I *I National
Defence

Défense
nationale

MULTIPURPOSE DATA
INTERFACE BOARD (DIB)

by

Capt Yves Simoneau and Caroline Tom

0¢0 60c060661

DEFENCE RESEARCH ESTABLISHMENT OTTAWA

15.4]

Canadia

ProsECT
SChAl|

REPORT NO. 1332

July 1998

~GISTRIBUTION S1ATEMENT A Ottawa

- Approved for public relpasei
s bpmqsmbuﬂon Unlimited:

DTIC (JAL:Y ®52LUTED 8§

AQF 79-04- 0§11

Abstract

Defence Research Establishment Ottawa is pursuing an in-house research activity in
spread-spectrum technology to support development of robust, anti-jam satellite communications
for the military. The in-house effort consists of developing a system simulator, including both a
ground terminal processor and a payload processor, to research the techniques involved in
spread-spectrum synchronization. For these experiments, a multipurpose data interface board is
required for different data operations, and is the subject of this report. The board is composed
mainly of an erasable programmable logic device to reduce the number of integrated circuits and
to add flexibility to the design. The board was designed to perform three functions. The first
function is the data format conversion between a ground terminal processor and a data source,
and likewise, a payload processor and a data sink. The second function is to provide an interface
to a separate direct link between the payload and ground terminal subsystems for transmitting a
reference pulse for synchronization. The third function is to provide a set of debug latches for
the user. In this document, the software and hardware details are provided along with a user’s
guide for the board.

Résumé

Le Centre de recherche de la défense Ottawa, dans un projet de recherche interne,
travaille au développement de technologies a spectre étalé reliées a un systéme de
communications militaires par satellite robuste et a 1’épreuve de I’interférence. Le projet interne
se résume au développement d’un simulateur pour des recherches sur certains aspects difficiles,
telle la synchronisation du spectre étalé. Pour ces expériences, une carte d’interface multi-
fonctions pour les données est requise pour les différentes opérations sur les données et est le
sujet de ce rapport. La carte a été construite a ’aide d’une puce logique effagable et
programmable pour remplacer les puces et pour donner un maximum de flexibilité a la carte. La
carte a egalement été congue pour satisfaire trois différentes fonctions. La premiére fonction est
la conversion du format des données entre le processeur du terminal au sol et une source de
données, et de méme, le processeur de la charge utile et un collecteur de données. La seconde est
I’interface & un lien direct séparée entre la charge utile et la station terrestre produisant une
impulsion pour la synchronisation. La troisi¢me est de produire trois paneaux controleurs. Dans
ce document, tous les détails sont données ainsi qu’un guide pour I’utilisateur.

i

Executive Summary

Defence Research Establishment Ottawa is pursuing an in-house research activity in
spread-spectrum technology to support development of robust, anti-jam satellite communications
for the military. The MILSATCOM (Military Satellite Communications) group is developing a
system simulator to research some critical techniques such as spread-spectrum synchronization.
In the simulation of such a system, a data source and a data sink are used at the transmitter and
receiver for data communications once synchronization is achieved. Data generated by the
source is in the form of a serial bit stream which must be converted to an appropriate data word
for modulation and transmission. At the receive end, data is demodulated into data words which
must be converted back into a bit stream for the data sink. The transformation of this type of
data to the proper format will be done via a multipurpose data interface board (DIB), designed
and developed at DREO. This report describes the interface board, its functions and its '
operation.

The board is designed to perform three distinct functions. The first, is the data format
conversion between a ground terminal processor or payload processor and a data source or sink
respectively. The second function is to provide a means to access a direct link between the
payload and ground terminal simulator subsystems. The direct link is used to transmit a
reference pulse to initiate the synchronization process. The third function of the DIB is to
provide a set of debug latches for the user. The multipurpose data interface board was designed
to be able to operate on the transmit or receive side of the link. Thus, both the ground terminal
and payload simulator subsystems use the same board to interface with a data source and sink
respectively.

Flexibility was a key aspect of the board design. In addition to designing the board to
operate at either end of the link, an erasable programmable logic device (EPLD) was used to
implement much of the digital circuitry. The EPLD helps in saving physical space on the board
and gives the user flexibility to rapidly make modifications or corrections.

The EPLD was found to be very useful in replacing the numerous small integrated
circuits normally required for any design. The inner functions of the EPLD were divided into
five main logic blocks. They are the clock generator, the address decoder, the command register,
the transmit shift and the receive shift. The design and programming of the EPLD was done on a
personal computer simplifying design changes. Substituting one EPLD for all of the usual
integrated circuits meant rapid development of the hardware as well as easy customization of the
hardware interface. Future expansion is also possible since the EPLD is used at only 80% of its
capacity. There is also board space for additional interface logic devices.

The DIB was successfully tested and has been integrated in the ground terminal and
payload simulator subsystems. The DIB will be used in the upcoming Skynet trials for uplink
synchronization and data communication.

Abstract

Résumé
Executive Summary
Table of Contents
List of Figures

List of Tables

List of Abbreviations

1.

Table of Contents

Introduction

1.1 Background

1.2 TheTask

1.3 Objectives and Report Outline
Design Concept

21 General

2.2 System Description

2.3 DIB General Description

2.3.1 Data Operation
2.3.2 Frame Zero Pulse
2.3.3 Debug Latches

2.4 Addressing Concept
2.4.1 Base Address
2.4.2 On Board Addressing
2.4.2.1 Write Data
2.4.2.2 Read Data
2.4.2.3 Write Command
" 2.4.2.4 Read Status
Hardware
3.1 General
3.2 Board Construction
3.3 Erasable Programmable Logic Device

3.3.1 Clock Generator
3.3.2 Address Decoder

vii

vil

X111

U DN =t e

O 0 3N Vi v

b b bk
NO O O O\

13
13
13
14
14
15

34
35

333
334
335
3.3.6

Command Register
Transmit Shift
Receive Shift

Status Bit Generation

.Debug Latches

External Interfaces

4. Testing
Test Setup

4.1

5. Conclusion

References

4.1.1
412
413

Data Conversion/Transfer Test
Tx/Rx Frame Zero Test
Debug Latch Test

Appendix A: Hardware & Firmware Details
General

1.
2.

DIB
2.1
2.2
23

Schematic

Layout Description

External Interface Connectors
2.3.1 Front Panel Connectors
2.3.2 Backplane Connector

24 Key Component List
2.4.1 Integrated Circuits
2.4.2 Discrete Components
2.4.3 Other Components

EPLD Description

3.1 General

3.2 EPLD Schematics

3.2.1 Clock Generator Macro

3.2.2 Address Decoder Macro

3.2.3 Command Register Macro

3.2.4 Transmit Shift Macro

3.2.5 Receive Shift Macro

3.2.6 Rise Detector Macro and D-flip-flop Macro

viii

15
15
16
16
16
17

19
19
20
20
21

23

25

Al
Al
Al
Al
A3
A4
A4
A5
A8
A8
A8
A9
All
All
All
Al3
AlS5
Al7
Al19
A2]
A21

Appendix B: DIB User’s Guide Bl

1. General Bl

2. Installation B1

3. Configuration B2

3.1 DIB Applications B3

. 4. Operational Procedure B3
4.1 General Operation . B3

, 4.1.1 Reset B3
4.1.2 Selecting the destination for the data transferred to the DIB B4

42 Data Operation BS5

421 Read Data Example BS

422 Send Data Example B6

423 Writing to Debug Latches B7

42.4 Frame Zero Pulse B7

Appendix C: Test Program for DIB Cl

1. General Cl1

2 Program Listings C1

2.1 C Listing C2

2.2 Assembler Listing Cé6

23 Berhost. MAK | C9

24 Bertest. MAK C9

2.5 Bertest. CMD C9

ix

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. Al.
Fig. A2.
Fig. A3.
Fig. A4.
Fig. AS.
Fig. A6.
Fig. A7.
Fig. A8.
Fig. A9.

Fig. A10.
Fig. All.
Fig. A12.
Fig. A13.
Fig. Al4.
Fig. A15.

List of Figures

Experiment block diagram

Data transforming process

Frame zero pulse flow diagram
Command register bits

Status register bits

DIB block diagram

Test setup diagram

Data interface board schematic
Multipurpose DIB printed circuit board layout
DIB front panel layout

Debug latch #1 external connector (J4)
Data source/sink external connector (J2)
FRO pulse external connector (J5)
DSPLINK backplane connector (J3)
EPLD diagram

Clock Generator Macro

Address Decoder Macro

Command Register Macro

Transmit Shift Macro

Receive Shift Macro

Rise Detector Macro

D-Flip-Flop Macro

Al2
Al4
Al6
Al8
A20
A22
A23
A23

Table 1.
Table 2.
Table 3.
Table Al
Table A2

Table A3.
Table A4.
Table AS.
Table A6.
Table A7.
Table B1.
Table B2.

List of Tables

DSPLINK interface [4] signal subset used by the DIB

DIB addressing

Write command functions

Data source/sink external connector (J2) pinout description
FRO pulse external connector (J5) pinout description
DSPLINK backplane connector (J3) pinout configuration and description
Integrated circuits

Discrete components

Other components

List of EPLD Macros for the DIB fuctions

Configuration DIP switch settings

Settings for selecting destination of data transfer to DIB

Xiii

Page

10
11
AS
A5
A6
A8
A8
A9
All
B2
B4

BER
CRC
D/C
DIB
DIP
DREO
DSP
EHF
EPLD
FSK
GT

1/0

IOE
LDR
MDR
MILSATCOM
MOU
N/A -
NWR
PC

PL
PLCC
PN
RESDIP
RX
RXOVR
RXRDY
SATCOM
SHF
TTL
TX
TXMT
TXUND
u/C

UK

List of Abbreviations

Bit Error Rate

Communication Research Centre
Down Converter

Data Interface Board

Dual Inline Package

Defence Research Establishment Ottawa
Digital Signal Processor
Extremely High Frequency
Erasable Programmable Logic Device
Frequency-Shift-Keying

Ground Terminal

Input/Output

Input/Output Enable

Low Data Rate

Medium Data Rate

Military Satellite Communication
Memorandum Of Understanding
Not Applicable

Not Write/Read

Personal Computer

Payload

Plastic Leadless Chip Carrier
Pseudo Noise

Resistor Dual Inline Package
Receive

Receive Overflow

Receive Ready

Satellite Communication

Super High Frequency
Transistor Transistor Logic
Transmit

Transmit Empty

Transmit Underflow

Up Converter

United Kingdom

XV

1. Introduction

1.1 Background

The Military Satellite Communications (MILSATCOM) group at Defence Research
Establishment Ottawa (DREO) and Communications Research Center (CRC) have been involved
in the research and development of Extremely High Frequency (EHF) Satellite Communications
(SATCOM) to better assess the associated capabilities, limitations and complexities. Wide-band
frequency-hopping and onboard satellite processing features of EHF SATCOM can reduce the
effects of electronic interference thereby offering communications robustness. For onboard
processing, uplink and downlink synchronization play a key role. The MILSATCOM group in-
house effort includes examining the synchronization aspects of EHF SATCOM.

Through a Memorandum of Understanding (MOU) with the United Kingdom (UK), DREO
and CRC are using the Skynet 4A EHF transponder to carry out the synchronization experiments.
The Skynet transponder receives an EHF signal and translates it to an SHF signal to be retransmitted.
Uplink and downlink synchronization techniques were examined separately. The downlink portion
has already been completed and documented [1]. Work has commenced on the uplink
synchronization and communications experiments.

As in the downlink synchronization experiments, ground terminal (GT) and payload (PL)
simulator subsystems for the uplink synchronization experiments are developed in-house. These two
subsystems are ground-based and are integrated with their respective transmit and receive antenna
terminals, which are separated by a distance of approximately 1 km. Each simulator subsystem
consists of a processor and various interface boards connected to IF and RF equipment. Nominal
transmit and receive frequencies are 44.6 and 7.6 GHz with a hopping bandwidth of 50 MHz. A
general system block diagram is given in Fig. 1. A more detailed description of the system is
provided in Section 2.2.

In an actual system, uplink synchronization only begins once downlink synchronization is
achieved. For the uplink synchronization experiments, the process of downlink synchronization is
simulated by providing the GT simulator subsystem with a reference of the PL simulator subsystem
clock via a direct serial link. The GT uses this reference to initiate the uplink synchronization
process. Synchronization probes are transmitted by the GT simulator subsystem to the PL simulator
subsystem based on different hypotheses. The PL simulator subsystem processes the signals
received relative to its own clock and formulates a synchronization response which must be relayed
back to the GT. The synchronization response indicates whether the synchronization probes were
detected. Once detected, the GT clock is corrected. Fine synchronization probes are then
transmitted and the synchronization responses received for these probes are used to fine-tune the GT
clock. Once this is completed, synchronization is achieved and data communication can begin. The
modulation scheme used for data communication is 8-ary frequency-shift-keying (FSK) and at a rate
of 2.4 kb/s [2].

Downlink synchronization reference serial link
PL
Simulator |« — — Simulator
Synchronization response return serial link
GT Simulator
Processed & TX signal ToTX
Data DSP modulated data Hopping signa e Antenna
Source GT processo I Synthesizer)
PL Simulator
Processed &
from RX BX Siama] demod data
Antenna > ‘)] ign:) DSP o)
D/C DeHop PL processor 'DIB“ ﬂ Data sink

Fig. 1. Experiment block diagram

1.2 The Task

The uplink synchronization trials setup includes a GT simulator subsystem (located in
Building 2 at CRC) which operates as the EHF transmit station to the Skynet satellite. At the
satellite, the EHF transmit signal is translated to SHF and retransmitted to a PL simulator subsystem
‘(located in T85 at DREO). In addition to the satellite link setup, a direct serial link, called the
“downlink synchronization reference serial link”, is used to transmit a reference pulse of the PL
clock which serves as a starting point for the synchronization process. The PL simulator subsystem
is responsible for generating the reference pulse to be received by the GT simulator subsystem. It
is important to note that even with the reference pulse, there is still a difference between the GT and
PL clocks due to the delays experienced with the satellite and serial link transmissions. An
additional serial link, called the “synchronization response return serial link”, is used to return the
synchronization responses formulated by the PL simulator subsystem to the GT simulator subsystem.

For the downlink synchronization reference serial link, an interface is required between each
subsystem processor and the serial link. Furthermore, for data communications, HP1645 data error
analyzers are used as the data source and sink. The HP1645 generates and accepts a synchronous
serial RS232 bit stream of data. As the modulation scheme is 8-ary FSK for the trials, a formatter
is required to convert the serial bit stream to an appropriate data word format for modulation. Both
the interface to the downlink synchronization reference link and the data formatting requirements
are handled by a multipurpose data interface board.

The multipurpose Data Interface Board (DIB) was designed and fabricated to perform three
different functions. Its first function is to handle the format conversion requirements between a data
source and the GT processor, and similarly, the PL processor and a data sink. From the point of
view of the GT, serial data is converted from RS232 to transistor-to-transistor logic (TTL) levels and
formatted into 12-bit words. The reverse is done on the PL processor side. The DIB’s second
function is to provide an interface to the downlink synchronization reference serial link between the
PL and GT. This link is used in the uplink synchronization experiments to transmit from the PL to
the GT a reference pulse as an estimate of the PL clock and the PL’s position in the hopping pattern.
The reference pulse provides a starting point for the GT to begin the uplink synchronization process
and is analogous to the information available if downlink synchronization had been performed. The
third function of the DIB is to provide a set of debug latches. These latches may be used as a
debugging tool by the user at any point of the experiment to locate any problems in the user’s
subsystems.

1.3 Objectives and Report Outline

The primary objective of this report is to describe the design and implementation of the three
functions of the DIB. The other objective of this report is to provide a detailed user’s guide for the
operation of the DIB and the information necessary to carry out any modifications to the DIB.

In Section 2 of this report, the design concept of the DIB is described for each of the three
functions as well as the addressing concept for the board. The hardware description (Section 3)
includes reasons behind the choice of each element of the DIB. The report also includes a
description of the testing of the DIB in Section 4 to help the user to understand how the DIB
functions and enable testing of the DIB if modifications are made. The details of the hardware and
firmware implementation are contained in Appendix A. Details include a description of the various
logic circuit blocks in the EPLD and of the physical layout of the DIB. Appendix B provides
examples of the operations of the DIB with sample code written for use on a TMS320C25 digital
signal processor (DSP) board built by Spectrum Signal Processing Inc. Appendix C lists the
programs used for the testing described in Section 4.

2. Design Concept

2.1 General

The design of this board was based on a prototype board providing similar functions used
in the downlink synchronization experiments [1]. Additional functions have been added to
accommodate uplink synchronization experiment requirements. In this section, the overall system
setup will be described briefly to explain where and why the DIB is positioned where it is. The three
different functions of the DIB will also be explained.

2.2 System Description

As described in Section 1.1, the uplink synchronization experiments are carried out over the
Skynet 4A EHF transponder. The use of the EHF transponder requires the development of both GT
and PL simulator subsystems as ground-based systems and results in a setup as shown in Fig. 1. The
GT and PL processor functions are developed on digital signal processing (DSP) boards installed
in personal computers. Each processor also communicates with a hopping synthesizer controller
(HSC) and a data source (GT) or a data sink (PL). In the GT simulator subsystem, the HSC
computes the frequency of the next hop to be generated by the frequency synthesizer for
transmission. In the PL simulator subsystem, the HSC is used to dehop the received signal before
being processed. Other components of the subsystems include the interface to a downlink
synchronization reference serial link and to a synchronization response return serial link described
below.

For the uplink synchronization experiments, a reference of the PL clock is transmitted via
a serial link, referred to in this report as the downlink synchronization reference serial link, to
provide the GT with a starting point for synchronization. The serial link simulates the downlink
portion of a practical SATCOM system with onboard processing. Once the reference is received and
the GT has established a starting point, the GT simulator subsystem transmits synchronization
probes to the PL simulator subsystem. The PL simulator subsystem processes the received data and
returns to the GT an estimate of the synchronization accuracy for the probes sent. The estimate is
transferred through a separate link referred to as the synchronization response return serial link.

Once synchronization is achieved, data generated by a data source can also be transmitted
from the GT to the PL. The modulation scheme used in the uplink synchronization experiments is
8-ary frequency-shift-keying (FSK). The data source generates a bit stream of data which is
formatted and stored in a data latch. The GT processor subsequently reads the latch and forwards
the data (three bits at a time) to the hopping synthesizer controller [3] to be transmitted. At the PL
receiver, the received signal is dehopped and demodulated. The demodulated data is then transferred
by the PL processor to a data latch and ultimately to the data sink. The interface between each
processor and the data source or sink, and between each processor and the downlink synchronization
reference serial link, is provided by a data interface board (DIB) which is the subject of this report.

5

2.3 DIB General Description

The primary function of the DIB is to format the data transferred between the data source and
GT processor, and similarly between the data sink and PL processor (Fig. 2). For the uplink
synchronization experiments and for this report, the data source and sink is a Hewlett Packard HP
1645 data error analyzer. For data flowing from the data source to the GT, the HP 1645 provides
a serial bit stream through an RS232 link to the DIB. The DIB formats the serial data into 12-bit
words and stores them in a latch until the GT processor reads the data.

The operation is reversed for data flowing from the PL processor to the data sink and is
implemented on the same DIB. Hence the DIB is designed for use by either the GT or PL simulator
subsystems. More details are given in Sections 3.3.4 and 3.3.5 (Hardware/EPLD) and in Appendix
A on the way the data is converted from one format to the other.

There are two other secondary functions of the DIB. One is to provide an interface to a
downlink synchronization reference serial link between the PL and GT for the PL clock reference
signal. The other is to provide three debug latches. These latches can be used as a debugging tool
by the user at any point of the experiment to access intermediate values. Each of these functions
will be discussed in more detail in the following subparagraphs.

2.3.1 Data Operation

The DIB provides the necessary data conversion function between the GT and PL processors
and the HP 1645. On the PL side, the parallel data must be disassembled into a serial bit stream and
converted from TTL levels to RS232 levels. The reverse is true on the GT side. The direction of
data flow is determined by the address port accessed by the DSP and the DSP operation (read or
write). This is discussed further in Section 2.4.2.

The block diagram of the data transformation process for the data link is given in Fig. 2. The
DIB contains two separate interfaces. One side of the DIB is connected to an HP 1645 data error
analyzer via an RS232 interface. On the other side, the DIB communicates with a DSP board. For
the uplink synchronization experiments, Spectrum Signal Processing Inc. DSP boards with the
DSPLINK interface are used. The DSPLINK interface has 16 data lines of which 12 are used for
data transferred between the DIB and the GT or PL processor. From the PL point of view, a 12-bit
data word needs to be converted to a single bit stream in order to transfer it through the RS232
connection to the data error analyser. The data conversion is achieved by loading the 12-bit data word
into a shift register. The 12-bit data word is then clocked out one bit at a time. The resulting data bit
stream will then go through a line driver to transform the initial TTL-level signal into an RS232-level
signal before being transferred to the HP1645A. The next 12-bit word is loaded into the shift register
once all the previous 12 bits have been transferred. If no data is loaded into the
shift register before the next bit is to be clocked out, then an underflow flag bit is set on the status
register of the DIB. The underflow bit is described further in Section 2.4.1.

6

Data formatting/conversion

12 bit word
GT or PL . .
B
Processor — »>poooooog-- Data Device
< RS232 »
DSP 1_ _ PLpointofview _ _ NN HP 1645
2 bit word Data device
DSPLINK S .
interface g interface
; Bit stream
H «—00000000:---
External clock GT poiat of view

Fig. 2. Data transforming process

From the GT point of view, the data is assembled from a single bit stream to a 12-bit parallel
stream. The data goes through a line receiver that transforms the data format from RS232 to TTL
levels. The data is then assembled into a 12-bit word using a shift register and loaded into a latch.
The DIB will then set a flag that will tell the user when the data is available to be read. Once the 12-
bit word is read by the GT processor, the next 12 bits assembled in the shift register are loaded in the
latch. If the previous data in the latch is not read by the GT processor before the next 12 bits are
ready to be transferred from the shift register, a data overflow bit is set on the status register. The data
overflow bit is described in Section 2.4.1.

The use of only twelve out of the sixteen data lines first came about as a requirement in the
downlink synchronization experiments [1]. In the implementation of the DIB for the uplink
synchronization experiments, the 12-bit format was retained as it is a suitable grouping of the data
bits for the 8-ary FSK modulation specified for data transmission [2]. It is noted that a grouping of
15 bits is also suitable for the data modulation scheme, however, the clock signals required for the
data conversion is facilitated if the word length remains an even number.

In both cases, an external clock signal is required for the DIB operations. The clock frequency
required is the data bit rate. For the uplink synchronization experiments, the data rate is 2.4 kb/s.
This clock signal is used in the transformation of the data from one data line to 12 data lines and vice
versa by clocking data in and out of shift registers. A derivative of the clock signal is generated by
the DIB and is used by the DIB as a control signal for the transformation process.

2.3.2 Frame Zero Pulse

In practice, a GT performs downlink synchronization to obtain an estimate of the PL clock
before initiating uplink synchronization. For the uplink synchronization trials, since only the uplink
portion will be implemented over the satellite, there is a need to simulate the downlink portion that

7

the GT will use as a basis for beginning uplink synchronization. It was decided that an estimate of
the PL clock would be provided in the form of a pulse which would be transmitted from the PL
simulator subsystem to the GT simulator subsystem via a direct link. The rising and falling edges of
the pulse, which is referred to as the Frame Zero (FRO) pulse, will be used to identify the start and
end of the zeroth frame in the pseudorandom frequency hop sequence used for the experiment. This
pulse signal can also be used in tracking the PL clock.

The FRO pulse is transmitted from the PL simulator to the GT simulator via a direct serial
RS232 link between them. This serial link is referred to as the downlink synchronization reference
serial link. The interface between the processors and the direct link is provided by the DIB. The
pulse is generated by the PL processor when a “1”, followed by a “0”, is written to the appropriate
command data line (FRO_out) of the DIB command register (details of the command register are
found in Sections 2.4.2 and 3.3.3 of the main document, and Section 4.2.4 of Appendix B). The
FRO_out data line goes to a line driver where the signal is converted from TTL to RS232 levels. The
signal is then transmitted through the serial link between the PL and GT simulator subsystems. When
received on the other DIB the signal is converted back to TTL levels and is detected by the GT
processor on one of the DIB status lines (FRO_in) (details of the status register are found in Sections
2.4.2 of the main document and Section 4.2.4 of Appendix B). The GT processor will then use the
status information to verify the alignment of its clock and update the appropriate counters as needed.
A flow diagram of the process is shown in Fig. 3.

DIB (GT) DIB (PL)

15 0 15 0
OO T I T I I1T] OO T TIT]

Status Reg : Command Reg

_ Downlink synchronization

iFROin_ .. p{RS232 Reference serial link TTL to| 4...FR0...°"“
Lo TTL € RS232
JL...... S, JL
FRO pulse

Fig. 3. Frame zero pulse flow diagram

2.3.3 Debug latches

This board is also equipped with three 16-bit debug latches. These latches are there to help
the user in programming and testing the system. This function does not affect the data operation
function of the board. These latches will store any data the user writes to them. The user can
therefore read the data on the latches with a logic analyser to verify the data and/or identify any

8

hardware or software problems. Data can be written to the latches as often as is required. An
example of writing to a debug latch is given in the user’s guide (Appendix B). The latches are read
by probing the pins of the appropriate integrated circuit. In addition, debug latch #1 can be accessed
conveniently by a connector (26-pin) that has been set up on the front panel.

2.4 Addressing Concept

The interface between the DIB and the DSP is specified by the DSPLINK interface of
Spectrum Signal Processing Inc. DSP boards. The 50-line DSPLINK interface is a high-speed
bidirectional interface supporting 16-bit data transfers. To communicate with the DIB, the signals
required are provided by the minimum subset of DSPLINK shown in Table 1. With 4 available
address lines, there are 16 possible addresses. The DIB uses two of the sixteen addresses thereby
allowing other boards to use the same DSPLINK interface without addressing conflicts.

[Signal name In/Out Description |

DO0-D15 In/Out 16 fully buffered bi-directional data lines

.AO-A3 Out 4 buffered address lines

NWR Out Read/Write line to indicate direction of data transfer

NIOE Out v I/0O enable line, indicates access to one of 16
standard 1/O ports only

NRESET Out Reset line, same as reset into processor

GND - Signal ground

Table 1. DSPLINK interface [4] signal subset used by the DIB.
2.4.1 Base Address

For the uplink synchronization experiments, several interface boards are present in both PL
and GT simulator subsystems which use the DSPLINK interface. As a result, a DSP backplane with
the DSPLINK interface was developed to facilitate the connection of the various boards to the DSP.
In order to address each of these interface boards properly, each board must use non-conflicting
addresses. Furthermore, added flexibility is available if the assignment of addresses is selectable.
The DIB requires one address line and the NWR line to decode the necessary ports within its address
space. This is described further in the next section. The three remaining addresses lines can be used
to select any block of 2 address assignments among the 16 available. For the uplink synchronization
trials, the base address is set by enabling the appropriate address lines using the DIP switch on each
board. Details of the DIP configuration for the DIB are included in Fig. Al in Appendix A and
Table B1 in Appendix B.

2.4.2 On Board Addressing

The addressing on the DIB is decoded using one address line (A0) and the NWR line, thus
giving 4 separate I/O ports. All other address lines going to the board will be used only to select the
base address as described above. The functions of the four I/0 ports of the DIB are listed in Table
2. Each function is described further in the paragraphs below.

A0 [NWR Address Name Function
0 0 (write) Write Data sends the data to the data sink or to a debug latch
0 1 (read) Read Data gets the data from the data source
1 0 (write) Write Command | commands the DIB and selects destination of
Write Data
1 1 (read) Read Status reads status from the DIB

Table 2. DIB addressing
2.4.2.1 Write Data

The purpose of this address port is to allow data to be transferred to either the data sink or
to one of the three debug latches. The designated device is chosen by giving the appropriate
command specified in the command register (described in the ‘Write Command’ paragraph) prior
to accessing this port. An example of this operation can be found in Appendix B.

2422 Read Data

The purpose of this address port is to allow data to be transferred from the data source. The
Read Data operation is prompted by the RXRDY flag in the status register which is set when data
is available. The data, which has been formatted by the DIB, is stored in a latch on the DIB. An
example of this operation can be found in Appendix B.

2.4.2.3 Write Command

The purpose of this address port is to allow a command to be sent to the DIB. The user can
either give a software reset, address one of the 3 debug latches, address the data latch or generate the
Frame Zero pulse. Each function is specified by a bit or combination of bits in the command register
as shown in Fig. 4 and Table 3. Note that for the data transfer operations, data lines D0 and D1 are
used only to select the destination of the transfer to Write Data. To complete the operation, the
Write Command is immediately followed by a Write Data where the actual data transfer takes place
(described above). An example of this operation can be found in Appendix B.

10

15 <

0

| .

. -- not used
1

Fig. 4. Command register bits

——

Data Destination
4 possibilities

Command Register Type Function
0000000000000000 | TX Hold | selects the data latch to be the destination for the data
(followed by conversion to a single bit stream)
0000000000000001 | Debug selects debug latch #1 to be the destination for the data
#1
0000000000000010 | Debug selects debug latch #2 to be the destination for the data
#2
0000000000000011 | Debug selects debug latch #3 to be the destination for the data
#3
0000000000000100 | FRO_out | putsa ‘1’ on the Frame Zero pulse to be transmitted through
the serial link
1000000000000000 | Reset Gives an active-high software reset.

Table 3. Write command functions

11

2.4.2.4 Read Status

The purpose of this address port is to read the 5 status bits of the DIB. The location of the
5 status bits in the status register is shown in Fig. 5. Four status bits are used to monitor the transfer
of data to and from the data sink and source. In addition, one status bit is allocated for receiving the
FRO pulse. Each of the status bits is described in the following subparagraphs. Examples of the
operations carried out involving the status register can be found in Appendix B.

This status bit will tell the user when the data is ready to be read from the
DIB data latch. This bit will be set when the DIB has accumulated 12 bits of
data from the data source and has transferred them into the data latch on the
DIB.

This status bit will tell the user that while transferring data from the data
source the 12 data bits waiting on the DIB data latch were not read before the
next 12 bits were available and thus were overwritten resulting in loss of data.

This status bit will tell the user when the DIB is ready to accept the next word
of data into the hold register. This bit is set when the DIB has transferred the
data from the hold register to the shift register to be converted into a serial bit
stream for the data sink.

This status bit will tell the user that the next 12-bit word was not available in
the hold register to be transferred to the shift register after the previous 12
bits were clocked out of the shift register to the data sink.

This status bit indicates the state of the FRO pulse transmitted on the
downlink synchronization reference serial link from the PL simulator
subsystem.

0

a. RXRDY:

b. RXOVR:

c. TXMT:

d. TXUND:

e. FRO _in:
15 44—

RXRDY JRXOVR| TXMT

m —_—

Fig. 5. Status register bits

12

3. Hardware

3.1 General

In this section, details will be given about the physical components of the DIB and on the
different components of the Erasable Programmable Logic Device (EPLD) that are used to implement

the various functions of the DIB.

3.2 Board Construction

The elements of the DIB include the data formatting circuitry, the data conversion clock, the
debug latches, the TTL/RS232 conversion circuitry, the Frame Zero pulse interface and the DSPLINK
interface. The bulk of the functions of the DIB are implemented on an EPLD. The EPLD used here
is an Altera EPM5128JC-1. Fig. 6 represents the general DIB block diagram. The DIB was
implemented on a custom printed circuit board. The physical details of the board are given in
Appendix A. The DIB schematic is given in Fig. Al of Appendix A. '

EPLD Logic Device
EPMS5128JC-1
L -]
= |DSPLINK SPLINK] Data TTL/RS232 o }to Data error
to DSPLINK] = ; > terface | Format Conversion Z JAnalyser
Backplane |5 =z
=2
RO
tch Pulse
Interface | Interface
Debug Latches
Oko Downlink
Il FRO g’synchronization
to Logic |} n s TTLRS232 E keference serial link
: Comrns
Analyser
M- Male
F - Female

Fig. 6. DIB block diagram

13

3.3 Erasable Programmable Logic Device

The EPLD is an integrated circuit that consists of many macrocells. The collection of
elements or macrocells which are used to implement a particular function in the EPLD produce a
macro. A macro can be made of other macros. The EPLD is flexible as it can be erased and
reprogrammed to implement modifications for the DIB. The EPLD was found to be very useful in
replacing the numerous small integrated circuits thus reducing the physical space occupied on the
board. The design and programming of the EPLD was done on a personal computer. Substituting one
EPLD for all of the usual integrated circuits meant rapid development of the hardware as well as easy
customization of the hardware interface. The internal chip configuration and the pin usage (input,
output or both) are programmed into the EPLD. Modifications can be made on the EPLD by erasing
it using ultraviolet light and then reprogramming the EPLD.

- The functions implemented in the EPLD include the clock generator, the address decoder as
the logic interface between the DSP and the DIB, the command register, the transmit shift, the receive
shift and status bit generation. These functions are described in greater detail in the following
paragraphs and in Appendix A. The EPLD used in this design is the Altera EPM5128JC-1 which
consists of 128 macrocells in a 68 pin PLCC package. A schematic of the represented EPLD circuit
is given in Fig. A8 of Appendix A.

3.3.1 Clock Generator

The clock generator function of the EPLD provides and distributes the appropriate clock to
the other EPLD functions. This function transforms an external clock signal to the frequency needed
by the board to support its operation. The DIB provides two external clock options. The user can
provide the actual 2.4 kHz clock needed for the uplink synchronization experiments, or can provide
a 432 kHz clock from which the clock generator divides it down to a 2.4 kHz clock. The 432 kHz
clock option was initially used in the downlink synchronization experiments [1]. The selection of the
external clock is made by the DIP switch on the DIB (this is further described in Section 3 of
Appendix B). For the uplink synchronization experiments, the 2.4 kHz external clock is selected.

In the clock generator circuit, the 2.4 kHz clock is called the ‘Shift Clock’ and is used to
transfer data to and from the data sink and source, respectively to satisfy the 2.4 kb/s data rate used
in the uplink synchronization experiments [2] . Another clock is created for internal use, called the
‘Latch Clock’. The DIB generates the ‘Latch Clock’ by dividing the 2.4 kHz clock by a factor of 12,
thus giving a 200 Hz signal . This is used to signal the DSP when 12 bits of data have been
assembled or disassembled. A schematic of the represented circuit for the clock generator is given -
in Fig. A9 of Appendix A.

14

3.3.2 Address Decoder

This EPLD function covers the decoding of the various addresses and sets the base address
of the DIB. The base address is specified by address lines A1,A2, and A3 of the DSPLINK interface
as described in Section 2.4.1. The selection of the base address is made by the user and is applied by
correctly setting the DIP switches on the DIB (this is further described in Section 3 of Appendix B).
The DIP switch settings are then compared with the corresponding address lines to enable the 3-to-8
decoder when there is a match. The 3-to-8 decoder uses address line 0 (A0) and the NWR line to
generate the various I/O port signals required for the DIB (described in Table 2 of Section 2.4.2). In
addition to the enable signal produced by comparing A0-A3 to the DIP switch settings, the NIOE
signal is also used to enable the 3-to-8 decoder. A schematic of the represented circuit for the address
decoder is given in Fig. A10 of Appendix A.

3.3.3 Command Register

This EPLD function provides three different operations on the DIB. The command register
enables the user to select whether data is transferred to either the data latch or to one of three debug
latches on the DIB. The command register also allows the user to access the downlink
synchronization reference serial link in order to transmit the FRO pulse. Finally the command register
allows a software reset of the DIB. The operations are identified by specific data bits of the command
register as described in Section 2.4.2 and are actioned when the Write Command port is accessed.
The reset and FRO pulse generation are straightforward in that these operations are carried out by
writing a “0” or a “1” to the appropriate bit. However, as discussed in Section 2, when the user
wishes to transfer data to either one of the debug latches or to the data latch for format conversion,
the Write Command operation must be followed by a Write Data operation where the actual data is
transferred. In this implementation, the Command register bits D0-D1 are used to select the
destination for the data transfer. D0-D1 are further decoded to enable the appropriate destination
device (data latch or debug latch). A schematic of the represented circuit for the command register
is given in Fig. A11 of Appendix A.

3.3.4 Transmit Shift

This EPLD function covers the conversion of 12-bit data word stored in a latch into a serial
bit stream for the data sink. After being latched, all the data lines are directed into shift registers that
will convert the data coming from 12 parallel data lines to 12 consecutive bits on a single data line.
The Shift Clock (2.4 kHz) described in Section 3.3.1 controls the conversion process. Data from the
DSP is transferred in the lower 12 bits of the 16 data lines on DSPLINK. On the DIB, the twelve bits
are shifted out sequentially such that the first bit out of the shift register corresponds to the least
significant bit (LSB) of the data word, (i.e. D0). The transmit shift logic interface also provides two
status bits for the user to monitor data flow through the DIB (TXMT, TXUND). Further details on
the status bit can be found in Section 2.4.2. A schematic of the represented circuit for the transmit
shift is given in Fig. A12 of Appendix A.

15

3.3.5 Receive Shift

This EPLD function covers the conversion of a serial bit stream from the data source into a
12-bit data word stored in a latch. A data stream is directed into a shift register which, with the help
of the Shift Clock, will transform 12 bits from the data stream to a 12-bit word and store it in a 16-bit
data latch. The data latch consists of the upper 4 bits being zeroed and the lower 12 bits holding the
12-bit word assembled by the shift register. The result of the shifting process is that the first bit of
the data stream is stored in the LSB of the data latch (i.e. D0). The receive shift logic interface also
provides two status bits for the user to monitor data flow through the DIB (RXRDY, RXOVR).

This macro also contains the circuitry for assembling the DIB status bits that form the status
register. The description of the status bits was given in Section 2.4.2. A schematic of the represented
circuit for the receive shift is given in Fig. A13 of Appendix A.

3.3.6 Status Bit Generation

In both the “Transmit Shift” and “Receive Shift” macros, there are two macros which are
identified in the schematics as “Rise_Det” and “DFF_Plus”. They are used to generate the 4 status
bits that are related to the data transfer and format conversion (TXMT, TXUND, RXRDY, RXOVR).
In the “Rise_Det” macro, a D-type flip flop is connected so that on the rising edge of the 200Hz
“Latch CIk”, a “high” signal is generated at the output. This signal is used to signal when data is
ready to be read by the GT (i.e. RXRDY) or when the DIB is ready for the next data to be sent by
the PL (i.e. TXMT). The “high” signal is cleared when the GT or PL subsequently reads or transfers,
as appropriate, the next data word. The “DFF_Plus” macro follows the “Rise_Det” and consists of
another D-type flip flop used to latch the output of the “Rise_Det” macro. The same 200Hz “Latch
CIk” is used as the clock signal. If the output of the “Rise_Det” macro has not been cleared before
the rising edge of the clock signal, then the output of the “DFF_Plus” macro will latch a “high” signal
to its output. The output of the “DFF_Plus” is used to signal when data has been overwritten because
of an overflow at the GT simulator subsystem (i.e. RXOVR) or when data has not been made
available by the PL simulator subsystem thereby causing an underflow condition (i.e. TXUND).
Schematics of the represented circuit for the “Rise_Det” and “DFF_Plus” are given in Fig. A14 and
A1lS5 of Appendix A.

3.4 Debug Latches

There are three 16-bit debug latches on the DIB which can be used as a debugging tool. Each
16-bit latch is composed of two octal D-flip-flops. The configuration of the latches is such that there
is a one-to-one correspondence of the DSPLINK data lines to the debug latch data lines. All three
debug latches can be accessed at any time by the user. The debug latches can be read by probing the

16

integrated circuit. In addition, debug latch #1 can also be read directly from a 26-pin connector
mounted at one end of the DIB. Details of the 26-pin connector are included in Section 2.2 of
Appendix A.

3.5 External Interfaces

There are four external interfaces on the DIB. The first is a 96-pin connector which is
connected to the DSP backplane developed for the uplink synchronization experiments and provides
the interface between the DSP and the DIB. The DSP backplane includes the DSPLINK expansion
interface of Spectrum Signal Processing Inc. DSP boards. The DSPLINK interface [4] is a high-
speed, bidirectional bus that allows data transfer with the DSP, thereby avoiding the PC bus
bottleneck. The DSPLINK supports 16-bit data transfers. The signals which make up the DSPLINK
interface and are used for the DIB are described in Section 2.4. The DIB can be driven by any of the
Spectrum Signal Processing Inc. DSP boards which support the DSPLINK interface. Two 9-pin
RS232 connectors are also present on the DIB. One RS232 connector is used for the downlink
synchronization reference serial link which carries the FRO pulse. The other RS232 connector is for
the data source or sink connection. A 26-pin connector is also available and provides off-board
access to debug latch #1. The four external interfaces are described in Appendix A.

17

4. Testing

A description of the testing done on the DIB is given in the following section. The purpose
of testing is to verify the three functions of the board: data conversion/transfer; transmission and
detection of the Frame Zero pulse; and use of debug latches. The setup used for testing is illustrated
in Fig. 7. For testing purposes only, the clock required for the operation of the DIB is provided by
a function generator.

4.1 Test Setup

Upon initial completion of the DIB, all the functions of the DIB were verified for proper
operation. Fig. 7 illustrates the test setup for the DIB. As the DIB implements both the functions for
the GT and the PL simulator subsystems, a single DIB is set up in a loop back configuration so that
data flowing in both directions can be tested.

The external clock was generated by the function generator shown in Fig. 7. The Xantrax
power supply was used for DC power necessary for the board to operate. The power supply is used
only for the test setup as the DIB is installed in a DSPLINK backplane which provides power for the
DIB during the uplink synchronization experiments. The data error analyser was used as both the
data source and sink to verify the data flow from the source to the destination. The FR0O_out and
FRO _in lines are connected together so that when a FRO pulse is transmitted, it is immediately
reflected on the status register of the DIB. The test program used can be found in Appendix C. A
description of the tests carried out for each of the functions is included in the following paragraphs.

Wire HP 1645
HP 3314A LXQ20-3 TRO Data orror
Function Power strobe path analyser
RS232 | (Source / sink)

Generator Source Data/Clk
432 kHz wire L] —
Clk (coax) 5V,

15V
DIB
PC
|

50 to 96 pin
adaptor board

Fig. 7. Test setup diagram

19

4.1.1 Data Conversion/transfer test

The purpose of the test is to verify that the onboard (DIB) data conversion and transfer are
being performed successfully.

The raw data came from the data error analyser (HP1645) and is sent through the DIB where
it was transformed from a single bit stream into consecutive 12-bit words and sent to the DSP board
installed inside a PC (simulated subsystem). Once on the DSP board, the data was written back to
the DIB and reformatted from 12-bit words to a single bit stream. The data was then forwarded to
the data error analyser. More information on data operation can be found in section 2.3.1.

To verify that the data has successfully been received, transmitted and transformed, the data
error analyser was monitored during the testing. The testing process was repeated several times to
ensure reliability. The indicator on the data error analyser read “0” meaning that the conversion and
transfer portion of the DIB was working properly. Therefore, the testing of this portion was
successful.

The listing of the test program for the DIB data conversion and transfer can be found in
Appendix C of this document.

4.1.2 Tx/Rx Frame Zero test

The purpose of this test was to verify that the transmission and reception of the Frame Zero
pulse were being performed successfully.

The Frame Zero pulse was generated by the TMS DSP board using the DIB command register
causing a pulse on the J5 connector. For testing purpose, a cable was connected between the output
of the Frame Zero port and its input, creating a loop back of the Frame Zero pulse. Once the pulse is
looped back on the DIB, it can be read by the DSP from the DIB status register. Therefore, both the
reception and the transmission of the Frame Zero pulse are tested simultaneously. To verify that the
Frame Zero pulse was successfully transmitted and received, a logic analyser was also used to
monitor the Frame Zero pulse port. The reader is referred to Section 2.3.2 for more information on
the timing of the Frame Zero pulse.

The listing of the test program for the DIB Frame Zero pulse can be found in Appendix C of
this document.

20

4.1.3 Debug latch test

The purpose of the test is to verify that the onboard 16-bit latches work properly.

The testing of the debug latches consists of simply writing a user-defined 16-bit word onto
debug latch #1 and monitoring the data lines of the latch via the external connector. In addition, the
debug latch operation was tested to ensure it did not affect the other functions of the DIB. This was
verified to be true. The test was performed and was successful for all three debug latches. The reader

is referred to section 2.3.3 for more information on the debug latches.

The listing of the test program for the DIB data conversion and transfer can be found in
Appendix C of this document.

21

5. Conclusion

A multipurpose DIB was designed and implemented for upcoming uplink synchronization
- trials at DREO. The DIB can be used in both the GT and PL simulator subsystems. The DIB formats
a serial bit stream of data from an HP1645 data error analyser into consecutive 12-bit words to be
transferred to the GT processor for data transmission. Prior to formatting the bit stream, the DIB
converts the original RS232 level signal to TTL levels required for the DIB circuitry. The reverse
operation is also performed by the DIB for the PL processor side. The DIB also provides the interface
between the GT and PL simulator subsystems and the downlink synchronization reference serial link.
The link is used to carry a reference of the PL system clock, called the FRO pulse, that is generated
by the PL. The FRO pulse is used by the GT as a starting point for uplink synchronization. Again,
this interface includes the TTL/RS232 conversion of the reference signal. The DIB also provides
three 16-bit debug latches for the user to use as a debug tool. Data lines from one of the three latches
have been brought out to a connector for easier access.

The DIB was implemented and fabricated on a custom PCB. Flexibility was a key aspect of
the DIB design. In addition to designing both the GT and PL requirements for data formatting and
conversion on the same board, an EPLD was used to minimize the number of ICs on the board.
Substituting the various circuits by an EPLD meant rapid development of the hardware as well as
easy customization of the hardware interface. The EPLD is currently programmed to 80% of its
capacity. The circuits incorporated into the EPLD include the interface between the DSP and the
DIB, the data formatting operation, clock signal generation, and command and status register
operations.

The DIB is driven by either a GT or PL processor. The processors for the uplink
synchronization trials are implemented on Spectrum DSP boards and have a DSPLINK interface. The
DSPLINK interface was implemented on a backplane which contains the DIB as well as other custom
interface boards used in the experiments. The DIB is also connected to a data device (HP1645) as
well as a downlink synchronization reference serial link.

A user’s guide is provided in an Appendix B which describes the proper configuration and
operation of the DIB. The DIB was tested and all the functions were verified to work properly.
Appendix C includes the program written for the Spectrum TMS320C25 DSP board to independently
test the DIB.

23

References

1.

Addison, R., Seed, W., “Implementation of an EHF Frequency-Hopping Simulator”, DREO
Report 1279, December 1995.

Lambert, J.D., “DREO/CRC Joint Data Link Standard for Low Data Rate Service to EHF
Ground Terminal Payload Simulators”, DREO Report 1069, February 1991.

Addison, R., “Modified Hopping Synthesizer Controller”, DREO Report 1304, December
1996.

TMS320C25 Processor Board User’s Manual, Spectrum Signal Processing, Inc. Version 2,
September 1988.

The TTL Data Book, Texas Instruments, Volume 2, 1985.

MAX+PLUS, Programmable Logic Development System, ALTERA Corporation, 1995.

25

Appendix A: Hardware & Firmware Details

1. General

This appendix contains the schematics, component list and layout of the DIB. The custom
macros of the EPLD for the DIB functions can also be found in this appendix. The external interface
connectors of the DIB are also described.

2. DIB

In this section of Appendix A, a graphic description of the circuitry of the DIB, its hardware
components and its layout description can be found.

2.1 Schematic

The schematic for the multipurpose DIB is given in Fig. Al

Al

oo

o,
8 i! ;
® T__1
H I
: L
2
39 9
£pes
g f
o zazyd
il <
g_<l—| l—ll' mT——{h TIRRERER BRYMREZE
»-.LI. P E I P EEEEERER :
FR2 3 -y ERRE I P] § feo |'<
g g 1““ i 3 i i Eis ol.1.) HEEBE RN
w zuzal IRIEIEL § ssys 8 UV <;<><;.h;(;¢§ RARNAREN ARRAREAR
3335838
T ST T TH WY 3553553 ! e e
SR ~' i SN TR OO
33 eenesoeslt lsg evsessesl
ME RN HE ME RN NEEEE
H | 1
: s o 4395753 55%53555
A
| I
.l .2 - ﬁl ' cepzesse ezl
B e R R e
efesecpeneeeenl
i3
z: : :L o
T w] Lood = <| o wlale]e
] : : : : = ofel<lo HE of o] o] o|] 2| 2] =
Tior wx o= = 202292929 2e%92229
= s P = g £
d 7 o
Lo o !i @ =k l3g eezeases EIXIIIILE
o w1 2 i A s
:: :: o o 't T: =f=| T:l HEHE
o o
= + o 2 L o
= = b
st i :
FEEE ME: ﬂﬁliiii)i
iihnenuuuh 4
'l""[""‘”s:r#i:l:,];:l
GEE
e
I LEEEED g 3252555 P —
HEEH #g[<
Yy = w1221 Py @ 1237233 TRR92229 2297929279
5| § s § L § 8] 5
s sazssaal s ssssasy lap ensvnere I35 2asorecsy
L EEEEEE =2 2=|g[=f2]2] 5 'T: 1 =l 'T:l"‘“'::::
1 1
g
2 EEEEEEED L HEEE e g)“a 33 dlelzlzlalz51
L Vi J

ferram

L7
:
:
:
:

Fig. A1 Data interface board schematic

2.2 = Layout Description

The printed circuit board layout of the DIB is shown in Fig. A2. All parts are standard off-
the-shelf. The EPLD is the only component that will need to be modified (programmed). This
EPLD contains most of the interface logic for the address decoder, data formatting, the clock signal
generation, command and status register operations. Fig. A2 reveals the position of the six 8-bit
latches used to form the three 16-bit debug latches which are used for debugging purposes. Line
drivers used to convert TTL signal to RS232 signal and vice versa are also shown. The buffers are
used to isolate the signal for DSPLINK lines coming from DSPLINK backplane. There is an unused
IC socket on the board (Spare) to allow an TTL IC to be implemented for debugging purposes or for
future expansion. ‘

Front Pane]

Fosio J0 0 aehes :
o7 : : :
- g i Doens N
: . Us -
: I #1LSB :
uUs . . : :
Frosw I8 ¢ Foamss 0
Us : : u1o
....................... : #2 LSB .
- : :
e | k
vI2 :
EPLD : #3 LSB :
[| EPM51281C-1 g : :
ve i | §
N us M
—— . #1 MSB

- : :
Switch (SW1) : . :
@ P #2MSB :
RESDIF : :
P 0
LSB: Least Significant Bi : vis
®0-D7) | D BMsB

MSB: MOSt slgniﬁcmt B,L :ﬁ"j‘f.fé;s --

(D8 -D15) :
. 7415244 7418245 74L8245
B : Capacitor 0.01 pF r 7 l. L Uz J. r o1].
DC1-DC13 O I
@ : Capacitor 1 yF X %
C9-C13
M - male + @1 Orr: O3 ®rr

F - fomal e
- €
e Backplane Connection (J3) (96-pin/M) y)

Fig. A2. Multipurpose DIB printed circuit board layout

A3

23 External Interface Connectors

2.3.1 Front Panel Connectors

The front panel layout as seen when the DIB is installed in the DSPLINK backplane is shown
in Fig. A3 and consists of 3 connectors J2, J4 and J5 which are described below. The position of the
DIB interface connectors shown in Fig. A3 correspond exactly to its associated connector on the
printed circuit board. Fig. A4 to A6 show the pinout of those three different connectors.
Furthermore, Tables A1 and A2 identify the signals for connectors J2 and J5 respectively

J2: Connector for data 1/0 (9-pin RS232/M)
J4: Connector for debug latch #1 (26-pin/M)

J5: Connector for FRO Strobe
(9-pin RS§232/F)

M -- Male

Fig. A3. DIB front panel layout

[20 Ny VK
)
5

Fig. A4. Debug latch #1 external connector .(J4)

D0-D15 Sixteen (16) TTL data lines for transferring data from the debug latch
#1 to a monitoring device.

Gnd Digital ground.

Pins 18-26 Not used

A4

1 2 3 4 5 5 4 3 2 1
ERRERR pooooano
RRERER goooan
6 7 8 9 9 8 7 6
Fig. AS. Data Fig. A6. FRO pulse
source/sink external external connector
connector (J2) male (J5) female
PIN Description PIN Description
1 not used 1 not used
2 Transmit data 2 FRO in
3 Read data 3 FRO out
4 Ground 4 not used
5 not used 5 Ground
6 Transmit clock 6 not used
7 not used 7 not used
8 Read clock 8 not used
9 not used 9 not used
Table Al. Data source/sink Table A2. FRO pulse
external connector (J2) . = external connector (J5)
pinout description pinout description

2.3.2 Backplane Connector

On the side opposite the front panel is a standard 96-pin connector (J3), connecting into the
backplane which contains the DSPLINK interface defined in row C from Table A3. The DIB makes
use of the DSPLINK interface (row C) and the data clock. Descriptions of the pinout configuration
for each of the pins are included below.

Fig. A7. DSPLINK backplane connector (J3)

A5

PIN ROW A ROW B ROW C
1 HOP CLK DO
2 NHOP CLK D1
3 D2
4 RESERVED D3
5 RESERVED D4
6 RESERVED D5
7 RESERVED Dé6
8 RESERVED D7
9 GND RESERVED GND
10 DATA CLK RESERVED D8
11 GND RESERVED D9
12 D10
13 D11
14 D12
15 GND D13
16 D14
17 GND D15
18 NWR
19 GND NIOE
20 RESERVED GND NINTO
21 RESERVED RESET
22 RESERVED CLK/2
23 A0
24 GND Al
25 A2
26 A3
27 FLAGIN
28 -5V ANALOG FLAG OUT
29 +5V ANALOG
30 A GND
31 -15vV +5V STBY +15V
32 +5V +5V +5V

Table A3. DSPLINK backplane connector (J3) pinout configuration and description

A6

DO0-D15
GND

NIOE
NINTO
RESET
CLK”2

A0-A3
FLAGIN

FLAGOUT

15V

-15V

v

-SV ANALOG
5V ANALOG
AGND

SV STDBY

HOP CLK
NHOP CLK
DATA CLK

RESERVED

Sixteen bi-directional TTL data lines of DSPLINK
Digital ground

DSPLINK read/not write line originating from the
DSP to signal the direction of data transfer. The “not
write” nomenclature denotes an active-low signal for
the WRITE signal. The direction is determined from
the point of view of the DSP (i.e. a WRITE refers to
data being transferred from the DSP to the DIB.

An active-low, input/output enable signal indicating
an access on the DSPLINK originating from the DSP.

- A negative-edge triggered, or active-low interrupt

signal on DSPLINK. This signal is not used by the
DIB.

- DSPLINK reset line. Th1s signal is active-low. -

General purpose clock signal on DSPLINK originating
from the DSP. This signal is not used by the DIB.

Four buffered TTL address lines of DSPLINK.

General purpose input line on DSPLINK readable by
the DSP. This signal is not used by the DIB.

General purpose output line on DSPLINK writeable by
the DSP.

15 volts power supply.

-15 volts power supply

5 volts power supply

-5 volts analog power supply
5 volts analog power supply
Analog ground

5 volts standby power supply. This signal is not used
by the DIB.

Hop clock signal provided by another source. This pin
is not used by the DIB.

Inverse hop clock signal. This pin is not used by the
DIB.

Data clock signal provided by another source to the
DSPLINK backplane.

Reserved lines for the DSPLINK backplane

A7

24 Key Component List

A list of the components which were used for the DIB are provided in Tables A4, A5, and
A6. The component labels listed in each of the tables correspond to the labels used on the printed

circuit schematic in Fig.Al.

24.1 Integrated Circuits

[]—30ard Component Type Name
U1, U2 74L8245 Octal bus transceiver
U3 74LS244 Octal line driver
U4 EPM5128JC-1 Altera 128 macro-EPLD, 30 ns
U5 T4ALS240 Octal inverting line driver
U6 MC1488 Quad line driver
U7 MC1489 Quad line receiver
U8,U9,U10,U11,U12,U13 74LS273 Octal D flip-flop with clear
Table A4. Integrated circuits
2.4.2 Discrete Components .
Component Type J_I
DC1 -DC13 0.01 pF
RESDIP Resistor DIP, 7 wide, 20 kQ
C9-C13 10 pF Tantalum
TP1 - TP4 Test point post
TP1: monitors line B31 on J3 (+5V STBY)
TP2: monitors line A22 on J3 (free)
TP3: monitors line A27 on J3 (free)
TP4: monitors line A29 on J3 (free)
Switch (SW1) DIP switch, single throw, 7 wide
Spare Unused socket position available for expansion

Table AS. Discrete components

A8

2.4.3 Other Components

Component Type

J1 Not used

J2 9 pin connector, RS232 type, male

I3 96 pin connector, triple row, 0.1" spacing, male
J4 26 pin connector, double row, 0.1" spacing, male
J5 9 pin connector, RS232 type, female

Table A6. Other components

A9

3. EPLD Description
3.1 General

This section graphically describes the firmware used in the EPLD Altera EPM5128JC-1. The
EPLD was configured with the MAX+pluslI compiler installed in a PC and then loaded on the EPLD
chip using an interface board and a programming unit.

3.2 EPLD Schematics

The EPLD, Altera 5128, is an erasable programmable logic device that replaces a collection
of TTL logic and reduces significantly the number of ICs. The EPLD is programmed using the
MAXII + Plus software from Altera. At present, the macros have used about 80% of the EPLD
space. The EPLD schematic shown in Fig. A8 includes several custom macros in order to simplify
the total logic circuit of the EPLD. Each macro is identified by the box drawn in a dotted line. The
* custom macros are listed in Table A7. Each of the macros are described in the following sections.

Macro Name Description of Macro Reference Fig.
Clocks Clock generation Fig. A9
Address . Address decoder Fig. A10
Comd reg Command register Fig. All
Tx_Shift Transmit Shift - conversion from Fig. Al12
12-bit word to a 1-bit data
stream

Rx_Shift Receive Shift - conversion from Fig. Al13
a 1-bit data stream to a 12-bit
word

Rise Det Rise Detector - status bit Fig. Al14
generation

DFF_Plus D-flip-flop Plus - status bit Fig. A15
generation

Table A7. List of EPLD Macros for the DIB Functions

All

weidelp @'1dd "8V 814

HARS MM [
$AVATWAN
GHOO ™ UNN |—
STV I — gy
- 3
T uaxa4s Lan e
.. ry _
g s se
Lasaun —* “— ,...car?.—hﬂ.ﬂ:bb”ﬂﬂ.mmﬁo I_
- m : ol e — T o T |
MIGMATaIH HNTI0THOLWI P iy LAGANF T BHATOL H38..:
ALSHITOTIH NIOTLAINS [— —
1no-waiva avon~xs|— d38
: (@ "STIW fu |.|._
: — H O i e e e e e
oo AITUSTHY { TN REBEMN AL TS _
[L uamanen o ERER T B TS _
—_—— CAQERY T Nt.....u.:ﬁ-.:.wm
R AW TuTIes _
feeeeaas s T ST SRR PO : Iﬂ P 'mﬂu
i A®agTPY CJoaotEk TAGANT T AEXN/QRYF27 128 . . 1
PUODTIN C ihaing. BT uo eund uo
w3eapa oy : cvmans [rasanBrInes
T e e —
1 = - : TWTas -~ I T Y SRDITTIRIIR P RPRRIPRIPERPILD .
A4 : e ”.rman_.ﬂ:mﬁ:
: —{ivis—aun Py - : _
B _ R TAGERY T =1
s e P - N ™ - — WI-IAU
TS oyl 8 5.8 AMQTONMN o d » wﬂ _
............. gla: . fwiva—unn 201w _
............. YR unn
............................ Slee g T
.............) g ' A3 3uN
.......... SJEH 189" auvud
.......... ! AuisTaumn
. iars
HOLUITQuUN
[@--NTIA usaNA~aIN
asaiaman|— ey s
ni~vival— 1A% AU |—
w10 Hosu ey, & x=310 TCOHs/GBEETVIS| — |_
- : : : : - i : e it -
: bl : OA NI »o nzCLTNNOX [— TN o MRERTHTAX. _
AU N i g ; bntetadbatilalieied g IR . earaTATIX ..
: S3001D : —_
.. S0 SUUE
nuE1dsa N2919 1 3
T T 8667-,.68-3 waT:a7 nu_
40 133U Asua
Y aau ea’¥ :u.:::_ D azis
NRIUOWTE S@AA
PELTIRY 1|
Jd8Wsi8870380 |, .-
mHo FraFRPFY

Al2

3.2.1 Clock Generator Macro

The clock generation macro shown in Fig. A9 produces two clock signals which are required
for the data transformation process. The two clock signals required are a 2.4 kHz data clock signal
and a 200 Hz clock signal. The 2.4 kHz signal is used to shift the bit stream to and from the data
device. The 200 Hz signal, derived from the 2.4 kHz data clock signal is used for moving 12 bits
of data.

There are two ways in which the two clock signals may be generated. The first method is
a straightforward one where the 2.4 kHz data clock signal is directly provided by the user via the
external clock input on the DIB. This is represented by the XClk 2400 signal from Fig. A9. The
200 Hz signal is subsequently produced by dividing the 2.4 kHz signal using a divide-by-12 circuit
(7492). The divide-by-12 process actually occurs in two stages: a divide-by-2, followed by a divide-
by-6 stage as indicated by the feedback from the QA output to the CLKB input of the 7492 device.
The resulting 200 Hz signal, labelled Clk 200, is produced at the QD output of the divide-by-12
circuit.

The second method for producing the required clock signals consists of the user providing
a 432 kHz clock signal via the external clock input on the DIB. The 432 kHz input signal option
originated from requirements for the DIB used in the downlink synchronization experiments. This
option was retained to allow flexibility in expanding the number of clock signals that could be
generated. The clock generation macro again divides the 432 kHz input clock signal to produce the
required signals. The generation of the 2.4 kHz signal is achieved by dividing the input clock signal
by 180. This is implemented in two stages: a divide-by-90 and a divide-by-2 stage. The divide-by-
90 function is effected by an 8-bit up/down counter which is loaded with an initial value of 90. In
this implementation, the counter is configured to count down. When the counter reaches “0”, it is
reset and reloaded with a value of 90 and the process is repeated. The output of the down counter
is a 4.8 kHz (432 kHz/90) signal which is then divided by two via a toggle flip-flop (TFF in Fig. A9)
to produce the needed 2.4 kHz. As in the first method, the required 200 Hz signal is generated by
dividing the 2.4 kHz by 12 as described in the previous paragraph.

A multiplexor is used to allow the user to select which method is used by the EPLD to
produce the required clock signals. The selection is determined by the Sel_2400/N432 line shown
in Fig. A9. When the line is “high”, the 2400 Hz clock is used. Conversely, when the
Sel_2400/N432 line is “low”, the option to use a 432 kHz signal as the input clock signal is selected.
The Sel_2400/N432 line is set by a dip switch on the board which is described in Appendix B.

Al3

0JIBJA] 20)BIAUIS) WO “6V “Sig

-UOLI-— -4 vd

...... &
gy :] o N et e et - .&.um
G BES TS ¥ uu...::.o : o TToaN] BEXN/OBYITIRS.
:..8038 112 CHinaran T ac anto— i i
Teiees - el - v ieae e abaaae et .
: v WILNNOO ®asans
—lad auwo :
: - %70
L] vulo :
“mErr— wu0 o=
.......................... nazs o
: . : anwa [
s |— = i—{1noo ws -y
e e, - : : : : : :
;eava NI2 C naann: —1* ‘= : Seuat e N
S - : as —lon ”
................. 1 —1+® 4t ﬁIIIIIIIlI|IIII
colgw .I|HO a (YUS) o6=3juno)
189 | —{an ol— b e —
Hon o|—4
F TS [y .
e [y ==

T T _
40 Fe P 1013

Y

| IR,

NBLUOWTTE SOAA

28K/ 1880380
sns01D

Al4

3.2.2 Address Decoder Macro

The address decoder macro is illustrated in Fig. A10. The address decoder generates the I/O
port select lines for the EPLD. The I/O port select lines are labelled NWr_Data, NRd_Data,
NWr_Comd, and NRd_Stat. These lines correspond to Write Data, Read Data, Write Command,
and Read Status respectively described in Section 2.4.2 in the main document. The four I/O port
select lines are represented by four outputs of a 3-to-8 decoder. The select lines are generated by
decoding the NWR (read/write) line and the A0 address line both from the DSPLINK interface. A
third input is tied to ground. A 3-to-8 decoder was used rather than a 2-to-4 decoder to facilitate
future expansion.

With the 3-to-8 decoder, two enable signals are available for the address decoder macro to
ensure that a valid I/O access is taking place and that the DIB is being addressed. The first enable
signal is provided by the NIOE signal from the DSPLINK interface. The NIOE is an active-low
signal which is generated on DSPLINK when the DSP initiates an I/O access to an external board.
The other enable signal is provided by the output of a comparator which is included in the address
decoder macro. The comparator is used to verify the base address of the I/0O operation. The base
addressing scheme ensures that multiple interface boards using the DSPLINK do not use conflicting
addresses and is described in Section 2.4.1 of the main document . The dip switch settings of the
DIB for selecting the base address are compared with the A1, A2, and A3 address lines of the I/O
operation. A “low” signal is produced at the comparator output only if the base address used by the
DSP matches the dip switch settings.

In order to isolate the data lines on the DIB from the DSPLINK data lines when the DIB is
not being addressed, two 8-bit buffers, 741.5245, are used on the DIB. The 74LS245 buffers include
an enable line which can be used to disable the device, effectively isolating the data lines. An
additional signal, NBuf_En, is generated in the address decoder macro to perform this function. The
NBuf_En signal is an active-low signal which is generated by a logic OR of the NIOE signal and the
output of the comparator. In other words, a “low” signal is produced to enable the buffers when both
a valid I/O operation is occurring (NIOE is “low”) and the board is selected (output of the
comparator is “low”).

AlS

3eysTpuN
CpwodTUMN

‘ejed T pPuUN

rejeqT udMN

0.1DRJA] JAPOII(SSAIPPV O1V ‘Tid

‘oD
............................ AN
eT.]...:

wo |

: g it eeeeees e “
°b | — Tadni = W I®S
od -

n g e
™I Tha . W I®S.
td -

“ Rt =
b — T A .ﬂ..u.t......n...u.m:....:m
ad -
€d

Aunda €d
»b
b d
G e .
sb TAdN . — ed. .
Sd s Creeeenes
20 :
94
PX.}
&d
889V
T T ; L66T-28-E e@8T:TT_ -
40 LIIAHS 24Ua
c Lt aa ' .ﬂ o g AZ IS
neauow SIS A
.“ m > HIAND I S3Q
JsW/i18ss03ya .
ssaJappy
3L L

Al6

3.2.3 Command Register Macro

The Comd_Reg macro is illustrated in Fig. A11. The Comd_Reg macro provides the
necessary logic to allow the user to select whether data is to be transferred to the data buffer or to
one of three debug latches on the DIB. It also allows the user to issue a software reset of the DIB
or to send a FRO pulse. These operations are described in Section 2.4.2 of the main document.
When a Write Command operation is performed by the DSP, the NWR_COMD select line generated
by address decoder macro causes data lines A[0], A[1], and A[2] to be stored in a latch and A[15]
to be stored on a flip flop. A[0], A[1], A[2], and A[15] correspond to the data bits (D0, D1, D2, and
D15 respectively) on the command register described in Section 2.4.2. Hence, A[0] and A[1] are
the data destination selection lines, A[2] is the FRO out line, and A[15] is the software reset line.
When the FRO _out line is latched, the output of the latch, labelled FRAME 0 in Fig. A.11, is
transferred directly to the TTL/RS232 conversion circuitry. The software reset line is combined with
the DSPLINK reset line, NRESETH, to generate the board reset line, NRESET. The inclusion of
the DSPLINK reset line allows the DIB to be reset using either a hardware or software reset.

As the DIB allows the user to transfer data to multiple locations on the DIB, a second level
of decoding is required to produce the appropriate select line for transferring data to the DIB. The
select lines, Tx_Hold, DEBUG_1, DEBUG _2, and DEBUG_3 are generated by decoding the latched
A[0] and A[1] lines, labelled Q1 and Q2 in Fig. A9, using a 3-to-8 decoder. Again, a 3-to-8 decoder
is used in lieu of a 2-to-4 decoder to allow additional select lines to be generated in the future if
required. The generation of the appropriate select line takes place upon a Write Data operation
whereby a “low” NWr_Data signal is produced from the address decoder macro to enable the 3-to-8
decoder. The actual data transfer occurs during the Write Data operation.

Al7

018N 1935183y puswwo) IV ‘314

a7y

M - %70

nu1o

o YN »a

. Y za
7 | gmm ”
b sa TIRAN), o =1 5 [T :

—i=o sa
: A g
—~* va Traa L3l :
- E 43 o .

ze zaQ

b ¢] Ta
........ T T _ 966T-aB-+ =L¥:8 *
40 LBIAHS IANG
hd ’U‘— 20 °T MIASHNAN o 3ZIS

nesuowIs SeAA

SNDJ/Qa3-03d0

ANULEHOD

SaJa " pwo
P 2 ERYS PN

Al8

3.2.4 Transmit Shift Macro

The purpose of the TX_Shift macro is to take a 12-bit word, transferred from the DSP, and
convert it to a single bit stream that is to be forwarded to the data sink. The 12-bit word is located
in the lower 12 bits of the 16-bit DSPLINK data interface. From Fig. A12, the 16 data lines from
the DSPLINK interface, labelled A[15..0], lead to two 8-bit latches. Data on the lines are stored on
the latches upon the rising edge of the Tx_Hold signal. The Tx_Hold signal is the I/O port select
line generated by the secondary level of decoding of the command register bits DO and D1 which
is described in Section 4.2.3 of this appendix. The Tx Hold signal is selected or active during a
Write Data operation where the data buffer is selected as the destination of the data transfer (i.e. DO
and D1 of the command register are both zero). The latched data is transferred to two 8-bit shift
registers which are connected in series. The data is “shifted” out one bit at a time on the Data_Out
line using the Shift Clk signal. For the uplink synchronization experiments, the Shift_Clk is the 2.4
kHz clock provided by the user. It is noted that the data lines are bit reversed between the data
latches and the shift registers so that the least significant bit (LSB) is shifted out first. The shift
process is controlled by the Latch Clk signal which is generated by dividing the 2.4 kHz data clock
by 12 yielding a 200 Hz signal (See Section 4.2.1 of this appendix). The Latch_Clk signal is used
to generate a low signal to load the next 16-bit word from the data latches to the shift registers. By
generating the load signal using the Latch_CIk, the shift process is effectively limited to 12 bits after
which the next data is transferred to the shift registers.

There are also two status lines which are generated by the TX_Shift macro. They are the
Hld_Empty and Hld_Under lines, which allow the user to monitor the data flow process of this
macro. The two lines correspond to the TXMT and TXUND bits of the status register as described
in Section 2.4.2 of the main document. The Hld_Empty signal is generated by a flip flop circuit
defined under the Rise_Det macro which is described in Section 4.2.6 of this appendix. A “high”
signal is produced on the Hld_Empty line on every rising edge of the Latch_Clk to signal that the
16-bits from the data latch have been transferred to the shift registers and that the data latches are
ready to store the next 16 bits. The Hld_Empty signal is cleared only when the next 16-bits are
transferred from the DSP, i.e. when a Tx_Hold signal is generated. If no data is transferred to the
data latches by the next rising edge of the Latch_CIk, the “high” level Hld_Empty signal is latched
onto the Hld Under line indicating that an underflow condition has occurred.

Al9

oudEIA YIS NWsuBL, “ZIV ‘314

&
: AL2S UM n

e e as i e 10: wIoN

UNTPTH C naane: g u1o

H L3S 3uN
faszun wiom
- ™ N0

43S 3uM
1S I WM ‘..-ol.lm‘
fasau w0l
fanb® [oamaTeETy
R T PTT die
: : Aoy .
s . »70 [— TTaa . MIDTAATYS,
['R MiIN0 .
40 H..ﬂ-““.“l ‘IﬂJ‘hQ‘.Qu
uas . 0 — aan i —— m..um..t.wo.m..-;m

(T-"81b NuU9 D—
- "sla

[] »I0

“e® HINTO ® »v0 |—
ey aas [STRPST R TY o
- . : SO OUNT PP PROPTIN -
te-21a [LY ®la TAGART [elrlaxlw
uas acLlavi
s | e
_ TEsusABy 378 _ T T — leeT-20-€ waa:Tr °°
. UGOE 40 AZINS 21uaq)
—IIIlIII.l' v DHI_ ee’ 3 ‘Hl!:l_ UHN.U

NRBUOWEE SQAA

JI8W/7188703d8a0
FFTFUBT XL

ANULNOO

EaFYFS

A20

3.2.5 Receive Shift Macro

In the RX_Shift macro, there are two separate circuits which are implemented. The first is
the transformation of a bit stream of data coming from a data source, the Data_In line in Fig. A13
to a 12-bit word. This process is basically the reverse of that described for the TX _Shift macro. The
second circuit contains the logic required to form the status register which is read by the DSP.

For the data transformation, two 8-bit shift registers are connected in series as for the
TX_Shift macro. A single bit stream of data (Data_In) is shifted into the shift registers using the 2.4
kHz Shift_Clk signal. When 12 bits have been shifted in, the Latch_Clk signal will trigger the 12
bits to be transferred in parallel to the internal latch with the 4 upper bits tied to ground. When a
Read Data operation occurs, the multiplexor transfers the data lines from the internal latch to a 16-bit
buffer where it can be read by the DSP.

The status register is defined by 5 bits as described in Section 2.4.2 in the main document.
The lines labelled “S15” and “S14” are related to the data transformation process described in the
paragraph above and correspond to status bits RXRDY and RXOVR. The two lines are generated
in the same manner as the Hid_Empty and Hld_Under lines in the TX_Shift macro described earlier.
For the RX_Shift macro, a “high” signal is generated at the output of the Rise_Det macro on every
rising edge of the Latch_Clk. This “high” signal is the RXRDY signal on the status register which
informs the DSP (user) that 12 bits are available to be read. The RXRDY signal is cleared when the
data is read from the buffer. If the data is not read by the time the next 12 bits are available, a second
flip flop (labelled DFF_Plus) produces a “high” Rx_Data_Overflow (or RXOVR on the status
register) signal indicating an overflow condition has occurred. The third and fourth bits of the status
register are the Hld_Empty and Hld_Under lines which are produced by the TX_Shift macro. The
fifth status bit is the FRO line from the separate serial link connecting the PL and the GT. The five
status bits are presented to the other port of the multiplexor with the lower 10 bits set to “0”. During
aread status operation, where the NRd_Stat line becomes active (“low™), the status register bits are
transferred through the multiplexor to the buffer (labelled, Tri_B) to be read by the DSP.

3.2.6 Rise Detector Macro and D flip-flop Macro

The Rise_Det and DFF_Plus macros, shown in Fig. A14 and A15 respectively, are used in
the TX_Shift and RX_Shift macros to generate the status register bits. They are both based on a D-
type flip flop and are cleared by an appropriate NClr or NReset board reset signal. The selection of
the NClr signal is discussed in the TX_Shift and RX_Shift macros. The NReset signal is described
in the Comd Reg macro.

In the Rise_Det macro, the input of the D flip flop is tied to Vcc. Consequently, on the rising
edge of the Clk signal, the Rise_Det macro produces a “high” signal at its positive output. The
output is cleared (i.e. returned to “0’) only when an active-low NCLR or NRESET is received. This
macro is used to generate the two status bits TXMT and RXRDY as described in Section 4.2.4 and
4.2.5 above.

, the rising edge of the Clk signal causes the input to be latched to the

output of the flip-flop. Again, the output is cleared when an active-low NCLR or NRESET is
received. This macro is used to generate the RXOVR and TXUND status bits as described in

Sections 4.2.4 and 4.2.5 of this

appendix.

In the DFF Plus macro

0IOBIN YIYS AA123Y €IV “B1d

.::.z......
o un ="

lant” CooN
N e pr LR L T
,(nﬂ....” T . MO TTRUN.

Y

d 1 : H
Andul Iqodlg O mmed TT8 ”::U—e,ﬂ
MOT jampun PIOH X1 ars TN

Ayduz pTOH 24 p €16 [T A) 2308
: IYTYTT]
—lon wow |
— nol—
| MOTIIBA0 ®Ima XY (213 ol T -
i sntd-d4a 239 BUN e
.......................... —anzun won
OV OPNOP PSPPSRI og Y
IO, Y8 Clinaane S76 : a-l..n_lll ._..~...o
Ty T R R
e TT) i
e
—lse PETY IR
i PTY nv0us |
—Jae nunows -
fta® nou|—
oL: Le l”do: -
v||..—....m law [~
EXNE :

. v1: : gyt .
TS~ aTI0 ’ SETEE ua— oo o) MITeawa
. -l.wl..—.lml..hu uous | —
NIRRT X @ Zi T eep— gt eereeee et o "
: i) —t o1] ORS N Taawi . MxoTye e
: [PRRPE I B = 61 . MeMpT—
O . I | ~Ii ST SO "
XOHBXE TTL T 2 T TR L MIDT TR
{TuAxIidiiten o x ‘& n:ﬂv T T _ 266T-L0-€ ®E€3:TT
f®-sla I.. : 40 AIINS
(- -23w ITj_—Ju.Inuu:u. H v :n.._ ea'y ..Juh..l.:.w_l 2
e ——rE TS TTO 23 s neeuow saA
XNHexXa : t L I8 A uawmisaa
... . 38R/ 168870340
I TUSTXY

A22

TITLE

Rise_Det
DREO/SST/MSC

COHPANY

DES IGNER N
Yves Simoneau

SI1ZE

A

NUHBER 1.60

REV

- DATE
il

11:22a

3-87-1997

SHEET

OF

e

WOt

Fig. Al14. Rise Dectector Macro

TITLE

DFF_Plus
DREO/SST/MSC

COHPANY

DES I GNER N
Yves Simoneau

NUHBER 1.08

S1ZE
A

SHEET

DATE
3-87-1997 1 1

11:22a

ig

Nl|Te|E
ho1l
e
T4
NS

Fig. A15. D-Flip-Flop Macro

A23

Appendix B: DIB User’s Guide

1. General

This appendix covers the information required to install, configure and use the DIB. The
latter consists of a description of the modes of operation and examples of working with the DIB.
The examples given are: reading the status; giving a command; reading the data from a data source;
sending the data to a data sink; resetting the DIB; writing to the debug latches; and
transmitting/receiving the FRO pulse. Sample code for each of these operations is included.

2. Installation

In order to facilitate the implementation of all the interface boards for the uplink
synchronization experiments, a chassis which provides a DSPLINK interface and additional clock
signals on a single backplane is used. The DIB is installed by sliding it onto the backplane,
connecting its 96-pin connector to the rear of the backplane itself. The backplane is connected to
the DSP by an extension card and a 50-pin ribbon cable. The extension card was fabricated to map
the 96-pin backplane to the 50-pin DSPLINK interface on the DSP board. It is recommended that
the cable from the backplane to the computer be no longer than 3 feet to minimize losses which
would corrupt the signal.

Once the board is correctly installed onto the backplane, the connections to the front panel
can take place. The data port, labelled as J2 in Fig.A3, should be connected by an RS232 cable to
a designated data device. For the uplink synchronization experiments, the data device used is the
Hewlett Packard 1645 data error analyser. The DIB will either send serial data through that port or
receive it.

The FRO port, labelled as J5 in Fig.A3, is connected to the FRO port of another DIB via a
separate RS232 cable to realize the downlink synchronization reference link. In the uplink
synchronization experiments, the RS232 cable from the DIB located at the PL simulator subsystem
is connected to one of the ports of a statistical multiplexer (stat mux). The stat mux is connected to
a serial communication link setup between the transmit and receive locations at DREO/CRC. At the
other end of the serial link, the connection is passed through another stat mux to the port connected
to the FRO port of the GT DIB.

A 26-pin connector is also provided to the user to access the data 1iﬁes for debug latch #1.

This facilitates the use of a logic analyser to observe the data stored on the debug latch. The data
lines for debug latches #2 and #3 may be accessed by probing the chip.

Bl

3. Configuration

In the middle of the DIB, a 7-pin wide DIP switch is accessible (see Fig. Al of Appendix A).
The switch is used to configure the board and includes the selection of the base address of the DIB.

The details of the DIP switch settings are given in Table B1.

L Switch Selects Position TTL Value Value
SW1 Not Used X X X
SW2 External Clock Closed/On 0 432 kHz

Selection Open/Off 1 2.4kHz
SW3 I/0 Format Closed/On 0 RS232
Open/Off 1 TTL (not used)
SW4 Not Used X X X
SW5 Base Address Closed/On 0 Disabled
selection/ Open/Off 1 Enabled
Address Line #3
(MSB)
SWe6 Base Address Closed/On 0 Disabled
selection/ Open/Off 1 Enabled
Address Line #2
SW7 Base Address Closed/On 0 Disabled
selection/ Open/Off 1 Enabled
Address Line #1 (LSB)

(X - don’t care)

Table Bl. Configuration DIP switch settings.

The switches, that are being used, are described in the following paragraphs.

External Clock Selection (SW2): The DIB can work with two different input external clock
speeds. One being at 2.4 kHz and the other at 432 kHz. The default setting is at 2.4 kHz
which is the rate required for the uplink synchronization trials.

I/0O Format (SW3): The DIB is designed to be able to transmit and receive user data in two
possible formats. The first possibility is an RS232-level signal and the other possibility is
a TTL-level signal. There is currently no port setup for the TTL I/O signal on the DIB.
Thus, the switch must be closed to select the RS232 signal option.

B2

Address Lines 1.2.3 (SW 7.6,5): These three dip switches are used to assign a base address
for the DIB. Eight possible base addresses for the DIB are provided by these dip switches.
Address lines 1, 2, and 3 (A,, A,, A;) are compared with address lines Al, A2, and A3 of
DSPLINK to determine whether to enable the DIB for the DSPLINK I/O access. For
example, if A, =1, A,= 0, A,;= 1, a base address of 10 is assigned to the DIB and along with
address line A0 of DSPLINK, only 1/O accesses through DSPLINK using addresses 10 and
11 would enable the DIB.

3.1 DIB Applications

For the uplink synchronization experiments, two DIBs are needed to establish an end-to-end
data transmission link. Each DIB is used differently depending on whether it is located at the
transmit or receive stations. On the GT transmit side, the DIB is used with the HP1645A as a data
source generating the data to be transmitted while on the PL receive end, the HP1645 is connected
to the DIB as a data sink. There are no physical settings or switches which need to be set to
differentiate the two operations. The selection of the application is done automatically through the
manner in which the DIB is addressed. The same is true for the FRO pulse. The FRO port of the DIB
is used to relay a reference pulse from the PL to the GT. Transmitting a pulse through the FRO pulse
involves writing “1" and “0" to the appropriate bit in the command register. By the same token,
receiving the FRO pulse is achieved by reading the status register.

4. Operational Procedure

The following section describes in further detail the procedure or sequence of events required
to operate the DIB correctly. The process of retrieving data from and transferring data to the DIB
is explained. The procedure followed to receive and transmit the FRO pulse, to address the debug
latches and to give a reset to the DIB is also included. These procedures are shown in sample code
written for a Spectrum Signal Processing Inc TMS320C25 DSP board.

4.1 General Operation
4.1.1 Reset

There are two different ways to reset this board. The DIB can be reset using either a
hardware reset or a software reset. Generally a hardware reset takes place upon power up of the DSP
board via the RESET line of the DSPLINK interface. During a hardware reset, all components of
the board are reset or cleared. For the software reset, all components except the debug latches are
cleared. Since the output of the debug latches was of interest only when a value was written to them,
it was decided that a software reset capability was not required for the latches. A software reset is
given by the user via the command register of the DIB as described in Section 2.4.2.

B3

The software reset pulse for the DIB is an active-high signal. In order to generate a software
reset pulse for the DIB the user must first write a “1" to bit 15 of the command register. The DIB
circuitry will then generate the appropriate “high” or “low” signal for the various components on the
board. After the reset occurs, the command register must be returned to its initial state (i.e. the reset
must be cleared). The user must write a “0" to bit 15 of the command register to clear the reset line.

The following is sample code written for the TMS320c25 DSP board to perform software reset of
the DIB:

BOARD .set 0 ;base address of DIB = 0

COMMND .set BOARD+1 ;COMMAND port address

RESHI .set 8000h ;Set reset bit (D15) to “high” command
RESLO .set Oh ;Clear reset bit command

; Sample code begins here

OouT RESHI, COMMND ;send a “1" to D1S

NOP

NOP

NOP

ouT RESLO, COMMND ;send a “0" to D15,clear reset

; End of sample code

4.1.2 Selecting the destination for the data transferred to the DIB

The process of transferring data to either the data buffer or one of the debug latches involves
two steps as described in Section 2.4.2. First the user must select the destination which is
represented by DO and D1 of the command register. To select the destination, DO and D1 of the
command register must be set to one of the values defined in Table B2. Thus, for normal operation
of the DIB, bits D0 and D1 should always be set to ‘0’.

Command Register Destination selected JJ
D1/D0 value
00 Data buffer
01 Debug Latch #1
10 Debug Latch #2
11 Debug Latch #3

Table B2. Settings for selecting destination of data transfer to DIB

The following sample code for the TMS320C25 DSP would be used to select debug latch #1 as
the destination of the data transfer:

B4

BOARD ’ .set] ;base address of DIB = 0
COMMND .set BOARD+1 ; COMMAND port address
SEL_LAT1 .set 1 ;select debug latch #1
; Sample code begins here

ouT SEL_LAT1, COMMND

; End of sample code

The procedure for transferring data after the destination is selected is described further in the next
section.

42 Data Operation
4.2.1 Read Data Example

The following paragraphs describe the procedure for reading data from the data buffer of
the DIB. It is assumed that the board has a base address of ‘0’ (i.e. Al, A2, A3 = ‘0’) and the
read operation is continuous. For a read operation, the setting of bits DO and D1 of the command
register is not necessary. However, it is assumed that DO and D1 are set to the default setting
(00) for normal operation. During a read operation, single bit stream data which has been
converted from a RS232 to TTL levels and formatted into a 12-bit word is transferred to the
DSP.

The procedure for a read operation is as follows: Test and wait for bit #15 (RXRDY) of
the status register to be set to ‘1'. When the RXRDY bit is set to ‘1°, read the 12 data bits from
the DIB buffer. Reading the data clears the RXRDY flag. The data occupies the lower 12 bits of
the 16 data lines on DSPLINK. If the data is not read before the next 12 bits are available from
the data source, the RXOVR bit is set to a ‘1’ meaning that an error has occurred.

A sample code for the read operation written for the TMS320C25 DSP follows:

BOARD .set 0 ;base address of DIB = 0

RXDATA .set BOARD+0 ;Read DATA port address

RDSTAT .set BOARD+1 ;Read STATUS port address

RXRDY .set Oh ;C25 bit code for receive ready status bit, D15
.bss STAT ;status register variable
.bss HOLD ;data buffer variable

; Sample code begins here

RD_LOOP:
WAIT_RDY:
IN STAT, RDSTAT ;read DIB status register
BIT STAT, RXRDY ;test bit 15
BBZ WAIT_RDY ;keep waiting if bit not set
RD_DATA:

BS5

IN HOLD, RXDATA ;jread data from buffer into HOLD
B RD_LOOP ;End of loop

; End of sample code

4.2.2 Send Data Example

The procedure for sending data to the DIB is similar to reading data from the DIB.
Again, it is assumed that the board has a base address of ‘0’ (i.e. A,, A,, A, =0"). Itis also
assumed that the data is to be transferred to the data buffer. As a result, the command register
bits DO and D1 must be set to ‘0’ prior to the data transfer (see Section 4.1.1 of this appendix).
During a send operation, 12-bit words are transferred to the DIB from the DSP and formatted
into a single data bit stream. The bit stream is converted from TTL to RS232 levels and then
transferred to the data device.

The procedure for a send operation is as follows: Test and wait for bit #13 (TXMT) of the
status register to be set to ‘1’. When the TXMT bit is set to ‘1°, transfer the data to the data
buffer. Sending the data clears the TXMT flag. The data is transferred in the lower 12 bits of the
16 data lines on DSPLINK. If the data is not sent, the TXUND bit is set to a ‘1’ meaning that an
error has occurred.

BOARD .set 0 ;base address of DIB = 0
TXDATA .set BOARD+0 ;Read DATA port address
RDSTAT .set BOARD+1 ;Read STATUS port address
COMMND .set BOARD+1 ;Command port address
TXMT .set 2h ;C25 bit code for transmit empty status bit, D13
SEL_BUFF .set 0 ;select data buffer
DATA .set 99 ;Arbitrary data value to be transferred
.bss STAT,1 ;status register variable

; Sample code begins here

TX_LOOP:
WAIT MT: -
IN STAT, RDSTAT ;read DIB status register
BIT STAT, TXMT ;test bit 13
BBZ WAIT _MT i1 keep waiting if bit not set
SEND_DATA:
ouT SEL_BUFF,COMMND; select destination to be data buffer
NOP
ouT DATA, TXDATA ;transfer data to DIB
B TX_LOOP ;End of loop

; End of sample code

B6

4.2.3 Writing to Debug Latches

In cases where a user would like to verify the value of a register, for example, it is
possible to write the value to one of three debug latches on the DIB. The procedure for writing
data to a debug latch mirrors that of writing to the data buffer. The difference comes from the
selection of the destination in bits DO and D1 of the command register as discussed above. Once
the data transfer to the latch is complete, the command register is set back to its default so that
the data buffer is selected as the destination. For this example, it is assumed that the board has a
base address of ‘0. It is also important to mention that there are three debug latches on the DIB,
but only one (#1) is brought out on a connector (26-pin) to the front panel. A user can write data
to a latch anytime during the program.

The procedure for writing data to a debug latch is as follows: The user sets the command
register to address the specific debug latch (bit 0,1) according to Table B2. Then, the data is sent
to the latch using the TXDATA command in the program. Finally, the command register is
returned to its initial state (zero) in order for the program to continue with the normal path of the
data.

Sample code is provided below to transfer a data value to debug latch #1.

BOARD .set 0 ;base address of DIB = 0

TXDATA .set BOARD+0 ;Read DATA port address

COMMND .set BOARD+1 ;Command port address

SEL_BUFF .set 0 ;select data buffer as destination
SEL_LAT1 .set 1 iselect debug latch #1 as destination
DATA .set 99 ;Arbitrary data value to be transferred

; Sample code begins here

SEND_DATA:

our SEL_LAT1,COMMND;select destination to be debug latch #1
NOP

ouT DATA, TXDATA ;transfer data to debug latch

NOP

ouT SEL_BUFF,COMMND; select destination to be data buffer

; End of sample code

4.2.4 Frame Zero Pulse

For the uplink synchronization experiment, a downlink synchronization reference serial
link is implemented to transmit an estimate of the payload clock to the ground terminal in order
to begin the process of uplink synchronization. The estimate is transmitted in the form of a
pulse. The rising edges and falling edges refer to specific times in the PL system hop sequence.
The DIB provides the interface between the simulators and the serial link for both the generation
and detection of the FRO pulse.

B7

To generate the rising edge of the pulse, the FRO_out bit (bit 2) of the command register
is set to ‘1' (default is ‘0"). For the falling edge, the FRO_out bit is returned to ‘0'. For the uplink
synchronization experiments, the PL continuously generates this reference pulse for the GT to
use for syncrhonization.

To receive the FRO pulse, a user repeatedly reads the status register and monitors bit D11
(FRO_in) of the status register. The GT processor adjusts its clock based on the detection of the
rising and falling edges of the pulse. For the uplink synchronization experiments, the rising edge
of the FRO pulse corresponds to the zeroth hop of the zeroth frame in the hop sequence. The
falling edge of the FRO pulse corresponds to the zeroth hop of the first frame.

The sample TMS320C25 DSP code provided directly below illustrates the procedure for
transmitting one FRO pulse.

BOARD .set 0 sbase address of DIB = 0
COMMND .set BOARD+1 ;COMMAND port address
FRMO_HI .set 4 ;set D2 of COMMAND reg to ‘1'
FRMO_LO .set 0 ;clear D2 of COMMAND reg

; Sample code begins here
; It is assumed that the FRO bit is originally set to be 0 (default)

ouT FRMO HI,COMMND ;put a ‘1' on FRO bit of COMMAND reg
NOP ;delay

NOP

NOP

NOP

NOP

NOP

ouT FRMO_LO,COMMND ;put ‘0' on FRO bit of COMMAND reg

; End of sample code

The sample code written for the TMS320C25 DSP board for detecting the FRO pulse is as
follows:

BOARD .set 0 ;base address of DIB = 0

RDSTAT .set BOARD+1 ;Read STATUS port address

FRMO_RX .set 4h 7C25 bit code for FRO bit on status reg (D11)
.bss STAT, 1

; Sample code begins here

DET_FRO:
IN STAT, RDSTAT ;read status register of DIB
BIT FRMO_RX, STAT ;test bit D11
CALL CHK_4_EDGE ;call subroutine to check for fall/ris edge

; (not included here)

B8

Appendix C: Test Program for DIB

1. General

This appendix contains the listings of the program used by the PC (station) to test the DIB
according to Fig. 7 of the main document. The testing steps are briefly described in section 4 of
this document. There will be comments after the program codes when needed to explain the
meaning of that particular code.

2. Program Listings

The program listings for the testing of the DIB are found in the following pages.

2.1
2.2
23
24
25

C Listing (Berhost). User interface program for a PC.

Assembler listing (Bertest). DSP assembler program.

Berhost. MAK. To compile and link C program.

Bertest. MAK. To compile and link assembler program.

Bertest. CMD. Linker file used to produce output file to be loaded into DSP memory

C1

21 C

Listing

Berhost.C

#include
#include
#include
#include

#define

#define
#define

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

<stdlib.h>
<conio.h>
<stdio.h>
"TIC25.h" /* TMS320 development Lib. header file.

PROC_BED 3 /* Corresponds to I/O ports 390-397 */

MAXWAIT 50000L
TIMWAIT 2000L

CLEAR 0
TBEGIN 1
TSTAT 2
TRESLT 3
TDEMOD 4

C25IN ©
c25P1 1
Cc25P2 2
c25P3 3
PCIN 4
PCP1 5
PCP2 6
PCP3 7
FRO_FLG 8
DEBUG 9

ushort mail_base;

int stop

void ini
void sen
ushort g

_flag = 0;

t_board(int board) ;
d_and_wait (ushort type,ushort pl,ushort p2,ushort p3,long count);
et_mail (ushort #*pl,ushort *p2,ushort *p3,long count);

ushort mread{ushort addr);

void mwr
void che

ite (ushort addr,ushort val);
ckkey (void) ;

void display mail (ushort type,ushort pl,ushort p2,ushort p3);

void main()

{

usho
long

rt ans,tl,t2,t3,mtype;
iljl'

init_board (PROC_BD) ;
send_and wait (TBEGIN, 0,0, 0,MAXWAIT) ;

exit

(0);

C2

*/

void init_board (int board)

{

int loadstatus;

SelectBoard (board) ;

AssertReset () ;

UnHold() ;

RemoveFlag() ;

CommRWDis () ;

CommRRDis () ;

ReadStatReg!) ;

ReadStatReg() ;

loadstatus = LoadObjectFile("bertest.out");

if (loadstatus != 0) {
printf ("Error! Not able to load \bertest.out\ down to the board\n") ;
exit(1);

}

RelReset () ;

WaitComWr (MAXWAIT) ;

mail_base = RdCommReg () ;

return;

void send_and*wait(ushort type,ushort pl,ushort p2,ushort p3,long count)

{

long i,3;

mwrite (C25P1,pl);
mwrite (C25P2,p2) ;
mwrite (C25P3,p3);
mwrite (C25IN, type) ;
mwrite (DEBUG, 1) ;

for (3=0;3<2000;j++) {

for (i=0;i<500;i++) {
/*nothing*/
}

mwrite (FRO_FLG, 0) ;

for (i=1;i<500;i++) {
/*nothing*/
}

mwrite (FRO_FLG,1) ;

}

mwrite (DEBUG, 0) ;

return;

C3

ushort get_mail (ushort *pl,ushort *p2,ushort *p3,long count)
{
long i;
ushort mtype;
if (count t= 0) {
for (i=0;i<count;i++) if ((mtype=mread(PCIN)) != CLEAR) break;
if (i == count) return CLEAR;
} else {
while ((mtype=mread(PCIN)) == CLEAR) ;
}
*pl = mread (PCP1);
*p2 = mread(PCP2) ;
*p3 mread (PCP3) ;
mwrite (PCIN, CLEAR) ;
return mtype;

}
ushort mread (ushort addr)
{
return GetMemlé ('D',addr+mail_base);
}

void mwrite (ushort addr,ushort wval)

{
PutMeml6 ('D',addr+mail_base,val) ;
return;

}

void checkkey (void)

{

int c;

if (kbhit() == 0) return;
¢ = getch{();
switch (c)
case 'q':
case 'Q':
case 'x':
case 'X':
case 'e':
case 'E':
case '\033':
stop_flag = 1;
break;
case O:
c = getch();
break;
default:
break;
}

return; }

C4

void display mail (ushort type,ushort pl,ushort p2,ushort p3)
{ .

char buff[80];

switch (type) ({

case CLEAR:
printf ("No message - timeout\n");
break;

case TBEGIN:
printf ("Illegal BEGIN message\n");
break;

case TSTAT:
ltoa((long) pl,buff,2);
printf ("STATUS %16s (%X)\n",buff,pl);
break;

case TRESLT:

" ltoa((long) p1,buff,2);

printf (" Res = %12s (%X)\n",buff,pl);
break;

case TDEMOD:
ltoa((long) pi1,buff,2);
printf ("Demod = %125 (%X)\n",buff,pl);
break;

default: ,
printf("Illegal message type %d (%4, %d, %d)\n",type,pl,p2,p3);
break;

}

return;

C5

2.2 Assembler Listing

Bertest.ASM

.global

.global
PORTO: .set 0
BOARD: .set 8
RXDATA: .set BOARD
TXDATA: .set BOARD
SFLAGS: .set BOARD
HOPEDG: .set 15
FIFOMT: .set 14
FRMZERO: .set 4
TXUND : .set 3
TXMT : .set 2
RXOVR: .set 1
RXRDY: .set 0
COMMND : .set BOARD
ADDATA: .set BOARD
CLEAR: .set O
TBEGIN: .set 1
TSTAT: .set 2
TRESLT: .set 3
TDEMOD : .set 4

RESET:
INTO:
INT1:
INT2:

TINT:
RINT:
XINT:
USER:

MAILBAS:
C251IN:
C25P1:
C25P2:
C25P3:
PCIN:
PCP1:

MAIN

RESET, INTO, INT1, INT2, TINT, RINT, XINT, USER, BADINT

+ 0 ; Receive data (read only)

+
o

+ 1 ; Status flags

; C25
; C25
; €25
; €25
; C25
; C25
; €25

bit
bit
bit
bit
bit
bit
bit

code
code
code
code
code
code
code

; Transmit data (write only)

(read only)

for
for
for
for
for
for
for

Bit
Bit
Bit
Bit
Bit
Bit
Bit

position
position
position
position
position
position
position

0 (LSB)
1

11

12

13

14

15 (MSB)

+ 1 ; Command - used for reset (write only)
+ 2 ; A/D FIFO data (read only)

.sect "IRUPTS"

MAIN

wwww

.space

o www

BADINT
BADINT
BADINT

16 * 16

BADINT
BADINT
BADINT
BADINT

.sect "IniDat*"

.word CLEAR
.word O
.word O
.word 0
.word CLEAR
.word 0O

C6

PCP2:
PCP3:

FRO_FLG

DEBUG

TMPIN:
TMPP1:
TMPP2:
TMPP3:

XOLD:
YOLD:
X:
Y:

STAT:
HOLD:
FLAG:
TEMP:
co:

DEUX:

TROIS:
FRM O:

QZ:

.word
.word
.word
.word

.word
.word
.word
.word

.word
.word
.word
.word

.word
.word
.word
.word
.word

.word
.word
.word
.word
.word
.word

.text

00O OO0 Oo O 0O O0Oo [« e e RNe] o O oo

B W N

8000h

BADLOP

DINT
ROVM
LARP
LDPK
LACK
SACL
RSXM
SPM

; Ensure interrupts disabled

; Reset overflow mask

; Set ARP to ARO

; Point to page 0 (control area)
; Mask off all interrupts

; Disable sign extension
; No shift on P register

C7

LDPK

LALK
SACL
ouT

LALK
SACL

WAITBG:
CALL
SUBK
BNZ

LOOP:

BNZ
ouT

CONT1:
ouT

CONT2:
IN

BNZ
BIT
BBZ
IN

LALK
SACL

Ll:

BZ
BIT
BBZ
NOP
ouT
LALK
SACL

BZ

ouT
ouT
ouT

MAILBAS

MAILBAS
TEMP

TEMP, PORTO
0

FLAG

WAITM
TBEGIN
WAITBG

FRO_FLG
CONT1
FRM_0, COMMND
CONT2

C0, COMMND

STAT, SFLAGS

FLAG

11

STAT, RXRDY
L1

HOLD, RXDATA

1
FLAG

Loop

FLAG

L2

STAT, TXMT
L2

HOLD, TXDATA
0
FLAG

DEBUG

Loop

UN, COMMND
HOLD, TXDATA
Co, COMMND
LOOP

.
’

Point to data area

Send mail base address to PC

Waits for FLAG to begin program

Checks for FRM 0 and makes it
vary for testing purpose (simulate)

Receives status bits from the BIB

Checks for the RX ready status bit
If the bit is at ‘0' go to Ll

;Stores data from BIB in HOLD

Checks for the RX ready status bit
If the bit is at ‘0' go to L2

send data in HOLD to the BIB

Adresses Debug latche #1
Puts the content of HOLD on latch
Back to initial state

C8

L2: .
B LOOP

H WAIT BEGIN

WAITM:
LAC C25IN
BZ WAITM
SACL TMPIN
LAC C25P1
SACL TMPP1
LAC c25pP2
SACL TMPP2
LAC C25P3
SACL TMPP3
LALK CLEAR
SACL C25IN°
LAC TMPIN

.end

2.3 Berhost MAK

berhost.exe: berhost .obj
link berhost,,,sti25dev;

berhost.obj: berhost.c
cl /e /04 berhost.c

24 Bertest MAK

BERTEST.OUT: BERTEST.OBJ
c:\tms\DSPLNK BERTEST.CMD

BERTEST.OBJ: BERTEST.ASM
c:\tms\DSPA BERTEST.ASM -1

2.5 Bertest.CMD

BERTEST.OBJ /* BER Board Test Software
-e MAIN /* Entry point

-0 BERTEST.OUT /* Executable file

-m BERTEST.MAP /* Map file

C9

*/

*/
*/

MEMORY

{
PAGE O0: VECTORS: origin = 0H, length = 03FH
PROG: origin = 400H, 1length = 01COOH
PAGE 1: DATA: origin = 8000H, 1length = 02000H
}
SECTIONS
{
IRUPTS: { } > VECTORS PAGE 0
.text: { } > PROG PAGE 0
.data: { } > PROG PAGE 0
IniDat: { } > DATA PAGE 1
.bss: { } > DATA PAGE 1

C10

69
UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM
(highest classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA

(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (the name and address of the organization preparing the document. 2, SECURITY CLASSIFICATION
Organizations for whom the document was prepared, e.g. Establishment sponsoring (overall security classification of the document
a contractor’s report, or tasking agency, are entered in section 8.) » including special warning terms if applicable)
Defence Research Establishment Ottawa
Ottawa, Ontario UNCLASSIFIED
K1A 0Z4

3. TITLE (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S,C or U) in parentheses afler the title.)

Multipurpose Data Interface Board (DIB) (U)

4. AUTHORS (Last name, first name, middle initial)
Simoneau (Capt), Yves and Tom, Caroline

5. DATE OF PUBLICATION (month and year of publication of 6a. NO. OF PAGES (total 6b. NO. OF REFS (total cited in
document) containing information. Include document)
July 1998 Annexes, Appendices, etc.)
84 6

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of
report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.

DREO Report

8. SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development. Include the
address.

Scall
9a. PROJECT OR GRANT NO. (if appropriate, the applicable research 9b. CONTRACT NO. (f appropriate, the applicable number under
and development project or grant number under which the document which the document was written)

was written, Please specify whether project or grant)

10a. ORIGINATOR’S DOCUMENT NUMBER (the official document 10b. OTHER DOCUMENT NOS. (Any other numbers which may
number by which the document is identified by the originating be assigned this document either by the originator or by the
activity. This number must be unique to this document.) sponsor)

DREO REPORT 1332

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security classification)

(X) Unlimited distribution

() Distribution limited to defence departments and defence contractors; further distribution only as approved

() Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved
() Distribution limited to government departments and agencies; further distribution only as approved
() D
)

istribution limited to defence departments; further distribution only as approved
Other (please specify):

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally correspond to
the Document Availability (11). however, where further distribution (beyond the audience specified in 11) is possible, a wider
announcement audience may be selected.)

Unlimited Announcement

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM RA.W (21 Dec 92)

70 :
UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U).

It is not necessary to include here abstracts in both official languages unless the text is bilingual).

Defence Research Establishment Ottawa is pursuing an in-house research
activity in spread-sprectrum technology to support development of robust,
anti-jam satellite communications for the military. The in-house effort
consists of developing a system simulator, including both a ground terminal
processor and a payload processor, to research techniques involved in
spread-spectrum synchronization. For these experiments, a multipurpose
data interface board is required for different data operations, and is the
subject of this report. The board is composed of mainly an erasable
programmable logic device to reduce the number of integrated circuits
and to add flexibility to the design. The board was designed to perform
three functions. The first function is the data format conversion between
a ground terminal processor and a data source, and likewise, a payload
processor and a data sink. The second function is to provide an interface
to a separate direct link between the payload and ground terminal
subsystems for transmitting a reference pulse for synchronization. The
third function is to provide a set of debug latches for the user. In

this document, the software and hardware details are provided along with
a user’s guide for the board.

14, KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize 2 document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment
model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected
from a published thesaurus. e¢.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it is not possible to
select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

data format conversion

data interface board

erasable programmable logic device
EPLD

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

