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1. INTRODUCTION 

Quiet submarine threats and high clutter in the littoral undersea battlespace require that 
higher-gain acoustic sensors be deployed for undersea surveillance. This development requires 
the implementation of high-element-count arrays and a corresponding increase in data rate and 
the associated signal processing. As a result, the processing requirements placed on the data 
collector/processor are becoming prohibitive in terms of cost and electrical power. This project 
addresses the potential of advanced distributed and parallel processing techniques to distribute the 
processing among the individual sensor elements of the large surveillance array. 

Distributed and parallel processing techniques together with advanced networking 
technologies and architectures can be used to turn the telemetry nodes of autonomous sonar 
arrays into processing nodes of a large parallel processor. This approach will eliminate the need 
for a centralized data collector/processor, reduce the aggregate current drain, and increase overall 
system reliability. Furthermore, by using the spare processing capacity in the processors required 
to implement the low-power interface protocol together with the high data rate offered by fiber 
optics, this improvement can be achieved at essentially no increase to the per-node cost of the 
array. 

The goals of this project are to decrease the cost and size and increase the dependability and 
performance of large, autonomous sonar arrays currently under development. The specific goals 
are to eliminate the centralized end-data collector/processor as a single-point-of-failure, potential 
performance bottleneck, and major cost driver and to decrease substantially the aggregate current 
drain and cost of the array. The target current drain and cost for this array are 44 mA per 
telemetry node plus an estimated 2 A for the end processor and a cost of $500 per node. 

In FY96 progress was made in several areas. First, an analysis of the effect of node outage 
on network reliability was conducted. Second, a survey of low-cost, low-power networking 
components was started. Third, preliminary parallel decompositions of several standard 
beamforming algorithms were performed, including delay-and-sum, delay-and-sum with 
interpolation, and FFT. Algorithms and programs for the sequential versions of these 
beamforming techniques were developed in Matlab, C, and MPI to form a baseline by which 
parallel algorithms and software are measured. Fourth, a fine-grain model of the baseline freight 
train protocol has been developed using the Block-Oriented Network Simulator (BONeS) tool, 
and models for candidate network architectures was under development for unidirectional ring 
and bidirectional linear array topologies. 

In FY97 further progress was made in a number of areas. A taxonomy of decomposition and 
parallelization methods for conventional beamforming, both time- and frequency-domain, was 
developed. Frequency-domain parallel beamforming algorithms using iteration- and steering- 
decomposition methods were designed, developed, and analyzed. By coding these parallel 
algorithms in MPI as part of the preliminary software system, performance experiments were 
conducted on a cluster testbed via several simulated network candidates. Results indicated near- 
linear speedup on both ring and bidirectional array networks and this speedup is critical since it 
will permit reduction in node and network clock rates, thereby further reducing power 
consumption. Time-domain parallel beamforming algorithms using iteration pipelining, 
transpose methods, and global data scope extensions neared completion, and early indications 
were also promising. Fine-grain array network models were designed, developed, and verified 
including unidirectional, bidirectional, token ring, and register-insertion ring protocols, and a 
slotted-ring model was near completion. Medium-grain array node models were also under 
development and these models will permit parameterization and experimentation with clock 
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speed, precision, operational versus standby power mode, etc. Integrating these many 
developments together, a new modeling and simulation environment for rapid virtual prototyping 
of advanced sonar arrays, called the Integrated Simulation Environment (ISE), was designed and 
a working version was near completion. For the first time, ISE brings together the fine-grain 
network models, parallel beamforming software, and the medium-grain node architecture models 
in a manner that permits detailed experimentation with candidate algorithms, network 
architectures, and node architectures in a dynamic and integrated fashion. The evaluation of low- 
power networking and processing components was continued. The study of the effect of 
component failures was also continued and simple and efficient techniques for sidelobe 
restoration in the event of node failure were evaluated. 

In FY98, the focus of this annual report, work has been thoroughly pursued for single- 
aperture conventional parallel beamforming, recently completed for split-aperture parallel 
beamforming, and just begun for more advanced adaptive or optimal processing algorithms. 
Specifically, five new parallel DFT beamforming algorithms have been developed. For 
conventional single-aperture arrays the algorithms include iteration decomposition, angle 
decomposition, and pipelined angle decomposition. Iteration decomposition and angle 
decomposition were further used to parallelize split-aperture arrays. Iteration decomposition of 
the DFT beamformer is based on a coarse-grained scheduling algorithm that pipelines complete 
iterations (i.e. beamforming cycles). Angle decomposition of the parallel DFT beamforming 
algorithm is based on a medium-grained algorithm that partitions the operations internal to a 
single iteration across all nodes. Lastly, pipelined angle decomposition optimizes angle 
decomposition by pipelining computation and communication stages. 

To address the growing challenges in designing and analyzing non-traditional parallel and 
distributed sonar arrays, the first complete implementation of the novel approach and tool begun 
in FY97 and known as ISE was completed. On the hardware side, it is difficult to design an 
autonomous system that will run demanding parallel beamforming applications efficiently. On 
the software side, it is challenging to parallelize a beamformer to run well on an autonomous 
sonar array when that system is not available as a physical prototype. Because of the complexity 
involved, designers from both development viewpoints have had a growing need for a sonar array 
design environment to address these challenges. In support of this project, researchers at the 
High-performance Computing and Simulation (HCS) Research Laboratory developed the ISE 
modeling environment wherein parallel and distributed array architectures are simulated using a 
combination of fine-grain models and existing hardware-in-the-loop (HWIL) to execute actual 
parallel programs. ISE allows the designer to run these simulations over networked workstations; 
thus, the workload can be distributed when multiple parameter sets are applied to high-fidelity 
models. The current implementation of ISE interfaces virtual sonar array prototypes created in 
the Block-Oriented Network Simulator (a CAD simulation tool from Cadence Design Systems) 
with parallel beamformer applications written in the popular Message-Passing Interface (MPT) 
coordination language for C or C++ programs. 

Finally, the implementation of a prototype for the distributed parallel sonar array has been 
completed. A parallel beamforming program has been ported, mapped, and executed on this 
prototype and preliminary performance measurements gathered. This prototype consists of eight 
single-board embedded computers, each comprised of a TMS320C54 DSP microprocessor and a 
daughter card for maximum off-chip memory expansion, connected by a serial TDM network 
using the internal TDM protocol in the C54 device. 

The remainder of this report is organized as follows. In Chapter 2, detailed descriptions and 
analyses of the parallel algorithms and programs for conventional beamforming are presented. In 
Chapter 3, a similar presentation is given on the new split-aperture parallel beamforming 
algorithms, programs, and results.   Chapter 4 provides an overview of the mechanisms and 



advantages of the Integrated Simulation Environment for rapid virtual prototyping of distributed 
parallel sonar arrays, followed by preliminary results with the physical prototype in Chapter 5. 
Finally, conclusions and issues of critical future research are presented in Chapter 6. 
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2. REAL-TIME SONAR BEAMFORMING ON HIGH-PERFORMANCE 
DISTRIBUTED COMPUTERS 

Advancements in beamforming algorithms are exceeding the computation and 
communication capabilities of traditional sonar array systems. Future sonar systems may take 
advantage of in-array processing by coupling transducer nodes with low-power DSP 
microprocessors to glean performance benefits, increased fault tolerance, and lower cost. This 
chapter explores parallel algorithms for conventional frequency-domain beamforming designed 
for an in-array processing system. The coarse-grained and medium-grained parallel algorithms 
presented offer scaled speedup while providing the basis for adaptations in advanced 
beamforming algorithms. 

2,1. Introduction 

Quiet submarine threats and high clutter in the littoral undersea environment demand that 
higher-gain acoustic sensors be deployed for undersea surveillance. The effect of this trend is 
high-element-count sonar arrays with increasing data rates and associated signal processing. The 
U.S. Navy is developing low-cost, disposable, battery-powered, rapidly deployable sonar arrays. 
These autonomous passive sonar array technologies face limitations which may be naturally 
overcome with the use of parallel and distributed computing (PDC) technology. Limitations 
include low fault-tolerance due to single points of failure, and computational complexity that 
cannot be supported in real-time by conventional means. The limitations are especially evident 
for a large number of receiving nodes and with the continuing development of higher-fidelity 
algorithms such as adaptive and matched-field processing. 

The next generation of passive array systems will support powerful signal processing 
algorithms, provide fault-tolerant mechanisms to overcome node and communication link 
failures, and operate at very low power levels so that they may be operated on battery power for 
mission times measured in weeks or months. These arrays will be capable of uplinking real-time 
beamformed data with better resolution than conventional systems while lowering cost by 
exploiting commercial off-the-shelf (COTS) microprocessors and subsystems. This paper 
presents new parallel algorithms for conventional beamforming (CBF) optimized for future in- 
array processing sonar systems. These embedded technologies have the advantages that the 
computational ability scales with array size and that fault tolerance is increased via elimination of 
single points of failure. 

Many optimizations exist for conventional beamforming that improve the algorithm 
complexity. Mucci presents seven categories of CBF algorithms, each having different spectral 
characteristics and hardware requirements. These categories include delay-and-sum, partial-sum, 
interpolation, interpolation with complex sampling, shifted-sideband, discrete Fourier transform 
(DFT), and phase-shift beamformers [15]. Although other optimizations exist, such as Houston's 
fast beamforming (FBF) algorithm [8], these seven can serve as a basis. Each algorithm is related 
to the fundamental delay-and-sum CBF algorithm. The first five algorithms work in the time 
domain while the latter two (i.e. DFT and phase-shift beamforming) work in the frequency 
domain. The delay-and-sum algorithm has the unfortunate limitation that the spatial resolution is 
dependent on sampling frequency, resulting in a very large data space when large numbers of 
steering directions are desired. Each of the other algorithms aforementioned is optimized by 
minimizing this characteristic to varying degrees. 
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The DFT beamforming algorithm was chosen as the algorithm for the in-array parallel 
processing system. Advantages of the DFT beamformer include its ability to be updated for use 
with adaptive algorithms such as the Minimum Variance Distortionless Response (MVDR) 
beamformer [11]. Also, inverse transforming is not required since the frequency information is 
often advantageous for signal detection, localization, and classification in post-processing 
objectives [15]. DFT beamforming algorithms have the natural ability to support any number of 
steering directions at arbitrary angles, and take advantage of the efficiency inherent in the FFT 
algorithm. McMahon discusses some of the disadvantages of DFT including the inability of the 
Fourier domain to track certain classes of pulses, which is a general limitation of high-resolution 
Fourier analysis [12]. Also, even though the memory space required for the DFT beamformer is 
smaller than that for the delay-and-sum beamformer, Mucci points out that the DFT has a large 
data space in comparison to memory-efficient methods such as partial-sum, the interpolation 
techniques, and the phase-shift algorithm. Despite these limitations, DFT beamforming 
algorithms are attractive for parallel sonar arrays. 

a T     R 

Powerful Computer 

1 
Communication Link 

a. Conventional passive sonar array 

Interconnection Network 

b. Distributed parallel sonar array 

Fig. 2.1 Conventional passive array vs. distributed parallel sonar array. 

Conventional arrays may be described as a string of "dumb nodes" (i.e. nodes without 
processing power) with a large front-end processor, shown in Fig. 2.1a. These dumb nodes may 
be naturally outfitted with intelligent COTS microprocessors, shown in Fig. 2.1b. Emerging 
technologies for sonar signal processing arrays will exploit such intelligent distributed-memory 
multicomputer systems. These systems are typically programmed in a Multiple Instruction 
Multiple Data (MIMD) [4] fashion using a message-passing paradigm. Coarse-grained parallel 
decompositions are usually the preferred approach on distributed-memory multicomputers; 
however, medium-grained algorithms are also feasible with the advent of fast interconnection 
networks with lightweight communications. The coarse-grained and medium-grained parallel 
CBF algorithms introduced in this paper can be used as the foundation for more sophisticated 
beamformers that one day will be targeted for intelligent array systems.    These advanced 



techniques, in increasing order of complexity, include split-aperture beamforming, adaptive 
beamforming, matched-field tracking, and matched-field processing. The conventional 
beamformer exploited and parallelized in this paper will remain as a fundamental portion of such 
future algorithms, and thus the parallel algorithms presented can serve as a basis for all future 
work in this field. 

Other research initiatives in the parallelization of beamforming algorithms include 
decompositions of conventional techniques over tightly coupled shared-memory multiprocessors. 
Although the amount of DSP research on array processing is abundant, little has been 
accomplished in the area of MMD-style decompositions. Several projects from the Naval 
Undersea Warfare Center (NUWC) have developed real-time sonar systems by exploiting 
massive parallelism. Salinas and Bernecky [17] mapped the delay-and-sum beamformer to a 
MasPar, a Single Instruction Multiple Data (SMD) architecture. Dwyer used the same MasPar 
machine to develop an active sonar system [3]. Lastly, Zvara built an active sonar processing 
system on Connection Machine's SMD architecture, the CM 200 [22]. A handful of other 
papers discuss a variety of adaptive algorithms on parallel systems including systolic arrays, 
SMD style machines, and COTS-based DSP multicomputers [1,19]. However, little of the 
previous work has focused on issues involved in either distributed or in-array processing. 

This paper introduces three parallel DFT beamforming algorithms for distributed in-array 
processing: iteration decomposition, angle decomposition, and pipelined angle decomposition. In 
Section 2.2, the reader is presented with basic beamform theory and the sequential DFT 
beamformer. In Section 2.3, the parallel iteration-decomposition beamformer, which is based on 
a pipelined approach, is introduced. In Section 2.4, angle decomposition, a data-parallel 
approach, is discussed. The third parallel beamforming algorithm pipelined angle 
decomposition, is presented in Section 2.5 and is shown to be a hybrid of the first two parallel 
algorithms. The sensitivity of each algorithm to array parameters is shown in Section 2.6 using a 
CAD-based rapid virtual prototyping environment. Finally, in Section 2.7, a brief set of 
conclusions and directions for future research is enumerated. 

2.2. Conventional Beamforming 

Conventional delay-and-sum beamforming may be performed in either the frequency or time 
domain. In either domain, the algorithm is essentially the same: signals sampled across an array 
are phased (i.e. delayed) to steer the array in a certain direction, after which the phased signals are 
added together. To phase the incoming signals, some geometry is needed to transform the steered 
"look" direction to the correct amount of delay at each node. Fig. 2.2 shows an incoming plane 
wave and the geometry needed to derive the delay. 
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plane wave-front 

Fig. 2.2 Wave-fronts hitting array. 

This delay is directly proportional to Ax as shown in the figure.   Adjacent nodes would 
receive the wave-front at a difference in time of 

5 = 
dsin(6) 

(Eq. 2.1) 

where d is the distance between adjacent nodes, 6 is the steering angle from the array's 
perpendicular (i.e. from broadside), and c is the speed of sound in water (estimated as 1500m/s). 
Each node, indicated by its node number m, would receive a signal from angle 0 at a relative 
delay of 

(m-l)5 (Eq. 2.2) 

with respect to node 0. In the frequency domain, a vector s may be built which, when multiplied 
by the respective incoming signals, will properly phase the system. This vector is defined as 

where 

S = [1,    e ■jkdsw(8) -j2kdsin(6) -j(.M-l)kdsm(0) 
]. (Eq. 2.3) 

(Eq. 2.4) 

is equal to the wave number and M is the number of nodes. The final beamform equation is a 
summation, x(t), of the phased signals multiplied by a windowing weight matrix w': 

or 

y(t) = w x(t)   (time domain) 

y(<o) = w°x(co) (frequency domain). 

(Eq. 2.5) 

(Eq. 2.6) 

Readers interested in a more complete discussion of beamforming algorithms are referred to 
[2,7,10]. 

The baseline DFT beamforming algorithm, adapted from [16], consists of five simple 
operations: a window multiplication, DFT (via the radix-2 FFT adapted from [14]), steering 
factor (i.e. phasing) multiplication, beamforming summation, and last, computation of each 



angle's power and inverse Fourier transform. Though not necessary for some types of post- 
processing, the inverse transform is included in order to output the beamformed time series. The 
steps are shown in Fig. 2.3, where each of the operations is annotated with its computational 
order and the dimension of the data stream entering and exiting the block. The dimension maps 
for the Window Factor Multiplication, FFT, and Steering Factor Multiplication operations are 
shown on a per-node basis. The dimensions are representative of three significant parameters: 
number of nodes (M), number of frequency bins (N), and number of steering directions (S). The 
computational complexity variable n is a generalization of the variables M, N, and 5. 

Dimension Maps 

Collect Data 

it it 1II HI 11 

II III II 111 11 
II111II 111 11 

H 
Window 
Factor 

Multiplication 

H 
FFTs Steering 

Factor 
Multiplication 

a— ~~K°m n gafjg^j      ™J 

Beamform 
Summation 

IFFT7 Power 
Calculation 

0(n*) 0(n*logn) 0(n3) 0(n3) 0(ns) 

Fig. 2.3 Flowchart for sequential DFT beamformer. 

The Window Factor Multiplication stage scales each node's input by some factor. For 
conventional beamforming, a windowing function such as Harming, Blackman, or Dolph- 
Chebyshev is typically applied across the hydrophone array such that nodes toward the ends of 
the array contribute less in the Beamform Summation stage. This method improves the signal-to- 
interference ratio and is analogous to windowing on Fourier transformations [18]. Adaptive 
techniques adjust these scalar weights to optimize the beamform solution by minimizing output 
power in a constrained manner [5,21]. 

The FFTs stage takes the scaled temporal data stream and converts it into complex-valued 
spectra. Since the amount of data entering the stage equals the amount of data exiting, it is 
reasonable to assume that this operation should be performed within each node to preserve the 
natural data parallelism of the system (i.e. each node transforms its own sample sets). 

The Steering Factor Multiplication stage is the major computational bottleneck of DFT 
beamforming and is not required in time-domain algorithms. It is interesting to note that this 
Steering Factor Multiplication stage is exactly the same operation as correlation by plane-wave 
replica vectors and thus leads naturally to matched-field techniques. The steering factor matrix 
may be recomputed with each iteration of the beamformer, or it may simply be stored and 
retrieved from memory. The former method will result in a memory efficient model while the 
latter will result in a computationally efficient model. 

The Beamform Summation stage represents the other major computational bottleneck. 
Though the stage is 0(n3), it is comprised of simple additions, which is less work than the 
comparable number of complex multiplies required in the Steering Factor Multiplication stage. 
This stage is the actual spatial filter, thus the reduced output data is ideally filtered spectra for 
each angle of interest. This operation is the same for any beamforming method in time or 
frequency, using conventional or adaptive techniques. 

Last, the IFFT/Power Calculation stage transforms the data back into the time-domain and 
calculates the power of the beamformed spectra for each steering direction. This stage is often 
left for post-processing stages or completely ignored because spectral information is many times 
more useful than temporal data when human operators (or pattern recognition post-processors) 
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analyze the data. Nonetheless, for completeness and to better support in-array processing, both 
the 1FFT operation and the power calculation are included in all our algorithms. 

To further analyze the performance characterisitics of this beamformer and its stages, the 
sequential baseline algorithm was coded and executed on an UltraSPARC-1 workstation running 
at 170 MHz with 128MB of memory. Fig. 2.4 shows the algorithm's performance when 
computing 91 and 181 steering directions for different numbers of input sensors (i.e. problem 
sizes). The top of each stacked bar represents the total time to complete, and each bar is 
partitioned by the five stages discussed above (where the Window Factor Multiplication is 
combined with the FFT stage and the inverse FFT is combined with the Beamform Summation 
stage), with Other representing the overhead of the timing functions employed for the 
measurements. As predicted, the Steering Factor Multiplication stage represents the largest 
bottleneck followed by the Beamform Summation stage. The remaining stages represent a small 
fraction of the total computation time. This algorithm was optimized for memory efficiency by 
recomputing the steering matrix factors at each iteration; therefore, the execution time of the 
steering multiplication could be significantly decreased if desired, but with the penalty of a larger 
memory requirement. We chose to ignore the communication time required to gather samples 
from a passive sonar array with dumb nodes since a well-designed sequential algorithm could 
always pipeline this process with practically no overhead, assuming that the network is 
moderately fast compared to the processing speed. 

■Other 

□ Power Calc. 

DSummatkxi & FFT 

■ Stewing Mult. 

OWIndowiFFT 

4 nodes 6 nodes 8 nodes 

Number of Input Sensors 

■Other 

OPowerCalc. 

nSummation & FFT 

■Steering Mult. 

DWIndow&FFT 

6nodes 8nodes 

Number of Input Seneore 

a. 91 steering directions b. 181 steering directions 

Fig. 2.4 Average execution times for the DFT beamformer (averaged over 1000 
iterations). 

In order to maximize the efficiency of the parallel DFT beamforming algorithms, the Steering 
Factor Multiplication and Beamform Summation stages must be parallelized so as to overlap or 
partition these computations while simultaneously minimizing communication requirements. 
Each of the algorithms we present in the following three sections (i.e. iteration decomposition, 
angle decomposition, and pipelined angle decomposition) ensure that these computationally 
complex stages are parallelized optimally. 

Fine-grained decompositions of the DFT beamformer were not attempted since such a 
solution causes an excess of communication, which is difficult to support on a distributed- 
memory multicomputer. Such fine-grained decompositions include partitioning each node's FFT 
and Window Factor Multiplication stages, which would be ill-suited for a loosely coupled system. 



2.3. Iteration Decomposition 

The first parallel algorithm for in-array DFT beamforming focuses on the partitioning of 
iterations, where an iteration is defined as one complete beamforming cycle. Iteration 
decomposition of the DFT beamformer is based on a coarse-grained scheduling algorithm that 
pipelines the Steering Factor Multiplication, Beamform Summation, and IFFT/Power Calculation 
stages. The Window Factor Multiplication and FFT stages take advantage of the natural 
distribution of data across sonar nodes, transforming the data before relaying it to a scheduled 
processor. This initial data-parallel approach is adapted for each of the other parallel algorithms 
as well. Intuitively, it is often wise to decompose the program to take advantage of the proximity 
between available data and processors if that data does not have dependencies. Using this 
intuition, one might choose to compute the Steering Factor Multiplication stage at each node for 
local data since data dependencies do not exist until the Beamform Summation operation. 
However, the data space that would need to be communicated later for the summation would be 
many times larger causing significant communication complexity. This characteristic is due to 
the fact that, for each input signal, the Steering Factor Multiplication stage calculates a phased 
vector for every steering direction of interest. Therefore, it is desirable to parallelize the Steering 
Factor Multiplication stage to avoid such large memory and communication requirements. 

With the iteration-decomposition parallel algorithm, each iteration (from the Steering Factor 
Multiplication stage through the end of the iteration) is scheduled to a processor in a round-robin 
fashion. At startup, node 1 is scheduled the first iteration, node 2 is scheduled the second, etc. 
The decomposition is split into two computational stages, as shown in Fig. 2.5, which are referred 
to as Computation Stages 1 and 2. The first stage is partitioned in the data-parallel fashion 
previously mentioned while the second stage uses a control-decomposition approach. Therefore, 
Computation Stage 1 requires the computational resources from all the nodes, while Computation 
Stage 2 finishes the algorithm on a single processor. To increase the efficiency of the algorithm, 
iterations are pipelined such that new iterations begin during the Computation Stage 2 for 
previously started iterations. The pipeline works by interrupting an iteration's Computation Stage 
2 at well-defined points to begin the Computation Stage 1 of a new iteration. A 4-node array 
would require 3 interruptions to start 3 new iterations before the Computation Stage 2 from any 
one iteration is completed. Thus, the size of the pipeline depends on the number of nodes in the 
array. 

10 



0(n)      O(nlogn) 
per node   per node 0(n3) 0(n3)      0(n2) 

Window 
f\      Factor 

Multiplication 

Window 

Factor      B   FFT 

Multiplication 

Window 
H      Factor 

Multiplication 

Window 

Factor 
Multiplication 

Steering 

Factor 
Multiplication 

Steering 

Factor 
Multiplication 

Steering 
Factor 

Multiplication 

Beamform 
Summation 

Find 
Power 

Steering 
Factor 

Multiplication 

Collect 
Results 

Compulation Stage 1 Communication Stage 1 ComputatiDnStäge Communication Stage 2 

Iteration 1      wm\ 

Iteration 2 I fr:Procesaor z: 

Iteration 3 

Iteration 4 

Iteration 5 \ j j; Processor 1 Piocsssor 1 | 

Iteration 6 |  Processor 2   | 

■fflffl-   Pause Current Iteration 

♦       Iteration Finished 

Fig. 2.5 iteration decomposition. 

Iteration decomposition normalizes the amount of computation required between 
interruptions. This trait is a result of the algorithm's linear dependence on number of nodes and 
is illustrated by the following example. Consider an 8-node array requiring S = 32 steering 
directions and N=10 frequency bins. The Steering Factor Multiplication would require 

S-iV-M=32-10-8 = 2560 (Eq. 2.7) 

complex multiplications. However, the operations are pipelined over 8 iterations during which 
the processors only need compute l/8th of the complex multiplies (or 320) per new iteration. If 
the system were scaled to 16 nodes, the number of total complex multiplies between interruptions 
would double. However, the processor would have twice the amount of time to compute the 
result, maintaining 320 complex multiplies per new iteration over a total of 16 pipelined 
iterations. Ignoring communication, an array that could support 8 nodes could support infinitely 
many! However, the result latency of any given iteration, which is the time from the original data 
collection for that iteration until the result is complete, also increases linearly with the size of the 
array and may conceivably be too long for very large arrays. 

The amount of communication also increases linearly with the number of array nodes. More 
precisely, the complexity of Communication Stage 1, which contains the communication of the 
transformed input vectors to the scheduled processor, increases linearly with the number of nodes 
(M). Communication Stage 2, which contains the communication of the results to a designated 
I/O node, is independent of M. It may be possible to support arbitrarily sized systems by using 
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interconnects such as register-insertion rings, which have the ability to scale well [20]. The 
communication capability of such interconnects increase as nodes are added. Other less 
sophisticated networks such as bus-based solutions have a natural peak with respect to 
supportable array size since adding nodes increases contention without increasing network 
aggregate throughput. 

To evaluate the performance of this parallel algorithm, several implementations were coded 
in C with the Message-Passing Interface (MPT) [13] and executed on a cluster of UltraSPARC 
workstations connected by a 155 Mb/s ATM network via TCP/IP. For each array size, the top of 
the stacked bar in Fig. 2.6 represents the average execution time of any given iteration. In Fig. 
2.6a the results from computing 91 steering directions are shown, while in Fig. 2.6b the results for 
181 steering directions are shown. The times are broken down in stages showing significant 
computational and communicational operations. As discussed in Section 2.2, the Steering Factor 
Multiplication and Beamform Summation stages dominate the computation times. The time spent 
in the Window Factor Multiplication/FFT and Power Calculation stages is negligible compared 
to the more significant of the computational stages. The Window Factor Multiplication/FFT 
stage is so small that it is barely visible in the bottom of each bar graph. There is also significant 
overhead incurred from communication latencies, which is undoubtedly a result of running the 
algorithm through the overly robust TCP/IP software layers on top of ATM. We can expect 
better performance with lighter communication software layers. 
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Fig. 2.6 Average execution times for the iteration decomposition method (averaged 
over 1000 iterations). 

Although the result latency for an iteration-decomposition solution is fairly long, the average 
execution time for any iteration does very well. Iteration decomposition also yields speedup over 
the sequential program with a parallel efficiency of about 68%, as shown in Fig. 2.7. Because the 
problem size increases with the number of nodes, these speedup numbers reflect scaled speedup. 
Furthermore, the comparisons are made to a purely sequential algorithm that ignores 
communication latency, as previously discussed. 
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Fig. 2.7 Scaled speedup for the iteration decomposition method. 

2.4. Angle Decomposition 

The second parallel algorithm focuses on partitioning steering angle solutions to each of the 
nodes, a form of domain decomposition. Angle decomposition of the parallel DFT beamforming 
algorithm is based on a medium-grained algorithm that partitions the five operations discussed in 
Section 2.2 across all nodes. The Window Factor Multiplication and FFT stages (or Computation 
Stage 1) again take advantage of the natural distribution of data across sonar nodes and operate in 
exactly the same manner as in iteration decomposition. On the other hand, Computation Stage 2 
differs significantly from the method used in the prior decomposition. In angle decomposition, 
the entire algorithm operates in a data-parallel fashion. Instead of a single node computing the 
beamform solution for all angles, the nodes divide the S steering directions among the processors 
and independently beamform in those directions. The number of steering angles each node 
computes is thus SIM. Using this decomposition, the workload for a single iteration is distributed 
evenly to all nodes. 

Fig. 2.8 shows a block diagram illustrating this method. With respect to Communication 
Stage 1, angle decomposition is immediately distinguishable from iteration decomposition. As 
shown in the figure, the communication in this stage is an all-to-all communication, which is this 
algorithm's greatest deficiency. The communication does not scale linearly but rather 
quadratically with the number of nodes, resulting in a more complex 0(n2) communication. 
However, with broadcast-capable networks, this complex communication is reduced to O(n). As 
in the previous algorithm, the total amount of communication in Communication Stage 2 is 
independent of array size, although angle decomposition partitions the output data into M smaller 
segments. 
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Fig. 2.8 Angle decomposition. 

One advantage of this algorithm over iteration decomposition is the low result latency of any 
individual beamform solution. Recall that with iteration decomposition, each solution's latency is 
dependent on the size of the array. That is, larger arrays will cause more interruptions for starting 
new iterations, thus increasing the length of time required to finish computations for any given 
iteration. Angle decomposition ensures the lowest latency to produce a final result of any 
decomposition. Using much the same reasoning as for iteration decomposition, the latency of the 
beamform solution is computationally independent of the array size, a result that is due to the 
algorithm's linear dependence on M. This linear dependence implies that the latency of any 
single solution of the algorithm will be the same for eight nodes as it is for infinitely many, again 
ignoring communicational requirements. If the interconnect employed was fully connected or 
could scale as the square of M, then the network would also support linear scalability [9]. 
However, for many applications such a robust network is unlikely to be cost effective. 

Another advantage of the angle-decomposition parallel algorithm is the efficient use of 
memory. Since each node performs a range of steering angles, memory required for the Steering 
Factor Multiplication may be distributed across all nodes. The iteration-decomposition algorithm 
requires either recomputation of the large steering matrix with each new iteration or copies of the 
matrix in every node. 

For the domain decomposition used in this algorithm, the degree-of-parallelism (DOP) 
achieved is dependent on the number of steering directions, with high-resolution beamformers 
expected to glean the best speedup results. The number of frequency bins also increases the DOP 
but, similar to the number of nodes, has the unfortunate effect of increasing the communication 
requirements quadratically. 

Fig. 2.9 charts the average execution times for computing 91 steering directions and 181 
steering directions. The times are again broken down in stages to show significant computational 
and communicational operations. The Steering Factor Multiplication and Beamform Summation 
stages dominate the computation times while the FFT and Window and Power Calculation stages 
are negligible. The communication in the angle-decomposition algorithm represents more than 
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half of the total execution time. Again, these large communication latencies may be exaggerated 
in comparison to the actual hardware latencies since an in-array processing system will have a 
lighter communication stack than TCP/IP. 
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Fig. 2.9 Average execution times for the angle decomposition method (averaged 
over 1000 iterations). 

As shown in Fig. 2.10, the scaled speedup of the angle decomposition is relatively poor, 
yielding a parallel efficiency of less than 50% in most cases. The large communication latencies 
were detrimental to the overall performance of the algorithm. 
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Fig. 2.10 Scaled speedup of the angle decomposition method. 

2.5. Pipelined Angle Decomposition 

The third parallel algorithm focuses on partitioning steering angle solutions to each of the 
nodes (i.e. data parallelism), but it also employs pipelining (i.e. control parallelism) to improve 
efficiency. Pipelined angle decomposition overlaps the communication and computational stages 
of angle decomposition at the expense of higher result latency for any single beamform iteration. 
Therefore, pipelined angle decomposition is a compromise between the iteration- and angle- 
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decomposition algorithms.  Pipelined angle decomposition decreases result latency from that in 
iteration decomposition and achieves better speedup than angle decomposition. 

The pipelining, shown in Fig. 2.11, is achieved by overlapping Communication Stage 1 with 
Computation Stage 2 from the preceding iteration and Computation Stage 1 from the succeeding 
iteration. The result collection in Communication Stage 2 is overlapped in a similar fashion. 
After an iteration's Communication Stage 1 is initiated, the algorithm picks up the previous 
iteration at Computation Stage 2. At the end of this computational stage, the result collection, 
Communication Stage 2, for that iteration is begun. Finally, before completing Communication 
Stage 1, the algorithm begins Computation Stage 2 of a new iteration. Thus, an effective 
overlapping of communication and computation stages is achieved. 

Pipelined angle decomposition is not as efficient as iteration decomposition but constrains the 
length of the pipeline to 3 iterations, as opposed to iteration decomposition whose latency grows 
as a function of M. Therefore, ignoring the increasing communication latencies, the result latency 
to produce a single beamform solution in pipelined angle decomposition remains independent of 
array size, yet is longer than the latency in pure angle decomposition. The DOP of the algorithm 
remains identical to that of angle decomposition, but average speedup is improved. 
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Fig. 2.11 Pipelined angle decomposition. 

In Fig. 2.12, the execution times for computing 91 steering directions and 181 steering 
directions are shown. As expected, the figures show that the pipelining has improved the average 
execution time from that of angle decomposition. The Steering Factor Multiplication and 
Beamform Summation still account for the majority of computational load while the execution 
times of FFT, Window Factor Multiplication and Power Calculation stages are still insignificant. 

16 



Communication latencies of pipelined angle decomposition are minimized, which is clearly 
shown by the time spent receiving with respect to angle decomposition. 
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Fig. 2.12 Average execution times for pipelined angle decomposition (averaged 
over 1000 iterations). 

The scaled speedup for pipelined angle decomposition, shown in Fig. 2.13, has improved 
marginally over angle decomposition for large array sizes by increasing parallel efficiencies to 
over 50%. Small arrays take advantage of the overlap in communication and computation, 
increasing parallel efficiency to almost 70%. 
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Fig. 2.13 Scaled speedup for the pipelined angle decomposition. 

2.6. Comparative Analysis 

In this section, the advantages and disadvantages of each of the three algorithms are 
discussed, and comparisons are made between their performances. Fig. 2.14 shows the average 
execution time for each of the parallel beamformers. The iteration-decomposition algorithm 
shows the best performance, whereas the angle-decomposition algorithm generally performs the 
worst. Of course, the trade-off between these two algorithms is the large result latency incurred 
for iteration decomposition.   The pipelined angle decomposition, as predicted in Section 2.5, 
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compromises the angle decomposition's short result latency for a somewhat better average 
execution time. Large array sizes may cause the communication in the two angle-decomposition 
algorithms to grow quickly, especially if the network cannot support broadcast traffic. A study of 
this effect is discussed in more detail below. 
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Fig. 2.14 Average execution times for the three parallel algorithms (averaged over 
1000 iterations). 

The scaled speedup plots in Fig. 2.15 indicate that iteration decomposition delivers the best 
performance of the three algorithms with pipelined angle decomposition performing almost as 
well in some cases. Although angle decomposition is conceptually less efficient than its 
pipelined cousin, the added complexity of setting up the pipelined angle decomposition led to 
more efficient execution by angle decomposition for small arrays with lower steering resolution. 
Angle decomposition certainly performs less favorably for larger arrays and higher-resolution 
systems. 
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Fig. 2.15 Scaled speedups for the three parallel algorithms. 

To provide a sensitivity study of array parameters on an in-array processing system, each of 
the parallel beamformers was also executed on the Integrated Simulation Environment (ISE), a 
rapid virtual prototyping tool developed at the University of Florida [6]. ISE has the ability to run 
real applications written in MPI over simulated systems built in the Block Oriented Network 
Simulator (BONeS), a commercial product of Cadence Design  Systems.     A number of 
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interconnection schemes have been developed specifically in ISE for prototyping a distributed 
parallel sonar array. These interconnects include a register insertion ring, a bidirectional register 
insertion array, and a slotted ring, each of which support linear scalability with increasing 
numbers of nodes. 

ISE allows researchers to experiment with systems that may be too impractical or expensive 
to prototype in the traditional sense. The following experiments show the sensitivity and scaling 
ability of the three parallel beamforming algorithms over a larger range of parameters. From this 
data, a more accurate account of how the decompositions will perform on an actual in-array 
processing system is engaged. 
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Fig. 2.16 Contour plots for each algorithm ranged over network and processor 
speed. 

The first sensitivity study involves the variation of parameters for network speed and 
processor speed in an 8-node array with a bidirectional register-insertion network. To study the 
effect of the speed of the eight processors in the virtual prototype, variations from 25 percent to 
100 percent of the performance of an UltraSPARC processor running at 170 MHz are used. In 
addition, variations in network speed range from 2.5 to 10 Mb/s. Each of the three parallel 
beamformers was executed on virtual prototypes with these permutations, and execution times are 
shown in Fig. 2.16. As can be seen, the iteration and angle-decomposition methods provide 
similar performance results as the speed of the system is varied. The processor speed has the 
most significant effect on the execution time of these beamformers.   As network speed is 
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decreased, the performance of the algorithms is also decreased, though to a lesser extent. 
Graphically, this trend appears as a gradual slope in the network-speed dimension. However, 
pipelined angle decomposition shows little performance change as network speed is varied, 
indicating the additional ability of this method to overlap computation with communication. 
However, this result is likely to change for very large arrays, in which communication latencies 
may be more dominant than computational latencies. Dependency on network speed for this 8- 
node system only appears when the processor speed is so fast and the network speed so slow as to 
cause the communication to last longer than the 0(n3) computations. As with the other 
algorithms, processor speed remains the dominant constraint for pipelined angle decomposition. 

The second sensitivity study, shown in Fig. 2.17, demonstrates the scalability of the 
algorithms as the number of nodes is changed. The execution time increases linearly as the 
number of nodes is increased; however, the slope is gradual for all three algorithms. This trend 
bodes well for the angle-decomposition methods, which might be expected to incur large 
communication latencies for large arrays. From 2 to 32 nodes, the execution time per iteration 
increases approximately 30% for all decompositions. The results of this experiment also support 
the premise that problem size grows linearly with number of nodes as stated in Section 2.3. Note 
that as problem size doubles, the increase in the execution time is approximately 12%. This loss 
of efficiency for larger arrays is due to synchronization overhead and communication complexity. 
It is also important to note that a lightweight communications layer was used in this virtual 
prototype rather than the TCP/IP stack in the cluster testbed of the previous experiments. 
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2.7. Conclusions 

The continuing development of beamforming algorithms is creating the need for integrated 
solutions that leverage algorithmic optimizations with parallel embedded system architectures. 
These architectures must support a large number of nodes, steer with increased fidelity, and offer 
better fault tolerance in the event of node failures, all of which place increasing strain on memory 
requirements, processor speed, network efficiency, and software intelligence. Parallel system 
architectures hold the potential to eliminate single points of failure and improve hardware fault 
masking and tolerance, while parallel algorithms for these architectures can support large arrays 
due to linear dependence of problem size on the number of nodes. The goal of this research was 
to provide general solutions for in-array parallel beamforming, first for conventional 
beamformers, but ultimately extensible to split-aperture, adaptive, and matched-field techniques. 

The configuration of a sonar array maps particularly well to loosely coupled multicomputer 
architectures, thus the parallel solutions were constrained to coarse-grained and medium-grained 
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decompositions. Although fine-grained solutions are not impossible, they are certainly inefficient 
on these systems. Using the sequential DFT beamformer as a baseline, new parallel algorithms 
were developed using both coarse-grained iteration and medium-grained angle decomposition. In 
addition, by combining attributes of both iteration and angle decomposition, a hybrid form of 
parallel algorithm was developed. 

The iteration-decomposition algorithm was found to exhibit the best efficiency and the best 
scalability at the cost of a large result latency. Of the algorithms presented, it is also the least 
complex to implement and is easily adaptable in the event of hardware faults. The angle- 
decomposition method shows the lowest result latency and is memory-efficient since the steering 
factor multiplication matrix may be distributed across the entire array. However, it also exhibits 
the worst parallel efficiency and may be difficult to restructure in the event of node failures. The 
pipelined angle decomposition improves the efficiency of angle decomposition at the cost of a 
longer result latency and maintains the memory efficiency of the angle-decomposition algorithm. 
However, it also suffers from difficulty in supporting fault-tolerant procedures. Each of the 
parallel beamforming algorithms presented is scalable to different degrees for large arrays, as was 
shown by sensitivity analyses with the aid of a rapid virtual prototyping tool. 

Future directions from this research will focus on leveraging the contributions from these new 
parallel algorithms for in-array processing to support additional beamformers with increasing 
sophistication in their acoustic and signal processing attributes. Currently, extensions under 
development include parallel algorithms for split-aperture beamforming and MVDR adaptive 
beamforming. Furthermore, research on the implementation of fault-tolerance mechanisms to 
support the three parallel algorithms is underway. 
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3. PARALLEL ALGORITHMS FOR SPLIT-APERTURE CONVENTIONAL 

BEAMFORMING 

Quiet submarine threats and high clutter in the littoral undersea environment increase the 
processing demands on beamforming arrays, particularly for applications which require in-array 
autonomous operation. Whereas traditional single-aperture beamforming approaches may falter, 
the Split-Aperture Conventional Beamforming (SA-CBF) algorithm can be used to meet stringent 
requirements for more precise bearing estimation. Moreover, by coupling each transducer node 
with a microprocessor, parallel processing of the split-aperture beamformer on a distributed 
system can glean advantages in execution speed, fault tolerance, scalability, and cost. In this 
chapter, parallel algorithms for SA-CBF are introduced using coarse-grained and medium-grained 
forms of decomposition. Performance results from parallel and sequential algorithms are 
presented using a distributed system testbed comprised of a cluster of workstations connected by 
a high-speed network. The execution times, parallel efficiencies, and memory requirements of 
each parallel algorithm are presented and analyzed. The results of these analyses demonstrate 
that parallel in-array processing holds the potential to meet the needs of future advanced sonar 
beamforming algorithms in a scalable fashion. 

3.1. Introduction 

Sonar beamforming is a class of array processing that optimizes an array gain in a direction 
of interest to detect the movement of hulls and propellers in water, which create signals over a 
wide frequency band. The determination of the direction of arrival relies on the detection of the 
time delay of the signal between sensors. Incoming signals are steered by complex-number 
vectors. If the beamformer is properly steered to an incoming signal, the multi-channel input 
signals will be amplified coherently, maximizing power in the beamformed output; otherwise, the 
output of the beamformer is attenuated to some degree. Thus, peak points in the beamforming 
output indicate directions of arrival for sources. 

Performance of a beamformer depends on several factors. One of the important elements of 
concern is node configuration. Previous research has shown that uniform sensor spacing is not 
the best choice from the point of view of minimizing bearing error [1,2]. Cramer-Rao lower 
bound (CRLB) analysis, which is used to set an absolute lower bound on the bearing error, 
determines the optimum positioning for the sensors of a linear array in order to obtain optimum 
estimates for direction of arrival. By using split-aperture conventional beamforming (SA-CBF) 
on linear arrays, the lower bound for bearing error as estimated by CRLB analysis can be 
approached, yielding more improved bearing estimation than single-aperture arrays. 

As advancements in acoustics and signal processing continue to result in beamforming 
algorithms better able to cope with quiet sources and cluttered environments, the computational 
requirements of the algorithms also rise, in some cases at a pace exceeding that of conventional 
processor performance. Moreover, as the number of sensors increases, so too does the problem 
size associated with these algorithms. To implement modem beamforming algorithms in real- 
time, considerable processing power is necessary to cope with these demands. A beamformer 
based on a single front-end processor may prove insufficient as these computational demands 
increase; thus, a number of parallel approaches have been proposed in order to overcome the 
limits of a single high-end processor in beamforming applications. Several projects from the 
Naval Undersea Warfare Center (NUWC) involve the development of real-time sonar systems by 
exploiting massive parallelism. The delay-and-sum beamformer has been mapped by Salinas and 
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Bernecky to a MasPar Single Instruction Multiple Data (SIMD) architecture [3]. The MasPar 
machine was also used by Dwyer to develop a real-time active beamforming system [4]. Zvara 
built a similar system on the Connection Machine CM 200 architecture [5]. Other work has 
concentrated on a variety of adaptive algorithms on such parallel systems as systolic arrays, 
SIMD multiprocessors, and DSP multicomputers [6,7]. The work presented in this paper extends 
this knowledge base of parallel beamforming, particularly with respect to split-aperture sonar 
processing for in-array beamforming. An in-depth performance analysis of the stages of a 
sequential version of SA-CBF is shown in order to examine the sequential bottlenecks inherent in 
the system. In addition, new parallel algorithms for SA-CBF are designed for use with intelligent 
distributed processing arrays, and their performance is analyzed. 

Most of the computations in beamforming consist of vector and matrix operations with 
complex numbers. The regularity in the patterns of these calculations simplifies the 
parallelization of the algorithms. Two parallel versions of SA-CBF have been developed: 
iteration-decomposition and angle-decomposition techniques. Iteration decomposition, which is a 
form of control parallelism is a coarse-grained scheduling algorithm. An iteration is defined as 
one complete loop through the beamform algorithm. A virtual front-end processor collects the 
input data set from each sensor. This virtual front-end then proceeds to execute a complete 
beamforming algorithm independently of the operation of the other nodes. Other processors are 
concurrently executing the beamforming algorithm with different data sets collected at different 
times. Angle decomposition, a form of data parallelism, is a medium-grained scheduling 
algorithm in which different steering angle jobs for the same data set are assigned to different 
processors. Application of these methods to the SA-CBF algorithm extends the original 
development of algorithms for control and domain decomposition in traditional single-aperture 
beamforming [8]. 

A theoretical background of SA-CBF is presented in Section 3.2 with a focus on digital signal 
processing. A sequential version of the SA-CBF algorithm is given in Section 3.3. Two different 
memory models of the sequential algorithm are shown to determine a baseline for the parallel 
algorithms. In Section 3.4, two parallel SA-CBF algorithms are presented. In Section 3.5, the 
performance of the parallel SA-CBF algorithms, in terms of execution time, speedup, efficiency, 
and memory requirements are shown. Finally, a summary of the strengths and weaknesses of the 
algorithms and a discussion of future research are presented in Section 3.6. 

3.2. Overview of Split-Aperture Beamforming 

SA-CBF is based on single-aperture conventional beamforming in the frequency domain. 
The beamforming array is logically divided into two sub-arrays [9,10,11]. Each sub-array 
independently performs conventional frequency-domain beamforming using replica vectors on its 
own data. The two sub-array beamforming outputs are cross-correlated to detect the time delay 
of the signal for each steering angle. The cross-correlated data, with knowledge of the steering 
angles and several other parameters, will map the final beamforming output. 

Unlike the single-aperture beamforming algorithm, the SA-CBF algorithm does not need to 
steer at every individual desired angle in the steering stage. The cross-correlation creates some 
redundant information between the adjacent sub-array steering angles. By cross-correlating to 
time delays slightly offset from the sub-array steering delays, each sub-array steering angle can 
be used to generate a range of the time delay plot. The discrete cross-correlation function is 
defined in Eq. 3.1: 
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1   N—l Fourier Transform 

cv(n)=—Jix(i)y(i + n)        <=>        Cxy(k) = X(k)nk)* (Eq. 3.1) 
•«V ,=o 

n = 0,l,...,JV-l k = 0X-.,2N-2 

where vectors x and y are the sub-array beamforming outputs, N is the number of samples in x 
and y, and operator * indicates complex conjugation. We are only interested in the small number 
of angles or time delays in the cross-correlation adjacent to the beamforming angle of the sub- 
array. 

Before the inverse Fourier transform is applied to obtain the cross-correlation as a function of 
time delay, the Smoothed Coherent Transform (SCOT) is used to prefilter the cross-correlation. 
The spectral whitening obtained by SCOT results in an improved signal-to-interference ratio and 
an enhancement of the correlation between the two sub-arrays. Additional advantages of SCOT, 
as well as other prefiltering techniques, can be found in Ferguson [12]. The SCOT weighting 
function is given by Eq. 3.2. 

\W(kf= \ (Eq.3.2) 
J\X(kf\Y(kf 

SCOT is accomplished either by taking the instantaneous magnitude of the cross-correlation in 
frequency or a running average of the magnitude. 

As mentioned previously, each beam formed by the sub-arrays can be used to calculate 
multiple points in plotting the output bearing. The process by which this increase in resolution is 
accomplished is called i-interpolation. For each output angle, x-interpolation works with only the 
two cross-correlation results that are nearest to the desired angle. Raised-cosine weights are used 
to calculate the beamforming output for the interpolated angle from a linear combination of the 
two adjacent cross-correlation values. Because we need only a limited range of cross-correlation 
values to calculate the final beamforming output, the inverse discrete Fourier transform is then 
performed using Eq. 3.3 rather than the conventional FFT algorithm. This method will decrease 
computational cost of the inverse Fourier transform stage. 

1     Mi 
c(T,) = -±- £2Re[Cy"2*(m-,)A^] (Eq. 3.3) 

"FFT m=Mj 

In Eq. 3.3, Mj and M2 are the minimum and maximum frequency bin numbers in which we are 
interested, Cm is the weighted and normalized frequency-domain cross-correlation, Af is the 
frequency resolution of the FFT, Tj is the time delay between phase centers, and Re() is the 
function that returns the real value of a complex number. 

The two nearest cross-correlation vectors, subscripted as CL{TJ) and cR(Xj), are used to evaluate 
each interpolated output angle via T-interpolation as defined in Eq. 3.4 and Eq. 3.5. 

L    2 

c(ßou<) = VL <?}) + hRcR (Tj) (Eq. 3.4) 

fdr-6 L ou l+cos;r 
ÖL_Ö*   , 

;hR=l-hL (Eq.3.5) 

In these equations, 6L and 0R die the sub-array beamformed angles to the left and right, 
respectively, of the output interpolated angle 60U1, and CL(TJ) and cR(Tj) are cross-correlation values 
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for angles dL and 0R, respectively. The final output of the SA-CBF beamformer finds c(60Ut) 
versus each interpolated 0out. Further information on the design of the sequential SA-CBF 
algorithm can be found in Machell [10] and the experimental evaluation of SA-CBF can be found 
in Stergiopoulos11. To consolidate the above processes, Fig. 3.1a shows the block diagram of the 
SA-CBF algorithm, and Fig. 3.1b is a sample output of the SA-CBF. 
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(a) (b) 

Fig. 3.1 Block diagram of the sequential SA-CBF algorithm for 8 nodes (a), and a 
sample output of the SA-CBF for 8 nodes with a source at 0 = 30° (b). Arrows in 

the block diagram indicate data stream vectors. 

It is often highly desirable to increase the number of input nodes and the number of steering 
angles in a beamforming system. By increasing the number of input sensors, the beamformer 
resolves finer angles because the main lobe of the beam pattern narrows and the side lobes of the 
beam pattern decrease. Fig. 3.2a, which is constructed using a polynomial representation of a 
linear array [13], shows this result. Even if there are enough nodes to obtain a sharp beam 
pattern, the number of steering angles remains an important factor in producing high-resolution 
beamforming output. The number of steering angles decides the number of output points of the 
beamformer; thus, a small number of steering angles may cause a blurry beamforming output. 
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Fig. 3.2 Normalized beam pattern of the SA-CBF as a function of the number of 
nodes and sin(d) (a), and the required number of multiplication operations as a 

function of the number of steering angles and the number of nodes (b). 

As both of these parameters increase, the number of multiplication operations required to 
generate beamforming output is increased rapidly, as shown in Fig. 3.2b. According to this 
figure, powerful processing is essential to generate high-resolution beamforming output with 
acceptable latency and throughput. In cases where current technology cannot provide sufficient 
real-time performance in a single processor, a trade-off will be required between response time 
and resolution. The scalable performance of parallel processing will help to overcome limits 
imposed by a single front-end processor. 

3.3. Performance Analysis of Sequential Split-Aperture Beamformers 

The SA-CBF algorithm previously discussed can be split into five distinct stages: FFT, 
Steering, Sub-array Summation, Cross-correlation/SCOT, and Inverse Fourier 
Transform/Interpolation. High-level pseudo-code for SA-CBF is shown in Fig. 3.3. Up to and 
including the sub-array summation, SA-CBF is a frequency-domain conventional beamforming 
algorithm except that there are two phase centers. The succeeding stages improve the visual 
resolution and bearing estimation of the beamformer output using DSP techniques. 

Do FFT  for every incoming signal vector; 

For j=l,   number of steering angles 

Steering(j); 

Sub-array summation(j); 

Cross-correlation and SCOT(j); 

End 

For k=l, number of output angles 

Inverse Fourier transform and interpolation(k); 

End 

Fig. 3.3 Pseudo-code for the sequential SA-CBF algorithm. 
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In building a baseline for the parallel SA-CBF algorithms, two different sequential 
implementations were created, one using a minimum-memory model and the other using a 
minimum-calculation model. The minimum-memory model tries to save memory by doing more 
calculations, and the minimum-calculation model saves redundant calculations by using more 
memory. To illustrate the trade-off involved in selecting one model over the other, consider the 
steering vectors and the inverse Fourier transform basis. Under normal operation, these vectors 
are not subject to change from iteration to iteration. The minimum-memory model computes 
these space-consuming vectors on the fly for every iteration. However, in the minimum- 
calculation model, the vectors are already calculated in an initial phase and saved into special 
memory locations to access easily whenever needed without recalculation. Thus, the minimum- 
calculation model compromises memory space for faster execution time. In the event of node 
failures, the minimum-calculation model will be forced to recalculate all values in these vectors. 
Node failure increases the distance between nodes so new steering vectors need to be established 
based on new parameters. A new inverse Fourier transform basis is also necessary when the 
processing frequency bins are changed. By contrast, the minimum-memory model encounters 
significantly fewer disturbances in the event of failures since it would have recalculated all values 
in any case. 
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Fig. 3.4 Average execution time per iteration for 1000 iterations, and required 
memory space, for the SA-CBF with 16 nodes, 45 steering angles, 177 output 

angles, and 4-byte floating-point values. 

Due to the recalculation in the steering and inverse Fourier transform stages, execution times 
of these stages are severely increased for the minimum-memory model. Conversely, required 
memory space for these stages is significantly smaller than that required in the minimum- 
calculation model. Experiments were conducted to examine the execution time and memory 
requirements of the two sequential models. The platform used was a SPARCstation-20 
workstation with an 85MHz SuperSPARC-II processor and 64MB of memory, and running 
Solaris 2.5. The experimental results in Fig. 3.4 show that execution time of the minimum- 
calculation model is five times less than that of the minimum-memory model with twice the 
memory required. The execution time and memory requirement of the FFT stage are the same 
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for both models due to the fact that the same FFT algorithm is used in both. The sub-array 
summation and cross-correlation/SCOT stages are also unaffected by the model since these stages 
have no vectors that are the same from iteration to iteration. 

The model selected for the baseline of the performance analysis of parallel algorithms 
depends on the focus of the study. In the next section, to estimate attainable speedup with each of 
the parallel programs, execution time is the most important factor to be measured. Therefore, the 
minimum-calculation model is preferred as the sequential baseline. All parallel algorithms are 
implemented with the same minimum-calculation model, and it is assumed that each processor 
has sufficient memory to hold the program and all data. 

3.4. Parallel Algorithms for Split-Aperture Beamformers 

The parallel algorithms in this paper were designed to operate in conjunction with a 
distributed, parallel, sonar system architecture. This architecture is composed of intelligent nodes 
connected by a network. Each of the smart nodes, comprised of a hydrophone and a 
microprocessor, has its own processing power as well as requisite data collection and 
communication capability. By using such a distributed array architecture, the algorithmic 
workload is distributed and cost is reduced due to the elimination of an expensive front-end 
processor. Such an architecture ties the degree of parallelism (DOP) to the number of physical 
nodes in the target system. Of course, an increase in the number of nodes will increase the 
amount of input data and thus the problem size. 

The best performance of a parallelized task is achieved by minimizing processor stalling and 
communication overhead between processors. With a homogeneous cluster of processors, 
dividing tasks evenly among processors serves to maximize performance by reducing these 
hazards. While task-based parallelism is possible with the SA-CBF algorithm (via assigning 
steering to one node, sub-array summation to another node, etc.), the workload would not be 
homogeneous and would result in degraded performance. Fig. 3.5a shows this unbalanced 
workload amongst the various sequential tasks and serves as a justification for not using task- 
based parallelism. 
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Fig. 3.5 Averaged execution time comparison between sequential (a) and partially 

parallelized (b) programs for SA-CBF in an 8-node configuration. 

The SA-CBF algorithm computes many vector and matrix operations using nested loops. 
Therefore, we can partition iterations of the outer loop across the processors to create a balanced 
workload for each processor. When loop partitioning is applied to the parallel SA-CBF 
algorithm, special attention is required because there are two external loops that are repeated: 
number of steering angles and number of output angles, as shown in Fig. 3.3. These loops run 
separately within the SA-CBF algorithm but their information is tightly coupled and must be used 
together to generate the final beamforming output. If we parallelize only the first loop and not the 
second, which includes the inverse Fourier transform and interpolation stages, severe 
performance slowdown would result as the number of processors increases. Fig. 3.5b shows how 
loop partitioning of the stages in the first loop results in the second loop becoming a botüeneck. 
As the number of processors increases, the execution time of each stage decreases linearly except 
that of the IFT/Interpolation stage since this stage is not parallelized. Since the total execution 
time of the beamformer in this figure is found by summing the execution times of the stages, it 
becomes clear that the execution time of the IFT/Interpolation stage will become increasingly 
dominant as the number of processors increases. Of course, according to Amdahl's law, a small 
number of sequential operations can significantly limit the speedup achievable by a parallel 
program [14]. Thus, in this case the sequential bottleneck caused by the IFT/Interpolation stage 
limits the speedup to no more than 5 for an 8-node configuration or 9 for a 32-node configuration. 
Though parallelization of the IFT/Interpolation stage is nontrivial due to strong dependencies 
with previous stages, it will significantly increase the efficiency of the overall algorithm. 

The two parallel algorithms presented in the rest of this section make use of loop partitioning 
in two different ways. Furthermore, these algorithms parallelize the second loop (i.e., the 
IFT/Interpolation stage) to achieve better efficiency. The next two subsections present an 
overview of the two parallel algorithms, followed by performance results in Section 3.5. 
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3.4.1. Iteration-decomposition method 

The first decomposition method involves the partitioning of iterations, the solutions of a 
complete beamform cycle. Iteration decomposition is a technique whereby multiple 
beamforming iterations, each operating on a different set of array input samples, are overlapped 
in execution by pipelining. The algorithm follows the tradition of overlapped concurrent 
execution pipelining, where one operation does not need to be completed before the next 
operation is started. The beamforming task for a given sample set is associated with a single node 
in the parallel system. Other nodes work concurrently on other iterations. Pipelining is achieved 
by allowing nodes to collect new data from the sensors and begin a new iteration before the 
current iteration is completed. At the beginning of each iteration, all nodes stop processing the 
beamforming iterations assigned them just long enough to execute the FFT on their own newly 
collected samples and send the results to the node assigned the new iteration. Once this data has 
been sent, all nodes resume the processing of their respective iterations. Using this pipelining 
procedure, there are as many iterations currently being computed as there are processors in the 
system, each at a different stage of completion. A block diagram illustrating this algorithm in 
operation on a 4-node array is shown in Fig. 3.6. 
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Fig. 3.6 Block diagram of the iteration-decomposition algorithm in a 4-node 
configuration. Solid arrows indicate inter-processor, all-to-one communication and 
shaded boxes represent independent complete beamforming cycles (i.e. iterations). 

Individual beamforming is separated by inter-processor communication stages and each 
processor takes responsibility for a different beamforming job. A number of difficulties exist for 
iteration decomposition. First, since every partial job is synchronized at the communication 
points, an unbalanced processing load can develop across nodes, which may lead to processor 
stalling. Second, each iteration of the beamforming algorithm must be completed by a node 
before its pipeline cycle is complete so as to avoid collision between jobs. Therefore, to 
maximize the performance of the iteration-decomposition algorithm, the beamforming jobs 
should be evenly segmented by the number of processors. The pseudo-code illustrating the basic 
algorithm followed by each processor is shown in Fig. 3.7. 
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For t=l, Total number of iterations 

For j=l, number of processors  //beamforming is divided by # of processors 

index=(j+my_rank)%(number of processors);     //my_rank is node number 

Do FFT for their own node data; 

Communicate with other nodes; 

For k=start_steering_angle(index), end_steering_angle(index) 

Steering(k); 

Sub-array summation(k); 

Cross-correlation and SCOT(k); 

End 

For i=start_output_angle(index), end_output_angle(index) 

Inverse Fourier transform and interpolation(i); 

End 

End 

End 

Fig. 3.7 Pseudo-code for the iteration-decomposition algorithm. 

Each processor calculates an index based on its node number, the current job number, and the 
number of nodes. This index is used to access arrays which tell the node from which point in its 
iteration it must continue after executing the FFT and communicating new data and at which 
point it must again pause in order to begin another new iteration. Specifically, arrays containing 
the starting steering angle and ending steering angle for a computation block instruct the node on 
how to partition the first of the two loops. Arrays containing the starting output angle and ending 
output angle are used to decompose the second loop. Upon completion of this procedure, a new 
iteration is started, and each node calculates a new portion of the necessary steering and output 
angles for its iteration. Managing these arrays requires a nontrivial amount of overhead, but such 
overhead is a necessary part of the correct operation of the pipelining method. 

3.4.2. Angle-decomposition method 

The second parallel algorithm decomposes SA-CBF using a medium-grained approach in 
which the internals of a complete beamforming iteration are segmented. The angle- 
decomposition algorithm distributes processing load by decomposing the domain, the steering 
angles. Each node calculates the SA-CBF results for a certain number of desired steering 
directions from the same sample set. Before doing so, all participating nodes must have a copy of 
the data from all other nodes. After completing this all-to-all communication, each node 
computes different beamforming angles for the same data. This algorithm introduces 
considerably more communication than the iteration-decomposition algorithm, and the 
interconnection scheme between processors will have a more significant effect on performance. 
The communication requirements are further studied in George [8]. A block diagram illustrating 
this algorithm in operation on a 4-node array is shown in Fig. 8. 
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Fig. 3.8 Block diagram of the angle-decomposition algorithm in a 4-node 
configuration. Solid arrows indicate inter-processor communication and shaded 

boxes represent independent beamforming jobs. 

For the purposes of decomposing the two loops, four variables that indicate beginning and 
ending steering and output angles are calculated in an initial phase. These four variables serve 
much the same purpose as the arrays in the iteration-decomposition method, though for angle 
decomposition these values are a function only of the node number. The steering direction and 
the output angle on which a node is to begin computing are determined by that node's relative 
location from a virtual front-end node. The number of steering directions a node is to compute is 
based on dividing the total number of desired steering directions by the number of nodes. The 
number of output angles per node is also derived from the steering direction information. Fig. 3.9 
shows the pseudo-code for this approach. After a node is finished computing the results for its 
steering directions, it must communicate them to a specially designated node for final collection. 
This collection node can be fixed or, to provide fault tolerance, free-floating perhaps via round- 
robin scheduling. Although this algorithm involves a more complex communication mechanism 
best served with a broadcasting network, it does not require the additional overhead necessary to 
manage pipelining as does the iteration-decomposition method. 
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Calculate angle information based on the node number 

For t=l. Total iteration number 

Do FFT for their own node data; 

Communicate with other nodes; 

For k=my_start_steering_angle, my_end_steering_angle 

Steering(k); 

Sub-array summation (k) ,- 

Cross-correlation and SCOT(k); 

End 

For i=my_start_output_angle, my_end_output_angle 

Inverse Fourier transform and interpolation(i); 

End 

Collect result from other nodes; 

End 

Fig. 3.9 Pseudo-code for the angle-decomposition algorithm. 

3.5. Performance Analysis of Split-Aperture Beamformers 

In order to understand the strengths and weaknesses of the two parallel algorithms, their 
performance characteristics were measured on a physical multicomputer testbed. The results of 
these experiments are presented in this section. The testbed used consists of a cluster of 
SPARCstation-20 workstations connected by a 155-Mbps (OC-3c) Asynchronous Transfer Mode 
(ATM) network. 

The algorithms were implemented via message-passing parallel programs written in C-MPI 
(Message-Passing Interface) [15]. MPI is a library of functions and macros for message-passing 
communication and synchronization that can be used in C/C++ and FORTRAN programs. In the 
program code, we call a time-check function at the beginning of a stage and save the return value. 
After each stage we call the function again, and subtract the earlier return value from the new 
return value. The difference is the execution time of the stage. In order to obtain reasonable and 
reliable results, all parallel and sequential experiments were performed 500 times and execution 
times were averaged. 

The first experiment involves the execution of the sequential SA-CBF algorithm on a single 
workstation, where the number of sensors is varied to study the effects of problem size. The 
results are shown in Fig. 3.10. Execution times of the FFT, steering, and sub-array summation 
stages increase linearly with an increase in sensors. The number of sensors determines the 
number of data stream vectors in Fig. 3.1a; therefore, the processing load of these stages is 
greater with increased numbers of sensors. Conversely, the number of data stream vectors 
remains constant after the sub-array summation stage. No matter how many data stream vectors 
enter the sub-array summation stage, the number of output data stream vectors is always two. 
Furthermore, after interpolation, only one data stream vector is left. Thus, the execution times of 
Xcorr/SCOT and IFT/Interpolation stages remain fixed as the number of sensors is increased. 
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Fig. 3.10 Average execution time per iteration as a function of array size for the 
sequential SA-CBF algorithm with 500 iterations on the SPARC20/ATM cluster. 

For each of the two parallel algorithms, Fig. 3.11 shows average execution times for three 
system sizes: 4, 6, and 8 nodes. For iteration decomposition, the execution time shown represents 
the effective execution time and not the result latency. As was previously shown for a 4-node 
configuration, the results for a given beamforming cycle are output after four pipeline stages. In 
fact, as is typical of all pipelines due to the overhead incurred, this result latency is longer than 
the total execution time of the sequential algorithm. Instead, the figure plots the effective 
execution time, which represents the amount of time between outputs from successive iterations 
once the pipeline has filled. In the angle-decomposition case, we can measure the execution time 
directly because there is no overlap of beamforming jobs. 
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Fig. 3.11 Average execution time per iteration as a function of array size for the 
parallel SA-CBF algorithms with 500 iterations on the SPARC20/ATM cluster 
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As seen in Fig. 3.11, the execution times of the FFT, steering, and sub-array summation 
stages do not change significantly as the number of nodes increases. As mentioned earlier, the 
distributed sonar architecture uses smart nodes at each input sensor; therefore, the number of data 
stream vectors is identical to the number of processors. The additional workload caused by 
increasing the number of nodes is evenly distributed across the processors. Therefore, the 
number of nodes does not influence the execution time of these stages. However, the execution 
times for the Xcorr/SCOT and IFT/Interpolation stages decrease as the number of nodes and 
processors increase. In these stages, each processor does less work as the number of nodes 
increases because the workload from a fixed number of data stream vectors is divided among the 
processors. In spite of a growing problem size, the overall computation times (i.e. execution time 
minus communication time) of both decomposition algorithms decline as the number of nodes 
increases. 

In this experiment, communication time is defined as the time spent in communication 
function calls such as MPI_Send and MPI_Recv. The communication pattern can be shown with 
the graphical profiling program Upshot [16]. A sample Upshot output is shown in Fig. 3.12, 
which displays a portion of the profiling log collected from both parallel algorithms running on 
four nodes in the testbed. In this figure, communication blocks are represented by rectangles 
defined in the legend, and computation blocks are represented by the horizontal lines between 
successive communication blocks. Iteration decomposition uses a fairly simple communication 
pattern but angle decomposition communicates an all-to-all message at the initial phase of each 
beamforming job. Communication time of iteration decomposition and collection time of angle 
decomposition have little contribution to total execution time. However, with angle 
decomposition, the size of the first data communication of each iteration increases rapidly with 
the number of nodes. With this increase in communication comes an increase in the MPI 
overhead, an increase in network contention, and poorer performance, which eventually comes to 
dominate the total execution time. Clearly, the relatively small amount of communication in 
iteration decomposition is an advantage for that algorithm. Fig. 3.11 indicates that total execution 
time of iteration decomposition decreases and total execution time of angle decomposition 
increases with an increasing number of nodes. 

Fig. 3.12 Upshot profiles for both of the parallel SA-CBF algorithms with 4 nodes. 
The upper snapshot shows a profile from the iteration decomposition, while the 

lower snapshot shows a profile from the angle decomposition. 
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Fig. 3.13a shows the scaled speedup of the two decomposition methods over the testbed 
cluster of SPARCstation-20 workstations. The baseline for comparison is the sequential SA-CBF 
algorithm running on one workstation of the same testbed. Since the algorithms incur additional 
workload as sensors are added, the plots show scaled speedup. Fig. 3.13b displays scaled 
efficiency which is defined as scaled speedup divided by the number of processors used. 
Together these figures show the pronounced effect of the communication overhead in the angle- 
decomposition method, whereas iteration decomposition exhibits near-linear scaling. 
Improvement of the performance of angle decomposition may be achieved by employing more 
complex network architectures, such as broadcast-efficient networks, and by implementing more 
robust communication pipelining. Unfortunately, these methods may by impractical to 
implement on a distributed sonar array topology with limited communication capabilities. 

ill 
(a) (b) 

Fig. 3.13 Scaled speedup (a) and scaled efficiency (b) as a function of the number of 
processors for the iteration-decomposition and angle-decomposition algorithms. 

In Section 3.3, we chose the minimum-calculation model as the baseline for this 
investigation. In this model, the majority of the memory requirement arises from the steering 
stage, as shown in Fig. 3.4. Iteration decomposition requires the full amount of steering-vector 
and steered-signal storage because each processor implements a whole beamforming task for an 
incoming data set. By contrast, angle decomposition needs only part of the memory space for 
steering since individual processors generate only part of the beamforming result for a given data 
set. For both the sequential algorithm and iteration decomposition, the demands for memory 
space for the steering stage grow linearly when the number of nodes is increased, as shown in 
Fig. 3.14. However, little change is observed for angle decomposition. These results illustrate 
the significant trade-off of execution time versus memory requirements. Despite the fact that 
iteration decomposition shows considerably better performance than angle decomposition, angle 
decomposition may be preferred when memory requirements are stringent. 
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Sequential and Iteration decomposition Angle decomposition 

Fig. 3.14 Memory requirement of the steering stage as a function of the number of 
processors for both parallel algorithms. The memory requirements for the 
sequential algorithm are comparable to those of iteration decomposition. 

3.6. Conclusions 

The iteration-decomposition algorithm distributes its job in time space with overlap between 
processors, and the angle-decomposition algorithm parallelizes its job in processor space. The 
iteration-decomposition algorithm for SA-CBF shows more than 80 percent scaled efficiency. 
However, as the number of nodes is increased, the performance of the angle-decomposition 
method begins to worsen due to inefficiency in the communication stages. In fact, the 
communication time is the most significant difference between the two parallel algorithms, 
whereas little difference is observed in computation times. Of the two algorithms, iteration 
decomposition would be the better choice in architectures with enough memory for each 
processor to accommodate the large memory requirements. Furthermore, due to the limited 
amount of communication in iteration decomposition, it would also be well suited for 
architectures with a low-performance network. By contrast, for a system with a higher- 
performance network but restricted on memory capacity, angle decomposition may be the better 
choice. Because angle decomposition uses an all-to-all communication in each iteration, an 
architecture using an efficient broadcast network would also improve its performance relative to 
iteration decomposition. 

The parallel beamforming techniques described in this paper present many opportunities for 
increased performance, reliability, and flexibility in a distributed parallel sonar array. These 
parallel methods provide considerable speedup with multiple nodes, thus enabling previously 
impractical algorithms to be implemented in real time. Furthermore, the fault tolerance of the 
sonar architecture can be increased by taking advantage of the distributed nature of these parallel 
algorithms and avoiding single points of failure. Future work will involve parallelizing more 
intricate computations, including the advanced matrix manipulations needed for adaptive 
beamforming algorithms and matched-field processing. With the additional complexities of these 
algorithms over conventional algorithms, parallel and distributed systems and software such as 
those described in this paper will be necessary to provide sufficient performance. The 
decompositions examined here not only provide important parallelization of the split-aperture 
algorithm, but also can serve as the foundation for these more complicated sonar signal 
processing algorithms. 
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4. AN INTEGRATED SIMULATION ENVIRONMENT FOR PARALLEL AND 
DISTRIBUTED SYSTEM PROTOTYPING 

The process of designing parallel and distributed computer systems requires predicting 
performance in response to given workloads. The scope and interaction of applications, operating 
systems, communication networks, processors, and other hardware and software lead to 
substantial system complexity. Development of virtual prototypes in lieu of physical prototypes 
can result in tremendous savings, especially when created in concert with a powerful model 
development tool. When high-fidelity models of parallel architecture are coupled with workloads 
generated from real parallel application code in an execution-driven simulation, the result is a 
potent design and analysis tool for parallel hardware and software alike. This chapter introduces 
the concepts, mechanisms, and results of an Integrated Simulation Environment (ISE) that makes 
possible the rapid virtual prototyping and profiling of legacy and prototype parallel processing 
algorithms, architectures, and systems using a networked cluster of workstations. Performance 
results of virtual prototypes in ISE are shown to faithfully represent those of an equivalent 
hardware configuration, and the benefits of ISE for predicted performance comparisons are 
illustrated by a case study. 

4.1. Introduction 

Parallel and distributed systems have become a mainstay in the field of high-performance 
computing as the trend has shifted from using a few, very powerful processors to using many 
microprocessors interconnected by high-speed networks to execute increasingly demanding 
applications. Because there are now more processors, greater care must be taken to ensure that 
processors are executing code efficiently, accurately, and reliably with a minimum of overhead. 
This overhead appears in the form of additional coordination hardware and software that make 
the job of designing and evaluating new parallel systems a formidable one. 

Designing high-performance parallel and distributed systems involves challenges that have 
increased in magnitude from traditional sequential computer design. On the hardware side, it is 
difficult to construct a machine that will run a particular parallel application efficiently without 
being an expert with that code. On the software side, it is challenging to map and tune a parallel 
program to run well on such a sophisticated machine. Because of the complexities involved, 
designers from both development viewpoints have had a growing need for design environments 
to address these challenges [29]. To address these difficulties, we have developed the Integrated 
Simulation Environment (ISE) wherein parallel and distributed architectures are simulated using 
a combination of high-fidelity models and existing hardware-in-the-loop (HWIL) to execute real 
parallel programs on virtual prototypes. ISE allows the designer to run these execution-driven 
simulations over networked workstations; thus, the workload can be distributed when multiple 
parameter sets are applied to the models. The current implementation of ISE interfaces network 
models created in the Block-Oriented Network Simulator (BONeS) with parallel programs 
written in the popular Message-Passing Interface (MPI) coordination language for C or C++. 

The remainder of the paper is structured as follows. In the next section, an overview of 
related work is presented. In Section 4.3, an introduction to the components of ISE and how they 
work together is given. In Section 4.4, the methods with which ISE achieves containment of 
simulation explosion are described. Section 4.5 includes a discussion of validation experiments 
followed by an actual case study conducted with ISE, and the results are provided in Section 4.6. 
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Finally, conclusions about the uses and contribution of ISE to parallel and distributed computing 
development as well as future directions for ISE are discussed in Section 4.7. 

4.2. Related Work 

The ability to run real user software on simulated hardware has long been a desire for 
researchers and designers in the field of computing. Only in recent years have methods to 
achieve this goal emerged. By running sequential program code on VHDL representations of 
processors, the co-simulation movement (also called co-design or co-verification) took the lead in 
attempts to combine application software and simulated hardware. Contemporary to the co- 
simulation work, methods were developed to run applications on physical prototypes using 
reconfigurable FPGA hardware. In recent years, a new emphasis has emerged for parallel 
systems and their simulation. Several research institutions have created methods for running 
parallel or multithreaded programs over simulated shared-memory multiprocessors. Even fewer 
have attacked the difficulties of simulating message-passing programs over multicomputer 
systems, a deficiency addressed by ISE. 

Co-simulation is the process by which real application code, written in a high-level 
programming language such as C, is fed to a processor model, written in a low-level hardware 
description language such as VHDL or Verilog [1]. The VHDL or Verflog simulator is in charge 
of measuring the simulated performance of the application on the hardware, thus aiding the 
hardware designer in debugging and verification of design. A subsystem connected to the 
simulator is in charge of executing the code and creating real data results, thus aiding the software 
designer. To integrate the two sides of co-simulation, Liem, et al. inject application code by 
including calls to that code from inside the VHDL simulation [27]. Other methods, such as those 
from Becker, et al. [4] and Soininen, et al. [37], create a completely separate process for the 
application code, which communicates its simulative needs to the VHDL or Verilog simulator via 
well-defined messages passed using UMX inter-process communication. In order to make the 
simulation environments easier to use, such simulators have been extended to automatically 
generate the code needed for the interaction between the application software and the processor 
simulation. These systems, which include the environments from Kim, et al. [25] and 
Valderrama, et al. [38], allow the user to input unmodified code without the need to insert special 
simulator-communication calls. The co-simulation technique has proven itself so useful that 
numerous companies, such as ViewLOGIC [39] and Cadence, include co-simulation mechanisms 
in their commercial products. In addition, the Open Model Forum is working to standardize and 
promote a generic interface between various simulators and their models, called the Open Model 
Interface (OMI) [22]. As proposed by Dunlop and McKinley [15], the first applications of this 
interface will focus on OMI-compliant VHDL or Verilog models and OMI-compliant C 
applications in order to plug and play user applications into hardware models. 

Recognizing the need to simulate ever larger hardware designs while keeping simulation time 
down, a considerable amount of work has been spent in interfacing application software to 
physical rapid-prototyping systems, such as FPGA breadboards or single-board computers. Many 
of the same interfacing principles as co-simulation are used with the new goal of interfacing to 
FPGA hardware rather than interfacing to simulation models. Using physical hardware in 
conjunction with a simulation environment is referred to as Hardware-in-the-Loop (HWIL) 
simulation. Cosic's Workstation for Integrated System Design and Development [10] and the 
Borgatti, et al. hardware/software emulator [7] have this capability. Furthermore, some 
simulation systems, such as those from Bishop and Loucks [6], Kim, et al. [25], and Le, et al. 
[26], allow portions of the application to run on reconfigurable hardware while at the same time 
allowing other portions to run on a VHDL or Verilog simulator.  Such systems can provide the 
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board or chip designer with considerable testing and verification capabilities during the design 
process. 

All of these environment tools strive to integrate software with microchip or circuit board 
simulation and emulation. However, more recent attention has been paid to simulation of full- 
fledged parallel computer systems with parallel application software. The challenges associated 
with managing all the components of such a large simulation are numerous. For example, each 
parallel application is comprised of multiple autonomous processes, and each must be correctly 
synchronized with the simulation and must be able to communicate real data through the 
simulation and to the other processes. Though not a parallel system simulator, the end-to-end 
system from Huynh and Titrud [21] provides useful insight into methods used to interface several 
distributed processes into a single simulation. 

The first forays into parallel and distributed system simulation with real applications involved 
the simulation of shared-memory multiprocessors. Dahlgren presents a taxonomy of methods for 
injecting traffic into network models [11]. Among the methods, real application-driven 
generators provide the best realism and fidelity. Dahlgren's simulator uses clock-driven 
processor models for each node and an event-driven interconnect between nodes. During 
execution, memory references in the processor to remote locations are trapped by the 
environment and used to set events in the network model. The network model can be oblivious to 
the actions of the processor model during the code blocks between these remote accesses. Other 
environments obtain the code-block times by augmenting the application assembly code with 
instruction-counting mechanisms. The number of instructions executed between external 
memory references is then multiplied by a clock cycle time. Such shared-memory multiprocessor 
simulation systems include the Wisconsin Wind Tunnel [33], Stanford Tango [12], MIT 
PROTEUS [8], and USC Trojan [32]. 

A small number of environments, ISE among them, have been targeted toward the execution 
of software applications over simulated message-passing multicomputers or networks of 
workstations. The additional complexity with such environments resides in the trapping of 
communication, which is no longer as simple as checking whether a memory reference falls 
outside of the local memory range. The Delaitre, et al. modeling environment [13] uses a 
graphical design tool to create message-passing programs which can be converted to PVM code. 
Code blocks between message-passing calls are described by a fixed delay, which can be 
measured from separate timing experiments. Once the application is described in the 
environment, the simulator executes it over a modeled network, making network calls at the 
specified times. The SPASM environment [36] extends this work by allowing the user to input C 
or C++ code instead of working through the graphical application design tool. The user's code is 
integrated with a network model written in CSIM [16] and makes calls to the network model via 
sending and receiving primitives. Code-block times are obtained from counting instructions 
using the same assembly-augmentation used by the shared-memory simulation environments. 
WORMulSim [30] adds an MPI-compliant interface to the network communication calls so that 
the user's code is portable between the simulator and real testbeds. The pSNOW environment 
[24] for simulation of Networks of Workstations (NOWs) [3] is much the same except the user's 
code makes its network calls with Active Messages. 

ISE represents a culmination of many of these methods for the realm of rapid virtual 
prototyping of parallel and distributed systems. In addition, ISE has advantages in convenience, 
fidelity, extensibility, and modularity above other environments. ISE allows the use of 
unmodified parallel application software written with MPI to be used in the simulation, whereas 
many other environments require the code to originate from their design environment or require 
manual additions to be made to the code for timing purposes. Most of the environments cited 
above that interface to message-passing applications use very simple network models based on 
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collections of links and switches or on queuing structures. Though complex models can be 
created in the environments that use CSIM, they are subject to severe design limitations. Due to 
the graphical and block-oriented paradigm used by BONeS, network modeling with ISE can be 
considerably easier than coding a network simulation from scratch in C using CSM. 
Furthermore, the network model and simulator are completely separate from the user application 
in ISE. No linkage must be made to integrate the two sides. Instead, the model is compiled, the 
application is compiled, and the two entities find each other at runtime. This approach yields 
unparalleled modularity and expandability, where network models and applications can be 
swapped in and out with ease. ISE goes even further with the timing of code blocks. Where 
other parallel systems simulators require augmentation of the assembly code in order to count 
instructions, processes in ISE measure their code-block times using real-world time on the host 
machine. This method has the advantage that system calls in the user application are included in 
the timing. In this way, ISE takes full advantage of the HWIL by measuring more realistic code- 
block times which include the time the parallel application spends in both user space and kernel 
space. Using this method, other delays can be included or excluded as desired, such as forced 
context switches by the operating system upon time-slice expiration or preemption by higher- 
priority users. Thus, the resulting performance from the virtual system simulation can reflect the 
performance of the application on shared multi-user systems in addition to dedicated embedded 
systems, again creating a more realistic result. Furthermore, the use of HWIL saves the designer 
the difficulty of creating a processor model or an FPGA prototype board, as required by many of 
the other simulation environments. These factors combine to make ISE a powerful, efficient 
simulation tool for rapid virtual prototyping using high-fidelity hardware models with real 
application software. 

4.3. ISE Framework 

ISE is comprised of several entities, each playing a specific role in the exchange of data and 
timing information required to assess the performance of a parallel system running parallel code. 
The structure of ISE depends to some degree on how the parallel and distributed system will be 
modeled. Given the configuration in which the processors will be real HWIL, rather than 
simulated processors, the structure of ISE is shown in Fig. 4.1. 
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Fig. 4.1 ISE structure with HWIL processors 

The process machine is responsible for HWIL execution of the program running in parallel 
on the various processors in the virtual prototype. The ISE runtime process manager creates a 
process share file where each process has a column that it uses to read and write information that 
is passed to and from the model share file during execution. Relay programs on the process 
machine and simulation machine keep the process and model share files consistent. Each process 
has a corresponding application programming interface (API) agent within the network model 
that translates between communication calls and simulated network packets. 

When a data block is sent from a transmitting process, the data, data size, and destination 
values are sent to the transmitting API that translates this information for use by the network 
model. The model dutifully carries the information to the specified destination where it is read by 
the receiving API, which translates it to the receiving process. For the purposes of relieving the 
network model of the need to propagate large data blocks, the data is stored in an intermediate 
location in ISE, and only the address of the data is passed through the network. The performance 
of the network is unaffected by the actual data values contained in the data block, but it is 
dependent on the frequency and size of data blocks, and the ISE represents these factors 
accurately. 

4.3.1. High-fidelity Models 

In ISE, the network, processor, and software components of the parallel system can be 
implemented as discrete-event, high-fidelity models of fine granularity that handle the data 
communications of the parallel application. The models are created using a commercial CAD 
modeling tool from Alta Group, a division of Cadence, called the Block-Oriented Network 
Simulator (BONeS) [2, 35] to minimize creation time and maximize model fidelity by using 
standard library components and simulation management.   An additional advantage of using a 
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structured tool to develop these various models is that the design and measurement techniques of 
each model remain consistent. Such consistency is important in order to keep the models 
modular and interoperable, and to allow valid comparisons to be made between models. 

The BONeS Designer package consists of editors, libraries, and management functions 
intended to support the development of event-driven network and processor models. The term 
event-driven refers to simulations that sequentially execute through a dynamic list of events. 
Simulated time stands still until all events for that time have been completed, at which point 
events scheduled for the next point in time are started. A diagram of the structure of the BONeS 
development environment is shown in Fig. 4.2. The Data Structure Editor (DSE) is used for the 
creation and modification of data structures (e.g. packet formats). The organization and 
connection of hierarchical process blocks (i.e. the model itself) is accomplished with the Block 
Diagram Editor (BDE). The Primitive Editor is used to create blocks for use in the BDE from 
scratch using C++ code. The Simulation Manager controls execution of the model, and any data 
that was collected during the simulation is viewed with output graphs generated by the Post 
Processor. The core library contains many elements that are common to network model creation, 
and consequently, it reduces development and debugging time. 
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Fig. 4.2 BONeS modeling and simulation components 

A typical network model in BONeS is created directly from a description of the message 
formats, queue structures, mechanisms, and overall protocol operation. In the case of modeling 
well-known networks and other interconnects, this description may come straight from the 
specification standard. Often, the message formats are translated directly into the DSE with a few 
added fields, such as a time stamp or sequence number, that are used solely for data collection 
purposes and do not affect the behavior of the protocol being modeled. The queue structures and 
mechanisms of the protocol are modeled using pre-existing blocks from BONeS libraries, user- 
defined blocks written with C++ code (with the Primitive Editor shown in Fig. 4.2), or a 
hierarchical combination of both types of blocks. The transmission speed and propagation delays 
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are accounted for by using delay mechanisms along the network data paths, which causes the 
simulation clock to increase by an amount determined by the bandwidth and length of the 
transmission medium. Sample packet types and an internal network node structure are shown 
below in Fig. 4.3 and 4.4, respectively. The network chosen for this sample is the Scalable 
Coherent Interface (SCI) which is explained in more detail in a later example. 
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Fig. 4.3 Sample packet types in BONeS 
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Fig. 4.4 Sample network node structure in BONeS 

In a traditional network simulation study, the individual network nodes are constructed from 
the specification, and then multiple nodes are connected together into a scenario with an 
appropriate topology. The number of nodes is fixed in a given scenario, so multiple scenarios 
must be created to study the behavior of different network sizes. To drive the models with 
statistical distribution, synthetic parametric traffic generators are connected to each node. These 
conventional traffic generators, in conjunction with statistics probes, are typically used to 
measure average throughput, latency, and other performance characteristics that may be checked 
with mathematical analysis to validate the overall protocol operation.   An illustration of this 
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methodology is given in Fig. 4.5 below. By contrast, in ISE the traffic generators are replaced by 
API agents that generate and receive real network traffic based on the demands of the external 
processes. 

Network 
node 

Network 
node 

Network 
node 

Network 
node 

Fig. 4.5 Typical 4-node network simulation scenario with traffic generators 

To be compliant with ISE, a network model must support two vital operations. First, since 
the network is performing real data communication, a field in the data structure must be defined 
that contains a pointer to the data block location in external memory. Second, the size of the data 
block must be used properly by the mechanisms that simulate link and propagation delay. 

The current implementation of ISE has been used over BONeS network models with the 
configuration shown previously in Fig. 4.1. However, BONeS communication software models 
can also be included in the ISE's virtual prototype by simply inserting them between the ISE 
communication APIs and the nodes of the network model. For example, a model such as that 
written by Chen, et al. [9] might be used to inject highly accurate TCP or UDP overhead to the 
simulation. 

The addition of a processor model to execute code instead of using the HWIL capabilities 
would require a modification to the configuration in Fig. 4.1. The ISE structure would change to 
eliminate the process machine, and the runtime process manager would spawn processes directly 
to the processor models. This modification would simplify the current ISE runtime manager 
duties but would require the addition of an equivalent operating system, compiler, linker, and 
assembler and would significantly increase the complexity of the simulation model. Currently, 
the ISE uses only HWIL processors to execute parallel code segments rather than processor 
models that mimic the behavior and performance. Given the increasing standardization and use 
of RISC processor architectures in the field, from workstations to supercomputers, the processors 
in an ISE virtual prototype can in many cases be realistically simulated by the execution of the 
processor in the simulation platform itself. By using a HWIL approach in this fashion, the 
disadvantages of long simulation times and the difficulties of model creation for each kind of 
processor can be avoided. To accommodate the inclusion of the widest range of possible 
processors, ISE allows the designer to automatically scale up or down the execution times 
measured on these HWIL processors to match the requirements of the processors in the virtual 
prototype. The limit to this scaling philosophy occurs when the architecture of the processor in 
the target system (e.g. a digital signal processor) is largely different from the RISC processors 
used in the host workstations. In this case, there has been previous evidence that processor 
architectures implemented as software models can accurately relate the performance of actual 
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machine language code [17, 18].  The time and effort needed to create such models should be 
weighed in advance against the expected effect on the final simulation results. 

4.3.2. High-level Parallel API 

In order to use a high-level parallel coordination language, the application programmer must 
be provided with a standard library of "black-box" function calls to support the message-passing 
communication. The behavior of these function calls is defined by a parallel language 
specification, the exact implementation of which depends upon the underlying network structure. 
In a conventional parallel API implementation, function procedures are ported to the specific 
underlying communication network with appropriate optimizations to exploit architectural 
features. In ISE, the same idea has been used to create an API library for the MPI parallel 
coordination language [28]; the only significant difference here is that the underlying 
communications network exists solely within the high-fidelity network models described 
previously. ISE's API is built into BONeS blocks and is interfaced with the network model by 
simple connection paths between corresponding ports on the modules. In addition to defining 
how the MPI function calls are handled, the API interfaces BONeS to the external environment 
by creating, reading from, and writing to the share files shown in Fig. 4.1. 

MPI_Init Setup the MPI system and strip MPI-specific command-line 
options. 

MPI_Comm_rank Retrieve the rank number for the process. 

MP I_Comm_s i z e Retrieve the number of nodes in the MPI system. 

MPI_Send Send data to another node; returns when the data is accepted 
by the network. 

MPI_Recv Blocking receive for data from another node. 

MPI_Finalize End the process's participation in the MPI system. 

MPI_Probe Blocking probe on reception of data from another node. 

MPI_Iprobe Non-blocking check on reception of data from another node. 

MPI_Bcast Send broadcast data to all nodes or receive broadcast data. 

MPI_Barrier Block until all other nodes have arrived at a barrier. 

MPI_Wtime Retrieve the current time. 

MPI_Reduce Participate in a vector reduction operation, such as element- 
by-element minimum, maximum, sum, product, etc. 

Table 4.1 MPI function calls currently supported by ISE 

The initial implementation of the ISE interface to MPI is compliant with a subset of the MPI 
standard. ISE currently supports the key function calls that are necessary to perform the most 
common communications over MPI. A list of the function calls supported along with their 
descriptions is provided in Table 4.1. These functions serve to make ISE a versatile tool by 
allowing almost any unmodified message-passing parallel program to be interfaced to the virtual 
prototype. 
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4.3.3. Putting It All Together 

ISE provides several mechanisms by which the hardware models and software applications 
discussed above are integrated into a single powerful simulation environment. The software-in- 
the-loop (SWIL) methodology in which the real software is used during simulation provides 
considerable insight into the intricacies of system development. The hardware-in-the-loop 
(HWIL) mechanisms used in ISE add realism to the processor portion of the simulations and 
decrease simulation time. Finally, a profiling interface to ISE simulations gives designers easy 
access to a graphical performance-monitoring tool. 

The concept behind SWIL is the ability to use real application software in the simulation. 
Using such a mechanism results in considerable portability advantages, which was in fact one of 
the original goals of the MPI coordination language. To use an MPI application over ISE, the 
user takes the same code that compiles and runs on real parallel and distributed systems with any 
commercial or freeware MPI implementation. The only difference is that the code is linked with 
ISE's version of the MPI library instead of the library for the real parallel system. Movement 
from simulation to real implementation, or vice versa, can be made without apprehension about 
modifying the functionality of the software during the move. 

The HWIL concept is just as integral to ISE as SWIL. Using the processor in the host 
workstation to execute the user's application and timing the code blocks with real-world time, 
ISE is able to include many of the complexities of modern workstations into the simulation as 
desired. For instance, by timing code blocks using real-world time, ISE results will include the 
performance effects of system calls and standard library calls from the user's application. 
Furthermore, by optionally using a host workstation that is executing one or more competing 
jobs, the measured code-block times will include the time the SWEL application spends waiting 
while sharing the processor with the other applications of lesser, equal, or greater priority. Thus, 
ISE results can reflect the performance of that parallel application in a multi-user environment 
with deterministic or random activities in competition for system resources. 

In order to analyze the performance of the virtual prototypes created with ISE, it is often 
helpful to view all the events in the parallel system using a graphical profiling tool. All 
simulation runs with ISE automatically capture the necessary timing information to create a log 
for use with the freely available Upshot profiling program [19]. The sample profile in Fig. 4.6 
shows the computation and communication times for a manager/worker parallel decomposition of 
a matrix multiplication. Each horizontal row of the output corresponds to one processor in the 
parallel system, and time progresses from left to right. The thin sections of each row represent 
the computational code blocks executed by the HWIL of ISE. The thick bars are communication 
calls handled by the network model, with arrows indicating sender-receiver pairs and the legend 
indicating which particular MPI call (e.g. Send, Recv, Beast) is occurring. When event durations 
are too small to view adequately, such as the Send blocks in Fig. 4.6, Upshot is able to zoom in so 
that the designer can examine portions of the execution more closely. Using this profiling 
interface, the numerous design choices possible with ISE become more easily quantified and 
evaluated. 
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Fig. 4.6 A sample of the parallel profiling output in ISE via Upshot 

With these mechanisms available to the designer, rapid virtual prototyping of complex 
parallel and distributed systems becomes possible. Due to the SWIL and HWJL capabilities, the 
application software created during this process is immediately available for real parallel and 
distributed systems without the need for any modifications. The interface to BONeS provides the 
designer with the ability to create high-fidelity network models, the interface to MPI provides 
access to the most popular message-passing coordination language in use today, and ISE itself 
provides the glue to make integrated simulation more flexible and realistic than was previously 
possible. 

4.4. Containment of Simulation Explosion 

The use of high-fidelity models in the simulative process may become unwieldy due to the 
amount of time and computing power needed to complete such simulations. Particularly in the 
case of simulating large distributed systems comprised of detailed models of every component, 
the simulation time may become such a dominant factor that the user may complain that rapid 
virtual prototyping is not very rapid. Methods invoked by ISE in order to reduce the necessary 
computing power and reduce simulation time include distributed simulation techniques and the 
novel method offast forwarding. It is also worth mentioning that the use of HWIL processors for 
execution of the user's application, in addition to providing more realistic timing results, saves 
the simulation the burden of a processor model, again helping to contain simulation explosion. 

There is a whole field dedicated to optimization of simulating large, complex models in a 
parallel or distributed manner using warping, checkpoints, rollback-recovery, and the like. Many 
such methods are described in Fujimoto [20] and Righter, et al. [34]. These methods attack the 
model explosion problem at a fine level of granularity so that multiple CPUs work together to 
speed up a single simulation based on one set of parameters. However, if the parameters of the 
simulation are varied, as is often the case, then unique permutations are created that require 
independent simulations. Therefore, as proposed by Biles, et al. [5] and others, farming these 
similar yet independent simulations to many loosely coupled workstations in a coarse-grained 
parallel manner can yield the same speedup as fine-grained methods but with less coordination 
overhead and complexity. 
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The key to effective distribution of simulations is the use of varied parameters to create 
enough simulations to keep the workstations busy. Fig. 4.7 illustrates how a large simulation task 
consisting of several parameter sets may be partitioned at the fine-grained and coarse-grained 
levels. In this case, suppose that three instances of a network model with bandwidths of 10 Mb/s, 
100 Mb/s, and 1 Gb/s are to be studied. Further suppose that each instance requires 1 hour to 
simulate and that there are 3 workstations available to the simulation environment. With the fine- 
grained approach to simulation parallelism, the first simulation could be executed in parallel on 
all 3 workstations in 20 minutes. The second simulation would then be spawned, completing in 
20 minutes, followed by the third simulation. The result is that all 3 simulations are completed in 
1 hour. By contrast, the coarse-grained approach employed by ISE executes the 3 simulations 
concurrently on the 3 workstations (i.e. one simulation per machine), resulting in all 3 simulations 
again completing in 1 hour. Although this comparison has been simplified and disregards the 
effects of overhead and synchronization, these effects would likely lower the efficiency of the 
fine-grained approach more than that of the coarse-grained. 
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Fig. 4.7 Fine-grained parallelism vs. coarse-grained distribution of simulations 

ISE is designed to fully exploit BONeS's ability to spawn multiple concurrent iterations of a 
single simulation scenario. Each iteration corresponds to a single permutation of a parameter set 
that occurs when the effect of changing one or more variables is desired. The use of range 
variables in BONeS causes the simulation manager to spawn the iterations as batch jobs to the 
available networked workstations selected at simulation time. ISE supports multiple iterations by 
carefully matching the multiple process iterations on the process machine (see Fig. 4.1) with the 
corresponding iterations on the simulation machines. Further support is provided by the Upshot 
profiling interface. ISE creates profiling output for each node of each iteration and allows the 
user to not only view the results of nodes for a particular iteration, but also multiple sets of results 
for the same node from different iterations. This capability adds to the usefulness of ISE for 
comparative analysis of the virtual prototypes. 

The second method employed by ISE to control simulation explosion is fast forwarding. As 
is often the case, the specification for the network that is to be used as the network model in ISE 
may require idle packets or symbols to be continuously sent during periods of network inactivity. 
A high-fidelity model of such a network will faithfully create, communicate, and sink these idle 
symbols whenever the transmitting device has no packets to send. Such will be the case during 
all periods of sequential computation.   To simulate the communication of idle symbols during 
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these times may very well be unimportant to the fidelity of the simulation and would only add to 
simulation explosion. At the user's request, ISE can fast forward through periods of network 
inactivity, thus saving considerable simulation time. Without fast forwarding, several seconds of 
network idle time would require several hours or days to simulate; however, with fast forwarding 
it will take only seconds. Thus, during these periods, simulation time is on the order of the 
simulated execution time of the virtual prototype. 

The two methods of coarse-grained distributed simulation and fast forwarding add significant 
convenience for the designer, which is often a deciding factor in whether a tool is deemed useful 
or not. In fact, both these methods were extremely helpful in speeding up the process of 
collecting results for the comparative case study shown in the next section, which involves the 
simulation of 32 design permutations on the virtual prototype for a parallel and distributed 
system. 

4.5. Validation and Case Study 

As with any new simulation environment, a demonstration of the validity and usefulness of 
ISE is needed. In this section, a validation of ISE is introduced using SCI experiments. Two 
validation experiments are described, a network latency experiment for validating communication 
delays and a parallel computing experiment for validating both communication and computation. 
The goal for both validation tests is to compare the performance results from ISE to those from a 
real testbed. Also included in this section is the description of a comparative case study in which 
two parallel signal-processing algorithms are simulated over distributed architectures with 
varying network and processor speeds. The results of these experiments are presented in Section 
4.6. 

4.5.1. Description of Validation Experiments 

Since the primary goal of ISE is to serve as a tool for predicting parallel and distributed 
system performance, it is desirable to have the results of a simulation closely match that of the 
real system. In order to validate the models used in ISE, the results of programs run on the real 
system can be compared to the ISE-simulated system and delay parameters can be set 
accordingly. The modeled system presented here is based on an SCI network connecting RISC 
workstations. 

IEEE Standard 1596-1992 Scalable Coherent Interface [23] is based on a structure of scalable 
register-insertion rings with shared-memory split transactions. The SCI standard specifies a data 
rate of 8 Gb/s per link with current implementations from Dolphin Interconnect Solutions, the 
leading SCI vendor, supporting 1.6 Gb/s. A node diagram in Fig. 4.8 below illustrates the 
internal node structure of SCI. A request or response packet entering the node on the input link is 
relayed by the address decoder to the request or response input FIFO, respectively, if the packet's 
destination address matches the address of the node. If it does not match, the packet is relayed 
through the bypass FIFO to return to the network via the output link. Similarly, requests and 
responses made by the host are queued and then multiplexed onto the output link along with the 
output of the bypass FIFO. The SCI specification has been implemented in the design of the SCI 
cards from Dolphin [14], and in the SCI node model we have constructed in BONeS, verified, 
and integrated into ISE. 
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Fig. 4.8 SCI node model 

The two validation experiments are designed to measure the two major types of delays that 
are incurred within a parallel and distributed system: communication and computation. A high- 
fidelity model of a network protocol and communications stack is used to simulate and determine 
the communication time, and the execution of code blocks over a real or simulated processor 
constitutes the computation time. To validate the communication and computation time reported 
by ISE, these experiments are run over the SCI cluster, a parallel and distributed computing 
testbed. This testbed consists of 200-MHz UltraSPARC-2 workstations running Solaris 2.5.1 and 
interconnected by 1.6 Gb/s SCI. The network interface cards are SCI/Sbus-2B devices from 
Dolphin, and the MPI implementation used by the programs is MPISCI [31]. Fig. 4.9 illustrates 
how SCI in the real and ISE-simulated system configurations compare. 
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The first validation experiment, Acknowledged Send, uses MPI calls to send simple, 
acknowledged packet transfers between computers across the network. This test is used to 
measure the application-to-application communication latency through the communication 
software stack and the network itself. The second validation experiment is a Matrix Multiply 
parallel program written in MPI that produces both communication and computation delays. The 
manager node in this program distributes parts of two matrices to be multiplied by the worker 
nodes. The intermediate results from each node are collected by the manager after the 
calculations. 

4.5.2. Description of Case Study 

There are many situations in which it is desirable to first validate a parallel system model by 
ramping down the size or speed of the components to match a testbed in the laboratory. Once the 
accuracy of the models has been validated and optimized to meet the needs of the design, the 
virtual prototype can then be ramped back up to the sizes and speeds required of the new system. 
For example, we may validate the virtual prototype for a candidate parallel system with SCI 
operating at 1.6 Gb/s using existing hardware. Once the validation is complete, the virtual 
prototype can then be modified to operate with an 8.0 Gb/s SCI data rate with a high degree of 
confidence in the results. In this fashion, we can use small testbed prototypes to garner more 
accuracy for the models, and then move forward with network data rates, processor speeds, 
degrees of parallelism, and other enhancements that are not easily attained in a testbed prototype 
due to limitations in technology, cost, component availability, etc. In effect, we leverage the best 
features of the experimental world with the best of the simulative world. 

Of course, whether we validate with a small testbed prototype or not, the eventual goal is to 
design, develop, and evaluate a new parallel and distributed computing system. In so doing, we 
may wish to hold the architecture fixed, vary the algorithms, and study the effects. In other cases, 
we may wish to hold the algorithms fixed, vary the architectural features, and study these effects. 
Or, in still other cases, our intent may be to study a wide array of permutations in both algorithm 
and architecture. To illustrate the latter, a case study is presented in which two parallel 
algorithms for sonar signal processing are compared while changing features of the distributed 
computer architecture model. This case study is intended to demonstrate that ISE is useful as an 
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interactive and iterative design environment for architectures which may not have as yet a real- 
world implementation. 

The case study involves the development of a virtual prototype for a special-purpose parallel 
and distributed system targeted for high-speed and low-power execution of sonar beamforming 
algorithms. The architecture of interest is a multicomputer comprised of eight independent 
processors interconnected by a bidirectional, linear array network and communicating via 
message passing. The link speed between the nodes is varied between 2.5 Mb/s and 10 Mb/s, and 
the processor speed on each network node is varied between 25% and 100% of the performance 
of an UltraSPARC microprocessor. Two parallel algorithms coded and implemented in MPI, 
called Beamformerl and Beamformer2, are compared to evaluate their relative performance and 
sensitivity to network and processor speed. The two programs differ in that Beamformerl 
focuses on parallel beamforming whereas Beamformerl goes one step further by adding overlap 
of computation and communication wherever possible. As such, the processor and network 
speeds will affect the two programs in different ways, making ISE the ideal environment to 
prototype the system and evaluate the design alternatives. 

4.6. Results 

The results of the networking and parallel processing experiments for validation purposes are 
provided in the following subsection. Afterwards, the case study on performance issues with 
embedded parallel architectures and algorithms for sonar signal processing using variation in 
algorithms and architectural features is presented. 

4.6.1. Results of Validation Experiments 

The results of the first set of validation tests, Acknowledged Send, over a 2-node SCI network 
connecting UltraSPARC workstations are shown in Fig. 4.10a. The data points of the two curves 
represent values collected from the same MPI program run over the actual testbed and the ISE- 
simulated virtual prototype. The values of parameters in the network and communication stack 
models have been calibrated, and this tuning coupled with the inherent accuracy of the high- 
fidelity model developed for SCI allows us to achieve performance curves that are nearly 
identical. 

Since the model was adjusted for two nodes, it can reasonably be expected that the results 
will be somewhat dissimilar for different network sizes. To preserve the validity of the 
simulations, all model parameters adjusted in the 2-node simulations were held constant for the 4- 
node simulations. The 4-node test results shown in Fig. 4.10b begin to deviate as the packet size 
increases. At 65536-integer packets, there is a maximum of 20% deviation between real and 
simulated Acknowledged Send times. 
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The results of the execution times from the second set of validation experiments are shown in 
Fig. 4.11. Fig. 4.11a presents the results of the 2-node parallel Matrix Multiply over both the 
testbed and the ISE-simulated virtual prototype, while Fig. 4.11b shows the results for a 4-node 
run. Simulation parameters for these experiments were unchanged from the validated parameters 
set for the Acknowledge Send tests. 
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Fig. 4.11b Testbed vs. ISE: Matrix Multiply completion time for 4-node SCI clusters 

As these results illustrate, ISE provides performance estimation that closely matches the 
performance of the SCI-connected UltraSPARC testbed, thus giving the user a high degree of 
confidence in the validity of the virtual prototype. However, when no validation testbed is 
available, ISE is still strong at allowing comparative tradeoffs to be made with respect to 
algorithm and architecture design parameters. 
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4.6.2. Results of Case Study 

The results from the comparative case study of the parallel beamformer algorithms over 
simulated architectures of varying network and processor speeds are presented next. The graph in 
Fig. 4.12a shows the behavior of the Beamformer 1 algorithm running over the virtual sonar 
system prototype. To vary the speed of the eight processors in the virtual prototype of the sonar 
computer system, variations in processor speed range from 25% to 100% of the performance of 
an UltraSPARC processor running at 170 MHz. Similarly, variations in network speed range 
from 2.5 to 10Mb/s. 

The results of Beamformer2, shown in Fig. 4.12b, provide the comparative information that 
makes this case sensitivity study most useful. At each point on the two contour graphs, a 
comparison of the overall execution time for each algorithm can be reliably made because the 
network model assumptions and processor behavior have been kept constant between algorithms. 
The only differences between the two figures are the algorithms themselves. The advantages of 
the overlapping communication in Beamformer2 are reflected in the fact that the performance is 
relatively insensitive to network speed in most cases, whereas in Beamformerl the slower 
network speeds have a marked effect on performance. With both algorithms the processor speed 
was found to contribute significantly to overall performance in a non-linear fashion. 

The sort of sensitivity and comparative analysis shown here is a major advantage when using 
ISE for rapid virtual prototyping of complex systems. Tradeoff analyses can be made to better 
understand the contributions of each potential bottleneck in the architecture or software. ISE 
supports an interactive and iterative process in which the designer can quickly make changes to 
address key performance issues. Such a methodology leads to more efficient and effective design 
solutions. In addition, virtual prototyping with ISE allows the designer to keep multiple 
candidates (e.g. the two versions of the beamformer above or two candidate networks) on hand 
for further evaluation at a moment's notice. 
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4.7. Conclusions 

This paper has given an overview of the structure, features, and intended uses of the 
Integrated Simulation Environment. This environment allows the user to execute real parallel 
programs running on virtual prototypes of parallel and distributed computing architectures and 
systems, by leveraging HWIL processors and high-fidelity models, so as to evaluate overall 
system performance. While high fidelity brings with it an increase in computational complexity 
for simulation, methods have been presented by which the problem of simulation explosion can 
be contained. Validation results for both networking and parallel processing behavior have 
illustrated how a virtual prototype in ISE can achieve virtually the same performance as the actual 
target system. The usefulness and flexibility of ISE for developing and comparing notional 
network architectures, with real parallel code instead of simple traffic generators, has also been 
demonstrated with a case study taken from a real-world application in sonar signal processing. 

ISE provides the designers of parallel and distributed architectures and algorithms a method 
to combine high-fidelity network models and real parallel code running over real processors for 
execution-driven simulation. Moreover, the models may be tuned with small-scale prototypes 
from the testbed and then ramped up to larger data rates, processor speeds, degrees of parallelism, 
etc. so that results from ISE can nearly emulate the behavior of the target system. ISE is equally 
useful in comparing notional architecture models with consistent assumptions and performance 
trends that mimic the expected behavior of the real systems. Models that have been created and 
validated in BONeS by hardware architects may be shared with software designers who can better 
analyze how their programs will perform on the architecture. Likewise, software can be provided 
to the hardware designers, who can tailor the architectures for optimum performance. 

Several future extensions to ISE are under development in order to make it an even more 
powerful approach for the design and analysis of parallel and distributed systems. For example, 
future work will strive to extend the capability of simulating fully heterogeneous systems 
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composed of different kinds of processors (e.g. RISC, VLIW, DSP), connected by a variety of 
networks in complex topologies, with an assortment of interfaces, memory hierarchies, etc. In 
addition, work will be pursued toward the goal of making the interface to processor models as 
seamless as is the current interface to the HWIL processors. With these enhancements, the 
usefulness of ISE will be expanded to cover a wider range of system designs, from scalable 
multicomputer systems with multiple network connections to tightly coupled, shared-memory 
multiprocessors. 
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5. PRELIMINARY DESIGN AND MEASUREMENTS WITH THE DISTRIBUTED 
PARALLEL SONAR ARRAY PROTOTYPE 

This chapter presents the prototype distributed and parallel array developed for this project, 
configured as eight or fewer nodes tied together via a time-division multiplexed bus. Also 
included is a description of the software communications implementation and experimental 
results of the split-aperture parallel beamformer executing on the prototype. 

5.1. The TMS320C542 DSKplus Development Board 

The DSKplus is a development board readily available from TI which integrates a low-power 
TMS320C542, a Host Port Interface (HPI), Analog Inputs and Outputs operating through the 
TLC320AC01 CODEC, socketed crystal oscillator, and I/O expansion headers for external 
designs. In addition it is supported by a suite of software tools that are used to debug and run 
software on the DSKplus. Fig. 5.1 below shows a layout of the DSK board. 
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Fig. 5.1 The DSKplus Development Board 

The TMS320C542 is a low-power DSP architecture with 10KW (i.e. 20KB) of on-board 
memory (which may be mapped to program or data space), 2KW of onboard ROM, one on-chip 
timer, and a phase-locked-loop (PLL) clock generator (which may be used to multiply the off- 
chip oscillator), an asynchronous buffered serial port (BSP). The processor also incorporates a 
time-division multiplexed (TDM) serial bus (which may be configured for synchronous serial 
operation or for coordinating between multiple processors). 
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The DPSA Daughter Card designed and fabricated at the University of Florida for this 
project is an expansion board that sits atop the DSKplus card and offers four additional functions. 
First, a set of jumpers were added to control the TMS320's onchip PLL so that the clock could 
easily be divided or multiplied. Second, two 128KB SRAM blocks were added to expand the 
program and data memory. Each of the two Integrated Device's IDT71V016 devices is 
addressable in 64K 16-bit words. Third, a microphone preamplifier/antialiasing circuit and a 
Linear Technology LTC1605 16-bit sampling ADC was added to compensate for the AC01 
CODEC'S on the DSKplus (more discussion on this below). Last, a Xylinx FPGA was outfitted 
on the board to allow experimentation with alternate interconnection networks besides the TDM. 
In addition, the FPGA could include a custom Direct Memory Access (DMA) controller to write 
samples from the A/D straight into a circular buffer in memory. The DPSA daughter card is 
shown in Fig. 5.2, and the primary and daughter card coupled together in Fig. 5.3. 

Fig. 5.2 The DPSA Daughter Card 
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Fig. 5.3 A Complete DPSA Prototype Node 

5.2. Communications Implementation 

The Message Passing Interface (MPI) is a standardized set of communication primitives that 
may be used to build an application program interface (API) to coordinate parallel processes. All 
parallel beamforming algorithms were coded using MPI for the communication and coordination 
between intelligent array nodes. In order to ran these applications on the TMS320C542 
multicomputer prototype, an MPI implementation was created to interface to the TDM ports. The 
MPI implementation is designed to correctly transmit high-level MPI packets in the format 
needed for the TDM port. On the receiving end, the implementation includes the interrupt service 
routine to handle incoming raw data from the TDM and a receiving routine for the beamformer 
program to find and read the original high-level MPI data. 

The implementation for MPI_Send takes as input the data the beamformer wants to transmit, 
the destination node, a tag used later for matching purposes, and the length of the data. Using the 
TDM, each node in the array is allocated a time slot for transmission. Each slot holds a single 16- 
bit word. The MPI implementation transmits a word of the data at a time, prepended by the size 
and tag values, waiting for its slot time between words. 

On the receiving end, the implementation provides an interrupt service routine to handle data 
incoming form the TDM. When a word is received in any slot, the service routine interrupts the 
beamformer process. It determines the source of the data by noting the slot in which the data was 
received. The implementation also keeps a variable for maintaining the status of communication 
with each of the other nodes. This status will indicate to the interrupt service routine whether the 
word received from the TDM is the start of a new MPI packet or is a continuation of previous 
communication from that source node. If the received word is a new packet, the service routine 
will search for an empty location in the implementation's buffer space. Via the status variable for 
the source node, the implementation will indicate that all remaining words later received from 
that node within the same MPI packet are to be placed in the discovered buffer location. After 
completing this process for the received word, the service routine will return execution to the 
beamformer process. 

-64 



When the beamformer needs to retrieve data from remote nodes to its memory space, it calls 
the MPI_Recv function. This function will search the MPI implementation's buffer space for 
packets matching the beamformer's search criteria. If it finds a completed MPI packet which 
matches, the data is copied into the beamformer's memory space. If no such packet is found or if 
the packet has words that have not yet arrived, the function will stay in a loop until the receive 
can be completed. 

With respect to the detailed implementation of the interrupt service routine for receiving, 
three methods were studied. The first method organizes the implementation's buffer space into 
several records, each of which includes bits indicating whether the record is empty, contains an 
incomplete packet, or contains a complete packet. Such an organization simplified the MPI_Recv 
function but imposed demands onto the interrupt service routine. For example, the service 
routine needed to search the buffer space for free records. Doing so made execution of the 
service routine take longer than the period between successive words needing to be retrieved from 
the TDM bus. 

The second method, which is the method implemented thus far, simplifies the interrupt 
service routine by using circular buffers, as shown in Fig. 5.4. The implementation at a receiver 
will have a circular buffer for each possible source, an index to the beginning of the circular 
buffer, and an index to the end. When a word is received on the TDM from a particular source, 
the interrupt service routine will automatically place the data at the logical top of the circular 
buffer for that source node and increment the end pointer. Thus, the service routine saves time by 
not searching for free slots. When the beamformer wishes to receive an MPI packet, the 
MPIJRecv function will linearly search through the circular buffer for the desired source. It will 
determine the location, size, and matching criteria for each packet as it reads the circular buffer. 
When the function matches the first packet to the desired criteria, it will copy the data to the 
beamformer's memory space and change the logical beginning of the circular buffer to point past 
the packet. If the matching packet is in the interior of the circular buffer, that section of the 
buffer will remain empty after the data has been copied. Eventually, the beamformer will request 
the first packet in the buffer, and the beginning pointer will be incremented. The entire process 
consists of the interrupt service routine augmenting the logical top of the circular buffer with 
incoming data and the MPIJRecv function playing catch-up by copying messages out of the 
logical bottom of the circular buffer. 
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Fig. 5.4 Circular Buffer Structure at Each Node for TDM Communications 

A third method, in which all data from all mcoming nodes are placed into the same circular 
buffer, is left for future work. In this method, a second, more robust buffer would be 
implemented at a higher layer. Raw data from the unified circular buffer would be organized into 
the high-level buffer whenever convenient for the beamformer application. This method would 
further decrease the complexity of the interrupt service routine. As the current implementation 
stands, the interrupt service routine takes the majority of the available time between successive 
words arriving on the TDM. As such, there is no time for useful computations between receives, 
resulting in poor overlap between communication and computation at a receiving node. 

5.3. Performance Results 

In order to gauge the performance of the above described parallel and distributed array 
prototype, parallel beamforming applications were executed on it and timed. The algorithms 
selected were the coarse-grain and medium-grain split-aperture parallel beamformers, which were 
run on up to eight prototype nodes. In addition, the sequential split-aperture algorithm executing 
on a single TMS320C542 was used as the baseline for comparison. All algorithms used the 
minimum-memory model for split-aperture beamforming in order to alleviate the stringent 
memory requirements of the prototype. The nodes were clocked at 10MHz and each node was 
allocated one-eighth of the TDM slots for transmission, yielding an outgoing bit rate of 312.5 
kbps. Furthermore, each node can receive information at 312.5 kbps from each other node, 
yielding a maximum of just under 2.2 Mbps for the incoming bit rate for concurrent 
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communication with all seven other nodes. The development boards could have been run at up to 
40MHz, though little significant change would be seen in the relative speedup results since the 
TDM ports scale with processor speed. 

Fig. 5.5 shows the scaled speedup of the two versions of the parallel beamformer over the 
sequential baseline. By scaled speedup, we refer to the fact that the sequential baseline for a 4- 
node parallel algorithm is the sequential program operating on input data from 4 array nodes. 
Similarly, the 6-node parallel algorithms are compared to the sequential program for a system 
with 6 input data streams. Due to the memory requirements of the sequential program, the 
baseline for a system with 8 array nodes will not fit in the memory space of a single 
TMS320C542 development platform; therefore, the execution time used as the baseline for 8 
nodes is extrapolated from the 4-node and 6-node sequential execution times. 
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Fig. 5.5 Parallel Split-aperture Performance Results for the DPSA Prototype 

The results from the experiments with the coarse-grain algorithm are shown on the left of the 
figure. Because the algorithm implements a full iteration of the split-aperture beamformer at each 
node, pipelining them to achieve speedup, the memory requirements are as large as that of the 
sequential program. Thus, the 8-node coarse-grain split-aperture algorithm could not be run on 
the development prototype. In addition, since the MPI implementation requires significant 
memory space for its buffers, the 6-node configuration of this algorithm was also not capable of 
fitting in the limited memory space. Previous analytical work completed for this project has 
shown that one can expect constant parallel efficiency from the coarse-grain algorithm if 
implemented well. Therefore, the above figure includes the experimental speedup observed for 
the 4-node coarse-grain split-aperture algorithm. The 73-percent parallel efficiency of this 
configuration was used to extrapolate the 6-node and 8-node speedups also shown in the figure. 
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Despite the fact that the prototype uses a limited 16-bit fixed-point processor and a bus-based 
communications network, the coarse-grain algorithm shows speedup rivaling that previously 
accomplished on clusters of high-performance RISC workstations. 

On the right half of the figure, the results from the experiments with the medium-grain 
algorithm are shown. In each of these cases, the algorithm fit into the memory of the 
development boards. Indeed, one of the major advantages of the medium-grained algorithm is its 
efficient use of memory. The algorithm supplies speedups ranging from 2.5 to 3.5 on prototypes 
between 4 nodes and 8 nodes in size. Coinciding with expectations that the medium-grain 
algorithm is less efficient than the coarse-grain algorithm, the experimental parallel efficiencies 
for the medium-grain split-aperture beamformer fall below 50 percent for 8 nodes. 

5.4. Conclusions 

The DPSA prototype system is comprised of eight commercially available fixed-point digital 
signal processing development boards. The prototype is intended to illustrate the feasibility of 
distributing algorithm work across multiple array nodes for low-power, low-cost implementation 
of sonar beamforming. To extend the utility of the development boards, a daughter card was 
created for each node in the prototype for this project to provide increased memory and support 
future improvements in the interconnection network. Parallel processing experiments were 
conducted on the prototype using the split-aperture parallel algorithms developed for this project. 
The results proved to be encouraging for the possibility of using such a distributed parallel sonar 
array to provide speedup on the order of the expected speedup and the speedup previously 
achieved on high-performance networks of workstations. 

The completion of this prototype opens doors to new opportunities in prototyping of 
distributed parallel sonar arrays. First, with the use of the FPGA on the daughter card, an 
interconnection network more appropriate for a sonar array architecture may be implemented, 
yielding a better understanding of the performance of an autonomous array. Such a network 
could not only provide more realistic prototyping of a ring or bidirectional-array network, but 
could also provide improved performance for the parallel beamformers. Second, more advanced 
beamforming algorithms, such as adaptive methods and matched-field processing, are slated for 
future implementation on the prototype. 
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6. FUTURE RESEARCH 

As before, quiet submarine threats and high clutter in the littoral undersea environment 
demand that higher-gain acoustic sensors be deployed for undersea surveillance. The effect of 
this trend is high-element-count sonar arrays with increasing data rates and associated signal 
processing. These autonomous passive sonar array technologies face limitations which include 
low fault-tolerance due to single points of failure and computational complexity that cannot be 
supported in real-time by conventional means. Moreover, these limitations are especially evident 
with the continuing development of higher-fidelity acoustics algorithms such as adaptive and 
matched-field processing. These demands are further complicated by the limits on processor 
performance, memory capacity, etc. associated with low-power, autonomous sonar arrays. 

Therefore, future research directions in this area will focus on fault-tolerant distributed and 
parallel processing techniques to decrease cost and improve performance and reliability of large, 
autonomous, battery-powered, disposable sonar arrays for these more advanced forms of 
beamforming. Particular goals include the development of new algorithms and supportive 
architectures for parallel in-array processing of adaptive and match-field processing on low- 
power, autonomous sonar arrays forming embedded distributed systems. The three-year 
approach identified for this future research program accentuates hardware-software interaction, 
architecture-algorithm mapping, CAD-based rapid virtual prototyping via high-fidelity network, 
architecture and interface modeling, and prototype development using an existing experimental 
array testbed. 

In the first year of a new three-year program beginning in FY99, the emphasis will be on the 
analysis, selection, parallelization, and evaluation of adaptive beamforming (ABF) algorithms 
and supportive distributed system architectures. Building on previous success in FY98 with 
parallelization of SA-CBF algorithms, a host of decomposition, partitioning, and mapping 
activities will be undertaken. The goal will be to study, evaluate, and demonstrate the processing 
and memory characteristics of ABF algorithms and their constituent algorithmic elements (e.g. 
matrix inversion) in terms of baseline sequential forms and new parallel forms. 

In the second year, work will continue on the parallelization of advanced ASW algorithms 
and supportive architectures in terms of more advanced ABF examples and initial basic examples 
with matched-field tracking (MFT). As in the first year of the program, new parallel algorithms 
will be developed, analyzed, and evaluated in terms of their realization on low-power 
autonomous sonar arrays. Similarly, in the third and final year of the new program, more 
advanced examples of MFT will be parallelized and evaluated along with initial basic examples 
with algorithms for matched-field processing (MFP). 
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