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AIMS AND SCOPE

The discipline of chaos has created a universal paradigm, a scientific parlance, and a mathematical tool for
grappling with nonlinear phenomena. In every field of the applied sciences (astronomy, atmospheric
sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences,
zoology, etc.) and engineering (aerospace, chemical, civil, computer, information, mechanical, software,
telecommunication, etc.) the local and global manifestations of Chaos and Bifurcation have burst forth in
an unprecedented universality, linking scientists heretofore unfamiliar with one another's fields, and
offering an opportunity to reshape our grasp of reality.

The primary objective of this journal is to provide a single forum for this multidisciplinary discipline
- a forum specifically designed for an interdisciplinary audience, a forum accessible and affordable to all.
Real-world problems and applications will be emphasized. Our goal is to bring together, in one periodical,
papers of the highest quality and greatest importance on every aspect of nonlinear dynamics, phenomena,
modeling, and complexity, thereby providing a focus and catalyst for the timely dissemination and cross-
fertilization of new ideas, principles, and techniques across a broad interdisciplinary front.

The scope of this journal encompasses experimental, computational, and theoretical aspects of
bifurcations, chaos and complexity of biological, economic, engineering, fluid dynamic, neural, physical,
social, and,othk.TiAa mica asystems. This broad but focused coverage includes, but is not restricted to,
those areas o expertise provided by the members of the editorial board, whose composition will evolve
continuously in order to respond to emerging new areas and directions in nonlinear dynamics and
complexity. The philosophy and policy of this journal, as well as its commitment to readability and clarity,
are articulated in an Editorial in the first issue (vol. 1, no. 1, 1991).

INFORMATION FOR AUTHORS
a

1. International Journal of Bifurcation and Chaos is a monthly journal consisting of
" papers 4 6.

While the majority of papers will consist of original contributions, the Journal also welcomes well-
written, incisive authoritative tutorials and reviews with long-lasting value to future researchers.

• letters to the Editor
These are mainly for the timely announcement of significant new results and discoveries
(phenomena, algorithms, theorems, etc.). Though concise, letter manuscripts must include details
and data so that referees can evaluate their validity and significance.

2. Once a paper or letter to the Editor is accepted for publication, the author is assumed to have transferred
the copyright for it to the publisher.

3. Essential color pictures will be published at no cost to the authors.

4. There are no page charges for this journal.

5. 50 complimentary reprints will be given to the author(s) of each paper. For a multi-author paper, these
will be sent to the author designated as the contact person. Orders for additional reprints may be made
on forms which will be sent along with the proofs.
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CONTROL OF CHAOS IN LASERS
BY FEEDBACK AND NONFEEDBACK METHODS

PIERRE GLORIEUX
Laboratoire de Spectroscopie Hertzienne, URA CNRS 249,

Centre d'Etudes et Recherches sur les Lasers et Applications,
Universit6 des Sciences et Technologies de Lille,

F-59655 Villeneuve d'Ascq Cedex, France

Received July 31, 1997; Revised November 25, 1997

Analytical approaches of the theory of chaos control in class B lasers are presented in the
cases of continuous delayed feedback and of subharmonic modulation. They are compared with
experimental findings on a CO 2 laser and a Nd-doped fiber laser with modulated loss and
pump respectively. In both cases, analytical theory allows one to predict the shift of the first
period-doubling bifurcations. Numerical simulations show that subharmonic modulation may
induce shifts, crises and new attractors in a laser with modulated parameters and that its phase
relative to the main modulation allows one to control the laser dynamics. These results agree
well with the experimental observations on control of chaos in CO 2 and fiber lasers.

1. Introduction weakness of these perturbations suggests the exis-
tence of small parameters in both situations and

It is now conventional to separate among the therefore there is the possibility of applying pertur-
methods used to control chaos those which rely on bation methods to obtain analytical properties of
feedback from those based on nonfeedback tech- the systems subjected to these control techniques
niques. In the former some information from the and possibly to compare them with experimental
chaotic system is extracted and used to design a findings.
weak correction signal applied to some suitable con- In this paper we report on advances in the
trol parameter. Following the seminal work of Ott, dynamics of class B lasers in presence of (i) de-
Grebogi and Yorke [Ott et al., 1990], several al- layed feedback [Bielawski et al., 1994; Erneux
gorithms have been proposed to control chaos by et al., 1995] and (ii) subharmonic modulation
stabilizing a system on one of its unstable peri- [Newell et al., 1997; Dangoisse et al., 1997]. These
odic orbits and applied to various systems includ- works show that singular perturbation methods and
ing lasers [Roy et al., 1994; Bielawski et al., 1993]. more precisely multiple timescale analysis is able to
In nonfeedback control, a small periodic perturba- predict how the dynamics are altered by the control
tion or parametric modulation is shown to drasti- techniques and in particular to predict if bifurcation
cally alter the dynamics of the system under con- points are shifted by the use of the control tech-
sideration [Bryant & Wiesenfeld, 1986] and this was niques mentioned above and to describe how this is
applied to both monomode [Meucci et al., 1994; done. All these predictions are compared with ex-
Chizhevsky et al., 1986; Gavrielides et al., 1985] perimental results on chaos control of class B lasers.
and multimode lasers [Otsuka et al., 1997]. These This point of view is different from that developed
two approaches are of completely different natures, in [Chizhevsky et al., 1986] where the emphasis is
but they share the concept of controlling dynam- on the fact that the nonfeedback control of chaos
ics through the use of small perturbations. The creates new attractors, a point which was already
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1750 P. Glorieux

discussed for a different system by Gavrielides et al. A single mode class B laser is essentially a
[1985]. two-dimensional dynamical system which is well de-

Control of chaos by delayed feedback was scribed by the model
proposed by Pyragas [Pyragas, 1992; Pyragas & dl
Tamasevicius, 1993] and applied in the laser do- - = 2I[AD- 1- k(t)]
main to loss modulated CO 2 lasers [Bielawski dt

et al., 1994; Erneux et al., 1995]. Chaos may dD
also be controlled by adding a small modulation = - D(1 +I)]
which is resonant or nearly resonant with a subhar- The variables I and D are the laser intensity and
monic of the fundamental system frequency [Meucci population inversion respectively. Time t is mea-
et al., 1994; Chizhevsky et al., 1986; Braiman & sured in units of the cavity lifetime. A is the pumpGolhirch,199; Clet& Braiman, 1996; Ciofini
Goldhirsch, 1991; Colet &parameter and -y is the ratio of the population in-
et al., 1995; Vohra et al., 1995]. This technique version rate to the cavity damping rate. k(t) is the
was first applied to a magnetostrictive ribbon and additional loss term containing the modulation and
soon after to lasers including CO 2 [Meucci et al., possibly feedback terms. The parameter 'y ; 10- 3

1994; Chizhevsky et al., 1986], microchip [Otsuka is small for any common class B laser which in-
et al., 1997] and fiber [Dangoisse et al., 1997] lasers. cludes also semiconductor in addition to CO 2 and
All these belong to the so-called class B lasers in solid state lasers. By removing this factor from
which the relaxation time of the electric polariza- the right hand side of the second equation, one ob-
tion is much shorter than the photon cavity life- tains equations for the deviations x and y from the
time which is itself much smaller than the popula- zero-intensity steady-state (I, D) = (I0, Do) where
tion inversion relaxation time. Class B lasers have Io = A - 1 and Do = 1/A and introducing new vari-
been used as test systems in this approach because ables and parameters as defined in [Erneux et al.,
they display well characterized chaos when they are 1995] eventually leads to the basic equations for the
subjected to periodic modulation of one of their pa- free-running class B laser
rameters [Ivanov et al., 1982; Arecchi et al., 1982;
Tredicce et al., 1986; Chen et al., 1985]. Moreover dx = y - ex[1 + (A - 1)(1 + y)]
single-mode class B lasers are efficiently described ds
by two-variable models suitable for fully analytical dy
treatments. More specifically, doped fiber and CO 2  ds -
lasers have been used in the corresponding experi-
ments. These particular lasers have been chosen for where s is the new time scale s = (21oy) 1/ 2t and
technical reasons linked to timescales and accessi- E - v2-y(A - 1).
bility of parameters required for control. In fact the In presence of loss modulation with an adimen-
fiber laser is not a single mode laser but the stan- sional efficiency M and a delayed feedback with ef-
dard class B model correctly describes its dynamics ficiency/3, the second equation should be changed
within some parameter range discussed in previous into
papers [Derozier et al., 1992]. dy

Chaos in class B lasers has long been observed (= +y)[X-3(Y-y(s-V)) - MCos as]
when a suitable parameter is modulated at a fre- ds

quency in the domain of the free running relax- where v is the time delay of the feedback loop and
ation oscillations. In CO 2 lasers, chaos has been a the reduced modulation frequency.
observed when the pump parameter [Biswas et al., If the pump is modulated, e.g. by a two-tone
1987], the cavity loss [Arecchi et al., 1982; Tredicce signal as in the second half of this paper where
et al., 1986] or the cavity detuning [Midavaine A = A0(1 + ri cos wit + r2 cos(W2t + ))
et al., 1985] have been sinusoidally modulated. The
relative efficiency of these modulations has been The first equation should be altered to account for
discussed [Khanin, 1995] but technical arguments this modulation and reads then as
eventually determine which is the most efficient for
a specific device. In doped fiber and YAG lasers, - =y - Ex[1 + (Ao - 1)(1 + y)]
pump modulation has almost exclusively been used ds

for the same technical reasons. + 61 cos as + J2 cos(a 2s +)
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where 5i and 0-i (i = 1, 2) are the reduced modu- with
lation amplitude and frequency respectively for the 2 1/2
two modulations. The phase W is relevant only when [M2+36(leA±!3)]

(l1/0-2 is a rational number. 2
Suitable methods are developed in each case

with the aim of determining the position of the = 3[(eA + 213)2 + (2 - Q)2]1/2.

first bifurcation, i.e. the value of the parameters for If 3 > I3 = -1/2cA, a stable period-doubling
which the period 1 solution destabilizes. This gives transition is observed at M = M*(O) where M* is
the parameter range in which the control is efficient defined above. If M < M*, the intensity of the laser
in stabilizing the period 1 orbit. is

21- Io -IoM sin 2s

3
2. Analytical Analysis where M = O(E). If M > M*, the leading approx-

of the Delayed Feedback imation for the intensity is

For the delayed feedback, asymptotic analysis of the I - lo -2IoRsin(s + 6)
equations has been carried out using 6 as a small
parameter. The 0th order (c = 13 = 0, M < 1) where R = 0((M- M*)l/2).
solution of the equations of the linear problem is a If 13 < 13, a period-doubling transition is still
combination of 2ir-periodic and 27r/C-periodic func- possible but all periodic solutions are unstable.
tions of the form Quasiperiodic oscillations are then expected.

The period 2 solution which corresponds to the

x = 2Rcos(s ±) + 1 2M R =A 0 solution is stable when
1- 2 C 

R 2 >3(2- a ) if a <2.
y= 2R sin(s + 0) + M U sin 0-S1- (02 This period 2 solution is subcritical (M < M*) if

o- < 2 which implies instability for small R. Sim-
where R and 0 are unknown amplitude and phase ilarly the period 2 solution is supercritical (M >
respectively. We wish to determine the bifurcation M*) if a > 2 and is always stable because the above
diagram of the 21r/a and 47r/o- periodic solutions. relation is always verified.
Therefore we concentrate on a z 2 and consider the
above equation as our leading approximation. The
bifurcation analysis consists of studying the ampli- 3. Numerical and Experimental
tude R = O(E1 /2) and phase 0 = 0(1) as functions Investigation of Delayed Feedback
of the slow time Es. They satisfy The corresponding experiments were carried out on

dR 71 -A ?1\ 1 Mcos a CO 2 laser in presence of sinusoidal loss modula-
dscA + ft + 2 tion. An electro-optic modulator inserted inside the

laser cavity allows modulation of the cavity losses.

dO 1 1 1 The feedback may be easily applied by just adding
ds = (2 6- )R - 6 MRsin 20 - 6 R. the small correction signal to the main driving volt-

age applied to the modulator. The delay is realized
Steady-state solutions correspond to periodic solu- thanks to an optical fiber delay line which is 600
tions of the original equations. Period 1 (R = 0, meters long. The CO 2 laser intensity is detected by
0 arbitrary) and period 2 solutions are determined a photovoltaic detector and fed into a laser diode
and their linear stability analysis is performed. Let power supply. Part of the diode laser emission is
M = ML = 13(2 - o-)I be the limit point from which directly detected and another part is sent into the
two distinct branches of steady-states 0 = 0±(M) fiber, allowing one to build a correction signal pro-
emerge. If M < ML, there is no steady state for 0, portional to 1(t) - I(t - T). The balance between
which means that the laser is unlocked in phase. the two channels is obtained by inserting an atten-

The stability condition of the period 1 solution uator in front of one detector and adjusting it so
is that the difference I(t) - I(t - r) in presence of a

ML < M < M* T(= -r) periodically modulated signal is null.
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Figure 1 shows the results of a typical experi-

ment. The upper part is a bifurcation diagram of E

the modulated laser in the absence of feedback and "a
is given as a reference. The lower part is the di- 2- a

agram obtained with the same laser parameters in
presence of delayed feedback. This feedback stabi- "
lizes the period 1 solution by shifting the period-
doubling bifurcation point. Measurements of the [
shift magnitude versus the feedback coefficient are
reported on Fig. 2. The experiment compares well
with the numerical and analytical predictions in 00 1 20 30

two points: (i) the bifurcation point shifts contin-
uously to larger modulation values as the feedback amplitude of the feedback loop (arb. units)

Fig. 2. Shift of the first period-doubling bifurcation versus
amplitude of delayed feedback as observed on a modulated
CO 2 laser with delayed feedback.

is increased from zero, and (ii) no period-doubling
bifurcation is observed for negative values of the
feedback. The analysis predicted a possible range
of stabilization with negative feedback but it is too

4.4 small to be observed here. The flat part of this curve
in the region of small feedback is most probably due

to discrepancies between the expected and the ob-
served delays, which implies a loss of efficiency for
low amplitude feedback.

4. Control of Chaos by the Phase
of Subharmonic Modulation.

* Analytic Results

For this system, Erneux et al. obtained a mapping
r by using a method based on matched asymptotic ex-

pansions and developed in [Newell et al., 1997]. The
pump modulated laser mapping relates the ampli-
tude x, and the time interval s, between successive
spikes. In the limit E --* 0, the period s,+, - s, and
the change in amplitude x,+l - x, are linked by

n+l- s, = -2xn + 2
- sin(wish)
W1

+ 2-2 sin(W2sn + )
W32

I I Xn+l - -- [sin(w1Sn+x) + sin(wisn)]
5 1 0 1 5 20 Wi1

-62 [sin(W2s, + 0) + sin(W2s, + )I
modulation amplitude (V) W2

Fig. 1. Comparison of bifurcation diagrams (a) in the ab- where the parameters describe the modulation of
sence and (b) in the presence of delayed feedback for a C0 2  the pump parameter which writes in reduced units
laser with modulated loss. 61 sin(031 s) + 62 sin(W2 s, + 9)-
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A fixed point analysis shows that if 62 = 0, diode lasers operating at 810 nm. Most experi-
the period 1 solution undergoes a period-doubling mental characteristics of the experimental set-ups
bifurcation at J1 = 1. Erneux et al. investigated are similar: fiber length 2.8 and 3.5 m, mirror re-
the bifurcation diagram of the periodic states in flecting coefficient 0.95, pump power 1.93 and 2
the vicinity of this point and for small values of 62. times above threshold respectively, making these
They showed that if W 54 ir/2, the period 2 pitchfork two works quite complementary.
bifurcation is destroyed and replaced by a smooth By probing the 62 - V control space, Newell
transition branch bounded by a fixed point. This et al. could show that the response of the laser is
limit point is located at drastically changed if V = 0 and minimized when

Ir = 7r/2. The bifurcation diagrams they obtained
1[ ==( -2i2si V /3  are displayed on Fig. 3. In both sets the bifurca-
2 2 2J tion diagram in presence of modulation is compared

with a reference one obtained in absence of addi-
In other words the standard bifurcation is then tional modulation (62 = 0). The existence of two
replaced by an imperfect bifurcation with two branches when 62 5 0 clearly shows that no true P1
branches of solutions. For W = 7r/2, the imper- orbit exists. The difference in the splitting of the
fection term disappears and the two-tone modu- branches of the bifurcation diagram [Figs. 3(a) and
lation problem reduces to the perfect bifurcation 3(b)] in the vicinity of the period-doubling bifurca-
case. They also showed that when 62 is small, tion is clear and strongly dependent on the phase W
the period-doubling bifurcation is located approx- of subharmonic modulation in accordance with the
imately in 1 + 32. predictions.

Examples of this effect together with the mod-
ifications of the other bifurcations are shown in

5. Experimental and Numerical Figs. 4 and 5. They show bifurcation diagrams ob-
Investigations of Control by the tained by numerical simulations with the cw part of
Phase of Subharmonic Modulation the pump A0 as the bifurcation parameter on the

The influence of the phase o of subharmonic modu- basis of a model of the fiber laser which proved very

lation was investigated in two series of experiments efficient in our previous studies of the dynamics of

on fiber lasers by Newell et al. [Newell et al., 1997], this kind of lasers [Derozier et al., 1992]. In the

Celet et al. [Dangoisse et al., 19971 and one on a following, experimental and numerical results have

CO 2 laser by Chizhevsky et al. [1986]. The former been obtained with a modulation of the form

concentrates on checking the predictions of the the- A = A0 + A1 cos wit + A 2 cos(w 2t + )
ory presented in the preceding paragraph, i.e. on the
dynamics in the vicinity of the first period-doubling for technical reasons. Extreme care has been taken
transition while Celet et al. aims at a global but to avoid any transient regime and slow passage ef-
less precise investigation of the effect of this phase fects in all simulations and experiments. In typical
W, i.e. shift and/or change of nature of all bifur- simulations we compare the bifurcation diagrams
cation points versus the phase of the subharmonic obtained with increasing and decreasing values of
modulation. Chizhevsky et al. carried out several the control parameter to reveal the possible gener-
investigations on the role of phase in a driven sys- alized bistability effects due to the coexistence of
tem subjected to harmonic and subharmonic mod- attractors, especially in the vicinity of boundary
ulations with special emphasis on the bistability in- crises. These bistability effects are not studied in
duced by the second modulation in the presence of detail here and are partly discussed in a preceding
a swept parameter. In their study the nonadiabatic paper [Dangoisse et al., 1997].
effects due to the sweeping of the control parameter Figure 4 shows the influence of a change in the
strongly interefere with those due to subharmonic amplitude of the additional modulation in the case
modulation. We concentrate here on experiments of the fourth subhamonic modulation (wi = 4W2).
and theory in which these effects are made negli- Figure 4(a) is a reference in presence of the main
gible as in [Newell et al., 1997; Dangoisse et al., modulation only while Figs. 4(b) and 4(c) were ob-
1997). tained for relative modulation amplitudes of 5.10 - 4

Both series of experiments have been carried and 5.10- 3 respectively, the amplitude of the main
out on Neodymium-doped fiber lasers pumped by modulation is 0.42 relative to the cw pump for all
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R 750,, n these recordings. Note that in all these simula-

700 '  tions subharmonic modulations are much weaker
600 i than the main driving field. Other parameters and

2.2650 2.32. 2. details about the model are given in [Dangoisse
S600() et al., 1997]. The two branches of the original di-

bagram in the domain A = 1.80 - 1.855 split into

Fig 3. (b) e e a the infle four branches as expected in the case of n = 4

850 otit subharmonic modulation and the 2T - 4T bifur-
pro-obication becomes an imperfect bifurcation. The split-70-i'":"i sbrl iilefrg=18 n 2=51 -

thetoprerefeences.i absence of modulating of the 4T branches obviously increases with r2,

700 b ttom but becomies quite clear for r2 = 5.10 - 3. More

s oi l. interestingly, the whole bifurcation diagram shifts650 to lower pump values and chaos appears in a pa-
60 rameter domain where the system displays periodic

2.2 2.3 2.4 2.5 response in absence of the second modulation and
I, (mA) vice-versa. For instance, the one-tone modulated

(b) system is 4T periodic at A0 =1.875 and become
8T periodic and chaotic for r2 5.10- 4 and 5.10 - 3

Fig. 3. Experimental demonstration of the influence of the respectively.
phase (p of second subharmonic modulation on the first The additional modulation also broadens the
period-doubling bifurcation for a fiber laser. Diagrams at
the top are references in absence of modulation, and those at period-doubling cascade as demonstrated by the
the bottom correspond to additional (a) =0, (b) VP = r/2 comparison of Figs. 4(a) and 4(c). More precisely,
subharmonic modulation. the cascade from the 4T-8T bifurcation to the
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10 - - . between A = 1.76 and 1.90 in absence of subhar-
8 - monic modulation. Addition of a weak fourth sub-

8- .. harmonic modulation leads to smaller A values for

6. (a) the bifurcation points but the magnitude of the shift

4V .. -..II.;i .. ... towards lower A values depends on V. Here the
A,2 'J,,Ju . width of the chaotic region is reduced. Periodic

0 windows and associated period-doubling cascades
10 I appear in the domain A - 1.88-1.90 where the un-

'8.4 perturbed laser was chaotic. This definitely shows
6.: . that the phase V may be used to control the dynam-

(b) ics. This control is very efficient in two respects:
... (i) the subharmonic modulation may be much

2 ; {weaker than the main one to
C times - and (ii) it allows control of almost all kinds

10 - I of regimes, from periodic to chaotic and vice versa.
8: The diagrams presented in Figs. 5(b) and 5(c)

6 .also show that subharmonic modulation induces or
4.:. .. ..... . • ..... (C) shifts crises. The most obvious effect is the emer-

gence of the periodic windows discussed in the pre-
2 .ceding paragraph since these windows follow the

0176 178 180 1.82 1.84 186 188 190 192 disappearance of chaos in the boundary crises. In

addition to that, more subtle effects show off atPump parameter the end of the chaotic domain. In the absence of

Fig. 5. Influence of the phase of subharmonic modulation on perturbation, the corresponding chaotic regime ex-
the bifurcation diagram for a model of the fiber laser (a) ref- tends up to A = 1.910 where a period 2 attractor
erence diagram in the absence of subharmonic modulation, appears. The position of this crisis is perturbed by
(b) in the presence of in-phase ( o = 0), and (c) dephased the subharmonic pertubation and here the chaotic
(v = 2r/9) fourth subharmonic modulation. Diagrams cor- domain is extended to larger A values. The period 4
respond to increasing pump parameters. regime which emerges at the crisis is simply due to

the fact that in presence of n = 4 subharmonic mod-
transition point to chaos extends on a range of A ulation, a 4T cycle replaces the 2T attractor which
values which doubles in the presence of the second was observed in this domain, as expected for low
modulation, from AA _ 0.06 in absence of modu- modulation amplitudes.
lation [Fig. 4(a)] to AA - 0.12 in the conditions of All the above bifurcation diagrams have been
Fig. 4(c). As can be seen on Figs. 4(b) and 4(c), the obtained with increasing values of the control pa-
second modulation also induces periodic windows in rameter. Slightly different ones are sometimes ob-
the parameter domain where the laser behavior was tained with decreasing A values, even when the slow
chaotic when r2 = 0. For instance this is the case passage effects are avoided because of the coexis-
for the simulations reported on Fig. 4(c) in the do- tence of attractors for the same values of the pa-
main A = 1.891 - 1.894 where the original system rameters. The corresponding bistability effects are
is chaotic but the perturbed one is periodic, particularly visible near the boundary crises as usu-

However the main information which can be ally observed, e.g. in modulated loss CO 2 lasers.
extracted from these simulations is that both the As expected the limits of these domains are re-
shift of bifurcation points and the position of gions of high sensitivity to additional modulation
periodic windows strongly depend on the phase of because the stability of the attractor which will dis-
the subharmonic with respect to the main modula- appear in the crisis is very low near these points.
tion as shown on Fig. 5. This figure compares bifur- Note that crises also appear for lower A values and
cation diagrams obtained in absence of subharmonic the scattered points obtained near A = 1.76 corre-
modulation and with two different phases (W = 0 spond to other periodic attractors which coexist in
and 2r/9) for this modulation with respect to the this parameter domain with the main one studied
main one. The reference diagram [Fig. 5(a)] dis- in this work. There is a small range of bistability
plays a period-doubling cascade transition to chaos between these two attractors as demonstrated by
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bifurcation diagrams obtained with reverse (de-
creasing A) sweep [Dangoisse et al., 1997].

Experiments carried out on a modulated fiber
laser confirm the predictions of numerical simula-
tions. Bifurcation diagrams have been recorded -.
with the pump power as the bifurcation parame-
ter and subharmonic ranks 2 and 4. In accordance + (a)
with numerical simulations, they show that there is
no strong dependence of the results on the subhar-
monic rank W2 /1. Experiments also confirm the
predictions of numerical simulations in the follow-
ing points (i) the additional modulation shifts and
magnifies the whole bifurcation diagram, (ii) the
phase of subharmonic modulation allows the control
of dynamical regimes (iii) crises may be induced or
suppressed by acting on the phase of subharmonic
modulation. These are very common features which
have been observed for a wide variety of parame- Cd
ters, some examples of which are given in [Dangoisse
et al., 1997] and will not be recalled here. + b

Control of chaos has also been observed in
presence of transition to chaos via quasiperiodic-
ity [Berg6 et al., 1984]. Period-doubling cascades
are most easily observed for modulation frequen-
cies equal to about half the relaxation frequency of
the. free running laser. Quasiperiodicity is obtained
in the fiber laser when the external modulation fre-
quency is detuned from this parametric resonance
condition. We have considered the effect of subhar-
monic perturbation in these conditions. Contrary ,
to the previous paragraphs, the effects are demon-
strated here for fixed values of the laser parameters + (c)
in the vicinity of quasiperiodic regimes. Dynamic "
regimes are identified by observation of the Poincar6
section of the experimental attractor as indicated
in [Derozier et al., 1992]. Quasiperiodic regimes are
identified by a closed curve in the Poincar6 section,
periodic ones by a discrete set of points and chaos
by a strange attractor. As for the period-doubling In (a.u.)
cascade, the dynamics of the laser is altered by sub- Fig. 6. Control of chaos in the case of quasiperiodicity route

harmonic modulation and it is possible to drive the to chaos in a fiber laser (a) reference quasiperiodic state,
laser in different regimes depending on the phase of (b) (p = 0 second subharmonic modulation induces period 8

regime, (c) W = -,r/18 second subharmonic modulation in-
this modulation. For instance in the conditions of duces a chaotic regime.
Fig. 6 where the unperturbed (rl = 0.438, r 2 = 0)
modulated laser is quasiperiodic [Fig. 6(a)], it be-
comes 8T periodic with in phase (W = 0) modula- Experiments carried out on both period-
tion [Fig. 6(b)] while dephased (W = 7r/18) second doubling cascades and quasiperiodicity transitions
subharmonic modulation with r2 = 0.02 induces a to chaos have shown that these scenarios are in gen-
chaotic regime [Fig. 6(c)]. We have also observed eral globally preserved by the addition of a subhar-
situations in which an initially chaotic laser is con- monic modulation but that the dynamical regimes
trolled to periodic regimes by acting on the phase of observed for given parameters may be qualitatively
a weak subharmonic modulation [Dangoisse et al., different. Moreover there may be some dramatic
1997]. changes in the chaotic regimes such as the creation
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of new attractors. All these effects are highly de- Dangoisse and D. Derozier also collaborated to
pendent on the phase of subharmonic perturbation parts of this work. A. Gavrielides, V. Kovanis,
and allow the control of the dynamics of nonlinear T. Newell, V. Chizhevsky, R. Corbalan and A.
systems with a very small action like a simple phase Pisarchik are gratefully thanked for sending
shift of a modulation acting on this system. This preprints of their work prior to publication. The
control is very versatile in the sense that in well- Centre d'Etudes et de Recherches sur les Lasers et
selected parameter regions, it is possible to choose leurs Applications is supported by the FEDER and
from a wide variety of regimes by just acting on the the Rgion Nord-Pas de Calais.
phase of the subharmonic modulation. The main
drawback of this approach is that it applies only to
externally nonautonomous systems. References
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This paper presents two control schemes for the chaotic dynamics of a CO 2 laser with feedback
which can be applied after the recognition of a leading frequency of the motion in the power
spectrum. The first one is realized by means of a selective feedback loop which rejects all the
frequency components except that of the leading cycle to be stabilized. The second one consists
in a resonant sinusoidal modulation of the control parameter.

1. Introduction et al., 1994; Carr & Schwartz, 1995]. In such a
case the stability regime has been extended over oneLasers represent reliable systems to investigate non- order of magnitude with respect to the unperturbed

linear phenomena such as chaotic dynamics, both sysem te wiFh een a to con-
fro anexprimnta an a heoetial oin of system. The OPF has been also applied to con-

from an experimental and a theoretical point of trol chaotic frequency emission in lead-salt diode
view. In fact, it was demonstrated by Haken [1975] lasers [Chin et al., 1996]. Another variation of the
that the Maxwell-Bloch equations for the dynam- OGY method, known as "minimal expected devia-
ics of a two-level laser are equivalent to the Lorenz tion" (MED), has been applied to stabilize periodic
model describing convective turbulence in fluid orbits of a NMR (nuclear magnetic resonance) laser
dynamics [Lorenz, 1963]. A recent aspect of non- [Reyl et al., 1993]. Bielawsky et al. [1993] used a
linear dynamics studies concerns the possibility of feedback scheme proportional to the derivative of
directing chaotic dynamics to periodic orbits or the laser intensity to stabilize the chaotic regime of
steady states by applying small external perturba- a Nd3+ doped fiber laser pumped by a single mode
tions. Ott, Grebogi and Yorke [1990] proposed a laser diode.
general method to stabilize a given periodic orbit At the same time, other experimental [Meucci
embedded in a chaotic attractor by means of small et al., 1994; Liu et al., 1994, 1995; Chizhevsky &
perturbations to a system parameter; such pertur- Glorieux, 1995; Chizhevsky et al., 1997] and theo-
bations are proportional to the deviation of the sys- retical [Liu & Rios Leite, 1994; Colet & Braiman,
tem from the unstable fixed point, and this implies 1996; Vilaseca et al., 1996] works on lasers deal
the presence of a suitable feedback loop (for re- with different control schemes not based on feed-
views of the method and applications see [Shimbrot back loops, but still consisting of suitable small
et al., 1993; Ditto et al., 1995; Petrov et al., 1993]). modulations of control parameters.
In the field of laser physics, the "occasional pro- An alternative strategy to achieve control of

.portional feedback" method (OPF) [Hunt, 1991], chaos is based on modifications of state variables
derived from the OGY scheme, has been applied instead of control parameters. This technique has
to stabilize periodic orbits and steady states of a been first introduced by Pyragas [1992], which pro-
chaotic multimode Nd:YAG laser with a nonlin- posed a correction signal proportional to the dif-
ear intracavity KTP (potassium titanyl phospate) ference between the values of a given variable at
crystal [Roy et al., 1992; Gills et al., 1992; Colet different times. The delay time is selected equal to

1759
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Fig. 1. Experimental setup. G: diffraction grating. LT: laser tube. EOM: electro-optic modulator. M: outcoupling mirror.
D: HgCdTe detector. P: preamplifier. A: differential high-voltage amplifier amplifer. B: bias input. LOG: logarithmic
converter. F: washout filter. The dotted lines represents the two control schemes: Ci: feedback loop control (subharmonic
filtering). C2 : open loop control (resonant modulation).

the period of the unstable orbit to be stabilized, where /3 300 kHz is the damping rate of the
Bielawski et al. [1994] have successfully applied this feedback loop, I is the adimensional laser inten-
method to a modulated CO 2 laser. Simmendinger sity and R = 6.6 * 10- 10 is the total gain of
and Hess [1996] used the Pyragas scheme in a semi- the feedback loop. The term al (a = 1.2 *

conductor laser with optical feedback. In this work, 10-13) accounts for the nonlinearity of the detection
we describe experimental testing of two methods for apparatus, which consists of a HgCdTe detector.
controlling chaotic dynamics in a CO 2 laser with In this configuration, the laser undergoes a direct
electro-optic feedback, which is an autonomous sys- Hopf transition from a stationary to an oscillating
tem providing low-dimensional chaos. The first regime beyond a critical bias value. For appropriate
method involves a frequency domain approach by values of pump and feedback loop gain, the oscil-
means of a filtering feedback loop where the only lating regime becomes chaotic through a sequence
admitted frequency is that of the orbit to be sta- of subharmonic bifurcations. A three-dimensional
bilized [Genesio et al., 1993; Meucci et al., 1996; reconstruction of the chaotic attractor, obtained for
Ciofini et al., 1997]. The second method is based B = 360 V, is shown in Fig. 2. This reconstruc-
on the introduction of a small modulation of the tion has been performed by an embedding tech-
control parameter at a frequency suggested by the nique of the laser intensity signal, using a delay time
power spectrum. T = 3 pS. The delay time value has been chosen to

The paper is organized as follows: In the sec-
ond section, after a description of the experimental
set up, we present the results obtained with the
two methods. The third section is devoted to a
presentation of the model and numerical simula-
tions. Finally, we summarize the main results in the 200
conclusions.

2. Experimental Results 150

The experimental setup is shown in Fig. 1. It con- N
sists of a single mode CO 2 laser with a feedback on
the cavity losses, realized by means of an intracavity 100
electro-optic modulator, driven by a signal propor-
tional to the output intensity. The bias voltage B 200
provided by the high-voltage amplifier is the control 50 10....
parameter of the system. The feedback voltage V 50 100 150 -... I(t+z)

obeys the following equation: I(t) 200 50

S(V B + R_ ) Fig. 2. Three-dimensional reconstruction of the chaotic
I - V- + al (1 attractor for B = 360 V, -r = 3 pS.
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closely reproduce the projection of the attractor in filter, shown in Fig. 5, presents two zeroes: one cor-
the two-dimensional phase space I-V [Meucci et al., responding to the peak of the unperturbed chaotic
1997]. We adopted a 3-D representation in Fig. 2 spectrum fo, and the other at zero frequency. The
instead of a 2-D representation because it provides maximum of the transfer function occurs at fo/2,
better insight into the stretching and folding mech-
anism which is necessary to maintain the chaotic or-
bit within a finite volume of phase space. Another
useful method to represent the dynamical proper- 40
ties of a system is provided by Poincar6 sections. In
Fig. 3 we show the Poincar6 map obtained by plot-
ting an intensity maximum versus the previous one. 2. 20

The chaotic nature, namely the loss of information E

as time or iteration number increase, is related to
a) 0the noninvertibility of the map I(n + 1) = f(I(n)).

In fact, due to this feature, it is always possi-
ble to estimate I(n + 1) from 1(n) (e.g. fitting 0 0
the map of Fig. 3 with an appropriate polynomial a_

expression), but there is ambiguity to retrieve I(n)
from I(n ± 1). The fractal character of the attrac- -40 0 1 1
tor is confirmed by an evaluation of the correlation 0 10 20 30 40 50
dimension D2  = 2.10 ± 0.04 [Grassberger & Frequency (kHz)
Procaccia, 1983]. Finally, an important feature re- Fig. 4. Power spectrum corresponding to the chaotic attrac-

lated to our control schemes can be extracted from tor of Fig. 2.

the chaotic power spectrum of the laser intensity
(Fig. 4), that is, the peak at around fo = 22 KHz,
which is the remnant of the Hopf bifurcation fre- 1,0
quency. (a)

The first control method has been realized by
means of (Fig. 1). The transfer function of the _

120 E

110 0,0 , * ,
'0, 0 10 20 30 40

100 100f (kHz)
-" 0 .. (b)

0 , A,

$c:90 50 "'-----0

80 0 .3.O-
800 3.0 * 0

70 0 a. 50 "Al

70 80 90 100 110 120 -100 I
0 10 20 30 40

f (kHz)
Fig. 3. Poincar6 map, corresponding to the chaotic attrac-
tor of Fig. 2, obtained by plotting an intensity maximum Fig. 5. Transfer function of the filter (a) Amplitude

versus the previous one. respones, (b) Phase response.
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Fig. 6. Feedback control: period-1 stabilized orbit (blue) embedded in the chaotic attractor (yellow).
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Fig. 7. Poincar4 maps corresponding to Fig. 6 with period-2 stabilized orbit (black circles: chaos; green squares: period-i;

red triangles: period-2).
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Fig. 8. Modulation control: stabilized period-4 (blue), period-2 (red) and period-i (green) orbits superimposed on the chaotic
attractor (yellow).
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Fig. 9. Poincar6 maps corresponding to the orbits of Fig. 8 (black circles: chaos; red triangles: period-2; green squares:
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where the phase response crosses the zero. The ef- Table 1. Relative perturbation amplitudes (exper-

fect of these characteristics, when the filter is in- imental values) for the stabilization of period-i,

serted in the negative feedback loop of the laser period-2 and period-4 unstable orbits with the two dif-

is to stabilize the orbit corresponding to ferent control schemes. The selective filter, optimized
for period-1 stabilization, does not allow stabilization

the only frequency component which is not fed back of the period-4 cycle.
as a correction signal, that is the period-1 orbit
with frequency fo embedded in the chaotic attrac- Period-1 Period-2 Period-4

tor (Fig. 6). In this case the relative perturbation Selective filter 7% 12% -

amplitude is 7%. If the controller is modified by Parametric mode. 22% 8% 5%
inserting a logarithmic amplifier to drive the filter,
its performance increases, providing stabilization of
the period-1 orbit with smaller values of the relative 3. The Model
perturbation.

The Poincar6 maps of the unperturbed 'chaotic The behavior of a single mode CO 2 laser is quantita-
attractor and of the period-1 stabilized orbit are tively described by a set of five differential equations
shown superimposed in Fig. 7. This feedback which, besides the radiative coupling between the
method also allows stabilization of the period-2 resonant molecular transition (population inversion
orbit (Fig. 7). In this case however, the pertur- N2 -N) and the field intensity, account also for the
bation applied to the system is higher (12%) and, collisional transfer from the manifolds of the other
as a consequence, one of the points of the map does rotational levels (population inversion M2 - Ml).
not lie exactly on the unperturbed map. Indeed, Considering the presence of the feedback [Eq. (1)],
to optimize the control for the period-2 orbit (or and a suitable rescaling of the variables, the model,
for any other higher order subharmonics), one has also described in [Meucci et al., 1997], is:
to prepare a new filter with a zero at fo/2 and a
maximum at fo/4 [Ciofini et al., 1997]. lb = kO(x 2 - 1 - k, sin 2 (x 6 ))

The second control method we have imple-
mented (Fig. 1) consists of introducing a small sinu- X2 = -Fix 2 - 2kox 2ew + ''x 3 + x4 + P0

soidal modulation of the control parameter B(t) = 6 = - 1 71X3 - X5 + yX 2 + P
B * (1 + m * sin(wt)) at a frequency close to that of (2)
the peak in the chaotic spectrum. Figure 8 4---F 2x 4 -YX5 + zx 2 ± zPo
shows, superimposed on the chaotic trajectory, the 5 = -17 2X5 - zx 3 + 'yx 4 + zPo
stabilized period-4, period-2 and period-1 orbits
obtained by increasing the relative perturbation 56 =-3x 6 + OB 0 - Of(e)
amplitude m (5%, 8% and 22%, respectively) at
a frequency of 21.6 kHz where the system presents where w log(xi ) (x is the rescaled intensity), x2
the maximum sensitivity. Note that stabilization is proportional to the population difference N2 -N 1 ,
of the period-1 orbit requires a large amount of X3 to N 2 + N 1 , X4 to M 2 - M1, X5 to M 2 + M1

modulation. As a consequence, the orbit is af- and x6 to the feedback voltage V. The nonlin-

fected by large harmonic distortions, and it is not earity of the detector is contained in the func-
embedded in the chaotic attractor. It is impor- tion f(x), while B0 represents the rescaled con-
tant to observe that the fundamental frequencies trol parameter. The other parameter values are:
of the stabilized attractors are locked to the per- k0 = 28.57, ki = 4.56, r, = 10.06, F2 = 1.06, y =
turbation frequency in agreement with the theory 0.05, Po = 1.6 * 10- 2 and 3 = 0.43.
of periodic perturbations [Khalil, 1992]. The re- In the frequency domain, Eqs. (2) can be rep-
turn maps of the stabilized cycles are shown in resented in the Lur'e form, shown in Fig. 10. L(s),
Fig. 9 superimposed on the unperturbed chaotic where s = iw, represents the transfer function of
map. The differences between the chaotic maps a linear dynamical block, corresponding to the sec-
of Figs. 7 and 9, which however maintain the ond, third, fourth and fifth equations. The first
same general features, are due to the slightly and the last equations of (2) represent the feed-
different values of B for which they have been back to the linear block. Note that the variable
recorded. The differences in the performances of x2 is not an accessible quantity in the experiment,
the two control methods are summarized in Table 1. while the variable w, neglecting the nonlinearity of
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-2 x~ L (s) x,-P'=y

- I3R~r lI!-+~

C2

Fig. 10. Logical diagram corresponding to Eqs. (2) with the two control methods. Ci: feedback ioop control (subharmonic
filtering). C'2: open loop control (resonant modulation).

+ +

1,0

Fig. 11. Numerical simulations with control C1 . Unperturbed chaotic attractor (yellow) and stabilized orbit of period-i

(blue).
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Fig. 13. Numerical simulations with control C 2 . Unperturbed chaotic attractor (yellow) and stabilized orbit of period-2 (red)
and period-4 (blue).
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the detection process, can be obtained after a loga- rize the main differences between the two proposed
rithmic amplification of the laser intensity. In this control schemes. On the one hand, the first method
schematization, the total gain of the feedback loop works correctly only for stabilization of period-1 cy-
R = 133.9 has been split in two parts; r = 0.1339 is cle, and thus it seems less flexible than the second
the gain associated to the optical detector (in series one, which provides stabilization of different peri-
with the preamplifier) and R/r = 1000 is the gain odic orbits only by changing the perturbation am-
of the high-voltage differential amplifier. plitude. On the other hand, the relative perturba-

The two control schemes are shown in Fig. 10. tion amplitude introduced by the second method
The first one (C1 ) consists in the cascade of a log- to stabilize the period-1 orbit is very large, so that
arithmic amplifier and a linear selective filter with the controlled trajectory is quite different from that
transfer function C(s). C(s) fulfils the requirements embedded in the chaotic dynamics.
given in the previous section, i.e. presents two ze- As a final remark, it is important to com-
roes at f = 0 and f = fo, and a maximum at fo/2. pare the filtering feedback method with the time-
The analytical expression of C(s) is (w0 2irfo): delayed autosynchronization method proposed by

Pyragas [1992]. In the frequency domain, the Pyra-

C(s) = k((8 2 + 0
2 ) gas scheme corresponds to performing a high-pass

( +Wo2) filtering without affecting the frequency component

4 fo and its harmonics (all zeroes in the transfer
function), thus ensuring that the stabilized orbit is

The parameter values are: w0o = 0.2016, k = 3.5, exactly that embedded in the chaotic attractor.
= 0.7 and p = 0.8. Anyway, at variance with our method, the presence

The second controller (C2 ) is simply a modu- of high frequency feedback makes the system sen-
lation signal applied to the summing point, which sitive to noise and reduces its robustness [Meucci
results in a sinusoidal modulation of the bias et al., 1997].
term B 0 .
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Based on our earlier theoretical work on tracking periodic patterns into spatiotemporal chaotic
regimes in spatially extended systems, we present in this article a case study of a high-aspect-
ratio three-level laser. Following a detailed investigation into travelling wave solutions of the
laser system and their stability conditions, we discuss ways of stabilising these solutions by local
feedback algorithms. In numerical simulations, we choose Pyragus continuous delayed feedback
algorithm to be the local feedback form and demonstrate that stable travelling wave solutions
of the spatially extended three-level laser can be greatly extended to unstable regions in the
presence of this feedback.

1. Introduction Hagberg et al., 1996; Lu et al., 1996; Bleich &
Socolar, 1996; Martin et al., 1996; Battogtokh &

Spatiotemporal chaos occurs when different types Mikhailov, 1996]. This offers an opportunity to
of motion, excited in local regions in an extended stabilise, select and manipulate these systems for
system, interact to destroy the spatial coherence applications.
of the system concurrent with the onset of tempo- To control a spatially extended dynamical sys-
ral chaos. This phenomenon in continuous phys- tem, a feedback with spatial coupling is often ap-
ical systems is described by partial differential plied to the system so that a desired state can be
equations. While the transition from coherence to stabilised. Systems investigated are both one- and
spatiotemporal chaos has yet to be characterised two-dimensional, continuous or discrete, in various
by global quantitative laws, certain normal mode disciplines. Based on these developments, control
equations have shown that such a chaotic state in methodology has been further explored where em-
a spatiotemporal context underlies different unsta- phasis has been given to algorithms which are sim-
ble coherent structures, which are sensitive to small ple and more readily implemented in experiments.
perturbations. The possibility of controlling spa- In our recent work, it has been established that un-
tiotemporal dynamics by these perturbations has stable periodic solutions of spatially extended two-
recently inspired considerable theoretical and ex- dimensional systems, when weakly perturbed, can
perimental effort in many branches of nonlinear be stabilised by local feedback without spatial cou-
science [Sepulchre & Babloyantz, 1993; Hu & Qu, pling [Lu et al., 1997]. This is due to the fact
1994; Auerbach, 1994; Qin et al., 1994, Aranson that the evolution equations for weak perturba-
et al., 1994; Johnson et al., 1995; Lourenco et al., tions to these periodic solutions can be reduced
1995; Petrov et al., 1995; Poon & Grebogi, 1995; to ordinary differential equations, because of the

*E-mail: phywlgphy.hw.ac.uk
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decoupling of the wave numbers in the perturba- explicitly the variable q*. In Fourier space, the per-
tions to a first order small signal approximation. turbation is of the form
As a result, stable periodic solutions can be tracked
to unstable and spatiotemporal chaotic regimes by 6q(r, t) - ei(krwt) / 3qpeiprdp, (4)
simply utilising feedback control algorithms estab-
lished for controlling temporal chaos in spatially where 6qp is the perturbation strength with wave
constrained systems. In this article, we provide a vector p. By substituting Eq. (4) into Eq. (3), we
case study of a high-aspect-ratio three-level laser derive the evolution equation of perturbation for the
in which a detailed investigation into the stability specific p
of travelling wave solutions of the laser system and
ways to stabilise these solutions by local feedback 95qp = ioqpiD(k+p)25qp + N qp
are discussed. In numerical simulations, we choose Ot
the well-known Pyragus continuous delayed feed- 1
back algorithm to be the local feedback and demon- + -N'e_ 6qp'/

strate that stable travelling waves of the spatially
extended laser system can be greatly extended to (5)

unstable regions in the presence of this feedback. We note that since Eq. (2) is a solution of Eq. (1),

N' (qo, p), the Jacobian which along with k, p and

2. Theory for the Tracking Procedure w determines the linear stability of the solution, is
independent of the transverse coordinate r.

We first give a brief review of the theory for tracking When the perturbation against the travelling
procedure by using local feedback algorithms. We wave solution is weak, the stability of this solution
consider a general form of a distributed nonlinear is determined by the linearisation of Eq. (5) which is
optical system a wave vector decoupled ordinary differential equa-

tion. Control of such a solution, when unstable, can
9q = N(q, y) + iDV2q, (1) therefore be achieved by a feedback approach which
Ot iis no more complicated than controlling an unstable

which admits a travelling wave solution of periodic orbit in an ordinary differential equation;
this is

qo = Ce (k'r-wt), (2) 96qp _ iwoqp - iD(k + p)23qp ± N'3qp + fp(t),

where q is the complex amplitude of the electromag- Ot(6)
netic field, N the nonlinear function describing the
local field-material interaction, V 2 the transverse where fp is the feedback which depends only on the

Laplacian in two-dimensional space r(x, y) and t wave vector component p in the Fourier space. In
the time. pt is the control parameter of the system r space the feedback is given as
and D a coefficient describing diffractive coupling
in space. k and w are the characteristic wave vec- F(r, t) ei(k r - wt) [00 f

tor and frequency of the travelling waves while C isJ_

the amplitude. The stability of the travelling solu-
tion is determined by standard perturbation analy- which does not involve feedback coupling in differ-

sis which yields ent spatial regions. Thus, the feedback required
for this case is local in the transverse space, in the

06q iDV2 6q+ N'(qo, ft)Jq sense that the signal at a given point depends on
SDV +only its behaviour at that particular point, and not

N , 2 + (6q ) on that in the neighbouring and distant regions. It
+ 2 (qo, p)6q (3) follows that when a state q is close enough to a tar-

geted travelling wave solution of a distributed sys-
where 3q is the perturbation strength and N' and tem as given by Eq. (1), this state can be stabilised
N" are the first and second derivatives of N with to the solution by simply adopting the control algo-
respect to q at q = qO. We note that terms of 6q* rithms developed for controlling temporal chaos in
should appear in the above equation if N comprises ordinary differential equations. In order to utilise
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the linearised approach to stabilise a traveling pat- elements of the polarisation. Due to the exis-
tern, we may take advantage of the tracking proce- tence of transverse diffraction, these variables are
dure [Gills et al., 1992] which was first developed complex even for the case of resonant pumping
for extending a stable operating region of a low- and laser emission, showing the important role of
dimensional laser system. In this procedure, the phase in optical pattern-forming phenomena. The
feedback to Eq. (1) is applied when the system is other variables are N1 and N 2 , the diagonal den-
initially set in a region of a stable periodic pattern, sity matrix elements describing the population dif-
and on varying a control parameter of the system, ferences between the common upper and lower
this stable solution can be extended to unstable and levels of the pump and lasing transitions. Pa-
spatiotemporal chaotic regions in the presence of rameters of the system are a, the cavity damp-
the feedback. Moreover, this tracking procedure ing constant, g, the unsaturated gain of the laser
can be adopted to manipulate a stabilised travelling medium, and a, the diffractive coefficient which can
wave pattern; the values of its frequency and wave be set to unity by rescaling the transverse coordi-
vector can be altered, as can the orientation of the nates (x and y). Control parameters are A, the
wave vector, by judiciously varying these parame- external pump strength, and b, the ratio of en-
ters providing that they constitute one solution of ergy relaxation (-y) to dipole dephasing (F) rates
the travelling wave family. The above analysis can of the medium. The laser system possesses trans-
be readily extended to stabilising more complex pe- lational symmetry and is invariant under the fol-
riodic patterns, such as square and hexagonal pat- lowing transformation (E, P1, P2, P3, N 1, N2) >

terns, in a set of coupled equations. (-E, P1, -P 2, -P 3, N 1, N 2), which give certain
restrictions to the solutions of Eqs. (8).

3. Three-level Laser Model

We consider a coherently optically pumped three- 3.1. Travelling wave solutions

level laser as a case for study. It has previously Equations (8) admits a travelling wave solution
received considerable attention as a spatially con-
strained dynamical system in the investigation of E = Eoei (k r - t), p1 pO
temporal chaos [Moloney et al., 1992; Forysiak
et al., 1991]. When the transverse space is broad, P2 2- Pei(k'r-t), P3 - POei(kr-t)' (9)
self-diffraction of the inter-cavity field plays an
essential role. With inclusion of this transverse
coupling the Mawell-Bloch equations describing where k and w are the wave vector and frequency ofresonant single mode lasing are generalised to weekad aetewv etradfeunyo

the travelling wave solution on the transverse plane

9E (x, y), and E0 , P1° , PO, P3, N o and N2 are the

- +amplitudes, of which E0 can be assumed to be real.
By using the transformation E ° = X1 , W = X2,

P1 + AN, - EP3, p1 = X3 + iX4, PO = X5 + iX6, P3 = X7 + iX 8 ,
N1 = xg, N 2 = x10 and substituting Eqs. (9) into

OP2  Eqs. (8), we derive the following coupled equations
- ' P2 + EN 2 - AP, for xl, X2, x9 and Xlo for a nontrivial solution,

_ P E (8) (1+ x2)[gxlo - a - x 2 (k 2 - x 2)]

t - x 2 [k2 -(1 + 9)x 2] - A2 (g + gxg) = 0,

ON 1 -b(1 + NI) - 2A(P 1 + P,) (1 + x2)[k 2 
- (1 + a)x 2] + x2[gxlo - a

S (E*P2 +EP)- x2 (k 2 
-x 2 )] + A 2 (k 2 - x 2 ) =0,

-N N 2 (E Pl+lP) 2A 2x9 + (b - 2x2)xlo (10)aN2I
Ot b-2(E'P2+EP + 2x1[3o + x 2 (k2 - x2 )] = 0,

where E is the slowly varying electromagnetic field b + (b + 4A 2)xg - 4x2X1 o
amplitude of the laser emission and P1, P2 and 22[ X2)] = 0,
P3 are the normalised off-diagonal density matrix +
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while other variables are given by trial solution

X3 = Ax 9 - XlX7, E = [E + J 3Epeiprdp ei(k
r - wt),

X4 = -XlX8 , +00Xl P1 = pO + J Pipeip'rdp,

X 5 = -XI -00

g
P [P0 + I 6p 2 peip-rdp ei(k-r-wt),

X 6 =1 (k 2 -x 2 )xI, (11(12)
g p P [ 3+ J0 P3pesprdp] e - i(k r-w t)

X7= - [gXo - - -2(k X2)],
NI = N0 + JNeip.rdp,

X8 = -[k2 -(1+ jX2 ]0
-N 2  N° + 00N2 peip'rdp,

Figure 1 shows a set of travelling wave solutions in N0

three-dimensional space; the laser amplitude is the where the second terms on the right-hand side are
function of the pump strength A and the wave num- perturbations integrated over all wave numbers. By
ber k, with other parameters being held as g = 52, substituting Eqs. (12) into Eqs. (8) and considering
b = 0.4 and o = 1.3. The curve for k = 0 corre- only to the first order small terms, we derive the
sponds to homogeneous steady state solutions, the following linearised evolution equation for the per-
laser branch (E , 0) of which exists only in a lim- turbation strength
ited region of the pump strength due to the Rabi
splitting effect of the laser gain profile. On increas- 05Ep = iwAEp - i(k + p)25Ep - u6Ep + gWP2p,
ing the value'of k form a family of nontrival tray- at
elling wave solutions, which exist over an extended a Plp + A3Nlp - EP 3p - P~3Ep,
region of the pump strength but is limited only for t
small wave numbers. 

at
W52p = iw6P2p - 6P2p + E06N2p

3.2. Stability of travelling at
wave solutions + N2Ep - A6P3p ,

In general, the stability of the traveling solutions P .- iwh 3p - &3p + E03Pl(
given by Eqs. (9) through Eqs. (10) and (11) de- t (13)
pends on the control parameters of the laser system.
To determine the stability conditions of these trav-
elling waves, we perturb them with the following Nip _b5N - 2AQ5p + -

at -PP) (E0 3P2 p
+ P2hEp + EJP2p + P°0*3Ep),

at -05. V2p - A(6Pp + 6Pp) - 2(EO6P2p

+ P20Ep + E06P2p + P*5Ep),

- where (k + p) 2 is equal to (k +p) 2 for the two vec-
"' tors being parallel, corresponding to the Eckhaus

instability, and to k2 +p 2 for the vectors being per-

Fig. 1. Travelling wave solutions, E as a function of the pendicular, a case of Zig-zag instability. The eigen-
pump strength A and wave number k for parameters g = value equations for Ap are obtained by substituting
52.0, b = 0.4 and a = 1.3. the relation a6( )/It = Ap6( ) into Eqs. (13), where
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Fig. 2. (A, k) two-dimensional stability diagram for tray- Fig. 3. (a) Travelling wave (tw) and homogeneous steady
elling wave solutions for parameters g - 52.0, b = 0.4 and state (hs) solutions as a function of the pump strength for
or = 1.3. The region surrounded by the solid curves comprises g = 52.0, b = 0.4, or = 1.3 and k = 1.78. The solid and
nontrival solutions in which domains marked by El and ZI dash curves stand for stable and unstable solutions respec-
correspond to Eckhaus and Zig-zag instabilites. N and S tively, separated by the Hopf bifurcation (HB) points, which
stands for regions of trival solutions and stable solution re- for the travelling wave is further referred to as the Eckhaus
spectively. instability (ECK). (b) The corresponding wave numbers and

frequencies of the travelling wave in trace(a), both as the
function of the pump strength.

6( ) stands for the above perturbations. The travel-
ling wave solutions are linearly stable if Re(A) < 0
and unstable if Re(A) > 0. Figure 2 shows a bi- example. For this case, the form of the feedback as

furcation diagram of the steady state and travelling discussed in Eq. (6) is fp , (6Ep(t - to) - gEp(t)).

wave solutions in (A, k) two-dimensional space, for Using Eq. (7) the feedback in r space is given as

parameters g = 52.0, b = 0.4 and a = 1.3. The re-
gion surrounded by the solid curves is that of non-
trival travelling solutions in which domains marked which is now applied to the right-hand side of the
by EI correspond to the Eckhaus instabilites and first equation of Eqs. (8). In the above equation a is
the area under ZI is Zig-zag unstable. N stands for the proportionality constant defining the feedback
regions of trival solutions. strength and to the period in time of the travelling

wave solution to be stabilised.

4. Tracking of Travelling We have simulated the tracking procedure by
Wave Solutions numerically integrating the three-level laser system

in the presence of CDF control in the laser field
In this section, we apply the general theory in Sec. 2 equation. The numerical integration is based on

to the laser equations (8) to track the travelling the Fourier transformation method by using typi-
wave solutions from a stable region into an unstable cally 60 x 60 grid points in a square in the trans-
domain. As we discussed earlier, tracking of such verse plane and is checked by 120 x 120 grid point

unstable solutions can be realised by simply adopt- simulations. The width of the square is chosen to be
ing the control approaches developed for controlling 32r/kA, where kA is the spatial wave number cor-
temporal chaos in ordinary differential equations. responding to the largest growth rate of the unsta-
Well-known methods for control of temporal chaos, ble travelling wave solution. An example is shown
such as the Ott-Grebogi-Yorke algorithm (OGY) in Fig. 3. The travelling wave solutions, the fre-

[Ott et al., 1990], occasional proportional feedback quencies and wave numbers of which are given in
(OPF) [Hunt, 1991] and continuous delayed feed- trace (b), are stable only in a small pump region as

back (CDF) [Pyragas, 1992], can therefore be used. depicted in trace (a). These solutions corresponds
Here we take the continuous delayed feedback as an to the vertical line of k = 1.78 in Fig. 2 in which
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the stable region is bounded by two points of the the tracking procedure to extend its coherent pat-
Eckhaus instability. To track this travelling wave tern formations. The advantage of this tracking
branch, the feedback is first applied to each grid procedure lies in the use of local feedback in a spa-
point, when the system is initially in the parame- tially extended system. Such a simple control ap-
ter region for stable travelling waves. The pump proach with no involvement of spatial coupling is
strength A is then increased from this region in more easily accessible to experiments. In optics, the
small steps 6A = 0.1 to extend to the unstable re- CFD algorithm can be implemented using the inter-
gion. At each value of the pump strength, the initial ference technogue of theoutput beam with delayed
conditions of the system are set to be the output of itself.
the system at its previous value, whereas the delay
time to in the feedback is chosen to be the period
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We show that a combination of a resonant perturbation which induces bistability in the system
with the targeting technique based on the action of a short-lived pulse perturbation makes
the nonfeedback control of nonlinear systems (not only in a chaotic state) more flexible and
even competitive with OGY's method in the sense of fast switching between controlled orbits
belonging to coexisting attractors. For different initial states we present several experimental
and numerical examples of such a type of control, which does not require feedback system.

1. Introduction chaos [Azevedo & Rezende, 1991; Fronzoni et al.,
1991; Ding et at., 1994; Meucci et at., 1994],

Controlling chaos and, more generally, controlling suprs pi c orbts, inducci e avior
dynaicsand ompexit ofnonlnea sysems suppress periodic orbits, induce a chaotic behavior

dynamics and complexity of nonlinear systems if the system is initially in a periodic state, and,
attracted much attention over the last years. finally, may induce crisis of strange attractors
For these purposes a diversity of approaches and [Chizhevsky & Corbalan, 1996]. Up till now, most
methods has been proposed. Many of them have attention was paid to the question of how resonant
been successfully implemented experimentally in perturbations modify the dynamics of nonlinear
diverse systems ranging from physics, and optics to systems. Recently, it has been experimentally and
biology and chemistry and showed high efficiency numerically shown with a loss-modulated CO 2 laser
and flexibility. The latter is especially true with that resonant perturbations globally change the
regard to the method of chaos control proposed by phase space of the system, splitting the primary
Ott, Grebogi and Yorke [Ott et al., 1990; Ditto attractor into two new ones [Chizhevsky et al.,
et al., 1995]. Among the different approaches there 1997a]. It has been demonstrated that by changing
is the so-called nonfeedback method which is based the amplitude and/or the phase of resonant pertur-
on the adding of weak periodic resonant perturba- bations, one can control the overlapping of different
tions to the system under control [Lima & Petttini, dynamical regimes associated with these two new
1990; Braiman & Goldhirsch, 1991]. Typically, attractors. From the practical point of view, for
resonant perturbations at a subharmonic frequency, example, in engineering, a new problem arises here:
depending on their amplitude and phase and How to switch the motion in the system from
on the initial state, may produce stabilizing or one dynamical regime to another one belonging to
destabilizing effects on the nonlinear system. As it these new attractors? Recently, the technique of
has been experimentally shown, they may suppress targeting periodic orbits has been proposed and

1777
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developed experimentally [Chizhevsky & Turovets, Turovets, 1994; Chizhevsky & Glorieux, 1995].
1994; Chizhevsky & Glorieux, 1995], which allows Several clocks and devices were used in experiments
one (i) to switch the phase of a periodic motion, to synchronize all control signals.
(ii) to reach unstable orbits created either at a Numerical simulations were performed using a
period-doubling or saddle-node bifurcation, and simple two-level rate-equation laser model [Tredicce
(iii) to perform switching between stable periodic et al., 1986]:
orbits belonging to coexisting attractors. It is based du (1
on the action of a large-amplitude pulse perturba- - = I- ( y - k)u, (1)
tion to the system that is equivalent to a change of ( u

initial conditions. There exists the optimal timing dy
and the optimal amplitude of a pulse perturbation dt= - - uy (2)
which allow one to perform switchings practically where
without transients [Chizhevsky et al., 1997b].

The main aim of this work is to show k = ko +kdcos(27rft)
that a combination of the resonant perturbation, + kp cos(irft + p) + k6(t - to) (3)
which induces bistability in the system, with the Here u is proportional to the radiation density, y
targeting technique makes the nonfeedback control and yo are the gain and the unsaturated gain in
of nonlinear systems (not only in a chaotic state) the active medium, respectively, T is half round-
more flexible and even competitive with OGY's thi time medin recaviey, - is hain d-
method in the sense of fast switching between trip time of light in the cavity, -y is the gain de-
controlled orbits belonging to coexisting attractors. cay rate, k is the total cavity losses, k0 is the con-
For different initial states we demonstrate several stant part of the losses, kd is the driving ampli-
experimental and numerical examples of such a tude, kp is the perturbation amplitude, is the
type of control. This technique does not require perturbation phase, k(t - to) is the pulse loss per-ayfeedback system and might be experimentally turbation, to is the moment of time of the action
any of the pulse losses perturbation (k(t - to) = 0
implemented in diverse nonlinear systems. for t < to and k6(t - to) = k6(exp(-a (t - to)) -

exp(-(/3t -to))) for t > to ,where a = 3 x 107

2. Experimental Setup and Model s - 1 and /3 = 108 s-1). In order to compare
the numerical results with the experimental ones

The experiments were carried out on a CO 2 laser the values fRO and -RO measured in experiments
with two acousto-optic modulators inserted in the were used for finding some parameters appearing
laser cavity as described earlier [Chizhevsky & in Eqs. (1) and (2) using the following expressions:
Corbalan, 1996]. Two electric signals were applied -YRo = -y + uo (where uo is a stationary value
to the modulator providing the time-dependent of u) and fRo = 1/27r[(r-luoyo) - (-yRO/2) 2]1/ 2

cavity losses. The driving signal had the frequency which can be obtained from Eqs. (1) and (2)
fd = 100 kHz and the amplitude Vd. The per- by a standard linearization procedure. Through-
turbation signal had the frequency fp = fd/ 2 = out our calculations the following fixed parameters
50 kHz, the amplitude Vp and the phase W. Laser were used: r 3.5 x 10- 9 s, -y = 1.978 x 105,
parameters such as relaxation-oscillation frequency Yo = 0.175, k0  0.17303. The other parameters
fRo ' 50 kHz and decay rate -ao 200 kHz were varied in the simulations. Because in the
were estimated from the laser response due to numerical simulation and the experiments the con-
short-lived loss perturbations (in the absence of trol parameter (kd in the simulations and Vd in the
the driving and perturbation signals) and were experiments) is measured in different units, we put
used then in numerical simulations. The laser also to the figure captions the value of normalized
responses were detected with a CdHgTe detec- control parameter p defined as p = kd/kl/ 2 =
tor and a digital oscilloscope coupled with a PC. Vd/V/2, where kl/ 2 and V1/2 are the values of the
The technique of stroboscopic data recording with first period doubling threshold in the simulations
a sampling period T (T = 1/fd) was used. and experiments, respectively.
Short-lived pulse loss perturbations were caused
by absorption of the laser emission on nonequi- 3. Results and Discussions
librium charge carriers which were excited by
illuminating the semiconductor window of the laser The appearance of bistability induced by resonant
tube by short pulses of a YAG-laser [Chizhevsky & perturbation is shown in Fig. 1 where numerical
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0.06 as the driving amplitude changes. The second ef-
(a) fect which one can see from Fig. 1 is that the

resonant perturbation shifts all bifurcation points
0.05 on both coexisting attractors in an opposite direc-

tion so that one attractor is stabilized [Fig. 1(b),
CO EEsolution-i] while the second one is destabilized
C -[Fig. 1(c), solution-2]. This means that by chang-

0.04 .................................................................................................. ing the perturbation am plitude we m ay also con-
-2 (b) trol at will the overlapping of different dynamical

2 regimes associated with these new attractors. The
0.03 third possibility to control overlapping is to change

C" •of the perturbation phase W.
-_-Experimental and numerical examples of

switching between new coexisting attractors when0 .0 2 ....................................................................................... '....s i c ig.e we.n w c e i ti g a t ac o s w e

U) (C) the system was initially in a 2T state are shown

_J 2in Figs. 2(a) and 2(b), respectively. For these ex-
perimental conditions only one attractor exists in

0.01 the phase space. After switching on the resonant

00.5 1 1.5 2 (a) Experiment

Time (units of T) x 104  
_ 2 4T2T2T__ tt _ 2T

Fig. 1. Numerical bifurcation diagrams of a CO 2 laser show-
ing the appearance of the bistability. (a) The laser response -
without the resonant perturbation, (b) and (c) the laser re- .C

sponses with the resonant perturbation. The parameters
used in the computer simulation: fRo = 50 kHz, 7RO t 1 T2 f2 2
200 kHz, fd = 80 kHz, kd varied between 1.24 x 10

- 4 and 0 500 1000 1500 2000
4.4 x 10 - , (a) k, = 0, (b) and (c) k, = 9 x 10 - 6 , - 0. JTIME (units of T)

(b) Simulation
bifurcation diagrams of a CO 2 laser are presented. 2T 4TThey were obtained with decreasing of the driving T 2T

amplitude kd by a linear law. Shown here are
maximal peaks of the laser intensity versus time.
Figure 1(a) shows the laser response without the

resonant perturbation. Figures 1(b) and 1(c)
correspond to two laser responses which appeared 0) 1
instead of the primary solution in the presence of Z 0 200 400 600
the periodic perturbation. It is seen [Fig. 1(b)] TIME (units of T)
that one solution (the solution-i) is suppressed. As Fig. 2. Experimental (a) and numerical (b) stroboscopic

the driving amplitude decreases, the system reaches CO 2 laser responses versus time (the laser intensity is sam-
the first bifurcation point shifted by the resonant pled with the modulation period T). The unperturbed

perturbation and the solution-1 becomes unstable. system (without the resonant perturbation) is initially in a

Then the system jumps to the solution-2. This 2T state. (a) The experimental parameters: Vd = 3.35 V

solution is entirely presented in Fig. 1(c) (for more (yi = 1.86), V, = 3.64 V, W 300. (b) The parameters used

details see [Chizhevsky et al., 1997a]). By corn- in the computer simulation: fRO = 50 kHz, -y'o = 200 kHz,
fd = 100 kHz, ft = 2.1, W 30', kd = 1.25 X 10 - 4 ,paring Figs. 1(b) and 1(c) it is seen that for the 10=24×1

-  k/d .9) =2×l-3(k/d=1)
k,= 2.4 x 10-5 (kp/kd = 0.192), k6~ = 2 x 10(ks/kd = 16);

given perturbation amplitude different dynamical the point in time of turning on the resonant perturbation

regimes associated with solution-2 are overlapped is shown by 1, the action of the pulse loss perturbation is

with a 2T stable regime belonging to the solution-1 shown by T2.
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perturbation at t = 500 (units of the driving pe-
riod T), the primary attractor splits into two ones. -2
The system remains in the same 2T state but with 4T Chaos Chaos
a slightly suppressed amplitude. Simultaneously, . 2T .

there appears a new attractor which is in a 4T C .... '..m • . .... *

state. Acting by a single pulse perturbation (at 'D
t = 1000) the system was switched to the 4T state. C :____'_'___..

The second pulse (at t = 1500) returned the sys- a) 1 T 2 _T 2
tem to the suppressed 2T state. Both switchings C 0 200 400 600 800
were performed practically without transients. It TIME (units of T)
is worth noting that the duration of the transient
after the action of the pulse perturbation strongly Fig. 4. Numerical stroboscopic CO 2 laser responses ver-sus time (the laser intensity is sampled with the modula-
depends on its amplitude and can be reduced for tion period T). The unperturbed system is initially in a

large enough amplitudes to one or two periods of 4T state. The symbol T1 shows switching on the resonant
the driving modulation. Similar results were ob- perturbation, the symbol T2 shows the action of the pulse
tained in numerical simulations which are in a good loss perturbation. The parameters used in the computer
agreement with experimental ones [Fig. 2(b)]. simulation: fRo = 50 kHz, -/RO = 200 kHz, fd = 100 kHz,a 30', kd = 1.55 x 10- 4 (A = 2.6271), k, = 2.5 x 10- 5

A more interesting case is shown in Fig. 3 when (kp/kd = 0.1613), k6 = 8 × 10 - 3 .

the system was initially in a 4T state [Fig. 3(a)].
No other attractors were observed for these
experimental conditions. Depending on its phase,
resonant perturbations with the same amplitude Chaos 3T (a)

Initial state, 4T .-MO ... e. ......... ....... .... .................. ............... .................... ....... .
CU 12T (b)

_ 2T .

C Z
....................... .... w(i '

co 2T 8T _

......................... ......... . ............ . . .................. ....
"0 12T (C)
< 2T

(D ......... ................... ........Ca s.c ".. .

W Chaos (C)J 2T ________,-,.___._._-__
b."'"0 500 1000 1500 2000

TIME (units of T): - ... .. :. . .,

Fig. 5. Experimental stroboscopic CO 2 laser responses ver-

,1' sus time (the laser intensity is sampled with the modu-

0 500 1000 1500 2000 lation period T). The unperturbed system is initially in

TIME (units of T) chaos. The experimental parameters: Vd = 4.84 (p = 2.69);
(a) Vp = 0 V, (b) and (c) Vp = 3.64 V, W 2050.

Fig. 3. Experimental stroboscopic CO2 laser responses ver-
sus time (the laser intensity is sampled with the modulation may suppress periodic orbits [Fig. 3(b)] or induce
period T). The unperturbed system is initially in a 4T state. mayosuppress3perioditorbitsamFig.m3(b)]ro inue
The arrow shows the action of the pulse perturbation. The chaos [Fig. 3(c)]. At the same time there appears
experimental parameters: Vd = 4.11 (M = 2.28), Vp = 3.52 V, a new attractor. The final state after switching
(b) p 65', (c) e - 2150. also strongly depends on the phase of the resonant
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perturbation. One can see that the system can be that the period-1 attractor is stabilized while the
very quickly sent from a stable 2T orbit to a stable period-3 attractor is destabilized. A different effect

8T orbit [Fig. 3(b)], or from chaos to a stable 2T of the resonant perturbation makes it possible
orbit [Fig. 3(c)] and vice versa. It should be noted to control the overlapping of diverse states as-
that the latter case [Fig. 3(c)] is very interesting sociated with both coexisting attractors, and
from the standpoint of a fast change of the state correspondingly to perform switchings between
in the system between "chaos" and "order". The them. Similar results are obtained in the computer
case represented in Fig. 3(c) was also simulated simulation shown in Fig. 6.
numerically and is shown in Fig. 4. It is seen to
be in rather good agreement with the experimental
results. 4. Conclusions

Now let us consider the effect of a resonant To conclude, we have presented experimental and
perturbation in the bistability domain inherent in numerical results on the dynamics of a CO2 laser
the system. Figure 5(a) demonstrates a coexistence with modulated losses which demonstrate that
of period-1 and period-3 attractors. The lat- resonant perturbations at subharmonic frequency
ter appeared in the laser response after the ac- not only radically change the dynamics of the sys-
tion of the pulse perturbation. After switching tem but also globally change the phase space by
on the periodic perturbation with the frequency splitting the primary attractor into two new ones.
fd/2, chaos of the period-1, is converted to a We have demonstrated the possibility to control at
2T stable orbit, whereas the 3T stable orbit is will the overlapping of different dynamical regimes
transformed to the 12T stable orbit [Fig. 5(b)]. associated with these new coexisting attractors
This means that the resonant perturbation exerts by changing the amplitude and the phase of the
a different effect on both coexisting attractors so resonant perturbations as well as the bifurcation pa-

rameter. We have also presented several examples
showing that highly controllable switchings between

(a) these new attractors can easily be performed using
the technique of short-lived large-amplitude pulse

S6T perturbations. Such a type of control of nonlinearChaos systems could be of interest in the context of con-
. " trol of systems with a fast response because it does

not require any feedback system. The splitting of
_ .... . .. ". .attractors and the switching between new attractors

"'''"_......_"__:___"____""'_'' might be observable in a number of nonlinear sys-0 50 100 150 200 tems, both nonautonomous and autonomous, where
-J TIME (units of T) the method of nonfeedback control of chaos has

TM (ui been implemented experimentally.
(b)
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We demonstrate numerically and experimentally that a slow modulation of cavity detuning in a
loss-modulated CO 2 laser can stabilize unstable periodic orbits even when the system remains
in a particular dynamical regime for adiabatic changes of the detuning. When the parameter
changes faster than the transient response of deformation of the original periodic attractor, the
system can evolve toward an unstable periodic orbit.

1. Introduction A simple nonfeedback and nonresonant con-
trol method which does not require prior knowi-

Recent trends in nonlinear dynamics are directed egof the syste b orehasrecentyr bn

toward the development of effective methods of con- ro osed by Vilaseca et al. [1996]. They have

trolling chaos. A notable advance has been made by propey

Ott et al. [1990] who proposed a feedback control shown numerically that accurate stabilization of

technique based on stabilization of unstable peri- an unstable steady state in an autonomous sys-

odic orbits embedded in a chaotic attractor. How- tem can be achieved by large-amplitude slow

ever, in some kinds of systems (particularly, in bio- periodical modulation of a control parameter.

logical or chemical systems) a feedback loop is very Earlier, Liu and Rios Leite [1994] demonstrated

difficult to realize. Lima and Pettini [1990] have numerically that stabilization of unstable periodic

shown that stabilization is possible without feed- orbits in the Lorenz system can be achieved by

back. They suggested the creation of stable peri- coupling periodic modulation to a control param-

odic orbits from a chaotic system using a weak res- eter. More recently, the main principles of the

onant parametric perturbation. Both feedback and idea of Vilaseca et al. have been applied to a

nonfeedback methods have been applied to many nonautonomous system and successfully realized

nonlinear systems including lasers (see e.g. [Roy in experiments with a loss-modulated CO 2 laser

et al., 1992; Bielawski et al., 1993; Meucci et al., [Pisarchik et al., 1997]. The physical mecha-
1994]). nism underlying the stabilization effect is tracking

*Visiting from Stepanov Institute of Physics, Minsk, Belarus
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unstable periodic orbits due to the delay of bifurca- following system of equations
tions when the control parameter is varied so that
the system passes back and forth through an in- dN 1  W N + W 2 1N 2
stability point [Mandel & Erneux, 1984; Kapral dt
& Mandel, 1985]. A drawback of the method of (1)
Vilaseca et al. [1996] is the requirement for the am- 2

plitude of the control modulation to be large (the dN 2- = 02neNo + WNcNN(NoM1 - N2M0)
larger the amplitude, the better the stabilization). dt
As a consequence, the system response carries a
large-amplitude envelope at the control frequency. - W 2 1N 2 - B2)u(n2 -n ), (2)

In this work we present a method of stabilizing dM
unstable orbits in a nonautonomous system which dt - 3neMo + WNcNc(N 2 Mo - NoM1), (3)

does not require very large amplitude modulation
of a control parameter, as in previous studies with dn = B(v)u(nJ - nj) Vi(nl - N 1), (4)
autonomous systems (see e.g. [Liu & Rios Leite, dt 1

1994]). This new technique is similar to that pro- dn2
posed by Vilaseca et al. [1996] but the physical prin- -dn B(v)u(nJ2 - n3,) - V2(n2 - N 2 ), (5)
ciple underlying the stabilization is quite different. dt

We show numerically and experimentally that sta- dn{ _ .
bilization of unstable periodic orbits can be per- B(v)u(n - n) - VR(r - Fj1ni)
formed by periodic modulation of a system param-

eter within some periodic or chaotic domain. In -V(n3 - F13N1), (6)
other words, to achieve the stabilizing effect it is
not necessary for the system to pass back and forth dn32 B(v)u(nJ2 - n) - VR(n2 - F2n2)
through a bifurcation point. dt

V2(n2 - F2 N2) , (7)
2. Model and Experimental du

Arrangements - = cp[r,(v)y - k]u, (8)

2.1. Model
Here, No, N and N 2 are the relative quasi-

For numerical simulations of the operation of a CO 2  equilibrium populations of the vibrational 0000,
laser with modulated losses we use a model based 1000 and 0001 levels of CO 2; Mo and M1 are the
on the standard four-level scheme [Ciofini et al., relative populations of the fundamental and first
1993]. Our modified model consists of eight dif- exited vibrational level of N2 ; ni and n2 are the
ferential equations for quasi-equilibrium and quasi- relative quasi-nonequilibrium populations of the vi-
nonequilibrium populations of the upper and lower brational 1000 and 0001 levels of CO 2 1. n3 and n3

1
vibrational lasing levels, the global populations of are the relative populations of lower and upper laser
the two manifolds of rotational levels, the popula- rotational sublevels 2 ; ne is the free electron density
tion of the first excited level of N 2 , and the equation in active medium; W 21 and VIo are the effective
for average radiation density inside the cavity, rates of collisional relaxation in 000 1-10°0 and 1000 -

The active medium of the CO 2 laser before 0000 channels; VR is the rotational relaxation rate;
switching on the electric discharge is a mixture of V1 and V2 are the vibrational relaxation rates that
the gases CO 2 , N2 and He. For the sake of definite- describe the relaxation of "instantaneous" popula-
ness, we shall consider a single-mode lasing within tions nj and n2 to their quasi-equilibrium values,
a vibrational-rotational transition of the 0001 -  N 1 and N 2 ; WNC is the exchange rate of the vi-
1000 channel of the CO 2 molecule. According to brational excitation from N2 to CO 2 ; i31, 32 and
Kuntsevich and Churakov [1994], the CO 2 laser /3 are the pumping rates of N 2 and the lower and
with modulated losses can be described by the upper levels of CO 2 in electric discharge; Nc and

1The introduction of the populations N 1 , N 2 , nli, n2 effectively allows us to take into account several important processes of
intra- and intermode exchange in the active medium which are not included in Eqs. (1)-(3).2For simplicity the rotational quantum number j is considered to be the same for both levels.
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NN are the volume density of CO 2 and N2; k0 and 2.2. Experimental setup
Ak are the constant and additive losses; F3 and

F The experimental setup is similar to that described
F2 are the normalized Boltzmann functions deter- in previous work [Pisarchik et al., 1997]. The ex-
mining the part of molecules in the corresponding periments have been performed on a single-mode
rotational sublevels in thermodynamic equilibrium:
n3 = F3'ni, n2 = FJn 2; B(v) and r,(v) are the CO2 laser with modulated losses via an acousto-

optic modulator. The driving electric signal, V =
Einstein coefficient and specific gain coefficient at A0 sin(2rfot), at frequency fo and amplitude A0,
the lasing frequency v and both have a Lorentzian is siedfto t moduncy p0van g the A0,lineshape; im and la are the lengths of the loss mod- is applied to the modulator providing the time-

in 1dependent cavity losses in accordance with Eq. (9).
ulator and active medium; c is the speed of light in The control electric signal
the active medium; p is the packing coefficient for
the active medium in the cavity; u is the average
radiation density; y = ni - n3 is the population V1 = A ° + Al[1 - cos(27rfit)] (11)

inversion.
The cavity loss coefficient is expressed as at frequency fl and amplitudes of the constant A °

follows and alternative A 1 components, is utilized to tune
the output mirror with the piezotranslator. This

k k0 + 2Ak[1 - cos(27rfot)], (9) signal produces the appropriate changes in cavity
2 detuning in accordance with Eq. (10). The fre-

quency of relaxation oscillations at the center of the
where k0 is the constant losses without modula- gain line estimated from averaged power spectra of
tion, Ak and fo = 11T are the loss modulation the laser response to noise applied to the modu-
(driving) depth and frequency, T is the period of the lator is approximately 108 kHz. The frequency of
loss modulation. The expression for k is written in the loss modulation, fo = 105 kHz, was chosen be-
the form of (9) to satisfy the experimental situation, cause it matches one of the acoustic resonances of
because the modulator of cavity losses used in our the modulator. This is close to the frequency of re-
experiments always increases losses over their sta- laxation oscillations at the center of the gain line
tionary value k0 , but does not decrease them. We but higher than the relaxation oscillation frequency
define the cavity detuning as: 5 = (v - vo)/-y, where in the region of significant detuning where the con-
vo is the central frequency and -y is the halfwidth of trol is established. Other parameters are the same
the Lorentzian gain lineshape. We introduce the as those used in the numerical simulations.
control modulation of cavity detuning in a form
similar to (9)

3. Results and Analysisj 0 + 1-AJ[1 - cos(27rflt)], (10)
+ 3.1. Diminution of periodicity

where J0 is the initial cavity detuning from the Let us consider the effect of the modulation of cavity
center of gain contour, i.e. without the control mod- detuning when the CO 2 laser operates in a period-
ulation, A6 and fi are the amplitude and frequency 2 (2T) regime. Figure 1 shows diagrams with
of the control modulation. The modulation of 6 the cavity detuning, J0 for the numerical diagram
leads to the appropriate changes in the lasing fre- [Fig. 1 (a)] and the voltage A ° applied to the piezo-
quency v. translator for the experimental diagram [Fig. 1 (b)],

The numerical simulations are performed for used as a control parameter at relatively small val-
the following set of parameters. The active medium ues of the driving amplitudes Ak and A 0. These
consists of the gas mixture C0 2-N 2-He=1-1-8 at diagrams are obtained without control modulation.
the total pressure of 15 torr. The CO 2 laser oper- Period-1 (T) and period-2 (2T) regimes are clearly
ates on a single mode at the 10P20 line. The cavity seen on the bifurcation diagrams at certain detuning
length is 2 m, the length of the active medium is ranges. The windows of 2T behavior appear with
1.8 m, ko = 6 x 10- 3 cm - 1, fo = 110 kHz. Other detuning because the detuning moves the relaxation
parameters (Ak, Jo, A6 and fl) are varied in nu- oscillation frequency of the laser into resonance with
merical simulations. 1/2T.
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" 4 (a) suppressed [Figs. 2(a)-2(c) and 2(e)-2(g)] and the
•- unstable period 1 which is shown by dashed lines is

3stabilized as can be clearly seen in Figs. 2(d) and
T 2(h). Comparing experimental and numerical re-

2sults one can see a good qualitative agreement. A>, 2-
•t_ -- difference in the shape of laser response between
C numerical and experimental curves is due to a dis-

.' tinction in the contours of the numerical and exper-
-o imental gain lines (Fig. 1) as well as because of a(D 0
C_ difference in the ranges within which the detuning
E .. is varied.3

-0,6 -0,4 -0,2 0,0 0,2 0,4 0,6

detuning, 60 3.2. Chaos suppression

(b)- At high driving amplitude chaotic ranges appear

> 150 ----- in the bifurcation diagram at certain cavity detun-
E ings. To check the suitability of the method for the

2T2T control of chaotic behavior of the laser, we choose
:t'i 100-j catcdmis lwcnrlmdlto ie- 10a range of detuning modulation within one of the

- chaotic domains. Slow control modulation gives
50 rise to the intervals of periodic behavior which al-

V. ternate with chaotic ones at the control frequency
E [Figs. 3(a), 3(b) and 3(d), 3(e)] culminating with0-

__ pulsed oscillations at the period 1 when f, further

-100 -50 0 50 100 increases [Figs. 3(c)]. This effect is similar to that
observed earlier in the experiments by Pisarchik

detuning, A 1
0 (V) et al. [1997] where the cavity detuning was larger

Fig. 1. (a) Numerical and (b) experimental bifurcation di- and the system crossed T-2T bifurcation point. Al-
agrams with cavity detuning as a control parameter. The though a complete stabilization of periodic-1 orbit
arrows indicate the range of detuning alternation within is not achieved in experiment [Fig. 3(f)] because of
which the control will be applied. (a) Ak = 1.4 x 10-

5 cm- 1 , noise, these results clearly demonstrate the validity
A6 = 0, (b) A0 = 7 V, A1 = 0. On the Yaxis are plotted val-
ues of the laser intensity sampled with the period T of the
driving modulation.

3.3. Discussion

For stabilization of the unstable period-1 orbit A possible physical mechanism underlying the ef-
that exists in the domain of the 2T regime, first, we fect of dynamic stabilization can be associated with
select an initial point on the gain curve correspond- transient processes when the control parameter is
ing to the 2T regime (right peaks on the curves in changed. A detailed numerical and experimental
Fig. 1). Then, following Eq. (10) we apply a sinu- study of transient processes occurring after fast
soidal modulation to the cavity detuning so that the change in the detuning within a period-2 domain
system remains inside the 2T domain. The ranges allows us to reveal the following general features.
of the detuning variation are indicated in Fig. 1 by (i) The duration of transient processes after for-
the arrows. ward and backward switching (with increasing and

Numerical (left) and experimental (right) stro- decreasing) the cavity detuning are different. When
boscopic diagrams shown in Fig. 2 display the the cavity detuning increases, the transient pro-
effect of the control modulation at different mod- cesses are slower than when 6 decreases. (ii) When
ulation frequencies. One can see that with increas- 5 is switched from smaller to higher value, the sys-
ing control frequency fl, period 2 is progressively tem falls on an unstable period-1 orbit at any phase

3In the experiments the detuning does not pass through the maximal intensity at the 2T range.
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Fig. 2. Time evolution of (a)-(d) numerical and (e)-(h) experimental sampled intensities, I, with period T showing destabi-
lization of period 2 and stabilization of period-1 orbit with increasing frequency fi of control modulation within ranges shown
by arrows in Fig. 1. (a), (e) fi = 200 Hz; (b), (f) f, = 500 Hz; (c), (g) fi = 1 kHz; (d), (h) f, = 2 kHz. Numerical parameters
are J0 = 0.525, AJ = 0.01. Experimental parameters are A 0 = 7 V, A 1 = 5 V. Unstable period 1 is shown by dashed lines.

of switching with respect to the loss modulation, simple estimations are in a good agreement with
and then evolves towards a stable period 2 with our numerical and experimental results presented
the leading Lyapunov exponent ), = 7.7 x 102 s - 1 .  in Secs. 3.1 and 3.2.
(iii) At the opposite switching (from higher to lower All these features reveal a direct bearing of
value), the system may also exhibit an unstable transient processes on the stabilization of unstable
period-1 oscillation for a short time from which it periodic orbits by periodic modulation of the detun-
later diverges with the leading Lyapunov exponent ing. The original periodic attractor is destabilized
A2 = 3.4 x 103 s - . The total duration of tran- by the relatively fast change in the detuning. This
sient processes after switching essentially depends suggests that the rate of change of the parameter
on the switching phase. (iv) The dynamic stabi- requires a rate of change of the attractor that is
lization takes place only when the period of the greater than the negative Lyapunov exponent that
control modulation is shorter than 1/A,. This corre- governs the stability of the period-2 solution. Thus,
sponds to the control frequency fi > 1 kHz. These the transition towards the unstable period-1 orbit
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Fig. 3. (a)-(c) Numerical and (d)-(f) experimental stroboscopic (sampled with period T') diagrams showing inhibition of

chaos with increasing control frequency fi. (a) fi = 200 Hz, (b) fi = 1 kllz, (c) fi = 6 kHz, (d) fi = 200 Hz, (e) f' = 500 Hz,
(f) fi 3 kHz. Numerical parameters are 60= 0.53, A6 0.02. Experimental parameters are Ao0 10 V, A1 = 5 V.

can be achieved when the relatively fast change in applied to many nonlinear systems whose initial

the parameter is faster than the transient response state is characterized as chaotic or regular.

of deformation of the period-2 solution.
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In this paper an examination is made of the performance characteristics of a scheme of chaos
control using optimised impulsive delayed feedback. The scheme is applied in a model of
external cavity laser diodes giving attention to the application of the feedback via modulation
of the laser drive current taking into account practical constraints arising from technical delay
and the frequency in application of the control signal. It is demonstrated that by use of a
so-called E-ball condition chaos control is achievable in the fully developed coherence collapse
regime without preliminary targeting dynamics to an unstable orbit.

1. Introduction as high levels of intrinsic noise and the need for
extremely high sampling frequencies. Interest in

Interest in developing practical applications for controlling semiconductor laser dynamics has been
chaotic dynamics has been stimulated by the stimulated, in particular, by the possibilities for
development of techniques for controlling chaotic achieving secure communication systems which ex-
dynamics. The chaos control technique published ploit the properties of chaotic dynamical systems
by Ott et al. (OGY) [1990] has been successfully ap- [Hayes et al., 1993]. An efficient algorithm for im-
plied to the control chaotic dynamics in a number of proving the locking rate between the receiver and
laser systems (see [Naumenko et al., 1998] for appro- transmitter of such a system has been reported pre-
priate references). In particular, the work includes viously [Shore & Wright, 1994]. The feasibility of
attempts to control chaotic dynamics in external optical injection-locking techniques for reciprocal
cavity laser diodes in the coherence collapse regime. synchronization of two distant chaotic laser diodes
Also mentioned is the use of occasionally propor- has been considered recently [Mirasso et al., 1996].
tional impulsive feedback (OPIF) [Gray et al., 1993; Another practical context where chaos control tech-
Liu & Ohtsubo, 1994], external microwave modula- niques may have an important role to play is in en-
tion [Ryan et al., 1994; Watanabe & Karaki, 1995; gineering immunity to coherence collapse caused by
Liu et al., 1995] and continuous Pyragas-like elec- unintentional optical feedback which may arise in
tronic feedback [Turovets et al., 1996, 1997]. These the hybrid integration and packaging of commercial
approaches have achieved rather moderate success laser diodes where rather expensive optical isola-
due to specific features of semiconductor lasers such tors must, in general be used to avoid the relevant
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optical feedback. Reviews of that effect and fur- contrast, in earlier work [Naumenko et al., 1998]
ther references thereon are given in [van Tartwijk attention has been focused on the optimization of
& Lenstra, 1995; Petermann, 1995]. parameters of control schemes with the aim to re-

The scheme of control of chaos proposed in lax the requirements imposed by the basic features
the present study allows the convenient manipula- of laser diodes such as high levels of noise and fast
tion of the regimes of operation in such configu- dynamics. In particular, an examination has been
rations. Alternative methods involving continuous made of several possible means of applying opti-
optoelectronic feedback studied recently [Turovets mized discontinuous delayed feedback via different
et al., 1996, 1997] are not so flexible with respect laser control parameters: the laser drive current,
to manipulating complex dynamics although they a laser field phase modulation in the external res-
are possibly more advantageous in the context of onator and modulation of cavity losses. In this pa-
engineering immunity to coherence collapse due to per we test this scheme using corrections applied to
their modest requirements on the bandwidth of the the laser bias current as the control without pre-
electronic components in the feedback loop. liminary targeting to the unstable orbit - which

With a view to such potential applications, this would require meeting the condition that two suc-
paper reports an investigation of the potential of cessive samples of laser intensity fall within a user-
discrete chaos control schemes based on the original prescribed window: the so-called e-ball condition.
OGY method [Ott et al., 1990] from its application
to controlling the coherence collapse phenomenon
in an external cavity laser diode. It is impor- 2. Model
tant to emphasize that the first attempts to control
chaos in laser diode models were based on a over- It is assumed that the laser operates in a single
simplified version of the OGY method like OPIF longitudinal mode and is subject to weak optical
[Gray et al., 1993]. The need to readjust numer- feedback from an external mirror. A rate equa-
ous control scheme parameters did not permit ef- tion treatment of this configuration has recently
fective optimization and lacked robustness to noise. been developed on the basis of the Lang-Kobayashi
For high operating frequencies the latter has had a model to take into account feedback effects in mod-
rather discouraging impact on the perspectives of ulated external cavity laser diodes [Langley et al.,
experimental implementation of such a scheme. In 1995; Langley & Shore, 1993]. The equations are as

I follows:

dS(t') S(t') Gn{N(t') - No}r { 1+ S(t')

+t 1 1 e't) p
-yrN(t') kext

+ T + 2-r VS(t') S(t' - Tex.t) cos (0(t')) + F, (t'),(1

dN(t) I(€') N(t') S(t')Gn{N(t') - N} { + ) + F.(t'), (2)
dt' eV Tsp 1+ eS(t)

d'1(t') __1 , ___ext __/___
t  

_ (3)td4 (t' Gn{N(t') - Nth}r - kext S/_t' -Text) sin(0(t')) + F0(t'), (3)

where I
carrier lifetime (2 ns), G, is the gain slope

0(t') D(t') - (t - Text)+ thext (4) (2.125 x 10 - 12 mas- 1), Nth is the threshold car-

In the rate equations N(t') is the carrier den- rier density (9.9 X 1023 m- 3), ' is the saturation
sity, S(t') is the photon density, 4)(t') is the elec- parameter (3 x 10-23 M3 ), -y is the spontaneous
tric field phase, 1(t') is the injection current and emission factor (1 X 10-5), rph is the photon life-
e is the electronic charge. Typical laser param- time (2 ps), r is the confinement factor (0.4), a' is
eters for a DFB laser are used, where V is the the linewidth enhancement factor (5.5), No is the
active region volume (1.5 x 10 - 16 M3 ), rsp is the transparency carrier density (4 x 1023 m- 3 ), Wth



Chaos Control in External Cavity Laser Diodes 1793

is the operating frequency (A = 1.55 pim), R 2 is algorithm with a variable integration time step.
the laser facet reflectivity (0.309), 77 is the laser to Further technical details are provided in [Naumenko
fibre coupling efficiency (0.4) and TL is the laser et al., 1998].
cavity round trip delay (9 ps). In the optical feed-
back terms, Rext is the external reflector reflectiv-
ity and Text is the external cavity round trip delay 3. Impulsive Optoelectronic
(0.2 ns, which corresponds to an external cavity Feedback
of approximately 2 cm for the fibre refractive in-
dex 1.5). kext is the feedback coupling parameter, It is assumed that an impulsive electronic feedback

given by signal is applied to the laser diode and that the am-

1 - Rplitude of every sequential impulse in the chain is
e2t -. proportional to the difference between the laser op-

tical output powers taken at discrete moments of
The model can, in general, account for the ef- time. Such an arrangement implies detection and
fects of Langevin noise terms, but the calculations sampling of the output intensity synchronized with
described below consider noise-free deterministic the pulse train generator. Mathematically, the im-
dynamics. pulse optoelectronic feedback terms in the dimen-

The introduction of new variables: u = SGnTsp, sionless equations are taken in the form:
n = NGnTph, t = t'/Tsp, leads to the following nor-
malized equations which are more convenient for K(t) = ,3 Z(u(o + ti)
the subsequent analysis: i

it = vu(g(n, u)F - 1) + rn + 2k uu-, cos 0, (5) - U(O + ti - Ti))f(t - (O + ti + Tel)). (8)

it = Po + K(t) - n - ug(n, u), (6)
The factor 0 is associated with amplification in the

= a(n - nth)F - k ut/u sin 0, (7) electronic feedback loop. The tunable phases W
specify a phase shift between a chain of applied cor-

0 = 4 - -, + WT. rection pulses and the reference signal which may
be conveniently chosen as the laser output itself so

Here g(n, u) = (n - no)(1 - Eu), no = NoGnTph, as to measure phase with respect to a laser intensity
E= E/GnTsp, w = wthTsp, r = v-y, v Tsp/Tph, maximum emitted at the discrete moments of time

kextTsp/TL, a = a',vF/2, Po = IGnTphTsp/eV, ti = E'=l Tk. We will refer to the quantities 3, sO
r = Text/Tsp. as the parameters of the control schemes which are

The laser is taken to be biased by a DC injec- to be optimized. Finally, Ti is assumed to be self-
tion current IDC = 2 /th where Ith is the threshold adjustable during the process of control time delay
current so as to ensure that the operation condi- and equal to a time interval between successive laser
tions are typical of the coherence collapse regime. intensity maxima. This means that the pulse gener-
Since the external cavity is short (2 cm), a typical ator triggering time and the interval of sampling are
route to chaosis a Hopf instability of a single exter- synchronized to the detected maximum intensity.
nal cavity mode steady state at Rext 6.25. 10- 4  The term K(t) is used to modify a selected
or k r 2.5 followed by a Feigenbaum period dou- control parameter of the laser diode slightly which,
bling sequence. The first period doubling bifurca- in the present case, is the driving current. Equa-
tion takes place at k P 4.26; full chaos is developed tion (8) essentially assumes that the electronic com-
at k r 4.79. Referring to the classification scheme ponents of feedback K(t) are fast enough to follow
for regimes of operation of a laser diode with optical the laser output pulsations in real time, detect its
feedback (see e.g. [van Tartwijk & Lenstra, 1995] or maxima and trigger the pulse generator. In prac-
[Petermann, 1995]), it is noted that due to the short tice, of course, there will always be some frequency
external cavity the operating regimes II and III are cut-off due to the finite bandwidth and also techni-
mixed with the coherence collapse regime (IV) and cal phase shift attributed in part to a finite speed
the system enters regime IV directly from regime I. of the electrical signal through the loop. This prac-

The terms K(t) in Eq. (6) describes an im- tical aspect is taken into account via an additional
pulsive periodic control action applied to the driv- time delay Tel in Eq. (8), which also includes a nat-
ing current. The rate equations (1)-(3) are solved ural time shift by a half-width of the pulse applied.
numerically using a fourth-order Runge-Kutta It is supposed, nevertheless, that the bandwidth is
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wide enough to permit microwave spectra of am- dynamics is set just after the first period doubling
plitude fluctuations centered at the relaxation fre- bifurcation (k 4.6). The process of targeting con-
quency (approximately 3 GHz for the parameters sists of applying a single kick given by
used here) to pass without significant distortion.

The motivation for choosing feedback in the K(targ) (t) = 3targf(t - (targ) (10)
specified form is as follows. First, to affect stabi-
lization the feedback should be negative, secondly, and applied at the appropriate phase Wtarg and
the feedback is designed so that it has no effect on with an appropriate amplitude / 3 targ, then after a
the state which is supposed to be stabilized (e.g. an short transient the system arrives in the vicinity
unstable periodic orbit with period T). Every kick of the unstable T-periodic orbit and finally, after
of the control scheme has a functional form given staying a few periods on the unstable orbit the
by f(t). Its amplitude [see Eq. (8)] is proportional control scheme is activated. The difference signal
to the difference between the output powers that (u(w + ti) - u(v + ti - Ti)) is constructed by sam-
were emitted at instants of time cp + ti - Tel and a (up±t)-( +t-T))icosrtebyampreeious datinst f time + t -Te. The fnto al form pling and storing the laser intensity at successive
previous time W + ti - - s - Tt. The functional form times and then a correction pulse is triggered and
of the kicks was chosen to be super-Gaussian: delivered to the driving current with a technical

f(t) = M exp(-at2m), a = (p(1/2m)/mw)2m, delay, Tel.
In Figs. 1(a) and 1(b) the method is demon-

M 1/w, (9) strated. The first targeting impulse in this configu-

where F(1/2m) is the special F-function ration is relatively large and is not shown here, but
[Abramowitz & Stegun, 1972]. the moment of application of the targeting impulse

The impulse function f(t) is normalized in such is marked by a circle. It can be seen that the unsta-
a way that its integral area is a unity. When its ef- ble orbit is stabilized and the control signal tends to
fective width w tends to zero then it approaches a zero. Of course, the kick strength at the first stage
Dirac 3-function, whilst the exponent m regulates depends strongly on how accurately the system has
a specific shape of a kick. In particular, in the ex- been targeted to the unstable T-periodic cycle.
treme case of m --* oo with a finite w, the pulses The effectiveness of the method is conveniently
acquire a nearly square form. analyzed by computing domains of control and find-

ing optimal conditions of control. In Figs. 2(a)-2(d)
we present the domains of tracking the stabilized T

4. Results orbit into the coherence collapse regime in the con-

4.1. Targeting and control of trol parameter space defined by the optical feedback

unstable T-periodic orbits strength k and the feedback technical delay Tel for
different electronic feedback strengths /3 and fixed

General strategies of control of chaos often imply a sampling phase W. Computationally, this has been
preliminary targeting to an unstable orbit which is obtained by a successive stepwise changing of the
to be stabilized. For the present system, which ex- optical feedback strength k or the technical delay Tel
hibits a period-doubling route to chaos, one possible without readjusting the control scheme parameters
way of achieving this is to pull a system back from at nodes of a grid in this parameter space and cal-
a regime of developed chaos into a period doubling culating the time, trel, needed to relax once again to
regime. In this way, the aim is to target and con- the T orbit with a prescribed accuracy (here taken
trol an unstable orbit and thence to track the sta- to be 10- 4 ) at every tracking step. Some small-scale
bilized system into the initial chaotic regime. Such details of the curves presented have been smoothed
an approach has been applied previously to low- by spatial filtering. The external contour curve cor-
dimensional dynamical systems such as modulated responds to trel = 300 and for practical purposes
class B laser, and also to the external cavity laser defines the external boundaries of the control do-
diode configuration [Naumenko et al., 1998]. Here main. Control is possible inside this domain and is
we present further optimization of such an approach not achievable outside of it. Along the inner curves
with the aim to test the effectiveness of activat- in Fig. 2(a) trel is equal to 100, 50, 35, 25 and 15 in T
ing the control scheme into the coherence collapse units. The curves in Figs. 2(b)-2(d) have a similar
regime using an E-ball condition. meaning, except that the curves with the smallest

First, the laser diode is assumed to be oper- trel are not shown. It can be seen that when an
ating with such a level of optical feedback that its orbit has been stabilized one can vary the optical



Chaos Control in External Cavity Laser Diodes 1795
2.5

-1.5

a
..... ..... ........ ... .... .. ... ... .. ... .. .. ....... .. .

0.5
-5 0 5 10

Time i

Fig. 1. Time domain demonstration of the processes of targeting and subsequent activation of the control scheme to stabilize
the unstable T-cycle using finite width kick perturbations of a driving current. The parameters of the control scheme are:
normalized pulse-width wiT = 0.4; electronic feedback strength 3 = 0.2; feedback phase W/T = 0.58; form-factor of the
superGaussian pulses m = 3. The parameters of the targeting pulse are Wtarg/2T = 0.030825, IPtarg = 0.1. Time is normalized
to -rp, the normalized laser parameters are as follows: v = 1000, F = 0.4, r = 4- 10- 3, no = 1.7, nth = 4.2075, a = 2500,
A0 = 8.2, wr = 4.256, 6 = 7.059.10- 3 , r = 0.1, k = 4.6. (a) Laser intensity u versus time t. Having delivered the laser to the T-
cycle by a targeting pulse [marked by the circle in Fig. 4(b)] the control scheme is activated [actually the first peak in Fig. 4(b)].
(b) Controlling kicks signal versus time. Kicks measured in the same units as the pump current and tend to zero when control
is achieved.
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Fig. 2. Domains of control in the control parameter space for the stabilizing technique using finite width pulse perturbation
of the pump current with feedback-monitored by the difference of intensities. The solitary laser parameters are the same as
in Fig. 1. Contour plot of the relaxation time to the T-periodic unstable orbit in the phase space: optical feedback strength
k, versus technical delay Te, the feedback phase W = 0. The relaxation time trel is measured from the moment when the laser
has been prepared near the T-cycle up to the moment when the system relaxes to T-cycle with an accuracy of 10- 4. The time
is normalized to the period T. External curve corresponds to the trel = 300 and gives, in practice, the external boundaries of
the control domain. The inner curves are for trel = 100, 50, 35, 25 and 15, respectively. The fixed electronic feedback strength
,3 = 0.2 (a), 0.3 (b), 0.4 (c), 0.5 (d).
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feedback strength without modifying the parame- 2.5

ters of the electronic feedback system and advance -

into the developed coherence collapse regime. It is 2

noted that the relaxation times correspond to the
reciprocal of the dominant Lyapunov exponent de-
scribing the laser dynamics and hence the contour
plots given in Fig. 2 provide an indication of the -

salient features of the dynamics. Moreover, the con- "
struction of these diagrams actually involves the op-
timization of a particular control scheme, because
the bottom of the landscape represents the control 0.5-

with fastest relaxation to an unstable orbit (and
thus the state of the closed feedback loop with the-.....-- --- -......
largest negative Lyapunov exponent). In particular, -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

it can be seen that there exists an optimal technical F sedbnk trength

delay value centred around 0.25. This means that Fig. 3. Domains of control in the control parameter space

the unstable manifold of the stabilized orbit is oni- the feedback strength 3, versus technical delay rel, the feed-

ented at these instants of time in such a way that back phase V = 0. The solitary laser parameters are the same
as in Fig. 1. The normalized pulse-width wIT = 0.8 (b).

a projection of the kick on it reaches the maximal The kicks applied every 2T periods (solid lines), 3T periods
value and so the result of control is the largest. It (dashed lines) and 4T periods (dotted lines).
is worth emphasizing here that for optical feedback
levels k ,- 5.9 the first large periodic window occurs
in the bifurcation diagram of the system, so that situation in the sense of the required speed of
the results presented in Fig. 2(b) show the possibil- sampling of the laser intensity and applying the
ity of tracking the unstable T-periodic orbit through correction kicks. In fact, provided that the unsta-
the entire first chaotic region. When the strength ble trajectory is subject to preliminary targeting
of electronic feedback is fixed at higher levels, it is and the optimal parameters of the control scheme
possible to track the system even deeper into the co- are chosen, impulsive corrections can be applied
herence collapse regime [Fig. 2(d)], however at such less frequently (e.g. every second, third or fourth
levels of electronic feedback the scheme is already period).
unable to stabilize the T-orbit at k = 4.6. This The effects of width and the application fre-
implies that in order to track through the whole quency of correcting pulses are demonstrated in
domain accessible by changing k it is also neces- Fig. 3 where the normalized pulse-width w/T = 0.8.
sary to monitor and change some parameters of Domains of control are shown in the control pa-
the feedback scheme (3 or W). It is noted that, in rameter space of the feedback strength, '3, ver-
accordance with its definition, the phase W of the sus the technical delay, Tel, at the fixed feedback
applied correction kick is varied from 0 to 1 in units phase W = 0. The kicks are applied every 2T peri-
of T, i.e. the correction kick is applied every pe- ods (solid lines), 3T periods (dashed lines) and 4T
riod. If, for example, the phase W is more than 1 periods (dotted lines). The sampling of the laser
(but less that 2), then the laser intensity is sampled intensity is undertaken every period. It is seen that
and the correction pulse is applied to the driving the domains of control basically retain their loca-
current of every other period. Such a scheme, al- tion and size, although their form is distorted as
though still being formally described by Eq. (8), has the frequency of application of the correction puls-
different stability properties. In particular, the un- ing is decreased. The stabilizing effect of increas-
stable T-cycle in the Poincare section taken every ing the correction pulse width is also clearly seen.
other period has real positive Floquet multipliers Finally, the effect of alteration of the control do-
(in contrast with the negative ones for the Poincare mains with the period T (or recurrence with the
section taken every period) and the impulse control period 2T) with increasing the technical delay Tel
scheme described by Eq. (8) is not able to stabilize may be also observed (see also [Naumenko et al.,
it. But the scheme is stable when the frequency 1998] where this effect is described and explained
of sampling is higher than the frequency of kicks in more detail). It is expected that in the centres
application. So, the model presents the worse-case (optima) of the control domains the scheme also
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offers the maximum robustness to noise. The results is possible to activate the control directly in the
presented thus clearly show that such complex non- coherence collapse regime without preliminary tar-
linear dynamic regimes as coherence collapse can be geting but by using a user prescribed window in
controlled with proper optimization. which successive intensity maxima should fall -

the so-called E-ball condition. Events of falling

4.2. Control of unstable orbits into the E-ball surrounding the unstable T-periodic

using an e-ball condition orbit are guaranteed by the ergodicity of chaotic
motion. This means that a chaotic trajectory must

Attention is now given to the situation in which inevitably visit some neighborhood of any point em-
optimization of the control scheme, as identified bedded in the chaotic attractor. Of course, such
in Sec. 4.1, has been made. In that situation it events are stochastic by the definition and the time
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Fig. 4. Time domain demonstration of the process of activation of the control scheme to stabilize the unstable T-cycle
embedded in chaos area using the e-ball condition. The parameters of the control scheme are: the normalized pulse-width
w/T = 0.8; the electronic feedback strength 8 = 0.4; the feedback phase p/T = 0, the formfactor of the superGaussian

pulses m = 3 and the technical delay TeI/T = 0.25. The parameters of laser diode are chosen in the coherence collapse zone,
i.e. optical feedback strength k = 5 and the rest of parameters is as in Fig. 1. Time is normalized to sp. (a) Maxima of laser
intensity u versus time t. The control scheme is activated at time t = 0. After some chaotic transient the laser system finds
itself in the vicinity of the unstable T-cycle satisfying to the c-ball condition, i.e. Iu(ti) - u(t1-I)l < E = 0.05 followed by the
short relaxation transient to the T periodic orbit stabilized. (b) Laser intensity u versus time t. (c) Control signal versus time.
Measured in the same units as the pump current and tends to zero when control is achieved.



1798 A. V. Naumenko et al.

which elapses between activating the control scheme via the computation of domains of control and by
and achieving control depends strongly on the ini- demonstrating the existence of optimal conditions
tial conditions and should be treated statistically, of control. Such an optimized control configura-

In Figs. 4(a)-4(c) show how the scheme works tion provides a significant advantage in practical
in this case. The stroboscopic view (a), the laser application in comparison to previous chaos con-
intensity (b) and the control signal (c) are plotted trol schemes which have been compromised by the
as functions of time. Consideration is given here to noise properties of laser diodes. Moreover it has
the behavior of the laser after cessation of turn-on been shown to be possible to relax requirements in
transient in the fully developed coherence collapse respect to the frequency of the application of the
regime (with optical feedback strength k = 5.0). control corrections. From the viewpoint of practi-
The control scheme was activated at time, t = 0, cal implementation this adds further to the attrac-
but the scheme was in fact in a waiting regime tiveness of the present scheme by removing require-
(0 = 0) until the -- ball condition has been satisfied, ments for very high frequency electronic circuitry
i.e. 3 $ 0 whenever Iu(W+ti)-u(o+ti-Ti)I < e and for the application of the control.
/ 0 otherwise. The first such event takes place at
t -- 5.5, but the very first kick of the control knocks
out the system of the E-ball and the scheme is effec- Acknowledgments
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An experimental investigation of the temporal dynamics of a diode laser subject to optical
feedback from an external cavity containing a cell filled with cesium vapor has been performed.
Peculiar dynamic regimes, such as self-pulsing, low-dimensional, and high-dimensional chaos,
characterized by a new time scale, much longer than the time scales of all instabilities taking
place in diode lasers under standard feedback conditions, have been identified.

1. Introduction We focus on the temporal dynamics of the system,
showing that the presence of the atomic absorber

Diode lasers exposed to optical feedback from an ex- inside the feedback cavity produces characteristic
ternal cavity containing an atomic absorber are sys- dynamic regimes, which take place on a peculiar
teoms of great interest in the fields of spectroscopy, time scale, much longer than the time scales typi-
atomic physics and quantum optics, as they pro- cal of the dynamics of laser diodes under standard
vide stable sources, with very narrow linewidth, on feedback conditions. Starting from a stable operat-
resonance with atomic transition frequencies. In re- ing regime characterized by self-locking of the laser
cent years, these systems were widely investigated, frequency to the central Lamb dip of the saturated
mainly for the purpose of improving the spectral absorption spectrum of the Cs D 2 line, we have ob-
performance of the lasers and achieving an absolute served, with increasing detuning from the atomic
frequency stabilization [Cuneo et al., 1994; Kitch- resonance, a self-pulsing regime of the laser out-
ing et al., 1994; Liu et al., 1994]. On the contrary, put in the form of a sequence of intensity dropouts

there was no knowledge about the nonlinear dynam- and, eventually, a chaotic regime. Taking advan-
ics and chaotic properties of these systems. In this tage of the fact that the dynamics of the system
paper, we provide a description of such properties takes place on different time scales, spaced at least
and identify distinctive features of the dynamics re- by three-four orders of magnitude, we have sepa-
lated to the presence of the absorber. rated the slow dynamics induced by the absorber.

We report on experimental investigations per- Due to its long time scale, this dynamics is very
formed on an extended-cavity diode laser contain- easily accessible experimentally. The experimental
ing a cell filled with cesium vapor, in a saturation time series have been analyzed with the time-delay
spectroscopy configuration [Schmidt et al., 1994]. method so as to reconstruct embedding portraits
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t Permanent address: Laboratoire de Spectroscopie Hertzienne, Unit6 associ6e au CNRS, Universit6 des Sciences et Technologies
de Lille, 59655 Villeneuve d'Ascq Cedex, France.
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and recurrence plots. The attractors in the phase the laser. A 4 cm long cell containing Cs vapor
space of the laser system have been characterized at the equilibrium density at room temperature
quantitatively by computing the Lyapunov expo- was inserted within the external cavity. A frac-
nent spectrum and the correlation dimension. From tion of the laser intensity was extracted from the
this analysis, it turns out that the signal observed external cavity by means of a beam splitter with
for large detuning from the atomic resonance shows less than 10% reflectivity and used for the detec-
high dimensional chaos, characterized by two posi- tion. To avoid unwanted feedback from optical
tive Lyapunov exponents. This feature could either surfaces in the measuring equipment, a magneto-
pertain to the hyperchaos [Rbssler, 1979] or to the optical isolator providing 40 dB of attenuation for
coexistence of different chaotic attractors. The dy- counterpropagating light was placed on the path of
namics, either periodic or chaotic, observed out of the extracted beam. A scanning confocal Fabry-
the locking range, within a certain range of detuning Perot spectrum analyzer, model 240 by Coherent,
from the atomic resonance, is characterized by the was used to detect the optical spectrum of the
long time scale mentioned above. This time scale is laser emission. Absolute optical frequency mea-
absent in the dynamics of laser diodes in the stan- surements were performed by comparing, with the
dard feedback set-up, and therefore, it identifies, spectrum analyzer, the laser frequency and the fre-
among the operation regimes of the extended-cavity quency of a reference diode laser. The reference
laser, those which are determined by the presence laser was locked, through a standard technique of

of the atomic absorber. hybrid optical and electronic feedback, to the tran-
Extended-cavity diode lasers with intracavity sition F = 4 -+ F' = 5 of the Cs D2 line. The

atomic absorber have never been studied previously temporal evolution of the output laser intensity was
from the point of view of nonlinear dynamics. In [di detected, simultaneously with the spectral measure-
Teodoro et al., 1997], we discussed the spectral fea- ments, by means of an avalanche photodiode with
tures of this system, pointing out that the presence 1.2 GHz cutoff frequency. The photodiode signal
of the absorber substantially modifies the mode pat- was monitored with a Tektronix TDS540 digital os-
tern in the phase space of the extended-cavity laser. cilloscope, with 500 MHz bandwidth.
We also developed a rate equation model suitable
for the interpretation of the spectral phenomena,
which could not provide, however, a description of
the global dynamics. In the absence of a compre- APD
hensive theoretical model for the system considered, To data

the analysis performed here makes it possible to acquisition

infer general information on the dynamics in the
phase space from the measured time dependence of
the laser emission. BS

This paper is organized as follows: In Sec. 2 Ref FP
we describe the experimental apparatus and the
measurements performed. In Sec. 3 we illustrate
the observed dynamic evolution of the laser emis-
sion and discuss the results of the time-series anal- i[so _
ysis. Conclusions and final remarks are presented
in Sec. 4.

2. Experimental CL CSO GBS PZTDL CO BS G
The experimental setup is shown schematically in
Fig. 1. The observations were performed using Fig. 1. Scheme of the experimental set-up. DL, diode laser;
Fig. gCO, collimating objective; Cs, cesium cell; BS, beam split-
a Spectra Diode Laser SDL-5400. The laser was ters; G, diffraction grating; PZT, piezoelectric transducer;
optically coupled, through an antireflection coated Iso, magneto-optical isolator; Ref, reference diode laser; FP,
collimating objective, to an external cavity termi- scanning confocal Fabry-Perot spectrum analyzer; APD,

nated by a diffraction grating, placed 46 cm from avalanche photodiode.
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The diffraction grating terminating the exter- ing range, in the low-frequency direction, unsta-
nal cavity was mounted on a piezoelectric trans- ble regimes in the emitted intensity were observed.
ducer, fixed to a mirror mounting. A continu- The time dependence of the laser output was de-
ous tuning of the laser wavelength within a range tected while varying, as a control parameter, the
of tens of nanometers was achieved by combining free spectral range (FSR) of the external cavity by
the rotation of the grating and the variation of means of the piezoelectric transducer. Here we in-
the cavity length through the piezoelectric trans- dicate the relative difference of external-cavity FSR
ducer. For laser frequencies far from the Doppler- with respect to the case of self-locked operation
broadened absorption line of the atoms, the feed- as Av.
back power ratio was estimated, including losses at Figure 2(a) illustrates a portion of the time
the optical surfaces within the external cavity, as series of the laser output intensity i(t) recorded
about 30%. for Av =-- 120 MHz. The laser output experiences

In the feedback scheme considered, the light dropouts which decrease the absolute intensity by
field emitted from the output facet of the diode about 30%. The dropout pattern appears to be
laser, tuned to the D2 line, passes through the periodic with a time scale of about 0.1 ms. The
atomic vapor cell as a pump field and, after be- power spectrum of the signal, calculated by fast
ing attenuated by the vapor, is retroreflected and Fourier transform (FFT), and shown in Fig. 2(b), is
used as a counterpropagating probe field, which is characterized by a few, well separated dominant fea-
fed back into the laser cavity. At the center of any tures. This is consistent with the picture of a pe-
hyperfine transition of the D2 absorption line, the riodic signal. The observed period of the dropouts
pump beam bleaches a hole in the absorption spec- might be qualitatively associated with characteris-
trum of the weaker probe beam. Therefore, the tic time scales of optical pumping processes within
probe transmission, and hence the optical feedback the absorber. For instance, the mean time for diffu-
intensity, is resonantly enhanced when the laser fre- sion of Cs atoms at room temperature through the
quency matches one of the principal transition or laser beam cross-section is of the order of tenths
crossover lines [Schmidt et al., 1994]. The satu- of millisecond [Schmidt et al., 1994]. We should
rated medium also modifies, due to its dispersive also notice that all documented intensity instabili-
properties, the feedback phase. As an effect of the ties occurring in diode lasers subject to mere optical
frequency-dependent changes produced by the in- feedback from an external reflector take place on a
tracavity absorber on the feedback parameters, we much faster time scale. For example, in the regime
observed single-mode emission with frequency lock- of feedback intensity adopted in our experiment,
ing to an atomic resonance, as well as multi-mode extended-cavity diode lasers without absorber typ-
operation with each oscillation frequency locked to ically exhibit dropouts of the output intensity,
a different sub-Doppler feature of the atomic ab- called low-frequency fluctuations (LFF), character-
sorption spectrum. This is a clear evidence of the ized by a mean repetition rate of hundreds of MHz
influence of the atomic absorber on the laser oper- [Cerboneschi et al., 1993]. The intensity dropouts
ation. An extensive analysis of the results of the in Fig. 2(a) resemble, in shape, the LFF dropouts.
spectral measurements performed on this system is However, in addiction to the difference in time
reported in [di Teodoro et al., 1997], where a dis- scale, a clear distinction of the self-pulsing phe-
cussion of the absorption and dispersion properties nomenon detected in our system with respect to
of the atomic vapor under saturation spectroscopy LFF is the periodicity. In fact, LFF appear as in-
conditions is included. tensity fluctuations irregularly spaced in time and

their phase-space dynamics is very complex and de-
scribed in terms of chaotic itinerancy [Sano, 1994].

3. Temporal Dynamics and Sub-nanosecond dynamics, which is not detectable

Time-Series Analysis with our measuring equipment, is also involved in
the low-frequency fluctuation regime [Fischer et al.,

Mono-mode self-locked operation was obtained 1996].
within a locking range of -160 MHz around the fre- The time series of the output laser intensity
quency of the hyperfine transition F = 4 -+ F' = have been processed with the time-delay method
5. The corresponding laser emission had a stable [Packard et al., 1980]. Let i(t) be the time de-
intensity, with a low noise level. Out of the lock- pendent laser intensity, measured at equal sampling
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Fig. 2. Laser intensity time-series (left-hand column) and corresponding power spectra (right-hand column): (a) and
(b) Av = 120 MHz, (c) and (d) Az, = 140 MHz, (e) and (f) Az' = 200 MHz.

intervals 3 in the temporal window (0, r), where, for [1988], Casdagli et al. [1991], and Rosenstein et al.
the signals recorded in our experiment, 3 = 2 /s and [1994]. The time-delay reconstruction was uti-
T = 32 ms. A portrait of the phase trajectory of the lized to calculate recurrence plots, as introduced by
system is represented by the set of m-dimensional Eckmann et al. [1987]. These plots are obtained,
embedding vectors IT , defined as after choosing an embedding dimension m and a

suitable radius r, as a square grid of S x S ele-

IT  {i(ni), i(ni + T),..., i[nS + (m- 1)T]}, ments, in which a dot is displayed at coordinate
(k, n) whenever II -IT II < r. The embedding por-

n = 0,..., S, trait corresponding to the time series in Fig. 2(a) is

(1) depicted in Fig. 3(a) and suggests that the dynamics
of the laser intensity, in this regime, may be prop-

where the lag parameter T is an integral multiple of erly described by a limit cycle. Consistently, the
the sampling interval 3 and S = [-r- (m- 1)T]/. In recurrence plot in Fig. 3(b) belongs to the so-called
order to extract, from the time-delay portrait, both periodic typology [Eckmann et al., 1987], since its
qualitative and quantitative information about the large-scale pattern is dominated by long lines par-
physics underlying the time series, a proper choice allel to the main diagonal, which would be the only
of m and T is needed. The algorithms applied in our feature in the recurrence plot of a purely oscillatory
analysis allowed us to test several values of m and signal, superimposed to an array of regular blocks
verify the convergence of the calculated quantities emerging from stochastic fluctuations of the char-
for m > 3. The choice of parameter T was based acteristic frequencies.
upon the computation of the average displacement, A quantitative analysis of the time series has
according to the method outlined by Albano et al. been performed by evaluating the largest Lyapunov
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Fig. 3. Phase portraits for embedding dimension = 3 (left-hand column) and recurrence plots for m = 10 (right-hand

column) extracted from the experimental time-series: (a) and (b) A' = 120 MHz, (c) and (d) A' = 140 MHz, (e) and

(f) A' = 200 Mgz. The time lag used for the phase-portraits is T = 32, 24, and 16 ps in (a), (c) and (e), respectively.

exponent, according to the method introduced by zero, as expected for an asymptotically stable limit

Rosenstein et al. [1993]. For the signal in Fig. 2(a), cycle [Parker & Chua, 1989].

the largest Lyapunov exponent, calculated for dif- In addition, the correlation dimension Dcorr

ferent embedding dimensions , is nearly equal to [Grassberger & Procaccia, 1983] has been extracted
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Here, the correlation sum Cm(r) is given by
2.0-

i S(S- 1) E(r- 11IT -ITI) (3)5 . ........... m=8 (

M 10 " i{n,k}

where E is the Heavyside step-function and {n, k}
is a set of indices such that Ik-nj > t,.16, t,,0 being

1.0-D =0.9010 a suitable cutoff time introduced to avoid artificial
correlations arising from too closely spaced embed-

ding vectors which may result from measurements
ga taken nearly at the same time. In our analysis, tco

0.5_scaling _region was chosen as the inverse of the mean frequency
of the power spectrum of the signal, obtained by

2.83 m= FFT. The limit r -+ 0 is, actually, unreliable, be-

------ m=5I cause small values -of r are blurred by noise and
........... m=8 limitations on experimental accuracy. In practice,

M m= 10 a plateau referred to as scaling region should ap-

pear in the plot of dlnCm(r)/dlnr versus lnr. In
2.0-, . D = 1.8110 Fig. 4(a), such a plot is shown, for the time series

- "in Fig. 2(a), for several values of m and the scaling
region is clearly visible. The height of the plateau

1represents the estimated value of the correlation di-
mension Dcorr. The result obtained, Dcorr - 1, def-

1.2" scaling egion ( b ) initely confirms that the dynamics is described by- s n a limit cycle.
In Fig. 2(c), part of the time series acquired for

S-m=3 Av = 140 MHz is shown. In this case, the period
--.... m=5 fades in an irregular pattern of dropouts and the
........... m=8i spectrum in Fig. 2(d) shows a broad-band struc-

., .. M= 10 ture. Although broad-band spectra may be associ-
ated with either stochastic or nonlinear determin-

-, .Do=5.9233 istic processes, the exponential decay of the spec-
Dc or 5.233tral intensity at high-frequencies indicates chaotic

6.0- " ' dynamics [Brandstater & Swinney, 1987]. The dis-
tortion of the phase portrait in Fig. 3(c) and the
sharp change in the pattern of the recurrence plot

5.5 scaling region ( C ) in Fig. 3(d) support this interpretation. In par-
ticular, in the recurrence plot, the long lines par-

A 0 allel to the main diagonal appearing in Fig. 3(b)
are now fragmented in shorter segments, the length

In r of which has been proven to be inversely propor-

Fig. 4. Logarithmic slope of the correlation sum Cm(r) as tional to the largest Lyapunov exponent [Zbilut &

a function of inr, for several values of the embedding di- Webber, 1992]. A more striking evidence of chaotic
mension m: (a) Av = 120 MHz, (b) A/ = 140 MHz, behavior is provided by the largest Lyapunov expo-
(c) A, = 200 MHz. The height of the plateaux indicates nent, which is now positive [see Fig. 5(a)] and by
the value of the correlation dimension Dcorr. the value of Dcorr which is about 1.8 [see Fig. 4(b)].

The time series shown in Fig. 2(e) has been
recorded for Av = 200 MHz. The signal shows

from the experimental signals as no apparent regularity and the power spectrum
Dr =im lim dIn Cm(r) (2) in Fig. 2(f) has a broad structure which also in-

corr = - dnmr (2) cludes additional high-frequency components. The
m-4c r+o dlnr
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2- revised and noise-robust version described by
Banbrook et al. [1997]. The procedure has been
iterated in order to obtain the evolution of the
Lyapunov exponents within a certain time inter-................ .......................... ..... ....... ; _ ....... ....... a an ve iy t ir c n rg n . T h r su s a e

* val and verify their convergence. The results are
0 ..........................................................( a ) shown in Fig. 5, for an embedding dimension m = 3.

.. * . Two positive exponents have been found for Av =
S _200 MHz and only one for Av = 140 MHz. The

- . calculation has been repeated for values of m up
to 10, producing no substantial difference. Indeed,
all additional Lyapunov exponents are negative in-2 ... ......... ....... ....... ...... ....... ........ i ...... ....... .......
both cases.

2 - .. .... .. ... ..
>. 4. Summary and Conclusions

0
The temporal evolution of the light emitted by a" 0 ........i ........ .......i ......... ....... ....... ...... i... ....... d o e l s r s b e t t e d a k f o n e t r a
diode laser subject to feedback from an externali i cavity containing a cell of Cs vapor in a satura-............... ....... ....................... ....... ...... .. ca i y c n t i i g a e l o s a o n a u

)tion spectroscopy configuration has been investi-
-2 ........ ....... * ....... ......................................... ....... gated experim entally. Frequency locking to the cen-

tral Lamb dip of the saturated absorption spectrum
. . .. . of the D2 line, accompanied by a stable laser emis-

. sion has been observed. With increasing detuning
Av from the atomic resonance, within the range
0 < Av < 140 MHz, where the laser operation
appears to be strongly influenced by the presence

0 10 20 30 40 50 of the atomic absorber, the output intensity dis-
plays self-pulsing and low-dimensional chaos, which

Evolution' Time (Ps) take place on a time scale much longer than the
Fig. 5. Spectrum of Lyapunov exponents extracted from time scales typical of the dynamics of a diode laser
the time-series for m = 3: (a) Au = 140 MHz, (b) Av = coupled to an external cavity with no absorber.
200 MHz. For larger values of Av, the laser emission shows

high-dimensional chaos, characterized by two pos-
itive Lyapunov exponents. Although the presence

phase portrait in Fig. 3(e) is markedly different from otwo pov exponents iscmonly assce

the previous ones and the trajectory explodes in w p os [p ess 1979], itsmig tee
a blrre an fodedgeoetryindcatng hatthe with hyperchaos [R~ssler, 1979], it might be ex-

a blurred and folded geometry indicating that the plained, here, in terms of coexistence of different
embedding dimension m = 3 used for the portrait attractors. The coexistence of attractors has been
is too low to provide reliable topological informa- demonstrated theoretically also for diode lasers un-
tion about the laser intensity dynamics. The recur- der usual feedback conditions [Masoller, 1994].
rence plot in Fig. 3(f) belongs to the homogeneous In the range of feedback strengths used in
typology [Eckmann et al., 1987] and any small- our experiment, high-dimensional chaos has been
scale texture is hardly visible. Again, a positive proven to underlie the dynamics of extended-cavity
largest Lyapunov exponent is found [see Fig. 5(b)] diode lasers with no absorber [Sano, 1994; Mirasso
and the calculated value of Dcorr is about 6 [see et al., 1997]. On the other hand, our analysis
Fig. 4(c)]. suggests that a low-dimensional attractor emerges

The characterization of the chaotic regimes has when, for relatively small detuning, the laser oper-
been completed with the computation of the entire ation is dominated by the absorber. An interplay
spectrum of Lyapunov exponents. For this pur- between different chaotic attractors might explain
pose, the algorithm introduced by Darbshyre and why no clear route to chaos has been observed. In
Broomhead [1996] has been implemented in a diode lasers coupled to an external cavity with no
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absorber, low-dimensional chaos, reached through di Teodoro, F., Cerboneschi, E., Hennequin, D. &
definite routes, has been identified in several works, Arimondo, E. [1997] "Multi-stability for an extended-
as, for instance, [Mork et al., 1992; Ye et al., 1993]. cavity diode laser with intracavity atomic absorber,"

The time-, frequency-, and optical frequency- Quantum Semicl. Opt. 9(5), 867-878.

domain analyses performed in this paper clearly de- Eckmann, J.-P., Oliffson Kamphorst, S. & Ruelle, D.

tect the same aspects of the phenomena investigated [1987] "Recurrence plots of dynamic systems," Euro-

and their mutual consistency has been regarded as phys. Lett. 4(9), 973-977.
Fischer, I., van Tartwijk, G. H. M., Levine, A. M.,

a significant test. The variety of dynamic regimes Elsdsser, W., G6bel, E. & Lenstra, D. [1996] "Fast
identified in a range of laser frequencies close to the pulsing and chaotic itinerancy with a drift in the co-
atomic resonance, along with the ease of the ex- herence collapse of semiconductor lasers," Phys. Rev.
perimental access to the slow absorber-induced dy- Lett. 76(2), 220-223.
namics, makes this system an interesting subject for Grassberger, P. & Procaccia, I. [1983] "Characteriza-

further experimental and theoretical investigations, tion of strange attractors," Phys. Rev. Lett. 50(5),
which would be required for a full understanding of 346-349.

the nonlinear and chaotic properties described here. Kitching, J., Boyd, R., Yariv, A. & Shevy, Y. [1994] "Am-
For instance, it would be needed to explain how the plitude noise reduction in semiconductor lasers with

characteristic time scale induced by the absorber weak, dispersive optical feedback," Opt. Lett. 19(17),
emerges from the destabilization of the regime of 1331-1333.

self-locking. Liu, Z. D., Bloch, D. & Ducloy, M. [1994] "Abso-
lute active frequency locking of a diode laser with
optical feedback generated by Doppler-free collinear

Acknowledgments polarization spectroscopy," Appl. Phys. Lett. 65(3),
274-276.

The work of D. Hennequin at the University of Pisa Masoller, C. [1994] "Coexistence of attractors in a laser

was within the framework of a collaboration be- diode with optical feedback from a large external cav-

tween the CNR of Italy and the CNRS of France. ity," Phys. Rev. A50(3), 2569-2578.
Mirasso, C. R., Mulder, M., Spoelder, H. J. W. &
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A very simple technique, which uses a succession of two different but constant levels in the
pump parameter, is shown to be quite effective in controlling the turn-on transient of a class B
laser. In particular, a drastic reduction in the delay time, as well as a lowering of the intensity
overshoot under suitable conditions, has been observed both in numerical simulations and in
experiments on a CO 2 laser. Such a straightforward, nonfeedback technique may have very
promising applications in the realm of communications.

1. Introduction has expanded to address the characteristics of the
transition between two states of a dynamical sys-

Lasers, like many other optical systems, have at- teanits conto sotio o t genral

tracted considerable attention for their nonlinear pem of icon trA sient h beeai
respnseto araete vaiatins nd o prtuba- problem of "customizing" a transient has been pi-

response to parameter variations and to perturba- oneered by Petrov and Showalter, who used a non-

tions. Their behavior, both regular and chaotic, oneer controv and oaltel wor a non -

was extensively investigated during the 1980's inear control method on a model for a nonlinear

[Abraham et al., 1985; Bandy et al., 1988]. The the- chemical reaction, with excellent results [Petrov &

oretical prediction that unstable periodic orbits in Showalter, 1996].

a developed chaotic regime could be stabilized with In this short communication, we present a sim-

small perturbations [Ott et al., 1990] sparked in- ple and effective way of controlling the transient

vestigations in many different systems. Since then, evolution of a class B laser [Tredicce et al., 1985] be-

much work has been done to control unstable pe- tween two states: below threshold (which becomes

riodic orbits (e.g. [Hunt, 1991]) and in lasers sev- unstable after the laser is switched on) and above

eral different schemes for the control of such orbits threshold (final stable steady state). Although the
have been devised (e.g. [Roy et al., 1992; Bielawski control of laser turn-on may sound quite simple,
et al., 1994]). More recently, interest has focused class B1 systems show nontrivial dynamical behav-
on reaching the desired periodic orbit in a minimum ior due to the coupling of variables which respond
time, and many questions related to the targeting at very different rates. Since a large part of all
of particular states [Shinbrot et al., 1993; Boccaletti lasers sold for commercial applications (from high
et al., 1997] have been examined. The application power to communications) belong to this class, a
of optimal targeting to loss-modulated lasers has simple means of controlling their turn-on behav-
been very recently proposed in a few theoretical pa- ior could have very important and useful applica-
pers [Kotomtseva et al., 1997; Turovets et al., 1997]. tions. With the help of a simple model that cap-
What is being stabilized in all these cases, however, tures the essential dynamical properties of class B
is asymptotic behavior. Very recently, this field lasers, we discuss the basic physical features of these

*Corresponding author

'The main elements of this class are solid state lasers (in particular Nd:YAG), semiconductor lasers, and CO 2 lasers.
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systems when they are turned on by a sudden switch 4.5 0.07

of the pump parameter. We then show the result
of measurements obtained with a CO 2 laser and 4 |

compare it to the predictions of a model that takes r 0.06
into account the specific molecular features of this : 3.5 -

laser. Finally we interpret physically the observa- C
tions and, in the conclusions, comment on possible a 3 05

applications. 0

Extensive studies of the response of class A 2.5

lasers (e.g. He-Ne, Ar+, and m ost lasers em itting .......... .. .. ........ _

in the visible part of the spectrum) have conclu- 2 -. 96.1-3-.88-"3 ..- 3 - 3 0.04

sively shown that their turn-on is controlled solely - -0"
by the amount of spontaneous emission present at
the switch-on time. The stochastic delay time with Fig. 1. Turn-on of a CO 2 laser by a sudden commutation

of the pump parameter from below to above threshold. Up-
per trace: Time behavior of the current flowing through the

neous emission into a stimulated one closely mir- laser, which excites the molecules - initial current value:

rors the statistics of the initial photons [Arecchi below threshold; final current value: above threshold. Lower
& Degiorgio, 1972; Arecchi et al., 1982] (below trace: laser power. Note the delay time (;- 185 ps) between

threshold). The response to noise at turn-on of the switch-up of the pump current and the actual laser's

class B lasers, which are modeled by two dynam- turn-on, and the peak overshoot followed by strongly damped
relaxation oscillations.

ical variables (instead of only one variable as in
class A systems), has instead shown more complex
features [Ciofini et al., 1992; Balestri et al., 1991;
Balle et al., 1994; Grassi et al., 1994; Lippi et al., 3*105

1997]. In this case, when the laser is turned on by
abruptly increasing the pump value (which is what .

happens when a laser's electrical switch is turned = 2,10'
on), the system's evolution is not just the result

0of a single variable, the intensity, that builds up C
from noise. Here the slow variable - the popula- 1*105

tion inversion - is strongly coupled to the inten-
sity and plays an important role in determining the
system's response, profoundly affecting its charac- 0 L

teristics (cf. Sec. V in [Lippi et al., 1997]). 0 50 100 150 200

The more complex response to noise in class t(4s)

B lasers is an indication of their intrinsic dynam- Fig. 2. Numerical integration of a five-dimensional model
ical richness, which we exploit for the control of for a CO 2 laser, showing the intensity as a function of time

after the application of an abrupt jump in the pump param-the turn-on transient. We are primarily interested etr(eint)atmet=0

in controlling the system's switch-on on average,

and so in the experiment we performed averages
over many repetitions of the laser turn-on. In state value) is characteristic of these systems, as are
the theoretical discussion, we do not specifically the relaxation oscillations which follow.
include the influence of noise and instead explain Figure 2 shows the result of integrating a
our results using the deterministic elements of the complete five-dimensional model for a CO 2 laser
model. Figure 1 shows the intensity of a CO 2 laser [Meucci et al., 1992; Ciofini et al., 1993] for pa-
(lower trace) in response to a rapid variation of rameters close to those of Fig. 1. This model, the
its pumping current (upper trace) from below to best presently available, correctly reproduces most
above threshold. Note the macroscopic delay time of the laser's features: delay time, frequency and
(; 185 ps) between the abrupt current commuta- amplitude of the relaxation oscillations. Indeed, it
tion and the rise of the laser intensity out of noise. was developed to account specifically for these fea-
The overshoot in the intensity (past the final steady tures [Meucci et al., 1992] in the transient regime
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and is therefore much more appropriate to the sim- A numerical integration of these two equations
ulation of the laser turn-on than equivalent reduced is given in Fig. 3. In Fig. 3(a), the intensity re-
models (with two or three variables, e.g. [Oppo sponse of the laser after the switch-on at time t = 0
et al., 1989]). The improved agreement, also shows the effects of the reduced phase space in the
compared to earlier five equations models (e.g. increased number of relaxation oscillations present.
[Arimondo et al., 1983]), is achieved using the re- The corresponding time evolution of the population
laxation rates of the upper and the lower levels inversion is shown in Fig. 3(b) where the horizontal
as fitting parameters. Although this procedure dashed line at 1 represents the threshold value. The
may seem somewhat arbitrary, it is justified by joint phase space portrait is given in Fig. 3(c).
the fact that no simple dynamical model can take Since this model is purely deterministic,
into account all of the laser's features, especially the below-threshold condition corresponds to the
in the transient regime (cf. [Meucci et al., 1992] steady state (Is, = 0, Ds,i = Poff). Thus, the pop-
for details). Our preference for this model comes ulation inversion D, as described by Eq. (1b), ini-
from the fact that it predicts realistic delay times, tially undergoes an exponential growth and in the
while in the reduced models the delay is always absence of laser intensity would asymptotically sat-
largely underestimated (for reasonable parameter urate at Po-,. The evolution of D closely follows
values). We remark that the time delay in the ex- this functional dependence as long as I is negligibly
periment (cf. Fig. 1) has an additional component small: certainly whenever its growth rate [Eq. (la)]
of about 100 pIs, which comes from the time re- is negative, and in part even beyond that. As soon
quired to transfer the pump pulse to the lasing levels as threshold is reached, the sign of the prefactor
[Witteman, 1987] and which is never taken into ac- of I in Eq. (la) changes [(1 - D) becomes nega-
count in dynamical models. Therefore, the com- tive] and the intensity begins to feel the nonlinear
parison has to be drawn after subtraction of this (bilinear) coupling between itself and the popula-
additional time lag. In spite of its considerable tion inversion. Thus, although the intrinsic growth
advantages, one should not expect a quantitative rate of the intensity is much larger than that of the
agreement on the peak amplitudes from this model, population inversion (K > 'y)', its actual growth
either. Indeed, even in this case the amplitude depends on the evolution of D. In particular, we
of the peak overshoot is higher than in the real observe that the population inversion, D, must be
system. larger than 1 [i.e. than the final steady state value

Although useful for the comparison between ex- (Isf = Pon, Ds,f = 1)] for the intensity to grow,
periment and theory, the five-dimensional model is and that the field intensity's growth is proportional
too complex for a simple analytical treatment, from to the distance in phase space between the instan-
which we would gain a physical understanding of taneous population inversion and its equilibrium
the mechanisms involved in the transient. We will value.
therefore discuss a reduced two-dimensional (rate Since the initial value of I is negligibly small 2

equation) model [Siegman, 1986], which captures (the spontaneous emission power is typically at least
the main topological features of the phase space: seven orders of magnitude smaller than the final

laser power), there will be a certain time lag be-

- = -K(1 - D)I, (la) tween the moment when (1 - D) becomes negative
dt and when I assumes values that are non-negligible

dD [compared to 1, cf. Eq. (1b)]. During this time D
dt- = -yll[D(1 + I) - P(t)], (1b) continues to grow [Fig. 3(b)], albeit at a slower rate

[due to the term -y 1iDI, Eq. (1b)]. The instanta-
where I and D are the e.m. field intensity and pop- neous value of D, above Dsf, causes the intensity I
ulation inversion variables, respectively, K and 711 to overshoot and then to exhibit the characteristic
are their respective relaxation constants, and P(t) damped, ringing behavior [Tredicce et al., 1985] well
is the pump parameter, which is switched here at illustrated by the phase space plot [Fig. 3(c)] which
time t = 0 from below (Poff) to above threshold clearly shows the various stages of the evolution of
(P..)- the transient.

2 For the numerical integration we add a very small constant to I to allow the code to move away from the unstable fixed point.
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Fig. 3. Results of the numerical simulation of the laser rate equations under conditions comparable to those in Fig. 2.
(a) Shows the laser intensity as a function of time after an abrupt commutation of the pump parameter at t = 0 (see inset of
previous figure). (b) Shows the corresponding behavior of the population inversion. (c) Shows the phase space portrait.

From the above discussion we extract the fol- of the overshoot, we need to modify the evolution
lowing important points: of the population. Since its relaxation constant 711

1. There exists a deterministic component of the cannot be changed, we must act on the pump pa-

delay time at turn-on due to the slow response rameter directly.

of the population inversion, which has to attain The simplest way of achieving our goal is that
of adding to the pump pattern shown in the inset ofthreshold before the intensity may grow.

2. The field intensity cannot grow away from its ini- Fig. 2 an intermediate control step (Fig. 4), whose
tial value until the population inversion is larger height and duration can be chosen to suit our pur-than 1 (in these normalized units)i poses. The addition of this intermediate step, of
than 1ue ( thes nackor"maed cnit) iheight P, (higher than the final level at Pon) and

3. Due to the lack of a "macroscopic" intensity duration tc, serves a double purpose: (1) increasing
during the additional delay time, the popula- the speed at which the population inversion grows
tion keeps growing further and further away from - since its saturation value, Pc, will be higher dur-
threshold under the steady action of the pump. ing this step - and (2) providing a better initial
(This "dead time" for the field is due to its rapid, condition for the evolution of the field intensity (this
the population is inverted.) point will be clarified in the physical discussion).

Figure 5 compares the results obtained us-

If we want to influence the delay time with which ing the five-dimensional CO 2 laser model [Meucci
the laser turns on, and, possibly also the height et al., 1992] for various values of the height, Pc,
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Fig. 4. Two-step control pattern for laser turn-on. The

pump parameter is switched up from its initial value, Poff 2105
at time t = 0, towards a control level of height P., larger (b) (b)
than Pn, and duration t,. P and t, can be varied to op- (c) (C)
timize the turn-on behavior. Pn is the desired final pump
level. 1.5-105

of the control step. The effect of inserting this step -
is clear: The population inversion [Fig. 5(a)] in- =

creases more rapidly during the time interval during . 5*104

which the laser is pumped harder (between t = 0
and t = tc = 20 bs). As a result [Fig. 5(b)], 0.
the laser turns on sooner, i.e. the delay time at 0 50 100 150 200

turn-on is reduced (mainly) by the faster growth t (gs)
of the population inversion from its initial value up Fig. 5. Numerical integration of a five-dimensional model

to threshold. 3 A nontrival additional result, clearly for a CO 2 laser. (a) Temporal evolution of the population

visible in Fig. 5(b), is that there is an optimal height inversion for (a) A. = A n = 0.1, (b) Ac = 0.2, (c) Ac = 0.3,

of the intermediate pump value for which we simul- (d) A, = 0.4, (e) A = 0.5, (f) A, = 0.6 and (g) A = 0.7.

taneously reduce the turn-on delay time and the The other parameters are te = 20 ps, Poff = 0.9, Pon = 1.1,

peak intensity, and the relaxation constants of the model k = 2 x 107 s- 1,

The effect of the control step is summarized in -yj = 8 x 10 4 s- 1 , Y2 = 1 X 104s- 1, -YR = 7 x 105S- 1, z = 16.
The horizontal dotted line (at 1) marks the lasing threshold.

Fig. 6, which shows the peak amplitude [Fig. 6(a)] Notice that the duration of the control step corresponds to
and the delay time [Fig. 6(b)] as a function of con- the time at which the population inversion curves (b-g) show
trol step height. A strong deviation from a linear a discontinuity given by the abrupt change in pump level.

relationship (marked by the solid line in Fig. 6(b), (b) Temporal evolution for the correspondent field intensity.

obtained by interpolation between the leftmost two The minimum in the intensity occurs between curves (d) and
(e), i.e. for a population inversion level at time t. very close

points) appears only after the minimum in the peak to threshold (as predicted by the simplified model).
height has been passed [cf. Fig. 6(a)]. Near the min-
imum the deviation from linearity is recognized to
be approximately 8%. the presence of a minimum overshoot height. In

The experimental application of the pump pat- Fig. 7, we show the average values of peak height
tern in Fig. 4 to a CO 2 laser (cf. [Grassi et al., 1994] as a function of the average delay time for different
for details about the setup), confirms the existence amplitudes of P, (the values of the pump parame-
of both effects: The reduction in delay time and ter are estimated under the assumption of a linear

3 The discontinuity appearing in Fig. 5(a) is not a numerical artefact, but reflects the sudden variation of the pump parameter
onto the population inversion growth. We have extensively checked both the integration routine and the time step, in the
framework of this and of another investigation [Lippi et al., 1997], to ensure that the sudden change in the control parameter
does not affect the quality of the numerical prediction.
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the control t, = 20 Ms. Estimated amplitudes of the control
150 step: (a) P, ; 1.25 (uncontrolled turn-on); (b) P! z 1.27;

(c) P, z 1.28; (d) P, z 1.3; (e) Pc : 1.34; (f) P P 1.43;
(g) P 1.61. Poff 0.9, Pn - 1.25. The intensity values

4) are given without subtracting the detector's offset, ; 42 mV.'a

4) 100
E

delay time, decreases down to a minimum (r 2.5%
50 * reduction). If we continue increasing this ampli-

tude beyond the optimal value, then the delay time
1.2 1.4 1.6 1.8 is further reduced, but the overshoot amplitude in-

Port creases. We first provide an approximate analytical
Fig. 6. (a) Height of the peak overshoot as a function of explanation for the occurrence of this minimum and
the control step; (b) time delay as a function of the control then interpret all results physically.
step; the straight line marks the extrapolated linear depen- We start from the equations of the simplified
dence of the delay, estimated from the two leftmost points, model already considered [Eqs. (1)]. For an analyt-
All parameters as in the previous figure (more Ac levels are
calculated here). ical treatment we use the approximation of [Balle

et al., 1991] where we neglect the intensity dur-
ing the time period when it is very small. In

relationship between excitation current and effec- this regime,4 we can neglect the intensity term in
tive pump). The averages are taken over 50 suc- Eq. (1b) and integrate the resulting expression for
cessive turn-ons. Three sequences, of 50 events the population inversion as a function of time. Us-
each, are averaged together (for each value of ing the equilibrium value of the population inversion
the parameters) to provide the weighted averages Ds,j as the initial condition, we obtain the value of
with weighted standard deviations (cf. [Worthing & the population at the end of the control step:
Geffner, 1943] for details), that we show in the fig-
ure. The first measurement, far right point, marked D, = D(tc) = Doffe - tc + Pc(l e- tc), (2)

as a, corresponds to P, =Pon - i.e. turn-on with-
out control (simple one-step commutation, as in where E = (I/K), and tc is the time at which
Fig. 1). By gradually increasing the intermediate the control step ends. Using the latter expression
step height, we see that the average amplitude of the [Eq. (2)] as a new initial condition, we integrate
overshoot peak, plotted as a function of the average Eq. (1b) again, with pump value Pon, to obtain the

4As can be seen from Fig. 5 the minimum in the peak overshoot occurs when the pump is brought from P. to Po. before the
field intensity becomes macroscopic (a fact that will be clear later). Hence, the approximation we are presenting applies to
the whole of the control step and beyond.
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growth of the population inversion as a function of expression, Eq. (7), is independent of the "macro-
time after the control step. The approximate ex- scopic threshold" that we have chosen for the field
pression that we obtain in this way is valid up to a intensity, *. Looking back at the simulations in
time t*, which corresponds to the time for which Fig. 5, we remark that the minimum in the inten-
the e.m. field intensity reaches a threshold value sity overshoot indeed occurs near the condition in

*, which we can freely choose. Beyond this value, Eq. (7).
the intensity cannot be considered to be negligible This result can also be understood intuitively.
anymore. We can write the value of the popula- As already mentioned, the decrease in delay time
tion inversion at time t* as a function of all other is mainly due to the faster growth of the popula-
parameters: tion inversion during the control step. However, if

the control step is kept beyond the time for which

=D(t*)= Doff(1- t*) the threshold is passed, the population inversion

+ 6[(1 + Aon)t* + (Ac - Aon)tc], (3) grows at a faster rate in the time interval where
the field intensity grows. Hence, corresponding to

where the further reduction in delay time that is brought
about by the longer control duration is a higher

Pc = 1 + AC, (4) excess of population inversion when the field inten-

P. = 1 + Aon, (5) sity reaches macroscopic levels, and hence a higher
overshoot. This explains the increase of the peak

for convenience, and where we have expanded all amplitude when the optimal value for the mini-

exponentials to first order in Et. mum is passed. The existence of the minimum it-

After time t*, the full, coupled nonlinear system self can be understood in the following way. The

[Eqs. (1)] describes the dynamics. However, if we amount of spontaneous emission present at all times

are only interested in determining the peak ampli- determines the instantaneous value of the field in-

tude of the laser, we can once again solve the system tensity. Once the population inversion crosses the

of equations in an approximate form. In the region lasing threshold, the intensity starts growing from

where the intensity is at its highest, the contribu- the instantaneous value that it has acquired at the

tion of the population inversion can, in comparison, time of crossing. A faster growth of the population

be neglected [Balle et al., 1991]. Following the so- inversion, below threshold, implies a faster growth
lution technique outlined in [Balle et al., 1991], we of the spontaneous emission, and hence an initial
obtain for the peak intensity the expression: condition for the intensity somewhat closer to the

final steady state value Is,f. Hence, provided that

= I* + D* - Dp + lo (6) the control step does not continue above threshold
- but that it actually stops just before reaching

where * and D* are the value of the intensity and threshold [cf. Eq. (7)] - the faster growth of the

of the population inversion at time t*, respectively, population brings the intensity closer to the final

and Ip and Dp their corresponding values at the operating condition, thereby reducing the time in-

maximum of the intensity overshoot. If we now tervening between the crossing of threshold and the

search for the existence of a minimum in the ampli- occurrence of the peak. The consequence of this is

tude of this peak as a function of P, (or equivalently, a (small) reduction of the overshoot height, accom-

A,), we find that this occurs if and only if panied by a small contribution in the reduction of
the delay time.

D = 1 - Aon-(t - ta), (7) Before concluding, we remark that the opti-
mal value for the control to obtain the minimum

which, because of the smallness of e, is very close overshoot can also be found by keeping the con-

to the laser threshold value (I is the time at which trol height, Pc, constant and varying its duration

the population inversion reaches threshold during tc. Indeed, if we approximate Eq. (2) to first order

its growth). This is equivalent to saying that the in Et, and equate it to the expression for the opti-
minimum value of the overshoot is reached when mal value of D., Eq. (7), under the further assump-
the population inversion is brought very close to tion that the laser is initially very close to threshold
threshold by the control step. We note that the (Doff ; 1), we obtain an approximate "area law" of
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the form: Balestri, S., Ciofini, M., Meucci, R., Arecchi, F. T.,
Colet, P., San Miguel, M. & Balle, S. [1991] "CO 2 laser

ctc- 1 - Dff Aon(i - tc), (8) with swept pump parameter: The nonlinear regime,"
Phys. Rev. A44, 5894-5897.

whose validity, however, is limited to short times Balle, S., Colet, P. & San Miguel, M. [1991] "Statistics
exponential for the transient response of single-mode semiconduc-

(because of the approximation of the exo e tor laser gain switching," Phys. Rev. A43, 498-506.
time dependencies). This "area law" can be numer- Balle, S., San Miguel, M., Abraham, N. B., Tredicce,
ically verified to an acceptable degree even with the J. R., Alvarez, R., D'Angelo, E. J., Gambhir, A.,
five-dimensional CO 2 laser model, but the equiva- Thornburg, K. S. & Roy, R. [1994] "Transients in mul-
lence between the time duration and the step height tivariable dynamical systems depend on which param-
in the control exists only under very restrictive con- eter is switched as illustrated in lasers," Phys. Rev.
ditions. In general, a better degree of control is Lett. 72, 3510-3513.
obtained by changing the step height, as we have Bandy, D. K., Oraevski, A. N. & Tredicce, J. R. (eds.)
found both numerically and experimentally. [1988] "Nonlinear dynamics of lasers," Special Issue of

In conclusion, we have seen that a very sim- the J. Opt. Soc. Am. B5(5), 879-1215.

ple control technique, based on the introduction of Bielawski, S., Derozier, D. & Glorieux, P. (1994] "Con-
an intermediate flat level in the pump parameter, trolling unstable periodic orbits by a delayed contin-an uous feedback," Phys. Rev. E49, R971-R974.
is quite effective in reducing the class B laser's de- Bosafe San, . Kev. c, E. J.

lay imeat urn-n ad, ndersuiabl conitins, Boccaletti, S., Farini, A., Kostelich, E. J. &: Arecchi,
lay time at turn-on and, under suitable conditions, F. T. [1997] "Adaptive targeting of chaos," Phys. Rev.
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shoot. The advantage of such a simple nonfeedback Ciofini, M., Lapucci, A., Meucci, R., Wang, P.-Y.
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nological difficulties that can be encountered in the dimensional model for CO 2 lasers," Phys. Rev. A48,
implementation of even such a simple method, its 605-610.
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sta et fon statistics of class-B lasers under the influence of
it would permit faster modulation and higher bit adivens,"Ps.R.A5,8-12
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The synchronization of chaotic systems have received an increasing interest in the last few
years. In an attempt to understand some of the possible mechanisms of synchronization of
neurons in a noisy environment, the present study extends a control method which is based on
the Kalman filter. This adaptive control mechanism is able to modulate the frequency and the
clustering behavior of a network of neurons and can thus make the network switch dynamically
to different rhythmic activity, leading to different coding possibility.

1. Introduction [Dickinson et al., 1990; Meyrand et al., 1991; Wu
et at., 1994]. For instance, based on in vitro ex-

Individual neurons often exhibit temporal chaotic e or istastogased nvo em

behavior as observed in the characteristics of periments on the stomastogastric nervous system

intracellular voltage measurements [Aihara & of a crustacea, Meyrand et al. [1991] have reported
Matsumoto, 1986; Mpitsos et al., 1988; Hayashi & that under an identified neuromodulatory stimu-

Masu ot, 196; i to eta. 198 H ysh lus, neurons operating independently as members
Ishizuka, 1992; Abarbanel et al., 1996]. Individual of nerns orks indeecnly as a
neurons generate chaotic oscillations but groups of differents networks may be reconfigured into a

of coupled neurons can display quasiperiodic new pattern-generating network that oscillates co-synchronous rhythmic activity. Such dynam- herently but differently from the original networks.
ics are typical for many neurons in cortex and Moreover, it is commonly assumed that every cog-ics re ypial fr mny eurns i cotexand nitive action is mediated by the coherent activity of
small neural systems like central pattern genera-
tors that control the rhythmic motor behavior of neuron groups at multiple locations and it has been

animals [Eckhorn et al., 1988; Singer, 1993; Fujii suggested [Eckhorn et al., 1988; Singer, 1993; Gray

et al., 1996]. Physiological studies have accu- & McCormick, 1996; Fujii et al., 1996; MacLeod

mulated evidence indicating the existence of syn- & Laurent, 1996] that this synchronous activity

chronous rhythmic activity in different areas of may have a role in solving the so-called binding
the brain of some animals [Gray et al., 1989; problem.
Engel et al., 1990; Bressler et al., 1993; Whit- So some coordination or synchronization of
tington et al., 1995; Neuenschwander & Singer, these chaotic individual activities must be ar-
1996] and in some other small neural system ranged for a directed functional behavior that

*Address for correspondence: CNRS URA 258, Universit6 Pierre et Marie Curie, 7 quai Saint Bernard, Bit. A, 76me 6tage,
Case 237, F-75252 Paris Cedex 05, France.
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have cooperative properties related to the func- The purpose of the present work is to ex-
tion performed. The cooperative behavior of these tend a previous work [Cazelles et al., 1997] to
coupled neurons can be much richer and much the case of a network of model neurons. These
more organized than the activity of the individ- previous works have pointed out that adaptive
ual neurons forming network. A fundamental ques- control even in noisy environment can provide a
tion that remains open is how such assemblies are mechanism that permits a network of chaotic ele-
transiently self-synchronized for each specific task. ments to modify or stabilize its clustering behavior
In this view recent findings in the field of nonlin- and can be necessary to maintain a network at a de-
ear dynamical systems are very promising, open- sired ordered state. These control mechanisms can
ing the possibility of controlling [Ott et al., 1990; also induce transition from high dimensional disor-
Shinbrot et al., 1993; Chen & Dong, 1993] and dered motion to coherent synchronized pattern via
synchonizing [Pecora & Carroll, 1990; Rulkov et al., feedback parameter perturbations. The adaptative
1995] chaotic dynamics. It has been shown that two control method [Cazelles et al., 1995] is based on

identical chaotic systems can be synchronized by the Extended Kalman Filter (EKF). This method

applying small temporal perturbations (parameter progressively adapts the system parameters and/or

or variable perturbations) to one of them [Pyra- the system variables to tune the dynamics towards

gas, 1992; Lai & Grebogi, 1993; Cazelles et al., a target behavior, taking into account uncertain-

1995]. ties both in the system behavior and in the goal

There has been some work on applying control behavior.
techniques to networks of model neurons. Sepulchre Depending on the parameters of the model net-

and Babloyantz [1993] have used the Ott-Grebogi- work, different types of clustering behaviors from
Yorke control technique in a high dimensional net- synchronized to completely desynchronized and dif-

work of coupled neurons and shown that higher ferent types of dynamics from quasiperiodic to

dimensional control is possible. Lourenqo and chaotic can be observed from a single network of

Babloyantz [1994] have used the Pyragas method to neurons. In response to a certain external stimulus

stabilize the unstable periodic orbits of the chaotic the network could modify its clustering behavior

dynamics of network neurons of moderate size. A and the firing frequencies of the neurons. The

pulse control scheme that requires less knowledge modification of the rhythmic activity of the network

of the system than an Ott-Grebogi-Yorke control is obtained by applying the EKF to force the neu-

technique is used by Carroll [1995a, 1995b] to con- rons of the network to imitate a target dynamics,
trol and synchronize the dynamics of a network which could be the dynamics of a pacemaker cell

of four neurons described by a modified version of which would want to impose its behavior on the

the FitzHugh-Nagumo equations. Carroll [1995b] network. Maintenance of an "optimal" function-

has shown that for some coupling configuration the ing of these neural systems depends on their ca-

group of neurons are only partially synchronized pacities of extracting pertinent information which

even though all groups share a common drive, is embedded in large noise. The key feature of this

Gii~mez and Matias [1996] have studied different approach is to cope with this kind of noise to permit

coupling of small groups of simple chaotic neuron synchronization (for example) in spite of environ-

models which are synchronized by applying pro- mental changes and in the presence of large noise in

portional perturbations to the dynamical variables the dynamics of the pacemaker.

of the system. Their method suppresses chaos This article is organized as follows. In Sec. 2 the

in each neuron, yielding to a particular periodic models used are presented and the EKF approach

or quasiperiodic dynamics. Abarbanel and his as a parametric adaptive control method is sum-

group [Abarbanel et al., 1996; Huerta et al., 1997] marized. In the first part of Sec. 3 the dynamics

investigate the variation of the rhythmic activity of individual neurons are reported as the dynamics

produced by two coupled chaotic Hindmarsh-Rose and the clustering behavior of the network. The

neurons. They showed that sufficiently strong in- second part of Sec. 3, after providing the conditions

hibitory coupling between chaotic neurons organizes required to apply the control method, reports on

regular out-of-phase rhythmic behavior and that how the degree of synchronization or the degree of

the change of the strength of the inhibitory coupling chaos is modified as the parameters of the neurons

is responsible for the variations in the number of are controlled. Finally, the last section is devoted

spikes in each burst. to some concluding remarks.
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2. Methods where t is a time index, i a neuron index, N
the number of neurons in the network, and e the

2.1. Models coupling strength between neurons.

Actual neurons are quite complicated and for many
years, simple approximate models of neurons have 2.2. The extended Kalman filter as an

been used to understand their basic function. It adaptive control method
has been shown in many cases that simple models The basic idea of our control algorithm is to apply
can adequately reproduce some of the basic fea- perturbations in the accessible system parameters
tures behind the firing dynamics of neurons (see e.g. to bring the system back to a desired state [Cazelles
[Hoppensteadt, 1986]). The aim of the present work t al., The adapti e t apples
is to modify the synchronized dynamics of a network et al., 1995]. The adaptive control applies recur-
of neurons and also the firing frequency by adaptive sively to the system, an external force based on thecontol.So siple ode tht rprodcestheba- difference between the actual output and a target
control.behavior. This external force takes into account the
sic features should be sufficient and in this present bevo.eThisbetenarete into ant te
work, I used the Chialvo model [Chialvo & Apkar- correspondence between parameter values and be-
ian, 1993; Chialvo, 1995] which has a neuron like havior types, the goal parameter value corresponds
dynamics and was found to agree qualitatively with to the dynamics of the goal behavior. This con-
experiments reported in previous works [Aihara & trol method thus synchronizes the system dynamicsMatsumoto, 1986]. The model is a two-dimensional with a target behavior. Various methods can be
map written in the form: used for this task but the Kalman filter makes itpossible to account for noise (uncertainties) both in

x(t + 1) =x(t)2 
. exp(y(t) - x(t)) + k the model and in the target dynamics.

(t + 1) = a(t). expyb -x(t)) + (1) The evolution of the discrete nonlinear system
y(t + 1) = a. y(t) - b. x(t) + c (network of neurons in this study) is given by:

where the x variable is related to an instantaneous X(t + 1) f (X(t),p) + (t) + External Force (3)
membrane potential of the neuron and the y vari-
able is equivalent to a recovery current. This model
has four parameters, a determines the time con- X(t) is the n-vector of state variables, is the j-
stant of reactivation, b the activation dependence of vector of model parameters subject to control, f is
the recovery process and c the maximum amplitude a nonlinear map defined in (2) and (t) the system

of the recovery current. The parameter k can noise (Gaussian noise with zero mean and variance

be viewed either as a constant bias or as a time- matrix Q). The external force is computed by the

dependent external stimulation. Kalman control procedure.
To simulate a network of neurons, each The target dynamics are produced by a

individual neuron is connected through a global reference model, a pacemaker cell that has the same
coupling by the membrane potentials. One obtains dynamics as the individual neurons (1) but with
globally coupled maps which are a dynamics of N constant parameter goal value Pg. The underlying
individual cells evolving according to local map- model of the target behavior is unknown for the sys-
pings and a "mean-field" interaction, the global in- tem and only observations of the target behavior are
formation influencing each individual cell. These available. An observation equation is defined:
maps are analogous to a "mean-field" version of
coupled map lattices [Kaneko, 1989] in which the Y(t + 1) = h(X(t), pg) + 71(t) (4)
short-range coupling (nearest-neighbor diffusion) is
replaced by a long-range coupling resulting from where Y(t) is the m-vector of observations, h the
a feedback from the "mean-field" [Kaneko, 1992]. function which defines the relation between state
The model of the network of neurons is written as: variables (X) and observations (Y) and 77(t) the

j=N observation noise (Gaussian noise with zero mean
t ±and variance matrix R) which can be interpreted

t(t) = (1 - E). xi(t) + -N. x(t) as an error caused by a noisy environment.
j=1 (2) In (3) the accessible system parameter yi

-1) exp(yi(t) - (t)) + k operates as the control input driving the system to

yi(t + 1) = a .yi(t) - b . xi(t) + c its target regime defined by noisy observations Y(t)..
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The change of the parameter vector IL is defined state-parameter noises; R the variance matrix as-
according to: sociated with the noise of the target behavior, 4

and H are the jacobian matrices associated with
j(t + 1) = P(t) + (5) the linearized form of the maps f and h; the

term K [Y(t + 1) - h(Xa(t + lit))] represents
Th ei te prat ern nisincrase d byt the External Force (3) with K the Kalman gain

The state equation (3) is increased by the matrix:

expression (5) for the parameter dynamics and can
be easily incorporated into a state-space framework K = P(t + lit) HT(t + 1)
as follows: . [H(t + 1). P(t + lIt)• HT(t + 1) + R]- 1

Xa(t + 1) = f(Xa(t)) + (t) (6a) (11)

Y(t) = h(Xa(t), Pg) + i(t) (6b) 3. Results and Discussion

where the increased state-parameter vector Xa isdeinds:XT = [XTa, /W]" 3.1. Neuron and network dynamics
defined as: a [aX m itn

Originally, the Kalman filter is conceived for The individual neuron model used exhibits a rich
linear models and for nonlinear models a linearized dynamics, for example modifying the parame-
system using the first order Taylor series expan- ter b, one obtains either fixed point, periodic,
sion led to the "extended Kalman filter" (EKF)
[Anderson & Moore, 1979]. EKF makes incremen-
tal corrections of the state-parameter vector at time (a) (b)

t to guide the system towards the target observa- 5 111311
tion vector of state-variables. For more biological 25 2.5
realism, as in the work of Carroll [1995a, 1995b] only 12 91.5
a pulse control has been performed. The corrections 0i

have been computed only when there is a spike in "
the target observations. The recursive form of the 0 100 200 300 400 500 0 100 200 300 400 500

algorithm can be written as the following scheme: Times Index Times Index
(c) (d)

" Prediction of the states' mean and variance: 3 W 2 (d)

Xa(t + lit) = f(Xa(tt)), (7) A 2 1.5

P(t + lit) =1)(t + lit) .P(tlt) 0 [o.j
• j¢(t + 1it) T + Q. (8) 2 0........

0 100 200 300 400 500 0 100 200 300 400 500

* Correction of the states' mean and variance, only Times Index Times Index

if there is a spike in the target dynamics: (e)
100

Xa(t + l1t + 1) =X(t + lit) + K [Y(t + 1) • 80 b =0.60

-h(Xa(t + lit)], (9) 60 b 0.50

b =0.30

P(t + l1t + 1) = [I - K H(t)] P(t + lit) .W b=0.18
40

[I - K.- H ] + K.R K2

(10) 20

In the above equations, the notation (tit) indicates 0 5000 10000 15000 20000

an estimation at time t conditionally to all of the Times Index

observations up to and including those available at Fig. 1. Dynamics of the Chialvo model. Time evolution of
t; and superscript "T" denotes matrix transpose; P the membrane potential with (a) b = 0.18, (b) b = 0.30,
is the variance matrix of the state-parameter es- (c) b = 0.50 and (d) b = 0.60. Time series of the interspike
timation errors; Q is the variance matrix of the intervals (e) obtained with different b values.
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quasiperiodic or chaotic dynamics [Figs. 1(a)-1(d)] 3.2. Modification of the clustering
[Chialvo, 1995; Gii6mez & Matias, 1996]. But more behavior of the network
interesting from a neurophysiological point of view, Different types of clustering behaviors from
when modifying the dynamics of the model the synchronized to completely desynchronized and dif-
interspike interval is also modified; with b egal ferent types of dynamics from quasiperiodic to
0.18 one has interspike interval chaotic time se- chaotic can be obtained from a single network
ries and with higher values one has fixed interspike of neurons (Fig. 2). This opens the possibility of
intervals. But increasing the parameter b, the inter- controlling the degree of chaos or the degree of
spike intervals are increased, decreasing the firing synchronization of a network, by modifying either
frequency of the neuron [Fig. 1(e)]. It is particularly the parameters of each individual neuron or the
interesting because some neurobiologist conjectures coupling strength among neurons. In this work,
that the firing frequency of a neuron acts as neu- I focus on modifying the activation dependence of
ral coding [Fujii et al., 1996; MacLeod & Laurent, the recovery process, b, by applying the Kalman
1996]. control process described above. To use the EKF

Chaotic globally coupled maps, as our net- procedure, one must specify the target dynamics
work model, are known to have two conflicting and matrices Q and R: (i) An external signal, the
trends: destruction of coherence due to the chaotic dynamics of a pacemaker cell which would want to
divergences of individual oscillator and a synchro- impose its behavior on the network is used for ob-
nization force through global averaging. In a glob- servations (the target behavior); (ii) the variance
ally coupled chaotic system, the following clustering matrix Q of the state-parameter noises will take
phases can appear [Kaneko, 1992]: (i) a coherent on values between 5% and 10% of the mean of the
phase where all oscillators are synchronized; (ii) an network dynamic; (iii) the variance matrix of the

ordered phase with few clusters in which each os- observation error R will take on the same values as
cillator is synchronized; (iii) a partially ordered Q, in the absence of noise; if observations (the tar-

phase with many coexisting clusters and (iv) a tur- get behavior) are corrupted by noise, the variance

bulent phase where all oscillators have their own of the additive noise will be assigned to R.

dynamics. Figure 2 displays an overview of the At one time, I chose to synchronize an initially

clustering behavior and of the temporal dynamics chaotic and turbulent network of 50 identical neu-

of a network with 50 neurons (with 100 neurons rons (b = 0.18) with low coupling strength (E

quite similar results are observed). The clustering 0.02) to the dynamics of a pacemaker characterized

behavior diagram [Fig. 2(a)] is obtained by counting by a quasiperi6dic behavior (bg = 0.25). Figure 3

the numbers of different x values (membrane po- illustrates this example: Fig. 3(a) displays the pa-

tential) for final attractor when 10000 points have rameter adaptation; Fig. 3(b) shows the dynamics

been discharged. On one randomly chosen neuron, of the 50 neurons and Fig. 3(c) the decimalbeendishargd. n oe radomy cosenneuon, logarithm of the difference between the membrane

the temporal dynamics [Fig. 2(b)] is approximate potential of one randomly chosen neuron and the

by counting the number of different spikes for the e potential of the paceaker el the

last 5000 iterations. In function of the coupling work and the pacemaker cell dynamics originally

strength, E, and of the parameter, b, the behavior of behaved quite differently. As soon as the control

the network varies from a phase of completely inco- action is switched on at time index egal 100, the
herent chaotic behavior, through phases of partial parameter value b starts converging towards the
synchronization to a global synchronization phase goal value b. [Fig. 3(a)] and the trajectories be-
whereas the temporal dynamics can be chaotic, come fully synchronized [Fig. 3(b)], the difference
quasiperiodic or regular. between the two signals (network and pacemaker)

Thus modifying the activation dependence of decreased dramatically [Fig. 3(c)]. At time in-
the recovery process, b, or the coupling strength, dex 400 the target behavior is modified, the new
E, by adaptive control, one can induce different driven pacemaker cell have a quasiperiodic behavior
clustering behavior and different firing frequencies with low firing frequency (bg = 0.50). Once
of the network thus modifying and arranging the again the network is quickly resynchronized to the
coding possibilities of the network. new rhythmic activity by the adaptive controller.
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Fig. 2. Phase diagram for a network of 50 neurons. Part (a) shows the clustering behavior and part (b) the temporal
dynamics of the network. The numbers of clusters, k, have been obtained by counting for the final attractor the numbers of
different x values (membrane potential) when 10000 points have been discharged. Temporal dynamics of the network have
been approximated by counting on one randomly chosen neuron the number of different spikes for the last 5000 iterations. All
calculus were carried out by incrementing the parameters b and 6 by 0.001.
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Fig. 3. Synchronization of a chaotic turbulent network of identical neurons (N = 50, b = 0.18 and E = 0.02) to the dynamics
of a pacemaker cell characterized by a quasiperiodic behavior (b, = 0.25 and b9  0.50). The control is active at time index
100 and at time index 400 the dynamics of the pacemaker cell is modified. (a) Parameter adaptation (blue lines: parameter of
each neuron; red line: parameter of the pacemaker cell which defined the target dynamics). (b) Time series of the 50 neurons.
(c) Time evolution of the log of the absolute value of the difference between the membrane potential (X) of one randomly
chosen neuron and the membrane potential (Xgoai) of the pacemaker cell.

At each time, after 3 or 4 pacemaker spikes the pa- behavior (bg = 0.25). For each neuron of the
rameter convergence is complete and the dynamics network, the dynamics of the pacemaker cell is
of the network is fully synchronized to the rhythmic spoiled by large additive noise (SNR = 5.00). As
activity of the pacemaker cell. in the previous noiseless example, despite the large

The robustness of the method used when noise noise, the control successfully drives the parame-
is added to the target behavior have been tested. ter b towards the goal value bg and the network
The noise intensity is characterized by the signal to presents a synchronous rhythmic activity [Fig. 4(c)].
noise ratio (SNR) which is the standard-deviation of Figure 4(a) displays the parameter adaptation,
the reference dynamics (noise-free target behavior) Figs. 4(b) and 4(c) show the networks' behavior
divided by the standard-deviation of noise. Figure 4 before and after controlling.
displays the parameter adaptation and the be- Similar results (not showed) are obtained with
havior of an initially chaotic and turbulent net- other values of the coupling strength (-) or the
work (b = 0.18, E = 0.02) that is control to a activation dependence parameter (b), for exam-
target behavior with a quasiperiodic synchronized ple with chaotic synchronized or with two-cluster
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Fig. 4. Synchronization of a chaotic turbulent network of identical neurons (N 50, b = 0.18 and e = 0.02) to the dynamics
of a pacemaker cell characterized by a quasiperiodic behavior (b9 = 0.25). For each neuron, the target behavior is spoiled by
a large additive white noise characterized by SNR = 5.00 (7.0 dB). The control is active at time index 100. (a) Parameter
adaptation (blue lines: parameter of each neuron; red line: parameter of the pacemaker cell). (b) Plot of the evolution of the
first neuron of the network versus the 49 others before activation of the adaptive control. (c) Plot of the evolution of the first
neuron of the network versus the 49 others after activation of the adaptive control (simulations were run over 400 iterations
and the last 200 points are shown).

periodic target behavior. The parameter fluctua- 4. Conclusion
tions produced by the adaptive controller stabilize
the network momentarily into a coherent state with Neuronal sensory systems of living organisms are
a given firing frequency, more appropriate for a spe- capable of dealing with noisy signals. An impor-
cific information task. This behavior may explain tant issue in neurosciences is the study of the abil-
short episodes of synchronization of the assembly ity of neuronal systems to cope with uncertainty
of neurons at different firing frequency even when and the lack of precision which arises from different
the external signal is embedded by large noise. At sources of perturbations. Temporal coherence or
each time, synchronizations arise only from the ac- synchronous firing, postulated as a mechanism for
tion of an adaptive controller driven by an external functional organization of the assembly of neurons
input, the pacemaker cell. These synchronizations and as a potential neural code.
occur in sufficient short time scales that it may be In an attempt to understand some of the pos-
reasonable to think that they could be explained by sible mechanisms of synchronization of neurons in
electrophysiological mechanisms. a noisy environment, this paper reports on an
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adaptive control mechanism which is able to modu- Cazelles, B., Boudjema, G. & Chau, N. P. [1995] "Adap-
late the frequency and the clustering behavior of an tive control of chaotic systems in a noisy environ-

assembly of neurons. The adaptive control method ment," Phys. Lett. A196, 326-330.

used is analogous to a learning process: by com- Cazelles, B., Boudjema, G. & Chau, N. P. [1997] "Adap-

paring the system dynamics with a target behavior tive synchronization of globally coupled chaotic oscil-

and by correcting its dynamics, the system learns lators using control in noisy environments," Physica

to adapt itself in so as to recover the target dy- D103, 452-465.
Chen, G. & Dong, X. [1993] "From chaos to order -
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The analytical properties of the solution of a system of ODEs in the complex time plane
influence its dynamical behavior on the real time axis. In particular, the extrema of the real
time solution can be associated to the singularities of the complex solution falling close to the
real time axis. Moreover for a twice differentiable stochastic process, the expected value of the
number of extrema for unit time can be determined. These two results are used here as the
starting point to introduce two new algorithms to test for time series nonlinearity. They do
not require the phase space reconstruction protocol and seem to work well also for short data
sets.

1. Introduction stationary time series (that is to check whether non-
linear time correlations are present among the time

The nonlinear analysis of time series is based on the series values) both based on the analysis of the
theory of dynamical systems: It is assumed that extrema (local maxima and minima). Two theo-
theesignaltunderwexaminationimgeneraty ae retical considerations justify these algorithms. The
usdtensi l. When eerimentaloms dare first is connected to the theoretical and numerical
used, the analysis of time series becomes more dif- rslsotie ntesuyo ytm fodnr

ficult for the presence of noise. However it is gener- results obtained in the study of systems of ordinary

ally assumed that the stochastic component in the differential equations (ODEs). It has been shown

signal is small and that it does not destroy com- that the dynamical behavior of the real time solu-

pletely the original properties of the bare (without tion of an ODE is strongly connected to its analytic

stochastic perturbation) dynamical system. Since properties in the complex time plane, and in partic-

a nonlinear system can exhibit deterministic chaos ular to the distribution of the singularities nearest
a first step, in the analysis of an irregular signal, to the real axis [Ramani et al., 1989]. The second
is to check whether its values are characterized consideration arises from a general property of a
by nonlinear time correlations. Understanding the stochastic process which states that given a mean-
nature of the dynamical processes responsible for square differentiable stochastic process x(t) the
the observed data is one of the most challenging and expected number of its extrema for unit time is con-
important problems in nonlinear time series analy- tained in the joint density function of x(t), N(t) and
sis and several methods have been proposed to this -;(t) [Soong, 1973]. These theoretical and numerical
aim tAbarbanel et al., 1993]. Here we suggest the results suggest that the sequence of the extrema of
use of two new algorithms to detect nonlinearity in a a time series contains dynamical information on the
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process responsible for its generation. The method poles is regularly distributed on the complex time
of surrogate data was used to test if a suitable statis- plane. Furthermore it can be shown that a polar
tic evaluated on a sequence of extrema could be singularity corresponds to each local maximum (or
accounted for by a Gaussian linear stochastic pro- minimum) of the real time solution xp(t). Such
cess [Theiler et al., 1992]. regular distribution of singularities reflects the

corresponding periodic behavior of the real time
solution. What happens to the distribution of the

2. The Algorithms singularities when the parameters a, b, c of the Duff-
ing equation are not zero? If these parameters are
chosen such that the behavior of its solution x(z) on

2.1. PSC algorithm the real time axis is chaotic, then the corresponding

The problem of establishing whether a system of sequence of singularities in the complex time plane

ODEs is integrable or chaotic is generally diffi- associated to the local extrema becomes very irreg-

cult. During the last two decades some impor- ular. A complete study on the properties of the

tant theoretical results have been obtained: Of par- solutions of the Duffing equation on the complex

ticular interest, a strong connection between the time plane can be found in [Konno & Tateno, 1984].

dynamical properties of the real time solution of an Other numerical investigations were performed also

ODE and the analytical ones in the complex time on the Lorenz equations [Tabor & Weiss, 1981].

plane, has been shown to exist [Ramani et al., 1989]. In the case of the periodic regime of the Lorenz

The solutions of the Lorenz equations in the com- equations (limit cycle) the arrangement of singu-

plex time plane, for different dynamical regimes, larities (poles) reflects, as for the Duffing equa-

were studied both analytically and numerically tion, the corresponding periodicity of the real time

(Tabor & Weiss, 1981]. It was found that the dis- solution. As the dynamical regime goes toward the

tribution of the singularities in the complex time chaotic one the corresponding arrangement of sin-

plane is critical in determining the behavior of the gularities becomes very irregular. Moreover, as for

real time solution. In particular, from the func- the Duffing equation, it was numerically shown that
tion theory of complex variables, it follows athe a singularity (the nearest to the real time axis) can
micnition s theo c ole varal, te folsthat the be associated to each position t on the real time
main contributions to the real time solution come axis where a local maximum (or minimum) of the
from the nearest singularities to the real time axis. real time solution occurs. It was shown that the
This last fact is justified by the Cauchy's integral distances of these singularities from the real time
formula for a function of complex variable f(z) an- axis are related to the real values of the solution
alytic and single-valued in a simply connected do- [Tabor & Weiss, 1981; Konno & Tateno, 1984].
main D: f- f(z)/(z-zo)dz = 21rtf(zo) where F E D In other words, let be r = Imz the imaginary
and zo is enclosed whithin F. For a better clarifi- part of the position z t + c + %7 (0 < 16 < 1)
cation we just consider the example of the Duffing of the singularity corresponding to a local maxi-
equation - + a. + x 3 = bcos(t) + c where a, b, c are mumt (ors minimum)y ofofrtspo theng as anl decreases

mum (or minimum) of f(t), then as 17-1 decreases
real constants. Let us consider initially the very the value of If(t)I increases (and viceversa). From
simple case a= b = c = 0: + x 3 = 0; we search these last remarks it follows that the sequence of
for a solution of this equation over the complex time points {tj, f(tj)}, each associated to a local max-
plane. It is easy to prove that a particular solu- imum (or minimum) of the function f(t), can be
tion of this equation can be expressed by means thought of as a representation of the sequence
of an elliptic function: xp(z) = cn(z, 1/2), where of singularities of f(z) nearest to the real time
z = t + Zr; xp(z) is a double periodic function of z. axis. A point to be stressed is that for a sys-
In general the function cn(z, q), q2 < 1, is analytic tem of ODEs the position of the singularities (if
over the complex time plane except for the set of they exist) is deterministically defined [Ramani
points A = {Zm,n = 2mK+(2n + 1)K' :m, n E Z} et al., 1989]. In Other words the pattern of sin-
where polar singularities are present; K and K' are, gularities in the complex time plane is directly
respectively, the complete elliptic integral and its determined by the properties of the system of
complementary (constants for a fixed q). From the ODEs. For example, as seen before, for the ODE
definition of the set A it follows that the nearest + x3 = 0 the set of singularities is well defined:
singularities corresponding to the real time axis are These are poles and are disposed in a regular
those for which n = 0 and n -1: This sequence of lattice on the complex time plane. These theoretical
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and numerical results suggest the first algorithm, [Abarbanel et al., 1993]. Given a scalar time series
whose protocol is the following: s(t) = M(x), where x = F(x) and M represents

the measurement function, the reconstruction the-
(a) Given the time series s(t) let us consider the orem (Takens, 19811 ensures that for a sufficiently

set of couples {(t3 , s(t,) : j 1, n)} where s(tj) high embedding dimension E the dynamical prop-

are the local maxima (or indifferently the local ei e of the oi s eqial d-
minima);erties of the original system are equivalently de-

minima); scribed by Sr = G(y), where y = [s(t), ds(t)/dt, . . . ,

(b) define the quantity dE-ls(t)/dE-lt], y E RE , E > 2m + 1 (m is the

n-1 box-counting dimension of the attractor). We can

L = [tj+- tj]2 + [s(tj+)s(tj)] 2 (1) therefore concentrate our attention on the dynam-

j=L ical system Sr = G(y), y E RE. In principle the
probability density function p(y, t) can be deter-

that represents the length of the broken line mined and, from it [Soong, 1973], the joint proba-
joining the points {tj, s(tj) : j = 1, n}; bility density p(s, 9, 9, t) can be obtained (here we

(c) test if the value of L can be statistically are supposing E > 3). Now, according to [Soong,
accounted for by a linear Gaussian stochastic 1973] the expected number of extrema for unit time
process obtained from the original time series of the time series is given by
s(t) by using Fourier Shuffled surrogate data.
It is worth recalling that Fourier Shuffled surro- f+ f +00

gates preserve the histogram of amplitudes and, q(t) = d J- p(s, 0, , t)ds. (2)
approximately, the linear time correlations of
the original data. More details on the surrogate In the particular case of a stationary process,
data properties can be found in [Theiler et al., q(t) is independent of t. For example, if the proba-
1992]. In what follows the above algorithm will bility density is Gaussian with zero mean it can be
be denoted as PSC (Pattern of Singularities in easily shown that
the Complex time plane).

qt1 = o ( (3)

2.2. NET algorithm -7r a()

Several arguments support the correctness of a where a(g) and a(g) are, respectively, the stan-
statistical description of a chaotic dynamical dard deviation of 9 and . By assuming that the
system x = F(x), x E R' that, as it is well dynamical system is ergodic we can estimate
known, exhibits sensitivity to the initial conditions q(t) from the experimental time series without
[Eckmann & Ruelle, 1985]. Among them the most knowing p(s, ., §, t). We remark that in. Eq. (2)
important is that in nature the measurement pro- p(s, 0, 9, t)dsdg represents the probability to find the
cess, by which the observer interacts with a physical intersection of the trajectory, described by y, within
system, is characterized by a finite precision. Con- the rectangle of sides s + ds and § + d9 in the plane
sequently, the state of the system at time t is not (s, 9) of the Poincar6 section defined by . = 0.
represented by a point in phase space but, rather, by If the evolution law of y is characterized only by
a small region whose size reflects the finite precision linear time correlations we expect that the statistic
of the measurement. Other sources of delocalization q(t), computed using surrogata data preserving
of the state are the incomplete specification of the linear time correlations, will be not statistically
initial conditions or the roundoff errors in numerical different from that obtained with the original
calculations. For a chaotic dynamical system, rep- data.
resented by k = F(x), the probability density Consequently the idea is to test whether the
function p(x, t) of a given system state x can be number of extrema for unit time of an experi-
determined by solving the Liouville equation which mental time series s(t) can be accounted for by a
is a particular case of the differential Chapman- linear Gaussian stochastic process. If this does not
Kolmogorov equation describing Markov processes happen then we have an indication that the gen-
[Gardiner, 1983; Nicolis, 1995; Soong, 1973]. If erating process responsible for the observed s(t) is
we have at our disposal only a time series, the nonlinear [Theiler et al., 1992]. This suggests that
probability density can be evaluated numerically the probability density function p(s, h, 9, t) cannot
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be associated to a linear stochastic process. The The Lorenz equations,
recipe of the algorithm is the following:

-=~ - x)
(a) The number of extrema for unit time vo of the

given time series s(tj) (j = 1, ... , N) is deter- y px - y - xy + E(t) (4)
mined and used as discriminating statistic; - + xy

(b) from the time series s(tj) (j = 1, ... , N) a set
of n surrogate time series s,j(t) is generated; with parameters a = 10, p = 28, fi - 8/3 corre-

(c) the average number of extrema for unit time
o the suerrge tmef sere fr u tise sponding to the chaotic regime, were integrated nu-of the surrogate time series vs = n1 Ejl s'

co 1 s, merically; in Eq. (4) (t) is the Gaussian white noise
computedof unit standard deviation. Two time series were

(d) by using the standard deviation a, of the set obt ft and 0, respe e
v,,j(j 1, , ... , ), o an vare ompred obtained for the case E = 0 and c 4 0, respectively.

o (j - 1, 2, ... , n), and vs are compared Two other time series were generated by using the
to test if they are statistically different [Theiler Henon map: one without noise and the other with

et al., 1992]. Hereupon to indicate this al- additive noise. Two time series, representing Gaus-

gorithm we will use the abbreviation NET adiieni.TwtmesrsepsnigGu-
grtme will se forith a eiation N sian white noise and colored noise, were also gener-
(Number of Extrema for unit Time). ated. Finally the last two time series were obtained

from the signal s(t) = sin(wt) + e (t) in the cases

3. Numerical Results E = 0 and c : 0. The occurrence of a local maxi-
mum (or minimum) in the time series s(t) was deter-

A number of time series, from well-known models, mined from the change of sign of the first difference
were generated to test the PSC and NET algorithms series. In Fig. 1 the results obtained using the NET
and to find their possible limitations. In the pre- algorithm are plotted in terms of the significance
vious section we considered only continuous time S = iv0 - vSI/a, [Theiler et al., 1992]. For the left
dynamical system. A naturally arising question is panel N = 1000 points were used and N = 2000
whether the NET and PSC algorithms work also for the right one. For both panels 10 phase ran-
for maps. There is not a clear answer to this ques- domized surrogate data were used for each time se-
tion from the theoretical point of view. Therefore ries. According to [Theiler et al., 1992] for S values
we decided to investigate numerically the perfor- > 2 the null hypothesis that the data came from a
mance of both algorithms also on the well-known linear Gaussian stochastic process can be rejected
Henon map. with a probability greater or equal to 95%. In Fig. 1

a) b)

6 8,
5 *lorenz 7 - *lorenz

Ehenon 6 Ehenon
A A lorenz+nolse 5-+ A lorenz+noise

3 X x henon+nolse 4-- x henon+noise
2 * slnewave 3 A - X sinewave

1 gausslan noise 2 - gausslan noise

+ + coloured noise 1 + + coloured noise
0 = slnewave+nolse 0 = sinewave+nolse

-1 -1

Fig. 1. NET algorithm: Significance S = Ivo - vj/Oa, for the model time series. In what follows (t) is Gaussian white noise
of unit standard deviation. The noisy Lorenz time series was obtained with E = 0.2; for the sinus wave sin(wt) is w = 0.1; for
the sinus wave plus noise sin(wt) + <(t) is w = 0.1 and E = 0.3; the colored noise was obtained from x(t + 1) = ax(t) + <(t)
with a = 0.85 and E = 0.2; the amplitude of the additive noise in the Henon map was E = 0.36. The sampling time for the
Lorenz equation is At = 0.025. (n 10), (a) N = 1000, (b) N = 2000.
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a) b)
• • 7,

*lorenz 6 lorenz

4 henon 5 henon

3 X A lorenz+nolse A lorenz+nolse
x× henon+noise x henon+nolse
* slnewave S 3 A X * sinewave

1 + gaussian noise 2-- 0+ gaussian noise
+ + coloured noise 1 + coloured noise

0 slnewave+nolse 0 - - slnewave+noise

-1 -1 I

Fig. 2. As in Fig. 1 but using n = 20 surrogates for each time series. (a) N = 1000, (b) N = 2000.

a) b)

6- 8
5 * lorenz 7 - * iorenz

* henon 6 + henon
A A lorenz+noise 5-+ A lorenz+noise

3 X X henon+nolse 4-- X henon+noise
2snewave 3 A A X * sinewave

0 gausslan noise 2 - gaussian noise
+ + colourednoise 1 + + coloured noise

0 - = sinewave+noise 0 - sinewave+noise

-l -I1

Fig. 3. As in Fig. 1, but using Fourier Shuffled surrogate time series (n = 10), (a) N = 1000 (b) N = 2000.

each symbol identifies a model time series as Qspeci- more nonlinear than the corresponding noise-free
fled in the legend (this correspondence will be main- one. But, as the number of points is increased (from
tained). The test gives a clear indication of nonlin- 1000 to 2000) this discrepancy disappears (right
earity only for the time series Lorenz, Lorenz plus panel). The analysis was repeated using 10 sets
noise, Henon map and Henon map plus noise that of Fourier Shuffled surrogate data for each model
are known to be nonlinear dynamical systems. The time series and the corresponding results are plot-
case of the sinus wave is more problematic: The S ted in Fig. 3. These last results are very similar
value is slightly above 2 for both panels and this to those obtained with the phase randomized sur-
disagrees with the fact that the time series is lin- rogate data; this means that the computed statistic
ear. However, as will be shown in the following, is insensitive to slight changes in the distribution of
this anomalous behavior is corrected when the PSC the amplitudes of the time series. Next the PSC
algorithm is applied. In Fig. 2 the results obtained algorithm was applied to the same model time se-
with the NET algorithm, and using 20 surrogate ries. The PSC algorithm requires the calculation
data for each time series, are plotted (the num- of the length L, defined in Eq. (1), on the origi-
ber of points used for each time series are as in nal time series and the statistical evaluation of its
Fig. 1). The results are qualitatively similar to difference from L, = Zt1 L3 (L3 is calculated
those in Fig. 1. However, from the left panel of on the jth surrogate time series). To identify the
Fig. 2 the noisy Lorenz time series seems to be local extrema (maxima in this case) we used the
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a) b)

5 7 ,
4lorenz 6+ * * lorenz
n Ehenon E henon

A A lorenz+noise 4 A lorenz+noise
x henon+noise X henon+noise

S 2 x sinewave $ 3 A * sinewave

1 * gausslan noise 2 -X gausslan noise
+ + coloured noise I + + coloured noise

0 1 - sinewave+nose- 0 0= sinewave-noise

Fig. 4. PSC algorithm using local maxima (n = 10), (a) N = 1000, (b) N = 2000, S = IL - LSI/UL. Fourier Shuffled
surrogata data are used.

same protocol as for the NET algorithm. In Fig. 4 reported in Table 1. Similar results were also ob-
the values of the significance S = IL - LI/oL ob- tained for the other time series (data not shown).
tained using the PSC algorithm are plotted (UL is The conclusion arising from these numerical exper-
the standard deviation of the set {Lj}). The num- iments is that increasing the length of the time
ber of points in the left panel is N = 1000 and series does not produce results contrasting with
N = 2000 in the right one. The time series corre- those obtained using shorter sequences of data. Fur-
sponding to the sinus wave plus noise seems to show thermore in presence of nonlinearity (S values > 2)
a nonlinear character (left panel). However, as the the value of S improves (statistically) as the length
number of points increases this apparent nonlinear- of the time series increases.
ity disappears (right panel). Figure 5 shows the Another important point that we faced is
results obtained with the PSC algorithm by using whether the PSC and NET algorithms were able to
the local minima instead of maxima. detect nonlinear correlations in time series coming

The results obtained in the Henon map, Henon from a high dimensional chaotic attractor. Some
map plus noise and Gaussian white noise increas- preliminary considerations are needed before show-
ing the series length up to N 4000 points are ing the numerical results obtained with both meth-

ods. As shown in the previous section the PSC
algorithm requires the computation of L defined by
Eq. (1). The set of points {(tj,s(tj) : j = 1,n)},
where s(tj) are the local maxima (or minima) of the

8 U time series s(t), is a bidimensional Poincar6 section
7 - lorenz [Hegger & Kantz, 1997; Kantz & Schreiber, 1997]

6 Ehenon defined by b(t) = 0, 9(t) < 0 (or h(t) = 0, 9(t) > 0
5 A iorenz+noise for the minima). For high dimensional attractors

X x henon+noise (dimension > 3) the Poincar6 section can mimic the
S x slnewaveS -- * sin ise one due to a stochastic process [Kantz & Schreiber,

A gousslan noise 1997]. Similar considerations are also valid for
2 +coloured noise the NET algorithm. Therefore it is expected that
1 snewave+noise both PSC and NET algorithms can have problems
0 with time series from a high dimensional attractor.

-1 We performed numerical experiments by using time
series generated with the Mackey-Glass

Fig. 5. PSC algorithm: The local minima are used (n = 10),
N = 2000, S IL - LsI/UL. Fourier Shuffled surrogata data ax(t - -) (5)
are used. x(t) = 1 + x(t - T)c bx(t)
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Table 1. Values of significance S obtained with the PSC and NET algorithms against
the number of points N of the time series.

Number of points Henon Map Henon Map + Noise Gaussian White Noise
N PSC NET PSC NET PSC NET

1000 3.6 4.8 2.7 2.86 0.7 1.01
2000 6.4 3.6 2.1 2.87 0.1 1.1
3000 6.6 6 2.9 3.95 0.08 0.46
4000 13.4 9.5 4.3 4.7 0.49 0.09

time-delay differential equation [Mackey & Glass, that the growth of the number of points N of the
1977]. In this study we set a = 0.2, b = 0.1, c = 10. sequence produces values of S coherent with those
Two time series of N = 4000 points correspond- obtained using shorter data sets; furthermore in the
ing to - = 30 and - = 100 were generated; the presence of nonlinear correlations in the time series
sampling time was At 10. The corresponding (S values > 2) the value of S improves statistically
correlation dimension of the attractor is _ 3 (for as N increases.
T = 30) and _ 7.1 (for 'r = 100). The values We checked also the performance of both algo-
of the significance S computed for these two time rithms to detect nonlinear correlations in time series
series are the following: (a) (r = 30): PSC algo- from a high dimensional attractor. The result was
rithm S = 0.04, NET algorithm S = 2; (b) (r = that both algorithms fail in such a case; furthermore
100): PSC algorithm S = 0.02, ET algorithm S = it seems that the NET algorithm is less sensitive
0.6. The above results show that both algorithms than the PSC one to the growth of the dimension
have problems to detect nonlinear correlations in of the attractor. We remark that, using the classi-
time series from high dimensional attractors. The cal algorithm to estimate the correlation dimension
NET algorithm, however, seems to be less sensi- from time series, the high dimensional dynamics of
tive to the high dimensional dynamics than the the Mackey-Glass system is detected, using large
PSC one. amount of data points (>4000), correctly [Ding

et al., 1993]. It is presently under investigation to
assess whether some change in the protocols of both

4. Concluding Remarks algorithms can improve their perdormance on time
series from a high dimensional attractor.

The time series corresponding to chaotic dynamics All the above results lead to the following
(time series: Lorenz, Lorenz plus noise, Henon map remarks: (a) For low dimensional chaotic dynamics
and Henon map plus noise) exhibit the expected the nonlinear property (S > 2) is detected by both
nonlinear character for both algorithms (S > 2). algorithms; (b) for colored noise or Gaussian white
Similarly the time series corresponding to Gaus- noise significance values S < 2 are obtained with
sian white noise and colored noise present values both algorithms; (c) when the signal power spec-
of the significance S below 2 for both algorithms. trum exhibits a strong sharp peak the two algo-
This means that the null hypothesis that they are rithms give contrasting results. This can be par-
generated by a linear stochastic process cannot be tially explained by the fact that the use of surrogate
rejected with a probability higher than 95%. The data for periodic signals with long coherence time
time series corresponding to the sinus wave, as can lead to ambiguous results that need to be inter-
seen in Figs. 1-3, exhibits an unexpected nonlinear preted very carefully [Theiler et al., 1992]. These
behavior using the NET algorithm. This behavior preliminary results suggest that the two methods
disappears for the sinus wave and appears for the used together are able to discriminate between
sinus wave plus noise (left panel of Fig. 4) when the low dimensional chaotic dynamics and noise. The
PSC algorithm is used. However, as the number of last remark is that the NET and PSC algorithms
points is increased (right panel of Fig. 4) this effect do not require the reconstruction protocol of the
for the sinus wave plus noise disappears. We studied phase space as it happens for many of the current
the dependence of the values of the significance S tools for the nonlinear analysis of time series (Lya-
from the length of the time series. The results were punov exponents, dimension calculations, nonlinear
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prediction methods, etc.) [Abarbanel et al., 1993]; Hegger, R. & Kantz, H. [1997] "Embedding of sequences
consequently we do not need to determine the of time intervals," Europhys. Lett. 38, 267-272.
embedding dimension E and the lag-time -r. More- Kantz, H. & Schreiber, T. [1997] Nonlinear Time Series

over these more complex tools to study time Analysis (Cambridge University Press).

series are not trivial to be implemented using nu- Konno, K. & Tateno, H. [1984] "Duffing's equation in

merical codes. On the contrary the NET and PSC complex time and chaos," Prog. Theor. Phys. 72,

algorithms are very simple to implement and they 1047-1049.
dooithmsqure lager simplo iment a anorder t Mackey, M. C. & Glass, L. [1977] "Oscillations and

chaos in physiological control systems," Science 197,
check the presence of nonlinear correlations in time 287-289.
series from low dimensional attractor. Therefore Nicolis, G. [1995] Introduction to Nonlinear Science
the NET and PSC algorithms can be used as a (Cambridge University Press).
first test before using the aforementioned more Ramani, A., Grammaticos, B. & Bountis, T. [1989] "The
complex tools. Painlev6 property and singularity analysis of inte-

grable and non-integrable systems," Phys. Rep. 180
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Secure communication via chaotic synchronization is demonstrated using dynamical systems
governed by delay deferential equations. Strange attractors of such systems can have an arbi-
trarily large number of positive Lyapunov exponents giving rise to very complex time signals.
This feature can provide high security of masked messages.

1. Introduction new approach enables the information signal to
be integrated in the sender as a driving signal.

Synchronization of chaotic systems has aroused The scalar signal which is transmitted from the
much interest in recent years, particularly in light sender to the receiver is a function of the sender
of potential application of this phenomenon in se- state variables and the information signal. At ideal
cure communication. Different approaches for con- conditions the information signal can be recovered
structing synchronized chaotic systems are pro- exactly, without the reconstruction errors.
posed. Among them is the approach of Pecora and Most theoretical as well as experimental stud-
Carroll [1990] who show that when a state variable ies of secure communication reported so far concern
from a chaotically evolving system is transmitted low-dimensional systems with one positive Lya-
as an input to a replica of part of the original sys- punov exponent. Perez and Cerdeira [1995] have
tem, the replica subsystem (receiver) can synchro- shown that messages masked by such simple chaotic
nize to the original system (sender). To use this processes, once intercepted, can be sometimes read-
phenomenon for masking messages one can trans- ily extracted. To improve security it is desirable
mit to the receiver a summary signal consisting of to use high-dimensional systems with multiple pos-
a chaotic signal generated by sender and a small itive Lyapunov exponents (hyperchaotic systems)
information signal containing a message [Kocarev which take advantage of the increased randomness
et al., 1992]. Then the message can be recovered and unpredictability. Recently, Peng et al. [1996]
by synchronizing the receiver with the scalar signal have demonstrated the possibility of synchronizing
which is transmitted from the sender. The short- hyperchaotic systems by transmitting just a single
coming of this approach is that the information scalar variable composed of a linear combination of
signal violates the synchrony between sender and state variables of the sender. Another way of syn-
receiver giving rise to reconstruction errors in the thesizing synchronized hyperchaotic systems using
recovered information. a series of low-dimensional subsystems as building

Recently, Kocarev and Parlitz [1995] have pro- blocks has been proposed by Kocarev and Parlitz
posed a generalization of the Pecora and Carroll [1995]. These methods have many advantages, but
[1990] method, which extends the capabilities for they have been applied only to finite-dimensional
constructing synchronized chaotic systems. This systems described by ordinary differential equations
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(ODE's). The number of positive Lyapunov expo- independently on initial conditions. The character-
nents of such systems is limited by dimension of the istic time of synchronization is given by 1/c. At the
state space. receiver the information iR can be recovered as

An alternative efficient approach of construct-
ing synchronized hyperchaotic systems can be based i R = s(t) - y(t - T). (5)
on delay differential equations (DDE's). Systems
governed by DDE's have an infinite-dimensional Figure 1 illustrates secure communication for
state space and can produce hyperchaos with an the parameter values of the MG system a = 0.2,
arbitrarily large number of positive Lyapunov ex- b = 10, c = 0.1, and - = 100. Here and below
ponents. A typical example of these is the Mackey we perform numerical integration of the underlying
and Glass (MG)[1977] system: DDE's by a second order Runge-Kutta method tak-

ing an integration step h = 0.1. Without the infor-
fix(t - T), a] - c, (1) mation signal, i(t) =-0, the sender [Eq. (2)] has five

where f[x(t - r), a] = ax(t - r)/[1 + xb(t - T)] positive Lyapunov exponents. The eleven largest

and a = {a, b} denotes a set of parameters of the exponents multiplied by factor 103 are {3.53, 2.88,

function f. All parameters a, b, c, and r are sup- 2.09, 1.28, 0.46, 0.00, -0.54, -1.49, -2.63, -3.83,

posed to be positive. We choose this model for our -4.98}. This corresponds to information dimen-

studies since it has been thoroughly investigated in sion [Kaplan & Yorke, 1979] of the strange attractor

the literature (e.g. [Farmer, 1982]) and is easily im- equal to dA 10.35.

plementable electronically [Namajfinas et al., 1995]. Figure 1(a) shows the transmitted signal s(t) in

The number of positive Lyapunov exponents as well the case of a sine information signal i(t) with the

as dimension of strange attractor of this system can period T = 80 and amplitude A = 0.1 switched on

easily be controlled by varying the delay time -r. at the moment t = 200 and switched off at t = 800.

For fixed values of the parameters a, b, and c, both The recovered information signal iR(t) is presented

these quantities increase linearly with the increase in Fig. 1(b). It coincides with the original infor-

of -r [Farmer, 1982]. mation signal i(t), to within the error of numerical

Below we demonstrate secure communication integration.

with two types of senders based on a single MG In a real experiment, the parameters of sender

system and using a set of coupled MG systems. and receiver are not exactly the same. This factor
and additional noise in a transmission channel will

2. Communication Based on a Single
MG System 1.5 '

Let us consider the communication system with the 1.0 (a)
equations of the sender, the transmitted signal, and D 0(a)

the receiver given by

f[x(t - ) + (t), a] - cx sender, (2) 0.1

s(t) - x(t - r) + i(t) transmitted signal, (3)

= f[s(t), a] - cy receiver, (4) .W.0 oI- (b)

where i(t) is the information signal. The sender (2) -0.1
is an infinite-dimensional system described by non- 0 200 400 600 800 1000
linear DDE, while the receiver (4) is presented by
a simple linear ODE driven (through a nonlinear
function f) by transmitted signal s(t). Subtracting Fig. 1. Numerical simulation of a communication scheme
Eq. (4) from Eq. (2) we obtain for the difference based on a single MG system in the case of sine information

signal i = 0.1 sin[27r(t - 200)/80] switched on at the mo-
e = x - y a simple linear ODE = -ce. This equa- ment t = 200 and switched off at t = 800. The parameter
tion possesses an unique globally stable fixed point values of the MG system are a = 0.2, b = 10, c = 0.1, and
e = 0. Thus the synchronized state x = y is globally r = 100. (a) Transmitted signal s. (b) Recovered information
stable, i.e., the receiver synchronizes to the sender signal iR.
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result in reconstruction errors. However, due to the Although the MG system allows us to gener-
global stability of the synchronized state x = y, ate very complex signals, it is still described by
the system is robust with respect to these factors. a very simple DDE. In the absence of informa-
Suppose that the parameters of the driving and the tion signal, i(t) = 0, such simple DDE can be
response systems are different, say a and a', re- reconstructed from transmitted signal s(t) using,
spectively. If the difference 6a = a - a' is small, for example, the method proposed by Biinner
the difference e = x - y is governed by a linear et al. [1996]. Certainly, the presence of information
nonhomogenous differential equation signal (i :L 0) considerably complicates the possibil-

ity of such reconstruction, since the sender becomes
6 = 6a - ce. a nonautonomous system. To make the communi-

cation system even more secure one can increase the
Clearly the difference e is proportional to the pa- complexity of the sender by using a set of coupled
rameter mismatch 6a, e c 6a. The same is valid MG systems.
for the difference between the original and the re-
constructed information signal, i - iR oS 6a, which 3. Communication Based on a Set of
defines the reconstruction errors. The information Coupled MG Systems
signal can be properly recovered if the difference
5a is small compared to the amplitude of informa- To illustrate the possibility of more complex con-
tion signal. The influence of the mismatch between structions of a communication system we consider
parameters to the reconstruction errors is numeri- the specific example with the equations of the
cally illustrated in Fig. 2(a). The parameter a is sender, the transmitted signal, and the receiver
taken to have different values at the sender and the given by
receiver, a and a', respectively. We measure the
reconstruction errors by the r.m.s. deviation a = J~l=f[xi(t-ri) + i(t), l] -clxl ]
V/((i --iR) 2 ), where (-) denotes the time average. Saux(t)=Xl(t--T)+i(t) sender,
As is seen from the figure, the reconstruction er- / =f " + "" J
rors decrease linearly with the decrease of the dif- ( 2 ---f[x2 (t-r 2 ) ± ksaux(t),62])-c 2 x 2
ference 6a = a - a'. Similar results are observed (6)
in the presence of noise. To model an influence of s(t) = x 2 (t - -T2) + ksaux(t) transmitted signal.
noise in the transmission channel, we add (at ev- (7)
ery step of numerical integration) random numbers 1'2 = f[s(t), a2] - c2Y2
uniformly distributed in the interval [-an/2, an/2] ,gaux(t) = [s(t) - y 2 (t - 7-2)]/k receiver. (8)
to the transmitted signal s(t). Figure 2(b) shows Yl =-f[Saux(t), al - ClYl
that for small noise the reconstruction errors are
proportional to the noise amplitude an. The idea [Kocarev & Parlitz, 1995] behind this con-

struction is based on successive transmission of in-
formation signal through different building blocks

10-1 (a) .. (b) (here they represent the MG systems) of the sender
1." 10-2 and then successive recover of the transmitted sig-

1Q-2 .... 1-3 nal at the different blocks of the receiver. Here we

t 10-3 . . 10- consider the construction with only two building
10-4 10-5blocks. The generalization for an arbitrary num-1 ... - ber of building blocks is straightforward.

10-s 106 This construction as well as previous examples

10-6 10-5 10-4 103 10-2 10-1 10-5 10-4 10-3 10-2 10-1 100 provides the global stability of the synchronized
6a an state x - Yl, x 2 = Y2. Indeed, the difference

Fig. 2. Dependence of the r.m.s. deviation a e2 = X Y2 is governed by the linear equation
Vf((i - iR) 2 ) on (a) parameter mismatch 6a and (b) noise 6 2 = -c 2 e 2 possessing the globally stable fixed
amplitude an. The parameters of the MG system are the point e2 = 0. This guarantees the global stabil-
same as in Fig. 1. The information signal represents the sine ity of the state x 2 = Y2. Taking into account the
wave i = 0.1 sin(27rt/80). last equality we obtain Saux(t) = saux(t), and the
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equation for the difference el = Xl - Yi takes the number of positive Lyapunov exponents. The re-
form @1 = -clel. Thus the state x, = yl is also ceiver is constructed as a linear low-dimensional
globally stable. At the receiver the information iR system. The synchronization with the sender is
can be recovered as achieved by transmitting only single scalar signal.

iR = [s(t) - y2 (t - -2)]/k - yi(t - r) (9) An important advantage of this construction is the
global stability of the synchronized state. As a

Figure 3(a) shows the amplitude spectrum of result these communication systems are insensi-
the transmitted signal in the case of sine informa- tive to small noise levels and mismatching between
tion signal i(t) = 0.1sin(27rt/40). The amplitude parameters.
spectrum of the recovered information signal iR is
shown in Fig. 3(b). The information signal is prac-
tically invisible in the spectrum of the transmitted References
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An experiment on B6nard-Marangoni time-dependent convection shows evidence of an am-
plitude turbulent regime in the temperature signal which is modeled by a delayed dynamical.
system. Application of a control procedure, which perturbs the value of the delay time, leads
to the control of such dynamical regime, by suppression of phase defects and stabilization of
the regular oscillations. The control technique is robust against the presence of large amounts
of noise.

1. Introduction ruled by

The original idea of Ott, Grebogi and Yorke [Ott .F(Y, Yd), (1)
et al., 1990] on chaos control has generated many
different theoretical schemes and experimental ap- y = y(t), dot denotes temporal derivative, .F is a
plications facing the problem of controlling unstable nonlinear function, Yd =_ y(t - T), and T is a time
periodic orbits (UPO's) in chaotic concentrated sys- delay.
tems (CS), that is in systems modeled by ordinary The evidence of the analogy between DS and ES
differential equations. was given experimentally for a CO 2 laser with de-

Controlling spatially extended systems (ES), layed feedback [Arecchi et al., 1992] and supported
i.e. systems ruled by partial differential equations by a theoretical model [Giacomelli & Politi, 1996].
whose order parameter y is a rn-dimensional vec- The DS to ES conversion is based on a two vari-

able tm ersnain eie yt- T
tor (m > 1) in phase space, with k components time representation, defined by t a + OT,( where 0 < LI < Tis a continuous space-like variable
(k > 1) in real space, is still an open problem. Even and 0 i a d iste t oral variable

thouh sme popoalshavebee pu forardfor and 0 is a discrete temporal variable [Arecchi et al.,
thouh sme popoalshavebee pu forardfor 1992]. In this framework, the long range interac-

the case k = 2 [Lu et al., 1996], experimentally im- tion tduceo the l nb reintered

plementable tools have not yet been introduced for as sotrange i o the 0 ireto
as short range interactions along the 0 direction

the control of unstable periodic patterns (UPP) in (Yd Y(o, 0 - 1)) and the formation and propaga-

extended systems. tion of space-time structures, as defects and/or spa-
The link between CS and ES is provided tiotemporal intermittency can be identified [Arecchi

by delayed dynamical systems (DS), i.e. systems et al., 1992; Giacomelli & Politi, 1996].
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For delays T larger than the period of oscilla-
tion of the system, the behavior of a DS is analo-
gous to that of an ES with k = 1. Namely, DS may
display phase defects, i.e. points where the phase
suddenly changes its value and the amplitude goes

to zero. In this paper we show evidence of these
phase defects in a recent experiment on B6nard-
Marangoni convection [Mancini & Maza, 1997], and
we propose a control technique to suppress them.
The control restores regular patterns within an x

amplitude turbulent regime, which implies the pres-
ence of a large number of defects. The control effi-
ciency persists even in presence of a large amount
of noise.

(a)

2. The Experiment and ,ra o,,t etubtio,
The Delayed Dynamical Model steearmros

The experimental setup is depicted in Fig. 1. A ---------

cylindrical cell (diameter 128 mm) confines a fluid SQU HE..

layer of silicon oil (Pr d 3000) with the free sur- 2

face open to the atmosphere and heated from the /
bottom. The heater does not cover the whole of the0---xhr-"
container giving open boundaries for the heating. A o-
convective instability driven by buoyancy and tem-
perature dependent surface tension (80% and 20%,
respectively), takes place as the heating is increased
giving rise to a stationary planform [Fig. 1(a)]. This
pattern is composed of four convective cells located
on the heater region, but the flow is developed over
all the container size.

Following an imaginary drop of fluid traveling
with the flow in one of these cells, the drop is heated
while traveling near the bottom over the heater,
rises up to the centre, travels out near the surface T(s)
until it becomes cold and then falls down near the (c)
lateral boundaries. Finally, the drop is fed back to

Fig. 1. (a) Image of the stationary planform below the time-
the heater region completing a round trip in a mean dependent regime. (b) Cross-section of the experimental

time T [Fig. 1(b)]. setup. Above the time-dependent threshold, the thermals
If the heating is further increased a time- coming from the thermal boundary layer generate hot drops

dependent regime arises, generating spatio- which are dragged by the flow along the convective cells in a
temporal modulations of the stationary velocity mean time T. (c) Time-dependent regime observed from the

and temperature fields. The origin of this behavior planform. The white traces in the spatiotemporal diagram
correspond to the effect of the hot drop traveling near theis related with a thermal boundary layer instability surface in the x-axis direction. See [Mancini & Maza, 1997]

which give rise to thermals or "hot plumes" which for futher details.
are dragged by the flow along the cell. This behav-
ior can be seen in the space-time image of Fig. 1(c).
An experimental measurement of the temperature nonlinear combinations terms). One of these
at the center of the cell shows modulated oscilla- frequencies corresponds to a relaxation oscillation
tions which have a power spectrum composed by inside the thermal boundary layer, the other one
two frequencies clearly differentiated (plus their corresponds to the characteristic time necessary for
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Fig. 2. (a) Experimental time behavior of the temperature signal. Vertical axis reports the temperature at the center of the
cell near the bottom and horizontal axis reports the time in seconds (T _ 330 sec.). (b) Expanded view of the signal within
the box which exhibits a phase jump (indicated by the arrow).

a round trip of a thermal along the convective signal:
cell. Further details on the experiment and a de- 0
tailed discusion of this mechanism can be found in A = EA + ,1 ( f A 2(t - t')f(t')dt') A
[Mancini & Maza, 1997]. \J0

If the temperature of the heater is further in- A4  A, (2)
creased, a chaotic regime is reached. In this regime, +132 (t - t')f(t')dt'
an experimental measurement of the temperature at
the center of the cell yields the data in Fig. 2. The p(s XE-kA2 . (3)
signal shows trains of modulated oscillations, inter- /

rupted by localized events (phase defects), wherein Here, all quantities are real. A represents the
the phase changes suddenly and the amplitude de- temperature, E is a time dependent control param-
creases to zero. Figure 2(b) highlights the presence eter, 031, 32, pi, k are suitable fixed parameters, pt
of a phase defect within the data. is a measure of the ratio between the characteristic

The experimental configuration provides a time scales for A and E, and S is a measure of the
natural delayed interaction between thermals and power provided to the system.
thermal boundary layer since it reiterates at each The relaxation oscillations of the temperature
position the local value of the order parameter in Fig. 1(b) are represented by the normal form
after a time delay T, which equals the time lag of a Hopf bifurcation [Eq. (2)], in which the satu-
necessary for the trip of the cell. Moreover, it rating terms include a delayed function modulated
involves a pertubated state far from the time by f(t') to account the delayed action of the ther-
dependent convection threshold. We propose a mal inside the convective cell. Equation (3) mod-
nonlinear model for the experimental temperature els the slow evolution (p < 1) of the linear gain E,
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which is enhanced by the external heating (S) and chaos control on CS [Boccaletti & Arecchi, 1995],
depressed by the convective motion (-kA2) which chaos synchronization [Boccaletti et al., 1997], tar-
tends to uniformize top and bottom temperatures. geting of chaos [Boccaletti et al., 1997] and filtering
In general f(t') is a Gaussian-type function which of noise from chaotic data sets [Boccaletti et al.,
expresses the lateral heat diffusion of the thermal to 1997]. A direct application of such a technique
the main flow. However, we will consider the case of to Eqs. (4) and (5) has been already provided in
a perfectly localized pulse using a Dirac delta func- [Boccaletti et al., 1997]. In that case, a small con-
tion located a t' = T. The model can be written tinuous perturbation U(t) of the local value of the
as: temperature leads to the suppression of the phase

A= EA +131A2(t - T)A + 2A4(t - T)A, (4) defects, and restores the regular Hopf oscillations.
Here we show an alternative strategy for the con-

( E - kA2 (5) trol of AT, whereby tiny continuous modifications
S- _of the parameter T lead to a local control of the

Even though Eqs. (4) and (5) have been here phase of the signal. In order to prove the efficacy of

introduced for modeling a specific experimental our method we use the system in Eqs. (4) and (5)

situation (a chaotic transition associated with in the AT regime. Here, the time delay is propor-

quasiperiodicity), they are in fact rather general. tional to the spatial extension of the system. We

When T = 0, S < 0, 01 > 0, 02 < 0, p > 0, will show that very small perturbations of the time

pl > 0, k > 0, they model an excitable system, delay are sufficient for the control of phase defects.
producing the so-called Leontovitch bifurcation, ev- Let us, therefore, consider the modified system

idence of which has been shown experimentally on A = EA + /3A 2 (t - (T + U(t)))A
a CO 2 laser with intracavity saturable absorber
[Plaza et al., 1997]. For T =, 0, they are similar +0 2A 4(t (T + U(t)))A, (6)
to the models already introduced to describe self- (S
sustained oscillations of confined jets [Villermaux & E= P - -y - kA 2  (7)

Hopfinger, 1994], or memory induced low frequency
oscillations in closed convection boxes [Villermaux, The control algorithm which selects U(T) can
1995], or even the pulsed dynamics of a fountain be summarized as follows. At time tn+l = t, + -m
[Villermaux, 1994]. (7n being an adaptive observation time interval to

Adjusting pump and delay parameters (S and be later specified), the observer defines the variation
T) in Eqs. (4) and (5), the system enters the chaotic A(tn+l - TH) - A(tn+l) between the actual and the

region. This region, in fact, is split into two differ- delayed values of A (TH being the Hopf period).
ent regimes. For low T values, chaos is due to a The corresponding variation rate
local chaotic evolution of the phase, whereas no ap- 1 A(t+ 1 - TH) - A(t+) (8)
preciable amplitude fluctuations are observed. This A.+1 = -l A(t- TH) A(t)
regime is called phase turbulence (PT). By increas-

ing T, a transition toward amplitude turbulence allows to select a new time interval
(AT) is observed. In AT, the dynamics is dominated
by the amplitude fluctuations, and a large number = -(1 - tgh(gAn~l)), g > 0 (9)
of defects is present. Both PT and AT have coun- and consequently a new observation at the time
terparts in a one-dimensional complex Ginzburg- tn+2 = tn+1 n+l. In the following we perturb T
Landau equation, for which the parameter space by adding iteratively to it a controlling term given
shows a transition from a regime of stable plane by
waves toward PT (Benjamin-Fair instability), fol- U(t) 1
lowed by another transition to AT with evidence of Tn+1
space-time defects [Montagne et al., 1996] . The details of the algorithm have been given in

[Arecchi et al., 1994; Boccaletti et al., 1997]. For

3. The Control relatively small perturbations, the following approx-
imation holds. Let (T) denote the average of the

The aim of the present paper is to control AT by {T-} set, then Eq. (9) can be written as
an adaptive technique recently introduced for chaos
recognition [Arecchi et al., 1994], and applied to Tn+l -)(1- yAh~1 ) (11)
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Fig. 3. (a) Space(a)-time(0) representation of the controlling process for Eqs. (6) and (7). 31 = 1, 32 = -1/16,ji = 0.8,
pi = 0.8, k = 11, S = 7, TH = 1.95. T = 50, AT regime. The dynamics is dominated by amplitude fluctuations, with the
presence of defects. Phase defects appear as dislocations in such a representation. The algorithm (Kj = 0.3, K 2 = 0.07)
suppresses the defects and restores the regular oscillation. Arrow indicates the instant at which control is switched on.
(b) The behavior of the time delay T + U(t).

Gf where (i) rn has been replaced with its ensemble av-
erage, and (ii) the tgh function has been linearized.
In the same way, Eq. (8) can also be linearized as

W 2- 1 A(t) - A(t - TH) (12)
(-r) A(t) - A(t - TH)

where the discretized stroboscopic observations
have been approximated with a continuous inspec-
tion. Combining Eqs. (11) and (12) into Eq. (10),
this reduces to

U(t) = Ki(A(t - TH) - A(t))

+ K 2 (A(t - TH) - A(t)) (13)

with K 1 = 1/(T) and K 2 = g/(r)2 . The conse-
quences of this approximation are relevant. First

of all, for K 2 = 0 one recovers the Pyragas control
method [Pyragas, 1992]. However, in our case, K 1

o and K 2 can be independently selected, and this in-
troduces an extra degree of freedom with respect to

Fig. 4. T = 50, AT with 10% noise. Control with K 1 = 0.3, [Pyragas, 1992].
K 2 = 0.07. Same stipulations and parameters as in the cap- In Fig. 3 we report the application of our
tion of Fig. 2. Arrows indicate the instant at which control method to Eqs. (6) and (7). The desired oscillation,
is switched on. which in the space-time representation gives rise to
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a roll set, is controlled in AT [Fig. 2(a)]. Figure 2(b) Boccaletti, S. & Arecchi, F. T. [1995] "Adaptive control
reports the behavior of U(t), which is vanishing up of chaos," Europhys. Lett. 31, 127-132.
to the instant at which control is switched on. Boccaletti, S., Farini, A., Kostelich, E. J. & Arecchi, F.

Let us now discuss the robustness of our pro- T. [1997] "Adaptive targeting of chaos," Phys. Rev.
cedure against external noise. For this purpose, we E55, R4845-R4848.add white noise to the measured A values before Boccaletti, S., Farini, A. & Arecchi, F. T. [1997] "Adap-tive synchronization of chaos for secure communica-
the onset of the adaptive feedback control. In such tion," Phys. Rev. E55, 4979-4981.
a case, the noise does not act additively, since it af- ti, S. Riv. E55, A979-49.1.Boccaletti, S., Giaquinta, A. &: Arecchi, F. T. [1997]
fects the calculation of U(t), hence the local value "Adaptive recognition and filtering of noise using
of the time delay. As a consequence, the noise acts wavelets," Phys. Rev. E55, 5393-5398.
dynamically on the evolution of the system. A rel- Boccaletti, S., Maza, D., Mancini, H., Genesio, R. &
evant result is that our method is robust against Arecchi, F. T., "Control of defects and space-like
large amounts of noise, as it can be appreciated in structures in delayed dynamical systems," Phys. Rev.
Fig. 4 where the control is achieved within AT for Lett., to appear.
10% noise. Giacomelli, G. & Politi, A. [1996] "Relationship between

delayed and spatially extended dynamical systems,"
Phys. Rev. Lett. 76, 2686-2689.

4. Conclusion Lu, W., Yu, D. & Harrison, R. G. [1996] "Control of pat-
terns in spatiotemporal chaos in optics," Phys. Rev.

We show that is possible to control delayed dynam- Lett. 76, 3316-3319.
ical systems applying small perturbations on the Mancini, H. & Maza, D. [1997] "Bnard Marangoni ther-
time delay variable. The control algorithm is eas- mal oscillators: An experimental study," Phys. Rev.
ily implementable. The robustness of this method E55, 2757-2768.
against noise has been verified. The proposed pro- Montagne, R., Hern~ndez-Garcia, E. & San Miguel,
cedure would imply an experimental setup wherein M. [1996] "Winding number instability in the phase

the control is achieved by modifying the cell length. turbulence regime of the complex Ginzburg-Landau
equation," Phys. Rev. Lett. 77, 267-270.
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The stabilization of periodic solutions in the regime of spatiotemporal chaos through a diffusion
parameter control is studied. We show that unstable plane waves in the Complex Ginzburg-
Landau equation can be effectively stabilized in chaotic regimes such as phase turbulence and
spatiotemporal intermittency or defect turbulence.

1. Introduction The control of spatiotemporal chaos is a com-
plicated problem, and so, there is a wide variety

There has been recently a considerable experimen- of methods intended to control such chaotic behav-
tal and theoretical effort to characterize Spatiotem- ior. There have been several attempts to achieve
poral Chaos (STC) [Cross & Hohenberg, 1994; such control in the CGLE [Aranson et al., 1994;

Gollub, 1994]. Weak STC seems to be an ubiquitous Bleich & Socolar, 1996; Mertens et al., 1994;

phenomenon in large nonequilibrium systems. In Bat
some cases STC arise in the proximity of threshold Battogtokh & Mikhailov, 1996; Montagne & Colet,

and can be described within the context of weakly 1997]. The most common approach is adding time-

nonlinear theories. These theories are well devel- delayed feedback terms to the CGLE. The feedback

oped in the form of the so-called complex Ginzburg- can be either local [Bleich & Socolar, 1996] (at each

Landau equations (CGLE) [Cross & Hohenberg, spatial point, the field at the same point at pre-

1993]. The CGLE is a prototypical equation for vious times is fed back) or global [Mertens et al.,
a complex field A that exhibit STC [Chat6, 1995]. 1994; Battogtokh & Mikhailov, 1996] (at each spa-

It accounts for the slow modulations, in space and tial point a term proportional to the integral of the

time of the oscillatory state in a physical system field over the spatial variable is fed back). Feedback
which undergoes a Hopf bifurcation [van Saarloos has also been used for control in a nonlinear drift-
& Hohenberg, 1992]. wave equation driven by a sinusoidal wave [Gang,

*Present address: Supercomputa Computations Research Institute, Florida State University, Tallahassee, FL 32306-4052,
USA.
E-mail: montagne@fisica.edu.uy, VVWW http://www.imedea.uib.es/-montagne
tE-mail: pereAhpl.uib.es, WWW http://www.imedea.uib.es/-pere
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1993]. And, in conjunction with a spatial filter, it 2. Model
has been applied to stabilize rolls and hexagonal The one-dimensional CGLE [Cross & Hohenberg,
structures in a model for a transversally extended 1993; van Saarloos & Hohenberg, 1992; van Saar-
three level laser [Lu et al., 1996] and to control 199; newll t Hoh19]fr a cml fieldfilaenttio in moel or wde perure emion- loos, 1995; Newell et al., 1993] for a complex field

filamentation in a model for wide aperture semicon- A(x, t), describes the slow dynamics of spatially ex-
ductor lasers based on the Swift-Hohenberg equa- tended systems close to a Hopf bifurcation,

tion [Bleich et al., 1997].

A different approach using nonlinear diffusion = A+ (1 + ic1 )&2A - (1 + iC2)IA12A. (1)
effects has been introduced recently in [Montagne A

& Colet, 1997]. It was shown that an imaginary We will assume periodic boundary conditions
nonlinear diffusion term was able to stabilize unsta-
ble plane waves in several regimes of STC. Here we throughout the paper. This equation admits among

generalize this study considering the case of having other exact solutions, plane waves of the form

both, real and imaginary nonlinear diffusion terms

in the CGLE. One of the main advantages of this Apw(X, t) = Aoei(kwt), (2)

generalization is the possibility of controlling plane
waves outside the region where control works us- with amplitude A0 = 1/ - k2, Ikl < 1 and fre-

ing only an imaginary nonlinear diffusion term. In quency w = c2 + (Cl - c2 )k 2.

particular, in that case it was practically impossi- For 1 + clc2 > 0 plane wave solutions are lin-

ble to stabilize plane waves with a large wavevec- early stable for wave numbers smaller than a limit

tor, whereas this can be easily achieved in the case value Iki kE given by

shown here. Also, in situations where control was
already possible, this extension allows to achieve the k = 1 + ClC2

stabilization of plane waves using a control parame- E 3 + clc 2 + 2c22 (3)
ter with smaller absolute value. As it happens with
most of the control techniques, stabilization is pos- For Iki > kE, plane waves are unstable to

sible only when starting from an initial state close phase perturbations (Eckhaus instability [Eckhaus,
to the unstable orbit. If the initial condition is an 1965]). The stability range vanishes at 1+c1 c2 = 0,
arbitrary chaotic state, the system will explore the the Benjamin-Feir-Newell (BFN) line, and there

different regions in phase space of the chaotic at- are no stable plane wave solutions for 1 + ClC2 < 0.

tractor and eventually may approach the unstable Numerical work for large system size [Shraiman

orbit one wishes to stabilize, although this can take et al., 1992; Chat6, 1994, 1995] has identified re-

an extremely long time. If the system goes close gions of the parameter space displaying different

enough to the unstable orbit then the control tech- kinds of regular and spatiotemporal chaotic behav-

nique shown here should work. Although we are ior, leading to a "phase diagram" for the CGLE
not exploring in detail how close to the unstable or- in the plane Cl-C 2 . The five different regions,
bit the system has to be to achieve stabilization, we each leading to a different asymptotic phase, are

show numerically that our scheme is robust to finite shown in Fig. 1. Two of these regions are in the

size perturbations of the initial condition. BFN stable zone and the other three in the BFN

In Sec. 2 we briefly describe the parameter unstable one. In this paper we will concentrate

regions for which different chaotic behaviors have in the regimes with a chaotic behavior, namely

been found for the CGLE and we introduce the SpatioTemporal Intermittency, Phase Turbulence
modified equation. Section 3 is devoted to the lin- and Defect Turbulence. A detailed description can

ear stability analysis of the plane wave solutions. be found in [Chat6, 1995].

We calculate for which parameter values the added We modify the CGLE by changing a parameter
term is able to stabilize plane waves in the STC re- of the system dynamically and proportionally to the

gions of the CGLE. In Sec. 4 we show, integrating deviation of the system from the state to be stabi-
the equations numerically, that the region of stabil- lized. We will show that the stabilization of plane
ity of the plane waves when finite size perturbations waves can be achieved by replacing the coefficient
are applied is in excellent agreement with the an- cl by c1 + y (I A1 2/Apw 2 - 1) where -y = -r + i-yi is

alytical prediction of the linear stability analysis. a complex constant and IAp,, = Ao is the modu-
Finally we give some concluding remarks in Sec. 5. lus of the plane wave to be stabilized. Notice that



Diffusion Parameter Control of Spatiotemporal Chaos 1851

3.5 -_/

P 1 A S E 
E

/URBU LENCE

2.4 F

1.3 FFECT TURBI LEN N t.tnR

0.2SPTIO-TEMFORAL NO HAOS

-0.9

-2.0

-3.0 -2.7 -2.4 -2.1 -1.8 -1.5 -1.2 -0.9 -0.6 -0.3 0.0
C 2

Fig. 1. Regions of the parameter space Cl - C2 for which the d = 1 CGLE displaying different kinds of regular and chaotic
behavior. The Benjamin-Feir-Newell line (BFN line) is also shown.

as the added term -y(]A 2/A2  - 1) vanishes iden- tions for the perturbations.
tically for A = A 0, any plane wave A 0 that is a
solution of (1) is also a solution of the modified Otr = -2(-yrk 2 + A)r - 2AokOq$ - 2clk&r
equation. We are not changing the solution but -ClA0 + 2r  (6)
we will change its stability. The added term also - ±

preserves the phase invariance of the solution of the k2  k
original CGLE, A --4 Ae"P, with 0 being an arbi- O&t = -2c 2 Aor - 2 i-or - 2clkaxo + 2-axr

trary phase. The modified CGLE is then explicitly 0

given by, + a2¢ + C2 r . (7)
Ao X

OtA = A + [1 + ic + -y(IA12/A2- 1)]&A We consider solutions of (6) and (7) proportional to

- (1 + ic2 )IA12 A. (4) e 1t+iqx, where for periodic boundary conditions q is
real whereas 77 is in general a complex quantity. By
substituting in (6) and (7) we obtain the dispersion

3. Stability Analysis relation
We use a standard linearization procedure for q7 + 2(A2 + 2-yrk2 ) + q2 + 2ic2qk 2iqk - clq2

studying the stability of the plane wave solutions c1q2 + 2c 2 A2 - 2iqk + 27ik 2  71 + q2 + 2iclqk
(2) in Eq. (4). Consider the time evolution of small (8)
perturbations in the amplitude and phase,

The solutions of (8) are

A(x, t) = (Ao + Er(x, t))ei(kx - t+ ¢(zt)) (5) 7 = - + -yk2 + q2 + 2icqk) ± u +iv, (9)

where r(x, t) and O(x, t) are real perturbations where u and v are polynomials
in the amplitude and phase, respectively and e
is a formal parameter to keep track of small u = (A2 + -yrk 2)2 + 4q2k2 - 2cC 2A2q 2 

- c2q 4

numbers.
Substituting (5) in (4) yields to a polynomial in - 2yiciq2k2 , (10)

E. The first order terms yield the linearized equa- v = 4qk(clq 2 + c2 A2 + yk 2 ). (11)
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The real part of q indicates the growth rate of the and
perturbations, a = (A2 + -yrk 2 ). (15)

+If this coefficient is positive, there is a range of long
Re (7) = -A - k2 - q2 u / 2  (12) wavelength perturbations that grow. The condition±2 D < 0 is necessary for stability but not sufficient,

The plus and minus sign (±) correspond to two since the growth coefficient obtained from the full
different branches. For the negative sign in (12), expression (12) can be positive for some finite value
Re(T7) < 0, so these perturbations are always of q despite the coefficient D being negative. How-
damped. ever, for the values of Cl and c2 considered in this

For the positive sign of the square root in (12) work the requirement D < 0 gives a very good limit
Re(ij) = 0 at q = 0, so all the plane wave so- for the stability region.
lutions are marginally stable. The origin of this For the unperturbed CGLE (y = 0) the condi-
neutral stability is the phase invariance A -+ Aeiv¢  tion D < 0, leads to the standard Eckhaus instabil-
of the solutions of Eqs. (1) and (4). For q very ity limit: Ikl < kE with kE given by (3). Since the
large, Re(iq) - -q 2, so short wavelength perturba- control is done through a diffusive term, the added
tions are always damped. However long wavelength term never changes the stability of the homogeneous
perturbations can grow destabilizing the original solution k = 0. For an arbitrary plane wave of wave
plane wave solution, to see this we expand (12) for number k one has to solve the cubic equation D = 0
small q. to find explicitly the range of values of k for which

Re(T) = Dq2 + O(q4), (13) the plane wave is stable. In Figs. 2 and 3 we plot
where this range as a function of the parameter cl for sev-

eral values of -y and c2. When no control is applied
C1C 2AO 2  (1+ d&) k (,y = 0) the stability region in the k-c 1 plane is lim-

a +2 2+ a2  ited by a branch of Eq. (3) (dashed line in Figs. 2
and 3) whose vertex corresponds to the BFN point.

clk 2  4c2kA 2 k 6  Decreasing the value of cl the width of the stabil-

-a +  a3  + / -;" (14) ity region jkl < kE increases, and for cl -+ -c,
kE - 1.

3 'r 1  ... 27 1 ' 1  = ....... ... 7 = 1

R-1 N 3 \ 0

-2 ... 2
3 7R= 2  yi/=0 2R2  0 y 2

-= 7R= 2  71=
2 2

C I - C0 \ \0 -

-2 .. . . .- 2
3 R--3 -/R== 3 1 3 yl= 3 = -y-- 3 -y2 -Y = __
2 2

-2 , , ,!, ,, , ] \ , ,N-1 N 3 i,,,i. . . 3 t. . . ,

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
IkI Ik1 IkI IkI

Fig. 2. The shadowed zone shows the stability region for the Fig. 3. The shadowed zone shows the stability region for the
plane wave (2) for C2 = -0.9. Left column and from top to plane wave (2) for c2 = -2.1. Left column and from top to
bottom, -y = 0 and -y = 1, 2, 3. Right column and from bottom, -yi = 0 and -y,- 1, 2, 3. Right column and from
top to bottom, -yi = 1 and -yr = 1, 2, 3. For comparison, the top to bottom, -yi = 1 and --y = 1, 2, 3. For comparison, the
boundary of the stability region for -y = 0, given by Eq. (3), boundary of the stability region for -y = 0 is shown in all the
is shown in all the figures as a dashed line. figures as a dashed line.
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As 'Iy is increased the stability region changes side the dashed line) are unstable without control.
its shape, so that it is possible to stabilize plane As shown in Fig. 2 they can be easily stabilized
waves which were unstable without control. In- with a real control parameter. For Cl > 1.11 we
creasing the value of 1h'I one finds stabilization of are in the phase turbulence regime up to cl z 2.3
plane waves for values of cl well above the BFN (see Fig. 1). For larger values of cl we enter in the
line, in the regions of phase turbulence and defect defect turbulence region. It is possible to stabilize
turbulence of the original CGLE. In particular, for plane waves in the region of phase turbulence tak-
c2 = -0.9 the BFN line corresponds in Fig. 2 to ing -yr -> 3 and -yi = 0, or yr -> 1 and -yi = 1. For
a horizontal line at Cl = 1.11. Below this value c2 = -2.1 the BFN line corresponds in Fig. 3 to
for Cl, plane waves with a large wavevector (out- a horizontal line at cl 0.476. Below that level

a) b)IAI 1.5 1.5 I

1.0 1.0

0.5 0.5

0.0 . . .1 0.0 1 .... I .... I .... I .... I .... I0. 0.6i0

054

0.310

0.22

0.0
-0. I 0. 0 . , .... i.....,.....,.....,

0 100 200 300 400 500 0 100 200 300 400 500

x x

e) d)

Fig. 4. Spatiotemporal evolution of the CGLE (4) for c, = 1.5, c2 = -0.9 starting from a perturbed plane wave (16) with
k = 0.5 and o = 0.007. Figures (a) and (b) show IA(x, t)I with time running upwards from t = 0 to t = 1000 and x in the
horizontal direction for -y = 0 and -y = 3 + Oi, respectively. The absolute value of the field IA(x, to)I and the phase gradient
axo(x, to) at to = 950 are displayed in (c) and (d) for -y = 0 and -y = 3 + Oi, respectively.
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there are the coexistence of stable plane waves In general, the real part of -y is specially effec-
and spatiotemporal intermitency. Plane waves with tive in extending the stability region to plane waves
wavevector outside the dashed line are unstable and of a large wave number. We should stress that sta-
will lead to spatiotemporal intermitency without bilization of plane waves with wavevector close to
control. As shown in Fig. 3 the real part of -y is very one was extremely difficult to achieve using only
effective in the stabilization of these plane waves, an imaginary nonlinear diffusion term, even tak-
For cl > 0.476 we are above the BFN line, and in- ing large values for -yi, as shown in [Montagne &
creasing cl we enter first in the bichaos regime and Colet, 1997]. Above the BFN line, stabilization of
later in the defect turbulence regime (see Fig. 1). unstable plane waves in the regions of phase and
As shown in Fig. 3, stabilization of plane waves in defect turbulence can be achieved taking -y to be
both regions is possible using for example -y 1 + i. purely real (left column in Figs. 2 and 3) or purely

a) b)
1Al '.5 1.5

1.0 1.0

0.5 0.5

0.0 0.0 .... ,_...._ _...._ _ ...._ _ ....

5 5 1.0

0

-5 0,5

-10 .... 0.0 _....__... ___.. .___. .. __...

0 100 200 300 400 500 0 100 200 300 400 500

x x

c) d)

Fig. 5. Spatiotemporal evolution of the CGLE for cl = 2.5, c2 = -2.1 starting from a perturbed plane wave with k = 0.9.

Figures (a) and (b) show IA(x, t)I for -y 0 and y = 1 + i, respectively. The values of IA(x, to)I and 9 0 (x, t) at to = 950 are

displayed in (c) and (d) for -y = 0 and y = 1 + i, respectively. Other parameters are as in Fig. 4.



Diffusion Parameter Control of Spatiotemporal Chaos 1855

imaginary (see ref. [Montagne & Colet, 1997]). ity of stabilization of an unstable plane wave in dif-
However, it is more efficient to take -y complex, since ferent regimes of STC. Since the added term van-
one can achieve stabilization with smaller values ish for the stabilized plane wave, this plane wave
of 1-1. is exactly the same unstable solution of the origi-

nal CGLE. Although our method does not change

4. Numerical simulations the stability of the homogeneous solution k = 0,
it is quite effective in stabilizing plane waves with

We have integrated numerically Eqs. (1) and (4) us- nonzero wavevector. We have shown that the real
ing a pseudospectral code with periodic boundary part of the nonlinear diffusive term is specially ef-
conditions and second-order accuracy in time. Spa- fective for stabilizing plane waves with wavevector
tial resolution was typically 1024 modes. Time step close to one. Also, in general it is more efficient to
was typically At = 0.001. The system size was al- use a nonlinear diffusive term with both real and
ways taken as L = 512. The details of the numerical imaginary parts, in the sense that stabilization can
method can be seen in [Montagne et al., 1997]. We be achieved with a control parameter with smaller
start from an initial condition which corresponds to absolute value.
a plane wave plus a small random perturbation Finally, we have studied numerically the stabil-

A(x, t = 0) = lV/- k2e i k , + 0 (x) (16) ity of the plane waves when finite size perturbations
are applied. The results are in excellent agreement

where (x) is a complex Gaussian random pertur- with the analytical predictions of the linear stability

bation of zero mean and variance ( (x) *(xl)) = analysis.

26(x - x').
We have performed numerical simulations in

different regions of the phase diagram (Fig. 1) to Acknowledgments
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