = b

0 o.00- (c)

Remark 1. Suppose we have a set of parameters 0.00 2.00 4.00 6.00
that satisfy the hypotheses of Theorem 1. As p in- 0
creases, the interval of escape (Olmin, amax) shrinks
rapidly. Figure 1 shows a plot of the width of the Fig. 2. The function versus w for several values of
inhibition interval as a function of w. For each p, p: (a) p = 1; (b) p = 2; (c) p = 3.
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3.00- method to suppress the chaotic escape from a po-

tential well. We have estimated the range of pa-
rameters where the inhibition of chaos is possible
through a systematic application of the Melnikov's

2.00- method.
When we compare the results with those ob-

3tained by parametric perturbations of the quadratic
(a) and linear terms we obtain that for a fixed value of

.the resonance parameter p, at low frequencies w the
1. effectiveness of the suppression of chaos by an addi-

tional driven term is greater than in the other two

" (b) methods. At large values of the frequency we obtain
(c) the opposite situation.

0.00 ,

0.00 2.00 4.00 6.00 References
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The mathematical modeling of biological systems has proven to be a valuable tool by allowing
experiments which would otherwise be unfeasible in a real situation. In this work we pro-
pose a system of nonlinear differential equations describing the macroscopic behavior of the
cardiac conduction system. The model describes the interaction between the SinoAtrial and
AtrioVentricular node. Its very simple structure consists of two nonlinear oscillators resistively
coupled.

The numerical analysis detects different kinds of bifurcations whose pathophysiological
meanings are discussed. Moreover, the model is able to classify different pathologies, such
as several classes of arrhythmic events, as well as to suggest hypothesis on the mechanisms
that induce them. These results also show that the mechanisms generating the heartbeat
obey complex laws. The model provides a quite complete description of different pathological
phenomena and its simplicity can be exploited for further studies on the control of cardiac
dynamics.

1. The model

We propose to describe the interaction between the SinoAtrial node and the AtrioVentricular node by
modeling them as two-coupled nonlinear oscillators. The model equations can be associated to an equivalent

electronic circuit, depicted in Fig. 1.

The system of differential equations describing the model is then:

1
Xi1 = - X

C,

2 - [XI + g(x2) + R(x 2 + x 4 )] + A cos(2rft)

1
X3 = Z2- x4

X4 =- I [x3 + f(x 4 ) + R(x 2 + x 4 )]

*Author to whom correspondence should be addressed
E-mail: signorini(gbiomed.polimi.it
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(1) Each oscillator is described by a two-
dimensional system, so that the system of or-
dinary differential equations [Eqs. (1)] describ-

--- -- - ing the complete model is 4(2 + 2)-dimensional,
thus enabling complex behaviors such as ape-

LL 2 riodic and chaotic solutions. In the model of
West [West et al., 1985], on the contrary, the

R2 oscillators are monodimensional, consequently,
Ci C2 the complete model equations are 2(1 + 1)-

I 12 dimensional.
I I (2) Each oscillator is able to oscillate on its own,

(11} V2 0 2) that is, without an external forcing, thus re-

A os -(wt) specting the autoexcitatory nature of both SA
and AV node cells (whereas, in the West model,
a voltage generator is needed).

(3) The coupling between the two oscillators is bidi-
rectional, therefore different from the van der
Pol model [van der Pol & van der Mark, 1928],

Fig. 1. Equivalent electrical circuit describing the model where it is monodirectional.
constituted by two oscillators: SA and AV. The parame- w4 r ik oh mode o amt
ters have the following values: R = 0.9 Q, C1 = 0, 167 F, (4) Unlike other models of the same kind, the two
L1 = 0, 033 H, C 2 = 0, 45 F, L 2 = 0, 018 H. oscillators are not identical as they should take

into account the different physiological behavior
of SA and AV nodes.

where

f(14) = -34 + 3 (2) In short, our model put together the features of
4 3 the van der Pol model with the West model one in

1(2) = 1 a compact and simple set of equations.g2)=-x2 ±-+ 3 +h(3 2 ) (3)
32

with 1 1.1. The choice of parameters values
2 - 4- I Parameters values were fixed respecting the follow-

h(X2 ) = X2 > 1 (4) ing physiological constraints:

12 X2 < 1 (1) The shape of the model outputs X2 (SA node

2 Action Potential) and X4 (AV node action po-
We assume that X2 and X4, describe, respec- tential). They depend on the ratios 61 = C1/L1

tively, the action potentials of the SA and AV nodes and 62 = C 2/L 2 . Figure 2 shows an example of
[di Bernardo et al., 1998]. this behavior. A change in the value of C1 corre-

In the past ten years, even more if we consider sponds to different slopes of the risingwavefront
the pioneering work of van der Pol [van der Pol of X2. This is similar to the behavior experimen-
& van der Mark, 1928], many attempts have been tally observed in SA node cells as their depo-
made to describe the macroscopic heart activity by larization frequency varies [DiFrancesco, 1995].
means of mathematical modeling. All of these mod- This change of the slope is the mechanism used
els can be classified in two categories: (1) discrete by the Central Nervous System to control the
time models based on circle maps [Guevara & Glass, heart rate and is achieved by changes in ionic
1982; Bub & Glass, 1994; Honerkamp, 1983], and currents and in cellular membranes permeabil-
(2) continuous time models based on limit cycle os- ity [DiFrancesco, 1995].
cillators [van der Pol & van der Mark, 1928; West (2) We chose the physiological shooting value of
et al., 1985]. The time continuous model presented the SA node. Indeed, the AV node is also a
in this paper differs somewhat from others of its pacemaker site: in pathologies that prevent the
class in four main features: SA node from depolarizing (e.g. Sinus Arrest
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0 20 40 60 80 100 120[S * 100 2] Fig. 3. Length of the simulated P-R intervals (top diagram)
and the period of the first oscillator, that represent the SA

Fig. 2. Waveforms of X2 for two different values of C1 . A node (bottom diagram), as a function of the coupling resis-
larger value of C1 corresponds to a smaller intrinsic frequency tance. The parameters are chosen as in Eq. 2.
of the SA node oscillator.

event), the AV node becomes the dominant C 1 , L 1  drive the frequency of the SA node

pacemaker of the heart. However its shoot- C 2, L 2  drive the frequency of the AV node

ing frequency is lower than the SA node one R drives the coupling between the
so that the heart rate also slows down. This two oscillators, as well as, the
phenomenon is known as junction rhythm. It P-R time delay
has been found in experiments on canine hearts
that the ratio between the physiological SA and The absolute refractory period of the first oscil-
AV nodes shooting frequencies can be consid- lator (representing the SA node) with the parame-
ered equal to TSA/TAV = 2/3 [West et al., ters as in Eq. (5) is approximately 0.25 s, while for
1985]. the second oscillator (representing the AV node) is

(3) In the normal ECG signal, the time delay be- approximately 0.15 s. This refractory periods where
tween the P wave (onset of atrial contraction) calculated by forcing the two oscillators, in uncou-
and the R wave (onset of ventricular contrac- pled condition, with a square impulse with an am-
tion) is in the range [0.12 s, 0.25 s]. In our plitude of 5A and a duration of 10 ms.
model the P-R interval is the delay between Technical details together with the extensive
the maximum value of x2 (SA Action Poten- model description can be found in [di Bernardo
tial) and the maximum value of x 4 (AV Ac- et al., 1998].
tion Potential). This time interval depends
mainly on the coupling resistance R. Figure 3
shows both the obtained P-R and TSA val- 2. Equilibrium Point Bifurcations
ues as R varies. We observe an acceptable
range of P-R intervals for R > 0.8 Q. We set With the parameters as in Eq. (5) the system
R = 0.9 Q so that the corresponding value of has got only one unstable equilibrium point at
TSA is physiological and approximately equal (x 1 , x 2 , x 3 , x 4 ) - (1/4, 0, 0, 0), where we set x,
to 80 b/m. V1, X2 = 1, X3 - V 2 , X4 = 12.

We want to study the behavior of our model
when the coupling resistance R and the capacitance

The parameters values satisfying the above C 1 vary.
mentioned properties are: The R parameter models the coupling

"strength" between SA and the AV nodes. When
C1 = 0.167 F Li = 0.033 H C2 = 0.45 F R increases the coupling between the two oscilla-

(5) tors increases, because a smaller current will flow
L2= 0.018 H R = 0.9 Q2 through the resistance. Changing the value of
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Fig. 4. Plot of the real parts of the Jacobian matrix eigenvalues, evaluated at the equilibrium point, when C1 varies for
different values of the coupling resistance R. When [0 < R < 0, 5] all four eigenvalues have positive real parts (A). When
[0, 5 < R < 1 the real parts of two eigenvalues change their sign, and for small values of C1 , they are all 4 greater than 0 (B).
When [R = 1] no eigenvalues change sign (C). For small values of C all four eigenvalues' real parts become equal to zero.
When [R > 1], the real parts of two eigenvalues change their sign, and for small values of C, become all 4 less than 0 (D).

C 1 means to increase or decrease the depolar- become pure complex numbers, for a specific value
ization frequency of the SinoAtrial node. The of C 1 . Thus we can expect the occurrence of a Hopf
SA frequency increases when C1 decreases and bifurcation [Kuznetsov, 1995].
vice-versa. A numerical simulation confirms what we hy-

To study the possible bifurcations of the equi- pothesized above. Figure 5 shows the results for
librium point of our system as R and C, vary, we double Hopf bifurcation. By decreasing R from 1.1 Q
calculate the eigenvalues of the Jacobian matrix of to 0.9 Q with C 1 = 0.0027 F, the stable fixed points
our system at the equilibrium point. Figure 4 sum- become unstable and a torus is generated.
marizes the results of our analysis. When R < 1, Figure 6, instead, shows the Hopf bifurcation.
the equilibrium point remains always unstable, thus We notice that this is a subcritical Hopf bifurcation
no interesting behavior is found. However when for which the unstable limit cycle folds back and
R = 1, there exist a value of C 1 for which all four becomes stable.
eigenvalues become pure complex numbers. This This kind of scenario (Hopf bifurcation plus fold
suggests that a double Hopf bifurcation takes place. bifurcation) is typical for biological systems [Glass
We will further show this bifurcation by using nu- & Mackey, 1988; Seydel, 1994] and is known as hard
merical simulations. When R > 1, two eigenvalues loss of stability of the equilibrium point.



Simulation of Heartbeat Dynamics: A Nonlinear Model 1729

0.2

0.15

0.1

0.05

0: ., .

-0.05

0-0.2 n_4

(a)

-o 05 -- . ." ;,:: ii:,.:;,! :. ;: . . ? : ,,.,...

0.05-
0.1-

0.15 . .

0.2 - - --- f - .

-1 -08 -0.6 -0.4 -0.2 0 0.2 0.4 08

:_4

(b)

Fig. 5. (a) Projection of the four-dimensional trajectory falling in the equilibrium point on the (x3, x2, x4) phase space.
R = 1.1 0, C1 = 0.0027 F, and the other parameters as in Eq. (2). (b) Projection of the torus in the (X3, X2, X4) phase space.
R = 0.9 Q, C, = 0.0027 F, and the other parameters as in Eq. (2).

A physiologic interpretation of these bifurcations
is possible: when the intrinsic frequency of the

Limit Cycle SA node increases (that is C1 decreases) beyond
a critical value, the AV node may not be able to

Cim shoot at the high frequency dictated by the SA
Hopf BifurcationPoint node anymore (this corresponds, on the bifurca-

tion diagram in Fig. 6, to the bistability region).
0.o18 The greater the increase of the SA node frequency,

the higher the likelihood that the heart would stop:
the bistability region ends and the only remaining

0.016 Ria iWhy Region /stable attractor is the critical point.

C-1 (F] 3. Simulation of Cardiac Arrhythmias

In this section we will study the genesis of
0.014 Fold Biftrcation some cardiac arrhythmias that occur when some

Eqnilibdnm Point
Fig. 6. Subcritical Hopf bifurcation. The bistability region
is shown as C1 varies. The minima and maxima of x2 are

0.012 -1 -0.5 0 0.5 1 1. shown for different initial conditions, after a time interval

long enough for the transient to be considered over. The
[x..2] unstable limit cycle is not shown. R = 1.1 Q.
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parameters of the system change. We will also force point of view, this result is important because it
the system on the SA node oscillator using a sinu- shows that for high depolarization frequency of
soidal voltage generator. The external generator the SA node (C1 = 0.012 F, period of SA oscil-
action should model the influence of ectopic pace- lator 300 beats per minute), a chaotic behavior,
makers in the atria that disturb the activity of the such as fibrillation can occur.
dominant pace-maker of the heart (the SA node).

3.2. Forced system
3.1. Unforced system We set the parameters as in Eq. (5), but R =

The analysis for the unforced system begins by 0, 11 Q. This is done as more complex dynamics
varying the coupling resistance R while the other occur at the edge of the 1:1 phase-locking region,
parameters are constant with values as in Eq. (5). found for this value of R.

We are interested in which kind of phase- In order to identify different kind of arrhyth-
locking between the two oscillators occurs. As a mias, we classify the solutions by calculating
matter of fact, different phase-locking behaviors Poincar6 maps. The solution is sampled at inter-
correspond to different kind of arrhythmias. In vals equal to the forcing function period. Using
order to classify the solutions, a specific rotation these maps it is possible to define a rotation num-
number p is defined [di Bernardo et al., 1998]. In- ber P1 which has the same meaning given in the
tuitively p represents the average number of times previous paragraph. Moreover, it is possible to cal-
the SA node depolarizes for a single depolarization culate, when the solution is periodic, the number of
of the AV node. For example p = 1.5 means that, periods n and m of the first and second oscillator,
on average, for every three depolarizations of the SA contained in one period of the forcing function.
node, two depolarizations of the AV node occur. We The solutions obtained as the frequency and
calculated the rotation number p, for different val- the amplitude of the forcing function vary, resem-
ues of the coupling resistance R. For R > 0.11 Q the ble both Wenckebach rhythms and AV blocks and
two oscillators are 1:1 phase-locked. Every time SA also atrial bigeminy like and chaotic solutions. The
depolarizes, there is one AV node depolarization, rotation number of Wenckebach-like solutions as-
As R decreases a series of subharmonic bifurcations sumes rational values; AV blocks like solutions, in-
appear. Some of these solutions are aperiodic, but stead, have integer rotation numbers. The solu-
all of these resemble just one type of arrhythmia tions that seem to be chaotic are generated at high
known as 2' AV block of the Wenckebach type. frequency and low amplitude values of the forcing

A similar analysis is performed when R is fixed function. This result suggests that an ectopic pace-
and C 1 varies. This corresponds to varying the fre- maker (modeled by the forcing function) can initiate
quency of the first oscillator (SA node). It hap- a chaotic event in the heart muscle.
pens that the rotation number assumes only integer Atrial bigeminy episodes were obtained for
values n, meaning that the phase-locking between small values of the frequency of the forcing function,
the two oscillators is of the n: 1 kind. These so- smaller than half of the free shooting frequency of
lutions resemble arrhythmic episodes known as n:1 the SA oscillator.
AV blocks. Thus our model is able to simulate dif- By increasing the coupling "strength" (R from
ferent kinds of arrhythmia depending on which pa- 0.11 Q to 0.13 Q), the kind of arrhythmia simu-
rameter, R or C 1, is changed. However we are also lated by the solution (atrial bigeminy) remains the
interested in the study of solutions that could re- same. Only the R-R interval series change.' For
semble atrial and ventricular fibrillation. There- R = 0.13 Q the R-R series, shown in Fig. 7, seems
fore we searched for chaotic solutions in the R- to be modulated by an aperiodic function, whereas
C 1 parameter space. We found a region of the for R = 0.11 Q, R-R interval series remains periodic
parameter space (0.967 Q < R < 1 and and alternates between two fixed values.
0.012 F < C1 < 0.015 F) in which a series of This behavior is significant as it has been ex-
period doubling bifurcations, leading to a chaotic perimentally found [Babloyantz & Destexhe, 1988]
attractor, takes place. From the pathophysiological that the normal heart is not a perfect periodic

'The time interval between two consecutive QRS complexes is known as R-R interval. We calculated them in our model as
the time intervals between two consecutive maxima in X4.
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1.35- ___ -- exploiting one of the features of the model such as

1.3- the reduced number of parameters and their strong
correspondence to the physiological cardiovascular

1.25 system behavior.

1.2
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Rings of chaotic oscillators coupled unidirectionally through driving are studied. While synchro-
nization is observed for small sizes of the ring, beyond a certain critical size a desynchronizing
transition occurs. In the two examples studied here the system exhibits a transition to periodic
rotating waves for rings of Lorenz systems, while one finds a sort of chaotic rotating waves
when Chua's circuit is used.

1. Introduction reducing the richness in possible dynamical behav-
iors of the system. This method has been used

Synchronization phenomena are pervasive in na- iosfthsyem Tis ehdhabenud
Snronion1980 phenomea are erasive9n ana- before and synchronization waves in linear arrays
ture [Winfree, 1980; Strogatz & Stewart, 1993] and, of chaotic oscillators have been obtained [Sanchez

thus, many studies have been carried out, focusing et aoti 1997].

particularly on limit-cycle oscillators. Less intuitive et al., 1997].

is probably the finding that chaotic systems may In the present work, we shall consider rings of

be made to get in synchrony [Fujisaka & Yamada, coupled chaotic oscillators. These geometries may

1983; Pecora & Carroll, 1990], as chaos has been be relevant in a biological context, like in morpho-

described as a situation in which a system gets out genesis [Turing, 1952] or in the context of neural

of synchronization with itself [Tang et al., 1982]. In systems. Thus, for example, Central Pattern Gen-

the present work we shall use the synchronization erators (CPGs), i.e. assemblies of small number of

method introduced in [Gii~mez & Matfas, 1995], neurons, capable of providing the necessary rhythm

that amounts to a generalization of the method in- of muscular activity even in the absence of ex-

troduced by Pecora and Carroll (PC). The idea is ternal stimuli. These CPGs are believed to play

to avoid partitioning the response system in sub- an important role in animal locomotion. In these

systems, introducing, instead, the driving signal at CPGs the relevant points to be considered are the

a particular place of the response system, i.e. with- dynamics of the isolated neurons, e.g. periodic or

out reducing the size of the latter. This property chaotic, the interaction between the oscillators, and
is particularly useful in the case that we are inter- the way in which information is processed. An
ested here: the design of arrays of coupled chaotic important aspect is that the resulting spatiotem-
oscillators, as all the units in the array will be of the poral patterns can be analyzed through symmetry
same type (will have the same dimension), without arguments [Collins & Stewart, 1994], and this

*E-mail: ines~fmmeteo.usc.es
IE-mail: mam@sonia.usal.es
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allows one to study the different possible behav- x(1)
iors, stemming from symmetry-breaking bifurca- 20 x(2)
tions, and, thus, the transition between different
animal gaits has been explained in this way by con- 10
sidering a model composed out of a ring of coupled
oscillators [Collins & Stewart, 1994]. Regarding the
possibility that single neurons are chaotic, some ev- 0 ................... ...................
idences point in this direction [Hayashi & Ishizuka,
1992]. -10

In the present work we shall explore further the
richness of dynamical behaviors that are possible in
rings of unidirectionally coupled chaotic oscillators, -20
considering as case examples the Lorenz and Chua , I

systems. We shall perform our study by considering 20 25 30 35 40Time (t.u.)
a reference state in which the behavior of the cou-

pled systems is chaotic and uniform (synchronized), Fig. 1. Temporal evolution of the variable x of the two os-
studying then the onset of instability, characterized cillators in a ring of N = 2 Lorenz oscillators. The values of
in a Fourier representation by the instability in the the parameters are (o, R, b) = (10, 28, 8/3).
k = 1 mode. This will yield rotating waves that in
one case are periodic while in the other chaotic.

x(2)20 /  x(l) /

2. Rings of Lorenz Oscillators

In this case we shall consider rings coupled in such 10 ,

a way that the dynamical behavior is defined by, , ,t
0 .... .. . ..... .... t .... .. ....- -I .. ..... -- "T "T

j = (yj - zj) I ' , I,, i
Yyj-xj z. j=1,...,N, (1) -10

j =xjyj - bzj 2 V

where the coupling enters through x-j, that is de- -20
fined as T7j = xj-1 ih5 g

fine as-1y, with T, = XN. 10 10.5 11 11.5 12
In this situation it was observed [Matias et al., Time (t.u.)

1997a] that the synchronized chaotic state is stable
if the size of the ring is small enough, e.g. N = 2 Fig. 2. Temporal evolution of the variable x of two contigu-

(see Fig. 1), while for a certain critical number, ous oscillators in a ring of N = 3 Lorenz oscillators. Notice
the time scale of this figure compared to that of Fig. 1. TheNc= 3 in the case of Lorenz model, an instability values of the parameters are the same as in Fig. 1.

that destroys the uniform chaotic state occurs, lead-

ing to a rotating chaotic wave (see Fig. 2). We have
performed studies in which the parameters of the et al., 1994]). The time evolution of small differ-
system have been varied, with the result that the ences around the synchronized state is governed by
critical size, N, = 3 in all cases. Anyway, so far the equation,
we have explored only the region in which all the Jx =H 6x (2)
oscillators are identical.

A noteworthy aspect of this desynchronization where the H matrix is organized in a series of blocks
transition is that the time scale of the emerging corresponding to the uncoupled oscillators plus a
rotating wave is, roughly, one order of magnitude number of off-diagonal terms arising from coupling.
faster than that of the uncoupled oscillators. This However, the structure of this matrix is circu-
instability can be characterized by performing a lant, and for this reason one can put these equa-
linear stability of the small deviations around the tions in a more convenient form through the use of
synchronized state (see e.g. [Turing, 1952; Heagy Discrete Fourier Transform (DFT) [Turing, 1952;
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Heagy et al., 1994]. As a result, the following equa- X(q)
tions are obtained,

(k) = C(k) 7 (k) (3)

4
where in the case of the Lorenz model the structure
of each block can be cast in the form,

2

C(k)= (Rek-z) -1 -X (4)

y X -b0.......... .......... .......... ..........

with ek = exp(i 27r k/N) and being k - 0,...,
(N - 1) the Fourier modes of the system.

The C(k) matrices have time-dependent (chaot-
ically varying) coefficients, and, thus, we have cho-
sen to characterize its stability by determining the -4

corresponding Lyapunov spectrum considering the
infinite-time limit of the real part of the eigenvalues 0 0.2 0.4 0.6 0.8

of this matrix. This has been done by generaliz-
ing Wolf's algorithm [Wolf et al., 1985] to the case
of complex vector spaces, while the different pos- q
sible values of k and N have been joined through Fig. 3. Representation of the highest Lyapunov exponent
the definition of the reduced wavenumber q =kN, A(q) as a function of q = k/N, i.e. A(q) versus q. The circles

and this yields the function A(q), that represents indicate the highest transverse Lyapunov exponent for a ring
the highest Lyapunov exponent as a function of of N = 2 Lorenz oscillators, whereas the squares indicate the
this variable. According to linear stability theory same for N = 3. The values of the parameters are the same

[Heagy et al., 1994] the stability of the synchronized as in Fig. 1.

state will occur whenever the transverse Lyapunov
exponent is negative. However, if one assumes that
the dependence of A on q is smooth, the fact that symmetric Hopf bifurcation [Collins & Stewart,
the uniform dynamics is chaotic, i.e. that A(O) > 0, 1994]. This bifurcation is allowed because the pres-
implies that the uniform chaotic state must be un- ence of the ek terms in Eq. (4) implies that half of
stable for perturbations of some characteristic wave- the Fourier modes are complex conjugate to other
length (see also [Bohr et al., 1987] for an analogous half. In particular this implies that when a given
argument). mode crosses the instability threshold there will be

In a more quantitative fashion, it can be shown another mode that also exhibits the same type of
that for the parameters used in this work, and re- crossing. Whether these two complex conjugate un-
ported in Fig. 3, this crossing occurs for q, - 0.37, stable modes are real or complex will depend on
what implies that it occurs already for N = 3. This the structure of the matrix, although in the present
can be confirmed through numerical simulation of case, and by resorting to an approximate proce-
Eq. (1), as can be seen in Fig. 2. An easily ac- dure [Gil6mez et al., 1997], we have shown that the
knowledged point from these results is that when modes are indeed complex. The result is immediate:
the instability occurs the behavior of each oscilla- A Hopf bifurcation occurs, implying the appearance
tor becomes periodic, and neighboring oscillators of a discrete rotating wave, in which neighboring os-
exhibit a phase difference of 2/N. The first aspect, cillators exhibit the reported phase difference.
i.e. the transition from chaotic to periodic cannot be Symmetry is here a very helpful tool as it de-
explained in the framework of a linear stability the- termines the properties of the different bifurcation
ory, and the observed behavior implies, probably, a branches. In the case of unidirectional coupling that
global bifurcation. we are considering here, and that it is the most rel-

However, the other aspect can be understood evant one in the case of CPGs, symmetry indicates
by noticing that the instability occurs through a that a single branch of rotating waves is obtained
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[Collins & Stewart, 1994], where a single rotation Regarding the stability of chaotic synchronization

direction is allowed. as a function of the parameters of the model,
by increasing a and -y one sees that the critical

size N, increases, as shown in Table 1. Thus,
3. Rings of Chua's Oscillators

An analogous study to that of the previous section X(q)
has been carried out with rings of Chua's oscilla-

tors, a well-known paradigm of chaos in electronic 0.8

circuits. In this case the oscillators have been cou-
pled according to the following scheme, where the
evolution equations for each coupled oscillator are 0.6-

reported,

-7j = al[yj - xj - f(T;)] 0.4

= xj -yj+zj j=1,...,N. (5)

il = -0yJ --YZ J 0.2

A theoretical study of this situation has been car- 0..................................... ......
ried out in [Matfas et al., 1997b], while the pre-
dictions have been confirmed experimentally in
[Sinchez et al., 1997]. The nonlinear resistor f(x) -0.2_
in (5) is given by,

I -0.4L

f W {bx + 2(a - b)[Ix + Xl Ix 11]} (6) 0 0.2 0.4 0.6 0.8
q

Driving is introduced through the nonlinear term
f(x) in (5), such that xik, = xk-1 for k $ 1, whereas Fig. 4. Representation of the highest Lyapunov exponent
fx)in(5Ifor k = 1, w s A(q) as a function of q = k/N, i.e. A(q) versus q. The cir-
for k = 1, Tl = XN. cles indicate the highest transverse Lyapunov exponent for

The same type of linear stability analysis dis- a ring of N = 4 Chua oscillators, whereas the squares indi-

cussed in the previous section can be applied here. cate the same for N = 5. The values of the parameters are

In this case the matrix C(k) takes the following (a, 03, -y, a, b) =(10, 14.87, 0.06, -1.27, -0.68).

form,

-a[1±+f'(X)ek] a 0 6 x(1)-

( 1 -1 1 (7) 4 x(2) .....0 -
which leads to the representation of the highest
transverse Lyapunov exponent as a function of the
reduced wave number, plotted in Fig. 4. In the 0 ..... '. -. .....

present case it is found that the onset of instability
occurs at q, = 0.21, which implies that the ring be- -2
comes unstable when N > 5. This can be seen from
Fig. 5 that presents results for N = 4, while the -4

behavior past the instability is presented in Fig. 6,
that shows results for N = 5. The interesting -6 I

feature is now that the behavior of the oscillators 600 605 610 615 620 625 630
is not periodic, but chaotic, while neighboring os- Time (t.u.)

cillators present a phase difference that is approxi- Fig. 5. Temporal evolution of the variable x of two contigu-

mately equal to 27r/N. Thus, the ring can be better ous oscillators in a ring of N = 4 Chua oscillators. The values

characterized as exhibiting a rotating chaotic wave. of the parameters are the same as in Fig. 4.
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6 1 trix of the problem. However, the behavior exhib-
x(l) ited by these two types of rings is different in that in4 ~x(2)...

one case (Lorenz system) one obtains discrete peri-

odic rotating waves, while in the second case (Chua
2 ' system) these waves are chaotic.

.I These discrete spatiotemporal structures are
S "  ......................... interesting in the context of dynamical systems

I2 J theory, as they reveal the richness of dynamical

-2 behaviors that one may obtain in coupled arrays
of chaotic oscillators, beyond synchronization. In

-4 addition, they can be potentially useful in connec-
tion to CPGs, i.e. rings of coupled neuron models.

6 IIt has been found that these structures can be use-
770 775 780 785 790 795 800 ful in locomotion, where the different symmetry-

Time (t.u.) breaking solutions would be responsible for the dif-

Fig. 6. Temporal evolution of the variable x of two contigu- ferent gaits that the animal exhibits [Collins &
ous oscillators in a ring of N = 5 Chua oscillators. The values Stewart, 1994]. In particular, in this context it is
of the parameters are the same as in Fig. 4. useful to notice that in the case of rings of Lorenz

systems the pattern that emerges is periodic, al-
though the dynamics of the uncoupled oscillators

Table 1. Critical number of was chaotic. It is also interesting to notice the time
chaotic Chua's circuits in a scale of the emerging rotating wave: It is, at least,
ring, Nrc, that supports chaotic(uniform)tha synhr aoti c one order of magnitude faster than the uncoupled
(uniform)_synhronization.oscillators, and this could be relevant in a neuronal
Nc (a;-Y) context. As well, one should bear in mind that the

brain is able to perform various tasks in a short
4 a = 10; _< 0.15 time, although the neurons in which these tasks
5 a = 10; 0.15 < , < 0.2 base are relatively slow.
6 a = 12;y = 0.2
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I report on the experimental observation of excitation and suppression of chaos through time
dependent perturbations in the dynamical variable of a glow discharge. The interaction of the
external signal with the dynamical system is explained in terms of the 1D map associated to the
glow discharge. Numerical simulations are also performed with the logistic map. The proposed
mechanism of exciting and/or suppressing chaos is in accordance with the OGY method of
controlling chaos.

1. Introduction ing the applied voltage, may turn into a chaotic
oscillation. The associated bifurcation sequences

Very often a dynamical system may be modeled by a eventually reaching chaos are characterized else-
discrete time evolution equation that can be cast in where [Braun et al., 1987, 1992, 1994, 1995]. In
the form xi+l = f(xi, y). This is a generic example this paper suppression and excitation of chaos in
of a unidimensional (ID) map, where xi represents the glow discharge are analyzed by using time-
the dynamical variable and p is a control parame- dependent perturbations on the current of the dis-
ter. It is well known that by varying p the system charge. The mechanism of control is explained in
may present bifurcations (i.e. qualitative changes in terms of the 1D map associated to the discharge
its dynamical behavior) leading to a very complex and complemented with the example of the logistic
evolution that we assume to be chaotic. The prop- map.
erties of this road to chaos have been extensively This paper is organized as follows: in Sec. 2,
studied in the literature for several 1D mappings, I describe the experimental apparatus. The mea-
as for instance the logistic map: xi+I = pxi(I - xi). surements and their analysis are presented in Sec. 3.

In this work, besides the logistic map, an Conclusions are presented in Sec. 4.
experimental system is analyzed: the glow dis-
charge. Experimental systems are dissipative, thus
their phase-space volumes contract in all directions. 2. Experimental
One direction has the slowest convergence and de- The experimental arrangement is shown schemati-
fines a line along which the universality theory ap- cally in Fig. 1. The main setup consists of a dis-
plies [Collet & Eckmann, 1980] and therefore their charge cell connected to an adjustable DC power
chaotic dynamics can be modeled by 1D maps. supply (Ortec, model 456) and a ballast resistor of

In the example of the glow discharge the dy- 1 MQ in a series circuit. The discharge cell is as-
namical variable is the electric current flowing sembled with a glass tube 24 mm in diameter and
through the discharge and the control parameter is has brass electrodes which are - 1 cm apart. The
the DC voltage feeding the discharge. Under suit- cathode has a diameter of 12 mm while the anode
able conditions the current of the discharge presents has a diameter of 19.2 mm. Inside the cell there
a self-generated periodic oscillation that, by chang- is an argon pressure of - 2 mbar. The cathode is

1739
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DC A.
A. i+1

* r_ ie comparator

Fig. 1. Experimental setup. Vs, power supply; RB 1 MQ;
Ri = 2 kQ; DC, discharge cell; DB, digitizing board; FG, ,L I

function generator. 0 100 200 300 400

time /ls
connected to the voltage source and the anode is (a)

grounded through a 2 kQ resistor which is used to
measure the current. The current was monitored
by a digitizing board (Sonix STR825) in a personal
microcomputer. The magnitude of this current is of
the order of some pA when the power supply fur-
nishes a voltage that ranges between 300 and 500 V. -6

Depending on the value of this voltage, the cur- -..
rent through the discharge shows periodic or chaotic
oscillations. In order to excite or suppress chaos in
the glow discharge the current is perturbed by an
external signal. The perturbation arrangement is ..

shown in Fig. 1 by the drawing in gray. The per-
turbation signal was applied to the discharge by a

capacitive coupling. The output from a variable
frequency function generator (Tektronix FG 504) A i
was connected to a copper tube of 20 mm in length (b)
which just fitted the outside of the glass discharge
cell. In this way the electric field distribution inside Fig. 2. (a) Chaotic current in the glow discharge. Two suc-

the discharge cell is perturbed by the signal gener- cessive amplitudes (Ap and Ain+) are identified. (b) Next

ator. I adopted the following criterion to define a

small perturbation. With the discharge out of oper-
ation I measured the voltage induced by the exter-
nal signal between electrodes. This voltage must be By perturbing the electrical discharge with an

less than 5% of the voltage furnished by the power external periodic signal, the dynamics changes dras-

supply when the discharge is in operation. As will tically. This can be seen in Figs. 3 and 4. Both

be explained later, the perturbation signal may be diagrams are obtained digitizing only the ampli-

periodic or not. tudes of the oscillations. The continuous lines
in this diagram characterize a periodic evolution

3. Results and Analysis whereas a blurred collection of points indicates a
chaotic evolution. Also, both diagrams show a dras-

An example of the chaotic evolution of the current tic change in dynamics when the perturbation is

in the discharge is displayed at the left of Fig. 2, switched on and off. While the perturbation is ac-
whereas at the right the corresponding next am- tive, its amplitude is slowly increased linearly.
plitude map is shown. This map is obtained by In Fig. 3 the initially periodic oscillations (pe-

sampling only the amplitudes (Ai) of the current riod one) on the current make an abrupt transi-

oscillations and arranging them in a plot Ai x Ai+l. tion to chaos with a very small external perturba-
The result is a noticeable 1D map. tion demonstrating the excitation of chaos. As the
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exciting and/or suppressing chaos. For example,
.. instead of using the function generator in the free

. -.,<y run mode, it may be triggered such that the out-
k put of the generator is always synchronized with

T the amplitudes of the oscillation. For this purpose,
N. -ithe trigger input was generated by injecting the dis-

charge current oscillations in a peak detector (differ-
entiator plus comparator in Fig. 1). In this way, the
perturbation has always the same periodicity of the
oscillations in the discharge current. For instance, if

ON OFF the current is chaotic then the perturbation signal is

Time/s also chaotic, but as the the perturbation increases
and achieves suppression of chaos then the signal

Fig. 3. Excitation of chaos in the glow discharge. The two becomes periodic.
arrows indicate where the perturbation is turned, respec- I used an external perturbation in the form of
tively, on and off. "delta" pulses synchronized with the amplitudes of

the current oscillation to excite and/or suppress
chaos. In this way the perturbation systemati-
cally changes the variable of the next amplitude

<' ' ; map. The latter observation suggests that the in-
S..teraction of the external signal with the dynami-

i i.. .cal system (discharge) can best be understood in
terms of the ID map associated to the system as

,<,the next amplitude map. I empirically propose
"-that this interaction takes then the form: i =

f(xi, [) Ip=constant - Ei represents the external
perturbation; its amplitude increases linearly with

/ the successive iterations. This linear growth better
ON OFF fits the experimental results presented previously.

Time/s To check this proposition, I have made some nu-

Fig. 4. Suppression of chaos in the glow discharge. merical simulations using the logistic map: xi+I =
pxi (I - xi) + o- - ei (see Fig. 5). Concerning
the glow discharge, this map may be considered as

amplitude of the perturbation is increased, a se- "equivalent" to the 1D map ruling the dynamics
quence of oscillations with period ... -8-7-6-5-... is such as the next amplitude map or a Poincar6 re-
clearly observed between chaotic regions. When the turn map that can be obtained from the phase
external signal is switched off, the current returns
to its initial state.

The suppression of chaos is shown in Fig. 4.
The initially chaotic behavior of the current changes
to an oscillation of period four as the amplitude
of the external signal is increased. The oscillation r , k" ..
undergoes a reverse period doubling, resulting in *- .
a period-two oscillation at a higher amplitude of . . ...

the perturbation. The current returns to its ini-

tial noisy appearance when the external oscillator _

is switched off. _
Similar results are obtained for different exter- - 0001 e/0

nal periodic signals: a sine wave, a triangular wave, ON OFF

and a square wave. All of them have a frequency ON

very close to the one of the auto-oscillations of the n (iterations)
current. Also, a nonperiodic signal is effective in Fig. 5. Simulation for the logistic map with p = 3.75.
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space flow through a Poincar6 section. I considered 4. Conclusions
=i -- i, e being constant and i corresponding to theierio -ein. A cGasiant ni crres(ondinampit e I demonstrated that it is possible to suppress and/oriteration. A Gaussian noise < (a -- amplitude --

0.002, ( ) = 0; ( 2) - 1) was introduced in another excite chaos through time dependent perturbations

term to represent external noise, always present in in the variable of a dynamical system. I investigated

experimental conditions. The noise does not dis- experimentally the glow discharge and numerically

turb the proposed control mechanism. It may be the logistic map. The proposed control mechanism

concluded that the dynamical state of the system is easily understood in terms of the 1D map asso-

with p = constant varies according to the ampli- ciated to the dynamical system. Essentially it con-

tude of the perturbation Ej. In fact, 6j works as a sists in changing the stability of the periodic points
"new" control parameter and, changing linearly its of the map.

amplitude, it results a similar bifurcation sequence
as that observed in the nonperturbed system. Acknowledgments
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We introduce the idea of the fuzzy control of chaos: we show how fuzzy logic can be applied to
the control of chaos, and provide an example of fuzzy control used to control chaos in Chua's
circuit.

1. Introduction 2. Fuzzy Control

Chaos control exploits the sensitivity to initial con- Fuzzy control [Driankov et al., 1993; Terano et al.,
ditions and to perturbations that is inherent in 1994] is based on the theory of fuzzy sets and fuzzy
chaos as a means to stabilize unstable periodic or- logic [Yager & Zadeh, 1991; Bezdek, 1993]. The
bits within a chaotic attractor. The control can principle behind the technique is that imprecise
operate by altering system variables or system data can be classified into sets having fuzzy rather
parameters, and either by discrete corrections or by than sharp boundaries, which can be manipulated
continuous feedback. Many methods of chaos con- to provide a framework for approximate reason-
trol have been derived and tested [Chen & Dong, ing in the face of imprecise and uncertain infor-
1993; Lindner & Ditto, 1995; Ogorzalek, 1993]. mation. Given a datum, x, a fuzzy set A is said
Why then consider fuzzy control of chaos? to contain x with a degree of membership 1uA(X),

A fuzzy controller works by controlling a con- where PA(X) can take any value in the domain
ventional control method. We propose that fuzzy [0, 1]. Fuzzy sets are often given descriptive names
control can become useful together with one of these (called linguistic variables) such as FAST; the mem-
other methods - as an extra layer of control - in bership function PFAST(x) is then used to reflect
order to improve the effectiveness of the control in the similarity between values of x and a contex-
terms of the size of the region over which control is tual meaning of FAST. For example, if x repre-
possible, the robustness to noise, and the ability to sents the speed of a car in kilometres per hour,
control long period orbits. and FAST is to be used to classify cars travelling

In this paper, we put forward the idea of fuzzy fast, then FAST might have a membership func-
control of chaos, and we provide an example show- tion equal to zero for speeds below 90 km/h and
ing how a fuzzy controller applying occasional pro- equal to one for speeds above 130 km/h, with a
portional feedback to one of the system parameters curve joining these two extremes for speeds between
can control chaos in Chua's circuit. these values. The degree of truth of the statement

*E-maih: calvo@athos.fisica.unlp.edu.ar

tE-mail: julyan@hpl.uib.es, URL: http://formentor.uib.es/-julyan
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the car is travelling fast is then evaluated by read- vertically on the palm of one's hand. The equations
ing off the value of the membership function corre- of motion for the stick (a pendulum at its unstable
sponding to the car's speed. fixed point) are well-known, but we do not inte-

Logical operations on fuzzy sets require an ex- grate these equations in order to balance the stick.
tension of the rules of classical logic. The three Rather, we stare at the top of the stick and carry
fundamental Boolean logic operations, intersection, out a type of fuzzy control to keep the stick in the
union, and complement, have fuzzy counterparts air: We move our hand slowly when the stick leans
defined by extension of the rules of Boolean logic. A by a small angle, and fast when it leans by a larger
fuzzy expert system uses a set of membership func- angle. Our ability to balance the stick despite the
tions and fuzzy logic rules to reason about data. imprecision of our knowledge of the system is at the
The rules are of the form "if x is FAST and y is heart of fuzzy control.
SLOW then z is MEDIUM", where x and y are in-
put variables, z is an output variable, and SLOW,
MEDIUM, and FAST are linguistic variables. The
set of rules in a fuzzy expert system is known as the 3. Techniques for Fuzzy Chaos
rule base, and together with the data base of input Control
and output membership functions it comprises the To control a system necessitates perturbing it.
knowledge base of the system. Whether to perturb the system via variables or pa-

A fuzzy expert system functions in four steps. rameters depends on which are more readily acces-
The first is fuzzification, during which the member- sible to be changed, which in turn depends on what
ship functions defined on the input variables are ap- type of system is to be controlled - electronic, me-
plied to their actual values, to determine the degree chanical, optical, chemical, biological, etc. Whether
of truth for each rule premise. Next under inference, to perturb continuously or discretely is a question
the truth value for the premise of each rule is com- of intrusiveness - it is less intrusive to the system,
puted, and applied to the conclusion part of each and less expensive to the controller, to perturb dis-
rule. This results in one fuzzy set to be assigned to cretely. Only when discrete control is not effective
each output variable for each rule. In composition, might continuous control be considered.
all of the fuzzy sets assigned to each output vari- Ott, Grebogi and Yorke [Ott et al., 1990]
able are combined together to form a single fuzzy invented a method of applying small feedback
set for each output variable. Finally comes defuzzi- perturbations to an accessible system parameter in
fication, which converts the fuzzy output set to a order to control chaos. The OGY method uses the
crisp (nonfuzzy) number. dynamics of the linearized map around the orbit

A fuzzy controller may then be designed using one wishes to control. Using the OGY method,
a fuzzy expert system to perform fuzzy logic opera- one can pick any unstable periodic orbit that exists
tions on fuzzy sets representing linguistic variables within the attractor and stabilize it. The control is
in a qualitative set of control rules (see Fig. 1). imposed when the orbit crosses a Poincar6 section

As a simple metaphor of fuzzy control in prac- constructed close to the desired unstable periodic
tice, consider the experience of balancing a stick orbit. Since the perturbation applied is small, it is

supposed that the unstable periodic orbit is unaf-
fected by the control.

KNOWLEDGE BASE Occasional proportional feedback [Hunt, 1991;

DATA BASE Lindner & Ditto, 1995] is a variant of the original
OGY chaos control method. Instead of using the
unstable manifold of the attractor to compute cor-

POIT -. EEE. rections, it uses one of the dynamical variables, in
KERNEL DE.......E. a type of one-dimensional OGY method. This feed-

back could be applied continuously or discretely in
VARIABLE CO.........time; in occasional proportional feedback it is ap-

...... plied discretely. Occasional proportional feedback

exploits the strongly dissipative nature of the flows
often encountered, enabling one to control them

Fig. 1. Fuzzy logic controller block diagram. with a one-dimensional map. The method is easy
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implement, NEGATIVE NEGATIVE POSITIVE POSITIVE

to and in many cases one can stabi- BIG SMALL ZERO SMALL BIG

lize high period unstable orbits by using multiple MEMBERSHIP

corrections per period. It is a suitable method on FNCTIOS1

which to base a fuzzy logic technique for the control oSETZZY

of chaos, since it requires no knowledge of a system e

model, but merely an accessible system parameter. Ae
ia

-1 -0.5 0 0.5 1

Fig. 2. Membership functions of the input and output

4. An Example: Fuzzy Control variables e, Ae, and Aa.

of Chaos in Chua's Circuit

Chua's circuit [Matsumoto, 1984; Kennedy, 1993] value. The nonlinear nature of this system and the
exhibits chaotic behavior that has been extensively heuristic approach used to find the best set of pa-
studied, and whose dynamics is well known [Madan, rameters to take the system to a given periodic or-
1993]. Recently, occasional proportional feedback bit suggest that a fuzzy controller that can include
has been used to control the circuit [Johnson et al., knowledge rules to achieve periodic orbits may pro-
1993]. The control used an electronic circuit to sam- vide significant gains over occasional proportional
ple the peaks of the voltage across the negative re- feedback alone.
sistance and if it fell within a window, centred about We have implemented a fuzzy controller to con-
a by a set-point value, modified the slope of the trol the nonlinearity of the nonlinear element (a
negative resistance by an amount proportional to three segment nonlinear resistance) within Chua's
the difference between the set point and the peak circuit. The block diagram of the controller is

V P- e a:ko VN LR,. . . . . . . .. . . . . . . .

Detcto ----------------- -- --- ---

Fig. 3. The whole controller and control system in the form of a block diagram, including the fuzzy controller, the peak
detector, the window comparator, and the Ghua's circuit system being controlled.

Table 1. Quantification levels and membership functions.

Error, e -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

Change in error, Ae -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
Control, Aa -1 -0.75 -0.5 --0.25 0 0.25 0.5 0.75 1

Quantification level -4 -3 -2 -1 0 1 2 3 4

Linguistic Variables Membership Functions

Positive Big,CPB 0 0 0 0 0 0 0 0.5 1

Positive Small, PS 0 0 0 0 0 0.5 1 0.5 0
Approximately Zero, AZ 0 0 0 0.5 1 0.5 0 0 0

Negative Small, NS 0 0.5 1 0.5 0 0 0 0 0
Negative Big, NB 1 0.5 0 0 0 0 0 0 0



1746 0. Calvo & J. H. E. Cartwright

Table 2. Rule table for the linguistic vari-

ables in Table 1.

e NB NS AZ PS PB 2
Ac

NB NB NS NS 'AZ AZ

NS NS AZ AZ PS z 0

AZ NS AZ PS PS

PS AZ AZ PS PB

PB AZ PS PS PB

shown in Fig. 1. It consists of four blocks: knowl- -4
0 20 40 60 80 100

edge base, fuzzification, inference and defuzzifica- t

tion. The knowledge base is composed of a database and a rule base. The data base consists of the Fig. 4. The fuzzy controller stabilizes a previously unsta-
aseand outut mase.hebe uconsig oble period-1 orbit. The control is switched on at time 20.

input and output membership functions (Fig. 2). The lower trace shows the correction pulses applied by the
It provides the basis for the fuzzification, defuzzi- controller.
fication and inference mechanisms. The rule base
is made up of a set of linguistic rules mapping in-
puts to control actions. Fuzzification converts the circuit (Fig. 3). The fuzzification maps the error e,
input signals e and Ae into fuzzified signals with and the change in the error Ae, to labels of fuzzy
membership values assigned to linguistic sets. The sets. Scaling and quantification operations are ap-
inference mechanisms operate on each rule, apply- plied to the inputs. Table 1 shows the quantified
ing fuzzy operations on the antecedents and by levels and the linguistic labels used for inputs and
compositional inference methods derives the con- output. The knowledge rules (Table 2) are repre-
sequents. Finally, defuzzification converts the fuzzy sented as control statements such as "if e is NEG-
outputs to control signals, which in our case control ATIVE BIG and Ae is NEGATIVE SMALL then
the slope of the negative resistance Aa in Chua's Aa is NEGATIVE BIG".

4.0 4.0

2.0 2.0

0.0 0.0

-2.0 -2.0

-4.0 -4.0
0.0 100.0 0.0 100.0

(a) (b)

Fig. 5. Trajectory traces show higher period orbits stabilized by the controller. As before, the lower trace shows the correction

pulses applied by the fuzzy control.



Fuzzy Control of Chaos 1747

The normalized equations representing the cir- is complex and unknown, but for expositional clar-
cuit are ity here we have given an example of its use with a

well-studied chaotic system. We have shown that it
S= o~y - x - f(x)), is possible to control chaos in Chua's circuit using

= x - y + z, (1) fuzzy control. Further work is necessary to quantify
the effectiveness of fuzzy control of chaos compared

- -with alternative methods, to identify ways in which

where f(x) = bx + !(a - b)(Ix + 11 - Ix - 11) repre- to systematically build the knowledge base for fuzzy

sents the nonlinear element of the circuit. Changes control of a particular chaotic system, and to apply
in the negative resistance were made by changing a
by an amount
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