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ABSTRACT 

In this thesis single-degree-of-freedom torsional airfoil flutter is investigated 

using an incompressible potential flow code, a compressible inviscid Euler code and a 

compressible viscous Navier-Stokes code. It is found that the classical linearized 

incompressible and compressible flow theories yield unconservative flutter estimates. 

The computations based on the non-linear codes show for NACA 0006, NACA 0009, 

NACA 0012 and NACA 0015 airfoils that the regions of torsional flutter instability 

increase as the airfoil thickness and the flight Mach number is increased. On the other 

hand, the comparison of the flutter boundaries computed with the viscous Navier-Stokes 

code versus the inviscid Euler code shows that the effect of viscosity is stabilizing. Also, 

the computed flutter boundaries display the effect of pitch axis location on flutter. Axis 

locations in the range between half a chord upstream of the leading edge of the airfoil and 

the leading edge are most prone to induce flutter. Axis locations downstream of the 

quarter chord are flutter free. 
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I.       INTRODUCTION 

A.   BACKGROUND 

The phenomenon of airfoil flutter was first encountered on World War I airplanes. 

The danger to flight safety posed by this phenomenon stimulated the development of 

quite sophisticated flutter analysis and testing methods in the ensuing years. References 

1,3,4,6 and 7 give good reviews of these developments, where it is also explained that the 

flutter phenomenon is caused by the interaction of the aerodynamic, inertia and elastic 

forces. Until very recently, important simplifying assumptions had to be introduced in 

order to make the problem mathematically tractable. Linearized aerodynamic analysis 

methods were among the most important simplifications used in the past. For the analysis 

of low speed flutter phenomena, Theodorsen developed an incompressible flow theory 

for oscillating flat plates, which was then extended to compressible subsonic flow. This 

incompressible oscillatory flat plate theory remains the standard aerodynamic analysis 

tool for flutter calculations. A second important simplification was also introduced by 

Theodorsen when he proposed to perform the flutter analysis in the frequency domain. In 

this approach, the aerodynamic forces need to be computed only for the special case 

where the airfoil is assumed to execute a purely harmonic oscillation at constant small 

amplitude. 

Flutter analyses based on linearized aerodynamic theory in the frequency domain 

have serious shortcomings. Thin airfoil (flat plate) theory makes it impossible to account 

for the effect of airfoil geometry on flutter. Frequency-domain methods provide little 

information about the physics of the flutter problem because the decay of the airfoil 

motion below the critical flutter speed and the divergence of the motion above this speed 

cannot be obtained as part of frequency domain flutter analysis. 

The recent rapid advances in computational fluid dynamics (CFD), however, 

made it possible to replace linearized aerodynamic methods by solutions based on the full 

non-linear Euler or Navier-Stokes equations for inviscid or viscous compressible flow. 



As an additional advantage, these modern CFD methods integrate the governing flow 

equations in time. Therefore, they can easily and naturally be combined with the 

equations of motion of the airfoil. This leads to the following specific objective for the 

work attempted in this investigation. 

B.       OBJECTIVE 

A two-dimensional compressible Euler and Navier-Stokes flow solver is coupled 

with a one degree-of-freedom structural model for the time domain analysis of an airfoil 

which is free to oscillate about a specific pivot point. The effect of airfoil thickness on 

torsional flutter is to be determined as a function of pivot location and subsonic Mach 

number. Also, viscous flow effects on flutter are to be determined by comparing Euler 

and Navier-Stokes computed flutter boundaries. Furthermore, at low Mach numbers the 

Euler computed flutter boundaries are to be compared with the flutter boundaries 

computed with the incompressible unsteady panel code UPOT. 



II.      GOVERNING EQUATIONS 

The equations that describe the compressible viscous fluid flow around a body are 

the continuity, the momentum and the energy equations. The flow around the body can be 

computed by the simultaneous solution of these equations. The conservation-law and the 

vector form of the compressible Reynolds-averaged Navier-Stokes equation is presented 

in this chapter. A detailed derivation can be found in [Ref 8]. 

A. CONTINUITY EQUATION 

The continuity equation expresses the conservation-of-mass law applied to a 

fluid passing through a control volume fixed in space 

|^- + V(pV) = 0 (2.1) 
at 

where p is the fluid density and V is the fluid velocity. Eq.(2.1) states that the net mass 

flux through a control volume bounding surface must be equal to the time rate of change 

of the mass inside the control volume. For two-dimensional Cartesian flow this equation 

reads 

^ + r-(/>")+ |-(/»t>) = 0 ' (2.2) 
at    ax az 

where u and w are velocity components along the x and z directions, respectively. 

B. MOMENTUM EQUATION 

The momentum equation expresses Newton's second law as applied to a fluid 

element flowing relative to a space-fixed coordinate system. The x and z direction 

momentum equations are: 



^n+v(pw)=/ar + vn# (2-3) 
dt 

The first term in Eq.(2.3) represents the time rate of change of momentum per unit 

volume in the control volume. The second term represents the momentum net flux 

through the bounding surface of the control volume. Also, f is the body force per unit 

volume and Y[ y *s the stress tensor given by: 

UiJ=-PSiJ+^ 
dui    2 _ duk 

—S„ 
dxj    3   y dxk 

where ij,k = 1,2,3 and 5y is the Kronecker delta. 

By substituting Eq.(2.4) into (2.3) for flow in a two-dimensional Cartesian 

coordinate system we obtain: 

d dpu       dpu       dpu _ dp     d 

dt dx dz dx    dx 

dpw       dpw       dpw _ dp     d 

dt dx dz dz     dz 

- ,„   ,ndu    dw 

dx     dz 
+ - 

dz 
(dw    du^ 

1 dx     dz 

2/3// 
r  dw    du 

dz     dx M 
dx 

dw • du 
// 1  

dx     dz 

These equations are known as the Navier-Stokes equations. 

C.       ENERGY EQUATION 

(2.4) 

(2.5) 

The energy equation is derived by applying the first law of thermodynamics (rate 

of change of energy = net heat flux into particle + rate of work done on particle). 

(2.6) -^ —f- - p{fxu + fzw) + — (eu + pu - ut^ - wrs) + 
dt     dt dx 

dz 
(ew + pw- wt^ - ut^) = 0 

where e is the total energy per unit volume. 



VECTOR FORM OF FLOW EQUATIONS 

The above equations can be rewritten in non-dimensionalized vector form as 

where 

Q = 

dt     dx     dz     Re   dx      dz 

p pu 

pu 

pw 
F = 

pu2 + p 

puw 

e (e + p)u 

pw 

puw 

pw2 + p 

(e + p)w 

(2.7) 

and 

F = 

0 

/4 

"0" 

Gv = 

-#4. 

7« = 3^K-l/2wz) 

*K = ^ju(wz-l/2ux) 

*K = JU(WX + uz) 

u = UT^ + WT^ 
Pr(r- 

a2 

-1) 

?4 = = UT xz +      ß 

Pr(r- 
a2 

1) 

LLis the free stream velocity and L is the reference length. The pressure is related 

to the other variables by 



p=(r-\) e--p(u2 +w2) 
2 

In the above equations the ratio of the specific heats, y is 1.4 and a is the local speed of 

sound. The density is non-dimensionalized by the free stream density p„, the velocities 

by the free stream speed of sound a„, and the total energy by pMa„   . 

E.       TURBULENCE MODEL 

The unsteady Navier-Stokes equations can completely model the fluid flow, but 

the computational calculations of turbulent flows for realistic geometries at high 

Reynolds numbers demand very high grid densities and very small time steps. Therefore, 

in order to compute turbulent flows for configurations of practical interest, turbulence 

modeling is used. Turbulence models are implemented with the time-averaged forms of 

the Navier-Stokes equations. 

The most commonly used averaging procedures are: 

• the standard time averaging procedure for incompressible flow and 

• the mass-averaged approach for compressible flows. 

The time averaging procedure omits the high frequency information of the 

turbulence, but the unsteady mean flow information is preserved. For the incompressible 

case the randomly- changing flow variables are replaced with their averages plus their 

fluctuations. Thus the u velocity component is represented as u=u + u' where w is the 

mean velocity and u' is the fluctuation about the mean. The governing equations are time 

averaged and the average of the fluctuation terms is set equal to zero. 

In the compressible flow case the mass-weighted variable of the Favre averaging 

approach is used. In this case u is represented as u = u + u" where ü is 

u=BL (2.8) 
P 

Here time average of the doubly primed fluctuating quantities is not equal to zero. 



After the substitution is carried out for all of the fluctuating flow variables, the entire 

equation is time averaged. Next, all the time averaged terms that are doubly primed 

and multiplied by density are defined to be zero. For example 

pu" = 0 (2.9) 

The equations of mean motion resulting from the time averaging procedure have 

more unknowns than equations. This constitutes the closure problem of turbulence. 

In order to close these equations a turbulence model must be used. 

The Baldwin-Lomax (B - L) turbulence model [Ref. 10] is a two-layer eddy 

viscosity model which simulates the effect of turbulence in terms of the eddy viscosity 

coefficient |it. The term ^i in the stress terms is replaced by p,+jit and the \U?r in the heat 

flux terms is replaced with \3J?T+\iif?n. The B-L turbulence model bypasses the need for 

finding the edge of the boundary layer by using vorticity instead of the boundary layer 

thickness. This model is adequate for flows which have mild pressure gradients, but it is 

not very suitable for highly separated flows. The basic equations of the model follow. 

In the inner layer, the eddy viscosity, is assumed to be proportional to the mixing 

length squared and vorticity, and in the outer layer it uses an exponentially decaying 

formula. The inner eddy viscosity is computed up to the point where it is equal to the 

outer eddy viscosity as shown below. 

yH't' inner        J J — J crossovi 

\r-t> outer       J0r       y^y crossovi 
M,= 

where y is the normal distance from the wall and ycrossover taken at its minimum value 

where it equals y. The inner eddy viscosity is given by: 

W inner =P^O)\ 

where 

l = Ky l-exp(-^) 

\d(0    du 2 



+    Pwuty 
y =~T~ 

A+ is   an experimentally determined damping constant, K is the Von Karman constant. 

The outer eddy viscosity is given by 

Mover = JCcppF(y)WAKE F{y)KLEB 

F(V)KLEB is the Klebanoff intermittency factor given by 

F(y) KLEB 1 + 5.5 KLEB. 

-|-1 

V    ./max     / 

d and Ccp are constants. For boundary layers 

"\jJwake       -^ max    max 

For wakes and separated boundary layers 

2 
U  DIF _ 

F(y)wake = Q^max-T; ^max^m max    max 

The quantity ymax is the value of y determined for the maximum value of Fmax and 

Fmax is determined by 

F(y)=y\a\ l-exp(-—) 



III.     NUMERICAL FLOW SOLUTIONS 

A.       INCOMPRESSIBLE INVISCID FLOW 

The basic governing equation for two-dimensional, incompressible, irrotational 

92<S>   a^> 

dx2 + dz2 

Eq.(2.2) for incompressible flow (p=const) and the equation for irrotational flow 

inviscid flow is the Laplace equation —+ 77 = ° • ^his comes fr°m tne continuity 

du    dw _ 

dz    dx 

A computer code developed by Teng [Ref. 15] was used for the flow calculations. 

This panel code uses the assumption that the airfoil can be approximated by a number of 

panels each having a source strength qj. All the panels are assumed to have the same 

vorticity strength y. These sources and vortices induce a velocity at every point around 

the airfoil. For the flow solution to be found two conditions are applied: 

• The flow tangency condition which states that the normal component of the 

total velocity at the midpoint of each panel due to freestream velocity and the velocities 

induced by the sources and vortices on all the panels is zero. 

• The Kutta condition which states that the pressure on the upper and lower 

surface of the trailing edge must be equal. 

For an oscillating airfoil an additional wake panel is assumed to be attached to the 

trailing edge. The airfoil motion is divided into small steps. At each step the vorticity of 

the wake panel is assumed to be concentrated into a single point vortex which detaches 

from the airfoil with the local velocity such that the Helmholtz theorem can be applied: 

the change in circulation about the airfoil between time steps k-1 and k is equal and 

opposite in direction to the vorticity released into the wake or 
A*Ow)*+ri=ri_1 



where 

A is the wake panel length 

yw is the vorticity strength and 

r is the circulation about the airfoil 

Two more equations are needed in order to determine the length and the 

orientation of the wake panel. Thus two additional conditions must be specified: 

The wake panel is oriented in the direction of the local resultant velocity at its mid-point 

The length of the wake panel is proportional to the magnitude of the local resultant 

velocity at its mid-point and the time-step. Figure 3-1 shows the unsteady wake and its 

elements. 

A,      \   (Ik-r-rk-i) 

(Ik-3~Ik-2) 

Figure 3-1   Incompressible Flow wake model 

B.       COMPRESSIBLE FLOW 

The governing equations of the compressible flow over airfoils are so complicated 

that no exact solution can be obtained analytically. Their solution is accomplished with 

numerical methods which were applied on a mass scale after the advent of high speed 

computers. 
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The total process of obtaining flow solutions about problems involving fluid 

motion can be represented schematically in Figure 3-2. 

FOR EACH ELEMENT OF FLUE) 

Conservation of mass => Continuity Equation 
Newton's second law => Euler Equations 

Navier-Stokes Equations 
Conservation of energy => Energy Equation 

Solve the equations+B.C's+LC's 

Velocity Distribution 
Pressure 
Density 
Temperature 

u(x,z,t), w(x,z,t) 
p(x,z,t) 
p(x,z,t) 
T(x,z,t) 

i 
Deduce flow behavior flow separation 

flow rates 
heat transfer 
forces on bodies 
(skin friction, drag, lift) 

Figure 3-2   Overview of Computational Fluid Dynamics 

The governing partial differential equations, are replaced with systems of 

algebraic equations, so that a computer can be used to obtain the solution. The process of 

converting the continuous governing equations to a system of algebraic equations is 

known as discretization. 
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For finite differencing schemes, a grid of discrete points is distributed throughout 

the computational domain in time and space. The algebraic equations link together values 

of the dependent variables at adjacent grid points. The required number of grid points for 

an accurate solution typically depends on three factors; the dimensionality, the geometric 

complexity and the severity of the gradients of the dependent variables. At each grid 

point each dependent variable and certain auxiliary variables must be stored. All of these 

variables must be stored in main memory for the computation to be efficient. 

As the governing equations for flows around an airfoil are nonlinear, the process 

of the computational solution must be iterative. The iterative process is often equivalent 

to advancing the solution over a small time step. The number of iterations, or time steps, 

might vary from a few hundred to several thousand. 

The discretization process always introduces an error. As long as the discrete 

equations are faithful representations of the governing equations, this error can be 

reduced by refining the grid. If the numerical algorithm that performs the iteration is 

stable, then the computational solution can be made arbitrarily close to the true solution 

of the governing equations by refining the grid. 

1.       Grid Generation by Algebraic Mapping 

In order to use an unweighted differencing scheme the flow equations must be 

transformed to a generalized coordinate system using the following transformations for 

the case of unsteady two-dimensional flow: 

4=4(x,z,t) 

£=C(x,z,t) (3.1) 

z =z(x,z,t) 

The above equations can be used to transform the governing equations from the 

physical (x, z,t) to the computational domain (^,£,T) with the Jacöbian transformation. 

For more details refer to [Ref.2]. 
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Grid generation has to do with the establishment of the correspondence between 

points (x, z) in the physical domain and points (£,£) in the computational domain. 

Algebraic mapping techniques interpolate the boundary data in one or more 

dimensions in order to generate the interior grid. The generated grid should be well- 

conditioned, i.e., smoothly varying, close to orthogonal and with local grid aspect ratios 

close to unity. For fluid flow problems, the solution is often changing rapidly close to a 

particular surface. It is important to construct a grid that is orthogonal, or near- 

orthogonal, adjacent to such a surface. 

Stretching functions on the boundaries are used in order to define the grid points 

in the interior. Consequently, the two-boundary and multisurface techniques are still able 

to get smoothly varying near-orthogonal grids with only one-dimensional explicit 

interpolation. 

The distribution of points along the boundary of the domain is handled effectively 

by defining normalized, one-dimensional, stretching functions along boundary segments, 

typically corresponding to each side of the computational rectangle in the (£77) plane. 

Boundary stretching functions are applicable whether the interior grid is generated by 

solving a partial differential equation or by an algebraic mapping. 

2.       Numerical Implementation of Algebraic Mapping 

Computer programs have been developed capable of generating grids between 

two bounding curves based on algebraic mapping techniques. 

For the domain shown in (Figure 3-3), the bounding surfaces consist of a 

symmetric slender body extended downstream, ABC, and a farfield boundary, FED. 

Between these two boundaries half of a C-grid is to be generated. By symmetry the 

complete C-grid can be obtained by reflection about the x-axis. 

As mentioned before, grid generation is split into two parts: 

First, grid point locations on all boundaries are determined and a 1-D stretching 

function is used to control the distribution on the boundaries. 
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Subsequently, the interior grid is generated by the multisurface technique. Two 

intermediate surfaces, Z2, and Z3, are introduced, one each adjacent to the bounding 

Figure 3-3  Numerical Implementation of Algebraic Mapping 

surfaces ABC and FED. The parametric (r) correspondence of surfaces Z2, and Z3 to their 

neighbouring bounding surface is adjusted so that grid lines intersect the bounding 

surfaces orthogonally. The mechanism of choosing x(r), y(r) on surfaces Z2, and Z3 

requires an orthogonal projection, conceptually similar to the near-orthogonal grid 

construction. 

3.        CFD Techniques 

Computational techniques are used to obtain an approximate solution of the 

governing equations and boundary conditions. For example, for two-dimensional 

unsteady incompressible flow, velocity and pressure solutions, u(x, z, t), w(x, z, t) and 

p(x, z, t), would be computed. The computational solution is obtained in two steps that 

are shown in Figure 3-4. 

In the first step, the partial differential equations and boundary and initial 

conditions are converted into a discrete system of algebraic equations. This step, as 
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mentioned before, is called discretization. The second step comprises the solution of the 

system of algebraic equations. 

The fact that the differentiated terms in the governing partial differential 

equations are replaced by algebraic expressions connecting nodal values on a finite grid 

introduces an error. In order to minimize this error, the most appropriate algebraic 

expressions should be chosen. Equally important as the error in representing the 

differentiated terms in the governing equation is the error in the solution. 

GOVERNING 
PARTIAL 

DIFF.EQNS 
AND B.C's 

DISCRETIZATION 
SYSTEM OF 
ALGEBRAIC 
EQUATIONS 

APPROXIMATE 
SOLUTION 
u(x,z,t) 

EQUATION 
SOLVER 

Figure 3-4   Overview of the computational solution procedure 

a.       Discretisation process example 

To convert the governing partial differential equation(s) into a system of 

algebraic equations (or ordinary differential equations), a number of choices are 

available. The most common are the finite difference, finite element, finite volume and 

spectral methods. 

The way the discretisation is performed also depends on whether time 

derivatives (in time dependent problems) or equations containing only spatial derivatives 

are being considered. In practice, time derivatives are discretized almost exclusively 
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using the finite difference method. Spatial derivatives are discretized by either the finite 

difference, finite element, finite volume or spectral method. 

The discretization process can be illustrated by considering the scalar 

equation 

au       au    n ,~ ON —+ or—= 0 (3.2) 
dt        dx 

The most direct means of discretization is provided by replacing the 

derivatives by equivalent finite difference expressions. It is based on forward difference 

in time and a central difference in space and gives, after multiplying with At: 

2Ax 

This equation is referred to as explicit in time. That is if we know u" at all 

grid points in space at time level n, then we have a series of explicit calculations to 

determine un+1 at all grid points. Further, all values of Uin+1 are obtained independently of 

each other; they depend only on u;", not on the other Uin+1 terms. 

The process of discretizing Eq.(3.2) to give Eq.(3.3) implies that the 

problem of finding the exact (continuous) solution u(x, t) has been replaced with the 

problem of finding discrete values Ujn, i.e. the approximate solution at the (i, n)th node. In 

turn, two related errors arise, the truncation error and the solution error. 

The precise value of the approximate solution between the nodal (grid) 

points is not obvious. Intuitively, the solution would be expected to vary smoothly 

between the nodal points. In principle, the solution at some point (xr, ur) that does not 

coincide with a node can be obtained by interpolating the surrounding nodal point 

solution. 

To provide the complete numerical solution at time level (n + 1), Eq. (3.3) 

must be applied for all the nodes i=2,...I-l, assuming that Dirichlet boundary conditions 

provide the values uin+1 and uin+1. 

The discretization process invariably introduces an error unless the 

underlying exact solution has a very elementary analytic form. In general, the error for a 

finite difference representation of a derivative can be obtained by making a Taylor series 
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expansion about the node at which the derivative is being evaluated. The evaluation of 

the leading term in the remainder provides a close approximation to the error if the grid 

size is small. However, the complete evaluation of the terms in the Taylor series relies on 

the exact solution being known. 

b.       Convergence 

A solution of the algebraic equations that approximate a given partial 

differential equation is said to be convergent if the approximate solution approaches the 

exact solution of the partial differential equation for each value of the independent 

variable as the grid spacing tends to zero. Thus we require 

u" —>«(*,,?„) as    Ax,Af-»0 

where U is the exact solution 

The difference between the exact solution of the partial differential 

equation and the exact solution of the system of algebraic equations is the solution error, 

denoted by e; that is 

e" =ü(x„tn)-u" 

The exact solution of the system of algebraic equations is the approximate solution of the 

governing partial differential equation. The exact solution of the system of algebraic 

equations is obtained when no numerical errors of any sort, such as those due to round- 

off, are introduced during the computation. The magnitude of the error, at the (^n)01 node 

typically depends on the size of the grid spacings, Ax and At, and on the values of the 

higher-order derivatives at that node, omitted from the finite difference approximations to 

the derivatives in the given differential equation. 

4-       Navier - Stokes Solution 

If we apply the generalized transformation to the compressible Navier-Stokes 

equations written in vector form Eq.(2.7), the following transformed equation 
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is obtained 

3ß    3F    dG_ = J_,dS_) 

where Q is the conservative variables vector: 

(3.4) 

Q = 
1 

P 
pu 

pw 

J is defined in Eq.(3.9) 

F, G are the in viscid flux vectors: 

J 

pu 

puU + £xp 

pwll + ^p 

(e + p)u-£tp 

-     1 
G = - 

J 

pW 

puW + £xp 

pwU + £zp 

(e + p)W-£tP 

and S is the thin layer approximation of the viscous fluxes in the £ direction: 

0 

pmluc+(ß/3)m2Cx 

jum^Wf +(///3)m2^z 

jjm}m3 +(///3)m2m4 

J 

where 

«h=£+C. 
m* = £*«?+£*w? 

m3=(w2+w2)/2 + 
Pr(r-l) 

«4=^« + ^ W 

The U and W are the contravariant velocity components, tangential to the constant £ and 

C, surfaces, respectively, and they are given by: 
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W = u£x+wtz+£t 

Non-dimensionalization of the governing Eq.(3.4) is performed using the 

following reference quantities: density p«, length c, time c/a*,, and energy po=a2«, 

After non-dimensionalization of the governing equations, Euler solutions are 

obtained setting the viscous terms of Eq.(3.4) zero and applying the flow tangency 

condition at the airfoil surface. For Navier-Stokes solutions the no-slip condition is 

applied at the surface. 

The numerical integration of the Eq (3.4) is performed using an implicit scheme 

[Ref. 11] given by 

fr + h ^\K + *eK - Re~' S,Mt,k f x fe1 -Q[k )= (3.5) 

= "Ife " Ql)+ h (fa/u - F>1/u)+ Af (G^+I/2 - Glk_ul)- Re"1 h; {s[++U2 - S[k_U2 )J 

In Eq.(3.5) V, A and 8 are the. forward, backward and central difference operators 

respectively, whereas the h^=Az/A^ , h? =Az/A£ , A* =dF/dQand 

B± = dG/dQ are the flux Jacobian matrices. The superscript (.)" refers to the time step 

and the superscript (.)p refers to Newton subiterations within each time step. 

Time accuracy of the implicit numerical solution is obtained by performing 

Newton iteration to convergence for each time step. Linearization and factorization errors 

are minimized because the left hand side of Eq.(3.5) can be driven to zero at each time 

step. Typically two to three subiterations are sufficient to drop the residuals two orders of 

magnitude during the Newton iteration process. 
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IV.     AEROELASTIC ANALYSIS 

A.       FLUTTER - GENERAL 

Flutter can be defined as the dynamic instability of an elastic body in an airstream. 

The aircraft aerodynamic surfaces, such as wings, tails, and control surfaces (i.e. bodies 

subjected to large lateral aerodynamic loads of the lift type) are the bodies that are most 

likely to experience flutter. The only air forces necessary to produce it are those due to 

deflections of the elastic structure from the undeformed state. 

The flutter speed UF and frequency caF are defined, respectively, as the lowest 

airspeed and the corresponding circular frequency at which a given structure flying at 

given atmospheric density and temperature will exhibit sustained, simple harmonic 

oscillations. All small motions are stable at speeds below UF, whereas divergent 

oscillations can occur in a range of speeds (or even at all speeds) above UF. In other 

words, flight at Up represents a borderline condition or neutral stability boundary above 

which flutter will happen. 

. The free vibration of a linear structure in vacuum is a real, or single, eigenvalue 

problem. In contrast, the theoretical flutter analysis leads to a complex, or double, 

eigenvalue problem, where two characteristic numbers determine the critical flutter speed 

and frequency. This is because the simple harmonic motion assumption is made; all 

dependent variables are proportional to ewt, and the problem is to find all the 

combinations of U and co for which flutter actually occurs. 

There are three main ways in order to study and predict flutter: 

• theoretical flutter computation 

• wind-tunnel experiments on scaled dynamic models, 

• flight testing of full-scale aircraft. 

21 



The decision as to which of these is most economical in a given case is very difficult and 

depends on a multitude of factors such as: 

• the purpose and the phase of the study 

• anticipated margin of safety from flutter, 

• the Mach number range, 

• the number of different mass and structural configurations to be analyzed. 

Current regulations require that flight flutter testing must be preceded by flutter analysis 

and wind tunnel testing. 

B.       THE PHENOMENON OF FLUTTER 

The phenomenon of flutter can be described with a simple experiment: consider a 

cantilever wing, mounted in a wind tunnel at a small angle of attack and with the root 

rigidly built in. Then when there is no flow in the tunnel we deliberately deflect and then 

release the wing. We observe that the oscillation decays gradually. Then we increase the 

speed of flow in the wind tunnel and repeat the experiment; the oscillation of the 

disturbed airfoil dies out. With further increase of the flow speed, however, a point is 

reached at which the oscillation maintains itself with steady amplitude. This is the critical 

flutter speed. If the wind tunnel speed is increased, flutter will occur with increasing 

amplitude. It is obvious that during the aircraft flight at speeds above the critical, an 

initial disturbance (coming from a gust for example) will cause an oscillation of great 

violence. In such circumstances the airfoil suffers from oscillatory instability and is said 

to flutter. 

The above experiment on wing flutter shows that the oscillation is self-excited; 

i.e., no further external disturbance is required. The motion can maintain itself or grow 

for a range of wind speeds, which depends on the design of the wing and the conditions 

of the test. 
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An aerodynamic surface, as an elastic body, has infinitely many degrees of 

freedom (d.o.f). But often it is sufficient to consider only three variables, namely the 

flexure (plunge), the torsion (pitch), and the control-surface rotation. A flutter mode 

consisting of all three elements is called a ternary flutter. In special cases, however, two 

of the variables predominate, and the corresponding flutter modes are called binary flutter 

modes. In fact, many airplanes can be replaced by a system of simple beams, so that the 

elastic deformation can be described by the deflection and torsion of the beams, in 

addition to the rotation of control surfaces about their hinge lines. 

For the oscillatory motion of a wing only the first two components of flutter are 

often considered: the flexural (plunge) and the torsional (pitch). In general, the coupling 

of those two degrees of freedom is an essential feature for wing flutter. The oscillation 

that occurs at the critical speed is harmonic. Experiments on cantilever wings show that 

the flexural movements at all points across the span are approximately in phase with one 

another, and likewise the torsional movements are all approximately in phase, but the 

flexure is considerably out of phase from the torsional movement. As will be seen later, it 

is this phase difference that is responsible for the occurrence of flutter. 

A rigid airfoil in a low-speed attached flow which is constrained in torsion and 

can only plunge (flexural d.o.f) does not flutter. In contrast, a rigid airfoil with only the 

torsional d.o.f can flutter for some special mass distributions and elastic-axis locations. In 

this text we will restrict the term "flutter" to the oscillatory instability in a flow which 

does not experience flow separation or strong shocks. 

For a control surface, such as a flap or an aileron, its flexural and torsional elastic 

deformation are not so important as its freedom to turn about the hinge line. 

Consequently, the deflection of a control surface can simply be described by the angle of 

rotation about its hinge line. 

The degrees of freedom of flutter mentioned before, together with the freedom of 

the airplane to move as a rigid body, offer a large number of possible combinations of 

binary, ternary, and higher modes of flutter. Since it is not clear which of these modes 
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correspond to the actual critical speeds, it is necessary either to resort to experiments or, 

in a theoretical approach, to analyze all cases. This is why a successful flutter analysis 

depends so much on the analyst's experience. He must be able to choose, among all 

possible modes, those that are likely to be critical for a given structure. 

As one can easily understand, flutter analysis is an extensive subject; for this 

reason it is preferable to divide its presentation in sections. Some basic definitions are 

given in Section C. The role of the elastic stiffness in flutter prevention are explained on 

an empirical basis in Section D. The origin of flutter from the aerodynamic point of view 

is then considered in Section E. It will be shown that flutter occurs because the speed of 

flow affects the amplitude ratios and phase shifts between motion in various degrees of 

freedom in such a way that energy can be absorbed by the airfoil from the airstream 

passing by. The physical explanation and the equations of motion for the one d.o.f flutter 

will be discussed in Section F, whereas the two d.o.f flutter will be explained in Section 

G. A practical way to find the flutter condition with the Panel Code (UPOT) will be 

shown in Section H. 

C.       NONDIMENSIONAL PARAMETERS 

In flutter analysis any non-dimensional quantity relating to the motion can be 

expressed as a function of two parameters: 

p/cj   and    K/oi3U2 

where 

1 Typical linear dimension 

U Air' speed 

p Air density 

a Typical density of structural material 

K Typical torsional stiffness constant (ft-lb per rad) 

24 



If we consider the energy dissipation of the structure, the viscosity and the 

compressibility of the fluid in flutter analysis then three more non-dimensional variables 

must be added: 

g Material damping coefficient 

Re       Reynolds number 

M       Mach number 

For two systems to be dynamically similar they should have equal variables g, Re, 

and M in addition to the above parameters. In general, g is important in control-surface 

flutter, Re is important in stall flutter, and M is important in high-speed flight; otherwise 

their effects are small. 

The non-dimensional form of the frequency of oscillation CO (radians per second, 

with dimension T1) is: 

col 
* = F (4.1) 

which is called the reduced frequency. 

Two similar systems having the same values of p/crand K/al3U2 flutter at the 

same reduced frequency. Since all derived concepts relating to the motion can be 

expressed in functional relations as above, it is clear that the equality of the values of the 

parameters p/crand K/crt3U2 is sufficient to guarantee dynamic similarity of the two 

systems. 

The reduced frequency characterizes the variation of the flow with time. Its 

inverse, UI col is called the reduced speed. The physical meaning of the reduced 

frequency is given as follows: Consider that a disturbance occurs at a point on a body and 

oscillates together with the body. The fluid element influenced by the disturbance moves 
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downstream with a mean velocity U. Let the frequency of oscillation of the body and the 

disturbance be co. Then the spacing, or "wave length" of the disturbance, is T^T-Uox 

X=27tU/(0. So the reduced frequency for the airfoil of chord c is: 

k = — = 2x^ (4.2) 
U Ä 

Therefore, the reduced frequency represents a ratio of the characteristic length of the body 

(chord) to the wave length of the disturbance. In other words, the reduced frequency 

characterizes the way a disturbance is felt at other points of the body. Since every point 

of an oscillating body disturbs the flow, one may say that the reduced frequency 

characterizes the mutual influence between the motion at various points of the body. 

The reduced natural pitching frequency is defined as 

*. =^f (4-3) 

where 

^a=Jf^ (4-4)' 
a 

is the uncoupled natural torsional frequency of the system, K0is the spring constant for 

pitching and Ia is the moment of inertia about the pivot point per unit span. From Eq.(4.3) 

and (4.4) we have: 

c 

The reduced flutter velocity is defined: 

Ka (4.5) 

VF=^- = i~ (4-6) coac    ka 
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D.       STIFFNESS CRITERIA 

As mentioned before, wing-flutter occurs when the reduced frequency is lower 

than the following critical value: 

er v 

where U is the mean speed of flow, coa is the undamped natural pitching frequency of the 

wing, and c is the chord length of the vibrating portion of the wing. 

For safety against flutter, the reduced frequency should be higher than kcr, or the 

design speed of the airplane should be lower than 

Ucr=^ (4.7) 

The frequency coa, which may be determined by ground vibration experiments or 

computed by a theoretical analysis, increases with increasing stiffness of the structure. 

Therefore, the critical speed can be raised by increasing the wing stiffness. It is obvious 

that when the lower limit of Ucr is defined (e.g., the maximum speed of flight) we can 

determine the minimum value of oo, and hence the minimum value of the torsional 

rigidity. 

E.       VERTICAL TRANSLATORY OSCILLATION 

The fundamental role played by the aerodynamic forces in inducing flutter is that 

they are the means through which kinetic energy is transferred from the airstream to the 

airfoil as elastic and kinetic energy. Hence, the possibility of flutter can be discussed by 

considering the energy relation. From the analysis we can find the amount of energy 

exchanged between the airstream and the airfoil; if the oscillating body gains energy from 
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the airstream in completing a cycle then the oscillation is aerodynamically unstable; if it 

gives energy to the airstream the oscillation is going to be aerodynamically stable. 

In order to determine the energy transfer consider an airfoil performing a vertical 

translatory oscillation with a constant amplitude h0. Then the vertical displacement can 

be described by 

h = h0e
im (4.8) 

where h is defined to be as positive downward. The speed of downward motion is 

therefore 

h = ia)h0e
i<ot ' (4.9) 

where the prime indicates a differentiation with respect to time. If A is a constant, the 

downward motion will induce a lift force L0 on the airfoil: 

1      .   dC, h ,. „ _ 

^2PUS^Ü (410) 

where £-1- is the dynamic pressure and S is the wing area. This value L0 is the quasi- 

steady lift and is defined as positive upward in the usual sense. As the airfoil performs a 

translatory oscillation, the true instantaneous lift acting on the airfoil differs from L0 both 

in magnitude and in phase and its value can be stated in the form 

L = I^rei¥ (4.11) 

In this expression r represents the ratio of the absolute value of the instantaneous lift to 

that of the quasi-steady lift, and \|/ the phase angle by which the actual lift leads the quasi- 

steady value. The quantities r and \j/ depend on the reduced frequency k, the Mach 

number M, and the Reynolds number Re. For a nonviscous incompressible fluid, r and \\f 

are functions of k alone. The ratio L/LQ= rei¥ can be plotted as vector with length r and 

angle \j/. Using incompressible oscillatory thin airfoil theory von Karman and Sears 

derived the vector diagram of Figure 4-1. 
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Figure 4-1   Vector diagram of lift in vertical translation oscillation. (From Y.CFung Ref. 1) 

When the airfoil moves through a distance dh, the differential work done by the 

lift is 

dW = -Ldh = -Lhdt (4.12) 

and therefore the total work done by the air on the airfoil during one cycle of oscillation, 

äs given by Y.C Fung, [Ref.l] is: 

W = -\ Re[L]-R&[h]-dt = --pUS—L(coh0)
2r f sm(ax + iff)-sm(ax)dt = 

n 2        da i 

7ü        dC.       2 
= —pUS—-coh0 rcosy/ 

2 da 
(4.13) 

Hence, the gain of energy Wby the airfoil from the airstream is proportional to 

-cos\|/, where y is the phase angle by which the actual lift leads the quasi-steady value. If 

-71/2 <\|/ < n/2, then Wis negative; i.e., the oscillating airfoil will give energy to the 
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airstream and the oscillation is therefore stable. If we refer back to Figure 4-1, it is seen 

that the condition -Tt/2 <\p < n/2 is satisfied. Hence, in a nonviscous incompressible 

fluid, the vertical translation oscillation is aerodynamically stable. 

This example shows the importance of the phase angle between the aerodynamic 

force and the oscillatory motion. Based on this phase angle we can conclude that purely 

translational flutter in one degree of freedom is impossible. 

However as shown in the next Section, this conclusion does not hold for single- 

degree-of-freedom torsional motion. 

F.       ONE DEGREE OF FREEDOM FLUTTER (TORSIONAL) 

In this section one degree of freedom torsional flutter will be examined. In 

Subsection 1 the negative damping at low reduced frequency k will be explained 

qualitatively. In Subsection 2 the time and frequency domain analysis will be presented. 

1.       Physical Explanation 

•   Consider an airfoil in an incompressible airflow of speed U, subjected to a slow 

(low KJ, nearly sinusoidal torsional motion. Assume that the rotational axis is at the 

leading edge (L.E.), but similar results are obtained if it is anywhere in front of the quarter 

chord point. 

Examine now step by step how flutter may occur for this one degree of freedom 

oscillating airfoil with the help of Figure    " given by Bisplinghoff et al [Ref.4]. At stage 

(a) when the airfoil is at the highest angle oi attack all the vortices shed during the 

preceding last half cycle have counter-clockwise vorticity. Between (a) and (c) the airfoil 

pitches down resulting in vortices of clockwise vorticity. As k is low, the counter- 

clockwise vortices are far away from the trailing edge (T.E.) and do not contribute 

significantly in inducing the upwash. Therefore, as the airfoil pitches through the zero 

AOA position, stage (b), a lift L2 is induced which is in the same direction as the motion 

and therefore net positive work is done on the airfoil. 
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When the airfoil increases the angle of attack from steps (c) to (a) the counter- 

clockwise vortices dominate inducing a wake upwash and therefore a lift L2 and moment 

which is in the same sense as the angular velocity and again does positive work on the 

wing. 

This transfer of energy from the airstream to the airfoil is the origin of the 

negative damping. At higher values of k the wave length of the vertical wake becomes 

shorter so that vortices from previous half-cycles can contribute. The net effect is an 

eventual change of the aerodynamic damping from negative to positive. 

v 

u 

u 

Wake vortices 
Wake upwash 

(a) Maximum positive a 

Lo=6 

€<-e€->3^)-»> 
Lilt   t 

(b) a = 0 ,   a<0 

L*       r0 

■€<-c-e-c-c-e£-3-> 

(c) Maximum negative a- 

£0 = 0 
r„so 

« • " I 1 I 

-3->}^e£-e-c-e^- 

Id) a = 0 ,   a > 0 

Figure 4-2  Oscillating airfoil about a pivot point in front of V* chord 
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The phenomenon of upwash and lift induced by the wake vortices can be 

visualized by the incompressible panel code UPOT. The airfoil wake vortices are shown 

in Figure 4-3 as squares. The solid ones are the clockwise vortices whereas the dotted 

ones are the counterclockwise vortices. The airfoil is shown in the same four positions as 

in Figure 4-2. It is clearly seen that the rotation of the vortices sketched by Bisplinghoff et 

al is reproduced by the panel code. 
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Figure 4-3     Incompressible flow wake visualization (from UPOT) 
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The essence of the foregoing discussion is the inclusion of unsteady effects. If 

only quasi-steady aerodynamics had been used (without vortex shedding), the possibility 

of torsional flutter would have been overlooked. For a more detailed analysis refer to 

Bisplinghoff et al [Ref. 4 pages 262-263]. 

2. Flutter Analysis 

Flutter analysis can be done with two methods. The first is the time-domain 

analysis in which the airfoil motion is found as a function of time. It is based on 

discretisation of the ordinary differential equation of motion. The second method is the 

classical theoretical approach based on frequency-domain analysis with which the critical 

flutter speed and frequency are calculated. For both methods we consider a simple system 

of a two-dimensional, rigid airfoil of unit span, which is hinged at a specific point (pivot) 

but elastically restrained from rotating about this axis by a torsion spring with constant 

Ka. The airfoil, which has a moment of inertia about the pivot point I0, is placed in an 

airstream so that the unstrained position of the spring corresponds to zero angle of attack 

a (Figure 4-4). Then we let the airfoil perform a torsional oscillation. 

Figure 4-4 Rigid, symmetrical airfoil restrained to rotate about L.E 
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The equation of motion for this single-degree-of-freedom system is 

Iaä + aKa = Ma (4.14) 

where Ma is the aerodynamic moment due to a(t). 

a.        Time domain analysis 

The equation of motion (4.14) can be non-dimensionalized using the 

following definitions: 

Dimensionless aerodynamic moment coefficient 

c   = M"     , (4.15) 

Dimensionless moment of inertia 

Dimensionless time 

Then (4.14) becomes: 

or 

a 7tPyiA 

T = -^=- (4.17) 

iaa" + iak
2

aa = -c„ 
71 

2 
a"=-k2

acc +—cn 

where the primes refer to differentiation with respect to nondimensional time, x, and kais 

given by Eq.(4.3). This second-order ordinary differential equation can be rewritten as a 

system of two first-order differential equations using a - s: 

34 



a' = s (4.18) 

s' = -k2
aa. +—cm (4.19) 

l 7t 

This is the system of equations used for the incompressible flutter analysis 

where cmis computed at each time step using the panel code UPOT. 

For the compressible flutter analysis the time can be non-dimensionalized 

using the free stream speed of sound, a„, instead of the freestream velocity U„. Thus the 

dimensionless time can be defined as 

T = — (4.20) 
c 

Using this non-dimensional cm, i0and x, the equation of motion (4.19) becomes: 

s=-k2
aa. + —Mtcm 

The reduced natural frequency kafor this case is based on the freestream 

speed of sound, whereas in the incompressible case it is based on the freestream velocity. 

In order to have compatibility between the values of ka found for incompressible and 

compressible flow we have to convert the latter into the former values. The procedure 

will be shown in Section H. 

Integration of Eq.(4.18) and (4.19) can be done with a first-order Euler 

scheme, a second order modified Euler scheme or a fourth order Runge-Kutta scheme. 

The second-order modified Euler scheme is derived by applying the 

trapezoidal rule to integrate an equation y = f(x,t) as follows: 

yn+i=yn+h/2[f(yn+l,tn+1) + f(yn,tn)] 

and using an initial value for y(0). 

The fourth-order Runge-Kutta scheme is derived by applying the following   , 

equation: 

yn+i =yn +(i/6)[*, +2k2 +2k, +k4] 

with 
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*i =hf(yn,tn) K =W(yn+k1 n,tn + A/2) 

k3=hf(yn+k2/2,tn+h/2)   k4=hf(yn+k3,tn+h) 

Panel codes, like UPOT, typically use large time steps and therefore use of 

the fourth-order Runge-Kutta scheme is advisable. In contrast, the stability limits of 

Euler/N-S codes typically require small time steps and therefore the first-order Euler 

scheme gives satisfactory accuracy. 

b.        Frequency domain analysis 

In order to perform the classical flutter analysis in the frequency domain 

we assume that the airfoil executes a torsional oscillation with a constant amplitude (Xo- 

The angle of attack a at any time can be described by 

a = a0e
im (4.21) 

and after substituting (4.16) into (4.14), and dividing through by itpb"'(61 a^e,ox we get 

/„ 

Jtpb 
1- 

(coa V 

\<° j 
+ c„ =0 (4.22) 

where (£>a is the undamped natural frequency of torsional vibration and cm is the 

dimensionless aerodynamic coefficient which is a complex number. 

Hence (4.18) can be split into real and imaginary parts 

fc*.}=-^ 
(coj 

CO 
-1 (4.23) 

(4.24) 

7tpb 

lm{cm}=0 

Flutter occurs only at those values of the reduced frequency that make the 

out-of-phase component of the aerodynamic moment Eq.(4.24) vanish, provided that the 

corresponding in-phase part is of such magnitude that Eq.(4.23) yields a non-imaginary 

flutter frequency 00. The latter condition is met when the rotational axis is ahead of the 
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one quarter chord line. Hence by this method we can find the flutter airspeed and 

frequency. 

The variation of the real and imaginary parts of the aerodynamic moment, 

based on Theodorsen's thin airfoil theory, for k defined as (öc/2U„, is shown in Figure 4- 

5. For the definition ok k according to Eq.(4.2), the imaginary moment becomes zero at a 

reduced frequency of k=0.076. This is consistent with the previous discussion which 

showed that torsional flutter occurs only at low reduced frequencies. For further details 

refer to [Ref. 6] pages 528-532. 
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Figure 4-5  Variation with reduced frequency k of the real and imaginary parts of the dimensionless 
aerodynamic moment nio due to pitching of an airfoil about its leading edge in 
incompressible flow (for k defined as coc/2lL). 

G.  TWO DEGREE OF FREEDOM FLUTTER 

1. Physical Explanation 

For the two-degrees-of-freedom flutter we will consider two cases: a) the torsional 

deflection leads the bending deflection by 90 degrees as shown in Figure 4-6 whereas b) 

the torsional deflection and bending are in phase with each other as shown in Figure 4-8. 
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In both figures the solid arrows indicate the airfoil motion whereas the dotted arrows 

indicate the airfoil lift. 

For simplicity we will assume purely steady state values for the lift corresponding 

to the instantaneous position of the airfoil. 
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Figure 4-6  Two degrees of freedom airfoil motion - phase difference 90° 
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Figure 4-7   Torsion - Bending diagrams- phase difference 90° 

38 



From Figure 4-7 we can see that for the two first quarters of the cycle, both lift L 

and displacement dh are positive whereas for the two last quarters of the cycle, both lift L 

and displacement dh are negative. As a result over the whole cycle work is done on the 

airfoil. 

When the torsional deflection is in phase with the bending deflection then from 

Figure 4-8  Two degrees of freedom airfoil motion - phase difference 0° 

Figure 4-9   Torsion - Bending diagrams- phase difference 180° 
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Figure 4-9, we can see that for the first quarter of the cycle, the lift L and the 

displacement dh are positive so positive work is done on the airfoil. For the second 

quarter of the cycle, the lift L is positive whereas the displacement dh is negative so 

negative work is done on the airfoil. Similarly positive and negative work are done on the 

airfoil during the third and fourth quarter of the cycle. As a result zero work is done on 

the airfoil. 

2. Equations of motion 

The equations of motion for the two-degree-of-freedom system with no 

mechanical damping shown, for example, by Fung [Ref. 1] pages 210-211, can be written 

as: 

mh + Saä+hKh=-L (4.25) 

and Sah + Iaä + aKa=Ma (4.26) 

where Sa is the static moment about the elastic axis. 

/ais the airfoil moment of inertia 

L is the airfoil aerodynamic lift 

and       Ma is the aerodynamic moment about the elastic axis 

a. Time domain analysis 

For the incompressible flow case the equations of motion (4.25) and (4.26) 

can be non-dimensionalized using the same non-dimensional coefficients that were used 

for the one degree of freedom case Eq.(4.15)-(4.17). 

Then the system of equations (4.25) and (4.26) becomes: 
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and 

mh"+ S„a"+mklh = -2c, IK 

Sah' + iacf + iakl=2cm/x 

where the primes refer to differentiation with respect to nondimensional time %. 

In a matrix form the above system of equations becomes: 

[Mfx] +[klx]={F} (4.27) 

with [M]= 

{X}= 

m    S„ 
[k]= 

mk:      0 

0      iX 

\oc\ 7t    C„ 

For the compressible flow case (N-S Code) the equations of motion (4.25) 

and (4.26) can be non-dimensionalized using the free-stream speed of sound, a„, instead 

of the free-stream velocity U„ such that the dimensionless time can be defined from 

Eq.(4.20). 

Then the system of equations have the same form as Eq.(4.27) with the 

difference that the vector {p} now is defined as 

Eq.(4.34) can be rewritten as: 

{Fh-Ml\   Cl 

it c„ 

{X} =[MV{F}-[MV[kIx} (4.28) 
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Defining {X } = {F}, we can solve Eq.(4.28) as a system of two first-order 

differential equations 

{X}={Y} 

{Y}-[Mr{Fh[MV[klx} 

As we mentioned for the one degree of freedom case, the integration of this system of 

equations is done with the fourth-order Runge-Kutta scheme in the panel code, and with 

a first-order Euler scheme in the Euler/N-S codes. 

b.        Frequency domain analysis 

Assuming constant amplitude time harmonic oscillation including plunge 

and torsion 

h = h0e
i<a' 

a = a ne 

the equations of motion become: 

e 

eim 

[-ü)2Mh0-ü)2a0Sa+h0Kh]=L (4.29) 

[- <D2Ia
2a0 - co\Sa + a0Ka\= Ma (4.30) 

The aerodynamic lift L and moment Ma are assumed to be linear functions of h0 and Oo so 

Eqs. (4.30) and (4.31) constitute a system of homogeneous equations. Therefore the 

determinant of these equations must be set to zero in order to obtain a solution. As 

discussed in [Ref. 1 and 6] the solution of the flutter determinant normally requires an 

iterative procedure. For further details refer to these text books. 
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H.   NS - UPOT REDUCED FREQUENCY COMPATIBILITY 

As mentioned before, the reduced frequencies calculated with the Euler and N.S 

codes need to be redefined in order to be compatible with the conventional definition of 

k. This is done as follows: 

The non-dimensional time used in UPOT is defined as 

tu. 
*UPOT=  (4.31) 

c 

whereas in the N.S code it is defined as 

to«, 
*NS=— (4.32) 

c 

In order to have comparable results from the compressible and incompressible flow 

solutions we have to adjust the reduced frequency values of the NS code to those of the 

UPOT code. From the definition of the reduced frequency: 

coc 
k = — (4.33) 

we get 

,    2n  c 
k~- (4.34) 

where T is the period of airfoil oscillation. 

For the results computed with the UPOT code and because of (4.1) we have 

2n     c       In 
k=T^7T=7— (435) 

Similarly for the NS results from (4.4) and because of (4.2) we get 

,       2n    c       In      c        In   1 

±M£ 
U

»    £NS£_ Mja„     TNS M„ 
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The last equation shows that we have to divide the reduced frequencies that come from 

the NS code (In ITNS) with the Mach number (M„) in each case in order to find the 

reduced frequency which is compatible with the UPOT results. 

I. FLUTTER PREDICTION WITH UPOT CODE 

One practical way to find the flutter condition for a given airfoil with the UPOT 

code is to see the resulting diagram of the moment coefficient with respect to AOA. The 

work is proportional to the integrated area in the loop. Positive area means that work goes 

into the flow. Negative area means that work goes into the airfoil. Zero area means that 

the airfoil flutters. Running the code for low values of reduced frequency it is seen that 

the aerodynamic moment coefficient forms a clockwise elliptic path as the AOA changes 

during the airfoil oscillation (Figure 4-10), so net positive work is done on the airfoil. 

Figure 4-10   Aerodynamic moment coefficient graph for low k values 
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For high values of reduced frequency the path has a counterclockwise direction as 

shown in Figure 4-11 and the work is negative. 
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Figure 4-11   Aerodynamic moment coefficient graph for high k values 

At last, when the critical value of reduced frequency is used the path becomes a 

straight line as shown in Figure 4-12, so no work is done on the airfoil. 
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Figure 4-12 Aerodynamic moment coefficient graph for the critical flutter k value 
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V.      RESULTS 

A. GENERAL 

All the results presented in this thesis were obtained with the time domain method 

described in Chapter IV, and the flow field solutions at each time step were computed 

based on the Navier-Stokes, Euler or unsteady potential flow (UPOT) solution, described 

in Chapter HI. 

The reduced frequency values used in the Navier-Stokes and Euler codes were 

redefined in order to be compatible with the UPOT definition. The grid generation for the 

airfoils and the input data for the Navier - Stokes code are presented in Sections B and C. 

The procedure for extracting the results is described briefly in Section D. Then the 

calculation for the non-viscous (Euler) case is presented in Section E. The calculation for 

a wide range of pivot points is shown in Section F. The effect of Mach number and airfoil 

thickness on torsional flutter is presented in Sections G and H. The influence of the 

viscous effects and a comparison between viscous and non-viscous flow are shown in 

Sections I and J. In Section K a comparison between UPOT and NS results for low 

subsonic Mach numbers (M=0.1-0.3) is presented. 

B. GRID GENERATION 

Airfoil grids for NACA 0006, 0009,0012 and 0015 were computed with 

ALGEM. In Figure 5-1 the NACA 0015 grid for the Euler calculations is presented 

whereas in Figure 5-2 the grid details close to the airfoil are shown. This NACA 0015 

coarse grid size is 201X41 points. 

For viscous flow different grids were used because of the.necessity to resolve the 

flow close to the airfoil. The grid size is 201X61 points. 
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Figure 5-1    C-grid for NACA 0015 (non-viscous flow - every other grid line shown) 
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Figure 5-2 NACA 0015 C-grid details (non-viscous flow) 

C. INPUT DATA DESCRIPTION 

The input data file includes many variables, some of which have to be changed 

during the calculation procedure. A typical input file for the initial calculation of the 

steady solution for the non-viscous flow is presented next. The use of the input file 

variables is also explained in this section. 
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INPUT FILE: 

# IREAD   ITER    NPRINT NLOAD   ODVAR 

0      10000 1 1 1.00 

# ALPHA   OSCIL   RAMP    REDFRE  ALFAMND ALFAMXD 

0.5 false       false 0.100 -.500 0.500 

# PLUNGE  PLMX    PLMY    PLPHSXD PLFREQ 

false 0. 0.10        0. 

# MACH    RE      VISC    TURBL 

0.700 0.        false     false 

# TIMEAC  COUR    NEWTTT 

false       30.00 1 

# free    mass    ialpha  ka      kh      xp      xa 

false    0.0      100.0   0.200  0.0     0.0    0.0 

# aneut   hneut   hO 

0.0        0.0      0.0 

0.1 

INPUT VARIABLES EXPLANATION: 

IREAD  0 

2 
-1 
-2 

ITER 

NPRINT 
NLOAD 

ODVAR 

ALPHA 

No initial solution, free stream conditions initialize the 
flowfield in the startup steady-state computations 
Initial solution is read from a binary file saved from 
the previous run (default, at the end of each run, solution 
file is saved as binary) 
Initial solution is read as formatted (plot3d form) 
Initial solution is read as binary, unsteady motion starts 
Initial solution is read as formatted (plot3d form),    . 
unsteady motion starts 

# of timesteps 

Residuals are printed out at every nprint timesteps 
Aerodynamic loads are printed out in ns.out and written into 
lo.d file at every nload timesteps 

Solution variables, q array, are written into "qp.d" file 
at every delta odvar change in unsteady motions 
(degrees in oscillatory motion, amplitude change in plunge) 
Steady state AOA (do not set it to zero, instead set it to 0.0001) 
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OSCIL false N/A 
true  sinusoidal oscillations in pitch 

RAMP false N/A 
true  straight ramp motion in pitch 

REDFRE       Reduced frequency of the unsteady pitching motion, 
based on the half chord, chord length is assumed to be 1. 

ALFAMND   Min AOA of the pitching motion 

ALFAMXD    Max AOA of the pitching motion 

PLUNGE       false N/A 
true  plunging motion 

PLMX Plunge amplitude in x 

PLMY Plunge amplitude in y 

PLPHSXD      The phase angle between x and y amplitudes, in degrees 

PLFREQ        The reduced frequency of the plunging motion, 
based on the half chord, chord length is assumed to be 1. 

REYNOLD    Reynolds number of the freestream flowfield 

MACH Mach number of the freestream flowfield 

VISC false Euler solution 
true  Viscous Navier-Stokes solution 

TURBL false Laminar flow is assumed 
true  Baldwin-Lomax turbulence model is applied 

TIMEACC     false Variable local time stepping in the computational grid, used 
in the computations of steady state and/or attached flowfields. 
true  Constant time stepping everywhere in the computational grid, 
used in the computations of unsteady and separated flowfields 

COUR Courant number of the timestepping (50-1500), determines the 
time step of the computations based on the minimum grid size and 
the freestream conditions. Its value depends on the computational grid. 
For diverging computations, its value needs to be reduced. 
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If the residuals in the output file increases in time, it is the sign that 
Courant number is to be reduced. 

NEWTIT       Number of Newton subiterations in each timestep, applied in 
unsteady flows (2-3), for steady flowfields it is set to 1. 

D.       CALCULATION PROCEDURE 

For every flutter calculation initially the steady solution had to be found. For the 

non-viscous cases the code was run for 6000 iterations (1000 with COUR Number of 1, 

1000 with COUR Number of 2, 2000 with COUR Number of 4 and 1000 with COUR 

Number of 8). For the viscous case and due to the increased number of nodes of the grid 

the calculation needed over 12000 iterations in order to converge to a steady solution. 

The steady solution was assumed to be satisfactory when the step variation of Cl 

coefficient was found to be less than 10"5 or when the five first digits of Cl remained 

constant. 

After the steady solution was found the oscillating airfoil calculation started. 

From Chapter m Section G we saw that for pivot points behind the quarter chord point 

(0.25c) a statically stable solution is always obtained. Therefore the calculations were 

performed for pivot points ahead of the quarter chord point. The pivot points that were 

chosen for the flutter calculations were: 0.15-c, 0, -0.25-c, -0.50-c, -0.75-c and -0.85-c. For 

e ery case an initial value of the uncoupled reduced natural pitching frequency k« (Eq. 

4.3) was assumed (which corresponds in Eq.(4.4) to an airfoil spring constant K«) and the 

time variation of the airfoil angle of attack (AOA) was computed. If the AOA was found 

to decrease, the assumed value of k« was adjusted until the motion started to diverge. For 

every computation the slope of the AOA amplitude was determined and an interpolation 

procedure was implemented in order to find the value of k« which gives the critical flutter 

condition. After the critical condition was found the reduced frequency of oscillation was 

calculated. 
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E.       NON - VISCOUS (EULER) CALCULATION 

The whole procedure described above will be shown for the non-viscous flow 

over an oscillating airfoil NACA 0015 at M=0.7. The elastic axis of oscillation is the L.E 

of the airfoil (pivot point Xp=0). An initial AOA disturbance of 0.5° will be imposed on 

the airfoil in order to start the motion. 

The input file for the steady solution is as follows (4th run for COUR Number :8): 

# IREAD   ITER    NPRINT  NLOAD   ODVAR 

1     2000     1        1        1.00 

# ALPHA   OSCIL   RAMP    REDFRE  ALFAMND ALFAMXD 

0.5    false   false   0.100   -.500   0.500 

# PLUNGE  PLMX    PLMY    PLPHSXD PLFREQ 

false   0.      0.10    0.      0.1      0.0    0.0 

# MACH    RE      VISC    TURBL 

0.700   0.      false   false 

# TIMEAC  COUR    NEWTTT 

false   8.00     1 

# free    mass    ialpha  ka      kh      xp      xa 

false    0.0    100.0   0.00000 0.0     0.0    0.0 

# aneut   hneut   hO 

0.0     0.0     0.0 

The steady solution is presented in Figure 5-3. It is seen that Cl reaches a steady value of 

0.1017 afterx =5 sec. 

The final result for the steady solution is presented in Table 5-1. 

X AOA Cl Cd Cm 

32.3321342 0.5 0.1017382 0.0040226 -0.0257816 

Table 5-1   Steady state solution for NACA 0015 M=0.7 (Euler case) 
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Figure 5-3 Steady state solution for NACA 0015 M=0.7 (Euler case) 

After the steady solution is calculated, the critical value of the reduced natural 

pitching frequency k« for flutter is found, by first assuming an initial value of 0.36, as 

shown in the input file 

IREAD ITER NPRINT NLOAD ODVAR 

-1 10000 1 1 1.00 

ALPHA OSCIL RAMP REDFRE ALFAMND ALFAMXD 

0.5 false false 0.100 -.500 0.500 

PLUNGE PLMX PLMY PLPHSXD PLFREQ 

false 0. 0.10 0. 0.1 0.0 

MACH.- RE • vise TURBL 

0.700 0. false false 

TIMEAC COUR NEWT IT 

true 15.00 3 

0.0 
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free mass ialpha ka kh xp xa 

true 0.0 100.0 0.360000 0.0 0.0 0.0 

aneut hneut hO 

0.0 0.0 0.0 

As one can see, seven variables changed values comparing with the steady case 

input file: the IREAD was turned to -1, the number of iterations to 10000, the TIMEAC to 

true, the COUR number to 15.0, the NEWTIT to 3 and the free to true. Also ialpha (non- 

dimensional moment of inertia) was chosen to be 100 and the ka to be 0.36. 

The plot of the resulting airfoil motion is presented in Figure 5-4 . 

Figure 5-4   Unsteady case solution - Ka=0.36 (Euler case) 

From the plot we can see that the airfoil motion decays with time so the assumed 

value of ka was too high. In order to determine the critical ka value the maximum AOA 

values of the graph are input into a regression equation to find the slope of the maximum 

AOA values, namely -2.860E-04 (Figure 5-5): 
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y = -2.860E-04X + 5.2650E-01 
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Figure 5-5   Time rate of change of AOA amplitude of airfoil motion Ka=0.36 (Euler case) 

Repeating this process for ka of 0.25 we get the AOA history presented in Figure 

5-6: 
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Figure 5-6 Unsteady case solution - Ka=0.25 (Euler case) 
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From this plot we observe that the airfoil motion diverges. Therefore the assumed 

value of ka is too low. Then applying again a regression equation for the maximum AOA 

values of the graph yields a slope of 4.566E-04 ( Figure 5-7): 

n7c . y = 4.566E-04X + 5.495E-01 

ft 7 i 

n R5 - 

n ß - 

ft *^ - 

0.5 - 

50 100 150 200 250 300 350 

Figure 5-7 Time rate of change of AOA amplitude of airfoil motion 1^=0.25 (Euler case) 

Now we can interpolate the values of the slope found for the two assumed values 

of the reduced natural pitching frequency ka. In order to have more accurate results we 

can follow the same procedure for another value of ka (here assumed 0.30). Finally we 

get the results shown in Table 5-2. 

Ka Slope 
0.36 -2.860E-04 
0.30 1.669E-04 
0.25 4.5664E-04 

Table 5-2   Regression equation slope values for various ka values 

Making a curvefit in EXCEL for the above results (Figure 5-8) we can find that 

the value of the k« for which the slope of the extreme points is zero, is k«=0.324. 
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Figure 5-8   Curvefit of K« vs time rate of change of AOA amplitude (Euler case) 

To verify whether this ka value is indeed the critical reduced natural pitching 

frequency, the code was run for k« =0.324 which yielded the airfoil motion presented in 

Figure 5-9: 
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Figure 5-9  Unsteady case solution - Ka=0.324 Critical flutter case (Euler) 
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Omitting the first peaks, which are caused by the starting transient, and applying 

again a regression equation for the maximum points, we find that the slope is 

6.63859HO"7, which is very close to zero (Figure 5-10). Therefore the reduced natural 

pitching frequency k« of 0.324 is accepted as the critical value. If this value didn't give 

the flutter condition (slope not close to zero), the new slope value would be interpolated 

again until finding the ka for zero slope. 
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Figure 5-10   Time rate of change of AOA amplitude of airfoil motion K„=0.324 Critical flutter 
(Euler case) 

The reduced frequency of oscillation is found using (4.36) 

2n    1 
TNSM. 

In order to find the period of oscillation the initial transient exhibiting variable 

peaks are ignored, and the average period between the minimum and maximun peaks is 

computed as shown in Table 5-3. 
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Min peaks T (NS) Max peaks T(NS) 

92.6997 105.954 

119.209 26.5092 132.465 26.51039 

145.721 26.51206 158.977 26.51233 

Average T(NS) = 26.511 

Table 5-3    Average period T calculation for NACA 0015 flutter - Ka=0.324 

The average period of oscillation (non-dimensionalized) is 26.511. Then applying 

Eq.(4.36) for Mach number of 0.7 we find that the reduced frequency of oscillation is 

0.339. 

The pressure distribution around the airfoil for a whole cycle of oscillation at 30° 

increments is shown in Figure 5-11. 
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AOA=30° AOA=60° 

AOA=90° AOA=120° 

AOA=150° AOA=180° 

Figure 5-11   Pressure Contours around NACA 0015 for a whole cycle of oscillation M=0.7 Xp=0.0 
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AOA=210° AOA=240° 

AOA=270° AOA=300° 

AOA=330° AOA=360° 

Fig.5-11 Pressure Contours around NACA 0015 for a whole cycle of oscillation M=0.7 Xp=0.0 (cont.) 
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F.        EFFECT OF PIVOT POINT ON TORSIONAL FLUTTER 

The previously described procedure was applied to obtain the effect of pivot 

location, Mach number and airfoil thickness on single degree of freedom torsional flutter. 

Figure 5-12 shows the variation of the flutter reduced frequency with pivot point for the 

NACA 0015 airfoil at M=0.7. 
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Figure 5-12  Effect of Pivot Point on reduced frequency for NACA 0015 and M=0.7 (Euler case) 

The area below the curve is an unstable region for the airfoil; that is if the 

frequency of oscillation is lower than the value corresponding to the curve for a certain 

pivot point, then flutter is triggered by an initial disturbance of 0.5 degrees. In contrast 

the area above the curve is the stable region and every oscillation will die out. 

It is readily seen that the most flutter' prone range of pivot points is between 0 and 

-0.50-c. The pivot point most likely to induce flutter is Xp=-0.25-c, i.e when the pivot 

point of oscillation is one quarter chord ahead of the L.E. 

The above information can be shown in terms of the reduced natural pitching 

frequency k« required to avoid flutter. It should be noted that for elastic axis locations of 

-0.85<Xp<0.15 the used value of moment of inertia i«was 100. For Xp=0.15 and -0.85 
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the solutions were always decaying with this value of i« so an increased value of 300 was 

used.The resulting graph is shown in Figure 5-13: 
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Figure 5-13 Effect of Pivot Point on critically for NACA 0015, M=0.7and ^=100 (Eulercase) 

Again, the area below the curve is an unstable region for the airfoil; if the airfoil 

spring constant K«is lower than the value that corresponds to the curve for a certain pivot 

point (low torsional stiffness), then flutter is induced by an initial disturbance of 0.5 rees. 

G.       EFFECT OF MACH NUMBER ON TORSIONAL FLUTTER 

Figure 5-14 expands the information presented in Figure 5-12 by displaying the 

effect of Mach number on torsional flutter. 

An increase in Mach number significantly increases the region of instability for 

the whole range of pivot points. 

Another important result that comes from this graph is that the values of reduced 

frequency tend to become constant when reducing the Mach number to very low subsonic 

speeds of M=0.1-0.2. 
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Figure 5-14   Effect of Mach Number and Pivot Point for NACA 0015 (Euler case) 

This information is shown in bar chart form in Figure 5-15: 

Figure 5-15 Reduced frequency variation with Mach number for Pivot Points -0.85<Xp<0.15 

(NACA 0015) 
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The percentage increase of the reduced flutter frequency with Mach number and 

pivot points is tabulated in Table 5-4. 

M \ Xp 0.15 0 -0.25 -0.5 -0.75 -0.85 

0.7 12.4% 34.6% 59.8% 68.6% 45.8% 67.6% 

0.5 11.4% 13.8% 23.4% 28.9% 28.3% 43.5% 

0.3 7.4% 1.9% 4.9% 6.9% 13.3% 20.0% 

0.2 2.4% -1.1% -2.1% -2.0% -0.1% 4.0% 

0.1 0 0 0 0 0 0 

TaMe 5-4   Percentage Increase of k with Mach number and Pivot Points 

Another way to display the effect of pivot location and Mach number is to plot the 

reduced natural torsional frequency k« needed to suppress flutter. Again it is seen from 

Figure 5-16 that an increase in Mach number is destabilizing. 
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Figure 5-16  Effect of Mach number and pitch axis location on torsional flutter of NACA 0015 
airfoil, ia=100 
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Another useful way of representing the results is to show the variation of the 

reduced flutter velocity with Mach number for every pivot point. As discussed in Chapter 

m the reduced flutter velocity is defined as VF = 
U 1 

co„c    k„ 
and can be used in order to 

find the speed U for which flutter occurs for given values of K«. Figure 5-17 shows the 

decrease of the flutter speed as the Mach number is increased. The results shown are only 

for pivot points -0.85<Xp<0 for which i«=100. 
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Figure 5-17  Variation of flutter speed with Mach Number for NACA 0015, ia=100 

H.       EFFECT OF AIRFOIL THICKNESS 

The same procedure was applied to study the effect of airfoil thickness. 

Calculations were done for the airfoils: NACA 0006, NACA 0009, NACA 0012 and 

NACA 0015 for a Mach number of 0.7. The variation of critical reduced frequency with 

the airfoil thickness is presented in Figure 5-18 and Figure 5-19 showing that over the 

whole pivot point range any increase in airfoil thickness has a destabilizing effect. 
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Figure 5-18   Effect of airfoil thickness on critical reduced frequency at M=0.7 

0.15 0 -0.25 -0.5 

Xp 

KNÄCA0006 
■ 0015 
H0012 
H0015 

-0.75 -0.85 

Figure 5-19   Effect of airfoil thickness at M=0.7 
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This destabilizing influence of airfoil thickness is quantified in Table 5-5 where 

the percentage increase of the reduced flutter frequency k is tabulated. 

Airfoil 
thickness 

0.15 0 -0.25 -0.5 -0.75 -0.85 

6 0 0 0 0 0 0 
9 5.6% 6.8% 6.3% 3.8% 2.4% 3.2% 
12 11.2% 37.8% 49.8% 18.8% 5.2% 5.4% 
15 28.1% 61.8% 70.4% 58.6% 14.3% 10.3% 

Table 5-5   Percentage increase of k with airfoil thickness and pivot point location 

Similarly, Figure 5-20 displays the reduced natural pitching frequency k« needed 

to suppress flutter. Again it is seen that the NACA 0015 airfoil requires a much higher 

torsional frequency than the NACA 0006 airfoil. Again the results shown are for elastic 
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Figure 5-20   Effect of airfoil thickness on torsional flutter at M=0.7, ia=100 

axis locations of -0.85<Xp<0.15 for which the used value of moment of inertia was 100. 
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Finally the destabilizing effect is also shown in Figure 5-21. Increasing the airfoil 

thickness results in a significant decrease in the flutter speed. 
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Figure 5-21   Variation of flutter speed with airfoil thickness at M=0.7, ia=100 

/. VISCOUS (NAVIER-STOKES) CASE CALCULATION 

The same procedure previously described for Euler case will be shown for the 

viscous flow over the same oscillating airfoil (NACA 0015), the same Mach number 

(M=0.7) and the same elastic axis of oscillation (L.E of the airfoil - pivot point Xp=0). 

The input file for the steady solution is as follows: 

# IREAD ITER NPRINT NLOAD ODVAR 
0 20000 1 1 1.00 

# ALPHA OSCIL RAMP REDFRE ALFAMND ALFAMXD 
0.5 false false 0.100 -.500' 0.500 

# PLUNGE PLMX PLMY PLPHSXD PLFREQ 
false 0. 0.10 0. 0.1 0.0 

# MACH RE vise TURBL 
0.700 1.0e6 true true 

0.0 
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# TIMEAC 
true 

COUR 
1000.0 

NEWTIT 
1 

# free mass ialpha ka kh xp xa 
false 0.0 100.0 0.00000 0.0 0.0 0.0 

# aneut 
0.0 

hneut 
0.0 

hO 
0.0 

The steady solution is presented in Figure 5-22. We can see that Cl reaches a 

steady value of 0.08977 after t =40 sec. 
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Figure 5-22 Steady state soln for NACA 0015 M=0.7 (N-S case) 

The final result for the steady solution is shown at 

Table 5-6: 

T Aoa Cl Cd Cm 

153.6969 0.5 0.089777 0.006215 0.000665 

Table 5-6 Steady state solution for NACA 0015 M=0.7 (N-S case) 
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After the steady solution is obtained, the flutter condition can be found using the 

same procedure described for the Euler calculations. We start with a pivot point of 

Xp=0.0 and an assumed value of 0.36 for k«. The following is the input file for the N.S. 

code: 

IREAD ITER NPRINT NLOAD ODVAR 
-1 30000 1 1 1.00 

ALPHA OSCIL RAMP REDFRE ALFAMND ALFAMXD 
0.5 false false 0.100 -.500 0.500 

PLUNGE PLMX PLMY PLPHSXD PLFREQ 
false 0. 0.10 0. 0.1 0.0     0. 
MACH RE vise TURBL 
0.700 1.0e6 true true 
TIMEAC COUR NEWTIT 
true 700.00 3 
free mass ialpha ka kh xp      xa 
true 
aneut 

0.0 
hneut 

100.0 
hO 

0.340000 0.0 0.0    0.0 

0.0 0.0 0.0 

The plot of the resulting airfoil motion is presented in Figure 5-23. 
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Figure 5-23 Unsteady case solution - Ka=0.34 (N-S case) 
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Since the airfoil motion is seen to decay the assumed value of k« is too high. After 

finding the maximum points of the graph and applying a regression equation we find that 

the slope of the maximum points is -3.188E-04 (Figure 5-24). 
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Figure 5-24  Time rate of change of AOA amplitude for K„=0.34 (N-S case) 

Similarly for ka=0.20 the diverging motion presented in Figure 5-25 is obtained. 
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Figure 5-25   Unsteady case solution - Ka=0.20 (N-S case) 
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Then applying a regression equation for the maximum points of the graph, the 

slope is found to be 4.566E-04 (Figure 5-26): 

y = 4.383E-04X + 5.744E-01 
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Figure 5-26 Time rate f    hange of AOA amplitude for Ka=0.20 (N-S case) 

The results for the two trials are shown in Table 5-7 which make it possible to interpolate 

the value of k« which produces a constant amplitude of oscillation. As shown in Figure 5- 

27 this value is k«=0.252. 

Ka Slope 
0.34 -2.860E-04 
0.20 4.383E-04 

Table 5-7 Regression equation slope values for various ka values 
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Figure 5-27  Curvefit of Ka vs time rate of change of AOA amplitude (N-S case) 

Using this k« value indeed produces the oscillation shown in Figure 5-28 and the 
v5 slope -6.783E-100 shown in Figure 5-29. 
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Figure 5-28 Unsteady case solution - Ka=0.252 Critical flutter case (N-S) 
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Figure 5-29  Time rate of change of AOA amplitude for Ka=0.324 Critical flutter (N-S case) 

From the airfoil motion we find that the average period of oscillation is 33.215 

(non-dimensional time) and reduced frequency of oscillation 0.270. 

J.        EULER-NS RESULTS COMPARISON 

Due to time constraints the N-S study was performed only for NACA 0015 airfoil 

and M=0.7. The critical reduced frequency values for pivot points between 

-0.85<Xp<0.15 are presented in Figure 5-30 and compared with the Euler predictions. 

It is seen that the values of critical reduced frequencies found with the Euler 

calculations are up to 23% higher than the N.S predictions. As expected, viscous flow 

effects reduce the possibility of flutter. From Eq.(4.5) it is seen that the same airfoil at the 

same Mach number with 60% less torsional rigidity will have the same flutter stability. 
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Figure 5-30  Euler - NS reduced frequency results for NACA 0015 and M=0.7 

Table 5-8 shows the numerical differences between the above calculations for 

Euler and Navier-Stokes cases. 

Xp 0.15 0.00 -0.25 -0.50 -0.75 -0.85 

k(Euler) 0.223 0.339 0.380 0.334 0.233 0.221 
k (N-S) 0.191 0.270 0.310 0.260 0.217 0:205 

Difference 14.3% 20.3% 18.4% 22.1% 6.8% 7.2% 

Table 5-8 Numerical differences of reduced frequency between Euler and N-S calculations for 
NACA 0015 and M=0.7 

The reduced natural pitching frequency ka values computed with the N-S and 

Euler codes are presented in Figure 5-31 indicating that the minimum torsional stiffness 

necessary to prevent flutter is smaller using viscous flow calculations. 
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In order to explain this finding it is instructive to examine the pressure distri- 

butions and Mach number contour plots for both cases in steady AOA of 0.5° (Figure 5- 

32 to Figure 5-39). The main difference of the graphs has to do with the strength of the 

shock above the airfoil. For the Euler case it is seen that a relatively strong shock is 

formed over the airfoil. The graphs that come from the Navier-Stokes calculations show 

that the shock over the airfoil is very weak. This is due to the boundary layer which 

smooths the shock. 
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Figure 5-31  Euler - NS reduced natural pitching frequency results for NACA 0015 and M=0.7 
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Figure 5-32   Pressure distribution contours for NACA 0015 M=0.7 steady AOA (Euler) 

Figure 5-33  Pressure distribution contours for NACA 0015 M=0.7 steady AOA (Euler-detail) 
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Figure 5-34 Mach contours for NACA 0015 M=0.7 steady AOA (Euler) 

Figure 5-35  Mach contours for NACA 0015 M=0.7 steady AOA (Euler-detail) 
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Figure 5-36 Pressure distribution contours for NACA 0015 M=0.7 steady AOA (N-S) 

Figure 5-37   Pressure distribution contours for NACA 0015 M=0.7 steady AOA (N-S-detail) 
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Figure 5-38 Mach contours for NACA 0015 M=0.7 steady AOA (N-S) 

Figure 5-39 Mach contours for NACA 0015 M=0.7 steady AOA (N-S-detail) 
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K.       PANEL -EULERCODE COMPARISON 

Another interesting area of study is the comparison of results from the Euler code 

for non-viscous low subsonic flow with those from the UPOT panel code which 

calculates inviscid incompressible flow over the airfoil. The calculations were again 

made for flow the NACA 0015. The results for M=0.3,0.2,0.1 and incompressible flow 

are presented in Figure 5-40. 
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Figure 5-40   Low subsonic Euler code results comparison with UPOT results. 

It is seen that the trends predicted by both codes are in good agreement, but there 

is a significant quantitative difference between the Euler prediction at M=0.1 and the 

incompressible panel code prediction. This difference could be reduced substantially if 

the panel code was run with a very small time step, as shown in Figure 5-40 and Figure 

5-41. 
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Figure 5-41     % differences between Euler and UPOT results (w.r.t M=0.1 results) 
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VI.     SUMMARY 

The time domain flutter analysis of NACA 0006, NACA 0009, NACA 0012 and 

NACA 0015 airfoils presented in this thesis leads to the following major conclusions: 

A. Linearized incompressible and linearized subsonic compressible flow 

theory yields unconservative estimates of single-degree-of-freedom torsional airfoil 

flutter. 

B. Torsional flutter region increases with increasing airfoil thickness and 

Mach number. 

C. Viscous flow effects have a stabilizing influence. 

D. Pitch axis locations upstream of the quarter chord point may induce flutter, 

especially in the range between the leading edge and a point a half-chord upstream of the 

leading edge. 

E. Flutter boundaries computed with the incompressible panel code UPOT 

require very small time steps; however, even for the smallest time step used, the UPOT 

computed flutter boundaries differed from Euler computed boundaries by a significant 

amount. 

F. Euler computations converged relatively quickly for high subsonic Mach 

numbers, but required increasingly large times for completion as the Mach number was 

•decreased toward 0.1. Every Euler computation could be completed in about 12 to 24 

hours. 

G. Navier-Stokes computation times typically were 4 to 6 times longer on the 

Department's SGI work stations. 
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VII.    RECOMMENDATIONS 

It will be interesting to study the effect of the following parameters: 

A. Reynolds Number 

Extend the calculation to Reynolds numbers other than MO6 

B. Mach Number 

Extend the calculations to cover the transonic Mach number range and 

investigate the effect of shock motion and shock boundary layer interaction on 

flutter 

C. Moment of Inertia 

Investigate the effect of moment of inertia variation on flutter 

D. Two-Degree-of-Freedom Flutter 

Extend the single-degree-of-freedom analysis to the bending-torsion 

flutter problem and investigate the effect of airfoil thickness on this type of flutter. 
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